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Braids and differential equations

Robert Ghrist∗

Abstract. Forcing theorems based on topological features of invariant sets have played a fun-
damental role in dynamics and differential equations. This talk focuses on the recent work of
Vandervorst, Van den Berg, and the author using braids to construct a forcing theory for scalar
parabolic PDEs, second-order Lagrangian ODEs, and one-dimensional lattice dynamics.

Mathematics Subject Classification (2000). Primary 37B30, 35K90; Secondary 34C25, 37L60,
57M25.

Keywords. Braids, Conley index, dynamical systems, parabolic PDEs, second order La-
grangian.

This talk covers a particular type of forcing theory for parabolic dynamics which uses
the topology of braids in an index theory.

1. Topological forcing theorems

Throughout the last century of work in dynamical systems, forcing theorems have
played a substantial role in establishing coarse minimal conditions for complicated
dynamics. Forcing theorems in dynamics tend to take the following form: given
a dynamical system of a specified class, the existence of some invariant set of one
topological type implies the existence of invariant sets of other topological types. This
forcing is often encoded by some sort of ordering on topological types of invariant
sets.

1.1. Examples. Three canonical examples of forcing theorems frame our work.

Example 1 (Morse Theory [43]). The class of systems is that of nondegenerate gra-
dient flows on an oriented manifold M . The invariant sets of interest are the fixed
points, and the topological type associated to a fixed point is its Morse index – the
dimension of its unstable manifold. A suitable chain complex generated by fixed
points and graded by the Morse index yields a homology which is isomorphic to that

∗Research supported by the National Science Foundation, PECASE DMS-0337713. The author wishes to
thank Rob Vandervorst, without whom the work described here would not exist.
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2 Robert Ghrist

of M , allowing one to deduce the existence and indices of additional critical points
based on partial knowledge of the invariant sets and the homology of M .

Morse theory has blossomed into a powerful array of topological and dynamical
theories. One significant extension is the theory of Conley [14] which associates to an
‘isolated’ invariant set of a finite dimensional dynamical system an index – the Conley
index – which, like the Morse index, can be used to force the existence of certain
invariant sets. Instead of being a number (the dimension of the unstable manifold),
the Conley index is a homotopy class of spaces (roughly speaking, the homotopy type
of the unstable set). See [44] and the references therein for a sampling of applications
to differential equations.

Following on the heels of Conley’s index theory is the extension of Floer to infinite-
dimensional gradient-like dynamics. This, in turn, has led to an explosion of results
in topology and geometry. The recent flurry of activity in contact homology and
symplectic field theory [18] is a descendent of these foundational ideas.

Example 2 (The Poincaré–Birkhoff Theorem [5]). This theorem applies to orientation
and area preserving homeomorphisms of the annulus whose boundaries are twisted
in opposite directions. As with Morse theory, the forcing is in terms of a lower bound
(two) on the number of fixed points. The Poincaré–Birkhoff Theorem is the first of
many dynamical theorems to exploit the particular features of symplectic manifolds
and maps which preserve this symplectic structure. The marriage of this type of
theorem with the Morse-type forcing results is the Arnold Conjecture, for which
Floer theory was first and most strikingly used.

There is a very powerful extension of the Poincaré–Birkhoff Theorem due to
Franks [25] (Gambaudo and LeCalvez [39, App.] proved a slightly different version
independently at about the same time). Franks’ theorem states that if an area and
orientation preserving diffeomorphism of the annulus has at least one periodic point,
then it has infinitely many periodic orbits. See [26] for this and related results.
Franks’Theorem is an excellent example of how a forcing theorem in dynamics often
provides a sharp threshold for complicated dynamics: one simple invariant set implies
the existence of infinitely many others. This principle finds its clearest exponent in
the theorem of Sharkovsky.

Example 3 (Sharkovsky’s Theorem [48]). For continuous maps of the compact inter-
val to the reals, this theorem gives a total ordering � on the periods of periodic orbits.
The theorem states that if a map has an orbit of minimal period P then it has periodic
orbits of minimal period Q for all P � Q. That the minimal element of � is three
has led to the popular coinage “period three implies chaos.”

The Sharkovsky theorem is remarkable in that there are no assumptions on the
systems beyond dimension and continuity. Yet, the topological datum assigned to a
periodic orbit is merely the period and nothing more sophisticated. In general, the
resolution with which a forcing theorem can act depends on two factors: (1) how nar-
rowly one constrains the class of dynamical systems; and (2) what type of topological
data one assigns to the invariant sets.
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1.2. Overview. This paper motivates and describes a forcing theory developed by
R.Vandervorst in collaboration with J.-B.Van den Berg and the author. In this context,
the class of dynamics is, roughly speaking, scalar parabolic lattice dynamics. The
topological data which drives the forcing theory is a relative Conley index for invariant
sets based on the theory of braids.

The resulting forcing theory shares features with all three of the above examples.
The index we construct – the homotopy braid index – is a Conley–Morse index and
leads to Morse-type inequalities. The discrete version of the forcing theory is similar
in spirit to LeCalvez’work on twist maps for annuli [38], [39], which itself is an elegant
descendent of the Poincaré–Birkhoff Theorem. As with the Sharkovsky Theorem, we
obtain a (partial) order on invariant sets. This leads to very simple conditions on
invariant sets which force an infinite collection of additional invariant sets.

1.3. Braids and braid types. The use of braids in forcing theorems is not without
precedent. There are various types of topological forcing in dimensions two and three
related to braids. In the two-dimensional discrete case, one considers the isotopy class
of a map relative to some periodic orbit(s): these are related to braids.

One definition of a topological braid on n strands is a loop with basepoint in
the configuration space of n distinct unlabeled points in the disc D2. One usually
visualizes a braid as an embedding of n intervals u = {uα(t)}n1 into D2 × [0, 1] such
that each slice D2 × {t} is a set of n points and the initial and final configurations
the same: u(0) = u(1). See Figure 1 [left]. Given a braid u, its braid class {u} is
the equivalence class of braids isotopic to u, that is, homotopic to u through braids,
fixing the endpoints.

Figure 1. A braid on five strands, illustrated as a collection of embedded arcs in D2 × [0, 1]
[left]. A typical generator of the braid group has all strands ‘straight’ with a pair of incident
strands crossing [right].

There is an obvious algebraic structure on n-strand braid classes by passing to
the fundamental group Bn of the configuration space, the group operation being con-
catenation of the braids in D2 × [0, 1]. The standard presentation for Bn has n − 1
generators, where the ith generator consists of n parallel strands (the identity braid)
except that the ith strand crosses over the (i +1)st strand as in Figure 3 [right]. See [6]
for more details on the topology and algebra of braids.
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There is a wonderful analogue of the Sharkovsky Theorem for forcing periodic
orbits in surface homeomorphisms. In this setting, the period is not a sufficiently
fine datum – one must use what Boyland [7] coined the braid type of a periodic
orbit. Consider, for the sake of simplicity, an orientation preserving homeomorphism
f : D2 → D2 of the closed disc with a periodic orbit P of period n. The braid type
bt(P ) is, roughly speaking, the isotopy class of f relative to P . Using the relationship
between braid groups and mapping class groups [6], it is possible to formally identify
bt(P ) with a conjugacy class in the braid group Bn modulo its center. This is best
seen by suspending the disc map to a flow on D2 × S1. When embedded in R

3, the
periodic orbit is a braid. The choice of how many meridional twists to employ in the
embedding is the genesis of modding out by the center of Bn.

Boyland defined the following forcing order on braid types: one says that γ ≤ β

if and only if for any homeomorphism f : D2 → D2 with γ a braid type for some
periodic orbit of f , then β must also be a braid type for some (perhaps distinct)
periodic orbit of f as well. Boyland showed that this is a partial order on braid
types [8], which, though weaker than the total order of the Sharkovsky theory, is
nevertheless efficacious in forcing complicated dynamics.

Boyland’s theory, when generalized to surfaces, entwines with the Nielsen–
Thurston theory for surface homeomorphisms. This combination of braid types to-
gether with Nielsen–Thurston theory has matured to yield numerous strong results,
not only in the dynamics of horseshoe and Hénon maps [11], [13], but also in problems
of fluid mixing [9], [33].

1.4. Knots and links. In the case of flows in dimension three, embedding and isotopy
data is likewise crucial. Since each periodic orbit is an embedded loop, it is a knot,
and the set of periodic orbits forms a (perhaps infinite) link. The relationship between
the link of periodic orbits and the dynamics of the flow is very subtle.

A forcing theory for flows in not straightforward. Roughly speaking, the coun-
terexamples to the Seifert Conjecture constructed by K. Kuperberg [37] imply that
there cannot be a forcing theorem for general smooth nonsingular 3-d flows – one
can always insert a Kuperberg plug and destroy any isolated periodic orbit. At one
extreme, Kuperberg’s work implies that there exist smooth nonsingular flows on S3

without any periodic orbits whatsoever. At the other extreme, it is possible to have a
smooth, nonsingular, structurally stable flow on S3 which displays all possible knots
and links as periodic orbits [29]. These phenomena do not bode well for a forcing
theory based on knots and links.

However, upon restriction to the correct subclass of flows, it is often possible to
retain some vestige of forcing based on knot and link types. One principle which
persists is that simple dynamics implicate simple types of knots. For example, in
the class of nonsingular Morse–Smale flows on S3, only certain knot types and link
types can appear, a complete classification being given by Wada [54]. This result has a
nearly dual counterpart in the class of integrable Hamiltonian dynamics on an invariant
3-sphere, as shown by Fomenko and Nguyen [24] and explained best by Casasayas et
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al. [12]. Other instantiations of this principle appear in smooth, integrable fluid flows
on Riemannian 3-spheres [20] and in gradient fields on S3 kinematically constrained
by a plane field distribution [19].

A complementary principle also holds, that complex dynamics implicate complex
knot types in a flow on a 3-sphere. The best example of this type of result is the
theorem of Franks and Williams [27], which states that any C2 flow with positive
topological entropy has a link of periodic orbits which has an infinite number of
distinct knot types represented. Other results on knotting and linking for suspensions
of Smale horseshoes have been proved by Holmes and Williams [35] and used to force
bifurcations in Hénon maps. These results all employ the relationship between knots,
links, and closed braids – conjugacy classes of braids in the braid group which are
visualized by identifying the left and right endpoints of a braid.

1.5. Toward higher dimensions. Forcing theorems based on knots, links, or braids
in higher dimensional dynamics seem hopeless at first: these objects fall apart in
dimension higher than three. One possibility is to try to work with embedding data
associated to higher-dimensional invariant sets, say spheres or tori, which can be
knotted and linked in the appropriate codimension. At present, there is some initial
work on braiding of 2-d invariant tori in 4-d flows [50] which may lead to a forcing
theory. There is a great deal now known about the peculiar constraints of embedding
spheres and tori in symplectic manifolds, but as yet without much in the way of
dynamical implications.

We now turn to a braid-theoretic forcing theory for certain types of PDEs, where
the stationary equation allows us to import three-dimensional embedding constraints
into an infinite-dimensional dynamical system.

2. Braids for parabolic dynamics

Our motivation for using braids to force dynamics comes from a very simple obser-
vation about parabolic partial differential equations.

2.1. Motivation: parabolic PDEs. Consider the scalar parabolic PDE

ut = uxx + f (x, u, ux), (1)

where f satisfies one’s favorite technical assumptions to guarantee no finite-time
blowups of solutions. For simplicity, we assume periodic boundary conditions (x ∈
[0, 1]/0 ∼ 1). We view Equation (1) as an evolution equation on the curve u( ·, t).
As t increases, the graph of u evolves in the (x, u) plane. Thus, the PDE induces a
flow on a certain infinite-dimensional space of curves. It is a result of Fiedler and
Mallet-Paret [21] that a type of Poincaré–Bendixson Theorem holds for these types
of equations: the only bounded invariant sets are stationary solutions, time-periodic
solutions, and connecting orbits.
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We augment the types of solutions under consideration as follows. First, we allow
multiple graphs to evolve by the product flow. That is, if u1 = u1(t) : [0, 1] → R and
u2 = u2(t) : [0, 1] → R are solutions to Equation (1), then we consider the union
u = (u1, u2) as a solution to the product flow. These two strands evolve together,
independently, as a pair of graphs on the (x, u) plane. In general, we can consider an
n-tuple u = (uk)n1 of strands which evolve under the dynamics.

Second, we allow for strands of multiple spatial period. That is, we allow for
a collection u = (uk)n1 of strands of the form uk : [0, 1] → R with the endpoints
equivalent as sets: {uk(0)}n1 = {uk(1)}. Even though the endpoints do not match
strandwise, the union of the endpoints of the strands do match, and thus the entire
collection evolves under the PDE so as to respect the spatial periodicity. One can think
of such a collection of strands as a single-strand curve on the n-fold cover [0, n]/0 ∼ n

of the spatial variable x.
It is a well-known fact (going back to Sturm, but revived and extended considerably

by Matano [41], Brunovsky and Fiedler [10], Angenent [1], and others) that there is a
comparison principle for Equation (1). Specifically, let u1(t) and u2(t) be solutions
to Equation (1). Then the number of intersections of the graphs of u1(t) and u2(t) is
a weak Lyapunov function for the dynamics: it is non-increasing in t . Furthermore,
at those particular times t for which the graphs of u1(t) and u2(t) are tangent, the
number of intersections decreases strictly in t , even in the case where the tangencies
are of arbitrarily high order [1]. These facts are all at heart an application of classical
maximum principle arguments which have a topological interpretation: parabolic
dynamics separates tangencies monotonically.

This monotonicity is easily seen. Assume that u1 and u2 are solutions to Equa-
tion (1) which have a simple tangency where u1(x, t) = u2(x, t). Then the evolution
of the difference between u1 and u2 is given by

∂

∂t

(
u1(x, t) − u2(x, t)

) = ∂2

∂x2

(
u1(x, t) − u2(x, t)

)
. (2)

Since the nonlinear terms cancel, the evolution is governed purely on the basis of the
curvature of the graphs.

Using this comparison principle (also known as lap number or zero crossing
techniques), numerous authors have analyzed the dynamics of Equation (1) in varying
degrees of generality. We note in particular the paper of Fiedler and Mallet-Paret [21],
in which the comparison principle is used to show that the dynamics of Equation (1)
is often Morse–Smale, and also the paper of Fiedler and Rocha [22], in which the
global attractor for the dynamics is roughly classified.

2.2. Idea: dynamics on spaces of braids. A typical collection of strands is illus-
trated in Figure 2 [left], in which one notices a resemblance to the planar projection
of a braid. By lifting this collection of strands in the (x, u) plane to the 1-jet exten-
sion of the strands in (x, u, ux) space, we obtain a Legendrian braid tangent to the
contact structure {dy − z dx = 0}. Such a braid is closed, due to the periodicity of
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the strands. Being Legendrian, the braid is positive – in the standard generators for
the braid group, only positive powers of generators are permitted.

There is a globalization of the comparison principle using braids. For a motivating
example, consider again a pair of evolving curves u1(t) and u2(t) in the (x, u) plane.
If we lift these curves to the three-dimensional (x, u, ux) space, we no longer have
intersecting curves, unless t is such that the planar graphs of u1 and u2 intersect
tangentially. The graphs of u1 and u2 in the (x, u, ux) space are instead a closed
braid on two strands. What was the intersection number of their projections is now
the linking number of the pair of strands.

We see therefore that the comparison principle takes on a linking number interpre-
tation (a fact utilized in a discrete setting by LeCalvez [38]). After lifting solutions u1

and u2 to the (x, u, ux) space, the comparison principle says that the linking number
is a nonincreasing function of time which decreases strictly at those times at which
the curves are tangent. This two-strand example is merely motivation for adopting a
braid-theoretic perspective on multiple strands, as in Figure 2.

xx

uu

ux

Figure 2. Curves in the (x, u) plane lift to a braid in (x, u, ux).

The key observation is that the comparison principle passes from a local statement
(“linking number decreases at a tangency”) to a global statement (“algebraic length in
the braid group decreases at a tangency”). A related globalization of the comparison
principle for geodesic flows on Riemannian surfaces appears in the recent work of
Angenent [2].

2.3. Goal: forcing. Our goal is to produce a forcing theory for the dynamics of
Equation (1) and more general parabolic systems. For simplicity, we focus on forcing
stationary solutions, though periodic and connecting orbits are likewise accessible.
Say that one has found a skeleton of stationary strands {v1, v2, . . . , vm} for a particular
representative of Equation (1). How many and which types of other stationary curves
are forced to be present? Since the skeleton of known fixed curves v = {v1}mi=1 lifts
to a braid, the problem is naturally couched in braid-theoretic terms: given a braid v

fixed by a particular uniform parabolic PDE, which other classes of braids u are forced
to exist as stationary curves?

The spirit of our forcing theory is as follows:
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1. Given a braid of stationary solutions v, construct the configuration space of all
n-strand braids u which have v as a sub-braid.

2. Use the braid-theoretic comparison principle to give a Morse-type decompose
of this configuration space into dynamically isolated braid classes.

3. Define the homotopy braid index – a Conley index for relative braid classes
which depends only on the topology of the braids, and not on the analytical
details of the dynamics.

4. Prove Morse-type inequalities for forcing stationary and/or time-periodic so-
lutions.

To execute this requires a significant generalization to spatially discretized sys-
tems, which in turn generalizes the results far beyond parabolic PDEs.

3. Spaces of braids for parabolic dynamics

3.1. Braids, topological and discrete. The motivation of §2.1 leads one to consider
spaces of braids obtained from curves in the (x, u) plane. Consider the space of all
such n-strand braids u which are both closed and positive. For the sake of intuition,
one should think of these topological braids as smooth braids lifted from the 1-jet
extension of graphs in the plane. In reality, one completes this space to include non-
smooth braids as well. These configuration spaces of braids are infinite dimensional.
By projecting to finite dimensional approximations, we avoid a great deal of analytic
and topological difficulties. We briefly outline the “finite dimensional” braid theory
needed.

The class of discretized braids are best visualized as piecewise-linear braid di-
agrams, as in Figure 3 [left]. A discretized braid, u, on n strands of period p, is
determined by np anchor points: u = {uα

i }α=1,...,n
i=0,...,p . Superscripts α = 1, . . . , n refer

to strand numbers, and subscripts i = 0, . . . , p refer to spatial discretizations. One
connects the anchor point uα

i to uα
i−1 and uα

i+1 via straight lines. Since “height” is
determined by slope, all crossings in the braid diagram are of the same sign (as in
Figure 3 [left] but not in Figure 1 [left]). Since we employ periodic boundary con-
ditions on the x variable, all of the braids are closed: left and right hand endpoints
of strands are abstractly identified and the endpoints are free to move. This neces-
sitates a periodicity convention for the subscript. For a single-strand component uα ,
we have that uα

i+p = uα
i for all i. For multi-strand components, one cycles between

the strands according to the permutation of strands. Denote by Dn
p the space of all

n-strand period p discretized braids: Dn
p is homeomorphic to R

np.
For topological braids, a singular braid is one for which one or more strands

intersect. For braids which are lifts of graphs, the only possible intersection is that
which occurs when two strands are tangent in the projection. For a discretized braid u,
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Figure 3. A discretized braid in D4
6 with three components (note: left and right hand sides are

identified) [left]; Two types of singular discretized braids: a simple tangency, and a high-order
contact [right].

the singular braids are defined to be those braids at which anchor points on two different
strands coincide in a topologically non-transverse fashion with respect to immediate
neighbors. Denote by � the singular braids,

� = {u : uα
i = u

β
i for some i and α �= β, and (uα

i−1 − u
β
i−1)(u

α
i+1 − u

β
i+1) ≥ 0}.

(3)
The set � is a discriminant that carves Dn

p into components: these are the discretized
braid classes, denoted [u]. Within �, there is a subspace of collapsed braids, �− ⊂
�, consisting of those braids for which distinct components of the braid (or a single
component with multiple period) collapse to yield a braid on fewer strands. More
specifically,

�− = {u ∈ � : uα
i = u

β
i for all i ∈ Z and some α �= β}, (4)

under the convention of subscript periodicity mod p as regulated by the braid.

3.2. Parabolic dynamics on braids. A parabolic PDE of the form in Equation (1)
gives rise to a flow on the space of topological braids. There is likewise a broad class
of flows on spaces of discretized braids which are best described as parabolic. These
come from nearest-neighbor lattice dynamics.

Discretizing Equation (1) in the standard way would yield a family of nearest
neighbor equations of the form d

dt
ui = fi(ui−1, ui, ui+1) in which uniform parabol-

icity would manifest itself in terms of the derivatives of fi with respect to the first and
third variables. Instead of explicitly discretizing the PDE itself, we use the broadest
possible category of nearest neighbor equations for which a comparison principle
holds: these are related to the monotone systems of, e.g., [49], [34], [21] and others.

A parabolic relation of period p is a sequence of maps R = {Ri : R
3 → R}, such

that ∂1Ri > 0 and ∂3Ri ≥ 0 for every i. These include discretizations of uniform
parabolic PDE’s, as well as a variety of other discrete systems [40], [42], including



10 Robert Ghrist

monotone twist maps [38]. The small amount of degeneracy permitted (∂3Ri = 0)
does not prevent the manifestation of a comparison principle. Given a discretized
braid u = {uα

i } and a parabolic relation R, one evolves the braid according to the
equation

d

dt
(uα

i ) = Ri (u
α
i−1, u

α
i , uα

i+1). (5)

Any parabolic relation R therefore induces a flow on Dn
p . Fixed points of this flow

correspond to stationary braids u satisfying Ri (u
α
i ) = 0 for all i and α. It will be

useful at certain points to work with parabolic relations which induce a gradient flow
on Dn

p . One calls R exact if there exist generating functions Si such that

Ri (ui−1, ui, ui+1) = ∂2Si−1(ui−1, ui) + ∂1Si(ui, ui+1), (6)

for all i. In the exact case, the flow of Equation (5) is given by the gradient of
∑

i Si .
All parabolic relations, exact or non-exact, possess a discrete braid-theoretic com-

parison principle.

Lemma 4 (Comparison principle for braids [32]). Let R be any parabolic relation
and u ∈ � − �− any non-collapsed singular braid. Then the flowline u(t) of R
passing through u = u(0) leaves a neighborhood of � in forward and backward time
so as to strictly decrease the algebraic length of u(t) in the braid group as t increases
through zero.

Lemma 4 implies that the flow of parabolic dynamics is gradient-like on the (non-
collapsed portions of) boundaries of braid classes. This suggests a Morse-theoretic
approach. For example, if the flow points in to a given braid class everywhere along
the boundary, then the braid class should serve as a ‘sink’ for the dynamics and thus
be assigned a Morse index of zero. At least some invariant set would have to lie
within this braid class, even if the dynamics is not gradient everywhere. For more
complicated behaviors on the boundary of a braid class, Conley’s version of Morse
theory is the appropriate tool, with the notion of a Morse index generalizing to the
Conley index, a homotopy class of spaces.

4. The homotopy braid index

One significant problem with this idea is the prevalence of collapsed braids, which
are invariant under the flow and foil the straightforward application of Morse theory.
Clearly, any braid class [u] borders the set of collapsed braids �− somewhere. One
need simply collapse all the strands together as an extreme degeneracy.

4.1. Relative braids. We are therefore naturally confronted with the need for a
forcing theory. Given that a particular parabolic relation possesses a stationary braid v,
does it force some other braid u to also be stationary with respect to the dynamics?
This necessitates understanding how the strands of u braid relative to those of v.



Braids and differential equations 11

Given a discrete braid v ∈ Dm
p , consider the set of nonsingular braids

{
u ∈ Dn

p : u ∪ v ∈ Dn+m
p − �n+m

p

}
,

the path components of which define the relative braid classes [u rel v]. Not only are
tangencies between strands of u illegal, so are tangencies with the strands of v. In this
setting, the braid v is called the skeleton. Elements within [u rel v] are equivalent
as discrete braids fixing all strands of v.

In this context, it is possible to define a Conley index for certain discrete relative
braid classes. To do so, it must be shown that the braid classes [u rel v] are isolated
in the sense that no flowlines within [u rel v] are tangent to the boundary of this
set. It follows from Lemma 4 that [u rel v] is isolated for the flow of Equation (5)
assuming that the braid class avoids the collapsed braids �−. We therefore declare
a braid class [u rel v] to be proper if no free strands of u can “collapse” onto v or
onto each other: see Figure 4. Furthermore, to ensure compactness, it is convenient
to assume that the braid class [u rel v] is bounded – free strands cannot wander off
to ±∞.

Figure 4. A bounded but improper braid class [left]. A proper, but unbounded braid class. Solid
strands form the skeleton; dashed strands are free [right].

4.2. The index: discrete version. The homotopy braid index of a proper, bounded,
discrete relative braid class [u rel v] is defined as follows. Choose any parabolic
relation R which fixes v (such an R exists). Define E to be the exit set: those braids
on the boundary of the braid class [u rel v] along which evolution under the flow
of R exits the braid class. The homotopy braid index is defined to be the pointed
homotopy class

h([u rel v]) = ([u rel v]/E , {E}) . (7)

This is simply the Conley index of the closure of [u rel v] in Dn
p under the flow of R.

Lemma 4, combined with the basic stability properties of the Conley index yields the
following:
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Lemma 5. The index h([u rel v]) is well-defined and independent of the choice of R
(so long as it is parabolic and fixes v) as well as the choice of v within its braid
class [v].

Thanks to the comparison principle for braids, the computation of the index h

does not require a choice of R. One can identify the exit set E purely on the basis
of which singular braids will decrease algebraic length under parabolic evolution.
This is the basis for an algorithm to compute the homological index H∗(h[u rel v])
numerically [17].

Example 6. Consider the proper period-2 braid illustrated in Figure 5 [left]. There is
exactly one free strand with two anchor points (via periodicity). The anchor point in
the middle, u1, is free to move vertically between the fixed points on the skeleton. At
the endpoints, one has a singular braid in � which is on the exit set. The end anchor
point, u0 (= u2) can freely move vertically in between the two fixed points on the
skeleton. The singular boundaries are not on the exit set since pushing u0 across the
skeleton increases the number of crossings.

u0

u1

u2

u0

u1

Figure 5. The braid of Example 6 [left] and the associated configuration space with parabolic
flow [middle]. Collapsing out the exit set leads to a space [right] which has the homotopy type
of a circle.

Since the points u0 and u1 can be moved independently, the braid class is the
product of two intervals. The exit set consists of those points on the boundary for
which u1 is a boundary point. Thus, the homotopy braid index is S1, as seen in
Figure 5 [right].

Example 7. Consider the proper relative braid presented in Figure 6 [left]. Since
there is one free strand of period three, the configuration space is determined by the
vector of positions (u0, u1, u2) of the anchor points. This example differs greatly
from the previous example. For instance, the point u0 (as represented in the figure)
may pass through the nearest strand of the skeleton above and below without changing
the braid class. The points u1 and u2 may not pass through any strands of the skeleton
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without changing the braid class unless u0 has already passed through. In this case,
either u1 or u2 (depending on whether the upper or lower strand is crossed) becomes
free.

The skeleton induces a cubical partition of R
3 by planes of singular braids. The

relative braid class is the collection of cubes in R
3 illustrated in Figure 6 [right]: it is

homeomorphic to D2 × S1. In this case, the exit set is the entire boundary and the
quotient space is homotopic to the wedge-sum S2 ∨S3, the space defined by abstractly
gluing a point of S2 to a point of S3.

u0

u1

u2

u3

Figure 6. The braid of Example 7 and the associated relative braid class.

Example 8. The braid pair of Figure 7 [right] has index h 
 S4 ∨S5 (as computed in
[32, Lem. 50]); the pair on the left has trivial index, even though the linking numbers
and periods of all strands are identical. This exemplifies the extra information carried
by the braiding data.

Figure 7. Discretized braid pairs with trivial [left] and nontrivial [right] homotopy index.

4.3. The index: topological version. As defined, the homotopy braid index h is a
function of discretized braid classes. For topological braids, one could hope that any
discretization yields the same discrete index. It does, modulo two technicalities.
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The first is simple. Given a topological relative braid pair u rel v and a dis-
cretization period p, consider the discrete braid pair whose anchor points are defined
in the obvious way using xi = i/p as the spatial discretization points. Only for p

sufficiently large will this discrete braid pair be isotopic as a topological braid to the
pair u rel v. Thus, one must choose p so that the correct braid class is obtained by
discretization.

The second technicality is more subtle. Even if the discretized braid is topolog-
ically isotopic to the original, it is possible to “fracture” the homotopy type of the
topological braid class via discretization. Consider the discrete braids of Figure 8:
these braid pairs are equivalent as topological closed braids, but not as discrete closed
braids. There is simply not enough freedom to maneuver.

Figure 8. An example of two discretized braids which are of the same topological braid class
but define disjoint discretized braid classes in D1

4 rel v.

To overcome this difficulty, we define a modification of the homotopy braid index
as follows. Given a fixed period p and a discrete proper relative braid class β =
[u rel v] ∈ Dn

p , let S(β) denote the set of all braid classes in Dn
p rel v which are

isotopic as topological braids to a representative of β. Define the index H to be

H (β) =
∨

βi∈S(β)

h(βi). (8)

This is a wedge sum of the indices of all discrete period-p representatives of the given
topological braid class. The wedge sum is well-defined since each h is a pointed
homotopy class.

This index H is an invariant of topological braid classes. Consider the following
stabilization operator, E : Dn

p → Dn
p+1, which appends a trivial period-1 braid to

the end of a discrete braid:

(Eu)αi =
{

uα
i , i = 0, . . . , p,

uα
p, i = p + 1.

(9)

The most important result about the index is the following invariance theorem:
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Theorem 9 (Stabilization [32]). For u rel v any bounded proper discretized braid
pair, the topological homotopy braid index is invariant under the extension operator:

H (Eu rel Ev) = H (u rel v). (10)

The proof of this theorem involves, surprisingly enough, a dynamical argument,
utilizing a singular perturbation of a particular parabolic relation adapted to E. This
is a very convenient way to prove homotopy equivalence, given the robustness of the
Conley index with respect to singular perturbations [15]. This theorem allows for a
proof of topological invariance.

Theorem 10 (Invariance [32]). Given u rel v ∈ Dn
p rel v and ũ rel ṽ ∈ Dn

p̃
rel ṽ

which are topologically isotopic as bounded proper braid pairs, then

H (u rel v) = H (ũ rel ṽ). (11)

The key ingredients in this proof are the Stabilization Theorem combined with a
braid-theoretic argument that the moduli space of discretized braids converges to that
of topological braids under sufficiently many applications of E – the length of the
braid in the word metric suffices.

5. Forcing theorems: parabolic lattice dynamics

The dynamical consequences of the index are forcing results. A simple example:
given any parabolic relation R which has as stationary solutions the skeleton of
Figure 7 [right], then, since adding the dashed strand from that figure yields a nontrivial
braid index, there must be some invariant set for R within this braid class. At this
point, one uses Morse theory ideas: if R is exact, then there must be a stationary
solution of the form of the grey strand. If the flow is not a gradient flow, then finer
information can still detect stationary solutions.

More specifically, let h be the homotopy braid index of a proper bounded discrete
braid class [u rel v]. Let Pτ (h) denote the Poincaré polynomial of the index – the
polynomial in Z[τ ] whose coefficients are the Betti numbers of the homology of the
index, H∗(h; R). The following results are consequences of degenerate Morse theory
(cf. [16]).

Theorem 11 ([32]). Given a parabolic relation R which fixes v and h = h([u rel v]),
the following hold:

1. The number of stationary braids in this braid class is bounded below by the
Euler characteristic χ(h) = P−1(h).

2. If R is exact, then the number of stationary braids in this braid class is bounded
below by the number of nonzero monomials of Pτ (h).
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Stronger results are available if it is known that the parabolic relation is nonde-
generate. By iterating the process of adding free strands and computing a nontrivial
index, one can go quite far. The following forcing theorem (for exact R) is very
general, requiring only that the parabolic relation is exact (yielding a gradient flow)
and dissipative, meaning that Ri → −∞ as |ui | → +∞.

Theorem 12 ([32]). Let R be a parabolic relation which is both exact and dissipative.
If R fixes a discretized braid v which is not a trivial braid class, then there exist an
infinite number of distinct braid classes which arise as stationary solutions of R.

This theorem is very much in the spirit of “period-three implies chaos.” The
dissipative boundary condition at infinity can be replaced with a coercive condition
(infinity is attracting) or with mixtures thereof with only minor adjustments to the
theorem statements [32].

6. Forcing theorems: second-order Lagrangians

This forcing theory gives an elegant approach to a class of fourth-order equations
arising from a Lagrangian. Consider a second order Lagrangian, L(u, ux, uxx), such
as is found in the Swift–Hohenberg equation:

L = 1

2
(uxx)

2 − (ux)
2 + 1 − α

2
u2 + u4

4
. (12)

Assume the standard convexity assumption that ∂2
uxx

L ≥ δ > 0. The Euler–
Lagrange equations yield a fourth-order ODE. The objective is to find bounded func-
tionsu : R → R which are stationary for the action integralJ [u] = ∫

L(u, ux, uxx) dx.
Due to the translation invariance x �→ x + c, the solutions of the Euler–Lagrange
equation satisfy the energy constraint

(
∂L

∂ux

− d

dx

∂L

∂uxx

)
ux + ∂L

∂uxx

uxx − L(u, ux, uxx) = E = constant, (13)

where E is the energy of a solution. To find bounded solutions for given values of E,
we employ the variational principle δu,T

∫ T

0 (L(u, ux, uxx)+E) dx = 0, which forces
solutions to have energy E.

The Lagrangian problem can be reformulated as a two degree-of-freedom Hamil-
tonian system. In that context, bounded periodic solutions are closed characteristics
of the corresponding energy manifold M3 ⊂ R

4. Unlike the case of first-order La-
grangian systems, the energy hypersurface is not of contact type in general [4], and is
never compact. The recent stunning results in contact homology [18] are inapplicable.

6.1. The twist condition. The homotopy braid index provides a very effective means
of forcing periodic orbits. By restricting to systems which satisfy a mild variational
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hypothesis, one can employ a “broken geodesics” construction which yields a re-
stricted form of parabolic relation.

Closed characteristics at a fixed energy level E are concatenations of monotone
laps between alternating minima and maxima (ui)i∈Z, which form a periodic sequence
with even period. The problem of finding closed characteristics can, in most cases, be
formulated as a finite dimensional variational problem on the extrema (ui), as realized
by Vandervorst, in his definition of the twist condition. The twist condition is a weaker
version of the hypothesis that assumes that the monotone laps between extrema are
unique and is valid for large classes of Lagrangians L, including Equation (12). The
following result of [52] is the motivation and basis for the applications of the homotopy
braid index to second-order Lagrangians.

Lemma 13. Extremal points {ui} for bounded solutions of second order Lagrangian
twist systems are solutions of an exact parabolic relation with the constraints that
(i) (−1)iui < (−1)iui+1; and (ii) the relation blows up along any sequence satisfying
ui = ui+1.

6.2. A general result. It is necessary to retool the homotopy braid index to the
setting of Lemma 13 and show that the index properties with respect to this restricted
class of parabolic relations are invariant. Upon so doing, one extracts very general
forcing theorems, a simple example of which is the following:

Theorem 14 ([32]). Let L(u, ux, uxx) be a Lagrangian which is dissipative (infinity
is repelling) and twist. Then, at any regular energy level, the existence of a single
periodic orbit which traces out a self-intersecting curve in the (u, ux) plane implies
the existence of infinitely many other periodic orbits at this energy level.

Additional results give lower bounds on the multiplicity of solutions in a given
braid class based on the Poincaré polynomial and apply to singular energy levels, as
well as to non-dissipative systems [32].

7. Forcing theorems: parabolic PDEs

The homotopy braid index, being inspired by parabolic PDEs, is efficacious in this
context also, thanks to Theorem 10. By performing a spatial discretization of the
dynamics of Equation (1), it is possible to reduce the dynamics of the PDE to those
of a parabolic relation on a finite-dimensional space of discretized braids.

On account of the robustness of the homotopy index with respect to the dynamics,
there is very little one needs to assume about the nonlinearity in Equation (1). The
first, crucial, hypothesis is a growth condition on the ux term of f . For simplicity,
let us call Equation (1) subquadratic if there exist constants C > 0 and 0 < γ < 2,
such that |f (x, u, v)| ≤ C(1 + |v|γ ), uniformly in both x ∈ S1 and on compact
intervals in u. This is necessary for regularity and control of derivatives of solution
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curves, cf. [3]. This condition is sharp: one can find examples of f with quadratic
growth in ux for which solutions have singularities in ux . Since our topological data
are drawn from graphs of u, the bounds on u imply bounds on ux and uxx .

A second gradient hypothesis will sometimes be assumed. One says Equation (1)
is exact if

uxx + f (x, u, ux) = a(x, u, ux)

[
d

dx
∂uxL − ∂uL

]
, (14)

for a strictly positive and bounded function a = a(x, u, ux) and some Lagrangian L

satisfying a(x, u, ux) · ∂2
ux

L(x, u, ux) = 1.
In this case, one has a gradient system whose stationary solutions are critical

points of the action
∫

L(x, u, ux) dx over loops of integer period in x. This condition
holds for a wide variety of systems. In general, systems with Neumann or Dirichlet
boundary conditions admit a gradient-like structure which precludes the existence
of nonstationary time-periodic solutions. It was shown by Zelenyak [55] that this
gradient-like condition holds for many nonlinear boundary conditions which are a
mixture of Dirichlet and Neumann.

7.1. Stationary solutions. Assume for the following theorems that {u rel v} is a
topological braid class which is both bounded and proper. Assume further that v is
stationary for Equation (1). We state our existence and multiplicity results in terms of
the Poincaré polynomial Pτ (H ) of the topological (as opposed to the discrete) braid
index H = H {u rel v}, computed via a discretization of the topological braid.

Theorem 15 ([31]). Let Equation (1) be subquadratic with v a stationary braid, and
H = H ({u rel v}).

1. There exists a stationary solution in this braid class if the Euler characteristic
of the index, χ(H ) = P−1(H ), is nonvanishing.

2. If Equation (1) is furthermore exact, then there exists a stationary solution in
this braid class if Pτ (H ) �= 0.

Additional results are available concerning multiplicity of solutions, alternate
boundary conditions, and non-uniformly parabolic equations: see [31]. A version
of Theorem 12 on infinite numbers of braids being forced by a single nontrivial sta-
tionary braid persists in this context. The result is simplest to state if the PDE is
dissipative; that is, u f (x, u, 0) → −∞ as |u| → +∞ uniformly in x ∈ S1. This is
a fairly benign restriction.

Theorem 16 ([31]). Let Equation (1) be subquadratic, exact, and dissipative. If v

is a nontrivially braided stationary skeleton, then there are infinitely many braid
classes represented as stationary solutions. Moreover, the number of single-free-
strand braid classes is bounded from below by �ι/2� − 1, where ι is the maximal
number of intersections between two strands of v.
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7.2. Examples. The following family of spatially inhomogeneousAllen–Cahn equa-
tions was studied by Nakashima [45], [46]:

ε2ut = ε2uxx + g(x)u(1 − u2), (15)

where g : S1 → (0, 1) is not a constant. This equation has stationary solutions
u = 0, ±1 and is exact with Lagrangian

L = 1

2
ε2u2

x − 1

4
g(x)u2(2 − u2).

0

0

1
+1

−1g

Figure 9. Given a function g : S1 → (0, 1) and ε small, there exists a skeleton of stationary curves
for Equation (15) which forms a nontrivial braid. This forces infinitely many other stationary
braids.

According to [45], for anyN > 0, there exists an εN > 0 so that for all 0 < ε < εN ,
there exist at least two stationary solutions which intersect u = 0 exactly N times.
(The cited works impose Neumann boundary conditions: it is a simple generalization
to periodic boundary conditions.) Via Theorem 16 we have that for any such g and
any small ε, this equation admits an infinite collection of stationary periodic curves;
furthermore, there is a lower bound of N on the number of 1-periodic solutions.

As a second explicit example, consider the equation

ut = uxx − 5

8
sin 2x ux + cos x

cos x + 3√
5

u(u2 − 1), (16)

with x ∈ S1 = R/2πZ. This gives an exact system with Lagrangian

L = e− 5
16 cos 2x

(
1

2
u2

x − cos x

cos x + 3√
5

(u2 − 1)2

4

)
, (17)

and weight a(x, u, ux) = e
5

16 cos 2x (cf. Equation (14)).
One checks easily that there are stationary solutions ±1 and ± 1

2

(√
5 cos x + 1

)
,

as in Figure 10 [left]. These curves comprise a skeleton v which can be discretized to
yield the skeleton of Example 6. This skeleton forces a stationary solution of the braid
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+1

−1

Figure 10. This collection of stationary solutions for Equation (16) [left] discretizes to the braid
skeleton of Example 6.

class indicated in Figure 5 [left]: of course, this is detecting the obvious stationary
solution u = 0. Note, however, that since H 
 S1, this solution is unstable.

What is more interesting is the fact that one can take periodic extensions of the
skeleton and add free strands in a manner which makes the relative braid spatially
non-periodic. Let vn be the n-fold periodic extension of v on [0, n]/0 ∼ n and
consider a single free strand that weaves through vn as in Figure 11. The homotopy
index of such a braid is a sphere whose dimension is a function of the linking number
of the free strand with the skeletal strands. The appropriate Morse inequalities imply
that for each n > 0 there exist at least 3n − 2 distinct stationary solutions. This
information can be used to prove that the time-2π map of the stationary equation has
positive entropy, see e.g. [47], [53].

Figure 11. Taking a lift of the spatial domain allows one to weave free strands through the lifted
skeleton. These project to multiply-periodic solutions downstairs. The braid pictured has index
H 
 S2.

7.3. Time-periodic solutions. A fundamental class of time-periodic solutions to
Equation (1) are the so-called rotating waves. For an equation which is autonomous
in x, one makes the rotating wave hypothesis that u(t, x) = U(x − ct), where c is
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the unknown wave speed. Stationary solutions for the resulting equation on U(ξ)

yield rotating waves. In [3] it was proved that time-periodic solutions are necessarily
rotating waves for an equation autonomous in x. However, in the non-autonomous
case, the rotating wave assumption is highly restrictive.

The homotopy braid index presents a very general technique for finding time-
periodic solutions without the rotating wave hypothesis.

Theorem 17 ([31]). Let {u rel v} be a bounded proper topological braid class with
u a single-component braid, v an arbitrary stationary braid, and Pτ (H ) �= 0. If
the braid class is not stationary for Equation (1) – the equation does not contain
stationary braids in this braid class – then there exists a time-periodic solution in this
braid class.

It was shown in [3] that a singularly perturbed van der Pol equation,

ut = εuxx + u(1 − δ2u2) + uxu
2, (18)

possesses an arbitrarily large number of rotating waves for ε � 1 sufficiently small
and fixed 0 < δ. The homotopy braid index methods extend these results dramatically.

Theorem 18 ([31]). Consider the equation

ut = uxx + ub(u) + uxc(x, u, ux), (19)

where c has sub-linear growth in ux at infinity. Moreover, b and c satisfy the following
hypotheses:

1. b(0) > 0, and b has at least one positive and one negative root;

2. c(x, 0, 0) = 0, and c > 0 on {uux �= 0}.
Then this equation possesses time-periodic solutions spanning an infinite collection
of braid classes.

All of the periodic solutions implied are dynamically unstable. In the most general
case (those systems with x-dependence), the periodic solutions are not rigid rotating
waves and thus would seem to be very difficult to detect.

8. What does this index mean?

The most important fact about the homotopy braid index H is that it is an invariant
of topological braid pairs. Though it is not realistic to think that this is of interest
in knot theory as a means of distinguishing braid pairs, the homotopy braid index
nevertheless entwines both topological and dynamical content.

Thinking in terms of braid classes gives finer information than relying merely on
intersection numbers. With the braid-theoretic approach, various analytic conditions
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on a PDE or lattice system (dispersive, coercive, etc.) can be ‘modeled’by an auxiliary
braid when computing the index. Likewise, spatial boundary conditions (Neumann,
Dirichlet, periodic, etc.) can be viewed as restrictions on braids (fixed, closed, etc.).
Any such restrictions which yield topologically equivalent braids have the same dy-
namical implications with respect to forcing. One may replace complicated analytic
constraints with braids.

The precise topological content to the homotopy braid index is not transparent. A
few steps toward unmasking the meaning of the index are as follows.

8.1. Duality. One special feature of working with discretized braids in a fixed period
is a natural duality made possible by the fact that the index pair used to compute the
homotopy braid index can be chosen to be a manifold pair.

The duality operator on discretized braids of even period is the map D : Dn
2p →

Dn
2p given by

(Du)αi = (−1)iuα
i . (20)

Clearly D induces a map on relative braid diagrams by defining D(u rel v) to
be Du rel Dv. The topological action of D is to insert a half-twist at each spatial
segment of the braid. This has the effect of linking unlinked strands, and, since D is
an involution, linked strands are unlinked by D, as in Figure 12.

i = 0i = 0 i = 1i = 1 i = 2i = 2 i = 3i = 3 i = 4i = 4

D

Figure 12. The topological action of D.

For the two duality theorems to follow, we assume that all braids considered have
even periods and that all of the braid classes and their duals are proper, so that the
homotopy index is well-defined. In this case, the duality map D respects braid classes:
if [u] = [u′] then [D(u)] = [D(u′)]. Bounded braid classes are taken to bounded
braid classes by D.

The effect of D on the index pair is to reverse the direction of the parabolic flow.
This is the key to proving the following:
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Theorem 19 (Duality [32]1). For [u rel v] having period 2p and n free strands,

Hq(H (D(u rel v)); R) ∼= H2np−q(H (u rel v); R). (21)

This duality operator is very useful in computing the homology of the braid index:
see the computations in [32].

8.2. Twists. The duality operator yields a result on the behavior of the index under
appending a full twist.

Theorem 20 (Shift [32]). Appending a full twist to a braid shifts the homology of the
index up by dimension equal to twice the number of free strands.

We include a sketch of the proof (a more careful version of which would deal with
some boundedness issues). Assume that [u rel v] is a braid of period 2p with n free
strands. A period two full-twist braid can be realized as the dual of the trivial braid
of period two. Thus, the effect of adding a full twist to a braid can be realized by the
operator DEED. By combining Theorems 9 and 19, we obtain:

Hq(H (DEED[u rel v])) ∼= H2np+2n−q(H (DEE[u rel v]))
∼= H2np+2n−q(H (D[u rel v]))
∼= Hq−2n(H ([u rel v])).

(22)

A homotopy version of Equation (22) should be achievable by following a similar
procedure as in the proof of Theorem 9. We suspect one obtains an iterated suspension
of the homotopy index, as opposed to a shift in homology.

9. Toward arbitrary braids

Given the motivation from PDEs and the comparison principle, the types of braids
considered in this paper are positive braids. One naturally wonders whether an exten-
sion to arbitrary braids – those with mixed crossing types – is possible. Unfortunately,
passing to discretized braids is no longer simple, as anchor points alone cannot capture
crossing information for arbitrary braids.

One way to define a formal index for general braid pairs is to use Garside’s Theorem
[6], slightly modified. Garside’s Theorem states that any braid can be placed into a
unique normal form of a positive braid times a (minimal) number of negative half-
twists. Clearly, one can define a modified Garside normal form that gives a unique
decomposition into a positive braid and a (minimal) number of negative full twists.
By applying Theorem 20, one can define a homological braid index (with negative
grading permitted) by shifting the braid index of the positive normal form down by

1The theorem in the reference has a slight error in the statement. There, it was implicitly assumed that the
braid has one free strand. The present statement is correct for arbitrary numbers of strands.
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the appropriate amount. A homotopy theoretic version could be defined in terms of
spectra via suspensions. This, then, yields a formal index for arbitrary (proper) braid
pairs.

The real question is what dynamical meaning this generalized index entails. The
passage from positive braids to arbitrary braids is akin to the passage from a La-
grangian to a Hamiltonian settings, and such an extended index appears to be a rel-
ative Floer homology for (multiply) periodic solutions to time-periodic Hamiltonian
systems.
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Newton interpolation polynomials, discretization method,
and certain prevalent properties in dynamical systems

Anton Gorodetski, Brian Hunt∗, and Vadim Kaloshin†

Abstract. We describe a general method of studying prevalent properties of diffeomorphisms of
a compact manifold M , where by prevalent we mean true for Lebesgue almost every parameter
ε in a generic finite-parameter family {fε} of diffeomorphisms on M .

Usually a dynamical property P can be formulated in terms of properties Pn of trajectories
of finite length n. Let P be such a dynamical property that can be expressed in terms of
only periodic trajectories. The first idea of the method is to discretize M and split the set of
all possible periodic trajectories of length n for the entire family {fε} into a finite number of
approximating periodic pseudotrajectories. Then for each such pseudotrajectory, we estimate
the measure of parameters for which it fails Pn. This bounds the total parameter measure for
which Pn fails by a finite sum over the periodic pseudotrajectories of length n. Application of
Newton interpolation polynomials to estimate the measure of parameters that fail Pn for a given
periodic pseudotrajectory of length n is the second idea.

We outline application of these ideas to two quite different problems:
• Growth of number of periodic points for prevalent diffeomorphisms (Kaloshin–Hunt).
• Palis’ conjecture on finititude of number of “localized” sinks for prevalent surface diffeomor-
phisms (Gorodetski–Kaloshin).

Mathematics Subject Classification (2000). 37C05, 37C50, 37D25, 37C29.

Keywords. Discretization method, Newton interpolation polynomials, prevalence, pseudotra-
jectory, growth of number of periodic points, Newhouse phenomenon.

1. Introduction

A classical problem in dynamics, geometry, and topology is the description of generic
behavior. Given a set of objects what are the properties of a generic element of the
set? This question applies to diffeomorphisms, Riemannian metrics, linear operators,
and vector fields, just to give several examples. The traditional approach is based
on the category theorem of Baire. A countable intersection of open, dense sets is
called a residual, or topologically generic, set. The Baire category theorem says that
topologically generic sets of a complete metric space (or, more generally, Baire space)
are dense. The book of Oxtoby [O] provides a rich variety of topologically generic
mathematical objects. However, in many different areas of mathematics examples
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of “wild behavior” of topologically generic objects have been detected (see [HSY],
[Ka2], [OY], [Si] and references there). In this paper we are concerned with generic
properties in dynamics, particularly those that are not generic topologically but are
generic in a measure-theoretic sense.

In the 1960s two main theories in dynamical systems were developed, one of which
was designed for conservative systems and called KAM for Kolmogorov–Arnold–
Moser and the other was constructed for general dynamical systems (nonconservative,
dissipative) and called hyperbolic.

Kolmogorov [Ko], in his plenary talk of ICM 1954, pointed out that a different
notion of genericity may be appropriate: “In order to obtain negative results concern-
ing insignificant or exceptional character of some phenomenon we shall apply the
following, somewhat haphazard, technique: if in a class K of functions f (x) one can
introduce a finite number of functionals

F1(f ), F2(f ), . . . , Fr(f ),

which in some sense can naturally be considered as taking “arbitrary” values in general

F1(f ) = C1, F2(f ) = C2, . . . , Fr(f ) = Cr

from some domain of the r-dimensional space of points C = (C1, . . . , Cr), then any
phenomenon that takes place only if C belongs to a set of zero r-dimensional measure
will be regarded exceptional and subject to “neglect”.”

A somewhat similar way to define a measure-theoretic genericity, often called
prevalence, is the following: We call a property P prevalent if for a generic1 finite-
parameter family {fε}ε∈B for Lebesgue almost every parameter ε the corresponding
fε satisfies P . If complement of a property is prevalent such a property is called shy.
We shall discuss prevalence further in Section 9.

There are many examples when topological genericity and measure-theoretic
genericity do not coincide. We just mention a few of them (see [HSY], [Ka2], [OY]
for many more).

• Diophantine numbers form a set of full measure on the line R, but are topolog-
ically negligible (that is the complement of the set is topologically generic).

• For a topologically generic, even open dense, set of circle maps preserving
orientation there is a finite number of attracting and repelling periodic orbits. All other
orbits accumulate to these orbits both forward or backward in time. However, as the
famous example of Arnold, called Arnold tongues, shows in the family fα,ε : θ �→
θ + α + ε sin θ that the smaller ε is, the smaller is the measure of α values such
that fα,ε has this property. Moreover, the main result of KAM theory says that for
consevative systems close to integrable most, in a measure-theoretic sense, motions
are quasiperiodic.

• In general dynamical systems a dream of the 1960s was to prove that a generic
dynamical system is structurally stable. However, this dream evaporated by the end of

1We give a rigorous definition in Section 9.
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that decade. One of the beautiful counterexamples is due to Newhouse [N1], [N2]. He
shows that there is an open set in the space of diffemorphisms of a compact manifold
such that a generic diffeomorphism in this open set has infinitely many coexisting sinks
(attracting periodic orbits). Below we show in some weak sense this phenomenon is
shy (see Section 7). This phenomenon is closely related to Palis’ program [Pa] which
is discussed next.

Let Diffr (M) be the space of Cr diffeomorphisms of a smooth compact manifold
M with the uniform Cr -topology, where dim M ≥ 2, and let f ∈ Diffr (M). The
main focus of the present paper is the space of general (nonconservative) diffeomor-
phisms Diffr (M). The authors believe that the method presented here also applies to
conservative systems.

While examples such as Newhouse’s show that on open subsets of Diffr (M),
“wild” phenomena that are not structurally stable can be topologically generic, a
measure-theoretic point of view may be more appropriate to describe the dynamical
behavior that would typically be observed by a scientist. In the influential paper J.
Palis [Pa] proposed a new global view of generic dynamics based on measure theory.
He stated the following conjectures on finititude of attractors and their metric stability:

(I) Denseness of finititude of attractors – there is Cr (r ≥ 1) dense set D of
diffeomorphisms in Diffr (M) such that each element of D has finitely many attractors,
the union of whose basins of attraction has full measure;

(II) Existence of physical (SRB) mesure – each attractor of an element of D

supports a physical measure that represents the limiting distribution for Lebesgue
almost every initial condition in its basin;

(III) Metric stability of basins of attraction – for each element in D and each of its
attractors, for almost all small Cr perturbations in generic k-parameter families of
diffeomorphisms in Diffr (M), k ∈ N, there are finitely many attractors whose union
of basins is nearly equal in the sense of Lebesgue measure to the basin of the initial
attractor; such perturbed attractors support a physical measure.

Such results have been established for certain examples of dynamical systems.
Lyubich [Ly] for the quadratic family of 1-dimensional maps and Avila–Lyubich–de
Melo [ALM] for a generic family of analytic unimodal 1-dimensional maps showed
that for almost all parameters the attractors are either periodic sinks or carry an ab-
solutely continuous invariant measure. For the 1-dimensional Schrödinger cocycles
Avila–Krikorian [AK] showed that for all analytic or C∞ potentials and almost all
rotation numbers the corresponding cocycle is either non-uniformly hyperbolic or
reducible.

In this paper we discuss two important topologically negligible dynamical prop-
erties that are in fact prevalent. One property is (stretched) exponential growth of
the number of periodic points and the other is finiteness of number of coexisting
“localized” sinks for surface diffeomorphisms.

We hope that the method, outlined in this article, brings a better understanding
of prevalent properties of Diffr (M) in the direction of Palis’ conjectures and other
important dynamical properties.
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2. Elementary events and a sample result

Here we expose ideas in a general setting. Consider a family of diffeomorphisms
{fε}ε∈B ⊂ Diffr (M) of a compact manifold with a probability measure μ supported
on the set of parameters B. To avoid distracting details we postpone specification of
μ and B.

Let us fix a certain property P of periodic points of period n. In both cases that
we will consider, P is some form of quantitative hyperbolicity. We split the problem
into two parts.

• Estimate the measure of the set

μ(Bn) ≤ μn, Bn = {ε ∈ B : fε has a periodic orbit that does not satisfy P } ⊂ B.

• Derive some dynamically interesting properties from this estimate.
The second part essentially depends on the problem. As for the first part, ap-

plication of the discretization method and Newton interpolation polynomials give a
uniform approach to get a required estimate. First, we discuss the problem of growth
of the number of periodic points (see Theorem 2.1 below).

For γ > 0 we say that x = f n(x) is (n, γ )-hyperbolic if all eigenvalues of the
linearization df n(x) are at least γ -away from the unit circle2. For γ > 0 this is
a weak analog of Kupka–Smale property. Fix some c > 0 and a decaying to zero
sequence of positive numbers c� = {cγn}n∈Z+ .

We say that the map fε satisfies the inductive hypothesis of order n with constants
c�, denoted fε ∈ IH(n, c�), if for all k ≤ n all periodic orbits of period k are
(k, cγk)-hyperbolic. Consider a sequence of “bad” sets in the parameter space

Bn(c�) = {ε ∈ B : fε ∈ IH(n − 1, c�), but fε /∈ IH(n, c�)}. (1)

In other words, Bn(c�) is the set of “bad” parameter values ε ∈ B for which all
periodic points with period strictly less than n are sufficiently hyperbolic, but there is
a periodic point of period n that is not (n, cγn)-hyperbolic.

Our goal is to find an upper bound

μ{Bn(c�)} ≤ μn(c�) (2)

for the measure of the set of “bad” parameter values. Then the sum over n of (2)
gives an upper bound μ

{ ⋃
n Bn(c�)

} ≤ ∑
n≥1 μn(c�) on the set of all parameters

ε for which fε has a periodic point of some period n that is not (n, cγn)-hyperbolic.
If the sum converges and

∑
n≥1 μn(c�) = μ(c) → 0 as c → 0, then for μ-almost

every ε there is c > 0 such that for every n every periodic point of period n is
(n, cγn)-hyperbolic.

This statement (almost) implies that all periodic points of period n are at least ≈
cγn-apart and, therefore, the number of periodic points is bounded by ≈ (cγn)

− dim M

2In [KH1] we use a stronger property of hyperbolicity of periodic points (see Section 2 of that paper).
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(see [KH1], Proposition 1.1.6). Thus, the key to prove a statement that a certain
property is prevalent, i.e. holds for almost every parameter value, is an estimate of
the probability (2) of a “bad” event. One could replace the property of hyperbolicity
of periodic points by another property and still the key is to get an estimate of the
probability to fail a certain dynamical property.

Our goal is to outline the proof of the following result:

Theorem 2.1 ([KH1], [Ka3], [Ka4]). For a prevalent set of diffeomorphisms f ∈
Diffr (M), with 1 < r < ∞, and for all δ > 0 there exists C = C(δ) such that

Pn(f ) := #{ isolated x ∈ M : f n(x) = x} ≤ exp(Cn1+δ).

Density of diffeomorphisms with this property is the classical result of Artin–
Mazur [AM] (see also [Ka2] for a simple proof). In [Ka1], using [GST], it is shown
that diffeomorphisms having an arbitrary ahead given growth along a subsequence
are topologically generic.

In Section 7 we briefly describe application of the method of the paper to Newhouse
phenomenon from [GK].

3. Strategy to estimate probability of a “bad” event: discretization
method

The goal of this section is to outline how one can get estimate (2). Usually we do
not know where is a “bad” trajectory, which fails P , and what are the dynamics in
its neighborhood. So our analysis will be implicit. More exactly, we shall consider
all possible trajectories in the family {fε}ε∈B and the worst case scenario for each of
them.

In order to fail the inductive hypothesis of order n with constants c�, a diffeo-
morphism fε should have a periodic, but not (n, cγn)-hyperbolic point x = f n

ε (x).
There is a continuum of possible n-tuples {xk}0≤k≤n such that for some ε ∈ B we
have f (xk) = xk+1 (mod n) and x0 is not (n, cγn)-hyperbolic. Instead of looking at
the continuum of n-tuples, we discretize this space and consider only those n-tuples
{xk}0≤k≤n that lie on a particular grid, denoted Iγ̃n

, and replace trajectories by γ̃n-
pseudotrajectories. If we choose the grid spacing γ̃n small enough, then every (almost)
periodic point of period n that is not sufficiently hyperbolic will have a corresponding
γ̃n-pseudotrajectory of length-n on the grid that also has small hyperbolicity. In this
way we reduce the problem of bounding the measure of a set of “bad” parameters
corresponding to a particular length-n γ̃n-pseudotrajectory on the chosen grid.

Thus, the basic requirement for the grid size γ̃n is that every real periodic trajec-
tory {xk = f k

ε (x0)}0≤k≤n of length n can be approximated by a γ̃n-pseudotrajectory
{x̃k}0≤k≤n so that if x0 is periodic but not (n, cγn)-hyperbolic, then the n-tuple
{x̃k}0≤k≤n is not (n, cγn/2)-hyperbolic (see [KH1], sect. 3.2 and [GK], sect. 8 for
various definitions).
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We call an n-tuple {xk}n−1
k=0 ⊂ In

γ̃n
a γ̃n-pseudotrajectory associated to some ε (or

to the map fε) if for each k = 0, . . . , n− 1 we have dist (fε(xk−1), xk) ≤ γ̃n and we
call it a γ̃n-pseudotrajectory associated to B (or the family {fε}ε∈B ) if it is associated
to some ε ∈ B.

The naive idea of estimate (2) consists of two steps:
Step 1. Estimate the number of different γ̃n-pseudotrajectories #n(γ̃n) associated to B;
Step 2. For an n-tuple {xk}0≤k≤n−1 ⊂ In

γ̃n
estimate the measure

μ{ε ∈ B : {xk}0≤k≤n−1 is a γ̃n-pseudotrajectory associated to ε

which is γ̃n-periodic but not (n, cγn/2)-hyperbolic} ≤ μn(cγn, γ̃n).
(3)

Then the product of two numbers #n(γ̃n) and μn(cγn, γ̃n) that are obtained in Steps 1
and 2 gives the required estimate. In fact, this simpleminded scheme requires modi-
fications discussed at the end of the next section (see (10–13)).

We start with the second step. For simplicity we shall discuss 1-dimensional
maps (see [KH1], sect. 3). In [KH1], sect. 4.2 we discuss difficulties arising to
extend this method to multidimensional maps. See also [GK], sect. 10 (resp. [Ka4],
sect. 7–8), where 2-dimensional (resp. N -dimensional) case is considered. To treat
the multidimensional case one use very similar ideas, however, technical difficulties
arising due to multidimensionality are fairly involved. Now we show how to estimate
probability (3) within a particular polynomial family and then show how to do Step 1
and incorporate the method into the global framework.

4. Newton interpolation polynomials and an estimate of probability of
a γ̃n-periodic but not (n, cγn/2)-hyperbolic γ̃n-pseudotrajectory of
length n

Let M be an interval [−1, 1] and Iγ̃n
⊂ [−1, 1] be a γ̃n-grid. Fix an n-tuple of points

{xk}n−1
k=0 ⊂ Iγ̃n

. Consider the following 2n-parameter family of maps:

fu(x) = f (x) +
2n−1∑
k=0

uk

k−1∏
j=0

(x − xj (mod n)).

This family is nothing but the Newton interpolation polynomials associated to the
n-tuple {xk}n−1

k=0. Denote φu(x) = ∑2n−1
k=0 uk

∏k−1
j=0(x − xj (mod n)). Notice that

φu(x0) = u0,

φu(x1) = u0 + u1(x1 − x0),

φu(x2) = u0 + u1(x2 − x0) + u2(x2 − x0)(x2 − x1),

...
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...

φu(xn−1) = u0 + u1(xn−1 − x0) + . . .

+ un−1(xn−1 − x0) . . . (xn−1 − xn−2), (4)

φ′
u(x0) = ∂

∂x

( 2n−1∑
k=0

uk

k∏
j=0

(x − xj (mod n))
)∣∣

x=x0
,

...

φ′
u(xn−1) = ∂

∂x

( 2n−1∑
k=0

uk

k∏
j=0

(x − xj (mod n))
)∣∣

x=xn−1
.

These formulas are very useful for dynamics. For a given map f and an initial
point x0, the image fu(x0) = f (x0)+φu(x0) of x0 depends only on u0. Furthermore
the image can be set to any desired point by choosing u0 appropriately – we say then
that it depends only and nontrivially on u0. If x0, x1, and u0 are fixed, the image
fu(x1) of x1 depends only on u1, and as long as x0 �= x1 it depends nontrivially on u1.
More generally for 0 ≤ k ≤ n − 1, if distinct points {xj }kj=0 and coefficients {uj }k−1

j=0
are fixed, then the image fu(xk) of xk depends only and nontrivially on uk .

Suppose now that an n-tuple of pairwise distinct points {xj }n−1
j=0 and Newton coef-

ficients {uj }n−1
j=0 are fixed. Then derivative f ′

u(x0) at x0 depends only and nontrivially

on un. Likewise for 0 ≤ k ≤ n−1, if distinct points {xj }n−1
j=0 and Newton coefficients

{uj }n+k−1
j=0 are fixed, then the derivative f ′

u(xk) at xk depends only and nontrivially on
un+k .

As Figure 1 illustrates, these considerations show that for any map f and any
desired trajectory of distinct points with any given derivatives along it, one can choose
Newton coefficients {uk}2n−1

k=0 and explicitly construct a map fu = f + φu with
such a trajectory. While the parametrization depends on the n-tuple, the family is
equivalent by a change of parameter coordinates (see Section 5) to the family {fε}ε
of perturbations by degree 2n − 1 polynomials, given by (14).

Using these properties of Newton interpolation polynomials we can easily estimate
probability (3). Let us split this compound dynamic event into simple ones and use
the above properties:

1. |fε(x0) − x1| ≤ γ̃n;
2. |fε(x1) − x2| ≤ γ̃n;

...

n. |fε(xn−1) − x0| ≤ γ̃n;

n + 1.

∣∣∣
n−1∏
j=0

|f ′
ε(xj )| − 1

∣∣∣ ≤ cγn/2.

(5)
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x0 x1 xk
xk

fu(x0) fu(xk)

f ′
u(x0) f ′

u(xk)

u0 uk

un un+k

· · ·

· · ·

Figure 1. Newton coefficients and their action.

First, we find probabilities of these events with respect to u-parameters (see [KH1],
sect. 3.3 for more details). It turns out that the map relating ε-parameters and u-
parameters is one-to-one, linear, and volume-preserving (see Section 5).

Notice that in (4) and Figure 1, the image fu(x0) of x0 is independent of uk for all
k > 0. Therefore, the position of fu(x0) depends only on u0. For the 1-dimensional
Lebesgue measure of the u0’s we have

Leb {u0 : |fu(x0) − x1| = |f (x0) + u0 − x1| ≤ γ̃n} ≤ 2γ̃n.

Fix u0. Similarly, the position of fu(x1) depends only on u1 (see (4) and Figure 1).
Thus, we have

Leb
{
u1 : |fu(x1) − x2| = |f (x1) + u0 + u1(x1 − x0) − x2| ≤ γ̃n} ≤ 2γ̃n

|x1 − x0| .

Inductively for k = 2, . . . , n − 1, fix u0, . . . , uk−1. Then the position of fu(xk)

depends only on uk . Moreover, for k = 2, . . . , n − 2 we have

Leb
{
uk : |fu(xk) − xk+1| =

∣∣∣f (xk) +
k∑

m=0

um

m−1∏
j=0

(xk − xj ) − x0

∣∣∣ ≤ γ̃n

}

≤ 2γ̃n∏k−1
j=0 |xk − xj |

,
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and for k = n − 1 we have

Leb
{
un−1 : |fu(xn−1) − x0| ≤ γ̃n

} ≤ 2γ̃n∏n−2
j=0

∣∣xn−1 − xj

∣∣ . (6)

In particular, the parameter un−1 is responsible for (n, γn)-periodicity of the n-tuple
{xk}0≤k≤n. This formula estimates the “measure of periodicity”.

Choose u0, . . . , un−1 so that the n-tuple {xk}n−1
k=0 is a (n, γ̃n)-periodic γ̃n-pseudo-

trajectory. Notice that parameters un, un+1, . . . , u2n−1 do not change the γ̃n-pseudo-
trajectory {xk}n−1

k=0. Fix now parameters u0, . . . , u2n−2 and vary only u2n−1. Then for
any C1-smooth map g : I → I , consider the 1-parameter family

gu2n−1(x) = g(x) + (x − xn−1)

n−2∏
j=0

(x − xj )
2.

Since the corresponding monomial (x−xn−1)
∏n−2

j=0 (x−xj )
2 has zeroes of the second

order at all points xk , except the last one xn−1, we have

n−1∏
j=0

(gu2n−1)
′(xj ) =

(
g′(xn−1) + u2n−1

n−2∏
j=0

|xn−1 − xj |2
) n−2∏

j=0

g′(xj ). (7)

To get the final estimate, we use the fact that we are interested only in maps from the
family {fu}u. Suppose |f ′

u(xn−1)| is uniformly bounded by some M1. For condition
(n + 1) of (5) to hold,

∣∣ ∏n−1
j=0 f ′

u(xj )
∣∣ must lie in [1 − cγn/2, 1 + cγn/2]. If this

occurs for any u2n−1, then
∣∣ ∏n−2

j=0 f ′
u(xj )

∣∣ ≥ (1 − cγn/2)/M1 for all u2n−1, because
this product does not depend on u2n−1. Using (7) and the fact that 1 − cγn/2 ≥ 1/2,
we get

Leb
{
u2n−1 :

∣∣∣
n−1∏
j=0

|f ′
u(xj )| − 1

∣∣∣ ≤ cγn

2

}
≤ M1

2cγn∏n−2
j=0 |xn−1 − xj |2

. (8)

This formula estimates the “measure of hyperbolicity”.
We can combine all these estimates and get

Lebn+1{(u0, . . . , un−1, u2n−1) : fu satisfies conditions (5) and ‖fu‖C1 ≤ M1}

≤ 2M1cγn∏n−2
j=0

∣∣xn−1 − xj

∣∣2

n−1∏
m=1

2γ̃n∏m−1
j=0

∣∣xm − xj

∣∣ .
(9)

This completes Step 2, but leaves many open questions which we shall discuss while
treating Step 1. The estimate of Step 1 then breaks down as follows:

#n(γ̃n) ≈ # of initial
points in Iγ̃n

× # of γ̃n-pseudotrajectories
per initial point

(10)
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And up to an exponential function of n, the estimate of Step 2 breaks down like:

μn(cγn, γ̃n) ≈
Measure of

periodicity (6)
× Measure of

hyperbolicity (8)

# of γ̃n-pseudotrajectories
per initial point

(Roughly speaking, the terms in the numerator represent respectively the measure of
parameters for which a given initial point will be (n, γ̃n)-periodic and the measure
of parameters for which a given n-tuple is (n, cγn)-hyperbolic; they correspond to
estimates (6) and (8) in the next section.) Thus after cancellation, the estimate of the
measure of “bad” set Bn(c�) associated to almost periodic, not sufficiently hyperbolic
trajectories becomes:

Measure of bad
parameters

≤ # of initial
points of Iγ̃n

× Measure of
periodicity (6)

× Measure of
hyperbolicity (8)

(11)

Consider only pseudotrajectories having
∏n−2

j=0 |xn−1 − xj | ≥ (cγn)
1/4 and sup-

pose γ̃n = M−n
1 cγn. Then up to exponential function of n the first term on the right

hand side of (11) is of order (cγn)
−1. The second term has an upper bound of order

(cγn)
3/4, and the third term is at most of order (cγn)

1/2, so that the product on the
right-hand side of (11) is of order at most (cγn)

1/4 (up to an exponential function in
n). If cγn is exponentially small with a large exponent in n, then μn(cγn, γ̃n) is at
most exponentially small. This discussion motivates the following

Definition 4.1. A trajectory x0, . . . , xn−1 of length n of a diffeomorphism f ∈
Diffr (BN), where xk = f k(x0), is called (n, γ )-simple if

n−2∏
k=0

|xn−1 − xk| ≥ γ 1/4.

A point x0 is called (n, γ )-simple if its trajectory {xk = f k(x0)}n−1
k=0 of length n is

(n, γ )-simple. Otherwise a point (resp. a trajectory) is called non-(n, γ )-simple.

If a trajectory is simple, then perturbation of this trajectory by Newton interpolation
polynomials is effective. The product of distances is a quantitative characteristic of
recurrent properties of a trajectory. If it is small enough, then there are close returns
of it to x0 before time n.

Even though most of properties of periodic orbits do not depend on a starting point,
it turns out that for the above product, even asymptotically, it does matter where to
choose the starting point. A good example to look at is periodic trajectories in a
neighborhood of a planar homoclinic tangency (see [KH1], sect. 2.4 for more). It
motivates the following
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Definition 4.2. A point x is called essentially (n, γ )-simple if for some nonnegative
j < n, the point f j (x) is (n, γ )-simple. Otherwise a point is called essentially
non-(n, γ )-simple.

In (11) we consider only (n, cγn)-simple pseudotrajectories. To study nonsimple
pseudotrajectories we look for their simple almost periodic parts. More exactly, for
each non-(n, cγn)-simple pseudotrajectory we find such a close return, say xk , that
{xj }n−1

j=0 is almost equal to n/k copies of {xj }k−1
j=0 and {xj }k−1

j=0 is (k, cγk)-simple. Due to

closeness, sufficient hyperbolicity of {xj }k−1
j=0 implies sufficient hyperbolicity {xj }n−1

j=0 .
Then investigation of the measure of nonhyperbolicity of nonsimple pseudotrajectory
reduces to the measure of nonhyperbolicity of its simple almost periodic parts. Thus
to obtain μn(cγn, γ̃n) from (3) we arrive at the following scheme:

Measure of bad parameters
associated to periodic nonhyperbolic orbits

= (12)

Measure of bad parameters
associated to simple periodic

nonhyperbolic orbits
(I) +

Measure of bad parameters
associated to nonsimple periodic

nonhyperbolic orbits
(II)

Measure of bad parameters associated to
nonsimple periodic nonhyperbolic orbits

≤ (13)

Partition of nonsimple periodic
orbits into simple

almost periodic parts (II.A)
&

Measure of bad parameters
associated to short non-simple

almost periodic nonhyperbolic orbits (II.B)

As a matter of fact (13) requires additional comments, since the left hand side is a
number, while the right hand side is not. To estimate the number from the left hand
side we do two step procedure described in the right hand side. First, we do a certain
partition (II.A) and then estimate a different number (II.B), which turn out to be an
upper bound for the left hand side.

This diagram summarizes the problems we face in the proof.
• Part (I): how to estimate the measure of parameter values (11) associated with

simple periodic nonhyperbolic orbits;
• Part (II.A): how to partition a nonsimple periodic orbit into almost periodic parts

so that hyperbolicity of an almost periodic part implies hyperbolicity of the whole
orbit;

The part (II.B) (how to estimate the measure associated with (11) simple periodic
nonhyperbolic shorter orbits) can be treated in the same way as part (I), even though
the actual details are usually quite involved (see [KH1], sect. 3.5–3.6).
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5. How to collect all simple (almost) periodic pseudotrajectories: the
Distortion and Collection Lemmas

In this section for the model family we show how one can justify heuristic estimates
(10 – 11). The model family is the family of perturbations of a C2 map f : I →
I, I = [−1, 1] such that f (I) strictly belongs to I

fε(x) = f (x) +
2n−1∑
k=0

εkx
k, ε = (ε0, . . . , ε2n−1). (14)

This is a 2n-parameter family. Assume that parameters belong to a brick, called the
brick of standard thickness with width τ (see [KH1], sect. 3.1 in the 1-dimensional
case, [KH1], sect. 4.3, [Ka4], sect. 8.3 in the N-dimensional case, [GK], sect. 2.3 and
11.2 for modified definitions in the 2-dimensional case applicable to the problem of
finiteness of localized sinks)

HBst
<2n(τ ) =

{
{εk}2n−1

k=0 : for all 0 ≤ k < 2n, |εk| <
τ

k!
}
.

For small enough τ the map fε : I → I is well defined for all ε ∈ HBst
<2n(τ ). Since

we are interested in the measure 0 or 1 events, one could chop a brick of another
shape into smaller bricks of standard thickness and use the same proof. Suppose
supε∈HBst

<2n(τ ) ‖fε‖C1 < M1 for some M1.

Define the Lebesgue product probability measure, denoted by μst
<2n,τ , on the

Hilbert brick of parameters HBst
<2n(τ ) by normalizing the 1-dimensional Lebesgue

measure along each component to the 1-dimensional Lebesgue probability measure

μst
m,τ =

(m!
2τ

)
Leb1, μst

<k,τ =×k−1
m=0 μst

m,τ .

By definition of μst
<2n,τ we have that ε0, . . . , ε2n−1 are independent uniformly dis-

tributed random variables.
How to get from this family to a “generic finite-parameter family” is a tedious two

step procedure based on Fubini theorem. The first step, from finite-parameter poly-
nomial families to families of analytic perturbations, is discussed in [KH1], sect. 2.3,
see also [GK], sect. 3.2. The second step, from analytic perturbations to prevalent
finite-parameter families, is discussed in [KH1] Appendix C.

Consider an ordered n-tuple of points Xn = {xk}n−1
k=0 ∈ In. One can define an

linear map L1
Xn

: R
2n
ε → R

2n
u given implicitly by the following formulas

2n−1∑
k=0

εkx
k =

2n−1∑
k=0

uk

k−1∏
j=0

(x − xj (mod n)), (15)

where L1
Xn

(ε0, . . . , ε2n−1) = (u0, . . . , u2n−1). In [KH1], sect. 2.2 we give an ex-
plicit definition of this map using so-called divided differences, and call it Newton
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map. It provides relation between ε-coordinates and u-coordinates. It turns out that
L1

Xn
is volume-preserving and μst

<2n,τ -preserving ([KH1] Lemma .2.2.2). Therefore,
estimate (9) in u-space and ε-space are the same.

We now estimate the distortion of the Newton map L1
Xn

as a map from the standard

basis {εk}2n−1
k=0 in the space of polynomials of degree < 2n to the Newton basis

{uk}2n−1
k=0 . It helps to have in mind the following picture characterizing the distortion

of the Newton map.

ε0

ε2n−1

u0

u2n−1

L1
Xn

Figure 2. Distortion by the Newton map.

The Distortion Lemma ([KH1], sect 3.4). Let Xn = {xj }n−1
j=0 ∈ In be an ordered

n-tuple of points in the interval I = [−1, 1] and L1
Xn

: R
2n
ε → R

2n
u be the New-

ton map, defined implicitly by (15). Then the image of the brick of standard thick-
ness HBst

<2n(τ ) with width τ > 0 is contained in the brick of standard thickness
HBst

<2n(3τ) with width 3τ :

L1
Xn

(HBst
<2n(τ )) ⊂ HBst

<2n(3τ) ⊂ R
2n
u .

In other words, independently of the choice of an n-tuple {xj }n−1
j=0 ∈ In for any

0 ≤ m < 2n, the coefficient um has at most the range of values |um| ≤ 3τ
m! in the

image L1
Xn

(HBst
<2n(τ )).

The proof is simple, provided the Newton map is explicitly defined (see [KH1],
sect. 2.2).

In the N-dimensional case the statement of the necessary Distortion Lemma is
somewhat involved. Even to define the N -dimesional Newton map one has to in-
corporate many multiindices (see [KH1], sect. 4.2–4.3, [Ka4], sect. 8.2–8.3) For the
statement and the proof of a modified Distortion Lemma applicable to the problem of
finiteness of localized sinks see [GK], sect. 11.4.

For a given n-tuple Xn = {xj }n−1
j=0 ∈ In, the parallelepiped

P st
<2n,Xn

(τ ) := L1
Xn

(HBst
<2n(τ )) ⊂ R

2n
u
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is the set of parameters (u0, . . . , u2n−1) that correspond to parameters (ε0, . . . , ε2n−1) ∈
HBst

<2n(τ ). In other words, these are the Newton parameters allowed by the family
(14) for the n-tuple Xn. Since L1

Xn
is volume-preserving it follows that P st

<2n,Xn
(τ )

has the same volume as HBst
<2n(τ ), but the Distortion Lemma tells us in addition that

the projection of P st
<2n,Xn

(τ ) onto any coordinate axis is at most a factor of 3 longer
than the projection of HBst

<2n(τ ).
Let Xm = {xj }m−1

j=0 be the m-tuple of first m points of the n-tuple Xn. We now
consider which Newton parameters are allowed by the family (14) when Xm is fixed
but xm, . . . , xn−1 are arbitrary. Since we will only be using the definitions below for
discretized n-tuples Xn ∈ In

γ̃n
, we consider only the (finite number of) possibilities

xm, . . . , xn−1 ⊂ Iγ̃n
. Let

π
u,Xn

<2n,≤m : R
2n
u → R

m
u and π

u,Xn

<2n,m : R
2n
u → Rum

be the natural projections onto the space R
m
u of polynomials of degree m and the space

Rum of homogeneous polynomials of degree m respectively. Denote the unions over
all xm, . . . , xn−1 ∈ Iγ̃n

of the images of P st
<2n,Xn

(τ ) under the respective projections

π
u,Xn

<2n,≤m and π
u,Xn

<2n,m by

P st
<2n,≤m,Xm

(τ ) = ⋃
xm,...,xn−1∈Iγ̃n

π
u,Xn

<2n,≤m(P st
<2n,Xn

(τ )) ⊂ R
m
u ,

P st
<2n,m,Xm

(τ ) = ⋃
xm,...,xn−1∈Iγ̃n

π
u,Xn

<2n,m(P st
<2n,Xn

(τ )) ⊂ Rum.

For each m < n, the set P st
<2n,≤m,Xm

(τ ) is a polyhedron and P st
<2n,m,Xm

(τ ) is a
segment of length at most 6τ/m! by the Distortion Lemma. Both depend only on the
m-tuple Xm and width τ . The set P st

<2n,≤m,Xm
(τ ) consists of all Newton parameters

{uj }mj=0 ∈ R
m
u that are allowed by the family (14) for the m-tuple Xm.

For each m < n, we introduce the family of diffeomorphisms

fu(m),Xm
(x) = f (x) +

m∑
s=0

us

s−1∏
j=0

(x − xj ), (16)

where u(m) = (u0, . . . , um) ∈ P st
<2n,≤m,Xm

(τ ). For each possible continuation Xn

of Xm, the family fu(m),Xm
includes the subfamily of fu,Xn (with u ∈ P st

<2n,Xn
(τ ))

corresponding to um+1 = um+2 = · · · = u2n−1 = 0. However, the action of fu,Xn

on x0, . . . , xm doesn’t depend on um+1, . . . , u2n−1, so for these points the family
fu(m),Xm

is representative of the entire family fu,Xn . This motivates the definition

T
1,γ̃n

<2n,≤m,τ (f ; x0, . . . , xm−1, xm, xm+1)

= {
u(m) ∈ P st

<2n,≤m,Xm
(τ ) ⊂ R

m
u :

|fu(m),Xm
(xj−1) − xj | ≤ γ̃n for j = 1, . . . , m + 1

}
.
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The set T
1,γ̃n

<2n,≤m,τ (f ; x0, . . . , xm−1, xm, xm+1) represents the set of Newton param-
eters u(m) = (

u0, . . . , um

)
allowed by the family (14) for which x0, . . . , xm+1 is a

γ̃n-pseudotrajectory of fu(m),Xm
(and hence of fu,Xn for all valid extensions u and

Xn of u(m) and Xm).
In the following lemma, we collect all possible γ̃n-pseudotrajectories and estimates

of “bad” measure corresponding to those γ̃n-pseudotrajectories. The idea of the proof
of this lemma is the following. Let m be some number 0 ≤ m < n. Suppose
an (m + 1)-tuple x0, . . . , xm ⊂ Iγ̃n

is fixed and we are interested in the number of
possible continuations xm+1 ∈ Iγ̃n

so that x0, . . . , xm+1 is associated to the family
(14). Consider the family (16), where u0, . . . , um−1 are fixed. By Distortion Lemma

we have |um| ≤ 3τ

m! . Rewrite this family, applied to xm, as

fu(m),Xm
(xm) = f (xm) +

m−1∑
s=0

us

s−1∏
j=0

(xm − xj ) + um

m−1∏
j=0

(xm − xj ).

Since all uk’s except um are fixed, the range of xm+1 associated to the family (14) is
bounded by 3τ

∏m−1
j=0 (xm − xj )/m!.

≤
3τ

∏m−1
j=0 |xm − xj |

m!

xm

xm+1

Figure 3. Collection of pseudotrajectories.

The Collection Lemma. With the notations above, for all x0 ∈ Iγ̃n
the measure of

the “bad” parameters satisfies

μst
<2n,τ

{
ε : there is a γ̃n-periodic γ̃n-pseudotrajectory from In

γ̃n
starting at x0,

which is not (n, M3n
1 cγn)-hyperbolic

} ≤ 62nM4n+1
1

(n − 1)!
τ

(2n − 1)!
τ

c1/4 γ̃n γ
1/4
n .

(17)

For the modified Collection Lemma for theN-dimensional case see [Ka4], sect. 9.3,
and for the problem of finiteness of localized sinks in the 2-dimensional case see [GK],
sect. 11.6, respectively.

Corollary 5.1. With the notations above the measure of the “bad” parameters satisfies

μst
<2n,τ

{
ε : there is a γ̃n-periodic γ̃n-pseudotrajectory from In

γ̃n
,

which is not (n, M3n
1 cγn)-hyperbolic

} ≤ 2 · 62nM4n+1
1

(n − 1)!
τ

(2n − 1)!
τ

c1/4 γ
1/4
n .
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Since there are 2/γ̃n-grid points of Iγ̃n
⊂ [−1, 1], this corollary follows directly

from the Collection Lemma. Suppose that γ̃n-discretization is fine enough to be able
to approximate “real” trajectories by γ̃n-pseudotrajectories well enough (see [KH1],
Proposition 3.1.2, its proof, and (3.17) in the 1-dimensional case, [Ka4], sect. 9 in
the N -dimensional case, and [GK], sect. 8 for the problem of finiteness of localized
sinks). Then up to the error term 62nM4n+1

1 this proves (11).

Proof of the Collection Lemma. We prove by backward induction on m that for
x0, . . . , xm ⊂ Iγ̃n

,

μst
<2n,τ

{
there is a γ̃n-periodic γ̃n-pseudotrajectory from In

γ̃n
starting

with x0, . . . , xm which is not (n, M3n
1 cγn)-hyperbolic

}

≤ 62n−mM4n+1
1

(n − 1)!
τ

(2n − 1)!
τ

μst
<m,τ

{
T

1,γ̃n

<2n,≤m−1,τ (f ; x0, . . . , xm)
}

c1/4 γ̃n γ
1/4
n ,

(18)

resulting when m = 0 in (17).
Consider the case m = n − 1. Fix an (n, cγn/2)-simple n-tuple Xn = {xj }n−1

j=0 ∈
In
γ̃n

. Using formulas (6) and (8), we get

μst
n−1,τ {un−1 : ∣∣fu,Xn(xn−1) − x0

∣∣ ≤ γ̃n}

≤ (n − 1)!
τ

γ̃n∏n−2
m=0 |xn−1 − xm| ≤ 21/4(n − 1)!

τ
c−1/4 γ̃n γ

−1/4
n

and

μst
2n−1,τ

{
u2n−1 :

∣∣∣
n−1∏
j=0

|(fu,Xn)
′(xj )| − 1

∣∣∣ ≤ M3n
1 cγn

}

≤ M1
(2n − 1)!

τ

4M3n
1 cγn∏n−2

m=0 |xn−1 − xm|2 ≤ 25/2M3n+1
1 (2n − 1)!

τ
c1/2 γ

1/2
n .

The Fubini Theorem, preservation of generalized volume by the Newton map (see
[KH1], Lemma 2.2.2), and the definition of the product measure μst

<2n,τ imply that

μst
<2n,τ

{
there is a γ̃n-periodic γ̃n-pseudotrajectory from In

γ̃n
starting

with x0, . . . , xn−1 which is not (n, M3n
1 cγn)-hyperbolic

}

≤ μst
<n−1,τ

{
T

1,γ̃n

<2n,≤n−2,τ (f ; x0, . . . , xn−1)
}

× μst
n−1,τ

{
un−1 : ∣∣fu,Xn (xn−1) − x0

∣∣ ≤ γ̃n

}

×
2n−2∏
s=n

μst
s,τ {P st

<2n,s,Xn
(τ )} × μst

2n−1,τ

{
u2n−1 :

∣∣∣
n−1∏
j=0

|(fu,Xn )
′(xj )| − 1

∣∣∣ ≤ M3n
1 cγn

}

≤ 211/43n−1M4n+1
1

(n − 1)!
τ

(2n − 1)!
τ

μst
<n−1,τ

{
T

1,γ̃n

<2n,≤n−2,τ (f ; x0, . . . , xn−1)
}

c1/4 γ̃n γ
1/4
n .
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The last inequality follows from the Distortion Lemma, which says that for each
s = n, n + 1, . . . , 2n − 2

μst
s,τ {P st

<2n,s,Xn
(τ )} ≤ 3.

Since 211/43n−1 < 6n+1, this yields the required estimate (18) for m = n − 1.
Suppose now that (18) is true for m + 1 and we want to prove it for m. Denote by

G
1,γ̃n

<2n,m,τ (f, u(m − 1); x0, . . . , xm) ⊂ Iγ̃n
the set of points xm+1 of the γ̃n-grid Iγ̃n

such that the (m+ 2)-tuple x0, . . . , xm+1 is a γ̃n-pseudotrajectory associated to some
extension u(m) ∈ P st

<2n,≤m,Xm
(τ ) of u(m−1). In other words, G1,γ̃n

<2n,m,τ (f, u(m−1);
x0, . . . , xm) is the set of all possible continuations of the γ̃n-pseudotrajectory
x0, . . . , xm using all possible Newton parameters um allowed by the family (14).

Now if x0, . . . , xm is a γ̃n-pseudotrajectory associated to u(m) = (u0, . . . , um),
then at most one value of xm+1 ∈ Iγ̃n

are within γ̃n of fu(m),Xm
(xm). Thus for fixed

u(m − 1) = (u0, . . . , um−1) ∈ P st
<2n,≤m−1,Xn

(τ ), each value of um ∈ P st
<2n,m,Xn

(τ )

corresponds to at most one point in G
1,γ̃n

<2n,m,τ (f, u(m − 1); x0, . . . , xm). It follows
that

∑

xm+1∈G
1,γ̃n
<2n,m,τ (f,u(m−1);x0,...,xm)

μst≤m,τ

{
T

1,γ̃n

<2n,≤m,τ (f ; x0, . . . , xm+1)
}

≤ 2 μst
m,τ {P st

<2n,m,Xn
(τ )} μst≤m−1,τ

{
T

1,γ̃n

<2n,≤m−1,τ (f ; x0, . . . , xm)
}
.

The Distortion Lemma then implies that

∑

xm+1∈G
1,γ̃n
<2n,m,τ (f,u(m−1);x0,...,xm)

μst≤m,τ

{
T

1,γ̃n

<2n,≤m,τ (f ; x0, . . . , xm+1)
}

≤ 6 μst≤m−1,τ

{
T

1,γ̃n

<2n,≤m−1,τ (f ; x0, . . . , xm)
}
.

Inductive application of this formula completes the proof of the Collection Lemma.�

This completes an outline of treatment of part (I) of (12) for the 1-dimensional
case. To carry out part (I) of (12) in the N-dimensional case (N > 1) we use the
same ideas, but have to overcome additional difficulties. We discuss them in details
in [KH1], sect. 4.1 (detailed discussion of the 2-dimensional case can be found in
[GK], sect. 10–11 and of the N-dimensional case in [Ka4], sect. 8–9) and just briefly
mention them here.

• (Nonuniqueness) It turns out that there are many ways to write Newton interpo-
lation polynomial in N variables.

• (Dynamically essential coordinates) Among many N-dimensional Newton
monomials we need to choose those effective for perturbation (see [KH1] (4.6–4.7),
[GK], sect. 10.1, and [Ka4], sect. 8.2).
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• (The multidimensional Distortion Lemma) The 1-dimensional Distortion Lemma
leads to an exponential factor 62n coming from dimension of the space of polynomials
of degree < 2n in 1-variable. The space of polynomials of degree < 2n in N -variables
is ∼ (2n)N . This forces us to find a better multidimensional Distortion Lemma (see
[KH1], sect. 4.3, [Ka4], sect. 8.3, and [GK], sect. 11.4).

To treat part (II.A) of (13) we need to analyze nonsimple (recurrent) periodic tra-
jectories of period n knowing that all periodic trajectories of period < n are sufficiently
hyperbolic (see (I) of (12)).

6. Partition of nonsimple periodic trajectories into simple almost
periodic parts

Analysis of nonsimple periodic trajectories of multidimensional diffeomorphisms,
performed in [KH1] and [Ka4], occupies sect. 2.4 and 3.5 in [KH1] and section 5 in
[Ka4]. The goal for each nonsimple periodic trajectory {xj = f j (x0)}n−1

j=0 of period n

find a close return, say xk , so that {xj }n−1
j=0 nearly repeats {xj }k−1

j=0 exactly n/k times

and {xj }k−1
j=0 is simple. This, in particular, means that hyperbolicity of {xj }k−1

j=0 and

{xj }n−1
j=0 are closely related. Here we just summarize the strategy to obtain such a

partition. This is exactly the step where we cannot handle a sequence of {cγn}n≥1
that decay slower than a stretched exponential exp(−n1+δ) (δ > 0). In other words,
if γn decays not too fast, say exponentially, we are unable to find a close return with
the above properties (see [KH1], Appendix D for further discussion).

The following definitions are the key elements of the mechanism to find a close
return. They quantitatively characterize close returns.

Definition 6.1. Let g be a diffeomorphism and let D be large and positive. A point
x0 (resp. a trajectory x0, . . . , xn−1 = gn−1(x0) of length n) has a weak (D, n)-gap at
a point xk = gk(x0) if

|xk − x0| ≤ D−n min
0<j≤k−1

|x0 − xj |.

and there is no m < k such that x0 has a weak (D, n)-gap at xm = gm(x0).

This definition characterizes a close return at x0. For the proof we need a modifi-
cation of this definition (see [KH1], Definition 3.5.3). See the Shift Theorem [KH1],
sect. 3.5 and [Ka4], sect. 5 for all the details. Recall that {cγn}n≥1 is the sequence
tracking hyperbolicity of periodic trajectories of period n introduced in the beginning
of Section 2.

Definition 6.2. Let g be a C2-smooth diffeomorphism. Let also c > 0 and k < n be
positive integers. We say that a point x0 has a (k, n, c)-leading saddle if |x0 − xk| ≤
n−1(cγk)

2. Also if x0 is (n, γ̃n)-periodic, we say that x0 has no (n, c)-leading saddles
if for all k < n we have that x0 has no (k, n, c)-leading saddles.
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Now start with a diffeomophism f satisfying the inductive hypothesis of order
n − 1 with constants c�, i.e. for any k < n all periodic trajectories of period k are
(k, cγk)-hyperbolic. In particular, it means that all periodic trajectories of period
k < n are either sinks, or sources, or saddles.

return

No close No leading

saddle

With a leading

saddle

 hyperbolic
Sufficiently

close return 

With a 
Simple

           trajectories
     All  almost periodic

Figure 4. Various types of almost periodic periodic trajectories.

• The definition of a leading saddle is designed in such a way that if x0 has a
(k, n, c)-leading saddle, then there is a periodic point x∗ = f k(x∗) close to x0 (see
[Ka4], Lemma 5.2.3). If xk, x2k, . . . all stay close to x∗, then x0 = f n(x0) inherits
hyperbolicity of x∗ (see [Ka4], Lemma 5.2.1).

• Suppose x0 has a (k, n, c)-leading saddle, but for some p < n/k the corre-
sponding xpk leaves a small neighborhood of x∗. Then one can show that xpk has no
(n, c)-leading saddles (see [Ka4], Lemma 5.2.4).

• Suppose x̃0 = xpk has no (n, c)-leading saddles. It turns out that x̃0 can have
at most dim M weak (D, n)-gaps at some x̃k1, . . . , x̃ks , s ≤ dim M . The reason is
that each weak (D, n)-gap x̃kj after the first one at k1 implies that the linearization
df k1(x̃0) has an almost eigenvalue that is a kj /k1-root of unity, and the same is true
for ks+1 = n (see [Ka4], Theorem 5.1.4).

• Suppose x̃0 has no (n, c)-leading saddles and has s < dim M weak (D, n)-
gaps. Then we can show that it is (n, cγn)-simple (see [Ka4], Theorem 5.3.1 and its
extension necessary for the proof: Theorem 5.4.1).

This scheme is summarized in the diagram (see Figure 4).

7. Finititude of number of localized coexisting sinks

In this section we give a short exposition of a result from [GK] concerning the New-
house phenomenon of infinitely many sinks. The primary goal of [GK] is to analyze
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trajectories localized in a neighborhood of a fixed HT. A sink is the simplest attractor.
We now introduce notions of an unfolding of a homoclinic tangency and localized
trajectories of finite complexity associated to that homoclinic tangency.

Consider a 1-parameter family of perturbations {fε}ε∈I , I = [−ε0, ε0] of a
2-dimensional diffeomorphism f = f0 ∈ Diffr (M) with homoclinic tangency,
where ε0 is small (see Figure 5). Roughly speaking, ε parameterizes oriented distance
of the top tip of the unstable manifold to the stable manifold. Such a family is called
an unfolding of an HT.

Wu(p0)

q̃ = (0, 1)

p0

Ws(p0)

q = (0, 1)

ε

Figure 5. Homoclinic tangency.

Robinson [R], adapting Newhouse’s ideas [N1], [N2], showed that for such an
unfolding there is a sequence of open intervals converging to zero such that for a
generic parameter from those intervals the corresponding diffeomorphism fε has
infinitely many coexisting sinks.

Assume that f has a fixed saddle point p0 = f (p0) and that the eigenvalues λ,
μ of the linearization Df (p0), 0 < λ < 1 < μ, belong to the open dense set
of pairs of eigenvalues for which Sternberg’s linearization theorem holds. Then
in a small neighborhood Ṽ of p0 there is a Cr smooth normal coordinate system
(x, y) ∈ Ṽ ⊂ R

2 such that f (x, y) = (λx, μy). Suppose q is the point of homoclinic

tangency of Ws(p0) and Wu(p0) away from Ṽ , and let q̃ = f −1(q) be its preimage.
Extend the coordinate neighborhood Ṽ by iterating forward and backward until

first it contains q̃ and f (q), respectively. Decreasing Ṽ if necessary we can assume
that there are no overlaps. Denote such a neighborhood by V and call it a nor-
mal neighborhood. By definition V does not contain q (see Figure 6). Consider
a neighborhood U (resp. Ũ ⊂ Û ) of q (resp. q̃) such that f (U) ∩ U = ∅ (resp.
f −1(Û) ∩ Û = ∅), f (Ũ) ⊃ U , and f (Û) ∩ V = ∅. By rescaling coordinate axis
one could set q to have coordinates (1,0) and q̃ to have (0,1). Set V = V ∪ U . In
what follows we fix a neighborhood V once and for all.

Definition 7.1. We call an invariant set of points V-localized if it belongs to V. In
particular, any invariant set contained in


V = ⋂
n∈Z

f n(V)
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q̃

q
p0

UV

Û
Ũ

Figure 6. Localization for homoclinic tangency.

is V-localized. A periodic point f n(p) = p, n ∈ N, is called V-localized if it
belongs to 
V and is called (V, s)-localized if its trajectory P = {f k(p)}nk=1 visits
U exactly s times. Call s = s(P) the cyclicity of a V-localized periodic orbit.

The zoo of V-localized invariant sets is incredibly rich. Below we just men-
tion the authors favorit animals: Smale’s horseshoe, infinitely many coexisting V-
localized sinks3, strange attractor (Benedicks–Carleson [BC], Mora–Viana [MV],
Young–Wang [WY]), arbitrarily degenerate periodic points of arbitrary high peri-
ods (Gonchenko–Shilnikov–Turaev [GST1]), uniformly and nonuniformly hyperbolic
horseshoes as maximal invariant sets 
V (Newhouse–Palis [NP], Palis–Takens [PT],
Palis–Yoccoz [PY1], [PY2], Rios [Ri]).

The main result of [GK] is the following

Theorem 7.1. With the above notations, for a generic4 1-parameter family {fε}ε∈I

that unfolds an HT at q there is a sequence of numbers {N s}s∈N such that for almost
every parameter ε and any D ∈ N the corresponding fε has only finitely many V-
localized sinks {Pj }j∈J whose cyclicity is bounded by D or period exceeds N sj , where
sj = s(Pj ) > D is cyclicity of a corresponding sink Pj . In other words, for almost
every parameter ε if there are infinitely many coexisting V-localized sinks {Pj }j∈J ,
then all but finitely many have cyclicity sj = s(Pj ) > D and period < N sj .

Remark 7.1. For 1-loop periodic sinks a similar result is obtained by Tedeschini-
Lalli–Yorke [LY]. Dynamical properties of periodic and homoclinic orbits of low
cyclicity (s = 1, 2, 3) were studied in [GST1], [GStT]. In particular, Gonchenko–
Shilnikov found the relation between existence of the infinite number of 2-loop sinks
and numerical properties of the invariants of smooth conjugacy [GoS].

3Actually Newhouse [N2] (see also Palis–Takens [PT] for a simplified proof) proved that for a Baire generic
set of diffeomorphisms in a Newhouse domain there are infinitely many coexisting sinks. However one can
construct infinitely many of those as V-localized.

4meaning of “generic” is in the sense of prevalence in the space of 1-parameter families see Section 9 for a
definition.
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Remark 7.2. We can choose N s = s5s2
.

Palis–Takens [PT] and Palis–Yoccoz [PY1], [PY2] investigated generic unfolding
of an HT not only for saddle periodic points but also for horseshoes. They investigated
parameters outside of Newhouse domains. We obtain less sharp properties of the
dynamics, but we treat parameters inside Newhouse domains too.

8. Discussion of the proof of Theorem 7.1

To prove Theorem 7.1 we follow very similar strategy as to prove Theorem 2.1. First
we introduce several notions:

Trajectory type, hyperbolic and parabolic maps. Any (V, s)-localized periodic
orbit, by definition, visits U exactly s times and spends n1, n2, . . . , ns consecutive
iterates in V , n = n1+n2+. . .+ns+s. We call an ordered sequence (n1, . . . , ns) type
of a periodic orbit. For a given periodic orbit denote the points of intersection with
U by p0, p1, . . . , ps−1 and the corresponding points in Ũ by p̃0 = f n1(p0), p̃1 =
f n2(p1), . . . , p̃s−1 = f ns (ps−1).

Recall that f is linear in V \ Ũ with eigenvalues λ < 1 < μ, f |
V \Ũ (x, y) =

(λx, μy). Call this linear map hyperbolic, denoted L, and f |
Ũ

parabolic, denoted P .
We replace hyperbolicity of periodic points from (1) by the cone condition.

Cone condition. To estimate the measure of parameters for which a periodic orbit of
a given type is not a sink and even has exponentially large linearization, we introduce
the following cone condition. Define at every point p ∈ U a cone

KA(p) = {v = (vx, vy) ∈ TpV � R
2 : |vy | ≥ μ−A|vx |}.

To show that the periodic point p0 is hyperbolic it turns out that it suffices to find
0 < α � 1 independent of n such that

Df n
ε (Kαn(p0)) ⊂ Kαn(p0). (19)

To verify this condition directly does not seem possible in general. Our plan is to
verify that for most parameters this cone condition holds after each loop:

Df ni+1
ε (Kαn(pi )) ⊂ Kαn(pi+1 (mod s)) for each i = 0, . . . , s − 1. (20)

This condition clearly implies (19), because the image of the first cone Kαn(p0)

belongs to the second cone Kαn(p1). The image of the second one belongs to the
third one and so on.

Fix 0 < α � 1. Notice that if all loops are long: ni > 3αn, then LniKαn(pi ) is
the cone of width angle < 2μ−αn. Fix 1 ≤ j ≤ s. To satisfy condition (20) for j



Newton interpolation polynomials and discretization method 49

we need to avoid the intersection of the cone Dfε,p̃j
(Lnj Kαn(pj )) and a complement

to Kαn(p̃j+1) (see Figure 7 for p = pj+1). Assume that we can perturb Dfε,p̃j

by composing with rotation and angle of rotation is a parameter. Then we need to
avoid a phenomenon that has “probability” ∼ μ−αn. Taking the union over all types
Ns, |Ns | = n we get that probability to fail (20) for some 1 ≤ i ≤ s is ∼ nsμ−αn. We
avoid saying explicitly probability in what space, just assume that it is proportional
to angle of rotation, and postpone the exact definition for further discussion.

 

 

q̃

Ws(p0)

p0 Wu(p0)
q

Ln(K(p))

DP

K(p)

DP (K(p))
p

Ln

Figure 7. Evolution of cones.

However, it might happen that one of ni’s is significantly smaller than αn, e.g.
ns ≤ ln n. In this case, the above argument fails. Indeed, let ns = [ln n], n � 1.
Consider the image of the cone Kαn(ps−1) after the last loop LnsKαn(ps−1). It is the
cone, whose width angle is of order 1. Taking into account possibility that Dfε,p̃s−1

rotates a vertical vector by π
2 it is certainly not possible to fulfill (20) by a small

perturbation. The natural idea is to avoid looking at condition (20) after “short”
loops. This leads to combinatorial analysis of type Ns of trajectories.

Combinatorial analysis of type Ns of s-loop trajectories. Below we do not pay
attention to dynamics of a trajectory of type Ns under consideration. We investigate
only properties of the type Ns itself.

• Short and long loops ([GK], sect. 5.1). We shall divide an s-tuple Ns =
(n1, . . . , ns) into two groups of long and short ni’s, because they correspond to loops
of a trajectory. After such a division long ni’s should be much longer than short ni’s.
Denote by t (resp. s − t) the number of long (resp. short) loops.

• Generalized loops and essential returns ([GK], sect. 5.2). Since we cannot fulfill
(20) after short loops, we combine all loops into groups, called generalized loops.
Each generalized loop starts with a long loop and is completed by all short loops
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following afterwards. Therefore, the number of generalized loops equals the number
of long loops. Then we verify (20) not after each loop, but after each generalized
loop. Denote by P0, . . . , Pt−1, Pt = P0 ⊂ U starting points of generalized loops,
by P̃0, . . . , P̃t−1, P̃t = P̃0, prestarting points of generalized loops, i.e. f (P̃i) =
Pi+1, i = 0, . . . , t − 1, and by N1, . . . , Nt their lengths respectively. Then we
modify (20) to

Df Ni+1(Kαn(Pi)) ⊂ Kαn(Pi+1) for each i = 0, . . . , t − 1. (21)

Now the idea presented above has a chance to work. Indeed, let nj be a long loop
and nj+1, . . . , nj+j ′ be short ones from the corresponding generalized loop. Consider
the image of the corresponding cone Kαn(Pj ) after the generalized loop. Notice that
after the long loop nj the cone Lnj Kαn(Pj ) is the cone of width angle < 2μ−αn. Since
long nj is so much longer than short loops nj+1, . . . , nj+j ′ respectively the cone

(
Df (p̃j+j ′) � L

nj+j ′ � · · · � Df (p̃j+1) � Lnj+1
) � (

Df (p̃j ) � Lnj Kαn(pj )
)

has width angle < 3μ−αn. To satisfy condition (20) for j + j ′ we need to avoid an
interval of rotations (i.e. of parameters) of length < 5μ−αn. This phenomenon still
has “probability” ∼ μ−αn.

After this combinatorial analysis we face the next difficulty. We cannot perturb
Df (p̃) and Df (p̃′) independently at nearby points p̃ and p̃′.

Dynamical analysis of trajectories. Assume for a moment that we are interested
in properties of scattered periodic orbits, that is, such orbits that P0, . . . , Pt−1 in U

are pairwise well spaced. In particular, it is always the case for 1-loop orbits. In this
case the difficulty of nearby points is removed. Using the discretization method and
the cone condition (21) one can prove that for most parameters all but a finite number
of the periodic orbits are hyperbolic saddles. Moreover, consider for 0 < γ ′ =
μ−α′n � γ ′′ = μ−α′′n parameters for which a periodic not enough hyperbolic γ ′′-
scattered γ ′-pseudo-orbit of period n exists. In fact, we can show that the measure of
these parameters is small5. Now we are going to explain how this can be used to treat
all periodic orbits, not necessarily scattered. Consider the 2-loop case for illustration.
If starting points of loops p0 and p1 are far enough from each other, one can perturb
differential of parabolic map at their preimages independently, and above arguments
allow to estimate the measure of “bad" parameters. Otherwise a periodic orbit can be
decomposed into a union of two 1-loop periodic pseudo-orbits, which have nearby
endpoints in U . The cone condition (21) for each of these pseudo-orbits holds for
most parameters, which implies (19).

Another illustration can be given by the case t = 1, i.e. we have one loop which
is much longer than all the others. In this case the image of the cone Kαn(p0) after

5The discretization method in this case, compare to the one described in Sections 4–5, requires certain
modifications (see [GK], sect. 9–11).
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the application of differential of the map along the orbit has width angle < 2μ−αn,
as explained above. Point p̃s−1 = P̃0 = f n−1(p0) = f −1(p0) can not be too
close to points p̃0, p̃1, . . . , p̃s−2. Indeed, the distance between pi and x-axis is
(pi )y ∼ μ−ni+1 . Since n1 � ni we have μ−n1 � μ−ni . Therefore the point p0 can
not be too close to points p1, . . . , ps−1, and we can perturb φ(p̃s−1) = φ(f −1(p0))

independently of φ(p̃0), . . . , φ(p̃s−2). This allows to estimate the measure of “bad”
parameters.

1. Properly oriented cycle
scattered cycles

3. Decomposition into2. Identification of vertices and
oriented pseudographs

P0

P0

P0

P0 P1

P1

P1
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P3
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Figure 8. Graph surgery.

To consider the general case we represent a periodic orbit as an oriented cyclic
graph. Starting points of generalized loops are vertices of this graph, and vertices
corresponding to subsequent generalized loops are connected by an oriented edge
(see Figure 8, picture 1). It turns out that for some γ ′ � γ ′′ for any pair of points
(Pi, Pj ) either dist(Pi, Pj ) > γ ′′ or dist(Pi, Pj ) < γ ′ (see [GK], sect. 7). Therefore
every pair of vertices is either γ ′-close or γ ′′-far apart (see Figure 8, picture 2). Now
all the vertices can be divided into “clouds” or “clusters”. Let us identify the vertices
in the same cloud of nearby points, as shown on Figure 8, picture 2. The initial
cycle is transformed now into oriented pseudograph (see [GK], Def. 20) with the
same number of ingoing and outgoing edges at each vertex. Such a pseudograph can
be decomposed into the union of oriented cycles (Figure 8, picture 3 and also see
[GK], Lemma 7). Each of cycles from this decomposition represents a γ ′′-scattered
γ ′-pseudo-orbit. Application of the arguments above to these pseudo-orbits gives
inclusion (21) for most values of parameters and implies the cone condition (19) for
the initial periodic orbit.
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9. Prevalence

Our definition of prevalence for a space Diffr (M) of Cr diffeomorphisms on a smooth
manifold M is based on the following definition from [HSY] for a complete metric
linear space V .

Definition 9.1 (Linear prevalence). A Borel set S ⊂ V is called shy if there is a
compactly supported Borel probability measure μ on V such that μ(S − v) = 0 for
all v ∈ V . More generally, a subset of V is called shy if it is contained in a shy Borel
set. A subset of V is called prevalent if its complement is shy.

(Shy sets were previously called “Haar null sets” by Christensen [Chr].) Some
important properties of prevalence, proved in [HSY], are:

1. A prevalent set is dense.

2. A countable intersection of prevalent sets is prevalent.

3. A subset of R
m is prevalent if and only if its complement has Lebesgue measure

zero.

Properties 2 and 3 above follow from the Fubini–Tonelli theorem, along with the
Tychnoff theorem in the case of Property 2. Property 1 follows from the observation
that a transverse measure μ can be localized in the following sense. By compactness
of the support of μ, there are arbitrarily small balls with positive measure. Every
translation of P must intersect these balls, or equivalently every translation of one of
these balls must intersect P .

Along these lines, it is useful to think of a transverse measure for a prevalent setP as
a probability space of perturbations, such that at each point v in the space V , choosing
a random perturbation and adding it to v yields a point in P with probability one. Often
the perturbations can be chosen from a finite dimensional space of parameters, using
normalized Lebesgue measure on a bounded subset of parameter space. In this case,
we say that P is “finite-dimensionally prevalent”.

In other cases, one needs an infinite number of parameters; for example, a property
about periodic orbits might be finite-dimensionally prevalent for each fixed period, but
higher periods require more parameters. One may be able to choose the parameters
from a “Hilbert brick” HB = J1 × J2 × · · · , where each Jk is an interval of real
numbers εk , the perturbation corresponding to ε = (ε1, ε2, . . .) is ε1v1 + ε2v2 + · · ·
for some vectors v1, v2, . . . ∈ V , and the probability measure on HB is the infinite
product of normalized Lebesgue measure on each interval. We call this measure the
uniform measure on HB. A property is then prevalent if for each v ∈ V , the property
is true for v+ε1v1+ε2v2 +· · · for almost every ε with respect to the uniform measure
on HB.

The notion of prevalence that we use in Diffr (M) is based on this idea of choosing
perturbations from a Hilbert brick. Though we cannot add perturbations in this non-
linear space, by embedding M in a Euclidean space R

N , we can perturb elements of
Diffr (M) in a natural way by means of additive perturbations in the space Cr(T , R

N)
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of Cr functions from T to R
N , where T is a neighborhood of the embedded image

of M in R
N . The details of this construction are given in Appendix C of [KH1]; here

we provide a brief outline.
For N sufficiently large, we can embed M into R

N by the Whitney embedding
theorem; choose an embedding and think ofM then as a subset of R

N (that is, identify it
with its image). Choose a neighborhood T of M sufficiently small that the orthogonal
projection π : T → M is well-defined. Extend each diffeomorphism f ∈ Diffr (M)

to a diffeomorphism F on T , in such a way that F is strongly contracting toward M .
We then consider the family of perturbations

Fε = F + ε1F1 + ε2F2 + · · · .

for some functions F1, F2, . . . ∈ Cr(T , R
N) and ε in an appropriate Hilbert brick.

For the results presented in this paper, F1, F2, . . . are a basis for the polynomials on
R

N , but in general they could be any functions that are chosen independently of F .
Next we associate to each Fε a diffeomorphism fε ∈ Diffr (M). By Fenichel’s

theorem [Fen], for ε sufficiently small, Fε has an invariant manifold Mε close to M ,
such that πε = π |Mε is invertible. (To be precise, Fenichel’s theorem is for flows,
and we apply it by considering the suspension flow associated with f .) Furthermore,
Fε is strongly contracting toward Mε, so that all of its periodic orbits (indeed, all of
its nonwandering points) are on Mε. We then let fε = πε � Fε � π−1

ε . Because of this
smooth conjugacy, we can prove many properties of fε by proving them about Fε.

Given this construction, we make the following definition.

Definition 9.2 (Nonlinear prevalence). A subset P ⊂ Diffr (M) is prevalent if for
some functions F1, F2, . . . ∈ Cr(T , R

N) and a sufficiently small Hilbert brick HB

such that the construction above works for every ε ∈ HB, we have that for each
f ∈ Diffr (M), the diffeomorphism fε constructed above belongs to P for almost
every ε with respect to the uniform measure on HB.

Of course, this definition depends on the choices made in our construction – the
particular embedding of M and the means of extending a diffeomorphism on M to
a neighborhood of its embedded image. We emphasize that the results in this paper
and any results proved by a similar technique are independent of the details of the
construction; the family of polynomial perturbations works regardless of the choices
of embedding and extension. In this sense, we do not construct just a single family of
perturbations for which our results are true with probability one, but rather an entire
class of parametrized families that establish prevalence.
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From combinatorics to ergodic theory and back again

Bryna Kra∗

Abstract. Multiple ergodic averages, such as the average of expressions like f1(T
nx)

f2(T
2nx) . . . fk(T

knx), were first studied in the ergodic theoretic proof of Szemerédi’s The-
orem on arithmetic progressions. It turns out that all constraints on such averages (in a sense
that we describe) have an algebraic character, arising from identities in nilpotent groups. We
discuss these averages, several generalizations, and combinatorial implications of the results.
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Keywords. Multiple ergodic theorem, multiple recurrence, arithmetic progressions, nilsystems.

1. Additive combinatorics and ergodic theory

A classic result of Ramsey Theory was proved by van der Waerden [53] in the 1920s,
who showed that if the integers are partitioned into finitely many subsets, at least one
of the subsets contains arbitrarily long arithmetic progressions. Erdős and Turán [12]
conjectured that a weaker assumption suffices: if A is a set of integers whose upper
density

d(A) = lim sup
N→∞

1
N
|A ∩ [1, N ]|

is positive, then A contains arbitrarily long arithmetic progressions. Clearly the
conjecture immediately implies van der Waerden’s Theorem.

The first progress on the Erdős–Turán conjecture came in 1952, when Roth [45]
used Fourier analysis to establish that a set of integers with positive upper density con-
tains an arithmetic progression of length 3. Further progress was not until 1969, when
Szemerédi [48] showed that the conjecture holds for progressions of length 4. Finally
in 1975, Szemerédi [49] resolved the general case with an intricate combinatorial
proof.

Soon thereafter, Furstenberg [18] used ergodic theory to give a new proof of Sze-
merédi’s Theorem, and this proof marks the birth of the field of ergodic Ramsey
Theory. Since then, ergodic theory has been used to prove new results in combi-
natorics, such as the multidimensional Szemerédi Theorem [22], the density Hales–
Jewett Theorem [24], and the polynomial Szemerédi Theorem [4]; many of these
results have yet to be obtained by other means. (Some of these results are explained
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in Section 4.) Furstenberg’s pioneering work laid out the general strategy for these
problems: translate the combinatorial statement into a problem on the intersection
of sets in a measure preserving system and then study the average associated to this
intersection. The convergence of these multiple ergodic averages is the main focus of
this article. A key result is the convergence of the averages associated to Szemerédi’s
Theorem (see Section 2 for an explanation of the link):

Theorem 1.1 (Host and Kra [36]). Assume that (X, X, μ, T ) is a measure preserving
system,1 k ≥ 1 is an integer, and f1, f2, . . . , fk ∈ L∞(μ). Then the limit

lim
N→∞

1
N

N−1∑
n=0

f1(T
nx)f2(T

2nx) . . . fk(T
knx) (1)

exists in L2(μ).

It turns out that a subsystem can be substituted for the original system without
affecting the convergence or the value of the limit. Furthermore, this subsystem
can be completely described algebraically, with a particular role played by nilpotent
groups and their homogeneous spaces. We describe the structural analysis of measure
preserving systems needed to prove this in Section 3.

This has led us to a greater understanding of other multiple ergodic averages,
including averages with polynomial exponents, prime exponents, and certain averages
of commuting transformations, and some of these results are discussed in Section 4.
In turn, the multiple convergence theorems have lead to deeper connections with
exciting developments in number theory and combinatorics, and we discuss some of
these developments in Sections 4 and 5.

Although the connection between ergodic theory and additive combinatorics is
well established, the depth of this connection is only now beginning to be understood.
Szemerédi’s original proof is combinatorial and Furstenberg’s proof uses ergodic
theory, yet the two proofs have many formal similarities. These features recur in more
recent proofs of Szemerédi’s Theorem, such as those of Gowers [26] and of Tao [50].
In the ergodic setup, with our work in [36] we have a complete understanding of the
underlying structures in measure preserving systems that arise in the ergodic theoretic
proof of Szemerédi’s Theorem. To elucidate the true nature of the link with additive
combinatorics, describing corresponding combinatorial constructions remains a deep
open question.

1By an (invertible) measure preserving (probability) system, we mean a quadruple (X, X, μ, T ) where X

is a compact metrizable set, X denotes the Borel σ -algebra on X, μ is a probability measure on (X, X), and
T : X → X is an invertible measurable map with μ(A) = μ(T−1A) for all A ∈ X. Even when not explicitly
stated, the measure is assumed to be a probability measure and the transformation is assumed to be invertible.
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2. Multiple ergodic averages

2.1. Multiple recurrence. We start with the connection between regularity proper-
ties of subsets of integers and recurrence in measure preserving systems:

Correspondence Principle (Furstenberg [18], [20]). Let E be a set of integers with
positive upper density. There exist a measure preserving system (X, X, μ, T ) and a
subset A ⊆ X such that μ(A) = d(E) and

d((E + n1) ∩ (E + n2) ∩ · · · ∩ (E + nk)) ≥ μ(T −n1A ∩ T −n2A ∩ · · · ∩ T −nkA)

for any integer k ≥ 1 and integers n1, n2, . . . , nk ≥ 0.

Furstenberg then deduced Szemerédi’s Theorem by showing that any system
(X, X, μ, T ) is multiply recurrent, meaning that for all A ∈ X with positive measure,
there exists n ∈ N such that

μ(A ∩ T nA ∩ T 2nA ∩ · · · ∩ T knA) > 0. (2)

To produce such n ∈ N using ergodic theoretic methods, it is natural to average
the expression in (2) over n. If one can show that the limit inferior of this average
is positive, the existence of some n ∈ N satisfying (2) follows immediately. Thus
combined with the Correspondence Principle, Szemerédi’s Theorem follows from:

Multiple Recurrence Theorem (Furstenberg [18]). Assume that (X, X, μ, T ) is a
measure preserving system, A ∈ X has positive measure, and k ≥ 1 is an integer.
Then

lim inf
N→∞

1
N

N−1∑
n=0

μ(A ∩ T nA ∩ T 2nA ∩ · · · ∩ T knA) > 0. (3)

Poincaré Recurrence is implied by the case k = 1: for any set A ∈ X with positive
measure, there exist infinitely many n ∈ N such that μ(A ∩ T nA) > 0. Although it
is easy to prove Poincaré Recurrence directly, we can also view it as a corollary of
the von Neumann Ergodic Theorem, which implies that for a set A ∈ X with positive
measure, the limit

lim
N→∞

1
N

N−1∑
n=0

μ(A ∩ T nA)

exists and is positive. For higher order multiple recurrence (k ≥ 2), this method of
studying the corresponding multiple ergodic average is the only known method for
producing n such that (2) holds.

2.2. Multiple ergodic averages. A natural question arises: is the “lim inf” in (3)
actually a limit? More generally, if (X, X, μ, T ) is a measure preserving system,
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k ≥ 1 is an integer, and f1, f2, . . . , fk ∈ L∞(μ), do the multiple ergodic averages

1
N

N−1∑
n=0

f1(T
nx)f2(T

2nx) . . . fk(T
knx) (4)

converge as N tends to infinity, and in what sense do they converge? Taking each
fi to be the indicator function 1A of a set A, multiplying by 1A and integrating with
respect to μ, we obtain the average in (3). For k = 1, the existence of this limit in
L2(μ) is the von Neumann Ergodic Theorem.

A measure preserving transformation T : X → X induces an operator UT , on
functions in L2(μ) defined by UT f (x) = f (T x). In a standard abuse of notation,
we denote the operator UT by T and write Tf (x) = f (T x). In general we assume
that the measure preserving system (X, X, μ, T ) is ergodic, meaning that the only
sets A ∈ X satisfying T −1A ⊆ A have either full or zero measure. Since a general
system can be decomposed into its ergodic components, for most of the theorems we
consider it suffices to assume that the system is ergodic.

When the system is ergodic, for k = 1 the limit of (4) in L2(μ) is the integral∫
X

f1 dμ and in particular is constant. However, without some assumption on the
system, for k ≥ 2, the limit in (4) need not be constant. For example, if X is the
circle T = R/Z, T : T → T is the rotation T x = x + α mod 1 for some α ∈ T,
f1(x) = exp(4πix) and f2(x) = exp(−2πix), then f1(T

nx)f2(T
2nx) = f−1

2 (x)

for all n ∈ N. In particular, the double average

1
N

N−1∑
n=0

f1(T
nx)f2(T

2nx)

converges to a nonconstant function. (More generally, if α /∈ Q and f1, f2 ∈ L∞(μ),
the double average converges to

∫
f1(x + t)f2(x + 2t) dt , which in general is not

constant.)
The limit behavior of the double average depends on rotational behavior in the

system. To make this more precise, we introduce some terminology. A factor of a
measure preserving system (X, X, μ, T ) can be defined in one of several equivalent
ways: it is a T -invariant sub-σ -algebra Y of X, it is a measure preserving system
(Y, Y, ν, S) and a measurable map π : X→ Y such that μ 	π−1 = ν and S 	π(x) =
π 	 T (x) for μ-almost all x ∈ X, and it is a T -invariant subspace F of L∞(μ). The
equivalence between the first two definitions follows by identifying π−1(Y) with a
T -invariant sub-σ -algebra of X and noting that any T -invariant sub-σ -algebra of X
arises in this way. Setting F = L∞(Y), we have that the first definition implies
the third and taking Y to be the σ -algebra generated by F -measurable sets, we have
the converse. Depending on the context, we use any of these three characterizations
interchangeably. In a slight abuse of notation, we use the same letter to denote the
transformation in the whole space and in a factor.

If (Y, Y, ν, T ) is a factor of (X, X, μ, T ) and f ∈ L2(μ), the conditional expec-
tation E(f |Y) of f with respect to Y is the orthogonal projection of f onto L2(ν).
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Let E(f |Y ) denote the function on Y defined by E(f |Y ) 	 π = E(f |Y), where
π : X→ Y is the natural projection. This expectation is characterized by∫

Y

E(f |Y )(y)g(y) dν(y) =
∫

X

f (x)g(π(x)) dμ(x)

for all g ∈ L∞(μ).
A measure preserving system (X, X, μ, T ) is said to be weakly mixing if the only

measurable eigenfunctions of the operator on L2(μ) induced by the transformation T

are constant. An alternate characterization of weakly mixing can be given in terms
of a factor: the measure preserving system (X, X, μ, T ) is not weakly mixing if and
only if it has a nontrivial factor which is a rotation on a compact abelian group. The
maximal such (group rotation) factor is known as the Kronecker factor. A rotation on
a circle is not weakly mixing.

Taking the rotational behavior into account, the double average 1
N

∑
T nf1 ·T 2nf2

can be understood. The obvious phenomenon is that for μ-almost every x, the
triple (x, T nx, T 2nx) projects to an arithmetic progression in the Kronecker factor Z.
Furstenberg showed that this restriction is the only restriction, meaning that

∥∥∥ 1
N

N−1∑
n=0

T nf1 · T 2nf2 − 1
N

N−1∑
n=0

T nE(f1 |Z) · T 2nE(f2 |Z)

∥∥∥
L2(μ)

tends to 0 as N →∞. Thus to prove convergence of the double average, it suffices to
replace each fi , for i = 1, 2, by its conditional expectation E(fi |Z) on the Kronecker
factor. In particular, this means that one can assume that the system is an ergodic
rotation on a compact abelian group. Then one can easily use Fourier analysis to
show the existence of the limit. (The Kronecker factor is said to be characteristic for
the double average. See Section 3.1 for the general definition.) The double average
is the simplest example of a “nonconventional ergodic average,” where even if the
system is assumed to be ergodic, the limit need not be constant.

Furthermore, if the system is assumed to be weakly mixing, Furstenberg [18]
showed the existence of the limit in (4) for all k ≥ 1. Moreover, in this case the limit
takes on a particularly simple form: the average converges in L2(μ) to the product of
the integrals

∫
f1 dμ

∫
f2 dμ . . .

∫
fk dμ.

For a general system, the limiting behavior for k ≥ 3 is more complicated and
group rotations do not suffice for describing the long term behavior. For example, if
f (T x) = λf (x) for some |λ| = 1 and F(T x) = f (x)F (x), then

F(T nx) = f (x)f (T x) . . . f (T n−1x)F (x) = λ
n(n−1)

2 (f (x))nF (x).

Therefore
F(x)(F (T nx))−3(F (T 2nx))3(F (T 3nx))−1 = 1.

Projection to the Kronecker factor does not capture the behavior of generalized eigen-
functions, meaning that there is some relation among x, T nx, T 2nx and T 3nx that does
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not arise from the Kronecker factor. See Furstenberg [21] for a more intricate exam-
ple, showing that even such generalized eigenfunctions do not suffice in determining
the limiting behavior for k = 3.

Using a new structural analysis for ergodic systems, we describe the algebraic con-
straints on n-tuples x, T nx, T 2nx, . . . , T (k−1)nx, and use this to obtain convergence
of the averages in (4). Existence of the limit in L2(μ) for k = 1 is the von Neumann
Ergodic Theorem and existence for k = 2 was proven by Furstenberg [18]. Existence
of the limit for k = 3 with the hypothesis of total ergodicity, meaning that T and all
its powers are ergodic, was proven by Conze and Lesigne ([9], [10], and [11]); this
is the first place that a natural generalization (playing a major role for higher k) of
the Kronecker factor, a 2-step nilsystem, appears as a factor. In the general case for
k = 3, existence was shown by Furstenberg and Weiss [25] and by Host and Kra [33]
(see also [34]). We proved existence of the limit (1) for all integers k ≥ 1 in [36]
and this is the statement of Theorem 1.1. More recently, Ziegler [57] has a different
approach for showing the existence of the limit in the general case. The existence of
the pointwise limit is a much more difficult problem and convergence is only known
for k = 2, due to Bourgain [8].

The key role in the analysis used to prove the existence of the limit in (1) is played
by nilpotent groups and their homogeneous spaces. We start with a brief overview of
the ingredients in the proof of Theorem 1.1.

3. Structural analysis

3.1. Characteristic factors. A general strategy for showing the existence of an
average, such as that of (1), is to find a factor such that the limiting behavior is
unchanged when each function is replaced by its conditional expectation on this
factor. More precisely, a factor Y ⊆ X is a characteristic factor (or more succinctly,
is characteristic) for the average

1
N

N−1∑
n=0

T a1(n)f1 · T a2(n)f2 . . . T ak(n)fk

if the difference between this average and the same average with each function replaced
by its conditional expectation on Y

1
N

N−1∑
n=0

T a1(n)E(f1 |Y) · T a2(n)E(f2 |Y) . . . T ak(n)E(fk |Y)

converges to 0 in L2(μ) as N tends to infinity. For example, when a1(n) = n

and a2(n) = 2n, the Kronecker factor is characteristic for the double average. Al-
though the term characteristic factor only appeared explicitly in the literature fairly re-
cently [21], the method is implicit in Furstenberg’s original proof [18] of Szemerédi’s
Theorem.
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If one can find a characteristic factor for a given average, then it suffices to prove
convergence when the characteristic factor is substituted for the original system. Prov-
ing convergence for the factor is then easier when the factor has a sufficiently explicit
and “simple” description.

We follow this general strategy, but with a different point of view. Rather than
manipulating a particular average that we want to understand, we start with an abstract
construction of characteristic factors. The construction (following [36]) is based on
an inductively defined sequence of measures and of seminorms,2 which are then used
to define the factors. We now outline this construction.

3.2. Definition of measures and seminorms. Fix an integer k ≥ 0. We write a point
ω ∈ {0, 1}k as ω = ω1ω2 . . . ωk with ωi ∈ {0, 1}, omitting commas and parentheses,
and let |ω| = ω1 + ω2 + · · · + ωk . Fixing an ergodic measure preserving system
(X, X, μ, T ), let X[k] = X2k

and let T [k] : X[k] → X[k] be the map T ×T ×· · ·×T ,
taken 2k times. Elements of X[k] are written x = (xω : ω ∈ {0, 1}k). There is a natural
identification of X[k+1] and X[k] ×X[k], with a point x ∈ X[k+1] being identified with
(x′, x′′) ∈ X[k] ×X[k], where x′ω = xω0 and x′′ω = xω1 for each ω ∈ {0, 1}k .

By induction, we define a probability measure μ[k] on X[k], that is invariant under
T [k]. Set μ[0] = μ. Assume that μ[k] is defined for some k ≥ 0. Let � [k] denote the
σ -algebra of T [k]-invariant subsets of X[k].

Under the natural identification of X[k+1] with X[k] × X[k], define the measure
preserving (probability) system (X[k+1], μ[k+1], T [k+]) to be the relatively indepen-
dent joining of (X[k], μ[k], T [k]) with itself over � [k]; this means that the measure
μ[k+1] satisfies for all bounded functions F ′ and F ′′ on X[k],

∫
X[k+1]

F ′(x′)F ′′(x′′) dμ[k+1](x) =
∫

X[k]
E(F ′ |� [k]) E(F ′′ |� [k]) dμ[k].

The measure μ[k+1] is invariant under T [k+1] and the two natural projections on
X[k] are each μ[k]. By induction, each of the 2k natural projections of μ[k] on X is
equal to μ. Letting C : C→ C denote the conjugacy map z �→ z, we have that for a
bounded function f on X, the integral

∫
X[k]

∏
ω∈{0,1}j

C|ω|f (xω) dμ[k](x)

is real and nonnegative.

2Although the definition and context are on the surface quite different, these seminorms turn out to be a
generalization of the norms introduced by Gowers [26] in his proof of Szemerédi’s Theorem. To recover the
Gowers norms, consider the space Z/NZ, the transformation x �→ x + 1 mod N , and the uniform measure
assigning each element of Z/NZ weight 1/N . The Gowers norms were later used by Green and Tao [28] in a
spirit closer to ergodic theory and their use in our work [36]. See [32] and [39] for more on this connection.
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Therefore, for a function f ∈ L∞(μ) we can define

|||f |||k =
( ∫

X[k]

∏
ω∈{0,1}k

C|ω|f (xω) dμ[k](x)

)1/2k

.

One can also view this definition as an average over the cube {0, 1}k . A con-
vergence theorem for general averages along cubes is also proved in [36], and the
connection between averages along cubes and along arithmetic progressions is more
fully explained in Host [32].

Using the Ergodic Theorem and the definition of the measures, we have that for
any f ∈ L∞(μ),

|||f |||k+1 =
(

lim
N→∞

1
N

N−1∑
n=0

|||f · T nf |||2k

k

)1/2k+1

. (5)

To show that the map f �→ |||f |||k is a seminorm on L∞(μ), one derives a ver-
sion of the Cauchy–Schwarz inequality and uses it to show subadditivity. Positivity
immediately follows from Equation (5). (See [36] for details.)

We now return to the original averages along arithmetic progressions and show
that the long term behavior of the average (1) is controlled by the seminorms we have
constructed:

Theorem 3.1 (Host and Kra [36]). Assume that (X, X, μ, T ) is an ergodic measure
preserving probability system. Let k ≥ 1 be an integer and assume that f1, f2, . . . , fk

are functions on X with ‖f1‖∞, ‖f2‖∞, . . . , ‖fk‖∞ ≤ 1. Then

lim sup
N→∞

∥∥∥ 1
N

N−1∑
n=0

T nf1 · T 2nf2 . . . T knfk

∥∥∥
L2(μ)

≤ min
1≤j≤k

(j |||fj |||k).

The proof relies on a standard method for finding characteristic factors, which is
an iterated use of a variation of the van der Corput Lemma on differences (see for
example [40] or [1]):

van der Corput Lemma. Assume that H is a Hilbert space with inner product 〈 , 〉
and norm ‖ · ‖, and that ξn, n ≥ 0, is a sequence in H with ‖ξn‖ ≤ 1 for all n. Then

lim sup
N→∞

∥∥∥ 1
N

N−1∑
n=0

ξn

∥∥∥2 ≤ lim sup
H→∞

1
H

H−1∑
h=0

lim sup
N→∞

∣∣∣ 1
N

N−1∑
n=0

〈ξn+h, ξn〉
∣∣∣.

In our context, we apply this to the Hilbert space L2(μ) of unitary operators that
is naturally associated with the system (X, X, μ, T ). The seminorms we construct
reflect k successive uses of the van der Corput Lemma, with the number of steps in
the iteration increasing with the complexity of the averages. Theorem 3.1 follows
using induction, the Cauchy–Schwarz Inequality, and the van der Corput Lemma.
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3.3. The factors. We then show that for every integer k ≥ 1, the seminorms define
factorsZk−1. One presentation of these factors is obtained by defining their orthogonal
complements: for k ≥ 1, it can be shown that there exists a T -invariant σ -algebra
Zk−1 of X such that for f ∈ L∞(μ),

|||f |||k = 0 if and only if E(f |Zk−1) = 0.

Therefore a bounded function f is measurable with respect to Zk−1 if and only if∫
fg dμ = 0 for all functions g ∈ L∞(μ) with |||g|||k−1 = 0.

Then Zk−1 is defined to be the factor of X associated to the sub-σ -algebra Zk−1.
Thus defined, Z0 is the trivial factor, Z1 is the Kronecker factor and more generally, Zk

is a compact abelian group extension of Zk−1. Furthermore, the sequence of factors
is increasing

Z0 ← Z1 ← Z2 ← · · · ← X

and if T is weakly mixing, then Zk is the trivial factor for all k. In this terminology,
Theorem 3.1 states that the factor Zk is characteristic for the average (1).

The bulk of the work, and also the most technical portion, is devoted to the descrip-
tion of these factors. The initial idea is natural: we associate to each of these factors
the group of transformations which preserves the natural cubic structure that arises in
the construction. This group is nilpotent. We then conclude that for a sufficiently large
(for our purposes) class of systems, this group is a Lie group and acts transitively on
the space. Therefore, the constructed system is a translation on a nilmanifold. More
precisely, if G is a k-step nilpotent Lie group and 	 is a discrete cocompact subgroup,
then the compact space X = G/	 is said to be a k-step nilmanifold. The group G

acts on G/	 by left translation and the translation by a fixed element a ∈ G is given
by Ta(g	) = (ag)	. There exists a unique probability measure mG/	 , the Haar
measure, on X that is invariant under the action of G by left translations. Fixing an
element a ∈ G, we call the system G/	 with its associated Borel σ -algebra, Haar
measure mG/	 , and translation Ta a k-step nilsystem. The system (X, X, μ, T ) is an
inverse limit of a sequence of factors (Xn, Xn, μn, T ) if Xn, n ∈ N, is an increasing
sequence of T -invariant σ -algebras such that

∨
n∈N Xn = X up to a set of measure 0.

If in addition each factor (Xn, Xn, μn, T ) is isomorphic to a k-step nilsystem for
n ∈ N, the system (X, X, μ, T ) is an inverse limit of k-step nilsystems.

The structure theorem states:

Theorem 3.2 (Host and Kra [36]). There exists a characteristic factor for the averages
in (1) which is isomorphic to an inverse limit of k-step nilsystems.

An expository outline of the proof is also given in Host [32]. A posteriori, the role
played by the nilpotent structure is not surprising: for a k-step nilsystem (X, X, μ, T )

and x ∈ X, the (k + 1)st term T kx of an arithmetic progression is constrained by the
first k terms x, T x, T 2x, . . . , T k−1x.

Convergence of the linear (meaning the exponents n, 2n, . . . , kn are linear) multi-
ple ergodic average then follows easily from general properties of nilmanifolds proved
by Lesigne [43] for connected groups and proved in the general case by Leibman [41].
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4. Generalizations of multiple convergence

4.1. Polynomial averages. It is natural to ask what configurations, other than arith-
metic progressions, must occur in sets of integers with positive upper density. Sár-
közy [46] and Furstenberg [19] independently showed that if a subset of integers E

has positive upper density and p : Z → Z is a polynomial with p(0) = 0, then
there exist x, y ∈ E and n ∈ N such that x − y = p(n). Furstenberg’s proof used
ergodic theory. Once again, Furstenberg’s proof used the correspondence principle
and a recurrence result, this time along polynomial times. Bergelson and Leibman
generalized the recurrence result for multiple polynomials:

Theorem 4.1 (Bergelson and Leibman [4]). Assume that (X, X, μ, T ) is an invertible
measure preserving system, A ∈ X has positive measure, k ≥ 1 is an integer, and
p1, p2, . . . , pk : Z→ Z are polynomials with pj (0) = 0 for j = 1, 2, . . . , n. Then

lim inf
N→∞

1
N

N−1∑
n=0

μ(A ∩ T −p1(n)A ∩ T −p2(n)A ∩ · · · ∩ T −pk(n)A) > 0.

The result in [4] is actually quite a bit stronger; they prove a multidimensional ver-
sion of this statement (see Section 4.2), meaning that one replaces the j -th occurrence
of T by Tj , for k commuting measure preserving transformations T1, T2, . . . , Tk of
the measure space (X, X, μ). A polynomial version of Szemerédi’s Theorem follows
immediately via Furstenberg’s Correspondence Principle.

The polynomial recurrence theorem naturally leads to the corresponding conver-
gence question for multiple polynomial averages:

Theorem 4.2 (Host and Kra [37], Leibman [42]). Assume that (X, X, μ, T ) is a mea-
sure preserving system, k ≥ 1 is an integer, p1, p2, . . . , pk : Z→ Z are polynomials,
and f1, f2, . . . , fk ∈ L∞(μ). Then the limit

lim
N→∞

1
N

N−1∑
n=0

T p1(n)f1 · T p2(n)f2 . . . T pk(n)fk (6)

exists in L2(μ).

For a weakly mixing system, convergence of (6) was proved by Bergelson [1]. In an
arbitrary measure preserving system, Furstenberg and Weiss [25] proved convergence
for k = 2 with p1(n) = n and p2(n) = n2 and p1(n) = n2 and p2(n) = n2 + n.
Weak convergence was proven in [37], as well as convergence in L2(μ) in most cases.
The remaining case, along with a generalization for multiparameter polynomials, was
completed in [42].

As with the linear average corresponding to exponents n, 2n, . . . , kn, the behavior
of a general polynomial average is controlled by the seminorms ||| · |||k . Using an in-
ductive procedure like that of [1], the averages in (6) can be reduced to an average only
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with linear exponents and we obtain a result for a polynomial average analogous to
Theorem 3.1. Using the structure theorem (Theorem 3.2), we have that a characteristic
factor for a polynomial average is once again an inverse limit of nilsystems.

The number of steps needed in the inductive procedure used to reduce the av-
erage (6) to linear terms depends on the choice of polynomials. As might be ex-
pected, more terms and higher degree increases the number of steps needed and so
the complexity of the corresponding the nilsystem rises. However, it turns out that
the linearly dependent family {n, 2n, . . . , kn} is in some sense the most difficult. For
a general polynomial family, the minimal characteristic factor Zk (meaning small-
est k) is unknown. Yet for rationally independent polynomials, meaning polynomials
p1, p2, . . . , pk : Z → Z with {1, p1, p2, . . . , pk} linearly independent over Q, the
characteristic factor (and therefore the value of the limit) is particularly simple and is
independent of the choice of polynomials. Answering a question of Bergelson posed
in [2], we show:

Theorem 4.3 (Frantzikinakis and Kra [14]). Assume that (X, X, μ, T ) is a totally
ergodic measure preserving system, k ≥ 1 is an integer, p1, p2, . . . , pk : Z→ Z are
rationally independent polynomials, and f1, f2, . . . , fk ∈ L∞(μ). Then

1
N

N−1∑
n=0

T p1(n)f1 · T p2(n)f2 . . . T pk(n)fk −
∫

f1 dμ

∫
f2 dμ . . .

∫
fk dμ

converges to 0 in L2(μ) as N →∞.

Our proof uses the machinery of the Structure Theorem, but we ultimately show
that the procyclic factor (an inverse limit of cyclic groups), which is contained in the
Kronecker factor, is characteristic for this average. It would be interesting to prove
the theorem directly, avoiding the use of nilsystems.

4.2. Averages for commuting transformations. Furstenberg and Katznelson gen-
eralized multiple recurrence for commuting transformations:

Theorem 4.4 (Furstenberg and Katznelson [22]). Assume that (X, X, μ) is a prob-
ability space, k ≥ 1 is an integer, T1, T2, . . . , Tk : X → X are commuting measure
preserving transformations, and A ∈ X has positive measure. Then

lim inf
N→∞

1
N

N−1∑
n=0

μ(A ∩ T −n
1 A ∩ T −n

2 A ∩ · · · ∩ T −n
k A) > 0.

(Other generalizations, including combinations of the commuting and polyno-
mial averages, are contained in [23] and [5].) Furstenberg’s correspondence principle
immediately implies a combinatorial version, the multidimensional version of Sze-
merédi’s Theorem.

Once again, it is natural to ask about convergence of the corresponding commuting
multiple ergodic average:
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Question 4.5. If k ≥ 1 is an integer, T1, T2, . . . , Tk : X→ X are commuting measure
preserving transformations of a probability space (X, X, μ), p1, p2, . . . , pk : Z→ Z

are polynomials, and f1, f2, . . . , fk ∈ L∞(μ), does

lim
N→∞

1
N

N−1∑
n=0

T
p1(n)

1 f1 · T p2(n)
2 f2 . . . T

pk(n)
k fk

exist in L2(μ)?

For two transformations and exponents p1(n) = p2(n) = n, existence of the
limit in L2(μ) was shown by Conze and Lesigne [9]. For arbitrary k ≥ 1, under
the assumptions that Tj is ergodic for j = 1, 2, . . . , k and that TiT

−1
j is ergodic for

i �= j , i, j ∈ {1, 2, . . . , k}, existence of the limit with exponents p1(n) = p2(n) =
· · · = pk(n) = n in L2(μ) is shown in [15]. However, the general case (even with all
exponents equal to n) remains open and it is easy to construct systems such that the
characteristic factors are not nilsystems.

4.3. Sequences related to prime numbers. Recently, a new chapter in ergodic
Ramsey Theory was opened, with ergodic theoretic techniques adapted for use outside
of the field. A particularly spectacular result in this direction is Green and Tao’s
proof [28] that the prime numbers contain arbitrarily long arithmetic progressions.
The connections between the proof of Green and Tao and ergodic theory are further
explained in the expository articles of Host [32], Kra [39], and Tao [51]. In turn, Green
and Tao’s results make it possible to study convergence for other multiple ergodic
averages, leading us to a greater understanding of patterns in a set of integers with
positive upper density. Green and Tao ([29], [30], [31]) proved a strong uniformity
result on the prime numbers and using this result, we can show that the shifted primes
have multiple recurrence properties. (See also the survey articles of Green [27] and
of Tao [52].) Letting P denote the primes, we show:

Theorem 4.6 (Frantzikinakis, Host, and Kra [13]). Assume that (X, X, μ, T ) is a
measure preserving system and A ∈ X has positive measure. Then there exists
n ∈ P− 1 such that

μ(A ∩ T −nA ∩ T −2nA) > 0.

The same statement holds with P− 1 replaced by P+ 1. Thus the shifted primes
P − 1 and P + 1 are sets of 2-recurrence. For single recurrence, this was proven
by Sárközy [47] and reproved using ergodic methods by Wierdl [54]. (Bourgain [7]
and Wierdl [55] also proved several stronger results on pointwise convergence along
primes.) An immediate corollary of Theorem 4.6 is that a set of integers with positive
upper density contains infinitely many arithmetic progressions of length 3 whose
common difference is of the form p − 1 for some prime p (and similarly of the
form p + 1).
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Roughly speaking, we prove this by comparing the associated double average
along primes with the usual double average, and show that the difference converges
to 0. This relies on the uniformity result on the prime numbers of Green and Tao. It
turns out that the Kronecker factor is characteristic for the associated average. The
added complication is that one must work with Z/NZ as the underlying space instead
of Z.

Using the same methods, we also show the existence of the related double ergodic
average:

Theorem 4.7 (Frantzikinakis, Host, and Kra [13]). Assume that (X, X, μ, T ) is a
measure preserving system and f1, f2 ∈ L∞(μ). Then

lim
N→∞

1
|P ∩ [0, N)|

∑
n∈P,n<N

T nf1 · T 2nf2

exists in L2(μ).

The same reduction to a uniformity statement about the prime numbers, for both
recurrence and convergence, works for multiple recurrence and convergence of all
lengths. However, the needed uniformity result for prime numbers remains open for
longer progressions.

5. Lower bounds for multiple ergodic averages

5.1. Khintchine Recurrence. As described in Section 2, the first step in Fursten-
berg’s Multiple Recurrence Theorem (Poincaré Recurrence) is an immediate corollary
of the von Neumann Ergodic Theorem. However, using the full description of the
limit, and not only positivity of the limit inferior, one can make a finer statement about
the frequency of recurrence. More precisely, a set E ⊆ Z is syndetic3 if there exists
M ∈ N such that every interval of length M has nontrivial intersection with the set E.
Khintchine generalized Poincaré Recurrence and showed:

Theorem 5.1 (Khintchine [38]). If (X, X, μ, T ) is a measure preserving system and
A ∈ X, then for all ε > 0, the set

{n ∈ Z : μ(A ∩ T nA) > μ(A)2 − ε}
is syndetic.

As this result follows easily from the von Neumann Ergodic Theorem, one can
ask for the analogous results corresponding to other multiple recurrence theorems:
if (X, X, μ, T ) is a measure preserving system, A ∈ X, k ≥ 1 is an integer,

3A syndetic set is sometimes known in the literature as relatively dense. A syndetic set in Z is said to have
bounded gaps.
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p1, p2, . . . , pk : Z → Z are polynomials with pj (0) = 0 for j = 1, 2, . . . , k, and
ε > 0, is the set

{n ∈ Z : μ(A ∩ T −p1(n)A ∩ · · · ∩ T pk(n)A) > μ(A)k+1 − ε} (7)

syndetic?
Surprisingly enough, the answer depends on the number k of polynomials and on

the linear dependencies among the polynomials. For rationally independent polyno-
mials, using the fact that a characteristic factor takes on a simple form, we show that
the measure of the intersection in (7) is as large as possible on a syndetic set:

Theorem 5.2 (Frantzikinakis and Kra [16]). Assume that (X, X, μ, T ) is an invertible
measure preserving system, A ∈ X, k ≥ 1 is an integer, and p1, p2, . . . , pk : Z→ Z

are rationally independent polynomials with pj (0) = 0 for j = 1, 2, . . . , k. Then for
all ε > 0, the set

{n ∈ Z : μ(A ∩ T p1(n)A ∩ T p2(n)A ∩ · · · ∩ T pk(n)A) ≥ μ(A)k+1 − ε}
is syndetic.

This sharply contrasts the behavior for a family of linearly dependent polynomials,
such as the linear polynomials corresponding to Szemerédi’s Theorem, where the
behavior depends on the number of linear terms. This dependence is illustrated in the
following two theorems:

Theorem 5.3 (Bergelson, Host, and Kra [3]). Assume that (X, X, μ, T ) is an ergodic
measure preserving system, A ∈ X, and k ≥ 1 is an integer. Then for all ε > 0, the
sets

{n ∈ Z : μ(A ∩ T nA ∩ T 2nA) ≥ μ(A)3 − ε}
and

{n ∈ Z : μ(A ∩ T nA ∩ T 2nA ∩ T 3nA) ≥ μ(A)4 − ε}
are syndetic.

While ergodicity is not needed in Khintchine’s Theorem, it is a necessary hy-
pothesis in Theorem 5.3. In [3], we construct a counterexample for the nonergodic
case.

For arithmetic progressions of length ≥ 5, the analogous result does not hold.
Based on a result of Ruzsa contained in the Appendix of [3], we show

Theorem 5.4 (Bergelson, Host, and Kra [3]). There exists an ergodic system
(X, X, μ, T ) such that for all integers � ≥ 1 and all ε > 0, there exists a set
A = A(�, ε) ∈ X with positive measure such that

μ(A ∩ T nA ∩ T 2nA ∩ T 3nA ∩ T 4nA) ≤ εμ(A)�

for every integer n �= 0.
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The proofs of these theorems are based on a decomposition result for the multi-
correlation sequence

∫
f (x)f (T nx)f (T 2nx) . . . f (T knx) dμ(x), (8)

where (X, X, μ, T ) is a measure preserving system, f ∈ L∞(μ), and k, n ≥ 1 are
integers. We decompose such a sequence into two pieces, one of which is small in
terms of density and the second of which arises from a nilsystem. We need some
terminology to describe this decomposition more precisely. A bounded sequence
{an}n∈Z tends to zero in uniform density if

lim
N→∞ sup

M∈Z
1
N

M+N−1∑
n=M

|an| = 0.

If k ≥ 1 is an integer, the sequence {xn} is said to be a basic k-step nilsequence if
there exists some k-step nilmanifold X = G/	, a continuous real valued function φ

on X, a ∈ G and e ∈ X such that xn = φ(an · e) for all n ∈ N. A k-step nilsequence
is a uniform limit of basic k-step nilsequences. The general decomposition result is:

Theorem 5.5 (Bergelson, Host, and Kra [3]). Assume that (X, X, μ, T ) is an ergodic
measure preserving system, k ≥ 1 is an integer, and f ∈ L∞(μ). The multicorrelation
sequence (8) is the sum of a sequence tending to zero in uniform density and a k-step
nilsequence.

By subtracting a sequence of integers that tends to 0 in uniform density, the
sequences in Theorem 5.3 have the same behavior as the associated nilsequences (of
lengths 3 and 4), and the problem reduces to studying lower bounds for the associated
nilsequences. The factors constructed in [36] are used to understand the structure
of these nilsequences and a key ingredient comes from the explicit formula for the
average (1) given in Ziegler [56] (an alternate proof is given in [3]).

In [16], we prove a similar multicorrelation result for independent polynomials.
In this case, the nilsequence takes on a simple form, as it is induced by a unipotent
affine transformation.

5.2. Combinatorial Implications. Via a small modification of Furstenberg’s Cor-
respondence Principle, each of these results translates to a combinatorial result. The
upper Banach density d∗(E) of a set E ⊆ Z is defined by

d∗(E) = lim
N→+∞ sup

M∈Z
1
N
|E ∩ [M, M +N − 1]|.

Let ε > 0, E ⊆ Z have positive upper Banach density, and consider the set
{
n ∈ Z : d∗(E ∩ (E + p1(n)) ∩ · · · ∩ (E + pk(n))

) ≥ d∗(E)k+1 − ε
}
. (9)
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For k = 2 or k = 3 and pj (n) = jn for j = 1, 2, 3, this set is syndetic, while for
k ≥ 4 and pj (n) = jn for j = 1, 2, . . . , k, there exists a set of integers E with
positive upper Banach density such that the set in (9) is empty. On the other hand,
in [16] we show that for all integers k ≥ 1, if p1, p2, . . . , pk : Z→ Z are rationally
independent polynomials with pi(0) = 0 for i = 1, 2, . . . , k, then the set in (9) is
always syndetic.

Question 5.6. If ε > 0, E ⊆ Z has positive upper Banach density, for which poly-
nomials p1, p2, . . . , pk : Z→ Z with pi(0) = 0 for i = 1, 2, . . . , k, is the set
{
n ∈ Z : d∗(E ∩ (E+p1(n))∩ (E+p2(n))∩ · · · ∩ (E+pk(n))

) ≥ d∗(E)k+1− ε
}

syndetic?

For the polynomials of Theorems 5.2, 5.3, and 5.4 we know the answer and it is
sometimes yes and sometimes no. It is reasonable to conjecture that the answer is yes
for k = 2 and 3, as we know it holds for two extreme cases: 2 (or 3) rationally inde-
pendent polynomials and 2 (or 3) linear polynomials. For higher k, it may be possible
to lift the independence condition of Theorem 5.2 under certain circumstances. The
natural approach to the problem is via the corresponding statement in ergodic theory.
A first step in answering this question is finding a general formula for the multiple
polynomial average (6), generalizing the formula for the linear average (1).

6. Future directions

6.1. Convergence along other sequences. General conditions on sequences of in-
tegers under which one can prove a multiple ergodic theorem are unknown:

Question 6.1. If k ≥ 1 is an integer and a1(n), a2(n), . . . , ak(n) are sequences of
integers with aj (n)→∞ as n→∞ for j = 1, 2, . . . , n, when does

lim
N→∞

1
N

N−1∑
n=0

T a1(n)f1 · T a2(n)f1 . . . T ak(n)fk

exist in L2(μ) for all measure preserving systems (X, X, μ, T ) and f1, f2, . . . , fk ∈
L∞(μ)?

For k = 1, convenient necessary and sufficient conditions are given by the spectral
theorem. However for k ≥ 2, there is no such characterization and the proofs of
multiple convergence for all known sequences (including arithmetic progressions,
polynomials, and the primes) rely in some manner on a use of the van der Corput
Lemma. Finding alternate proofs not relying on the van der Corput Lemma is a
first step in describing choices for the sequences aj (n); a full characterization would
probably require some sort of higher order spectral theorem.
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Another natural question is the convergence of random multiple ergodic averages.
Let (
, B, P ) be a probability space and let {Yn}n∈N be a sequence of independent
random variables taking on values 0 and 1. Given ω ∈ 
, let E = E(ω) = {n ∈
N : Yn(ω) = 1}. Ordering E by size, we have defined a random sequence {a(n) =
a(n, ω)} of natural numbers.

Question 6.2. Assume that k ≥ 1 is an integer and that a(n) is a random sequence of
natural numbers generated by a sequence of independent random variables on some
probability space (
, B, P ). When does

lim
N→∞

1
N

N−1∑
n=0

T a(n)f1 · T 2a(n)f2 . . . T ka(n)fk

exist in L2(μ) for all measure preserving systems (X, X, μ, T ) and f1, f2, . . . , fk ∈
L∞(μ)?

For k = 1, Bourgain [6] showed that for a random nonlacunary sequence, meaning
a sequence where P(Xn(ω) = 1) = pn satisfies limn→∞ npn = ∞, which is also
decreasing, one has convergence in L2(μ). For k ≥ 1, convergence for k = 1 is of
course a necessary condition, but it is not know if this is sufficient.

6.2. Connections with additive combinatorics. Since Furstenberg’s proof of Sze-
merédi’s Theorem, there has been a long and fruitful interaction between additive
combinatorics and ergodic theory, with results and techniques passing from one field
to the other. A major challenge remains: understand the mathematics behind the deep
analogies between the two fields. The nilsystems that arise in the structural analysis
of measure preserving systems should have some sort of combinatorial analog:

Question 6.3. What is the combinatorial analog of the Structure Theorem (Theo-
rem 3.2)?

The uniformity norms on Z/NZ (used in Gowers’s [26] proof of Szemerédi’s
Theorem and in Green and Tao’s [28] proof that the primes contain arbitrarily long
progressions) play a role similar to the role that the seminorms described in Section 3
play in proving convergence of the multiple ergodic average along arithmetic pro-
gressions in [36]. A partial answer to this question is given by Green and Tao in [29],
in which they show that generalized quadratic functions control the third uniformity
norm, analogous to the way that 2-step nilsystems control the third seminorm. These
generalized quadratic functions are controlled by 2-step nilsequences, and this gives a
partial understanding of the combinatorial objects. It should be interesting and useful
to obtain a more complete understanding of the precise nature of the link between
these generalized quadratic functions and 2-step nilsequences, with a description in
the finite setting of Z/NZ rather than in Z. For longer progressions, even partial
results are not known.
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It is not clear if one can directly use ergodic theory to prove statements about the
primes, as the primes have zero density and Furstenberg’s Correspondence Principle
only applies for sets of positive upper density. However, even without a version
of the Correspondence Principle that applies to zero density subsets, ergodic theory
and especially its techniques has and will be further used to understand the finer
structure of the primes. In analogy with multiple ergodic averages along polynomial
sequences (and the use of seminorms), one may hope to combine techniques of additive
combinatorics and ergodic theory to show, for example, that for all integers k > 1,
there exist infinitely many pairs (p, n) of integers with p, n ≥ 1 such that p, p + n,
p + n2, . . . , p + nk consists only of prime numbers.
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From Brouwer theory to the study of homeomorphisms of
surfaces

Patrice Le Calvez

Abstract. We will state an equivariant foliated version of the classical Brouwer Plane Translation
Theorem and will explain how to apply this result to the study of homeomorphisms of surfaces.
In particular we will explain why a diffeomorphism of a closed oriented surface of genus ≥ 1
that is the time-one map of a time dependent Hamiltonian vector field has infinitely many
periodic orbits. This gives a positive answer in the case of surfaces to a more general question
stated by C. Conley. We will give a survey of some recent results on homeomorphisms and
diffeomorphisms of surfaces and will explain the links with the improved version of Brouwer’s
theorem.

Mathematics Subject Classification (2000). Primary 37E30, 37E35, 37J10; Secondary 37E45.

Keywords. Brouwer homeomorphism, Hamiltonian homeomorphism, periodic point, foliation
on a surface, rotation number.

1. Introduction

It is a natural problem to ask if a given dynamical statement about time independent
vector fields may be extended to periodic time dependent vector fields. Recall that
a complete periodic time dependent smooth vector field on a manifold M defines a
family (Ft )t∈R of diffeomorphisms such that F0 = IdM and Ft+T = Ft � FT , for
every t ∈ R, if T is the period. To study this system, one usually studies the discrete
dynamical system induced by F = FT .

Let us begin with a very simple example. Suppose that M is compact and write
χ(M) for the Euler characteristic of M . If F is a homeomorphism homotopic to the
identity with a finite number of fixed points, one knows by the Lefschetz formula that∑

F(z)=z
i(F, z) = χ(M),

where i(F, z) is the Lefschetz index. If F is the time-one map of a flow induced by
a vector field, the fixed points are necessarily the singularities of ξ , and the previous
formula may be deduced from the Poincaré–Hopf formula∑

ξ(z)=0

i(ξ, z) = χ(M),

where i(ξ, z) is the Poincaré index.
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Let us now give a more interesting example. Consider a symplectic compact
manifold (M,ω) and write nM (resp. n′M ) for the minimum number of critical points
that any smooth function (resp. Morse function) defined onM must have. If F is the
time-one map of a family (Ft )t∈R defined by a 1-periodic time dependent Hamiltonian
vector field, we say that a fixed point z is contractible if the trajectory γz : t �→ Ft(z),
defined on [0, 1], is a loop homotopic to a point. Arnold’s conjecture [1] states that
the number of contractible fixed points is minimized by nM , and that it is minimized
by n′M if every fixed point of F is non-degenerate (such results are obviously true in
the case where the vector field is time independent). Now the the minoration by the
sum of the Betti numbers is known to be true in the non-degenerate case (Liu, Tian
[49], Fukaya, Ono [31]). See [36] for a history of this problem whose first proven
case (M = T

2n = R
2n/Z2n) was solved by Conley and Zehnder [15].

Conley conjectured that the number of contractible periodic points is infinite in
the case of a torus T

2n. The conjecture is true if F is a diffeomorphism with no
degenerate fixed points (Salamon–Zehnder [53]). We will explain in Section 5 why
Conley’s conjecture is true if M = T

2 and, more generally, if M is a closed surface
of genus ≥ 1. The key result is an equivariant foliated version of the Brouwer Plane
Translation Theorem, which will be stated in Section 4. Roughly speaking, it asserts
that if (Ft )t∈[0,1] is an isotopy from the identity to F on a surface M which has no
contractible point, there exists a continuous dynamics on M which is “transverse” to
the dynamics of F in the following sense: every orbit is “pushed on its left” by the
isotopy. Such a result may be applied in the presence of contractible fixed points if
one takes out some of them. Suppose that F is the time-one map of a Hamiltonian
flow on a symplectic surface M associated to H : M → R, then an example of a
transverse dynamics is the dynamics of the gradient flow ofH if we endowM with a
Riemannian structure. We will see that such a transverse gradient-like dynamics may
be produced even in the time dependent case.

We will recall the classical Brouwer theory of homeomorphisms of the plane in
Section 2 and then state equivariant versions in the case of the annulus in Section 3.
We will mention some recent results on dynamics of diffeomorphisms and homeo-
morphisms of surfaces. In particular, in Section 6 we will recall some new results
due to Polterovich and to Franks and Handel about group actions on the space of area
preserving diffeomorphisms of surfaces.

2. Brouwer’s theory of plane homeomorphisms

The following result is due to Brouwer and recent proofs are given in [12], [16] or [32].

Theorem 2.1 ([10]). Let f be an orientation preserving homeomorphism of the eu-
clidean plane R

2. If f has a periodic point z of period q ≥ 2, then there is a simple
closed curve �, disjoint from the fixed point set Fix(f ), such that i(f, �) = 1, where
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the index i(f, �) is the degree of the map

s �→ f (�(s))− �(s)
‖f (�(s))− �(s)‖ ,

and s �→ �(s) is a parametrization defined on the unit circle S1.

A homeomorphism f of R
2 is orientation preserving if and only if it is isotopic to

the identity; in the case where f is the time-one map of a flow (ft )t∈R whose orbits
are tangent to a given continuous vector field ξ , the result is obvious. Indeed, if z is
a periodic point of f of period q ≥ 2, the orbit of z (for the flow) is a simple closed
curve�, invariant by f , which is the union of periodic points of period q. This clearly
implies that i(f, �) = 1.

Theorem 2.1 asserts that any fixed point free and orientation preserving homeo-
morphism of R

2 is periodic point free. In fact its dynamics has no recurrence at all.
More precisely, suppose that f is an orientation preserving homeomorphism of R

2

and that f has a non-wandering point z which is not fixed (i.e. every neighborhood
of z meets one of its iterate). Let us see why the conclusion of Theorem 2.1 is still
satisfied. Choose a free topological open disk V containing z (i.e. disjoint from its
image byf ) and write q ≥ 2 for the smallest positive integer such thatf q(V )∩V 
= ∅.
One can compose f with a homeomorphism h supported on V to get a map with a
periodic point of period q, so that Theorem 2.1 can be applied to f � h. The map h
being supported on a free set, f � h and f have the same fixed points. Moreover, h
being isotopic to the identity among the homeomorphisms supported on V , one has
i(f � h, �) = i(f, �) for every simple closed curve � ⊂ R

2 \ Fix(f ). The foregoing
argument may be generalized to get the useful Franks Lemma:

Proposition 2.2 ([21]). Let f be an orientation preserving homeomorphism of R
2.

If there is a periodic sequence (Vi)i∈Z/qZ of pairwise disjoint free topological open
disks, and a sequence (ni)i∈Z/qZ of positive integers such that f ni (Vi) ∩ Vi+1 
= ∅,
then there is a simple closed curve � ⊂ R

2 \ Fix(f ) such that i(f, �) = 1.

It has been known for a long time that Brouwer theory may be applied to the study
of homeomorphisms of surfaces. Let us explain for example why every orientation
and area preserving homeomorphism on the sphere S2 has at least two fixed points.
The map f being orientation preserving has at least one fixed point z1 by the Lefschetz
formula. The fact that f preserves the area implies that every point is non-wandering;
applying Proposition 2.2 to the map restricted to the topological plane S2 \ {z1}, one
gets a second fixed point z2 
= z1. As noticed by Hamilton [34], then by Brown [11],
there is another fixed point result which can be deduced from Proposition 2.2: the
Cartwright–Littlewood Fixed Point Theorem [14]. This theorem asserts that any
non-separating continuum K ⊂ R

2 which is invariant by an orientation preserving
homeomorphism f of R

2 contains a fixed point. Let us recall Brown’s argument. If
K ∩ Fix(f ) = ∅, then K is included in a connected component W of R

2 \ Fix(f ).
One can choose a lift f̃ of f |W to the universal covering space W̃ (homeomorphic
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to R
2) which fixes a given connected component K̃ of the preimage of K . The set K̃

being compact, f̃ should contain a non-wandering point (in fact a recurrent point)
while being fixed point free.

Let us state now a much more difficult fixed point theorem, due to Handel, which
is very useful in the study of homeomorphisms of surfaces (see [24], [25], [50]):

Theorem 2.3 ([35]). Letf be an orientation preserving homeomorphism of the closed
unit disk D and suppose that

– there are n ≥ 3 points zi , 1 ≤ i ≤ n, in Int(D) such that limk→−∞ f k(zi) =
αi ∈ ∂D and limk→+∞ f k(zi) = ωi ∈ ∂D;

– the 2n points αi and ωi are distinct;

– there is an oriented convex compact polygon in Int(D) whose i-th side joins αi
to ωi .

Then f has a fixed point in Int(D).

Handel’s Fixed Point Theorem is usually applied to a liftf to the universal covering
space Int(D) of a homeomorphism F of a hyperbolic surface (such a lift can always
be extended to the closed disk). The core of the proof of Handel is a generalization
of the Nielsen–Thurston classification of homeomorphisms of a compact surface M
to the case where M is the complement in R

2 of finitely many infinite proper orbits.
In fact, it is possible to directly prove Theorem 2.3 by showing the existence of a
periodic free disk chain of f |Int(D) (i.e. a family of disks satisfying the assumptions
of Proposition 2.2) and thus of a simple closed curve � of index 1 (see [44]).

We will go on by recalling Brouwer’s Plane Translation Theorem. By Schoen-
flies’ Theorem, any proper topological embedding of the real line {0} × R may be
extended to an orientation preserving homeomorphismh of R

2. The open setsL(�) =
h(] −∞, 0[×R) and R(�) = h(]0,+∞[×R) are the two connected components of
the complement of the oriented line � = h({0} × R).

Theorem 2.4 ([10]). If f is a fixed point free and orientation preserving homeomor-
phism of R

2, then every point belongs to a Brouwer line, that means an oriented
line � such that f (�) ⊂ L(�) and f−1(�) ⊂ R(�).

Such a homeomorphism is usually called a Brouwer homeomorphism. Observe
that W =⋃

k∈Z f k+1(R(�)) \ f k(R(�)) is an invariant open subset homeomorphic
to R

2 and that f |W is conjugate to a non-trivial translation of R
2. Theorem 2.4 asserts

that R
2 can be covered by such invariant subsets. The quotient space R

2/f of orbits
of f is a topological surface which is Hausdorff if and only if f is conjugate to a
translation. Brouwer homeomorphisms have been studied for a long time. Among the
more recent results one may mention the construction of the oscillating set by Béguin
and Le Roux [3] which is a new topological invariant of Brouwer homeomorphisms.
One may also mention the study of Reeb components of Brouwer homeomorphisms
by Le Roux [48]. Such objects, which generalize the classical Reeb components of
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foliations may be defined (in a not easy way) in the framework of Brouwer home-
omorphisms and results that are true for foliations may be extended to this discrete
case. One may also recall the following results about the topology of the space of
Brouwer homeomorphisms when equipped with the compact-open topology: it is
arcwise connected and locally contractible [8], more precisely the set of non-trivial
affine translations is a strong deformation retract [46].

In the case where f = f1 is the time-one map of a flow (ft )t∈R whose orbits are
tangent to a continuous vector field ξ , Theorem 2.4 is also obvious. Indeed one may
find a completeC1 vector field η such that η(z)∧ ξ(z) > 0 for every z ∈ R

2 (where∧
is the usual exterior product on R

2). Every orbit � of η is a line by the Poincaré–
Bendixson Theorem; it is a Brouwer line because ξ points on � from the right to
the left. Note that the plane is foliated and not only covered by Brouwer lines. The
proof of the Brouwer Plane Translation Theorem is much harder. In all known proofs
(see [10], [23], [32], [45]) a non-recurrence lemma, a variation of Proposition 2.2,
is needed. We will conclude this section by explaining the ideas of the proofs given
in [45] and in Sauzet’s thesis [54] as it will be the starting point of the proofs of the
foliated versions that we will explain later.

A brick decomposition of R
2 is given by a one dimensional stratified set 
 (the

skeleton of the decomposition) with a zero dimensional submanifold V such that any
vertex v ∈ V is locally the extremity of exactly three edges. A brick is the closure of
a connected component of R

2 \
. If f is a fixed point free and orientation preserving
homeomorphism of R

2, one can construct a maximal free decomposition: it is a brick
decomposition with free bricks such that the union of two adjacent bricks is no more
free. Moreover if z ∈ R

2 is a given point, one may suppose that z ∈ 
. Let us writeB
for the set of bricks. A slightly stronger version of Proposition 2.2, due to Guillou
and Le Roux [47] asserts that there is no closed chain of bricks of B. This implies
that the relation

bRb′ ⇐⇒ f (b) ∩ b′ 
= ∅
generates by transitivity an order ≤ on B. The decomposition being maximal, two
adjacent bricks are comparable. In fact, it appears that for every brick b, the union of
bricks b′ > b adjacent to b is non-empty and connected, as is the union of adjacent
bricks b′ < b. This implies that b≥ =⋃

b′≥b b′ is a connected closed subset satisfying
f (b≥) ⊂ Int(b≥). The fact that we are working with bricks implies that the frontier
of b≥ is a one dimensional manifold; the inclusion f (b≥) ⊂ Int(b≥) implies that
every component of this frontier is a Brouwer line. One may cover the skeleton by
Brouwer lines because 
 =⋃

b∈B ∂b≥.
Free cellular decompositions appear already in [32] and are explicitely constructed

in a paper of Flucher [20] about a topological version of Conley–Zehnder theorem
for T

2. The trick to consider bricks to simplify the proofs was suggested by Guillou.
Brick decompositions have been studied in detail in Sauzet’s thesis [54] and have
been used in some articles ([4], [9], [47]). In [47], Le Roux gives a very precise
description of the dynamics of a homeomorphism F of a surface in the neighborhood
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of an isolated fixed point such that i(F, z) 
= 1. In [9], Bonino states the following
result about any orientation reversing homeomorphim f of R

2: if f has no periodic
point of period 2, it has no periodic point of period ≥ 2 and the complement of the
fixed point set may be covered by invariant open subsets, where f is conjugate either
to the map (x, y) �→ (x + 1,−y) or to the map (x, y) �→ 1

2 (x,−y).

3. Equivariant versions of Brouwer’s theory

Let us recall the classical Poincaré–Birkhoff Theorem which is the starting point of
Arnold’s conjecture:

Theorem 3.1 ([6]). Let F be an area preserving homeomorphism of the annulus
T

1 × [0, 1] isotopic to the identity and let f be a given lift to the universal covering
space R × [0, 1]. Denote by p1 : R × [0, 1] → R the first projection and suppose
that p1(f (x, 0)) < x < p1(f (x, 1)) for every x ∈ R. Then f has at least two fixed
points which project in different points of T

1 × [0, 1].
Soon after the original proof of Birkhoff, it was noticed (see Birkhoff [7], Kerékjár-

tó [37]) that the existence of one fixed point could be deduced by replacing the area
preserving assumption with the following intersection property: any essential (i.e. not
null-homotopic) simple closed curve of T

1×[0, 1]meets its image by F . Kerékjártó
obtained the result as a consequence of Brouwer’s Plane Translation Theorem. Sup-
pose that F and a given lift f satisfy the assumptions of Theorem 3.1 but the area
condition, and that f is fixed point free. Then one can extend nicely f to the whole
plane in such a way that a Brouwer line may be constructed on R×]0, 1[ that is a
lift of a simple closed curve of T

1×]0, 1[ (see [32] for a modern explanation). More
recently, Guillou [33] and Sauzet [54] gave a proof of the following “equivariant”
version of the Brouwer Plane Translation Theorem:

Theorem 3.2. Let F be a homeomorphism of T
1×R isotopic to the identity and let f

be a given lift to the universal covering space R
2 that is fixed point free. Then

– either there is an essential simple closed curve� of T
1×R such thatF(�)∩� = ∅,

– or there is a topological line joining the two ends of T
1 ×R that is lifted to R

2 by
Brouwer lines of f .

Franks [21] gave a different method to deduce the Poincaré–Birkhoff Theorem
from Brouwer theory by using Proposition 2.2. Suppose that the assumptions of
Theorem 3.1 are satisfied and moreover that the numberm of fixed points of F which
are lifted to fixed points of f is finite. Then one can construct a closed chain of free
disks of f |R×]0,1[, which implies that there is a simple closed curve � ⊂ R×]0, 1[
such that i(f, �) = 1. The Lefschetz–Nielsen formula implies that m ≥ 2. This
argument has been used by Franks to give many generalizations of the Poincaré–
Birkhoff Theorem, including results on the torus [22]. We will state below such a
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result which is implicitly contained in Franks’ papers and which can also be deduced
directly from Theorem 3.2 (see [5]).

Under the hypothesis of the Poincaré–Birkhoff Theorem, F admits periodic points
of arbitrarily large period. Indeed, if ρ− and ρ+ are the Poincaré rotation numbers
defined respectively on T

1 × {0} and T
1 × {1}, one has ρ− < 0 < ρ+. For every

rational numberp/q ∈]ρ−, ρ+[written in an irreducible way, one may apply again the
Poincaré–Birkhoff Theorem to Fq and its lift T −p �f q (where T (x, y) = (x+1, y)).
One gets a fixed point ofT −p�f q which projects onto a periodic point ofF of period q.
Moreover, the theory of homeomorphisms of the circle gives us such a periodic point if
one of the numbersρ− orρ+ is equal top/q. Let us give now a more general statement.
Let us denote by A one of the annulus T

1× [0, 1] or T
1×]0, 1[ and by Ã its universal

lift. Write π : Ã→ A for the covering projection and T : (x, y) �→ (x+ 1, y) for the
fundamental covering automorphism. Consider a homeomorphism F of A isotopic to
the identity and a lift f to Ã. Suppose that z ∈ A is a positively recurrent point of F
and that z̃ ∈ Ã is a preimage of z. For every sequence (F qk (z))k≥0 that converges
to z, there exists a sequence (pk)k≥0 in Z such that (T −pk � f qk (z̃))k≥0 converges
to z̃. The sequence (pk)k≥0 is uniquely defined up to a finite number of terms and
does not depend on z̃. Let us say that z has a rotation number ρ if, for every sequence
(F qk (z))k≥0 that converges to z, the sequence (pk/qk)k≥0 converges to ρ. Another
choice of lift f changes the rotation number by adding an integer.

Proposition 3.3. Let F be a homeomorphism of A isotopic to the identity and f a
given lift to Ã. We suppose that

– there is a positively recurrent point z− of rotation number ρ−;

– there is a positively recurrent point z+ of rotation number ρ+ > ρ−;

– every essential simple closed curve in A meets its image by F .

Then for every rational number p/q ∈]ρ−, ρ+[ written in an irreducible way, there
is a periodic point z of period q and rotation number p/q.

In the case where F is area preserving, the intersection property is satisfied and
Proposition 3.3 may be applied. More can be said in that case ([5], [24], [39]). First,
one can prove the existence of a periodic point of period q and rotation number p/q
if there is a positively recurrent point of rotation number p/q. Moreover one can
prove the existence of a non-trivial interval of rational rotation numbers if there is a
positively recurrent point that has no rotation number. As a consequence, the unique
case where such a homeomorphism has no periodic point is the case where there exists
an irrational number ρ such that every positively recurrent point (thus almost every
point) has a rotation number equal to ρ. Such a map is usually called an irrational
pseudo-rotation.

One may notice the following recent result on irrational pseudo-rotations, previ-
ously stated by Kwapisz [38] in the context of the torus, revisited by Béguin, Crovisier,
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Le Roux, Patou [4] in the case of a closed annulus and extended by Béguin, Crovi-
sier, Le Roux [5] in the case of an open annulus:

For any convergent p/q of ρ, there exists a simple arc γ joining the two ends of
the annulus such that the iterates of γ , F(γ ), . . . , F q(γ ) are pairwise disjoint and
cyclically ordered as the iterates of a vertical under a rigid rotation of angle ρ.

As a consequence ([4], [5]) one has the following:

The rigid rotation of angle ρ is in the closure of the conjugacy class of the pseudo-
rotation.

Note that one does not know if an irrational pseudo-rotation of rotation number ρ
is in the closure of the conjugacy class of a rigid rotation of angle ρ.

It has been known for a long time that the dynamics of an irrational pseudo-rotation
may be strongly different from the dynamics of a rigid rotation. Anosov and Katok [2]
gave an example of a smooth (C∞) irrational pseudo-rotation on the closed annulus
which is weakly mixing (and therefore ergodic) relatively to the Lebesgue measure.
Many other pathological examples may be constructed as explained by Fayad and
Katok in [17]. All these examples are constructed as a limit of diffeomorphisms
which are smoothly conjugate to rigid rotations of rational angle. The rotation number
is always a Liouville number. In fact, Fayad and Saprykina [18] proved that every
Liouville number is the rotation number of a weakly mixing smooth pseudo-rotation
on T

1 × [0, 1]. Such examples do not exist for Diophantine numbers. Indeed, an
unpublished result of Herman states that for a smooth diffeomorphism of T

1×[0, 1],
the circle T

1 × {1} is accumulated by a set of positive measure of invariant curves
of F if the rotation number induced on T

1× {1} is Diophantine. Let us conclude this
section by recalling the following old conjecture of Birkhoff, still unsolved, stating
that an irrational pseudo-rotation on the closed annulus which is real analytic must
be conjugate to a rigid rotation.

4. Foliated versions of Brouwer’s Plane Translation Theorem

As noticed at the end of Section 2, if f is a Brouwer homeomorphism which is
the time-one map of a flow whose orbits are tangent to a continuous vector field ξ ,
then R

2 may be foliated and not only covered by Brouwer lines. Suppose now
thatG is a discrete group of orientation preserving diffeomorphisms acting freely and
properly on R

2 and that ξ isG-invariant (that means invariant by every element ofG).
By considering the surface M/G one can construct a G-invariant C1 vector field η
satisfying η(z) ∧ ξ(z) > 0. One deduces that there exists a G-invariant foliation by
Brouwer lines of f . The following result states that this is a general fact:

Theorem 4.1 ([40], [41]). If f is a Brouwer homeomorphism, there is an oriented
topological foliation F of R

2 whose leaves are Brouwer lines for f . Moreover, ifG is
a discrete group of orientation preserving homeomorphisms acting freely and properly
on R

2 and if f commutes with every T ∈ G, then F may be chosen G-invariant.
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Let us give the idea of the proof of the first statement. Consider the maximal free
brick decomposition introduced in Section 2. Using Zorn’s Lemma one can extend
the order ≤ to get a weaker one ≤′ which is a total order. If C = (C←, C→) is a cut
of ≤′ the sets

⋃
b∈C← and

⋃
b∈C→ have the same frontier and the (oriented) frontier

of
⋃
b∈C→ is a union of Brouwer lines because f

(⋃
b∈C→

) ⊂ Int
(⋃

b∈C→
)
. The

set B of such lines covers the skeleton and may be written B = ⋃
e∈E Be, where E

denotes the set of edges and Be the set of lines � ∈ B containing e. One can define
a partial order � on the set of oriented lines of R

2: � � �′ if R(�) ⊂ R(�′). The
fact that ≤′ is a total order implies that two lines of B do not intersect transversally
and consequently that � is a total order when restricted to each Be. The space B,
equipped with the topology generated by the Be, e ∈ E, is not necessarily Hausdorff
but each set Be is. In fact each Be is compact and the restricted topology coincides
with the order topology. As an ordered topological space, B looks like a lamination
of R

2, that means a closed subset of leaves of a foliation (in fact it will be isomorphic
to a lamination of the foliation that we want to construct). There is a natural (but
not unique) way to foliate each brick and then to extend B by constructing a family
of Brouwer lines that cover the plane and that do not intersect transversely. By a
desingularization process around each vertex of 
, one can blow up our extended
family to get a foliation by Brouwer lines.

The proof of the second statement is much harder. First one considers a free brick
decomposition invariant by every T ∈ G and maximal for these properties. It is
not necessarily maximal among all the free bricks decomposition; however there is a
natural G-invariant order ≤ on B such that

f (b) ∩ b′ 
= ∅ ⇒ b < b′.

Moreover, for every brick b, the union of bricks b′ > b adjacent to b is non-empty
and connected, as is the union of adjacent bricks b′ < b. As previously one can
cover 
 by a G-invariant family of Brouwer lines. To get our G-invariant foliation,
one needs to cover 
 by a G-invariant family of Brouwer lines that do not intersect
transversally. If G is abelian (that means if G = Z or G = Z

2) one knows, by a
simple set theory argument, that there is a G-invariant total order ≤′ weaker than ≤:
the previous proof is still valid. If G is not abelian, the existence of such an order
does not seem so clear. The construction of B uses more subtle arguments based on
the topology of the surface R

2/G.
If F is an oriented topological foliation of R

2 whose leaves are Brouwer lines of f ,
it is easy to prove that for every point z there is an arc γ : [0, 1] → R

2 joining z to
f (z) that is positively transverse to F . That means that γ intersects transversely each
leaf that it meets, and locally from the right to the left. One deduces immediately (by
lifting the isotopy (Ft )t∈[0,1] to an isotopy (ft )t∈[0,1] from the identity and applying
Theorem 4.1 to f = f1):

Corollary 4.2. Let (Ft )t∈[0,1] be an isotopy from the identity to F on an oriented
surface M . Suppose that F has no contractible fixed point. Then there exists a
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topological foliation F on M that is dynamically transverse to the isotopy: the
trajectory γz : t �→ Ft(z) of every point is homotopic, relatively to the extremities, to
an arc that is positively transverse to F .

This result belongs to the category of statements that are obviously true when F
is the time-one map of a flow and that can be extended to the case where F is the
time-one map of an isotopy from the identity. Let us give now a result that does not.
One could ask similarly if there exists a foliation by invariant lines for a Brouwer
homeomorphism, as it is true in the case of the time-one map of a flow. The an-
swer is no, there exist Brouwer homeomorphisms without any invariant line (Brown,
Slaminka, Transue [13]). Observe that in the case of a flow the foliation by invariant
lines was explicitely and uniquely defined. In contrast to this, there are many choices
of foliations by Brouwer lines and none of them is canonical.

The only closed surfaceM where Corollary 4.2 can be applied is the torusM = T
2.

Indeed, the Lefschetz–Nielsen formula implies the existence of a contractible fixed
point for any homeomorphism isotopic to the identity on an oriented closed surface
of genus 
= 1. In the case of a torus, a stronger hypothesis on the isotopy will imply
additional properties of the foliation. Write f for the natural lift of F to R

2 defined
by the isotopy and recall the definition of the rotation set R(f ) whose origin goes
back to Schwartzman [55]. The map f − IdR2 is invariant by the integer translations
and lifts a continuous function ψ : T2 → R

2. For every Borel probability measure
which is invariant by F , one may define the rotation vector ρ(μ) = ∫

T2 ψ dμ ∈
R

2 ≈ H1(T
2,R) and the set R(f ) of rotation vectors of all invariant probability

measures. The set R(f ) is a non-empty convex compact subset of H1(T
2,R). If

one supposes that 0 
∈ R(f ) (which of course implies that f is fixed point free) one
can find cohomology classes κ ∈ H 1(T2,R) that are positive on R(f ). One has the
following:

Theorem 4.3 ([43]). Let F be a homeomorphism of T
2 isotopic to the identity and

let f be a lift of F to R
2. Suppose that κ ∈ H 1(T2,R) is positive on the rotation

set R(f ). Then there is a non-vanishing smooth closed 1-form ω whose cohomology
class is κ , and such that H(f (z)) − H(z) > 0 if H is a primitive of the lifted form
on R

2.

The level curves of H define a foliation of R
2 by Brouwer lines of f . It projects

onto a foliation diffeomorphic to a linear one, the leaves are closed if κ is a rational
class, they are dense if not. One may ask if a similar statement occurs in higher
dimension. Let (Ft )t∈[0,1] be an isotopy from the identity on a compact manifold M
and write γz : t → Ft(z) for the trajectory of any point z. Letμ be a Borel probability
measure invariant byF . Ifω is a smooth closed 1-form, the integral

∫
M

( ∫
γz
ω

)
dμ(z)

is well defined and vanishes whenω is exact. As it depends linearly on the cohomology
class [ω] of ω, one may find ρ(μ) ∈ H1(M,R) such that∫

M

( ∫
γz

ω

)
dμ(z) = 〈[ω], ρ(μ)〉.
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The rotation set of the isotopy is the set of rotation vectors ρ(μ) of invariant proba-
bility measures. Here again it is a non-empty convex compact subset of H1(M,R).
Suppose now that κ ∈ H 1(M,R) is positive on the rotation set of the isotopy:

Does there exist a non-vanishing smooth 1-form ω such that [ω] = κ and
∫
γz
ω > 0

for every z ∈ M?

The answer is yes if F is the time-one map of a flow (Ft )t∈R induced by a smooth
vector field ξ (see Fried [30] or Schwartzman [55]). More precisely, ωmay be chosen
such that 〈ω(z), ξ(z)〉 > 0 for every z ∈ M . Fried’s proof may be adapted in the
discrete case to find a smooth closed 1-form ω such that [ω] = κ and

∫
γz
ω > 0 for

every z ∈ M . The problem is that ω can vanish. In the case of a time-one map of a
flow, if the rotation set does not contain zero, κ may be chosen in H 1(M,Z) and ω
will be written ω = dH whereH : M → T

1 is a submersion. ConsequentlyM fibers
over T

1. Therefore one may naturally ask:

Suppose that on a given compact manifoldM one may find an isotopy from the identity
whose rotation set does not contain 0, does the manifold necessarily fiber over T

1?

Theorem 4.3 gives us an example where a dynamical assumption on an isotopy
implies dynamical properties of some foliation dynamically transverse to the isotopy.
In many situations such an assumption will imply dynamical properties of every
foliation dynamically transverse. This is the fundamental fact that will permit us to
apply Theorem 4.1 and its corollary to the study of homeomorphisms of surfaces. We
will conclude this section by an example: a short proof of Proposition 3.3. We will
give first two useful statements which illustrate how conservative assumptions satisfied
by a homeomorphism can be transposed to dissipative properties of a dynamically
transverse foliation. Suppose that (Ft )t∈[0,1] is an isotopy from the identity to F
without contractible fixed point on a surfaceM and that F is a foliation dynamically
transverse. This implies that for every point z′ ∈ M and for every k ≥ 1 one may find
an arc joining z′ toFk(z′) that is positively transverse to F . It is easy to prove that this
arc may be perturbed into a loop positively transverse to F if the extremities z′ and
Fk(z′) are sufficiently close to a previously given point z. Hence the following holds:

For every non-wandering point z, there is a loop based on z that is positively transverse
to F .

Fix now a point z and define the setW of points z′ ∈ M which can be joined by an
arc from z that is positively transverse to F . It may be noticed that F(W) ⊂ Int(W).
Hence the next assertion is true:

If every point is non-wandering, then for every points z and z′, there is an arc joining z
to z′ that is positively transverse to F .

Let us now prove Proposition 3.3. Suppose for example that ρ− < 0 < ρ+
and that A is open. We want to prove that the intersection property is not satisfied
if f has no fixed point. In this case we can construct an oriented foliation F on A

which is lifted to Ã into a foliation by Brouwer lines of f . The points z−and z+
being recurrent, there are loops �− and �+ based respectively on z− and z+ that are
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positively transverse to F . Write [�] ∈ H1(A,Z) for the homology class of any
loop � and consider the generator [�0] of the loop �0 : t �→ (t + Z, 1/2) defined on
[0, 1]. The fact that ρ− < 0 implies that �− may be chosen such that [�−] = n−[�0]
where n− < 0. Similarly one may suppose that [�+] = n+[�0] where n+ > 0.
Using the fact that F is a non-singular foliation, it is straightforward to prove the
following:

– the loops �− and �+ are disjoint;

– there is a unique relatively compact annular component U of A \ (�− ∪ �+);
– the frontier of U is the union of two simple essential loops positively transverse

to F ;

– the leaves on ∂U are all leaving U or all entering in U .

The Poincaré–Bendixson Theorem implies the existence of a closed leaf inside U .
This leaf does not meet its image by F because it is lifted into a Brouwer line of f .

5. Hamiltonian homeomorphisms of surfaces

Let us say that a homeomorphism F on an oriented closed surface, time-one map of
an isotopy from the identity (Ft )t∈[0,1], is Hamiltonian if it preserves a probability
measure μwhose support isM and whose rotation vector is 0. The classical example
is obtained when M is endowed with a symplectic structure ω and when the isotopy
is defined by a time dependent Hamiltonian vector field. The measure is nothing
but the normalized measure induced by the volume form ω. Let us give another
example. Consider an irrational pseudo-rotation F on T

1×]0, 1[ and extend F to the
end compactification of the annulus. One gets a Hamiltonian homeomorphism on
the sphere that has no periodic points but the two fixed ends. As we will see in this
section, extended irrational pseudo-rotations are the only examples, up to conjugacy,
of Hamiltonian homeomorphisms having finitely many periodic points.

It was shown by Franks [25] that a Hamiltonian homeomorphism on S2 which
has at least three fixed points admits infinitely many periodic points. More recently
Franks and Handel [26] proved that a non-trivial Hamiltonian diffeomorphism of
a surface of positive genus admits periodic points of arbitrarily large periods (and
that this is also the case on a sphere if F has at least three fixed points). Their
arguments are mainly of topological nature. The differentiability condition prevents
the dynamics to be too wild in a neighborhood of a non-isolated fixed point. For each
connected component U of the complement of the fixed point set, they construct a
normal form of the restriction map F |U in the sense of Thurston–Nielsen’s theory of
homeomorphisms of surfaces like it is usually done for a surface of finite type. There
are three cases to look at and in each case periodic orbits may be found for different
reasons, the case where there exists at least one pseudo-Anosov component, the case
where there is a twist condition in a reducing annulus, the case where the map is
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isotopic to the identity. The last case is the most difficult one and subtle geometric
arguments that already appeared in [35] are needed.

We will state now a more general result, which gives a positive answer to Conley’s
conjecture in the case of surfaces:

Theorem 5.1 ([41], [42]). Suppose that F is a Hamiltonian time-one map of an
isotopy from the identity (Ft )t∈[0,1] on a compact oriented surfaceM of genus g ≥ 1.

i) If F 
= IdM , there are periodic points of arbitrarily large period.

ii) If the set of contractible fixed points is contained in a disk of M , there are
contractible periodic points of arbitrarily large period.

Moreover we have a similar result in the case where M is a sphere if we suppose
that F has at least three fixed points.

Let us explain first what happens whenF is the time-one map of a time independent
Hamiltonian flow associated to a functionH : M → R on a surface of genus≥ 1. Let
us suppose that there are finitely many critical points ofH (there are at least three). The
minimum ofH corresponds to a contractible fixed point z0. This point is surrounded
by invariant curves which are level curves ofH . The map F is conjugate to a rotation
on each curve. Thus one gets a foliated open annulus with one end corresponding
to z0 and one “critical” end which does not correspond to a point (becauseM is not a
sphere) but to a degenerate curve containing a critical point ofH . The rotation number
of F on each curve (which is a well defined real number) depends continuously of
the curve, never vanishes and tends to zero when the curve tends to the critical level.
This implies that the rotation numbers take their values onto a non-trivial interval.
One concludes that there are contractible periodic points of arbitrarily large period.

In the case where F is the time-one map of a time dependent Hamiltonian flow,
Floer [19] and Sikorav [56] proved that F has at least three contractible fixed points,
giving a positive answer to Arnold’s conjecture for surfaces. In symplectic geometry
contractible fixed points of Hamiltonian isotopies are usually found by studying the
dynamics of the gradient flow of a function H defined on an infinite dimensional space
(space of loops) or on a high dimensional space (if one uses generating functions)
whose critical points are in bijection with contractible fixed points. Franks [24]
gave a purely topological proof of the existence of three contractible fixed points
for a Hamiltonian diffeomorphism making use of Handel’s Fixed Point Theorem,
the proof of which was extended by Matsumoto [50] to the case of Hamiltonian
homeomorphisms. The fundamental idea in the proof of Theorem 5.1 is to make a
link between the symplectic and the topological methods by producing a “singular”
dynamically transverse foliation and by proving that its dynamics is “gradient-like”.
This will permit us first to find again Matsumoto’s result, then to produce a topological
“twist property”. Such a property is easy to prove if F is a diffeomorphism with no
degenerate fixed points. We will give here some ideas of the proof of assertion ii)
of Theorem 5.1. We will begin by the simplest case where the set Fix(F )cont of
contractible fixed point is finite.
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Case where M = S2 and �Fix(F )cont < +∞. Here Fix(F )cont coincides with the
set Fix(F ) of fixed points. We suppose that F preserves a probability measure μ
with total support and that 3 ≤ �Fix(F ) < +∞. We want to prove that F has
periodic points of arbitrarily large period. Let us say that Z ⊂ Fix(F ) is unlinked
if F is isotopic to the identity relatively to Z. This is always the case if �Z ≤ 3. As
Fix(F ) is supposed to be finite, one can find a maximal (for the inclusion) unlinked
set Z and one knows that �Z ≥ 3. Fix an isotopy (Ft )t∈[0,1] such that Ft(z) = z for
every z ∈ Z and every t ∈ [0, 1], and look at the restricted isotopy to N = S2 \ Z.
It is standard to prove that (Ft |N)t∈[0,1] has no contractible point, by maximality
of Z. By Corollary 4.2, one may construct a foliation F on N which is dynamically
transverse to the isotopy. As we suppose that F preserves μwe know that every point
is non-wandering, which implies that every point belongs to a loop that is positively
transverse to F . This clearly implies that F has no closed leaf and more generally
has only wandering leaves. In fact the dynamics of F is easy to understand:
– any leaf λ joins a point α(λ) ∈ Z to a different point ω(λ) ∈ Z;

– there is no sequence of leaves (λi)i∈Z/pZ such that ω(λi) = α(λi+1) for any
i ∈ Z/pZ .
Fix a leaf λ and consider the annulus A = S2 \ (α(λ) ∪ ω(λ)). The isotopy

(Ft |A)t∈[0,1] may be lifted to the universal covering space Ã of A into an isotopy
(ft )t∈[0,1] from the identity. We will apply Proposition 3.3 by finding two positively
recurrent points with different rotation numbers. The map f = f1 clearly fixes every
point of the preimage of Z \ (α(λ)∪ ω(λ)), which implies that the rotation vector of
any point of Z \ (α(λ) ∪ ω(λ)) is 0. The foliation F is lifted to a foliation on the
preimage Ñ of N which is dynamically transverse to the isotopy (ft |Ñ )t∈[0,1]. Any
lift of λ is a Brouwer line of f because λ joins the two ends of the annulus. It is not
difficult, using classical arguments of Ergodic Theory (and in particular the Birkhoff
Ergodic Theorem), to prove that F has positively recurrent points whose rotation
number is 
= 0 (this is the case for almost every point that has a preimage between a
given lift λ̃ and its image by f ).

Case where g ≥ 1 and �Fix(F )cont < +∞. Here again suppose that the set
Fixcont(F ) of contractible fixed points is finite and say thatZ ⊂ Fixcont(F ) is unlinked
if there is an isotopy (Ft )t∈[0,1] (homotopic to the one given by hypothesis) such that
Ft(z) = z for every z ∈ Z and every t ∈ [0, 1]. Fix a maximal unlinked set Z.
Again, there exists a foliation F on N = M \ Z which is dynamically transverse to
the isotopy (Ft |N)t∈[0,1], and we would like to understand the dynamics of F . As
we suppose that F preserves μ we already know that every point belongs to a loop
positively transverse to F . The fact that the rotation of μ is zero implies a stronger
result:

For every υ ∈ H1(M,Z) and every z ∈ M there is a loop� ⊂ N positively transverse
to F and based in z such that [�] = υ.

One must prove that the set C(z) ⊂ H1(M,Z) of homology classes of loops inN
based in z and positively transverse to F , which is stable by addition, is the whole
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group H1(M,Z). The nullity of the rotation vector of μ implies that every class
κ ∈ H 1(M,R) takes different signs on C(z) and therefore that the convex hull in
H1(M,R) of C(z) contains a neighborhood of 0. It becomes easy to prove that C(z)
is a subgroup and therefore a lattice of H1(M,Z). If one now applies the transverse
transitivity condition stated in the previous section to a natural finite covering of M ,
one obtains that C(z) = H1(M,Z).

It is easy to deduce that there is no closed leaf and more precisely that every leaf
is wandering. In fact one can prove that the dynamics of F is gradient-like. Note
first that any loop � ⊂ N homologous to zero induces naturally by duality a function
�� : M\�→ Z defined up to a constant, where��(z′)−��(z) denotes the algebraic
intersection number � ∧ �′ between � and any arc �′ joining z to z′. Observe now
that �� decreases along the oriented leaves if � is positively transverse to F . In
other words, the sub-level surfaces of�� define a filtration of F . The property stated
above permits us to construct a loop � homologous to zero and positively transverse
to F which sufficiently “fills” the surface in the following sense:

– every connected component U of M \ � is the interior of a closed disk of M and
contains at most one point of Z;

– if there exists a leaf of F which joins z ∈ Z to z′ ∈ Z, then ��(z′) < ��(z).

Using the Poincaré–Bendixson Theorem, one may deduce first that every leaf
meets � and then that it joins a point z ∈ Z to a point z′ ∈ Z. In fact, the dynamics
of F is trivial inside a component U with no singularity and well understood inside
a component that contains a singularity. Such a singularity is necessarily a sink, a
source or a generalized saddle point (with p ≥ 1 attracting sectors alternating with
p ≥ 1 repelling sectors).

An easy consequence of the previous results is the fact that �Z ≥ 3. Existence of
contractible periodic points of arbitrarily large period is much more difficult to get.
One wants to generalize the case where F is the time-one map of a Hamiltonian flow
associated to a function H : M → R. If M is equipped with a Riemannian metric,
the foliation by orbits of the gradient flow of H on the complement of the set Z
of critical points is dynamically transverse to the isotopy and the point z0 where H
reaches its minimum is a sink of the foliation. In our more general situation, one
will choose a sink of F and then will prove that there exists periodic points inside
the basin of attraction W (for the foliation). The set W has no reason to be invariant
by F . However the two following facts

– there exists at least one contractible fixed point in the frontier of W ,

– there is a radial foliation on W which is pushed along the isotopy,

give us a weak twist condition. Some plane topology arguments and the use of the
discrete Conley index permit us to find periodic points inside W .

Case where �Fix(F )cont = +∞. The case where the set of contractible fixed points
is infinite is much harder to deal with because it does not seem so easy to find maximal
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unlinked sets, which are necessary to construct a dynamically transverse foliation.
Under the hypothesis ii) of Theorem 5.1, there is a unique component N of M \
Fixcont(F ) such that the inclusion i : N → M induces an isomorphism between the
first groups of homology and this component is fixed. If there is a lift f of F |N to the
universal covering space of N which commutes with every covering transformation,
then by Corollary 4.2 a dynamically transverse foliation F may be constructed. Of
course there is no decomposition of the dynamics of F in elementary pieces as in the
finite case. However, the previous arguments may be generalized, even if they are not
so easy to get. In the case where such a lift does not exist, we will get contractible
periodic orbits of arbitrarily large periods for different reasons, that will be explained
in the next section.

There are natural reasons to study carefully homeomorphisms of surfaces of in-
finite type. Consider a volume form on S2 and write Diffkω(S

2) for the set of Ck

diffeomorphisms that preserve ω. Consider F ∈ Diffkω(S
2) and fix a connected com-

ponentU of S\Per(F ). There is an integer q such thatFq(U) = U . By Theorem 2.1,
one knows that there would be a fixed point of Fq in U if U were a disk, which is not
the case. By Franks result stated above [25] it cannot be a hyperbolic surface of finite
type. Therefore it is an annulus (and in that case the restricted map is an irrational
pseudo-rotation) or a surface of infinite type. One may ask the following:

Can U be a surface of infinite type or should it be necessarily an annulus?

The interest in this question comes from the following: it is not difficult to prove
that there is a residual set G ⊂ Diffkω(S

2) (for the Ck-topology) such that for every
F ∈ G there are no annulus among the connected components of S2 \ Per(F ) (see
[29]). A positive answer to the previous question would imply that the periodic orbits
are generically dense. What is known is that the union of the stable manifolds of the
hyperbolic periodic points is dense [29], a result extended by Xia [57] to any compact
surface.

6. On the group of diffeomorphisms of surfaces

Consider a compact Riemannian manifold M . If F is a C1 diffeomorphism one can
define its growth sequence (�n(F ))n≥0 where

�n(F ) = max
(

max
z∈M ‖TzF

n‖, max
z∈M ‖TzF

−n‖
)
.

The growth sequence of a non-trivial diffeomorphism may be bounded. This is the
case for a periodic map, a translation on a torus or a rigid rotation on S2. Even when
it is not bounded it may tend to +∞ not very quickly (see Polterovitch, Sodin [52]).
The situation is different in the case of area preserving diffeomorphisms of surfaces.
More precisely:

Theorem 6.1. If F is a non-trivial Hamiltonian diffeomorphism of a closed oriented
surface of genus ≥ 1, there exists C > 0 such that �n(F ) ≥ Cn for every n ≥ 0.
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Proved by Sikorav and Polterovitch in the special case of the torus, the result was
generalized to other surfaces by Polterovich [51] applying a result of Schwarz related
to Floer homology. Note that in the case of a surface of genus ≥ 2, the result is
still true for any area preserving diffeomorphism isotopic to the identity. Indeed, by
the Lefschetz–Nielsen formula, such a map has at least one contractible fixed point.
Therefore the diffeomorphism admits two probability measures with different rotation
vectors if it is not Hamiltonian. It is not difficult to see that such a property implies
that the conclusion of Theorem 6.1 is necessarily true.

Applications of the previous result to actions of higher rank lattices in simple Lie
groups on compact manifolds were given in [51], yielding a positive answer, in the
special case of surfaces, to a more general conjecture of Zimmer:

Theorem 6.2. Fix a volume form ω on a closed oriented surface M of genus g ≥ 2.
Then any morphismψ of SL(n,Z) in the group Diff∞ω (M) of diffeomorphisms which
preserves ω has a finite image if n ≥ 3.

Franks and Handel in [27] gave an alternative proof which works in the C1 case
and includes the case g ≤ 1. The smoothness of F is used in a much weaker way,
mainly to construct a Thurston–Nielsen normal form on the complement of the fixed
point set. The two important properties satisfied by the group SL(n,Z), n ≥ 3, and by
any normal subgroup of finite order are the following (the first one is due to Margulis):

– it is almost simple (every normal subgroup is finite or has a finite index);

– it contains a subgroup isomorphic to the group of upper triangular integer valued
matrices of order 3 with 1 on the diagonal (the integer Heisenberg group).

More precisely, using algebraic properties of the mapping class group, it is suf-
ficient to study the case where ψ takes its values in the subgroup Diff1

ω,∗(M) of
diffeomorphisms of Diff1

ω(M) which are isotopic to the identity. Using the sec-
ond property, there exist three elements F , G, H in Im(ψ) such that [G,H ] = F ,
[F,G] = [F,H ] = IdM and such that F is the image of an element of infinite order.
To get the theorem it is sufficient to prove that F = IdM , because this would imply
that Ker(ψ), being an infinite normal subgroup, has a finite index. Note that F is
Hamiltonian because it is a commutator and that Fn

2 = [Gn,Hn]. The fact that
F = IdM will follow from the next result (and the fact that F has periodic orbits if it
is not trivial):

Theorem 6.3 ([28]). Suppose that F is a diffeomorphism of a closed surface M
of genus g which satisfies the following distorsion property: it belongs to a finitely
generated subgroup of diffeomorphisms isotopic to the identity and there are two
sequences nk and pk with pk = o(nk) and nk →+∞ such that Fnk can be written as
the product of pk elements chosen in the (finite) set of generators. Then F is isotopic
to the identity relatively to the fixed point set and has no periodic points except the
fixed points if g ≥ 2, if g = 1 and FixF 
= ∅, or if g = 0 and �FixF ≥ 3.
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The proof uses the Thurston–Nielsen normal form on the complement of the fixed
point set explained in Section 5. The distorsion property implies that F is isotopic
to the identity relatively to the fixed point set. Every iterate Fk will also satisfy the
distorsion property and should be isotopic to the identity relatively to its fixed point
set. But this situation cannot occur in case Fix(F k) 
= Fix(F ) if g ≥ 2, if g = 1 and
FixF 
= ∅, or if g = 0 and �FixF ≥ 3.

Let us conclude this article by explaining how to get another interpretation of
Theorem 6.1 and Theorem 6.3 with the use of the foliated version of Brouwer’s Plane
Translation Theorem. We will look at the case of a surface of genus g ≥ 1 by using
the notion of linking number. The case of the sphere may be studied in a similar way
by using an appropriate notion of linking number.

Suppose that F is the time-one map of an isotopy from the identity (Ft )t∈[0,1] on
a closed surfaceM of genus g ≥ 1 and lift the isotopy to an isotopy from the identity
(ft )t∈[0,1] on the universal covering space M̃ . One may identify the universal lift M̃
of M with the complex plane if g = 1 or with the Poincaré disk if g ≥ 2. If z and z′
are two fixed points of f , the degree of the map ξ : S1 → S1 defined by

ξ(e2iπt ) = ft (z)− ft (z′)
|ft (z)− ft (z′)|

is called the linking number I (z, z′) of z and z′. One course I (z, z′) = 0 if z′ is the
image of z by a covering automorphism. There exits a “natural lift” of f |M̃\{z} to the

universal covering space of the annulus M̃ \ {z} which fixes the preimages of every

image of z by a covering automorphism of M̃ . The linking number I (z, z′) is nothing
but the rotation number (up to the sign) of the fixed point z′ of f |M̃\{z} for this natural
lift. Note that for every integer n ≥ 1, the linking number of z and z′ for f n is equal
to nI (z, z′). In the case where I (z, z′) 
= 0 it is not difficult to deduce that there exists
C > 0 such that �n(F ) ≥ Cn for every n ≥ 0 and also that F does not satisfy the
distorsion property in the group of diffeomorphisms isotopic to the identity. Observe
that if F preserves a probability measure with total support, then f |M̃\{z} satisfies the
intersection property. Therefore, in this case, if f has two fixed points z and z′ such
that I (z, z′) 
= 0, it has periodic points with arbitrarily large period which project onto
contractible periodic points of F . The next statement permits us to understand why,
in the proof of Theorem 5.1, it is sufficient to study the case where the map F|N has a
lift to the universal covering space that commutes with the covering transformations.

Proposition 6.4 ([42]). Let (Ft )t∈[0,1] be an isotopy from the identity to F on a closed
surface M of genus g ≥ 1 and (ft )t∈[0,1] the lifted isotopy to the universal covering
space M̃ starting from the identity. Suppose that there is a connected componentN of
M \ Fixcont(F ) such that the inclusion i : N → M induces an isomorphism between
the first groups of homology and that there is no lift of F |N to the universal covering
space ofN that commutes with the covering automorphisms. Then there are two fixed
points z and z′ of f = f1 such that I (z, z′) 
= 0.
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Let us give the ideas of the proof. By an approximation argument it is sufficient
to study the case where Fixcont(F ) is finite. One considers a maximal unlinked set
Z ⊂ Fixcont(F ). By hypothesis one knows that Z 
= Fixcont(F ). One may suppose
that our isotopy (Ft )t∈[0,1] fixes every point of Z. We consider a foliation F on
N ′ = M \ Z dynamically transverse to (Ft |N ′)t∈[0,1] and lift it to a foliation F̃ onto
the preimage Ñ ′ of N ′ in M̃ . Fix a point z′ ∈ Fix(f ) ∩ Ñ ′. There is a loop �0 ⊂ Ñ ′
based in z′ that is positively transverse to F̃ and homotopic in Ñ ′ to the trajectory �1
of z′. The dual function ��0 : M̃ \ �0 → Z assigning to z the index of �0 relatively
to z is zero outside a compact set and takes finitely many values. One may suppose
for example that the maximum l+ of ��0 is different from zero. The loop �0 being
positively transverse to the foliation, it is easy to prove that every component of
M̃ \ �0 where��0 takes the value l+ is the interior of a closed disk whose boundary
is a simple loop transverse to the foliation. Therefore, there exists a singularity z
inside this component. The loop �1 being homotopic to �0 in Ñ , the index of �1
relatively to z is equal to l+. This number is nothing but the linking number I (z, z′).

The linking number I (z, z′) between a fixed point z and a periodic point z′ of f
may be defined similarly. The previous proof may be adapted to get:

Proposition 6.5 ([42]). Let (Ft )t∈[0,1] be an isotopy from the identity to F on a closed
surface M of genus g ≥ 1 and (ft )t∈[0,1] the lifted isotopy to the universal covering
space M̃ starting from the identity. For every periodic point z′ of f = f1 that is not
fixed, there is a fixed point z of f such that I (z, z′) 
= 0.

Let us explain how to deduce Theorem 6.1 from Proposition 6.5. Suppose that F
is a non-trivial Hamiltonian diffeomorphism of a closed surface M of genus g ≥ 1.
One can choose a periodic point z′ of period ≥ 2. If z′ is contractible, then one gets
the conclusion of Theorem 6.1 by applying Proposition 6.5. If the rotation vector
of z′ is non-zero, the conclusion follows easily. It will follow also in the missing case
where z′ is not contractible but has a rotation vector equal to zero. This is possible
only if g ≥ 2. Identify M̃ with the Poincaré disk. If z̃′ is a preimage of z′ in M̃ , it is
not difficult to prove that there exits C > 0 such that for every n ≥ 0 the hyperbolic
distance between z′ and f n(z′) is minimized by Cn, which implies the validity of the
conclusion of Theorem 6.1.

The previous arguments imply that a diffeomorphism which satisfies the assump-
tions of Theorem 6.3 has no periodic points of period ≥ 2 if g ≥ 2 or if g = 1 and F
has a contractible fixed point, and that every fixed point is contractible. One may adapt
the arguments of Proposition 6.4 to prove that for every connected component U of
M \ Fixcont(F ), the map F |U has necessarily a lift to the universal covering space
which commutes with the covering automorphisms.

The analogs of Theorem 6.2 and Theorem 6.3 for homeomorphisms are unknown.
They should be deduced from the (positive) answer to the following open question:

Suppose that f is the lift to the universal covering space of a homeomorphism F

isotopic to the identity defined by an isotopy (Ft )t∈[0,1] and that f has two fixed
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point z and z′ such that I (z, z′) 
= 0. Does this imply that F does not satisfy the
distorsion property in the group of homeomorphisms isotopic to the identity?
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All, most, some differentiable dynamical systems

Michael Shub∗

Abstract. In the first part of this paper we study dynamical systems from the point of view of
algebraic topology. What features of all dynamical systems are reflected by their actions on the
homology of the phase space? In the second part we study recent progress on the conjecture
that most partially hyperbolic dynamical systems which preserve a smooth invariant measure
are ergodic, and we survey the known examples. Then we speculate on ways these results may
be extended to the statistical study of more general dynamical systems. Finally, in the third part,
we study two special classes of dynamical systems, the structurally stable and the affine. In the
first case we study the relation of structural stability to entropy, and in the second we study stable
ergodicity in the homogeneous space context.
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1. Introduction

We study discrete differentiable dynamical systems f : M → M on a smooth closed
manifold of dimension m.† Thus, f ∈ Diffr (M) or Endr (M), the Cr diffeomor-
phisms or endomorphisms of M respectively, where 1 ≤ r ≤ ∞, and occasionally,
r = 0.

What can be said about differentiable dynamical systems? The best things that
can be said concern all systems. When we cannot make statements about all systems
we may content ourselves with most systems. We expect that properties which hold
for most systems hold for a specific system under consideration, but we cannot be
sure until we have proven it.

Section 2 concerns properties which may hold for all dynamical systems, mainly
properties from algebraic topology. Principal among these is the Entropy Conjecture
which relates the topological entropy of a dynamical system to the induced map on
the homology groups.

In Section 3 we turn from all to most. We investigate the time honored role of
(a) some hyperbolicity, especially as it concerns (b) the stable and unstable manifolds

∗The author would like to thank Charles Pugh for years of collaboration and also for help in preparing this
article.

† “Closed” means that M is compact and has empty boundary.
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of points, (c) their intersections and (d) the equivalence relation these intersections
define in the manifold. In the by now classical uniformly hyperbolic case, the equiv-
alence classes form Smale’s spectral decomposition and the behavioral properties
entailed are structural stability, SRB measures, and ergodicity in the volume preserv-
ing Anosov case.

Uniformly hyperbolic systems are some, not most dynamical systems. So from
the point of view of hoping to describe most dynamical systems we relax the structural
properties to some hyperbolicity . Our goal is to understand how hypotheses about
(a)–(d) affect ergodicity of volume preserving diffeomorphisms and whether these
hypotheses hold for most partially hyperbolic volume preserving diffeomorphisms.
Later we speculate on how they may affect the existence of SRB measures. Our theme
is that a little hyperbolicity goes a long way toward ergodicity. Part of our problem
is that the (un)stable manifolds, their intersections, and the equivalences they define
are topological objects, while the desired results we wish to conclude are measure
theoretic. Working in mixed categories raises rather severe technical difficulties, some
of which have only recently been overcome.

We conjecture that most volume preserving partially hyperbolic dynamical sys-
tems (initially studied by Brin and Pesin) are ergodic, and we survey the rather sub-
stantial recent results in this direction, especially by Keith Burns andAmie Wilkinson,
and Federico and Jana Rodriguez Hertz and Raul Ures. Here we first confront the role
of the equivalence relation on M induced by the strong stable and unstable manifolds
and their intersections. This equivalence relation divides the manifold into accessi-
bility classes. The main problem is to understand the relationship of the topologically
defined accessibility classes of a partially hyperbolic dynamical system to the mea-
sure theoretically defined ergodic components via the Anosov–Hopf argument for
ergodicity.

In Section 4.1 we study flows on homogeneous spaces and more generally affine
diffeomorphisms. The ergodic theory of affine diffeomorphisms and flows on homo-
geneous spaces is extremely well developed. It relies to a large extent on the structure
of Lie groups and representation theory. The ergodicity results in Section 3 apply
outside of the homogeneous space context and per force use different techniques such
as the accessibility relationship and julienne quasi-conformality. Juliennes are dy-
namically defined sets and quasi-conformality applies to the holonomy maps of the
invariant stable and unstable manifolds. How good are these techniques when applied
back in the homogeneous space context where a more elaborate set of tools is available
for the study of ergodicity and stable ergodicity? While the proofs are very different
there is a remarkable coincidence between those affine diffeomorphisms which are
stably ergodic when considered with respect to affine perturbations and those which
are stably ergodic with respect to all perturbations. Some rather interesting cases
remain unresolved. The coincidence of results makes us feel that we have landed in
the right place with our definitions of accessibility and makes the outstanding cases
even more interesting.
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In Section 4.2 we see how the results of Section 2 and 3 relate to one another.
The SRB measures were initially proven to exist for uniformly hyperbolic dynamical
systems. The Entropy Conjecture holds for these diffeomorphisms and we consider
how sharp it is. How much complexity must a diffeomorphism have beyond that
which is forced by the Entropy Inequality? Of particular interest are the Morse–
Smale diffeomorphisms. The study of these diffeomorphisms has a deep connection
to the theory of the structure of manifolds in high dimensions accomplished by Smale.
Yet there are new invariants and obstructions.

The relations between dynamics and algebraic topology studied in Sections 2
and 4.2 may hold for all r ≥ 1 but there are definite distinctions between the ergodic
theory of C1 and C2 dynamical systems, so in Sections 3 and 4.1 we mostly assume
that r ≥ 2. Sections 2 and 4.2 and Sections 3 and 4.1 may be read independently of
one another. But I think it would be a mistake to disassociate them. For one thing, the
hyperbolic systems are partially hyperbolic. To understand the partially hyperbolic
we must first understand the hyperbolic. For another, the variational principle ties
measure theoretic entropy to topological entropy. (See for example Problem 3 of
Section 2.) One of the main themes of this talk are the structures that link and the ties
that bond the topological and measure theoretic in the presence of smoothness and
some hyperbolicity. Moreover, what is true for all must be taken into consideration
when studying most.

2. All differentiable dynamical systems

What dynamical properties hold for all dynamical systems f ? The answer often
depends on the degree of differentiability of f .

• Every continuous dynamical system supports an invariant probability measure.

• Every Lipschitz dynamical system has finite topological entropy, but non-
Lipschitz systems can have infinite topological entropy.

• Every C∞ dynamical system satisfies the Entropy Inequality explained below,
but this can fail for Lipschitz dynamical systems that are not continuously
differentiable.

Let us recall the concept of entropy and the statement of the Entropy Conjecture.
The topological entropy of f measures the growth rate of its epsilon distinguishable
orbits. It makes sense for any continuous endomorphism of a compact metric space,
f : X → X. Given ε > 0 and n ∈ N, let N(f, n, ε) be the maximum cardinality of a
subset A ⊂ X such that for each pair of distinct points x, y ∈ A there is an iterate f j

with 0 ≤ j ≤ k and
d(f j (x), f j (y)) > ε.

Then, h(f, ε) is the exponential growth rate of h(f, n, ε) as n → ∞, namely

h(f, ε) = lim sup
n→∞

1

n
ln h(f, n, ε).
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The supremum of h(f, ε) over all ε > 0, or what is the same thing, its limit as ε → 0,
is the topological entropy of f , h(f ). In [New1], Newhouse surveys how the concept
of entropy fits into the Cr category.

There is a corresponding growth rate in algebraic topology. The map f : M →
M induces a homology homomorphism f∗ : H∗(M, R) → H∗(M, R). Under f n∗ ,
homology classes grow no more rapidly than sn where s = s(f∗) is the spectral radius
of f∗, i.e., the modulus of the largest eigenvalue of f∗i : Hi(M, R) → Hi(M, R),
0 ≤ i ≤ m.

Entropy Conjecture ([Sh2]). For all Cr dynamical systems, r ≥ 1, we have the
Entropy Inequality

h(f ) ≥ ln s(f∗).

Of course, the conjecture for r = 1 implies all the others, so this is the principal
case. But if it fails for r = 1 and holds for larger r , this is also interesting. The
Entropy Conjecture is true for C∞ dynamics, but remains unknown for Cr dynamics,
1 ≤ r < ∞. The positive result is due to Yomdin, [Yom], who compares the growth
rate of the volumes of submanifolds of M under iteration of f to the entropy. See
also [Gro2].

The Entropy Conjecture is in general false for Lipschitz endomorphisms already
on the 2-sphere, and also for Lipschitz or piecewise linear homeomorphisms in di-
mension four or larger, [Pu]. For C1 f , Misiurewicz and Przytycki [MiPr] prove that
h(f ) ≥ ln(degree(f∗m)). Some entropy lower bounds are known for continuous
endomorphisms in terms of the growth rate of the induced map on the fundamental
or first homology group, [Ma1], [Bo], [FaSh]. These imply entropy lower bounds for
homeomorphisms of manifolds below dimension 4 by Poincaré duality. See [MaPr]
for recent results.

Here are some more problems which are of a similar nature, relating algebraic
topology to differentiable dynamics. We use the notation

GR(an) = lim sup
n→∞

1

n
ln an

to denote the exponential growth rate of a sequence (an) in (0, ∞].
Let V and W be closed smooth submanifolds of complementary dimension in

the closed manifold M , and let f be a smooth endomorphism of M . Let Nn denote
the number of distinct points of intersection of f n(V ) with W and let In denote the
intersection of the homology classes f n∗[V ] and [W ], where [V ] and [W ] are the
homology classes in M represented by V and W .

Problem 1. Is GR(Nn) ≥ GR(In)?

A special case of this problem concerns the Lefschetz formula. Let Nn(f ) be
the number of geometrically distinct periodic points of f of period n. Let L(f n) =∑m

i=0(−1)i trace(f∗i : Hi(M) → Hi(M)).
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Problem 2. Is GR(Nn(f )) ≥ GR(|L(f n)|)?
By the transversality theorem the inequalities in the last two problems hold Cr

generically. The question is: Do they always hold? It is known that if f is C1 and
L(f n) is unbounded then so is Nn(f ) [ShSu1]. This fails for Lipschitz maps.

A first interesting case is a smooth degree two map, f , of the 2-sphere. Let Nn be
the number of distinct periodic points of f of period n.

Problem 3. Is GR(Nn) ≥ ln 2?

The results of [MiPr] concerning topological entropy and degree and of Katok
[Ka] comparing GR(Nn) to topological entropy for diffeomorphisms in dimension 2
make a start on this problem.

All these examples fall into the following general framework. Let F be a functor
from the category of manifolds to another category. Since a dynamical system f may
be iterated so may F(f ). We ask to compare the asymptotic behavior of the iterates
of F(f ) and f . Here, we considered the functors of algebraic topology. Later the
structures we consider and questions we ask for most or some f consider functors
such as the tangent bundle, measures, the de Rham complex, etc.

3. Most differentiable dynamical systems

Since the range of dynamical behavior exhibited by all dynamical systems seems too
large to admit a meaningful universal description applicable to all systems, many at-
tempts have been made to describe features of most dynamical systems. SRB measures
were introduced by Sinai, Ruelle and Bowen in the 1970s in the study of uniformly
hyperbolic dynamical systems. The space integrals for continuous functions with re-
spect to these measures predict the time averages of almost every Lebesgue point in the
manifold. It is a fundamental result of Sinai, Ruelle and Bowen [Si], [Ru1], [BoRu]
that a finite number of SRB measures exist for C2 hyperbolic dynamics (technically
Smale’s Axiom A and no cycle systems.) Ruelle [Ru2] suggested that these measures
apply much more generally. Much effort in dynamical systems in recent years has
focused on Ruelle’s suggestion. One widespread optimistic program dating from the
late 1970s suggests that most systems have a finite (or perhaps countable) collection
of ergodic SRB measures. For volume preserving diffeomorphisms of closed man-
ifolds this program can not be correct because the KAM phenomenon insures the
robust existence of positive measure sets of codimension one tori with quasi-periodic
motions [ChSu], [Yoc], [Xi]. These tori have no non-zero Lyapunov exponents. So
the existence of some non-zero exponents may be decisive for the program.

3.1. Partially hyperbolic diffeomorphisms. In contrast, we have suggested that a
little hyperbolicity goes a long way towards ergodicity of volume preserving diffeo-
morphisms and hence (trivially) a unique SRB measure. Concretely our principal
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results are limited to C2 partially hyperbolic volume preserving diffeomorphisms.
These systems are generalizations of Anosov (globally hyperbolic) dynamical sys-
tems. In the Anosov case volume preserving C2 diffeomorphisms are proved to be
ergodic [An], [AnSi], [Ho]. Brin and Pesin [BrPe] studied ergodicity of partially
hyperbolic diffeomorphism with an accessibility property. The hypotheses of their
ergodicity theorem were too limiting to be broadly applicable. In fact they prob-
ably almost never hold, [ShWi2], [HiPe]. In a series of papers [GrPuSh] , [Wi1],
[PuSh3], [PuSh4], [PuSh5], [BuWi2], [BuWi3], [RHRHUr] these hypotheses have
been replaced by ones quite generally applicable.

More precisely:

Definition. A diffeomorphism f : M → M is partially hyperbolic if there is a con-
tinuous Tf -invariant splitting T M = Eu ⊕ Ec ⊕ Es such that Tf is hyperbolic on
Eu ⊕ Es and the hyperbolicity dominates Tf on Ec in the sense that for some τ , λ

with 1 ≤ τ < λ and positive constants c, C we have the following:

(a) For all v ∈ Eu and all n ≥ 0, cλn|v| ≤ |Tf n(v)|.
(b) For all v ∈ Es and all n ≥ 0, |Tf n(v)| ≤ Cλ−n|v|.
(c) For all v ∈ Ec and all n ≥ 0, cτ−n|v| ≤ |Tf n(v)| ≤ Cτn|v|.
(d) The bundles Eu, Es are non-zero.

Condition (d) is present to avoid triviality. Without it, every diffeomorphism
would be partially hyperbolic, for we could take Ec as T M . Sometimes, one only
requires Eu ⊕ Es 
= 0, but for simplicity we use the stronger assumption (d) in this
paper.

Partial hyperbolicity means that under Tf n, vectors in Ec grow or shrink more
gradually than do vectors in Eu and Es. The center vectors behave in a relatively
neutral fashion. The definition can be recast in several different ways. For instance,
expansion of Eu under positive iteration of Tf can be replaced by contraction under
negative iteration. Also, non-symmetric rates can be used for expansion and con-
traction. More significantly, one could permit pointwise domination instead of the
absolute domination as above. See [Puj], [BoDíVi] for a discussion of dominated
splitting. All of these refinements to the notion of partial hyperbolicity are exploited
by Burns and Wilkinson in their result discussed below.

Given a smooth manifold M , fix a smooth volume μ on M . Then we say f is
volume preserving if it preserves this volume and we write the set of μ preserving Cr

diffeomorphisms of M as Diffr
μ(M).

A diffeomorphism is ergodic if it preserves a measure and each measurable in-
variant set is a zero set or the complement of a zero set. No measurable invariant
set has intermediate measure. Ergodicity is stable if it persists under perturbation of
the dynamical system. Towards our theme that a little hyperbolicity goes a long way
toward ergodicity and more optimistically toward the goal of finding SRB measures,
we have our main conjecture.
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Main Conjecture. Among the volume preserving Cr partially hyperbolic dynamical
systems for r ≥ 2, the stably ergodic ones form an open and dense set.

An approach to the Main Conjecture via two additional conjectures consists in
generalizing the Anosov–Hopf proof of the ergodicity of Anosov systems (Ec = {0})
by studying the accessibility relationship. The Anosov–Hopf argument proceeds as
follows. If x, y are forward asymptotic then the time average of continuous functions
along the orbit of x equals the time average along the orbit of y. Reversing time,
the same is true for f −1 and points x, y which are asymptotic in negative time.
Now the Birkhoff ergodic theorem says that positive time averages equal negative
time averages almost everywhere. So we say x ∼ y if x and y are positive or
negative asymptotic and extend ∼ to an equivalence relation on M . In principle by
the Birkhoff theorem time averages should be constant on equivalence classes and
we may prove ergodicity by proving that the equivalence classes are measure zero or
one. There are severe technical difficulties to this program but it can be made to work
in the Anosov and the partially hyperbolic cases with some extra hypotheses. We say
x, y ∈ M are us-accessible if there is a piecewise differentiable path joining x to y

and tangent either to Eu or Es at every point of differentiability. A diffeomophism is
e-(ssentially) accessible (in the measure theoretic sense) if the only subsets of M

saturated with respect to us-accessibility have measure 0 or 1. A diffeomorphism is
us-accesssible if M itself is a us-accessibility class. us-accessibility obviously implies
e-accessibility.‡

Conjecture A. Every C2 volume preserving e-accessible partially hyperbolic dif-
feomorphism is ergodic.

Conjecture B. The partially hyperbolic diffeomorphisms with the us-accessibility
property are open and dense in the Cr partially hyperbolic diffeomorphisms for every
r ≥ 1, volume preserving or not.

Conjectures A and B obviously imply the main conjecture.
Conjecture A was proven with two technical hypotheses in [PuSh4], center bunch-

ing and dynamical coherence. Burns and Wilkinson [BuWi2], [BuWi3] have since
removed the dynamical coherence hypothesis and improved the center bunching con-
dition. The center bunching condition puts bounds on the ratios of the expansions
and contractions in Eu and Es as compared to Ec. If Tf |Ec is close to conformal the
center bunching conditions are satisfied.§

‡Note that the us-accessibility classes are contained in the ∼ equivalence classes we defined above. They are
much more amenable to use in proofs.

§Burns and Wilkinson’s center bunching conditions suppose that there are continuous positive functions
ν(p), ν̂(p), γ (p), γ̂ (p) such that for every p ∈ M:

1. ν(p), ν̂(p) < 1 and ν(p) < γ (p) < γ̂ (p)−1 < ν̂(p)−1.
2. ‖ Tpf (v) ‖< ν(p) for v ∈ Es(p),

γ (p) <‖ Tpf (v) ‖< γ̂ (p)−1 for v ∈ Ec(p),

‖ Tpf (v) ‖> ν̂(p)−1 for v ∈ Eu(p) .
3. ν(p) < γ (p)γ̂ (p) and ν̂(p) < γ (p)γ̂ (p).
The second condition is the partial hyperbolicity and the third the center bunching.
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We say that f is BW partially hyperbolic and center bunched, if it satisfies the
Burns–Wilkinson conditions.

Theorem (Burns–Wilkinson [BuWi3]). Let f be C2, volume preserving, BW partially
hyperbolic and center bunched and essentially accessible. Then f is ergodic and in
fact a K-automorphism.

When the dimension of the center bundle Ec is one the bunching conditions are
automatically satisfied. So it follows as a simple corollary that:

Corollary (Burns–Wilkinson). Conjecture A is true when dimension Ec is one.

Even more is true when the dimension of the center bundle Ec is one, Federico
and Jana Rodrigues Hertz, and Raul Ures prove the Main Conjecture.

Theorem ([RHRHUr]). When the dimension of Ec is one, Conjecture A, Conjecture B
for volume preserving diffeomorphisms and hence the Main Conjecture all are true.

Towards Conjecture B in general there is [DoWi] in the C1 topology.
The major new elements in the proofs of the series of theorems on stable ergodicity

of partially hyperbolic systems are dynamically defined sets called juliennes which
can be used to estimate Lebesgue volumes either directly or by proving that they form
a Lebesgue density basis and an analysis of the stable and unstable holonomy maps
which are julienne quasi-conformal.

Partial hyperbolicty and center bunching are easily seen to be open conditions
and us-accessibility is frequently easily proven to hold in an open neighborhood of
a given example. Sometimes even e-accessibility is (not so easily) proved to hold in
the neighborhood of a given example [RH]. The situation is good enough to be able
to conclude stable ergodicity in the C2 topology of quite a few examples. Here are
several examples. See [BuPuShWi], [PuSh5] for more details and for more on the
current state of affairs.

1. The product of a volume preserving Anosov diffeomorphism and any other vol-
ume preserving diffeomorphism can be arbitrarily C∞ closely approximated by
a partially hyperbolic, us-accessible stably ergodic diffeomorphism [ShWi1],
[BuPuShWi], as long as the hyperbolicity of the Anosov diffeomorphism is
strong enough to produce a partially hyperbolic splitting of the tangent bundle.
(Conjecturally an open and dense set of perturbations is ergodic.) So the KAM
phenomenon seems to be dominated by the hyperbolic phenomenon and ergod-
icity of weakly coupled systems of KAM and Anosov type should be expected
to be ergodic.

2. The time t map of the geodesic flow of a manifold of negative curvature is
stably ergodic.

3. Skew products which are compact group extensions over standard Anosov dif-
feomorphisms are generically us-accessible andC2 stably ergodic, [Br1], [Br2],
[BuWi1], [FiPa].
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4. Ergodic toral automorphisms having a two dimensional invariant subspace with
isometric derivative and some mild extra technical conditions are Cr stably
ergodic for a fairly large r [RH].

5. Partially hyperbolic affine diffeomorphisms of finite volume compact homo-
geneous spaces of simple Lie groups are stably ergodic. We discuss these
below.

Systems whose Lyapunov exponents are non-zero, called non-uniformly hyper-
bolic, were introduced by Pesin and play a large role in the ergodic theory of volume
preserving diffeomorphisms and the study of SRB measures. Pesin’s paper [Pe1]
raises the question if in dimension bigger than two those diffeomorphisms without
zero Lyapunov exponents are generic. We have mentioned above that KAM theory
produces open sets of volume preserving diffeomorphisms with positive measure sets
of invariant tori which have no hyperbolicity. So the answer to the question is “no”.
But it may be an either/or situation.

Problem 4 ([ShWi2]). Is it true for generic f ∈ Diffr
μ(M) that for almost every

ergodic component of f either all the Lyapunov exponents of f are 0 or none of the
Lyapunov exponents of f are 0 (μ-a.e.)?

For some partially hyperbolic diffeomorphisms zero exponents were perturbed
away in [ShWi2], which produces pathological center foliations. More of this is car-
ried out in [HiPe] and for the C1 topology in [BaBo]. So there is some evidence that
the answer to the problem is “yes” at least for stably ergodic or partially hyperbolic
diffeomorphisms. The problem is even interesting when restricted to ergodic diffeo-
morphisms so there is only one ergodic component. When r = 1, Mañé and Bochi
prove for two dimensional manifolds that generically all the exponents are zero or the
diffeomorphism is Anosov [Mañ1], [Boc].

3.2. Possible Extensions. How might the Anosov–Hopf argument be transported
from the category of volume preserving diffeomorphisms to most of Diffr (M)? and
especially to the existence of SRB measures? Here we enter a more speculative realm.
First we recall the definition of SRB measures and some suggestions from [ShWi2].

Given f ∈ Diffr (M) (not necessarily preserving μ) a closed f invariant set
A ⊂ M and an f invariant ergodic measure ν on A, we define the basin of A to be
the set of points x ∈ M such that f n(x) → A and for every continuous function
φ : M → R

lim
n→∞

1

n
(φ(x) + · · · + φ(f n(x))) →

∫
A

φ(x) dν.

ν is an SRB measure and A an SRB attractor (or an ergodic attractor) if the μ measure
of the basin of A with respect to μ is positive.

It follows from the definition that a diffeomorphism has at most countably many
SRB measures. We can more formally describe the Sinai, Ruelle and Bowen [Si],



108 Michael Shub

[Ru1], [BoRu] result already referred to. If f is a C2 Axiom A no cycle diffeomor-
phism then μ almost every point in M is in a basin of an SRB measure and there are
only finitely many SRB measures. It is this result that one would like to extend into
a (more) general context.

The next problem obviously presents itself from the presentation.

Problem 5. For r ≥ 2 is it true for the generic f in Diffr (M) that the union of the
basins of the SRB attractors of f has full μ measure in M?

This natural question is on the minds of quite a few people. See for example
[Ru1], [BuPuShWi], [Pa], [Vi1], [You1], [You2], [BoDíVi]. One way to approach
the problem along the lines of the Anosov–Hopf argument and as in [Pe1], [PuSh1]
might be via an analogue of the either/or question on Lyapunov exponents for volume
preserving diffeomorphisms above . For r ≥ 2 there is no known analogue without the
volume preserving hypothesis of the robust positive measure set of invariant tori with
zero Lyapunov exponents which occurs via KAM theory. See [Vi2], [BuPuShWi].

Problem 6. For r ≥ 2 is it true for the generic f in Diffr (M) and any weak limit ν

of the push forwards 1
n

∑n
1 f

j∗μ that almost every ergodic component of ν has some
exponents not equal to 0 (ν-a.e.)? All exponents not equal to 0?

Partially hyperbolic systems are a natural domain to begin considering problems
[5] and [6]. When the volume is not preserved and we distinguish future behavior
from the past the accessibility equivalence relation has to be adapted. Even for
partially hyperbolic f it is not entirely clear how to do this. So suppose f partially
hyperbolic . Let W uu(x) and W ss(x) denote the strong unstable and stable manifolds
which are known to exist tangent to the Eu and Es foliations. For x, y ∈ M define
x > y if W uu(x) ∩ W ss(y) 
= ∅. Transitivize > to a partial order on M and declare
x ∼ y if x > y and y > x. The ∼ equivalence classes may play a role similar to
us-accessibility classes.

Problem 7. For the generic partially hyperbolic f , do all ∼ equivalence classes which
are minimal with respect to > have SRB measures?

3.3. A little hyperbolicity. Now that we have given a lot of examples, we return
to our theme that a little hyperbolicity goes a long way towards ergodicity. We ask
how often can we prove that hyperbolicity does exist in the guise of some non-zero
Lyapunov exponents. Some specific families of non-uniformly hyperbolic dynamical
systems have been worked out which contain positive measure sets in the parameter
space with SRB measures having non-zero Lyapunov exponents. Most prominent
among these families are the quadratic and Henon families, see [Ja], [Ly], [Be],
[BeCa], [You1], [You2], [Vi1]. The proofs are difficult. One would like to find a
fairly general principle which guarantees that a family has a positive measure set of
parameters which have an SRB measure with a positive Lyapunov exponent.
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One attempt posits that rich enough families of dynamical systems should have
members with positive Lyapunov exponents. Examples have been constructed with
uncertain but evocative results. Let M have a Riemannian metric and let G be a group
of isometries of M which is transitive on the projectivized tangent bundle of M . Let
μ be the Riemannian volume. Let fε be a family of Cr dynamical systems defined on
M depending on ε. For fixed ε, consider the family Gfε = {gfε, g ∈ G}. Give Gfε

the push forward of the Haar measure on G. If fε preserves μ let H(ε) be the average
over Gfε of the entropy of gfε with respect to μ. This is the case in example 3 below.
If fε does not preserve μ but gfε has a unique SRB measure for each g ∈ G, let H(ε)

be the average over Gfε of the entropy of gfε with respect to this SRB measure. This
is the case in examples 1 and 2 below. We compare H(ε) to the random Lyapunov
exponents with respect to random products of elements of Gfε which we shall call

R(ε) =
∫

PT M

ln|Tfε(v)| dv,

where PT M is the projectivized tangent bundle of M . It is usually easy to see that
R(ε) is positive. When H(ε) is positive then there are obviously positive measure
sets in the parameter space with positive Lyapunov exponents and positive entropy.
Here are the results for a few families.

1. Blaschke products ([PujRoSh]). The family of dynamical systems does not
depend on ε; we take fε = B where

B(z) = θ0

n∏
i=1

z − ai

1 − zai

,

n ≥ 2, ai ∈ C, |ai | < 1, i = 1, . . . , n, and θ0 ∈ C with |θ0| = 1.

The group G is the unit circle T in the complex plane, C. Its elements are
denoted by θ . Now we take

TB = {θB}{θ∈T}.

Then
H(ε) ≥ R(ε).

(H(ε) is always positive.)

2. Expanding maps of the circle ([LlShSi]). Here the dynamical systems are
fk,α,ε : S

1 → S
1 which when written mod 1 are of the form

fk,α,ε : x �→ kx + α + ε sin(2πx). (3.1)

The group is S
1, α ranges over S

1 and k ≥ 2. Then for small ε the average
over α of the entropy H(ε) is smaller than R(ε), while the max over α of the
entropies of fk,α,ε is larger than R(ε). In the case of the averages the difference
is on the order of ε2k+2. H(ε) is again obviously positive.
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3. Twist maps of the sphere ([LeShSiWi]). For ε > 0, we define a one-parameter
family of twist maps fε as follows. Express S

2 as the sphere of radius 1/2
centered at (0, 0) in R × C, so that the coordinates (r, z) ∈ S

2 satisfy the
equation

|r|2 + |z|2 = 1/4.

In these coordinates define a twist map fε : S
2 → S

2, for ε > 0, by

fε(r, z) = (r, exp(2πi(r + 1/2)ε)z).

The group is SO(3). So SO(3)fε = {gfε, g ∈ SO(3)}.
For small ε, H(ε) seems experimentally to be positive and is provably less
than R(ε). R(ε) tends to infinity with ε and experimentally R(ε) and H(ε)

are asymptotic. If we add a small fixed amount of randomization δ to the each
g in gfε and average the Lyapunov exponents of this randomized family over
g ∈ SO(3), we obtain Rδ(ε) which is indeed asymptotic to R(ε) as ε → ∞.

4. Linear maps ([DeSh]). If, instead of dynamical systems, we consider a linear
map A ∈ GL(n, C) and the family SU(n)A, then the average of the logarithms
of the k biggest moduli of eigenvalues of UA over U ∈ SU(n) is greater than
or equal to the sum of the k largest Lyapunov exponents of random products of
matrices from SU(n)A.

There may be a general principle operating here that we have not put our finger
on yet.

4. Some differentiable dynamical systems

4.1. Affine diffeomorphisms. The ergodic theory of affine diffeomorphisms of ho-
mogeneous spaces has been much studied in its own right, see for example [St1],
and contains some of the principal examples studied in smooth dynamics such as the
geodesic and horocycle flows on surfaces of constant negative curvature and toral
automorphisms. Here we study the question of ergodicity of affine diffeomorphisms
in the context of partially hyperbolic dynamical systems with Cr perturbations. Our
methods of proof recover the stable ergodicity of affine diffeomorphisms when they
are stably ergodic among affine perturbations and usually extend this stability to Cr

perturbations. On this last point there remain some open problems.
Suppose that G is a connected Lie group, A : G → G is an automorphism, B is a

closed subgroup of G with A(B) = B, g ∈ G is given, and the affine diffeomorphism

f : G/B → G/B

is defined as f (xB) = gA(x)B. It is covered by the diffeomorphism

f = Lg � A : G → G,
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where Lg : G → G is left multiplication by g.

An affine diffeomorphism f induces an automorphism of the Lie algebra g = TeG,
a(f ) = Adg �TeA, where Adg is the adjoint action of g, and g splits into generalized
eigenspaces,

g = gu ⊕ gc ⊕ gs,

such that the eigenvalues of a(f ) are respectively outside, on, or inside the unit circle.
These eigenspaces and the direct sums gcu = gu⊕gc, gcs = gc⊕gs are Lie subalgebras
and hence tangent to connected subgroups Gu, Gc, Gs, Gcu, Gcs.

Proposition ([PuShSt1]). Let f : G/B → G/B be an affine diffeomorphism as above
such that G/B is compact and supports a smooth G-invariant volume. Let G∗ be
any of the groups Gu, Gc, Gs, Gcu, Gcs. Then the orbits of the left G∗-action on
G/B foliate G/B. Moreover, f exponentially expands the Gu-leaves, exponentially
contracts the Gs-leaves, and affects the Gc-leaves subexponentially.

Now we characterize partial hyperbolicity, bunching and accessibility in the con-
text of affine diffeomorphisms. Let h denote the smallest Lie subalgebra of g con-
taining gu ∪ gs. It is not hard to see that h is an ideal in g. We call it the hyperbolic
Lie subalgebra of f , and we denote by H the connected subgroup of G tangent to h,
calling it the hyperbolic subgroup of f . Finally, let b denote the Lie algebra of B,
b ⊂ g.

Theorem ([PuSh4]). Let f : G/B → G/B be an affine diffeomorphism as above
such that G/B is compact and supports a smooth G-invariant volume. Then

(a) f is partially hyperbolic if and only if the hyperbolic Lie subalgebra of f is
not contained in the Lie algebra of B, h 
⊂ b.

(b) If f is partially hyperbolic then it is center bunched.

(c) f has the us-accessibility property if and only if g = b + h.

(d) f has the e-accessibility property if and only if HB = G.

When the stable and unstable foliations are smooth, as in the affine case, us-
accessibility is stable. Thus we have:

Theorem ([PuSh4]). Let f : G/B → G/B be an affine diffeomorphism as above
such that G/B is compact and supports a smooth G-invariant volume. Then f is
stably ergodic among C2 volume preserving diffeomorphisms of G/B if (merely) the
hyperbolic Lie subalgebra h is large enough that g = b + h.

If G is simple then any nontrivial h is large enough since it is an ideal.
Suppose that A ∈ SL(n, R) has some eigenvalues that are not of modulus one,

and suppose that � is a uniform discrete A-invariant subgroup of SL(n, R). Set
M = SL(n, R)/�. Then left multiplication by A, LA : M → M , is stably ergodic in
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Diff2
μ(M). The case where n is large and all but two eigenvalues have modulus one

is interesting, in that the dimension of Gu and Gs is n − 1 while the dimension of Gc

is (n − 1)2, so the dimension of Gc is much larger than that of Gu and Gs.
At the other extreme are abelian groups. If G = R

n and B = Z
n then translations

on the torus, T
n = R

n/Z
n are ergodic if the entries of the element defining the trans-

lation are rationally independent, but they are never stably ergodic. An automorphism
A of T

n is ergodic if and only if A has no eigenvalues that are roots of unity. A little bit
of algebra quickly shows that the hypothesis that A has no eigenvalues which are roots
of unity is equivalent to the hypothesis that HZ

n = R
n where H is the hyperbolically

generated subgroup of R
n.

We have concentrated on the accessibility condition because accessibility is a topo-
logical property and as such it is not difficult to stipulate easily verifiable conditions
which guarantee that it persists under small perturbations.

In a recent remarkable paper, Federico Rodriguez Hertz gives the first examples
of a stably e-accessible diffeomorphisms that are not us-accessible, [RH]. They are
ergodic, non-hyperbolic diffeomorphisms of tori. The first such occurs in dimension
four.

Rodriguez Hertz sometimes uses a technical assumption on the automorphism A,
which we will refer to as the Rodriguez Hertz condition, namely that the character-
istic polynomial of A is irreducible over the integers and it can not be written as a
polynomial in tk , k ≥ 2.

Theorem ([RH]). Let A be an ergodic toral automorphism of T
n.

(a) If n ≤ 5 then A is stably ergodic in Diff22
μ (Tn).

(b) If n ≥ 6, Ec is two-dimensional, and A satisfies the Rodriguez Hertz condition
then A is stably ergodic in Diff5(Tn).

The differentiability degrees 22 and 5 are not misprints.
Part of Rodriguez Hertz’proof involves an alternative. Either the perturbation is us-

accessible or the stable and unstable manifold foliations are differentiably conjugate to
the foliations of the linear example and hence the perturbation has the e-accessibility
property.

Problem 8. Is every ergodic toral automorphism stably ergodic in the Cr topology
for some r?

The next result is an approximate solution of this problem.

Theorem ([ShWi1]). Every ergodic toral automorphism of T
n that is an isometry on

the center bundle Ec can be approximated arbitrarily well in Diff∞
μ (Tn) by a stably

us-accessible, stably ergodic diffeomorphism.

Further examples of partially hyperbolic stably ergodic diffeomorphisms are con-
sidered in [BuPuShWi]. These include skew products, frame flows, and Anosov-like
diffeomorphisms.
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The next theorem shows that the condition for stable ergodicity of affine diffeo-
morphisms among perturbations which are restricted to be left multiplication by group
elements near the identity is the same as e-accessibility. Hence, the julienne proof of
stable ergodicity applies to prove the stable ergodicity of these affine diffeomorphisms
among affine perturbations as well. This phenomenon is discussed in [PuShSt2].

Theorem ([St2]). Suppose that f : G/B → G/B is an affine diffeomorphism such
that M = G/B is compact and supports a smooth G-invariant volume. Then the
following are equivalent.

(a) f is stably ergodic under perturbation by left translations.

(b) HB = G where H is the hyperbolically generated subgroup of G.

Corollary. Suppose that f : G/B → G/B is an affine diffeomorphism such that
M = G/B is compact and supports a smooth G-invariant volume. Assume that G is
simple. Then stable ergodicity of f with respect to perturbation by left translations
is equivalent to stable ergodicity among C2 volume preserving perturbations.

This corollary and the result of Rodriguez Hertz naturally lead to a generalization
of Problem 10.

Problem 9. For an affine diffeomorphism f of a compact, finite volume G/B, is
stable ergodicity of f with respect to perturbation by left translations equivalent to
stable ergodicity among C2 volume preserving perturbations?

We end our discussion of partially hyperbolic diffeomorphisms with a question
from [BuPuShWi] of a very different nature. We have used both the strong unstable
and strong stable foliations in our proof of ergodicity, but we do not know an example
where this is strictly necessary.

Problem 10. For a partially hyperbolic C2 ergodic diffeomorphism f with the e-
accessibility property, are the unstable and stable foliations already ergodic and
uniquely ergodic?

Unique ergodicity of for horocycle flows was proved by Furstenberg [Fu]. Bowen
and Marcus [BoMa] proved the unique ergodicity of the strong stable and unstable
manifold foliations in the case where f is the time-one map of a hyperbolic flow.
Rodriguez Hertz’ result adds more cases in which the invariant foliations are uniquely
ergodic, namely those in which they are differentiably conjugate to the invariant foli-
ations of a linear ergodic toral automorphism. Starkov [PuShSt2] proves that unique
ergodicity of the strong stable or unstable foliations for all affine diffeomorphisms
which are stably ergodic under perturbation by left translation.

In the topological category Bonatti, Díaz, and Ures [BoDíUr] prove the minimality
of the stable and unstable foliations for an open and dense set of robustly transitive
diffeomorphisms.
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4.2. Models. Two dynamical systems f : M → M and g : N → N are topologi-
cally conjugate if there is a homeomorphism h : M → N such that hf = gh. The
dynamical system f is structurally stable if there is a Cr neighborhood of f such that
every g in U is topologically conjugate to f .¶ By the work of Smale, Palis [PaSm],
Robbin [Ro] and Robinson [Rob], diffeomorphisms that satisfy Smale’s Axiom A and
the strong transversality condition are structurally stable. Mañé [Mañ2] in general
and Liao [Li] also in dimension 2 prove that in the C1 topology this condition is also
necessary. The C2 Axiom A strong transversality diffeomorphisms also have finitely
many attractors which have SRB measures. These Axiom A strong transversality
diffeomorphisms are extraordinarily appealing since they have all the properties we
hope for. They are fairly well understood. Yet there remain interesting questions about
them. Some of the issues are discussed in [Su]. I will denote the set of Axiom A
strong transversality diffeomorphisms of M by ASr (M).‖

Since topological entropy is a topological conjugacy invariant and C∞ is dense
inCr the Entropy Inequality holds for allCr structurally stable diffeomorphisms. How
sharp is the Entropy Inequality as a lower bound for the entropy of dynamical systems
in ASr (M)? Smale [Sm3] proved that every isotopy class of diffeomorphisms contains
an element of ASr (M). Since the fundamental group can contribute information about
the entropy not readable in the homology groups, we restrict ourselves to simply
connected manifolds.∗∗

Problem 11. Let M be simply connected. Let I be an isotopy class of diffeomor-
phisms of M . Is there a sequence of diffeomorphisms, fn ∈ I ∩ ASr (M) such that
h(fn) → ln(s(f∗))?

If the restriction that the diffeomorphism lie in ASr (M) is removed then it is even
unknown whether equality may be achieved in the Entropy Inequality within every
isotopy class of diffeomorphisms. There are examples where equality may not be
achieved with elements of ASr (M). A diffeomorphism in ASr (M) with zero entropy
is necessarily Morse–Smale. As a result of [ShSu2], [FrSh] and [Le], it is known
that there are isotopy classes of diffeomorphisms of simply connected manifolds for
which ln(s(f∗)) = 0, yet there is no Morse–Smale diffeomorphism in the class. Are
there diffeomorphisms in ASr (M) with arbitrarily small topological entropy in these
classes? If not, what is a lower bound on the entropy?

Model elements of ASr (M) are constructed in every isotopy class of diffeomor-
phisms in [ShSu2], [Fr2], [Mal1] from information on chain complexes for M and
chain complex endomorphisms induced by f . This work is closely related to Smale’s
work on the structure of manifolds. See also [Sh2], [Sh3] for more discussion of this
point. There are further relations between stability and homology theory established

¶We restrict ourselves to dynamical systems in Diffr (M) even though the same concepts apply in Endr (M)

and to structural stability as opposed to Omega stability for the sake of simplicity of exposition.
‖AS is a fortuitous selection of letters since Anosov, Sinai, Smale, Axiom A and Strong all begin with A and S.

∗∗See Maller [Mal1], [Mal2] for non-simply connected manifolds.



All, most, some differentiable dynamical systems 115

in [ShWil], [RuSu] where the entropy conjecture was first proven for C1 diffeomor-
phisms satisfying Smale’s axioms. This work is also related to our next problem.

To close our discussion of structurally stable diffeomorphisms, I recall one other
outstanding problem.

Problem 12. Are all Anosov diffeomorphisms infra-nil?

Smale [Sm2], considered the nil-manifold setting for Anosov diffeomorphisms
which was later extended by example [Sh1] to infra-nil manifolds where the corre-
sponding examples of expanding maps were considered. All expanding maps are
infra-nil by the results of [Sh1], [Fr1] and Gromov [Gro1] on groups of polynomial
growth. For Anosov diffeomorphisms defined on a manifold M , it is known that if M

is an infra-nil manifold then the diffeomorphism is conjugate to an affine example,
[Ma2]. It is not known if all manifolds M supporting Anosov diffeomorphisms are
infra-nil manifolds. If one of the bundles Es or Eu is one dimensional then problem
is answered in the affirmative by [New2]. Perhaps the best results go back to [Fr1].

Questions about the classification of manifolds admitting partially hyperbolic dif-
feomorphisms are raised in section 20 of [PuSh5].

We end the paper by mentioning a few surveys which go into greater depth on
some of the issues we have considered, [Sm2], [Fr2], [Sh1], [Sh3], [BuPuShWi],
[PuSh5], [Pe3], [BoDíVi].
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Geodesics on flat surfaces

Anton Zorich∗

Abstract. Various problems of geometry, topology and dynamical systems on surfaces as well
as some questions concerning one-dimensional dynamical systems lead to the study of closed
surfaces endowed with a flat metric with several cone-type singularities. In an important partic-
ular case, when the flat metric has trivial holonomy, the corresponding flat surfaces are naturally
organized into families which appear to be isomorphic to moduli spaces of holomorphic one-
forms.

One can obtain much information about the geometry and dynamics of an individual flat
surface by studying both its orbit under the Teichmüller geodesic flow and under the linear group
action on the corresponding moduli space. We apply this general principle to the study of generic
geodesics and to counting of closed geodesics on a flat surface.

Mathematics Subject Classification (2000). Primary 57M50, 32G15; Secondary 37D40,
37D50, 30F30.

Keywords. Flat surface, Teichmüller geodesic flow, moduli space, asymptotic cycle, Lyapunov
exponent, interval exchange transformation, renormalization.

Introduction: families of flat surfaces as moduli spaces of Abelian
differentials

Consider a collection of vectors �v1, . . . , �vn in R
2 and construct from these vectors

a broken line in a natural way: a j -th edge of the broken line is represented by the
vector �vj . Construct another broken line starting at the same point as the initial one by
taking the same vectors in the order �vπ(1), . . . , �vπ(n), where π is some permutation of n

elements. By construction the two broken lines share the same endpoints; suppose that
they bound a polygon like in Figure 1. Identifying the pairs of sides corresponding to
the same vectors �vj , j = 1, . . . , n, by parallel translations we obtain a surface endowed
with a flat metric. (This construction follows the one in [M1].) The flat metric is
nonsingular outside of a finite number of cone-type singularities corresponding to the
vertices of the polygon. By construction the flat metric has trivial holonomy: a parallel
transport of a vector along a closed path does not change the direction (and length) of
the vector. This implies, in particular, that all cone angles are integer multiples of 2π .

The polygon in our construction depends continuously on the vectors �vj . This
means that the combinatorial geometry of the resulting flat surface (its genus g, the
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�v1

�v2

�v3

�v4

�v4

�v3

�v2

�v1

Figure 1. Identifying corresponding pairs of sides of this polygon by parallel translations we
obtain a surface of genus two. It has single conical singularity with cone angle 6π ; the flat metric
has trivial holonomy.

number m and types of the resulting conical singularities) does not change under small
deformations of the vectors �vj . This allows to consider a flat surface as an element
of a family of flat surfaces sharing common combinatorial geometry; here we do not
distinguish isometric flat surfaces. As an example of such family one can consider
a family of flat tori of area one, which can be identified with the space of lattices of
area one:

\ SL(2, R) /
SO(2, R) SL(2, Z) = H

2/
SL(2, Z)

The corresponding “modular surface” is not compact, see Figure 2. Flat tori repre-
senting points, which are close to the cusp, are almost degenerate: they have a very
short closed geodesic. Similarly, families of flat surfaces of higher genera also form
noncompact finite-dimensional orbifolds. The origin of their noncompactness is the
same as for the tori: flat surfaces having short closed geodesics represent points which
are close to the multidimensional “cusps”.

We shall consider only those flat surfaces, which have trivial holonomy. Choosing
a direction at some point of such flat surface we can transport it to any other point.
It would be convenient to include the choice of direction in the definition of a flat
structure. In particular, we want to distinguish the flat structure represented by the
polygon in Figure 1 and the one represented by the same polygon rotated by some
angle different from 2π .

Consider the natural coordinate z in the complex plane. In this coordinate the
parallel translations which we use to identify the sides of the polygon in Figure 1 are
represented as z′ = z + const. Since this correspondence is holomorphic, it means
that our flat surface S with punctured conical points inherits the complex structure. It
is easy to check that the complex structure extends to the punctured points. Consider
now a holomorphic 1-form dz in the complex plane. When we pass to the surface S

the coordinate z is not globally defined anymore. However, since the changes of
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neighborhood of a
cusp = subset of
tori having short
closed geodesic

Figure 2. “Modular surface” H
2/ SL(2, Z) representing the space of flat tori is a noncompact

orbifold of finite volume.

local coordinates are defined as z′ = z + const, we see that dz = dz′. Thus, the
holomorphic 1-form dz on C defines a holomorphic 1-form ω on S which in local
coordinates has the form ω = dz. It is easy to check that the form ω has zeroes
exactly at those points of S where the flat structure has conical singularities.

Reciprocally, one can show that a pair (Riemann surface, holomorphic 1-form)
uniquely defines a flat structure of the type described above.

In an appropriate local coordinate w a holomorphic 1-form can be represented in a
neighborhood of zero as wd dw, where d is called the degree of zero. The form ω has
a zero of degree d at a conical point with cone angle 2π(d + 1). The sum of degrees
d1 + · · · + dm of zeroes of a holomorphic 1-form on a Riemann surface of genus g

equals 2g−2. The moduli space Hg of pairs (complex structure, holomorphic 1-form)
is a C

g-vector bundle over the moduli space Mg of complex structures. The space Hg

is naturally stratified by the strata H(d1, . . . , dm) enumerated by unordered partitions
of the number 2g −2 in a collection of positive integers 2g −2 = d1 +· · ·+dm. Any
holomorphic 1-forms corresponding to a fixed stratum H(d1, . . . , dm) has exactly m

zeroes, and d1, . . . , dm are the degrees of zeroes. Note, that an individual stratum
H(d1, . . . , dm) in general does not form a fiber bundle over Mg .

It is possible to show that if the permutation π which was used to construct a poly-
gon in Figure 1 satisfy some explicit conditions, vectors �v1, . . . , �vn representing the
sides of the polygon serve as coordinates in the corresponding family H(d1, . . . , dm).
Consider vectors �vj as complex numbers. Let �vj join vertices Pj and Pj+1 of the
polygon. Denote by ρj the resulting path on S joining the points Pj , Pj+1 ∈ S. Our
interpretation of �vj as of a complex number implies that

∫
ρj

ω =
∫ Pj+1

Pj

dz = vj ∈ C.

The path ρj represents a relative cycle: an element of the relative homology group
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H1(S, {P1, . . . , Pm} ; Z) of the surface S relative to the finite collection of coni-
cal points {P1, . . . , Pm}. Relation above means that �vj represents a period of ω:
an integral of ω over the relative cycle ρj . In other words, a small domain in
H 1(S, {P1, . . . , Pm}; C) containing [ω] can be considered as a local coordinate chart
in our family H(d1, . . . , dm) of flat surfaces.

We summarize the correspondence between geometric language of flat surfaces
and the complex-analytic language of holomorphic 1-forms on a Riemann surface in
the dictionary below.

Geometric language Complex-analytic language

flat structure (including a choice complex structure and a choice
of the vertical direction) of a holomorphic 1-form ω

conical point zero of degree d

with a cone angle 2π(d + 1) of the holomorphic 1-form ω

(in local coordinates ω = wd dw)

side �vj of a polygon relative period
∫ Pj+1
Pj

ω = ∫
�vj ω

of the 1-form ω

family of flat surfaces sharing stratum H(d1, . . . , dm) in the
the same cone angles moduli space of Abelian differentials

2π(d1 + 1), . . . , 2π(dm + 1)

coordinates in the family: coordinates in H(d1, . . . , dm) :
vectors �vi relative periods of ω in

defining the polygon H 1(S, {P1, . . . , Pm}; C)

Note that the vector space H 1(S, {P1, . . . , Pm} ; C) contains a natural integer
lattice H 1(S, {P1, . . . , Pm} ; Z ⊕ √−1 Z). Consider a linear volume element dν in
the vector space H 1(S, {P1, . . . , Pm} ; C) normalized in such a way that the volume
of the fundamental domain in the “cubic” lattice

H 1(S, {P1, . . . , Pm} ; Z ⊕ √−1 Z) ⊂ H 1(S, {P1, . . . , Pm} ; C)

equals one. Consider now the real hypersurface H1(d1, . . . , dm) ⊂ H(d1, . . . , dm)

defined by the equation area(S) = 1. The volume element dν can be naturally
restricted to the hypersurface defining the volume element dν1 on H1(d1, . . . , dm).
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Theorem (H. Masur; W. A. Veech). The total volume Vol(H1(d1, . . . , dm)) of every
stratum is finite.

The values of these volumes were computed by A. Eskin and A. Okounkov [EO].
Consider a flat surface S and consider a polygonal pattern obtained by unwrap-

ping S along some geodesic cuts. For example, one can assume that our flat surface S

is glued from a polygon � ⊂ R
2 as on Figure 1. Consider a linear transformation

g ∈ GL+(2, R) of the plane R
2. The sides of the new polygon g� are again arranged

into pairs, where the sides in each pair are parallel and have equal length. Identifying
the sides in each pair by a parallel translation we obtain a new flat surface gS which,
actually, does not depend on the way in which S was unwrapped to a polygonal pat-
tern �. Thus, we get a continuous action of the group GL+(2, R) on each stratum
H(d1, . . . , dm).

Considering the subgroup SL(2, R) of area preserving linear transformations we
get the action of SL(2, R) on the “unit hyperboloid” H1(d1, . . . , dm). Considering

the diagonal subgroup
(

et 0
0 e−t

)
⊂ SL(2, R) we get a continuous action of this one-

parameter subgroup on each stratum H(d1, . . . , dm). This action induces a natural
flow on the stratum which is called the Teichmüller geodesic flow.

Key Theorem (H. Masur; W. A. Veech). The actions of the groups SL(2, R) and(
et 0
0 e−t

)
preserve the measure dν1. Both actions are ergodic with respect to this

measure on each connected component of every stratum H1(d1, . . . , dm).

The following basic principle (which was first used in the pioneering works of
H. Masur [M1] and of W. Veech [V1] to prove unique ergodicity of almost all interval
exchange transformations) appeared to be surprisingly powerful in the study of flat
surfaces. Suppose that we need some information about geometry or dynamics of an
individual flat surface S. Consider the “point” S in the corresponding family of flat
surfaces H(d1, . . . , dm). Denote by N (S) = GL+(2, R) S ⊂ H(d1, . . . , dm) the
closure of the GL+(2, R)-orbit of S in H(d1, . . . , dm).

In numerous cases knowledge about the structure of N (S) gives a comprehensive
information about geometry and dynamics of the initial flat surface S. Moreover,
some delicate numerical characteristics of S can be expressed as averages of simpler
characteristics over N (S). We apply this general philosophy to the study of geodesics
on flat surfaces.

Actually, there is a hope that this philosophy extends much further. A closure of
an orbit of an abstract dynamical system might have extremely complicated structure.
According to the optimistic hopes, the closure N (S) of a GL+(2, R)-orbit of any flat
surface S is a nice complex-analytic variety, and all such varieties might be classified.
For genus two the latter statements were recently proved by C. McMullen (see [Mc1]
and [Mc2]) and partly by K. Calta [Ca].

The following theorem supports the hope for some nice and simple description of
orbit closures.
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Theorem (M. Kontsevich). Suppose that the closure in the stratum H(d1, . . . , dm)

of a GL+(2, R)-orbit of some flat surface S is a complex-analytic subvariety. Then
in cohomological coordinates H 1(S, {P1, . . . , Pm}; C) this subvariety is represented
by an affine subspace.

1. Geodesics winding up flat surfaces

In this section we study geodesics on a flat surface S going in generic directions.
According to the theorem of S. Kerckhoff, H. Masur and J. Smillie [KeMS], for
any flat surface S the directional flow in almost any direction is uniquely ergodic.
This implies, in particular, that for such directions the geodesics wind around S in a
relatively regular manner. Namely, it is possible to find a cycle c ∈ H1(S; R) such
that a long piece of geodesic pretends to wind around S repeatedly following this
asymptotic cycle c. Rigorously it can be described as follows. Having a geodesic
segment X ⊂ S and some point x ∈ X we emit from x a geodesic transversal to X.
From time to time the geodesic would intersect X. Denote the corresponding points
as x1, x2, . . . . Closing up the corresponding pieces of the geodesic by joining the
starting point x0 and the point xj of j -th return to X with a path going along X we
get a sequence of closed paths defining the cycles c1, c2, . . . . These cycles represent
longer and longer pieces of the geodesic. When the direction of the geodesic is
uniquely ergodic, the limit

lim
N→∞

1

N
cN = c

exists and the corresponding asymptotic cycle c ∈ H1(S; R) does not depend on
the starting point x0 ∈ X. Changing the transverse interval X we get a collinear
asymptotic cycle.

When S is a flat torus glued from a unit square, the asymptotic cycle c is a vector
in H1(T

2; R) = R
2 and its slope is exactly the slope of our flat geodesic in standard

coordinates. When S is a surface of higher genus the asymptotic cycle belongs to
a 2g-dimensional space H1(S; R) = R

2g . Let us study how the cycles cj deviate
from the direction of the asymptotic cycle c. Choose a hyperplane W in H1(S, R)

orthogonal (transversal) to the asymptotic cycle c and consider a parallel projection
to this screen along c. Projections of the cycles cN would not be necessarily bounded:
directions of the cycles cN tend to direction of the asymptotic cycle c provided the
norms of the projections grow sublinearly with respect to N .

Let us observe how the projections are distributed in the screen W . A heuristic
answer is given by Figure 3.

We see that the distribution of projections of the cycles cN in the screen W is
anisotropic: the projections accumulate along some line. This means that in the
original space R

2g the vectors cN deviate from the asymptotic direction L1 spanned
by c not arbitrarily but along some two-dimensional subspace L2 containing L1, see
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z
t

y

v

u x

cN

H1(M; Z) ⊂ H1(M; R) ∼= R
2g

‖cν2
N ‖

‖cν3
N ‖

M2
g

Direction of the
asymptotic cycle

Asymptotic plane L2

Figure 3. Deviation from the asymptotic direction exhibits anisotropic behavior: vectors deviate
mainly along two-dimensional subspace, a bit more along three-dimensional subspace, etc. Their
deviation from a Lagrangian g-dimensional subspace is already uniformly bounded.

Figure 3. Moreover, measuring the norms ‖ proj(cN)‖ of the projections we get

lim sup
N→∞

log ‖ proj(cN)‖
log N

= ν2 < 1.

Thus, the vector cN is located approximately in the two-dimensional plane L2, and
the distance from its endpoint to the line L1 in L2 is at most of the order ‖cN‖ν2 , see
Figure 3.

Consider now a new screen W2 ⊥ L2 orthogonal to the plane L2. Now the
screen W2 has codimension two in H1(S, R) � R

2g . Taking the projections of cN

to W2 along L2 we eliminate the asymptotic directions L1 and L2 and we see how
the vectors cN deviate from L2. On the screen W2 we observe the same picture as in
Figure 3: the projections are again located along a one-dimensional subspace.

Coming back to the ambient spaceH1(S, R) � R
2g , this means that in the first term

of approximation all vectors cN are aligned along the one-dimensional subspace L1
spanned by the asymptotic cycle. In the second term of approximation, they can
deviate from L1, but the deviation occurs mostly in the two-dimensional subspace L2,
and has order ‖cN‖ν2 where ν2 < 1. In the third term of approximation we see that
the vectors cN may deviate from the plane L2, but the deviation occurs mostly in a
three-dimensional space L3 and has order ‖cN‖ν3 where ν3 < ν2.

Going on we get further terms of approximation. However, getting to a sub-
space Lg which has half of the dimension of the ambient space we see that, in there
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is no more deviation from Lg: the distance from any cN to Lg is uniformly bounded.
Note that the intersection form endows the space H1(S, R) � R

2g with a natural
symplectic structure. It can be checked that the resulting g-dimensional subspace Lg

is a Lagrangian subspace for this symplectic form.
A rigorous formulation of phenomena described heuristically in Figure 3 is given

by the theorem below.
By convention we always consider a flat surface together with a choice of direc-

tion which is called the vertical direction, or, sometimes, “direction to the North”.
Using an appropriate homothethy we normalize the area of S to one, so that S ∈
H1(d1, . . . , dm).

We chose a point x0 ∈ S and a horizontal segment X passing through x0; by |X| we
denote the length of X. The interval X is chosen in such way, that the interval exchange
transformation induced by the vertical flow has the minimal possible number n = 2g+
m−1 of subintervals under exchange. (Actually, almost any other choice of X would
also work.) We consider a geodesic ray γ emitted from x0 in the vertical direction.
(If x0 is a saddle point, there are several outgoing vertical geodesic rays; choose any
of them.) Each time when γ intersects X we join the point xN of intersection and the
starting point x0 along X producing a closed path. We denote the homology class of
the corresponding loop by cN .

Let ω be the holomorphic 1-form representing S; let g be genus of S. Choose
some Euclidean metric in H1(S; R) � R

2g which would allow to measure a distance
from a vector to a subspace. Let by convention log(0) = −∞.

Theorem 1. For almost any flat surface S in any stratum H1(d1, . . . , dm) there exists
a flag of subspaces

L1 ⊂ L2 ⊂ · · · ⊂ Lg ⊂ H1(S; R)

in the first homology group of the surface with the following properties.
Choose any starting point x0 ∈ X in the horizontal segment X. Consider the

corresponding sequence c1, c2, . . . of cycles.
– The following limit exists:

|X| lim
N→∞

1

N
cN = c,

where the nonzero asymptotic cycle c ∈ H1(M
2
g ; R) is Poincaré dual to the cohomol-

ogy class of ω0 = Re[ω], and the one-dimensional subspace L1 = 〈c〉R is spanned
by c.

– For any j = 1, . . . , g − 1 one has

lim sup
N→∞

log dist(cN , Lj )

log N
= νj+1

and
dist(cN , Lg) ≤ const,
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where the constant depends only on S and on the choice of the Euclidean structure in
the homology space.

The numbers 2, 1 + ν2, . . . , 1 + νg are the top g Lyapunov exponents of the
Teichmüller geodesic flow on the corresponding connected component of the stra-
tum H(d1, . . . , dm); in particular, they do not depend on the individual generic flat
surface S in the connected component.

It should be stressed, that the theorem above was formulated in [Z3] as a conditional
statement: under the conjecture that νg > 0 there exist a Lagrangian subspace Lg

such that the cycles are in a bounded distance from Lg; under the further conjecture
that all the exponents νj , for j = 2, . . . , g, are distinct, there is a complete Lagrangian
flag (i.e. the dimensions of the subspaces Lj , where j = 1, 2, . . . , g, rise each time
by one). These two conjectures were later proved by G. Forni [Fo1] and by A. Avila
and M. Viana [AvVi] correspondingly.

Currently there are no methods of calculation of individual Lyapunov exponents νj
(though there is some experimental knowledge of their approximate values). Never-
theless, for any connected component of any stratum (and, more generally, for any
GL+(2; R)-invariant suborbifold) it is possible to evaluate the sum of the Lyapunov
exponents ν1+· · ·+νg , where g is the genus. The formula for this sum was discovered
by M. Kontsevich; morally, it is given in terms of characteristic numbers of some nat-
ural vector bundles over the strata H(d1, . . . , dm), see [K]. Another interpretation of
this formula was found by G. Forni [Fo1]; see also a very nice formalization of these
results in the survey of R. Krikorian [Kr]. For some special GL+(2; R)-invariant
suborbifolds the corresponding vector bundles might have equivariant subbundles,
which provides additional information on corresponding subcollections of the Lya-
punov exponents, or even gives their explicit values in some cases, like in the case of
Teichmüller curves considered in the paper of I. Bouw and M. Möller [BMö].

Theorem 1 illustrates a phenomenon of deviation spectrum. It was proved by
G. Forni in [Fo1] that ergodic sums of smooth functions on an interval along tra-
jectories of interval exchange transformations, and ergodic integrals of smooth func-
tions on flat surfaces along trajectories of directional flows have deviation spectrum
analogous to the one described in Theorem 1. L. Flaminio and G. Forni showed that
the same phenomenon can be observed for other parabolic dynamical systems, for
example, for the horocycle flow on compact surfaces of constant negative curva-
ture [FlFo].

Idea of the proof: renormalization. The reason why the deviation of the cycles cj
from the asymptotic direction is governed by the Teichmüller geodesic flow is illus-
trated in Figure 4. In a sense, we follow the initial ideas of H. Masur [M1] and of
W. Veech [V1].

Fix a horizontal segment X and emit a vertical trajectory from some point x

in X. When the trajectory intersects X for the first time join the corresponding point
T (x) to the original point x along X to obtain a closed loop. Here T : X → X
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denotes the first return map to the transversal X induced by the vertical flow. Denote
by c(x) the corresponding cycle in H1(S; Z). Let the interval exchange transformation
T : X → X decompose X into n subintervals X1 � · · · � Xn. It is easy to see that
the “first return cycle” c(x) is piecewise constant: we have c(x) = c(x′) =: c(Xj )

whenever x and x′ belong to the same subinterval Xj , see Figure 4. It is easy to see
that

cN(x) = c(x) + c(T (x)) + · · · + c(T N−1(x)).

The average of this sum with respect to the “time”N tends to the asymptotic cycle c.
We need to study the deviation of this sum from the value N · c. To do this consider
a shorter subinterval X′ as in Figure 4. Its length is chosen in such way, that the
first return map of the vertical flow again induces an interval exchange transformation
T ′ : X′ → X′ of n subintervals. New first return cycles c′(X′

k) to the interval X′
are expressed in terms of the initial first return cycles c(Xj ) by the linear relations
below; the lengths |X′

k| of subintervals of the new partition X′ = X′
1 � · · · � X′

m are
expressed in terms of the lengths |Xj | of subintervals of the initial partition by dual
linear relations:

c′(X′
k) =

n∑
j=1

Ajk · c(Xj ), |Xj | =
n∑

k=1

Ajk · |X′
k|,

where a nonnegative integer matrix Ajk is completely determined by the initial interval
exchange transformation T : X → X and by the choice of X′ ⊂ X.

To construct the cycle cN representing a long piece of leaf of the vertical foliation
we followed the trajectory x, T (x), . . . , T N−1(x) of the initial interval exchange
transformation T : X → X and computed the corresponding ergodic sum. Passing
to a shorter horizontal interval X′ ⊂ X we can follow the trajectory x, T ′(x), . . . ,

(T ′)N ′−1(x) of the new interval exchange transformation T ′ : X′ → X′ (provided
x ∈ X′). Since the subinterval X′ is shorter than X we cover the initial piece of
trajectory of the vertical flow in a smaller number N ′ of steps. In other words,
passing from T to T ′ we accelerate the time: it is easy to see that the trajectory
x, T ′(x), . . . , (T ′)N ′−1(x) follows the trajectory x, T (x), . . . , T N−1(x) but jumps
over several iterations of T at a time.

This approach would not be efficient if the new first return map T ′ : X′ → X′
would be more complicated than the initial one. But we know that passing from T

to T ′ we stay within a family of interval exchange transformations of some fixed
number n of subintervals, and, moreover, that the new “first return cycles” c′(X′

k) and
the lengths |X′

k| of the new subintervals are expressed in terms of the initial ones by
means of the n×n-matrix A, which depends only on the choice of X′ ⊂ X and which
can be easily computed.

Our strategy can be now formulated as follows. One can define an explicit algo-
rithm (generalizing Euclidean algorithm) which canonically associates to an interval
exchange transformation T : X → X some specific subinterval X′ ⊂ X and, hence,
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(
et0 0
0 e−t0

)

a)

b) c)

︸ ︷︷ ︸
X′

�v1

�v2
�v3

�v4

�v4

�v3
�v2

�v1

Figure 4. Idea of renormalization. a) Unwrap the flat surface into “zippered rectangles”.
b) Shorten the base of the corresponding zippered rectangles. c) Expand the resulting tall
and narrow zippered rectangle horizontally and contract it vertically by same factor et0 .
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a new interval exchange transformation T ′ : X′ → X′. Similarly to the Euclidean al-
gorithm our algorithm is invariant under proportional rescaling of X and X′, so, when
we find it convenient, we can always rescale the length of the interval to one. This
algorithm can be considered as a map T from the space of all interval exchange trans-
formations of a given number n of subintervals to itself. Applying recursively this al-
gorithm we construct a sequence of subintervals X = X(0) ⊃ X(1) ⊃ X(2) ⊃ · · · and
a sequence of matrices A = A(T (0)), A(T (1)), . . . describing transitions form inter-
val exchange transformation T (r) : X(r) → X(r) to interval exchange transformation
T (r+1) : X(r+1) → X(r+1). Taking a product A(s) = A(T (0)) · A(T (1)) . . . A(T (s−1))

we can immediately express the “first return cycles” to a microscopic subinterval X(s)

in terms of the initial “first return cycles” to X. Considering now the matrices A

as the values of a matrix-valued function on the space of interval exchange trans-
formations, we realize that we study the products of matrices A along the orbits
T (0), T (1), . . . , T (s−1) of the map on the space of interval exchange transformations.
When the map is ergodic with respect to a finite measure, the properties of these
products are described by the Oseledets theorem, and the cycles cN have a devia-
tion spectrum governed by the Lyapunov exponents of the cocycle A on the space of
interval exchange transformations.

Note that the first return cycle to the subinterval X(s) (which is very short) rep-
resents the cycle cN corresponding to a very long trajectory x, T (x), . . . , T N−1(x)

of the initial interval exchange transformation. In other words, our renormalization
procedure T plays a role of a time acceleration machine: morally, instead of getting
the cycle cN by following a trajectory x, T (x), . . . , T N−1(x) of the initial interval
exchange transformation for the exponential time N ∼ exp(const · s) we obtain the
cycle cN applying only s steps of the renormalization map T on the space of interval
exchange transformations.

It remains to establish the relation between the cocycle A over the map T and the
Teichmüller geodesic flow. Conceptually, this relation was elaborated in the original
paper of W. Veech [V1].

First let us discuss how can one “almost canonically” (that is up to a finite ambi-
guity) choose a zippered rectangles representation of a flat surface. Note that Figure 4
suggests the way which allows to obtain infinitely many zippered rectangles repre-
sentations of the same flat surface: we chop an appropriate rectangle on the right,
put it atop the corresponding rectangle and then repeat the procedure recursively.
This resembles the situation with a representation of a flat torus by a parallelogram:
a point of the fundamental domain in Figure 2 provides a canonical representative
though any point of the corresponding SL(2, Z)-orbit represents the same flat torus. A
“canonical” zippered rectangles decomposition of a flat surface also belongs to some
fundamental domain. Following W. Veech one can define the fundamental domain
in terms of some specific choice of a “canonical” horizontal interval X. Namely, let
us position the left endpoint of X at a conical singularity. Let us choose the length
of X in such way that the interval exchange transformation T : X → X induced by
the first return of the vertical flow to X has minimal possible number n = 2g +m− 1
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of subintervals under exchange. Among all such horizontal segments X choose the
shortest one, which length is greater than or equal to one. This construction is appli-
cable to almost all flat surfaces; the finite ambiguity corresponds to the finite freedom
in the choice of the conical singularity and in the choice of the horizontal ray adjacent
to it.

Since the interval X defines a decomposition of (almost any) flat surface into
“zippered rectangles” (see Figure 4) we can pass from the space of flat surfaces
to the space of zippered rectangles (which can be considered as a finite ramified
covering over the space of flat surfaces). Teichmüller geodesic flow lifts naturally
to the space of zippered rectangles. It acts on zippered rectangles by expansion in
horizontal direction and contraction in vertical direction; i.e. the zippered rectangles

are modified by linear transformations
(

et 0
0 e−t

)
. However, as soon as the Teichmüller

geodesic flow brings us out of the fundamental domain, we have to modify the zippered
rectangles decomposition to the “canonical one” corresponding to the fundamental
domain. (Compare to Figure 2 where the Teichmüller geodesic flow corresponds to
the standard geodesic flow in the hyperbolic metric on the upper half-plane.) The
corresponding modification of zippered rectangles (chop an appropriate rectangle on
the right, put it atop the corresponding rectangle; repeat the procedure several times,
if necessary) is illustrated in Figure 4.

Now everything is ready to establish the relation between the Teichmüller geodesic
flow and the map T on the space of interval exchange transformations.

Consider some codimension one subspace ϒ in the space of zippered rectangles
transversal to the Teichmüller geodesic flow. Say, ϒ might be defined by the re-
quirement that the base X of the zippered rectangles decomposition has length one,
|X| = 1. This is the choice in the original paper of W. Veech [V1]; under this choice ϒ

represents part of the boundary of the fundamental domain in the space of zippered
rectangles. Teichmüller geodesic flow defines the first return map S : ϒ → ϒ to the
section ϒ . The map S can be described as follows. Take a flat surface of unit area
decomposed into zippered rectangles Z with the base X of length one. Apply expan-
sion in horizontal direction and contraction in vertical direction. For some t0(Z) the
deformed zippered rectangles can be rearranged as in Figure 4 to get back to the base
of length one; the result is the image of the map S. Actually, we can first apply the
rearrangement as in Figure 4 to the initial zippered rectangles Z and then apply the

transformation
(

et0 0
0 e−t0

)
– the two operations commute. This gives, in particular, an

explicit formula for t0(Z). Namely let |Xn| be the width of the rightmost rectangle
and let |Xk| be the width of the rectangle, which top horizontal side is glued to the
rightmost position at the base X. (For the upper zippered rectangle decomposition in
Figure 4 we have n = 4 and k = 2.) Then

t0 = − log
(
1 − min(|Xn|, |Xk|)

)
.

Recall that a decomposition of a flat surface into zippered rectangles naturally
defines an interval exchange transformation – the first return map of the vertical flow
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to the base X of zippered rectangles. Hence, the map S of the subspace ϒ of zippered
rectangles defines an induced map on the space of interval exchange transformations.
It remains to note that this induced map is exactly the map T . In other words, the
map S : ϒ → ϒ induced by the first return of the Teichmüller geodesic flow to the
subspace ϒ of zippered rectangles is the suspension of the map T on the space of
interval exchange transformations.

We complete with a remark concerning the choice of a section. The natural
section ϒ chosen in the original paper of W. Veech [V1] is in a sense too large:
the corresponding invariant measure (induced from the measure on the space of flat
surfaces) is infinite. Choosing an appropriate subset ϒ ′ ⊂ ϒ one can get finite
invariant measure. Moreover, the subset ϒ ′ can be chosen in such way that the
corresponding first return map S′ : ϒ ′ → ϒ ′ of the Teichmüller geodesic flow is a
suspension of some natural map G on the space of interval exchange transformations,
see [Z1]. According to the results of H. Masur [M1] andW.Veech [V1] the Teichmüller
geodesic flow is ergodic which implies ergodicity of the maps S′ and G. To apply
Oseledets theorem one should, actually, consider the induced cocycle B over this new
map G instead of the cocycle A over the map T described above.

2. Closed geodesics on flat surfaces

Consider a flat surface S; we always assume that the flat metric on S has trivial
holonomy, and that the surface S has finite number of cone-type singularities. By
convention a flat surface is endowed with a choice of direction, refereed to as a
“vertical direction”, or as a “direction to the North”. Since the flat metric has trivial
holonomy, this direction can be transported in a unique way to any point of the surface.

A geodesic segment joining two conical singularities and having no conical points
in its interior is called saddle connection. The case when boundaries of a saddle
connection coincide is not excluded: a saddle connection might join a conical point
to itself. In this section we study saddle connections and closed regular geodesics on
a generic flat surface S of genus g ≥ 2. In particular, we count them and we explain
the following curious phenomenon: saddle connections and closed regular geodesics
often appear in pairs, triples, etc of parallel saddle connections (correspondingly
closed regular geodesics) of the same direction and length. When all saddle con-
nections (closed regular geodesics) in such configuration are short the corresponding
flat surface is almost degenerate; it is located close to the boundary of the moduli
space. A description of possible configurations of parallel saddle connections (closed
geodesics) gives us a description of the multidimensional “cusps” of the strata.

The results of this section are based on the joint work with A. Eskin and H. Ma-
sur [EMZ] and on their work [MZ]. A series of beautiful results developing the
counting problems considered here were recently obtained by Ya. Vorobets [Vo].
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Counting closed geodesics and saddle connections. Closed geodesics on flat sur-
faces of higher genera have some similarities with ones on the torus. Suppose that we
have a regular closed geodesic passing through a point x0 ∈ S. Emitting a geodesic
from a nearby point x in the same direction we obtain a parallel closed geodesic of the
same length as the initial one. Thus, closed geodesics appear in families of parallel
closed geodesics. However, in the torus case every such family fills the entire torus
while a family of parallel regular closed geodesics on a flat surfaces of higher genus
fills only part of the surface. Namely, it fills a flat cylinder having a conical singularity
on each of its boundaries. Typically, a maximal cylinder of closed regular geodesics is
bounded by a pair of closed saddle connections. Reciprocally, any saddle connection
joining a conical point P to itself and coming back to P at the angle π bounds a
cylinder filled with closed regular geodesics.

A geodesic representative of a homotopy class of a curve on a flat surface is realized
in general by a broken line of geodesic segments with vertices at conical points. By
convention we consider only closed regular geodesics (which by definition do not
pass through conical points) or saddle connections (which by definition do not have
conical points in its interior). Everywhere in this section we normalize the area of a
flat surface to one.

Let Nsc(S, L) be the number of saddle connections of length at most L on a flat
surface S. Let Ncg(S, L) be the number of maximal cylinders filled with closed
regular geodesics of length at most L on S. It was proved by H. Masur that for any
flat surface S both counting functions N(S, L) grow quadratically in L. Namely,
there exist constants 0 < const1(S) < const2(S) < ∞ such that

const1(S) ≤ N(S, L)/L2 ≤ const2(S)

for L sufficiently large. Recently Ya. Vorobets has obtained uniform estimates for the
constants const1(S) and const2(S) which depend only on the genus of S, see [Vo].
Passing from all flat surfaces to almost all surfaces in a given connected component
of a given stratum one gets a much more precise result, see [EM]:

Theorem (A. Eskin and H. Masur). For almost all flat surfaces S in any stratum
H(d1, . . . , dm) the counting functions Nsc(S, L) and Ncg(S, L) have exact quadratic
asymptotics

lim
L→∞

Nsc(S, L)

πL2 = csc(S), lim
L→∞

Ncg(S, L)

πL2 = ccg(S).

Moreover, the Siegel–Veech constants csc(S) (correspondingly ccg(S)) coincide for
almost all flat surfaces S in each connected component H

comp
1 (d1, . . . , dm) of the

stratum.

Phenomenon of higher multiplicities. Note that the direction to the North is well-
defined even at a conical point of a flat surface, moreover, at a conical point P1 with



136 Anton Zorich

a cone angle 2πk we have k different directions to the North! Consider some saddle
connection γ1 = [P1P2] with an endpoint at P1. Memorize its direction, say, let it be
the North–West direction. Let us launch a geodesic from the same starting point P1
in one of the remaining k − 1 North–West directions. Let us study how big is the
chance to hit P2 ones again, and how big is the chance to hit it after passing the same
distance as before. We do not exclude the case P1 = P2. Intuitively it is clear that
the answer to the first question is: “the chances are low” and to the second one is “the
chances are even lower”. This makes the following theorem (see [EMZ]) somehow
counterintuitive:

Theorem 2 (A. Eskin, H. Masur, A. Zorich). For almost any flat surface S in any
stratum and for any pair P1, P2 of conical singularities on S the function N2(S, L)

counting the number of pairs of parallel saddle connections of the same length join-
ing P1 to P2 has exact quadratic asymptotics

lim
L→∞

N2(S, L)

πL2 = c2 > 0,

where the Siegel–Veech constant c2 depends only on the connected component of the
stratum and on the cone angles at P1 and P2.

For almost all flat surfaces S in any stratum one cannot find neither a single pair
of parallel saddle connections on S of different length, nor a single pair of parallel
saddle connections joining different pairs of singularities.

Analogous statements (with some reservations for specific connected components
of certain strata) can be formulated for arrangements of 3, 4, . . . parallel saddle con-
nections. The situation with closed regular geodesics is similar: they might appear
(also with some exceptions for specific connected components of certain strata) in
families of 2, 3, . . . , g − 1 distinct maximal cylinders filled with parallel closed reg-
ular geodesics of equal length. A general formula for the Siegel–Veech constant in
the corresponding quadratic asymptotics is presented at the end of this section, while
here we want to discuss the numerical values of Siegel–Veech constants in a simple
concrete example. We consider the principal strata H(1, . . . , 1) in small genera. Let
Nk cyl(S, L) be the corresponding counting function, where k is the number of dis-
tinct maximal cylinders filled with parallel closed regular geodesics of equal length
bounded by L. Let

ck cyl = lim
L→∞

Nk cyl(S, L)

πL2 .

The table below (extracted from [EMZ]) presents the values of ck cyl for g = 1, . . . , 4.
Note that for a generic flat surface S of genus g a configuration of k ≥ g cylinders is
not realizable, so we do not fill the corresponding entry.
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k g = 1 g = 2 g = 3 g = 4

1
1

2
· 1

ζ(2)
≈ 0.304

5

2
· 1

ζ(2)
≈ 1.52

36

7
· 1

ζ(2)
≈ 3.13

3150

377
· 1

ζ(2)
≈ 5.08

2 − − 3

14
· 1

ζ(2)
≈ 0.13

90

377
· 1

ζ(2)
≈ 0.145

3 − − − 5

754
· 1

ζ(2)
≈ 0.00403

Comparing these values we see, that our intuition was not quite misleading.
Morally, in genus g = 4 a closed regular geodesic belongs to a one-cylinder fam-
ily with “probability” 97.1%, to a two-cylinder family with “probability” 2.8% and
to a three-cylinder family with “probability” only 0.1% (where “probabilities” are
calculated proportionally to the Siegel–Veech constants 5.08 : 0.145 : 0.00403).

Rigid configurations of saddle connections and “cusps” of the strata. A saddle
connection or a regular closed geodesic on a flat surface S persists under small defor-
mations of S inside the corresponding stratum. It might happen that any deformation
of a given flat surface which shortens some specific saddle connection necessarily
shortens some other saddle connections. We say that a collection {γ1, . . . , γn} of
saddle connections is rigid if any sufficiently small deformation of the flat surface
inside the stratum preserves the proportions |γ1| : |γ2| : · · · : |γn| of the lengths of all
saddle connections in the collection. It was shown in [EMZ] that all saddle connec-
tions in any rigid collection are homologous. Since their directions and lengths can
be expressed in terms of integrals of the holomorphic 1-form ω along corresponding
paths, this implies that homologous saddle connections γ1, . . . , γn are parallel and
have equal length and either all of them join the same pair of distinct singular points,
or all γi are closed loops.

This implies that when saddle connections in a rigid collection are contracted
by a continuous deformation, the limiting flat surface generically decomposes into
several connected components represented by nondegenerate flat surfaces S′

1, . . . , S
′
k ,

see Figure 5, where k might vary from one to the genus of the initial surface. Let the
initial surface S belong to a stratum H(d1, . . . , dm). Denote the set with multiplicities
{d1, . . . , dm} by β. Let H(β ′

j ) be the stratum ambient for S′
j . The stratum H(β ′) =

H(β ′
1) � · · · � H(β ′

k) of disconnected flat surfaces S′
1 � · · · � S′

k is referred to as
a principal boundary stratum of the stratum H(β). For any connected component
of any stratum H(β) the paper [EMZ] describes all principal boundary strata; their
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S′
3

S′
2

S′
1

S3
S2

S1

S3
S2

γ1γ2

γ3

Figure 5. Multiple homologous saddle connections, topological picture (after [EMZ]).

union is called the principal boundary of the corresponding connected component
of H(β).

The paper [EMZ] also presents the inverse construction. Consider any flat surface
S′

1 �· · ·�S′
k ∈ H(β ′) in the principal boundary of H(β); consider a sufficiently small

value of a complex parameter ε ∈ C. One can reconstruct the flat surface S ∈ H(β)

endowed with a collection of homologous saddle connections γ1, . . . , γn such that∫
γi

ω = ε, and such that degeneration of S contracting the saddle connections γi in the
collection gives the surface S′

1 � · · · � S′
k . This inverse construction involves several

surgeries of the flat structure. Having a disconnected flat surface S′
1 � · · · � S′

k one
applies an appropriate surgery to each S′

j producing a surface Sj with boundary. The
surgery depends on the parameter ε: the boundary of each Sj is composed from two
geodesic segments of lengths |ε|; moreover, the boundary components of Sj and Sj+1
are compatible, which allows to glue the compound surface S from the collection of
surfaces with boundary, see Figure 5 as an example.

A collection γ = {γ1, . . . , γn} of homologous saddle connections determines the
following data on combinatorial geometry of the decomposition S \ γ : the number
of components, their boundary structure, the singularity data for each component, the
cyclic order in which the components are glued to each other. These data are referred
to as a configuration of homologous saddle connections. A configuration C uniquely
determines the corresponding boundary stratum H(β ′

C); it does not depend on the
collection γ of homologous saddle connections representing the configuration C.

The constructions above explain how configurations C of homologous saddle
connections on flat surfaces S ∈ H(β) determine the “cusps” of the stratum H(β).
Consider a subset Hε

1 (β) ⊂ H(β) of surfaces of area one having a saddle connec-
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tion shorter than ε. Up to a subset Hε,thin
1 (β) of negligibly small measure the set

Hε,thick
1 (β) = Hε

1 (β) \ Hε,thin
1 (β) might be represented as a disjoint union

Hε,thick
1 (β) ≈

⊔
C

Hε
1 (C)

of neighborhoods Hε
1 (C) of the corresponding “cusps” C. Here C runs over a finite

set of configurations admissible for the given stratum H1(β); this set is explicitly
described in [EMZ].

When a configuration C is composed from homologous saddle connections joining
distinct zeroes, the neighborhood Hε

1 (C) of the cusp C has the structure of a fiber
bundle over the corresponding boundary stratum H(β ′

C) (up to a difference in a set
of a negligibly small measure). A fiber of this bundle is represented by a finite cover
over the Euclidean disc of radius ε ramified at the center of the disc. Moreover, the
canonical measure in Hε

1 (C) decomposes into a product measure of the canonical
measure in the boundary stratum H(β ′

C) and the Euclidean measure in the fiber
(see [EMZ]), so

Vol
(
Hε

1 (C)
) = (combinatorial factor) · πε2 ·

k∏
j=1

Vol H1(β
′
j ) + o(ε2). (1)

Remark. We warn the reader that the correspondence between compactification of
the moduli space of Abelian differentials and the Deligne–Mumford compactification
of the underlying moduli space of curves is not straightforward. In particular, the
desingularized stable curve corresponding to the limiting flat surface generically is
not represented as a union of Riemann surfaces corresponding to S′

1, . . . , S
′
k – the

stable curve might contain more components.

Evaluation of the Siegel–Veech constants. Consider a flat surface S. To every
closed regular geodesic γ on S we can associate a vector �v(γ ) in R

2 having the length
and the direction ofγ . In other words, �v = ∫

γ
ω, where we consider a complex number

as a vector in R
2 � C. Applying this construction to all closed regular geodesic on S

we construct a discrete set V (S) ⊂ R
2. Consider the following operator f �→ f̂

from functions with compact support on R
2 to functions on a connected component

H
comp
1 (β) of the stratum H1(β) = H1(d1, . . . , dm):

f̂ (S) :=
∑

�v∈V (S)

f (�v).

Function f̂ (S) generalizes the counting function Ncg(S, L) introduced in the begin-
ning of this section. Namely, when f = χL is the characteristic function χL of the
disc of radius L with the center at the origin of R

2, the function χ̂L(S) counts the
number of regular closed geodesics of length at most L on a flat surface S.
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Theorem (W. Veech). For any function f : R
2 → R with compact support the fol-

lowing equality is valid:

1

Vol Hcomp
1 (β)

∫
H

comp
1 (β)

f̂ (S) dν1 = C

∫
R2

f (x, y) dx dy, (2)

where the constant C does not depend on the function f .

Note that this is an exact equality. In particular, choosing the characteristic func-
tion χL of a disc of radius L as a function f we see that for any positive L the average
number of closed regular geodesics not longer than L on flat surfaces S ∈ H

comp
1 (β)

is exactly C · πL2, where the Siegel–Veech constant C does not depend on L, but
only on the connected component H

comp
1 (β).

The theorem of Eskin and Masur cited above tells that for large values of L one
gets approximate equality χ̂L(S) ≈ ccg · πL2 “pointwisely” for almost all individual
flat surfaces S ∈ H

comp
1 (d1, . . . , dm). It is proved in [EM] that the corresponding

Siegel–Veech constant ccg coincides with the constant C in equation (2) above.
Actually, the same technique can be applied to count separately pairs, triples, or

any other specific configurations C of homologous saddle connections. Every time
when we find a collection of homologous saddle connections γ1, . . . , γn representing
the chosen configuration C we construct a vector �v = ∫

γi
ω. Since all γ1, . . . , γn

are homologous, we can take any of them as γi . Taking all possible collections
of homologous saddle connections on S representing the fixed configuration C we
construct new discrete set VC(S) ⊂ R

2 and new functional f �→ f̂C . Theorem
of Eskin and Masur and theorem of Veech [V4] presented above are valid for f̂C .
The corresponding Siegel–Veech constant c(C) responsible for the quadratic growth
rate NC(S, L) ∼ c(C) · πL2 of the number of collections of homologous saddle
connections of the type C on an individual generic flat surface S coincides with the
constant C(C) in the expression analogous to (2).

Formula (2) can be applied to χ̂L for any value of L. In particular, instead of taking
large L we can choose a very small L = ε � 1. The corresponding function χ̂ε(S)

counts how many collections of parallel ε-short saddle connections (closed geodesics)
of the type C we can find on a flat surface S ∈ H

comp
1 (β). For the flat surfaces S

outside of the subset Hε
1 (C) ⊂ H

comp
1 (β) there are no such saddle connections (closed

geodesics), so χ̂ε(S) = 0. For surfaces S from the subset Hε,thick
1 (C) there is exactly

one collection like this, χ̂ε(S) = 1. Finally, for the surfaces from the remaining (very
small) subset Hε,thin

1 (C) = Hε
1 (C) \ Hε,thick

1 (C) one has χ̂ε(S) ≥ 1. Eskin and
Masur have proved in [EM] that though χ̂ε(S) might be large on Hε,thin

1 the measure
of this subset is so small (see [MS]) that

∫
Hε,thin

1 (C)

χ̂ε(S) dν1 = o(ε2)
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and hence ∫
H

comp
1 (β)

χ̂ε(S) dν1 = Vol Hε,thick
1 (C) + o(ε2).

This latter volume is almost the same as the volume Vol Hε
1 (C) of the neighborhood of

the cusp C evaluated in equation (1) above, namely, Vol Hε,thick
1 (C) = Vol Hε

1 (C) +
o(ε2) (see [MS]). Taking into consideration that∫

R2
χε(x, y) dx dy = πε2

and applying the Siegel–Veech formula (2) to χε we finally get

Vol Hε
1 (C)

Vol Hcomp
1 (d1, . . . , dm)

+ o(ε2) = c(C) · πε2

which implies the following formula for the Siegel–Veech constant c(C):

c(C) = lim
ε→0

1

πε2

Vol(“ε-neighborhood of the cusp C ”)

Vol Hcomp
1 (β)

= (explicit combinatorial factor) ·
∏k

j=1 Vol H1(β
′
k)

Vol Hcomp
1 (β)

.

Sums of the Lyapunov exponents ν1 + · · · + νg discussed in Section 1 are closely
related to the Siegel–Veech constants.

3. Ergodic components of the Teichmüller flow

According to the theorems of H. Masur [M1] and of W. Veech [V1] Teichmüller
geodesic flow is ergodic on every connected component of every stratum of flat sur-
faces. Thus, the Lyapunov exponents 1+νj of the Teichmüller geodesic flow respon-
sible for the deviation spectrum of generic geodesics on a flat surface (see Section 1),
or Siegel–Veech constants responsible for counting of closed geodesics on a flat sur-
face (see Section 2) are specific for each connected component of each stratum. The
fact that the strata H1(d1, . . . , dm) are not necessarily connected was observed by
W. Veech.

In order to formulate the classification theorem for connected components of the
strata H(d1, . . . , dm) we need to describe the classifying invariants. There are two
of them: spin structure and hyperellipticity. Both notions are applicable only to part
of the strata: flat surfaces from the strata H(2d1, . . . , 2dm) have even or odd spin
structure. The strata H(2g − 2) and H(g − 1, g − 1) have a special hyperelliptic
connected component.

The results of this section are based on the joint work with M. Kontsevich [KZ].
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Spin structure. Consider a flat surface S from a stratum H(2d1, . . . , 2dm). Let
ρ : S1 → S be a smooth closed path on S; here S1 is a standard circle. Note that at
any point of the surfaces S we know where is the “direction to the North”. Hence,
at any point ρ(t) = x ∈ S we can apply a compass and measure the direction of
the tangent vector ẋ. Moving along our path ρ(t) we make the tangent vector turn
in the compass. Thus we get a map G(ρ) : S1 → S1 from the parameter circle to
the circumference of the compass. This map is called the Gauss map. We define the
index ind(ρ) of the path ρ as a degree of the corresponding Gauss map (or, in other
words as the algebraic number of turns of the tangent vector around the compass)
taken modulo 2.

ind(ρ) = deg G(ρ) mod 2.

It is easy to see that ind(ρ) does not depend on parameterization. Moreover, it
does not change under small deformations of the path. Deforming the path more
drastically we may change its position with respect to conical singularities of the flat
metric. Say, the initial path might go on the left of Pk and its deformation might pass
on the right of Pk . This deformation changes the deg G(ρ). However, if the cone
angle at Pk is of the type 2π(2dk + 1), then deg G(ρ) mod 2 does not change! This
observation explains why ind(ρ) is well-defined for a free homotopy class [ρ] when
S ∈ H(2d1, . . . , 2dm) (and hence, when all cone angles are odd multiples of 2π ).

Consider a collection of closed smooth paths a1, b1, . . . , ag, bg representing a
symplectic basis of homology H1(S, Z/2Z). We define the parity of the spin-structure
of a flat surface S ∈ H(2d1, . . . , 2dm) as

φ(S) =
g∑

i=1

(ind(ai) + 1) (ind(bi) + 1) mod 2.

Lemma. The value φ(S) does not depend on symplectic basis of cycles {ai, bi}. It
does not change under continuous deformations of S in H(2d1, . . . , 2dm).

The lemma above shows that the parity of the spin structure is an invariant of con-
nected components of strata of those Abelian differentials (equivalently, flat surfaces)
which have zeroes of even degrees (equivalently, conical points with cone angles
which are odd multiples of 2π ).

Hyperellipticity. A flat surface S may have a symmetry; one specific family of such
flat surfaces, which are “more symmetric than others” is of a special interest for us.
Recall that there is a one-to-one correspondence between flat surfaces and pairs (Rie-
mann surface M , holomorphic 1-form ω). When the corresponding Riemann surface
is hyperelliptic the hyperelliptic involution τ : M → M acts on any holomorphic
1-form ω as τ ∗ω = −ω.

We say that a flat surface S is a hyperelliptic flat surface if there is an isometry
τ : S → S such that τ is an involution, τ � τ = id, and the quotient surface S/τ
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is a topological sphere. In flat coordinates differential of such involution obviously
satisfies Dτ = − Id.

In a general stratum H(d1, . . . , dm) hyperelliptic flat surfaces form a small sub-
space of nontrivial codimension. However, there are two special strata, namely,
H(2g−2) and H(g−1, g−1), for which hyperelliptic surfaces form entire hyperel-
liptic connected components Hhyp(2g − 2) and Hhyp(g − 1, g − 1) correspondingly.

Remark. Note that in the stratum H(g−1, g−1) there are hyperelliptic flat surfaces
of two different types. A hyperelliptic involution τS → S may fix the conical points
or might interchange them. It is not difficult to show that for flat surfaces from the
connected component Hhyp(g − 1, g − 1) the hyperelliptic involution interchanges
the conical singularities.

The remaining family of those hyperelliptic flat surfaces in H(g − 1, g − 1), for
which the hyperelliptic involution keeps the saddle points fixed, forms a subspace of
nontrivial codimension in the complement H(g − 1, g − 1) \ Hhyp(g − 1, g − 1).
Thus, the hyperelliptic connected component Hhyp(g − 1, g − 1) does not coincide
with the space of all hyperelliptic flat surfaces.

Classification theorem forAbelian differentials. Now, having introduced the clas-
sifying invariants we can present the classification of connected components of strata
of flat surfaces (equivalently, of strata of Abelian differentials).

Theorem 3 (M. Kontsevich and A. Zorich). All connected components of any stratum
of flat surfaces of genus g ≥ 4 are described by the following list:

– The stratum H(2g − 2) has three connected components: the hyperelliptic
one, Hhyp(2g − 2), and two nonhyperelliptic components: Heven(2g − 2) and
Hodd(2g − 2) corresponding to even and odd spin structures.

– The stratum H(2d, 2d), d ≥ 2 has three connected components: the hyperel-
liptic one, Hhyp(2d, 2d), and two nonhyperelliptic components: Heven(2d, 2d)

and Hodd(2d, 2d).

– All the other strata of the form H(2d1, . . . , 2dm) have two connected compo-
nents: Heven(2d1, . . . , 2dm) and Hodd(2d1, . . . , 2dn), corresponding to even
and odd spin structures.

– The stratum H(2d −1, 2d −1), d ≥ 2, has two connected components; one of
them: Hhyp(2d −1, 2d −1) is hyperelliptic; the other Hnonhyp(2d −1, 2d −1)

is not.

All the other strata of flat surfaces of genera g ≥ 4 are nonempty and connected.

In the case of small genera 1 ≤ g ≤ 3 some components are missing in comparison
with the general case.
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Theorem 3′. The moduli space of flat surfaces of genus g = 2 contains two strata:
H(1, 1) and H(2). Each of them is connected and coincides with its hyperelliptic
component.

Each of the strata H(2, 2), H(4) of the moduli space of flat surfaces of genus
g = 3 has two connected components: the hyperelliptic one, and one having odd spin
structure. The other strata are connected for genus g = 3.

Since there is a one-to-one correspondence between connected components of the
strata and extended Rauzy classes, the classification theorem above classifies also the
extended Rauzy classes.

Connected components of the strata Q(d1, . . . , dm) of meromorphic quadratic
differentials with at most simple poles are classified in the paper of E. Lanneau [L].

Bibliographical notes. As a much more serious accessible introduction to Teich-
müller dynamics I can recommend a collection of surveys of A. Eskin [E], G. Forni
[Fo2], P. Hubert and T. Schmidt [HSc] and H. Masur [M2], organized as a chapter of
the Handbook of Dynamical Systems. I also recommend recent surveys of H. Masur
and S. Tabachnikov [MT] and of J. Smillie [S] especially in the aspects related to
billiards in polygons. The part concerning renormalization and interval exchange
transformations is presented in the survey of J.-C. Yoccoz [Y]. The ideas presented
in the current paper are illustrated in more detailed way in the survey [Z4].
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obtained in collaboration. I use this opportunity to thank A. Eskin, M. Kontsevich
and H. Masur for the pleasure to work with them. I am grateful to M.-C. Vergne for
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Asymptotic behavior of smooth solutions for partially dissi-
pative hyperbolic systems and relaxation approximation

Stefano Bianchini

Abstract. We study two problems related to hyperbolic systems with a dissipative source.
In the first part, we consider the asymptotic time behavior of global smooth solutions to

general entropy dissipative hyperbolic systems of balance law in m space dimensions, under
a coupling condition among hyperbolic and dissipative part known as the Shizuta–Kawashima
condition. Under the assumption of small initial data, these solutions approach constant equi-

librium state in the Lp-norm at a rate O
(
t
−m

2 (1− 1
p
)), as t → ∞, for p ∈ [min {m, 2},∞]. The

main tool is given by a detailed analysis of the Green function for the linearized problem. If the
space dimension m = 1 or the system is rotational invariant, it is possible to give an explicit
form to the main terms in the Green kernel.

In the second part, we consider the hyperbolic limit of special systems of balance laws:
this means to study the limit of the solution to a system of balance laws under the rescaling
(t, x) �→ (t/ε, x/ε), as ε → 0. For some special dissipative systems in one space dimension,
it is possible to prove the existence of the limit and to identify it as a solution to a system of
conservation laws.

Mathematics Subject Classification (2000). 35L65.

Keywords. Dissipative hyperbolic systems, large time behavior, convex entropy functions,
relaxation systems, Shizuta–Kawashima condition, BGK models.

1. Asymptotic behavior of smooth solutions to balance laws

We consider the Cauchy problem for a general hyperbolic symmetrizable m-dimen-
sional system of balance laws

ut +
m∑
α=1

(fα(u))xα = g(u), (1.1)

with the initial conditions
u(x, 0) = u0(x), (1.2)

where u = (u1, u2) ∈ � ⊆ R
n1 × R

n2 with n1 + n2 = n. We also assume that there
are n1 conservation laws in the system, namely that we can take

g(u) =
(

0
q(u)

)
with q(u) ∈ R

n2 . (1.3)
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According to the general theory of hyperbolic systems of balance laws [11], if the flux
functions fα and the source term g are smooth enough, it is well known that problem
(1.1)–(1.2) has a unique local smooth solution, at least for some time interval [0, T )
with T > 0, if the initial data are also sufficiently smooth. In the general case, and
even for very good initial data, smooth solutions may break down in finite time, due
to the appearance of singularities, either discontinuities or blow-up in L∞.

The easiest example is Burgers equation with an initial data strictly decreasing
in some interval. With more generality, if we have a system of balance laws, it
may happen that the source terms have no influence on the mechanism generating a
singularity, or it may also help the solution to blow up.

Despite these general considerations, sometimes dissipative mechanisms due to
the source term can prevent the formation of singularities, at least for some restricted
classes of initial data, as observed for many models which arise to describe physical
phenomena. A typical and well-known example is given by the compressible Euler
equations with damping, see [20], [14] for the 1-dimensional case and [23] for an
interesting 3-dimensional extension.

Recently, in [13], it was proposed a quite general framework of sufficient condi-
tions which guarantee the global existence in time of smooth solutions. Actually, for
the systems which are endowed with a strictly convex entropy function E = E(u), a
first natural assumption is the entropy dissipation condition, see [10], [19], [21], [24],
namely for every u, u ∈ �, with g(u) = 0,(∇E(u)− ∇E(u)

) · g(u) ≤ 0,

where E ′(u) is considered as a vector in R
n and “·” is the scalar product in the same

space.
Roughly speaking, the above condition means that the source is dissipative in

some integral norm, typically L2. Thus one expects that blow up in L∞ could be
prevented, or certainly it does not happen for space independent solutions.

Unfortunately, it is easy to see that this condition is too weak to prevent the
formation of singularities: just consider the system{

ut + uux = 0,

vt = −v (1.4)

with entropyu2+v2. The key point in this system is that the dissipative source (0,−v)
is not acting on the first equation, so that it cannot prevent the shock formation.

A quite natural supplementary condition can be imposed to entropy dissipative
systems, following the classical approach by Shizuta and Kawashima [16], [22], and
in the following called condition (SK), which in the present case reads

Ker(Dg(u)) ∩ {
eigenspaces of

∑m
α=1Dfα(u)ξα

} = {0}, (1.5)

for every ξ ∈ R
m \ {0} and every u ∈ �, with g(u) = 0. It is possible to prove that

this condition, which is satisfied in many interesting examples, is also sufficient to
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establish a general result of global existence for small perturbations of equilibrium
constant states.

As an example, it is easy to see that (1.4) does not satisfy (SK) condition, while
the system {

ut + uux + vx = 0,

vt + ux = −v (1.6)

fulfills requirement (1.5).
We investigate the asymptotic behavior in time of the global solutions, always

assuming the existence of a strictly convex entropy and the (SK) condition.
Our starting point is a careful and refined analysis of the behavior of the Green

function for the linearized problem around an equilibrium state ū,

ut +
m∑
α=1

Aα∂xαu = Bu, Aα = ∇f α(u)|u=ū, B = ∇g(u)|u=ū (1.7)

The conditions on the existence of a dissipative strictly convex entropy and (SK)
condition (and also (1.3) implies that

1. the matrices Aα are symmetric and

B =
[

0 0
0 D

]
, D ∈ R

n2×n2, (1.8)

with D strictly negative definite;

2. no eigenvectors of
∑
α ξαAα are in the null space of B for all ξ ∈ R

m.

It is possible to show that the Green kernel �(t) can be written as the sum of the
kernels

�(t) = K(t)+ K(t). (1.9)

The first term corresponds to a uniformly parabolic (pseudo) differential operator,
while the first satisfies a uniform exponential decay in L2:

‖DβK(t)w0‖L2 ≤ Ce−ct‖Dβw0‖L2 . (1.10)

It can be also shown that �(t) has bounded support, so that both K(t), K(t) have
bounded support.

For the term K(t) it is possible to give a more precise description, by using the
two projectors Q0, Q− = I − Q0: Q0 is the projector on the conservative part of
(1.7), i.e.

Q0

(
u1
u2

)
=

(
u1
0

)
, Q−

(
u1
u2

)
=

(
0
u2

)
.

Writing then

K(t) =
[
K11(t) K12(t)

K21(t) K22(t)

]
, (1.11)
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it is possible to prove that K11 decays as a heat kernel, while the other three decays
as a derivative of the heat kernel:

‖DβK11(t)w‖Lp ≤ C(|β|)min
{

1, t−
m
2 (1− 1

p
)−|β|/2}‖w‖L1,

‖DβK12(t)w‖Lp, ‖DβK21(t)w‖Lp ≤ C(|β|)min
{

1, t−
m
2 (1− 1

p
)−1/2−|β|/2}‖w‖L1,

‖DβK22(t)w‖Lp ≤ C(|β|)min
{

1, t−
m
2 (1− 1

p
)−1−|β|/2}‖w‖L1 .

(1.12)

Using this Green kernel representation, one can show that solution to (1.1) satisfies
the same decay estimates as �(t). More precisely, one can prove that

‖u(t)−K(t)Q0u(0)‖Lp ≤ Cmin
{
1, t−

m
2 (1− 1

p
)−1/2}‖u(0)‖L1 .

Clearly to have more information on the asymptotic behavior of u(t) one needs
to know more information on K(t). This can be done in two situations: if the space
dimension is m = 1, or under the assumption of rotational invariance. In both cases
the Fourier components of the differential operators can be inverted.

As an example, we can consider the linearized isentropic Euler equations with
damping, {

ρt + divv = 0,

vt + ∇ρ = −v. (1.13)

One can check that the three conditions are satisfied. We can decompose the Green
kernel � in three parts

�(t, x) = K(t, x)+ R(t, x)+ K(t, x), (1.14)

where K(t, x) can be computed to be

K(t, x) =
[
G(t, x) (∇G(t, x))T

∇G(t, x) ∇2G(t, x)

]
+ R1(t, x), (1.15)

where G(t, x) is the heat kernel for ut = 
u, and the rest term R1(t, x) satisfies the
bound

R1(t, x) = e−c|x|2/t

(1 + t)2

[
O(1) O(1)(1 + t)−1/2

O(1)(1 + t)−1/2 O(1)(1 + t)−1

]
. (1.16)

In particular the principal part of �(t) is given by the heat kernel G(t, x).
The rest part R1 is exponentially decreasing and smooth, while K(t, x) can be

computed to be

K(t, x) =
[

0 0
0 e−tP

]
+ e−t

[
W00(t, x) W01(t, x)

W10(t, x) W11(t, x)

]
+ R2(t, x). (1.17)
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Here P : (L2(R3))3 �→ (L2(R3))3 is the orthogonal projection of L2 vector fields on
the subspace of divergence free vector fields. P v is characterized by

P v ∈ (L2(R3))3, divP v = 0, curl(v − P v) = 0,

and so we have that

v − P v = ∇ψ with 
ψ = divv.

This yields
P v = v − ∇(
−1divv). (1.18)

In fact, in Fourier coordinates, we have

P̂ v(ξ) = v̂(ξ)− |ξ |−2(ξ · v̂(ξ))ξ = v̂(ξ)− |ξ |−2ξξT · v̂(ξ). (1.19)

The matrix valued function

W(t, x) = W1(t, x)+W2(t, x) =
[
W00(t, x) W01(t, x)

W10(t, x) W11(t, x)

]
+

[
0 0
0 δ(x)P

]
(1.20)

is the matrix valued Green function of the system{
ρt + divv = 0,

vt + ∇ρ = 0,

and it can be written by means of the fundamental solution to the wave equation
utt = 
u. In fact,W00 is the solution of utt = 
uwith initial data u = δ(x), ut = 0,
and

W1 =
[

W00 ∇T ∂t (−
)−1W00

∇∂t (−
)−1W00 −∇2(−
)−1W00

]
. (1.21)

In particular one can check that W2 corresponds to incompressible vector fields,
while W1 corresponds to curl free vector fields.

An interesting open question is whether the (SK) can be relaxed by considering it
acting only on a subset of the eigenspaces of

∑
Dfαξα . As a trivial example, if f α

are linear functions, then no dissipativity condition is needed. In [27] it is possible to
find a non trivial example of a system which does not satisfy (SK) condition but still
the smooth solution exists for all t ≥ 0.

2. Relaxation limit of balance laws

After having proved existence for small data of the system

ut +
m∑
α=1

(fα(u))xα = g(u)

ε
, (2.1)
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under the dissipativity and (SK) condition, one can ask the question of describing the
hyperbolic limit as ε → 0. At a formal level, by writing

g(u) = g(u1, u2) = 0 
⇒ u1 = q(u2) (2.2)

for the equilibrium manifold, at a formal level we obtain the symmetrizable hyperbolic
system

u1,t +
m∑
α=1

(fα(u1, q(u1)))xα = 0. (2.3)

As an example, if (2.1) is a kinetic scheme, then this limit corresponds to the
hydrodynamic limit, i.e. to the rescaling (t, x) �→ (t/ε, x/ε). The most outstanding
problem in this direction is the hydrodynamic limit of Boltzmann equation, at least
in one space dimension. In this direction the major result is the convergence under
the assumption of piecewise smooth solution to the limiting Euler system with non
interacting shocks [26]. We remark that hyperbolic limit must be based on the proof
of local existence for data which do not satisfy any integral estimates.

We want to underline the difference among the known results and the theory of
hyperbolic system. The assumption of non interacting shocks is equivalent to saying
that we do not need to control the non linear interaction among waves, which is one
of the key aspects of hyperbolic systems.

The main tool for proving existence and stability of solutions to hyperbolic systems
is the local decomposition of the solution into waves and the description of their
interaction. As an example, for BV solutions of an n×n system, the derivative of the
solution is decomposed in n scalar measures, each measure representing the waves
of one of the characteristic families of u. The key point is that one can describe the
evolution of these waves as they interact and find an interaction functional which
bounds the total interaction.

We believe that this functional would be a key point in proving hyperbolic limit of
balance laws. It is clear that understanding this functional implies the understanding
of the wave structure of the solution.

In general it seems difficult to prove convergence of (2.1) as ε → 0, under the
assumptions considered in the previous part. We thus restrict to particular quasilinear
systems of the form (BGK schemes with one moment) in one space dimension:

∂tF
α + αFαx = 1

ε

(
Mα(u)− Fα

)
, u =

∑
α

Fα. (2.4)

The functions Mα(u) are the Maxwellians. At a formal level, as ε → 0 one obtains

Fα = Mα(u), ut + F (u)x = 0,

where the flux function F (u) is given by

F (u) =
∑
α

αMα(u).
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The easiest example is the scheme introduced in [15],⎧⎨⎩
ut + vx = 0,

vt +
2ux = 1

ε
(F (u)− v),

(2.5)

which can be put in the form (2.4) by diagonalizing the semilinear part.
By differentiating the second equation of (2.5) w.r.t. x and using the first one

obtains the nonlinear wave equation

ut + A(u)ux = 1

ε
(uxx − utt ), (2.6)

with A(u) = DF (u). The above equation is meaningful also in the case A(u) is not
a Jacobian matrix, so that one cannot write a conservative form like (2.5). For this
particular system it is now proved the existence and stability of solutions with initial
data of small BV norm [3].

In this last part we describe the structure of the waves of (2.6). Writing the system
in the form{
F−
t − F−

x = (M−(u)− F−)/ε,
F ∗
t + F ∗

x = (M+(u)− F+)/ε,
u = F− +F+, M±(u) = u± F (u)

2
(2.7)

with F−, F+ ∈ R
n, and assuming the stability condition |DF (u)| < 1, at a formal

level one expects that as ε → 0, the function u converges to a solution to

ut + F (u)x = 0, u ∈ R
n. (2.8)

Concerning the solution of (2.8), we know that its structure can be described as the
nonlinear sum of n shock waves, corresponding to the characteristic speed of DF ,

ux(t, x) =
n∑
i=1

vi(t, x)r̃i(t, x), vi ∈ R, r̃i ∈ R
n. (2.9)

The vectors r̃i are in general not the eigenvectors of DF , but are close to them for
small data. Also the propagation speeds of the scalar vi is close to the i-th eigenvalue.
Their interaction is described by a Glimm type functional [4]. Thus, a possible way of
thinking of the waves in (2.7) is to imagine that the solution (F−, F+) is the sum of n
waves (the wave decomposition of u) and some remaining term v which is dissipating
entropy.

It turns out that a more natural description is that the solution to (2.7) can be
decomposed into 2n waves, n for each component F−, F+,

F−
x (t, x) =

n∑
i=1

f−
i (t, x)r̃

−
i (t, x), F+

x (t, x) =
n∑
i=1

f+
i (t, x)r̃

+
i (t, x). (2.10)
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This in some sense is a different philosophy, because we are not describing the solution
as the approximate solution to the limiting hyperbolic system plus a term which is
dissipating: we give a full nonlinear structure to the solution to the kinetic scheme.

We remark that with more generality, the BGK system (2.4) is decomposed as the
sum of n waves for each component Fα . It is an open question which is the right
decomposition in non linear waves for the more complicated discrete models, for
example the well-known Broadwell model in one space dimension.
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Nonlinear Schrödinger equations in inhomogeneous media:
wellposedness and illposedness of the Cauchy problem

Patrick Gérard

Abstract. We survey recent wellposedness and illposedness results for the Cauchy problem
for nonlinear Schrödinger equations in inhomogeneous media such as Riemannian manifolds or
domains of the Euclidean space, trying to emphasize the influence of the geometry. The main
tools are multilinear Strichartz estimates for the Schrödinger group.

Mathematics Subject Classification (2000). Primary 35Q55; Secondary 35B30.

Keywords. Nonlinear Schrödinger equations, Strichartz inequalities, multilinear estimates,
eigenfunction estimates.

1. Introduction

The nonlinear Schrödinger equation arises in several areas of Physics (see the book
[55] for an introduction), such as Optics or Quantum Mechanics, where it is related to
Bose–Einstein condensation or Superfluidity. From the mathematical point of view,
this equation has been studied on the Euclidean space since the seventies. However, it
is quite relevant, in the above applications, to consider this equation on inhomogeneous
media. In Optics, for instance, this naturally corresponds to a variable optical index;
more specifically, spatial inhomogeneity has been recently used in the modelization of
broad-area semiconductor lasers (see [38]). One of the main mathematical questions
is then to evaluate the impact of the inhomogeneity on the dynamics of the equation,
in particular regarding the wellposedness theory of the Cauchy problem. The goal of
this paper is to survey recent mathematical contributions in this direction.

Let us precise what we mean by inhomogeneous medium in this context. Our
physical spaceM is either the space R

d or a compact manifold, endowed in both cases
with a second order differential operator P , which is elliptic, positive and selfadjoint
with respect to some Lebesgue density μ and satisfies P(1) = 0.1

In coordinates, this means that P and μ are given by

Pu = − 1

ρ
∇.(A∇u), dμ = ρ(x) dx, (1.1)

1Notice that this latter condition prevents potential terms in P . We impose this condition here for the sake of
concision, though potential terms may of course be quite relevant too.
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where ρ is a smooth positive function, and where A is a smooth function valued in
positive definite matrices. If M = R

d , we shall impose the following additional
conditions

0 < c ≤ ρ(x), cI ≤ A(x), |∂αρ(x)| + |∂αA(x)| ≤ Cα, α ∈ N
d, (1.2)

in order to avoid degeneracy at infinity. An example of such an operator is of course
minus the Laplace operator associated to a Riemannian metric g on M which, in the
case M = R

d , satisfies moreover

cI ≤ g(x), |∂αg(x)| ≤ Cα, α ∈ N
d .

In this setting, the nonlinear Schrödinger equation (NLS) reads

i
∂u

∂t
− Pu = F(u), (1.3)

where the unknown complex function u depends on t ∈ R and on x ∈ M , and
the Cauchy problem consists in imposing the initial value of u at t = 0. Here the
nonlinearity F is a smooth function on C, which we assume to satisfy the following
normalization and growth conditions:

F(0) = 0, |DkF(z)| ≤ Ck(1 + |z|)1+α−k, k = 0, 1, 2, . . . . (1.4)

In many situations, we require additional conditions on the structure of F . The most
common one imposes that F derives from a potential function

F(z) = ∂V

∂z
, V : C → R. (1.5)

In this case (1.3) is a Hamiltonian system with the following Hamiltonian functional:

H(u) =
∫
M

(Puu+ V (u)) dμ, (1.6)

and consequently it formally enjoys the conservation law

H(u(t)) = H(u(0)). (1.7)

Furthermore, if we assume the following gauge-invariance condition

V (eiθ z) = V (z), θ ∈ R, (1.8)

i.e. V (z) = G(|z|2), F(z) = G′(|z|2)z, we also have the L2 conservation law

‖u(t)‖L2(M,μ) = ‖u(0)‖L2(M,μ). (1.9)

A typical example of nonlinearity F satisfying (1.4), (1.5) and (1.8) is

Fα,±(z) = ±(1 + |z|2)α/2z. (1.10)
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Finally, let us indicate that we shall sometimes discuss another kind of inhomogeneous
NLS, namely when −P is the Laplace operator with Dirichlet or Neumann boundary
condition on a smooth domain of the Euclidean space. However, the theory is much
less complete in this context.

This paper is organized as follows. After defining three different notions of well-
posedness for the Cauchy problem for (1.3) on the scale of Sobolev spaces in Section 2,
we make some general observations based on scaling considerations in Section 3. We
begin Section 4 by recalling the role of Strichartz estimates in the analysis of (1.3) on
the Euclidean space. We insist that this part is by no means an exhaustive review of
the NLS theory on the Euclidean space. In particular, we did not discuss the recent
contributions on scattering theory and on blow up. Then we really start the study of
the influence of the geometry by observing that losses of derivatives may appear in
Strichartz inequalities in the case of inhomogeneous media. In Section 5, we revisit
the wellposedness problems by introducing multilinear Strichartz estimates, which
originate in the works of Bourgain for Schrödinger and of Klainerman–Machedon for
the wave equations. Finally, Section 6 is devoted to discussing in details the case of
simple Riemannian compact manifolds, such as tori and spheres.

2. Some notions of wellposedness

We start with defining precisely the notions of wellposedness we are going to use
throughout this paper. Indeed, since our evolution problem is nonlinear, several
notions are available. We shall define these notions for the nonlinear Schrödinger
equation (1.3) but it is clear that these notions are quite general and can be applied to
other evolution equations.

Definition 2.1. We shall say that the Cauchy problem for equation (1.3) is (locally)
well-posed on Hs(M) if, for every bounded subset B of Hs(M), there exists T > 0
and a Banach space XT continuously contained in C([−T , T ], H s(M)) such that:

i) For every Cauchy data u0 ∈ B, (1.3) has a unique solution u ∈ XT such that
u(0) = u0.

ii) If u0 ∈ Hσ (M) for σ > s, then u ∈ C([−T , T ], Hσ (M)).

iii) The map
u0 ∈ B �→ u ∈ XT

is continuous.

Moreover, we shall say that the Cauchy problem for equation (1.3) is globally
well-posed on Hs(M) if properties i), ii), iii) above hold for every time T > 0.

Notice that in some cases local wellposedness can be combined with the conser-
vation laws (1.9) and (1.7) to provide global wellposedness. Specifically, assume for
instance that (1.3) is well-posed on L2(M) = H 0(M) and that F is gauge-invariant.
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Since the L2 conservation law holds for every solution inC([−T , T ], H s(M))with s
large enough, it results from requirements ii) and iii) that this conservation law holds
on [−T , T ] as soon as u0 ∈ L2. Combining this observation with requirement i),
we conclude that (local) wellposedness on L2 implies global wellposedness on L2.
Similarly, one can show that local wellposedness onH 1 implies global wellposedness
on H 1, under the assumption that a bound on ‖f ‖L2 and on H(f ) is equivalent to
a bound on ‖f ‖H 1 , as it is the case, for instance, if F is gauge invariant and derives
from a nonnegative potential with (d − 2)α ≤ 4.

Definition 2.2. We shall say that the Cauchy problem for equation (1.3) is (locally)
uniformly well-posed onHs(M) if it is well-posed onHs(M) and if, with the notation
of Definition 2.1 the map u0 ∈ B �→ u ∈ XT is uniformly continuous.

One defines similarly global uniform wellposedness. Compared to Definition 2.1,
uniform wellposedness can be understood as an additional requirement of high fre-
quency stability for small uniform time. Let us mention that, in all the positive results
of this paper, uniform continuity will come from Lipschitz continuity. As we shall
see in the next sections, uniform wellposedness is rather natural for semilinear equa-
tions such as (1.3), but it may be violated for other natural evolution equations. For
instance, it can be shown (see e.g. [59]) that the Burgers equation

∂u

∂t
+ u

∂u

∂x
= 0

is well-posed on Hs(R,R) for s > 3/2, but is not uniformly well-posed. This is
related to the quasilinear hyperbolic feature of Burgers’ equation. A more subtle
example is the modified Korteweg–de Vries equation on the one-dimensional torus,

∂u

∂t
+ ∂3u

∂x3 +
(
u2 −

∫
T

u2 dx

)
∂u

∂x
= 0,

which is uniformly well-posed on Hs(T,R) for s > 1/2 (see [10]), but is not for
s ∈]3/8, 1/2[, though it is well-posed for s in this interval. (see [56] and [40]).

Definition 2.3. We shall say that the Cauchy problem for equation (1.3) is (locally)
regularly well-posed onHs(M) if it is well-posed onHs(M) and if, with the notation
of Definition 2.1, the map u0 ∈ B̊ �→ u ∈ XT is smooth.

One defines similarly global regular wellposedness. As we shall see in the next
section, regular wellposedness is quite a stringent notion if F is not a polynomial.
On the other hand, for polynomial gauge-invariant nonlinearities, it will lead us to
multilinear Strichartz estimates (see Section 5 below), which turn out to be the key
estimates in this theory.
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3. General observations

Since the free group e−itP acts on Hs(M), the following result is an elementary
consequence of the classical nonlinear estimates in Sobolev spaces Hs for s > d/2,
combined with the Duhamel formulation of the Cauchy problem for (1.3),

u(t) = e−itP u0 − i

∫ t

0
e−i(t−t ′)P (F (u(t ′))) dt ′. (3.1)

Proposition 3.1. If s > d/2, the Cauchy problem for (1.3) is regularly well-posed
on Hs(M).

The above proposition has the following partial converse.

Proposition 3.2. Assume F(0) = 0 and DkF(0) 	= 0 for some k ≥ 2 and that the
Cauchy problem for (1.3) is regularly well-posed on Hs(M). Then s ≥ d

2 − 2
k−1 .

Corollary. If F(0) = 0 and F is real analytic and is not polynomial, then the Cauchy
problem for (1.3) is not regularly well-posed on Hs(M) for s < d

2 .

Proposition 3.2 relies on a very simple idea: if we solve (1.3) with the following
bounded data in Hs ,

u(0, x) = fN(x) = Nd/2−sϕ(Nx),

where ϕ is a suitable cutoff function – so that the above expression makes sense on a
manifold, choosing local coordinates –, and N is a large parameter, then, because P
is a differential operator of order 2, on times t such |t | � N−2, the term Pu can be
neglected at the first order. For instance, for such times,

e−itP fN − fN → 0

in Hs as N tends to infinity. Then one uses this remark to compute successively

vj (t) = dj

dδj
(uδ(t))|δ=0, j ≥ 1, |t | � N−2,

where uδ denotes the solution to (1.3) such that uδ(0) = δfN . The continuity of the
differential of order k of the map u0 ∈ Hs �→ u(t) ∈ Hs implies

‖vk(t)‖Hs ≤ C‖fN‖kHs

which, for t = N−2−ε, yields the claimed condition on s.
Combined with more delicate estimates, this idea can also be used to disprove

other kinds of wellposedness, as in the following adaptation to inhomogeneous media
of a recent result by Christ, Colliander and Tao.
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Theorem 3.3 (Christ–Colliander–Tao [27], Burq–Gérard–Tzvetkov [17]). If α > 0,
the Cauchy problem for (1.3) with F = Fα,± given by (1.10) is not uniformly well-
posed on Hs(M) if s < 0, and not well-posed on Hs(M) if 0 < s < d

2 − 2
α

.

The main point of the proof is to establish that, for sufficiently small times – but
not too small – , the solution of the above equation with data κNfN , where κN is a
small coefficient to be adjusted, is approximated by the solution vN of the ordinary
differential equation

i∂tvN = ±(1 + |vN |2)α/2vN
with the same Cauchy data. Of course vN can be computed explicitly,

vN(t, x) = e∓it (1+κ2
N |fN (x)|2)α/2κNfN(x),

and one checks that the above oscillating term induces instability in the first case,
while in second case it produces norm inflation, namely the Hs norm of the solution
can become unbounded for a sequence of times tending to 0, though the Cauchy data
tend to 0 in Hs .

4. The role of Strichartz inequalities

In this section we first recall the basic role played by Strichartz inequalities in the
analysis of equation (1.3) on Euclidean spaces, quoting some important results in this
context, without pretending to be exhaustive. Then we discuss extensions of these
inequalities to different geometries.

4.1. The Euclidean case. In this subsection we assume that M = R
d and that −P

is the Laplace operator. In this case, the solution of the linear Schrödinger equation
is explicit,

eit�u0(x) = 1

(4iπt)d/2

∫
Rd

ei|x−y|2/4t u0(y) dy, (4.1)

and this implies the following dispersion estimate:

‖eit�u0‖L∞(Rd ) ≤ 1

(4π |t |)d/2 ‖u0‖L1(Rd ). (4.2)

By a classical functional-analytic tool (known as the T T ∗ trick), this estimate
implies important inequalities for the solution of the linear Schrödinger equation
with L2 data. In order to state these inequalities we shall say that a pair (p, q) ∈
[1,∞] × [1,∞] is d-admissible if

2

p
+ d

q
= d

2
, p ≥ 2, (p, q) 	= (2,∞). (4.3)
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Moreover, if r ∈ [1,∞], we denote by r the conjugate exponent of r , characterized
by

1

r
+ 1

r
= 1.

Proposition 4.1 (Strichartz [54], Ginibre–Velo [34], Yajima [61], Keel–Tao [42]).
Let (p1, q1), (p2, q2) be d-admissible pairs. There exists C > 0 such that, for every
u0 ∈ L2(Rd), for every T > 0 and f ∈ Lp1([0, T ], Lq1(Rd)), the solution u of

i∂tu+�u = f, u(0) = u0,

satisfies u ∈ Lp2([0, T ], Lq2(Rd)) with the inequality

‖u‖Lp2 ([0,T ],Lq2 (Rd )) ≤ C (‖u0‖L2(Rd ) + ‖f ‖
Lp1 ([0,T ],Lq1 (Rd ))

). (4.4)

These inequalities were first proved in [54] in the particular cases p1 = q1 and
p2 = q2, then in [34] in the cases p1 = p2 > 2, then in [61] for p1, p2 > 2 arbitrary,
and finally, for the endpoint case p = 2, in [42], where an abstract presentation of
the T T ∗ trick is also available. Notice that these estimates are optimal: indeed, the
first condition in (4.3) is related to the scale invariance of the Schrödinger equation,
the second condition comes from general properties of translation invariant operators
on Lp (see e.g. Theorem 1.1 of Hörmander [39]), while the special forbidden case
p = 2, q = ∞, which only arises for d = 2, has been checked by Montgomery-Smith
[46]. A variant of the proof of the necessity of the scaling condition consists in testing
the above estimates for f = 0 and

u0(x) = ϕ(Nx),

where ϕ ∈ C∞
0 (R

d) and N is a large parameter. As we already observed in the
previous section, for t � N−2 the solution u(t, x) stays essentially constant. This is
made more precise by the ansatz

u(t, x) ∼ ψ(N2t, Nx)

where ψ(s, .) belongs to the Schwartz class, uniformly as s stays bounded, and
ψ(0, x) = ϕ(x). Consequently, if (p, q) is an admissible pair, then the Lpt (L

q
x)

norm of u on the thin slab [0, N−2] × R
d is equivalent to N−2/p−d/q = N−d/2,

which is the magnitude of the L2 norm of u0. In other words, the main contribution
in the Lpt (L

q
x) norm of u already lies in the thin slab [0, N−2] × R

d : this is a striking
illustration of the dispersive character of the Schrödinger equation. Moreover, this
remark can be carried out to inhomogeneous media, showing that the above Strichartz
inequalities cannot be improved in any inhomogeneous media. On the other hand, as
we shall see in the sequel, they may be dramatically altered.

We close this subsection by pointing that Strichartz inequalities on the Euclidean
space essentially provide reverse statements of the necessary conditions to wellposed-
ness of Proposition 3.2 and Theorem 3.3.
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Theorem 4.2 (Ginibre–Velo [33], [34], Kato [41], Cazenave–Weissler [24], Tsutsumi
[58], Yajima [61]). Let F satisfy conditions (1.4) and let s ≥ 0 satisfy

s >
d

2
− 2

α
.

Then equation (1.3) is uniformly well-posed onHs(Rd) if d ≤ 6. Moreover, if F is a
polynomial of degree 1+α, then (1.3) is regularly well-posed onHs(Rd) for every d.

The unexpected condition d ≤ 6 relies on lack of good estimates for large deriva-
tives of F(u) if F is non-polynomial. This limitation may not be optimal, but so far
it cannot be dropped, for instance for the proof of propagation of high regularity.

In the polynomial case, such a condition is not necessary, and we observe that,
under the additional conditions (1.5) and (1.8), thresholds of the three wellposed-
ness properties coincide, for every d, with max(0, d/2 − 2/α). Furthermore, let us
mention that some regular wellposedness results were proved on Hs for s < 0, in
the one-dimensional case, for quadratic nonlinearities which do not satisfy the gauge
invariance condition (see Kenig–Ponce–Vega [43]).

The critical cases sc = d/2−2/α ≥ 0 are not covered by the above theorem. Using
the same Strichartz inequalities, it is possible to extend the wellposedness results of
this theorem on a global time interval for data which lie in a small neighborhood of 0
in Hs (see [24]). For large data however, this question is still the object of intensive
work, particularly for Hamiltonian gauge-invariant nonlinearities and sc = 0 or 1.
For instance, if d = 2 and F(u) = −|u|2u, sc = 0 and the existence of blow
up solutions (see Zakharov [62]) together with a scaling argument yields a family
of solutions with bounded data in L2(R2) and which blow up at arbitrarily small
times. On the other hand, if F(u) = |u|2u, the question of global existence of
a solution with L2 solution and the related question of (regular) wellposedness are
widely open problems. Another important example of such critical problems is d = 3,
F(u) = |u|4u, for which sc = 1. In this case, Colliander–Keel–Staffilani–Takaoka–
Tao [29] have recently proved global (regular) wellposedness.

4.2. Operators on the real line. The first kind of nonhomogeneous medium to
which it is natural to generalize the above Strichartz inequalities – and hence the
nonlinear results of Theorem 4.2 – is of course the real line, with an operator P
satisfying the assumptions (1.1), (1.2) of the introduction. In this case, the extension
is rather straightforward for local in time Strichartz estimates. Indeed, if

P = − 1

ρ

d

dx
a
d

dx
,

the global change of variable dy = (ρ(x)/a(x))1/2 dx and the conjugation λ−1Pλ

with the function λ(y) = (a(x)ρ(x))−1/4 lead to the operator

P̃ = − d2

dy2 + V (y), V = −λ
′′

λ
+ 2

(
λ′

λ

)2

.
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Since V is a bounded function, the Strichartz inequalities for P̃ on a finite time
interval [0, T ] with C = C(T ) are a straightforward consequence of the Euclidean
ones, considering the term V u as a source term in the right hand side. We refer to [49]
for a slightly different proof.

Though we shall not pursue in this direction, let us indicate that the question of
singular coefficients ρ, a has been addressed quite recently. In [2], Banica observed
that, if ρ = 1 and a is a piecewise constant function with a finite number of discon-
tinuities, the dispersion estimate – and hence Strichartz inequalities – is valid, while
it fails for an infinite number of discontinuities. Burq and Planchon [21] generalized
this observation by proving that global Strichartz estimates hold as soon as a has
bounded variation. Notice that the BV regularity seems to be a relevant threshold,
since, for every s < 1, Ws,1 functions a are constructed in the appendix of [21] such
that every kind of Strichartz inequality fails (see also an earlier result by Castro and
Zuazua [22], which shows the same phenomenon for Hölder continuous functions a
of any exponent α < 1).

4.3. Strichartz inequalities with loss of derivative. At this stage a natural question
is of course to extend Strichartz inequalities (4.4) to variable coefficients in several
space dimensions, as we did on the line. The following example shows that the
situation is much more complicated. Our starting point is the following identity for
the ground state of the harmonic oscillator,

(−h2∂2
s + s2 − h)

(
e−s2/2h) = 0.

Setting s = r − 1 and, for every positive integer n,

ψn(r, θ) = e−(r−1)2/2hn+inθ

where hn > 0 is such that h−2
n = h−1

n + n2, we infer

(−∂2
r − ∂2

θ − h−2
n (1 − (r − 1)2))ψn = 0. (4.5)

Notice that ψn is the expression in polar coordinates of a smooth function on the
complement of the origin in the plane, and that the operator

P0 = − 1

1 − (r − 1)2
(∂2
r + ∂2

θ )

is a positive elliptic operator of order 2 with smooth real coefficients, on the com-
plement � of the origin in the disc of radius 2 endowed with the density dμ =
(1 − (r − 1)2) dr dθ = (2 − |x|)dx. Since P0(1) = 0, it follows that P0 can be
written P0 = − 1

ρ0
∇.(A0∇), where ρ0, A0 are smooth functions on � valued in

positive numbers and definite positive matrices respectively. Notice that (4.5) reads
P0ψn = h−2

n ψn, and that, as n tends to ∞, ψn is exponentially concentrating on
the circle of radius 1. By cutting off ψn near this circle, we obtain a sequence of
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functions ψ̃n and a differential operator P on R
2 satisfying the assumptions of the

introduction, such that
P ψ̃n = h−2

n ψ̃n + rn (4.6)

where, for every q ≥ 1 and for every s ≥ 0,

‖ψ̃n‖Lq ∼ n−1/2q, ‖ψ̃n‖Hs ∼ ns−1/4, ‖rn‖Hs ≤ Cse
−δn

for some δ > 0. This sequence of functions is called a quasimode for the operator P .
The geometric interpretation is that the circle of radius 1 is a (sufficiently stable)
geodesic curve for the Riemannian metric defined by the principal symbol of P (see
e.g. Ralston [47]). By adding a suitable remainder term wn(t), we can write

un(t) := e−itP ψ̃n = e−ith−2
n ψ̃n + wn(t)

with ‖un‖Lp([0,T ],Lq(R2)) ∼ T 1/p n−1/2q for every p, q ≥ 1 and every T > 0. By
using un as a test function we conclude that, for every q > 2, for every p ≥ 1, the
estimate

‖u‖Lp([0,T ],Lq) ≤ C‖u(0)‖L2

fails. More precisely, in view of the behavior of un it is even impossible to replace
the L2 norm in the right hand side by the Hs norm if

s <
1

4
− 1

2q
. (4.7)

In other words, in multidimensional heterogeneous media, losses of derivatives in
Strichartz inequalities cannot be avoided. The next question is of course to estimate
precisely this loss of derivatives in terms of p, q and the geometry of the medium.
There is no need to say that this is a very difficult open problem. However, it is
possible to give a general upper bound, which is valid for every geometry and already
gives interesting applications to nonlinear problems.

Theorem 4.3 (Staffilani–Tataru [53], Burq–Gérard–Tzvetkov [12]). If (p, q) is a
d-admissible pair, the solution u of the equation

i∂tu− Pu = f, u(0) = u0, (4.8)

satisfies the inequality

‖u‖Lp([0,T ],Lq(M)) ≤ CT
(‖u0‖H 1/p(M) + ‖f ‖L1([0,T ],H 1/p(M))

)
. (4.9)

Proof (sketch). Firstly, by Duhamel’s formula and Minkowski’s inequality, (4.9) is
reduced to the case f = 0. Then, by Littlewood–Paley’s analysis, we can assume
that u0 is spectrally supported in a dyadic interval, namely ϕ(N−2P)u0 = u0 for
some ϕ ∈ C∞

0 (R), where N is a large dyadic integer. The advantage of this spectral
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localization is that we can describe rather explicitly, by a standard semiclassical WKB
analysis, the solution

u(t) = e−itP u0

on a time interval of order N−1 = h. By a stationary phase argument, this implies
the following dispersion estimate:

‖u(t)‖L∞(M) ≤ C

|t |d/2 ‖u0‖L1(M), |t | � 1

N
. (4.10)

From this dispersion estimate, the T T ∗ trick leads to the following semi-classical
Strichartz inequalities

‖u‖Lp([0,N−1],Lq(M)) ≤ C‖u0‖L2(M), u0 = ϕ(N−2P)u0, (4.11)

where (p, q) stands for any d-admissible pair. The last step of the proof consists in
iterating the estimates (4.11) onN intervals of lengthN−1 covering the interval [0, 1].
This yields a factor N1/p in the right hand side, and this completes he proof since

N1/p‖u0‖L2(M) � ‖u0‖H 1/p(M). �

Remark 4.4. Notice that when d = 2, the loss 1
p

= 1
2 − 1

q
is twice as big as the

threshold (4.7) derived from our counterexample in the beginning of this subsection.
Indeed, the last step of the above proof may seem quite rough, since the decomposition
of [0, 1] into N intervals of length N−1 does not take into account the geometric
features of M and P . However, it is interesting to notice that there are geometries
where some inequalities (4.9) are optimal. Indeed, if M is compact and d ≥ 3,
inequality (4.9) with p = 2 applied to f = 0 and to the special Cauchy data u0 = ψλ,
where ψλ is an eigenfunction of P associated to a large eigenvalue λ2, provides the
estimate

‖ψλ‖Lq(M) ≤ C λ1/2‖ψλ‖L2(M), q = 2d

d − 2
. (4.12)

Estimate (4.12) is one of the estimates obtained by Sogge [51] for theLr norms of the
eigenfunctions of elliptic operators on compact manifolds, and it is known that this
estimate is optimal if M is the sphere S

d and P is the standard Laplace operator, for
spherical harmonicsψλ which are functions of the distance to a fixed point (see [50]).
A similar phenomenon occurs for d = 2 with q = ∞, except that our inequalities
need an extra ε-derivative, due to the forbidden case p = 2, q = ∞.

Using inequalities (4.9), we obtain wellposedness results for nonlinear Schrödinger
equations (1.3). For simplicity, we only state the case of polynomial nonlinearities.

Corollary 4.5 (Burq–Gérard–Tzvetkov[12]). Assume d ≥ 2 and suppose that F is
a polynomial in u, u of degree 1 + α ≥ 2. Then the Cauchy problem for (1.3) is
regularly well-posed on Hs(M) for

s >
d

2
− 1

max(α, 2)
.
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Moreover, if d = 3 and F(u) = |u|2u, then the Cauchy problem for (1.3) is globally
well-posed on H 1(M), and it is globally regularly well-posed on Hs(M) if s > 1.

If F is both gauge invariant and Hamiltonian with a nonnegative potential V , we
can combine Corollary 4.5 with the conservation laws (1.9) and (1.7) to deduce global
regular wellposedness on H 1(M) if d = 2. In the special case of a cubic NLS in
three space dimensions, observe that regular wellposedness is only known for s > 1;
the uniform or regular wellposedness is still open in general on the energy space
H 1(M). This is in strong contrast with the case of the Euclidean case, where the
critical nonlinearity is quintic. However, in Section 6 we shall improve Corollary 4.5
for several specific three-dimensional geometries.

We conclude this subsection by quoting a recent result concerning boundary value
problems. In this case the WKB analysis is much more problematic, due to glancing
rays. However it is possible to reduce the analysis, by a reflection argument, to the
case of a boundaryless manifold endowed with a Lipschitz continuous Riemannian
metric. Combining the method of proof of Theorem 4.3 with earlier smoothing ideas
due to Bahouri and Chemin [3] (see also Tataru [57]) in the context of nonlinear
wave equations, it is possible to obtain the following result, which, in the particular
case of a plane domain, provides the first global wellposedness result for super-cubic
nonlinearities (for the cubic case, earlier wellposedness results were due to Brezis–
Gallouet [11] and Vladimirov [60], by different arguments).

Theorem 4.6 (Anton [1]). Assume thatM is a compact manifold and that P is given
by (1.1) where ρ and A are Lipschitz continuous. Then, for every d-admissible pair
(p, q), the solution of (4.8) satisfies

‖u‖Lp([0,T ],Lq(M)) ≤ Cs,T (‖u0‖Hs(M) + ‖f ‖L1([0,T ],H s(M))), s >
3

2p
. (4.13)

In particular, the estimate (4.13) still holds if M is replaced by a smooth bounded
open set in R

d if −P is the Laplace operator �D (resp. �N) with Dirichlet (resp.
Neumann) boundary conditions and if the spaceHs(M) is replaced by the domain of
the power s/2 of P . Consequently, if d = 2 and F satisfies (1.4), is gauge invariant
and Hamiltonian with a nonnegative potential V , the equation (1.3) with Dirichlet
(resp. Neumann) boundary condition has a unique global solution u ∈ C(R, H 1

0 (�))

(resp. u ∈ C(R, H 1(�))) if u0 ∈ H 1
0 (�) (resp. u0 ∈ H 1(�)), and the map u0 �→ u

is Lipschitz continuous.

4.4. Non-trapping metrics. Though we are rather interested in new phenomena
induced by the heterogeneity of the medium, we cannot conclude this section devoted
to Strichartz inequalities without quoting a series of results giving sufficient conditions
on the geometry of the operatorP onM = R

d in order that Euclidean inequalities (4.4)
hold. All these conditions concern the Laplace operator with a non-trapping metric,
namely a Riemannian metric on R

d such that no geodesic curve stays in a compact
set during an arbitrarily long time: notice that this prevents counterexamples like
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the one in the previous subsection. First of all, Staffilani–Tataru [53] proved (4.4)
on finite time intervals if the non-trapping metric is the perturbation of the Euclidean
metric by aC2 compactly supported function. Then Robbiano–Zuily [48] generalized
this result to short range perturbations of the Euclidean metric by a very precise
parametrix construction. Similar results were obtained by Hassell–Tao–Wunsch on
asymptotically conic manifolds, using different methods. Finally, Bouclet–Tzvet-
kov [5] recently tackled the case of long range perturbations of the Euclidean metric.
Notice that the proofs in [53] and [5] rely on the local smoothing effect for non-
trapping metrics (see Doi [30]) which appears to be the complementary property
of estimates (4.9) to obtain Strichartz inequalitites (4.4) without loss on finite time
intervals. Finally, we refer to [15] for applications of this smoothing effect for non-
trapping exterior domains to boundary problems for nonlinear Schrödinger equations.

5. Multilinear Strichartz estimates

In Subsection 4.3, we observed that, in several space dimensions, the geometry of the
medium may induce losses of derivatives in Strichartz inequalities, and that some of
these losses are optimal in specific geometries such as the sphere. The wellposedness
results deduced from these Strichartz inequalities with loss are altered with respect
to the Euclidean case – compare Theorem 4.2 and Corollary 4.5. However, so far
we did not give evidence of this alteration. Indeed, as we shall see in the sequel, the
whole range of Strichartz inequalities is not necessary to give optimal wellposedness
results for NLSs. In order to understand this, we begin with revisiting the question of
regular wellposedness for the cubic NLS.

5.1. A criterion for regular wellposedness of the cubic NLS. Given a dyadic
integer N , let us say that a function u on M is spectrally localized at frequency N if

1[N,2N ](
√

1 + P)(u) = u. (5.1)

We start with the important notion of bilinear Strichartz estimate, which originates in
the works of Bourgain [6] and of Klainerman–Machedon [45] in the context of null
forms for the wave equation.

Definition 5.1. Let s ≥ 0. We shall say that the Schrödinger group for P satisfies
a bilinear Strichartz estimate of order s on M if there exists a constant C such that,
for all dyadic integers N , L, for all functions u0, v0 on M spectrally localized at
frequencies N , L respectively, the functions

u(t) = e−itP (u0), v(t) = e−itP (v0)

satisfy the inequality

‖uv‖L2([0,1]×M) ≤ Cmin(N,L)s‖u0‖L2(M) ‖v0‖L2(M). (5.2)
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Notice that by setting v0 = u0,L = N and by using the Littlewood–Paley inequal-
ity, one easily shows that a bilinear Strichartz estimate of order s implies a Strichartz-
type estimate of the space-time L4 norm of a solution to the linear Schrödinger equa-
tion in terms of the Hs/2 norm of the Cauchy data. However, if s > 0, a bilinear
Strichartz estimate says more, since the price to pay for estimating the L2 norm of
a product of such solutions only involves the lowest frequency of these solutions.
The importance of bilinear Strichartz estimates in the wellposedness theory for NLSs
clearly appears in the following theorem, which is a slight reformulation of some
results from [16].

Theorem 5.2 (Burq–Gérard–Tzvetkov [16]). Assume F(u) = ±|u|2u and s ≥ 0.

i) If the Cauchy problem for (1.3) is regularly well-posed on Hs(M), then the
Schrödinger group for P satisfies a bilinear Strichartz estimate of order s on M .

ii) If the Schrödinger group for P satisfies a bilinear Strichartz estimate of order s
on M , then, for every σ > s, the Cauchy problem for (1.3) is regularly well-posed
on Hσ (M).

In other words, the existence of a bilinear Strichartz estimate of order s is almost
a criterion for regular wellposedness for cubic NLSs onHs(M). Notice that the strict
inequality σ > s in ii) cannot be extended to an equality in general. Indeed, for the
Euclidean Laplace operator on R

2, the Strichartz inequality (4.4) for the admissible
pair (4, 4) combined with the Hölder inequality implies a bilinear estimate of order 0;
however, we already observed at the end of Subsection 4.1 that the focusing cubic
equation with F(u) = −|u|2u is not well-posed on L2(R2).

Another comment on the above statement is that it provides counterexamples to
regular wellposedness. Indeed, in the beginning of Subsection 4.3 we constructed an
example of an operator P on R

2 such that the estimate

‖u‖L4([0,1]×R2) ≤ C‖u0‖Hs(R2)

fails if s < 1/8. Consequently, the Schrödinger group for this operator does not
enjoy bilinear Strichartz estimates of order s < 1/4, and thus the cubic NLS for this
operator is not regularly well-posed onHs(R2) for s < 1/4. This is in strong contrast
with the Euclidean case, where we know that regular wellposedness holds for every
s > 0 (see Theorem 4.2).

Proof (sketch). The proofs of parts i) and ii) of Theorem 5.2 are of unequal length and
difficulty. As a matter of fact, using regular wellposedness of (1.3) for smooth data
stated in Proposition 3.1 and the propagation of regularity contained in the definition
of regular wellposedness, it is easy to check that the third differential at 0 of the map
�1 : u0 �→ u(1) is given by the following polarized form of the first iteration of the
Duhamel equation (3.1):

D3�1(0)(u0, u0, v0) = −2i
∫ 1

0
e−i(1−t)P (2|u(t)|2v(t)+ u(t)2v(t)) dt.
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Here we assumed N ≤ L without loss of generality. We now compute the scalar
product of both members of the above identity with e−iP v0, and we use the assumed
continuity of the trilinear map D3�1(0) from (Hs)3 to Hs . This yields

‖uv‖2
L2([0,1]×M) ≤ C‖u0‖2

Hs ‖v0‖Hs ‖v0‖H−s .

Using that
‖f ‖H±s � N±s‖f ‖L2

if f is spectrally supported at frequency N , we infer the bilinear Strichartz esti-
mate (5.2), and hence part i) is proved.

Let us come to part ii). The main idea, which in this context is due to Bourgain [6],
is to introduce the scale of Hilbert spaces

Xs,b(P,R×M) = {v ∈ S′(R×M) : (1+|i∂t −P |2)b/2 (1+P)s/2v ∈ L2(R×M)}
for s, b ∈ R. We refer to [35] for a pedagogical introduction to this strategy. Denoting
byXs,bT (P ) the space of restrictions of elements ofXs,b(P,R×M) to ]−T , T [×M ,
it is easy to observe that

X
s,b
T (P ) ⊂ C([−T , T ], H s(M)) for all b > 1

2 ,

and that the solution of the linear Schrödinger equation with datum in Hs lies in
X
s,b
T (P ) for every b. Moreover, the Duhamel term in the integral equation (3.1) can

be handled by means of these spaces as
∥∥∥∥
∫ t

0
e−i(t−t ′)P f (t ′) dt ′

∥∥∥∥
X
s,b
T (P )

≤ C T 1−b−b′‖f ‖
X
s,−b′
T (P )

if 0 < T ≤ 1 , 0 < b′ < 1
2 < b , b + b′ < 1. The crux of the proof is then to

observe that a bilinear Strichartz estimate of order s implies the following estimates,
for σ ′ ≥ σ > s and suitable b, b′ as above,

‖v1v2v3‖Xσ,−b′ (P ) ≤ C ‖v1‖Xσ,b(P ) ‖v2‖Xσ,b(P )‖v3‖Xσ,b(P ),
‖|v|2v‖

Xσ
′,−b′ (P ) ≤ C ‖v‖2

Xσ,b(P )
‖v‖

Xσ
′,b(P ),

which allow the use a fixed point argument inXσ,bT (P ) in the resolution of the integral
equation (3.1). �

Remark 5.3. Combining the Strichartz inequalities of Theorem 4.3 with the Sobolev
inequalities, one easily shows that, if d ≥ 2 and if u0 spectrally localized at fre-
quency N , the solution of the linear Schrödinger equation satisfies

‖u‖L2([0,1],L∞(M)) ≤ CsN
s‖u0‖L2(M) for all s > d−1

2 .
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Using Hölder’s inequality and the conservation of the L2 norm by the Schrödinger
group, we infer, in the context of Definition 5.1,

‖uv‖L2([0,1]×M) ≤ ‖u‖L2([0,1],L∞(M)) ‖v‖L∞([0,1],L2(M))

≤ CsN
s ‖u0‖L2(M)‖v0‖L2(M),

namely a bilinear Strichartz estimate of order s > (d − 1)/2. Applying Theorem 5.2,
we conclude that a cubic NLS is regularly well-posed on Hs(M) for every s >
(d − 1)/2 if d ≥ 2, which is consistent with Corollary 4.5. However, we shall see
in the next section that this bilinear Strichartz estimate is far from optimal in several
specific cases, therefore the threshold of regular wellposedness will be improved
through Theorem 5.2.

5.2. Generalization to subcubic nonlinearities. Bilinear Strichartz estimates can
also be used to prove uniform wellposedness for (1.3) when F is not polynomial. In
particular, combining the method of proof of part ii) in Theorem 5.2 with paradiffer-
ential expansions, it is possible to prove the following result.

Theorem 5.4. Assume that the Schrödinger group for P satisfies a bilinear Strichartz
estimate of order s on M and that F satisfies (1.4) with α ≤ 2. Then the Cauchy
problem for (1.3) is uniformly well-posed on Hσ (M) for every σ > s.

Compared to Theorem 4.2 it may seem surprising that the regularity threshold of
uniform wellposedness for (1.3) does not depend on α. However we shall see such
an example in Section 6, in the case of the two-dimensional sphere.

5.3. Higher order nonlinearities. By mimicking Definition 5.1 it is easy to define
the notion of k-linear estimate for k ≥ 3.

Definition 5.5. Let k be an integer ≥ 3 and s1, . . . , sk−1 ≥ 0 . We shall say that the
Schrödinger group forP satisfies a k-linear Strichartz estimate of order (s1, . . . , sk−1)

on M if there exists a constant C such that, for all dyadic integers N1 ≤ · · · ≤ Nk ,
for all functions u1,0, . . . , uk,0 on M spectrally localized at frequencies N1, . . . , Nk
respectively, the functions

uj (t) = e−itP (uj,0), j = 1, . . . , k,

satisfy the inequality

‖u1 . . . uk‖L2([0,1]×M) ≤ C N
s1
1 . . . N

sk−1
k−1 ‖u1,0‖L2(M) . . . |uk,0‖L2(M). (5.3)

Remark 5.6. By an iterated use of Hölder’s inequality, we can always assume s1 ≥
· · · ≥ sk−1.

Next we have the equivalent of Theorem 5.2.
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Theorem 5.7. Let s ≥ 0, m be an integer ≥ 2 and F(u) = ±|u|2mu. Then

i) If (1.3) is regularly well-posed onHs(M), the Schrödinger group for P satisfies
an (m+ 1)-linear Strichartz estimate of order (s, . . . , s).

ii) If the Schrödinger group for P satisfies an (m + 1)-linear Strichartz estimate
of order (s, . . . , s), then (1.3) is regularly well-posed on Hσ (M) for every σ > s.

Moreover, the use of different exponents in the list s1, . . . , sk can help to tackle
non-polynomial nonlinearities. Let us give an example for nonlinearities which are
intermediate between cubic and quintic, which is essentially borrowed from [17].

Theorem 5.8. Assume the Schrödinger group for P satisfies a trilinear Strichartz
estimate of order (s1, s2) with s1 > s2 ≥ 0 and M is compact. Let F satisfy (1.4)
with 2 < α < 4. Then (1.3) is uniformly well-posed on Hs(M) for every

s >

(
1 − 2

α

)
s1 + 2

α
s2.

5.4. Multilinear estimates for spectral projectors. If M is compact, a k-linear
Strichartz estimate for the Schrödinger implies a k-linear estimate for eigenfunctions
of P of the following kind:

‖ϕ1 . . . ϕk‖L2(M) ≤ C λ
s1
1 . . . λ

sk−1
k−1‖ϕ1‖L2(M) . . . ‖ϕk‖L2(M),

ϕj an eigenfunction of P associated to the eigenvalue λ2
j and 1 ≤ λ1 ≤ · · · ≤ λk .

These estimates can be seen as k-linear versions of Sogge’s estimates [51], [52]. A first
step is therefore to decide for which orders such k-linear estimates hold. The following
result gives a fairly general answer to this question. For the sake of generality, we deal,
as in [51], [52], with spectral projectors �λ = 1

λ≤√
P≤λ+1 on clusters of bounded

length for the square root of P . Notice that this is a much more stringent spectral
localization than the dyadic one which we introduced in the beginning of this section.
Under this form our result makes sense in the case M = R

d too.

Theorem 5.9 (Burq–Gérard–Tzvetkov [17]). We have the bilinear estimates

‖�λ1f1�λ2f2‖L2(M) ≤ C ‖f1‖L2(M)‖f2‖L2(M)

⎧⎪⎪⎨
⎪⎪⎩
λ

1/4
1 if d = 2,

(λ1 log(λ1))
1/2 if d = 3,

λ
(d−2)/2
1 if d ≥ 4

if 2 ≤ λ1 ≤ λ2. In the special case d = 2, we have the trilinear estimate

‖�λ1f1�λ2f2�λ3f3‖L2(M) ≤ C(λ1λ2)
1/4‖f1‖L2(M) ‖f2‖L2(M) ‖f3‖L2(M)

if 1 ≤ λ1 ≤ λ2 ≤ λ3.
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Remark 5.10. The logarithmic factor in the right hand side of the bilinear estimate in
three space dimensions may be just technical. Apart from this, the linear estimates de-
duced from the above bilinear and trilinear estimates by making all the frequencies λj
equal and all the functions fj equal, are exactly theL4 andL6 estimates among theLp

estimates proved by Sogge in [51], which are known to be optimal. Moreover, all the
exponents in the multilinear estimates of Theorem 5.9 are optimal in the particular
case of the sphere.

Finally, we did not state the other multilinear estimates for those spectral projec-
tors, since they are essentially straightforward consequences of the above ones and of
the L∞ estimate due to Sogge,

‖�λf ‖L∞(M) ≤ Cλ
d−1

2 ‖f ‖L2(M), λ ≥ 1. (5.4)

Proof (sketch). There are several proofs of this result (see [16] for the bilinear estimate
in the two-dimensional case, and [17] or [18] for the general case). Here we follow
[18]. We set u = �λf , h = λ−1, and we observe that the spectral localization given
by �λ can be formulated as a semiclassical PDE:

h2Pu− u = h r, ‖r‖L2(M) ≤ C‖u‖L2(M). (5.5)

The main observation is then that this equation can be seen microlocally as an evolution
equation with respect to one of the spatial coordinates, say x1. For this equation it is
possible to perform exactly the same analysis as we did in the proof of Theorem 4.3.
This yields semiclassical versions of Strichartz inequalities (4.9) for (d−1)-admissible
pairs, and the result follows by using Hölder’s inequality as in Remark 5.3. �

6. The case of some simple compact manifolds

In this section we investigate the Cauchy problem for (1.3) on tori, spheres and balls,
where −P is the standard Laplace operator, trying to improve the results of Section 4.
The basic tools for positive results of wellposedness are borrowed from Section 5.
Several illposedness results are also obtained by explicit constructions. Moreover,
we point some open problems in this context.

6.1. Tori. The first compact manifolds on which the global Cauchy problem for (1.3)
has been studied are the tori

T
d = R

d/(2πZ)d .

The main reference is the fundamental work of Bourgain [6], [7] (see also [8] and
Ginibre [35]). We start with the one-dimensional case.

Theorem 6.1 (Bourgain [6]). If F(u) = ±|u|2u, then (1.3) is globally regularly
well-posed on L2(T).
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If F(u) = ±|u|4u, then (1.3) is locally regularly well-posed on Hε(T), but not
on L2(T).

If we compare with Theorem 4.2, we see that the quintic nonlinearity is critical
for L2 wellposedness on the line. However, on the line a quintic NLS is regularly
well-posed on small neighborhoods of 0 inL2(R), while it is not the case on the circle.

The proof of Theorem 6.1 essentially combines Theorem 5.7 with the explicit
spectral representation for the solution of the linear Schrödinger equation,

u(t, x) = eit∂
2
x u0 (x) =

∑
n∈Z

e−itn2
einxû0(n),

which yields the needed bilinear and trilinear estimates by a direct calculation based
on the Parseval formula in both time and space variables, following an old idea due
to Zygmund [63]. The lack of regular wellposedness of a quintic NLS on L2 results
from the first part of Theorem 5.7 and an explicit example of a sequence of data u0
such that ‖u‖L6(T2) ‖u0‖−1

L2(T)
is not bounded.

Let us say a word about data in Hs(T) for s < 0. In this case, there are several
results of illposedness for (1.3). The most elementary one (see [13]) is the lack of
uniform wellposedness which can be deduced from the explicit solutions

u(t, x) = κn|s|e−it (n2+G′(κ2n2|s|))einx

if F(z) = G′(|z|2)z. Notice that, if G′ behaves like a power at infinity, a small
variation of κ around 1 induces a large variation of the phase shift of u(t, x) for t > 0
and n large, whence some lack of stability. Notice that a similar argument had been
used earlier by Birnir–Kenig–Ponce–Svanstedt–Vega [4] and by Kenig–Ponce–Vega
[44] on the line. Furthermore, by a careful study of the interaction between high and
low frequencies, Christ, Colliander and Tao prove in [28] that, for the cubic case, the
flow map fails to be continuous from any ball of Hs to the space of distributions. As
for the quintic equation, the flow map fails to be uniformly continuous from any ball
ofHs endowed with the topology ofC∞, to the space of distributions. More recently,
Christ [25] constructed non trivial weak solutions in Ct(Hs) of a modified version of
a cubic NLS, with zero Cauchy datum.

Let us come to the multidimensional case. Using the same method as for Theo-
rem 6.1, it is possible to prove multilinear Strichartz estimates on T

d for d ≥ 2. The
interesting point is that these estimates are the same as on R

d , except the fact that they
are local in time, and that a loss ε may alter the orders. For instance, the Schrödinger
group on T

d enjoys a bilinear Strichartz estimate of order (d − 2)/2 + ε for every
ε > 0. In view of Theorems 5.2, 5.7 and 5.8, this implies in particular the following
results.

Theorem 6.2 (Bourgain [6]). If F(u) = ±|u|2u, then (1.3) is regularly well-posed
on Hε(T2) for every ε > 0.
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If F satisfies (1.4) for some α ∈ [2, 4], then (1.3) is uniformly wellposed on
Hs(T3) for every s > 3/2 − 2/α. In particular, if moreover α < 4, F is gauge
invariant and Hamiltonian with a nonnegative potential, (1.3) is globally uniformly
well-posed on H 1(T3).

In the case d = 4, the regularity s = 1 is critical for the cubic NLS. However, by
means of logarithmic estimates based on a careful study of exponential sums, global
wellposedness in Hs(T4), s > 1, can be obtained for (1.3) with nonlinearities with
quadratic growth such as F = F1,+ (see Bourgain [7]).

Let us conclude this subsection by quoting two open problems. The first one
concerns the quintic defocusing problem, namely F(u) = |u|4u, on T

3. According to
Theorem 6.2, it is regularly wellposed onHs(T3) for every s > 1, but nothing is known
about s = 1, even for small data. This would yield global regular wellposedness in
view of conservation laws.

The second open problem is the generalization of the above results to tori of the
type

T
d(θ1, . . . , θd) = R/θ1Z × · · · × R/θdZ,

where the θj ’s are positive numbers, possibly irrationally independent. The possibly
chaotic behavior of the spectrum

λ = ω2
1n

2
1 + · · · + ω2

dn
2
d, ωj = 2π

θj
, nj ∈ Z,

makes the multilinear Strichartz estimates particularly delicate to obtain. For instance,
if d = 2, the optimal order of the bilinear Strichartz estimate – and thus the threshold
of regularity wellposedness of cubic NLSs – is not known. However, if d = 3, it is
possible to prove that the local Lpt (L

4
x) norm of the solution of the linear Schrödinger

equation scales as on the Euclidean space, for any p > 16/3 (see Bourgain [9]).
This implies a trilinear estimate of order

(5
4 − ε, 3

4 + ε
)

for every ε > 0, and, by
Theorem 5.8, global uniform wellposedness of the defocusing subquintic NLS on
H 1(T3). Moreover, by more refined counting arguments, it is possible to reduce the
order of the bilinear Strichartz estimate from 3

4 + ε to 2
3 + ε ([9]).

6.2. Spheres. The case of multidimensional spheres is of course very natural, since
we observed in Subsection 4.3 that the loss in endpoint Strichartz inequalities is
optimal on them. Therefore we could expect that the wellposedness results for (1.3)
are the worst ones on spheres. The two-dimensional case is particularly interesting
in this respect. The following theorem is a slight generalization of results in [13]
and [16].

Theorem 6.3 (Burq–Gérard–Tzvetkov [13], [16]). The Cauchy problem for the cubic
NLS, i.e. (1.3) with F(u) = ±|u|2u, is regularly well-posed on Hs(S2) for every
s > 1/4 and not uniformly well-posed on Hs(S2) for every s < 1/4.
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If F = Fα,± (see (1.10)) with α ∈]0, 2], it is uniformly well-posed onHs(S2) for
every s > 1/4, and not uniformly well-posed for s < 1/4.

The Cauchy problem for the quintic NLS, i.e. (1.3) with F(u) = ±|u|4u is uni-
formly well-posed on Hs(S2) for every s > 1/2.

Remark 6.4. The first striking fact contained in the above result is that, unlike cubic
NLSs on the Euclidean plane or on the (square) torus, a cubic NLS on the sphere has
a threshold of regular (or uniform) wellposedness which is 1/4 and not 0. Notice
that we already met this exponent 1/4 in Subsection 5.1, in connection with the
counterexample of Subsection 4.3. In fact, the geometric phenomenon is the same
here, namely concentration on a closed geodesic, but specific information about the
sphere allow to get optimal results. A very natural open problem is of course to decide
whether the wellposedness threshold is also 1/4, or if it is smaller (for instance 0), as
we quoted in Section 2 about the modified KdV equation.

Another important open question is raised by the comparison of the above result
with Corollary 4.5, which, for a cubic NLS on general surfaces, needs s > 1/2 for
regular wellposedness. In fact, we ignore if there is a compact surface where a cubic
NLS is not regularly well-posed on Hs for some s ∈]1/4, 1/2].

A third observation is that, unlike positive thresholds on the Euclidean space, the
one on the sphere is not always changing with the parameterα. Indeed, for 0 < α < 2,
it is frozen at 1/4.

Finally, for the quintic NLS, the last statement of Theorem 6.3, combined with
Theorem 3.3 shows that the three wellposedness thresholds coincide with 1/2, which
is the Euclidean one. This suggests a general mechanism which we already met in
the context of tori, namely that the Lpt (L

q
x) estimates of the solutions of the linear

Schrödinger equation seem to become as good as the Euclidean ones if p, q are large
enough, so that, for α large enough, the wellposedness thresholds become identical to
the Euclidean ones. We shall check this phenomenon for higher dimensional spheres
as well. However, we do not have any argument for proving it on a general compact
manifold.

Proof (sketch). The positive results on uniform and regular wellposedness are conse-
quences of Theorems 5.2, 5.4 and 5.7 and of multilinear Strichartz estimates for the
Schrödinger group on S

2. As in the previous subsection, we use the exact spectral
representation of solutions to the linear Schrödinger equation,

u(t, x) =
∑
n∼N

e−itn(n+1)Hn(x),

whereHn are spherical harmonics of degree n, and the condition n ∼ N corresponds
to the spectral localization at frequency N . Using Parseval formula in the time vari-
able and multilinear spectral estimates given by Theorem 5.9, we obtain a bilinear
Strichartz estimate of order 1/4+ε and a trilinear estimate of order (3/4+ε, 1/4+ε)
for every ε > 0. The latter is even better than what we need. In particular, using The-
orem 5.8, we infer that (1.3), with F = Fα,± (see (1.10)) and α ∈]2, 4[, is uniformly
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well-posed on Hs(S2) for every s > 3/4 − 1/α. However we do not know if this
threshold is optimal.

Here an important role is played by the localization of the spectrum around squares
of the integers, so that this proof can only be generalized to Zoll manifolds (see [12]
and [16] for details).

We come now to the illposedness result. We observe that, as in the counterexample
given in Subsection 4.3, the following sequence of spherical harmonics

ψn(x) = (x1 + ix2)
n, x2

1 + x2
2 + x2

3 = 1

is concentrating exponentially on the closed geodesic x2
1 + x2

2 = 1 and satisfies

‖ψn‖Lq � n
1
4 − 1

2q ‖ψn‖L2, q ≥ 2.

Moreover, ψn has the remarkable property that it is the ground state of the Laplace
operator on the space Vn of functions f satisfying the symmetry property

f (Rθ(x)) = einθf (x),

where Rθ is the rotation of angle θ around the x3 axis. The idea is to construct
stationary solutions to (1.3) by minimizing the energy H(f ) on the L2 sphere of Vn
for small radii δn = κnn

−s , for different values of the parameter κn ∼ 1. It turns out
that the minimizers fn are very close to the line directed byψn, and that the nonlinear
eigenvalue ωn can be precisely estimated as n goes to ∞, creating for the solution

un(t, x) = e−itωnfn(x)

the same kind of instability that we already observed in the case of the one-dimensional
torus. We refer to [31] for details, or to [13] for a slightly different approach. �

Finally, we observe that the above methods can be applied to higher-dimensional
spheres. We gather the most striking facts in the following theorem.

Theorem 6.5 (Burq–Gérard–Tzvetkov). The Cauchy problem for a cubic NLS is
regularly well-posed onHs(S3) for s > 1/2, and not uniformly well-posed for s < 1/2
([17], [13]).

IfF = Fα,± (see (1.10)), it is uniformly well-posed onHs(S3) if s > s(α), and not
uniformly well-posed for s < s(α), with s(α) = 1/2 if α ≤ 2, and s(α) = 3/2 − 2α
if α ∈ [2, 4]. In particularly it is globally uniformly well-posed on H 1(S3) if α < 4
([17], [13]).

The Cauchy problem for a cubic NLS is regularly well-posed on Hs(S4) if s > 1,
but not for s = 1 ([16], [12]).

The Cauchy problem for (1.3) with F = Fα,± is not uniformly well-posed on
H 1(S6) for every α ∈]0, 1] ([13]).
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In the case d = 3, as in the torus case, the question of (regular) wellposedness of
the quintic NLS on small data inH 1 remains open. See however some partial results
in this direction in [19]. As for global wellposedness of the subquintic case, it is also
known on S

2 × T, but is completely open for an arbitrary three–manifold.
In the case d = 4, global wellposedness for some smoothed variants of the cubic

NLS can be found in [32].
Finally, let us emphasize that the illposedness result on S

6 is in strong contrast
with the case d = 6 in Theorem 4.2.

6.3. Balls. If −P is the Laplace operator on the ball B
d of the d-dimensional Eu-

clidean space with Dirichlet or Neumann boundary conditions, it is possible to take
advantage of stronger concentration phenomena of the eigenfunctions at the boundary
to produce illposedness for higher regularity.

Theorem 6.6 (Burq–Gérard–Tzvetkov [14], [20]). Let −P be the Laplace operator
on B

d with Dirichlet (resp. Neumann) boundary conditions.
If d = 2, the Cauchy problem for the cubic NLS is not uniformly well-posed on

the domain of P s/2 for s ∈ [0, 1/3[.
The Cauchy problem for (1.3) with F = Fα,± (see (1.10)) is not uniformly well-

posed on H 1
0 (B

5) (resp. H 1(B5)) for every α ∈]0, 1].
Finally, let us mention that, contrarily to the case of spheres, global wellposedness

for subquintic (1.3) with boundary conditions on B
3 remains an open problem.
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The periodic Lorentz gas in the Boltzmann-Grad limit

François Golse∗

Abstract. Consider the motion of a single point particle bouncing in a fixed system of spherical
obstacles. It is assumed that collisions are perfectly elastic, and that the particle is subject to
no external force between collisions, so that the particle moves at constant speed. This type of
dynamical system belongs to the class of dispersing billiards, and is referred to as a “Lorentz
gas”. A Lorentz gas is called periodic when the obstacle centers form a lattice. Assuming that
the initial position and direction of the particle are distributed under some smooth density with
respect to the uniform measure, one seeks the evolution of that density under the dynamics
defined by the particle motion in some large scale limit for which the number of collisions per
unit of time is of the order of unity. This scaling limit is known as “the Boltzmann-Grad limit”,
and is the regime of validity for the Boltzmann equation in the kinetic theory of gases. Whether
this evolution is governed in such a limit by a PDE analogous to the Boltzmann equation is a
natural question, and the topic of this paper.

Mathematics Subject Classification (2000). Primary 82C40, 37A60; Secondary 35B27, 37D50.

Keywords. Lorentz gas, dispersing billiards, Boltzmann-Grad limit, kinetic models, mean free
path.

1. Introduction

In 1905, H. Lorentz proposed the following linear kinetic equation to describe the
motion of electrons in a metal [23]:

∂tf + v · ∇xf + 1
m
F(t, x) · ∇vf (t, x, v) = Natr

2
at|v|C(f (t, x, ·))(v), (1)

where the unknown f (t, x, v) is the density of electrons which, at time t , are located
at x and have velocity v. In (1), F is the electric force field,m the mass of the electron,
whileNat and rat designate respectively the number of metallic atoms per unit volume
and the radius of each such atom. Finally C(f ) is the collision integral: it acts on the
velocity variable only, and is given, for each continuous φ ≡ φ(v) by the formula

C(φ)(v) =
∫

|ω|=1,v·ω>0

(
φ(v − 2(v · ω)ω)− φ(v)

)
cos(v, ω) dω. (2)

∗The author is grateful to Profs. E. Caglioti, H. S. Dumas and F. Murat for helpful comments during the
writing of this paper.
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Although a microscopic model, this equation is only a statistical description of electron
motion and by no means a first principle of electrodynamics. For instance, (1) only
holds for probability densities f , and does not have distributional solutions of the
form

f ≡ δ(x(t),v(t)),

as one would expect in any situation where there is only one electron and its trajectory
in phase space (x(t), v(t)) is known exactly (i.e. with probability 1). Obviously, this
inconsistency comes from the Lorentz collision integral C, and not from the electric
force. Hence we shall assume throughout this lecture that the electric force

F ≡ 0

and restrict our attention to the collision integral.
Since the Lorentz equation is not itself a first principle of physics, it is natural

to understand whether it can be derived from one such first principle. This question
belongs to the class of problems known as “hydrodynamic limits” – although in the
present case, the term “mesoscopic limit” would be more appropriate.

The interest of mathematicians in this type of question originates in Hilbert’s
attempts to justify rigorously the equations of fluid mechanics on the basis of the
kinetic theory of gases, which he cited as an example in his 6th problem on the
axiomatization of physics [19]. In [23], Lorentz himself established his model by
analogy with the Boltzmann equation for a gas of hard spheres, and did not seek any
rigorous derivation for it – avoiding in particular the rather subtle arguments proposed
by L. Boltzmann as a justification for the equation bearing his name.

In this paper, we shall discuss whether the Lorentz equation (1) can be rigorously
derived in some asymptotic limit from a very simple mechanistic model for electron
motion known as the “Lorentz gas”. Although not entirely satisfactory in the context
of electrodynamics, this model is to the kinetic theory of electrons what molecular
gas dynamics is to the kinetic theory of gases.

2. The Lorentz gas

Let1 �C ⊂ RD (the dimensions of interest being D = 2 or D = 3) satisfy the condition

d( �C) := inf
c,c′∈ �C

|c − c′| > 0. (3)

Pick r ∈ (
0, 1

2d(
�C)), and consider the motion of a point particle moving at a constant

velocity in the domain outside the union of fixed balls of radius r centered at the
elements of �C, henceforth denoted

Zr [ �C] := {x ∈ RD | dist(x, �C) > r}. (4)
1We designate by �C the set of obstacle centers, to avoid confusion with several constants denoted by C in the

sequel.
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It is assumed that each collision between the particle and any of the balls is perfectly
elastic. Put in other words, denoting by z the collision point and by nz the inward unit
normal to ∂Zr [ �C] at the point z, the pre- and postcollisional velocities v− and v+ of
the particle are related by the Descartes law of specular reflection

v+ = v− − 2(v− · nz)nz.
Obviously, the speed of the particle (i.e. the Euclidian norm of its velocity vector) is
invariant under this law of reflection, so that we can assume without loss of generality
that this speed is |v| = 1.

Assuming that the position and the velocity of the particle are respectively x and v
at time t = 0, we denote byXr(t, x, v; �C) and Vr(t, x, v; �C) respectively the position
and the velocity of the particle at time t . They satisfy the differential equations

Ẋr = Vr if dist(X(t), �C) > r,

V̇r = 0 if dist(X(t), �C) > r,
(5)

while

Xr(t + 0) = Xr(t − 0) if dist(Xr(t − 0), �C) = r,

Vr(t + 0) = R[nXr(t−0)]Vr(t − 0) if dist(Xr(t − 0), �C) = r,
(6)

where R[n] designates the specular reflection

R[n]v = v − 2(v · n)n.
The dynamical system (Xr, Vr) is referred to as the Lorentz gas in the configuration
of spherical obstacles of radius r centered at the points of �C.

Let f in ≡ f in(x, v) be a probability density on the single-particle phase-space,
i.e. a nonnegative measurable function defined a.e. on Zr [ �C] × SD−1 such that∫∫

Zr [ �C]×SD−1
f in(x, v) dxdv = 1.

Definefr ≡ fr(t, x, v; �C) to be the density with respect to dxdv of the image measure
of f in(x, v)dxdv under the flow (Xr, Vr), i.e.

fr(t, x, v; �C) = f in(Xr(−t, x, v; �C), Vr(−t, x, v; �C)). (7)

A natural question is whether fr(t, x, v; �C) converges to a solution of the kinetic
equation (1) with F ≡ 0 in the vanishing r limit, and under some appropriate scaling
assumption on the obstacle configuration �C.

Observe that (5) is the system of ordinary differential equations defining the char-
acteristics of the free transport equation in Zr [ �C] × SD−1; therefore the density fr is
the solution of

∂tfr + v · ∇xfr = 0, x ∈ Zr [ �C], |v| = 1, t > 0,

fr(t, x,R[nx]v) = fr(t, x, v), x ∈ ∂Zr [ �C], |v| = 1, t > 0,

fr(0, x, v) = f in(x, v), x ∈ Zr [ �C], |v| = 1.

(8)
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Hence the question above can be viewed as a some kind of homogenization problem
for the transport equation. Analogous homogenization problems for the diffusion
(Laplace) equation have been thoroughly studied – the work of Hruslov [20] is one
of the first references on this topic; see also the lucid presentation of this class of
problems in [10].

G. Gallavotti considered in [14] the case of random configurations �C of obsta-
cles; specifically, the points in �C are independent and identically distributed, under
Poisson’s law with density Nat. The radius of the obstacles is r > 0; it is assumed
that Nat → +∞ while r → 0 so that Natr

2 → σ . He proved that, in this limit,
the expectation of fr(t, x, v; �C) converges to the solution of (1) with initial data f in

and with F ≡ 0. His analysis is written in detail on pp. 48–55 in [15]. Later on, his
result was strengthened in [29] by H. Spohn, who considered slightly more general
distributions of obstacles. The a.s. convergence of fr(t, x, v; �C) in �C was proved by
C. Boldrighini, L. A. Bunimovich and Ya. G. Sinai [5].

Obviously, the case of a Poisson distribution of obstacles is very natural in the
context of the kinetic theory of (neutral) gases. For instance, one could think of a
mixture of two hard sphere gases, one with light molecules, the other one with heavy
molecules in equilibrium. If the concentration of the light gas is small, collisions be-
tween light molecules can be neglected; only binary collisions involving one molecule
of each type are considered. This is essentially2 the microscopic model studied in
[14], [15]. For other applications (such as the motion of electrons in a metal) it may
be useful to know what happens for other distributions of obstacles. In this paper, we
shall discuss the case of a periodic distribution of obstacles.

3. The distribution of free path lengths

From now on, we shall restrict our attention to the case of a periodic Lorentz gas with
spherical obstacles of radius r ∈ (

0, 1
2

)
centered at the integer points, i.e. �C = ZD.

Since the configuration of obstacle centers is thus fixed, we shall henceforth abbreviate
the notation introduced above by settingXr(t, x, v) := Xr(t, x, v; ZD),Vr(t, x, v) :=
Vr(t, x, v; ZD), while Zr := Zr [ZD] and fr(t, x, v) := fr(t, x, v,Z

D).
In view of the probabilistic interpretation of the kinetic equation (1) and of the

definition of the Boltzmann-Grad scaling, one expects that the free path lengths should
play an important role in studying the periodic Lorentz gas above in that limit.

Definition 3.1. For x ∈ Zr and v ∈ SD−1, the free path length (or forward exit time)
for a particle starting at the position x in the direction v is

τr(x, v) = inf{t > 0 | x + tv ∈ ∂Zr}.
2Except for the fact that heavy molecules may overlap in Gallavotti’s model, while this cannot occur for real

hard spheres: see condition (3).
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For each v ∈ SD−1, the function x �→ τr(x, v) has a unique continuous extension to
Zr ∪ {x ∈ ∂Zr | v · nx 
= 0} for which we shall abuse the notation τr(x, v).

1 2r

Figure 1. The periodic Lorentz gas.

Notice that τr(x + k, v) = τr(x, v) for each (x, v) ∈ Zr × SD−1 and k ∈ ZD:
hence τr can be seen as a [0,+∞]-valued function defined on Yr × SD−1 and a.e. on
Yr × SD−1, with Yr = Zr/Z

D .

If the components of v ∈ SD−1 are rationally independent – i.e. if k · v 
= 0 for
each k ∈ ZD\{0} – each orbit of the linear flow x �→ x+tv is dense on TD = RD/ZD,
so that τr(x, v) is finite for each x ∈ Zr .

There are two different, natural phase spaces on which to study the free path
length τr .

The first one is �+
r = {(x, v) ∈ ∂Zr × SD−1 | v · nx > 0} – or its quotient under

the action of ZD-translations on space variables �̃+
r = �r/Z

D – equipped with its
Borel σ -algebra and the probability measure νr proportional to γr , where

dγr(x, v) = (v · nx)ds(x)dv,

ds being the surface element on ∂Zr .

The second one isYr× SD−1, equipped with its Borelσ -algebra and the probability
measure μr proportional to the uniform measure on Yr × SD−1. The measure μr is
obviously invariant under the flow (X mod. ZD, V ) of the Lorentz gas.

Hence, there are two natural notions of a mean free path for the Lorentz gas:

∫
�̃+
r

τr (x, v) dνr(x, v) and
∫
Yr×SD−1

τr(x, v) dμr(x, v). (9)
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3.1. Santalò’s formula for the mean free path. In [26], L. Santalò proposed the
following simple and elegant explicit expression3 for the first notion of mean free path.∫

�̃+
r

τr (x, v) dνr(x, v) = |Yr | |SD−1|
γr(�̃

+
r )

= 1 − |BD|rD

|BD−1|rD−1 (Santalò’s formula)

where Bd is the d-dimensional unit ball (for the Euclidian norm).
For D = 3, one finds∫

�̃+
r

τr (x, v) dνr(x, v) = 1 − 4
3πr

3

πr2 .

With Nat = 1 and |v| = 1, this is indeed equivalent in the vanishing r limit to the
reciprocal of the factor

Natr
2|v|

∫
|ω|=1, v·ω>0

cos(v, ω) dω = πr2

that appears in (1). However encouraging, this by itself is not enough to justify the
relevance of (1) in the description of the Boltzmann-Grad limit of the periodic Lorentz
gas (see the discussion in Section 4 below).

Here is a quick proof of Santalò’s formula.

Lemma 3.2 (Dumas–Dumas–Golse [13]). Let f ∈ C1(R+) be such that f (0) = 0.
Then one has

γr(�̃
+
r )

∫
�+
r

f (τr(x, v))dνr(x, v) = |Yr | |SD−1|
∫
Yr×SD−1

f ′(τr(x, v)) dμr(x, v)

This lemma entails Santalò’s formula by letting f (z) = z, since the integral on
the right-hand side of the identity above is equal to 1.

Proof. For each x ∈ Zr , one has τr(x + tv, v) = τr(x, v) + t for all t near 0.
Differentiating in t shows that

v · ∇xτr = 1, x ∈ Yr, |v| = 1,

τr |�̃+
r

= 0.

Multiplying each side of the first equality by f ′(τr(x, v)) and integrating for the
uniform measure gives∫
Yr×SD−1

divx(vf (τr(x, v))) dxdv = |Yr | |SD−1|
∫
Yr×SD−1

f ′(τr(x, v)) dμr(x, v).

We conclude by applying Green’s formula to the integral on the left-hand side. �

3If A is a d-dimensional measurable subset of RD (with d ≤ D), the notation |A| denotes its d-dimensional
volume.
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3.2. Bounds on the distribution of free path lengths. For each point of the form
x = 1

2 (1, . . . , 1) ∈ Zr , the free path length τr(x, v) is infinite for some v ∈ QD, while
it is finite whenever the components of v are not rationally dependent. This suggests
the presence of tremendous oscillations in the graph of the function τr .

Therefore, it becomes interesting to study the distribution of values of τr(x, v).
We shall do so in the phase space Yr×SD−1 equipped with the probability measureμr .
On the other hand, Santalò’s formula suggests that the appropriate scale to measure
the free path length is the reciprocal of rD−1. Hence we consider

�r(t) = μr

({
(x, v) ∈ Yr × SD−1

∣∣ τr(x, v) > t

rD−1

)}
.

One could also choose to consider instead


r(t) = νr

({
(x, v) ∈ �̃+

r

∣∣ τr(x, v) > t

rD−1

)}
.

However, the formula in Lemma 3.2 can be recast in the form∫ ∞

0
f (t)
r(r

D−1t) dt = 1 − |BD|rD

|BD−1|rD−1

∫ ∞

0
f ′(t)�r(rD−1t) dt

for each f ∈ C1(R+) such that f (0) = 0, which means that


r = −1−|BD|rD

|BD−1| �
′
r on R∗+. (10)

Hence it suffices to study �r .
We begin with the following uniform bounds on �r .

Theorem 3.3 (Bourgain–Golse–Wennberg [6], [18]). For any space dimension D
such that D > 1, there exists two positive constants C′

D > CD such that

CD

t
≤ �r(t) ≤ C′

D

t
for each t > 1 and r ∈ (

0, 1
2

)
.

The proof of the upper estimate uses Fourier series in a way that is somewhat
reminiscent of Siegel’s proof [27] of Minkowski’s convex body theorem – see also
Theorem 9 in chapter 5 of [24].

The proof of the lower bound is very different in spirit: it is based on a precise
counting of infinite open strips included in the billiard tableZr , very similar to Bleher’s
analysis for the diffusion limit of the periodic Lorentz gas in [2]. Indeed, the free path
length τr(x, v) for x in any such strip is bounded from below by the time τ̃r (x, v)
at which the trajectory {x + tv | t > 0} exits the strip. Since τ̃r (x, v) is explicitly
known, its distribution is also explicit, and this provides the lower bound for �r .

Since the function t �→ 1/t does not belong to L1([1,+∞)), the lower estimate
in Theorem 3.3 implies that the second notion of mean free path in (9) is∫

Yr×SD−1
τr(x, v) dμr(x, v) =

∫ ∞

0
�r(r

D−1t) dt = +∞ for each r ∈ (
0, 1

2

)
.
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3.3. The distribution of free path lengths for D = 2 as r → 0. Numerical simula-
tions in [18] suggest that the double inequality in Theorem 3.3 could be strengthened
into some asymptotic equivalence as r → 0. However, given the very different nature
of the proofs for the upper and the lower bounds in Theorem 3.3, one cannot expect
this asymptotic equivalence to be established by the same techniques as in [6].

The proof of Theorem 3.3 suggests that rational approximation plays an important
role in the slow decay of the distribution of free path lengths. It is well-known that
continued fractions provide a fast algorithm for finding the best rational approximants
of any irrational number. For that reason, the Lorentz gas in the case D = 2 can
be analyzed in a quite detailed manner with continued fractions, as we shall see
below. The same analysis in the case of dimension D > 2 would require using
simultaneous rational approximation, a much more difficult problem for which no
satisfying analogue of the continued fraction algorithm seems to be available at the
time of this writing.

For each v ∈ S1, define

φr(t, v) = 1

|Yr |
∣∣∣∣
{
x ∈ Yr

∣∣ τr(x, v) > t

rD−1

}∣∣∣∣.
Theorem 3.4 (Caglioti–Golse [7], [8]). In the case of space dimension D = 2,

• for each t > 0 and a.e. v ∈ S1, φr(t, v) converges in the sense of Cesàro as
r → 0: there exists φ(t) ∈ R+ such that

lim
ε→0

1

ln 1
ε

∫ r∗

ε

φr(t, v)
dr

r
= φ(t);

• one has

φ(t) = 1

π2t
+O

( 1

t2

)
as t → +∞.

Obviously

�r(t) = 1

2π

∫
S1
φr(t, v)dv, so that lim

ε→0

1

ln 1
ε

∫ r∗

ε

�r(t)
dr

r
= φ(t). (11)

The asymptotic expansion 1
π2t

+ O
( 1
t2

)
has been identified for the first time in

[7]. In fact, the result in [7] stated that both the lim sup and the lim inf of the Cesàro
mean of�r for the scaling invariant measure dr

r
as in (11) have that same asymptotic

expansion. The a.e. pointwise (in v) convergence is new – see [8].

3.3.1. Method of proof. Before sketching the proof of the result above, let us recall
some background on continued fractions.

The Gauss map is defined as

T : (0, 1) \ Q � x �→ 1

x
−

[
1

x

]
∈ (0, 1) \ Q;
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it is an ergodic automorphism of (0, 1)\Q with respect to the Gauss measure dg(x) =
1

ln 2
dx

1+x that is invariant under T .
Let x ∈ (0, 1) \ Q; define the sequence of positive integers

ak =
[

1

T k−1x

]
, k ≥ 1.

Then x is represented by the continued fraction

x = 1

a1 + 1

a2 + 1

a3 + · · ·

=: [0; a1, a2, a3, . . . ].

Define by induction the sequences of integers pn and qn by

pn+1 = anpn + pn−1, for each n ≥ 1, p0 = 1, p1 = 0,

qn+1 = anqn + qn−1, for each n ≥ 1, q0 = 0, q1 = 1,
(12)

For each n ≥ 2, the integers pn and qn are coprime, and the rational number pn
qn

is
called the n-th convergent of x. The distance from x to its n-th convergent is measured
by

dn = (−1)n−1(qnx − pn) > 0; (13)

for each n ≥ 0, one has

dn =
n−1∏
k=0

T kx. (14)

(see for instance the third formula on p. 89 of [28]).

Step 1. A three-term partition of T2. A key idea in the proof of Theorem 3.4 is provided
by the answer found by S. Blank and N. Krikorian [1] to the following question raised
by R. Thom: “What is the longest orbit of a linear flow with irrational slope on a flat
torus with a disk removed?”

Without loss of generality, assume that the linear flow is x �→ x + tv with v =
(cos θ, sin θ) and θ ∈ (0, π4 ). The removed disk of radius r is then replaced with the
vertical slit Sr(v) of length 2r/ cos θ as shown in Figure 2 (left). Blank and Krikorian
found that the set of lengths of all orbits of the linear flow above on T2 \Sr(v) consists
of exactly three positive values, lA(r, v) < lB(r, v) and lC(r, v) = lA(r, v)+ lB(r, v).

This suggests considering the three-term partition of T2 \ Sr(v)
{YA(r, v), YB(r, v), YC(r, v)}

defined as follows: YA(r, v) (resp. YB(r, v), YC(r, v)) is the union of all orbits of
length lA(r, v) (resp. lB(r, v), lC(r, v)). Set

SA(r, v) = {y ∈ Sr(v) | the orbit starting from y is of type A}
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2r

Sr (v)

v

θ
θ

0 t t ′ t ′′

SB(r, v)

SC(r, v)

SA(r, v)

YB(r, v)

YA(r, v)

YC(r, v)

θ

Figure 2. Left: The obstacle and the slit. Right: The 3-strip partition of the 2-torus. This
figure gives a simple geometric interpretation of ψr(rs, v) for rs cos θ = t , rs cos θ = t ′ or
rs cos θ = t ′′.

with analogous definitions for SB(r, v) and SC(r, v). Then SA(r, v), SB(r, v) and
SC(r, v) are segments while YA(r, v), YB(r, v) and YC(r, v) are (mod 1) parallelo-
grams with one side being SA(r, v), SB(r, v) or SC(r, v) while the adjacent sides are
of lengths lA(r, v), lB(r, v), or lC(r, v): see Figure 2 (right).

The orbit lengths lA(r, v), lB(r, v) and lC(r, v), and the lengths of the three seg-
ments SA(r, v), SB(r, v) and SC(r, v) are computed in terms of r and the continued
fraction expansion of tan θ as follows.

Set α = tan θ , and denote by α = [0; a1(θ), a2(θ), a3(θ), . . . ] the continued
fraction expansion of α = tan θ , also let pn(α)/qn(α) be the n-th convergent of α as
in (12). Finally, let dn(α) be the sequence of errors as defined in (13).

Define
N(α, r) = min

{
n ∈ N | dn(α) ≤ 2r

√
1 + α2

}
; (15)

and

k(α, r) = −
[

2r
√

1 + α2 − dN(α,r)−1

dN(α,r)

]
(16)

Then, the three-strip partition above is characterized by the formulas below:

lA(r, v) = qN(α,r)(α)
√

1 + α2,

lB(r, v) = (
qN(α,r)−1(α)+ k(α, r)qN(α,r)(α)

) √
1 + α2,

lC(r, v) = (
qN(α,r)−1(α)+ (k(α, r)+ 1)qN(α,r)(α)

) √
1 + α2,

(17)

while

|SA(α, r)| = 2r
√

1 + α2 − dN(α,r)(α),

|SB(α, r)| = 2r
√

1 + α2 − (
dN(α,r)−1(α)− k(α, r)dN(α,r)(α)

)
,

|SC(α, r)| = dN(α,r)−1(α)− (k(α, r)− 1)dN(α,r)(α)− 2r
√

1 + α2.

(18)
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Step 2. Computing φr . Let λr(x, v) = inf{t > 0 | x + tv ∈ Sr(v)} for each
x ∈ T2 \ Sr(v); clearly

|τr(x, v)− λr(x, v)| ≤ r for each x ∈ Yr \ Sr(v). (19)

Define

ψr(t, v) := Prob{x ∈ T2 \ Sr(v) | λr(x, v) ≥ t/r},
where the probability is computed with respect to the uniform measure onYr . Because
of (19), one has

ψr(t − r2, v)− πr2 ≤ (1 − πr2)φr(t, v) ≤ ψr(t + r2, v) for each t ≥ r2. (20)

On the other hand, ψr can be computed explicitly with the help of the three-term
partition above. It is found that

ψr(t, v) = max
(
1 − 2t, 1 − 1−δN

δN−1
μN − 2tδN , 1 − (k−1)δN+1

δN−1
μN − δN

δN−2
μN−1

− (δN−1 − (k − 1)δN − 1)
(
2t − μN−1

δN−2
− k

μN
δN−1

)
, 0

)
.

(21)

In the formula above, N = N(α, r) and δn = dn(α)

2r
√

1+α2 while μn = dn−1(α)qn(α);

also k = k(α, r) = −[ − ( δN−1
δN

− 1
δN

)]
. The direction is v = ( 1√

1+α2 ,
α√

1+α2

)
.

0

1

ψr(rt, v)

slope −2r

slope −|SB(r, v)| cos θ − |SC(r, v)| cos θ

slope −|SC(r, v)| cos θ

1A(r, v) 1B(r, v) 1C(r, v)
t

Figure 3. Graph of ψr(rt, v).
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Step 3. Using the ergodicity of the Gauss map. Birkhoff’s ergodic theorem says that,
for each h ∈ L1

(
(0, 1), dx

1+x
)
, one has

1

N

N−1∑
j=0

h(T mα) → 1

ln 2

∫ 1

0

h(z)dz

1 + z
a.e. in α ∈ (0, 1) as N → +∞. (22)

Together with formula (14) and the definition of N(α, r), the convergence in (22) for
h = ln implies that

N(α, r) ∼ 12 ln 2
π2 | ln r| as r → 0, for a.e. α ∈ (0, 1). (23)

Define

�j(α, x) := − ln δN(α,e−x)−j (α) = − ln dN(α,e−x)−j (α)− x + ln(2
√

1 + α2) (24)

for each j ≥ 0, α ∈ (0, 1) \ Q and x > ln 2. A further application of Birkhoff’s
theorem (22) leads to

Lemma 3.5. Let f be a bounded continuous function on Rm+1. Then, for each
x∗ ≥ ln 2, one has

1

ln(1/r)

∫ ln(1/r)

x∗
f (�0(α, x), . . . ,�m(α, x))dx →

∫ 1

0

F(θ)dθ

1 + θ
a.e. in α ∈ (0, 1)

as r → 0, where

F(θ) =
∫ | ln(T mθ)|

0
f (Ym(y, θ)) dy.

In the formula above, Ym(y, θ) denotes

Ym(y, θ) = (y, y+ ln T mθ, y+ ln T mθ + ln T m−1θ, . . . , y+ ln T mθ +· · ·+ ln T θ).

Step 4. The small scatterer limit for the Cesàro mean of �r . We seek to apply the
lemma above to compute

1

ln(1/ε)

∫ 1/2

ε

ψr(t, v)
dr
r

in the limit as ε → 0.

Unfortunately, ψr given by (21) is not a function of any fixed, finite number of
ratios of the form δn

δn−1
, but also involves a few μns – in the original variables, ψr

explicitly depends on the qn(α)s which involve the complete string of all the T jαs
for j = 0, 1, . . . , n− 1, not only the last one.

Next observe that μN
δN−1

≤ 1, and hence t ≥ 1 implies that

ψr(t, v) = max
(
1 − 1−δN

δN−1
μN − 2tδN , 1 − (k−1)δN+1

δN−1
μN − δN

δN−2
μN−1

− (δN−1 − (k − 1)δN − 1)
(
2t − μN−1

δN−2
− k

μN
δN−1

)
, 0

)
= max

(
1 − 1−δN

δN−1
μN − 2tδN ,

(δN−1 − (k − 1)δN − 1)
(μN−1
δN−2

+ (k + 1) μN
δN−1

− 2t
)
, 0

)
.

(25)
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In this last equality we have used formula (8) in chapter 1 of [21].
On the other hand, δN−1 − (k − 1)δN − 1 ≤ δN so that

0 ≤ ψr(t, v)− (1 − 1−δN
δN−1

μN − 2tδN)+
≤ δN

δN−1
μN1

2t≤μN−1
δN−2

+(k+1)
μN
δN−1

≤ δN
δN−1

μN1
2t≤(k+2)

μN
δN−1

≤ 1
k
1k+2≥t .

Finally δN
δN−1

μN ≤ 1
k

and 1 − μN ≤ 2
k

(see Lemma 4.1 in [7]) so that∣∣(1 − 1−δN
δN−1

μN − 2tδN
)
+ − (

1 − 1
δN−1

− 2tδN
)
+
∣∣ ≤ (

δN
δN−1

μN + 1−μN
δN−1

)
1k+2≥t

≤ 3
k
1k+2≥t

andψr(t, v) can be replaced with (1− 1
δN−1

−2tδN)+ modulo an error term controlled

by 3
k
1k+2≥t . Applying Lemma 3.5 to f (�0,�1) = (1 − e�1 − 2te−�0)+ leads to

the asymptotic behavior in the second part of Theorem 3.4.
The proof of the a.e. in v convergence uses Steps 1–3 above, in a way that is

somehow more involved: see [8] for more details.

3.3.2. Later improvements. Theorem 3.4 was later strengthened by F. Boca and
A. Zaharescu [4], in two different ways. First, they were able to remove the need
for Cesàro averaging in the convergence statement of (11). Also, they obtained a
(semi-)explicit formula for φ. Here is their result:

Theorem 3.6 (Boca–Zaharescu [4]). In the case of space dimension D = 2, one has

�r(t) → φ(t) as r → 0 for each t > 0

where

φ(t) = 1 − 2t + 12
π2 t

2, t ∈ (
0, 1

2

]
,

φ(t) = 6
π2

∫ 2t−1

0
a(x, t) dx + 6

π2

∫ 1

2t−1
b(x, t) dx, t ∈ ( 1

2 , 1
]
,

φ(t) = 6
π2

∫ 1

0
a(x, t) dx, t ∈ (1,+∞),

with the functions a and b given by

a(x, t) = (1−x)2
x

(
2 ln 2t−x

2(t−x) − 2t
x

ln (2t−x)2
4t (t−x)

)
,

b(x, t) = 1−2t
x

ln 1
2t−x + (2t−x)(x+1−2t)

x
+ (1−x)2

x

(
2 ln 2t−x

1−x − 2t
x

ln (2t−x)
2t (1−x)

)
.

The formulas above for � were first conjectured by P. Dahlqvist in [11], by an
argument involving Farey fractions, which however remained incomplete since it ulti-
mately relied on the equidistribution of a certain geometrical quantity, which remained
to be proved.
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The proof by Boca and Zaharescu is essentially based on two ideas: a) using the
same 3-strip partition as in [7], in the language of Farey instead of continuous fractions,
and b) computing certain sums indexed by lattice points with coprime coordinates by
replacing them with integrals while controlling the resulting error terms.

However, being based on averaging in x and v, their proof fails to provide a.e.
pointwise convergence in v, unlike the proof of Theorem 3.4, based on Birkhoff’s
ergodic theorem for the Gauss map, which requires instead averaging in r , thereby
proving only convergence in Cesàro’s sense.

3.4. The entropy of the billiard map as r → 0. The semi-explicit formula for� in
Theorem 3.6 has at least one important application besides the problem of justifying
the Lorentz equation (1). Define the billiard map in the case of the Lorentz gas to be

Br : �̃+
r → �̃+

r , (x, v) �→ Br (x, v) = (x + τr(x, v)v,R[nx+τr (x,v)v]v); (26)

one easily checks that the measure νr is invariant under the map Br . Denote by h(Br )

the Kolmogorov–Sinai entropy of the billiard map Br with respect to the measure νr .
A consequence of Theorem 3.6 and of formula (10)4 is the following asymptotic
formula for the entropy of the billiard map in dimension D = 2 and in the small
obstacle limit:

h(Br ) = 2 ln
1

r
+ 2 + C + o(1) as r → 0.

Here the constant C is defined as

C = lim
r→0

(∫
�̃+
r

ln τr(x, v) dνr(x, v)− ln
∫
�̃+
r

τr (x, v) dνr(x, v)

)
= 9ζ(3)

4ζ(2)
− 3 ln 2

while ζ is Riemann’s zeta function.
In 1991, N. Chernov had proved that, in dimension D, the entropy of the billiard

map satisfies

h(Br ) = D(D − 1) ln
1

r
+O(1) as r → 0;

see [9] and the references therein. That theO(1) error term should actually converge
as r → 0 had been conjectured earlier by B. Friedman, Y. Oono and I. Kubo on the
basis of numerical simulations; the correct value of the limit was then proposed by
Dahlqvist in [11] before Boca–Zaharescu’s proof in [4].

4. The Boltzmann-Grad limit: a negative result

In this section, we return to the formulation of the Boltzmann-Grad limit for the
periodic Lorentz gas in terms of a homogenization problem for the transport equation,
as in Section 2.

4In [4], Boca and Zaharescu do not use formula (10); instead they derive the formula for the distribution 
r
by using again the 3-term partition and the approximation of sums over coprime lattice points as in the proof of
Theorem 3.6.
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Going back to the free transport equation (8), we set

�C := εZD, rε = ε
D

D−1 , �ε := Zrε [εZD] and fε(t, x, v) := frε (t, x, v; εZD),

where ε ∈ (0, 2−D). Hence fε satisfies

∂tfε + v · ∇xfε = 0, x ∈ �ε, v ∈ SD−1,

fε(t, x, v) = fε(t, x,R[nx]v), x ∈ ∂�ε, v ∈ SD−1.
(27)

For simplicity, we shall assume that ε is of the form ε = 1
n

for n > 2D, and that
the initial data f in ≡ f in(x, v) is continuous and periodic in x with period 1 in each
coordinate direction. In other words, f in ∈ C(TD × SD−1).

With the choice of ε = 1
n

, the solution fε of (27) with initial data

fε(0, x, v) = f in(x, v), x ∈ �ε, v ∈ SD−1, (28)

is also periodic in the variable x with period 1 in each coordinate direction; if one ex-
tends fε by 0 inside the obstacles and abuse the notation fε to designate this extension,
one sees that

fε ∈ L∞(R+ × TD × SD−1) with ‖fε‖L∞ = ‖f in‖L∞ .

By the Banach–Alaoglu theorem, the sequencefε (for ε = 1
n

withn > 2D) is relatively
compact in L∞(R+ × TD × SD−1) for the weak-* topology. It is therefore natural to
investigate the limit points of fε as ε → 0 – this being exactly the Boltzmann-Grad
limit of the periodic Lorentz gas viewed as a homogenization problem for the transport
equation.

We begin with the following negative result:

Theorem 4.1 (Golse [17]). There exists initial data f in ∈ L∞(TD × SD−1) such that
no subsequence of fε converges in L∞(R+ × TD × SD−1) weak-* to the solution of
the Lorentz kinetic equation (1).

In fact, the result in [17] is stronger: it excludes the possibility that any subse-
quence of fε converges in L∞(R+ ×TD ×SD−1)weak-* to the solution of any linear
Boltzmann equation of the form

(∂t + v · ∇x)f (t, x, v) = σ

∫
SD−1

k(v, v′)(f (t, x, v′)− f (t, x, v)) dv′ (29)

with σ > 0 and k ∈ C(SD−1 × SD−1) such that

k(v,w) = k(w, v) > 0,
∫

SD−1
k(v,w) dv = 1.

The proof is based on the fact that the operator

f �→ v · ∇xf + σ

∫
SD−1

k(v, v′)(f (t, x, v)− f (t, x, v′)) dv′
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with domain

{f ≡ f (x, v) ∈ L2(TD × SD−1) | v · ∇xf ∈ L2(TD × SD−1)}
is Fredholm with nullspace the set of constant functions. Hence there exists c > 0
such that ∥∥∥∥f (t, ·, ·)− 1

|SD−1|

∫∫
TD×SD−1

f (t, y,w) dydw

∥∥∥∥
L2(TD×SD−1)

≤ C‖f |t=0‖L2(TD×SD−1)e
−ct

(30)

for each solution of (29). On the other hand, if f in ≥ 0 a.e., the solution fε of (27)
satisfies

fε(t, x, v) ≥ f in(x − tv, v)1t≤ετ
ε1/(D−1) (x,v)

– the right-hand side being the solution of the same transport equation as in (27) but
with absorbing boundary condition

fε(t, x, v) = 0 for x ∈ ∂�ε and v · nx > 0.

Hence, if f is any weak-* limit point of fε in L∞(R+ × TD × SD−1) as ε → 0, it
must satisfy

f (t, x, v) ≥ CD

t
f in(x − tv, v)

by Theorem 3.3. This is incompatible with (30) as can be seen by taking f in(x, v) ≡
ρ(x) with ‖ρ‖L2(TD) = 1 while ‖ρ‖L1(TD) = o(1).

The case of a Lorentz gas with purely absorbing obstacles is much simpler and
yet not without interest. Let gε ≡ gε(t, x, v) be the solution of

∂tgε + v · ∇xgε = 0, x ∈ �ε, v ∈ SD−1, t > 0,

gε(t, x, v) = 0, x ∈ ∂�ε, v · nx > 0,

gε(0, x, v) = f in(x, v), x ∈ �ε, v ∈ SD−1.

(31)

In the 2-dimensional case, Theorem 3.4 provides a complete description of the limit:

Theorem 4.2 (Caglioti–Golse [7], [8]). For each f in ∈ L∞(T2 × S1),

1

ln 1
η

∫ 1/2

η

gε
dε

ε
→ g

weakly-* in L∞(T2 × S1) and pointwise in t ≥ 0 as ε → 0, with g given by

g(t, x, v) = f in(x − tv, v)φ(t),

where φ is the small scatterer limit of the distribution of free path lengths, whose
explicit expression is provided by Theorem 3.6.
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In other words, g is the solution of

∂tg + v · ∇xg = φ′(t)
φ(t)

g, x ∈ R2, v ∈ S1, t > 0,

gε|t=0 = f in.
(32)

Notice that φ
′(t)
φ(t)

< 0, so that the term on the right-hand side of (32) indeed models
the loss of particles impinging on the obstacles.

This result can be viewed as a homogenization problem for the free transport
equation in a domain with holes. The analogous problem for the diffusion (Laplace)
equation has been analyzed in detail: see for instance [20], [10]. It describes the
steady, D-dimensional motion of particles on Brownian trajectories in a periodic ar-

ray of circular holes with radius ε
D

D−2 centered at the points of the cubic lattice εZD,
each particle falling into a hole being permanently removed. Notice the different crit-

ical size of the obstacles – ε
D

D−2 in the diffusion case, instead of ε
D

D−1 in the transport
case – which comes from the fact that the diffusion and free transport operators are of
order 2 and 1 respectively, thereby leading to different scalings. More importantly, in
the case of the diffusion problem, the loss of particles falling into the holes is described
in this limit with a constant absorption coefficient. Indeed, successive increments in
Brownian trajectories are independent random variables, so that the periodic struc-
ture of the array of holes is somehow ignored by the particles. On the contrary, in
the case of the free transport problem (31), the trajectories are straight lines, which
introduces correlations between the obstacles. Intuitively, particles which have not
encountered any obstacle over some interval of time [0, T ] move in a direction that is
well approximated by a rational direction – with increasing quality of approximation
as T increases. Such particles are therefore much less likely to encounter obstacles
after time T , and this agrees with the fact that the absorption rate φ′(t)

φ(t)
vanishes as

t → +∞.

5. Conclusion

The methods presented above explain why the Lorentz kinetic equation (1) fails to
describe the Lorentz gas in the Boltzmann-Grad limit, when the obstacles are centered
at the vertices of the cubic lattice ZD. The ergodic theory of continued fractions
provides additional insight on this example of periodic Lorentz gas in the case D = 2,
especially on the asymptotic distribution of free path lengths in the small obstacle
limit.

Obviously, it would be desirable to obtain as much information in higher dimen-
sions, particularly for the physically relevant case D = 3. This could be difficult, as
it might require accurate estimates on simultaneous rational approximation.

Otherwise, it would be useful to have analogues of the results above for 2-
dimensional lattices other than Z2. Specifically, one would like to know whether
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Theorems 3.3, 3.4 and 3.6 can be extended or adapted to the case of arbitrary 2-
dimensional lattices. If so, it would be particularly interesting to find the intrinsic
meaning of the constants 1

π2 and 9ζ(3)
4ζ(2) − 3 ln 2 that appear in Theorem 3.4 and in

Section 3.4.
Finally, the problem of finding an equation describing the Boltzmann-Grad limit

of the periodic Lorentz gas – even in the simplest 2-dimensional case and for the
cubic lattice Z2 – remains open. So far, we have no clue as to the structure of such an
equation, should it exist: we only know that it cannot be a linear Boltzmann equation
of the type (29).
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Conformal invariants and nonlinear elliptic equations

Matthew J. Gursky

Abstract. We describe several “uniformizing” problems in conformal geometry, all of which
can be formulated as problems of existence for solutions of certain elliptic partial differential
equations. For the sake of exposition we divide the discussion according to the type of PDE,
beginning with semilinear equations related to the scalar curvature, then higher order equations
arising from the Q-curvature, and finally fully nonlinear equations.
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1. Introduction

In this article we outline several problems related to finding a canonical representative
of a conformal equivalence class of Riemannian metrics. The earliest and best known
result of this kind is the Uniformization Theorem for surfaces. Although originally
conceived as a problem in complex function theory, in view of the modern development
of the theory of Riemann surfaces it can be stated in purely geometric terms: Given
a compact surface (M2, g), there is a conformal metric g̃ = e2wg with constant
curvature.

In higher dimensions the Uniformization Theorem is no longer true, even locally.
For example, in dimensions n ≥ 4 the Weyl tensorW(g) provides an obstruction to a
metric being locally conformal to a flat metric. Despite this fact – or perhaps because
of it – there are numerous ways to define what constitutes a canonical metric. In this
article we will outline several “uniformizing” problems, each involving the study of a
PDE of a different type: second order semilinear (in the case of the scalar curvature),
higher order semilinear (for theQ-curvature), and fully nonlinear (when considering
the σk-curvature). An underlying theme will be the connection between conformal
invariants associated to the problem, spectral properties of the relevant differential
operator, and the interplay of both with the topology of the manifold.

2. Semilinear examples

2.1. The modified scalar curvature. Let (Mn, g) be a closed Riemannian manifold
of dimension n ≥ 3, and let R(g) denote its scalar curvature. If g̃ = u4/(n−2)g is a
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conformal metric, then the scalar curvature R(g̃) of g̃ is given by

Lgu+ R(g̃)u
n+2
n−2 = 0, (2.1)

where Lg = 4(n−1)
(n−2) �g − R(g) is the conformal laplacian. The Yamabe problem

is to establish the existence of a conformal metric with constant scalar curvature
(see [32]). Since the scalar curvature of a surface is twice the Gauss curvature, the
Yamabe problem can be viewed as one possible generalization of the Uniformization
Theorem.

An important property of the operator Lg is its conformal covariance: If g̃ =
u4/(n−2)g, then

Lg̃v = u− n+2
n−2Lg(uv). (2.2)

Consequently, the sign of the principle eigenvalue λ1(−Lg) is a conformal invari-
ant ([30]).

A generalization of the Yamabe problem was introduced by the author, for the
purposes of studying a rigidity question for Einstein metrics [22]. Subsequently it
has been used to estimate the Yamabe invariant of certain four-manifolds [23], the
principal eigenvalue of the Dirac operator [28], and in the context of Seiberg–Witten
theory [31].

Given a Riemannian manifold (Mn, g), let G ⊂ S2T ∗Mn denote the ray bundle
consisting of metrics in the conformal class of g. Let δs : G → G denote the dilations
δs(g) = s2g, with s > 0. Functions on G which are homogeneous of degree β with
respect to δs are known as conformal densities of weight β.

Definition 2.1. Given a density φ of weight −2, we define the modified scalar cur-
vature associated to φ by

R̂(g) = R(g)− φ. (2.3)

For example, in some applications (M4, g) is an oriented four-dimensional man-
ifold and φ = 2

√
6|W±(g)|, the (anti-) self-dual part of the Weyl curvature tensor.

For Kähler manifolds of positive scalar curvature the corresponding modified scalar
curvature R̂(g) = R(g)− 2

√
6|W+|2 ≡ 0.As this example illustrates, in general we

do not assume the density is smooth, but at least Lipschitz continuous.
Since φ is a conformal density of weight −2 the operator L̂g = 4(n−1)

(n−2) �g − R̂(g)
enjoys the same invariance as the conformal laplacian given in (2.2). In particular,
the sign of λ1(−L̂g) is a conformal invariant.

In analogy with theYamabe problem, we can ask whether there exists a conformal
metric whose modified scalar curvature is constant. Due to the conformal covariance
of L̂, the sign of this constant will agree with the sign of λ1(−L̂g). Since the choice of
density obviously plays an important role in the question of existence, a completely
general theory would seem unlikely. For particular cases, though, some existence
results have been appeared (see [29]).
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In fact, for many applications the relevant question is the sign of the modified scalar
curvature, or equivalently, the sign of λ1(−L̂g). Typically, the density φ is chosen by
examining the curvature term in the Weitzenböck formula for a harmonic section of
some vector bundle; then the sign ofλ1(−L̂g) can be thought of as an obstruction to the
existence of non-trivial harmonic sections. Of course, Lichnerowicz used precisely
this kind of argument with the Dirac operator on a spin manifold to prove obstructions
to the existence of metrics with positive scalar curvature [33].

To illustrate this technique with one important example, consider a self-dual har-
monic two-form ω ∈ H 2+(M4,R). In this case the Weitzenböck formula is given
by

1

2
�g|ω|2 = |∇ω|2 − 2W+(ω, ω)+ 1

3
R(g)|ω|2. (2.4)

Another intriguing element in the study of the modified scalar curvature is the im-
portant role played by refined Kato inequalities (see [24]). In the case of self-dual
harmonic two-forms this takes the form

|∇ω|2 ≥ 3

2
|∇|ω||2 (2.5)

([37]). Substituting into (2.4), and using the fact thatW+ : 	2+ → 	2+ is a trace-free
endomorphism, we eventually arrive at

�g|ω|2/3 ≥ 1

6

[ − 2
√

6|W+(g)| + R(g)
]|ω|2/3. (2.6)

Taking φ = 2
√

6|W+|, we conclude

L̂g|ω|2/3 ≥ 0 (2.7)

which implies λ1(−L̂g) ≤ 0. Thus, there are cohomological obstructions to the
existence of metrics with positive first eigenvalue.

On the other hand, when λ1(−L̂g) ≤ 0 one obtains Lp-estimates for the scalar
curvature. For example, in four dimensions∫

R(g)2 dv(g) ≤
∫
φ2 dv(g). (2.8)

Since φ is a density of weight −2, the integral on the right-hand side of (2.8) is a
conformal invariant. Thus, we have a connection between the spectral properties of the
conformally covariant operator L̂g , and L2-conformal invariants. We will encounter
a similar phenomenon when considering higher order elliptic equations.

2.2. Higher order equations and the Q-curvature. In an unpublished preprint
[35], the late Stephen Paneitz constructed a fourth order conformally covariant op-
erator defined on a (pseudo)-Riemannian manifold (M4, g) of dimension n ≥ 3. In
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four dimensions, his operator is given by

Pg = (−�g)2 − δg

{[
2

3
R(g)g − 2 Ric(g)

]
� ∇

}
, (2.9)

where δg : 	1(M4) → C∞(M4) is the divergence. If g̃ = e2wg is a conformal
metric, then

Pg̃ = e−4wPg. (2.10)

In particular, the sign of λ1(Pg) and the kernel of Pg are both conformally invariant.
Since Pg(1) = 0, we always have λ1(Pg) ≤ 0.

Branson [4] subsequently observed the connection between Paneitz’s operator and
what Branson called the Q-curvature, defined by

Q(g) = 1

12

( −�gR(g)+ R(g)2 − 3| Ric(g)|2). (2.11)

In fact, if g̃ = e2wg, then the Q-curvature of g̃ is given by

Pgw + 2Q(g) = 2Q(g̃)e4w. (2.12)

It follows that the integral of the Q-curvature is another conformal invariant:∫
Q(g̃) dv(g̃) =

∫
Q(g) dv(g). (2.13)

The Q-curvature and Paneitz operator have become important objects of study in
the geometry of four-manifolds, and play a role in the such diverse topics as the Moser–
Trudinger inequalities ([3], [5]), twistor theory ([14]), gauge choices for Maxwell’s
equations ([13]), and conformally compact AHE manifolds ([15], [16]). In addition,
they naturally suggest another “uniformizing” problem, that of finding a conformal
metric with constant Q-curvature.

Chang andYang ([9]) studied this problem using the direct variational method, by
attempting to prove the existence of minimizers of the non-convex functional

F [w] =
∫
wPgw dv(g)+ 4

∫
wQ(g) dv(g)

−
( ∫

Q(g) dv(g)

)
log

∫
e4w dv(g).

(2.14)

However, if the Paneitz operator has a negative eigenvalue and the conformal invariant
(2.13) is positive, then Chang and Yang showed that inf F = −∞. Even when F
is bounded below the compactness of a minimizing sequence is a delicate matter.
Using a sharp form of Adam’s inequality ([1]) Chang andYang [9] were able to prove
the existence of minimizer assuming the invariant (2.13) is less than its value on the
standard sphere:
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Theorem 2.2. Let (M4, g) be a closed four-manifold, and assume (i) Pg ≥ 0 with
Ker Pg = {const.}, and (ii)

∫
Q(g)dv(g) < 8π2. Then there exists a minimizer

w ∈ C∞ of F , which satisfies (2.12) with Q(g̃) = const.

Thus, the question of existence is reduced to studying the spectrum of the Paneitz
operator and the conformal invariant (2.13). As we shall see, there is a connection
between these problems.

First, it is not difficult to see that when g has positive scalar curvature, the invariant
(2.13) is always dominated by its value on the sphere. (Somewhat surprisingly,
equality can be characterized without resorting to the Positive Mass Theorem; see
[21]). Thus, when (M4, g) has positive scalar curvature the assumption (ii) in the
Theorem of Chang-Yang is superfluous, except in the case of the sphere.

Turning to the first assumption of Theorem 2.2, we begin by noting the Dirichlet
form associated to the Paneitz operator is given by∫

ψPgψ dv(g) =
∫ [

(�gψ)
2 + 2

3
R(g)|∇ψ |2 − 2 Ric(g)(∇ψ,∇ψ)

]
dv(g).

(2.15)

Using the Bochner formula we can rewrite this as∫
ψPgψ dv(g) =

∫ [
4

3
|∇̊2ψ |2 dv(g)+ 2

3

(
R(g)g − Ric(g)

)
(∇ψ,∇ψ)

]
dv(g)

≥
∫

4

3
|∇̊2ψ |2 dv(g)+

∫
2

3
T (∇ψ,∇ψ) dv(g), (2.16)

where ∇̊2ψ = ∇2ψ − 1
4 (�gψ)g is the trace-free Hessian and T = R(g)g− Ric(g).

Consequently, if the right-hand side of (2.16) is positive for all ψ ∈ C∞, then
λ1(Pg) = 0 and Ker Pg = {const.}. By conformal invariance it is enough to show
that this property holds for some metric in the conformal class of g.

By using a kind of “regularized” version of the functional F (which was also
studied by Chang and Yang), the author was able to construct a metric g̃ ∈ [g] for
which the right-hand side of (2.16) is positive for all ψ ∈ C∞, provided the scalar
curvature of g is positive (see [21]):

Theorem 2.3. If (M4, g) has positive scalar curvature and
∫
Q(g) dv(g) ≥ 0, then

Pg ≥ 0 and Ker Pg = {const.}. In particular, there is a conformal metric g̃ with
Q(g̃) = const.

The assumptions of Theorem 2.3 imply the first Betti number ofM4 vanishes; see
[20]. On the other hand, in [14] Eastwood–Singer constructed metrics on k(S3 × S1)

for all k > 0 withPg ≥ 0 and Ker Pg = {const.}. For this reason, it would be desirable
to relax the assumption on the integral ofQ(g). A result of this kind appears in [25],
which relied on solving a fully nonlinear equation of the type described in the next
section to prove the positivity of the tensor field T = R(g)g − Ric(g) appearing in
(2.16):
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Theorem 2.4. If (M4, g) has positive Yamabe invariant Y (g) and the Q-curvature
satisfies

∫
Q(g) dv(g) + 1

6Y (g)
2 ≥ 0, then Pg ≥ 0 and KerPg = {const.}. In

particular, there is a conformal metric g̃ with Q(g̃) = const.

Since Theorem 2.4 allows the integral ofQ to be negative, we are able to construct
many new examples of conformal manifolds which admit a metric with constant Q-
curvature (see Section 7 of [25].

There have been other approaches to the problem of finding metrics with con-
stant Q-curvature. Malchiodi [34], Malchiodi–Djadli [11], and Druet–Robert [12]
have studied existence and compactness of the solution space by a delicate blow-up
analysis. In particular, the positivity of the total Q-curvature is not required. How-
ever, their work indicates that the assumption Ker Pg = {const.} is unlikely to be
merely technical. Brendle [7] and Baird–Fardoun–Regbauoi [2] have used parabolic
methods; they also assume Pg ≥ 0 with trivial kernel.

The problem of finding metrics with constant Q-curvature originally appeared in
the more general context of studying variational properties of the regularized deter-
minant (see [9]). In contrast to the study of theQ-curvature, the existence theory has
not developed very much beyond the results in [9] and [21]. The associated Euler–
Lagrange equation includes terms which are nonlinear in the second derivatives of
the solution, providing an important link to the material in the next section.

3. Fully nonlinear equations

Finally, we give a brief synopsis of a very active area which can be viewed as a fully
nonlinear version of the Yamabe problem. For Riemannian manifolds of dimension
n ≥ 3 we define the Weyl–Schouten tensor by

A(g) = 1

(n− 2)

(
Ric(g)− 1

2(n− 1)
R(g)g

)
. (3.1)

In [39], J. Viaclovsky initiated the study of the fully nonlinear equations arising
from the transformation of A under conformal deformations. More precisely, let
gu = e−2ug denote a conformal metric, and consider the equation

σ
1/k
k (g−1

u � Au) = f (x), (3.2)

where σk(·) denotes the k-th elementary symmetric polynomial, applied to the eigen-
values of g−1

u � Au. Since Au is related to A by the formula

A(gu) = A(g)+ ∇2u+ du⊗ du− 1

2
|∇u|2g, (3.3)

equation (3.2) is equivalent to

σ
1/k
k (A(g)+ ∇2u+ du⊗ du− 1

2
|∇u|2g) = f (x)e−2u. (3.4)
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Note that when k = 1, σ1(g
−1A(g)) = trace(A) = 1

2(n−1)R(g); therefore, (3.4) is
equivalent to equation (2.1). When k > 1 the equation is fully nonlinear, but not
necessarily elliptic. A sufficient condition for a solution u ∈ C2(Mn) to be elliptic is
that the eigenvalues of A = A(g) are in �+

k = {λ = (λ1, . . . , λn) ∈ R
n | σ1(λ) > 0,

σ2(λ) > 0, . . . , σk(λ) > 0} at each point of Mn. In this case we say that g is
admissible (or k-admissible); likewise, if −A(g) ∈ �+

k then we say g is negative
admissible.

The most straightforward question one can pose about equation (3.4) is existence:
given an admissible metric g ∈ �+

k (M
n) and a positive function f ∈ C∞(Mn), does

there always exist a solution u ∈ C∞(Mn) to (3.4)? When f (x) = const. > 0
this is referred to as the σk-Yamabe problem. An important distinction between the
σk-Yamabe problem and the classical Yamabe problem is that the former is not in
general variational.

The study of equation (3.4) in general and the σk-Yamabe problem in particular
has seen an explosion of activity in recent years. We will highlight some results for
the case k > n/2 as the theory is more developed; admissibility has a more geometric
interpretation; and in contrast to the case k ≤ n/2, solutions of (3.4) have a variational
characterization.

First, Guan–Viaclovsky–Wang [19] showed that when g is k-admissible the Ricci
curvature satisfies the sharp inequality

Ric(g) ≥ (2k − n)

2n(k − 1)
R(g)g. (3.5)

In particular, if k > n/2, the Ricci curvature is positive. Using the Newton–Maclaurin
inequality and Bishop’s volume comparison, one can quantify this in the following
way: If gu = e−2ug is an admissible solution of (3.4) with f (x) ≥ c0 > 0, then

Vol(gu) =
∫
e−nu dv(g) ≤ C(k, n, c0). (3.6)

We define the kth-maximal volume of the admissible metric g by

	k(M
n, [g]) = sup{Vol(gu) | A(gu) ∈ �+

k , σk(g
−1
u A(gu)) ≥ σk(S

n)}, (3.7)

where σk(Sn) is the value attained by the round sphere. This definition suggests the
following variational problem: given a k-admissible metric g, is there is conformal
metric which attains the kth-maximal volume? It is easy to see that any metric which
does will satisfy (3.4) with f (x) ≡ σ

1/k
k (Sn). A similar variational problem was for-

mulated by Guan and Spruck in studying the curvature of hypersurfaces in Euclidean
space [17].

In joint work with J. Viaclovsky we used this variational scheme to study the
σk-Yamabe problem in three- and four-dimensions [26]. The dimension restriction is
a result of the difficulty of proving sharp estimates for the maximal volume in high
dimensions. In three dimensions we could prove such estimates thanks to Bray’s
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Football Theorem [6], and in four dimensions by using the Chern–Gauss–Bonnet
formula. An approach somewhat similar in spirit was implicit in earlier work of
Chang–Gursky–Yang [8] and Viaclovsky [40].

Another consequence of the volume bound (3.6) is the finiteness of the blow-up
set for a sequence of solutions to (3.4). This follows from the ε-regularity result of
Guan and Wang [18], which in turn is based on their local C1- and C2-estimates for
solutions. In fact, using the estimates of Guan-Wang, it is possible to show that a
divergent sequence {ui} of solutions to (3.4) will blow up at finitely many points,
and converge uniformly to −∞ off the singular set. By rescaling this sequence, one
obtains a limiting viscosity solution w ∈ C1,1

loc with f (x) ≥ 0.
In recent work withViaclovsky [27], we carried out a careful analysis of the tangent

cone at infinity of the C1,1-metric g∞ = e2wg. In particular, we showed the volume
growth at infinity is Euclidean. Since the Ricci curvature is non-negative, this implies
the metric is flat, and (Mn, g) is conformally the sphere.

Theorem 3.1. Let (Mn, g) be closed n-dimensional Riemannian manifold, and as-
sume

(i) g is k-admissible with k > n/2, and

(ii) (Mn, g) is not conformally equivalent to the round n-dimensional sphere.

Then given any smooth positive function f ∈ C∞(Mn) there exists a solution
u ∈ C∞(Mn) of (3.4), and the set of all such solutions is compact in theCm-topology
for any m ≥ 0.

In fact, our proof gives the existence of solutions to

F(Au) = f (x)e−2u,

where F : � → R is a symmetric function of the eigenvalues of Au defined on a
cone � ⊂ R

n which satisfies some explicit structural conditions. For more general
equations we need to use the C2-estimates developed by S. Chen [10]. Trudinger and
Wang [38] have proved a similar existence result, along with a remarkable Harnack
inequality for admissible metrics.
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1. Introduction

Hamilton–Jacobi equations play important roles in classical mechanics, geometric
optics, optimal control, differential games, etc. We are here interested in global
solutions of Hamilton–Jacobi equations. A well-known classical method of finding
solutions of Hamilton–Jacobi equations is that of characteristics and its applications
have serious difficulties in practice because of developments of shocks in solutions.
At the beginning of 1980s M. G. Crandall and P.-L. Lions [10], [11] introduced the
notion of viscosity solution in the study of Hamilton–Jacobi equations. It is a notion of
generalized solutions for partial differential equations and it is based on the maximum
principle while, in this regard, distributions theory is based on integration by parts.
This notion has been successfully employed to study fully nonlinear partial differential
equations (PDE for short), especially Hamilton–Jacobi equations and fully nonlinear
elliptic or parabolic PDE. Important basic features of viscosity solutions are: they
enjoy nice properties such as (1) stability under uniform convergence or under the
processes of pointwise supremum or infimum, and (2) existence and uniqueness of
solutions, under mild assumptions, of boundary value problems or the Cauchy problem
for fully nonlinear PDE. See [2], [3], [24], [9] for general overviews and developments
of the theory of viscosity solutions.

We recall the definition of viscosity solutions of F(x, u(x),Du(x)) = 0 in�. Let
u ∈ C(�,R). It is called a viscosity subsolution (resp., supersolution) of F [u] = 0
in� if whenever ϕ ∈ C1(�) and u−ϕ attains a maximum (resp., minimum) at y ∈ �,
then F(y, u(y),Dϕ(y)) ≤ 0 (resp., F(y, u(y),Dϕ(y)) ≥ 0). Then, u ∈ C(�)
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is called a viscosity solution of F [u] = 0 in � if it is both a viscosity sub- and
supersolution of F [u] = 0 in �. We will be here focused on viscosity solutions,
subsolutions, or supersolutions and will suppress the term “viscosity” in what follows
as far as there is no danger of confusion.

In this article we consider the stationary Hamilton–Jacobi equation

H(x,Du) = 0 in �, (1)

where � is an open subset of R
n, and the Cauchy problem

ut +H(x,Du) = 0 in �× (0,∞), (2)

u( ·, 0) = u0 in �. (3)

HereH is a continuous function on�×R
n and u represents the real-valued unknown

function on� in the case of (1) or on�×[0,∞) in the case of (2) and (3), respectively.
We write frequently H [u] for H(x,Du(x)) for notational simplicity. We will be
concerned also with the additive eigenvalue problem

H [v] = c in �. (4)

Here the unknown is a pair (c, v) of a constant c ∈ R and a function v on � for
which v satisfies (4).

The purpose of this article is to review some of recent results concerning the large-
time behavior of solutions of (2). An interesting feature of the investigations towards
such results is the interaction with the developments of weak KAM theory, and this
review will touch upon weak KAM theory. For overviews and developments of weak
KAM theory, we refer to [17], [14].

In Section 2 we discuss projected Aubry sets and representation formulas for
solutions of (1). In Section 3 the main result concerning the large-time behavior of
solutions of (2) are explained. In Section 4 we outline the proof of the main result.

2. Projected Aubry sets and representation of solutions

Weak KAM theory introduced by A. Fathi in [15], [17] has changed the viewpoint of
uniqueness questions regarding (1).

To begin with, we recall that classical uniqueness or comparison results in viscosity
solutions theory applied to the following simple PDE

λu+H(x,Du) = 0 in �, (5)

where λ is a positive constant, states:

Theorem 2.1. Let u, v ∈ C(�) be a subsolution and a supersolution of (5), respec-
tively. Assume that� is bounded, that either u or v is locally Lipschitz in�, and that
u ≤ v on ∂�. Then u ≤ v in �.
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See [2], [3], [8] for general comparison results for Hamilton–Jacobi equations. The
above theorem guarantees uniqueness of locally Lipschitz continuous solutions of the
Dirichlet problem for (5). We will be concerned mostly with viscosity sub-, super-,
or solutions of (1) which are locally Lipschitz continuous, and thus the assumption
concerning local Lipschitz continuity of solutions in the above theorem is not any real
restriction.

Another way of stating the above theorem is as follows.

Theorem 2.2. Let u, v ∈ C(�) be solutions, respectively, of H [u] ≤ −ε in � and
of H [v] ≥ 0 in �, where ε is a positive constant. Assume that � is bounded, that
either u or v is locally Lipschitz in �, and that u ≤ v on ∂�. Then u ≤ v in �.

Let � = intB(0, r), where B(0, r) denotes the closed ball of radius r > 0 with
center at the origin and intA denotes the interior of A ⊂ R

n. The eikonal equation
|Du| = |x| in� has two solutions u±(x) := ±(1−|x|2)/2, which in addition satisfies
the boundary condition, u(x) = 0 on ∂�. Indeed, the solutions of the Dirichlet
problem, |Du| = |x| in � and u = 0 on ∂�, are given by the family of functions
ua(x) := min{u+(x), a + u−(x)} parametrized by a ∈ [0, 1]. This example tells us
that the Dirichlet problem, |Du| = |x| in � and u = 0 on ∂�, has many solutions
and that the condition, λ > 0, in Theorem 2.1 is sharp. Thus uniqueness of solution
of the Dirichlet problem does not hold in general for (1).

We assume henceforth the following two assumptions, the convexity and coercivity
of the Hamiltonian H :

for each x ∈ � the function p �→ H(x, p) is convex in R
n, (6)

lim
r→∞ inf{H(x, p) | x ∈ �, p ∈ R

n \ B(0, r)} = ∞. (7)

We setL(x, ξ) = supp∈Rn(ξ ·p−H(x, p)) for (x, ξ) ∈ �×R
n, where ξ ·p denotes the

Euclidean inner product of ξ, p ∈ R
n. We call the function L : �× R

n → (−∞,∞]
the Lagrangian.

We define the function dH on �×� by

dH (x, y) = sup{v(x) | H [v] ≤ 0, v(y) = 0}.
Classical results in viscosity solutions theory assure that the function dH has the
properties:

H [d( ·, y)] ≤ 0 in �, (8)

H [d( ·, y)] ≥ 0 in � \ {y}. (9)

Following [18], we define the (projected) Aubry set A for the Lagrangian L (or for
the Hamiltonian H ) as the subset of � given by

A = {y ∈ � | H [d( ·, y)] ≥ 0 in �}. (10)
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In view of (8), (9), and (10), it is easily seen that y ∈ � \ A if and only if
H(y, p) < 0 for some p ∈ D−

1 dH (y, y), where D−
1 dH (x, y) denotes the subdiffer-

ential of dH ( ·, y) at x. Similarly, we may state that y ∈ � \ A if and only if there
are functions σ ∈ C(�) and ψ ∈ C0+1(�) such that σ ≥ 0 in �, σ(y) > 0, and
H [ψ] ≤ −σ in �.

We now assume for simplicity of presentation that� is an n-dimensional torus T
n.

The following theorem is an improved version of classical results such as Theorems 2.1
or 2.2

Theorem 2.3. Let u, v ∈ C(�) be a subsolution and a supersolution ofH = 0 in�,
respectively. Assume that u ≤ v on A. Then u ≤ v in �.

This theorem can be found in [17, Chap. 8]. A key observation for the proof
of the above theorem is that for each compact K ⊂ � \ A there exist a function
ψK ∈ C0+1(�) and a constant εK > 0 such that H [ψK ] ≤ −εK in a neighborhood
VK of K .

Indeed, with suchK , ψK , εK , and VK , we see that for any λ ∈ (0, 1), the function
uλ := (1 − λ)u + λψK is a subsolution of H [uλ] ≤ −λεK in VK , and hence from
Theorem 2.2 that for all x ∈ VK ,

(1 − λ)u(x)+ λψK(x) ≤ v(x)+ sup
�\K

[(1 − λ)u+ λψK − v],

which implies that for all x ∈ � \ A,

u(x) ≤ v(x)+ sup
A
(u− v).

In their study of semicontinuous viscosity solutions, E. N. Barron and R. Jensen
[4], [5] have observed that under the convexity assumption (6), a function u ∈ C(�)
is a viscosity subsolution of (1) if and only if H(x, p) ≤ 0 for all p ∈ D−u(x) and
x ∈ �, where D−u(x) denotes the subdifferential of u at x. A consequence of this
observation is that the pointwise infimum of a uniformly bounded family of solutions
of (1) yields a solution of (1).

Theorem 2.4. If u ∈ C(�) is a viscosity solution of H [u] = 0 in �, then

u(x) = inf{dH (x, y)+ u(y) | y ∈ A} for all x ∈ �.
We remark that if A = ∅, then there exists no solution u of H [u] = 0 in �. The

above theorem is a weaker version of [19, Theorem 10.4] which is formulated with
the Mather set in place of the Aubry set A and with quasi-convex HamiltonianH . In
the case where A is a finite set, a corresponding result for the Dirichlet problem for
bounded domains has already been obtained in [24].

Another remark here is on the representation of dH as the value function of an
optimal control problem associated with the HamiltonianH . Let I ⊂ R be an interval
and γ : I → �. We say that γ is a curve if it is absolutely continuous on any compact
subinterval of I . For (x, t) ∈ � × (0,∞), let C(x, t) denote the space of curves γ
on [0, t] such that γ (t) = x.
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Theorem 2.5. Let x, y ∈ �. Then

dH (x, y) = inf

{ ∫ t

0
L(γ (s), γ̇ (s))ds

∣∣ t > 0, γ ∈ C(x, t), γ (0) = y

}
, (11)

where γ̇ denotes the derivative of γ .

Now we turn to the case when � is an open bounded subset of R
n with regular

boundary. We consider the Dirichlet problem

H [u] = 0 in �, (12)

u|∂� = g, (13)

where g is a given continuous function on ∂�. For the Dirichlet problem, we have to
modify the definition of the Aubry set and for this we set AD = A ∪ ∂�, where A
is defined as before. Let g ∈ C(AD) and assume that the following compatibility
condition, for the solvability of the Dirichlet problem (12) and (13), holds:

g(x)− g(y) ≤ dH (x, y) for all x, y ∈ AD. (14)

Theorem 2.6. Under assumption (14), the function u ∈ C(�), defined by

u(x) = inf{dH (x, y)+ g(y) | y ∈ AD} for all x ∈ �,
is a solution of (12) and (13). Moreover it is a unique solution of (12) satisfying
u|AD

= g.

3. Asymptotic solutions

The following result is concerned with the unbounded domain � = R
n and we need

a further restriction on H . Indeed, we assume that there exist functions φi and σi ,
with i = 0, 1, such that

H [φi] ≤ −σi in R
n,

lim|x|→∞ σi(x) = ∞,

lim|x|→∞(φ0 − φ1)(x) = ∞.

Also, we need the following hypothesis:

for each x ∈ �, the function H(x, ·) is strictly convex in R
n. (15)

We introduce the spaces �0 and 
0 of functions on R
n and on R

n × [0,∞),
respectively, as

�0 = {f ∈ C(Rn,R) | infRn(f − φ0) > −∞},

0 = {g ∈ C(Rn × [0,∞),R) | infRn×[0,T ](g − φ0) > −∞, for all T > 0}.
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Theorem 3.1. (a) The additive eigenvalue problem (4) has a solution (c, v) ∈ R×�0,
and moreover the additive eigenvalue c is uniquely determined. That is, if (d,w) ∈
R ×�0 is another solution of (4), then d = c.

(b) Let u0 ∈ �0. Then there exists a unique solution u ∈ 
0 of the Cauchy
problem (2) and (3).

(c) Let Ac be the Aubry set for the Hamiltonian H − c and dH,c := dH−c. Let
u ∈ 
0 be the solution of (2) and (3). Assume that (15) holds. Then there exists a
solution v0 ∈ �0 of (4) with c being the additive eigenvalue for H such that

lim
t→∞ sup

x∈B(0,R)
|u(x, t)+ ct − v0(x)| = 0 for any R > 0.

Moreover,

v0(x) = inf{dH,c(x, y)+ dH,c(y, z)+ u0(z) | z ∈ R
n, y ∈ Ac} for all x ∈ R

n.

The above result is contained in [23]. This result is a variant of those obtained
by Fathi, Namah, Roquejoffre, Barles, Souganidis, Davini, Siconolfi, and others for
compact manifolds �. We refer to [16], [26], [28], [6], [12] for previous results
and developments. See also [21] for results in R

n and [7], [20] for similar results
for viscous Hamilton–Jacobi equations. In [21], Hamilton–Jacobi equations of the
form ut + αx · Du + H0(Du) = f (x) are treated, where α is a positive constant
and H0, f ∈ C(Rn). It is assumed that H0 is convex and coercive and that there is a
convex function l ∈ C(Rn) such that

lim|x|→∞(l(−αx)+ f (x)) = ∞ and lim|ξ |→∞(L0 − l)(ξ) = ∞,

where L0 is the convex conjugate of H0. If we assume that H0 is strictly con-
vex, then the hypotheses of Theorem 3.1 are satisfied with the choice of φ0(x) :=
−(1/σ)l(−αx), φ1(x) := −(1/α)L(−αx), σ0(x) := l(−αx) + f (x) − C, and
σ1(x) := L(−αx)+ f (x), where C is a sufficiently large constant.

Another example of H which satisfies the hypotheses of Theorem 3.1 is given by
H(x, p) = H0(x, p)− f (x), where H0 ∈ C(Rn × R

n) satisfies (15), (7), and

sup
Rn×B(0,δ)

|H0| < ∞ for some δ > 0,

and f ∈ C(Rn) satisfies lim|x|→∞ f (x) = ∞. A possible choice of φi , i = 0, 1, is
as follows: φ0(x) := −(δ/2)|x| and φ1(x) = −δ|x|.

4. Outline of proof of Theorem 3.1

4.1. Additive eigenvalue problem. Additive eigenvalue problem (4) appears in er-
godic optimal control or the homogenization of Hamilton–Jacobi equations. In ergo-
dic optimal control the additive eigenvalue c corresponds to averaged long-run op-
timal costs while c determines the effective Hamiltonian in the homogenization of
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Hamilton–Jacobi equations. See [25], [13] for periodic homogenization of Hamilton–
Jacobi equations.

To avoid technicalities, we assume in this subsection that φ0 = 0. One method of
solving problem (4) is to approximate it by a regular problem

λvλ +H(x,Dvλ) = 0 in R
n, (16)

where λ is a positive constant, and then send λ → 0 along an appropriate sequence
λj → 0, to obtain a solution (c, v) ∈ R ×�0 of (4) as the limits

c := lim
j→∞(−λjvλj (0)) and v(x) := lim

j→∞(vλj (x)− vλj (0)). (17)

Indeed, thanks to the coercivity of H , we may build a solution ψ0 ∈ C0+1(Rn) of
H [ψ0] ≥ −C0 in R

n for some constant C0 > 0 which satisfies φ0 ≤ ψ0 in R
n. If

C > 0 is large enough, then the functions

fλ(x) := φ0(x)− λ−1C and gλ(x) := ψ0(x)+ λ−1C

are a subsolution and a supersolution of (16), respectively. The Perron method now
yields a solution vλ ∈ C0+1(Rn) of (16) which satisfiesfλ ≤ vλ ≤ gλ in R

n. Again the
coercivity of H guarantees that the family {vλ}λ∈(0,1) is locally equi-Lipschitz in R

n,
while the inequality fλ ≤ vλ ≤ gλ in R

n assures that {λvλ(0)}λ∈(0,1) is bounded.
These observations allow us to pass to the limit in (17).

Another approach to solving (4) is to define the additive eigenvalue c ∈ R by

c = inf{a ∈ R | there exists a solution φ ∈ C(Rn) of H [φ] ≤ a}
and then to prove that Ac �= ∅. Any pair of c and v := dH,c( ·, y), with y ∈ Ac, is a
solution of (4).

In what follows we assume by replacing H by H − c, where c is the additive
eigenvalue for H , that c = 0.

4.2. Critical curves. An important tool in the weak KAM approach is the collection
of critical curves for the LagrangianL. It allows us to analyze the asymptotic behavior
for large time of solutions of (2) in the viewpoint of the Lagrangian dynamical system
behind (2), which may not be well-defined under our regularity assumptions on H .

According to [12], a curve γ : R → R
n is said to be critical for the Lagrangian L

if for any a, b ∈ R, with a < b, and any subsolution φ ∈ C(Rn) of H [φ] = 0 in R
n,

φ(γ (b))− φ(γ (a)) =
∫ b

a

L(γ (s), γ̇ (s))ds.

We denote by � the set of all critical curves γ . Note that, in general, if γ is a curve
on [a, b] and φ ∈ C(Rn) is a subsolution of H [φ] = 0 in R

n, then

φ(γ (b))− φ(γ (a)) ≤
∫ b

a

L(γ (s), γ̇ (s))ds. (18)
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Indeed, we compute by assuming φ ∈ C1(Rn) that for any curve γ on [a, b],

φ(γ (b))− φ(γ (a)) =
∫ b

a

Dφ(γ (s)) · γ̇ (s)ds

≤
∫ b

a

[L(γ, γ̇ )+H(γ,Dφ(γ (s))]ds ≤
∫ b

a

L(γ, γ̇ )ds.

Here we have used the Fenchel inequality: p · ξ ≤ H(x, p)+ L(x, ξ) for all x, p, ξ
in R

n. The above computation can be justified by the standard mollification technique
for general φ which is locally Lipschitz because of the coercivity of H .

Theorem 4.1. For any y ∈ A there exists a critical curve γ such that γ (0) = y.

Existence of critical curves is one of crucial observations in weak KAM theory.
See [15], [17], [18], [12] for results on the existence of critical curves.

A main point in the proof of the above theorem is the following general observation
concerning the Aubry set, which gives another definition of the Aubry set in terms
of the Lagrangian L. We remark that this latter definition of the Aubry set has been
employed in [15], [18], [19].

Theorem 4.2. Let y ∈ R
n. Then y ∈ A if and only if for any ε > 0,

inf

{ ∫ t

0
L(γ (s), γ̇ (s))ds

∣∣ t ≥ ε, γ ∈ C(y, t), γ (0) = y

}
= 0.

Once we have the above theorem in hand, the proof of Theorem 4.1 goes like this.
For any y ∈ A and k ∈ N we may choose a curve γk on [0, Tk], where Tk ≥ k such
that γk(0) = γk(Tk) = y and∫ Tk

0
L(γk(s), γ̇k(s))ds <

1

k
.

We define the curve ηk on [−Tk, Tk] by setting

ηk(s) =
{
γk(s + Tk) for s ∈ [−Tk, 0],
γk(s) for s ∈ [0, Tk].

Using the observations that

lim
r→∞ inf

{
L(x, ξ)

|ξ |
∣∣ x ∈ B(0, R), ξ ∈ R

n \ B(0, r)
}

= ∞ for any R > 0, (19)

since H ∈ C(Rn × R
n) and that A is compact, we may send k → ∞ along a

subsequence so that ηk has a limit γ in C(R,Rn), which is a critical curve.
For any γ ∈ � we have

γ (t) ∈ A for all t ∈ R. (20)

This can be seen easily by recalling that for any y ∈ R
n \ A there are functions

φ ∈ C(Rn) and σ ∈ C(Rn) such that σ ≥ 0 in R
n, σ(y) > 0, and H [φ] ≤ −σ in R

n

and using (18), with H(x, p) replaced by H(x, p)+ σ(x).
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4.3. Cauchy problem. To prove existence of a solution of (2) and (3), we may use
the well-known formula

u(x, t) = inf

{ ∫ t

0
L(γ (s), γ̇ (s))ds + u0(γ (0)) | γ ∈ C(x, t)

}
for (x, t) ∈ R

n × (0,∞).

(21)

We have to check if this formula really gives a solution of (2) and (3). For this the
first thing to do is to check that the function u defined by (21) is a locally bounded
function in R

n × (0,∞). Fix a subsolution φ ∈ C(Rn) of H [φ] = 0 in R
n and set

φ2(x) = min{φ(x) − A, φ1(x)}, where A > 0 is a constant. If A is large enough,
then φ2 has the following properties: (a) H [φ2] ≤ 0 in R

n and (b) φ2 ≤ u0 in R
n.

Then, for any (x, t) ∈ R
n × (0,∞) and γ ∈ C(x, t), we have

φ2(γ (t)) ≤ u0(γ (0))+
∫ t

0
L(γ, γ̇ )ds,

from which we get φ2(x) ≤ u(x, t).
In order to get a local upper bound of the function u defined by (21), we fix any

(x, t) ∈ A × (0,∞) and choose a curve γ ∈ � so that γ (t) = x. Existence of such
a critical curve is guaranteed by Theorem 4.1. As before let φ ∈ C(Rn) be a solution
of H [φ] ≤ 0 in R

n. We have

u(x, t) ≤ u0(γ (0))+
∫ t

0
L(γ, γ̇ )ds ≤ u0(γ (0))+ φ(γ (t))− φ(γ (0))

≤ max
A
u0 + 2 max

A
|φ|.

Since H ∈ C(Rn × R
n), for each R > 0 there are constants δR > 0 and CR > 0

such that L(x, ξ) ≤ CR for all (x, ξ) ∈ B(0, R)×B(0, δR). Fix any R > 0 such that
A ⊂ B(0, R) and any x ∈ B(0, R). There is a TR > 0, independent of x, and a curve
(e.g., the line segment connecting a point in A and x) γx ∈ C1([0, TR],Rn) such that
γx(0) ∈ A, γx(TR) = x, and |γx(s)| ≤ R, |γ̇x(s)| ≤ δR for all s ∈ [0, TR]. Using the
dynamic programming principle which states that for any x ∈ R

n and t, s ∈ (0,∞),

u(x, t + s) = inf

{ ∫ s

0
L(γ (τ), γ̇ (τ ))dτ + u(γ (0), t)

∣∣ γ ∈ C(x, s)

}
, (22)

we find that

u(x, t + TR) ≤
∫ TR

0
L(γx(s), γ̇x(s))ds + u(γx(0), t)

≤ CRTR + max
A
u0 + 2 max

A
|φ| for all t ≥ 0.

Noting that u(x, t) ≤ u0(x)+ tL(x, 0), we obtain for all t > 0,

u(x, t) ≤ max{ max
B(0,R)

(|u0| + TR|L( ·, 0)|), CRTR + max
A
u0 + 2 max

A
|φ|}.
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Setting u(x, 0) = u0(x) for x ∈ R
n and making further standard estimates on u,

we conclude the following theorem.

Theorem 4.3. The function u belongs to
0 and moreover u is bounded and uniformly
continuous on B(0, R)× [0,∞) for any R > 0.

Furthermore, using the dynamic programming principle (22), we have:

Theorem 4.4. The function u is a solution of (2) and (3).

Uniqueness of solutions of (2) and (3) follows from the following comparison
theorem.

Theorem 4.5. Let u ∈ C(Rn × [0,∞)) and v ∈ 
0 be a subsolution and a super-
solution of (2). Assume that u( ·, 0) ≤ v( ·, 0) in R

n. Then u ≤ v in R
n × [0,∞).

An outline of the proof of this theorem goes like this. LetA andB be large positive
constants. We set ψ(x, t) = φ1(x)− At for (x, t) ∈ R

n × [0,∞). We may fix A so
thatψ is a subsolution of (2). We setuB(x, t) = min{u(x, t), ψ(x, t)+B} for (x, t) ∈
R
n × (0,∞) and observe that uB is a subsolution of (2), that uB( ·, 0) ≤ v( ·, 0)

in R
n, and that for each T > 0,

lim|x|→∞ sup{(uB − v)(x, t) | t ∈ [0, T ]} = −∞. (23)

Applying the standard comparison result to uB and v on the set B(0, R) × [0, R),
with R > 0 sufficiently large, we find that uB ≤ v in R

n × [0, R). Because of the
arbitrariness of R,B, we conclude that u ≤ v in R

n × [0,∞).

4.4. Asymptotic analysis.

4.4.1. Equilibrium points. A point y in the Aubry set A is called an equilibrium
point if minp∈Rn H(y, p) = 0 or equivalently L(y, 0) = 0. Under the assumption
that A consists only of equilibrium points, the convergence assertion of Theorem 3.1
can be proved in an easy way compared to the general case. To see this, let u ∈ 
0 be
the solution of (2) and (3), and set v0(x) = lim inf t→∞ u(x, t) for x ∈ R

n. We then
observe in view of the convexity of H(x, p) in p that v0 is a solution of H [v0] = 0
in R

n. Also, we observe at least formally that ut ≤ 0 in A × (0,∞), which can
be stated correctly that the function t �→ u(x, t) is nonincreasing in (0,∞) for any
x ∈ A. Now, by Theorem 4.3 and Dini’s lemma, we see that the functions u( ·, t)
converge to v0 uniformly on A as t → ∞.

We take a small digression here and state a comparison theorem for (1) with
� = R

n, a version of Theorem 2.3 for � = R
n.

Theorem 4.6. Let u, v ∈ C(Rn) be a subsolution and a supersolution of H = 0
in R

n, respectively. Assume that u ≤ v on A and that v ∈ �0. Then u ≤ v in R
n.
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For the proof of this theorem, we may assume by a simple modification of φ1
that φ1 is a solution of H [φ1] ≤ 0 in R

n. We then replace u by εφ1 + (1 − ε)u, with
a small ε ∈ (0, 1), so that we are in the situation that lim|x|→∞(u − v)(x) = −∞,
which allows us to work on a ball B(0, R), with sufficiently large R > 0. Now, as
in the proof of Theorem 2.3, we get u ≤ v in R

n. This is an outline of the proof of
Theorem 4.6.

Back to the main theme, we use the same argument as the proof of Theorem 4.6
just outlined, to control the functions u( ·, t) through their restrictions on A and to
conclude the desired convergence of u( ·, t) to v0 in R

n as t → ∞.
We remark that if A is a finite set, then all the points of A are equilibrium points.

Also, if there is a function f ∈ C(Rn) such that H(x,Df ) ≤ minp∈Rn H(x, p) for
x ∈ R

n in the viscosity sense, then all the points of A are equilibrium points.

4.4.2. General case. We turn to the general case. Let u ∈ C(Rn × [0,∞)) be a
solution of (2). A formal calculation reveals that for any γ ∈ �, any t, T ∈ [0,∞)

satisfying t < T , and any solution of φ ∈ C(Rn) of H [φ] ≤ 0 in R
n,

u(γ (T ), T )− u(γ (t), t) =
∫ T

t

[
Du(γ (s), s) · γ̇ (s)+ ut (γ (s), s)

]
ds

=
∫ T

t

[
Du(γ (s), s) · γ̇ (s)−H(γ (s),Du(γ (s), s))

]
ds

≤
∫ T

t

L(γ (s), γ̇ (s))ds = φ(γ (T ))− φ(γ (t)).

Indeed, we have

Lemma 4.7. Under the above assumptions, the function t �→ u(γ (t), t) − φ(γ (t))

is nonincreasing on [0,∞).

In what follows we denote by St , with t ≥ 0, the semigroup generated by (2), i.e.,
the map St : �0 → �0 defined by Stu0 = u( ·, t), where u is the solution in
0 of (2)
and (3).

The continuous dependence of the solution of (2) and (3) on the initial data can
be stated as follows.

Theorem 4.8. Let f, g ∈ �0 be a subsolution and a supersolution of H = 0 in R
n,

respectively. Assume that f ≤ g in R
n. Then for each ε > 0 there exists δ > 0 such

that for any u0, v0 ∈ [f, g] ∩ C(Rn), if

max
B(0,δ−1)

(u0 − v0) ≤ δ,

then
sup

(x,t)∈B(0,ε−1)×[0,∞)

(Stu0(x)− Stv0(x)) ≤ ε.
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Here [f, g] denotes the space of those functionsw : R
n → R which satisfyf ≤ w ≤ g

in R
n.

This theorem can be proved by an argument similar to the proof of Theorem 4.5,
and we omit presenting it here.

For any u0 ∈ �0, the ω-limit set ω(u0) for the initial point u0 is defined as the set
consisting of thosew ∈ �0 for which there exists a sequence {tj } ⊂ (0,∞) diverging
to infinity such that Stj u0 → w in C(Rn) as j → ∞. It is obvious from Theorem 4.3
thatω(u0) �= ∅ for all u0 ∈ �0. Another basic property ofω-limit sets, which follows
from Theorems 4.8 and 4.3, is the following.

Lemma 4.9. Let u0 ∈ �0 and let {tj }, {rj } ⊂ (0,∞) be sequences diverging to
infinity such that Stj u0 → v and Stj+rj u0 → w in C(Rn) as j → ∞ for some
v,w ∈ ω(u0). Then Srj v → w in C(Rn) as j → ∞.

So far, we have needed only the convexity of the Hamiltonian H(x, p) in p, but
not its strict convexity (15) although this point may not be clear because of the rough
presentation. In the next lemma we need the strict convexity assumption (15), which
guarantees that L(x, ξ) and DξL(x, ξ) are continuous on the set {(x, ξ) ∈ R

2n |
L(x, ξ) < ∞}. The following lemma is an equivalent of [12, Lemma 5.2] and a key
observation for the convergence proof.

Lemma 4.10. Assume that (15) holds. Then there exist a δ > 0 and a function
ρ ∈ C([0,∞)), with ρ(0) = 0, such that for any u0 ∈ �0, γ ∈ �, ε ∈ (−δ, δ), and
t > 0,

Stu0(γ (t)) ≤ u0(γ (εt))+
∫ t

εt

L(γ (s), γ̇ (s))ds + |εt | ρ(|ε|).

Proof of Theorem 3.1 (c). We denote by ω(�) the set of all those curves γ to which
there correspond a curve η ∈ � and a sequence {tj } diverging to infinity such that
η( · + tj ) → γ in C(R) as j → ∞. We set M = {γ (0) | γ ∈ ω(�)}. We remark that
any γ ∈ ω(�) is a critical curve for L. Consequently, we have M ⊂ A. Moreover,
it is easily seen that for any two solutions φ,ψ ∈ C(Rn) of H = 0 in R

n, if φ ≤ ψ

on M, then φ ≤ ψ on A.
As before we define the function v0 ∈ �0 by

v0(x) = lim inf
t→∞ Stu0(x),

which is a solution of H [v0] = 0 in R
n.

We prove that u( ·, t) → v0 in C(Rn) as t → ∞. To this end, it is enough to
show that w = v0 for all w ∈ ω(u0). By the definition of v0, we have v0 ≤ w in R

n

for all w ∈ ω(u0). Hence, recalling the proof in the case when A consists only of
equilibrium points and using the remark made above, we find that it is enough to show
that w ≤ v0 in M for all w ∈ ω(u0). (We omit here proving the formula for v0 in the
theorem.)
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Fix anyw ∈ ω(u0) and y ∈ M. Choose a curve γ ∈ � and sequences {aj }, {bj } ⊂
(0,∞) diverging to infinity so that, as j → ∞, γ (aj ) → y and Sbjw → w inC(Rn).
Existence of such a sequence {bj } is assured by Lemma 4.9. We may assume that
cj := aj − bj → ∞ as j → ∞. We fix any s ≥ 0 and apply Lemma 4.10, with w
and γ ( · + cj ) in place of u0 and γ , respectively, and with t = bj and ε = s/bj , to
obtain for sufficiently large j ,

Sbjw(γ (bj + cj ))− w(γ (s + cj )) ≤ v0(γ (bj + cj ))− v0(γ (s + cj ))+ sρ(s/bj ),

where ρ ∈ C([0,∞)) is the function from Lemma 4.10. Sending j → ∞ yields

w(y)− v0(y) ≤ w(η(s))− v0(η(s)) for all s ≥ 0 (24)

and for some η ∈ ω(�).
The final step is to show that

lim inf
t→∞ [w(η(t))− v0(η(t))] ≤ 0, (25)

which yields, together with (24), w(y) ≤ v0(y). To do this, we choose sequences
{tj }, {τj } ⊂ (0,∞) diverging to infinity so that, as j → ∞, Stj u0(η(0)) → v0(η(0))
and Stj+τj u0 → w in C(Rn). We calculate by using Lemma 4.7 that

w(η(τj ))−v0(η(τj )) ≤ |w(η(τj ))−Stj+τj u0(η(τj ))| + Stj+τj u0(η(τj ))−v0(η(τj ))

≤ max
A

|w − Stj+τj u0| + Stj u0(η(0))− v0(η(0)).

Sending j → ∞, we get

lim sup
j→∞

[
w(η(τj ))− v0(η(τj ))

] ≤ 0,

which shows that (25) is valid. �
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The weak-coupling limit of large classical and quantum
systems

Mario Pulvirenti∗

Abstract. In this contribution we illustrate the delicate transition from the microscopic de-
scription of a particle system, given in terms of fundamental equations as the Newton or the
Schrödinger equation, to the reduced kinetic picture, given in terms of the Boltzmann and Lan-
dau equations which are obtained under suitable scaling limits. Special emphasis is given to the
so called weak-coupling limit.

The content of the lecture is mostly devoted to the very many open problems, rather than to
the few known results.

Mathematics Subject Classification (2000). Primary 35Q99; Secondary 82C40.

Keywords. Boltzmann equation, Landau equation, weak-coupling limit.

1. The Boltzmann and Landau equations

The present section is largely discursive: its scope is the heuristic introduction of the
Boltzmann and Landau equations on the basis of physical arguments.

In 1872 Ludwig Boltzmann, starting from the mathematical model of elastic balls
and using mechanical and statistical considerations, established an evolution equation
to describe the behavior of a rarefied gas. The starting point of the Boltzmann analysis
is to renounce to study the behavior of a gas in terms of the detailed motion of the
molecules which constitute it because of their huge number. It is rather better to
investigate a function f (x, v) which is the probability density of a given particle,
where x and v denote position and velocity of such a particle. Actually f (x, v)dxdv
is often confused with the fraction of molecules falling in the cell of the pase space
of size dx dv around x, v. The two concept are not exactly the same but they are
asymptotically equivalent (when the number of particles is diverging) if a law of large
numbers holds.

The Boltzmann equation is the following:

(∂t + v · ∇x)f = Q(f, f ) (1.1)

∗Most of the considerations developed here are due to a systematic collaboration of the author with D. Bene-
detto, F. Castella and R. Esposito.
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where Q, the collision operator, is defined for λ > 0 by

Q(f, f ) = λ−1
∫
dv1

∫
S+
dn (v − v1) · n [f (x, v′)f (x, v′

1)− f (x, v)f (x, v1)]
(1.2)

and
v′ = v − n[n · (v − v1)], v′

1 = v1 + n[n · (v − v1)]. (1.3)

Also n (the impact parameter) is a unitary vector and S+ = {n | n · (v − v1) ≥ 0}.
Note that v′, v′

1 are the outgoing velocities after a collision of two elastic balls with
incoming velocities v and v1 and centers x and x + dn, being d the diameter of the
spheres. Obviously the collision takes place if n · (v − v1) ≥ 0. Equations (1.3) are
consequence of the energy, momentum and angular momentum conservation. Note
also that d does not enter in equation (1.1) as a parameter.

As fundamental features of equation (1.1) we have the conservation in time of the
following five quantities ∫∫

dxdvf (x, v; t)vα (1.4)

with α = 0, 1, 2 expressing conservation of the probability, momentum and energy.
Moreover Boltzmann introduced the (kinetic) entropy defined by

H(f ) =
∫
dx

∫
dvf log f (x, v) (1.5)

and proved the famous H-theorem asserting the decreasing of H(f (t)) along the
solutions to equation (1.1).

Finally, in case of bounded domains, the distribution defined for β > 0:

M(v) = const e−βv2
,

called Maxwellian distribution, is stationary for the evolution given by equation (1.1).
In additionM minimizesH among all distributions with zero mean velocity, and given
energy.

In conclusion Boltzmann was able to introduce an evolutionary equation with the
remarkable properties of expressing mass, momentum, energy conservations, but also
the trend to the thermal equilibrium. In other words he tried to conciliate the Newton
laws with the second principle of Thermodynamics.

Boltzmann’s heuristic argument in deriving equation (1.1) is, roughly speaking,
the following. The molecular system we are considering consists of N identical
particles of diameter d in the whole space R

3 and we denote by x1, v1, . . . , xN , vN
a state of the system, where xi and vi indicate the position and the velocity of the
particle i. The particles cannot overlap, that is the centers of two particles cannot be
at distance smaller than the diameter d.

The particles are moving freely up to the first contact instant, that is the first
time in which two particles arrive at distance d. Then the pair interacts performing
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an elastic collision. This means that they change instantaneously their velocities,
according to the conservation of the energy, linear and angular momentum. After the
first collision the system goes on by iterating the procedure. Here we neglect triple
collisions because unlikely. The evolution equation for a tagged particle is of the form

(∂t + v · ∇x)f = Coll (1.6)

where Coll denotes the variation of f due to the collisions. We have

Coll = G− L (1.7)

where L and G (loss and gain term respectively) are the negative and positive con-
tribution to the variation of f due to the collisions. More precisely Ldxdvdt is the
probability of our test particle to disappear from the cell dxdv of the phase space
because of a collision in the time interval (t, t + dt) and Gdxdvdt is the probability
to appear in the same time interval for the same reason. Let us now consider the
sphere of center x with radius d and a point x+ dn over the surface, where n denotes
the generic unit vector. Consider also the cylinder with base area dS = d2dn and
height |V |dt along the direction of V = v2 − v.

Then a given particle (say particle 2) with velocity v2, can contribute toL because
it can collide with our test particle in the time dt , provided it is localized in the
cylinder and if V · n ≤ 0. Therefore the contribution to L due to the particle 2 is the
probability of finding such a particle in the cylinder (conditioned to the presence of
the first particle in x). This quantity is f2(x, v, x + nd, v2)|(v2 − v) · n|d2dndv2dt ,
where f2 is the joint distribution of two particles. Integrating in dn and dv2 we obtain
that the total contribution to L due to any predetermined particle is:

d2
∫
dv2

∫
S−
dnf2(x, v, x + nd, v2)|(v2 − v) · n| (1.8)

where S− is the unit hemisphere (v2 − v) · n < 0. Finally we obtain the total
contribution multiplying by the total number of particles:

L = (N − 1)d2
∫
dv2

∫
S−
dnf2(x, v, x + nd, v2)|(v2 − v) · n|. (1.9)

The gain term can be derived analogously by considering that we are looking at
particles which have velocities v and v2 after the collisions so that we have to integrate
over the hemisphere S+ = (v2 − v) · n > 0:

G = (N − 1)d2
∫
dv2

∫
S+
dnf2(x, v, x + nd, v2)|(v2 − v) · n|. (1.10)

Summing G and −L we get

Coll = (N − 1)d2
∫
dv2

∫
dnf2(x, v, x + nd, v2)(v2 − v) · n. (1.11)
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which, however, is not a very useful expression because the time derivative of f is
expressed in term of another object namely f2. An evolution equation for f2 will
imply f3, the joint distribution of three particles and so on up to arrive to the total
particle numberN . Here the basic Boltzmann’s main assumption enters, namely that
two given particles are uncorrelated if the gas is rarefied, namely:

f (x, v, x2, v2) = f (x, v)f (x2, v2). (1.12)

Condition (1.12), called propagation of chaos, seems contradictory at a first sight:
if two particles collide, correlations are created. Even though we could assume equa-
tion (1.12) at some time, if the test particle collides with the particle 2, such an equation
cannot be satisfied anymore after the collision.

Before discussing the propagation of chaos hypothesis, we first analyze the size
of the collision operator. We remark that, in practical situations for a rarefied gas, the
combination Nd3 ≈ 10−4cm3 (that is the volume occupied by the particles) is very
small, while Nd2 = O(1). This implies that G = O(1). Therefore, since we are
dealing with a very large number of particles we are tempted to perform the limitN →
∞ and d → 0 in such a way that d2 = O(N−1). As a consequence the probability
that two tagged particles collide (which is of the order of the surface of a ball, that
is O(d2)), is negligible. However the probability that a given particle performs a
collision with any one of the remainingN−1 particles (which isO(Nd2) = O(1)) is
not negligible. Condition (1.12) is referring to two preselected particles (say particle 1
and particle 2) so that it is not unreasonable to conceive that it holds in the limiting
situation in which we are working.

However we cannot insert (1.12) in (1.11) because this latter equation refer both
to instants before and after the collision and, if we know that a collision took place,
we certainly cannot invoke (1.12). Hence we assume (1.12) in the loss term and
work over the gain term to keep advantage of the factorization property which will be
assumed only before the collision.

Coming back to equation (1.10) for the outgoing pair velocities v, v2 (satisfying
the condition (v2 − v) · n > 0) we make use of the continuity property

f2(x, v, x + nd, v2) = f2(x, v
′, x + nd, v′

2) (1.13)

where the pair v′, v′
2 is pre-collisional. On f2 expressed before the collision we can

reasonably apply condition (1.12) obtaining:

G− L = (N − 1)r2
∫
dv2

∫
S−
dn(v − v2) · n

· [f (x, v′)f (x − nd, v′
2)− f (x, v)f (x + nd, v2)]

(1.14)

after a change n → −n in the Gain term. This transforms the pair v′, v′
2 from a

pre-collisional to a post-collisional pair.
Finally, in the limit N → ∞, r → 0, Nd2 = λ−1 we find equation (1.1)

where Q, the collision operator, has the form (1.2). The parameter λ, called mean
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free path, represents, roughly speaking, the typical length a particle can cover without
undergoing any collision.

Equation (1.1) is has a statistical nature and it is not equivalent to the Hamiltonian
dynamics from which it has been derived. In particular, due to the H-Theorem, it is
not time reversal.

The heuristic arguments we have developed so far can be extended to different
potentials than that of the hard-sphere systems. If the particles interact via a two-body
interaction φ = φ(x) the resulting Boltzmann equation is equation (1.1) with

Q(f, f ) =
∫
dv1

∫
S+
dnB(v − v1; n) [f ′f ′

1 − ff1], (1.15)

where we are using the usual short hand notation:

f ′ = f (x, v′), f ′
1 = f (x, v′

1), f = f (x, v), f1 = f (x, v1) (1.16)

and B = B(v − v1; n) is a suitable function of the relative velocity and the im-
pact parameter, proportional to the cross-section relative to the potential φ. Another
equivalent, some times convenient way to express Q is

Q(f, f ) =
∫
dv1

∫
dv′

∫
dv′

1W(v, v1|v′, v′
1) [f ′f ′

1 − ff1] (1.17)

with

W(v, v1|v′, v′
1) = w(v, v1|v′, v′

1) (1.18)

· δ(v + v1 − v′ + v′
1)δ

(
1

2
(v2 + v2

1 − (v′)2 + (v′
1)

2)

)
.

and w a suitable kernel. All the qualitative properties as the conservation laws and
the H-theorem are obviously still valid.

The arguments we have used in deriving the Boltzmann equation are delicate and
require a more rigorous and deeper analysis. If we want that the Boltzmann equation
is not a phenomenological model, derived by assumptions ad hoc and justified by its
practical relevance, but rather a consequence of a mechanical model, we must derive
it rigorously from a logical and mathematical viewpoint. In particular the propagation
of chaos should be not an hypothesis but the statement of a theorem.

Many scientists, among them Loschmidt, Zermelo and Poincaré, outlined incon-
sistencies between the irreversibility of the equation and the reversible character of the
Hamiltonian dynamics. Boltzmann argued the statistical nature of his equation and his
answer to the irreversibility paradox was that most of the configurations behave as ex-
pected by the thermodynamical laws. However he did not have the probabilistic tools
for formulating in a precise way the statements of which he had a precise intuition. In
1949 H. Grad [25] stated clearly the limit N → ∞, d → 0, Nd2 → const, where N
is the number of particles and d is the diameter of the molecules, in which the Boltz-
mann equation is expected to hold. This limit is usually called the Boltzmann-Grad
(or low-density limit).
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The problem of a rigorous derivation of the Boltzmann equation was an open and
challenging problem for a long time. O. E. Lanford [31] showed that, although for a
very short time, the Boltzmann equation can be derived starting from the mechanical
model of the hard-sphere system. The proof has a deep content but is relatively simple
from a technical view point. Later on [28] it has been proved that this technique can
be adapted to prove a result holding globally in time, but for the special situation of
a rare claud of gas expanding in the vacuum.

We address the reader to references [31], [14] and [19] for a deeper discussion
on the validation problem of the Boltzmann equation. We also warmly suggest the
monograph [13] for a critical and historical discussion on the Boltzmann equation
and the scientist who conceived it.

A preliminary problem to the validation of the Boltzmann equation for an
arbitrary time interval, still open in general, is the construction of a global solu-
tion, hopefully unique. See [14] and [42] for the state of art of existence problems
at present times. We just mention that the most general result we have up to now is
due to Di Perna and Lions [16] who showed the existence of suitable weak solutions
to equation (1.1). However we still do not know whether such solutions, which pre-
serve mass, momentum and satisfy the H-theorem, are unique and preserve also the
energy.

The Boltzmann equation works for rarefied gas, however one can ask whether a
useful kinetic picture can be invoked for dense gas. Here we want to describe a situa-
tion in which the gas particles are weakly interacting, but N = O(r−3) being r 
 1
the interaction length of the particles. To express the weakness of the interaction, we
assume that the two-particle potential is O(

√
r). In this case we want to compute

the total momentum variation for a unit time. Note that the force is O
( 1√

r

)
but acts

on the time interval O(r). The momentum variation due to the single scattering is
thereforeO(

√
r). The number of particles met by a test particles isO

(1
r

)
. Hence the

total momentum variation for unit time is O
( 1√

r

)
. However this variation, in case of

homogeneous gas and symmetric force, should be zero in the average. If we compute
the variance, it should be 1

r
O(

√
r)2 = O(1). As a consequence of this central limit

type of argument we expect that the kinetic equation which holds in the limit (if any),
should be a diffusion equation in velocity variable.

A more convincing argument will be presented in the next section. For the moment
let us now argue at level of kinetic equation. Consider the collision operator in the
form (1.17). Suppose that ε > 0 is a small parameter. To express the fact that the
transferred momentum is small, we rescale w as 1

ε3w
(p
ε

)
. In addition we also rescale

the mean-free path inverse by a factor 1
ε

to take into account the high density situation.
The collision operator becomes:

Qε(f, f ) = 1

ε4

∫
dv1

∫
dpw

(p
ε

)
δ(p2 + (v − v1) · p)[f ′f ′

1 − ff1] (1.19)
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= 1

2πε2

∫
dv1

∫
dp w(p)

∫ +∞

−∞
dseis(p

2ε+(v−v1)·p)

· [f (v + εp)f (v1 − εp)− f (v)f (v1)]
= 1

2πε

∫
dv1

∫
dp w(p)

∫ 1

0
dλ

∫ +∞

−∞
dseis(p

2ε+(v−v1)·p)

· p(∇v − ∇v1)f (v + ελp)f (v1 − ελp).

Here the smooth functionw, which modulates the collision, is assumed depending
only onp trough its modulus. The δ appearing in equation (1.19) expresses the energy
conservation.

To outline the behavior of Qε(f, f ) in the limit ε → 0, we introduce a test
function ϕ for which, after a change of variables ( here ( ·, ·) denotes the scalar
product in L2(v)):

(ϕ,Qε(f, f )) = 1

2πε

∫
dv

∫
dv1

∫
dp w(p)

∫ 1

0
dλ

∫ +∞

−∞
dseis(p

2(ε−2ελ)+(v−v1)·p)

· ϕ(v − ελp) p · (∇v − ∇v1)ff1

= 1

2πε

∫
dv

∫
dv1

∫
dpw(p)

∫ 1

0
dλ

∫ +∞

−∞
dseis(v−v1)·p)

· [ϕ(v)+ εp · ∇vϕ(v)]p · (∇v − ∇v1)ff1

(1.20)

+ 1

2π

∫
dv

∫
dv1

∫
dp w(p)

∫ +∞

−∞
dseis(v−v1)·p)ϕ(v)

· isp2
∫ 1

0
dλ(1 − 2λ) p · (∇v − ∇v1)ff1 +O(ε).

Note now that the termO(ε−1) vanishes because of the symmetry p → −p (w is
even). Also the imaginary part of the O(1) term is vanishing, being null the integral
in dλ. As a result:

(ϕ,Qε(f, f )) = 1

2π

∫
dv

∫
dv1

∫
dp w(p)

∫ +∞

−∞
ds eis(v−v1)·p)

· p · ∇vϕ p · (∇v − ∇v1)ff1 +O(ε).

(1.21)

Therefore we have recovered the kinetic equation (1.1) with a new collision operator

QL(f, f ) =
∫
dv1∇v a(∇v − ∇v1)ff1, (1.22)

where a = a(v − v1) denotes the matrix

ai,j (V ) =
∫
dp w(p) δ(V · p) pipj . (1.23)
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This matrix can be handled in a better way by introducing polar coordinates:

ai,j (V ) = 1

|V |
∫
dp |p|w(p) δ(V̂ · p̂) p̂i p̂j (1.24)

· B|V |
∫
dp̂ δ(V̂ · p̂) p̂i p̂j ,

where V̂ and P̂ are the versor of V and p respectively and

B =
∫ +∞

0
drr3w(r). (1.25)

Note thatB is the only parameter describing the interaction appearing in the equation.
Finally a straightforward computation yields:

ai,j (V ) = B

|V | (δi,j − V̂i V̂j ). (1.26)

The collision operatorQL has been introduced by Landau ([32]) for the study of a
weakly interacting dense plasma. Note that the qualitative properties of the solutions
to the Landau equation are the same as for the Boltzmann equation as regards the
basic conservation laws and the H-theorem.

A rigorous derivation of the Landau equation starting from the Boltzmann equation
in the grazing collision limit (that is what we presented here at a formal level), has been
obtained in [1], [24] and [43] for spatially homogeneous solutions. The (diverging)
asymptotics for the Coulomb forces is discussed in [15] and in [43]. However, in the
present lecture, we are interested in deriving the Landau equation in terms of particle
systems. In the next section we present a formal derivation outlining the difficulties
in trying a rigorous proof.

2. Weak-coupling limit for classical systems

We consider a classical system ofN identical particles of unitary mass. Positions and
velocities are denoted by q1, . . . , qN and v1, . . . , vN . The Newton equations reads as:

d

dτ
qi = vi,

d

dτ
vi =

∑
j=1,...,N :
j �=i

F (qi − qj ). (2.1)

Here F = −∇φ denotes the interparticle (conservative) force, φ the two-body inter-
action potential and τ the time.

We are interested in a situation where the number of particles N is very large
and the interaction quite moderate. In addition we look for a reduced or macroscopic
description of the system. Namely if q and τ refer to the system seen in a microscopic
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scale, we introduce ε > 0 a small parameter expressing the ratio between the macro
and microscales. Indeed it is often convenient to rescale equation (2.1) in terms of
the macroscopic variables

x = εq, t = ετ

whenever the physical variables of interest are varying on such scales and are almost
constant on the microscopic scales. Therefore, rescaling the potential according to

φ → √
εφ, (2.2)

system (2.1), in terms of the (x, t) variables, becomes

d

dt
qi = vi,

d

dt
vi = − 1√

ε

∑
j=1,...,N :
j �=i

∇φ
(xi − xj

ε

)
. (2.3)

Note that the velocities are automatically unscaled. Moreover we also assume that
N = O(ε−3), namely the density is O(1).

Let WN = WN(XN, VN) be a probability distribution on the phase space of the
system. Here (XN, VN) denote the set of positions and velocities:

XN = x1, . . . , xN , VN = v1, . . . , vN .

Then from equations (2.3) we obtain the following Liouville equation:

(∂t + VN · ∇N)WN(XN, VN) = 1√
ε

(
T εNW

N)(XN, VN), (2.4)

where VN · ∇N = ∑N
i=1 vi · ∇xi and (∂t +VN · ∇N) is the usual free stream operator.

Also, we have introduced the operator

(T εNW
N)(XN, VN) =

∑
0<k<�≤N

(T εk,�W
N)(XN, VN), (2.5)

with
T εk,�W

N = ∇φ
(
xk − x�

ε

)
· (∇vk − ∇v�)WN. (2.6)

To investigate the limit ε → 0 it is convenient to introduce the BBKGY hierarchy for
the j - particle distributions defined as

f Nj (Xj , Vj ) =
∫
dxj+1 . . .

∫
dxN

∫
dvj+1 . . .

∫
dvN

·WN(Xj , xj+1, . . . , xN ;Vj , vj+1, . . . , vN)

(2.7)

for j = 1, . . . , N − 1. Obviously, we set f NN = WN . Note that BBKGY stands
for Bogoliubov, Born, Green, Kirkwood and Yvon, the names of physicists who
introduced independently this system of equations (see e.g. [2] and [19]).
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From now on we shall suppose that, due to the fact that the particles are identical,
the objects which we have introduced (WN, f Nj ) are all symmetric in the exchange
of particles.

A partial integration of the Liouville equation (2.4) and standard manipulations
give us the following hierarchy of equations (for 1 ≤ j ≤ N):

(
∂t +

j∑
k=1

vk · ∇k
)
f Nj = 1√

ε
T εj f

N
j + N − j√

ε
Cεj+1f

N
j+1. (2.8)

The operator Cεj+1 is defined as

Cεj+1 =
j∑
k=1

Cεk,j+1, (2.9)

and

Cεk,j+1fj+1(x1, . . . , xj ; v1, . . . , vj ) (2.10)

= −
∫
dxj+1

∫
dvj+1F

(
xk − x�

ε

)
∇vkfj+1(x1, x2, . . . , xj+1; v1, . . . , vj+1).

Cεk,j+1 describes the “collision” of particle k, belonging to the j -particle subsystem,
with a particle outside the subsystem, conventionally denoted by the number j+1 (this
numbering uses the fact that all particles are identical). The total operator Cεj+1 takes
into account all such collisions. The dynamics of the j -particle subsystem is governed
by three effects: the free-stream operator, the collisions “inside” the subsystem (the T
term), and the collisions with particles “outside” the subsystem (the C term).

We finally fix the initial value {f 0
j }Nj=1 of the solution {f Nj (t)}Nj=1 assuming that

{f 0
j }Nj=1 is factorized, that is, for all j = 1, . . . , N

f 0
j = f

⊗j
0 , (2.11)

where f0 is a given one-particle distribution function. This means that the states
of any pair of particles are statistically uncorrelated at time zero. Of course such a
statistical independence is destroyed at time t > 0. Dynamics creates correlations and
equation (2.8) shows that the time evolution of f N1 is determined by the knowledge
off N2 which turns out to be dependent onf N3 and so on. However, since the interaction
between two given particle is going to vanish in the limit ε → 0, we can hope that
such statistical independence is recovered in the same limit. Note that the physical
meaning of the propagation of chaos here is quite different from that arising in the
contest of the Boltzmann equation. Here two particles can interact but the effect of
the collision is small, while in a low-density regime the effect of a collision between
two given particles is large but quite unlikely.
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Therefore we expect that in the limit ε → 0 the one-particle distribution func-
tion f N1 converges to the solution of a suitable nonlinear kinetic equation f which
we are going to investigate.

If we expand f Nj (t) as a perturbation of the free flow S(t) defined as

(S(t)fj )(Xj , Vj ) = fj (Xj − Vj t, Vj ), (2.12)

we find

f Nj (t) = S(t)f 0
j + N − j√

ε

∫ t

0
S(t − t1)C

ε
j+1f

N
j+1(t1)dt1

+ 1√
ε

∫ t

0
S(t − t1)T

ε
j f

N
j (t1)dt1.

(2.13)

We now try to keep information on the limit behavior of f Nj (t). Assuming for the

moment that the time evolved j -particle distributions f Nj (t) are smooth (in the sense
that the derivatives are uniformly bounded in ε), then

Cεj+1f
N
j+1(Xj ;Vj ; t1)

= −ε3
j∑
k=1

∫
dr

∫
dvj+1F(r) · ∇vkfj+1(Xj , xk − εr;Vj , vj+1, t1).

(2.14)

Assuming now, quite reasonably, that∫
drF (r) = 0, (2.15)

we find that
Cεj+1f

N
j+1(Xj ;Vj ; t1) = O(ε4)

provided that D2
vf

N
j+1 is uniformly bounded. Since

N − j√
ε

= O
(
ε7/2)

we see that the second term in the right-hand side of (2.13) does not give any contri-
bution in the limit.

Moreover∫ t

0
S(t − t1)T

ε
j f

N
j (t1)dt1

=
∑
i �=k

∫ t

0
dt1F

(
(xi − xk)− (vi − vk)(t − t1)

ε

)
g(Xj , Vj ; t1)

(2.16)

where g is a smooth function.
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Obviously the above time integral is O(ε) so that also the last term in the right-
hand side of (2.13) does not give any contribution in the limit. Then we are facing the
alternative: either the limit is trivial or the time evolved distributions are not smooth.
This is indeed a bed new because, if we believe that the limit is not trivial (actually we
expect to get the Landau equation, according to the previous discussion) a rigorous
proof of this fact seems problematic.

The difficulty in obtaining a-priori estimates induce us to exploit the full series
expansion of the solution, namely

f N1 (t) =
∑
n≥0

∑
Gn

K(Gn)

∫ t

0
dt1

∫ t1

0
dt2 . . .

∫ tn−1

0
dtn

· [
S(t − t1)O1S(t1 − t2) . . . OnS(tn)

]
f 0
m.

(2.17)

Here Oj is either an operator C or T expressing a creation of a new particle or a
recollision between two particles respectively. Gn is a graph namely a sequence of
indices

(r1, l1), (r2, l2), . . . , (rn, ln)

where (rj , lj ), rj < lj is the pair of indices of the particles involved in the interaction
at time tj . m− 1 is the number of particles created in the process. It is convenient to
represent the generic graph in the following way.

t

1 2 3

Figure 1

Here the legs of the graph denotes the particles and the nodes the creation of new
particles (operators C). Recollisions (operators T ) are represented by horizontal
links. For instance the graph in the figure is

(1, 2), (1, 3), (1, 3), (2, 3)

(m = 3), and the integrand in equation (2.17) in this case is[
S(t − t1)C1,2S(t1 − t2)C1,3S(t2 − t3)T1,3S(t3 − t4)T2,3S(t4)

]
f 0

3 . (2.18)

Note that the knowledge of the graph determines completely the sequence of
operators in the right-hand side of (2.17). Finally the factorK(Gn) takes into account
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the divergences:

K(Gn) = O

((
1√
ε

)n
ε−3(m−1)

)
. (2.19)

We are not able to analyze the asymptotic behaviour of each term of the expansion
(2.17) however we can compute the limit for ε → 0 of the few terms up to the second
order (in time). We have:

gN(x1, v1; t)

= f 0(x1 − v1t, v1)+ N − 1√
ε

∫ t

0
S(t − t1)C

ε
1,2S(t1)f

0
2 dt1

(2.20)

+ (N − 1)

ε

(N − 2)

ε

∑
j=1,2

∫ t1

0
dt2S(t − t1)C

ε
1,2S(t1 − t2)C

ε
j,3S(t2)f

0
3

+ N − 1

ε

∫ t

0
dt1

∫ t1

0
dt2S(t − t1)C

ε
1,2S(t1 − t2)T

ε
1,2S(t2)f

0
2 .

Here the right-hand side of (2.20) defines gN .
The second and third term in (2.20) corresponding to the graphs in Figure 2 are

indeed vanishing as follows by the use of the previous arguments. The most interesting
term is the last one (collision–recollision) in Figure 3.

Figure 2

Figure 3

To handle this term we denote by w = v1 − v2 the relative velocity and note that, for
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a given function u,

S(t1 − t2)T
ε

1,2u(x1, x2; v1, v2)

= −F
(
(x1 − x2)− w(t1 − t2)

ε

)

· [(∇v1 − ∇v2)u](x1 − v1(t1 − t2), x2 − v2(t1 − t2); v1, v2) (2.21)

= −F
(
(x1 − x2)− w(t − t1)

ε

)

· (∇v1 − ∇v2 + (t1 − t2)(∇x1 − ∇x2))S(t1 − t2)u(x1, x2; v1, v2)

Therefore the last term in the right-hand side of (2.21) is

N − 1

ε

∫ t

0
dt1S(t − t1)

∫ t1

0
dt2

∫
dx2

∫
dv2

· F
(x1 − x2

ε

)
· ∇v1F

(
(x1 − x2)− w(t1 − t2)

ε

)

· (∇v1 − ∇v2 + (t1 − t2)(∇x1 − ∇x2))S(t1)f
0
2 (x1, x2; v1, v2).

(2.22)

Setting now r = x1−x2
ε

and s = t1−t2
ε

then

gN(x1, v1)

= (N − 1)ε3
∫ t

0
dt1

∫ t1
ε

0
ds

∫
dr

∫
dv2 F(r) · ∇v1 · F(r − ws) (2.23)

· (∇v1 − ∇v2 + εs(∇x1 − ∇x2))S(t1 − εs)f 0
2 (x1, x2; v1, v2)+O(

√
ε).

The formal limit is of (2.20) is

g(t) = S(t)f0 +
∫ t

0
dt1S(t − t1)∇v1a(v1 − v2) (∇v1 − ∇v2) S(t1)f

0
2 , (2.24)

where (using F(r) = −F(−r)) the matrix a is given by

a(w) =
∫
dr

∫ +∞

0
ds F (r)⊗ F(r − ws)

= 1

2

∫
dr

∫ +∞

−∞
ds F (r)⊗ F(r − ws)

= 1

2

(
1

2π

)3 ∫ +∞

−∞
ds

∫
dkk ⊗ k φ̂(k)2ei(w·k)s

=
(

1

8π

)2 ∫
dkk ⊗ k φ̂(k)2δ(w · k).

(2.25)

Here the interaction potential φ has been assumed spherically symmetric. Therefore
the matrix a has the same form (1.26) with B given by

B =
(

1

8π

)2 ∫ +∞

0
drr3φ̂(r)2. (2.26)
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Consider now the Landau equation

(∂t + v · ∇x)f = QL(f, f ) (2.27)

with the collision operator QL given by (1.22) and the matrix a given by

ai,j (V ) = B

|V | (δi,j − V̂i V̂j ), (2.28)

B being defined by (2.26). We obtain the following (infinite) hierarchy of equations

(∂t + Vj · ∇Xj )fj = Cj+1fj+1 (2.29)

for the quantities
fj (t) = f (t)⊗j , (2.30)

where f (t) solves equation (2.27). Accordingly Cj+1 = ∑
k Ck,j+1, where

Ck,j+1fj+1(x1, . . . , xj ; v1, . . . , vj ) =
∏
r �=k

f (xr .vr)QL(f, f )(xk, vk). (2.31)

Therefore f has the following series expansion representation

f (t) =
∑
n≥0

∫ t

0
dt1

∫ t1

0
dt2 . . .

∫ tn−1

0
dtn

· [
S(t − t1)C2S(t1 − t2)C3 . . . CnS(tn)

]
f 0
n+1.

(2.32)

As matter of fact we showed the formal convergence of gN to the first two terms
of the expansion (2.32), namely we have an agreement between the particle system
(2.17) and the solution to the Landau equation (2.32) at least up to the first order in
time (or second order in the potential). Although the above arguments can be made
rigorous under suitable assumption on the initial condition f0 and the potential φ, it
seems difficult to show the convergence of the whole series. On the other hand it
is clear that the graphs which should contribute in the limit are those formed by a
collision–recollision sequence like:

t

1 2 3 4

Figure 4
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For those terms it is probably possible to show the convergence. For instance the
case in the figure has the asymptotics
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

[
S(t − t1)C1,2S(t1 − t2)C2,3S(t2 − t3)C3,4S(t3)

]
f 0

4 . (2.33)

However the proof that all other graphs are vanishing in the limit is not easy. Even
more difficult is a uniform control of the series expansion (2.17), even for short times.
As we shall see in the next section, something more can be obtained for quantum
systems under the same scaling limit. Note finally that the diffusion coefficient found
here given by equation (2.26), is different from that obtained in the grazing collision
limit (see (1.25)). Indeed the transition kernel w appearing in equation (1.18) is in
general different from φ̂2. Actually to recover the Landau equation by a low-density
limit (to get the Boltzmann equation) and then selecting the grazing collision part, is
not equivalent to the direct, and more physical, weak-coupling limit.

3. Weak-coupling limit for quantum systems

We consider now the quantum analog of the system considered in Section 2, namelyN
identical quantum particles with unitary mass in R

3.
The interaction between particles is still a two-body potential φ so that the total

potential energy is taken as

U(x1, . . . , xN) =
∑
i<j

φ(xi − xj ). (3.1)

The associated Schrödinger equation reads

i∂t
(XN, t) = −1

2
�N
(XN, t)+ U(XN)
(XN, t), (3.2)

where �N = ∑N
i=1�i , �i is the Laplacian with respect to the xi variables, XN =

x1, . . . , xN and h̄ is normalized to unity.
As for the classical system considered in Section 2 we rescale the equation and

the potential by
x → εx, t → εt, φ → √

εφ. (3.3)

The resulting equation is,

iε∂t

ε(XN, t) = −ε

2

2
�N


ε(XN, t)+ Uε(XN)

ε(XN, t), (3.4)

where
Uε(x1, . . . , xN) = √

ε
∑
i<j

φ

(xi − xj

ε

)
. (3.5)
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We want to analyze the limit ε → 0 in the above equations, when N = ε−3.
Note that this limit looks, at a first sight, similar to a semiclassical (or high fre-

quence) limit. It is not so: indeed the potential varies on the same scale of the typical
oscillations of the wave functions so that the scattering process is a genuine quantum
process. Obviously, due to the oscillations, we do not expect that the wave function
does converge to something in the limit. The right quantity to look at was introduced
by Wigner in 1922 [44] to deal with kinetic problems. It is called the Wigner transform
(of 
ε) and is defined as

WN(XN, VN) =
(

1

2π

)3N∫
dYN e

iYN ·VN
ε
(
XN + ε

2
YN

)

ε

(
XN − ε

2
YN

)
. (3.6)

As it is standard, WN satisfies a transport-like equation, completely equivalent to the
Schrödinger equation:

(∂t + VN · ∇N)WN(XN, VN) = 1√
ε

(
T εNW

N)(XN, VN). (3.7)

The operator T εN on the right-hand-side of (3.7) plays the same role of the classical
operator denoted with the same symbol in Section 2. It is

(T εNW
N)(XN, VN) =

∑
0<k<�≤N

(T εk,�W
N)(XN, VN), (3.8)

where each T εk,� describes the interaction of particle k with particle �:

(T εk,�W
N)(XN, VN)

= 1

i

(
1

2π

)3N ∫
dYN dV

′
N eiYN ·(VN−V ′

N) (3.9)

·
[
φ

(
xk − x�

ε
− yk − y�

2
)

)
− φ

(
xk − x�

ε
+ yk − y�

2

)]
WN(XN, V

′
N).

Equivalently, we may write

(T εk,�W
N)(XN, VN)

= −i
∑
σ=±1

σ

∫
dh

(2π)3
φ̂(h) ei

h
ε
(xk−x�)

·WN
(
x1, . . . , xN ; v1, . . . , vk − σ h2 , . . . , v� + σ h2 , . . . , vN

)
.

(3.10)

Note that T εk,� is a pseudodifferential operator which formally converge, at fixed ε,
for h̄ → 0 (here h̄ = 1) to its classical analog. Note also that in (3.10), “collisions”
may take place between distant particles (xk �= x�). However, such distant collisions
are penalized by the highly oscillatory factor exp(ih(xk − x�)/ε). These oscillations
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turn out to play a crucial role throughout the analysis, and they explain why collisions
tend to happen when xk = x� in the limit ε → 0.

The formalism we have introduced is similar to the one of the classical case so that
we proceed as before by transforming equation (3.7) into a hierarchy of equations.
We introduce the partial traces of the Wigner transform WN , denoted by f Nj . They
are defined through the following formula, valid for j = 1, . . . , N − 1:

f Nj (Xj , Vj ) =
∫
dxj+1 . . .

∫
dxN

∫
dvj+1 . . .

∫
dvN

·WN(Xj , xj+1, . . . , xN ;Vj , vj+1, . . . , vN).

(3.11)

Obviously, we set f NN = WN . The function f Nj is the kinetic object that describes
the state of the j particles subsystem at time t .

Due to the fact that the particles are identical, the wave function
, as well asWN

and f Nj , are assumed to be symmetric in the exchange of particle, a property that is
preserved in time.

Proceeding then as in the derivation of the BBKGY hierarchy for classical systems,
we readily transform equation (3.7) into the following hierarchy:

(
∂t +

j∑
k=1

vk · ∇k
)
f Nj (Xj , Vj ) = 1√

ε
T εj f

N
j + N − j√

ε
Cεj+1f

N
j+1, (3.12)

where

Cεj+1 =
j∑
k=1

Cεk,j+1, (3.13)

and Cεk,j+1 is defined by

Cεk,j+1f
N
j+1(Xj ;Vj )

= −i
∑
σ=±1

σ

∫
dh

(2π)3

∫
dxj+1

∫
dvj+1 φ̂(h) e

i h
ε
(xk−xj+1) (3.14)

· f Nj+1

(
x1, x2, . . . , xj+1; v1, . . . , vk − σ h2 , . . . , vj+1 + σ h2

)
.

As before the initial value {f 0
j }Nj=1 is assumed completely factorized: for all

j = 1, . . . , N , we suppose
f 0
j = f

⊗j
0 , (3.15)

where f0 is a one-particle Wigner function, and f 0 is assumed to be a probability
distribution.

In the limit ε → 0, we expect that the j -particle distribution function f Nj (t), that
solves the hierarchy (3.12) with initial data (3.15), tends to be factorized for all times:
f Nj (t) ∼ f (t)⊗j (propagation of chaos).
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As for the classical case, if fj+1 is smooth, then

Cεk,j+1f
N
j+1(Xj ;Vj )

= −iε3
∑
σ=±1

σ

∫
dh

(2π)3
φ̂(h)

∫
dr

∫
dvj+1 e

ih·r (3.16)

· f Nj+1

(
Xj, xk − εr; v1, . . . , vk − σ h2 , . . . , vj+1 + σ h2

) = O(ε4).

Indeed, setting ε = 0 in the integrand, the integration over r produces δ(h). As a
consequence the integrand is independent of σ and the sum vanishes. Therefore the
integral is O(ε). Also

1√
ε

∫ t

0
dt1S(t − t1)Tr.kf

N
j (t1)

= −i
∑
σ=±1

σ

∫ t

0
dt1

dh

(2π)3
φ̂(h) (3.17)

· ei hε ·(xr−xk)−(vr−vk)(t−t1)f Nj (Xj − Vj (t − t1);Vj ; t1)
is weakly vanishing, by a stationary phase argument (see [4]). Therefore we are in the
same situation as for the classical case for which we are led to analyze the asymptotics
of gN (see (2.20)) which means to study the limit of the collision–recollision term:

N − 1

ε

∫ t

0
dt1

∫ t1

0
dτ1 S(t − t1)C1,2S(t1 − τ1)T1.2S(τ1)f

0
2 . (3.18)

Explicitly it looks as follows:

− N − 1

ε

∑
σ,σ ′=±1

σσ ′
∫ t

0
dt1

∫ t1

0
dτ1

∫
dx2

∫
dv2

∫
dh

(2π)3

∫
dk

(2π)3

· φ̂(h) φ̂(k) ei
h
ε
·(x1−x2−v1(t−t1))ei

k
ε
·(x1−x2−v1(t−t1)−(v1−v2−σh)(t1−τ1)) (3.19)

· f 0
2

(
x1 − v1t + σ h2 t1 + σ ′ k

2τ1, x2 − v2t1 − σ h2 t1 − σ ′ k
2τ1;

· v1 − σ h2 − σ ′ k
2 , v2 + σ h2 + σ ′ k

2

)
.

By the change of variables

t1 − τ1 = εs1 ( i.e. τ1 = t1 − εs1), ξ = (h+ k)/ε, (3.20)

we have

(3.19) = −(N − 1) ε3
∑

σ,σ ′=±1

σσ ′
∫ t

0
dt1

∫ t1/ε

0
ds1

∫
dx2

∫
dv2

∫
dξ

(2π)3

∫
dk

(2π)3

· φ̂(−k + εξ1) φ̂(k) eiξ ·
(
x1−x2−v1(t−t1)

)
e−is1k·(v1−v2−σ(−k+εξ))f 0

2 (. . . ),
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In the limit ε → 0, the above formula gives the asymptotics

(3.19) ∼
ε→0

−
∑

σ,σ ′=±1

σσ ′
∫ t

0
dt1

∫
dv2

∫
dk

(2π)3
(3.21)

|φ̂(k)|2
(∫ +∞

0
e−is1k·(v1−v2+σk) ds1

)
f 0

2

(
x1 − v1t − (σ − σ ′) k2 t1,

x1 − v1(t − t1)− v2t1 + (σ − σ ′) k2 t1; v1 + (σ − σ ′) k2 , v2 − (σ − σ ′) k2
)
.

In [4], we completely justify formula (3.21) and its forthcoming consequences.
Now, we turn to identifying the limiting value obtained in (3.21). To do so, we

observe that symmetry arguments allow us to replace the integral in s by its real part:

Re
∫ ∞

0
e−is1k·(v1−v2+σk) ds1 = πδ(k · (v1 − v2 + σk)). (3.22)

Using formula (3.22) we realize that the contribution σ = −σ ′ in (3.21) gives rise to
the gain term:

∫ t

0
dt1

∫
dv2

∫
dω B(ω, v1 − v2)

· f 0
2 (x1 − v1(t − t1)− v′

1t1, x2 − v2(t − t1)− v′
2t1; v′

1, v
′
2),

(3.23)

where

B(ω, v) = 1

8π2 |ω · v| |φ̂(ω (ω · v))|2. (3.24)

Similarly, the term σ = σ ′ in (2.2) yields the loss term:
∫ t

0
dt1

∫
dv2

∫
dωB(ω, v1 − v2)f

0
2 (x1 − v1t, x2 − v2(t − t); v1, v2). (3.25)

By the same arguments used in the previous section we can conclude that the full
series expansion (2.17) (of course for the present quantum case) agrees, up to the
second order in the potential, with

S(t)f0 +
∫ t

0
dt1S(t − t1)Q(S(t1)f0, S(t1)f0) (3.26)

where

Q(f, f ) =
∫
dv1

∫
dω B(ω, v − v1)[f ′f ′

1 − ff1] (3.27)

=
∫
dv1

∫
dh|φ̂(h)|2δ((h · (v − v1 + h))[f (v + h)f (v1 − h)− f (v)f (v1)].

In other words the kinetic equation which comes out is the Boltzmann equation with
cross-section B.
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We note once more that the δ function in equation (3.27) expresses the energy
conservation, while the momentum conservation is automatically satisfied.

Note that the cross-section B is the only quantum factor in the purely classical
expression (3.27). It retains the quantum features of the elementary “collisions”.

An important comment is in order. Why is the kinetic equation for quantum
systems of Boltzmann type in contrast with the classical case where we got a diffusion?
The answer is related to the asymptotics of a single scattering (see [35], [36] and [8]).
For quantum systems the probability of a zero angle scattering is finite (that is a sort
of tunnel effect), while for a classical particle we have surely a small deviation from
the free motion. Therefore a quantum particle, in this asymptotic regime, is going to
perform a jump process (in velocity) rather than a diffusion.

From a mathematical view point we observe that [4] proves more than agreement
up to second order. We indeed consider the subseries (of the full series expansion
expressing f Nj (t)) formed by all the collision–recollision terms. In other words, we

consider the subseries of f Nj (t) given by

∑
n≥1

∑
α1,...,αn,β1,...,βn

ε−4n
∫ t

0
dt1

∫ t1

0
dτ1 S(t − t1)C

ε
α1,β1

S(t1 − τ1)T
ε
α1,β1

· · ·
∫ τn−1

0
dtn

∫ tn

0
dτn S(τn−1 − tn)C

ε
αn,βn

S(tn − τn)T
ε
αn,βn

S(τn)f
0
j+n+1.

(3.28)

Here the sum runs over all possible choices of the particles numberα’s andβ’s, namely
we sum over the subset of graphs of the form in Figure 4. We establish in [4] that
the subseries (3.28) is indeed absolutely convergent, for short times, uniformly in ε.
Moreover, we prove that it approaches the corresponding complete series expansion
obtained by solving iteratively the Boltzmann equation with collision operator given
by equation (3.27) extending and making rigorous the above argument.

However, this does not completely finishes the proof yet: the true series expansion
of f Nj (t) contains many more terms than those we consider in (3.28) and we are not
able to show uniform bound on the full series. Thus a mathematical justification of the
quantum Boltzmann equation is a still an open and difficult problem. More recently
we proved in [7], although under severe assumptions on the potential, that all other
terms than those considered in the subseries (3.28) are vanishing in the limit, but this
is, unfortunately, not yet conclusive.

4. The weak coupling limit in the Bose–Einstein or the Fermi–Dirac
statistics

From a physical viewpoint it is certainly more realistic to consider particles obeying the
Fermi–Dirac or Bose–Einstein statistics, than considering the Maxwell–Boltzmann
situation. In this case, the starting point still is the rescaled Schrödinger equation (3.4),
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or the equivalent hierarchy (3.12). The only new point is that we cannot take a
totally uncorrelated initial datum as in (3.15). Indeed, the Fermi–Dirac or Bose–
Einstein statistics yield correlations even at time zero. In this perspective, the most
uncorrelated states one can introduce, and that do not violate the Fermi–Dirac or
Bose–Einstein statistics, are the so-called quasi-free states. They have, in terms of
the Wigner formalism, the following form:

fj (x1, v1, . . . , xj , vj ) =
∑
π∈Pj

θ s(π) f πj (x1, v1, . . . , xj , vj ), (4.1)

where each f πj has the value

f πj (x1, v1, . . . , xj , vj ) =
∫
dy1 . . . dyj

∫
dw1 . . . dwj e

i(y1·v1+···+yj ·vj ) (4.2)

j∏
k=1

e−
i
ε
wk ·(xk−xπ(k)) e−

i
2wk ·(yk+yπ(k)) f

(
xk + xπ(k)

2
+ ε

yk − yπ(k)

4
, wk

)

and f is a given one-particle Wigner function. Here Pj denotes the group of all the
permutations of j objects and π its generic element.

Note that the Maxwell–Boltzmann case treated so far is recovered by the contri-
bution due the permutation π = identity.

Note also that quasi-free states converge weakly to the completely factorized states
as ε → 0, that is a physically obvious fact because the quantum statistics become
irrelevant in the semiclassical limit. However the dynamics take place on the scale ε
so that the effects of the statistics are present in the limit. Indeed it is expected that
the one-particle distribution function f N1 (t) converges to the solution of the following
cubic Boltzmann equation:

(∂t + v · ∇x) f (t, x, v) = Qw,θ (f, f, f )(t, x, v), (4.3)

Qθ(f, f, f )(t, x, v) =
∫
dv1 dω Bθ(ω, v − v1) (4.4)

· [
f (x, v′)f (x, v′

1)(1 + 8π3θf (x, v) f (x, v1))

−f (x, v)f (x, v1)(1 + 8π3θf (x, v′)f (x, v′
1))

]
.

Here θ = +1 or θ = −1, for the Bose–Einstein or the Fermi–Dirac statistics re-
spectively. Finally, Bθ is the symmetrized or antisymmetrized cross-section derived
from B (see (3.24)) in a natural way.

As we see, the modification of the statistics transforms the quadratic Boltzmann
equation of the Maxwell–Boltzmann case, into a cubic one (fourth order terms can-
cel). Also, the statistics affects the form of the cross-section and B has to be
(anti)symmetrized into Bθ . The collision operator (4.4) has been introduced by
Uehling and Uhlembeck in 1933 on the basis of purely phenomenological consid-
erations [41].
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Plugging in the hierarchy (3.12) an initial datum satisfying (4.1), we can follow
the same procedure as for the Maxwell–Boltzmann statistics: we write the full per-
turbative series expansion expressing f Nj (t) in terms of the initial datum and try to
analyse its asymptotic behaviour.

As we did before, we first restrict our attention to those terms of degree less than
two in the potential.

The analysis up to second order is performed in [5]. We actually recover here
equation (4.3), (4.4) with the suitable Bθ . Now the number of terms to control is
much larger due to the sum over all permutations that enters the definition (4.1) of
the initial state. Also, the asymptotics is much more delicate. In particular, we stress
the fact that the initial datum brings its own highly oscillatory factors in the process,
contrary to the Maxwell–Boltzmann case where the initial datum is uniformly smooth,
and where the oscillatory factors simply come from the collision operators T and C.
In [5] we consider the second order graphs

Figure 5

which, because of the permutation of initial state, yields various terms: two of them
are bilinear in the initial condition f0, and twelve are trilinear in f0. Some of these
terms vanish in the limit due to a non-stationary phase argument. Others give rise
to truly diverging contributions (negative powers of ε). However, when grouping
the terms in the appropriate way, those terms are seen to cancel each other. Last,
some terms give the collision operator (4.4). The computation is heavy and hence we
address the reader to [5] for the details.

This ends up the analysis of terms up to second order in the potential.
Obviously, as for the Maxwell–Boltzmann case, we could try to re-sum the dom-

inant terms. This would lead to analyzing a true subseries of the complete series
expansion expressing f Nj (t). We do not see any conceptual difficulty, however, this
resummation procedure has not been explicitly done in [5].

We mention that a similar analysis, using commutator expansions in the framework
of the second quantization formalism, has been performed in [27] (following [26])
in the case of the van Hove limit for lattice systems (that is the same as the weak-
coupling limit, yet without rescaling the distances). For more recent formal results in
this direction, but in the context of the weak-coupling limit, we also quote [22].

We finally observe that the initial value problem for equation (4.3) is somehow
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trivial for Fermions. Indeed we have the a-priori bounds f ≤ 1
(8π)3

making every-
thing easy. For Bosons the situation is much more involved even for the spatially
homogeneous case. The statistics favours large values of f and it is not clear whether
the equation can explain dynamical condensation. See, for the mathematical side,
references [33], [34].

Summarizing, the main scope of this lecture is to show why in the weak-coupling
limit, the one-particle distribution function is expected to converge to a solution of
Landau equation or Boltzmann equation, for classical and quantum system respec-
tively. From a rigorous view point very little is known.

5. Concluding remarks

Other scaling limits yielding different kinetic equations are of course possible. We
address the reader to the excellent reference [38] where the various scales and the
corresponding kinetic equations are discussed. Here we analyzed in some detail the
weak-coupling, however, as mentioned in Section 1, the low-density limit (or the
Boltzmann-Grad limit) yields the usual Boltzmann equation for classical systems and
this result has been proved for short times. It is natural to investigate what happens,
in the same scaling limit, to a quantum system. Here the scaling is

t → εt, x → εx, φ → φ, N = ε−2. (5.1)

In other words, the density of obstacles is ε, which is a rarefaction regime, but the
potential is unscaled and keeps anO(1) amplitude. Now due to the fact that the density
is vanishing, the particles are too rare to make the statistical correlations effective. As
a consequence, we expect that the Maxwell–Boltzmann, Bose–Einstein, and Fermi–
Dirac situations, all give rise to the same Boltzmann equation along the low-density
limit.

As a matter of fact, the expected Boltzmann equation still is a quadratic Boltzmann
equation in that case, namely

(∂t + v · ∇x)f (t, x, v) = Q�(f, f )(t, x, v), (5.2)

Q�(f, f )(t, x, v) (5.3)

=
∫
dv1 dωB�(ω, v − v1)

[
f (t, x, v′)f (t, x, v′

1)− f (t, x, v)f (t, x, v1)
]
.

Here, the index “�” refers to “low-density”.
The factor B�(ω, v − v1) is the cross-section. In the low-density limit, collisions

take place at a large energy (contrary to the weak-coupling situation), and at a distance
of order ε. For this reason, the cross section B� is computed at large energy, and via
the quantum rules. In other words, it agrees with the full Born series expansion of
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quantum scattering, namely

B�(ω, v) = 1

8π2 |ω · v| |φ̂(ω (ω · v))|2 +
∑
n≥3

B
(n)
� (ω, v), (5.4)

where each B(n)� (ω, v) is an explicitly known function, which is n-linear in φ (see
[37]). Note that the convergence of the Born series expansion (4.8) is well-known
for potentials satisfying a smallness assumption. As it is seen on these formulae, the
only difference between the low-density and the weak-coupling regimes (at least for
Maxwell–Boltzmann particles) lies in the form of the cross-section. Note also that

B�(ω, v) = B(ω, v)+O([φ]3), (5.5)

which reflects the fact that the weak-coupling regime involves only low-energy phe-
nomena.

The analysis of the partial series of the dominant terms (uniform bounds and
convergence as for the weak-coupling limit) has been performed in [6] (on the basis
of [11] and [12]).

Related problem connected with the ones discussed here are the homogeneization
of the distribution function of a single particle in a random distribution of obstacles
c = {c1, . . . , cN }. The basic equations are

ẋ(t) = v(t), v̇(t) = −
∑
j

∇φ(x(t)− cj ) (5.6)

for a classical particle and, for a quantum particle

i∂tψ = −1

2
�ψ +

∑
j

φ(x − cj )ψ. (5.7)

We are interested in the behavior of

fε(x, v; t) = E[fc(x, v; t)] (5.8)

where fc(t) is the time evolved classical distribution function or the Wigner transform
of ψ according to equations (5.6) or (5.7) respectively, under the action of the ob-
stalcle configuration c. Finally E denotes the expectation with respect to the obstacle
distribution. For the low-density scaling under a Poisson distribution of obstacles
(this is the so called Lorentz model) we obtain, for classical systems, a linear Boltz-
mann equation (see [23], [39], [3], [17], [10]). It is also known that the system does
not homogenize to a jump process given by a linear Boltzmann equation in case of
a periodic distribution of obstacles [9]. For the weak-coupling limit we obtain, by a
central-limit type of argument, a linear Landau equation as it is shown in [29] and [18].

As regards the corresponding weak-coupling quantum problem, the easiest case
is when φ is a Gaussian process. The kinetic equation is still a linear Boltzmann
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equation. The first result, holding for short times, has been obtained in [39] (see
also [30]). More recently this result has been extended to arbitrary times [21]. The
technique of [21] can been applied to deal with a Poisson distribution of obstacles.
Obviously the cross section appearing in the Boltzmann equation is that computed in
the Born approximation. Finally in [20] the low-density case has been successfully
approached. The result is a linear Boltzmann equation with the full cross-section.
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Symmetry of entire solutions for a class of semilinear elliptic
equations

Ovidiu Savin

Abstract. We discuss a conjecture of De Giorgi concerning the one dimensional symmetry
of bounded, monotone in one direction, solutions of semilinear elliptic equations of the form
�u = W ′(u) in all R

n.

Mathematics Subject Classification (2000). 35J70, 35B65.

Keywords. Phase transitions models, sliding method, minimal surfaces.

1. Introduction

In 1978 De Giorgi [13] made the following conjecture about bounded solutions of a
certain semilinear equation:

Conjecture (De Giorgi). Let u ∈ C2(Rn) be a solution of

�u = u3 − u, (1)

such that
|u| ≤ 1, uxn > 0

in the whole R
n. Is it true that all the level sets of u are hyperplanes, at least if n ≤ 8?

The problem originates in the theory of phase transitions and it is closely related
to the theory of minimal surfaces. As we explain later, the conjecture is sometimes
referred to as “the ε version of the Bernstein problem for minimal graphs”. This
relation with the Bernstein problem is the reason why n ≤ 8 appears in the conjecture.

De Giorgi’s conjecture is often considered with the additional natural hypothesis

lim
xn→±∞ u(x′, xn) = ±1. (2)

Under the much stronger assumption that the limits in (2) are uniform in x′, the
conjecture is known as the “Gibbons conjecture”. This conjecture was first proved
for n ≤ 3 by Ghoussoub and Gui in [18] and then for all dimensions n independently
by Barlow, Bass and Gui [4], Berestycki, Hamel and Monneau [6] and Farina [16].

The first positive partial result on the De Giorgi conjecture was established in
1980 by Modica and Mortola [30]. They proved the conjecture in dimension n = 2

Proceedings of the International Congress
of Mathematicians, Madrid, Spain, 2006
© 2006 European Mathematical Society



258 Ovidiu Savin

under the additional hypothesis that the level sets {u = s} are equi-Lipschitz in
the x2 direction. Their proof used a Liouville-type theorem for elliptic equations in
divergence form, due to Serrin, for the bounded ratio

σ := ux1

ux2

.

In 1997 Ghoussoub and Gui [18] proved De Giorgi’s conjecture for n = 2. They
used a different Liouville-type theorem for σ developed by Berestycki, Caffarelli
and Nirenberg in [5] for the study of symmetry properties of positive solutions of
semilinear elliptic equations in half spaces. This theorem does not require for σ to
be bounded, but rather a compatibility condition between the growth of σ and the
degeneracy of the coefficients of the equation.

Using similar techniques, Ambrosio and Cabre [2] extended these results up to
dimension n = 3. Also, Ghoussoub and Gui showed in [19] that the conjecture is
true for n = 4 or n = 5 for a special class of solutions that satisfy an anti-symmetry
condition.

In 2003 I proved in [33] that the conjecture is true in dimension n ≤ 8 under the
additional hypothesis (2). The proof is nonvariational and uses the sliding method for
a special family of radially symmetric functions.

If the level sets of u are assumed to be Lipschitz in the xn direction, then it was
shown by Barlow, Bass and Gui [4] and later in [33] that the solutions are planar in
all dimensions.

It is not known whether or not the conjecture is true for all dimensions. Jerison
and Monneau [22] showed that the existence of a symmetric minimizer for the en-
ergy associated with (1) in R

n−1 implies the existence of a counter-example to the
conjecture of the De Giorgi in R

n. However, existence of such global minimizer has
not been proved.

2. Phase transitions

Equations of type (1) arise in variational problems associated with the energy

J (u, �) =
∫

�

1

2
|∇u|2 + W(u) dx, |u| ≤ 1, (3)

where W ∈ C2 is a double well potential with minima at ±1,

W(±1) = W ′(±1) = 0, W > 0 on (−1, 1),

W ′′(−1) > 0, W ′′(1) > 0.

We say that u is a local minimizer for J in � if

J (u, �) ≤ J (u + ϕ, �)
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for any ϕ ∈ C∞
0 (�). Local minimizers of (3) satisfy the Euler–Lagrange equation

�u = W ′(u). (4)

Equation (1) is obtained for the particular choice of the potential

W(t) = 1

4
(1 − t2)2.

The behavior of minimizers at ∞ is given by the properties of blow down solutions

uε(x) = u
(x

ε

)
.

These rescalings are local minimizers for the ε energy functional

Jε(uε) =
∫

ε

2
|∇uε|2 + W(uε)

ε
dx.

This is a typical energy modeling the phase separation phenomena within the van
der Walls–Cahn–Hilliard theory [8]. In this context, uε represents the density of a
multi-phase fluid, where the zero points of W correspond to stable fluid phases and
the free energy Jε depends both on the density potential and the density gradient.

One expects that uε has a transition region of O(ε) thickness which approaches
a minimal surface as ε → 0. The intuition behind this comes from the following
calculation. By the coarea formula

Jε(uε, �) ≥
∫

�

|∇uε|
√

2W(uε)dx =
∫ 1

−1

√
2W(s)Hn−1({uε = s} ∩ �)ds.

Heuristically, Jε(uε, �) is minimized if, in the interior of �, the level sets {uε = s}
are (almost) minimal and

|∇uε| = 1

ε

√
2W(uε). (5)

This equation suggests that “the profile” of uε behaves like

uε(x) 
 g

(
d{u=0}(x)

ε

)

where g is the solution of the ordinary differential equation

g′ = √
2W(g), g(0) = 0,

and d{u=0} represents the signed distance to the 0 level surface of u.
The asymptotic behavior of uε was first studied by Modica and Mortola in [31]

and Modica in [25] within the framework of �-convergence. Later, Modica [27],
Sternberg [36] and many authors [3], [17], [24], [29], [32], [37] generalized these
results for minimizers with volume constraint.
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Modica proved in [25] that as ε → 0, uε has a subsequence

uεk
→ χE − χEc in L1

loc (6)

where E is a set with minimal perimeter. Actually, the convergence in (6) is better,
as it was shown by Caffarelli and Cordoba in [10]. They proved a uniform density
estimate for the level sets of local minimizers uε of Jε i.e, if uε(0) = 0, then

|{uε > 0} ∩ Bδ|
|Bδ| ≥ C (7)

for ε ≤ δ, C > 0 universal. In particular, this implies that in (6) the level sets
{uεk

= λ} converge uniformly on compact sets to ∂E.
Next we recall some known facts about sets with minimal perimeter.

3. Minimal surfaces

The Plateau problem consist in finding a surface of least area (the minimal surface)
among those bounded by a given curve. De Giorgi studied this problem by looking at
hypersurfaces in R

n as boundaries of sets. Thus, for a measurable set E, he defined
the perimeter of E in a domain � ⊂ R

n (or the area of ∂E in �) as the total variation
of ∇χE in �, i.e.

P�(E) =
∫

�

|∇χE| := sup

∣∣∣∣
∫

E

div g dx

∣∣∣∣ ,
where the supremum is taken over all vector fields g ∈ C1

0(�) with ‖g‖L∞ ≤ 1.
It is not difficult to show existence to the Plateau problem in this context of minimal

boundaries. It is much more difficult to prove that the sets so obtained are actually
regular except possibly for a closed singular set.

The main idea to prove “almost everywhere” regularity uses an improvement of
flatness theorem due to De Giorgi [14], [21]. Caffarelli and Cordoba gave a different
proof in [11] using nonvariational techniques.

Theorem 3.1 (De Giorgi). Suppose that E is a set having minimal perimeter in
{|x′| < 1, |xn| < 1}, 0 ∈ ∂E and assume that ∂E is “flat”, i.e.

∂E ⊂ {|xn| < ε},
ε ≤ ε0, ε0 small universal.

Then, possibly in a different system of coordinates, ∂E can be trapped in a flatter
cylinder

{|y′| ≤ η2} ∩ ∂E ⊂ {|yn| ≤ εη1},
with 0 < η1 < η2 universal constants.
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This theorem implies that flat minimal surfaces are C1,α , and therefore analytic
by elliptic regularity theory.

The question of whether or not all points of a minimal surface are regular is closely
related to the Bernstein problem. Singular points can exist if and only if there exist
nonplanar entire minimal surfaces (or minimal cones). Simons [35] proved that in
dimension n ≤ 7 entire minimal surfaces are planar. Bombieri, De Giorgi and Giusti
showed in [7] that the Simons cone

{x ∈ R
8 : x2

1 + x2
2 + x2

3 + x2
4 < x2

5 + x2
6 + x2

7 + x2
8}

is minimal in R
8. Moreover, if the minimal surface is assumed to be a “graph” in

some direction, then there are nonplanar minimal graphs only in dimension n ≥ 9.
Finally we mention that an entire minimal surface that is a “graph” and has at most

linear growth at ∞ is planar.

4. Symmetry of minimizers

It is natural to ask if some properties of minimal surfaces hold also for local minimizers
of (3) or solutions of (4). Actually, the conjecture of De Giorgi corresponds to such
a question. Results in this direction were obtained by several authors.

Caffarelli and Cordoba proved the uniform density estimate (7) for the level sets
of local minimizers uε of Jε. Modica proved in [28] that solutions of (4) satisfy a
monotonicity formula for the energy functional,

J (u, BR)

Rn−1 increases with R.

I proved in [33] an improvement of flatness theorem for local minimizers of (3)
which corresponds to the flatness theorem of De Giorgi for minimal surfaces. It
asserts that, if a level set is trapped in a flat cylinder whose height is greater than some
given θ0, then it is trapped in a flatter cylinder in the interior (the flatness depends
on θ0).

Theorem 4.1 (Savin [33]). Suppose that u is a local minimizer of (3) in the cylinder
{|x′| < l, |xn| < l}, and assume that the 0 level set is “flat”,

{u = 0} ⊂ {|x′| < l, |xn| < θ},
and contains the point 0. Then there exist small constants 0 < η1 < η2 < 1 depending
only on n such that:

Given θ0 > 0 there exists ε1(θ0) > 0 depending on n, W and θ0 such that if

θ

l
≤ ε1(θ0), θ0 ≤ θ
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then
{u = 0} ∩ {|πξx| < η2l, |x · ξ | < η2l}

is included in a flatter cylinder

{|πξx| < η2l, |x · ξ | < η1θ}
for some unit vector ξ (πξ denotes the projection along ξ).

The proof uses the fact that at large scales the level sets behave like minimal
surfaces and at small scales the equation behaves like Laplace’s equation. The ideas
are based on a viscosity solution proof of the flatness theorem of De Giorgi (see [34]).
As a corollary of the above theorem we obtain that, if the level sets are asymptotically
flat at ∞ then they are, in fact, hyperplanes.

Corollary. Let u be a local minimizer of J in R
n with u(0) = 0. Suppose that there

exist sequences of positive numbers θk , lk and unit vectors ξk with

θk

lk
→ 0, lk → ∞

such that
{u = 0} ∩ {|πξk

x| < lk, |x · ξk| < lk} ⊂ {|x · ξk| < θk}.
Then the 0 level set is a hyperplane.

Proof. Fix θ0 > 0, and choose k large such that

θk

lk
≤ ε ≤ ε1(θ0).

If θk ≥ θ0 then, by the theorem above, {u = 0} is trapped in a flatter cylinder. We
apply the theorem repeatedly till the height of the cylinder becomes less than θ0.

In some system of coordinates we obtain

{u = 0} ∩ {|y′| < l′k, |yn| < l′k} ⊂ {|yn| ≤ θ ′
k}

with

θ0 ≥ θ ′
k ≥ η1θ0,

θ ′
k

l′k
≤ θk

lk
≤ ε,

hence

l′k ≥ η1θ0

ε
.

We let ε → 0 and obtain {u = 0} is included in an infinite strip of width θ0. The
corollary is proved since θ0 is arbitrary. �

As a consequence we have the following theorem.
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Theorem 4.2. Suppose that u is a local minimizer of J in R
n and n ≤ 7. Then the

level sets of u are hyperplanes.

Alberti, Ambrosio and Cabre showed in [1] that monotone solutions of (4) satis-
fying (2) are in fact local minimizers for the energy (3) (see also the paper of Jerison
and Monneau [22]), hence we obtain:

Theorem 4.3. Let u ∈ C2(Rn) be a solution of

�u = W ′(u) (8)

such that
|u| ≤ 1, ∂xnu > 0, lim

xn→±∞ u(x′, xn) = ±1. (9)

a) If n ≤ 8 then the level sets of u are hyperplanes.
b) If the 0 level set has at most linear growth at ∞ then the level sets of u are

hyperplanes.

The methods developed in [33] are quite general and can be applied for other types
of nonlinear, possibly degenerate elliptic equations. Recently Valdinoci, Sciunzi and
Savin [40] proved the theorems above for the energy

Jp(u, �) :=
∫

�

1

p
|∇u|p + W(u)dx,

and the corresponding p-Laplace equation

�pu = W ′(u), �pu := div(|∇u|p−2∇u).

Similar results can be obtained for solutions of nonlinear reaction–diffusion equa-
tions of the type

F(D2u) = f (u), u ∈ C2(Rn), uxn > 0, lim
xn→±∞ u(x′, xn) = ±1, (10)

where F is uniformly elliptic, and F , f are such that there exists a one dimensional
solution g which solves the equation in all directions, i.e.,

F(D2g(x · ν) = f (g(x · ν)), for all ν ∈ R
n, |ν| = 1.

If the rescaled level sets εk{u = 0} converge uniformly on compact sets as εk → 0,
then the limiting surface satisfies a uniformly elliptic equation (depending on F , f )
for its second fundamental form (instead of the minimal surface equation). Following
ideas from [33] one can prove a Liouville property for level sets of solutions of (10).
More precisely, if {u = 0} stays above a hyperplane x · ν = const., then u depends
only on one variable i.e,

u(x) = g(x · ν).

Moreover, if F is smooth, then the level sets satisfy an improvement of the flatness
theorem. This implies that if the 0 level set is asymptotically flat at ∞, then u depends
only on one variable. In particular, if the 0 level set is a Lipschitz graph in the xn

direction, then the same conclusion holds.
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Vortices in the Ginzburg–Landau model of
superconductivity

Sylvia Serfaty

Abstract. We review some mathematical results on the Ginzburg–Landau model with and
without magnetic field. The Ginzburg–Landau energy is the standard model for superconduc-
tivity, able to predict the existence of vortices (which are quantized, topological defects) in
certain regimes of the applied magnetic field. We focus particularly on deriving limiting (or re-
duced) energies for the Ginzburg–Landau energy functional, depending on the various parameter
regimes, in the spirit of �-convergence. These passages to the limit allow to perform a sort of
dimension-reduction and to deduce a rather complete characterization of the behavior of vortices
for energy-minimizers, in agreement with the physics results. We also describe the behavior of
energy critical points, the stability of the solutions, the motion of vortices for solutions of the
gradient-flow of the Ginzburg–Landau energy, and show how they are also governed by those
of the limiting energies.

Mathematics Subject Classification (2000). Primary 00A05; Secondary 00B10.

Keywords. Ginzburg–Landau equations, variational methods, �-convergence, superconductiv-
ity, vortices.

1. Introduction

1.1. Presentation of the Ginzburg–Landau model. We are interested in describ-
ing mathematical results on the two-dimensional Ginzburg–Landau model. This is
a model of great importance and recognition in physics (with several Nobel prizes
awarded for it: Landau, Ginzburg, Abrikosov). It was introduced by Ginzburg and
Landau (see [15]) in the 1950s as a phenomenological model to describe supercon-
ductivity. Superconductivity was itself discovered in 1911 by Kammerling Ohnes.
It consists in the complete loss of resistivity of certain metals and alloys at very low
temperatures. The two most striking consequences of it are the possibility of perma-
nent superconducting currents and the particular behavior that, when the material is
submitted to an external magnetic field, that field gets expelled from it. Aside from
explaining these phenomena, and through the very influential work of Abrikosov [1],
the Ginzburg–Landau model allowed to predict the possibility of a mixed state in
type-II superconductors where triangular vortex lattices appear. These vortices – a
vortex can be described in a few words as a quantized amount of vorticity of the
superconducting current localized near a point – have since been the objects of many
observations and experiments.

Proceedings of the International Congress
of Mathematicians, Madrid, Spain, 2006
© 2006 European Mathematical Society
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The Ginzburg–Landau theory has also been justified as a limit of the Bardeen–
Cooper–Schrieffer (BCS) quantum theory, which explains superconductivity by the
existence of “Cooper pairs” of superconducting electrons.

In addition to its importance in the modelling of superconductivity, the Ginz-
burg–Landau model turns out to be the simplest case of a gauge theory, and vortices
to be the simplest case of topological solitons (for these aspects see [34], [21] and
the references therein); moreover, it is mathematically extremely close to the Gross–
Pitaevskii model for superfluidity and models for rotating Bose–Einstein condensates
in which quantized vortices are also essential objects, to which the Ginzburg–Landau
techniques have been successfully exported.

The 2D Ginzburg–Landau model leads (after various suitable rescalings) to de-
scribing the state of the superconducting sample submitted to the external field hex,
below the critical temperature, through the energy functional

Gε(u,A) = 1

2

∫
�

|∇Au|2 + |curl A− hex |2 + 1

2ε2

(
1 − |u|2)2

. (1)

In this expression, � is a two-dimensional open subset of R
2, which in our study

is always assumed for simplicity to be smooth, bounded and simply connected. One
can imagine it represents the section of an infinitely long cylinder, or a thin film.

The first unknown u is a complex-valued function, called “order parameter” in
physics, where it is generally denoted ψ . It is a condensed wave function, indicating
the local state of the material or the phase in the Landau theory approach of phase
transitions: |u|2 is the density of “Cooper pairs” of superconducting electrons (respon-
sible for superconductivity in the BCS approach). With our normalization |u| ≤ 1
and where |u| � 1 the material is in the superconducting phase, while where |u| = 0,
it is in the normal phase (i.e. behaves like a normal conductor), the two phases being
able to coexist in the sample.

The second unknown is A, the electromagnetic vector-potential of the magnetic
field, a function from � to R

2. The magnetic field in the sample is deduced by
h = curlA = ∂1A2 − ∂2A1, it is thus a real-valued function in �. The notation ∇A
denotes the covariant gradient ∇−iA; ∇Au is thus a vector with complex components.

The superconducting current is a real vector given by 〈iu,∇Au〉 where 〈 . , .〉
denotes the scalar-product in C identified with R

2, it may also be written as
i
2

(
u∇Au− ū∇Au

)
, where the bar denotes complex conjugation.

The parameter hex > 0 represents the intensity of the applied field (assumed
to be perpendicular to the plane of �). Finally, the parameter ε is the inverse of
the “Ginzburg–Landau parameter” usually denoted κ , a non-dimensional parameter
depending on the material only. We will be interested in the regime of small ε or
κ → +∞, corresponding to high-κ superconductors (also called the London limit).
In this limit, the characteristic size of the vortices, which is ε, tends to 0 and vortices
become point-like.
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The stationary states of the system are the critical points of Gε, or the solutions
of the Ginzburg–Landau equations (Euler–Lagrange equations associated to Gε):

(GL)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−(∇A)2u = 1

ε2u(1 − |u|2) in �

−∇⊥h = 〈iu,∇Au〉 in �

h = hex on ∂�

ν · ∇Au = 0 on ∂�,

where ∇⊥ denotes the operator (−∂2, ∂1), and ν the outer unit normal to ∂�.
The Ginzburg–Landau equations and functional are invariant under U(1)-gauge

transformations (it is an Abelian gauge-theory):{
u 
→ uei	,

A 
→ A+ ∇	. (2)

The physically relevant quantities are those that are gauge-invariant, such as the energy
Gε, |u|, h, etc.

For more on the model and on the physics, we refer to the physics literature, in
particular [53], [13]. For more reference on the results we present here, we refer to
our monograph with E. Sandier [47].

We will also mention results on the simplified Ginzburg–Landau model, without
magnetic field. It consists in taking A = 0 and hex = 0, then the energy reduces to

Eε(u) = 1

2

∫
�

|∇u|2 + (1 − |u|2)2
2ε2 (3)

with still u : � → C. Critical points of this energy are solutions of

−
u = u

ε2 (1 − |u|2). (4)

It is a complex-valued version of the Allen–Cahn model for phase-transitions. The
first main study of this functional was done by Bethuel–Brezis–Hélein in the book [6],
where they replace the effect of the applied field hex by a fixed Dirichlet boundary
condition. Since then, this model has been extensively studied.

1.2. Vortices. A vortex is an object centered at an isolated zero of u, around which
the phase of u has a nonzero winding number, called the degree of the vortex. When
ε is small, it is clear from (1) that |u| prefers to be close to 1, and a scaling argument
hints that |u| is different from 1 in regions of characteristic size ε. A typical vortex
centered at a point x0 “looks like” u = ρei ϕ with ρ(x0) = 0 and ρ = f (

|x−x0|
ε
)

where f (0) = 0 and f tends to 1 as r → +∞, i.e. its characteristic core size is ε,
and

1

2π

∫
∂B(x0,Rε)

∂ϕ

∂τ
= d ∈ Z
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is an integer, called the degree of the vortex. For example ϕ = dθ where θ is the polar
angle centered at x0 yields a vortex of degree d. We have the important relation

curl ∇ϕ = 2π
∑
i

diδai (5)

where the ai’s are the centers of the vortices, the di’s their degrees, and δ the Dirac
mass.

In the limit ε → 0 vortices become point-like or more generally, in any dimension,
codimension 2 singularities (see [30], [7]) – to be compared with the case of real-valued
phase-transition models (Allen–Cahn), where the order parameter u is real-valued,
leading to codimension 1 singular sets in the limit.

1.3. Critical fields. When an external magnetic field is applied to a superconductor,
several responses can be observed depending on the intensity of the field hex.

There are three main critical values of hex or critical fields Hc1 , Hc2 , and Hc3 ,
for which phase-transitions occur. Below the first critical field, which is of order
O(| log ε|) (as first established by Abrikosov), the superconductor is everywhere in
its superconducting phase |u| ∼ 1 and the magnetic field does not penetrate (this
is called the Meissner effect or Meissner state). At Hc1 , the first vortice(s) appear.
BetweenHc1 andHc2 , the superconducting and normal phases (in the form of vortices)
coexist in the sample, and the magnetic field penetrates through the vortices. This is
called the mixed state. The higher hex > Hc1 , the more vortices there are. Since they
repel each other, they tend to arrange in these triangular Abrikosov lattices in order
to minimize their repulsion. Reaching Hc2 ∼ 1

ε2 , the vortices are so densely packed
that they overlap each other, and at Hc2 a second phase transition occurs, after which
|u| ∼ 0 inside the sample, i.e. all superconductivity in the bulk of the sample is lost.

In the interval [Hc2, Hc3] however, superconductivity persists near the boundary,
this is called surface superconductivity. Above Hc3 = O

( 1
ε2

)
(defined in decreasing

fields), the sample is completely in the normal phase u ≡ 0, the magnetic field
completely penetrates, and decreasing the field belowHc3 , surface superconductivity
is observed.

1.4. Questions, results and methods. The main question is to understand mathe-
matically the behavior above, and in particular:

– To understand the vortices and their repartition, interaction.

– To understand the influence of the boundary conditions and/or of the applied
field.

– To find the asymptotic values of the critical fields (as ε → 0).

– To prove compactness results and derive limiting energies/reduced problems,
thus following the strategy of�-convergence. This enables to understand the behavior
of global minimizers (or energy minimizers) and their vortices. In order to achieve
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this, one needs to find lower bounds for the energy, together with matching upper
bounds.

– To understand and find local minimizers. This is done through a special “local
minimization in energy sectors” method.

– To understand the behavior of critical points of the energy (i.e. solutions which
are not necessarily stable), that is to pass to the limit ε → 0 in the Ginzburg–Landau
equations (GL). The method used here is to pass to the limit in the “stress-energy
tensor”.

– To derive the limiting motion law of vortices, and to understand its link with the
reduced energies mentioned above.

2. Mathematical tools

Various methods were introduced to describe vortices, since [6]. A crucial difference
between the analysis for (1) and the one for (3) is that for the case with magnetic
field (1) we really need to be able to handle numbers of vortices which are unbounded
as ε → 0. We designed tools able to capture vortices for arbitrary maps u (not
necessarily solutions), and to treat possibly unbounded numbers.

Let us describe the two main technical tools which we use throughout: the “vor-
tex ball construction”, yielding the lower bounds on the energy, and the vorticity
measures, which serve to describe vortex-densities instead of individual vortices.

2.1. The vortex-ball construction. This serves to obtain lower bounds for bounded
or unbounded numbers of vortices. The idea is that, whatever the map u, for topo-
logical reasons, a vortex of degree d confined in a ball of radius r should cost at least
an energy πd2 log r

ε
. Then, since there may be a large number of these vortices, one

must find a way to add up those estimates. It is done following the ball-growth method
of Sandier [38] and Jerrard [22] (which consists in growing annuli of same conformal
type and merging them appropriately). The best result to date is the following:

Theorem 2.1 (see [47]). Let (u,A) be a configuration such that Eε(|u|) ≤ Cεα−1

with α > 0, then for any r ∈ (ε
α
2 , 1), and ε small enough, there exists a finite

collection of disjoint closed balls {Bi}i of centers ai , of sum of the radii r , covering
{|u| ≤ 1 − ε

α
4 } ∩ {x ∈ �, dist(x, ∂�) ≥ ε}, and such that

1

2

∫
⋃
i Bi

|∇Au|2 + |curlA|2 + (1 − |u|2)2
2ε2 ≥ πD

(
log

r

Dε
− C

)
(6)

where D = ∑
i |di | and di = deg(u, ∂Bi).

This lower bound is very general, it does not require any hypothesis on (u,A)
other than a reasonable (but quite large) upper bound on its energy, and it is in fact
sharp (examples where it is can be constructed).
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2.2. The vorticity measures. Recall that a complex-valued map u can be written
in polar coordinates u = ρeiϕ with a phase ϕ which can be multi-valued. Given a
configuration (u,A), we define its vorticity by

μ(u,A) = curl 〈iu,∇Au〉 + curlA. (7)

Formally
〈iu,∇u〉 = ρ2∇ϕ � ∇ϕ,

considering that ρ = |u| � 1. Taking the curl of this expression and using (5), one
would get the approximate (formal) relation

μ(u,A) � 2π
∑
i

diδai (8)

where ai’s are the vortices of u and di’s their degrees. Thus we see why the quantityμ
corresponds to a vorticity-measure of the map u (just like the vorticity for fluids). The
following theorem gives a rigorous content to (8).

Theorem 2.2 (see [24] and [47]). The (ai, di)′s being given by the previous theorem,
we have∥∥∥μ(u,A)− 2π

∑
i

diδai

∥∥∥
(C

0,γ
0 (�))∗

≤ CrγG0
ε(u,A) for all 0 < γ < 1,

where G0
ε is the energy when hex = 0.

The previous theorem allowed to give a control on the mass of 2π
∑
i diδai as

measures. This one ensures that if r is taken small enough, μ(u,A) and 2π
∑
i diδai

are close in a weak norm. Combining the two yields a compactness result on the
vorticityμ(u,A), if rescaled by dividing by the number of vortices. It also ensures the
limiting vorticity is a bounded Radon measure. This is the limiting “vortex-density”
we are looking to characterize in various situations.

Remark 2.3. When the Ginzburg–Landau equations (GL) are satisfied, taking the
curl of the second relation, we find that the vorticity and the induced field are linked
by the relation {

−
h+ h = μ(u,A) in �,

h = hex on ∂�.
(9)

Thus the knowledge of the vorticity is equivalent to that of the induced field h.
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3. Global minimization (�-convergence type) results

3.1. Results for Eε

3.1.1. In two dimensions. For the two-dimensional simplified model (3), the main
result of [6] can be written in the following form.

Theorem 3.1 (Bethuel–Brezis–Hélein [6]). Let � be a strictly starshaped simply
connected domain of R

2 and g : ∂� → S
1 a smooth map of degree d > 0. If uε

minimizes Eε among maps with values g on ∂�, then, as ε → 0, up to extraction
of a subsequence, there exist d distinct points a1, . . . , ad ∈ � such that uε → u∗ in
Ckloc

(
�\ ⋃

i{ai}
)

where

1. u∗ is a harmonic map from �\{a1, . . . , ad} to S
1 with u∗ = g on ∂� and with

degree di = 1 around each ai ,

2. (a1, . . . , ad) is a minimizer of the renormalized energy W with di = 1,

3. Eε(uε) ≥ πd| log ε| +W(a1, . . . , ad)+ o(1).

Here W denotes a function of the points ai ∈ � (depending also on the degrees),
called “renormalized energy” and which has a form

W(x1, . . . , xn) = −π
∑
i �=j

didj log |xi−xj |+ terms of interaction with the boundary.

W corresponds to the finite part of the energy left when subtracting the “infinite” self-
interaction cost of the vortices πd| log ε|, i.e. to the interaction between the vortices
(vortices of same sign repel, of opposite sign attract).

This result can be phrased as a �-convergence result (in the sense of DeGiorgi):

Proposition 3.2 (�-convergence of Eε).

1. For any family {uε}ε such that Eε(uε) ≤ C| log ε| and uε = g on ∂�; up to
extraction, there exists a finite family (ai, di) of n points + degrees such that∑n
i=1 di = d and

curl 〈iuε,∇uε〉 ⇀ 2π
n∑
i=1

diδai ,

Eε(uε) ≥ π

n∑
i=1

|di || log ε| +W(a1, . . . , an)+ o(1) as ε → 0.

2. For all distinct ai’s and di = ±1, there exists uε such that

Eε(uε) ≤ πn| log ε| +W(a1, . . . , an)+ o(1).
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Fixing the degrees di = ±1 and the number of vortices n, this result states exactly
that Eε − πn| log ε| �-converges to W . This reduces the dimension of the problem,
by reducing the minimization ofEε to the simple one of the limiting energyW , which
is a function on a finite dimensional set.

3.1.2. In higher dimensions. Three-dimensional as well as higher-dimensional ver-
sions of Theorem 3.1 have been given, in particular by Lin–Rivière [30], Sandier [39],
Bethuel–Brezis–Orlandi [7]. Jerrard and Soner gave a �-convergence formulation
(i.e. analogous to Proposition 3.2), later improved by Alberti–Baldo–Orlandi [2].
Here Eε refers to the n-dimensional version of the energy (3). When n = 3 the
vortex-set (or zero-set of u) is a set of lines, in higher dimensions it is a set of codi-
mension 2, and the vorticity is best described in the language of currents.

Theorem 3.3 (Jerrard–Soner [24]). Let {uε}ε be a family such thatEε(uε) ≤ C| log ε|;
up to extraction, there exists an integer-multiplicity rectifiable (n − 2)-dimensional
current J such that

με(uε) := ∗d〈iuε, duε〉 ⇀ 2πJ in (C0,γ
0 (�))∗

for all γ < 1 (in the language of differential forms) and

lim
ε→0

Eε(uε)

| log ε| ≥ π‖J‖(�),

where ‖J‖(�) is the total mass of the current.

The total mass of the current corresponds in dimension 3 to the total length of the
vortex-lines. The result of [30], [39] essentially states that minimizers of Eε have a
vorticity με which converges to minimizers of the length ‖J‖(�), thus have vortices
which converge to straight lines or minimal connections (or codimension 2 minimal
currents in higher dimension). The result of [7] generalizes it to critical points and
proves that critical points ofEε have vortices which converges to stationary varifolds.

Observe that the situation is quite different from the dimension 2, because the main
order | log ε| of the energy already gives a nontrivial limiting problem: the mass of the
limiting object J ; in contrast with the 2D problem which only leads to minimizing the
number of points (one needs to go to the next order in the energy to get an interesting
problem: the minimization of W ).

3.2. Global minimization results for Gε

3.2.1. Close to Hc1 . Let us introduce h0 the solution of{
−
h0 + h0 = 0 in �,

h0 = 1 on ∂�,
(10)
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and
C(�) = (2 max |h0 − 1|)−1. (11)

We also introduce the set � = {x ∈ �/h0(x) = min h0} and we will assume
here for simplicity that it is reduced to only one point called p, and denote Q(x) =
〈D2h0(p)x, x〉, assumed to be definite positive. With these notations, a first essential
result is the asymptotic formula for Hc1 (confirming physical predictions that Hc1 =
O(| log ε|)):

Hc1 = C(�)| log ε| +O(1). (12)

Theorem 3.4 ([48], [47]). Assume hex ≤ Hc1 + O(log | log ε|), then for hex ∈
(Hn,Hn+1) where Hn has the expansion

Hn = C(�)

(
| log ε| + (n− 1) log

| log ε|
n

)
+ lower order terms,

global minimizers of Gε have exactly n vortices of degree 1, aεi → p as ε → 0 and

the ãεi =
√
hex
n
(aεi − p) converge as ε → 0 to a minimizer of

wn(x1, . . . , xn) = −π
∑
i �=j

log |xi − xj | + πn

n∑
i=1

Q(xi). (13)

Through this theorem we see that the behavior is as expected: below Hc1 = H1
there are no vortices in energy minimizers (in addition it was proved in [49] that the
minimizer is unique), then at Hc1 the first vortex becomes favorable, close to the
point p. Then, there is a sequence of additional critical fields H2, H3, . . . separated
by increments of log | log ε|, for which a second, third, etc, vortex becomes favorable.
Each time the optimal vortices are located close to p as ε → 0, and after blowing-

up at the scale
√
hex
n

around p, they converge to configurations which minimize wn
in R

2. Now, wn, which appears as a limiting energy (after that rescaling) contains a
repulsion term likeW , and a confinement term due to the applied field. It is a standard
two-dimensional interaction, however rigorous results on its minimization are hard to
obtain as soon as n ≥ 3. When Q has rotational symmetry, numerical minimization
(see Gueron–Shafrir [17]) yields very regular shapes (regular polygons for n ≤ 6,
regular stars) which look very much like the birth of a triangular lattice as n becomes
large. All these results are in very good agreement with experimental observations.

3.2.2. Global minimizers in the intermediate regime. In the next higher regime
of applied field, the result is the following:

Theorem 3.5 ([47]). Assume hex satisfies, as ε → 0,

log | log ε| � hex −Hc1 � | log ε|.
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Then there exists 1 � nε � hex such that

hex ∼ C(�)

(
| log ε| + nε log

| log ε|
nε

)

and if (uε, Aε) minimizes Gε, then

μ̃(uε, Aε)

2πnε
⇀ μ0

where μ̃(uε, Aε) is the push-forward of the measure μ(uε,Aε) under the blow-up

x 
→
√
hex
nε
(x − p), and μ0 is the unique minimizer over probability measures of

I (μ) = −π
∫

R2×R2
log |x − y| dμ(x) dμ(y)+ π

∫
R2
Q(x) dμ(x). (14)

Here, nε corresponds to the expected optimal number of vortices. In [47] our result
is really phrased as a �-convergence of Gε in the regime 1 � n � hex, reducing the
minimization of Gε to that of the limiting energy I . The problem of minimizing I
is a classical one in potential theory. Its minimizer μ0 is a probability measure of
constant density over a subdomain of R

2 (typically a disc or an ellipse). This result is
in continuous connection with Theorem 3.4, except nε � 1. Again, vortices in the

minimizers converge to p as ε → 0, and when one blows up at the right scale
√
hex
nε

around p, one obtains a uniform density of vortices μ0 in a subdomain of R
2.

3.2.3. Global minimizers in the regime nε proportional to hex. This happens in
the next regime: hex ∼ λ| log ε| with λ > C(�).

Theorem 3.6 ([42], [47]). Assume hex = λ| log ε| where λ > 0 is a constant inde-
pendent of ε. As ε → 0, Gε

h2
ex
�-converges to

Eλ(μ) = ‖μ‖
2λ

+ 1

2

∫
�

|∇hμ|2 + |hμ − 1|2,

defined over bounded Radon measures which are in H−1(�), where ‖μ‖ is the total
mass of μ and hμ is the solution to{

−
hμ + hμ = μ in �,

hμ = 1 on ∂�.
(15)

Consequently, if (uε, Aε) minimizes Gε, then

μ(uε,Aε)

hex
⇀ μ∗,

μ∗ being the unique minimizer over H−1(�) ∩ (C0
0(�))

∗ of Eλ.
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Observe also that

Eλ(μ) = 1

2λ

∫
�

|μ| + 1

2

∫
�×�

G(x, y) d(μ− 1)(x) d(μ− 1)(y) (16)

where G is the solution to −
G + G = δy with G = 0 on ∂�. That way, the
similarity with I is more apparent.

Again, by �-convergence, we reduce to minimizing the limiting energy Eλ on the
space of bounded Radon measures on �. It turns out that this problem is dual, in the
sense of convex duality, to an obstacle problem:

Proposition 3.7. μ minimizes Eλ if and only if hμ is the minimizer for

min
h≥1− 1

2λ
h=1 on ∂�

∫
�

|∇h|2 + h2. (17)

The solution of the obstacle problem (17) is well-known, and given by a varia-
tional inequality (see [28]). Obstacle problems are a particular type of free-boundary
problems, the free-boundary here being the boundary of the coincidence set

ωλ =
{
x ∈ �/h(x) = 1 − 1

2λ

}
.

Then h verifies −
h + h = 0 outside of ωλ, so ωλ is really the support of μ∗,
on which μ∗ is equal to the constant density

(
1 − 1

2λ

)
dx. An easy analysis of this

obstacle problem yields the following:

1. ωλ = ∅ (hence μ∗ = 0) if and only if λ < C(�), where C(�) was given
by (11). (This corresponds to the case hex < Hc1 .)

2. For λ = C(�), ωλ = {p}. This is the case when hex ∼ Hc1 at leading order.
In the scaling chosen here μ∗ = 0 but the true behavior of the vorticity is
ambiguous unless going to the next order term as done in Theorems 3.4 and 3.5.

3. For λ > C(�), the measure of ωλ is nonzero, so the limiting vortex density
μ∗ �= 0. Moreover, as λ increases (i.e. as hex does), ωλ increases. When
λ = +∞,ωλ becomes� andμ∗ = 1, this corresponds to the casehex � | log ε|
of the next subsection.

3.2.4. Global minimizers in the regime | log ε| � hex � ε−2. For applied fields
much larger than | log ε| but belowHc2 , even though the number of vortices becomes
very large, the minimization problem becomes local and can be solved by blowing-up
and using Theorem 3.6. The energy-density and the vortex repartition are thus found
to be uniform, as seen in:
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Theorem 3.8 ([41], [47]). Assume, as ε → 0, that | log ε| � hex � 1/ε2. Then,
if (uε, Aε) minimizesGε, and letting gε(u,A) denote the energy-density 1

2

(|∇Au|2 +
|h− hex|2 + 1

2ε2 (1 − |u|2)2), we have

2gε(uε, Aε)

hex log 1
ε
√
hex

⇀ dx as ε → 0

in the weak sense of measures, where dx denotes the two-dimensional Lebesgue
measure; and thus

min
(u,A)∈H 1×H 1

Gε(u,A) ∼ |�|
2
hex log

1

ε
√
hex

as ε → 0,

where |�| is the area of �. Moreover

hε

hex
→ 1 in H 1(�)

μ(uε, Aε)

hex
→ dx in H−1(�).

In Theorems 3.5, 3.6 and 3.8 we find an optimal limiting density which is constant
on its support (ωλ or �). This provides a first (but very incomplete) confirmation of
the Abrikosov lattices of vortices observed and predicted in physics.

3.2.5. Global minimizers in higher applied field. Here, we will present the situa-
tion with decreasing applied field. For large enough applied field, the only solution
is the (trivial) normal one u ≡ 0, h ≡ hex.

Giorgi and Phillips have proved in [16] that this is the case for hex ≥ Cε−2.

Theorem 3.9 (Giorgi–Phillips [16]). There exists a constant C such that if hex ≥
Cε−2 and ε is small enough, then the only solution to (GL) is the normal one u ≡ 0,
h ≡ hex.

This result implies the upper bound Hc3 ≤ Cε−2 for that constant C.
Decreasing the applied field to Hc3 , a bifurcation from the normal solution of a

branch of solutions with surface superconductivity occurs. The linear analysis of this
bifurcation was first performed in the half-plane by De Gennes [13], then by Bauman–
Phillips–Tang [4] in the case of a disc; and for general domains, formally by Chapman
[11], Bernoff–Sternberg [5], Lu and Pan [33], then rigorously by Del Pino–Felmer–
Sternberg [14], Helffer–Morame [19], Helffer–Pan [18]. The nucleation of surface
superconductivity takes place near the point of maximal curvature of the boundary,
and the asymptotics for Hc3 is given by the following result.

Theorem 3.10.

Hc3 ∼
ε−2

β0
+ C1

β
3/2
0

max(curv(∂�))ε−1,
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where β0 is the smallest eigenvalue of a Schrödinger operator with magnetic field in
the half-plane.

The behavior of energy minimizers forHc2 ≤ hex ≤ Hc3 has been studied by Pan
[37] (see also Almog), who showed that, as known by physicists, minimizers present
surface superconductivity which spreads to the whole boundary, with exponential
decay of |u| from the boundary of the domain.

AtHc2 , one goes from surface superconductivity to bulk-superconductivity. It was
established by Pan [37] that

Hc2 = ε−2.

Qualitative results on bulk-superconductivity belowHc2 were obtained in [44], where
we established in particular how bulk-superconductivity increases (in average) as hex
is lowered immediately below Hc2 .

4. Local minimizers: branches of solutions

The techniques developed to describe energy-minimizers also allow to find branches
of locally minimizing (hence stable, and physically observable) solutions, with pre-
scribed numbers of vortices. This is a problem of inverse type: given critical points
or minimizers of the limiting energy w, can we find critical points / local minimizers
ofGε which converge to it? For answers on that question regarding Eε, see the book
of Pacard and Rivière [36].

Theorem 4.1 ([49], [47]). For ε < ε0, and for any n and hex belonging to appropriate
intervals, there exists a locally minimizing critical point (uε, Aε) of Gε such that
uε has exactly n zeroes aε1, . . . , a

ε
n and there exists R > 0 such that |uε| ≥ 1

2 in
�\ ⋃

i B(a
ε
i , Rε), with deg(uε, ∂B(aεi , R)) = 1. Moreover:

1. Ifnandhex are constant, independent of ε, up to extraction of a subsequence, the
configuration (aε1, . . . , a

ε
n) converges as ε → 0 to a minimizer of the function

Rn,hex = −π
∑
i �=j

log |xi − xj | + π
∑
i,j

S�(xi, xj )+ 2πhex

n∑
i=1

(h0 − 1)(xi).

where S� is the regular part of a Green function associated to �.

2. Ifn = O(1) andhex → ∞, up to extraction of a subsequence, the configuration

of the ãεi =
√
hex
n
(aεi − p) converges as ε → 0 to a minimizer of wn.

3. If n → ∞ and hex → ∞, then denoting again ãεi =
√
hex
n
(aεi − p),

1

n

n∑
i=1

δãεi ⇀ μ0

where μ0 is the unique minimizer of I (defined in (14)).
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The method of the proof consists in finding these solutions as local minimizers
by minimizing Gε over some open sets of the type Un = {(u,A)/π(n− 1)| log ε| <
G0
ε(u,A) < π(n + 1)| log ε|}. Minimizing over Un consists, roughly speaking, in

minimizing over configurations with n vortices, the difficulty is in proving that the
minimum over Un is achieved at an interior point (this comes from the quantization
of the energetic cost of vortices), thus yielding a local energy minimizer.

We thus show the multiplicity of locally minimizing solutions, for a given hex, in
a wide range (from hex = O(1) to hex � | log ε|): essentially, solutions with 0, 1, 2,
3, . . . vortices coexist and are all stable, even if not energy-minimizing.

We also have derived multiple “renormalized energies” Rn,hex , wn, I (μ) corre-
sponding to the three regimes above. Observe that wn corresponds somewhat to the
limit of Rn,hex as hex → ∞, while I is a continuum limit as n → ∞ (but still
n � hex) of wn. Eλ can also be seen as the limit as both n and hex tend to ∞ but
n/hex not tending to 0. Thus these limiting or renormalized energies are not only
valid for global minimization, but also for local minimization.

5. Critical points approach

The issue here is to derive conditions on limiting vortices or vortex-densities just
assuming that we start from a family of solutions to (GL) or critical points of Gε,
not necessarily stable. This strategy was already implemented for the functional Eε
in [6], leading to

Theorem 5.1 (Bethuel–Brezis–Hélein [6]). If uε is a sequence of solutions of (4) in�
with uε = g on ∂�, deg(g) = d > 0, and Eε(uε) ≤ C| log ε| then, as ε → 0 and up
to extraction of a subsequence, there exist distinct points a1, . . . , an ∈ �, and degrees
d1, . . . , dn with

∑n
i=1 di = d, such that uε → u∗ in Ckloc

(
�\ ⋃

i{ai}
)

where u∗ is
a harmonic map from �\{a1, . . . , an} to S

1 with u∗ = g on ∂� and with degree di
around each ai . Moreover (a1, . . . , an) is a critical point ofW (the di’s being fixed).

Thus, the vortices of critical points ofEε converge to critical points of the limiting
energy W .

It is a corresponding result that we obtain for the vortex-densities for Gε. The
strategy consists similarly in passing to the limit ε → 0, not in (GL), but in the
stationarity relation

d

dt |t=0
Gε(u � χt , A � χt) = 0

satisfied for the critical points (with χt a one-parameter family of diffeomorphisms
such that χ0 = Id). That relation is equivalent by Noether’s theorem to a relation of
the form

div Tε = 0
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where Tε is called the “stress-energy” or “energy-momentum” tensor. For the present
energy-functional

Tε = 1

2

(|∂A1 u|2 − |∂A2 u|2 2〈∂A1 u, ∂A2 u〉
2〈∂A1 u, ∂A2 u〉 |∂A2 u|2 − |∂A1 u|2

)
+

(
h2

2
− (1 − |u|2)2

2ε2

) (
1 0
0 1

)
,

where ∂Aj = ∂j − iAj .
In what follows we assume that (uε, Aε) are sequences of critical points of Gε

such thatGε(uε, Aε) ≤ Cε−α , α < 1
3 , and nε is defined as

∑
i |di | where the di’s are

the degrees of the balls of total radius r = ε2/3 given by Theorem 2.1.

Theorem 5.2 ([43], [47]). Let (uε, Aε) and nε be as above. If nε vanishes in a
neighborhood of 0 then μ(uε,Aε) tends to 0 in W−1,p(�) for some p ∈ (1, 2). If
not, then going to a subsequence

μ(uε,Aε)

nε
→ μ (18)

in W−1,p(�) for some p ∈ (1, 2) where μ is a measure. Moreover, one of the two
following possibilities occur (after extraction of a subsequence if necessary).

1. If nε = o(hex) then
μ∇h0 = 0. (19)

2. If hex/nε → λ ≥ 0, then, letting hμ be the solution of (15), the symmetric
2-tensor Tμ with coefficients

Tij = 1

2

(|∂1hμ|2 − |∂2hμ|2 2∂1hμ∂2hμ
2∂1hμ∂2hμ |∂2hμ|2 − |∂1hμ|2

)
− h2

μ

2

(
1 0
0 1

)

is divergence-free in finite part.

In the latter case, if μ is such that hμ ∈ H 1(�) then Tμ is in L1 and divergence-free

in the sense of distributions. Moreover |∇hμ|2 is in W 1,q
loc (�) for any q ∈ [1,+∞).

If we assume in addition that μ ∈ Lp(�) for some p > 1, then

μ∇hμ = 0.

Finally, if we assume ∇hμ ∈ C0(�) ∩W 1,1(�) (this is the case if μ is in Lp, for
some p > 1 for instance), then hμ is in C1,α(�) for any α ∈ (0, 1) and 0 ≤ hμ ≤ 1.
In this case

μ = hμ1{|∇hμ|=0}, (20)

(where 1 stands for the characteristic function) and thus μ is a nonnegative L∞
function.
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To sum up, the limiting condition is μ∇h0 in the first case, it means that when
there are too few of them, vortices all concentrate at the critical points of h0 at the
limit. In the second case, it is a weak form of the relation μ∇hμ = 0 (which cannot
be written as such when hμ is not regular enough, counterexamples can be built).

We obtained an analogous result for critical points of Eε with possibly large
numbers of vortices.

Also, once more, the result has a higher-dimensional version for the functionalEε:
as mentioned in Section 3.1.2, it was proved in [30], [7] that the vorticities for critical
points of Eε converge to stationary varifolds, i.e. critical points for the length/area.

6. Study of the dynamics

The philosophy that has been successful in the minimization approach has been to
extract limiting reduced energies (most often depending on some parameter regimes).
These energies come up as �-limits, thus giving the behavior of energy-minimizers,
but we have seen that they are not only relevant for energy-minimizers, but also for
critical points (“critical points converge to critical points”) and for local minimizers.
It turns out that these limiting energies are also relevant for the study of dynamical
problems, such as that of the heat-flow of (GL) and (4).

6.1. Energy-based method

6.1.1. Abstract argument. In [46], [50], we gave criteria to determine when a family
of energiesFε converges to its�-limitF in a sort ofC1 orC2 sense which allows to pass
to the limit in the associated gradient-flow (we called this “�-convergence of gradient
flows”). The abstract situation is the following: assume that Fε �-converges to F for
the sense of convergence S (the sense of convergence can be a weak convergence or
a convergence of some nonlinear quantity), that means in particular

lim
ε→0

Fε(uε) ≥ F(u) when uε
S
⇀u, (21)

and consider the gradient of Fε with respect to some Hilbert structure Xε, denoted
∇XεFε. The question is to find conditions to get that solutions of the gradient flow
∂tuε = −∇XεFε(uε) converge (in the sense S) to a solution of the gradient flow of F
with respect to some structure Y to be determined. In the problem on Ginzburg–
Landau vortices, Fε should be taken to be Eε − πn| log ε| and F = W (see Propo-
sition 3.2), the sense of convergence to be considered is uε ⇀S u = (a1, . . . , an) if
curl 〈iuε,∇uε〉 ⇀ 2π

∑n
i=1 diδai , where the di = ±1 and n are fixed a priori. In

that case the limiting flow is a finite dimensional one, so the proof of existence of its
solution is easy.

The two sufficient abstract conditions are that there should exist another Hilbert
structure Y on the space where F is defined, satisfying the following:
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1) For a subsequence such that uε(t)
S
⇀ u(t) for every t ∈ [0, T ), we have for all

s ∈ [0, T ),
lim
ε→0

∫ s

0
‖∂tuε‖2

Xε
(t) dt ≥

∫ s

0
‖∂tu‖2

Y (t) dt. (22)

2) For any uε
S
⇀ u

lim
ε→0

‖∇XεFε(uε‖2
Xε

≥ ‖∇YF (u)‖2
Y . (23)

These conditions suffice in the case where F is defined on a finite-dimensional space,
to derive that if uε solves

∂tuε = −∇XεFε(uε) on [0, T ) (24)

with uε(0)
S
⇀ u0, and is well-prepared in the sense that Fε(uε(0)) = F(u0)+ o(1),

then uε(t)
S
⇀ u(t), where u is the solution to{

∂tu = −∇YF (u),
u(0) = u0.

The proof of this abstract result is rather elementary: for all t < T we may write

Fε(uε(0))− Fε(uε(t)) = −
∫ t

0
〈∇XεFε(uε(s)), ∂t uε(s)〉Xε ds

= 1

2

∫ t

0
‖∇XεFε(uε)‖2

Xε
+ ‖∂tuε‖2

Xε
ds

≥ 1

2

∫ t

0
‖∇YF (u)‖2

Y + ‖∂tu‖2
Y ds − o(1)

≥
∫ t

0
−〈∇YF (u(s)), ∂tu(s)〉Y ds − o(1) (25)

= F(u(0))− F(u(t))− o(1),

hence
F(u(0))− F(u(t)) ≤ Fε(uε(0))− Fε(uε(t))+ o(1).

But by well-preparedness, Fε(uε(0)) = F(u(0))+ o(1), thus

Fε(uε(t)) ≤ F(u(t))+ o(1).

ButFε
�−→ F implies limε→0 Fε(uε(t)) ≥ F(u(t)). Therefore we must have equality

everywhere and in particular equality in the Cauchy–Schwarz type relation (25), that
is

1

2

∫ t

0
‖∇YF (u)‖2

Y + ‖∂tu‖2
Y ds =

∫ t

0
−〈∇YF (u(s)), ∂tu(s)〉Y
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or ∫ t

0
‖∇F(u)+ ∂tu‖2

Y ds = 0.

Hence, we conclude that ∂tu = −∇YF (u), for a.e. t ∈ [0, T ).
The method should and can be extended to infinite-dimensional limiting spaces

and to the case where the Hilbert structures Xε and Y (in particular Y ) depend on
the point, forming a sort of Hilbert manifold structure. In fact we can write down an
analogous abstract result using the theory of “minimizing movements” of De Giorgi
formalized by Ambrosio–Gigli–Savarè [3], a notion of gradient flows on structures
which are not differentiable but simply metric structures.

6.1.2. The result for Ginzburg–Landau without magnetic field. Applying this
abstract method to Fε = Eε − πn| log ε| and F = W (with a prescribed number of
vortices, and prescribed degrees), we retrieve the dynamical law of vortices which
had been first established by Lin and Jerrard–Soner by PDE methods:

Theorem 6.1 ([29], [25], [46]). Let uε be a family of solutions of

∂tu

| log ε| = 
u+ u

ε2 (1 − |u|2) in �

with either

uε = g on ∂� or
∂uε

∂n
= 0 on ∂�

such that

curl 〈iuε,∇uε〉(0) ⇀ 2π
n∑
i=1

diδa0
i

as ε → 0

with a0
i distinct points in �, di = ±1, and

Eε(uε)(0)− πn| log ε| ≤ W(a0
i )+ o(1). (26)

Then there exists T ∗ > 0 such that for all t ∈ [0, T ∗),

curl 〈iu,∇u〉(t) ⇀ 2π
n∑
i=1

diδai(t)

as ε → 0, with ⎧⎨
⎩
dai

dt
= − 1

π
∇iW(a1(t), . . . , an(t)),

ai(0) = a0
i ,

(27)

where T ∗ is the minimum of the collision time and exit time of the vortices under this
law.
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Thus, as expected, vortices move along the gradient flow for their interaction W ,
and this reduces the PDE to a finite dimensional evolution (a system of ODE’s).

The difficulty is in proving that the abstract conditions (22)–(23) hold in the
Ginzburg–Landau setting. For example the first relation (22) relates the velocity
of underlying vortices to ∂tuε and can be read

lim
ε→0

1

| log ε|
∫

[0,t]×�
|∂tuε|2 ds ≥ π

∑
i

∫ t

0
|dt ai |2 ds (28)

assuming curl 〈iu,∇uε〉(t) ⇀ 2π
∑
i diδai(t), as ε → 0, for all t and di = ±1.

This turns out to hold as a general relation (as proved in [45]), without requiring the
configurations to solve any particular equation; it is related to the topological nature
of the vortices.

6.1.3. Dynamical law for Ginzburg–Landau with magnetic field. By the same
method, we obtained the dynamics of a bounded number of vortices for the full
Ginzburg–Landau equations with magnetic field, i.e. the gradient-flow of (1), for large
applied fields (the result for bounded applied fields had been obtained by Spirn [52]).

Assuming that hex = λ| log ε|, 0 < λ < ∞, we obtained in [46] that, for
energetically well-prepared solutions (uε, Aε) of (GL), such that μ(uε,Aε)(0) ⇀
2π

∑n
i=1 diδa0

i
, with di = ±1, we have for all t ∈ [0, T ∗),

μ(uε,Aε)(t) ⇀ 2π
n∑
i=1

diδai(t)

with the dynamical law

dai

dt
= −diλ∇h0(ai(t)), ai(0) = a0

i

for all i, where T ∗ is the minimum of the collision time and of the exit time from �

for this law of motion.

6.1.4. Stability of critical points. In [50], we extended the “�-convergence of gra-
dient flows” method above to the second order, i.e. we gave conditions on the second
derivatives of the energies Fε �-converging to F which ensure that critical points
of Fε converge to critical points of F (condition (23) above already ensures it) and
that moreover stable critical points (in the sense of nonnegative Hessian) of Fε con-
verge to stable critical points of F (and more generally bounding from below the
Morse index of the critical points of Fε by that of those of F ). The abstract condition

is roughly the following: for any family uε of critical points of Fε such that uε
S
⇀ u;

for any V , we can find vε(t) defined in a neighborhood of t = 0, such that ∂tvε(0)
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depends on V in a linear and one-to-one manner, and

vε(0) = uε (29)

limε→0
d
dt |t=0Fε(vε(t)) = d

dt |t=0F(u+ tV ) = dF(u).V (30)

limε→0
d2

dt2 |t=0
Fε(vε(t)) = d2

dt2 |t=0
F(u+ tV ) = 〈D2F(u)V, V 〉. (31)

We show that these conditions hold for (3) and deduce the result

Theorem 6.2 ([50]). Let uε be a family of solutions of (4) such that Eε(uε) ≤
C| log ε|, with either Dirichlet or homogeneous Neumann boundary conditions. Then,
there exists a family of points a1, . . . , an and nonzero integers d1, . . . , dn such that,
up to extraction of a subsequence,

curl (iuε,∇uε) ⇀ 2π
n∑
i=1

diδai ,

where (a1, . . . , an) is a critical point ofW . Moreover, if uε is a stable solution of (4)
then (a1, . . . , an) is a stable critical point ofW ; and more generally, denoting by n+

ε

the dimension of the space spanned by eigenvectors ofD2Eε(uε)associated to positive
eigenvalues and n+ the dimension of the space spanned by eigenvectors ofD2W(ai)

associated to positive eigenvalues (resp. n−
ε and n− for negative eigenvalues), we

have, for ε small enough,
n+
ε ≥ n+, n−

ε ≥ n−. (32)

One of the interesting consequences of the theorem is the following, a consequence
of the fact that the renormalized energy in Neumann boundary condition has no
nontrivial stable critical point.

Theorem 6.3. Let uε be a family of nonconstant solutions of (4) with homogeneous
Neumann boundary condition ∂u

∂n
= 0 on ∂�, such that Eε(uε) ≤ C| log ε|, then for

ε small enough, uε is unstable.

This shows that the model without magnetic field (4) cannot stabilize vortices,
contrarily to the one with nonzero applied magnetic field.

This extended a result of Jimbo–Morita [26] (see also Jimbo–Sternberg [27] with
magnetic field) valid for any ε but for convex domains.

6.2. PDE-based results. Most results on convergence of solutions of the Ginzburg–
Landau flow to solutions of the flow for limiting energies were proved by PDE-based
methods. We briefly review them.

6.2.1. Heat flow in higher dimensions. The convergence of the flow for Eε is also
true in higher dimensions where the limiting energy-density is length/surface, it was
established (see [8], [31]) that the limit of the parabolic evolution of Eε is a Brakke
flow (a weak form of mean-curvature flow, which is the expected gradient flow of the
limiting energy).
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6.2.2. Other flows. The Schrödinger flow of (4), also called the Gross–Pitaevskii
equation, is considered in superfluids, nonlinear optics and Bose–Einstein condensa-
tion. The limiting dynamical law of vortices is still the corresponding one (i.e. the
Hamiltonian flow) for the limiting renormalized energy

dai

dt
= − 1

π
∇⊥
i W(a1, . . . , an).

The convergence was proved, still with well-prepared assumptions, by Colliander–
Jerrard [12] on a torus, and by Lin–Xin [32] in the whole plane. In the case of the
wave flow, the analogous limiting dynamical law was established by Jerrard in [23].

6.3. Collision issues. The result of Theorem 6.1 is valid only up to collision time
under the law (27), but collisions do happen if there are vortices of opposite degrees.
The question of understanding the collisions and extending the motion law passed
them is delicate. Bethuel–Orlandi–Smets [9], [10] treated this question, as well as
other issues of non well-prepared data, vortex-splitting and phase-vortex interaction
in infinite domains.

In [51], the collision problem was approached with the idea of basing the study
on the energy, like for the “�-convergence of gradient flow”. We proved that when
several vortices become very close to each other (but not too close) a dynamical
law after blow-up can be derived through the same method presented above. When
vortices become too close to apply this, we focused on evaluating energy dissipation
rates, through the study of the perturbed Ginzburg–Landau equation


u+ 1

ε2u(1 − |u|2) = fε in �, (33)

with Dirichlet or Neumann boundary data, where fε is given in L2(�) (the instan-
taneous energy-dissipation rate in the dynamics is exactly | log ε|‖fε‖2

L2(�)
). We

prove that the “energy-excess” (meaning the difference between Eε − πn| log ε|
and the renormalized energy W of the underlying vortices) is essentially controlled
by C‖fε‖2

L2 . We then show that when u solves (33) and has vortices which be-
come very close, forming what we call an “unbalanced cluster” in the sense that∑
i d

2
i �= ( ∑

i di
)2 in the cluster (see [51] for a precise definition), then a lower

bound for ‖fε‖L2 must hold:

Theorem 6.4 ([51]). Let uε solve (33) with Eε(uε) ≤ C| log ε|, |∇uε| ≤ M
ε

and
|uε| ≤ 1. There exists l0 > 0 such that, if uε has an unbalanced cluster of vortices at
the scale l < l0 then

‖fε‖2
L2(�)

≥ min

(
C

l2| log ε| ,
C

l2 log2 l

)
. (34)

In particular, when vortices get close to each other, say two vortices of oppo-
site degrees for example, then they form an unbalanced cluster of vortices at scale
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l = their distance, and the relation (34) gives a large energy-dissipation rate (scaling
like 1/l2). This serves to show that such a situation cannot persist for a long time and
we are able to prove that the vortices collide and disappear in timeCl2 +o(1), with all
energy-excess dissipating in that time. Thus after this time o(1), the configuration is
again “well-prepared” and Theorem 6.1 can be applied again, yielding the dynamical
law with the remaining vortices, until the next collision, etc.
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Abstract. In conjunction with applications to optimal transportation and conformal geometry,
there has been considerable research activity in recent years devoted to fully nonlinear, elliptic
second order partial differential equations of a particular form, given by functions of the Hessian
plus a lower order matrix function. Regularity is determined through the behaviour of this func-
tion with respect to the gradient variables. We present a selection of second derivative estimates
and indicate briefly their application to optimal transportation and conformal deformation of
Riemannian manifolds.
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1. Introduction

In conjunction with applications to optimal transportation and conformal geometry,
there has been considerable research activity in recent years devoted to fully nonlinear,
elliptic second order partial differential equations of the form,

F [u] := F {D2u+ A( ·, u,Du)} = B( ·, u,Du), (1.1)

in domains � in Euclidean n-space, R
n, as well as their extensions to Riemannian

manifolds. Here the functions F : R
n × R

n → R, A : � × R × R
n → R

n × R
n,

B : �×R×R
n → R are given and the resultant operator F is well-defined classically

for functions u ∈ C2(�). As customaryDu andD2u denote respectively the gradient
vector and Hessian matrix of second derivatives of u, while we also use x, z, p, r to
denote points in�,R,Rn,Rn×R

n respectively with corresponding partial derivatives
denoted, when there is no ambiguity, by subscripts. For example Fr = [

∂F
∂rij

]
, Fp =(

∂F
∂p1
, . . . , ∂F

∂pn

)
etc. The operator F is elliptic with respect to u whenever the matrix

Fr
{
D2u+ A( ·, u,Du)} > 0. (1.2)

Unless indicated otherwise we will assume the matrix A is symmetric, but it is also
important to address the possibility that it is not. When A ≡ 0, (1.1) reduces to the
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well-studied Hessian equation,

F [u] = F
(
D2u

) = B, (1.3)

while for F(r) = det r , we obtain a Monge–Ampère equation of the form

F [u] = det
{
D2u+ A( ·, u,Du)} = B( ·, u,Du), (1.4)

which is preserved under coordinate changes, unlike the standard Monge–Ampère
equation, when A ≡ 0. The operator F in (1.4) is elliptic with respect to u whenever

D2u+ A( ·, u,Du) > 0, (1.5)

which implies B > 0.
Monge–Ampère equations of the general form (1.4) arise in applications, notably

in optimal transportation, through the prescription of the absolute value of the Jacobian
determinant of a mapping T = Tu : � → R

n given by

Tu = Y ( ·, u,Du), (1.6)

where Y : �× R × R
n → R

n is a given vector field, that is

| detDTu| = ψ( ·, u,Du) (1.7)

for a given nonnegative ψ : � × R × R
n → R. To write (1.7) in the form (1.4) we

assume that Y is differentiable and

det Yp �= 0, (1.8)

whence by calculation, we obtain

F [u] = det{D2u+ Y−1
p (Yx + Yz ⊗Du)} = ψ/| det Yp|, (1.9)

assuming F elliptic with respect to u. When the vector field Y is independent of z
and generated by a cost function c : R

n × R
n → R, through the equations

cx( ·, Y ( ·, p)) = p (1.10)

we obtain the optimal transportation equation,

F [u] = det
{
D2u−D2

xc( ·, Y ( ·,Du))
} = ψ/| det Yp|. (1.11)

Note that by differentiation of (1.10) we have

cx,y( ·, Y ) = Y−1
p ,

cxx( ·, Y ) = −Y−1
p Yx.

(1.12)

In conformal geometry, equations of the form (1.1) arise from the study of the
Schouten tensor of a Riemannian manifold under conformal deformation of its metric.
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When the functions F are homogeneous we obtain, in the special case of Euclidean
space R

n, equations of the form (1.1), where the matrix A is given by

A(p) = − 1
2 |p|2I + p ⊗ p. (1.13)

Here we observe that, as in equation (1.9), we may write

A(p) = Y−1
p Yx( ·, p), (1.14)

where Y is the vector field

Y (x, p) = x − p/|p|2 (1.15)

generated by the cost function

c(x, y) = log |x − y|. (1.16)

The regularity of solutions of equations of the form (1.1) depends on the behaviour
of the matrix A with respect to the p variables. Letting U ⊂ � × R × R

n, we say
that A is regular in U if

Dpkp� Aij ξi ξj ηk η� ≤ 0 (1.17)

in U, for all ξ, η ∈ R
n with ξ · η = 0; and strictly regular in U if there exists a

constant a0 > 0 such that

Dpkp� Aij ξi ξj ηk η� ≤ −a0|ξ |2|η|2 (1.18)

in U, for all ξ, η ∈ R
n with ξ · η = 0.

These conditions were introduced in [23], [31] and called there A3w, A3 respec-
tively. As we will explain in this paper, they are the natural conditions for regularity.
Note that the matrix A in (1.13) trivially satisfies (1.18) in R

n, with a0 = 1.

2. Second derivative estimates

The key estimates for classical solutions of equations of the form (1.1) are bounds
for second derivatives as higher order estimates and regularity follows from the fully
nonlinear theory [10], [21]. Here we present a selection of estimates for regular and
strictly regular matrix functions A. For all these estimates we will assume A and B
are C2 smooth.

2.1. Interior estimates. Under the hypothesis of strict regularity we get quite strong
interior estimates for very general functions F . Indeed we may assume that F is pos-
itive, increasing and concave on some convex open set � ⊂ S

n, which is closed under
addition of the positive cone. Here S

n denotes the subspace of R
n × R

n consisting of
the symmetric matrices. Suppose also that

traceFr → ∞ as λmax(r) → ∞ (2.1)
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on subsets of � where F ≥ δ for any δ > 0. The following estimate extends
Theorem 4.1 and Remark 4.1 in [23].

Theorem 2.1. Let u ∈ C4(�), D2u + A ∈ �, be a solution of (1.1), with A strictly
regular on the set U = {(x, z, p) | x ∈ �, z = u(x), p = Du(x)}. Then for any
�′ ⊂⊂ � we have

sup
�′

|D2u| ≤ C, (2.2)

where C is a constant depending on �′, �, A, B and |u|1;�.

2.2. Dirichlet problem. We present a global second derivative estimate for solutions
of the Dirichlet problem, or first boundary value problem, for the Monge–Ampère
type equation (1.4). First we introduce a convexity condition for domains, which was
fundamental in our applications to optimal transportation in [23], [31]. Namely if �
is a connected domain in R

n, with ∂� ∈ C2, and A ∈ C1(� × R × R
n; S

n) we say
that � is A-convex (uniformly A-convex), with respect to U ⊂ �× R × R

n, if[
Di γj (x)+ Aij,pk (x, z, p) γk(x)

]
τi τj ≥ 0, (δ0), (2.3)

for all x ∈ ∂�, x, z, p ∈ U, unit outer normal γ and unit tangent vector τ (for some
δ0 > 0).

When A ≡ 0, A-convexity reduces to the usual convexity. We also say that a
domain � is A-bounded, with respect to U ⊂ �× R × R

n, if there exists a function
ϕ ∈ C2(�) satisfying

D2ϕ(x)+ Apk(x, z, p)Dk ϕ ≥ δ0 I (2.4)

for all x ∈ �, (x, z, p) ∈ U. Note that when A ≡ 0, any bounded domain is A-
bounded. A domain� is then both uniformlyA-convex andA-bounded if there exists
a defining function ϕ ∈ C2(�), satisfying ϕ = 0 on ∂�, Dϕ �= 0 on ∂�, together
with (2.4).

Theorem 2.2. Let u ∈ C4(�) be an elliptic solution of equation (1.4) in�, satisfying
u = g on ∂�, where ∂� ∈ C4, g ∈ C4(�). Suppose that A is regular on the set
U = {(x, z, p) | x ∈ �, z = u(x), p = Du(x)}, with � uniformly A-convex and
A-bounded with respect to U. Then we have the estimate,

sup
�

|D2u| ≤ C, (2.5)

where C is a constant depending on A, B, �, ϕ and |u|1;�.

2.3. Second boundary value problem. Now we turn our attention to the prescribed
Jacobian equation, in the form (1.9). The second boundary value problem, or natural
boundary condition, involves the prescription of the image of the mapping Tu in (1.6),
that is

T (�) = �∗ (2.6)
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for some given domain �∗ ⊂ R
n. If the positive function ψ is given by

ψ(x, z, p) = f (x)/g 
 Y (x, z, p) (2.7)

for positive f, g ∈ C0(�), C0(�∗) respectively, and T is a diffeomorphism (for
example when � is convex), we obtain the necessary condition for solvability,

∫
�

f =
∫
�∗
g, (2.8)

which is the mass balance condition in optimal transportation. Following our previous
notions of domain convexity, we will say that � is Y -convex (uniformly Y -convex,
Y -bounded) with respect to �∗ if � is A-convex (uniformly A-convex, A-bounded)
with respect to UY = {(x, z, p) | x ∈ �,Y (x, z, p) ∈ �∗}, where the matrix
function A is given by

A = Y−1
p (Yx + Yz ⊗ p) (2.9)

as in equation (1.9). The target domain �∗ is Y ∗-convex, with respect to �, if for
each (x, z) ∈ �× R, the set

P (x, z) = {p ∈ R
n | Y (x, z, p) ∈ �∗} (2.10)

is convex in R
n and uniformly Y ∗-convex, with respect to �, if P (x, z) is uniformly

convex, with respect to (x, z) ∈ �× R. Note that for ∂�∗ ∈ C2, these concepts may
also be expressed in the form (2.3), and that when Y is generated by a cost function,
which happens when Yz ≡ 0, by virtue of the assumed symmetry of A, they are dual
to each other (see Section 3).

Theorem 2.3. Let u ∈ C4(�) be an elliptic solution of equation (1.4) in �, satisfy-
ing (2.6), where ∂�, ∂�∗ ∈ C4 and �,�∗ are uniformly Y -convex, Y ∗-convex with
respect to each other. Suppose also that� is Y -bounded and thatA is regular on UY .
Then we have the estimate

sup
�

|D2u| ≤ C, (2.11)

where C depends on Y , ψ , �, �∗ and |u|1;�.

2.4. Remarks

1. Estimates in C3(�) automatically follow from the assumed data regularity in
Theorems 2.2 and 2.3, by virtue of the global C2,α estimates [18] and [21]. Clas-
sical existence theorems then follow by the method of continuity under additional
hypotheses to control the solutions and their gradients.

2. The boundary condition (2.6) is a nonlinear oblique boundary condition of the
form

G(x, u,Du) := ϕ∗ 
 Y (x, u,Du) = 0, (2.12)
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where ϕ∗ is a defining function for �∗. If |∇ϕ∗| = 1 on ∂�∗ we obtain, for ci,j =
DpiY

j ,

χ := γ .Gp(x, u,Du) = ci,j γi γ
∗
j > 0, (2.13)

by virtue of ellipticity, and the geometric conditions on� and�∗ are used to estimateχ
from below, [31].

3. The special casesA ≡ 0 of the standard Monge–Ampère equation in Theorems 2.2
and 2.3 are due to Ivochkina [17], Krylov [18], Caffarelli, Nirenberg and Spruck [5]
(Theorem 2.2), and Caffarelli [2] and Urbas [32] (Theorem 2.3). Sharp versions for
Hölder continuous inhomogeneous terms were proved by Trudinger and Wang [29]
and Caffarelli [2].

4. Theorems 2.1, 2.2 and 2.3 extend to non-symmetric matricesA in two dimensions.

5. The condition of uniform A-convexity in Theorem 2.2 may be replaced by the
more general condition that there exists a strict sub-solution taking the same boundary
conditions, as for the case A ≡ 0 in [12].

3. Optimal transportation

Let � and �∗ be bounded domains in R
n and f, g nonnegative functions in L1(�),

L1(�∗) respectively satisfying the mass balance condition (2.8). Let c ∈ C0(Rn×R
n)

be a cost function. The corresponding Monge–Kantorovich problem of optimal trans-
portation is to find a measure preserving mapping T0 which maximizes (or minimizes)
the cost functional,

C(T ) =
∫
�

f (x) c(x, T (x)) dx, (3.1)

over the set T of measure preserving mappings T from � to �∗. A mapping T is
called measure preserving if it is Borel measurable and for any Borel set E ⊂ �∗,

∫
T −1(E)

f =
∫
E

g. (3.2)

For the basic theory the reader is referred to the accounts in works such as [9], [24],
[33], [34]. To fit the exposition in our previous sections, we consider maximization
problems rather than minimization, noting that it is trivial to pass between them
replacing c by −c.

3.1. Kantorovich potentials. The dual functional of Kantorovich is defined by

I (u, v) =
∫
�

f (x) u(x) dx +
∫
�∗
g(y) v(y) dy, (3.3)
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for (u, v) ∈ K where

K = {(u, v) | u ∈ C0(�), v ∈ C0(�∗),
u(x)+ v(y) ≥ c(x, y), for all x ∈ �, y ∈ �∗}. (3.4)

It is readily shown that C(T ) ≤ I (u, v), for all T ∈ T , u, v ∈ K . To solve
the Monge–Kantorovich problem, we assume c ∈ C2(Rn × R

n) and that for each
x ∈ �, p ∈ R

n there exists a unique y = Y (x, p) satisfying (1.10), together with the
corresponding condition for x replaced by y ∈ �∗ and

| det cx,y | ≥ c0 (3.5)

on � × �∗ for some constant c0 > 0. Then there exist semi-convex functions
(u, v) ∈ K and a mapping T = Tu, given by

Tu = Y ( ·,Du) (3.6)

almost everywhere in �, such that

C(T ) = I (u, v). (3.7)

The functions u, v, which are uniquely determined up to additive constants, are called
potentials and are related by

u(x) = sup
�∗

{c(x, · )− v( · )}, v(y) = sup
�

{c( ·, y)− u( · )}. (3.8)

Furthermore, for positive densities f , g, the potential function u will be an elliptic
solution of equation (1.11) almost everywhere in� (at points where it is twice differ-
entiable). If u ∈ C2(�), then u is a classical solution of the second boundary value
problem (2.6).

3.2. Interior regularity. Consistent with our definitions in Section 2,� is c-convex
with respect to �∗ if cy( ·, y)(�) is convex for all y ∈ �∗ and �∗ is c∗-convex if
cx(x, · )(�∗) is convex for all x ∈ �. As a consequence of Theorem 2.1, we have the
main result in [23].

Theorem 3.1. Let �,�∗ be bounded domains in R
n, f ∈ C2(�) ∩ L∞(�), g ∈

C2(�∗) ∩ L∞(�∗), inf f, inf g > 0. Let c ∈ C4(Rn × R
n) and �∗ be c∗-convex

with respect to�. Suppose that A is strictly regular on the set UY , where A(x, p) =
−D2

xc(x, Y (x, p)) and Y is given by (1.10). Then the potential u ∈ C3(�).

3.3. Global regularity. From the global second derivative estimate, Theorem 2.3,
we obtain a global regularity result, corresponding to Theorem 3.1, which is proved
in [31]. For its formulation we say that � (�∗) is uniformly c-convex (c∗-convex),
with respect to�∗, (�), if the images cy( ·, y)(�) (cx(x, · )(�∗)) are uniformly convex
with respect to y ∈ �∗ (x ∈ �). This agrees with our previous definitions in terms
of the vector field Y and matrix A determined by c.
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Theorem 3.2. Let� and�∗ be boundedC4 domains in R
n, f ∈ C2(�), g ∈ C2(�∗),

inf f > 0, inf g > 0. Let c ∈ C4(Rn × R
n) and let �, �∗ be uniformly c-convex,

c∗-convex with respect to each other. Suppose also that � is Y -bounded and A is
regular on UY . Then the potential function u ∈ C3(�).

3.4. Remarks

1. For the case of quadratic cost functions,

c(x, y) = x.y, Y (x, p) = p, A ≡ 0, (3.9)

Theorem 3.1 is due to Caffarelli [1], Theorem 3.2 is due to Caffarelli [2] and Urbas [32].
Note that this case is excluded from Theorem 3.1 but embraced by Theorem 3.2. The
interior estimate (2.2) is not valid when A ≡ 0.

2. By exploiting the geometric interpretation of strict regularity, Loeper [22] has
shown that the potential u ∈ C1,α(�) for certain α > 0, when the smoothness of
the densities f, g is dropped. Moreover he has shown that the regularity of A is a
necessary condition for u ∈ C1(�) for arbitrary smooth positive densities.

3. As shown in [23], the c∗-convexity of �∗ is also necessary for interior regularity
for arbitrary smooth positive densities.

4. The condition of Y -boundedness may be dropped in Theorem 2.3 in the optimal
transportation case [31].

5. Various examples of cost functions for which A is regular or strictly regular are
presented in [23] and [31].

4. Conformal geometry

In recent years the Yamabe problem for the k-curvature of the Schouten tensor, or
simply the k-Yamabe problem, has been extensively studied. Let (M, g0) be a smooth
compact manifold of dimension n > 2 and denote by Ric andR respectively the Ricci
tensor and scalar curvature. The k-Yamabe problem is to prove the existence of a
conformal metric g = gu = e−2ug0 such that

σk(λ(Sg)) = 1 on M, (4.1)

where k = 1, . . . , n, λ = (λ1, . . . , λn) denotes the eigenvalues of Sg with respect to
the metric g, σk is the kth elementary symmetric function given by

σk(λ) =
∑

i1<···<ik
λi1 · · · λik , (4.2)
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and Sg is the Schouten tensor of (M, g) given by

Sg = 1

n− 2

(
Ric g − Rg

2(n− 1)
g

)

= ∇2u+ ∇u⊗ ∇u− 1
2 |∇u|2g0 + Sg0 .

(4.3)

Accordingly we obtain the equation

Fk[u] = F
1/k
k

{
g−1

0

(∇2u+ ∇u⊗ ∇u− 1
2 |∇u|2g0 + Sg0

) } = e−2u, (4.4)

where Fk(r) denotes the sum of the k × k principal minors of the matrix r ∈ S
n,

which is elliptic for λ(Sg) ∈ �k where �k is the cone in R
n given by

�k = {λ ∈ R
n | σj (λ) > 0, j = 1, . . . , k}, (4.5)

(see for example [3], [28]). When k = 1, we arrive at the well-known Yamabe
problem [27], that was completely resolved by Schoen in [25]. Note that for Euclidean
space R

n, we have
Sg = D2u+Du⊗Du− 1

2 |Du|2I, (4.6)

in agreement with (1.13).
The operators Fk are strictly regular in the sense of (1.18) so that interior estimates

corresponding to Theorem 2.1 are readily proven, [35], [13], [7], [14]. However
crucial ingredients in the solution of the k-Yamabe problem are estimates in terms
of inf u only. These were obtained by Guan and Wang [14] and recently simplified
by Chen [8], who derived the gradient estimates directly from the second derivative
estimates using σ1(λ) ≥ 0. The following theorem, due to Sheng, Trudinger and
Wang [26] (k ≤ n/2), Gursky and Viaclovsky [16] (k > n/2) concerns the solvability
of the higher order Yamabe problem, k > 1.

Theorem 4.1. Let (M, g0) be a smooth compact manifold of dimension n > 2 and
suppose there exists some metric g1 conformal to g0 for which λ(Sg1) ∈ �k . Then
there exists a conformal metric g satisfying (4.1) if either k > n/2 or k ≤ n/2
and (4.1) has variational structure, that is it is equivalent to an Euler equation of a
functional.

We remark that (4.1) is variational for k = 1, 2 and if (M, g0) is locally confor-
mally flat otherwise. The case of Theorem 4.1 when k = 2, n = 4 was proved in the
pioneering work of Chang, Yang and Gursky [6], while the locally conformally flat
case was proved by Guan and Wang [15] and Li and Li [19], [20]. The cases k = 2,
n > 8 were obtained independently by Ge and Wang [11]. The reader is referred to the
various papers cited above for further information. Also a more elaborate treatment
of the case k > n/2 is presented in [30].
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The initial value problem for nonlinear Schrödinger
equations

Luis Vega∗

Abstract. I will review some recent work done in collaboration with C. E. Kenig, G. Ponce and
C. Rolvung on a general method to solve locally in time the initial value problem for non-linear
Schrödinger equations under some natural hypotheses of decay and regularity of the coefficients.
Also some non-trapping conditions of the solutions of the hamiltonian flow associated to the initial
data is needed. We will not assume ellipticity on the matrix of the leading order coefficients
but just a non-degeneracy condition. The method is based on energy estimates which can be
performed thanks to the construction of an integrating factor. This construction is of independent
interest and relies on the analysis of some new pseudo-differential operators.

Mathematics Subject Classification (2000). Primary 35Q20; Secondary 35B45.

Keywords. Non-linear Schrödinger equations, ultrahyperbolic operators.

1. Introduction

In this lecture I shall describe some joint work with C. E. Kenig and G. Ponce on
general non-linear Schrödinger equations built on spatial operators which are given
by just non-degenerate quadratic forms. It has been and still is a great pleasure and a
privilege to work with both of them.

This research was started some time ago in [14], and we could say it has come to
a natural end with [16], [22] and [23], these two latter works written in collaboration
with C. Rolvung. In the process we have used some fundamental work done by other
authors, in particular those by Hayashi and Ozawa [10], Doi [6], [7], [8], and Craig,
Kappeler and Strauss [4]. A look at the introduction of the papers [16], [22], and
[23] is enough to realize that the precise results are rather technical and lengthy to
write. Therefore, this lecture will be mainly expository, and I refer to the reader to
the papers mentioned above and to the review given in [21] for the precise statement
of the theorems.

We are interested in solving the initial value problem{
∂tu = iL̃u+ F(u,∇u, u,∇u),
u(x, 0) = u0(x),

(1)
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where

• u(x, t) ∈ C, x = (x1, x2) ∈ R
n1 × Rn2 = R

n, n = n1 + n2, and t ∈ [0, T ];
• L̃u(x) = ∂j (ãjk(x, t, u,∇u, u,∇u)∂ku), and Ã(u) = (ãjk)jk is a real, sym-

metric, invertible matrix such that

lim|x|→∞ Ã =
(

In1 0
0 −In2

)
; (2)

• F is a regular non-linear function, as is a polynomial with no linear terms.

By solving this equation I mean to find a large enough spaceX of initial data, and
a unique solution u for each u0 ∈ X up to a time T = T (u0) such that u is unique in
some space Y, and the map u0 �→ u from X to Y is continuous. Typically

X = Xα0β0 = {u0 such that xα∂βu0 ∈ L2; |α| ≤ α0, |β| ≤ β0},
Y = Yα1β1 = {C([0, T ] : Xα1β1)}

for some finite (αj , βj ), j = 0, 1, and with possibly 0 < α1 < α0, 0 < β1 < β0.
There are several reasons which motivate the study of such a general initial value

problem. First of all, within this general model there are relevant equations which
appear in the physics literature, as Davey–Stewartson and Zakharov–Schulman sys-
tems, Landau–Lipschitz equations, the Schrödinger map and others; see [32]. These
physical models usually have a very rich algebraic structure which in many cases
allows for some short cuts in their analysis; in particular regarding existence results.
However, uniqueness generally involves considering the PDE solved by the difference
of two solutions which need not have the same algebraic structure as the starting one,
but that still is under the general setting given in (1). I will be more precise about this
point in Section 3, where the particular case of the Schrödinger map is analyzed.

Another motivation is to get a better understanding of ultrahyperbolic operators
including the constant coefficient case

L0 = �x1 −�x2 .

Notice that neither the heat nor the wave flow can be defined for L0, while the
Schrödinger flow

eitL0 (3)

makes perfect sense. Our knowledge about this operator is far behind the classical
one eit�. In Section 9, I gather some information and open questions about linear
and non-linear perturbations of the free propagator (3).

The rest of the paper is devoted to explain the assumptions needed to solve (1),
and to exhibit the algebraic tools we use to construct the solution. The main result
is given in Section 7, and some remarks about the elliptic setting can be found in
Section 8.
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2. Energy estimates

In order to solve equation (1) we use the so-called energy method. This is based on
three steps. The first one is to add some artificial viscosity to the right-hand side of (1)
depending on ε > 0, and to consider for some Tε > 0 the equation{

∂tuε = −ε�2
x + iL̃u+ F, t ∈ [0, Tε),

uε = u0, t = 0.
(4)

The existence of a solution uε of (4) can be easily proved by Picard iteration, using
the regularity properties of the free propagator e−εt�2

.
The second step relies on proving energy estimates for uε independent of ε. These

estimates will give a universal time of existence valid for all uε, and also will allow
us to pass to the limit in ε to obtain a solution of (1).

The final step is to prove uniqueness by looking at the equation satisfied by the
difference uεε′ = uε − uε′ . It is at this point where to work in a general setting as (1)
turns out to be fundamental because the equation for uεε′ is again of the same type.

In the rest of the paper I will mainly focus on the question of the energy estimates,
exhibiting the algebraic tools needed to obtain them.

Recall that we have already built the solution uε of (4) with L̃ as in (1). Hence
we can now understand (4) as a linear equation{

∂tu = Lεu+ i
(−→
b1 · ∇u+ −→

b2 · ∇u+ c1u+ c2u
)+ f,

u(x, 0) = u0(x),
(5)

with

Lεu = ∂taj (x, t)∂ku− ε�2u; A = (
ajk(x, t)

)
jk

= (
ãjk(x, t, u,∇u, u,∇u)∂ku

)
jk
.

Therefore it seems appropriate to assume the following hypotheses regarding A and

the coefficients
−→
b1 ,

−→
b2 and c1, c2:

H1. A is a regular real symmetric non-degenerate matrix, i.e. there exists γ0 ∈ (0, 1)
such that

γ0|ξ | ≤ |Aξ | ≤ γ−1
0 |ξ |.

H2. The coefficients ∂xajk, ∂txajk, ∂tajk have a pointwise decay for a sufficiently
large |x|,

sup
|t |≤T

|∂αx ajk(x, t)| + |∂t∂α′
x ajk(x, t)| ≤ C

(1 + |x|)N ,

with N , |α| and |α′| large enough, and so that

A−
(

In1 0
0 −In2

)
has a similar decay for a large |x|.
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H3.
−→
b1 and

−→
b2 are smooth complex vector fields that decay pointwise together with

their derivatives at infinity.

H4. c1 and c2 are smooth complex scalar fields bounded together with their deriva-
tives at infinity.

Let us start assuming that in (5) the external forces f and the potentials
−→
b1 ,

−→
b2

and c1, c2 are zero. Then because A is real and symmetric we trivially have

d

dt
〈u, u〉 = 〈Lεu, u〉 + 〈u,Lεu〉

= −〈iA∂xu, ∂xu〉 − 〈∂xu, iA∂xu〉 − 2ε〈�u,�u〉
= −2ε〈�u,�u〉 ≤ 0.

(6)

Therefore

sup
0≤t≤T

〈u, u〉 + 2ε
∫ T

0
〈�u,�u〉dt ≤ 〈u(0), u(0)〉. (7)

If in the above calculation we add zero order terms c1 and c2 we will obtain after
integration in time

〈u, u〉(t) ≤ eMt 〈u, u〉(0), (8)

with M = sup (|c1| + |c2|). As a conclusion from the point of view of energy esti-
mates zero order terms are harmless.

Let us know consider that first order terms are not trivial. It is straightforward
that if Re

−→
b1 is zero and

−→
b2 just bounded, an integration by parts as the one given

in (6) leads to the same estimate. However, the situation is completely different if

Re
−→
b1 �= 0. This can be easily seen even in one dimension.
Consider the model problem

∂tu = i(∂2
xu+ b1∂xu)− ε∂4

xu, x ∈ R. (9)

Take for simplicity b1 = 1. Using û the Fourier transform of u and Parseval’s identity
the calculation given in (6) becomes

d

dt
〈u, u〉 = 〈(i∂2

x − ε∂x4 + i∂x)u, u〉 + 〈u, i∂2
x − ε∂4

x + i∂x〉
= −ε〈ξ4û, û〉 − 〈ξ û, û〉.

(10)

Therefore if supp û ⊂ (−∞, 0) we can not obtain a uniform bound in ε for 〈u, u〉.
This is usually called the loss of derivatives obstruction, because regardless of ε there
is in (10) one derivative more on the right-hand side than on the left-hand side. The
final conclusion is that we should get rid, if possible, of Re b1.

Nevertheless there is a simple way of removing the first order term in (9) creating
other ones of order zero, which is to use the integrating factor exp

( 1
2

∫∞
x
b1
)
. For this

purpose define
v(x, t) = Ku = e1/2

∫∞
x b1(y,t)dyu(x, t). (11)
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The equation for v becomes

∂tv = i∂2
x v − εK∂4

xu+ c(x, t)v, (12)

with

c(x, t) = i

2
∂xb1 + i

b2
1

4
+ i

2

∫ ∞

x

∂tb1(y, t)dy. (13)

Notice that K given in (11) is invertible so that

εK∂4
xu = K∂4

xK
−1v = ε∂4

xv + ε (lower order).

This lower order terms are harmless because they are of order ε and can be easily
absorbed using (7) and taking T small enough. Looking carefully at the calculation
above we see that the only assumption we need on b1 is that

sup
x, 0≤t≤T

∣∣∣∣Re
∫ ∞

x

b1(y, t)

∣∣∣∣+
∣∣∣∣Re

∫ ∞

x

∂tb1(y, t)dt

∣∣∣∣ ≤ M. (14)

Notice also that because the operator K is given by multiplication by the integrat-
ing factor we have

Ku = Ku. (15)

Therefore the symmetry of the good terms Im b1 and b2 is not destroyed and can be
added to (9) so that the computation given above works the same without any extra
difficulty.

Finally let us recall that the condition given in (14) is very reminiscent of the one
obtained by Mizohata in [27] (see also [11]), and suggests that H3 and H4 are natural
assumptions.

3. The Schrödinger map

The above analysis rises the natural question of whether or not the integrating factor
can be constructed also in higher dimensions. It is at this stage where considering a
specific equation and not the general case given in (1) can make a big difference. An
illustrative example is the so-called Schrödinger map given by{−→

ut = −→
u ∧ �

−→
u ,

−→
u = −→

u (x, t), x ∈ R
d, t ∈ R, d = 1, 2,

|−→u |2 = 1.
(16)

This equation written in coordinates (for example using the stereographic projec-
tion) involves non-linearities in the first order terms. Let us try to understand first the
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one dimensional case d = 1. Then −→
u is nothing but the tangent vector to a three

dimensional curve −→γ (x, t) (i.e. −→
u = −→γ x) which satisfies{−→γ t = −→γ x ∧ −→γ xx, x ∈ R, t ∈ R,

|−→γ x |2 = 1.
(17)

This equation, which is sometimes called the Localized Induction Approximation,
was obtained for the first time by Da Rios in 1906, see [5], as a crude approximation
of the evolution of a vortex filament within Euler equations. From a geometrical point
of view is better to call it the binormal flow because using Frenet equations (17) can
be written as −→γ t = c

−→
b ,

where c denotes the curvature and
−→
b the binormal vector.

In 1972 Hasimoto [9] proposed the transformation

ψ(x, t) = c(x, t)ei
∫ x

0 τ(y,t) dy, (18)

with τ denoting the torsion, to simplify (17) and therefore (16). After some compu-
tations he proves that if −→γ satisfies (17) then ψ solves

ψt = iψxx + i

2
(|ψ |2ψ + a(t)), (19)

for some real function a(t). Therefore we could understand Hasimoto’s transforma-
tion (18) as some kind of integrating factor which removes the non-linear first order
terms appearing when (16) is written in local coordinates, to the expense of cubic zero
order terms which are much easier to handle.

The situation for the Schrödinger map in dimension 2 is much more delicate.
Hasimoto’s transformation can still be used but it is not possible to remove completely
the first order terms; see [1]. The equation obtained after the transformation has a good
symmetry from the point of view of energy estimates which allows to prove existence
even for H 1-solutions. However, much of this symmetry is lost when considering
difference of solutions.

Therefore, we are back to the question we started this section with. In the one
dimensional case it is possible to construct the integrating factor which greatly sim-
plifies the equations, but a similar transformation even in the two dimensional case is
far from clear.

4. The integrating factor

Let us go back to our linear equation (5) and to simplify assume in this section that
ε = 0. Accordingly we shall write Lε = L. We are looking for an operator K such
that

(LK − KL) = K
−→
b1 · ∇ + zero order. (20)
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It turns out that this equation, except in very simple cases, does not have a solution
when just the algebra of classical differential operators is considered, as it happens in
the one dimensional case, where K was constructed using the elemental operations
of multiplication and integration. Therefore we need to consider K to be a pseudo-
differential operator K = K(x, t,D) given by:

Ku = 1

(2π)n

∫
y

∫
ξ

k(x, t, ξ)ei(x−y)ξudξ dy. (21)

If in the expression above we take

k(x, t, ξ) = aα(x, t)(iξ)
α, (22)

then K = aα(x, t)∂
α
x . Notice that in this case if aα is regular and bounded together

with its derivatives we get

|∂β1
x ∂

β2
ξ k(x, t, ξ)| ≤ Cβ1β2(1 + |ξ |)|α|−|β2|. (23)

Assume for a moment that L is the constant coefficient operator L0. That is to
say

A =
(

In1 0
0 −In2

)
.

Solving formally in (20) we get that k should be given by

k(x, t, ξ) = exp

(
1

2

∫ ∞

0

−→
b1 (x + sξ̃, t)

)
· ξds, (24)

with ξ̃ = Aξ = (ξ1,−ξ2).
Notice that in (24) s �→ x + sξ̃ is a geodesic associated to the pseudo-metric (or

metric if A = In) given by A. In the variable coefficient case A = (ajk)jk we have to
define

k(x, t, ξ) = exp

(
1

2

∫ ∞

0

−→
b1 (X(s; x, ξ)) ·�(s; x, ξ)ds

)
(25)

with (X(s; x, ξ),�(s; x, ξ)) solutions of the hamiltonian flow HA given by⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d

ds
Xj (s; x0, ξ0) = −2

n∑
k=1

ajk (X(s; x0, ξ0)�k(s; x0, ξ0))

d

ds
�j (s; x0, ξ0) =

n∑
k,l=1

∂jakl (X(s; x0, ξ0))�k(s; x0, ξ0)�l(s; x0, ξ0)

(X(0; x0, ξ0),�(0, x0, ξ0)) = (x0, ξ0).

(26)

Notice that above we have dropped the dependence on time to simplify the exposition.
In fact, in our main result which is given in Section 7, we will impose some hypothesis
on HA where A is determined just by the initial condition u0.
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It follows from (26) that

d

ds
〈A�(s; x, ξ),�〉 = 0,

and therefore in the elliptic case (i.e. 〈Aξ, ξ〉 > C|ξ |2 with C > 0) we get that there
is a constant γ0 > 0 such that

γ0|ξ0|2 ≤ |�|2 ≤ γ−1
0 |ξ0|2,

and (X(s; x, ξ),�(s; x, ξ)) are globally defined. However, the situation in the non-
elliptic case is different and the following properties have to be proved, see [22]:

a) global existence;

b) continuous dependence w.r.t. (x0, ξ0) with just a polynomial growth on |x0|;
c) the trajectories are asymptotically free.

In order to obtain these three conditions we will needA(x, t) to verify the hypothe-
ses H1, H2, H3 and H4 given in Section 2 together with the following non-trapping
condition.

H5. The solutions (X,�) of the hamiltonian flow HA associated to A verifies that
given M and (x, ξ) ∈ R

n × (Rn − {0}) there is s0 such that

|X(s; x, ζ )| > M for all s > s0.

It is easy to justify that H5 is necessary because otherwise the integral given in (24)
will not convergence even for compactly supported

−→
b1 .

This non-trapping condition is not easy to verify, although it is obviously true
in the constant coefficient case. Nevertheless it is a stable condition. In [22] the
following lemma is proved.

Lemma 4.1. ConsiderA(x, t) = A(x) such that the hypotheses H1, H2 and H5 hold.
Let B(x) be an n×n real matrix with entries in the Schwartz class S(Rn), and define
Aδ(x) = A(x)+ δB(x) with δ so small that there is a constant γ0 > 0 such that for
all ξ ∈ R

n

γ0

2
|ξ | ≤ |Aδξ | ≤ 2γ−1

0 |ξ |.
Then there is δ0 > 0 such that Aδ is non-trapping for all 0 < δ < δ0.

Remark. In the statement of the lemma above it is sufficient to assume that the entries
of B have a finite number of derivatives with a finite power like decay.

So in the particular case of IVP (1) it will be sufficient to impose the non-trapping
condition H5 to

Au0(x) = A(x, 0, u0, u0,∇u0,∇u0). (27)
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5. The symbols

Once the hamiltonian flow is built we can construct the “integrating factor” given by
the symbol (25). Nevertheless a new problem appears. This symbol is not in any
known class of pseudo differential operators even if A = In and X(x, ξ) = x + sξ ,
� = ξ . A model example of a symbol which behaves as the one in (24) and it is easier
to handle is, in dimension two,

k(x, ξ) = ψ(x · (Aω)⊥)χ(|ξ |), ω = ξ

|ξ | , ξ = (ξ1, ξ2), ξ⊥ = (−ξ2, ξ1) (28)

with ψ ∈ S(R) and χ regular, χ(0) = 0 and χ(t) = 1 if t > 1. We observe that

|∂αξ k| ≤
(

1 + |x|
1 + |ξ |

)|α|
, (29)

being the growth in |x| a problem to handle k(x, ξ) (compare this situation with the
one exhibited in (23)). In [22] we prove the following result.

Proposition 5.1. Take
−→
b1 in the vector valued Schwartz class

−→
S ∈ (Rn) and

k(x, ξ) = exp

(
1

2

∫ ∞

0

−→
b1 (x + sξ̃ ) · ξ ds

)
χ(|ξ |),

ξ̃ = Aξ, A =
(

In1 0
0 −In2

)
,

(30)

with χ(|ξ |) as in (28). Then K(x,D) given in (21) is bounded from L2 into L2.

This proposition and a more general result was proved if A = In (i.e. n2 = 0) by
Craig, Kappeler and Strauss [4]. A key part of their argument is the good behaviour
of the radial derivatives of the symbol k given in (30). It is easy to check that∣∣∣∣

(
ξ

|ξ | · ∇ξ
)α
k(x, ξ)

∣∣∣∣ ≤ Cα

(1 + |ξ |)α . (31)

This property is still true for general non-degenerate matrices A but it is not
sufficient to prove Proposition 5.1. In fact in [4] another geometric assumption on the
“essential” support of the symbol k is needed besides (31). This property does not
hold whenA is not the identity matrix, see [19] for a detailed discussion of this issue.

The L2 estimate given above is not enough. Other results regarding the compo-
sition and the computation of the adjoints of these operators have to be proved in
order to do the algebraic manipulations we exhibited in the one dimensional case.
The results can be seen in [22].

Now it is time to recall that to simplify the exposition we assumed that ε = 0.
To avoid this restriction some other properties about the symbols introduced in the
above proposition are needed. These were proved in [23]. However the results in [22]
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and [23], although sufficient for our purposes, are quite restrictive and the algebraic
manipulations we can do with these operators are very rigid.

There is also another important constraint, which is that we are able to handle just
symbols as (24) but not the general cases given in (25). The reader could then ask how
we overcome this difficulty. The answer is in our previous work done on the I.V.P. (1)
in [14] and [15]. That paper deals with non-linearities which are small perturbations
of the constant coefficient case. Smallness allows hiding the first order terms thanks
to some smoothing properties of the solutions of the corresponding free propagator.
These properties are the subject of the next section.

6. The local smoothing

In [14] and [15] we proved that if the first order terms in (1) are small they can be
handled by the so called local smoothing property of the free operators eit (�x1−�x2 ).
Notice that this family of operators is reversible in time and leave invariant the Hilbert
space L2. Moreover they commute with differentiation, and therefore the classical
L2-Sobolev spaces Hs of distributions with s derivatives in L2 also remain invariant
under the flow. For this reason there can not be any gain of global derivatives in L2,
because otherwise making the flow go backwards we would get a contradiction. It
was proved by Kato in [12] and independently by Kruzhkov and Faminskii in [24]
that the solutions of the Korteweg–de Vries (KdV) equation{

ut + uxxx + uux = 0, u = u(x, t), x ∈ R, t ∈ R,

u(x, 0) = 0

gain for almost every time and locally in space one derivative in x with respect to
the initial condition u0. This “local smoothing” is a consequence of the dispersive
character of the linear part of the KdV equation, and still holds if the non-linear term
uux is removed.

It is well known that the free Schrödinger equation is also dispersive, and therefore
it should have an analogous smoothing property. In that case the solution gains 1/2-
derivative locally in x and again for a.e. time with respect to the initial data. This
property was established independently in [3], [31], and [35], [36], (see also [37]), in
the elliptic setting, and in [13] for the general case.

However, this 1/2 gain is not sufficient to deal with first order terms which involve
a full derivative. In [14] and [15] it is proved that the solution of{

i∂tu+�x1u−�x2u = F

u(x, 0) = 0

gains one full derivative with respect to the right-hand side F . The proof in [14]
strongly uses the Fourier transform and is not adapted to the variable coefficient
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situation necessary to treat (1). This was proved later on by S. Doi in [6], [7] and [8].
The results by Doi are remarkably robust, and for example, although he proves it for
the elliptic case and for scalar equations, it can be extended without any difficulty
to the non-elliptic setting and for systems; see [17], [22] and [23]. The idea is to
construct a classical pseudo-differential operator b(x,D) such that the commutator
with the general L = ∂j (ajk∂k) satisfies∫ T

0
〈i [b(x,D)L − L b(x,D)] u, u〉 dt

≥ c0

2

∫ T

0

〈
(1 −�)1/2u

1 + |x|2 , u

〉
dt − 2

c0
T sup

0<t<T
〈u, u〉,

(32)

for some universal constant c0 > 0. Here I am purposely using “universal” without
giving a precise definition. The full argument given in [23] depends on this constant
in a crucial way, and I refer to the reader to the introduction of that paper for a more
precise statement. It is also important to notice that the above inequality is useful as
long as there is a control on the L2 norm given by the term 〈u, u〉.

7. The main result

Our main result in [23] is the following.

Theorem 7.1. Under the hypotheses H1–H4 there exists N = N(n) ∈ Z
+ such that

given any
u0 ∈ Hs(Rn) with 〈x〉N∂αx u0 ∈ L2(Rn), |α| ≤ s1, (33)

s, s1 ∈ Z
+ sufficiently large, and s > s1 +4, for which the hamiltonian flowHA given

in (26) associated to the quadratic form

A = Au0(x, ξ) =
n∑

j.k=1

ajk(x, 0, u0, u0,∇u0,∇u0)ξj ξk (34)

is non-trapping, there exist T0 > 0, depending on

λ = ‖u0‖s,2 +
∑

|α1|≤s1

∥∥〈x〉N∂αx u0
∥∥

2

the constants in H1–H4 and on the non-trapping condition H5, and a unique solution
u = u(x, t) of the equation (1) with initial data u(x, 0) = u0(x) on the time interval
[0, T0] satisfying

u ∈ C([0, T0] : Hs−1) ∩ L∞([0, T0] : Hs
) ∩ C1((0, T0) : Hs−3),

〈x〉N∂αx u ∈ C ([0, T0] : L2) , |α| ≤ s1.
(35)

Moreover, if u0 ∈ Hs′(Rn) with s′ > s then (35) holds with s′ instead of s in the same
interval [0, T0].
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We have seen in Section 2 that we can obtain energy estimates as (7) if we are able
to get rid of the first order terms, and that we can achieve that using an integrating
factor. But also we pointed out at the end of Section 5 that the integrating factor we
were able to construct was just for a hamiltonian flow which is free outside of a ball.
However as we see in the statement of Theorem 7.1, this is not the case when HA is
given as in (35). The way to bypass this obstruction is to write

A = AR +
((

In1 0
0 −In2

)
− AR

)

with

AR =
(

In1 0
0 −In2

)
if |x| ≥ R and R > 0 is a large parameter to be fixed. The error terms created by this
decomposition are of first order and can be done small by taking a large enough R.
Then the local smoothing inequality (32) can be used as in [14] to control them. This
creates the problem of how to handle

sup
0<t<T

〈u, u〉.

But this quantity is precisely the one we started with when doing the energy esti-
mate (7). Notice that in (32) appears multiplied by the factor T , and therefore it can
be absorbed by the left-hand side of (7) by taking a small enough T , which closes the
argument.

8. The elliptic case

In this section we give some comments that illustrate the substantial differences that
appear when in (1) A is the identity matrix. To start with the main result in this case
is far more general, and I refer to the reader to the work [17] for a precise statement;
see also [29], [28], and [26].

The key difference is the existence of a fundamental argument due to Chihara,
see [2], which goes as follows. He first writes (1) as a system in (u, u). The problem
of doing this is that Doi’s trick, explained in Section 6, can not be carried out because
the pseudo-differential operator b(x,D) needed to prove the estimate (32) does not
have the algebraic property (15). Therefore the good structure that the terms

−→
b2 · ∇u

have for the integration by parts we exhibited in Section 2 is lost after applying the
operator b(x,D). Notice these bad terms are off the diagonal. The observation of
Chihara is that the corresponding matrix can be easily diagonalized to the expense of
zero order terms that as usual are harmless.
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In order to explain how this diagonalization is done let us consider the model
problem ⎧⎨

⎩
∂tu = i�u+ −→

b2 · ∇u.
u(x, 0) = u0(x),

(36)

with
−→
b2 ∈ C

n a constant vector.
As a system this equation is written as(

u

u

)
t

=
(
i�

−→
b2 · ∇−→

b2 · ∇ −i�

)(
u

u

)
.

The eigenvalues of the above matrix are

±i
(
�2 − (−→

b2 · ∇)(−→
b2 · ∇

)) 1/2
.

Therefore we are lead to consider the system(
v

v

)
t

= i

((
�2 − (−→

b2 · ∇)(−→
b2 · ∇

)) 1/2
0

0 −
(
�2 − (−→

b2 · ∇) (−→
b2 · ∇

)) 1/2

)(
v

v

)
.

Notice that(
�2 − (−→

b2 · ∇)(−→
b2 · ∇

)) 1/2 = �
(
1 −�−2

(−→
b2 · ∇)(−→

b2 · ∇
)) 1/2

.

The argument ends observing that

�
(
1 −�−2

(−→
b2 · ∇)(−→

b2 · ∇
)) 1/2 = �+ zero order. (37)

However, the identity (37) is false if the laplacian is changed by an operator of the
type �x1 −�x2 and therefore this trick does not work in that situation. Although we

have oversimplified the problem considering
−→
b2 ∈ C

n as a constant vector, the above
computations can also be carried out without major difficulty for

−→
b2 (x) regular and

bounded to the expense of creating zero order terms which as usual are harmless;
see [20].

Another important difference of the elliptic setting is that perturbations of the type
�u are also allowed. The way of seeing this is by a diagonalization argument similar
to the one we have just done. Consider a > 0 and b ∈ C and the equation

ut = ia�u+ ib�u.

Then differentiating with respect to t on both sides we get

utt = (−a2 + |b|2)�2u

which is well posed as long as
a2 > |b|2.

This elemental algebra is much more rigid in the non-elliptic setting and works only
for some trivial cases; see [23].
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9. Remarks on ultrahyperbolic operators

In this final section we gather some information and open questions about linear and
non-linear perturbations of the free propagator

eitL0 with L0 = �x1 −�x2 . (38)

As we saw in Section 6 one of the fundamental properties of this flow is the local
smoothing effect. In fact (32) was a key ingredient to overcome the loss of derivatives
obstruction which was explained in Section 2. In order to use (32) one is lead to study
the following maximal function

sup
t

|eitL0 u0|2, (39)

which is defined for all x ∈ R
n.

In our study of (1) we did not look at the question of which is the minimal regularity
to be assumed on the initial condition so that the equation is solvable. This is something
which strongly depends on the specific equation one is looking at. Therefore, and
for our purposes, the necessary bounds for (39) are rather simple to obtain and there
is no difference between the elliptic and the non-elliptic situation at that level. The
situation is completely different when looking at a specific model as for example the
Schrödinger map I mentioned in Section 3. In that case having sharp bounds for the
maximal function can be very useful.

It has been recently proved in [30] that the maximal function given in (39) has a
different behaviour for L0 than for the laplacian, being worse in the former case. Also
and with respect to the local smoothing it is known that L0 is much more sensitive to
first order perturbations than the laplacian. In [20] it is proved that the 1

2 derivative
gain of classical Schrödinger flows I mentioned in Section 6 can be reduced to just 1

4
for L0.

Regarding non-linear perturbations very little is known about ill-posedness results.
In fact and to the best of my knowledge the only one obtained in that direction is about
the semilinear equation ⎧⎨

⎩
1

i
∂tu = �x1u−�x2u± |u|pu

u(x, 0) = u0,
(40)

and is given in [18] with u0 = cδ. There it is proved that (40) is ill-posed if p ≥ 2
n

(the proof is done for � but it works the same for L0).
The question of well-posedness of (40) is related to the existence of Strichartz

estimates for the free propagator eitL0u0 with u0 ∈ L2. In that case it is well known
that there is no difference between a general L0 and the laplacian. This type of
estimates are very relevant in Harmonic Analysis in order to understand the restriction
properties of the Fourier transform to curved surfaces. From that point of view it is
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very natural to assume initial conditions u0 such that its Fourier transform û0 is inLp.
A lot of progress has been done when L0 = � but as far as I know there are no results
for general L0 for p > 2; see [33], [34], and [25].

Finally let us recall the pseudo-differential operators mentioned in Section 5. As
I already said the calculus we develop in [22] and [23] is quite rudimentary, and I
think there are many interesting properties to be understood. For example, we do not
know if the inequality proved in Proposition 5.1 can be extended to Lp for p �= 2.
Another limitation of our approach is that we can construct the integrating factor only
for hamiltonians which are free outside of a compact set. It should be enough to
assume only that the hamiltonian satisfies hypothesis H2.

References

[1] Chang, N. H., Shatah, J., Uhlenbeck, K., Schrödinger maps. Comm. Pure Appl. Math. 53
(2000), 590–602.

[2] Chihara, H., Local existence for semilinear Schrödinger equations. Math. Japon. 42 (1995),
35–51.

[3] Constantin, P., and Saut, J. C., Local smoothing properties of dispersive equations. J. Amer.
Math. Soc. 1 (1989), 413–446.

[4] Craig, W., Kappeler, T., and Strauss, W., Microlocal dispersive smoothing for the
Schrödinger equation. Comm. Pure Appl. Math. 48 (1995), 769–860.

[5] Da Rios, L. S. On the motion of an unbounded fluid with a vortex filament of any shape.
Rend. Circ. Mat. Palermo 22 (1906), 117–135 (in Italian).

[6] Doi, S., On the Cauchy problem for Schrödinger type equations and the regularity of
solutions. J. Math. Kyoto Univ. 34 (1994), 319–328.

[7] Doi, S., Remarks on the Cauchy problem for Schrödinger–type equations. Comm. Partial
Differential Equations 21 (1996), 163–178.

[8] Doi, S. , Smoothing effects for Schrödinger evolution equation and global behavior of
geodesic flow. Math. Ann. 318 (2000), 355–389.

[9] Hasimoto, H. A soliton on a vortex filament. J. Fluid Mech. 51 (1972), 477–485.

[10] Hayashi, N., and Ozawa, T., Remarks on nonlinear Schrödinger equations in one space
dimension. Differential Integral Equations 7 (1994), 453–461.

[11] Ichinose, W., OnL2 well-posedness of the Cauchy problem for Schrödinger type equations
on a Riemannian manifold and Maslov theory. Duke Math. J. 56 (1988), 549–588.

[12] Kato, T., On the Cauchy problem for the (generalized) Korteweg-de Vries equation. In
Studies in applied mathematics (ed. by V. Guillemin), Adv. Math. Suppl. Stud. 8, Academic
Press, New York 1983, 93–128.

[13] Kenig, C. E., Ponce, G., and Vega, L., Oscillatory integrals and regularity of dispersive
equations. Indiana Univ. Math. J. 40 (1991), 33–69.

[14] Kenig, C. E., Ponce, G., and Vega, L., Small solutions to nonlinear Schrödinger equations.
Ann. Inst. Henri Poincaré 10 (1993), 255–288.



318 Luis Vega

[15] Kenig, C. E., Ponce, G., and Vega, L., On the Zakharov and Zakharov-Schulman Systems.
J. Funct. Anal. 127 (1995), 202–234.

[16] Kenig, C. E., Ponce, G., and Vega, L., Smoothing effects and local existence theory for the
generalized nonlinear Schrödinger equations. Invent. Math. 134 (1998), 489–545.

[17] Kenig, C. E., Ponce, G, and Vega, L., The Cauchy problem for quasi-linear Schrödinger
equations. Invent. Math. 158 (2004), 343–388.

[18] Kenig, C. E., Ponce, G, and Vega, L., On the ill-posedness of some canonical dispersive
equations. Duke Math. J 106 (2001), 617–633.

[19] Kenig, C. E., Ponce, G, and Vega, L., On the Cauchy problem for linear Schrödinger
systems with variable coefficient lower order terms. In Harmonic analysis and number
theory (ed. by S. W. Drury and M. Ram Murty), CMS Conf. Proc. 21, Amer. Math. Soc.,
Providence, RI, 1997, 205–227.

[20] Kenig, C. E., Ponce, G, and Vega, L., On the smoothing properties of some dispersive
hyperbolic systems. In Nonlinear Waves (Sapporo, 1995), GAKUTO Internat. Ser. Math.
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Singular solutions of partial differential equations
modelling chemotactic aggregation

Juan J. L. Velázquez

Abstract. This paper reviews several mathematical results for partial differential equations
modelling chemotaxis. In particular, questions like singularity formation for the Keller–Segel
model and continuation of the solutions beyond the blow-up time will be discussed. Some of
the open problems that remain for the Keller–Segel model as well as some new mathematical
problems arising in the study of chemotaxis problems will be discussed.
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blow-up.

1. Introduction

There are several relevant biological phenomena that involve the type of cell interac-
tion that is known as chemotaxis. This word denotes the capability of many cells to
react to chemical stimuli and move towards an increasing or decreasing chemical gra-
dient. Chemotaxis plays a relevant role in biological processes like embryogenesis,
angiogenesis or others.

A particular biological process that has deserved considerable attention by biolo-
gists, mathematicians and physicists is the phenomenon of chemotactic aggregation.
Several unicellular organisms, like Dictyostelium discoideum and Myxococcus xan-
thus under conditions of environmental stress begin a complex cascade of chemical
processes having as a major consequence the release away from the cell of a chemical
substance that has chemoattractant properties in the cells themselves. As a conse-
quence, cells begin to approach to each other. This yields to the formation of dense
cellular aggregates where the cells usually begin a differentiation process and as a
final result the formation of a fruiting body containing cell sporae that remain in such
dormant state until they find suitable environmental conditions where they can pro-
liferate again. From the biological point of view an appealing feature of these social
organisms is that they expend part of their life cycle as unicellular organisms and the
other part as multicellular organisms.

The details of the phenomenon of chemotactic aggregation change very much
from organism to organism. On the other hand, even during the simplest stages of the
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process it is possible to observe many interesting patterns like spiral waves, cell stream
formation and others. Nevertheless, in spite of the complexity of this biological
process, some of the main features of the problem are simple enough to motivate
several mathematicians to derive models that could amount at least for some of the
most important features of the phenomenon.

2. The Keller–Segel model

The earliest attempt to describe chemotactic aggregation using a system of partial
differential equations was the Keller–Segel model that was introduced in [33]. The
authors of this model introduced a continuum description of the aggregation process
for Dictyostelium discoideum (from now on Dd) containing some of the biological
knowledge that had been gained from the experiments made in previous decades. The
book [7] contains a great part of the information available on this biological problem
at the time of the formulation of the Keller–Segel model.

In a typical aggregation experiments made with Dd many individual amoebae
are distributed in the basement of a Petri dish and covered by a liquid layer. Under
suitable conditions the cells begin emitting chemical pulses that trigger the aggregation
process.

The Keller–Segel model describes this process assuming that there are only two
relevant variables in the problem, namely the cell concentration n and the chemical
concentration of the substance that propagates the signals between the cells that will
be denoted as c. Both concentrations are understood to be measured for unit of surface
in the basis of the Petri dish. The chemical substance propagating the chemical signals
in the case of Dd was identified in the late 60s and it turns out to be the chemical
known as cAMP. The functions are assumed to be during the aggregation process
functions of the position in the Petri dish x as well as the time t , i.e.,

n = n(x, t),

c = c(x, t).

The validity of this description requires to measure the functions n and c in a
length scale larger than the typical distance between cells that is of the order of some
hundreds of microns. Under this assumption it is natural to write the following
continuity equations for the densities n and c:

∂n

∂t
+ ∇ · (jn) = 0, (1)

∂c

∂t
+ ∇ · (jc) = f (n, c), (2)

where jn, jc are the cell fluxes and chemical fluxes respectively. The function f (n, c)

describes the production of chemical by the cells as well as the decay of the concen-
tration of c due to its interaction with the substances placed in the extracellular matrix.
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It is implicitly assumed in (1) that processes like mitosis or cell death do not play any
relevant role. This assumption is reasonable because such processes take place in a
time scale much longer than the one related to chemotactic aggregation.

In order to complete model it remains to prescribe the functions jn, jc, f (n, c).
Concerning the chemical fluxes the most natural assumption is to assume that the
chemical diffuses according to the classical Fick’s law:

jc = −Dc∇c (3)

where Dc is the diffusion coefficient for the chemical.
On the other hand, the Keller–Segel model assumes that the cell motions are the

superposition of two effects, namely a random motility and a drift towards the regions
having a larger concentration of chemical due to the effect of the chemotaxis. In the
case of amoeba-like cells like Dd it is experimentally observed that the cells, that
move by means of the expansion and retraction of pseudopods, have some kind of
random component in their motion resembling, in a suitable length scale the motion
of a brownian particle. On the other hand, it is experimentally observed that the
drifting motion of the cells is, on average, proportional to the gradient of chemical
concentration. These features make reasonable to assume that the random motility
follows the standard Fick’s law for diffusive processes and that the drifting motion
yields an additional cell flux proportional to n∇c. The closure relation for the cell
flux then becomes

jn = −Dn∇n + χn∇c, (4)

where Dn is the diffusion coefficient for the cells and χ will be termed as chemotactic
sensitivity.

Finally, in order to determine the function f (n, c) there are two features that it is
important to take into account. The molecules of cAMP degrade with a characteristic
life-time, due to their interaction with the molecules of the extracellular membrane.
On the other hand, the production of chemical for unit of area is proportional to
the cell concentration n if the chemical production of each cell it is assumed to be
approximately independent from the others. Under these assumptions the formula for
f (n, c) would be

f (n, c) = αn − βc (5)

with α > 0, β > 0.
Combining the equations (1)–(5) the following system of equations follows:

∂n

∂t
= Dn�n − χ∇ · (n∇c), (6)

∂c

∂t
= Dc�c + αn − βc. (7)

The system (6), (7) is a particular case of classical Keller–Segel model that was
introduced in [33]. Using a suitable set of dimensionless variables, it is possible to
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reduce (6), (7) to the analysis of the particular case:

∂n

∂t
= �n − χ∇ · (n∇c), (8)

∂c

∂t
= L�c + n − βc. (9)

This system is usually solved in a domain � ⊂ IR2 for positive times t > 0 with
suitable initial data n(x, 0) = n0(x) ≥ 0, c(x, 0) = c0(x) ≥ 0 and zero flux boundary
conditions:

∂n

∂ν
− χn

∂c

∂ν
= 0,

∂c

∂ν
= 0, x ∈ ∂�, t > 0 (10)

where ν is the outer normal at the boundary ∂�. Notice that, under these boundary
conditions, the total number of cells

∫
�

n0(x) dx ≡ N0 is conserved during the
evolution of the system. In several of the discussions below it will be assumed that N0
is a real number of order one, something that at a first glance might look strange for a
number that denotes the rather large number of cells contained in �. However, this is
due only to the fact that in the formulation (8), (9) dimensionless variables have been
used. A number N0 of order one for the solutions of the system (8), (9) is in reality a
huge number of cells if the dimensional form of the equations (6), (7) is used.

The problem (8), (9) turned out to be a source of interesting mathematical prob-
lems. From the mathematical point of view the most interesting feature of the system
(8), (9) is the nonlinear term χ∇ · (n∇c). If the chemotactic interaction between cells
is chemoattractive, i.e. if χ > 0, this term yields singularity formation in finite time.
The peculiar form of this nonlinear term is a rather common feature of the chemotaxis
models. The study of the consequences of this term in the dynamics of the solutions of
(8), (9) has led to the development of several mathematical tools by different authors.

3. Singularity formation in chemotaxis models

Childress suggested that the solutions of (6), (7) could generate singularities and
that the process of chemotactic aggregation could be thought as the formation of a
singularity (cf. [13]). The first rigorous proof of blow-up in a chemotaxis model was
obtained by Jäger and Luckhaus in [31]. These authors took advantage of the fact
that the diffusion coefficient for the chemical Dc is much larger than the diffusion
coefficient Dn for the cells. In that particular limit the system of equations (8), (9)
with nonzero flux boundary conditions can be reduced to the simpler problem

∂n

∂t
= �n − χ∇ · (n∇c), (11)

0 = L�c + n − n, (12)

where n = 1
|�|

∫
�

n dx. Notice that in order to solve (11), (12) only the initial data
n(x, 0) = n0(x) must be prescribed.
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Jäger and Luckhaus obtained two basic results for the solutions of (11), (12) that
established the basic framework for many of the subsequent researches in this type
of problems. They proved that the solutions of (11), (12) with N0 small are globally
bounded. On the other hand, [31] contains also a large class of radial initial data
n0(x) for which the corresponding solution of (11), (12) becomes unbounded in finite
time, or using the standard terminology used by the partial differential community,
the solutions of (11), (12) blow up in finite time for suitable initial data.

Notice that the global existence result in [31] implies that there exists a threshold
for the number of cells N0, below which the solutions of (11), (12) do not exhibit
singularities in finite time. There have been several researches trying to compute the
value of such threshold number. In the case of radial solutions, it was proved by Nagai
(cf. [37]) that the smallest number of cells needed to have blow up in finite time is
8π/χ . In nonradial cases the threshold for the mass is 4π/χ (cf. [6], [16]).

4. Chemotactic aggregation

The blow up results mentioned in the previous section do not imply that the solutions
of the system (11), (12) develop a Dirac mass in a finite time. The onset of such
Dirac mass at the time of formation of the singularity t = T seems the most natural
outcome, as the previous discussion concerning the existence of a threshold for the
number of cells needed to create a singularity suggests. However, the derivation of
such conclusion is not so obvious. Indeed, a possibility that cannot be excluded in
principle is the formation of a singularity where the number of cells contained in a
small ball near the point where the singularity appears would oscillate infinitely often
without converging to any number. Another possibility that is not easy to rule out in
nonradial cases is the existence of a family of balls containing a large fraction of the
total number of cells whose diameter decreases to zero as t → T − and whose centers
move erratically by the domain �.

We will denote as chemotactic aggregation the formation of a Dirac mass at a finite
time t = T < ∞. In [17] was obtained a class of solutions yielding chemotactic
aggregation. Moreover, for such a solutions there was a detailed description of the
asymptotic behaviour of the solutions near the singularity. These solutions satisfy

n( ·, t) ⇀
8π

χ
δ( · ) + f ( · ) as t → T −, (13)

where

f (x) ∼ 8e−(γ+2)

|x|2 e−2
√| log(|x|)|(1 + o(1)) as |x| → 0, (14)

γ being the classical Euler constant. Moreover:

n(x, t)∼ 8

(T − t)(ε(| log(T − t)|))2

1(
1 + |x|2

(T −t)(ε(| log(T −t)|))2

)2 as t → T − (15)
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for |x| ≤ C
√

T − tε(| log(T − t)|), where

ε(τ ) ∼ 2e− 2+γ
2 e−√

τ
2

(
1 + O

(
log(τ )√

τ

))
as τ → ∞. (16)

It is interesting to point out that these solutions are not self-similar solutions in
the sense that such term is usually understood. The most common meaning that it is
given to the term self-similar solutions is the one of solutions that are invariant by a
group of symmetries, and most often by a group of rescalings. If the term n that gives
a low order contribution is ignored in the equations (11), (12) the resulting equations
are invariant under the rescaling group:

x → λx, t → λ2t, n → 1

λ2 n, c → c, (17)

where λ is an arbitrary positive number. It can be shown that at least in the radial two
dimensional case there are not self-similar solutions of (11), (12), even if the term n

is neglected (cf. [20]). On the other hand, it is not hard to see that solutions with the
asymptotics (15) are not invariant under the rescaling group (17) due to the presence

of the terms e
−

√
| log(T −t)|

2 in (16) that are not power laws. More precisely

(T − t)a � e
−

√
| log(T −t)|

2 � 1 as t → T −

for any a > 0. In the terminology of applied mathematicians such terms are often
called “logarithmic corrections”, even if they are not strictly logarithmic functions.

The computation of this logarithmic corrective term is the main technical difficulty
solved in [17]. The key idea used in that paper was to derive first an approximation
of the solution near the blow-up time using the so-called “matched asymptotic expan-
sions”. Such expansions are a heuristic, non fully mathematically rigorous procedure
of deriving approximated formulae for the solutions different types of equations that
contain large or small parameters. These methods are widely used in many fields
applied mathematics, often combined with numerical simulations that provide an in-
dependent test of their validity. The basic idea of this method consists in to compute
perturbative series for the solutions of the equations under consideration by simpler
equations, something that is possible due to the presence of large or small parameters
in the problem. However, such approximations of the solutions often lose their valid-
ity in some regions of the space because the form of the obtained solutions determines
that some of the terms that had been previously ignored become important in some
particular areas of the space of parameters. The solutions are then analysed in these
specific regions introducing suitable rescalings and changes of variables that are often
suggested by the form of the approximate solutions previously computed. The result-
ing equations can then be also analysed in a perturbative manner and in this way the
form of the solutions in such new variables can be obtained too. In order to assert the
validity of the obtained formula it remains to check that both obtained approximated
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solutions agree in a region of common validity. This agreement is usually termed as
“matching”.

In the study of (11), (12) the small parameter is the distance between the time
variable and the blow-up time, i.e. (T − t). The analysis of the solutions was made
decomposing the space of independent variables (x, t) in three different regions,
namely:

(A) |x| � √
T − t,

(B) |x| ≈ √
T − t,

(C) |x| � √
T − t .

The onset of the parabolic rescaling
√

T − t it is very natural due to the parabolic
character of the system (11), (12). In each of these regions these equations can be
approximated to the leading order by a different type of equation whose solution can be
obtained in an explicit manner. More precisely, the derived solutions solve a nonlinear
ordinary differential equation in the region (A), a linear parabolic equation that reduces
to the heat equation in the region (B), and a quasilinear hyperbolic equation in the

region (C). The corrective term e
−

√
| log(T −t)|

2 was obtained setting that the width of
the region where the aggregating mass is concentrated is an unknown function ε(t)

whose precise form is computed matching the solutions obtained in the regions (A)
and (B). Such matching condition provides an integro-differential equation for ε(t)

that allows to compute the “logarithmic correction” e
−

√
| log(T −t)|

2 . The details of this
formal computation can be found in [18] and also in [45], [46].

The rigorous construction of the solutions whose formal description is given above
was made reducing the problem to the one of finding the zeroes of a finite dimensional
problem. This was achieved choosing an initial class of initial data depending on a
finite number of parameters and showing that the choice of such parameters that solves
a suitable equation provide some initial data whose corresponding solution blows up
at the time t = T with the asymptotic behaviour computed in an heuristic manner
before. The details of the argument can be found in [17]. A crucial point in the
argument is to use the formal asymptotics of the solutions as a guide to derive suitable
“a priori” estimates for the solutions of (11), (12). This argument have been used
in the construction of solutions with a prescribed blow-up behaviour in many other
problems (cf. for instance [3], [10]).

All the previous analysis was made for the simplified version of the Keller–Segel
model introduced by Jäger and Luckhaus. Nevertheless, the same results can be ob-
tained for the whole Keller–Segel system (8), (9) (cf. [22]). Some technical difficulties
arise due to the fact that for radial solutions it is possible to reduce (11), (12) to the
study of a scalar equation. Such reduction is not possible in the case of the whole
system (8), (9).

It is worth mentioning that this study provides a simple formula, originally derived
in [13], relating the different parameters from the Keller–Segel model and the number
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of aggregating cells. Indeed, rewriting (13) with the original dimensional variables it
follows that the number of cells aggregating for the solutions of (8), (9) is

Naggr.cells = 8πDcDn

αχ
.

5. Some analogies between chemotactic aggregation and the melting
of ice balls

It is interesting to remark that the same type of “logarithmic correction” that has been
described above (cf. (15)) appears in other problem that at a first glance looks rather
different from the problem of chemotactic aggregation. Suppose that one tries to
describe the size of a melting ice cylinder immersed in a big reservoir of water. One
usual way of describing such process is by means of the so-called Stefan problem.
In the resulting model it is assumed that the heat transfer in both the ice and the
water follows the classical Fourier’s law. Therefore, in both phases the temperature
satisfies a heat equation. On the other hand, in the interface separating both phases the
temperature takes a constant value that is the melting temperature of the water at the
value of the pressure that the experiment is made. This assumption is not completely
true if surface tension effects are taken into account, but these effects are relevant only
for very small radii of the cylinder and therefore they can be ignored during most of
the process. Moreover, we will assume also that the heat conductivity of the ice is
much higher than the one of the ice, since this makes the problem easier to analyse
and it does not change the final conclusions. A final feature that must be incorporated
in the model is the fact that the melting of a given volume of ice requires to provide to
it the amount of energy known as latent heat. The mathematical formulation of this
condition provides an equation for the motion of the interface separating the ice and
the liquid water. The resulting model, in dimensionless units and in the radial case is
the following:

∂θ

∂t
= �θ x ∈ IR2, |x| > R(t), t > 0, (18)

θ = θm, |x| = R(t), t > 0, (19)

Ṙ(t) = −∂θ

∂r
(R(t), t), (20)

where θ(x, t) is the temperature of the liquid water. In absence of undercooled water
we must assume that θ(x, 0) = θ0(x) ≥ 0.

This problem has classical solutions for a large class of initial data θ0(x). Let us
suppose also that θ0(x) → θ∞ > 0 as |x| → ∞. It might be seen that for such data
the radius of the ice ball R(t) decreases and eventually disappears in finite time. At
such time a singularity arises for this free boundary problem.

As in the case of the Keller–Segel model there are not self-similar solutions de-
scribing this singularity. A description of this singularity using formal asymptotic
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expansions was obtained in [39]. It turns out that the radius of such balls near the
time t = T for the vanishing of the spheres is given by:

R(t) ∼ C
√

T − te−
√

2
2 | log(T −t)| 1

2 as t → T

Asymptotic expansions for the solutions of the same problem in the non radial
case were obtained in [19]. For these solutions the interface behaves asymptotically
as an ellipsoidal cylinder near the time of the vanishing of the ice.

6. Some results for the Jäger–Luckhaus model in three dimensions

There are biological situations where it makes sense to analyse the three dimensional
version of the Keller–Segel. A relevant example is the study of the aggregates of the
bacteria E.coli.

From the mathematical point of view the type of singularities arising for the
Keller–Segel model are very different in the three dimensional case and in the two
dimensional case. It is possible to construct singular solutions blowing up in a line,
just adding an additional dimension to the solution behaving as in (13)–(15). On
the other hand, in three dimensions there exist radial self-similar solutions that yield
singularities in a finite time without mass aggregation. On the other hand in three
dimensions there exist a mechanism of chemotactic aggregation that is rather different
from the one previously described for the two dimensional case. Such aggregation
mechanism is driven by the first order terms in (11), except for a small boundary
layer where the diffusive term �c becomes essential. For these solutions the mass
is concentrated as t → T − in a layer placed at a distance of order (T − t)1/3. The
detailed description of such solutions can be found in [9], [20], [21].

7. On the continuation of the solutions beyond the blow-up Time

In the last decade several models have been suggested in order to describe the effects
that could stop the aggregation process in different organisms. Several biochemical
processes that could stop the aggregation of E. coli if the cell density reach high values
were described in [8]. Another partial differential equations that stop cell aggregation
were considered in [25], [46], [47]). It was assumed in [25] that the cell velocity
vanishes for high cell concentrations. In [46] was assumed also that the cell velocity
decreases also with the velocity for high values of the concentration. More precisely,
the model studied in [46], [47] was the following:

∂n

∂t
= �n − ∇ · (gε(n)∇c), (21)

0 = �c + n, (22)
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where

gε(n) = 1

ε
Q(εn), ε > 0, (23)

and Q is an increasing function satisfying

Q(s) ∼ s − αs2 as s → 0,

Q(s) ∼ L > 0 as s → ∞.

The solutions of (23) are globally bounded for each ε > 0. On the other hand, the
model (21)–(23) converges formally as ε → 0 to the model

∂n

∂t
= �n − ∇ · (n∇c), (24)

0 = �c + n, (25)

that in two dimensions might yield chemotactic aggregation in finite time. It would
be then natural try to understand the asymptotics of the solutions of (21)–(23) for
arbitrary times as ε → 0. Notice that the number of cells

∫
�

n dx remains constant
for the solutions of (21)–(23). Therefore, even if the solutions of (21)–(23) become
unbounded, the solutions of these equations should not become unbounded every-
where. The study of the dynamics of the solutions of (21)–(23) as ε → 0 was made
in [46], [47] using formal matched asymptotic expansions. The conclusion of such
analysis was that it is possible to obtain asymptotic expansions valid in all the regions
of the space for some solutions of (21)–(23) that behave asymptotically as ε → 0 as

n(x, t) =
N∑

i=1

Mi(t)δ(x − xi(t)) + nreg(x, t),

wherenreg(x, t) is a bounded function. Moreover, the functionsMi(t), xi(t), nreg(x, t)

satisfy the following problem:

∂nreg

∂t
= �nreg +

N∑
j=1

Mj(t)

2π

(x − xj (t))

|x − xj (t)|2 · ∇nreg − ∇(nreg∇creg), (26)

creg = − 1

2π

∫
IR2

log(|x − y|)nreg(y, t) dy, (27)

ẋi (t) = �(Mi(t))Ai(t), i = 1, . . . , N, (28)

Ai(t) = −
N∑

j=1

Mj(t)

2π

(x − xj (t))

|x − xj (t)|2 + ∇creg(xi(t), t), (29)

dMi(t)

dt
= creg(xi(t), t)Mi(t), i = 1, . . . , N, (30)

where �( · ) is a positive function defined for values of its argument larger than 8π .
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The problem (26)–(30) can be considered as a moving boundary problem. These
equations indicate that there exist solutions of (21)–(23) having some concentration
regions where the cells accumulate and that interact between themselves and with the
cells away from the aggregates.

The solvability of the problem (26)–(30) is not entirely obvious due to the motion

of the points xi(t) as well as the presence of the terms
Mj(t)

2π

(x−xj (t))

|x−xj (t)|2 · ∇nreg in (26).
The local well-posedness of (26)–(30) in Hölder spaces has been proved in [48].

In [47] has been obtained using matched asymptotic expansions a description of
the way in which the saturation of the chemotactic attraction for high values of the con-
centration stops the aggregation process and yields the formation of a concentration
region for the density.

8. Some open questions for the Keller–Segel model

In the last two decades there have been several relevant advances in the understanding
of the Keller–Segel model. There are, however, still many unsolved questions that
could pose challenging analysis problems. I will describe shortly some of the ones
that in my opinion are more relevant.

Probably, the most important problem that remains in order to understand com-
pletely the blow-up for the Keller–Segel model is to show that for arbitrary two
dimensional domains � and arbitrary initial data, all the blowing up solutions of (8),
(9), (or the simplified version (11), (12)) converge locally near the blow-up to a Dirac
mass.

A more ambitious version of this problem would be to show that all the solutions
that blow up in finite time behave near the singularity as indicated in (13)–(15).
Experts in blow-up would immediately argue here that, since the solutions with large
amount of cells blow up and the solutions with a small number of cells do not blow-up,
there exists a transition regime between the one associated to global existence and the
one associated to blow-up in finite time. I think that the most spread opinion among
the mathematicians working in the Keller–Segel model about this point is that the
transition regime corresponds precisely to the solutions having a total number of cells
of 8π/χ , and that this critical amount of cells should lead to the type of behaviour that
it is usually known as “blow-up in infinity time” (cf. for instance [29]). This would
mean that the solutions would be globally defined but the solutions of (8), (9), (or (11),
(12)) should eventually approach to a Dirac mass as t → ∞. The blow-up mechanism
(13)–(15) might be obtained with any number of cells strictly greater 8π/χ cells. For
the critical number of cells, the description of the long time asymptotics as t → ∞
has not been obtained even at the formal level.

A problem that could shed some light in the question of finding a complete clas-
sification of the singular behaviours for the Keller–Segel model is the study of the
stability of the solutions of (11), (12) with the behaviour (13)–(15). In principle this
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problem looks more amenable to analysis because it reduces to the study of a local
problem. This stability study for these particular solutions has been made in [45]
using formal computations linearizing formally around the solution obtained in [17].
This kind of linearization is customarily made by applied mathematicians working in
problems that involve blow-up phenomena. Nevertheless, the study of such stability
is more involved that in many of the blow-up problems so far considered due to the
involved structure of boundary layers that is needed to describe the solution behaving
as in (13)–(15). To prove in a fully rigorous manner that the solutions of (11), (12)
with the behaviour (13)–(15) would require, most likely, to make fully rigorous the
arguments in [45], something that would require to study in detail several parabolic
problems described in [45]. A similar analysis challenge is the one posed by the proof
in a fully rigorous manner of the results concerning “continuation beyond blow-up”
mentioned in Section 7.

There is a huge wealth of problems associated to the study of the singularities
for the Keller–Segel or the Jäger–Luckhaus problems in three spatial dimensions. As
indicated in Section 6 in this case there are many more singular behaviours, whence a
complete classification of blowing up solutions seems much harder. It is interesting to
point out that the solutions of the Jäger–Luckhaus model blowing up in a line that are
obtained adding an additional dimension to the solutions blowing up as in (13)–(15)
seem to be unstable under nonconstant perturbations along that line, as the formal
computations in [5] suggest.

Let us finally remark that there seem to be several analogies between the Keller–
Segel model (or the Jäger–Luckhaus approximation) and the classical Stefan problem.
This is particularly clear in the results mentioned in Section 5, but there are other points
in the mathematical analysis of both problems where these analogies can be seen. It
is not unlikely that the Stefan problem could be derived, at least formally, as a suitable
asymptotic limit of the Keller–Segel model, in the same form as the Stefan problem
and many other related free boundary problems can be derived from the so-called
phase field limits. If the connection between these problems is found, it would be
perhaps possible to explain the analogies found in Section 5. It would probably be
possible also to use the large amount of information available for the Stefan problem
in order to describe the behaviour of some class of initial data for the Keller–Segel
model.

In this paper the description and stability of the steady states solutions of the
Keller–Segel model has not been considered. There are several results concerning
the structure of the steady states of this problem (cf. [40]). A detailed review of the
different mathematical results available in the literature for the stationary and the
evolutionary Keller–Segel model can be found in [27], [28].
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9. Beyond the Keller–Segel model

All the previous discussion has focused exclusively in the study of the Keller–Segel
model. As it was explained in Section 2 the Keller–Segel model is a continuous
approximation of a rather complicated aggregation process. In recent decades the
study of the process of chemotactic aggregation has developed in many more directions
than in the study of this specific model. In this section, I will describe briefly some
of this researches to illustrate the type of mathematical problems that have arisen in
the study of this biological process.

One of the research directions that has deserved great attention and that was
originated by the papers [1], [15], [38] is the study of kinetic or stochastic models
describing the cell dynamics.

The idea underlying the stochastic models is to describe the dynamics of each in-
dividual cell using a stochastic differential equation. The information contained in the
differential equation is that cells move in a rectilinear manner at constant speed during
some time intervals. At the end of such intervals the direction of the velocity changes
in a random manner. In order to obtain a chemotactic dynamics the models introduce
some bias towards the regions having greater chemical concentration, something that
can be made in several different ways. One possibility is to assume that the rate
of change in the direction of motion is a function on the change of concentration of
chemical. Another different possibility is to assume that the new direction of motion is
biased towards the direction of largest chemical concentration. The first possibility is
motivated by the well studied motion mechanism of E. coli that takes place by means
of different types of discrete jumps in the space known as “runs” and “tumbles” (cf.
the description in [4]). The second one can be thought as a reasonable approximation
to the dynamics of amoebae-like cells like Dd. In order to avoid introducing in this
model direct cell-cell interactions it must be assumed that the mean free path between
jumps is much smaller than the cell distance. If it is assumed, in addition, that the
characteristic distance for the chemical variation are much larger than the cell distance
it might be seen that the particle distributions have small correlations and therefore
they might be approximated as the product of one-particle distributions in the space
of velocities and positions having the form f (x, v, t). In all the mentioned asymp-
totic limits it is possible to approximate the evolution equation for the one-particle
distribution function by means of the kinetic equation

ft + v∇xf =
∫

[T (x, v, w)f (x, w, t) − T (x, w, v)f (x, v, t)] dw. (31)

The transition kernel T (x, w, v) contains the bias towards higher concentrations,
and therefore it depends in general in quantities like the chemical concentration, of
its time or space derivatives.

In recent years there have been obtained several results proving that in some suit-
able asymptotic limits the solutions of (31) converge to the solutions of the Keller–
Segel system (cf. [12], [23], [24], [30]). Readers familiar with gas-dynamics would
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realize that the main assumption in these studies is that the mean free path between
jumps is much smaller than the characteristic length associated to the chemical concen-
tration. In all these studies the cell concentration is given by n(x, t) = ∫

f (x, v, t) dv.
A more direct study of a system of stochastic differential equations that are coupled
only through the concentration of the chemical was made in [42]. Nevertheless in this
paper was also assumed that the distance between particles is small compared with
the characteristic length associated to the chemical, and therefore the correlations
between particle distributions are also small.

These results point out to some of the new possible directions for the development
of the kinetic (or stochastic) theory of cell motion. Given the huge number of different
situations that can arise in the study of cell interactions in biological situations it
would be relevant to study the dynamics of stochastic equations in limits where the
particle correlations could play a relevant role. The study of such problems, at least
in biological problems is largely open.

On the other hand, all the studies of cell dynamics using stochastic or kinetic
models described above assume that the cells are separated enough from each other
to make cell-cell interaction effects negligible. However in many phenomena of
chemotactic aggregation this hypothesis fails at least during some part of the process.
For instance, in the case of Dd the cells become at some point a dense aggregate
package. Even before reaching that state the cells distribute in some cell streams
that cannot be described using a simple model as Keller–Segel, but that had been
explained to be due to the instabilities of planar fronts for some more complicated
reaction-diffusion systems (cf. [26]). Concerning the aggregate state there have been
several attempts to model such cellular state by means of different approaches. I will
not try to describe in detail all the results that have been obtained in this extensive
research area, but I will mention a few results that could describe some of the main
ideas that are been used to study this problem.

An approach that is rather popular in the field of mathematical biology is the use
of cellular automata models, often in lattices, having a dynamic that mimics the laws
of cell motion. Using this approach it is possible to obtain numerical simulations that
very often resemble very much the patterns observed in biological systems. In the
specific case of Dd the most remarkable results in this direction are those of [35]. These
numerical simulations were able to reproduce the whole life cycle of Dd, including the
aggregation, the formation of cell mounds, and the development of the fruiting body.
The main difficulty with this approach is that the relation between the parameters in
the cellular automata and the biochemical parameters is not an obvious one. On the
other hand, the evolution rules that are used in the model are not true mechanical or
chemical equations. In any case this approach is providing some insight in several
biological problems about the type of interactions that must be taken into account to
obtain some specific patterns.

There have been introduced in the literature several models that describe the me-
chanical interactions of a huge number of cells. One of the most recent papers in this
direction, that is probably the one that includes the currently available information
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about the mechanical interactions of the cells in a more careful manner is [14]. These
results provide some interesting insights on the mechanics of dense cell aggregates.
Nevertheless the mathematical object that a specialist in partial differential equations
would like to have is a system of continuum equations for the cell aggregates, with a
solid basis in physics and chemistry that could play a role in tissues analogous to the
one played by the Navier–Stokes equations in fluid mechanics. Actually the Navier–
Stokes equations have been used to model the evolution of cell aggregates (cf. [11])
and there has been obtained numerically good qualitative agreements with the exper-
imentally observed patterns (cf. [41]). However, the mechanical properties of dense
cell aggregates are most likely rather different from the properties of newtonian fluids.

I will mention shortly another problem related to the aggregation of Dd yield-
ing also partial differential equations problems. This is the process of transmission of
chemical signals between cells that yield the aggregation process. In the Keller–Segel
model it is assumed that the production of chemical is proportional to the cell density
and that the cell velocity is proportional to the concentration of chemical. However,
this assumptions are just a simplification of a rather complex process. A more re-
alistic picture of the production of chemical is provided by the theory of excitable
systems. According to this picture the cells, upon the arrival of a diffusive chemical
wave produce some additional chemical that compensates in this way the effect of
its spontaneous degradation. After this production the cell enters in a refractory state
lasting a few minutes during which the cell is unable to release chemical. There exists
a huge mathematical theory for reaction-diffusion systems whose dynamics has these
ingredients (cf. for instance [32]). Systems having such dynamics exhibit a large
class of patterns, like travelling waves, spiral waves and several others. Actually,
the chemical signalling in Dd aggregates was one of the problems that motivated
the development of the theory of dynamical systems. In recent decades there have
been several papers introducing models for the cell signalling process that include
more detailed information about the biochemical processes taking place in the cell.
Some of the most popular models are the ones in [36] and [43]. These models are
reaction-diffusion models that are able to reproduce some of the features observed
in the experiments that measure the chemical produced by cell aggregates (cf. [44]).
Recently, in the article [34] several analytic formulae for magnitudes like the wave ve-
locity, the chemical concentrations and other related quantities were computed using
asymptotic methods.
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Abstract. This note describes the functional-integral quantization of two-dimensional topolog-
ical field theories together with applications to problems in deformation quantization of Poisson
manifolds and reduction of certain submanifolds. A brief introduction to smooth graded mani-
folds and to the Batalin–Vilkovisky formalism is included.
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1. Introduction: a 2D TFT

1.1. The basic setting. Let� be a smooth compact 2-manifold. On M1 := �0(�)⊕
�1(�) one may define the following very simple action functional:

S(ξ, η) :=
∫
�

η dξ, ξ ∈ �0(�), η ∈ �1(�), (1.1)

which is invariant under the distribution 0 ⊕ dβ, β ∈ �0(�). If we take ξ and η as
above as coordinates on M1, we may also write

δβξ = 0, δβη = dβ. (1.2)

The critical points are closed 0- and 1-forms. As symmetries are given by exact
forms, the space of solution modulo symmetries, to which we will refer as the moduli
space of solutions, is H 0(�) ⊕ H 1(�), which is finite dimensional. Moreover, it
depends only on the topological type of �. Actually, something more is true: the
action of the group of diffeomorphisms connected to the identity is included in the
symmetries restricted to the submanifold of critical points. In fact, for every vector
field Y on �, we have LY ξ = ιY dξ and LY η = ιY dη + dιY η. So upon setting
dξ = dη = 0, we get LY = δβY with βY = ιY η. This is the simplest example of
2-dimensional topological field theory (TFT) that contains derivatives in the fields.1

∗The author acknowledges partial support of SNF Grant No. 200020-107444/1.
1This example belongs to the larger class of the so-called BF theories. This is actually a 2-dimensional

abelian BF theory.
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One may also allow � to have a boundary ∂�. If we do not impose boundary
conditions, the variational problem yields the extra condition i) ι∗∂�η = 0 where ι∂�
denotes the inclusion map of ∂� into �. So it makes sense to impose i) from the
beginning. The second possibility is to impose the boundary condition ii) that ξ|∂�
should be constant. By translasting ξ , we may always assume this constant to be
zero.2 For the symmetries to be consistent with boundary conditions i), we have to
assume that β|∂� is constant, and again we may assume without loss of generality that
this constant vanishes. So we consider the following two cases:

Neumann boundary conditions: ι∗∂�η = 0, β|∂� = 0 (N)

Dirichlet boundary conditions: ξ|∂� = 0, (D)

1.2. Generalizations. To make things more interesting, we may replicate n times
what we have done above. Namely, take Mn = Mn

1 and define

S({ξ}, {η}) :=
∫
�

n∑
I=1

ηI dξI , ξ I ∈ �0(�), ηI ∈ �1(�).

Identifying Mn with �0(�,Rn)⊕�1(�, (Rn)∗), we may also write

S(ξ, η) :=
∫
�

〈η, dξ〉, ξ ∈ �0(�,Rn), η ∈ �1(�, (Rn)∗), (1.3)

where 〈 , 〉 denotes the canonical pairing. The symmetries are now defined by the
addition to η of an exact 1-form dβ, β ∈ �1(�, (Rn)∗). If � has a boundary, we
then choose N or D boundary conditions for each index I . Accordingly the boundary
components of β corresponding to N boundary conditions have to be set to zero.

We may also modify the action functional by adding a local term

Sα(ξ, η) = 1

2

∫
�

α(ξ)(η, η), (1.4)

where α is a smooth map Rn → �2Rn or more generally an element of Ŝ(Rn)∗ ⊗
�2Rn, where Ŝ(Rn) denotes the formal completion (i.e., the space of formal power
series) of the symmetric algebra S(Rn)∗. We will discuss in the following under which
assumption on α and on the boundary conditions, this term may be added without
breaking the symmetries of S.

A further generalization with a smooth n-manifold M as target exists. The space
M(M) := {bundle maps T� → T ∗M} fibers over Map(�,M)with fiber at a mapX
the space of sections �(T ∗� ⊗X∗T ∗M). Regarding dX as a section of X∗TM and
using the canonical pairing 〈 , 〉 of TM with T ∗M , we define

S(X, η) :=
∫
�

〈η, dX〉, X ∈ Map(�,M), η ∈ �(T ∗� ⊗X∗T ∗M). (1.5)

2For simplicity, in this note we do not consider the case [16] when the boundary is divided into different
components with different boundary conditions.
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The critical points are now given by pairs of a constant map X and a closed form
η ∈ �1(�, T ∗

x M) with x = X(�). The symmetries are given by translating η by dβ
with β ∈ �(X∗T ∗M).3 For the boundary conditions, one chooses a submanifold C
ofM and imposesX(∂�) ⊂ C and ι∗∂�η ∈ �(T ∗∂�⊗X∗N∗C), where the conormal
bundle N∗C is by definition the annihilator of T C as a subbundle of TCM; viz.:

N∗
x C := {α ∈ T ∗

x M : α(v) = 0 for all v ∈ TxC}, x ∈ C. (1.6)

Accordingly, we require ι∗∂�β ∈ �(X∗N∗C). Observe that the tangent space at a given
solution (i.e., X(�) = x, η closed), is isomorphic – upon choosing local coordinates
around x – to Mn, just by setting X = x + ξ . Moreover, the action evaluated around
a solution is precisely (1.3).

A global generalization of (1.4) is also possible. Namely, to every bivector field π
(i.e., a section of �2TM), we associate the term

Sπ(X, η) = 1

2

∫
�

π(X)(η, η). (1.7)

If we work in the neighborhood of a solution x and setX = x+ ξ , then (1.7) reduces
to (1.4) with α(v) = π(x+v), ξ ∈ Rn � TxM . Actually we are interested in working
in a formal neighborhood, so we set α to be the Taylor expansion of π around x and
regard it as an element of Ŝ(Rn)∗ ⊗�2Rn.

1.3. Functional-integral quantization. The action functional (1.5) is not very in-
teresting classically. Much more interesting is its quantization, by which we mean
the evaluation of “expectation values”, i.e., ratios of functional integrals

〈O〉cl :=
∫
M(M)

e
i
h̄
S O∫

M(M)
e

i
h̄
S
, (1.8)

where O is a function (which we assume to be a polynomial or a formal power
series) on M(M). The evaluation of these functional integrals consists of an ordinary
integration over the moduli space of solutions and of an “infinite-dimensional integral”
which is operatively defined in terms of the momenta of the Gaussian distribution given
by S.

The finite-dimensional integration is not problematic, though it requires choosing
a measure on the moduli space of solution. The main assumption in this paper is that
the first cohomology of � with whatsoever boundary conditions is trivial. Actually,
we assume throughout that � is the 2-disk D. Up to equivalence then a solution is
given by specifying the value x of the constant map X. Thus, the moduli space of
solution is M . We choose then a delta measure on M at some point x.

The second integration, performed around a point x, is then over Mn. The main
problem is that the operator d defining the quadratic form in S is not invertible. To

3The derivative of β is computed by choosing any torsion-free connection on M .
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overcome this problem and make sense of the integration, we resort to the so-called
BV (Batalin–Vilkovisky [5]) formalism, which is reviewed in Section 3. Besides
giving us an operative unambiguous definition of (1.8), the BV formalism will also
provide us with relations among the expectation values, the so-called Ward identities
(see 4.5). The latter computation is however less rigorous; one might think of this
as a machinery suggesting relations that have next to be proven to hold. Moreover,
the BV formalism leads naturally to the generalization when the targetM is a graded
manifold (see Section 2). In this context there is an interesting duality (see 4.3 and 4.4)
between different targets.

Acknowledgment. I thank F. Bonechi, D. Fiorenza, F. Helein, R. Mehta, C. Rossi,
F. Schätz, J. Stasheff and M. Zambon for very useful comments.

2. Smooth graded manifolds

In this section we give a crash course in the theory of smooth graded manifolds. A
graded manifold is a supermanifold with a Z-refinement of the Z2-grading. As we
work in the smooth setting, we can work with algebras of global functions and so avoid
the more technical definitions in terms of ringed spaces. We begin with recalling some
basic definitions and notations.

2.1. Graded linear algebra. A graded vector space V is a direct sum over Z of
vector spaces: V = ⊕i∈ZVi . Elements of Vi have by definition degree i. By V [n],
n ∈ Z, we denote the graded vector space with the same components of V but shifted
by n; i.e., V [n]i := Vi+n. A morphism φ : V → W of graded vector spaces is a
homomorphism that preserves degree: i.e., φ(Vi) ⊂ Wi for all i. A j -graded homo-
morphism φ : V → W is a morphism V → W [j ]; i.e., φ(Vi) ⊂ Wi+j . We denote
by Homj (V ,W) the space of j -graded homomorphisms. We may regard the vector
space of homomorphisms as a graded vector space Hom(V ,W) = ⊕j Homj (V ,W).
In particular, by regarding the ground field as a graded vector space concentrated in
degree zero, the dual V ∗ of a graded vector space V is also naturally graded with
V ∗
i := (V ∗)i isomorphic to (V−i )∗. Observe that V [n]∗ = V ∗[−n]. Tensor products

of graded vector spaces are also naturally graded: (V ⊗W)i = ⊕r+s=iVr ⊗Ws .

2.1.1. Graded algebras. A graded algebra A is an algebra which is also a graded
vector space such that the product is a morphism of graded vector spaces. The
algebra is called graded commutative (skew-commutative) if ab = (−1)ij ba
(ab = −(−1)ij ba) for all a ∈ Ai , b ∈ Aj , i, j ∈ Z. The symmetric algebra of
a graded vector space is the graded commutative algebra defined as S(V ) = T (V )/I ,
where T (V ) denotes the tensor algebra and I is the two-sided ideal generated by
vw − (−1)ijwv, v ∈ Vi , w ∈ Vj . We denote by Ŝ(V ) its formal completion consist-
ing of formal power series.
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A graded skew-commutative algebra is called a graded Lie algebra (GLA)
if its product, denoted by [ , ] satisfies the graded Jacobi identity: [a, [b, c]] =
[[a, b], c] + (−1)ij [b, [a, c]], for all a ∈ Ai , b ∈ Aj , c ∈ A, i, j ∈ Z.

2.1.2. Graded modules. A graded moduleM over a graded algebraA is a graded vec-
tor space which is a module overA regarded as a ring such that the actionA⊗M → M

is a morphism of graded vector spaces. IfM is a module, then so isM[j ] for all j ∈ Z.
The tensor productM1 ⊗AM2 overA of a rightA-moduleM1 and a leftA-module

M2 is defined as the quotient ofM1 ⊗M2 by the subspace generated bym1a⊗m2 −
m1 ⊗ am2, for all a∈A, mi ∈ Mi . Observe that if M1 and M2 are bimodules, then so
is M1 ⊗A M2.

Let M be a left A-module. If A is graded commutative (skew-commutative), we
make M into a bimodule by setting ma := (−1)ij am (ma := −(−1)ij am) , a ∈ Ai ,
m ∈ Mj . We may regard A ⊕ M as a graded commutative (skew-commutative)
algebra by setting the product of two elements in M to zero. If A is a GLA, then so
is A⊕M .

Let A be graded commutative. For every A-module M , we define inductively
the A-module T kA(M) as T k−1

A (M) ⊗A M , with T 0
A(M) := A. So one gets the

graded associative algebra TA(M) := ⊕j∈NT
j
A(M) which is also an A-bimodule.

The symmetric algebra SA(M) is defined as the quotient of TA(M) by the two-sided
ideal generated by vw−(−1)ijwv, v ∈ Mi ,w ∈ Mj . We denote by ŜA(M) its formal
completion.

2.1.3. Derivations and multiderivations. A j -graded endomorphism D of a grad-
ed algebra A is called a j -graded derivation if D(ab) = D(a)b + (−1)ij aD(b) for
all a ∈ Ai , i ∈ Z, and all b ∈ A. For example, if A is a GLA, [a, ] is an i-graded
derivation for every a ∈ Ai . A differential is a derivation of degree 1 that squares to
zero. A differential graded Lie algebra (DGLA) is a GLA with a differential.

We denote by Derj (A) the space of j -graded derivations of a graded algebra A
and set Der(A) = ⊕j∈Z Derj (A). It is a GLA with bracket [D1,D2] := D1D2 −
(−1)j1j2D2D1, Di ∈ Derji (A). Observe that Der(A) is a left A-module while A is
a left Der(A)-module. Thus, for every n, we may regard Der(A) ⊕ A[n] as a GLA
with the property

[X, fg] = (−1)jkf [X, g] + [X, f ]g,
for all X ∈ Der(A)j , f ∈ Ak , g ∈ A.

(2.1)

Given a graded commutative algebraA, we define the algebra D̂(A, n) ofn-shifted
multiderivations by D̂(A, n) := ŜA(Der(A)[−n]), and denote by D(A, n) its subal-
gebra SA(Der(A)[−n]). Observe that the GLA structure on Der(A) ⊕ A[n] can be
extended to D(A, n)[n] and to D̂(A, n)[n] in a unique way, compatible with (2.1),
such that

[D1,D2D3] = (−1)(j1+n)j2D2[D1,D3] + [D1,D2]D3, Di ∈ D(A)ji .
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By this property, D̂(A, n) is a so-called n-Poisson algebra. For n = 0, it is a graded
Poisson algebra. A 1-Poisson algebra is also called a Gerstenhaber algebra. Since
this case is particularly important, we will use the special notation D̂(A) (D(A)) for
D̂(A, 1) (D(A, 1)). Elements of D̂(A) are simply called multiderivations. More
precisely, elements of SjA(Der(A)[−1]) are called j -derivations, and a j -derivation
is said to be of degree k and of total degree j + k if it belongs to D̂(A)j+k .

Given an n-Poisson algebra (P, •, [ , ]), one defines ad : P → Der(P ) by
adX Y := [X, Y ], X, Y ∈ P . The n-Poisson algebra is said to be nondegenerate
if ad is surjective (in other words, if the first Lie algebra cohomology of P with
coefficients in its adjoint representation is trivial).

2.1.4. The Hochschild complex. For a given a graded vector space A one defines
Hochj,m(A) = Homj (A⊗m,A), Hochn(A) = ⊕

j+m=n Hochj,m(A), and the Hoch-
schild complex Hoch(A) = ⊕

n Hochn(A). One may compose elements of Hoch(A)

as follows: given φ ∈ Hochj1,m1 and ψ ∈ Hochj2,m2 , one defines the nonassociative
product

φ • ψ = (−1)(j2+m2−1)(m1−1)
∑
i

(−1)i(m2−1)φ � (1⊗i ⊗ ψ ⊗ 1⊗(m1−1−i))

∈ Hochj1+j2,m1+m2−1.

It turns out that its associated bracket [φ,ψ] := φ•ψ−(−1)(j1+m1−1)(j2+m2−1)ψ •φ
makes Hoch(A)[1] into a GLA.A product onA is an elementμ of Hoch0,2(A). Define
b = [μ, ]. Then b is a differential on Hoch(A)[1] iff the product is associative.

2.1.5. Differential and multidifferential operators. Given a graded associative
algebra A and graded derivations φi ∈ Der(A)ji , the composition φ1 � · · · � φk is
an element of Hochj1+···+jk,1. A differential operator on A is by definition a linear
combination of homomorphisms of this form. A multidifferential operator is a linear
combination of elements of Hoch(A) of the form (a1, . . . , an) 
→ φ1(a1) . . . φn(an)

where each φi is a differential operator. Denote by D(A) the Lie subalgebra of mul-
tidifferential operators in Hoch(A)[1]. As the product is a multidifferential operator
itself, D(A) is also a subcomplex of (Hoch(A)[1], b). ForA graded commutative, one
defines the HKR map (Hochschild–Kostant–Rosenberg [26]) HKR : D(A) → D(A)
as the linear extension of

φ1 . . . φn 
→
(
a1 ⊗ · · · ⊗ an 
→

∑
σ∈Sn

sign(σ )φσ(1)(a1) . . . φσ(n)(an)
)
,

where theφis are derivations and the sign is given byφσ(1). . . φσ(n) = sign(σ )φ1 . . . φn
in D(A). It turns out that HKR is a chain map (D(A), 0) → (D(A), b). It is a clas-
sical result [26] that in certain cases (e.g., when A is the algebra of smooth functions
on a smooth manifold), HKR is a quasiisomorphism (i.e., it induces an isomorphism
in cohomology).
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2.2. Graded vector spaces. To fix notations, from now on we assume the ground
field to be R. For simplicity we consider only finite-dimensional vector spaces. We
define the algebra of polynomial functions over a graded vector space V as the sym-
metric algebra ofV ∗ and the algebra of smooth functions as its formal completion. We
use the notations C∞(V ) := S(V ∗) ⊆ Ĉ∞(V ) := Ŝ(V ∗). Elements of S0(V ∗) � R

will be called constants functions.

2.2.1. Multivector fields. A vector field on V is by definition a linear combination
of graded derivations on its algebra of functions. We use the notations X(V ) :=
Der(C∞(V )), X̂(V ) := Der(Ĉ∞(V )). Observe that we may identify X(V ) and X̂(V )

with C∞(V )⊗V and Ĉ∞(V )⊗V , respectively. Elements of S0(V ∗)⊗V � V will
be called constant vector fields.

Multivector fields are by definition multiderivations. In particular, k-vector fields
are k-multiderivations, and we define their degree and total degree correspondingly.
We use the notations X(V ) := D(C∞(V )) and X̂(V ) := D̂(Ĉ∞(V )) for the cor-
responding Gerstenhaber algebras. We also define the n-Poisson algebras X(V , n)

and X̂(V , n) of n-shifted multivector fields as D(C∞(V ), n) and D̂(Ĉ∞(V ), n). We
have the following identifications:

X(V , n) � S(V ∗) ⊗S(V [−n]) � C∞(V ⊕ V ∗[n]), (2.2a)

X̂(V , n) � Ŝ(V ∗) ⊗̂ Ŝ(V [−n]) � Ĉ∞(V ⊕ V ∗[n]). (2.2b)

2.2.2. Berezinian integration. Let V be an odd vector space (i.e., a graded vector
space with nontrivial components only in odd degrees). By integration we simply
mean a linear form on its space of functions C∞(V ) = Ĉ∞(V ), which is isomorphic,
forgetting degrees, to �V ∗.4 So integration is defined by an element μ of �V . We
use the notation

∫
V
f μ for the pairing 〈f,μ〉. We call an element of�V a Berezinian

form if its component in�topV , top = dim V , does not vanish. In this case integration
has the property that its restriction to the space of functions of top degree is injective.
A Berezinian form concentrated in top degree, i.e., an element of �topV \ {0}, is
called pure and has the additional property that the corresponding integral vanishes
on functions that are not of top degree. Observe that a pure Berezinian form ρ

establishes an isomorphism φρ : C∞(V ) � �V ∗ ∼→ �V , g 
→ ιgρ. If μ = ιgρ,
then

∫
V
f μ = 〈f, ιgρ〉 = ∫

V
fg ρ, so we simply write gρ instead of ιgρ.

Lemma 2.1. Given a pure Berezinian form ρ, for every Berezinian form μ there is a
unique constant c �= 0 and a unique function σ ∈ �>0V ∗ such that μ = ceσ ρ.

Proof. Set g = φ−1
ρ (μ). If μ is a Berezinian form, its component c in �0V ∗ is

invertible. So we may write, g = c(1 + h) with h ∈ �>0V ∗. Finally we define
σ = log(1+h) = ∑∞

k=1(−1)k+1hk/k (observe that this is actually a finite sum). �

4By �V , we mean the usual exterior algebra of V regarded as an ordinary vector space.
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Lemma 2.2. For every Berezinian form μ, there is a map divμ : X(V ) → C∞(V )
(the divergence operator) such that∫

V

X(f )μ =
∫
V

f divμXμ for all f ∈ C∞(V ).

Moreover, divcμ = divμ for every constant c �= 0. In particular, all pure Berezinian
forms define the same divergence operator.

Proof. The map f 
→ ∫
V
X(f )μ is linear. So there is a unique μX ∈ �V such that∫

V
X(f )μ = ∫

V
f μX. Given a pure Berezinian form ρ, define gμ = φ−1

ρ (μ) and
g
μ
X = φ−1

ρ (μX). Thus, μX = g
μ
Xρ = g

μ
Xg

−1
μ μ. Then we define divμX as gμXg

−1
μ μ.

Observe that this does not depend on the choice of ρ. �

2.3. Graded vector bundles. A graded vector bundle is a vector bundle whose
fibers are graded vector spaces and such that the transition functions are morphisms
of graded vector spaces. All the constructions for graded vector spaces described
above extend to graded vector bundles. In particular, given a graded vector bundleE,
we may define the shifted graded vector bundles E[n], the dual bundle E∗ (and
E[n]∗ = E∗[−n]), the symmetric algebra bundle S(E) and its formal completion
Ŝ(E). We also define the graded commutative algebras of functions (we restrict for
simplicity to graded vector bundles of finite rank) accordingly in terms of sections
C∞(E) := �(S(E∗)) ⊆ Ĉ∞(E) := �(Ŝ(E∗)). Elements of C∞(E) will be called
polynomial functions.

Remark 2.3. In case the given vector bundle is the tangent or the cotangent bun-
dle of a manifold M , it is customary to write the shift after the T symbol; viz.,
one writes T [n]M and T ∗[n]M instead of TM[n] and T ∗M[n]. According to the
previous remark, we have in particular C∞(T [1]M) = Ĉ∞(T [1]M) = �(M)

and C∞(T ∗[1]M) = Ĉ∞(T ∗[1]M) = X(M), where �(M) = �(�T ∗M) and
X(M) = �(�TM) denote the graded commutative algebras of differential forms
and of multivector fields respectively. Observe that, in terms of graded vector spaces,
we have

�(M) =
dimM⊕
i=0

�i(M)[−i], X(M) =
dimM⊕
i=0

Xi (M)[−i], (2.3)

where �i(M) and Xi (M) are regarded as ordinary vector spaces.

2.3.1. Multivector fields. A vector field on E is a linear combination of graded
derivations on its algebra of functions. We use the notations X(E) := Der(C∞(E)),
X̂(E) := Der(Ĉ∞(E)). A vector field X on E is completely determined by its
restrictions XM to C∞(M) and XE to �(E∗). Observe that XM is a Ĉ∞(E)-valued
vector field on M . Picking a connection ∇ on E∗, we set X∇

E(σ) := X(σ)− ∇XMσ ,
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for all σ ∈ �(E∗). SinceX∇
E isC∞(M)-linear, it defines a bundle mapE∗ → Ŝ(E∗).

The mapX 
→ XM⊕X∇
E is then an isomorphism from X̂(E) to�(ŜE∗⊗(TM⊕E)).

Remark 2.4. We may extend ∇ to the whole of Ĉ∞(E) as a derivation. So ∇XM ,
unlike XM , is a vector field on E. The difference X∇ := X − ∇XM , which we call
the vertical component of X, is then also a vector field with the additional property
that its restriction to C∞(M) vanishes.

Multivector fields are by definition multiderivations. In particular, k-vector fields
are k-multiderivations, and we define their degree and total degree correspondingly.
By X(E) := D(C∞(E)), X̂(E) := D̂(Ĉ∞(E)) we denote the corresponding Ger-
stenhaber algebras. More generally, the n-Poisson algebra X̂(E, n) (X(E, n)) of n-
shifted (polynomial) multivector fields are defined as D̂(Ĉ∞(E), n) (D(C∞(E), n)).
Upon choosing a connection ∇, we have the identifications

X(E, n) � �(SE∗)⊗ �(S((TM ⊕ E)[−n])) � C∞(E ⊕ T ∗[n]M ⊕ E∗[n]),
X̂(E, n) � �(Ŝ(E∗)) ⊗̂ �(Ŝ(TM ⊕ E)[−n]) � Ĉ∞(E ⊕ T ∗[n]M ⊕ E∗[n]).

2.3.2. The Berezinian bundle. We may easily extend the Berezinian integration
introduced in 2.2.2 to every odd vector bundle E → M (i.e., a bundle of odd vec-
tor spaces). A section μ of the “Berezinian bundle” BER(E) := �E ⊗ �topT ∗M ,
top = dimM , defines5 aC∞(M)-linear map 〈 , μ〉 : C∞(E) � �(�E∗) → �top(M).
We set

∫
E
f μ := ∫

M
〈f,μ〉. (For M non compact, this of course makes sense only

for certain functions.) Like in the case of odd vector spaces, we are interested in
integrations that are nondegenerate on the subspace of functions of top degree. These
are determined by sections of the Berezinian bundle whose top component is nowhere
vanishing. We call such sections Berezinian forms. A pure Berezinian form ρ is then
by definition a Berezinian form concentrated in top degree, i.e., a nowhere vanishing
section of the “pure Berezinian bundle” Ber(E) := �topE⊗�topT ∗M (with the first
“top” the rank of E).

Example 2.5. Let E = T ∗[k]M , with k odd and with M orientable and connected.
Then Ber(E) = (�topT ∗M)⊗2. So there is a two-to-one correspondence between vol-
ume forms onM and pure Berezinian forms onE. Let v be a volume form and ρv the
corresponding Berezinian form. If we identify functions on T ∗[k]M with multivector
fields, we may then compute

∫
T ∗[k]M X ρv = ∫

M
φv(X) v, withφv : X(M)

∼→ �(M),
X 
→ ιXv. As a further example, consider the graded vector bundleLC := N∗[k]C, k
odd, where C is a submanifold ofM andN∗C its conormal bundle (defined in (1.6)).
Now BerLC � �topN∗C ⊗ �topT ∗C � �topT ∗

CM , where T ∗
CM is the restriction

of T ∗M to C. Thus, a volume form v on M also determines by restriction a pure
Berezinian form on LC which we denote by

√
ρv as the correspondence is now linear

instead of quadratic. We may identify functions on LC with sections of the exterior

5We consider M to be orientable, otherwise replace the space of top forms with the space of densities.
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algebra of NC. We then have
∫
LC
X

√
ρv = ∫

C
φv(X̃), where X̃ is any multivector

field on M extending a representative of X in �(�TCM). Finally, we have a canon-
ically defined surjective morphism ι∗C : C∞(M) → C∞(C) obtained by restricting a
multivector field to C and modding out its tangent components. One should think of
LC as a submanifold (actually, a Lagrangian submanifold) of T ∗[k]M with inclusion
map denoted by ιC . We then have∫

Lc

ι∗C(X)
√
ρv =

∫
C

φv(X) for all X ∈ �(�TM) � C∞(T ∗[k]M), (2.4)

with the r.h.s. defined to be zero if form degree and dimension do not match.

A pure Berezinian form ρ establishes an isomorphism φρ : C∞(E) � �(�E∗) ∼→
�(BER(E)), g 
→ ιgρ. If μ = ιgρ, then

∫
E
f μ = ∫

M
〈f, ιgρ〉 = ∫

E
fg ρ, so we

simply write gρ instead of ιgρ. Lemmata 2.1 and 2.2 generalize as follows:

Lemma 2.6. Given a pure Berezinian form ρ, for every Berezinian form μ there
is a unique nowhere vanishing function f ∈ C∞(M) and a unique function σ ∈
�(�>0E∗) such that μ = f eσ ρ. If M is connected, there is a unique function
σ ∈ C∞(E) such that μ = eσ ρ or μ = −eσ ρ.

Lemma 2.7. Let E → M be an odd vector bundle with M compact and orientable.
Then, for every Berezinian form μ, there is a map divμ : X(E) → C∞(E) (the
divergence operator) such that∫

E

X(f )μ =
∫
E

f divμXμ for all f ∈ C∞(E).

Moreover, divcμ = divμ for every constant c �= 0.

The proof of Lemma 2.6 is exactly the same as the proof of Lemma 2.1. The
proof of Lemma 2.7 goes as the proof of Lemma 2.2 if we may assume that the map
f 
→ 〈X(f ), μ〉 is C∞(M)-linear. This is the case only for a vertical vector field.
By using Remark 2.4, we write X as ∇XM + X∇ , and X∇ is vertical. By further
writing XM as

∑
i hiX

i
M , with hi ∈ C∞(E) and XiM ∈ X(M), and manipulating the

integral carefully, we end up with terms which are C∞(M)-linear plus terms where
we may apply the usual divergence theorem onM . The expression for divμX is then
easily seen not to depend on the choices involved in this argument.

Remark 2.8. One may easily see that for every vector field X and every function g,
the divergence of gX is the sum (with signs) of gdivμX and X(g).

Integration over an arbitrary graded vector bundle is defined by splitting it into its
odd part (where Berezinian integration may be defined) and its even part (where the
usual integration theory makes sense).
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2.4. Smooth graded manifolds. We are now ready to define smooth graded mani-
folds. We call a graded commutative algebra a graded algebra of smooth (polynomial)
functions if it is isomorphic to the algebra of (polynomial) functions of a graded vec-
tor bundle. Next we denote by ̂GrSmFun (GrSmFun) the category whose objects are
graded algebras of smooth (polynomial) functions and whose morphisms are graded
algebra morphisms. Finally, we define the category ̂SmoothGr (SmoothGr) of smooth
graded manifolds as the dual of ̂GrSmFun (GrSmFun). In particular, graded vector
spaces and graded vector bundles may be regarded as smooth graded manifolds, i.e.,
as objects in ̂SmoothGr or SmoothGr depending on which algebra of functions we
associate to them.

Notation 2.9. If A is an object of GrSmFun, we write Spec(A) for the same object
in SmoothGr. Vice versa, if we start with an object M of SmoothGr, we denote by
C∞(M) the same object in GrSmFun. We use the notations Ŝpec and Ĉ∞ for the
hatted categories. We denote by M̂or(M,N ) (Mor(M,N )) the space of morphisms
from M to N in ̂SmoothGr (SmoothGr).

Remark 2.10. The spaces of morphisms M̂or(M,N ) (Mor(M,N )) may actually
be given the structure of a (possibly infinite-dimensional) smooth manifolds. In
particular, for N = V a graded vector space, they may be regarded as (possibly
infinite-dimensional) vector spaces:

Mor(M, V ) � (V ⊗ C∞(M))0, M̂or(M, V ) � (V ⊗ Ĉ∞(M))0, (2.5)

for C∞(V ) is generated by V ∗, so an algebra morphism from C∞(V ) is determined
by its restriction to V ∗ as a morphism of graded vector spaces.

By our definition, every smooth graded manifold may actually be realized as a
graded vector bundle though not in a canonical way. One often obtains new graded
algebras of smooth functions by some canonical constructions, yet their realization
as algebras of functions of graded vector bundles requires some choice.

Example 2.11. As we have seen at the end of 2.3.1, upon choosing a connection,
we may identify the algebra X̂(E, n) of shifted multivector fields on E with the
graded algebra of smooth functions on E ⊕ T ∗[n]M ⊕ E∗[n]. We write T ∗[n]E for
Spec X̂(E, n) and have, tautologically, Ĉ∞(T ∗[n]E) = X̂(E, n) and, noncanoni-
cally, T ∗[n]E � E ⊕ T ∗[n]M ⊕ E∗[n].

Given two smooth graded manifolds M and N , their Cartesian product M × N
is defined as the smooth graded manifold having C∞(M) ⊗̂ C∞(N ) as algebra of
functions (respectively Ĉ∞(M) ⊗̂ Ĉ∞(N ) in the hatted category).

Remark 2.12 (Graded maps). Unlike in the category of manifolds, in general
Mor(L × M,N ) is not the same as Mor(L,Mor(M,N )) even allowing infinite-
dimensional objects. However, one can show that, given M and N , the func-
tor defined by L 
→ Mor(L × M,N ) is representable by an infinite-dimensional
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smooth graded manifold [44], [36] denoted by Map(M,N ); viz., Mor(L×M,N ) =
Mor(L,Map(M,N )). Similarly, there is a hatted version denoted by M̂ap(M,N )).

For N = V a graded vector space, one can use (2.5)6 and realize the graded
manifolds of maps as graded vector spaces. Namely, one can easily show that

Map(M, V ) � V ⊗ C∞(M), M̂ap(M, V ) � V ⊗ Ĉ∞(M). (2.6)

In particular, one has the useful identities C∞(M) � Map(M,R), Mor(M, V ) =
Map(M, V )0, Map(M, V [k]) = Map(M, V )[k], Map(M, V ⊕W) = Map(M, V )⊕
Map(M,W), and their hatted versions.

On a graded manifold we can then define the notions of vector fields, multivector
fields, Berezinian integration, divergence operator. In particular, if M is a smooth
graded manifold with algebra of functions isomorphic to Ĉ∞(E) for some graded
vector bundleE, we have that X̂(M, n) := D̂(Ĉ∞(M), n) is isomorphic to X̂(E, n),
so it is a graded algebra of smooth functions. We denote Spec(X̂(M, n)) by T ∗[n]M
and have, tautologically,

Ĉ∞(T ∗[n]M) = X̂(M, n), (2.7)

and, noncanonically,

T ∗[n]M � E ⊕ T ∗[n]M ⊕ E∗[n]. (2.8)

Remark 2.13 (Multidifferential operators). Multidifferential operators may be de-
fined as in 2.1.5. We will use the notations D(M) and D̂(M) for the DGLAs
D(C∞(M)) and D(Ĉ∞(M)). The HKR maps X(M) → D(M) and X̂(M) →
D̂(M) are quasiisomorphisms of differential complexes [17] (see also [18]).

2.4.1. Poisson structures. A smooth graded manifold M is called a graded Pois-
son manifold of degree n if Ĉ∞(M) is endowed with a bracket that makes it into
an n-Poisson algebra. By (2.7), for every smooth graded manifold M, T ∗[n]M
is a Poisson manifold of degree n in a canonical way. As a Poisson bracket is a
graded biderivation, an n-Poisson structure on Ĉ∞(M) determines an element π of
(S2

Ĉ∞(M)
(Der(Ĉ∞(M))[−1 −n]))2+n. The Jacobi identity for the Poisson bracket is

then equivalent to the equation [π, π ] = 0. A bivector field of degree −n satisfying
this equation will be called an n-Poisson bivector field. The Poisson bracket of two
functions f and g may then be recovered as the derived bracket

{f, g} = [[f, π ], g], (2.9)

where f and g are regarded on the r.h.s. as 0-vector fields.

6The equation holds also for an infinite-dimensional graded vector space V , if one works from the beginning
in terms of coalgebras instead of algebras of functions so as to avoid taking double duals.
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If the n-Poisson structure of a graded Poisson manifold is nondegenerate, we speak
of a graded symplectic manifold of degree n.

So T ∗[n]M is a graded symplectic manifold of degree n in a canonical way.7 We
call (anti)symplectomorphism between two graded symplectic manifolds a morphism
of the underlying smooth graded manifolds that yields an (anti) isomorphism of the
Poisson algebras of functions. We have the following fundamental

Theorem 2.14 (Legendre mapping [34]). Let E be a graded vector bundle. Then
T ∗[n]E is canonically antisymplectomorphic to T ∗[n](E∗[n]) for all n.

Observe that (2.8) implies that the two graded manifolds in the theorem are diffeo-
morphic. The additional statement is that there is a diffeomorphism preserving Pois-
son brackets up to a sign and that it is canonical (i.e., independent of the choice of
connection used to prove (2.8)). For a proof, see [34].

Remark 2.15. The name “Legendre mapping” comes from the simplest instance [43]
of this theorem in the category of manifolds, T ∗TM � T ∗T ∗M , which induces the
usual Legendre transformation of functions. The generalization T ∗E � T ∗E∗ is due
to [32]. The explicit expression in coordinates of this map also suggests the name of
“Fourier transformation” which is used in [17].

2.5. Further readings. In this short introduction we did not consider: local coor-
dinates, the definition of graded manifolds as ringed spaces, differential and integral
forms as well as a proper definition of graded submanifolds and of infinite-dimensional
graded manifolds. We refer to [35] and references therein for further reading on graded
manifolds. For supermanifolds, see also [4], [9], [21], [30], [44].

3. The BV formalism

We give here a presentation of the BV formalism [5], [23] (which is a generalization
of the BRST [8], [42] formalism) based mainly on [38]. See also [2], [3], [13], [22],
[24], [25].

3.1. De Rham theory revisited. Let M be a smooth orientable manifold with a
volume form v and φv the isomorphism defined in Example 2.5. Define �v :=
φ−1
v � d � φv where d is the exterior derivative. (Observe that �v restricted to vector

fields is just the divergence operator.) So �2
v = 0. Since φv is not an algebra

morphism, �v is not a derivation; one can however show that

�v(XY) = �v(X)Y + (−1)iX�v(Y )+ (−1)i[X, Y ], X ∈ Xi (M), Y ∈ X(M).
(3.1)

7It may be proved [38] that every graded symplectic manifold of degree 2k + 1 is isomorphic to some
T ∗[2k + 1]M with canonical symplectic structure.
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Since φv(X) is a differential form, it is natural to integrate it on a submanifold of the
corresponding degree. Stokes’ Theorem may then be reformulated by saying that the
integral vanishes if X is �v-exact, and that it is invariant under cobordisms if X is
�v-closed. Using the language of smooth graded manifolds as in Example 2.5, we
then have the

Theorem 3.1. Let v be a volume form on M and X a function on T ∗[k]M , k odd.
Then:

1.
∫
LC
X

√
ρv = ∫

LC′ X
√
ρv for every two cobordant submanifolds C and C′ of

M iff X is �v-closed.

2.
∫
LC
X

√
ρv = 0 for every C iff X is �v-exact.

Let QX := [X, ] denote the Hamiltonian vector field of X ∈ C∞(T ∗[k]M) �
X(M, k), k odd. Using (3.1) and Stokes’ Theorem, one easily has the following
characterization of �v in terms of the canonical symplectic structure of T ∗[k]M:

Theorem 3.2. �vX = 1
2 divρvQX for every volume form v.

By Lemma 2.6, we know that every Berezinian form on T ∗[k]M may be written,
up to a constant, as eσ ρv =: ρσv for some volume form v and some function σ . We
write

√
ρσv := e

σ
2

√
ρv . By Theorem 3.1,

∫
LC

√
ρσv is the same for all cobordant sub-

manifolds iff e
σ
2 is�v-closed. Assuming for simplicity σ to be even, by Theorem 3.2

and Remark 2.8, one can show that this is the case iff

�vσ + 1

4
[σ, σ ] = 0. (3.2)

Given a solutionσ of this equation, one can define a new coboundary operator�v,σ :=
�v + 1

2Qσ . Remark that �Xv,σ = e− σ
2�v(e

σ
2X). Thus, multiplication by e

σ
2 is

an invertible chain map (C∞(T ∗[k]M),�v,σ ) → (C∞(T ∗[k]M),�v) and the two
cohomologies are isomorphic. Moreover, Theorem 3.1 is still true if one replaces
(ρv,

√
ρv,�v) by (ρσv ,

√
ρσv ,�v,σ ).

3.2. The general BV formalism. Even though the above setting is all we need in
the present paper, for completeness we give an overview of the general results of [38].
For this one needs the notion of submanifold of a graded manifold as well as notions
of symplectic geometry on graded manifolds which we are not going to introduce
here.

Theorem 3.3. Let k be an odd integer. Then:

1. Theorem 3.1 holds if M is a graded manifold and v a Berezinian form.

2. Every graded symplectic manifold of degree k is symplectomorphic to some
T ∗[k]M with canonical symplectic form.
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3. There is a canonical way (up to a sign) of restricting a Berezinian form ρv on
T ∗[k]M to a Berezinian form denoted by

√
ρv on a Lagrangian submanifold.

4. Every Lagrangian submanifoldL of T ∗[k]M may be deformed to a Lagrangian
submanifold of the form LC , with C a submanifold of M .

5. If X is �v-closed, then
∫
L
X

√
ρv = ∫

L′ X
√
ρv if L may be deformed to L′.

6. If X is �v-exact, then
∫
L
X

√
ρv = 0 for every Lagrangian submanifold L.

3.2.1. Generating functions. To do explicit computations, it is useful to describe the
Lagrangian submanifold in terms of generating functions. Generalizing concepts from
symplectic geometry to graded manifolds, one sees that the graph of the differential
of a function of degree k on M is a Lagrangian submanifold of T ∗[k]M . Such a
function is called a generating function. However, Lagrangian submanifolds of this
form project ontoM; so certainly a conormal bundle cannot be represented this way.

A slightly more general setting is the following. We assume here some knowledge
of symplectic geometry (see e.g. [6]) and generalize a classical construction. Let U
be an auxiliary graded manifold, and let f be a function of degree k on M × U .
Let � be the U -critical set of f ; i.e., the subset M × U where the differential of f
along U vanishes. Assume � to be a submanifold and let φ : � → T ∗M be defined
by (x, u) 
→ (x, df (x, u)). Then φ is a Lagrangian immersion whose image we
denote by L(f ).

For example, if C is a submanifold of M defined by global regular constraints
φ1, . . . , φr , with φj of degree nj , we may take U := ⊕r

j=1 R[nj − k] and define

� = ∑
j β

jφj , where βj is the coordinate on R[nj − k]. It turns then out that

L(�) = N∗[k]C.8 We regard now � as a function on M̃ := M × U × U [−k] and
denote by L� the graph of its differential. On U × U [−k], we choose the Lebesgue
measure for the even components and a pure Berezinian form for the odd ones. We
denote by ṽ the Berezinian form on M̃ obtained by this times ρv . Finally, let u be the
pairing between U and U∗ regarded as a function of degree zero on U [−k] × U∗[k]
and hence, by pullback, on T ∗[k]M̃ . Then a simple computation (using the Fourier
representation of the delta function) shows that∫

N∗[k]C
Xe

σ
2

√
ρv =

∫
L�

Xe
σ
2 +iu√

ρṽ.

Observe that deforming� just deforms the Lagrangian submanifold (which in general
will no longer be a conormal bundle) but leaves the result unchanged.

3.3. BV notations. The BV formalism consists of the above setting with k = −1 (for
historical reasons). The −1-Poisson bracket is called BV bracket and usually denoted

8In the absence of global regular constraints, conormal bundles may be described by a further generalization
of generating functions, the so-called Morse families. See, e.g., [6].
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by ( , ). The coboundary operator �v is called the BV Laplacian, has degree 1 and,
as v is fixed, is usually simply denoted by �. A solution σ to (3.2) is usually written
as σ = 2 i

h̄
S, where S is called the BV action and satisfies the so-called “quantum

master equation” (QME) (S,S) − 2ih̄�S = 0. Here h̄ is a parameter and S is
allowed to depend on h̄. If S is of degree 0, as it is usually assumed, then QS is
of degree 1. The coboundary operator �v,σ is then also homogeneous of degree 1.
Setting � := −ih̄�v,σ , we have � = QS − ih̄�. An �-closed element O is called
an observable, and its expectation value

〈O〉 :=
∫
L

e
i
h̄

S O
√
ρv∫

L
e

i
h̄

S √
ρv

(3.3)

is invariant under deformations of L. The choice of an L goes under the name of
gauge fixing.9 Expectation values of �-exact observables vanish, but they may lead
to interesting relations called Ward identities.

Remark 3.4. One often assumes h̄ to be “small.” Actually, one even takes S to be
a formal power series in h̄, S = ∑∞

i=0 h̄
iSi . Then S0 satisfies the “classical master

equation” (CME) (S,S) = 0 andQS0 is a coboundary operator (sometimes called the
BRST operator). One may look for solutions of the QME starting from a solution S0
of the CME. One easily sees that there is a potential obstruction to doing this (the
so-called anomaly) in the second cohomology group of QS0 .

Remark 3.5. An observable O of degree zero may also be thought of as an infinites-
imal deformation of the BV action, for S + εO then satisfies the CME up to ε2. For
this to be a finite deformation, we should also assume (O,O) = 0.

3.4. Applications. Suppose that the integral of e
i
h̄

S along a Lagrangian submani-
fold L is not defined, but that it is enough to deform L a little bit for the integral
to exist. Then one defines the integral along L as the integral along a deformed La-
grangian submanifold L′. For a given cobordism class of deformations, the integral
does not depend on the specific choice of L′ if S is assumed to satisfy the QME. This
is really analogous to the definition of the principal part of an integral [22].

The typical situation is the following: One starts with a function S defined on
some manifold M. One assumes there is a (nonnecessarily integrable) distribution
on M – the “symmetries” – under which S is invariant. One then adds odd variables
of degree 1 (the generators of the distribution, a.k.a. the ghosts) defining a graded
manifold M̃ which fibers over M and is endowed with a vector field δ that describes
the distribution. Then one tries to extend S to a solution S0 ∈ C∞(T ∗[−1]M̃) of the
CME such that QS0 and δ are related vector fields. Under the assumption that the
original distribution is integrable on the subset (usually assumed to be a submanifold)

9This is usually done as explained in 3.2.1 by using an auxiliary space and a generating function � which is
in this case of degree −1 and is called the gauge-fixing fermion.
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of critical points of S, one can show that this is possible under some mild regularity
assumptions [5]. The next step is to find a solution of the QME as in Remark 3.4 if
there is no anomaly.

Because of the invariance of S, the integral of e
i
h̄
S on M will diverge (if the

symmetry directions are not compact). On the other hand, if we integrate over M̃ we
also have zeros corresponding to the odd directions which we have introduced and
along which S is constant. If we introduce all generators, we have as many zeros as
infinities, so there is some hope to make this ill-defined integral finite. This is actually
what happens if we find a solution of the QME as in the previous paragraph and
integrate on a different Lagrangian submanifold of T ∗[−1]M̃ than its zero section M̃.

Given a function O on M, it makes sense to define its expectation value as in (3.3)
if there is an observable O whose restriction to M is O.

Remark 3.6 (Field theory). In field theory one considers integrals of the form (1.8)
withM infinite dimensional. Integration around critical points is defined by expanding
the non quadratic part of S and evaluating Gaussian expectation values. If there are
symmetries, the critical points are degenerate and one cannot invert the quadratic form.
One then operates as above getting an integral with the quadratic part of the BV action
nondegenerate, so one can start the perturbative expansion.10 This is not the end of the
story since two problems arise. The first is that the formal evaluation of the Gaussian
expectation values leads to multiplying distributions. The consistent procedure for
overcoming this problem, when possible, goes under the name of renormalization.
The second problem is that, in the absence of a true measure, there is no divergence
operator and thus no well-defined BV Laplacian �. This is overcome by defining �
appropriately in perturbation theory. On the other hand, the BV bracket is well-
defined (on a large enough class of functions). In the present paper the field theory
is so simple that renormalization is (almost) not needed, so we will not talk about it.
On the other hand, it makes sense [14] to assume that � exists and vanishes on the
local functionals we are going to consider, while on products thereof one uses (3.1).

4. BV 2D TFT

We go back now to our original problem described in the Introduction. This may also
be regarded as a continuation of our presentation in [10, Part III].

4.1. The BV action. We start by considering the TFT with action (1.1) and sym-
metries (1.2). We promote the generators β of the symmetries to odd variables of
degree 1; i.e., we define M̃1 = M1 ⊕�0(�)[1] and the vector field δ by its action on
the linear function ξ , η and β: δξ = 0, δη = dβ, δβ = 0. Using integration on�, we
identify T ∗[−1]M̃1 with M̃1 ⊕�2(�)[−1] ⊕�1(�)[−1] ⊕�2(�)[−2] and denote

10In order to have Gaussian integration on a vector space, one defines integration along the chosen Lagrangian
submanifold via a generating function as explained in 3.2.1 and in footnote 9.
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the new coordinates, in the order, by ξ+, η+ and β+. We introduce the “superfields”
ξ = ξ + η+ + β+, η = β + η + ξ+, and define

S(ξ , η) :=
∫
�

η dξ , (4.1)

where by definition the integration selects the 2-form. It is not difficult to see that S
satisfies the master equation and S|M1

= S. Moreover, the action of QS on the
coordinate functions may be summarized in

QSξ = dξ , QSη = dη. (4.2)

So QS and δ are related vector fields.
By (2.3), we may regard ξ as an element of�(�) and η as an element of�(�)[1].

As �(�) = C∞(T [1]�), by Remark 2.12 at the end we may further identify �(�)
with Map(T [1]�,R) and �(�)[1] with Map(T [1]�,R[1]) or, equivalently, with
Map(T [1]�,R∗[1]). The latter choice is more appropriate in view of (4.1) where
we pair ξ with η. By Remark 2.12 at the end again, we have eventually the identi-
fication T ∗[−1]M̃1 � Map(T [1]�, T ∗[1]R), where we have identified R ⊕ R∗[1]
with T ∗[1]R (by the results of Example 2.11 with E = R as a vector bundle over a
point). This is actually the viewpoint taken in [1] (see also [15]). Finally, observe
that we may also regard T ∗[−1]M̃1 as Map(T [1]�, T ∗[1]R[0]) (which is actually a
submanifold) if we wish to consider formal power series in the coordinate functions.

The ill-defined integration on M̃1 is now replaced by a well-defined (in the
sense of perturbation theory) integration over another Lagrangian submanifold L
of T ∗[−1]M̃[−1]. For example, as in [14], we may take L = N∗[−1]C where C
is the submanifold of M̃ defined as the zero locus of d ∗ η, where the Hodge-star
operator is defined upon choosing a volume form on �.

4.2. The superpropagator. The main object appearing in the explicit evaluation
of expectation values of functions of ξ and η is the “superpropagator” 〈ξ(z)η(w)〉,
where z and w are points in �. Independently of the choice of gauge fixing, we have
the Ward identity

0 = 〈�(ξ(z)η(w))〉 = 〈QS(ξ(z)η(w))〉 − ih̄〈�(ξ(z)η(w))〉
= d〈(ξ(z))η(w)〉 − ih̄〈(ξ(z), η(w))〉 = d〈(ξ(z))η(w)〉 − ih̄δ(z, w),

where we assumed �(ξ(z)) = �(η(w)) = 0 (which is consistent with perturbation
theory) and δ denotes the delta distribution (regarded here as a distributional 2-form).
Thus, we get the fundamental identity11

d〈(ξ(z)η(w)〉 = ih̄δ(z, w). (4.3)

11This method for deriving properties of the superpropagator just in terms of Ward identities works also for
the higher-dimensional generalization of this TFT [19].
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The restriction of the superpropagator to the configuration space C2(�) := {(z, w) ∈
� × � : z �= w} is then a closed, smooth 1-form. Namely, we set ih̄θ(z, w) :=
〈ξ(z)η(w)〉, (z, w) ∈ C2(�). Then θ ∈ �1(C2(�)) and dθ = 0. We call it the
propagator 1-form. The delta distribution in (4.3) implies that

∫
γ
θ = 1 where γ is

generator of the singular homology of C2(�) (viz., γ is a loop of w around z or vice
versa). Observe that θ is defined up to an exact 1-form. Different choices of gauge
fixing just correspond to different, but cohomologous, choices of θ .

If ∂� �= ∅, we have to choose boundary conditions. Repeating the considerations
in the Introduction, we see that there are two possible boundary conditions compatible
with (4.2); viz.:

Neumann boundary conditions: ι∗∂�η = 0, (N)

Dirichlet boundary conditions: ι∗∂�ξ = 0, (D)

For ∂� = ∅, the BV action (4.1) is invariant under the exchange of η with ξ .
This implies that ψ∗θ = θ with ψ(z,w) = (w, z).12 For ∂� �= ∅, we denote by
θN and θD the propagator 1-forms corresponding to N and D boundary conditions,
respectively. These 1-forms have to satisfy in addition boundary conditions. Let
∂iC2(�) = {(z1, z2) ∈ C2(�) : zi ∈ ∂�} and ιi the inclusion of ∂iC2(�) into
C2(�). Then we have ι∗1θD = 0 and ι∗2θN = 0. These 1-forms are no longer invariant
under the involutionψ defined above; they are instead related by it: viz.,ψ∗θN = θD .

4.3. Duality. Exchanging the superfields has a deeper meaning. Observe that the
0-form component ξ of ξ is an ordinary function (of degree zero), while the 0-com-
ponent form β of η has been assigned degree 1 and has values in R∗. So, when we
make this exchange, we are actually exchanging, loosely speaking, a map ξ : � →
R[0] with a map β : � → R∗[1]. In exchanging the superfields, we are then ac-
tually performing the canonical symplectomorphism Map(T [1]�, T ∗[1]R[0]) →
Map(T [1]�, T ∗[1]R∗[1]) which is induced by the canonical symplectomorphism
T ∗[1]R[0] → T ∗[1]R[1], a special case of the Legendre mapping of Theorem 2.14.
If we now take the graded vector space R[k] as target, the superfield exchange is a
symplectomorphism Map(T [1]�, T ∗[1]R[k]) → Map(T [1]�, T ∗[1]R∗[1 − k]). In
conclusion, the TFT with target R[k] is equivalent to the TFT with target R∗[1 − k]
is � has no boundary, whereas, if � has a boundary, the TFT with target R[k] and N
boundary conditions is equivalent to the TFT with target R∗[1 − k] and D boundary
conditions. Thus, upon choosing the target appropriately, one may always assume to
have only N boundary conditions.

4.4. Higher-dimensional targets. We may allow a higher-dimensional target as in
(1.3) or in (1.5), and it makes sense for it to be a graded vector space or a graded man-
ifold M . Now the space of fields may be identified with Map(T [1]�, T ∗[1]M). For

12The cohomology class of a propagator 1-form is necessarily ψ-invariant. The stronger condition is that it is
ψ-invariant without passing to cohomology.
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simplicity, assume the target to be a graded vector space V (which is anyway the local
version of the general case). Upon choosing a graded basis {eI } and its dual basis {eI },
we may consider the components ξ i and ηi of the superfields. The superpropagator
may then be computed as 〈ξ I (z)ηJ (w)〉 = ih̄θ(z, w)δIJ , (z, w) ∈ C2(�), where θ is
the 1-form propagator of the TFT with target R. Again we are allowed to exchange
superfields, but we may decide to exchange only some of them. Let V = W1 ⊕W2. A
superfield exchange corresponding to W2-components establishes a symplectomor-
phism Map(T [1]�, T ∗[1](W1 ⊕ W2) � Map(T [1]�, T ∗[1](W1 ⊕ W ∗

2 [1]). If we
have N boundary conditions on the W1-components and D boundary conditions on
the W2-components, the exchange yields a theory with only N boundary conditions.

If we work with target a graded manifold M and D boundary conditions on a
graded submanifold C, the perturbative expansion actually sees as target the graded
submanifold N[0]C of M (as a formal neighborhood of C). As a consequence of
the previous considerations, this is the same as the TFT with target N∗[1]C and N
boundary conditions. This case has been studied in [16], [17].

4.4.1. Assumptions. From now on we assume that � is the disk and that on its
boundary S1 we put N boundary conditions. We also choose a point ∞ ∈ S1 and fix
the map X to take the value x ∈ M at ∞. By setting X = x + ξ we identify the
theory with targetM with the theory with target the graded vector space Tx[0]M . The
superfield ξ ∈ Map(T [1]�, Tx[0]M) is then assumed to vanish at ∞.

4.5. Ward identities and formality theorem. There exists a class of interesting
observables associated to multivector fields on the target. For simplicity we assume
the target to be a graded vector space V , make the identification (2.2) and use a graded
basis. So, for a k-vector field F ∈ X(V ), we define

SF (ξ , η) = 1

k!
∫
�

F i1...ik (ξ)ηi1 . . . ηik . (4.4)

Since QSSF = 1
k!

∫
∂�
F i1...ik (ξ)ηi1 . . . ηik ., we have defined an observable unless F

is a 0-vector field (i.e., a function), for one may show [14] that it is consistent to
assume �SF = 0. We will call observables of this kind bulk observables. By linear
extension, we may associate a bulk observable to every element F ∈ X̂(V ). If F is
of total degree f , then SF is of degree f − 2. One may also show [14] (see also [15])
that (SF ,SG) = S[F,G] for any two multivector fields F and G. Another interesting
class of observables is associated to functions on the target. Given a function f and
a point u ∈ ∂�, we set Of,u(ξ , η) = f (ξ(u)) = f (ξ(u)). Since QSOf,u = 0 as u
is on the boundary, since the difference Of,u − Of,u′ is equal QS

∫ ′u
u
f (ξ) and since

one may consistently set to zero � applied to functions of ξ only, we have defined
new observables, which we will call boundary observables, in which the choice of u
is immaterial.

A product of observables is in general not an observable (since � is not a deriva-
tion). A product which is however an observable is O(F ; f1, . . . , fk)u1,...uk :=
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SFOf1,u1 . . .Ofk,uk , where F is a k-vector field, k > 0, the fis are functions and
the uis are ordered points on the boundary. The expectation value may easily be
computed [14] and one gets 〈O(F ; f1, . . . , fk)u1,...uk 〉 = HKR(F )(f1 ⊗ · · · ⊗ fk).
More generally, one may define

O(F1, . . . , Fm; f1, . . . , fk)u1,...uk := SF1 . . .SFmOf1,u1 . . .Ofk,uk .

One may show [14] that the expectation value of O(F1, . . . , Fm; f1, . . . , fk)u1,...uk

may be regarded as a multidifferential operatorUm(F1, . . . , Fm) acting on f1 ⊗· · ·⊗
fk . This way one defines multilinear maps Ums from X to D. However, the explicit
form of the multidifferential operators will depend on the chosen gauge fixing as
O(F1, . . . , Fm; f1, . . . , fk)u1,...uk is not an observable in general. One may get very
interesting identities relating the Ums by considering the Ward identities

0 = 〈�O(F1, . . . , Fm; f1, . . . , fk)u1,...uk 〉. (4.5)

One may show [14] that the various contribution of the r.h.s. correspond to collapsing
in all possible ways some of the bulk observables together with some of the boundary
observables (with consecutives us). As a result one gets relations among the Ums. To
interpret them, we have to introduce some further concepts.

Definition 4.1. AnL∞-algebra13 [29], [41] is a graded vector space V endowed with
operations (called multibrackets) Lk ∈ Hom1(S

kV, V ), k ∈ N, satisfying for all
n ≥ 0 and for all v1, . . . , vn ∈ V∑
k+l=n

∑
σ∈(k,l)-shuffles

sign(σ )Ll+1(Lk(vσ(1), . . . , vσ(k)), vσ(k+1), . . . , vσ(n)) = 0,

where a (k, l)-shuffle is a permutation on k+ l elements such that σ(1) < · · · < σ(k)

and σ(k + 1) < · · · < σ(k + l), while the sign of the permutation σ is defined by
vσ(1) . . . vσ(n) = sign(σ )v1 . . . vn in SkV . We call flat an L∞-algebra with L0 = 0.

In a flat L∞-algebra, L1 is a coboundary operator. We denote by H(V ) the
L1-cohomology. Observe that H(V )[−1] acquires a DGLA structure.

For V finite dimensional, we may identify Hom1(SV, V )with (SV ∗ ⊗V )1 and so
with X(V )1. An L∞-algebra on V is then the same as the data of a “cohomological
vector field” (i.e., a vector field of degree 1 that squares to zero). The same holds in
the infinite-dimensional case if one defines things appropriately.

Example 4.2. A (D)GLA g may be regarded as a flatL∞-algebra by setting V = g[1]
and defining Lk to be the Lie bracket for k = 2 (and the differential for k = 1), while
all other Lks are set to zero.

One may introduce the category of L∞-algebras by defining an L∞-morphism
from V toW to be a sequence of morphisms SV → W with appropriate relations be-
tween the two sets of multibrackets. We do not spell these relations here. They essen-
tially state that there is a morphism V → W as (possibly infinite-dimensional) graded

13We follow here the sign conventions of [45].
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manifolds such that the corresponding homological vector fields are related. We write
U : V � W for anL∞-morphisms with componentsUm ∈ Hom0(S

mV,W). An im-
portant properties of the definition is the following: If V and W are flat and U0 = 0,
then U1 is a chain map. If U1 induces an isomorphism in cohomology, one says
that U is an L∞-quasiisomorphism. If in addition V has zero differential, V [−1] is
isomorphic as a GLA to H(W)[−1], and one says that W [−1] is formal. Finally we
may interpret the Ward identities (4.5) in terms of the DGLAs V̂(M) := X̂(M)[1]
and D̂(M) as flat L∞-algebras:

Theorem 4.3 (Formality Theorem). There is anL∞-morphismU : V̂(M) � D̂(M),
with U1 the HKR map. So U is an L∞-quasiisomorphism and the DGLA D̂(M) is
formal.

The Ward identities are not a full proof of the theorem as all arguments using
infinite-dimensional integrals have to be taken with care (e.g., we have always as-
sumed that we can work with the BV Laplacian � which is actually not properly
defined). They however strongly suggest that such a statement is true. One may
check that this is the case by inspecting the finite-dimensional integrals (associated to
the Feynman diagrams) appearing in the perturbative expansion. For M an ordinary
smooth manifold, the Formality Theorem has been proved by Kontsevich in [28]. For
a proof when M is a smooth graded manifold, see [17].

4.6. Deforming the action: The Poisson sigma model. As we observed in Re-
mark 3.5, an observable of degree zero that commutes with itself may be used to
deform the BV action. By considering bulk observables (4.4), we get a deformed BV
action Sdef

F = S + εSF for every self-commuting F = ∑
i Fi ∈ X(M)2, Fi is an

i-vector field, which does not contain a 0-vector field (i.e., F0 = 0).
An element x of degree one of a DGLA is called an MC (for Maurer–Cartan)

element if dx+ 1
2 [x, x] = 0. So F must be in particular an MC element in V(M). A

multivector field F is completely characterized by its derived brackets

λi(a1, . . . , ai) := pr ([ [· · · [ [F, a1], a2], . . . ], ai])
= [ [· · · [ [Fi, a1], a2], . . . ], ai], a1, . . . , ai ∈ Ĉ∞(M),

where pr is the projection from V̂(M) onto the abelian Lie subalgebra Ĉ∞(M). A
consequence of the more general results in [45] is that F is MC iff (Ĉ∞(M), λ) is an
L∞-algebra. The condition F0 = 0 is precisely the condition that this L∞-algebra
is flat. By construction the multibrackets λ are multiderivations, so we call this
L∞-algebra a P∞-algebra (P for Poisson).

A particular case is when F is a Poisson bivector field of degree zero. This is
the only possibility if the target is an ordinary manifold. The only derived bracket is
the Poisson bracket (2.9), and Sdef

F is the BV action of the so-called Poisson sigma
model [27], [37]. Another particular case is when we start with an ordinary Poisson
manifold (P, π) and consider the Poisson sigma model with D boundary conditions
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on a submanifold C. As discussed at the end of 4.4, this is the same as working with
target N∗[1]C and N boundary conditions. The Poisson bivector field π induces,
noncanonically, a Poisson bivector field π̃ on N[0]C which in turns by the Legendre
transform yields an MC element F in V̂(N∗[1]C). As pointed out above, we need
F0 = 0. This is the case iff C is a coisotropic submanifold [16]. A submanifold C of
a Poisson manifold P is called coisotropic if its vanishing ideal I is a Lie subalgebra
of (C∞(P ), { , }).14 The derived brackets on Ĉ∞(N∗[1]C) yield the L∞-algebra
studied in [33]. The zeroth F1-cohomology group is the Poisson algebra C∞(C)I of
{I, }-invariant functions on C. Hamiltonian vector fields of functions in I define an
integrable distribution on C. The leaf space C is called the reduction of C. If it is a
manifold, C∞(C) = C∞(C)I .15

The expectation value of boundary observables in the deformed theory Sdef
F may

easily be computed in perturbation theory by expanding exp(εSF ). As a result one
has just to apply to the functions placed on the boundary the formal power series of
multidifferential operator U(εF) := ∑∞

k=1
εk

k! Uk(F, . . . , F ).
If g is a DGLA, by linearity one may extend the differential and the bracket to

formal power series and so give εg[[ε]] the structure of a DGLA. If x is an MC element
in a GLA g, then εx is an MC element in εg[[ε]]. An L∞-morphism U : g � h

between DGLAs g and h may be extended by linearity to formal power series as well.
If X is an MC element in εg[[ε]], then U(X) is well defined in εh[[ε]] and it may be
proved to be an MC element.

SoU(εF) is an MC element in εD̂(M)[[ε]]. As shown in [17] such an MC element
induces anA∞-structure on Ĉ∞(M)[[ε]]. This is the data of multibracketsAi (with i
arguments) satisfying relations analogous to those of an L∞-algebra but without
symmetry requirements [40], [41]. If A0 = 0, the A∞-algebra is called flat, A1
is a differential for A2, and the A1-cohomology has the structure of an associative
algebra. However, A0 = 0 is not implied by F0 = 0. In [17] it is proved that
a potential obstruction to making the A∞-structure flat is contained in the second
F1-cohomology group. We call this potential obstruction the anomaly.

5. Applications

When the targetM is an ordinary manifold and F is a Poisson bivector field, C∞(M)
is concentrated in degree zero, so the A∞-structure consists just of the bidifferential
operator and is a genuine associative algebra structure. This is the original result by
Kontsevich [28] that every Poisson bivector field defines a deformation quantization
[7] of the algebra of functions.

14According to Dirac’s terminology, C is determined (locally) by first-class constraints.
15We discuss here deformations of the TFT S, i.e, the Poisson sigma model with zero Poisson structure. If one

drops the condition that the Poisson sigma model with D boundary conditions must be such a deformation, much
more general submanifolds C are allowed [11], [12].
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A general method for studying certain submanifolds of so-called weak Poisson
manifolds and their quantization has been suggested in [31]: one concocts a smooth
graded manifold M endowed with an MC element F , with F0 = 0, to describe the
problem, and then applies the L∞-quasiisomorphism U .

A particular case is the graded manifold N∗[1]C associated to a coisotropic sub-
manifold C, as described above. In the absence of anomaly, the method yields a
deformation quantization of a Poisson subalgebra of C∞(C)I (or of the whole alge-
bra if the first F1-cohomology vanishes) [16], [17].

A second interesting case is that of a Poisson submanifold P ′ of a Poisson man-
ifold P . The inclusion map ι is then a Poisson map (i.e., ι∗ is a morphism of Pois-
son algebras). One may then try to get deformation quantizations of P and P ′ to-
gether with a morphism of associative algebras that deforms ι∗. The simpler case
is when P ′ is determined by regular constraints φ1, . . . , φk . The Koszul resolution
of C∞(P ′) is obtained by introducing variables μ1, . . . , μk of degree −1 and defin-
ing a differential δμi = φi . We may interpret this differential as a cohomological
vector field Q on the graded manifold M := P × Rk[−1]. The Poisson bivector
field π on P may also be regarded as a Poisson bivector field on M . We may put
the two together defining F = Q + π , which is an MC element iff [π,Q] = 0,
i.e., iff the φis are central. In this case U(εF) produces an A∞-algebra structure
on C∞(M)[[ε]], which is flat since C∞(M) is concentrated in nonpositive degrees.
Moreover, C∞(M)0[[ε]] = C∞(P )[[ε]] inherits an algebra structure which turns
out to give a deformation quantization of P . One may also verify that the zeroth
A1-cohomology groupH 0 is a deformation quantization of P ′ and that the projection
C∞(M)0[[ε]] → H 0, which is by construction an algebra morphism, is a defor-
mation of ι∗. By inspection of the explicit formulae, one may easily see that this
construction is the same as the one proposed in [20], thus proving their conjecture.
The more general case when the regular constraints φi are not central, may in princi-
ple be treated following [29] which shows the existence an MC element of the form
F = Q+π+O(μ). Repeating the above reasoning does not solve the problem since
in general the algebra C∞(M)0[[ε]] is not associative. For this to be the case, one
has to find corrections to F such that in each term the polynomial degree in the μis
is less or equal than the polynomial degree in the ∂/∂μis.

A third interesting case is that of a Poisson map J from a Poisson manifoldP to the
dual of a Lie algebra g. Under certain regularity assumptions, J−1(0) is a coisotropic
submanifold and may be quantized as described above. In practice, the formulae
are not very explicit, even if P is a domain in Rn, for one has to choose adapted
coordinates. A different approach is the following: First endowP×g∗ with the unique
Poisson structure which makes the projection p1 to P Poisson, the projection p2 to
g∗ anti-Poisson and such that {p∗

2X, p∗
1f }P×g∗ = p∗

1{JX, f }P , for all f ∈ C∞(P )
and for all X ∈ g. The graph G of J is then a Poisson submanifold of P × g∗,
while P × {0} is coisotropic. Their intersection, diffeomorphic to J−1(0), turns out
to be coisotropic inG. One then describesG as the zero set of the regular constraints
φ : P × g∗ → g∗, (x, α) 
→ J (x) − α. Thus, applying the above construction,
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one describes G by an appropriate MC element F on M := P × g∗ × g∗[−1] and
realizes the quantization of J−1(0) by the TFT with BV action Stot

F and D boundary

conditions on C := P × {0} × g∗[−1]. Since we may identify N∗[1]C with M̃ :=
P × g[1] × g∗[−1], we eventually have the TFT with target M̃ and BV action Stot

F̃
,

where F̃ is the Legendre transform of F . If P is a domain in Rn, we may now use
one coordinate chart and get explicit formulae. This construction turns out to be
equivalent to the BRST method. It has a generalization, equivalent to the BV method,
when we have a map J : P → Rk such that J−1(0) is coisotropic.

All the above ideas may in principle be applied to the case when the Poisson
manifold P is an infinite-dimensional space of maps (or sections) as in field theory.
An (n+1)-dimensional field theory onM×R is a dynamical system on a symplectic
manifold M of sections onM (or a coisotropic submanifold thereof in gauge theories).
The Poisson sigma model version then yields [39] an equivalent (n+ 2)-dimensional
field theory on M ×�, with � the upper half plane.
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Matrix ansatz and large deviations of the density in
exclusion processes

Bernard Derrida∗

Abstract. Exclusion processes describe a gas of particles on a lattice with hard core repulsion.
When such a lattice gas is maintained in contact with two reservoirs at unequal densities, or driven
by an external field, it exhibits a non-equilibrium steady state. In one dimension, a number of
properties of this steady state can be calculated exactly using a matrix ansatz. This talk gives a
short review on results obtained recently by this matrix ansatz approach.
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1. Introduction

Exclusion processes have been studied for a long time as microscopic models of fluids
which satisfy at large scale hydrodynamic equations [2], [13], [27], [28], [36], [39],
[47]. They give also some of the simplest examples of non-equilibrium steady state
[38], [12], [15], [16], [44], [29]. Here I will try to review a number of recent results on
exclusion processes which have been obtained using an exact matrix representation
of the weights of microscopic configurations in the non-equilibrium steady state.

One of the simplest cases for which this can be done is the symmetric simple
exclusion process defined in Section 2. The matrix ansatz is discussed in Section 3
and the large deviation function of the density is obtained in Section 5 (using an
additivity property given in Section 4). Section 6 gives a short review of an alternative
approach to calculate this large deviation function, the macroscopic fluctuation theory
[3], [4], [5]. Section 7 gives the extension of the matrix ansatz to the asymmetric
exclusion process from which one can calculate the phase diagram (Section 8) and
the fluctuations of density (Section 9).
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2. The symmetric simple exclusion process

The symmetric simple exclusion process (SSEP) describes a lattice gas of particles
diffusing on a lattice with an exclusion rule which prevents a particle to move to
a site already occupied by another particle. Here we consider the one dimensional
version with open boundaries. The lattice consists of L sites, each site being either
occupied by a single particle or empty. During every infinitesimal time interval dt ,
each particle has a probability dt of jumping to the left if the neighboring site on its
left is empty, dt of jumping to the right if the neighboring site on its right is empty. At
the two boundaries the dynamics is modified to mimic the coupling with reservoirs
of particles: at the left boundary, during each time interval dt , a particle is injected
on site 1 with probability αdt (if this site is empty) and a particle is removed from
site 1 with probability γ dt (if this site is occupied). Similarly on site L, particles are
injected at rate δ and removed at rate β.

From the very definition of the SSEP, if τi = 0 or 1 is a binary variable indicating
whether site i is occupied or empty, one can write the time evolution of the average
occupation 〈τi〉:

d〈τ1〉
dt

= α − (α + γ + 1)〈τ1〉 + 〈τ2〉,
d〈τi〉
dt

= 〈τi−1〉 − 2〈τi〉 + 〈τi+1〉 for 2 ≤ i ≤ L − 1, (1)

d〈τL〉
dt

= 〈τL−1〉 − (1 + β + δ)〈τL〉 + δ.

The steady state density profile (obtained by writing that d〈τi〉
dt

= 0) is [20]

〈τi〉 = ρa

(
L + 1

β+δ
− i

) + ρb

(
i − 1 + 1

α+γ

)
L + 1

α+γ
+ 1

β+δ
− 1

(2)

where ρa and ρb are defined by

ρa = α

α + γ
, ρb = δ

β + δ
. (3)

For a large system size (L → ∞) one can notice that 〈τ1〉 → ρa and 〈τL〉 → ρb

indicating that ρa and ρb defined by (3) represent the densities of the left and right
reservoirs. One can in fact show [19], [20] that the rates α, γ, β, δ do correspond to
the left and right boundaries being connected respectively to reservoirs at densities
ρa and ρb.

In a similar way one can write down the equations which govern the time evolution
of the two point function or higher correlations. For example one finds [46], [23] in
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the steady state for 1 ≤ i < j ≤ L

〈τiτi〉c ≡ 〈τiτj 〉 − 〈τi〉〈τj 〉

= −
( 1

α+γ
+ i − 1

)( 1
β+δ

+ L − j
)

( 1
α+γ

+ 1
β+δ

+ L − 1
)2( 1

α+γ
+ 1

β+δ
+ L − 2

) (ρa − ρb)
2.

One can notice that for large L, if one introduces macroscopic coordinates i = Lx

and j = Ly, this becomes

〈τLxτLy〉c = −x(1 − y)

L
(ρa − ρb)

2

for x < y. These weak, but long range, correlations are characteristic of the steady
state of non equilibrium systems [47], [23], [41].

The average current in the steady state is given by

j = 〈τi(1 − τi+1) − τi+1(1 − τi)〉 = 〈τi − τi+1〉 = ρa − ρb

L + 1
α+γ

+ 1
β+δ

− 1
. (4)

This shows that for large L, the current j 	 ρa−ρb

L
is proportional to the gradient of

the density (with a coefficient of proportionality which is here simply 1) and therefore
follows Fick’s law.

3. The matrix ansatz for the SSEP

For the SSEP, one can write down the steady state equations satisfied by higher and
higher correlation functions, but solving these equations becomes quickly inextrica-
ble.

The matrix ansatz gives an algebraic way of calculating exactly the weights of all
the configurations in the steady state: in [16] it was shown that the probability of a
microscopic configuration {τ1, τ2, . . . , τL} can be written as the matrix element of a
product of L matrices

Pro({τ1, τ2, . . . , τL}) = 〈W |X1X2 . . . XL|V 〉
〈W |(D + E)L|V 〉 (5)

where the matrix Xi depends on the occupation τi of site i,

Xi = τiD + (1 − τi)E, (6)

and the matrices D and E satisfy the following algebraic rules:

DE − ED = D + E,

〈W |(αE − γD) = 〈W |,
(βD − δE)|V 〉 = |V 〉.

(7)
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Let us check on a simple example that expression (5) does give the steady state
weights: if one chooses the configuration where the first p sites on the left are occupied
and the remaining L − p sites on the right are empty, the weight of this configuration
is given by

〈W |DpEL−p|V 〉
〈W |(D + E)L|V 〉 . (8)

For (5) to be the weights of all configurations in the steady state, one needs that the
rate at which the system enters each configuration and the rate at which the system
leaves it should be equal. In the case of the configuration we consider in (8), this
means that the following steady state identity should be satisfied:

(γ + 1 + δ)
〈W |DpEL−p|V 〉
〈W |(D + E)L|V 〉 = α

〈W |EDp−1EL−p|V 〉
〈W |(D + E)L|V 〉

+ 〈W |Dp−1EDEL−p−1|V 〉
〈W |(D + E)L|V 〉

+ β
〈W |DpEL−p−1D|V 〉

〈W |(D + E)L|V 〉 .

(9)

This equality is easy to check by rewriting (9) as

〈W |(αE − γD)Dp−1EL−p|V 〉
〈W |(D + E)L|V 〉 − 〈W |Dp−1(DE − ED)EL−p−1|V 〉

〈W |(D + E)L|V 〉
+〈W |DpEL−p−1(βD − δE)|V 〉

〈W |(D + E)L|V 〉 = 0

(10)

and by using (7). A similar reasoning allows one to prove that the corresponding
steady state identity holds for any other configuration.

A priori one should construct the matrices D and E (which might be infinite-
dimensional) and the vectors 〈W | and |V 〉 satisfying (7) to calculate the weights
of the microscopic configurations. However these weights do not depend on the
particular representation chosen and can be calculated directly from (7).

This can be easily seen by using the two matrices A and B defined by

A = βD − δE,

B = αE − γD,
(11)

which satisfy

AB − BA = (αβ − γ δ)(D + E) = (α + γ )A + (β + δ)B. (12)

Each product of D’s and E’s can be written as a sum of products of A’s and B’s which
can be ordered using (12) by pushing all the A’s to the right and all the B’s to the left.
One gets that way a sum of terms of the form BpAq , the matrix elements of which
can be evaluated easily (〈W |BpAq |V 〉 = 〈W |V 〉) from (7) and (11).
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One can calculate that way the average density profile

〈τi〉 = 〈W |(D + E)i−1D(D + E)L−i |V 〉
〈W |(D + E)L|V 〉

as well as all the correlation functions and one can recover that way (2).
One can also show that (equation (3.11) of [20])

〈W |(D + E)L|V 〉
〈W |V 〉 = 1

(ρa − ρb)L

�(L + 1
α+γ

+ 1
β+δ

)

�( 1
α+γ

+ 1
β+δ

)
(13)

and using the fact that the average current between sites i and i + 1 is given by

j = 〈W |(D + E)i−1(DE − ED)(D + E)L−i−1|V 〉
〈W |(D + E)L|V 〉 = 〈W |(D + E)L−1|V 〉

〈W |(D + E)L|V 〉
one recovers (4) (of course in the steady state the current does not depend on i).

Remark. When ρa = ρb = r , i.e. for αδ = βγ (see (3)), the two reservoirs are at
the same density and the steady state becomes the equilibrium (Gibbs state) of the
lattice gas at this density r . In this case, the weights of the configurations are those
of a Bernoulli measure at density r , that is

Pro({τ1, τ2, . . . , τL}) =
L∏

i=1

[rτi + (1 − r)(1 − τi)] (14)

as steady state identities such as (9) can be checked directly for r = α/(α + γ ) =
δ/(β + δ). All steady state properties can also be recovered by making all the cal-
culations with the matrices (5), (7) for ρa 
= ρb and by taking the limit ρa → ρb in
the final expressions, as all the expectations, for a lattice of finite size L, are rational
functions of ρa and ρb.

4. Additivity

As in (5) the weight of each configuration is written as the matrix element of a product
of L matrices, one can try to insert at a position L1 a complete basis in order to relate
the properties of a lattice of L sites to those of two subsystems of sizes L1 and L−L1.

To do so let us define the following left and right eigenvectors 〈ρa, a| and |ρb, b〉
of the operators ρaE − (1 − ρa)D and (1 − ρb)D − ρbE:

〈ρa, a| [ρaE − (1 − ρa)D] = a〈ρa, a|,
[(1 − ρb)D − ρbE] |ρb, b〉 = b|ρb, b〉. (15)
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It is easy to see, using the definition (3), that the vectors 〈W | and |V 〉 which appear
in (7) are given by

〈W | = 〈ρa, (α + γ )−1|,
|V 〉 = |ρb, (β + δ)−1〉. (16)

It is then possible to show, using simply the fact (7) that DE − ED = D + E and
the definition of the eigenvectors (15), that (for ρb < ρa)

〈ρa, a|Y1Y2|ρb, b〉
〈ρa, a|ρb, b〉
=

∮
ρb<|ρ|<ρa

dρ

2iπ

(ρa − ρb)
a+b

(ρa − ρ)a+b(ρ − ρb)

〈ρa, a|Y1|ρ, b〉
〈ρa, a|ρ, b〉

〈ρ, 1 − b|Y2|ρb, b〉
〈ρ, 1 − b|ρb, b〉

(17)

where Y1 and Y2 are arbitrary polynomials of matrices D and E. (To prove (17) it is
sufficient to establish it when Y1 and Y2 are both of the form EnDn′

as any polynomial
can be reduced to a sum of such terms by the relation DE − ED = D + E. One can
also, and this is easier, prove (17) for Y1 of the form [ρaE − (1 − ρa)D]n[D + E]n′

and Y2 of the form [D+E]n′′ [(1−ρb)D−ρbE]n′′′
and show using DE−ED = D+E

that any polynomial Y1 or Y2 can be reduced to a finite sum of such terms).

5. Large deviation function of density profiles

If one divides a chain of L sites into n boxes of linear size l (one has of course
n = L/l such boxes), one can try to determine the probability of finding a certain
density profile {ρ1, ρ2, . . . , ρn}, i.e. the probability of seeing lρ1 particles in the first
box, lρ2 particles in the second box, …lρn in the nth box. For large L one expects
the following L dependence of this probability

ProL(ρ1, . . . , ρn|ρa, ρb) ∼ exp[−LFn(ρ1, ρ2, . . . , ρn|ρa, ρb)] (18)

where Fn is a large deviation function. If one defines a reduced coordinate x by

i = Lx (19)

and if one takes the limit l → ∞ with l 
 L so that the number of boxes becomes
infinite, one can define a functional F for an arbitrary density profile ρ(x)

ProL({ρ(x)}) ∼ exp[−LF ({ρ(x)}|ρa, ρb)]. (20)

For the SSEP (in one dimension), the functional F (ρ(x)|ρa, ρb) is given by the
following exact expressions:
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At equilibrium, i.e. for ρa = ρb = r

F ({ρ(x)}|r, r) =
∫ 1

0
B(ρ(x), r)dx (21)

where

B(ρ, r) = (1 − ρ) log
1 − ρ

1 − r
+ ρ log

ρ

r
. (22)

This can be derived easily. When ρa = ρb = r , the steady state is a Bernoulli measure
(14) where all the sites are occupied independently with probability r . Therefore if
one divides a chain of length L into L/l intervals of length l, one has

ProL(ρ1, . . . , ρn|r, r) =
L/l∏
i

l!
[lρi]! [l(1 − ρi)]! rlρi (1 − r)l(1−ρi) (23)

and using Stirling’s formula one gets (21), (22).

For the non-equilibrium case, i.e. for ρa 
= ρb, it was shown in [19], [4], [20] that

F ({ρ(x)}|ρa, ρb) =
∫ 1

0
dx

[
B(ρ(x), F (x)) + log

F ′(x)

ρb − ρa

]
(24)

where the function F(x) is the monotone solution of the differential equation

ρ(x) = F + F(1 − F)F ′′

F ′2 (25)

satisfying the boundary conditions F(0) = ρa and F(1) = ρb.
This expression shows that F is a non-local functional of the density profile ρ(x)

as F(x) depends (in a non-linear way) on the profile ρ(y) at all points y. For example
if the difference ρa − ρb is small, one can expand F and obtain an expression where
the non-local character of the functional is clearly visible

F ({ρ(x)}|ρa, ρb)

=
∫ 1

0
dx B(ρ(x), ρ(x))

+ (ρa − ρb)
2

[ρa(1 − ρa)]2

∫ 1

0
dx

∫ 1

x

dy x(1 − y)(ρ(x) − ρ(x))(ρ(y) − ρ(y))

+ O(ρa − ρb)
3.

Here ρ(x) is the most likely profile given by

ρ(x) = (1 − x)ρa + xρb. (26)

It would be too long to reproduce here the full derivation of (24), (25) from the
matrix ansatz [19], [20]. The idea is to decompose the chain into L/l boxes of l sites
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and to sum the weights given by the matrix ansatz (5), (7) over all the microscopic
configurations for which the number of particles is lρ1 in the first box, lρ2 in the
second box,…, lρn in the nth box.

A rather easy way to derive (24), (25) is to write (we do it here in the particular
case where a + b = 1, i.e. 1

α+γ
+ 1

β+δ
= 1, and ρa < ρb) from (17) and (13)

Pnl(ρ1, ρ2, . . . , ρn|ρaρb) = (kl)!((n − k)l)!
(nl)!

∮
ρb<|ρ|<ρa

dρ

2iπ

× (ρa − ρb)
nl+1

(ρa − ρ)kl+1(ρ − ρb)(n−k)l+1
(27)

× Pkl(ρ1, . . . , ρn|ρa, ρ)P(n−k)l(ρk+1, . . . , ρn|ρ, ρb).

Note that in (27) the density ρ has become a complex variable. This is not a difficulty
as all the weighs (and therefore the probabilities which appear in (27)) are rational
functions of ρa and ρb.

For large nl, if one writes k = nx, by evaluating (27) at the saddle point one gets

Fn(ρ1, ρ2, . . . , ρn|ρa, ρb)

= max
ρb<F<ρa

xFk(ρ1, . . . , ρk|ρa, F )

+ (1 − x)Fn−k(ρk+1, . . . , ρn|F, ρb)

+ x log

(
ρa − F

x

)
+ (1 − x) log

(
F − ρb

1 − x

)
− log(ρa − ρb).

(28)

(Note that to estimate (27) by a saddle point method, one should find the value of ρ

which maximizes the integrand over the contour. As the contour is perpendicular to
the real axis at their crossing point, this becomes a minimum when ρ varies along the
real axis).

If one repeats the same procedure n times, one gets

Fn(ρ1, ρ2, . . . , ρn|ρa, ρb)

= max
ρb=F0<F1<···<Fn=ρa

1

n

n∑
i=1

F1(ρi |Fi−1, Fi) + log

(
(Fi−1 − Fi)n

ρa − ρb

)
.

(29)

For large n, as Fi is monotone, the difference Fi−1−Fi is small for almost all i and
one can replace F1(ρi |Fi−1, Fi) by its equilibrium value F1(ρi |Fi, Fi) = B(ρi, Fi).
Therefore (29) becomes (24) in the limit n → ∞, with (25) being the equation
satisfied by the optimal F(x).

6. The macroscopic fluctuation theory

Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim [3], [4], [5] have developped a
different and more general theory to calculate this large deviation functional which
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can be summarized as follows: one starts from the expression of the probability
Q({ρ(x, s), j (x, s)}) of observing a certain time dependent macroscopic density pro-
file ρ(x, s) and current profile j (x, t) over a time interval 0 ≤ s ≤ L2t

Q({ρ(x, s), j (x, s)}) ∼ max
ρ(x,s)

exp

{
−L

∫ t

−∞
ds

∫ 1

0
dx

[j + D(ρ)
dρ
dx

]2

2σ(ρ)

}
(30)

where the current j (x, s) is related to the density profile ρ(x, s) by the conservation
law

dρ(x, s)

ds
= −dj (x, s)

dx
(31)

and the functions D(ρ) and σ(ρ) are characteristic of the diffusive system studied
[9], [10].

Then to calculate the probability of observing a certain density profile ρ(x) in the
steady state, one has to find out how this fluctuation is produced. For large L, one
has to find the optimal path ρ(x, s) for −∞ < s < t in the space of profiles which
goes from the typical profile ρ(x) to the desired profile ρ(x) and

ProL({ρ(x)}) ∼ max
ρ(x,s)

Q({ρ(x, s), j (x, s)}) (32)

where the optimal path ρ(x, s) satisfies

ρ(x, −∞) = ρ(x),

ρ(x, t) = ρ(x).

Finding this optimal path is usually a hard problem, and so far it has not been possible
to find the explicit expression of the functional F for general D(ρ) and σ(ρ). For
the SSEP [4], where D(ρ) = 1 and σ(ρ) = 2ρ(1 − ρ), this approach allows one
nevertheless to derive (24), (25). It also leads to the same expression of F as found
by the matrix approach [24] in the weakly asymmetric exclusion process and allowed
one to calculate the large deviation function F for the KPM model [35], [7] for which
no matrix approach or alternative derivation has been used so far.

The macroscopic fluctuation theory has also been successfully used recently to
calculate the fluctuations and the large deviations of the current through diffusive
systems [6], [9], [10], [33].

7. The matrix approach for the asymmetric exclusion process

The matrix ansatz of Section 3 (which gives the weights of the microscopic configu-
rations in the steady state) has been generalized to describe the steady state of several
other systems [1], [8], [11], [14], [18], [25], [30], [31], [32], [37], [40], [42], [43],
[45], with of course modified algebraic rules for the matrices the vectors 〈W | and |V 〉.
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For example for the asymmetric exclusion process (ASEP), for which the definition
is the same as the SSEP of Section 2, except that particles jump at rate 1 to their right
and at rate q 
= 1 to their left (it the target site is empty), one can show [16], [8],
[42], [43] that in this case too, the weights are still given by (5) with the algebra (7)
replaced by

DE − qED = D + E, (33)

〈W |(αE − γD) = 〈W |, (34)

(βD − δE)|V 〉 = |V 〉. (35)

One should notice that for the ASEP, the direct approach of calculating the steady
state properties by writing the time evolution does not work. Indeed (1) becomes

d〈τ1〉
dt

= α − (α + γ + 1)〈τ1〉 + q〈τ2〉 + (1 − q)〈τ1τ2〉,
d〈τi〉
dt

= 〈τi−1〉 − (1 + q)〈τi〉 + q〈τi+1〉 − (1 − q)(〈τi−1τi〉 − 〈τiτi+1〉), (36)

d〈τL〉
dt

= 〈τL−1〉 − (q + β + δ)〈τL〉 + δ − (1 − q)〈τL−1τL〉,

and the equations which determine the one-point functions are no longer closed.
Therefore all the correlation functions have to be determined at the same time and
this is what the matrix ansatz does.

The large deviation function F of the density defined by (20) has been calculated
for the ASEP [21], [22], [24] by an extension of the approach sketched in Sections 4
and 5.

8. The phase diagram of the totally asymmetric exclusion process

The last two sections (8 and 9) present two results which can be obtained in the totally
asymmetric case (TASEP), i.e. for q = 0 (in the particular case where particles are
injected only at the left boundary and removed only at the right boundary, i.e. when
the input rates γ = δ = 0). In this case the algebra (33) becomes

DE = D + E, (37)

〈W |αE = 〈W |, (38)

βD|V 〉 = |V 〉. (39)

As for the SSEP the average current is still given in terms of the vectors 〈W |, V 〉 and
of the matrices D and E by

j = 〈W |(D + E)L−1|V 〉
〈W |(D + E)L|V 〉 (40)
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However as the algebraic rules have changed, the expression of the current is different
for the SSEP and the ASEP. From the relation DE = D + E it is easy to prove by
recurrence that

DF(E) = F(1) + E
F(E) − F(1)

E − 1

for any polynomial F(E) and

(D + E)N =
N∑

p=1

p(2N − 1 − p)!
N !(N − p)! (Ep + Ep−1D + · · · + Dp).

Using the fact that

〈W |EmDn|V 〉
〈W |V 〉 = 1

αm

1

βn
,

one gets [16]

〈W |(D + E)N |V 〉
〈W |V 〉 =

N∑
p=1

p(2N − 1 − p)!
N !(N − p)!

1

αp+1 − 1

βp+1

1

α
− 1

β

. (41)

For large N this sum is dominated either by p ∼ 1, or p ∼ N depending one the
values of α and β and one obtains

〈W |(D + E)N |V 〉
〈W |V 〉 ∼

⎧⎪⎨
⎪⎩

4N if α > 1
2 and β > 1

2 ,

[β(1 − β)]−N if β < α and β < 1
2 ,

[α(1 − α)]−N if β > α and α < 1
2 .

(42)

This leads to three different expressions of the current (40) for large L corresponding
to the three different phases:

• the low density phase (β > α and α < 1
2 ) where j = α(1 − α)

• the high density phase (α > β and β < 1
2 ) where j = β(1 − β)

• the maximal current phase (α > 1
2 and β > 1

2 ) where j = 1
4

which is the exact phase diagram of the TASEP [38], [15], [16], [44]. The existence
of phase transitions [26], [34] in these driven lattice gases is one of the most strik-
ing properties of non-equilibrium systems, as it is well known that one dimensional
systems at equilibrium with short range interactions cannot exhibit phase transitions.
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9. Correlation functions in the TASEP and Brownian excursions

For the TASEP, in the maximal current phase (α > 1
2 and β > 1

2 ) one can show [17],
using the matrix ansatz, that the correlation function of the occupations of k sites at
positions i1 = Lx1, i2 = Lx2, . . . , ik = Lxk with (Lx1 < Lx2 < · · · < Lxk) are
given for large L by〈(

τLx1 − 1

2

)
. . .

(
τLxk

− 1

2

)〉
= 1

2k

1

Lk/2

dk

dx1 . . . dxk

〈y1 . . . yk〉, (43)

where y(x) is a Brownian excursion between 0 and 1 (a Brownian excursion is a
Brownian path constrained to y(x) > 0 for 0 < x < 1 with the boundaries y(0) =
y(1)). The probability P(y1 . . . yk; x1 . . . xk) of finding the Brownian excursion at
positions y1 . . . yk for 0 < x1 < · · · < xk < 1 is

P(y1 . . . yk; x1 . . . xk) = hx1(y1) gx2−x1(y1, y2) . . . gxk−xk−1(yk−1, yk) h1−xk
(yk)√

π
,

where hx and gx are defined by⎧⎨
⎩

hx(y) = 2y

x3/2 e−y2/x,

gx(y, y′) = 1√
πx

(e−(y−y′)2/x − e−(y+y′)2/x).

One can derive easily (43) in the particular case α = β = 1 using a representation
of (37) which consists of two infinite dimensional bidiagonal matrices

D =
∑
n≥1

|n〉〈n| + |n〉〈n + 1| =

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 · · ·
0 1 1 0 0 0 · · ·
0 0 1 1 0 0 · · ·
0 0 0 1 1 0 · · ·

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠

and

E =
∑
n≥1

|n〉〈n + 1| + |n〉〈n| =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
0 1 1 0 0 0 · · ·
0 0 1 1 0 0 · · ·

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠

with

〈W | = 〈1| = (1, 0, 0 . . . ),

〈V | = 〈1| = (1, 0, 0 . . . ).
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With this representation one can write 〈W |(D + E)L|V 〉 as a sum over a set ML of
one dimensional random walks w of L steps which never come back to the origin.
Each walk w is defined by a sequence (ni(w)) of L − 1 heights (ni(w) ≥ 1) (with
n0(w) = nL(w) = 1 at the boundaries and the constraint |ni+1 − ni | ≤ 1). One then
has

〈W |(D + E)L|V 〉 =
∑

w∈ML

�(w),

where

�(w) =
L∏

i=1

v(ni−1, ni) with v(n, n′) =
{

2 if |n − n′| = 0,

1 if |n − n′| = 1,

using the fact that v(n, n′) = 〈n|D + E|n′〉 since D + E can be written as

D + E =

⎛
⎜⎜⎜⎜⎝

2 1 (0)

1
. . .

. . .

. . .
. . . 1

(0) 1 2

⎞
⎟⎟⎟⎟⎠ .

Then from the matrix expression one gets 〈τi〉 and 〈τiτj 〉:〈(
τi1 − 1

2

)
. . .

(
τik − 1

2

)〉
= 1

2k

∑
w

ν(w)(ni1 − ni1−1) . . . (nik − nik−1), (44)

where ν(w) is the probability of the walk w induced by the weights �:

ν(w) = �(w)∑′
w �(w′)

.

The expression (44) is the discrete version of (43). The result (43) can be extended
[17] to arbitrary values of α and β in the maximal current phase (i.e. for α > 1/2 and
β > 1/2).

From this link between the density fluctuations and Brownian excursions, one
can show that, for a TASEP of L sites, the number N of particles between sites Lx1
and Lx2, has non-Gaussian fluctuations in the maximal current phase: if one defines
the reduced density

μ = N − L(x2 − x1)/2√
L

one can show [17] that for large L

P(μ) =
∫ ∞

0
dy1

∫ ∞

0
dy2

1√
2π(x2 − x1)

exp

(
− (2μ + y1 − y2)

2

x2 − x1

)
. (45)

According to numerical simulations [17] this distribution (properly rescaled) of the
fluctuations of the density remains valid for more general driven systems in their
maximal current phase. Of course proving it in a more general case is an interesting
open question.
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spin-1/2 chain. We describe both finite and infinite chain results. Long distance asymptotic
behavior is discussed. Our method is based on the resolution of the quantum inverse scattering
problem in the framework of the algebraic Bethe ansatz.
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1. Introduction

The main challenging problem in the theory of quantum integrable models [1], [2],
[3], [4], [5], [6] besides computing their spectrum is to obtain exact and manageable
representations for their correlation functions. This issue is of great importance not
only from theoretical and mathematical view points but also for applications to relevant
physical situations. Although several important advances have been obtained over the
years, we are still looking for a general method that could give a systematic solution
to this problem. The purpose of this article is to give a review of an approach to this
problem elaborated in [7], [8], [9], [10] and in [11], [12], [13], [14], together with a
brief account of the more recent progress obtained in [15], [16], [17], [18], [19].

In our search for a general method to compute correlation functions of quantum
integrable models our strategy was to consider a simple but representative model
where it is possible to develop new tools to solve this problem. Such an archetype of
quantum integrable lattice models is provided by the XXZ spin- 1

2 Heisenberg [20]
chain in a magnetic field. Indeed, Heisenberg spin chains play a prominent role
in the theory of quantum integrable models: they were the first models for which
Bethe ansatz [21], [22], [23], [24], [25] was invented and successfully applied to
compute their spectrum. This method has been later used and generalized to solve a
large variety of integrable models ranging from statistical mechanics to quantum field
theories (see [1], [2], [3], [4], [5]).
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The XXZ spin- 1
2 Heisenberg chain in a magnetic field is a quantum interacting

model defined on a one-dimensional lattice with Hamiltonian

H = H(0) − hSz; (1)

H(0) =
M∑
m=1

{
σxmσ

x
m+1 + σ

y
mσ

y
m+1 +�(σzmσ

z
m+1 − 1)

}
, (2)

Sz = 1

2

M∑
m=1

σzm, [H(0), Sz] = 0. (3)

Here � is the anisotropy parameter, h denotes the magnetic field, and σx,y,zm are the
local spin operators (in the spin- 1

2 representation) associated with each site m of the
chain. The quantum space of states is H = ⊗M

m=1Hm, where Hm ∼ C
2 is called local

quantum space, with dim H = 2M . The operators σx,y,zm act as the corresponding
Pauli matrices in the space Hm and as the identity operator elsewhere. For simplicity,
the length of the chain M is chosen to be even and we assume periodic boundary
conditions. Since the simultaneous reversal of all spins is equivalent to a change of
sign of the magnetic field, it is enough to consider the case h ≥ 0.

The first task to solve such a model is to describe the spectrum of its Hamilto-
nian (1). The method to compute eigenvectors and associated energy levels of the
Heisenberg spin chains goes back to H. Bethe in 1931 [21], [22], [23], [25] and is
known as the Bethe ansatz. An algebraic version of it has been invented in the late 70s
by Faddeev, Sklyanin and Taktajan [26], [27].

The second problem is to compute matrix elements of spin operators σx,y,zm be-
tween two eigenvectors of H and then all correlation functions of spin operators: at
zero temperature they reduce to the average value of products of spin operators in the
lowest energy level state (the ground state). Let us denote by |ψg 〉 the normalized

ground state vector. Let E
ε′m,εm
m be the elementary operators acting at site m as the

2×2 matricesEε
′,ε
lk = δl,ε′δk,ε . Any n-point correlation function can be reconstructed

as a sum of the following elementary blocks:

Fm({εj , ε′j }, h) = 〈ψg |
m∏
j=1

E
ε′j ,εj
j |ψg 〉. (4)

The knowledge of such correlation functions was for a long time restricted to the
free fermion point� = 0, a case for which nevertheless tremendous works have been
necessary to obtain full answers [28], [29], [30], [31], [32], [33]. For generic �, in
the thermodynamic limit, at zero temperature, and for zero magnetic field, multiple
integral representation of the above elementary blocks of the correlation functions
have been obtained from the q-vertex operator approach (also using corner transfer
matrix technique) in the massive regime� ≥ 1 in 1992 [34] and conjectured in 1996
[35] for the massless regime −1 ≤ � ≤ 1 (see also [6]).
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These results together with their extension to non-zero magnetic field have been
obtained in 1999 [8], [9] using the algebraic Bethe ansatz framework [26], [27], [4]
and the actual resolution of the so-called quantum inverse scattering problem [8], [10].
This method allows for the computation of the matrix elements of the local spin oper-
ators and the above elementary blocks of the correlation functions for the finite chain.
Hence, thermodynamic limit can be considered separately. Moreover, time or temper-
ature dependent correlation functions can also be computed [15], [16], [36] using such
techniques. Let us mention also recent advances using q-KZ equations [37], [38].

This article is meant to be a rather brief review of the problem of correlation
functions. More detailed account of the results sketched here together with their
proofs can be found in the original articles [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17] and in [18], [19]. This article is organized as follows. The space of
states of the Heisenberg spin chain will be described in the next section. It includes
a brief introduction to the algebraic Bethe ansatz and to various tools of importance
in the computation of correlation functions, like in particular the solution of the
quantum inverse scattering problem and the determinant representations of the scalar
products of states. Section 3 is devoted to the correlation functions of the finite chain.
Correlation functions in the thermodynamic limit are studied in Section 4. In Section 5
we describe several exact and asymptotic results together with some open problems.
Conclusions and some perspectives are given in the last section.

2. The space of states: algebraic Bethe ansatz

The space of states is of dimension 2M . As can be observed from the definition of
the Hamiltonian in (1), the construction of its eigenvectors is rather non trivial. The
purpose of this section is to briefly explain the basics of the knowledge of the space
of states in the framework of the algebraic Bethe ansatz, leading in particular to the
determination of the spectrum of (1).

2.1. Algebraic Bethe ansatz. The algebraic Bethe ansatz originated from the fusion
of the original (coordinate) Bethe ansatz and of the inverse scattering method in its
Hamiltonian formulation [26], [27], [4]. At the root of the algebraic Bethe ansatz
method is the construction of the quantum monodromy matrix. In the case of the
XXZ chain (1) the monodromy matrix is a 2 × 2 matrix,

T (λ) =
(
A(λ) B(λ)

C(λ) D(λ)

)
, (5)

with operator-valued entries A, B, C andD which depend on a complex parameter λ
(spectral parameter) and act in the quantum space of states H of the chain. One of
the main property of these operators is that the trace of T , namely A+D, commutes
with the Hamiltonian H , while operators B and C can be used as creation operators
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of respectively eigenvectors and dual eigenvectors of A + D and hence of H itself.
The monodromy matrix is defined as the following ordered product:

T (λ) = LM(λ) . . . L2(λ)L1(λ), (6)

where Ln(λ) denotes the quantum L-operator at the site n of the chain,

Ln(λ) =
(

sinh(λ+ η
2 σ

z
n) sinh η σ−

n

sinh η σ+
n sinh(λ− η

2 σ
z
n)

)
. (7)

The parameter η is related to the anisotropy parameter as � = cosh η. It follows
from this definition that the monodromy matrix is an highly non local operator in
terms of the local spin operators σx,y,zn . However, the commutation relations between
the operators A, B, C, D can be computed in a simple way. They are given by the
quantum R-matrix

R(λ,μ) =

⎛⎜⎜⎝
1 0 0 0
0 b(λ, μ) c(λ, μ) 0
0 c(λ, μ) b(λ, μ) 0
0 0 0 1

⎞⎟⎟⎠ , (8)

where

b(λ, μ) = sinh(λ− μ)

sinh(λ− μ+ η)
, c(λ, μ) = sinh(η)

sinh(λ− μ+ η)
. (9)

The R-matrix is a linear operator in the tensor product V1 ⊗ V2, where each Vi is
isomorphic to C

2, and depends generically on two spectral parameters λ1 and λ2
associated to these two vector spaces. It is denoted byR12(λ1, λ2). Such anR-matrix
satisfies the Yang–Baxter equation,

R12(λ1, λ2) R13(λ1, λ3) R23(λ2, λ3) = R23(λ2, λ3) R13(λ1, λ3) R12(λ1, λ2). (10)

It gives the following commutation relations among the operators entries of the mon-
odromy matrix:

R12(λ, μ) T1(λ) T2(μ) = T2(μ) T1(λ) R12(λ, μ) (11)

with the tensor notations T1(λ) = T (λ) ⊗ Id and T2(μ) = Id ⊗ T (μ). These
commutation relations imply in particular that the transfer matrices, defined as

T (λ) = tr T (λ) = A(λ)+D(λ), (12)

commute for different values of the spectral parameter [T (λ),T (μ)] = 0 and also
with Sz, [T (λ), Sz] = 0. The Hamiltonian (2) at h = 0 is related to T (λ) by the
‘trace identity’

H(0) = 2 sinh η
dT (λ)

dλ
T −1(λ)

λ= η
2

− 2M cosh η. (13)
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Therefore, the spectrum of the Hamiltonian (1) is given by the common eigenvectors
of the transfer matrices and of Sz.

For technical reasons, it is actually convenient to introduce a slightly more general
object, the twisted transfer matrix

Tκ(λ) = A(λ)+ κD(λ), (14)

where κ is a complex parameter. The particular case of Tκ(λ) at κ = 1 corresponds
to the usual (untwisted) transfer matrix T (λ). It will be also convenient to consider
an inhomogeneous version of the XXZ chain for which

T1...M(λ; ξ1, . . . , ξM) = LM(λ− ξM + η/2) . . . L1(λ− ξ1 + η/2). (15)

Here, ξ1, . . . , ξM are complex parameters (inhomogeneity parameters) attached to
each site of the lattice. The homogeneous model (1) corresponds to the case where
ξj = η/2 for j = 1, . . . ,M .

In the framework of algebraic Bethe ansatz, an arbitrary quantum state can be
obtained from the vectors generated by multiple action of operators B(λ) on the
reference vector | 0 〉 with all spins up (respectively by multiple action of operators
C(λ) on the dual reference vector 〈 0 |),

|ψ 〉 =
N∏
j=1

B(λj )| 0 〉, 〈ψ | = 〈 0 |
N∏
j=1

C(λj ), N = 0, 1, . . . ,M. (16)

2.2. Description of the spectrum. Let us consider here the subspace H (M/2−N)
of the space of states H with a fixed number N of spins down. In this subspace,
the eigenvectors |ψκ({λ}) 〉 (respectively 〈ψκ({λ}) |) of the twisted transfer matrix
Tκ(μ) can be constructed in the form (16), where the parameters λ1, . . . , λN satisfy
the system of twisted Bethe equations

Yκ(λj |{λ}) = 0, j = 1, . . . , N. (17)

Here, the function Yκ is defined as

Yκ(μ|{λ}) = a(μ)

N∏
k=1

sinh(λk − μ+ η)+ κ d(μ)

N∏
k=1

sinh(λk − μ− η), (18)

and a(λ), d(λ) are the eigenvalues of the operators A(λ) and D(λ) on the reference
state | 0 〉. In the normalization (7) and for the inhomogeneous model (15) we have

a(λ) =
M∏
a=1

sinh(λ− ξa + η), d(λ) =
M∏
a=1

sinh(λ− ξa). (19)
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The corresponding eigenvalue of Tκ(μ) on |ψκ({λ}) 〉 (or on a dual eigenvector) is

τκ(μ|{λ}) = a(μ)

N∏
k=1

sinh(λk − μ+ η)

sinh(λk − μ)
+ κ d(μ)

N∏
k=1

sinh(μ− λk + η)

sinh(μ− λk)
. (20)

The solutions of the system of twisted Bethe equations (17) have been analyzed
in [39]. In general, not all of these solutions correspond to eigenvectors of Tκ(μ).

Definition 2.1. A solution {λ} of the system (17) is called admissible if

d(λj )

N∏
k=1
k 
=j

sinh(λj − λk + η) 
= 0, j = 1, . . . , N, (21)

and un-admissible otherwise. A solution is called off-diagonal if the corresponding
parameters λ1, . . . , λN are pairwise distinct, and diagonal otherwise.

One of the main result of [39] is that, for generic parameters κ and {ξ}, the
set of the eigenvectors corresponding to the admissible off-diagonal solutions of the
system of twisted Bethe equations (17) form a basis in the subspace H (M/2−N).
It has been proven in [16] that this result is still valid in the homogeneous case
ξj = η/2, j = 1, . . . , N , at least if κ is in a punctured vicinity of the origin (i.e.
0 < |κ| < κ0 for κ0 small enough). Note however that, for specific values of κ and {ξ},
the basis of the eigenvectors in H (M/2−N) may include some states corresponding to
un-admissible solutions of (17) (in particular in the homogeneous limit at κ = 1).

At κ = 1, it follows from the trace identity (13) that the eigenvectors of the transfer
matrix coincide, in the homogeneous limit, with the ones of the Hamiltonian (1). The
corresponding eigenvalues in the case of zero magnetic field can be obtained from
(13), (20):

H(0) |ψ({λ}) 〉 =
( N∑
j=1

E(λj )
)

· |ψ({λ}) 〉, (22)

where the (bare) one-particle energy E(λ) is equal to

E(λ) = 2 sinh2 η

sinh(λ+ η
2 ) sinh(λ− η

2 )
. (23)

2.3. Drinfel’d twist and F -basis. As already noted, the operators A, B, C, D are
highly non local in terms of local spin operators. There exists however an interesting
description of these operators by means of a change of basis of the space of states.
In particular, this basis will provide a direct access to the scalar products of states.
The root of this new basis is provided by the notion of Drinfel’d twist [40] associated
to the R-matrix of the XXZ chain. It leads to the notion of factorizing F -matrices.
To be essentially self-contained we briefly recall here their main properties and refer
to [7] for more details and proofs.
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Definition 2.2. For inhomogeneity parameters ξj in generic positions and for any
integer n one can associate to any element σ of the symmetric group Sn on n elements
a unique R-matrix Rσ1...n(ξ1, . . . , ξn), denoted for simplicity Rσ1...n, constructed as an
ordered product (depending on σ ) of the elementary R-matrices Rij (ξi, ξj ).

We have the following property for an arbitrary integer n.

Proposition 2.1.

Rσ1...n T1...n(λ; ξ1, . . . , ξn) = Tσ(1)...σ (n)(λ; ξσ(1), . . . , ξσ(n)) Rσ1...n. (24)

We can now define the notion of a factorizing F -matrix:

Definition 2.3. A factorizing F -matrix associated to a given elementary R-matrix is
an invertible matrix F1...n(ξ1, . . . , ξn), defined for an arbitrary integer n, satisfying
the following relation for any element σ of Sn:

Fσ(1)...σ (n)(ξσ(1), . . . , ξσ(n)) R
σ
1...n(ξ1, . . . , ξn) = F1...n(ξ1, . . . , ξn). (25)

In other words, such an F -matrix factorizes the corresponding R-matrix for arbi-
trary integers n. Taking into account the fact that the parameters ξn are in one to one
correspondence with the vector spaces Hn, we can adopt simplified notations such
that

F1...n(ξ1, . . . , ξn) = F1...n,

Fσ(1)...σ (n)(ξσ(1), . . . , ξσ(n)) = Fσ(1)...σ (n).

Theorem 2.1 ([7]). For theXXZ model with inhomogeneity parameters ξn in generic
positions there exists a factorizing, triangular F -matrix. It is constructed explicitly
from the R-matrix.

This matrix has two important properties:

Proposition 2.2 ([7]). In the F -basis, the monodromy matrix T̃ ,

T̃1...M(λ; ξ1, . . . , ξM) = F1...MT1...M(λ; ξ1, . . . , ξM) F
−1
1...M, (26)

is totally symmetric under any simultaneous permutations of the lattice sites i and of
the corresponding inhomogeneity parameters ξi .

The second property gives the explicit expressions of the monodromy matrix in
the F -basis. For the XXZ- 1

2 model, the quantum monodromy operator is a 2 × 2
matrix with entriesA, B, C,D which are obtained as sums of 2M−1 operators, which
themselves are products of M local spin operators on the quantum chain. As an
example, the B operator is given as

B1...M(λ) =
N∑
i=1

σ−
i �i +

∑
i 
=j 
=k

σ−
i (σ−

j σ+
k ) �ijk + higher terms, (27)
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where the matrices �i , �ijk , are diagonal operators acting respectively on all sites
but i, on all sites but i, j , k, and the higher order terms involve more and more exchange
spin terms like σ−

j σ+
k . It means that the B operator returns one spin somewhere on

the chain, this operation being however dressed non-locally and with non-diagonal
operators by multiple exchange terms of the type σ−

j σ+
k .

So, whereas these formulas in the original basis are quite involved, their expres-
sions in the F -basis simplify drastically:

Proposition 2.3 ([7]). The operators D, B and C in the F -basis are given by the
formulas

D̃1...M(λ; ξ1, . . . , ξM) = M⊗
i=1

(
b(λ, ξi) 0

0 1

)
[i]
, (28)

B̃1...M(λ) =
M∑
i=1

σ−
i c(λ, ξi) ⊗

j 
=i

(
b(λ, ξj ) 0

0 b−1(ξj , ξi)

)
[j ]
, (29)

C̃1...M(λ) =
M∑
i=1

σ+
i c(λ, ξi) ⊗

j 
=i

(
b(λ, ξj ) b

−1(ξi, ξj ) 0
0 1

)
[j ]
, (30)

and the operator Ã can be obtained from quantum determinant relations.

We wish first to stress that while the operators Ã, B̃, C̃, D̃ satisfy the same
quadratic commutation relations asA, B, C,D, they are completely symmetric under
simultaneous exchange of the inhomogeneity parameters and of the spaces Hn. It
really means that the factorizing F -matrices we have constructed solve the combina-
torial problem induced by the non-trivial action of the permutation group SM given by
the R-matrix. In the F -basis the action of the permutation group on the operators Ã,
B̃, C̃, D̃ is trivial.

Further, it can be shown that the pseudo-vacuum vector is left invariant, namely, it
is an eigenvector of the total F -matrix with eigenvalue 1; in particular, the algebraic
Bethe ansatz can be carried out also in the F -basis. Hence, a direct computation of
Bethe eigenvectors and of their scalar products in this F -basis is made possible, while
it was a priori very involved in the original basis. There, only commutation relations
between the operatorsA, B, C,D can be used, leading (see [5]) to very intricate sums
over partitions.

2.4. Solution of the quantum inverse problem. The very simple expressions of
the monodromy matrix operators entries D, B, C in the F -basis suggests that any

local operatorE
ε′j ,εj
j , acting in a local quantum space Hj at site j , can be expressed in

terms of the entries of the monodromy matrix. This is the so-called quantum inverse
scattering problem. The solution to this problem was found in [8], [10]:
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Theorem 2.2.

E
ε′j ,εj
j =

j−1∏
α=1

T (ξα) · Tεj ,ε′j (ξj ) ·
j∏
α=1

T −1(ξα). (31)

The proof of this theorem is elementary (see [8], [10]) and hence it can be obtained
for a large class of lattice integrable models. It relies essentially on the property that
the R-matrix R(λ,μ) reduces to the permutation operator for λ = μ. An immediate
consequence of this theorem is that the operators A, B, C, and D generate the space
of all operators acting in H .

2.5. Scalar products. We give here the expressions for the scalar product of an
eigenvector of the twisted transfer matrix with any arbitrary state of the form (16).
These scalar products can be expressed as determinant of rather simple matrices.
The root of all these determinants is in fact the determinant representation for the
partition function of the 6-vertex model with domain wall boundary conditions [41].
Let us first define, for arbitrary positive integers n, n′ (n ≤ n′) and arbitrary sets of
variables λ1, . . . , λn,μ1, . . . , μn and ν1, . . . , νn′ such that {λ} ⊂ {ν}, the n×nmatrix
�κ({λ}, {μ}|{ν}) as

(�κ)jk({λ}, {μ}|{ν}) = a(μk) t (λj , μk)

n′∏
a=1

sinh(νa − μk + η)

− κ d(μk) t (μk, λj )

n′∏
a=1

sinh(νa − μk − η),

(32)

with

t (λ, μ) = sinh η

sinh(λ− μ) sinh(λ− μ+ η)
. (33)

Proposition 2.4 ([42], [8], [15]). Let {λ1, . . . , λN } be a solution of the system of
twisted Bethe equations (17), and letμ1, . . . , μN be generic complex numbers. Then,

〈 0 |
N∏
j=1

C(μj ) |ψκ({λ}) 〉 = 〈ψκ({λ}) |
N∏
j=1

B(μj )| 0 〉

=

N∏
a=1

d(λa)
N∏

a,b=1
sinh(μb − λa)

N∏
a>b

sinh(λa − λb) sinh(μb − μa)

· det
N

(
∂

∂λj
τκ(μk|{λ})

)
(34)
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=

N∏
a=1

d(λa)

N∏
a>b

sinh(λa − λb) sinh(μb − μa)

· det
N
�κ({λ}, {μ}|{λ}). (35)

These equations are valid for any arbitrary complex parameter κ , in particular
at κ = 1. In this case we may omit the subscript κ and denote (ψ, τ,Y, �) =
(ψκ, τκ,Yκ ,�κ)

∣∣
κ=1. If the sets {λ} and {μ} are different, the eigenvector |ψκ({λ}) 〉

is orthogonal to the dual eigenvector 〈ψκ({μ}) |. Otherwise we obtain a formula for
the norm of the corresponding vector [43], [44], [8],

〈ψκ({λ}) |ψκ({λ}) 〉 =

N∏
a=1

d(λa)

N∏
a,b=1
a 
=b

sinh(λa − λb)

· det
N
�κ({λ}, {λ}|{λ})

= (−1)N

N∏
a=1

d(λa)

N∏
a,b=1
a 
=b

sinh(λa − λb)

· det
N

(
∂

∂λk
Yκ(λj |{λ})

)
.

2.6. Action of operators A, B, C, D on a general state. An important step of
the computation of the correlation function is to express the action of any product of
local operators on any Bethe eigenvector. From the solution of the quantum inverse
scattering problem, this is given by the successive action of A, B, C, D operators on
a vector constructed by action of C operators on the reference vector. Action of A,
B, C, D on such a vector are well known (see for example [5]). They can be written
in the following form:

〈 0 |
N∏
k=1

C(λk)A(λN+1) =
N+1∑
a′=1

a(λa′)

N∏
k=1

sinh(λk − λa′ + η)

N+1∏
k=1
k 
=a′

sinh(λk − λa′)

〈 0 |
N+1∏
k=1
k 
=a′

C(λk); (36)

〈 0 |
N∏
k=1

C(λk)D(λN+1) =
N+1∑
a=1

d(λa)

N∏
k=1

sinh(λa − λk + η)

N+1∏
k=1
k 
=a

sinh(λa − λk)

〈 0 |
N+1∏
k=1
k 
=a

C(λk). (37)
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The action of the operator B(λ) can be obtained similarly,

〈 0 |
N∏
k=1

C(λk) B(λN+1) =
N+1∑
a=1

d(λa)

N∏
k=1

sinh(λa − λk + η)

N+1∏
k=1
k 
=a

sinh(λa − λk)

×
N+1∑
a′=1
a′ 
=a

a(λa′)

sinh(λN+1 − λa′ + η)

N+1∏
j=1
j 
=a

sinh(λj − λa′ + η)

N+1∏
j=1
j 
=a,a′

sinh(λj − λa′)

〈 0 |
N+1∏
k=1
k 
=a,a′

C(λk),

(38)

and the action of C is obvious.

3. Correlation functions: finite chain

To compute correlation functions of some product of local operators, the following
successive problems have to be addressed: (i) determination of the ground state 〈ψg |,
(ii) evaluation of the action of the product of the local operators on it, and (iii) compu-
tation of the scalar product of the resulting state with |ψg 〉. Using the solution of the
quantum inverse scattering problem together with the explicit determinant formulas
for the scalar products and the norm of the Bethe state, one sees that matrix elements
of local spin operators and correlation functions can be expressed as (multiple) sums
of determinants [9]. It should be stressed that this result is purely algebraic and is
valid for finite chains of arbitrary length M .

3.1. Matrix elements of local operators. We begin with the calculation of the one-
point functions. These results follow directly from the solution of the quantum inverse
scattering problem, the above action of operatorsA, B, C andD, and the determinant
representation of the scalar products. We consider

F−
N (m, {μj }, {λk}) = 〈 0 |

N+1∏
j=1

C(μj ) σ
−
m

N∏
k=1

B(λk) | 0 〉 (39)

and

F+
N (m, {λk}, {μj }) = 〈 0 |

N∏
k=1

C(λk) σ
+
m

N+1∏
j=1

B(μj ) | 0 〉, (40)

where {λk}n and {μj }n+1 are solutions of Bethe equations.
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Proposition 3.1. For two Bethe states with spectral parameters {λk}N and {μj }N+1,
the matrix element of the operator σ−

m can be represented as a determinant,

F−
N (m, {μj }, {λk}) = φm−1({μj })

φm−1({λk})

N+1∏
j=1

sinh(μj − ξm + η)

N∏
k=1

sinh(λk − ξm + η)

· detN+1H
−(m, {μj }, {λk})∏

N+1≥k>j≥1
sinh(μk − μj)

∏
1≤β<α≤N

sinh(λβ − λα)
,

(41)

φm({λk}) =
N∏
k=1

m∏
j=1

b−1(λk, ξj ), (42)

and the (N + 1)× (N + 1) matrix H− is defined as

H−
ab(m) = ϕ(η)

ϕ(μa − λb)

(
a(λb)

N+1∏
j=1
j 
=a

ϕ(μj − λb + η)− d(λb)

N+1∏
j=1
j 
=a

ϕ(μj − λb − η)
)

(43)

for b < N + 1, and

H−
aN+1(m) = ϕ(η)

ϕ(μa − ξm + η)ϕ(μa − ξm)
. (44)

For the matrix element F+
N (m, {λk}, {μj }) we get

F+
N (m, {λk}, {μj }) = φm(λk) φm−1(λk)

φm−1(μj ) φm(μj )
F−
N (m, {μj }, {λk}). (45)

The matrix elements of the operator σzm between two Bethe states have been
obtained similarly [8].

3.2. Elementary blocks of correlation functions. In this section we consider a
more general case of correlation functions: the ground state mean value of any product
of the local elementary 2 × 2 matrices Eε

′,ε
lk = δl,ε′δk,ε :

Fm({εj , ε′j }) =
〈ψg |

m∏
j=1

E
ε′j ,εj
j |ψg 〉

〈ψg |ψg〉 . (46)

An arbitrary n-point correlation function can be obtained as a sum of such mean
values. Using the solution of the quantum inverse scattering problem, we reduce this
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problem to the computation of the ground state mean value of an arbitrary ordered
product of monodromy matrix elements,

Fm({εj , ε′j }) = φ−1
m ({λ}) 〈ψg |Tε1,ε

′
1
(ξ1) . . . Tεm,ε′m(ξm)|ψg 〉

〈ψg |ψg〉 . (47)

To calculate these mean values we first describe generically the product of the mon-
odromy matrix elements. For that purpose, one should consider the two following
sets of indices, α+ = {j : 1 ≤ j ≤ m, εj = 1}, card(α+) = s′, maxj∈α+(j) ≡ j ′

max,
minj∈α+(j) ≡ j ′

min, and similarly α− = {j : 1 ≤ j ≤ m, ε′j = 2}, card(α−)= s,
maxj∈α−(j) ≡ jmax, minj∈α−(j) ≡ jmin. The intersection of these two sets
is not empty and corresponds to the operators B(ξj ). Consider now the action,
〈 0 |∏N

k=1 C(λk)Tε1,ε
′
1
(λN+1) . . . Tεm,ε′m(λN+m), applying one by one the formulae

(36)–(38). For all the indices j from the sets α+ and α− one obtains a summation
on the corresponding indices a′

j (for j ∈ α+, corresponding to the action of the

operators A(λ) or B(λ)) or aj (for j ∈ α−, corresponding to the action of the oper-
ators D(λ) or B(λ)). As the product of the monodromy matrix elements is ordered
these summations are also ordered and the corresponding indices should be taken
from the following sets: Aj = {b : 1 ≤ b ≤ N + m, b 
= ak, a

′
k, k < j} and

A′
j = {b : 1 ≤ b ≤ N +m, b 
= a′

k, k < j, b 
= ak, k ≤ j}. Thus,

〈 0 |
N∏
k=1

C(λk) Tε1,ε
′
1
(λN+1) . . . Tεm,ε′m(λN+m)

=
∑

{aj ,a′
j }
G{aj ,a′

j }(λ1, . . . , λN+m)〈 0 |
∏

b∈Am+1

C(λb).
(48)

The summation is taken over the indices aj for j ∈ α− and a′
j for j ∈ α+ such

that 1 ≤ aj ≤ N + j , aj ∈ Aj , 1 ≤ a′
j ≤ N + j, a′

j ∈ A′
j . The functions

G{aj ,a′
j }(λ1, . . . λN+m) can then be easily obtained from the formulae (36)–(38) taking

into acount that λa = ξa−N for a > N :

G{aj ,a′
j }(λ1, . . . , λN+m) =

∏
j∈α−

d(λaj )

N+j−1∏
b=1
b∈Aj

sinh(λaj − λb + η)

N+j∏
b=1
b∈A′

j

sinh(λaj − λb)

×
∏
j∈α+

a(λa′
j
)

N+j−1∏
b=1
b∈A′

j

sinh(λb − λa′
j
+ η)

N+j∏
b=1

b∈Aj+1

sinh(λb − λa′
j
)

.

(49)
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Now to calculate the normalized mean value (47) we apply the determinant repre-
sentation for the scalar product. It should be mentioned that the number of operators
C(λ) has to be equal to the number of the operatorsB(λ), as otherwise the mean value
is zero, and hence the total number of elements in the sets α+ and α− is s + s′ = m.
Taking into account that in (47), for b > N, λb = ξb−N one has to consider the
following scalar products:

〈 0 | ∏
b∈Am+1

C(λb)
N∏
k=1

B(λk)| 0 〉

〈 0 |
N∏
k=1

C(λk)
N∏
k=1

B(λk)| 0 〉
,

for all the permitted values of aj , a′
j . Finally we obtain

Fm({εj , ε′j }) = 1∏
k<l

sinh(ξk − ξl)

∑
{aj ,a′

j }
H{aj ,a′

j }(λ1, . . . , λN+m), (50)

the sum being taken on the same set of indices aj , a′
j as in (48). The functions

H{aj ,a′
j }({λ}) can be obtained using (49) and the determinant representations for the

scalar products.

3.3. Two-point functions. The method presented in the last section is quite straight-
forward and gives formally the possibility to compute any correlation function. How-
ever, it has been developed for the computation of the expectation values of the
monomials Ta1b1(ξ1) . . . Tambm(ξm), leading to the evaluation of elementary building
blocks, whereas the study of the two-point functions involves big sums of such mono-
mials. Indeed, let us consider for example the correlation function 〈 σz1 σzm+1 〉. Then,
according to the solution of the inverse scattering problem (31), we need to calculate
the expectation value

〈ψ({λ}) | (A−D)(ξ1) ·
m∏
a=2

T (ξa) · (A−D)(ξm+1) ·
m+1∏
b=1

T −1(ξb) |ψ({λ}) 〉. (51)

Since |ψ({λ}) 〉 is an eigenvector, the action of
∏m+1
b=1 T −1(ξb) on this state merely

produces a numerical factor. However, it is much more complicated to evaluate the
action of

∏m
a=2 T (ξa). Indeed, we have to act first with (A − D)(ξ1) on 〈ψ({λ}) |

(or with (A − D)(ξm+1) on |ψ({λ}) 〉), which gives a sum of states which are no
longer eigenvectors of the transfer matrix, and on which the multiple action of T
is not simple. In fact, the product

∏m
a=2(A + D)(ξa) would lead to a sum of 2m−1

elementary blocks. This is not very convenient, in particular at large distance m.
Therefore, to obtain manageable expressions for such correlation functions, it is of
great importance to develop an alternative and compact way to express the multiple
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action of the transfer matrix on arbitrary states or, in other words, to make an effective
re-summation of the corresponding sum of the 2m−1 terms. This can be achieved in
the following way:

Proposition 3.2. Let κ , x1, . . . , xm and μ1, . . . , μN be generic parameters. Then
the action of

∏m
a=1 Tκ(xa) on a state of the form 〈 0 |∏N

j=1 C(μj ) can be formally
written as

〈 0 |
N∏
j=1

C(μj )

m∏
a=1

Tκ(xa) = 1

N !
∮

�{x}∪�{μ}

N∏
j=1

dzj

2πi
·
m∏
a=1

τκ(xa|{z}) ·
N∏
a=1

1

Yκ(za|{z})

×
N∏

j,k=1
j<k

sinh(zj − zk)

sinh(μj − μk)
· det
N
�κ({z}, {μ}|{z}) · 〈 0 |

N∏
j=1

C(zj ), (52)

where the integration contour �{x} ∪ �{μ} surrounds the points1 x1, . . . , xm and
μ1, . . . , μN and does not contain any other pole of the integrand.

One of the simplest applications concerns the generating function of the two-
point correlation function of the third components of spin, which is defined as the
normalized expectation value 〈Qκ

l,m 〉 of the operator

Qκ
l,m =

m∏
n=l

(
1 + κ

2
+ 1 − κ

2
· σzn

)
=

l−1∏
j=1

T (ξj ) ·
m∏
j=l

Tκ(ξj ) ·
m∏
j=1

T −1(ξj ), (53)

where |ψ({λ}) 〉 is an eigenvector of T (μ) in the subspace H (M/2−N). The two-point
correlation function of the third components of local spins in the eigenvector |ψ({λ}) 〉
can be obtained in terms of the second ‘lattice derivative’ and the second derivative
with respect to κ of the generating function 〈Qκ

l,m 〉 at κ = 1:

〈 σzl σ zl+m 〉 = 〈 σzl 〉 + 〈 σzl+m 〉 − 1

+ 2
∂2

∂κ2 〈Qκ
l,l+m −Qκ

l,l+m−1 −Qκ
l+1,l+m +Qκ

l+1,l+m−1 〉
κ=1
.

(54)

Due to the translational invariance of the correlation functions in the homogeneous
model, we will simply consider the expectation value 〈Qκ

1,m 〉. For any given eigen-
vector, we obtain the following result:

Theorem 3.1. Let {λ}be an admissible off-diagonal solution of the system of untwisted
Bethe equations, and let us consider the corresponding expectation value 〈Qκ

1,m 〉 in

1More precisely, for a set of complex variables {ν1, . . . , νl}, the notation �{ν} should be understood in
the following way: �{ν} is the boundary of a set of poly-disks Da(r) in C

N , i.e. �{ν} = ∪la=1D̄a(r) with

D̄a(r) = {z ∈ C
N : |zk − νa | = r, k = 1, . . . , N}.
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the inhomogeneous finiteXXZ chain. Then there exists κ0 > 0 such that, for |κ| < κ0,
the following representations hold:

〈Qκ
1,m 〉 = 1

N !
∮

�{ξ}∪�{λ}

N∏
j=1

dzj

2πi
·
m∏
a=1

τκ(ξa|{z})
τ (ξa|{λ}) ·

N∏
a=1

1

Yκ(za|{z})

× det
N
�κ({z}, {λ}|{z}) · detN �({λ}, {z}|{λ})

detN �({λ}, {λ}|{λ}) .
(55)

The integration contours are such that the only singularities of the integrand which
contribute to the integral are the points ξ1, . . . , ξm and λ1 . . . , λN .

From this result we can extract a compact representation for the two-point function
of σz [15]. Similar expressions exists for other correlation functions of the spin
operators, and in particular for the time dependent case [15], [16]. Moreover, this
multiple contour integral representation permits to relate two very different ways to
compute two point correlation functions of the type, g12 = 〈ω|θ1θ2|ω〉, namely,

(i) to compute the action of local operators on the ground state θ1θ2|ω〉 = |ω̃〉 and
then to calculate the resulting scalar product g12 = 〈ω|ω̃〉 as was explained in the
previous sections;

(ii) to insert a sum over a complete set of states |ωi〉 (for instance, a complete set of
eigenvectors of the Hamiltonian) between the local operators θ1 and θ2 and to obtain
the representation for the correlation function as a sum over matrix elements of local
operators,

g12 =
∑
i

〈ω|θ1|ωi〉 · 〈ωi |θ2|ω〉. (56)

In fact the above representation as multiple contour integrals contains both expan-
sions. Indeed there are two ways to evaluate the corresponding integrals: either to
compute the residues in the poles inside �, or to compute the residues in the poles
within strips of the width iπ outside �.

The first way leads to a representation of the correlation function 〈σz1σzm+1〉 in terms
of the previously obtained [11] m-multiple sums. Evaluation of the above contour
integral in terms of the poles outside the contour � gives us the expansion (ii) of the
correlation function (i.e. an expansion in terms of matrix elements of σz between the
ground state and all excited states). This relation holds also for the time dependent
case [15], [16].

4. Correlation functions: infinite chain

In the thermodynamic limit M → ∞ and at zero magnetic field, the model exhibits
three different regimes depending on the value of � [1]. For � < −1, the model is
ferromagnetic, for −1 < � < 1 the model has a non degenerated anti ferromagnetic
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ground state, and no gap in the spectrum (massless regime), while for � > 1 the
ground state is twice degenerated with a gap in the spectrum (massive regime). In
both cases, the ground state has spin zero. Hence the number of parameters λ in the
ground state vectors is equal to half the size M of the chain. For M → ∞, these
parameters will be distributed in some continuous interval according to a density
function ρ.

4.1. The thermodynamic limit. In this limit, the Bethe equations for the ground
state, written in their logarithmic form, become a linear integral equation for the
density distribution of these λ’s,

ρtot(α)+
∫ �

−�
K(α − β)ρtot(β) dβ = p′

0tot
(α)

2π
, (57)

where the new real variables α are defined in terms of general spectral parameters λ
differently in the two domains. From now on, we only describe the massless regime
(see [9] for the other case) −1 < � < 1 where α = λ. The density ρ is defined
as the limit of the quantity 1

M(λj+1−λj ) , and the functions K(λ) and p′
0tot
(λ) are the

derivatives with respect to λ of the functions − θ(λ)
2π and p0tot(λ):

K(α) = sin 2ζ

2π sinh(α + iζ ) sinh(α − iζ )

p′
0(α) = sin ζ

sinh
(
α + i

ζ
2

)
sinh

(
α − i

ζ
2

) for − 1 < � < 1, ζ = iη, (58)

with p′
0tot
(α) = 1

M

∑M
i=1 p

′
0

(
α−βk − i ζ2

)
, where βk = ξk . The integration limit� is

equal to +∞ for −1 < � < 1. The solution for the equation (57) in the homogeneous
model where all parameters ξk are equal to η/2, that is the density for the ground state
of the Hamiltonian in the thermodynamic limit, is given by the following function [24]:

ρ(α) = 1

2ζ cosh(πα
ζ
)
.

For technical convenience, we will also use the function

ρtot(α) = 1

M

M∑
i=1

ρ

(
α − βk − i

ζ

2

)
.

It will be also convenient to consider, without any loss of generality, that the inhomo-
geneity parameters are contained in the region −ζ < Imβj < 0. Using these results,
for any C∞ function f (π -periodic in the domain � > 1), sums over all the values
of f at the point αj , 1 ≤ j ≤ N , parameterizing the ground state, can be replaced in
the thermodynamic limit by an integral:

1

M

N∑
j=1

f (αj ) =
∫ �

−�
f (α)ρtot(α) dα +O(M−1).
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Thus, multiple sums obtained in correlation functions will become multiple integrals.
Similarly, it is possible to evaluate the behavior of the determinant formulas for the
scalar products and the norm of Bethe vectors (and in particular their ratios) in the
limit M → ∞.

4.2. Elementary blocks. From the representations as multiple sums of these ele-
mentary blocks in the finite chain we can obtain their multiple integral representations
in the thermodynamic limit. Let us now consider separately the two regimes of the
XXZ model. In the massless regime η = −iζ is imaginary, the ground state parame-
ters λ are real and the limit of integration is infinity� = ∞. In this case we consider
the inhomogeneity parameters ξj such that 0 > Im(ξj ) > −ζ . For the correlation
functions in the thermodynamic limit one obtains the following result in this regime.

Proposition 4.1.

Fm({εj , ε′j }) =
∏
k<l

sinh π
ζ
(ξk − ξl)

sinh(ξk − ξl)

s′∏
j=1

∞−iζ∫
−∞−iζ

dλj

2iζ

m∏
j=s′+1

∞∫
−∞

i
dλj

2ζ

m∏
a=1

m∏
k=1

1

sinh π
ζ
(λa − ξk)

∏
j∈α−

( j−1∏
k=1

sinh(μj − ξk − iζ )

m∏
k=j+1

sinh(μj − ξk)
)

∏
j∈α+

( j−1∏
k=1

sinh(μ′
j − ξk + iζ )

m∏
k=j+1

sinh(μ′
j − ξk)

)∏
a>b

sinh π
ζ
(λa − λb)

sinh(λa − λb − iζ )
,

where the parameters of integration are ordered in the following way: {λ1, . . . λm} =
{μ′
j ′

max
, . . . , μ′

j ′
min
, μjmin , . . . , μjmax}.

The homogeneous limit (ξj = −iζ/2, for all j ) of the correlation function
Fm({εj , ε′j }) can then be taken in an obvious way. We have obtained similar rep-
resentations for the massive regime, and also in the presence of a non-zero magnetic
field [9]. For zero magnetic field, these results agree exactly with the ones obtained
by Jimbo and Miwa in [35], using in particular q-KZ equations. It means that for zero
magnetic field, the elementary blocks of correlation functions indeed satisfy q-KZ
equations. Recently, more algebraic representations of solutions of the q-KZ equa-
tions have been obtained that correspond to the above correlation functions [37], [38].
From the finite chain representation for the two-point function it is also possible to
obtain multiple integral representations for that case as well, in particular for their
generating function [11], [13]. They correspond different huge re-summations and
symmetrization of the corresponding elementary blocks, as in the finite chain situa-
tion [11]. Moreover, the case of time dependent correlation functions as also been
obtained [15], [16]. Finally, let us note that at the free fermion point, all the results
presented here lead, in a very elementary way, to already know results [12], [17], [19].
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5. Exact and asymptotic results

5.1. Exact results at � = 1/2. Up to now, two exact results have been obtained for
the case of anisotropy� = 1/2: the exact value of the emptiness formation probability
for arbitrary distance m [13] and the two point function of the third component of
spin [18]. These two results follow from the above multiple integral representations for
which, due to the determinant structure of the integrand, the corresponding multiple
integrals can be separated and hence explicitly computed for this special value of the
anisotropy.

5.1.1. The emptiness formation probability. This correlation function τ(m) (the
probability to find in the ground state a ferromagnetic string of length m) is defined
as the following expectation value:

τ(m) = 〈ψg|
m∏
k=1

1 − σzk

2
|ψg〉, (59)

where |ψg〉 denotes the normalized ground state. In the thermodynamic limit
(M → ∞), this quantity can be expressed as a multiple integral with m integra-
tions [34], [35], [6], [8], [9].

Proposition 5.1. For � = cos ζ , 0 < ζ < π , τ(m) = lim
ξ1,...ξm→− iζ

2
τ(m, {ξj }),

where

τ(m, {ξj }) = 1

m!
∞∫

−∞

Zm({λ}, {ξ})
m∏
a<b

sinh(ξa − ξb)

detm

(
i

2ζ sinh π
ζ
(λj − ξk)

)
dmλ, (60)

Zm({λ}, {ξ}) =
m∏
a=1

m∏
b=1

sinh(λa − ξb) sinh(λa − ξb − iζ )

sinh(λa − λb − iζ )

·
detm

( −i sin ζ
sinh(λj−ξk) sinh(λj−ξk−iζ )

)
m∏
a>b

sinh(ξa − ξb)

.

(61)

The proof is given in [11]. Due to the determinant structure of the integrand, the
integrals can be separated and computed for the special case � = 1

2 (ζ = π/3):

Proposition 5.2. Let ξk = εk − iπ/6 and εab = εa − εb. Then we obtain

τ(m, {εj }) = (−1)
m2−m

2

2m2

m∏
a>b

sinh 3εba
sinh εba

m∏
a,b=1
a 
=b

1

sinh εab
· detm

(
3 sinh

εjk
2

sinh
3εjk

2

)
(62)
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and

τ(m) =
(

1

2

)m2 m−1∏
k=0

(3k + 1)!
(m+ k)! . (63)

Observe that the quantity Am = ∏m−1
k=0 (3k + 1)!/(m + k)! is the number of

alternating sign matrices of size m. This result was conjectured in [45].

5.1.2. The two point function of σz. The two point functions can be obtained, as in
the finite chain situation, from a generating function 〈Qκ(m)〉; in the thermodynamic
limit, we use the following multiple integral representation [18]:

〈Qκ(m)〉 =
m∑
n=0

κm−n

n!(m− n)!
∮

�{−iζ/2}

dmz

(2πi)m

∫
R−iζ

dnλ

∫
R

dm−nλ ·
m∏
j=1

ϕm(zj )

ϕm(λj )

×
n∏
j=1

{
t (zj , λj )

m∏
k=1

sinh(zj − λk − iζ )

sinh(zj − zk − iζ )

}

×
m∏

j=n+1

{
t (λj , zj )

m∏
k=1

sinh(λk − zj − iζ )

sinh(zk − zj − iζ )

}

×
m∏
j=1

m∏
k=1

sinh(λk − zj − iζ )

sinh(λk − λj − iζ )
· detm

(
i

2ζ sinh π
ζ
(λ− z)

)
.

(64)

Here,

� = cos ζ, t (z, λ) = −i sin ζ

sinh(z− λ) sinh(z− λ− iζ )
, ϕ(z) = sinh(z− i

ζ
2 )

sinh(z+ i
ζ
2 )
, (65)

and the integrals over the variables zj are taken with respect to a closed contour �
which surrounds the point −iζ/2 and does not contain any other singularities of the
integrand. The equation (64) is valid for the homogeneousXXZ chain with arbitrary
−1 < � < 1. If we consider the inhomogeneous XXZ model with inhomogeneities
ξ1, . . . , ξm, then one should replace in the representation (64) the function ϕm in the
following way:

ϕm(z) →
m∏
b=1

sinh(z− ξb − iζ )

sinh(z− ξb)
, ϕ−m(λ) →

m∏
b=1

sinh(λ− ξb)

sinh(λ− ξb − iζ )
. (66)

In order to come back to the homogeneous case, one should set ξk = −iζ/2, k =
1, . . . , m in (66). In the inhomogeneous model, the integration contour � surrounds
the points ξ1, . . . , ξm, and the integrals over zj are therefore equal to the sum of the
residues of the integrand in these simple poles. It turns out that again for the special
case � = 1

2 integrals can be separated and computed to give:
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Proposition 5.3.

〈Qκ(m)〉 = 3m

2m2

m∏
a>b

sinh 3(ξa − ξb)

sinh3(ξa − ξb)

m∑
n=0

κm−n ∑
{ξ}={ξγ+}∪{ξγ−}

|γ+|=n

det
m
�̂(n)

×
∏
a∈γ+

∏
b∈γ−

sinh(ξb − ξa − iπ
3 ) sinh(ξa − ξb)

sinh2(ξb − ξa + iπ
3 )

,

�̂(n)({ξγ+}, {ξγ−}) =

⎛⎜⎜⎝
�(ξj − ξk) �(ξj − ξk − iπ

3 )

�(ξj − ξk + iπ
3 ) �(ξj − ξk)

⎞⎟⎟⎠ ,

�(x) = sinh x
2

sinh 3x
2

.

Here the sum is taken with respect to all partitions of the set {ξ} into two disjoint subsets
{ξγ+} ∪ {ξγ−} of cardinality n and m− n respectively. The first n lines and columns
of the matrix �̂(n) are associated with the parameters ξ ∈ {ξγ+}. The remaining lines
and columns are associated with ξ ∈ {ξγ−}.

Thus, we have obtained an explicit answer for the generating function 〈Qκ(m)〉
of the inhomogeneous XXZ model. It is also possible to check that the above sum
over partitions remains indeed finite in the homogeneous limit ξk → 0.

5.2. Asymptotic results. An important issue is the analysis of the multiple integral
representations of correlation functions for large distances. There it means analyz-
ing asymptotic behavior of m-fold integrals for m large. An interesting example to
study in this respect is provided by the emptiness formation probability. This correla-
tion function reduces to a single elementary block. Moreover, we already described
its exact value for an anisotropy � = 1

2 in the previous section. In fact, it is pos-
sible to obtain the asymptotic behavior of τ(m) using the saddle-point method for
arbitrary values of the anisotropy � > −1 . This was performed for the first time
in [12] in the case of free fermions (� = 0), but it can be applied to the general
case as well. We present here the results in the massless and massive regimes [14],
[19].

To apply the saddle-point method to the emptiness formation probability, it is
convenient to express its integral representation in the following form:

τ(m) =
∫
D

dmλ Gm({λ}) em2Sm({λ}), (67)
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with

Sm({λ}) = − 1

m2

m∑
a>b

log[sinh(λa − λb + η) sinh(λa − λb − η)]

+ 1

m

m∑
a=1

log[sinh(λa + η/2) sinh(λa − η/2)]

+ 1

m2 lim
ξ1...ξm→η/2

log
[(−2iπ

sinh η

)m (
det ρ(λj , ξk)

)2∏
a 
=b

sinh(ξa − ξb)

]
(68)

and

Gm({λ}) = lim
ξ1...ξm→η/2

detm
[
i

2π t (λj , ξk)
]

detm ρ(λj , ξk)
. (69)

In (67), the integration domain D is such that the variables of integration λ1, . . . , λm
are ordered in the interval C = [−�h,�h] (i.e. −�h < λ1 < · · · < λm < �h in the
massless case, and −i�h < iλ1 < · · · < iλm < i�h in the massive case).

The main problem in the saddle point analysis is that, a priori, we do not know any
asymptotic equivalent of the quantityGm(λ)whenm → ∞. Nevertheless, in the case
of zero magnetic field, it is still possible to compute the asymptotic behavior of (67)
in the leading order, provided we make the following hypothesis: we assume that the
integrand of (67) admits a maximum for a certain value λ′

1, . . . , λ
′
m of the integra-

tion variables λ1, . . . , λm such that, for large m, the distribution of these parameters
λ′

1, . . . , λ
′
m can be described by a density function ρs(λ′) of the form

ρs(λ
′
j ) = lim

m→∞
1

m(λ′
j+1 − λ′

j )
(70)

on the symmetric interval [−�,�], and that, at the leading order inm, we can replace
the sums over the set of parameters {λ′} by integrals weighted with the density ρs(λ′).

First, it is easy to determine the maximum of the function Sm({λ}). Indeed, let {λ̃}
be solution of the system

∂λj Sm({λ̃}) = 0, 1 ≤ j ≤ m. (71)

In the limit m → ∞, if we suppose again that the parameters λ̃1, . . . , λ̃m become
distributed according to a certain density ρ̃s(λ) and that sums over the λ̃j become
integrals over this density, the system (71) turns again into a single integral equation
for ρ̃s , that can be solved explicitly in the case of zero magnetic field. It gives the
maximum of Sm({λ}) when m → ∞2.

2At this main order in m, there exists a unique solution of the integral equation for ρ̃s , and we know it
corresponds to a maximum because Sm({λ}) → −∞ on the boundary of D .
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The second step is to show that the factor Gm({λ}) gives always a negligible
contribution compared to Sm({λ̃}) at this order in m, at least for any distribution of
the variables λj satisfying the previous hypothesis of regularity. We obtain

lim
m→∞

1

m2 logGm({λ}) = 0 (72)

for any distribution of {λ} with good properties of regularity, in particular for the
saddle point. This means that, at the main order in m, the factor Gm({λ}) does not
contribute to the value of the maximum of the integrand.

Finally we obtain the following result concerning the asymptotic behaviour of
τ(m) for m → ∞ (see [14], [19]):

S(0)(�) = lim
m→∞

log τ(m)

m2 , (73)

= −ζ
2

−
∞∑
n=1

e−nζ

n

sinh(nζ )

cosh(2nζ )
, (� = cosh ζ > 1), (74)

= log
π

ζ
+ 1

2

∫
R−i0

dω

ω

sinh ω
2 (π − ζ ) cosh2 ωζ

2

sinh πω
2 sinh ωζ

2 coshωζ
, (−1 < � = cos ζ < 1).

(75)

It coincides with the exact known results obtained in [46], [12] at the free fermion
point and in [45], [13] at � = 1/2, and is in agreement with the expected (infinite)
value in the Ising limit. Similar techniques can be applied to the two point function.
However, the result that has been extracted so far is only the absence of the gaussian
term. Unfortunately, we do not know up to now how to extract the expected power law
corrections to the gaussian behavior from this saddle point analysis. More powerful
methods will certainly be needed to go further.

Conclusion and perspectives

In this article, we have reviewed recent results concerning the computation of correla-
tion functions in theXXZ chain by the methods of the inverse scattering problem and
the algebraic Bethe ansatz. In conclusion, we would like to discuss some perspectives
and problems to be solved.

One of the most interesting open problems is to prove the conformal field theory
predictions [47], [48], [49], [50] concerning the asymptotic behavior of the correlation
functions. This is certainly a very important issue not only for physical applications
but also from a theoretical view point. Moreover, it also would open the route towards
the generalization of the methods presented here to quantum integrable models of field
theory. We have seen that in particular cases, the multiple integral representations



406 Jean Michel Maillet

enable for a preliminary asymptotic analysis. Nevertheless, this problem remains one
of the main challenges in the topics that have been described in this article.

A possible way to solve this problem would be to find the thermodynamic limit of
the master equations (like the one obtained for the two point correlation functions).
It is natural to expect that, in this limit, one should obtain a representation for these
correlation functions in terms of a functional integral, which could eventually be
estimated for large time and distance.

Note that the master equation shows a direct analytic relation between the multiple
integral representations and the form factor expansions for the correlation functions. It
seems likely that similar representations exist for other models solvable by algebraic
Bethe ansatz. It would be in particular very interesting to obtain an analogue of
this master equation in the case of the field theory models, which could provide an
analytic link between short distance and long distance expansions of their correlation
functions.
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Gromov–Witten invariants and topological strings:
a progress report

Marcos Mariño∗

Abstract. In this talk I summarize recent progress in the theory of Gromov–Witten invariants
from topological string theory and string dualities. On the one hand, large N dualities have led
to the theory of the topological vertex, which solves Gromov–Witten theory to all genera on
toric, noncompact Calabi–Yau threefolds. On the other hand, heterotic/type II duality and the
holomorphic anomaly equations can be used to analyze Gromov–Witten theory in some simple
compact examples. I sketch the physical ideas behind these results and connect the results
obtained in physics with the results obtained in algebraic geometry.
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1. Introduction

The theory of Gromov–Witten invariants was largely motivated by the study of string
theory on Calabi–Yau manifolds, and has now developed into one of the most dynamic
fields of algebraic geometry. During the last years there has been enormous progress in
the development of the theory and of its computational techniques. Roughly speaking,
and restricting ourselves to Calabi–Yau threefolds, we have the following mathemat-
ical approaches to the computation of Gromov–Witten invariants:

1. Localization. This was first proposed by Kontsevich, and requires torus actions
in the Calabi–Yau in order to work. Localization provides a priori a complete
solution of the theory on toric (hence non-compact) Calabi–Yau manifolds,
and reduces the computation of Gromov–Witten invariants to the calculation of
Hodge integrals in Deligne–Mumford moduli space. Localization techniques
make also possible to solve the theory at genus zero on a wide class of compact
manifolds, see [8], [14] for a review.

2. Deformation and topological approach. This has been developed more recently
and relies on relative Gromov–Witten invariants [11], [24]. It provides a cut-
and-paste approach to the calculation of the invariants and seems to be the most
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also like to thank D. Maulik, G. Moore and R. Pandharipande for discussions.
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powerful approach to higher genus Gromov–Witten invariants in the compact
case.

3. D-brane moduli spaces. Gromov–Witten invariants can be reformulated in
terms of the so-called Gopakumar–Vafa invariants (see [14], [21] for a summary
of these). Heuristic techniques to compute these have been developed in [16],
as Euler characteristics of moduli space of embedded surfaces, and one can
recover to a large extent the original information of Gromov–Witten theory.
The equivalence between these two invariants remains however conjectural,
and a general, rigorous definition of the Gopakumar–Vafa invariants in terms
of appropriate moduli spaces is still not known.

4. Equivalence to Donaldson–Thomas invariants. In [23] it was proposed that
Gromov–Witten invariants are equivalent to Donaldson–Thomas invariants,
which are associated to moduli spaces of sheaves. This equivalence remains
largely conjectural and so far it has led to little computational progress, although
it is currently an area of active research.

Gromov–Witten invariants are closely related to string theory. It turns out that
type IIA theory on a Calabi–Yau manifold X leads to a four-dimensional supersym-
metric theory whose Lagrangian contains moduli-dependent couplings Fg(t), where t

denotes the Kähler moduli of the Calabi–Yau. When these couplings are expanded in
the large radius limit, they are of the form

Fg(t) =
∑

Q∈H2(X)

Ng,Q e−Q·t , (1)

where Ng,Q are the Gromov–Witten invariants for the class Q at genus g. It turns
out that there is a simplified version of string theory, called topological string theory,
which captures precisely the information contained in these couplings. Topological
string theory comes in two versions, called the A and the B model (see [21], [14] for a
review). Type A topological string theory is related to Gromov–Witten theory, and its
free energy at genus g is precisely given by (1). Type B topological string theory is
related to the deformation theory of complex structures of the Calabi–Yau manifold.
In the last years, various dualities of string theory have led to powerful techniques to
compute these couplings, hence Gromov–Witten invariants:

1. Mirror symmetry. Mirror symmetry relates type A theory on a Calabi–Yau
manifold X to type B theory on the mirror manifold X̃. When the mirror of
the Calabi–Yau X is known, this leads to a complete solution at genus zero in
terms of variation of the complex structures of X̃. For genus g ≥ 1, mirror
symmetry can be combined with the holomorphic anomaly equations of [5] to
obtain Fg(t). However, this does not provide the full solution to the model due
to the so-called holomorphic ambiguity. On the other hand, mirror symmetry
and the holomorphic anomaly equation are very general and work for both
compact and non-compact Calabi–Yau manifolds.
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2. Large N dualities. Large N dualities lead to a computation of the Fg(t) cou-
plings in terms of correlation functions and partition functions in Chern–Simons
theory. Although this was formulated originally only for the resolved conifold,
one ends up with a general theory – the theory of the topological vertex, intro-
duced in [2] – which leads to a complete solution on toric Calabi–Yau mani-
folds. The theory of the topological vertex is closely related to localization and
to Hodge integrals, and it can be formulated in a rigorous mathematical way
[19], [23].

3. Heterotic duality. When the Calabi–Yau manifold has the structure of a K3
fibration, type IIA theory often has a heterotic dual, and the evaluation of Fg(t)

restricted to the K3 fiber can be reduced to a one-loop integral in heterotic string
theory [4], [22]. This leads to explicit, conjectural formulae for Gromov–Witten
invariants in terms of modular forms.

In this progress report I will concentrate on two results: (1) I will summarize
how large N dualities lead to a complete solution of topological string theory on toric
Calabi–Yau manifolds. (2) I will discuss what is probably the simplest, non-trivial
compact Calabi–Yau manifold, the so-called Enriques Calabi–Yau manifold, which
is very tractable both mathematically and physically, and might be the natural starting
point to understand the compact case.

2. The toric case

In this section we give a rather brief summary of the results obtained in the context of
topological string theory to compute Gromov–Witten invariants of toric geometries.
This subject has been extensively reviewed in [20], [21], to which we refer for further
information and/or references.

2.1. The Gopakumar–Vafa duality. The Gopakumar–Vafa duality [12] is an exam-
ple of the string/gauge theory dualities which have been discovered in the last years.
It relates a particular gauge theory – U(N) Chern–Simons theory on the three-sphere
with coupling k – to a particular string theory – the type A topological string on
the small resolution of the conifold singularity. This is a toric (hence non-compact)
Calabi–Yau manifold which can be regarded as the total space of the bundle

O(−1) ⊕ O(−1) → P
1. (2)

It has a single Kähler parameter t which gives the complexified area of the P
1. The

identification is such that the effective coupling constant of the gauge theory

g = 2π i

k + N
(3)
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is identified to the string coupling constant gs , while the ’t Hooft parameter gN is
identified with the Kähler parameter t :

t = 2π iN

k + N
. (4)

In particular, the duality asserts that the free energy of Chern–Simons theory on S
3

equals the total free energy of the topological string, which is defined by summing
the topological string amplitudes to all genera,

F =
∞∑

g=0

Fg(t)g
2g−2
s , (5)

This can be checked explicitly since both quantities are known. The free energies
Fg(t) of topological string theory on the resolved conifold have been computed in
various ways (see for example [7]), and the free energy of Chern–Simons theory on
the sphere was computed by Witten and is given by

F = log Z = log S00, (6)

where

S00 =
N∏

j=1

(
2 sin

2π ij

k + N

)N−j

(7)

is obtained from the theory of affine Lie algebras.
The duality of Gopakumar andVafa gives some important information on Gromov–

Witten theory, but it only deals with one particular Calabi–Yau manifold: the resolved
conifold. From the point of view of topological string theory it would be extremely
useful to have generalizations of the duality which cover other situations, and express
the amplitude Fg(t) in terms of gauge theoretic quantities. It turns out that this can
be done in two different ways, which I consider in the next two subsections.

2.2. Extensions to other geometries. The first possibility to generalize the Gopa-
kumar–Vafa duality consists on taking Chern–Simons theory on more general three-
manifolds and search for Calabi–Yau duals. One obvious way to achieve this is to do
a quotient of both sides of the duality by Zp symmetry. On the gauge theory side one
obtains Chern–Simons theory on the lens space L(p, 1). The quotient of the resolved
conifold leads to a toric geometry, the Ap−1 fibration over P

1, which has p Kähler
parameters. For example, for p = 2 this leads to a duality between Chern–Simons
theory on RP

3 and topological string theory on the Calabi–Yau manifold given by the
anticanonical bundle of P

1 × P
1.

This generalization of the Gopakumar–Vafa duality was proposed in [1], where it
was tested in detail for p = 2. One interesting aspect of it is that one has to consider
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the Chern–Simons theory around an arbitrary reducible flat connection which breaks
the gauge group

U(N) →
p∏

i=1

U(Ni). (8)

The p Kähler parameters of the Calabi–Yau manifold, ti , are identified with the partial
’t Hooft parameters of the Chern–Simons theory with broken gauge symmetry:

ti = gsNi, i = 1, · · · , p. (9)

Unfortunately, it is not known if there are further generalizations of these results.
However, it seems natural to state the following

Conjecture 2.1. Given a rational homology sphere M , there exists a Calabi–Yau
manifold XM such that the free energy of Chern–Simons theory on M , expanded
around a generic reducible flat connection, equals the total free energy of topological
string theory on XM .

2.3. The cut-and-paste approach: the topological vertex. The basic idea of the
topological vertex is to regard a generic toric geometry as made out of pieces where
one can use the duality of Gopakumar and Vafa between the resolved conifold and
Chern–Simons theory. A first approach is then to cut the manifold into pieces that
are locally like resolved conifolds, to associate a topological string amplitude to each
of the pieces, and then to glue the results together. This program was developed
in [3], [9]. It turns out that there is a natural way to cut the original manifold into
pieces, and this is by introducing D-branes around Lagrangian submanifolds. The
amplitude associated to each of the pieces is then, due to the presence of D-branes,
an open topological string amplitude. Fortunately, the duality of Gopakumar and
Vafa also holds in the open setting [26], and the open amplitudes are closely related
to Chern–Simons invariants of knots and links in S

3. One then finds a surprising
relation between these invariants and Gromov–Witten invariants of toric Calabi–Yau
threefolds.

This procedure was refined and generalized in [2]. In the approach of [3], [9], one
has to divide the geometry into pieces which are like the resolved conifold, which in
terms of toric diagrams can be regarded as a four-valent graph. However, the basic
building block is in fact a trivalent vertex that corresponds to C

3 with three sets of
D-branes wrapping Lagrangian submanifolds. The open topological string amplitude
associated to this graph is called the topological vertex, and it is denoted by

CR1R2R3, (10)

where Ri are representations of U(∞) (or, equivalently, Young tableaux) which cor-
respond roughly to the Chan–Paton factors associated to the open strings ending on
the branes. The topological vertex depends only on the string coupling gs , and from
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its power series expansion in gs one can extract open Gromov–Witten invariants of C
3

with specified Lagrangian boundary conditions. These invariants do not have a rigor-
ous mathematical definition, but they can be re-interpreted as relative Gromov–Witten
invariants and computed by localization [19]. As shown in [2], one can use a sub-
tle variant of the Gopakumar–Vafa duality to obtain an explicit expression for the
topological vertex in terms of known quantum group invariants for arbitrary repre-
sentations Ri . The final result is

CR1R2R3 = q
κR2

+κR3
2

∑
Q1,Q3,Q

N
R1
QQ1

N
Rt

3
QQ3

WRt
2Q1

WR2Q3

WR2

. (11)

In this equation, NR
R1R2

are Littlewood–Richardson coefficients, and Rt denotes the
transpose of the representation R. κR is related to the second Casimir of R as a
representation of U(N) and can be written as

κR = �(R) +
∑

i

lRi (lRi − 2i), (12)

where �(R) is the number of boxes in the Young tableau of R and lRi is the number of
boxes in the i-th row of R. Finally, WR1R2 are related to quantum group invariants of
the Hopf link and can be written in terms of Schur polynomials as

WR1R2(q) = sR2

(
xi = q−i+ 1

2
)
sR1

(
xi = ql

R2
i −i+ 1

2
)
, (13)

where q = egs .
In [2] it is shown on a physical basis that the all genus Gromov–Witten invariants

of any toric Calabi–Yau manifold can be computed from (11) and some simple gluing
rules. Essentially, one takes the toric diagram of the Calabi–Yau and decomposes it
into trivalent vertices. To each of these vertices one assigns the amplitude (11), and
then one glues them together according to simple instructions encoded in the diagram.
The result is the partition function Z = exp F , where F is the free energy (5). One
simple example is the so-called local P

2 manifold, namely the total space of the bundle
O(−3) → P

2. The rules of [2] give

ZP2 =
∑

R1,R2,R3

(−1)
∑

i �(Ri)e− ∑
i �(Ri)t q− ∑

i κRi C0Rt
2R3

C0Rt
1R2

C0Rt
3R1

. (14)

The theory of the topological vertex developed in [2] and largely based on the
ideas of string/gauge theory duality has been re-derived to a large extent on a rigorous
mathematical basis in [19], by using relative Gromov–Witten invariants. This theory
gives a full solution of topological string theory in the toric case. Let us now consider
the compact case.
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3. The compact case

3.1. Heterotic duality. As we already explained in the introduction, the main tool
to compute Gromov–Witten invariants in the compact case is the combination of
mirror symmetry and the holomorphic anomaly equation of [5]. This approach is
very general, but it does not give a complete solution to the problem of computing
the topological string amplitudes due to the holomorphic ambiguity. It turns out that
if the Calabi–Yau manifold has the structure of a K3 fibration over P

1, one can do
better. The reason is that type IIA theory on such manifolds has a heterotic dual [15],
and for Kähler classes in the K3 fiber, one can compute the Fg(t) couplings by doing
a one-loop computation in the heterotic string. This leads to close expressions for the
topological string amplitudes in terms of modular forms [13], [22].

Let us consider for example the STU model first studied in [15]. This is a K3
fibration where the K3 fiber has two complexified Kähler parameters, t = (t+, t−)

with Re t± > 0. The Kähler classes are labelled by two integers r = (n, m). These
classes form a lattice �1,1 with intersection form

H =
(

0 1
1 0

)
, (15)

which defines an inner product such that r · t = mt+ + nt− and r2 = 2nm. An
involved heterotic computation [22] leads to a topological string coupling Fg(t) of
the form

Fg(t) =
∑
r>0

cg(r
2/2)Li3−2g(e

−r·t ). (16)

In this formula, r > 0 means the following possibilities: (n, m) = (1, −1), n > 0,
m > 0, n = 0, m > 0, or n > 0. The coefficients c(n) are defined by

∑
n

cg(n)qn = −2E4(q)E6(q)

η24(q)
Pg(q), (17)

whereE4, E6 are Eisenstein series, η is the Dedekind eta function, and the polynomials
Pg(q) are given by (

2πη3λ

ϑ1(λ|τ)

)2

=
∞∑

g=0

(2πλ)2gPg(q), (18)

and can be written as polynomials in the Eisenstein series E2, E4 and E6 (see [22],
[18] for more details on the modular forms involved).

Other examples of heterotic computations of topological string amplitudes can be
found in [17], which also tested the predictions by using the holomorphic anomaly
equations and extended them up to genus two by including the “missing” Kähler
parameter on the base of the fibration.
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3.2. A very special example: the Enriques Calabi–Yau. Although many tech-
niques have been developed in order to compute topological string amplitudes in the
compact case, typically the theory becomes intractable at high genus and/or degree.
In this sense, it would be important to identify the compact CY manifold where
topological string theory is most tractable.

There is a compact example where topological string theory is exactly solvable,
namely K3×T

2. The topological string amplitudes are however rather trivial in this
case, and in particular they vanish for g ≥ 2. Hence this example is too simple,
and this is due to the extended N = 4 supersymmetry of the corresponding type II
theory, related in turn to the SU(2) holonomy. It is then natural to consider Calabi–Yau
manifolds with holonomy H which is intermediate between the SU(2) and the generic
one SU(3). A Calabi–Yau manifold with intermediate holonomy SU(2)×Z2 has been
constructed in [6], [27], [10] as an orbifold w.r.t. a free Z2 involution of K3×T

2. The
resulting space exhibits a K3 fibration with four fibers of multiplicity two over the four
fixed points of the involution in the base. These fibers are Enriques surfaces. A good
deal of the nontrivial geometry of this CY comes from the geometry of the Enriques
fibers, and therefore this example has been called the Enriques CY manifold. The
string model obtained by compactifying type II theory on the Enriques CY has N = 2
supersymmetry and is known as the FHSV model. The Enriques CY seems to be the
simplest CY compactification with nontrivial topological string amplitudes. Moreover
it has a dual description as an asymmetric orbifold of the heterotic string [10].

A first step in order to determine the topological string amplitudes is then to
compute the amplitudes on the fiber, by using the heterotic dual and techniques similar
to those of [22]. In order to write down the result, we notice that the Enriques fiber
has ten Kähler parameters t = (t+, t−, �t ). The Kähler classes belong to the cone
�E = �1,1 ⊕ E8(−1), and will be parametrized by a vector of integer numbers
r = (n, m, �q). The topological string amplitudes on the Kähler cone are given by

FE
g (t) =

∑
r>0

cg(r
2)

{
23−2gLi3−2g(e

−r·t ) − Li3−2g(e
−2r·t )

}
, (19)

where ∑
n

cg(n)qn = −2

q

∞∏
n=1

(1 − q2n)−12Pg(q), (20)

and r2 = 2mn − �q 2. The restriction r > 0 means now that n > 0, or n = 0, m > 0,
or n = m = 0, �q > 0. The superscript E refers to the Enriques fiber.

The Enriques Calabi–Yau manifold has an extra Kähler class corresponding to
the P

1 in the base of the fibration. The perturbative heterotic string theory does not
give information on the dependence of Fg(t) on this parameter, and the only available
technique to do that for the moment being is the holomorphic anomaly equation. It
turns out, however, that the Enriques Calabi–Yau is particularly simple in that respect,
and one can solve the holomorphic anomaly equation at low genera. In this way one
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finds explicit expressions for F1 and F2 on the total Calabi–Yau. If we denote by S

the Kähler parameter of the base, one finds

F1(t, S) = FE
1 (t) − 12 log η(qS),

F2(t, S) = E2(qS)FE
2 (t),

(21)

where qS = e−S . Notice that, as S → ∞, one recovers the results in the fiber.
These results are surprisingly simple, and they have been verified in [25] by using the
topological techniques in Gromov–Witten theory. This is the only compact manifold
where the topological string amplitudes have been computed up to genus two both in
the context of topological string theory and in the context of algebraic geometry. It
seems to be the most accessible compact example and it provides a fruitful interaction
between physical and mathematical techniques. Results for genus 3 and 4 including
the Kähler parameter of the base have also been obtained in [18]. One important
remaining question is: is the Enriques Calabi–Yau an exactly solvable example?

4. Conclusions

One obvious and general conclusion is that the interaction between topological string
theory and Gromov–Witten theory and algebraic geometry has been extremely rich
and rewarding for both fields. String dualities have led to the solution of many models
and to sometimes surprising mathematical predictions, while rigorous mathematical
techniques have confirmed many of the physical ideas underlying the predictions. This
interplay has led so far to a rather complete solution of the problem in the toric case.
Progress in the compact case has been also significant, although the problem seems
to be much harder and we are lacking an effective strategy to address general models.
For this reason, we have proposed in [18] to focus on relatively simple examples
where the theory might have some simplifying features yet be rich enough to display
the essential complexities of the problem. So far, the simplest nontrivial valley in the
landscape of compact Calabi–Yau’s seems to be the Enriques Calabi–Yau, which has
been solved at low genera in [18], [25]. The main open problem is of course to find
an organizing principle that makes possible to address the general compact case in an
effective way.
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The Cauchy problem in General Relativity
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Abstract. The paper revisits some of the classical and recent results on the Cauchy problem in
General Relativity. Special emphasis is put on the problems concerning existence of a Cauchy
development, break-down criteria and stability. The author would like to make a disclaimer
that despite its general title the paper is not intended as a comprehensible survey. Due to the
space-time constraints many remarkable results and developments are either mentioned briefly
or not discussed at all. Most notably this concerns various work on the Einstein equations with
matter and symmetry reduced problems.
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1. Introduction

A mathematical description of General Relativity consists of a 3 + 1-dimensional
Lorentzian manifold M and a metric g verifying the Einstein equations

Rαβ(g)− 1

2
gαβR(g) = 8π Tαβ,

where Rαβ and R are respectively the Ricci tensor and scalar curvature of g and Tαβ
is the energy-momentum tensor of matter. Among the most popular mathematical
matter models are1

1. the vacuum equations, where T ≡ 0, and the Einstein equations simply require
that (M, g) is Ricci flat;

2. the Einstein-scalar field model, where Tαβ = ∂αφ ∂βφ − 1
2gαβ ∂

μφ ∂μφ and φ
is a real valued scalar field φ : M → R;

3. the Einstein–Maxwell equations, where Tαβ = 1
4π

(
F
μ
α Fβμ − 1

4gαβFμνF
μν

)
,

and Fαβ is the electromagnetic tensor;

4. perfect fluid matter model, where Tαβ = (ρ + p)uα uβ + p gαβ , and uα is the
four-velocity vector, p is the pressure and ρ is the proper energy density of the
fluid.

∗The paper was written while the author was visiting the Department of Mathematics at MIT.
1In what follows we will use the standard conventions of raising and lowering tensorial indices with the help

of the metric g and summing over repeated indices.

Proceedings of the International Congress
of Mathematicians, Madrid, Spain, 2006
© 2006 European Mathematical Society
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The contracted Bianci identity DαRαβ = 2∂βR implies that the gravitational tensor
Gαβ = Rαβ − 1

2gαβR is always divergence free, DαGαβ = 0. As a consequence,
evolution equations for the external fields in the models described above follow from
the requirement thatDαTαβ = 0. In particular, in the scalar field model φmust satisfy
the wave equation

�gφ = 1√|g|∂α
(
gαβ

√|g|∂βφ
) = 0

on a curved background (M, g). For the Einstein–Maxwell problem the electromag-
netic field obeys the Maxwell equations

DαFαβ = 0, DμFαβ +DβFμα +DαFβμ = 0.

Finally, for the perfect fluid model,

uαDαρ + (ρ + P)Dαuα = 0, (P + ρ)uαDαuβ + (gαβ + uαuβ)D
αP = 0.

Mathematical problems in Classical General Relativity can be loosely divided into
the following categories:

1. Construction of special solutions (e.g. Minkowski, Schwarzschild, Kerr, Fried-
man–Robertson–Walker).

2. Mathematics of constraint equations (e.g. construction of solutions, positive
mass theorem, Riemannian Penrose inequality).

3. Causality and global properties (e.g. singularity theorems, black hole unique-
ness, splitting theorems).

4. Cauchy problem (e.g. existence and uniqueness of solutions, break-down, sta-
bility).

The evolution (Cauchy) problem in General Relativity consists of constructing a space-
time (M, g) with the property that for a given data set 2 (	0, g0, k0), a 3-dimensional
Riemannian manifold 	0 with a Riemannian metric g0 and a symmetric 2-tensor k0,
there exists an embedding 	0 ⊂ M such that g0 coincides with the restriction of g
to 	0 and k0 is the second fundamental form of the embedding. Since physically
one should not be able to distinguish between different coordinate systems, i.e., the
Einstein equations are covariant, a solution of the Cauchy problem can be unique only
modulo a diffeomorphism.

The equations are overdetermined and the initial data has to satisfy the constraint
equations

R0 − |k0|2 + (tr k0)
2 = 16πT00, ∇j k0ij − ∇i tr k0 = 8πT0i , (1)

where R0 is the scalar curvature of g0 and ∇ is its Levi-Civita covariant derivative.

2For simplicity we describe the Cauchy problem for the vacuum equations. In general, one also needs to add
the data for the external fields on 	0.
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A particular important class is the asymptotically flat initial data given by
(	0, g0, k0) with the properties3 that 	0 minus a compact set is diffeomorphic to
R3 minus a ball and that there exists a system of coordinates “near infinity” such that

g0ij =
(

1 + M

r

)
δij +O(r−1−α), k0ij = O(r−2−α)

for some α > 0. In particular, Minkowski, Schwarzschild and Kerr solutions belong
to this class.

2. Existence and uniqueness of a maximal Cauchy development

Existence of a maximal Cauchy development for any sufficiently smooth initial data
was established by Choquet-Bruhat in [CB1]. The proof exploited the covariance of
the Einstein equations and a special choice of gauge (harmonic coordinate system) in
which the Einstein equation can be cast as a system of quasilinear wave equations for
the metric components.

Harmonic coordinates xα , which appeared already in the work of A.Einstein, are
determined by the conditions

�gx
α = 0, α = 0, . . . , 3. (2)

This, in turn, is equivalent to requiring that the components of the metric gαβ relative
to this particular system of coordinates satisfy

∂α
(
gαβ

√|g|) = 0. (3)

The Einstein equations then reduce to

�ggαβ −Nαβ(g, ∂g) = Tαβ. (4)

In harmonic coordinates, �g = gμν∂2
μν and the nonlinear term Nαβ(u, v) depends

quadratically on the variable v. Equation (4) is obtained by expressing the Ricci
tensor Rαβ of g in terms of the components of g and its (first and second) derivatives.
To verify that a solution of (4) gives an Einstein metric one also has to satisfy the
condition (2) or (3). However, as was observed by Choquet-Bruhat, these conditions
are satisfied automatically for solutions of (4) provided that they are satisfied initially
on 	0 and (	0, g0, k0) obey the constraint equations (1). This fact is known as
propagation of the harmonic gauge. Thus to complete the initial value problem set up
in harmonic gauge we choose a local system of coordinates on 	0 in such a way that
the harmonic coordinate condition is verified initially and express the initial values4

3The asymptotic flatness condition given here is more restrictive than necessary. In particular, it requires that
	0 has only one asymptotic end and that the linear momentum of initial data is equal to zero.

4We identify t = x0 and assume that 	0 corresponds to t = 0.
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for the components of the metric gμν |t=0 and their time derivatives ∂tgμν |t=0 from
the initial data (g0, k0)

5. Restricting our analysis for simplicity to the case of the
vacuum equations we obtain the following initial value problem

�ggαβ = Nαβ(g, ∂g),

gαβ |t=0 = g0
αβ, ∂tgαβ |t=0 = g1

αβ.
(5)

The equations (5) constitute a system of quasilinear wave equations for the compo-
nents gαβ on the background determined by the metric g. The problem (5) is then
solved locally (using finite speed of propagation) on a small interval of time, the
resulting metrics patched together to form a Cauchy development from given initial
data. The above local solutions are constructed by iteration of the linear equations

�gng
n+1
αβ = Nαβ(g

n, ∂gn),

gn+1
αβ |t=0 = g0

αβ, ∂tg
n+1
αβ |t=0 = g1

αβ

(6)

with convergence guaranteed by estimates for (6) or alternatively a priori estimates
for (5). The original approach of Choquet-Bruhat to (6) relied on the construction of
a Kirchoff–Sobolev parametrix for an inhomogeneous scalar linear problem

�gφ = F, φ|t=0 = φ0, ∂tφ|t=0 = φ1

but the method imposed high differentiability requirement on the initial data for (5).
This was refined in the work of Dionne [Di], Fisher–Marsden [F-M] and Hughes–
Kato–Marsden [H-K-M] via the energy method. The energy method, in which the
equation (5) is multiplied by ∂tg and integrated by parts or differentiated required
number of times, multiplied by the time derivative of the differentiated solution and
then integrated by parts, applied to the problem (5) shows that the Sobolev norm Hs

of the solution g(t) at time t is controlled

‖g(t)‖Hs + ‖∂tg(t)‖Hs−1 ≤ C exp

(∫ t

0
‖∂g(τ)‖L∞dτ

) (‖g0‖Hs + ‖g1‖Hs−1
)
.

The desired a priori estimate for (5) follows from the Sobolev embedding Hs ⊂ L∞
provided that s > 5/2. This analysis essentially establishes well-posedness6 of the
system (5) in the scale of Sobolev spaces Hs for any s > 5/2.

An interesting phenomenon however occurs in passage from the system (5) to
the original Einstein equations. The above construction leads to solutions (M, g)
arising from arbitraryHs initial data (g0, k0) ∈ Hs ×Hs−1, as long as s > 5

2 . These
solutions remain in the space Hs relative to a system of coordinates (t, x) so that
the metric components gαβ ∈ C([0, T ];Hs

x ) and ∂tgαβ ∈ C([0, T ];Hs−1
x ) on a time

interval [0, T ] with T dependent on the Hs × Hs−1 norm of the data. However,

5Similar procedure is applied to the initial values for the external fields.
6Existence, uniqueness and continuous dependence on the initial data.
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to show that two solutions (M, g) and (M ′, g′) arising from the same initial data
(	0, g0, k0) are related by a diffeomorphism � : M → M ′ so that �∗g′ = g, and
thus geometrically and physically indistinguishable, actually requires one to consider
data and thus solutions (M, g) and (M ′, g′) from the Sobolev classHσ with σ > 7/2.
This means that while uniqueness for (5) holds in the same class Hs with s > 5/2 as
the existence result, there is a potential loss of uniqueness for the Einstein equations
unless more regular solutions are considered.

The existence result for the system (5) and consequently the (vacuum or scalar
field) Einstein equations can be improved when the energy method is combined with
the Strichartz estimates. This was first seen for scalar semilinear wave equations in
[P-S],

�φ = N(φ, ∂φ), (7)

where the energy estimate

‖∂φ(t)‖Hs ≤ C exp

(∫ t

0
‖φ(τ)‖L∞dτ

) (‖φ0‖Hs + ‖φ1‖Hs−1
)

can be complemented by the Strichartz estimate

‖∂φ‖L2[0,T ]L∞ ≤ C
(‖φ0‖Hs + ‖φ1‖Hs−1 + ‖�φ‖L1[0,T ]Hs−1

)
, (8)

which holds for any s > 2 and thus allows to establish the existence and uniqueness
result for the equation (7) for solutions in the Sobolev space Hs with s > 2.

In the case of general quasilinear wave equations of the form (5), however, the
situation is far more difficult. One can no longer rely on the Strichartz inequality (8)
for the flat D’Alembertian; we need instead its extension to the operator �g ,

‖∂φ‖L2[0,T ]L∞ ≤ C
(‖φ0‖Hs + ‖φ1‖Hs−1 + ‖�gφ‖L1[0,T ]Hs−1

)
. (9)

To be able to apply such an estimate to the problem (5) and improve upon the energy
method one needs to establish (9) for some s ≤ 5/2 and with a constantC which itself
depends on g only through its ‖∂g‖L∞[0,T ]Hs−1 and ‖∂g‖L2[0,T ]L∞ norms. This means

that we have to confront the issue of proving Strichartz estimates for wave operators
�g on a rough background g.

This issue was first addressed in the work of Smith [Sm], Bahouri–Chemin [B-C1],
[B-C2] and Tataru [Ta1], [Ta2].

In [Sm] a precise analog of (8) was established for the wave operator �g under
the assumption that the metric g is at least C2.

The results of Bahouri–Chemin and Tataru are based on establishing a Strichartz
type inequality, with a loss, i.e. with s > 2 + σ , and are compatible with applications
to the problem (5). The optimal result7 in this regard, due to Tataru, see [Ta2], requires

7Recently Smith-Tataru [S-T1] have shown that the result of Tataru is indeed sharp.
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a loss of σ = 1
6 . This led to a proof of local well posedness for systems of type (5)8

with s > 2 + 1
6 .

To do better than that one needs to take into account the nonlinear structure of the
equations. Both the classical work [CB1], [Di], [F-M], [H-K-M] and the Strichartz
based results [B-C1], [B-C2], [Ta1], [Ta2] only used the fact that the background met-
ric g is Lorentzian and obeys regularity conditions compatible with the final desired
result. The additional important piece of information that g itself is a solution of (5)
was not exploited.

In [K-R1] we were able to improve the result of Tataru by taking into account not
only the expected regularity properties of the metric g but also the fact that they are
themselves solutions to a similar system of equations. This allowed us to improve
the exponent s, needed in the proof of well posedness of equations of type (5) to

s > 2 + 2−√
3

2 . Our approach was based on a combination of the paradifferential
calculus ideas, initiated in [B-C1] and [Ta2], with a geometric treatment of the actual
equations introduced in [K4]. The main improvement was due to a gain of conormal
differentiability for solutions to the eikonal equations

g
αβ
<λ∂αu ∂βu = 0 (11)

with g<λ a smoothed out version of the original metric g with the property that
|∇kg<λ| ≤ Ckλ

k for any spatial derivative ∇. Such smoothing can be constructed with
the help of the standard Littlewood–Paley projections P<λ which smoothly remove
Fourier frequencies ≥ λ.

In [K-R2]–[K-R4] we developed the ideas of [K-R1] further in the context of
the Einstein vacuum equations, i.e., equations (5) coupled with the condition that
Rαβ(g) = 0. We make use of both the vanishing of the Ricci curvature of g and
the harmonic gauge condition (3). The other important new features are the use of
energy estimates along the null hypersurfaces generated by the optical function u and
a deeper use of the conormal properties of the null structure equations.

Theorem 1 ([K-R2]). Consider the reduced equation (5) with initial data g0
αβ, g

1
αβ ∈

Hs × Hs−1 for some s > 2 satisfying the constraint equations (1) with T ≡ 0 and
the harmonic gauge condition (3). Then there exists a time interval [0, T ] and unique
(Lorentzian metric) solution g such that gαβ ∈ C0([0, T ];Hs) with T depending
only on the size of ‖g0

αβ‖Hs + ‖g1
αβ‖Hs−1 .

The results of Theorem 1 require that the initial data can be approximated by
a smooth sequence of data satisfying the constraint equations. Using a conformal
method a large class of such (	0, g0, k0) was constructed in [CB3] and [Ma].

8The above results actually apply to more general quasilinear equations of the form

�g(φ)φ = N(φ, ∂φ), (10)

where g is a given metric smoothly dependent on a solution φ. However, there is no substantial difference between
the equations (5) and (10) unless of course one also uses the fact that a solution of (5) with initial data in harmonic
gauge is a solution of the vacuum Einstein equations.
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In [S-T2] H. Smith and D. Tataru obtained the parallel Hs, s > 2 local well
posedness result for general quasilinear equations, as well as the new improved results
in other dimensions rather than n = 3. Their approach is based on the construction of
a wave packet approximation of a solution. The geometry of wave packets controls
the desired Strichartz estimate. The construction relies on the foliation by the null
planes. It uses a gain of differentiablity along each plane, which can be traced to the
decomposition of the tangential components of the curvature in the spirit [K-R1], but
avoids references to the regularity of the foliation in the direction transversal to the
leafs (i.e. torsion of the foliation).

It is very likely that the results of Theorem 1 are not sharp and the Einstein
vacuum equations can be solved in even lower degree of regularity. A very satisfactory
result both from the analytic and geometric point of view would a resolution of the
L2 curvature conjecture, see [K3], according to which the time of existence for
solutions of the Einstein vacuum equations should depend only on the L2 norms of
the Riemann curvature tensor of g0 and the gradient of the second fundamental form
∇k0 and perhaps some other weaker geometric characteristics of	0. Some geometric
evidence in support of this conjecture is provided in the work [K-R5]–[K-R7] where
it was shown that null hypersurfaces, level surfaces of the optical function solving
the eikonal equation gαβ∂αu ∂βu = 0, do not break down locally as long as the L2

curvature flux along them is finite.

2.1. Existence results in other gauges. Existence results for the Einstein (vac-
uum) equations can be also established in other gauges than the harmonic coordinate
gauge (2).

In [A-M1] application of the energy method yields a construction of the Hs with
s > 5/2 vacuum space-times in the constant mean curvature spatially harmonic gauge.
To describe the evolution equations in this particular gauge we write the metric g in
the form

g = −N2dt2 + γij (dx
i +Xidt)(dxj +Xjdt),

where N and X are the lapse and shift of the t-foliation. The Einstein vacuum
equations are written as a system of evolution equations for the metric γ and the
second fundamental form k of the t-foliation coupled to the constraint equations,
while the gauge condition generates elliptic equations for N and X.

∂tγij = −2Nkij + LXγij , (12)

∂tkij = −∇i∇jN +N((3)Rij + tr k kij − 2kimk
m
j )+ LXkij . (13)

Here L is the Lie derivative and (3)Rij is the Ricci curvature of γ . The constant
mean curvature condition is the requirement that on the hypersurface t = const we
have tr k = t . Under this condition taking the trace in (13) and using the constraint
equations we obtain an elliptic equation for the lapse N :

−�γN + |k|2N = 1. (14)
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The constraint equations in this gauge also become

(3)R = |k|2 − t, ∇j kij = 0. (15)

We also fix the spatially harmonic gauge by requiring9 that a system of coordinates xi ,
i = 1, 2, 3 on each t = constant is harmonic, i.e., satisfies the equation �γ xi = 0.
The Ricci curvature (3)Rij can then be written on the form

(3)Rij = −1

2
�γ γij +Nij (γ,∇γ ),

where as before Nij (u, v) depends quadratically on v. Propagation of this gauge
results in an elliptic equation for the shift so that (12), (13), (14), (15) form an elliptic-
hyperbolic system.

A local existence result in the maximal gauge was also proved in [C-K]. This
particular gauge corresponds to the choice tr k = X = 0. The lapse and constraint
equations take the form

−�γN + |k|2N = 0,
(3)R = |k|2, ∇j kij = 0

while the system (12), (13) describes the evolution of γ and k. To see the hyperbolic
character of (12), (13) without imposing a spatially harmonic gauge one has to take

an additional time derivative of (13) and express ∂(3)t R in terms of γ and k.
Another interesting formulation of the Einstein (vacuum) equations arises by draw-

ing an analogy between the Einstein equations and the Yang–Mills theory. In the
Yang–Mills theory an electromagnetic field is represented by a Lie algebra valued
2-form Fαβ = ∂αAβ − ∂βAα +[Aα,Aβ ] constructed from an electromagnetic poten-
tial Aα . The Yang–Mills equations on Minkowski space R3+1 for F take the form

DβFαβ = 0, DμFαβ +DβFμα +DαFβμ = 0,

where the covariant derivativeDα = ∂α+[Aα, ·] and the second equation is the Bianci
identity for the curvature form F . Differentiating the second equation we arrive at
the second order hyperbolic problem for F

�AFαβ = 2F μ
β Fμα,

where �A = mαβDαDβ .
In General Relativity the Riemann curvature tensor Rαβμν satisfies the Bianci

identities
DσRαβμν +DβRσαμν +DαRβσμν = 0 (16)

9The actual general harmonic gauge is only slightly more complicated.
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and, if the Ricci curvature of g vanishes, i.e., (M, g) is a vacuum space-time, also a
version of the contracted Bianci identities

DαRαβμν = 0. (17)

Differentiating the Bianci identity (16) and also using (17) we easily obtain the wave
equation for the Riemann curvature tensor

�gRαβμν = (R � R)αβμν , (18)

where � denotes a combination of various contractions.

2.2. Large data problem in General Relativity. While the result of Choquet-
Bruhat and its subsequent refinements guarantee the existence and uniqueness of
a (maximal) Cauchy development, they provide no information about its geodesic
completeness and thus, in the language of partial differential equations, constitutes a
local existence result. Singularities could develop to the future (past) of the Cauchy
hypersurface 	0 or the maximal Cauchy development could have a regular bound-
ary, Cauchy horizon, beyond which the space-time could be continued thus losing
its predictability from the initial data. Schwarzschild space-time is an example of a
geodesically incomplete asymptotically flat space-time while the Reissner–Nordström
solution of the Einstein–Maxwell equations possesses a Cauchy horizon.

More generally, there are a number of conditions that will guarantee that the space-
time will be geodesically incomplete. The first such result was the Penrose singularity
theorem:

Theorem 2 (Penrose). A space-time10 (M, g) is necessarily incomplete if it admits a
non-compact Cauchy surface and a trapped11 2-dimensional compact surface.

According to the result of [S-Y2] sufficient amount of matter placed in a region
will create a trapped surface.

In the language of partial differential equations this means an impossibility of
a large data global existence result for all initial data in General Relativity. In the
absence of such a result a number of conjectures about the structure of space-times
arising from generic data had been put forward in the ’60s by Penrose. Among them
is the Weak Cosmic Censorship which predicts that for generic asymptotically flat
data null infinity will be affine complete or alternatively that singularities have to be
hidden inside black holes. On the other hand the Strong Cosmic Censorship pre-
dicts a generic absence of the Cauchy horizons. At the moment not much progress
has been made on either of these problems in the general case with remarkable ex-
ceptions in some cases of symmetry reduced Einstein equations: the proof of weak

10The energy-momentum tensor Tαβ of matter is only required to satisfy what is called a null convergence
energy condition.

11Infinitesimally deformations of such surface along both null outgoing and null incoming directions decrease
its area.
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cosmic censorship for the Einstein-scalar field equations in spherical symmetry by
Christodoulou [C2],[C3], the work of Dafermos [D] on strong cosmic censorship and
stability of the Cauchy horizons for the Einstein–Maxwell-scalar field equations in
spherical symmetry, the proof of strong cosmic censorship in polarized Gowdy by
Chruściel–Isenberg–Moncrief [C-I-M] and T 3-Gowdy by Ringström [Ri].

2.3. Break-down criteria in General Relativity. In the absence of a complete-
ness result for general large data Cauchy problem in General Relativity and a very
non-quantitative nature of the singularity theorems it is desirable to develop a better
understanding of local or semi-local analytic mechanisms for break-down of solu-
tions. Already the local existence results mentioned above provide such criteria. In
particular an Hs local existence result in harmonic gauge guarantees that a solution
can be extended as long as theHs norms of the metric components in harmonic gauge
remain finite. Such results however are not ideal as break-down criteria for the reasons
that they are not geometric and strongly tied to a particular coordinate gauge and that
they arise as a consequence of stronger local well-posedness statements.

The first geometric criterion for breakdown of solutions (M, g) of the vacuum
Einstein equations

Rαβ(g) = 0 (19)

appeared in the work of M. Anderson [A1]. To describe the problem we assume
that a part of space-time MI ⊂ M is foliated by the level hypersurface 	t of a
time function t , monotonically increasing towards future in the interval I ⊂ R, with
lapse N and second fundamental form k so that

g = −N2dt2 + γij dx
idxj , ∂tγij = −2Nkij .

The surfaces 	t are compact, of Yamabe type −1, and of constant negative mean
curvature, tr k = t with t < 0. Relative to a time foliation we can naturally associate
a non-degenerate notion of a pointwise absolute value of a space-time tensor.

In [A1] it was shown that a break-down can be tied to the condition that

lim sup
t→t−∗

‖R(t)‖L∞ = ∞,

where R(t) denotes the Riemann curvature tensor of g and the norm is measured
relative to the above described t-foliation.

A work in progress [K-R7] addresses the problem of break-down of solutions to the
Einstein vacuum equations under the assumption that T = N−1∂t is an approximate
Killing field. More precisely, the desirable break-down condition is

lim sup
t→t−∗

‖LT g(t)‖L∞ = ∞, (20)

where LT g is the deformation tensor of T , equal to zero if T is Killing, and it can be
expressed as

|LT g| = |k| + |∇ logN |.
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This result would complement Anderson’s criterion. It is clear however that the
condition (20) is formally weaker as it refers only to the second fundamental form k

and the lapse n and thus requires one degree less of differentiability than a condition
on the Riemann curvature tensor. Moreover a condition on the boundedness of theL∞
norm of R(t) covers all the dynamical degrees of freedom of the equations. Indeed,
once we know that ‖R(t)‖L∞ is finite, one can find bounds for n, ∇n and k on 	t
purely by elliptic estimates. This is not true in our case.

A geometric criterion of the type (20) for the Einstein equations could be compared
to the well known Beale–Kato–Majda [B-K-M] criterion for breakdown of solutions
of the incompressible Euler equation

∂tv + (v · ∇)v = −∇p, div v = 0,

with smooth initial data at t = t0. A routine application of the energy estimates shows
that solution v blows up if and only if

∫ t∗

t0

‖∇v(t)‖L∞ dt = ∞. (21)

The Beale–Kato–Majda work improves the blow up criterion by replacing it with the
following condition on the vorticity ω = curl v:

∫ t∗

t0

‖ω(t)‖L∞ dt = ∞. (22)

The quantities ∇v and ω are related to each other via a singular integral operator, i.e.,
∇v = P 0(ω).

Although P 0 does not define a bounded map L∞ → L∞ it is sufficient to reduce
the breakdown condition (21) to the more satisfying one (22), in terms of the vorticity
alone.

Similarly, in the case of the Einstein equations energy estimates, expressed relative
to a special system of coordinates (e.g. in harmonic gauge), show that break-down
does not occur unless ∫ t∗

t0

‖∂g(t)‖L∞ dt = ∞.

This condition however is not geometric as it depends on the choice of a full coordinate
system. Observe that both the spatial derivatives of the lapse∇n and the components of
the second fundamental form, kij = − 1

2N
−1 ∂tgij , can be interpreted as components

of ∂g.
Note however that after prescribing k and ∇n we are still left with many more

degrees of freedom in determining ∂g. The fundamental difficulty that one needs
to overcome is that of deriving bounds for R using only bounds for ‖∇N(t)‖L∞ +
‖k(t)‖L∞ and geometric informations on the initial hypersurface 	0. Clearly this
cannot be done by elliptic estimates alone. Thus, as opposed to both the results of M.
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Anderson and Beale–Kato–Majda, it is far less obvious that a condition such as (20)
can cover all dynamic degrees of freedom of the Einstein equations.

The criterion (20) is motivated in part by the desire to adapt the Eardley–Moncrief
argument [E-M1], [E-M2] for the large data global existence for the 3+1Yang–Mills
equations to General Relativity, exploiting the analogy between the Einstein vacuum
and the Yang–Mills equations.

The Eardley–Moncrief proof relies on two independent ingredients: conservation
of energy and pointwise bounds on curvature, which are derived using the fundamental
solution for � in Minkowski space, and shown to depend only on the flux of curvature
and initial data. Since the analog of the Yang–Mills energy in General Relativity (the
Bel–Robinson energy) is not conserved one can only hope to reproduce the second
part of the Eardley–Moncrief argument and prove a conditional regularity result which
states, roughly, that smooth solutions of the Einstein equations, in vacuum, remain
smooth, and can therefore be continued, as long as an integral quantity, we call the
flux of curvature, remains bounded. The possibility of such a result was first pointed
out by V. Moncrief.

However it is the fact that T = ∂t is a Killing field that is ultimately responsible for
the conservation of energy in the Yang–Mills theory on Minkowski space. Similarly,
in the extension [C-S] of the Eardley–Moncrief result to the Yang–Mills equations on
a smooth globally hyperbolic background it is the fact that T = ∂t is an approximate
Killing field that allows one to control the energy and the flux of curvature.

Thus in the context of General Relativity rather then imposing a direct condition on
the finiteness of the Bel–Robinson energy and curvature flux we formulate conditions
(perhaps more natural albeit more restrictive) which control the extent to which the
energy is not conserved. These conditions, which form our breakdown criterion,
involve uniform bounds on the second fundamental form k and the lapse N .

In what follows we describe how the main ideas of the proof of the Eardley–
Moncrief result for Yang–Mills could be adapted to General Relativity.

The curvature tensorR of a 3+1 dimensional vacuum spacetime (M, g), see (19),
verifies a wave equation of the form,

�gR = R � R. (23)

The Bel–Robinson energy-momentum tensor

Q[R]αβγ δ = RαλγμR
λ μ
β δ + �Rαλγμ � R

λ μ
β δ

verifies DδQ[R]αβγ δ = 0 and can thus be used to derive energy and flux estimates
for the curvature tensor R. The approximate Killing condition is sufficient to derive
bounds for both energy and flux associated to the curvature tensor R. The flux is an
integral of a square of the components of the Riemann curvature tensor tangent to a
null hypersurface N−(p), boundary of the causal point of point p, generated, at least
locally, as a level hypersurface u = 0 of an optical function u, solution of the eikonal
equation gαβ∂αu ∂βu = 0.
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As in the case of the Yang–Mills equations it is precisely the boundedness of the
flux of curvature that plays a crucial role in our analysis. In General Relativity the
flux takes on even more fundamental role as it is also needed to control the geometry
of the very object it is defined on, i.e. the boundary N−(p) of the causal past of p.
This boundary, unlike in the case of Minkowski space, are not determined a-priori but
depend in fact on the space-time we are trying to control.

The main idea is to show that if the condition (20) does not hold, i.e.,

lim sup
t→t−∗

‖LT g(t)‖L∞ < ∞, (24)

it implies a uniform curvature bound

lim sup
t→t−∗

‖R(t)‖L∞ < ∞ (25)

and the solution can be continued beyond t∗.
The curvature bound (25) relies on the parametrix construction for the equa-

tion (23). In the construction of a parametrix for (23) we cannot, in any meaningful
way, approximate �g by the flat D’Alembertian �. One could instead proceed via a
geometric optics construction of parametrices for �g , as developed in [F]. Such an
approach would require additional bounds on the background geometry, determined
by the metric g, incompatible with the assumption (24) and the implied finiteness of
the curvature flux.

We rely instead on a geometric version, which we develop in [K-R6], of the
Kirchoff–Sobolev formula, similar to that used by Sobolev in [Sob] and Choquet-
Bruhat in [CB1], see also [Mo]. Roughly, this can be obtained by applying to (23)
the measure Aδ(u), where u is an optical function whose level set u = 0 coincides
with N−(p) and A is a 4-covariant 4-contravariant tensor defined as a solution of
a transport equation along N−(p) with appropriate (blowing-up) initial data at the
vertex p. After a careful integration by parts we arrive at the following analogue of
the Kirchoff formula:

R(p) = −
∫
N−(p;δ0)

A · (R � R)+ R0(p; δ0)+
∫
N−(p;δ0)

E · R, (26)

whereN−(p; δ0) denotes the portion of the null boundaryN−(p) in the time interval
[t (p) − δ0, t (p)] and the error term E depends only on the intrinsic geometry of
N−(p; δ0). The term R0(p; δ0) is completely determined by the initial data on the
hypersurface 	t(p)−δ0 . As in the flat case12, one can prove bounds for the sup-norm
of R0(p; δ0) which depend only on uniform bounds for R and its first covariant
derivatives at values of t ′ ≤ t (p) ≤ t − δ.

As in the Yang–Mills setting the structure of the term R � R allows us to estimate
one of the curvature terms by the flux of curvature.

12This is by no means obvious as we need to rely once more on the Kirchoff–Sobolev formula.
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To control the error term in (26) one needs estimates for tangential derivatives
of A and other geometric quantities associated to the null hypersurfaces N−(p). In
particular, it requires showing that N−(p) remains a smooth (not merely Lipschitz)
hypersurface in the time slab (t (p) − δ0, t (p)] for some δ0 dependent only on the
initial data and (24). Thus to prove the desired theorem one would have to show
that all geometric quantities, arising in the parametrix construction, can be estimated
only in terms of the flux of the curvature along N−(p) and the bound in (24). Yet,
to start with, it is not even clear that we can provide a lower bound for the radius
of injectivity of N−(p). In other words the congruence of null geodesics, initiating
at p, may not be controllable13 only in terms of the curvature flux. Typically, in
fact, lower bounds for the radius of conjugacy of a null hypersurface in a Lorentzian
manifold are only available in terms of the sup-norm of the curvature tensorR along the
hypersurface, while the problem of short, intersecting, null geodesics appears not to
be fully understood even in that context. The situation is similar to that in Riemannian
geometry, exemplified by the Cheeger’s theorem, where pointwise bounds on sectional
curvature are sufficient to control the radius of conjugacy but to prevent the occurrence
of short geodesic loops one needs to assume in addition an upper bound on the diameter
and a lower bound on the volume of the manifold.

In a sequence of papers, [K-R2]–[K-R4], we have been able to prove a lower
bound, depending essentially only on the curvature flux, for the radius of conjugacy
of null hypersurfaces14 in a Lorentzian spacetime which verifies the Einstein vacuum
equations. The methods used in these articles can be adapted to provide all the desired
estimates, except a lower bound on the “size” of intersecting null geodesics which
needs a separate argument. The lower bound on the radius of injectivity of the null
hypersurfaces N−(p) has been established in [K-R5]

3. Stability problems in General Relativity

In the absence of a general “large data” result in General Relativity the problem
of stability of special solutions becomes simultaneously more important and more
tractable. Despite our best efforts however these stability questions appear to be quite
difficult and still poorly understood. A singular achievement in this regard has been the
proof of stability of Minkowski space-time, [C-K], [L-R2] and a semi-global version
in [Fr1]. To this date this is the only global result in the category of the asymptotically
flat space-times. In the realm of cosmological models stability of the de Sitter space
has been shown in [Fr2], [A2]. Finally one should also mention the proof of stability
in the expanding direction of a flat cone solution for spatially compact space-times
[A-M2], [Re].

13Different null geodesics of the congruence may intersect, or the congruence itself may have conjugate points,
arbitrarily close to p.

14together with many other estimates of various geometric quantities associated to N−(p).
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3.1. Stability of the Minkowski space-time. The problem of stability of Minkowski
space-time for the Einstein-vacuum equations can be described as follows:

Show existence of a causally geodesically complete vacuum space-time asymp-
totically “converging” to the Minkowski space-time for an arbitrary set of smooth
asymptotically flat initial data (	0, g0ij , k0ij ) with 	0 ≈ R3,

g0ij =
(

1+M

r

)
δij +o(r−1−α), k0ij = o(r−2−α), r = |x| → ∞, α > 0 (27)

where (g0 − δ) and k0 satisfy global smallness assumptions .
A positive parameterM in the asymptotic expansion for the metric g0 is the ADM

mass, positive according to [S-Y1], [W].
The stability of Minkowski space for the Einstein-vacuum equations was shown

in a remarkable work of Christodouolou–Klainerman for strongly asymptotic initial
data (the parameter α ≥ 1/2 in the asymptotic expansion (27)), [C-K] The approach
taken in that work viewed the Einstein-vacuum equations as a system of equations

DαWαβγ δ = 0, Dα ∗Wαβγ δ = 0

for the Weyl tensorWαβγ δ of the metric gαβ and used generalized energy inequalities
associated with the Bel–Robinson energy-momentum tensor, constructed from com-
ponents ofW , and special geometrically constructed vector fields, designed to mimic
the rotation and the conformal Morawetz vector fields of the Minkowski space-time,
i.e., “almost conformally Killing” vector fields of the unknown metric g. The proof
was manifestly invariant, in particular it did not use the harmonic coordinate gauge.
This approach was later extended to the Einstein–Maxwell equations by N. Zipser [Z].

In [L-R2] we succeeded in developing a new relatively technically simple ap-
proach which allowed allowing us to prove stability of Minkowski space in harmonic
coordinate gauge, for general asymptotically flat data, α > 0, and simultaneously
treat the case of the Einstein equations coupled to a scalar field,

Rαβ(g) = ∂αφ ∂βφ, �gφ = 0

where the scalar field requires a global smallness assumption on its initial data (φ0, φ1),
which obey the asymptotic expansion

φ0 = o(r−1−α), φ1 = o(r−2−α). (28)

Theorem 3 ([L-R2]). Let (	, g0, k0, φ0, φ1) be initial data for the Einstein-scalar
field equations. Assume that the initial time slice	 is diffeomorphic toR3 and admits
a global coordinate chart relative to which the data is close to the initial data for the
Minkowski space-time. More precisely, we assume that the data (g0, k0, φ0, φ1) is
smooth asymptotically flat in the sense of (27)–(28) with mass M and α > 0 and
satisfy a global smallness assumption as measured in the scale of weighted Sobolev
spaces. Then the Einstein-scalar field equations possess a future causally geodesically
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complete solution (g, ψ) asymptotically converging to Minkowski space-time. In
fact, there exists a global harmonic system coordinates relative to which the metric g
remains close (and “converges”) to the Minkowski metric.

The appeal of the harmonic gauge for the proof of stability of Minkowski space-
time lies in the fact that the latter can be simply viewed15 as a small data global
existence result for the quasilinear system (5) (for vacuum equations),

�ggαβ = Nαβ(g, ∂g), gαβ |t=0 = g0
αβ, ∂tgαβ |t=0 = g1

αβ. (29)

However, usefulness of the harmonic gauge in this context was questioned earlier and
it was suspected that harmonic coordinates are “unstable in the large”, [CB1]. The
conclusion is suggested from the analysis of the iteration scheme for the system (29),
which resembles an iteration scheme for the semilinear equation �φ = (∂tφ)

2 shown
to blow up in finite time for arbitrarily small initial data by F. John, [J].

To describe some of the difficulties in establishing a small data global existence
result for the system (29) consider a generic quasilinear system of the form

�φi =
∑

b
jkαβ
i ∂αφj ∂βφk +

∑
c
jkαβ
i φj ∂α∂βφk + cubic terms. (30)

The influence of cubic terms is negligible while the quadratic terms are of two types,
the semilinear terms and the quasilinear terms, each of which present their own
problems. D. Christodoulou [C1] and S. Klainerman [K2] showed global existence
for systems of the form (30) if the semilinear terms satisfy the null condition and the
quasilinear terms are absent. The null condition, first introduced by S. Klainerman in
[K1], was designed to detect systems for which solutions are asymptotically free and
decay like solutions of a linear equation. It requires special algebraic cancellations in
the coefficients bjkαβi , e.g. �φ = (∂tφ)

2 −|∇xφ|2. However, the semilinear terms for
the Einstein equations do not satisfy the null condition, see [CB2]. The quasilinear
terms is another source of trouble. The only non-trivial example of a quasilinear
equation of the type (30), for which the small data global existence result holds, is the
model equation �φ = φ �φ, as shown in [L1] (radial case) and [Al] (general case),
see also [L2].

In [L-R1] we identified a criteria under which it is more likely that a quasilinear
system of the form (30) has global solutions16. We said that a system of the form
(30) satisfy the weak null condition if the corresponding asymptotic system (c.f. [H])
has global solutions. We showed that the Einstein equations in harmonic coordinates
satisfy the weak null condition. In addition an additional cancellation mechanism was
found for the Einstein equations in harmonic coordinates that makes it better than a

15This statement requires additional care since a priori there is no guarantee that obtained “global in time”
solution gμν defines a causally geodesically complete metric. However, the latter can be established provided
one has good control on the difference between gμν and the Minkowski metric mμν .

16At this point, it is unclear whether this criteria is sufficient for establishing a “small data global existence”
result for a general system of quasilinear hyperbolic equations.
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general system satisfying the weak null condition. The system decouples to leading
order, when decomposed relative to the Minkowski null frame. An approximate model
that describes the semilinear terms has the form

�φ2 = (∂tφ1)
2, �φ1 = 0.

While every solution of this system is global in time, the system fails to satisfy the
classical null condition and solutions are not asymptotically free: φ2 ∼ εt−1 ln |t |.
The semilinear terms in Einstein’s equations can be shown to either satisfy the classical
null condition or decouple in the above fashion when expressed in a null frame.
The quasilinear terms also decouple but in a more subtle way. The influence of
quasilinear terms can be detected via asymptotic behavior of the characteristic surfaces
of metric g. It turns out that the main features of the characteristic surfaces at infinity
are determined by a particular null component of the metric. The asymptotic flatness
of the initial data and the harmonic coordinate condition (3)

∂β
(
gαβ

√|g| ) = 0 (31)

give good control of this particular component, i.e., ∼ M/r , which in turn implies that
the light cones associated with the metric g diverge only logarithmically ∼ M ln t
from the Minkowski cones. The main simplification in our approach comes from
the fact the behavior of the system (29) coupled to the harmonic gauge (31) can
be completely controlled by means of the generalized energy estimates exploiting
only the exact symmetries of Minkowski space thus avoiding having to construct
dynamically generators of the approximate symmetries of the space-time (M, g).

The asymptotic behavior of null components of the Riemann curvature tensor
Rαβγ δ of metric g – the so called “peeling estimates” – was discussed in the works
of Bondi, Sachs and Penrose and becomes important in the framework of asymptot-
ically simple space-times (roughly speaking, space-times which can be conformally
compactified), see also the paper of Christodoulou [C4] for further discussion of such
space-times. The work of [C-K] provided very precise, although not entirely consis-
tent with peeling estimates, analysis of the asymptotic behavior of constructed global
solutions. However, global solutions obtained by Klainerman–Nicolo [K-N1] in the
problem of exterior17 stability of Minkowski space were shown to possess peeling
estimates for special initial data, [K-N2]. The work [L-R2] is less precise about the
asymptotic behavior of the curvature components.

3.2. Beyond stability of Minkowski space-time. The simplest solutions of the Ein-
stein vacuum equations of general relativity,

Rμν = 0, (32)

17Outside of the domain of dependence of a compact set.
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containing black holes are the one-parameter Schwarzschild family of solutions. In
the exterior region (r > 2M) the Schwarzschild metric can be written in the form

gs = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2dσS2 .

The Schwarzschild family is a sub-family of the two-parameter Kerr family which de-
scribe stationary rotating black holes. In its proper rigorous formulation, the problem
of nonlinear stability of the Kerr family is one of the major open problems in general
relativity. In particular, it is conjectured that perturbations of Schwarzschild initial
data should evolve into a spacetime with complete null infinity whose past “suit-
ably” approaches a nearby Kerr exterior. At the heuristic level, however, considerable
progress has been made in the last 40 years towards an understanding of the issues
involved. In particular, a very influential role was played by the work of R. Price [Pr]
in 1972, who discovered a heuristic mechanism, known in the physics literature as
the red-shift effect, allowing for the decay of scalar field linear perturbations on the
Schwarzschild exterior, i.e., solutions of the linear wave equation

�gsφ = 0.

Despite the abundance of heuristic and numerical arguments the nonlinear problem is
still lacking proper mathematical understanding while some progress has been made
recently on a problem of asymptotic behavior of the linear problem. The causal picture
of the Schwarzschild space-time is very different from the one of the Minkowski
space. In (a right quadrant of) Schwarzschild space-time in addition to the null
infinity, parametrized by (u, ω) ∈ R × S2 there is a special null hypersurface, the
event horizon, parametrized by (v, ω) ∈ R × S2, separating the exterior region from
the black hole. It is the presence of the event horizon that is responsible for the
red-shift effect in which the frequency of an observer leaving the exterior region gets
shifted to the red as viewed by the second observer positioned to the future of the first
one. The geometry of the Schwarzschild space-time also ultimately determines the
behavior of linear waves. However, even uniform boundedness of solutions of linear
scalar wave equations, almost trivial in Minkowski context, is by no means obvious
and is termed as linear stability of Schwarzschild in the physics literature. This result
was rigorously established in the work of Kay and Wald [K-W]. Decay for φ, without
a rate, was first proven in [Tw].

Theorem 4 ([D-R2]). Let φ be a sufficiently regular solution of the wave equation

�gsφ = 0 (33)

on the (maximally extended) Schwarzschild spacetime (M, g), decaying suitably at
spatial infinity on an arbitrary complete asymptotically flat Cauchy surface 	. Fix
retarded and advanced Eddington–Finkelstein coordinates u and v. We have the
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following pointwise decay rates

|φ| ≤ Cmax(1, v)−1 in r ≥ 2M

|rφ| ≤ C
R̂
(1 + |u|)− 1

2 in {r ≥ R̂ > 2M} ∩ J+(	).
(34)

A variant of the problem considered here is also studied in [B-S].
In the spherically symmetric case, the above result follows from a very special

case of [D-R1], where the so called Price law has been established. (See also [M-S].)
For the more general Kerr family, even uniform boundedness remains an open

problem (see however [FKSY]).
The proof of Theorem (4) is based on the energy type estimates for (33) with vector

fields adapted to different regions of space-times. An important role in this analysis
is played by the “red-shift vector field”, which has no equivalent in Minkowski space,
constructed near the event horizon.
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Birkhäuser, Basel 2004, 299–330.

[B-C1] Bahouri, H., and Chemin, J. Y., Équations d’ondes quasilinéaires et estimation de
Strichartz. Amer. J. Math. 121 (1999), 1337–1777.

[B-C2] Bahouri, H., and Chemin, J. Y., Équations d’ondes quasilinéaires et effet dispersif.
Internat. Math. Res. Notices 1999 (21) (1999), 1141–1178.

[B-K-M] Beale, T., Kato, T., Majda, A., Remarks on the breakdown of smooth solutions for the
3-D Euler equations. Comm. Math. Phys. 94 (1984), 61–66.

[B-S] Blue, P., and Sterbenz, J., Uniform decay of local energy and the semi-linear wave
equation on Schwarzchild space. Preprint.

[CB1] Choquét-Bruhat, Y., Théorème d’existence pour certains systèmes d’equations aux
dérivées partielles nonlinéaires. Acta Math. 88 (1952), 141–225.

[CB2] Choquét-Bruhat,Y., Un théorème d’instabilité pour certaines équations hyperboliques
non linéaires. C. R. Acad. Sci. Paris Ser. A 276 (1973), 281–284.

[CB3] Choquét-Bruhat, Y., Einstein constraints on n dimensional compact manifolds. Clas-
sical Quantum Gravity 21 (2004), S127–S152.



440 Igor Rodnianski

[C1] Christodoulou, D., Global solutions of nonlinear hyperbolic equations for small initial
data. Comm. Pure Appl. Math. 39 (1986), 267–282.

[C2] Christodoulou, D., Bounded variation solutions of the spherically symmetric Einstein-
scalar field equations. Comm. Pure Appl. Math. 46 (1993), 1131–1220.

[C3] Christodoulou, D., Instability of naked singularities in the gravitational collapse of a
scalar field. Ann. of Math. 149 (1999), 183–217.

[C4] Christodoulou, D., The Global Initial Value Problem in General Relativity. In The
Ninth Marcel Grossmann Meeting (Rome, 2000), ed. by V. G. Gurzadyan et al., World
Scientific, Singapore 2002, 44–54.

[C-K] Christodoulou, D., Klainerman, S., The global nonlinear stability of the Minkowski
space, Princeton Math. Ser. 41, Princeton University Press, Princeton, NJ, 1993.
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Categorification and correlation functions in conformal
field theory

Christoph Schweigert, Jürgen Fuchs, and Ingo Runkel∗

Abstract. A modular tensor category provides the appropriate data for the construction of a three-
dimensional topological field theory. We describe the following analogue for two-dimensional
conformal field theories: a 2-category whose objects are symmetric special Frobenius algebras
in a modular tensor category and whose morphisms are categories of bimodules. This 2-category
provides sufficient ingredients for constructing all correlation functions of a two-dimensional
rational conformal field theory. The bimodules have the physical interpretation of chiral data,
boundary conditions, and topological defect lines of this theory.
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1. Quantum field theories as functors

In approaches to quantum field theory that are based on the concepts of fields and states,
the utility of categories and functors is by now well-established. The following pattern
has been recognized: There is a geometric category G which, for every concrete model,
must be suitably “decorated”. The decoration is achieved with the help of objects and
morphisms from another category C. For known classes of quantum field theories,
the decoration category C typically has a representation-theoretic origin – the reader
is encouraged to think of it as the representation category of some algebraic object,
like a quantum group, a loop group, a vertex algebra, a net of observable algebras, etc.
This way one obtains a decorated geometric category GC . The quantum field theory
can then be formulated as a (tensor) functor qftC from GC to some category of vector
spaces. In this contribution, we mainly consider cases for which this latter category
is the tensor category of finite-dimensional complex vector spaces.

A prototypical example for this pattern is provided by topological quantum field
theories (TFTs). For such theories, the geometric category G is based on a cobordism
category: its objects are d−1-dimensional topological manifolds without boundary.
It is convenient to include two types of morphisms [42]: homeomorphisms of d−1-
dimensional manifolds, and cobordisms. A cobordism M : Y1 → Y2 is a d-dimen-
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sional topological manifold M together with a parametrization of its boundary given

by a homeomorphism ∂M
∼=−→ Y1 � Y2, where Y1 has the orientation opposite to the

one of Y1. The composition of morphisms is by concatenation, by gluing, and by
changing the parametrization of the boundary, respectively. Cobordisms that coincide
by a homeomorphism of the d-manifold M restricting to the identity on ∂M must be
identified.

In the simplest case, a topological field theory thus associates to a closed d−1-
dimensional manifold X a vector space qftC(X), and to a homeomorphism or a co-
bordism M : Y1 → Y2 a linear map

qftC(M) : qftC(Y1) → qftC(Y2).

The assignment qftC is required to be a (strict) tensor functor. This requirement
implies the usual axioms (cf. e.g. [43]) of naturality, multiplicativity, functoriality
and normalization.

There also exists a path-integral approach to certain classes of topological field
theories. Its relation to the categorical framework described above is as follows:
One can think of the vector space qftC(∂−M) as the space of (equivalence classes of)
possible initial data for “fields” in the path integral, and of qftC(∂+M) as the possible
final data. The matrix elements of the linear map qftC(M) are then the transition
amplitudes for fixed initial and final values of the fields.

This picture is still oversimplified. In particular, it turns out that it is natural to
enrich also the geometric category G over the category of complex vector spaces. As
a consequence, when studying functors on G, one should then consider also projective
functors. These issues, which are closely related to anomalies in quantum field theory
will, however, be suppressed in this note.

A prominent class of examples of 3-dimensional topological field theories arises
from Chern–Simons field theories. For G a simple connected and simply-connected
complex Lie group, consider holomorphic G-bundles on a closed two-manifold X
of genus g with complex structure. Pick a generator L for the Picard group of the
moduli space MG

X of such bundles. Upon changing the complex structure of X, the
vector spaces H 0(MG

X , L⊗k) fit together into a vector bundle with projectively flat
connection over the moduli space MG

g of curves of genus g. The complex modular
functor [3] associates these bundles to X; these bundles and their monodromies provide
a formalization of all aspects of the chiral level-k Wess–Zumino–Witten (WZW)
conformal field theory for G that are needed for the discussions in the subsequent
sections.

As a next step, it is natural to extend the formalism by allowing for marked points
with additional structure on the two-manifolds. From a field theoretical point of view,
this is motivated by the desire to account for insertions of fields. In the case of Chern–
Simons theory, the additional structure amounts to specifying parabolic structures at
the marked points. The marked points thus have to carry labels, which we will identify
in a moment as objects of a decoration category C.
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This structure must be extended to the geometric morphisms: Maps of 2-dimen-
sional manifolds are required to preserve marked points and the decoration in C. The
decoration of the 2-dimensional manifolds is extended to the 3-dimensional man-
ifolds M underlying cobordisms by supplying them with oriented (ribbon) graphs
ending on (arcs through) the marked points on ∂±M. The ribbon graph is allowed
to have vertices with a finite number of ingoing and outgoing ribbons. From the
construction of invariants of knots and links, it is known that this enforces a cate-
gorification of the set of labels: C must be a ribbon category, i.e. a braided sovereign
tensor category. In particular, the vertices of the graph are to be labeled by morphisms
in the decoration category C.

This approach has been very fruitful and has, in particular, made a rigorous con-
struction of Chern–Simons theory possible [38], [43]. The extension from invariants
of links in R

3 to link invariants in arbitrary oriented three-manifolds has revealed an
important subclass of tensor categories: modular tensor categories.

For the purposes of the present contribution, we adopt the following definition
of a modular tensor category: it is an abelian, C-linear, semi-simple ribbon category
with a finite number of isomorphism classes of simple objects. The tensor unit 1
is required to be simple, and the braiding must be nondegenerate in the sense that
the natural transformations of the identity functor on C are controlled by the fusion
ring K0(C):

End(IdC) ∼= K0(C) ⊗
Z

C.

The relation between Chern–Simons theory and chiral Wess–Zumino–Witten the-
ory [44] was a first indication that modular tensor categories also constitute the ap-
propriate mathematical formalization of the chiral data [31], [16] of a conformal field
theory. Recent progress in representation theory has made this idea much more pre-
cise; for the following classes of representation categories it has been established that
they carry the structure of a modular tensor category:

• The representation category of a connected ribbon factorizable weak Hopf algebra
over C (or, more generally, over an algebraically closed field k) with a Haar
integral [33].

• The category of unitary representations of the double of a connected C∗ weak
Hopf algebra [33].

• The category of local sectors of a finite-index net of von Neumann algebras on
the real line, if the net is strongly additive (which for conformal nets is equivalent
to Haag duality) and has the split property [27].
(In this example and in the previous one one obtains unitary modular tensor
categories.)

• The representation category of a self-dual vertex algebra that obeys Zhu’s C2
cofiniteness condition and certain conditions on its homogeneous subspaces, pro-
vided that this category is semisimple [25].
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The last two entries in this list correspond to two different mathematical formalizations
of chiral conformal field theories. The results of [27] and [25] therefore justify the
point of view that modular tensor categories constitute an œcumenic formalization of
the chiral data of a conformal field theory.

2. Two-dimensional conformal field theories

Three-dimensional topological field theory will indeed appear as a tool in construc-
tions below. Our main interest here is, however, in a different class of quantum field
theories: full (and in particular local) two-dimensional conformal field theories, or
CFTs, for short.

For these theories, the geometric category of interest is the category of two-di-
mensional conformal manifolds, possibly with non-empty boundary. This fact already
indicates that full conformal field theories are different from the chiral conformal
field theories that we encountered in the last section for the case of WZW theories.
Morphisms in the category of conformal manifolds are maps respecting the conformal
structure. Actually, there are two different types of full conformal field theories,
corresponding to two different geometric categories: One considers either oriented
conformal manifolds, leading to a category Gor, or unoriented manifolds, leading to a
different geometric category Gunor. As morphisms, we admit maps that preserve the
respective structure. (In the application of conformal field theory to string theory, Gor

plays a role in superstrings of “type II”, while Gunor appears in superstring theories
of “type I”.)

As in the case of topological field theories, the geometric category needs to be
decorated. To find the appropriate decoration data, we first discuss a physical struc-
ture that is known to be present in specific classes of models and that our approach to
conformal field theory should take into account:

• Whenever a two-manifold X has a boundary, one expects that it is necessary to
specify boundary conditions. In a path integral approach, a boundary condition
is a prescription for the boundary values of fields that appear in the Lagrangian.
Here, a more abstract approach is adequate: we take the possible boundary
conditions to be the objects of a decoration category M. This constitutes again
a categorification of the decoration data. It can be motivated further by the
observation that insertions of boundary fields can change the boundary condition;
they will be related to morphisms of the category M.

A second structure, which in the literature has received much less attention than
boundary conditions, turns out to provide crucial clues for the construction of full
conformal field theories:

• Conformal field theories can have topological defect lines. Such defect lines
have e.g. been known for the Ising model for a long time: This CFT describes
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the continuum limit of a lattice model with Z2-valued variables at the vertices of
a two-dimensional lattice and with ferromagnetic couplings along its edges. A
defect line is obtained when one changes the couplings on all edges that intersect
a given line in the lattice from ferromagnetic to antiferromagnetic.

In the continuum limit, such a defect line can be described by a condition on
the values of bulk fields at the defect line. In particular, when crossing a defect
line, the correlation function of a bulk field can acquire a branch cut. Indeed,
the defect lines we are interested in behave very much like branch cuts: they
are topological in the sense that their precise location does not matter. In a field
theoretic language, this is attributed to the fact that the stress-energy tensor of the
theory is required to be smooth across defect lines. As in the case of boundary
conditions, in our framework it is not desirable to express defect lines through
conditions on the values of fields. Instead, we anticipate again a categorification
of the decoration data and label the possible types of defect lines by objects in
yet another decoration category D .

There is a natural notion of fusion of defect lines, see e.g. [36], [15]. Accord-
ingly, D will be a tensor category. Also, to take into account the topological nature
of defect lines, we assume that the tensor category D has dualities and that it is even
sovereign. In contrast, there is no natural notion of a braiding of defect lines, so D
is, in general, not a ribbon category.

The two decoration categories – D for the defects and M for the boundary con-
ditions – are themselves related. One can fuse a defect line to a boundary condition,
thereby obtaining another boundary condition; see e.g. [24]. This endows the cate-
gory M of boundary conditions with the structure of a module category over D , i.e.
there is a bifunctor

⊗: D × M → M

which has (mixed) associativity constraints obeying a mixed pentagon identity.
The structure just unraveled – a tensor category D together with a module cate-

gory M over D – calls for the following natural extension: One should also consider
the category of module functors, i.e. the category C whose objects are endofunctors
of M that are compatible with the structure of a module category over D and whose
morphisms are natural transformations between such functors. The concatenation of
functors naturally endows C with a product so that C is a tensor category.

A recent insight is the following: In the application to two-dimensional conformal
field theory, the category C obtained this way is equivalent to the category of chiral
data that we discussed in Section 1! There is a particularly amenable subclass of
conformal field theories, called rational conformal field theories (RCFTs), which can
be rigorously discussed on the basis of this idea. For these theories, the category C of
chiral data has the structure of a modular tensor category. In this case the idea can be
exploited to arrive at a construction of correlation functions (see Section 4) of rational
conformal field theories that is based on three-dimensional topological field theory.
This TFT approach to RCFT correlators will be presented in Section 5 below.
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3. The 2-category of Frobenius algebras

In practice, one frequently takes an opposite point of view: Instead of obtaining C as
a functor category, one starts from some knowledge about the chiral symmetries of
a conformal field theory. This allows one to use the representation-theoretic results
mentioned in Section 1 so as to get a modular tensor category C describing the
chiral data of the theory. Afterwards one realizes that the category M of boundary
conditions is also a (right-) module category over C. General arguments involving
internal Hom’s [35] together with specific properties relevant to rational conformal
field theories then imply that in the tensor category C there exists an associative
algebra A such that M is equivalent to the category CA of left A-modules in C. By
similar arguments one concludes that the category D is equivalent to the category
of A-bimodules. Additional constraints, in particular the non-degeneracy of the two-
point functions of boundary fields on a disk, lead to further conditions on this algebra
[17]: A must be a symmetric special Frobenius algebra. Owing to these insights
we are able to use a generalization1 of the theory of Frobenius algebras to braided
tensor categories as a powerful tool to analyze (rational) conformal field theory. The
algebraic theory in the braided setting is, however, genuinely richer; see [14] for a
discussion of some new phenomena.

A Frobenius algebra A = (A, m, η, �, ε) in C is, by definition, an object of C
carrying the structures of a unital associative algebra (A, m, η) and of a counital
coassociative coalgebra (A, �, ε) in C, with the algebra and coalgebra structures
satisfying the compatibility requirement that the coproduct � : A → A ⊗ A is a
morphism of A-bimodules (or, equivalently, that the product m : A ⊗ A → A is a
morphism of A-bi-comodules). A Frobenius algebra is called special iff the coproduct
is a right-inverse to the product – this means in particular that the algebra is separable –
and a nonvanishing multiple of the unit η : 1 → A is a right-inverse to the counit
ε : A → 1. There are two isomorphisms A → A∨ that are naturally induced by
product, counit and duality; A is called symmetric iff these two isomorphisms coincide.

Two algebras in a tensor category C are called Morita equivalent iff their repre-
sentation categories are equivalent as module categories over C. Since the algebra A

is characterized by the requirement that CA is equivalent to the given decoration cat-
egory M, it is clear that only the Morita class of the algebra should matter. It is a
non-trivial internal consistency check on the constructions to be presented in Section 5
that this is indeed the case.

Taking the modular tensor category C as the starting point, the following further
generalization of the setup (compare also [32], [46], [28]) is now natural:2 Consider
the set of all (symmetric special) Frobenius algebras in C. This gives rise to a
family of full conformal field theories that are based on the same chiral data. And

1 When C is the modular tensor category of finite-dimensional complex vector spaces, the CFT is a topological
CFT. In particular, A is then an ordinary Frobenius algebra. This case has served as a toy model for conformal
field theories, see e.g. [40], [30].

2 We are grateful to Urs Schreiber for discussions on this point.
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again we categorify the structure: we introduce a 2-category FrobC whose objects
are symmetric special Frobenius algebras in C. The 1-morphisms Hom(A, A′) are
given by the category of A-A′-bimodules. The 2-category FrobC has a distinguished
object I : as an object of C, I is just the tensor unit, which is naturally a symmetric
special Frobenius algebra. Because of the considerations in [8], the full conformal
field theory corresponding to I is often referred to as the “Cardy case”; for this case
a construction of the correlators in the spirit of Section 4 was given in [11].

We are now in a position to attribute a physical interpretation to the morphisms
of FrobC . Hom(I, I) is naturally identified with the tensor category C of chiral data.
Further, for any A the tensor category Hom(A, A) describes topological defects in the
full conformal field theory associated to A; more generally, the category Hom(A, A′)
accounts for topological defect lines that separate two different conformal field theo-
ries which share the same chiral data. Finally, the category Hom(I, A) also describes
boundary conditions for the full conformal field theory labeled by A.

We have thus learned that the decoration data of a family of full rational conformal
field theories based on the same chiral data are described by a 2-category. This nicely
fits with insight gained in other contexts:

• 2-categories appear in recent approaches to elliptic objects [2], [42].

• Hermitian bundle gerbes, which appear naturally in a semi-classical description
of WZW conformal field theories [23], form a 2-category [41].

Unfortunately, at the time of writing, a unified approach to conformal field theories
based on 2-categories has not been established yet. For this reason, in the sequel we
will not be able to use this language systematically.

We close this section with two further comments. First, so far we have discussed
the decoration data relevant to the oriented geometric category Gor. For the unoriented
geometric category Gunor, additional structure on the relevant Frobenius algebra is
needed: A must then be a Jandl algebra, that is, a symmetric special Frobenius

algebra coming with an algebra isomorphism A
∼=−→ Aopp that squares to the twist

on A. This turns out to be the appropriate generalization of the notion of an algebra
with involution to braided tensor categories. We refrain from discussing this issue in
the present contribution, but rather refer to [18], [21] for details.

Second, the general situation encountered above – a module category M over a
tensor category C – naturally appears in various other contexts as well:

• The left modules over a weak Hopf algebra H form a tensor category C =H -Mod.
In a weak Hopf algebra, one can identify two subalgebras Hs and Ht that are each
other’s opposed algebras [6]. Forgetful functors thus endow any H -module with
the structure of an Ht -bimodule; one even obtains a tensor functor from H -Mod
to Ht -Bimod. The usual tensor product of a Ht -bimodule and an Ht -left module
endows the category of Ht -modules with the structure of a module category over
Ht -Bimod and thus over H -Mod.
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Weak Hopf algebras have indeed been proposed [37] as a framework for rational
conformal field theories. Unfortunately, such a description must cope with two
problems: First, to account for a braiding on C, one must work with an R-matrix
on H ; not too surprisingly, this is technically involved, and indeed not very much
is known about R-matrices on weak Hopf algebras. Secondly, given a tensor
category C (describing the chiral data), there does not exist a canonical weak Hopf
algebra such that H -Mod is equivalent to C. Rather, as an additional datum, a
fiber functor to Ht -bimodules needs to be chosen. A physical interpretation of this
datum is unclear. On the other hand, Hopf algebras are still useful in the analysis
of full rational CFT: Their Hochschild cohomology was used [10] to compute
the Davydov–Yetter cohomology of the pair (C, M); from the vanishing of this
cohomology, rigidity properties of rational conformal field theories follow.

• Weak Hopf algebras also appear in the study of inclusions of subfactors. For a
review and further references, we refer to Sections 8 and 9 of [34].

• The same category-theoretic structures have been recovered in the theory of vertex
algebras from so-called open-string vertex algebras [26] which are, in particular,
extensions of ordinary vertex algebras.

Not surprisingly, some of the structures that will be encountered in the rest of this paper
also have counterparts in the context of weak Hopf algebras, of nets of subfactors, or
of open-string vertex algebras.

4. Correlation functions

The observations made in the preceding section raise the question whether one can
construct a full rational conformal field theory by using a modular tensor category C
and the 2-category FrobC as an input. These data should then in particular encode
information about the correlation functions of the conformal field theory.

To decide this question, it is helpful to reformulate first the geometric categoriesGor

and Gunor. This is achieved with the help of a crucial aspect of complex geometry in
two dimensions: a complex structure on a two-dimensional manifold is equivalent to
a conformal structure and the choice of an orientation. The complex double ̂X of a
conformal manifold X is a two-sheeted cover of X whose points are pairs consisting
of a point p ∈ X and a local orientation at p. In view of the previous comment, it
is clear that ̂X is a complex curve. We have thus associated to any object X of the
geometric categories Gunor and Gor a complex curve ̂X that comes with an orientation
reversing involution σ such that the quotient ̂X/〈σ 〉 is naturally isomorphic to X, and
we have a canonical projection

π : ̂X �→ X ∼= ̂X /〈σ 〉.
The set of fixed points of σ is just the preimage under π of the boundary ∂X.
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To be able to use the tools of complex geometry, we therefore reformulate our
geometric categories as follows: in the case of Gunor, the objects are pairs (̂X, σ )

consisting of a complex curve ̂X and an anticonformal involution σ that implements
the action of the Galois group of C/R. In the case of Gor, we fix a global section of π

as an additional datum.
Next, since we are interested in correlation functions depending on insertion points,

it is natural to consider simultaneously the family Mg,m of all complex curves with
marked points that have the same topological type (i.e., genus g and number m of
marked points) as ̂X. It is convenient to treat the positions of the insertion points and
the moduli of the complex structure on the same footing. The curves that admit an
involution σ of the same type as ̂X and for which the marked points are related by σ

form a submanifold Mσ
g,m of Mg,m. (To be precise, one obtains [7] such a relation

for Teichmüller spaces, rather than for moduli spaces.)
Given the modular tensor category C, the complex modular functor [3] provides

us with a vector bundle V with projectively flat connection on Mg,m. We can now
formulate the ‘principle of holomorphic factorization’ (which for certain classes of
conformal field theories follows from chiral Ward identities that can formally be
derived from an action functional [45]). It states that, first of all, the conformal
surface X should be decorated in such a way that the double ̂X has the structure of
an object in the decorated cobordism category for the topological field theory based
on C. It then makes sense to require, secondly, that the correlation function is a certain
global section of the restriction of V to Mσ

g,m.
At this point, it proves to be convenient to use the equivalence of the complex

modular functor and the topological modular functor tftC based on the modular tensor
category C [3] so as to work in a topological (rather than complex-analytic) cate-
gory. We are thereby lead to the description of a correlation function on X as a
specific vector Cor(X) in the vector space tftC(̂X) that is assigned to the double ̂X by
the topological modular functor tftC . These vectors must obey two additional axioms:

• Covariance: Given any morphismf : X → Y in the relevant decorated geometric
category GC , we demand

Cor(Y) = tftC(f )(Cor(X)).

• Factorization: Certain factorization properties must be fulfilled.

We refer to [12], [13] for a precise formulation of these constraints.

The covariance axiom implies in particular that the vector Cor(X) is invariant under
the action of the mapping class group Map(X) ∼= Map(̂X)σ . This group, also called

the relative modular group [4], acts genuinely on tftC(̂X).
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5. Surface holonomy

To find solutions to the covariance and factorization constraints on the vectors
Cor(X) ∈ tftC(̂X) we use the three-dimensional topological field theory associated to
the modular tensor category C. Thus we look for a (decorated) cobordism (MX, ∅,̂X)

such that the vector tftC(MX, ∅,̂X)1 ∈ tftC(̂X) is the correlator Cor(X).
The three-manifold MX should better not introduce any topological information

that is not already contained in X. This leads to the idea to use an interval bundle as a
“fattening” of the world sheet. It turns out that the following quotient of the interval
bundle on ̂X, called the connecting (three-) manifold, is appropriate [11]:

MX = (̂X × [−1, 1] )/〈(σ, t �→ −t)〉.
This three-manifold is oriented, has boundary ∂MX ∼= ̂X, and it contains X as a
retract: the embedding ı of X is to the fiber t = 0, the retracting map contracts along
the intervals.

The connecting manifold MX must now be decorated with the help of the deco-
ration categories Hom(A, A′). We will describe this procedure for the oriented case
only. The conformal surface X is decomposed by defect lines (which are allowed
to end on ∂X) into various two-dimensional regions. There are two types of one-
dimensional structures: boundary components of X and defect lines. Defect lines, in
general, form a network; they can be closed or have end points, and in the latter case
they can end either on the boundary or in the interior of X. Both one-dimensional
structures are partitioned into segments by marked “insertion” points. The end points
of defect lines carry insertions, too. Finally, we also allow for insertion points in the
interior of two-dimensional regions.

To these geometric structures, data of the 2-category FrobC are now assigned as
follows. First, we attach to each two-dimensional region a symmetric special Frobe-
nius algebra, i.e. an object of FrobC . To a segment of a defect line that separates re-
gions with label A and A′, respectively, we associate a 1-morphism in Hom(A, A′),
i.e. an A-A′-bimodule. Similarly, to a boundary segment adjacent to a region la-
beled by A, we assign an object in Hom(I, A), i.e. a left A-module. Finally, zero-
dimensional geometric objects are labeled with 2-morphisms of FrobC ; in particular,
junctions of defect lines with each other or with a boundary segment are labeled by
2-morphisms from the obvious spaces.

Two types of points, however, still deserve more comments: those separating
boundary segments on the one hand, and those separating or creating segments of
defect lines or appearing in the interior of two-dimensional regions on the other.
These are the insertion points that were mentioned above. An insertion point p ∈ ∂X
that separates two boundary segments labeled by objects M1, M2 ∈ Hom(I, A) has a
single preimage under the canonical projection π from ̂X to X; to the interval in MX
that joins this preimage to the image ı(p) of p under the embedding ı of X into MX,
we assign an object U of the category C = Hom(I, I) of chiral data. To the insertion
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point itself, we then attach a 2-morphism in the morphism space Hom(M1 ⊗ U, M2)

in Hom(I, A).

An insertion point in the interior of X has two preimages on ̂X; these two points are
connected to ı(p) by two intervals. To each of these two intervals we assign to each of
these two intervals an object U and V , respectively, of the category C of chiral data. In
the oriented case, the global section of π is used to attribute the two objects U, V to the
two preimages. (For the unoriented case, the situation is more involved; in particular,
the Jandl structure on the relevant Frobenius algebra enters the prescription.) We
now first consider an insertion point separating a segment of a defect line labeled
by an object B1 ∈ Hom(A, A′) from a segment labeled by B2 ∈ Hom(A, A′). We
then use the left action ρl of A and the right action ρr of A′ on the bimodule B1 to
define a bimodule structure on the object U ⊗ B1 ⊗ V of C by taking the morphisms
(idU ⊗ ρl ⊗ idV ) � (c−1

U,A ⊗ idB1 ⊗ idV ) and (idU ⊗ ρr ⊗ idV ) � (idU ⊗ idB1 ⊗ c−1
A′,V )

as the action of A and A′, respectively, where c denotes the braiding isomorphisms
of C. The insertion point separating the defect lines is now labeled by a 2-morphism
in Hom(U ⊗ B1 ⊗ V, B2), i.e. by a morphism of A-A′-bimodules.

To deal with insertion points in the interior of a two-dimensional region labeled
by a Frobenius algebra A, we need to invoke one further idea: such a region has to
be endowed with (the dual of) a triangulation 	. To each edge of 	 we attach the
morphism � � η ∈ Hom(1, A ⊗ A), and to each trivalent vertex of 	 the morphism
ε �m� (m ⊗ idA) ∈ Hom(A⊗A⊗A), 1). This pattern is characteristic for notions of
surface holonomy. It has appeared in lattice topological field theories [22] and shows
up in the surface holonomy of bundle gerbes as well. (For more details, references,
and the relation to the Wess–Zumino term of WZW conformal field theories in a
Lagrangian description, see [23].)

Now each of the insertion points p that we still need to discuss is located inside a
two-dimensional region labeled by some Frobenius algebra A or creates a defect line.
For the first type of points, we choose the triangulation such that an A-ribbon passes
through p; to p we then attach a bimodule morphism in Hom(U ⊗A⊗V, A), with U

and V objects of C as above. To a point p at which a defect line of type B starts or ends,
we attach a bimodule morphism in Hom(U ⊗A⊗V, B) and in Hom(U ⊗B ⊗V, A),
respectively.

We have now obtained a complete labelling of a ribbon graph in the connecting
manifold MX with objects and morphisms of the modular tensor category C; in other
words, a cobordism from ∅ to ̂X in the decorated geometric category GC . Applying
the modular functor for the tensor category C to this cobordism, we obtain a vector

Cor(X) = tftC(MX) 1 ∈ tftC(̂X).

This is the prescription for RCFT correlation functions in the TFT approach. It follows
from the defining properties of a symmetric special Frobenius algebra that Cor(X)

does not depend on the choice of triangulation; for details see [12].
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6. Results

On the basis of this construction one can establish many further results. Let us list
some of them, without indicating any of their proofs:

[17] Of particular interest are the correlators for X being the torus or the annulus with-
out field insertions, but possibly with defect lines. From these “one-loop ampli-
tudes” one can derive concrete expressions for partition functions of boundary,
bulk and defect fields.

The coefficients of these partition functions in the distinguished basis of the
zero-point blocks on the torus that is given by characters can be shown to be
equal to the dimensions of certain spaces of 2-morphisms of the 2-category
FrobC . Thus in particular they are non-negative integers.

In fact, one recovers expressions that had also been obtained in an approach
based on subfactors [29], [5]. Moreover, these coefficients can be shown to
satisfy other consistency requirements like forming so-called NIMreps of the
fusion rules.

[18] To extend these results to unoriented (in particular, to unorientable) surfaces
one must specify as additional datum a Jandl structure on the relevant Frobenius
algebra. One can then e.g. compute the partition functions for the Möbius strip
and Klein bottle. Their coefficients in the distinguished basis of zero-point
torus blocks are integers, and for CFT models which serve as building blocks
of type I string theories, these partition functions combine with the torus and
annulus amplitudes in a way consistent with an interpretation in terms of state
spaces of the string theory.

[19] The expressions for correlation functions can be made particularly explicit for
conformal field theories of simple current type [39], which correspond to Frobe-
nius algebras for which every simple subobject is invertible. Eilenberg–Mac
Lane’s [9] abelian group cohomology turns out to provide a crucial tool for an-
alyzing this case.

It should be stressed, though, that the TFT approach to RCFT correlators treats
the simple current case and other conformal field theories (i.e. those having an
‘exceptional modular invariant’ as their torus partition function) on an equal
footing.

[20] By expressing some specific correlation functions for the sphere, the disk, and
the real projective plane through the appropriate (two- or three-point) confor-
mal blocks, one can derive explicit expressions for the coefficients of operator
product expansions of bulk, boundary, and defect fields.

[12] For arbitrary topology of the surface X the correlators obtained in the TFT
construction can be shown to satisfy the covariance and factorization axioms
that were stated at the end of Section 4.
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[15] The Picard group of the tensor category Hom(A, A) describes symmetries
of the full conformal field theory that is associated to A. The fusion ring
K0(Hom(A, A)) of that category contains information about Kramers--Wan-
nier-like dualities as well.

7. Conclusions

The TFT approach to the construction of CFT correlation functions, which represents
CFT quantities as invariants of knots and links in three-manifolds, relates a general
paradigm of quantum field theory to the theory of (symmetric special) Frobenius al-
gebras in (modular) tensor categories. It thereby constitutes a powerful algebraization
of many questions that arise in the study of conformal field theory. As a result, one
can both make rigorous statements about rational conformal field theories and set up
efficient algorithms for the computation of observable CFT quantities.

A rich dictionary relating algebraic concepts and physical notions is emerging. It
includes in particular the following entries:

• The classification of (oriented) full conformal field theories for given chiral data
C amounts to the classification of Morita classes of Frobenius algebras in C.
As a special case, the classification of those theories whose torus partition func-
tion is “of automorphism type” amounts to determining the Brauer group of the
category C.

• The Picard group of the tensor category Hom(A, A) acts as a symmetry group
on the full conformal field theory associated to A, while the fusion ring of this
tensor category contains information about Kramers–Wannier like dualities.

• Deformations of the conformal field theory are controlled by the Davydov–Yetter
cohomology of the pair (C, CA).

The structure of this dictionary gives us confidence that some of the insights of the
TFT approach – though, unfortunately, not most of the proofs – will still be relevant
for the study of conformal field theories that are not rational any more.
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Soliton dynamics and scattering

Avy Soffer∗

Abstract. A survey of results and problems of soliton dynamics in dispersive and hyperbolic
nonlinear PDE’s and the related spectral and scattering theory. I focus on the problem of large
time behavior of the nonlinear Schrödinger equation, with both solitary and radiative waves
appearing in the solution. The equations are nonintegrable in general and in arbitrary dimension.
I will formulate the main conjectures relevant to soliton dynamics.

Mathematics Subject Classification (2000). Primary 35Qxx.

Keywords. Solitons, NLS, asymptotic-completeness, dispersive waves, asymptotic stability.

1. Introduction

The advances in spectral and scattering theory of the last 20 years, combined with the
intense physical research based on nonlinear dispersive equations have led to major
progress in nonlinear dynamics.

The goal of understanding the large time behavior of all solutions of nonlinear
dispersive equations is now pursued on many levels: global existence theory, nonlinear
scattering, new solutions, applications.

Furthermore, the new applications of NLPDE in physics generate a host of new
research in the physics literature, e.g. experimental [12], [9], [30] and theoretical [57],
[2], [29].

It is then fair to say that we are witnessing a new (golden) generation that focusses
on complex collective systems behavior, the age of coherent structures.

Consider the following generic form of dispersive NLPDE:

i∂tu = Hu+ F(u)u

with initial data in (say) some Hilbert space H , typically (vector valued) Sobolev
space.

H is a self-adjoint (matrix) operator in general.
For example NLS (semilinear):

H = −�, F(u) ∼
N∑
i=1

λi |u|pi ,

H = H 1(Rn);
∗Research partially supported by NSF Grant# DMS-0501043.
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and the NLKG equation (hyperbolic type):

∂t

(
u

u̇

)
=
(

0 1
Hm 0

)(
u

u̇

)
+
(

0 0
F(u) 0

)(
u

u̇

)
,

Hm = −�+m2.

In general we expect that if the λi > 0 and the pi are not too large/small that global
existence holds, that uniqueness holds and scattering theory holds and all solutions
disperse like free waves for large time [54]. When some λi are negative F is attractive
and blow-up occurs in general, in finite time, for data not too small.

However a fundamental new phenomena appears: the dispersion by H can be
exactly cancelled by the focusing of F , to create a new type of localized in space
solutions, smooth, uniformly in time. I shall refer to these solutions as coherent
structures or solitons.

Example 1.1. NLS solitons, KG/SG kinks, vortices, monopoles, breathers, topolog-
ical solitons, hedgehogs, skyrmions, blackholes, . . . and the more recent more exotic
coherent structures: compactons, peakons, noncommutative solitons. [31], [54], [53].

Definition 1.1. A localized solution/soliton/coherent structure is a solution of a dis-
persive equation satisfying

lim
R→∞

{
sup
t

‖χ(|x| > R)u(x, t)‖H
} = 0.

To understand how fundamental are coherent structures we have the following
conjecture:

Grand Conjecture (Asymptotic Completeness). Generic asymptotic states are given
by independently (freely) moving coherent structures and free radiation.

Comments. 1) The Grand Conjecture states that besides free waves only these co-
herent structures can emerge as t → ∞.

2) We are very far from proving such a result for any interesting equation.

In making progress in this direction I will formulate another “simple” conjecture
that I expect to play an important role:

Petite Conjecture. Localized solutions of NLS are almost periodic in time.

Comments. 1) I used “NLS” and not “dispersive” to avoid giving a rigorous definition
of “dispersive”.

2) This conjecture is a nonlinear analog of the geometric characterisation of bound
states in linear theory originally proposed by Ruelle and developed as RAGE theorem.

It also states that coherent structures/solitons are the “bound states” of dispersive
wave equations.
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3) While such a result follows for data near a stable soliton solution of NLS [40],
[37], [35], [10], [45], [46], [4], [5], [36] it is not known for even a single equation in
such generality.

4) One can replace the localization assumption by the stronger condition

sup
t

‖χ(|x| > R)u(x, t)‖H ≤ cR−m, R > 1,

some m > 0, or even exponential decay in R for many equations.

2. Asymptotic stability

The kind of problems we do understand are small perturbations of the putative asymp-
totic states described above. That is, we can prove that if the initial data is close to N
solitons moving independently and small perturbation it will propagate as expected
when t → ∞.

Next, I shall describe the developments and arguments leading to this result.
So consider the NLS in three or more dimensions, here we follow [40]:

i
∂ψ

∂t
= −�ψ − F(|ψ |2)ψ x ∈ R

n and n ≥ 3. (1)

If F has a negative (attractive) part the equation will have, in general, coherent
structure solutions, such as solitons. To find (some of) them, we look for time periodic
solutions

ψ = eiωtφω(x),

which gives

−ωφω = −�φω − F(|φω|2)φω.
In general φω will be localized (at least as an L2-function) for ω > 0.
Thanks to the pioneering works of [8], [53], [3], [24], [32], [17] we know a great

deal of information about such solitons: existence, decay at infinity, uniqueness of
the positive solutions, symmetry and more.

By Galilean invariance

ψσ ≡ ei�v·x−i
1
2 (|v|2−ω)t+iγ φω(x − �vt − �a)

are all solutions of NLS;

σ = (�u, γ, �a, ω) ∈ R
n × R × R

n × R.

ψσ are moving solitons, with velocity �v localized at �a (at time 0), with energy ω
and phase γ . The general conjecture then states that generic solutions of NLS are
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asymptotic to a sum of such moving solitons plus a free wave (a solution of the free
Schrödinger equation corresponding to F = 0).

A weaker but useful result is orbital stability of solitons: we would like to know if
a small perturbation of a soliton (as initial data) leads to a nearby, soliton (in σ space)
up to a phase, for all times [7], [13], [14], [18], [19], [20], [58], [59].

It turns out that in many cases stability follows from linear stability :
First we linearize the equation around a soliton:

ψ ≡ eiθ (φω + R)

and deriving (the linear part of) the equation of R: since there will be both R and R
terms in the equation we complexify to get:

i
∂

∂t

(
R

R

)
= H

(
R

R

)
,

H ≡
(

L+ W(x)

−W(x) −L+

)
,

L+ = −�+ ω − F(φ2
ω)− F ′(φ2

ω)φ
2
ω,

W(x) = −F ′(φ2
ω)φ

2
ω.

Since H is not self-adjoint we do not haveL2 conservation under such H . Linear sta-
bility states that on the complement of the root space of H the solutions are uniformly
bounded in L2:

sup
t

‖U(t)Pf ‖L2 ≤ c‖f ‖L2

where P is the projection on (N∗)⊥ and N is the root space of H ,

N ≡
⋃
�≥1

ker H�.

Such analysis can be made for other coherent structures in a similar way [vortices,
kinks, blackholes,. . . .].

To proceed with the problem of asymptotic stability and completeness we are
going to need much more detailed spectral/scattering results for eiH tP . Proving such
results for various types of H that appear in applications is in general difficult, and
while there are many works in this direction from the last few years, a lot is left open,
see the review [42].

We need to prove

a) Absence of embedded eigenvalues in the continuous spectrum of H .
There are remarkably detailed and complete results for self-adjoint Schrödinger

operators on R
n and manifolds [22], [41].

The extension to matrix operators such as H is still eluding us, and a general new
approach would be of great interest to the field, see however [42].
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b) Absence of threshold resonances. This is related to the next condition.

c) Dispersive estimates:

‖U(t)Pψ0‖L∞ � t−n/2‖ψ0‖L1 .

Weaker estimates are also of interest, such as

‖〈x〉−σU(t)P 〈x〉−σ‖ � t−σ , t > 1.

The subject of dispersive estimates is another fast growing field of research inspired
by soliton dynamics, see the latest review of Schlag [42].

Such Lp-dispersive estimates were proved for

H = −�+ V on R
n, n ≥ 3,

for a quite general class of V in [23]. It was then extended (also to Lp boundedness
of wave operators) in [60]; further important new extension is due to [38]. For matrix
operators see [39], [42]. All the results which are known require enough decay at ∞
of the potential perturbations. The decay is determined by the decay of the soliton.

NLS solitons decay exponentially and so they are included.
However other types of coherent structures like vortices, monopoles etc. lead to

slowly decaying potentials, and so the dispersive theory for both Schrödinger and
matrix operators is still lacking the generality needed.

What is more, the above stated decay also requires the knowledge of absence of
threshold resonances, a difficult problem to solve for specific operators. In fact, in
some situations (e.g. kink scattering) such resonances are present, and therefore the
asymptotic stability theory of kinks requires as yet unknown modifications.

3. The method of modulation equations

Presently, the modulation equations approach is the only method that is used to prove
asymptotic stability of solitons. The first step is the Ansatz and the associated orthog-
onality condition.

Ansatz.
ψ(t) = Sσ(t) + R(t).

Here Sσ is a soliton with parameters σ .

Orthogonality condition. R(t) belongs to the range of Pt so it is orthogonal to the
root space adjoint N∗.

Remark 3.1. When the soliton is small we can replace Pt by Pt=0 [45], [46]. Under
favorable conditions we can derive a closed system of equations for R(t), σ (t). The
equation for R ≡ (R(t), R(t)) then has the form

i∂tR(t) = HR(t)+ NL(R(t))
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where NL(R(t)) is a sum of quadratic and higher order terms in R, and terms of the
form

O(σ̇R).

The σ -equation is a system of ODE’s:

σ̇ (t) = K(t)σ (t)+ NL(R, σ ).

The idea for solving such a system is based on bootstrap and smallness. Suppose that
we can prove that the solutions of the PDE for (R(t)) is indeed dispersive:

|‖R(t)|‖ = O(t−m)

where |‖ · |‖ is typically a sum of LP and local decay norms.

For example, for p = ∞, and three or more dimensions we expect m = 3/2 at
least. Then, plugging this estimate for R(t) into the NL(R, σ ) terms of the ODE we
shall be able to prove that

σ̇ (t) is in L1(dt) (excluding γ̇ )

and perhaps get some pointwise decay.
Then these estimates on σ̇ should be sufficient to control the O(σ̇R) terms in

the PDE. Smallness can then be used to close the above self-consistent system of
estimates.

The key to implementing this procedure is proving sufficient decay estimates for
the PDE, assuming the decay of σ̇ . This leads us to study the following general
problem:

i
∂R

∂t
= HPR + PNL(R)

where P is the projection on (N∗)⊥.
When R is small, we try to solve this problem by Duhamel type identities

R(t) = e−iHP tR(0)− i

∫ t

0
e−iHP(t−s)PNL(R(s) ds.

The starting point is then knowing the basic estimates for

e−iHP t

which is the linear problem described before.
There are many situations where the range of P includes, besides the continuous

spectrum of H , some point spectrum. In this case, further decomposition of the
solution is needed.

This will be described in the next section.
So consider the case when P = Pc(H). We need, besides the Lp decay estimates

for H , to estimate the nonlinear terms.
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When the nonlinearities are of sufficient power decay (near zero) this is not diffi-
cult.

However, notice that we always need to deal with a term of the form

∑
SR2.

When the soliton S is well localized, local decay pointwise in time plus some Lp

decay is sufficient. The complications arise in cases where there is not enough decay
or when S is not well localized. For example the kink problem leads to S that is of
order 1 at infinity! Hence all the decay should come fromR2, which is not possible in
1-dimension. For this and other equally subtle reasons the kink asymptotic stability is
completely open. In particular, one needs to solve the long range nonlinear scattering
problem. A lot of work was done on this problem by Ginibre–Velo–Naumkin [16],
[21] and collaborators. Recently Delort [11] worked out the problem for NLKG in
1-dimension. A new simpler and general approach was very recently developed in
[26], [27], [28] ]

In the simplest cases we end up with estimating

R(t) ∼ c−iHctR(0)− i

∫ t

0
e−iHc(t−s)O(χR2(s)+ R(s)p +O(s−α)R(s))ds

in Lp.
A particularly effective way of doing it, is to use the mixed norm L∞ + L2.
We then get

‖R(t)‖L2+L∞ ≤ C‖R(0)‖L2+L1〈t〉−n/2 + c

∫ t

0

ds

〈t − s〉n/2 ‖O( · )‖L2+L1 ds.

In three or more dimensions, n/2 > 1.
Since for all s large enough and any ε > 0,

‖O( · )‖L2+L1

≤ C〈s〉−n/2 sup
0≤s′≤s

{‖R(s′)‖2
2+∞ + ‖R(s′)‖2+m

2+∞ + ‖R(s′)‖pp + ε‖R(s′)‖2+∞}

provided
(
n
2 − n

p

) · p ≥ n
2 implies p ≥ 3. ‖R(t)‖L2+L∞ is O(t−n/2) for R(o) small.

It is possible to improve the estimates to lower values of p, by proving only that
‖R‖q ≤ ct−1−ε for

q such that
n

2
− n

q
= 1 + ε.

A different approach, which applied to nonlocalized perturbations of solitons is based
on using Strichartz estimates instead of pointwise bounds. See [15].



466 Avy Soffer

4. Selection of the ground state, spurious eigenvalues

In general there is more than one (family of) localized states to the nonlinear equation.
Examples include

i
∂ψ

∂t
= (−�+ V (x))ψ + λF(|ψ |)ψ (2)

with H = −� + V (x) having more than one (negative) eigenvalue in its spectrum.
Another example is the nonlinear wave equation analog of (2):

(∂2
t −�+ V (x)+m2)u = λF(u)u (3)

with −�+ V (x)+m2 > 0, and having as before one or more eigenvalues.
Other examples include the NLS with excited state solitons etc., spurious eigen-

values, including embedded eigenvalues in the spectrum of the linearization. In these
cases the grand conjecture is more complicated to state.

The generic behavior we expect is that the asymptotic states are combinations of
ground state (families) solitons only plus free radiation.

This was proved for the NLWE (3) in the case of one bound state in 3-dimensions
in [49]. The techniques developed in [49] will be briefly described below; they were
used to deal with the more involved NLS (2) in the case of two bound states in [51],
[56] and some results were obtained for more then two bound states in [55]. It also
applied to the linear resonance problem in QM [47], [48], [50], [33], [34], [18], [6].
Very recently an experiment was done confirming the predictions below [30], [52].

We use modulation equations again. Consider the problem (2): Time periodic
soliton solutions, nonlinear bound states, bifurcate from the linear eigenstates of
−�+ V (x). For each Ei , i = 0, 1, we solve

(−�+ V (x))ψEi + λF(|ψEi |2)ψEi = EiψEi (4)

such that Ei → Ei∗ as λ → 0, where (i = 0, 1)

(−�+ V (x))ψi = E∗iψi ‖ψi‖ = 1.

We assume the initial data is small in Hs, (s ≥ 2) and 2E1∗ − E0∗ > 0.
We begin with the Ansatz φ(t) ≡ e−iθ(t)[ψ0(t)+ ψ1(t)+ φ2(t)] where ψ0(t) ≡

ψE0(t) is a solution of the ground state eigenvalue equation with energyE0(t), at time t .
E0(t)will be determined later by orthogonality conditions [Se 7, 5, 1]. Similarlyψ1(t)

is an excited state eigenvector with eigenvalue E1(t). θ(t) ≡ θ0(t)+ θ̃ (t); θ0(t) =∫ t
0 E0(s)ds. θ̃ (t) will be chosen appropriately; it includes (logarithmic) divergent

phase. Substitution of the aboveAnsatz forφ into (1), and complexifying the equations
[φ2 → (φ2, φ̄2) ≡ �2(t), ψj → (ψj , ψ̄j ) ≡ �j(t) etc.] we derive

i∂t�2(t) = H0(t)�2(t)− i∂t�0 − [
((E0 − E1)+ ∂t θ̃ )σ3 + i∂t

]
�1 + �FNL,
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where �FNL is nonlinear in �2, �0, �1, θ̃ and H0(t) is given by the matrix operator

σ3

(
H − E0(t)+ 2λ|ψ0(t)|2 λψ2

0 (t)

λψ̄2
0 (t) H − E0(t)+ 2λ|ψ0(t)|2

)
(5)

where σ3 is the Pauli matrix diag(1,−1). We consider the spectrum of H0(t) for
fixed t , and |ψ0| ≡ |α0| small: (a) The continuous spectrum extends from −μ
to −∞, and μ to ∞ where μ ≡ E1 − E0 + O(|α0|2). The discrete spectrum is
{0,−μ,μ}, with 0 < |μ| < |E0| by assumption. (b) Zero is a generalized eigenvalue
of H0, with generalized eigenspace spanned by

{
σ3�0, ∂E0�0

}
.

The discrete spectral subspace has dimension four. Therefore, �2 which lies in
the continuous spectral part of H0(t), is constrained by four orthogonality conditions.
Furthermore ∂t θ̃ is chosen to remove divergent logarithmic phase contributions. In
the weakly nonlinear (perturbative) regime, bound states have expressions ψEj =
αj (ψj∗(x)+g|αj |2ψ(1)j (x)+O(g2|αj |4)) andEg = Ej∗ +O(|αj |2). The system for
�2 and �α = (�α0, �α1) can be written in the form i∂t �α = A(t)�α + Fα, i∂t�2 =
H(t)�2 + F� .

To proceed further we decompose�2 into its continuous spectral (dispersive) part,
η ∈ H0(T ), and its components along the discrete modes. The latter are higher order
and controllable. Thus NLS at low energy is equivalent to a system of the form:

i∂tη = H0(T )η + Fη(t;α0, β1, η)+ σ(t)η,

i∂tβ1 = 2λ〈ψ0∗, ψ3
1∗〉|β1|2α0e

iλ+t

+ 2λ〈ψ0∗ψ2
1∗, π1�2〉β1α0e

2iλ+t + R0,

i∂tα0 = λ〈ψ2
0∗, ψ2

1∗〉e−2iλ+tβ2
1α0

+ λ〈ψ0∗ψ2
1∗,�2〉β2

1e
−2iλ+t + R1,

(6)

where Rj denotes corrections of a similar form and higher order.
The above system can be viewed as an infinite dimensional Hamiltonian system

consisting of two subsystems: a finite dimensional subsystem governing “oscillators”,
(α0, β1), and an infinite dimensional subsystem governing the field, η.

The coupled system (6) can not be solved or understood by looking at the linear
terms only. This is due to the fact that the asymptotic behavior is determined by a
process, nonlinear, in which the excited state part of the solution decays into radi-
ation and ground state part. We therefore need to derive effective equations for the
ground and excited state parts, which include the dissipative effects due to coupling
to radiation. see [49], [44] see also [43], [1], [25].

To arrive at the reduction, we solve the η-equation, making explicit all terms
through second order in g, using the Green’s function G(t, t ′) = e−iH0(T )(t−t ′). We
focus on the key terms coming from the sources in Fη or the type αi0α

j
1 , 0 ≤ i, j ≤ 2
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and having oscillatory phases eimij t . Their contribution to η is of the form

∼
∫ t

0
e−iH0(T )(t−t ′)|χ〉eimij (t ′)αi0(t ′)αj1 (t ′)dt ′

where α0, α1 is a component of either �α0 or �α1, where |χ〉 is an (exponentially
localized) function of position expressible in terms of ψ0∗ and ψ1∗. We insert this
solution into the α0-, α1-equations, in place of �2. We obtain integro-differential
equations for α0, α1, (β1). The resulting terms of the above form are solutions to
a forced linear system and among the forcing terms there are (coupled) oscillatory
terms with the frequencyω∗, which is resonant with the continuous spectrum. Internal
dissipation resulting in nonlinear resonant energy transfer from the excited state to
the ground state and to dispersive radiation is derived from these resonant terms;
see also the derivation of internal dissipation in both linear and nonlinear resonance
theories recently developed by us [46], [44]. This dissipation coefficient is �, the
rate of decoherence and relaxation. The above described scheme gives i∂t α̃0 =
(−�+ i�)× |β̃1|2α̃0 + R̃0(t), i∂t β̃1 = 2(�− i�)|α̃0|2|β̃1|2β1 + R̃1(t).

Introducing the squared projections of the system’s state onto the ground state and
excited states, P0 ≡ |α̃0|2, P1 ≡ |β̃1|2 we obtain NLME. The system is analyzed
in terms of renormalized powers Q0 and Q1, for which it is shown that there exist
transition times t0 and t1, such that Q0(t) decays rapidly on [0, t0],Q0(t)/Q1(t),
grows rapidly on [t0, t1], and then finally on [t1,∞) the following system governs:
∂tQ0 = 2�Q0Q

2
1, ∂tQ1 = −4�Q0Q

2
1. This givesQ0 ↑ Q0(∞) andQ1 ↓ 0 at rates

discussed above.
� = πλ2|(eω∗, ψ2

1∗ψ0∗)|2
for F(|ψ |2) ≡ |ψ |2. Here eω∗ is the generalized eigenvalue of H0 at energy ω∗ =
2E1∗ − E0∗.

5. Concluding remarks

Nonlinear dispersive equations play a prominent role in many fields of physics, in-
cluding BEC theory, nonlinear optics, large molecule dynamics (e.g. DNA) and more.

The mathematical aspects of such equations is remarkably rich, and contributed
new, challenging directions for PDE, mathematical physics spectral and scattering
theory and more. In particular, the problem of large time dynamics of interacting
solitons and more general coherent structures is witnessing a major progress in the
last 15–20 years. Yet, we are only at the beginning of developing the mathematical
tools and theories to deal with the general aspects of soliton dynamics. Besides
the many problems I listed in the previous sections, other topics worth mentioning
are: systems of equations (e.g. coupled Maxwell–Dirac equations and BEC coupled
to vapor at finite temperature), solitons dynamics on curved spaces, like arbirarily
shaped optical fibre (monoples and other topological solitons), and discrete space
modeles.
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Hypocoercive diffusion operators

Cédric Villani

Abstract. In many problems coming from mathematical physics, the association of a degenerate
diffusion operator with a conservative operator may lead to dissipation in all variables and
convergence to equilibrium. One can draw an analogy with the well-studied phenomenon of
hypoellipticity in regularity theory, and actually both phenomena have been studied together.
Now a distinctive theory of “hypocoercivity” is starting to emerge, with already some striking
results, and several challenging open problems.
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Introduction

During the past decade, considerable progress has been achieved in the qualitative
study of diffusion equations in large time, be it for linear or nonlinear models. Quan-
titative functional methods have become especially popular. Here are some of the
keywords in the field: spectral gap (Poincaré) inequalities, logarithmic Sobolev in-
equalities, analysis of entropy production, gradient flows, rescalings. Most of the
time, estimates on the rate of convergence are established in the end by means of
some Gronwall-type inequality dE/dt ≤ −�(E), where E is a Lyapunov functional
for the system. Among a large literature, I shall only quote some of my own works:
entropy production estimates for the spatially homogeneous Boltzmann equation, in
collaboration with Giuseppe Toscani [25], [26], [28]; and for certain nonlinear dif-
fusion equations with a convex mean-field interaction, in collaboration with José
Antonio Carrillo and Robert McCann [2].

While these subjects are still very active, in this text I shall focus on a newer
direction of research which has emerged only a few years ago, and can be loosely
described as “the role of the non-dissipative part in the dissipation process”.

Indeed, it happens not so rarely that the dissipative properties of an equation are
strongly influenced by some of the conservative terms in this equation. This statement
in itself is nothing new, since it is almost obvious in the context of hydrodynamics
(dissipativity in Navier–Stokes is certainly considerably more complex than in the heat
equation). In the context of diffusion equations, the interaction between dissipative
and conservative terms is also well-known, since it is at the basis of the phenomenon of
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hypoellipticity. To make the discussion a bit more precise, let me recall a particularly
simple theorem of hypoelliptic regularization, which is a direct consequence of Lars
Hörmander’s celebrated regularity theorem [20]. Let A1, . . . , Ak and B be C∞ vector
fields on R

N , identified with derivation operators, and let L = − ∑
A2

j +B. If the rank
of (A1, . . . , Ak) is strictly less than N , then the operator L is not elliptic, and there is
no a priori reason why the semigroup e−tL would be regularizing in all variables. But
if − ∑[Aj , B]2−∑

A2
j is elliptic, where [Aj , B] is the Lie bracket between Aj and B,

then e−tL is regularizing in all variables, and the operator L is said to be hypoelliptic.
(This is not the classical definition of hypoellipticity, but it will do for the purpose
of this presentation.) We see here how the “nondissipative” first-order operator B

interacts with the “dissipative part” of L, or more precisely the derivation operators
Aj , to produce the missing directions of regularization. Possibly the most important
instance of application is to the operator L = −�v +v ·∇x , where (x, v) ∈ R

n ×R
n;

in that case Aj = ∂/∂vj , B = v · ∇x , [Aj , B] = ∂/∂xj . The corresponding evolution
equation ∂tf + Lf = 0 is degenerate, but still presents some of the typical features
of a parabolic equation; the word “ultraparabolic” is sometimes used for it.

Hypoelliptic regularity has been the object of hundreds of works for the past four
decades. But what was understood only very recently is that quite similar phenomena
arise in the study of rates of convergence to equilibrium. To describe this, I shall use
the word “hypocoercivity”, which was suggested to me by Thierry Gallay. A typical
hypocoercivity theorem will give sufficient conditions on an operator L so that e−tL

will converge to equilibrium at a certain rate, even though L is not “coercive”, in the
sense that the kernel of its dissipative part is much larger than the set of equilibria.

Hypoellipticity and hypocoercivity are often found together, and have been actu-
ally studied together, by refined hypoelliptic techniques [6], [7], [15], [16], [19], and
sometimes by probabilistic methods [8], [22], [23]. However, these two phenomena
are distinct: Each of them can occur without the other; and the structures which un-
derlie them are not exactly the same. This motivates the development of a separate
theory of hypocoercivity. In the sequel, I shall present some of the first results in this
direction.

Acknowledgement. The ideas exposed in the sequel have benefited from interac-
tions with many people who are quoted within the text. Warm thanks are due to
Martin Hairer, Frédéric Hérau and Clément Mouhot for their detailed comments on a
preliminary version of these notes; and to Thierry Gallay for illuminating discussions.

1. Motivations

In this section I shall describe some concrete examples which motivate the study of
hypocoercivity. All of them come from mathematical physics, and none of them is
academic. Of course the list is far from exhaustive.
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The kinetic Fokker–Planck equation. In stochastic analysis, Fokker–Planck equa-
tions are often encountered as equations satisfied by the time-dependent laws of solu-
tions of first-order stochastic differential equations. In “real life” however, equations
of motion are not first-order, but second-order. Consider for instance a particle in R

n,
following Newton’s equations with a potential force −∇V , a white noise random
forcing, and a linear friction with coefficient θ = 1: Then its position Xt at time t

satisfies the second-order stochastic differential equation

d2Xt

dt2 = −∇V (Xt) + √
2

dBt

dt
− dXt

dt
,

where Bt is a standard Brownian motion. (Of course, the coefficient
√

2 is just
a convenient normalization, and the writing is formal in the sense that Bt is not
differentiable.) To write the associated partial differential equation, define ft (x, v)

as the density of the law of (Xt , Ẋt ) in R
n × R

n. Then f is a solution of

∂f

∂t
+ v · ∇xf − ∇V (x) · ∇vf = �vf + ∇v · (f v), (1)

where �v and ∇v· respectively stand for the Laplace and divergence operators in
velocity space. Equation (1) is kinetic in the sense that it involves not only the position,
but also the velocity variable; it is one of the fundamental equations in gas dynamics.
It admits many nonlinear variants, among which the Vlasov–Poisson–Fokker–Planck
equation, which is accepted as one of the fundamental equations of stellar dynamics.

When V is quadratic, the fundamental solution of (1) is explicit and Gaussian.
Its examination shows that there is relaxation to a Gaussian equilibrium (in x and v

variables) as t → ∞, and this convergence is exponentially fast, with an explicit rate.
Here we see a perfect illustration of the hypocoercivity phenomenon: The differential
operator on the left-hand side of (1) is conservative (it describes the trajectories of
a classical dynamical system in R

n × R
n with Hamiltonian V (x) + |v|2/2), and the

right-hand side alone is diffusive degenerate (it only acts on the velocity variable v,
so cannot cause any relaxation to equilibrium with respect to the x dependence);
however, their combination leads to an exponential convergence to equilibrium.

For more general potentials, there is still a global equilibrium:

f∞(x, v) = e
−
[
V (x)+|v|2

2

]
Z

,

where Z is a normalizing constant. Then it is an obviously natural question whether
exponential convergence to f∞ holds true under adequate assumptions on the po-
tential V , which go beyond the “trivial” quadratic case. Shockingly enough, the first
such results were obtained only around 2002, by Frédéric Hérau and Francis Nier [19].
They used a quite sophisticated approach taking roots in Joseph Kohn’s approach to
hypoellipticity. Since then, their method has been very much simplified, as I shall
describe later.
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About the choice of functional space. The choice of functional space in which to
study the large-time behavior of (1) is not innocent. From a probabilistic or physical
point of view, it is most natural to assume that f is an integrable density (or even a
measure) with possibly rapid decay at infinity. However, in the majority of mathe-
matical studies on the Fokker–Planck equation (kinetic or not), a different choice is
made, namely ∫

f 2

f∞
< ∞. (2)

The reason is simple: Perform a change of unknown in (1) by writing h = f/f∞
(from a probabilistic perspective, this amounts to considering the adjoint equation);
then (1) turns into

∂h

∂t
+ v · ∇xh − ∇V (x) · ∇vh = �vh − v · ∇vh. (3)

Now the operator appearing on the right-hand side is self-adjoint in the Hilbert space
L2(f∞ dx dv), so (3) might lend itself to a spectral treatment. Assumption (2) simply
says that h belongs to the above-mentioned Hilbert space.

Of course, formally, equations (1) and (3) are equivalent. But this is misleading,
since the additional assumption (2) is a very strong restriction. In fact, it does happen
that for certain potentials V , the convergence to equilibrium is exponential under the
“L2-type” assumption (2), but not under a more general “L1-type” assumption (that
is assuming just integrability, and maybe some moment bounds). In this sense, L1

results are stronger than L2 results. This is actually one of the reasons of the popularity
of logarithmic Sobolev inequalities: They provide a natural functional tool to study
convergence to equilibrium in L1 spaces.

The moral of this discussion is that for physical relevance the discussion of con-
vergence to equilibrium of solutions to (1) should not be limited to an L2 framework,
but also include more general L1-type assumptions. In the sequel, I shall describe
some results in this direction.

Oscillator chains. Even though Fourier’s law of conduction of heat is one of the
oldest partial differential equations, it is still extremely far from a rigorous theoretical
understanding. Many models of statistical physics have been proposed to describe heat
conduction. Here is one of them, described in [8]. Each atom in a solid body is labelled
(for the sake of this discussion, we may assume that the dimension is 1, so atoms are
labelled 0, 1, . . . , N ), and the unknowns are the displacements X0, . . . , XN of the
atoms with respect to their respective equilibrium positions. Each atom is bound to
its equilibrium position with a “pinning potential” V , and it also interacts with its two
neighbors by an interaction potential W , assumed to be symmetric (W(z) = W(−z)).
So the equation for Xk is just

d2Xk
t

dt2 = −∇V (Xk
t ) − ∇W(Xk

t − Xk−1
t ) − ∇W(Xk

t − Xk+1
t ). (4)
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Of course these equations do not apply to the atoms that are at the extreme left (k = 0)
and the extreme right (k = N ) in the chain, since they have only one neighbor. But
these extremal atoms are also shaken by some external bath, with a temperature of
agitation T (�) on the left, and T (r) on the right. The corresponding equations for, say,
k = 0, can be written

⎧⎪⎪⎨
⎪⎪⎩

d2X0
t

dt2 = −∇V (X0
t ) − ∇W(X0

t − X1
t ) + �,

d�

dt
= λ(�)

√
2T (�)

dB
(�)
t

dt
− � + (λ(�))2�

dX0
t

dt
.

(5)

Here λ(�) is a coefficient describing the strength of the coupling between the particle
and the heat bath.

Again, the law of this system is described by a linear partial differential equation in
the variables �, r, X0, . . . , XN, Ẋ0, . . . , ẊN . It is very similar to the kinetic Fokker–
Planck equation, except that it is much more degenerate, since the diffusion only acts
on the variables � and r .

There are now two difficult problems which naturally arise: (i) Show that the
solution ft (�, r, x

0, . . . , xN , v0, . . . , vN) approaches some stationary distribution as
t → ∞; (ii) Study the properties of this stationary distribution, and in particular the
associated energy flux. (In this case, it is better to say “stationary distribution” rather
than “equilibrium”, precisely because the temperatures are not necessarily equal.) In
particular, if T (�) > T (r), in the asymptotic regime N → ∞, is it true that energy
flows from the left to the right, and what is the relation between the average flux and
the difference of temperatures!?

When T (�) = T (r), the equilibrium distribution is easy to write down explicitly,
and problem (ii) is trivially solved. But as soon as these temperatures are different, the
stationary solution is not explicit – except in the case when V and W are quadratic, but
then the results are physically irrelevant!! It is conjectured that some anharmonicity is
necessary to get the Fourier law (ironically enough, the heat equation, although one of
the most basic linear models in science, needs some dose of microscopic nonlinearity
to be explained). Then problem (ii) becomes incredibly difficult.

Even when the two temperatures are equal, problem (i) appears to be quite difficult.
It is actually a typical hypocoercive situation: The diffusion on � and r should lead
in the end to a relaxation to equilibrium in all variables.

Exponential convergence to the stationary distribution has been proved recently by
several authors [8], [7], even for the case when T (�) �= T (r), under various assumptions
on the potentials; but the dependence of the estimates upon the number of atoms is
just terrible.

The Boltzmann equation. The Boltzmann equation is one of the basic partial dif-
ferential equations in statistical mechanics. It is a kinetic model for the evolution of a
rarefied gas of particles interacting via binary collisions. Historically, it has preceded
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the Fokker–Planck equation; but the analytical problems that it raises are consider-
ably more acute. A mathematically-oriented presentation of the Boltzmann equation
can be found in my long review paper [27]. The classical Boltzmann equation in n

dimensions of space can be written

∂f

∂t
+ v · ∇xf = Q(f, f ), x ∈ �x, v ∈ R

n, (6)

where �x is a bounded connected open spatial domain, and Q is the Boltzmann
collision operator, defined by

Q(f, f ) =
∫

Rn

∫
Sn−1

B(v − v∗, σ )
[
f (x, v′)f (x, v′∗) − f (x, v)f (x, v∗)

]
dσ dv∗.

Here σ is a variable unit vector in R
n, B(v − v∗, σ ) is a collision kernel depending

on the particular form of the interaction (for instance B(v − v∗, σ ) = |v − v∗|), and
the transform (v, v∗) → (v′, v′∗) is computed by the rules of elastic collision:

v′ = v + v∗
2

+ |v − v∗|
2

σ, v′∗ = v + v∗
2

− |v − v∗|
2

σ.

This equation should of course be supplemented with boundary conditions. To
simplify things, one can assume that �x is just the n-dimensional torus T

n (periodic
boundary conditions); another common choice is specular reflexion in a bounded open
set.

In spite of hundreds of papers, the mathematical theory of the Boltzmann equation
is far from complete; in particular there is still no theory of classical solutions in the
large. However, strong regularity results have been obtained in a close-to-equilibrium
regime. A complete theory can also be put together as long as there is a pointwise
control of certain hydrodynamic fields (density in physical space, mean velocity,
temperature, pressure tensor).

It was Boltzmann’s beautiful observation that the H functional (negative of the
entropy),

H(f ) =
∫

f log f dx dv

is nonincreasing with time along solutions of the Boltzmann equation. Then there is
a unique large-time equilibrium, which takes the form of a Maxwellian (Gaussian)
distribution:

f∞(x, v) = ρ
e−|v−u|2

2T

(2πT )n/2 ,

where ρ ≥ 0 (total mass), u ∈ R
n (total mean momentum) and T ≥ 0 (mean

temperature) are constants. This equilibrium is obtained by maximizing the entropy
given the conservation laws.

The problem of convergence to equilibrium for the Boltzmann equation is famous
for historical reasons (it triggered a hot controversy in the nineteenth century) and also
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for theoretical reasons (as a manifestation of irreversibility in the statistical description
of a reversible mechanical system; and as the justification of the law of maximum
entropy on a basic model). See my lecture notes [29] for an overview of this question.

Of course the complexity of the Boltzmann equation, and its nonlinearity are major
difficulties in the study. But behind that, we can recognize once again a hypocoercive
situation: The dissipation (collision) operator Q on the right-hand side of (6) is very
degenerate since is only acts on the velocity dependence, and it is only its association
with the conservative transport operator v · ∇x on the left-hand side which can lead
to convergence to equilibrium.

Stability of Oseen’s vortices. The last example in this gallery comes from hydrody-
namics and was brought to my attention by Thierry Gallay. It is a well-documented
fact in turbulence theory that the vorticity of a two-dimensional incompressible flow
tends to coalesce and form large vortices. Thierry Gallay and Eugene Wayne [11]
have studied this phenomenon rigorously for a two-dimensional incompressible vis-
cous fluid in the whole space: If ω = ωt(x) is the vorticity, the equation is just

∂ω

∂t
+ BS[ω] · ∇ω = �ω,

where BS[ω] is the velocity field obtained from the vorticity ω via the Biot–Savart
law:

BS[ω](x) = 1

2π

∫
R2

(x − y)⊥

|x − y|2 ω(y) dy,

and v⊥ is obtained from v by rotation of angle π/2.
If ω0 ∈ L1(R2), then ωt converges to 0 as t → ∞, due to viscous dissipation.

But a refined analysis shows that ωt is asymptotically close to an explicit self-similar
Gaussian solution, which physically corresponds to a unique large vortex, called
Oseen’s vortex. In fact, in suitably rescaled variables, the vorticity does converge to
a stationary Gaussian distribution.

The linear stability analysis of this phenomenon reduces to the spectral analysis
of the operator S + αB in L2(R2), where

⎧⎨
⎩Sω = −�ω + |x|2

16
ω − ω

2
,

Bω = BS[G] · ∇ω + 2 BS[G1/2ω] · ∇G1/2.

(7)

Here G is a Gaussian distribution: G(x) = e−|x|2/4/(4π); and α is the value of the
“circulation Reynolds number”, which in the present set of conventions is just

∫
ω0.

The spectral study of S + αB turns out to be quite tricky. In the hope of getting a
better understanding, one can decompose ω in Fourier series: ω = ∑

n∈Z
ωn(r)e

inθ ,
where (r, θ) are standard polar coordinates in R

2. For each n, the operators S and B
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can be restricted to the vector space generated by einθ , and can be seen as just operators
on a function ω(r):

⎧⎨
⎩

(Snω)(r) = −∂2
r ω −

(
r

2
+ 1

r

)
∂rω −

(
1 − n2

r2

)
ω,

(Bnω)(r) = i n (ϕω − g�n).

Here g(r) = e−r2/4/4π , ϕ(r) = (1−e−r2/4)/2πr2, and �n(r) solves the differential
equation

−(r�′)′ + n2

r
� = r

2
ω.

The regime |α| → ∞ is of physical interest and has already been the object of
numerical investigations by physicists. There are two families of eigenvalues which
are imposed by symmetry reasons; but apart from that, it seems that all eigenvalues
converge to infinity as |α| → ∞, and for some of them the precise asymptotic
rate of divergence O(|α|1/2) has been established by numerical evidence. If that is
correct, this means that the “perturbation” of S by αB is strong enough to send most
eigenvalues to infinity as |α| → ∞. This is particularly striking when one realizes
that S is symmetric in L2(R2), while B is antisymmetric. Obviously, this is again a
manifestation of a hypocoercive phenomenon.

Let us simplify things just a bit by throwing away the nonlocal term g�n in the
expression of Bn. After a few manipulations, the problem reduces to the following

Model Problem 1.1. Identify sufficient conditions on f : R → R, so that the real
parts of the eigenvalues of

Lα : ω 
−→ (−∂2
xω + x2ω − ω) + iαf ω

in L2(R) go to infinity as |α| → ∞, and estimate this rate.

So far this problem has been solved only partially, by Isabelle Gallagher and
Thierry Gallay; I shall describe their results later on.

2. A dynamical approach

Together with Laurent Desvillettes [3], [5], I have developed a method to study quite
general hypocoercive situations. The method ultimately relies on the analysis of a
system of coupled differential inequalities of first and second order (instead of just one
first-order differential inequality as in Gronwall’s lemma). The method was devised
with the aim of proving convergence to equilibrium for uniformly smooth solutions
of the Boltzmann equation, so I shall explain its principle on that particular example.
Complete proofs [5] are quite long and technical, so my goal here is only to isolate
the main ideas in a sketchy way.
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First and second order differential inequalities. As we know, Boltzmann’s H func-
tional goes down in time along solutions of (6). A more precise analysis shows that
the total entropy production, −dH/dt , is always strictly positive, unless ft is a hy-
drodynamical state:

ft (x, v) = ρt (x)
e
−|v−ut (x)|2

2Tt (x)

(2πTt (x))n/2 .

In words, a hydrodynamical state is a kinetic distribution which is in Maxwellian
equilibrium with respect to the velocity variable, but not with respect to the position
variable; so it only depends on the fields of local density (ρ), mean velocity (u) and
local temperature (T ).

With a much more refined analysis, one can establish a quantitative lower bound on
the entropy production, under adequate (very strong) smoothness, decay and positivity
assumptions on f : For any ε > 0 there is a constant Kε > 0 such that

− d

dt
[H(f ) − H(M)] ≥ Kε

[
H(f ) − H(M

f
ρ u T )

]1+ε
, (8)

where M is the global equilibrium, which is a Maxwellian distribution, M
f
ρ u T is the

hydrodynamical state with the same (local) density, mean velocity and temperature
as f , and the dependence of f , ρ, u and T on time is implicit. (The quantity in the
right-hand side of (8) is nonnegative.)

Inequality (8) gives a good lower bound on the entropy production, as long as
the unknown f stays away from hydrodynamical states. But if f decides to become
hydrodynamic, or very close to, then the entropy production vanishes and there is
nothing that we can deduce about the convergence to equilibrium. This is where the
antisymmetric part of the Boltzmann equation has to help us.

Now the second differential inequality is obtained by introducing a suitable func-
tional measuring the distance of f to the space of hydrodynamical states. On one
hand it should be controlled by the quantity H(f ) − H(M

f
ρ u T ); but on the other

hand it should be simple enough to make explicit computations. A natural choice is
E1(f ) = ‖f −M

f
ρ u T ‖2

L2 ; note that this functional depends on f in a strongly nonlin-
ear way, via ρ, u and T . The point now is to give a lower bound on the second-order
time-derivative of this new functional.

Differentiating a functional once along the Boltzmann equation is already compli-
cated, but differentiating it twice is a horrendous task; so it better be well motivated.
There are in fact two main reasons to consider the second derivative. The first is that
the second derivative in time gives a measure of how fast the distance between f

and M
f
ρ u T will increase again if it ever vanishes, or becomes very close to. The

second reason is that by applying twice the Boltzmann equation, we let the first-order
operator v · ∇x act twice, and then the resulting computations are somewhat similar
to those that would have been obtained by letting a second-order operator in the x

variable act once. So in this second-order time derivative one will find some of the
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terms that would have appeared in a first-order computation along the heat equation
in the x variable.

So, after many calculations one can show that for δ1 small enough,

d2

dt2 ‖f − M
f
ρ u T ‖2

L2 ≥ K1

[∫
�x

|∇T (x)|2 dx +
∫

�x

|{∇u(x)}|2 dx

]

− C1

δ1
1−ε

(‖f − M
f
ρ u T ‖2

L2

)1−ε − δ1[H(f ) − H(M)],
(9)

where K1 and C1 are constants which only depend on some a priori smoothness and
positivity estimates on f , and {∇u} is the traceless part of the symmetric part of the
matrix-valued field ∇u.

To understand what has been achieved, assume for a moment that f becomes
hydrodynamical at some time t0, and forget the error term with δ1. Then we have
(d2/dt2)‖f − M

f
ρ u T ‖2

L2 ≥ K1‖∇T ‖2
L2 . In particular, ‖f − M

f
ρ u T ‖2 is strictly con-

vex, as a function of t , unless ∇T is equal to 0, and will grow quadratically for a short
time. So this second equation gives us some information about the inhomogeneities
in the temperature field T . In a geometric language, what we have shown, more or
less, is that the Boltzmann flow is “transverse” to the space of hydrodynamical states,
in presence of heterogeneities of the temperature.

Combining this with the first inequality (8), we see that we have some information
about how far f is to the space of hydrodynamical states with constant temperature.
There is still something missing, but now we can repeat the procedure: Introduce
a new functional measuring the distance of f to that space, for instance E2(f ) =
‖f − M

f
ρ u 〈T 〉‖2

L2 , where M
f
ρ u 〈T 〉 is the hydrodynamical state which has the same

density ρ and velocity fields u as f , and a constant temperature whose value is com-
puted by averaging the temperature T of f against the density ρ. Then differentiate
twice again. New computations yield a result which is very similar to the one in (9),
except that the terms ‖∇T ‖2 and ‖{∇u}‖2 are replaced by ‖∇symu‖2, the square L2

norm of the complete symmetric part of ∇u.
As a general principle (Korn’s inequality), a control of the symmetric part of ∇u

implies a control on the whole of ∇u, under suitable boundary conditions. In fact
the boundary conditions here are not standard, at least for specular reflexion, so the
desired estimates do not follow from the classical theory of Korn inequalities; but let
us forget this for the moment and assume that we have indeed a good control on the
inhomogeneities of the velocity field.

So far there is still no control on the inhomogeneities of the density, but at this stage
the reader has probably understood the sequel of the method: Introduce a suitable
functional E3 measuring the distance of f to the space of hydrodynamical states with
constant temperature and constant velocity field, and differentiate this expression
twice in time. It is possible to choose E3(f ) = ‖f − M

f
ρ 0 1‖2

L2 , where M
f
ρ 0 1 has the

same density as f , the same average temperature and the same total momentum; and
then in the resulting computations pops up the desired term ‖∇ρ‖2.
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Closing the system. At this stage we have a system of four differential inequalities
(one of first order, and three of second order). To close the system, one can use:

– A physical input: The total entropy is the sum of a purely kinetic entropy and
a purely hydrodynamical entropy, which controls inhomogeneities of all fields
ρ, u and T .

– An analytical input: In presence of smoothness bounds, all the norms appear-
ing in the computations are “almost equivalent”. More precisely, if ‖f ‖1 and
‖f ‖2 are any two Lebesgue, or Sobolev norms, then for any ε > 0 one can find
a constant Cε, only depending on some smoothness estimates on f , such that
‖f ‖1 ≤ Cε‖f ‖1−ε

2 . This step, obviously based on elementary interpolation
theory, is crucial to “get the exponents right”; without it, one would get disas-
trous rates of convergence, or just no rate at all. This way of trading smoothness
for exponents is one of the reasons why the method is so greedy in regularity.

– A geometric/analytical input: Certain norms of differential quantities (‖∇T ‖,
‖∇symu‖, ‖∇ρ‖) imply a control on the departure of the corresponding fields to
their mean value. The shape of the domain (connectedness, rotational symme-
try, etc.) plays a crucial role here; all of this can be expressed quantitatively with
some functional inequalities of Poincaré or Korn type (see in particular [4]).

Study of the differential system. Not all the hard job has been done at this stage. The
result is a system of first and second-order differential inequalities, coupled together
in a quite intricate way, from which one wants to extract estimates about the rates of
relaxation. This can be done with the help of the following (definitely not obvious)
lemma:

Lemma 2.1. Let h(t) ≥ 0 satisfy

h′′(t) + Ah(t)1−ε ≥ α > 0 for all t ∈ (t1, t2)

for some ε < 0.1. Then,
– either t2 − t1 is small:

t2 − t1 ≤ 50
α

ε
2(1−ε)

A
1

2(1−ε)

;

– or h is large on the average:

1

t2 − t1

∫ t2

t1

h(t) dt ≥ α
1

1−ε

100
inf

(
1

A
,

1

A2

)
.

With a repeated use of Lemma 2.1, one can show in the end that the system of
differential inequalities implies relaxation to equilibrium at a rate O(t−∞), that is,
faster than any inverse power of time. All in all, one can get the following result,
which is stated here in a slightly sketchy way (see [5] for more precise statements):
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Theorem 2.2. Let (ft )t≥0 be a smooth solution of the Boltzmann equation (6), such
that all the derivatives of f are uniformly bounded, and all the moments of f are
bounded, uniformly in time. Further assume that f satisfies a pointwise lower bound
of the form ft (x, v) ≥ K0e

−A0|v|q0 . Then, under adequate boundary conditions, ft

converges to global equilibrium as t → ∞, at least as fast as O(t−κ) for all κ > 0.

Further comments. More information about the implementation of this program in
the context of the Boltzmann equation can be found in the original research paper [5],
or, in a lighter form, in the lecture notes [30], [29]. Before being used on the Boltzmann
equation, the dynamical approach had been tried on the Fokker–Planck equation [3]
and on some other linear models [1], [9]. It is quite robust and adapted to equations
with very little structure.

One of its appealing features is that it seems to provide a good physical intuition
of what is going on: The system approaches hydrodynamical state under the influ-
ence of collisions, then it is driven out of hydrodynamical state by the influence of
the transport, etc. Numerical simulations have corroborated this qualitative analysis
surprisingly well. In the diagram below, computed numerically by Francis Filbet, one
sees very clearly that the solution of the Boltzmann equation oscillates between states

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0  2  4  6  8  10  12  14  16

local relative entropy
  global relative entropy

Figure 1. The upper curve is the H functional as a function of time, in semi-log plot; the lower
curve is the purely kinetic part of the H functional. When the two curves are far away, the dis-
tribution is almost in hydrodynamical state; when they are very close, it is almost homogeneous.

where it is close to hydrodynamical, and states where it is close to homogeneous. In
particular, contrary to a widespread belief, the approach to hydrodynamical regime is
not faster than the approach to global equilibrium. (All of this is valid only on scales
of time on which the Knudsen number is of order 1.)

From the point of view of physics, the discovery of these oscillations may be
one of the most noticeable outcomes of the program of hypocoercivity applied to
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the Boltzmann equation. (No doubt that one day there will be a simpler analytical
way to explain them.) They are not easy to observe, and have even been used as a
“benchmark” to test the accuracy of certain numerical schemes (see e.g. [10]).

However, the dynamical method suffers from the complexity of its practical appli-
cation, and its heavy computational cost. In the next section, I shall describe another
method which may be less appealing from the physical point of view, and requires a
bit more structure, but has the advantage to be much lighter.

Also, I emphasize that Theorem 2.2 requires strong regularity and decay estimates
on the solutions. As discussed in [5], all these estimates can be proven in the close-to-
equilibrium regime, but remain a major open problem for solutions in the large. Even
in a close-to-equilibrium regime, decay estimates based on a linearization method are
quite hard to obtain, and were not available at the time when [5] was published; since
then this gap has been filled in a series of important works by Yan Guo and Robert
Strain [13], [14].

3. A functional approach

In the previous method the resolution of the main degeneracy problem was done via
the time-differentiation of certain (relatively) simple functionals. Now the idea is to
put as much as possible of the difficulty in a careful choice of the functional; and
more precisely to add “correction terms” which are negligible in size, but contribute
in an important way to the time-derivative of the functional. This will be more easily
explained on the example of the Fokker–Planck equation, in the form (3).

Suppose you want to get a Gronwall inequality for some well-chosen functional,
applied to the Fokker–Planck equation. First try the L2 norm. With the notation
μ(dx dv) = f∞(x, v) dx dv, and omitting once again the dependence upon time,
one has

d

dt

∫
h2 dμ = −

∫
|∇vh|2 dμ.

Since the derivatives in the right-hand side involve only the velocity variables, there
is no way to dominate the integral in the left-hand side by the right-hand side (choose
h = h(x), then the right-hand side vanishes).

So go to a higher order norm, involving gradients of h. After a bit of work, under
suitable assumptions on V , one can find constants a, c, K > 0 such that

d

dt

(∫
h2 dμ + a

∫
|∇xh|2 dμ + c

∫
|∇vh|2 dμ

)

≤ −K

(∫
|∇vh|2 dμ +

∫
|∇v∇xh|2 dμ +

∫
|∇v∇vh|2 dμ

)
.

(10)

Again, the right-hand side is not sufficient to control the expression in brackets on the
left-hand side. So still nothing!
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But now correct the functional on the left-hand side by adding an innocent-looking
term 2b

∫ ∇xh · ∇vh dμ. If b <
√

ac, this term does not play any noticeable role in
the value of the functional, since∣∣∣∣2b

∫
∇xh · ∇vh dμ

∣∣∣∣ ≤ (1 − δ)

[
a

∫
|∇xh|2 dμ + c

∫
|∇vh|2 dμ

]

for some positive constant δ. However, if a, b and c are properly chosen, then we
have a differential inequality which is much better than (10):

d

dt

(∫
h2 dμ + a

∫
|∇xh|2 dμ + 2b

∫
∇xh · ∇vh dμ + c

∫
|∇vh|2 dμ

)
(11)

≤ −K

(∫
|∇xh|2 dμ +

∫
|∇vh|2 dμ +

∫
|∇v∇xh|2 dμ +

∫
|∇v∇vh|2 dμ

)
.

Now it very easy to close this differential inequality: It suffices that μ satisfies a
Poincaré inequality (in the x and v variables).

The algebraic core. I started to work on this approach while struggling to understand
the results of Frédéric Hérau and Francis Nier [19], without resorting to the technical
hypoelliptic machinery used in their work. After deciding that there should be an
elementary approach based on integration by parts and chain rule, I was still flooded
by the complex calculations. Then I decided that there should be an even simpler
approach with no analysis at all. After going to an abstract formulation of the problem,
I found out that there was indeed an extremely simple “algebraic core” which can
be presented as follows. Take two operators A and B on a Hilbert space (in the
present case A would be the vector-valued differential operator ∇v , while B would be
v · ∇x − ∇V (x) · ∇v), with B∗ = −B. Then, at least formally, the time-derivative of

〈Ah, [A, B]h〉
along the influence of B can be written as

〈ABh, [A, B]h〉 + 〈Ah, [A, B]Bh〉.
Pretend that B commutes with [A, B]; then the previous expression is

〈ABh, [A, B]h〉 + 〈Ah, B[A, B]h〉,
and since B∗ = −B, this can be rewritten as

〈ABh, [A, B]h〉 − 〈BAh, [A, B]h〉 = 〈[A, B]h, [A, B]h〉. (12)

In the example of the Fokker–Planck equation, [A, B] = ∇x , so 〈Ah, [A, B]h〉 =∫ ∇vh · ∇xh dμ, and the right-hand side of (12) is the desired term in ‖∇xh‖2.
The advantage to input terms with “mixed derivatives” such as

∫ ∇xh · ∇vh had
been actually noted before in studies of global in time propagation of the smoothness
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for kinetic equations, most notably by Denis Talay [24] andYan Guo [12]. The simple
algebraic core presented above explains why this trick also applies to problems of
convergence to equilibrium.

The rest of this section will be devoted to a presentation of some results which
have been obtained by pushing further this approach. All the results quoted below are
extracted from two preprints by the author [31], [32], and another preprint by Clément
Mouhot and Lukas Neumann [21]. There is also an independent series of works by
Frédéric Hérau [18], [17], which is based on quite similar tools.

The basic theorem. Two important features of the next theorem are that

– it applies to a general abstract framework: H is a Hilbert space (think of H as
L2(μ), where μ is the equilibrium measure); and V another Hilbert space (think of
V as R

n, the space of velocities); then A is an unbounded operator H → H ⊗ V,
and B is an unbounded operator B → B with B∗ = −B;

– it considers a linear operator L which is in (abstract) Hörmander form, that is
L = A∗A + B for some operators A, B as above.

Assume that the semigroup e−tL is well defined and that there is no problem to
differentiate the square norms, etc. Systematic tensorization with the identity operator
will be used to make sense of notation such as [A, B] = AB − (B ⊗ I )A. The scalar
product in H will be denoted by 〈·, ·〉, the norm in H by ‖ · ‖, and an operator S will
be said to be bounded respectively to a family of operators T1, . . . , Tk if there is a
constant C such that ‖Sy‖ ≤ C(‖T1y‖+ · · ·+‖Tky‖). The symbol � stands for real
part.

Theorem 3.1. With the above notation, write [A, B] = C, and assume that

(i) [A, C] = 0, [A∗, C] = 0;

(ii) [A, A∗] is bounded relatively to I and A;

(iii) [B, C] is bounded relatively to A, A2, C and AC.

Further assume that
(H) A∗A + C∗C is coercive.

Then for a suitable choice of constants a, b, c one has the differential inequality

d

dt
F (e−tLh) ≤ −K F (e−tLh),

where
F (h) = ‖h‖2 + a ‖Ah‖2 + 2b � 〈Ah, Ch〉 + c ‖Ch‖2,

and K is a positive constant which only depends on the constants appearing implicitly
in assumptions (ii), (iii) and (H).

Remark 3.2. The assumption (H) is obviously an analog in this context of Lars
Hörmander’s bracket condition.
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This theorem applies to the Fokker–Planck equation (3) under simple assumptions
on the potential V , and yields exponential convergence to equilibrium for initial
data h0 satisfying ‖∇xh0‖2 + ‖∇vh0‖2 < +∞. The latter restriction can finally be
removed by an independent study of hypoelliptic regularity [16], [31]. (This is not
a standard hypoelliptic estimate since it is global; there would be much to say about
it, but this would take us too far.) In the end, one obtains the following theorem,
which generalizes and improves the results of [19], [16]. Recall that a measure ν

is said to satisfy a Poincaré inequality if one has a functional inequality of the form
‖∇h‖L2(ν) ≥ P ‖h − 〈h〉‖L2(ν), P > 0, where 〈h〉 is the average value of h with
respect to ν.

Theorem 3.3. Let V ∈ C2(Rn) with inf V > −∞, such that

(a) |∇2V | ≤ C(1 + |∇V |);
(b) the reference measure ν(dx) = e−V (x) dx satisfies a Poincaré inequality with

constant P .

Let μ(dx dv) = e−(V (x)+|v|2/2) dx dv/Z, where Z is a normalizing constant.
Then there are constants λ > 0 and C′, explicitly computable in terms of C and P ,
such that solutions of the Fokker–Planck equation (3) satisfies

‖ht − 〈h0〉‖L2(μ) ≤ C′e−λt ‖h0 − 〈h0〉‖L2(μ).

Theorem 3.1, or more precisely its proof, was also used by Isabelle Gallagher and
Thierry Gallay to provide a first solution to the Model Problem 1.1, as follows. Set
H = L2(R; C), A = ∂xω + xω, Bω = (iαf )ω. Then Cω = iαf ′ω, so the operator
A∗A + C∗C is of Schrödinger type:

(A∗A + C∗C) ω = (−∂2
xω + x2ω − ω) + α2f ′2ω,

and the spectrum of A∗A+C∗C can be studied via standard semi-classical techniques.
For instance, if f ′(x)2 = x2/(1 + x2)k , k ∈ N, then the spectral gap of A∗A + C∗C
is bounded below like O(|α|2ν), with ν = min(1, 2/k). Then a careful examination
of the proof of Theorem 3.1 yields a lower bound like O(|α|ν) on the real part of the
spectrum of A∗A + B.

Multiple commutators. As in Lars Hörmander’s hypoellipticity theorem, multiple
commutators are also allowed in hypocoercivity results. But as an important differ-
ence, it seems that one only needs to consider commutators with the antisymmetric
part. Here is such a theorem:

Theorem 3.4. With the same notation as before, assume the existence of (possibly
unbounded) operators C0, C1, . . . , CNc+1, R1, . . . , RNc+1, and Z1, . . . , ZNc+1 such
that

C0 = A, [Cj , B] = Zj+1Cj+1 + Rj+1 (0 ≤ j ≤ Nc), CNc+1 = 0,



Hypocoercive diffusion operators 489

and, for all k ∈ {0, . . . , Nc},
(i) [A, Ck] is bounded relatively to {Cj }0≤j≤k and {CjA}0≤j≤k−1;

(ii) [A∗, Ck] is bounded relatively to I and {Cj }0≤j≤k;

(iii) Rk is bounded relatively to {Cj }0≤j≤k−1 and {CjA}0≤j≤k−1;

(iv) Zj is bounded relatively to I , and I is bounded relatively to Zj ;

(H)
∑Nc

j=0 C∗
j Cj is coercive.

Then one can choose constants ak and bk in such a way that the functional

F (h) = ‖h‖2 +
Nc∑
k=0

(
ak‖Ckh‖2 + 2bk � 〈Ckh, Ck+1h〉)

satisfies the differential inequality

d

dt
F (e−tLh) ≤ −KF (e−tLh)

for some constant K which can be computed explicitly in terms of the constants
appearing implicitly in (i)–(iv) and (H).

This result generalizes Theorem 3.1 in several ways: Multiple commutators are
allowed; a remainder Rj+1, and a multiplier Zj are allowed in the identity defining
Cj+1 in terms of Cj ; and the various directions Ck are not assumed to commute.

As a simple application of Theorem 3.4, it is possible to prove exponential con-
vergence to equilibrium for the oscillator chain described by equations (4)–(5), under
the assumption that V and W are uniformly convex and have a bounded Hessian,
and that the temperatures on the left and on the right are equal, that is T (�) = T (r).
Interestingly enough, bounded Hessians are not covered by the results of Jean-Pierre
Eckmann and Martin Hairer [7], who impose a superquadratic growth at infinity. Con-
versely, it is not clear whether Theorem 3.4 can be used to recover the results in [7].
Still some work is required to clarify the situation about these assumptions on the
potentials. I shall also come back in the end of these notes to the very unsatisfactory
restriction T (�) = T (r).

L log L estimates. Now it is not so difficult to adapt the previous L2 theory to an
L log L framework, replacing L2 square norms by entropies and Fisher informations.
For this I shall have to leave the framework of abstract Hilbert spaces, and replace it
by functional spaces on, say, R

N (or a differentiable manifold). Then the operators
A1, . . . , Am and B will be vector fields, identified with differentiation operators, the
notation A will stand for the vector-valued differential operator A = (A1, . . . , Am),
and I shall now say that S is bounded relatively to T1, . . . , Tk if there is a constant C

such that |S(x)| ≤ C(|T1(x)| + · · · + |Tk(x)|), where S(x) stands for the value of
the vector field S at x. The equilibrium measure will be assumed to take the form
μ(dX) = e−E dX, where E is a smooth function, dX is the Lebesgue measure in
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R
N , and E is normalized so that

∫
e−E = 1. The notation S∗ will stand for the adjoint

of S in L2(μ). The linear equation under study will still be ∂th + Lh = 0, where
L = A∗A + B and the unknown is the probability density f = he−E .

Theorem 3.5. With the above conventions, assume that all the assumptions in Theo-
rem 3.4 are satisfied, up to the following reinforcements:

(i′) [A, Ck] is bounded relatively to A;
(ii′) [A, C∗

k ] and [A, Ck]∗ are bounded relatively to A and I ;
(iii′) Rk is bounded relatively to {Cj }0≤j≤k−1.
Further assume that there is a positive constant λ such that

∑
k C∗

k Ck ≥ λIN ,
pointwise on R

N , and that μ satisfies a logarithmic Sobolev inequality. Then there
are quadratic forms x → S(x), uniformly positive definite, such that the functional

� (f ) =
∫

f (log f + E) +
∫

f
〈
S ∇(log f + E), ∇(log f + E)

〉

satisfies
d

dt
�

(
(e−tLh)e−E

) ≤ −K �
(
(e−tLh)e−E

)
,

for some explicitly computable constant K .

The most noticeable novelty in the assumptions of Theorem 3.5 is that now the
reference measure is not required to satisfy a Poincaré inequality, but a logarithmic
Sobolev inequality, i.e. for any probability density f one should have∫

f (log f + E) ≤ (2P)−1
∫

f |∇(log f + E)|2,

where P is a positive constant. (The normalization here is such that e−E automatically
satisfies a Poincaré inequality with constant P .)

Apart from this, Theorem 3.5 looks very similar to Theorem 3.4. In fact, by
writing densities in the form f = (1+εh)e−E and letting ε → 0, one can recover the
conclusion of Theorem 3.4 as a perturbative limit regime. Still, there are some subtle
things going on, as indicated by the reinforced assumptions (i’)–(iii’). In fact there
are some tricky additional computations underlying the proof, with rather miraculous
simplifications, suggesting that an adequate formalism is still to be found.

Here is an application of Theorem 3.5:

Theorem 3.6. Let V be a C∞ potential on R
n; assume that there are positive con-

stants k, C, {Cj }j∈N such that

(a) |∇jV (x)| ≤ Cj for all j ≥ 2;

(b) e−V satisfies a logarithmic Sobolev inequality.

Then for any initial datum f0(x, v) with finite moments of all orders, the solution
of the Fokker–Planck equation (1) converges to equilibrium exponentially fast in the
sense of relative entropy and L1 norm, with a rate of exponential convergence that
does not depend on f0.
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This result is obtained by combining Theorem 3.5 with a global hypoelliptic regu-
larization theorem for L1 initial data. (This again is a highly nonstandard framework
for regularization, but I shall not develop this here.)

Beyond the Hörmander form. All the examples treated so far were dealing with
linear operators in the form L = A∗A + B, where B is antisymmetric. In theory,
any operator can of course be cast in this form, but this might be a terrible thing to
do in practise; for instance, if the symmetric part of L is an integral operator then A

would look horrendous. So it is desirable to prove results under alternative structure
assumptions.

It would be illusory to hope for a gain based on commutators like [L, B]. Instead,
one can introduce an adequate auxiliary operator A into the estimates, in such a way
that (i) A∗A + [A, B]∗[A, B] is coercive, and (ii) A “almost commutes” with L.

Recently, Clément Mouhot and Lukas Neumann [21] have derived such a hypoco-
ercivity theorem in the particular framework of kinetic equations; more precisely,
A = ∇v , B = v · ∇x , C = ∇x , and

L = v · ∇x − L, L = K − �, (13)

where K and � only act on the velocity variable, −� is “damping” (for instance a
multiplication operator) and K is “regularizing” (for instance an integral operator).
These assumptions cover many interesting cases in kinetic theory [21]. Here I state
the results in a slightly more precise (although not yet fully rigorous) way:

Theorem 3.7. Let L be an unbounded operator on L2(Rn
v), taking the form L =

K − �, and assume that there exists a Hilbert norm ‖ · ‖�, with ‖ · ‖� ≥ ‖ · ‖L2 , and
constants κ, C > 0 such that

(i) κ ‖h‖2
� ≤ 〈�h, h〉L2 ≤ C‖h‖2

�;

(ii) 〈Lh, g〉 ≤ C‖h‖�‖g‖�;

(iii) for all δ > 0 there exists Cδ > 0 such that 〈∇vKh, ∇vh〉L2 ≤ Cδ‖h‖2
L2 +

δ‖∇vh‖2
L2 for all h;

(iv) 〈∇v�h, ∇vh〉L2 ≥ κ‖∇vh‖2
L2 − C‖h‖2

L2 ;

(C) 〈Lh, h〉L2 ≤ −κ ‖h − �h‖2
L2 , where � is the orthogonal projection onto the

kernel of L, assumed to be finite-dimensional.
Then the operator L = −v · ∇x + L is hypocoercive in L2(Tn

x × R
n
v). There are

constants a, b, c, λ > 0 such that the functional defined by

F (h) = ‖h‖2
L2 + a ‖∇vh‖2

L2 + 2b 〈∇vh, ∇xh〉L2 + c ‖∇xh‖2
L2

satisfies
d

dt
F (e−tLh) ≤ −λ F (e−tLh)

for all h ∈ L2(Rn
x × R

n
v)/ Ker L.
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Some comments on the assumptions: Assumption (i) implies the damping nature
of −�, and assumption (iii) is a very weak way to state the regularizing property
of K . Assumption (iv) is some way to express the fact that ∇v and � satisfy good
commutation relations: The estimate would be trivial if ∇v� were replaced by �∇v .
Finally, assumption (C) expresses the coercivity of the operator L when applied to
functions which only depend on the velocity variable.

Theorem 3.7 applies for instance to the linearized Boltzmann equation, or many
other linear Boltzmann-type models. (There is also an independent study by Frédéric
Hérau [17] which analyzes the hypocoercivity of some such operators with very
similar tools.)

By combining Theorem 3.7 with a linearization analysis and some global bounds
derived by Yan Guo, Clément Mouhot and Lukas Neumann were able to recover a
simple proof of the following theorem of convergence to equilibrium for the nonlinear
Boltzmann equation. In the next statement, Hk stands for the standard L2-Sobolev
space of order k on the domain T

n
x × R

n
v .

Theorem 3.8. Consider the Boltzmann equation (6) in T
n
x × R

n
v , with the collision

kernel |v − v∗|. Let f0 be a C∞ initial density with associated global equilibrium
f∞(x, v) = M(v) = e−|v|2/2/(2π)n/2. If

‖M−1/2(f0 − M)‖Hk ≤ ε,

for some k large enough and some ε > 0 small enough, then the corresponding
solution of the Boltzmann equation converges to equilibrium exponentially fast:

‖M−1/2(ft − M)‖L2 = O(e−λt ).

Nonlinear equations. To conclude this section, I shall show how to recover fully
nonlinear hypocoercivity estimates by a variant of the approach developed above. For
general nonlinear operators, it is probably hopeless to try to get anywhere unless one
assumes some strong assumptions of smoothness and decay at infinity, to make sure
that all norms involved are “almost comparable” (that is, they are comparable if one
allows them to be raised to powers that are arbitrarily close to 1). So I will assume
that (ft )t≥0 satisfies uniform bounds in a scale of weighted Sobolev spaces (Xs)s∈R

of arbitrarily high smoothness and decay, that are in interpolation. (For instance, Xs

might be defined as the space of functions f such that (I − �v − �x)
s/2f (x, v)(1 +

|x|2 + |v|2)s/2 lies in L2.) Then all the nonlinear operators involved will be assumed
to be Lipschitz when restricted on balls of Xs , with values in some higher order space
Xs+k . In practise, this means that our nonlinearities are not worse than polynomial,
with coefficients that do not increase faster than polynomial. Then I shall denote the
functional derivative of a functional F at function f by just F ′

f . I shall further assume
that there is a unique equilibrium f∞, and a Lyapunov functional E satisfying

E(ft ) − E(f∞) ≥ K ‖ft − f∞‖2(1+ε)
s
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for some suitable s = s(ε), K = K(ε), where ε is arbitrarily small. In words, this
means that E essentially controls the square of the distance to equilibrium.

Theorem 3.9. With the above notation, let

L = B − C

be a nonlinear differential operator, such that B preserves the Lyapunov functional E
(that is, E ′

f ·Bf = 0), let (ft )t≥0 solve ∂tf +Lf = 0, and let (�j )1≤j≤J be nonlinear
operators satisfying

�j � �k = �max(j,k), (14)

such that, for all t ≥ 1,

(i) C � �1 = 0; −E ′
ft

· (Cft ) ≥ Kε[E(f ) − E(�1f )]1+ε;

(ii) Kε‖�1ft − f∞‖2+ε ≤ E(�1f ) − E(f∞) ≤ Cε‖�1ft − f∞‖2−ε;

(iii) �J f = f∞; Bf∞ = 0;

(H) ‖(Id−�j)
′
�jf ·(B�jf )‖2 ≥ Kε‖(�j −�j+1)f ‖2+ε for all j ∈{1, . . . , J−1}.

Then ‖ft − f∞‖ = O(t−∞).

This theorem may seem particularly abstract and confusing, so I should give some
explanations. First, B plays the role of the antisymmetric part, but this shows only in
the assumption that it does not contribute to the decay of E ; on the contrary, C should
be thought of as the symmetric, or collisional part, and it does make the Lyapunov
functional decay.

Next, the operators �j act as a family of “nested projections”. The first one, �1,
sends f to the kernel of the “collision operator” C; then the second one sends f to
a smaller subspace, and then each �j takes values in a smaller subspace until finally

one reaches f∞. The “concrete” examples are the maps f → M
f
ρ u T , f → M

f
ρ u 〈T 〉,

f → M
f
ρ 0 1, f → f∞ which we considered in Section 2 (so for the Boltzmann

equation we need four such nonlinear projections).
Finally, the key hypocoercivity condition is (H): It ensures basically that the effect

of the “antisymmetric part” B is strong enough to get us out of the image of �j , unless
we are in the image of �j+1.

Theorem 3.9 leads to a simplified proof of Theorem 2.2, which does not involve
any second-order differential inequality, but just variants of Gronwall’s lemma. Once
again, the key point is to add a correction to the Lyapunov functional E into another
functional F . The correction is small enough that the value of F is very close to the
value of E ; but its structure is such that F satisfies (almost) a Gronwall-type estimate.
More explicitly,

F (f ) = [
E(f ) − E(f∞)

] +
J−1∑
j=1

aj

〈
(Id − �j)f, (Id − �j)

′
f · (Bf )

〉
, (15)
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where 〈 ·, ·〉 denotes the scalar product in, say, X0, and ε > 0, aj > 0 (1 ≤ j ≤ J −1)
are small numbers depending on the smoothness of ft , on δ, and on estimates on the
distance of f to f∞ (in general 1 � a1 � · · · � aJ−1).

If the reader thinks that I am being too abstract and formal here, I invite him or
her to write down explicitly what (15) is for the Boltzmann equation: Take E(f ) =∫

f log f , f∞ = M(v), �1f = M
f
ρ u T , �2f = M

f
ρ u 〈T 〉, �3f = M

f
ρ 0 1, �4f =

f∞, and Bf = v · ∇xf ; then the expression of F (f ) would fill up basically a whole
page. Expression (15) is not only quite general, it is also the best way to conduct
calculations.

Let me conclude this section with another theorem that can be derived from The-
orem 3.9: convergence to equilibrium for the nonlinear Vlasov–Fokker–Planck inter-
action with moderate interaction and small coupling.

Theorem 3.10. Let W ∈ C∞(Tn) be an even smooth function with sup W − inf W

small enough, and let f0 be a probability density on T
n
x ×R

n
v , with all moments finite.

Then there is a unique solution (ft )t≥0 to the partial differential equation

∂f

∂t
+ v · ∇xf − ∇x(W ∗ ρ) · ∇vf = �vf + ∇v · (f v), ρt (x) =

∫
ft (x, v) dv;

and it does converge to a uniquely determined equilibrium distribution f∞, with

‖ft − f∞‖L1 = O(t−∞).

This theorem also follows directly from Theorem 3.9, now by choosing just
�1f = ρM , �2f = f∞, where the equilibrium f∞ is the unique minimizer of
the energy functional H(f ) + (1/2)

∫
ρ(x) ρ(y) W(x − y) dx dy. The assumption

on W being smooth and small enough guarantees the uniqueness of the minimizer (it
implies that we stay away from phase transitions) and allows to develop a very strong
regularity theory for the equation.

4. Perspectives

There seems to be a whole mathematical world to explore behind the hypocoercivity
phenomenon, both in nonlinear and linear partial differential equations.

Obvious remaining open problems concern the nonlinear equations such as Boltz-
mann’s equation, for which the convergence to equilibrium is proven only under
strong conditional smoothness assumptions; however, Theorem 2.2 says that, in some
sense, it all amounts to a good understanding of the Cauchy problem. The situa-
tion is more subtle for coupled equations, such as the Vlasov–Fokker–Planck model:
Theorem 3.10 solves the problem only for smooth small enough potentials, leaving
completely open the issue of phase transition for large potentials. Realistic models
such as the Vlasov–Poisson–Fokker–Planck equation require further thoughts.
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But within the range of linear equations, where one is more demanding about
conclusions, there is even much more to say. First, one would like to get a qualita-
tive description of the convergence to equilibrium, and in particular of the oscillations
described in the discussion of the Boltzmann equation. As discussed in [29], these os-
cillations appear in many models, but not always, and their presence or absence should
be related to some spectral analysis of the linearized operator, involving conservation
laws and hydrodynamical approximations. Recently, Francis Filbet, Clément Mouhot
and Lorenzo Pareschi [10] have made some progress on this issue, by combining nu-
merical simulations, linearization and asymptotic analysis; they suggest that for large
domains the period of oscillations is given by the imaginary part of the eigenvalues
of the linearized compressible Euler system, while the asymptotic rate of decay is
determined by the real parts of the eigenvalues of the compressible linearized Navier–
Stokes system. For small enough domains, the situation is completely different, and
hydrodynamic effects should be negligible. Actually, numerical simulations in small
domains show that the gas distribution first becomes spatially homogeneous, and
then converges to equilibrium like a solution of the spatially homogeneous Boltz-
mann equation – a scenario which is somehow opposite to the ideas that seemed to
be prevailing among physicists and mathematicians.

Another issue is about the quantitative relevance of the estimates. All the estimates
derived from the hypocoercivity theorems in this text are explicit, but this does not
mean that they have the correct order of magnitude. For simple equations like the
Fokker–Planck equation, the rates of convergence predicted by my method seem to be
off the true value by a factor of about 102, which is not so bad (and much better than
previous estimates). But the rates obtained for the oscillator chain have an incredibly
bad dependence on the number of oscillators, leaving motivation for quantitative
improvement.

It is important to note that the analysis of operators of the form A∗A+B involved
a systematic comparison with the symmetric operator A∗A+[A, B]∗[A, B], or more
complicated symmetric operators constructed from brackets with B. The same is true
of the hypoelliptic method by Bernard Helffer and Francis Nier [16]. This might
look satisfactory, but might also give wrong orders of magnitude. For instance, in the
Model Problem 1.1, we have seen that if the eigenvalues for A∗A + [A, B]∗[A, B]
grow like |α|2ν , then the real parts of the eigenvalues for A∗A + B grow at least
like |α|ν . This behavior is optimal for some forms of the function f , but not for
other ones, as pointed out to me by Thierry Gallay. Indeed, if f (x) = 1/(1 + x2),
then ν = 1/4, but numerical simulations suggest that the growth is like |α|1/2. . . .

This might indicate a fundamental limitation of present techniques, and motivate the
development of a refined analysis.

In the example of the oscillator chain, the application of Theorem 3.4 is so far
restricted to the oversimplified case when T (�) = T (r). In fact, Theorem 3.4 could
be applied if we had some basic qualitative information about the non-explicit equi-
librium measure: For instance, some bounds on the Hessian of the logarithm of its
density; and a Poincaré inequality. This leads to another challenging topic: deriving



496 Cédric Villani

qualitative global information about stationary solutions of linear partial differential
equations.

Finally, the links and analogies between hypoellipticity and hypocoercivity need
to be further explored. The interplay goes in both directions: It is possible to adapt
some of the tricks presented here, into elementary methods for the study of hypoel-
liptic regularization. While these do not apply with such generality as the classical
techniques introduced by Lars Hörmander and later by Joseph Kohn, they are quite
flexible, in particular to get global estimates, or estimates from L1 data. The same dis-
covery has been made independently by Frédéric Hérau. Hopefully, all this agitation
will lead to a new look at the old field of hypoelliptic regularity.
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Metastability: a potential theoretic approach

Anton Bovier∗

Abstract. Metastability is an ubiquitous phenomenon of the dynamical behaviour of complex
systems. In this talk, I describe recent attempts towards a model-independent approach to
metastability in the context of reversible Markov processes. I will present an outline of a general
theory, based on careful use of potential theoretic ideas and indicate a number of concrete
examples where this theory was used very successfully. I will also indicate some challenges for
future work.
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1. Introduction

Metastability is a physical phenomenon that is observed in a large variety of situations
in nature. The classical school-book example is the time delay in the evaporation
of overheated water, resp. the delayed freezing of under-cooled water. Generally
speaking, metastability is related to the existence of multiple, well separated time-
scales: at a short time-scale, the systems appears to be in an equilibrium state, but
really explores only a confined section of its available phase space, while, at much
larger time scales, it undergoes transitions between such metastable states. The main
mathematical task we want to discuss it the analysis of such system at these very long
time-scales.

The mathematical description of metastable systems began in the 1930s and 1940s
and is linked to the names of Eyring [15] and Kramer [26], who were interested
in metastability in the context of chemical reactions. Kramer, in particular, intro-
duced a one-dimensional diffusion process in a double-well potential as a model of a
metastable system which is still used today in many applications. This work set the
way to study metastability as a phenomenon that takes place in stochastic processes,
and, in particular, in Markov processes, which is the setting that we will consider in
this talk.

The mathematically rigorous analysis of metastability phenomena in the context
of stochastic dynamics goes back essentially to the work of Freidlin and Wentzell in
the early 1970s (see their seminal book [16]). They considered mainly the setting
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of finite dimensional dynamical systems perturbed by weak additive noise. In the
simplest case, this would be driven by Brownian motion, but alternative settings,
such as Levy-processes, were also considered. Metastability arises in this context
if the unperturbed systems possesses several stable attractors. In this case, on short
time-scales, the trajectories of the system will track those of the unperturbed system,
and hence will converge towards one of the attractors. On much longer time-scales,
however, the random perturbation allow the system to perform transitions between
these stable attractors. The method to analyse the occurrence of such transitions
introduced by Freidlin and Wentzell in this context was large deviation theory on
path-space. This allows to control the probability of an “atypical” trajectory γ (t)
over some time interval [T1, T2] in terms of an action functional S(γ, T1, T2), which
can be written as

S(γ, T1, T2) =
∫ T2

T1

L(γ (t), γ ′(t), t) dt (1.1)

in the sense that

lim
ε↓0

ε ln P (Xε(t) ∼ γ (t), t ∈ [T1, T2]) = S(γ, T1, T2), (1.2)

where ε is a parameter controlling the strength of the random perturbation, and L is a
Lagrangian in the sense of classical mechanics. Clearly, such results allow to compute
probabilities, and hence expected times, of the occurrence of transitions between
attractors. We will refer to estimates of the type (1.2) as logarithmic equivalence.
While these are in some sense rather crude estimates, the large deviation method has
proven very useful due to its rather universal applicability. It has, in fact, dominated
the field on the mathematical side, and large deviations and metastability are often
seen as almost synonymous (see e.g. the recent monograph [35]).

Besides the large deviation estimates, Freidlin and Wentzell introduced a very
interesting and useful way of looking at metastable systems by associating to it what
they called a Markov chain with exponentially small transition probabilities. Here
they associate to the original system a finite state Markov chain whose states label the
different attractors of the underlying dynamical system. The transition probabilities
of this new chain are then computed by finding the probability of the most likely
trajectory linking two such attractors; by the foregoing discussion, this probability will
be exponentially small. The long-time behaviour of the system, viewed on the coarse-
grained level, will then be well-described by that of the associated finite Markov
chain. It was later noted that such Markov chains arise also in other contexts, notably
in stochastic dynamics of interacting particle systems at very low temperatures, and
they have become a subject of intensive investigation in their own right ([33], [34],
[10], [9]), initially again mainly through large deviation techniques.

In the physics literature, very early on more precise results than those provided
by large deviation theory were sought. The modelling context here was mostly that
of stochastic differential equations with small noise, i.e. the multi-dimensional exten-
sion of Kramer’s approach. However, while in the one-dimensional case essentially
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exact solutions are available, the multi-dimensional setting leads to partial differential
equations that are not explicitly solvable, and those asymptotic analysis encountered
considerable analytic difficulties. Several authors strove to overcome those and to de-
rive asymptotic expansions in the parameter ε using methods similar to those used in
the study of quantum mechanical tunneling (WKB-method); these results remained,
however, on the formal level, as no error estimates could be proven. We will not
enter the details of this development here, but refer to the excellent account given in
[27]. Very recently, there has been renewed progress on this issue in the case of the
reversible diffusions that we will comment on below [18], [19], [20].

Independent of the issue of rigour, the analytic approach has the disadvantage that
it is applicable to a very limited class of models. Thus, more robust techniques that
would still give precise results are sought for. Spectral theory for the generator of the
Markov process appears as a natural tool, since long-term dynamical properties should
find their encoding in the nature of the spectrum. In fact, the analysis of the spectral
gap between the zero eigenvalue and the next-smallest eigenvalue of the generator has
been a prominent topic in the theory of Markov processed, mainly as a tool to control
convergence to equilibrium. Let us cite, from the vast body of literature, the papers
[24], [31], [30]. The characterisation of metastability in terms of spectral properties
was initiated in early work of Davies [11], [12], [13], and more recently continued by
Gaveau and Schulman [17]. In view of numerical applications in dynamics of large
bio-molecules, this issue was also addressed recently by Huisinga et al. [25].

Our own interest in the issue of metastability form the study of Gibbs distribu-
tions of disordered systems, and in particular the Hopfield model of neural networks.
Here one is interested in the dynamical behaviour of Markov process on some high-
dimensional state space, mostly chosen to be reversible with respect to a Gibbs mea-
sure. Considerable effort is invested in the analysis of the properties of these Gibbs
measures in the limit of infinite dimensions. The question that then arises is what
can be learned from these Gibbs measures, or, what do we need to know about the
Gibbs measures in order to understand the long-term properties of the dynamics?
This question can be seen as the leitmotiv behind our work. Other than that, we were
aiming for an approach that would be to a large extend model independent, and that
at the same time would provide finer estimates than those obtainable with large devi-
ation methods. Our approach thus makes deliberate use of knowledge of the invariant
measure, and, moreover, will always assume that the dynamics is reversible. This
certainly leaves many interesting situations out of the reach of our methods, but still
covers a range of important applications.

Acknowledgements. The work reported here is based on a joint effort with Véronique
Gayrard, Michael Eckhoff, and Markus Klein to understand metastability. Applica-
tions of these ideas in concrete models have been worked out with Gerard Ben Arous,
Alessandra Faggionato, Frank den Hollander, Francesco Manzo, and Francesca Nardi.
I am deeply indebted to all these collaborators for their immense contributions.
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2. Characterisations of metastability

The most general setting we will consider can be described as follows. We consider
a Markov process Xt on a measure space � ⊃ Xt with discrete or continuous time t .
We will usually assume that the process is uniquely ergodic with invariant measure Q.
We will denote the law of this process by P. Moreover, we will denote by Px the
law of the process conditioned on X0 = x. We will denote by τD , D ⊂ �, the first
entrance time of Xt in D, i.e.

τD ≡ inf{t > 0, X(t) ∈ D}. (2.1)

An intuitively appealing definition of metastability could be the following:
A family of Markov processes is called metastable, if there exists a collection of

disjoint sets Bi ⊂ �, such that

supx 
∈∪iBi Exτ∪iBi
infx∈∪iBi Exτ∪k 
=iBk

= o(1). (2.2)

Here o(1) should be thought of as an intrinsic small parameter that characterises the
“degree” of metastability. Often we will have to do with a family of processes indexed
by a parameter, that allows to make (2.2) as small as we like.

Intuitively, this definition says that our process lingers around one of the subsetsBi
for a long time (resp. returns to Bi many times) before it visits another of these sets,
and so on. This can be re-expressed in a number of ways, e.g. in terms of the behaviour
of empirical distributions, but we will not go into this.

This definition characterizes metastability in terms of physical properties, namely
hitting times, of the system. The problem is that it is not immediately verifiable, since
it involves mean hitting times, that are nor easy to compute. It would thus be desirable
to have an equivalent definition involving more manageable quantities.

A further goal will be to derive further general properties of metastable systems.
Since the definition implies frequent returns to the small starting set Bi before transit
to another set Bj , this suggests an exponential law for the transit times. This also
suggests that we may expect to describe the process of successive visits to distinct Bi
asymptotically as a Markov process. The most fundamental result we want to achieve
in this context is a characterization of the spectrum of the generator, resp. the transition
matrix of a metastable process.

3. Markov processes and potential theory

Our approach to metastability relies heavily on some elementary potential theory for
Markov processes. Let us briefly recall some basic facts and definitions. We will
consider the case of discrete space and discrete time, but the same holds with obvious
changes in the continuous setting.
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Thus let� be a discrete set, Q be a positive measure on�, andP a stochastic matrix
on �. We will denote by −L the generator of the process in the case of continuous
time, and setL = 11−P in the case of discrete time1. We assume thatL is symmetric
on the space L2(�,Q).

Green’s function. Let� ⊂ �. Consider for λ ∈ C and g a real valued function on�
the Dirichlet problem

(L− λ)f (x) = g(x), x ∈ �,
f (x) = 0, x ∈ �c. (3.1)

Whenever λ is such that the problem has a unique solution, then it can be expressed in
terms of the Dirichlet Green’s functionGλ�(x, y) as (L−λ)�, i.e. for any g ∈ C0(�),

f (x) =
∑
y∈�

Gλ�(x, y)g(y). (3.2)

Recall that the spectrum ofL (more precisely the Dirichlet spectrum of the restriction
of L to �, which we will sometimes denote by L�), is the complement of the set of
values λ for which Gλ� defines a bounded operator.

Equilibrium potential and equilibrium measure. Let A,D ⊂ �. Then the λ-
equilibrium potential hλA,D (of the capacitor (A,D)) is defined as the solution of the
Dirichlet problem

(L− λ)hλA,D(x) = 0, x ∈ (A ∪D)c,
hλA,D(x) = 1, x ∈ A,
hλA,D(x) = 0, x ∈ D.

(3.3)

Note that (3.3) has a unique solution provided λ is not in the spectrum of L(A∪B)c .
The equilibrium measure eλA,D is defined as the unique measure on A such that

hλA,D(x) =
∑
y∈A

GλDc(x, y)e
λ
A,D(y). (3.4)

(3.4) may also be written as

eλA,D(y) = (L− λ)hλA,D(y). (3.5)

Capacity. We now restrict our attention to the case λ = 0. We write h ≡ h0 and
e ≡ e0. The capacity of the capacitor (A,D) is defined as

cap(A,D) ≡
∑
y∈A

Q(y)eA,D(y). (3.6)

1The choice of the sign is made so that L is a positive definite operator.
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Using (3.5) one derives after some algebra that

cap(A,D) = 1

2

∑
x,y

Q(y)p(x, y)‖hA,D(x)− hA,D(y)‖2 ≡ �(hA,D), (3.7)

where p(x, y) are the transition probabilities (in discrete time) respectively transition
rates (in discrete time). � is called the Dirichlet form (or energy) for the operator L.

A fundamental consequence of (3.7) is the variational representation of the capac-
ity, namely

cap(A,D) = inf
h∈HA,D

�(h), (3.8)

where HA,D denotes the set of functions

HA,D ≡ {h : � → [0, 1] : h(x) = 0, x ∈ D, h(x) = 1, x ∈ A} . (3.9)

Probabilistic interpretation. If λ = 0, the equilibrium potential has a natural
probabilistic interpretation in terms of hitting probabilities of this process, namely

hA,D(x) = Px[τA < τD]. (3.10)

The equilibrium measure has a nice interpretation in the discrete time case ifA = {y}
is a single point:

ey,D(y) = Py[τD < τy]. (3.11)

If λ 
= 0, the equilibrium potential still has a probabilistic interpretation in terms
of the Laplace transform of the hitting time τA of the process starting in x and killed
in D. Namely, we have for general λ that

hλA,D(x) = Exe
λτA1IτA<τD (3.12)

for x ∈ (A ∪D)c, whenever the right-hand side is finite.
Note that (3.12) implies that

d

dλ
hλ=0
A,D(x) = ExτA1IτA<τD . (3.13)

Differentiating the defining equation of hλA,D reveals that the function

wA,D(x) =
{

ExτA1IτA<τD , x ∈ (A ∪D)c
0, x ∈ A ∪D (3.14)

solves the inhomogeneous Dirichlet problem

LwA,D(x) = hA,D(x), x ∈ (A ∪D)c, (3.15)

wA,D(x) = 0, x ∈ A ∪D. (3.16)
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Therefore, the mean hitting time in A of the process killed in D can be represented
in terms of the Green’s function as

ExτA1IτA<τD =
∑

y∈(A∪D)c
G(A∪D)c(x, y)hA,D(y). (3.17)

Note that in the particular case when D = ∅, we get the familiar Dirichlet problem

LwA(x) = 1, x ∈ Ac, (3.18)

wA(x) = 0, x ∈ A, (3.19)

and the representation
ExτA =

∑
y∈Ac

GAc(x, y). (3.20)

The full beauty of all this comes out when combining (3.4) with (3.17), resp.
(3.20). Namely,

Q(z)EzτAez,A(z) =
∑
y∈Ac

Q(y)GAc(y, z)ez,A(z)

=
∑
y∈Ac

Q(y)hz,A(y)
(3.21)

or

EzτA = 1

cap(z, A)

∑
y∈Ac

Q(y)hz,A(y) (3.22)

Remark 3.1. Equation (3.22) relies explicitly on the discrete structure on the state
space, or more precisely that for any x ∈ �, Q(x) > 0. In the case of continuous state
space, such formulas do not hold in the strict sense, or are not useful, but suitable
“integral versions”, involving integrals over suitably chosen small neighborhoods of
e.g. the points z in (3.22) are still valid, and can be used to more or less the same effect
as the exact relations in the discrete case. This entails, however, some extra technical
difficulties. In these notes we will therefore restrict our attention to the discrete case,
where the principle ideas can be explained without being obscured by technicalities.

4. Capacitary characterization of metastability

The relation (3.22) between mean hitting times and capacities suggests an alternative
characterisation of metastability through capacities. We will see that this entails many
advantages.

Definition 4.1. Assume that � is a discrete set. Then a Markov processes Xt is
ρ-metastable with respect to the set of points M ⊂ � if

supx∈M cap(x,M\x)/Q(x)
infy 
∈M cap(y,M)/Q(y)

≤ ρ � 1. (4.1)
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Remark 4.2. Definition 4.1 is useful since it involves quantities that are either
“known”, or expected to be easily controllable. It becomes intuitively more appealing
if we notice that it can be written alternatively as

supx∈M Px[τM\x < τx]
infy 
∈M Py[τM < τy] ≤ ρ � 1. (4.2)

Renewal estimates. The estimation of the equilibrium through capacities is based
on a renewal argument, that in the case of discrete state space is very simple.

Lemma 4.3. Let A,D ⊂ � be disjoint sets, and let x 
∈ A ∪D. Then

hA,D(x) ≤ min

(
cap(x,A)

cap(x,D)
, 1

)
. (4.3)

Remark 4.4. Note that the power of Lemma 4.3 is more than doubled by judicious
use of the elementary fact that hA,D(x) = 1 − hD,A(x).

Ultrametricity. An important fact that allows to obtain general results under our
definition of metastability is the fact that it implies approximate ultrametricity of
capacities. This has been noted in [5].

Lemma 4.5. Assume that x, y ∈ � and D ⊂ �. If cap(y,D) ≤ δcap(y, x) for
0 < δ < 1

2 , then
1 − 2δ

1 − δ
≤ cap(x,D)

cap(y,D)
≤ 1

1 − δ
. (4.4)

Proof. The proof of this lemma given in [5] is probabilistic and uses splitting and
renewal ideas. It should be possible to prove this result with purely analytic arguments.

�

Lemma 4.5 has the following immediate corollary, which is the version of the
ultrametric triangle inequality we are looking for:

Corollary 4.6. Let x, y, z ∈ M. Then

cap(x, y) ≥ 1

3
min (cap(x, z), cap(y, z)) (4.5)

In the sequel it will be useful to have the notion of a “valley” or “attractor” of a
point in M. We set for x ∈ M,

A(x) ≡ {z ∈ � | Pz[τx = τM] = supy∈M Pz[τx = τM]} (4.6)

Note that valleys may overlap, but from Lemma 4.5 it follows easily that the intersec-
tion has a vanishing invariant mass. The notion of a valley in the case of a diffusion
process coincides with the intuitive notion.
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Mean times. A very pleasant feature of the definition of metastability in terms of
capacities is that it allows to relate some key capacities to mean hitting times in a very
simple way.

Theorem 4.7. Let x ∈ M and J ⊂ M\x be such a that for all m 
∈ J ∪ x either
Q(m) � Q(x) or cap(m, J ) � cap(m, x). Then

ExτJ = Q(A(x))

cap(x, J )
(1 + o(1)) . (4.7)

Finally we want to compute the mean time to reach M starting from a general
point.

Lemma 4.8. Let z 
∈ M. Let a ≡ supy 
∈M
Q(y)

cap(y,M)
. Then

EzτM ≤ a−2|�|. (4.8)

Remark 4.9. If � is finite, the above estimate combined with Theorem 4.7 shows
that the two definitions of metastability we have given in terms of mean times rep.
capacities are equivalent. On the other hand, in the case of infinite state space �,
we cannot expect the supremum over EzτM to be finite, which shows that our first
definition was somewhat naive. Note however that this case the estimate (4.8) can be
improved by placing |�| with

∑
y:Q(y≤Q(z) Q(y)/Q(z)+ ∑

y:Q(y)>Q(z) 1.

5. Spectral characterisation of metastability

We now turn to the characterisation of metastability through spectral data. We will
show that Definition 4.1 implies that the spectrum of the generator decomposes into
a cluster of |M| very small real eigenvalues that are separated by a gap from the rest
of the spectrum.

A priori estimates. The first step of our analysis consists in showing that the matrix
LMc

(i.e. with Dirichlet conditions in all the points of M) has a minimal eigenvalue
that is not smaller thanO(a). This result needs sometimes some improvement, but is
shows the basic twist. This is a simple application of a Donsker–Varadhan argument.

Lemma 5.1. Let λ0 denote the infimum of the spectrum of LMc
. Then

λ0 ≥ 1

supx∈� EzτM
. (5.1)

Remark 5.2. Lemma 5.1 links the fast time scale to the smallest eigenvalue of the
Dirichlet operator, as should be expected. Note that the relation is not very precise.
We will soon derive a much more precise relation between times and eigenvalues for
the cluster of small eigenvalues. As stated, it is useless in the case of infinite state
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space. It can, however, be improved to give useful bounds under tightness conditions
on Q [5].

Characterization of small eigenvalues. We will now obtain a representation formula
for all eigenvalues that are smaller than λ0. It is clear that there will be precisely |M|
such eigenvalues. This representation was first exploited in [5], but already in 1973
Wentzell put forward very similar ideas.

The basic idea is to use the fact that the solution of the Dirichlet problem

(L− λ)f (x) = 0, x 
∈ M,

f (x) = φx, x ∈ M,
(5.2)

already solves the eigenvalue equation Lφ(x) = λφ(x) everywhere except possibly
on M. The question if whether an appropriate choice of boundary conditions and the
right choice of the value of λ will actually lead to a solution. This is indeed the case.

Lemma 5.3. Assume that λ < λ0 is an eigenvalue ofL and φ(x) is the corresponding
eigenfunction. Then the unique solution of (5.2) with φx = φ(x), x ∈ M, satisfies
f (y) = φ(y), for all y ∈ �.

Let us denote by EM(λ) the |M| × |M|-matrix with elements

(EM(λ))xy ≡ eλz,M\z(x). (5.3)

Lemma 5.4. A number λ < λ0 is an eigenvalue of the matrix L if and only if

det EM(λ) = 0. (5.4)

Anticipating that we are interested in small λ, we want to re-write the matrix EM

in a more convenient form. To do so let us set

hλx(y) ≡ hx(y)+ ψλx (y). (5.5)

Then E(λ) can be written in the form

(EM(λ))xz = Q(x)−1
(

1

2

∑
y 
=y′

Q(y′)p(y′, y)[hz(y′)− hz(y)][hx(y′)− hx(y)]

− λ
∑
y

Q(y)
(
hz(y)hx(y)+ hx(y)ψ

λ
z (y)

))
(5.6)

where the term involving ψλ can be viewed as a more or less irrelevant
We are now in a position to relate the small eigenvalues of L to the eigenvalues of

the classical capacity matrix. Let us denote by ‖f ‖2 the 
2-norm with respect to the
measure Q, i.e. ‖f ‖2

2 = ∑
y Q(y)f (y)2.
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Theorem 5.5. If λ < λ0 is an eigenvalue of L, then there exists an eigenvalue μ of
the |M| × |M|-matrix K whose matrix elements are given by

Kzx =
1
2

∑
y 
=y′ Q(y′)p(y′, y)[hz(y′)− hz(y)][hx(y′)− hx(y)]

‖hz‖2‖hx‖2
(5.7)

such that λ = μ (1 +O(ρ(ε)).

The computation of the eigenvalues of the capacity matrix is now in principle
a finite, though in general not trivial problem. The main difficulty is of course the
computation of the capacities and induction coefficients.

In fact we will prove the following theorem.

Theorem 5.6. Assume that there exists x ∈ M such that for some δ � 1

capx(M\x)
‖hx‖2

2

≥ δ max
z∈M\x

capz(M\z)
‖hz‖2

2

. (5.8)

Then the largest eigenvalue of L is given by

λx = capx(M\x)
‖hx‖2

2

(1 +O(δ)) (5.9)

and all other eigenvalues of L satisfy

λ ≤ Cδλx. (5.10)

Moreover, the eigenvectorφ corresponding to the largest eigenvalues normalized such
that φx = 1 satisfies φz ≤ Cδ, for z 
= x.

Theorem 5.6 has the following simple corollary, that allows in many situations a
complete characterization of the small eigenvalues of L.

Corollary 5.7. Assume that we can construct a sequence of metastable sets Mk ⊃
Mk−1 ⊃ · · · ⊃ M2 ⊃ M1 = x0, such that, for any i, Mi\Mi−1 = xi is a single
point, and that each Mi satisfies the assumptions of Theorem 5.6. Then L has k
eigenvalues

λi = capxi (Mi−1)

Q(A(xi))
(1 +O(δ)) . (5.11)

The corresponding normalized eigenfunction is given by

ψi(y) = hxi (y)

‖hxi‖2
+O(δ). (5.12)
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6. Variational principles and bounds for capacities

While the characterisation of metastability in terms of properties of mean first entrance
times did not seem immediately verifiable in a given model, (3.22) already suggests a
close relation between these times to capacities. In fact, the key idea in our approach
will be to express all quantities of interest ultimately to capacities, and to exploit
the fact that these can be estimated remarkably well by exploiting the variational
principle (3.8). This observation is not new; in fact, it is the basis of the “electric
network” approach to Markov chains (see e.g. the excellent account in Doyle and
Snell [14]). The fact that this approach is very useful for metastable systems appears
to have been overlooked.

Let us briefly comment on the use of these variational principles and explain why
they are efficient. While the specifics of their exploitation are model-dependent, some
basic principles are quite general follow directly from the fact that one is considering
a metastable system.

Upper bound. Upper bounds on capacities can be gotten readily by judicious choices
of a test-function h. Inspecting the Dirichlet form will often suggest rather good
choices. There are two major advantages in this variational principle: there are no
constraints on the test function except boundary conditions, and the minimizers has
a very clear probabilistic interpretation. This is quite different from the situation of
the Rayleigh–Ritz variational principle for the spectral gap, which is therefore more
difficult to handle. The fact that a system is metastable suggests that there will be rather
large regions, surrounding the metastable points, where the equilibrium potential is
constant, and only its behaviour on the (often small) connecting sets has to be guessed
with greater care.

Lower bound. A lower bound appears at first sight less obvious; however, the fact
that �(h) is monotone in the variables p(x, y) suggests an immediate lower bound
in terms of the capacities of a chain there some (or even many) p(x, y) are set to zero
(known as Rayleigh’s cut method [14]), hoping of course that the resulting chain will
be so simple that explicit computations of the capacities are possible. This idea can,
however, be extended considerably. To this end, consider a countable set I , and a let
G ≡ {gxy , x, y ∈ �}, be a collection of sub-probability measures on I , i.e. for each
(x, y), gxy(α) ≥ 0, and

∑
α∈I gxy(α) ≤ 1. Then

cap(A,B) = inf
h∈HA,D

∑
α∈I

1

2

∑
x,y

Q(y)gxy(α)p(x, y)‖hA,D(x)− hA,D(y)‖2

≥
∑
α∈I

inf
h∈HA,D

∑
α∈I

1

2

∑
x,y

Q(y)gxy(α)p(x, y)‖hA,D(x)− hA,D(y)‖2

(6.1)

≡
∑
α∈I

inf
h∈HA,D

�G(x)(h) ≡
∑
α∈I

capG(α)(A,D).
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As this it true for all G, we get the variational principle

cap(A,D) = sup
G

∑
α∈I

capG(a)(A,D). (6.2)

Note that this may look trivial, as of course the supremum is realised for the trivial
case I = {1}, gxy(1) = 1, for all (x, y). The interest in the principle arises from the
fact that there may be other choices that still realise the supremum (or at least come
very close to it). If we denote by hG(α)

A,D the minimizer of�G(x)(h), then G realises the
supremum whenever

h
G(α)
A,D (x) = hA,D(x), for all x with g(xy)(α) 
= 0. (6.3)

Of course we do not know hA,D(x), but this observation suggest a very good strategy
to prove lower bounds, anyhow: guess a plausible test function h for the upper bound,
then try to construct G such that the minimizers, hG(α), are computable, and are similar
to h! If this succeeds, the resulting upper and lower bounds will be at least very close.
Remarkably, this strategy actually does work in many cases.

7. Applications 1. Low-temperature dynamics of spin systems

The somehow simplest example where the general approach outlined above works
very well and with remarkable ease is stochastic dynamics of discrete spin systems
in the low temperature limit.

Here we have a finite spin-space S, a finite subset � of Zd , and a Hamiltonian
function H� : S� → R. The Markov processes one is interested in are reversible
(discrete or continuous time) Markov chains on S� that are reversible with respect to
the Gibbs measure,

μβ(σ) = e−βHσ (σ)

Zβ,�
, (7.1)

where β will play the rôle of a large parameter and Zβ,� is a normalisation constant,
called partition function. To complete the description of the dynamics, one defines
a graph � = (S�, E�) on S� whose edges determine the allowed transitions. One
may then choose transition probabilities

p(σ, σ ′) = 1

Cσ
e−β[H�(σ ′)−H�(σ)]+ if (σ, σ ′) ∈ E�, (7.2)

where Cσ denotes the coordination number of the vertex σ in � and [f ]+ is the
positive part of f ; all other transitions have zero probability, except of course the
probability to stay at σ , which is determined by the requirement that p be a stochastic
matrix. Such a dynamics is usually called a Metropolis algorithm.

Metastability occurs in such dynamics whenever the Hamiltonian has more than
one local minimum, if β is large. Our methods allow a full analysis of such dynamics,
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provided we understand the functionH� well enough to know its minima and saddle
points. This latter problem is rather non-trivial in general and involves complicated
discrete optimisation problems. In the Ising model, these have been studied in great
detail by Alonso and Cerf [1]

The two most prominent examples in this class of models are the Glauber dynamics
in the Ising spin model and Kawasaki dynamics in the Ising lattice gas.

Ising model under Glauber dynamics. Here the state space is S = {−1, 1}, and the
Hamiltonian is

H�(σ) = −
∑

x,y∈�,‖x−y‖=1

σxσy − h
∑
x∈�

σx. (7.3)

The edges of the graph � of allowed transitions consists of all pairs σ, σ ′) such that σ
and σ ′ differ in exactly one coordinate, i.e. the Hamming distance between σ and σ ′
equals to 1. A detailed analysis of the structure of this Hamiltonian was given in
[1], [9]. Here, if h > 0, the configurations +1 ≡ {σx ≡ +1 for all x ∈ �}, and
−1 ≡ {σx ≡ −1 for all x ∈ �}, correspond to the deepest, resp. second-deepest
minima. One can verify that the set M ≡ {−1,+1} is a set of metastable points in the
sense of our definition. This dynamics was investigated in particular in [32] (d = 2)
and [9] (d = 2, 3) using large deviation methods, and logarithmic asymptotics (in
the regime � fixed, β ↑ ∞) were obtained, together with a description of the most
probable exit path. In [4] we showed that the methods outlined above are readily
applicable here and give a radical improvement on the precision of the results. We
cite the main theorem of [4] to give a flavour of the type of results one can get.

Theorem 7.1. Consider the Ising model with Metropolis dynamics in dimensiond = 2
or d = 3 in a torus �d(l) with diameter l. Let 0 < h < 1 such that 2/h and
(in d = 3) (h/2�4/h�(4/h+ 1 − �4/h�) is not an integer. Then there exists δ > 0,
independent of β, such that the following hold.

• In dimension 2, let h be such that 2/h is not an integer. Let 
2 := ⌈ 2
h

⌉
and

�2 := 4
2 − h(
2
2 − 
2 + 1) be the diameter and the activation energy of the

“critical droplet”, respectively. Then

Eτ(−1) = 3

8

1


2 − 1
eβ�2(1 +O(e−βδ)

= 3

16
heβ�2(1 +O(h)+O(e−βδ)).

(7.4)

• In dimension 3, let h be such that 2/h and (h/2 �4/h� (4/h + 1 − �4/h�))
are not integer. Let 
3 := ⌈ 4

h

⌉
and a := �h/2 �4/h� (4/h + 1 − �4/h�)�

(notice that a can take the value 1 or 2). The activation energy of the “critical
droplet” is

�3 := (6
2
3 − (12 − 4a)
3 + 4
2 + 4 − 2a)

− h(
3
3 − (3 − a)
2

3 + (2 − a)+ 
2
2 − 
2 + 1).

(7.5)
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Then

Eτ(−1) = a

16

1

(
3 − 
2 + 1)(
3 − 
2 + a − 1)(
2 − 1)
eβ�3(1 +O(e−βδ))

= a

128
h3eβ�3(1 +O(h)+O(e−βδ)). (7.6)

Moreover, the distribution of τ(−1)/Eτ(−1) converges to the exponential distri-
bution as β ↑ ∞.

Local Kawasaki dynamics with open boundary conditions. Kawasaki dynamics
is most conveniently thought of a taking place on the configuration space {0, 1}�,
where dynamics variable ηx(t) is thought of as the number of particles at site x at
time t . In contrast to Glauber dynamics, Kawasaki dynamics is conservative, i.e. the
total number of particles is fixed. In several papers, den Hollander et al. [21], [22]
introduced a local version of this dynamics in a finite box where particle number of
conserved by transitions within the box, but where particles may appear or disappear
at the boundary. This dynamics was introduced as a local approximation of a true
Kawasaki dynamics in infinite volume.

The Hamiltonian is written in these variables as

H�(η) = −U
∑

x,y∈�;‖x−y‖=1

ηxηy −�
∑
x∈�

ηx. (7.7)

Again the dynamics is chosen reversible with respect to the corresponding Gibbs
measureand this time transition are possible between configurations η, η′ such that
(i) either two nearest neighbor sites x, y exchange their particle numbers, or (ii) the
particle number of one site in the boundary of � is increased from 0 to 1, or de-
creased from 1 to 0. This dynamics differs from Glauber dynamics essentially only
in the structure of the graph of admissible transitions, but this has rather noticeable
consequences.

From the point of view of metastability, the main new feature is that now the
saddle points form Gauber dynamics have to be replaced by ‘plateaus’: there is a set
of critical configurations where a “critical droplet” has been formed and a free particle
has entered the box at the boundary. The droplet will become supercritical if this new
particle attaches itself to the droplet. Therefore, in the computation of the capacities,
the probability that a simple random walker starting at the boundary of a box � will
reach some set in the interior before exiting will play a crucial rôle and will in fact
modify the prefactor of the nucleation time in a � and dimension dependent way.
Results analogous to those described in Section 7 have been obtained for Kawasaki
dynamics in [8].
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8. Applications 2. Diffusion processes

In the preceding sections we have explained our approach in the context of discrete
Markov chains. A natural challenge was the extension of the methods to the classical
examples of the theory of Freidlin and Wentzell, at least in the reversible case, and to
consider stochastic differential equations of the type

dXε(t) = −∇F(Xε(t))dt +
√

2εdW(t) (8.1)

on a domain in Rd , whereW is a d-dimensional Brownian motion, and F a potential
function (that shall satisfy suitable smoothness and boundary conditions). Note that
this process is reversible with respect to the measure Q(dx) ≡ exp(−F(x)/ε)dx.

The difficulties to overcome in this case is that, in dimension greater than 1, the
process will not hit given points in finite time, and thus Definition 4.1 cannot be used.
A viable alternative turns out to be:

Definition 8.1. Consider a diffusion process on a set � ⊂ Rd . The processes Xt is
ρ-metastable with respect to the set of points M ⊂ � if

supx∈M cap (Bε(x),M\x) /Q (Bε(x))
infz∈� cap (Bε(z),∪x∈M(Bε(x)) /Q ((Bε(z)))

≤ ρ � 1, (8.2)

where Bε(x) denotes the Euclidean ball of radius ε around x.

Note that, if F has finitely many local minima, one may chose the M as the set of
local minima and ρ = exp(−c/ε) for some F -dependent constant a.

This definition works, and in fact most of the approach of the discrete setting can be
carried over to the diffusion case due to a-priori estimates on regularity properties of
harmonic functions with respect to the generator of this process, which is the elliptic
operator

−Lε ≡ −ε�− ∇F(x) · ∇. (8.3)

Elliptic regularity theory for local solutions of equation Lεh = f implies that these
tend to be Hölder continuous with constants those dependence on the small parameter
can be controlled; typically they imply that the oscillation of such functions over balls
of size ε is bounded by some positive power of ε.

The estimates of capacities in the diffusion setup are again rather easily performed,
and one obtains rigorous estimates of the prefactor of exit times from metastable sets as
well as sharp asymptotics of the set of exponentially small eigenvalues associated with
the local minima of F , under some non-degeneracy conditions (degenerate cases can
in principle also be treated, but require special case by case analysis). The following
result was proven in [6]:
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Theorem 8.2. Let xi be a minimum of F and let D be any closed subset of Rd such
that:

(i) IfMi ≡ {y1, . . . , yk} ⊂ M enumerates all those minima ofF such thatF(yj ) ≤
F(xi), then ∪kj=1Bε(yj ) ⊂ D, and

(ii) dist (S(xi,Mi),D) ≥ δ > 0 for some δ independent of ε. Then

Exi τD = 2πe[F(z∗)−F(xj )]/ε√
det(∇2F(xi))

|λ∗
1(z

∗)|√
| det(∇2F(z∗))|

(
1 +O(

√
ε| ln ε|)) . (8.4)

Here z∗ denotes the “minimal saddle point” between xi and the set D (assumed
unique), andλi(z∗)denote the eigenvalues of the Hessian matrix of ∇2F(z∗) (assumed
non-degenerate), λ1(z

∗) being the unique negative one.
The following result on the small eigenvalues of Lε is taken form [7]:

Theorem 8.3. Assume that F has n local minima, x1, . . . , xn and that for some θ > 0
the minima xi of F can be labeled in such a way that, with Mk ≡ {x1, . . . , xk} and
M0 ≡ �c,

F(z∗(xk,Mk−1))− F(xk) ≤ min
i<k

(
F(z∗(xi,Mk\xi))− F(xi)

) − θ (8.5)

holds for all k = 1, . . . , n. We will set Bi ≡ Bε(xi) and Sk ≡ ⋃k
i=1 Bi , and

hk(y) ≡ hBk,Sk−1(y). Assume moreover that all saddle points z∗(xk,Mk−1) are
unique, and that the Hessian of F is non-degenerate at all these saddle points and
at all local minima. Then there exists δ > 0 such that the n exponentially small
eigenvalues λ1 < λ2 < · · · < λn of Lε satisfy

λ1 = 0, (8.6)

and for k = 2, . . . , n,

λk = capBk (Sk−1)

‖hk‖2
2

(1 +O(e−δ/ε))

= 1

Exk τSk−1

(1 +O(e−δ/ε)) (8.7)

= |λ∗
1(z

∗(xk,Mk−1))|
2π

√
det(∇2F(xk))

| det(∇2F(z∗(xk,Mk−1)))|e
−[F(z∗(xk,Mk−1))−F(xk)]/ε

× (
1 +O(ε1/2| ln ε|))

where λ∗
1(z

∗) denotes the unique negative eigenvalue of the Hessian ofF at the saddle
point z∗.
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Remark 8.4. After the results of [7] appeared, Helffer and Nier [19] reconsidered
earlier work of Helffer and Sjösstrand concerning spectral asymptotics of Schrödinger
operators with multi-well potentials. In two papers [18], [20] they showed that using
the so-called Witten complex, it is possible to derive similar spectral results and even
extend them to complete asymptotic expansions, providedF is assumed smooth. This
is an interesting alternative approach, that for the time being has the disadvantage to
be limited to the diffusion setting.

9. Challenges

The main challenges to the approach to metastability outlined in this talk are models in
very high, respectively infinite, dimensions. The most interesting examples here are
stochastic dynamics of spin systems beyond the low-temperature regime and in large
or infinite volume. There are two major difficulties that present themselves. The first
one is the estimation of capacities, and more precisely the lower bounds. The second
problem is that of proving some a priori regularity properties, similar to the case of
diffusion processes. Both issues seem at the moment quite open and will probably
require the analysis of model problems. If these problems can be understood, we
would feel that metastability is rather well understood in the context of reversible
Markov processes. An altogether different and wide open issue is metastability in
non-reversible systems. Here, the theory of Freidlin and Wentzell remains the only
generally applicable tool, and finding ways to get estimates of higher precision than
those obtainable from large deviation theory remains, at least in general, unsolved.

References

[1] Alonso, L., and Cerf, R., The three-dimensional polyominoes of minimal area. Electron.
J. Combin. 3 (1996), Research Paper 27 (electronic).

[2] Bovier, A., Metastability and ageing in stochastic dynamics. In Dynamics and random-
ness II (A. Maas, S. Martínez, J. San Martin, eds.), Nonlinear Phenomena and Complex
Systems 10, Kluwer Academic Publishers, Dordrecht 2004, 17–80.

[3] Bovier, A., Eckhoff, M., Gayrard, V., and Klein, M., Metastability in stochastic dynamics
of disordered mean-field models. Probab. Theory Related Fields 119 (2001), 99–161.

[4] Bovier, A., Manzo, F., Metastability in Glauber dynamics in the low-temperature limit:
beyond exponential asymptotics. J. Statist. Phys. 107 (2002), 757–779.

[5] Bovier, A., Eckhoff, M., Gayrard, V., and Klein, M., Metastability and low lying spectra in
reversible Markov chains. Comm. Math. Phys. 228 (2002), 219–255.

[6] Bovier, A., Eckhoff, M., Gayrard, V., and Klein, M., Metastability in reversible diffusion
processes. I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. (JEMS) 6
(2004), 399–424.

[7] Bovier, A., Gayrard, V., and Klein, M., Metastability in reversible diffusion processes. II.
Precise asymptotics for small eigenvalues. J. Eur. Math. Soc. (JEMS) 7 (2005), 69–99.



Metastability: a potential theoretic approach 517

[8] Bovier, A., den Hollander, F., and Nardi, F. R., Sharp asymptotics for Kawasaki dynamics
on a finite box with open boundary conditions. Probab. Theor. Rel. Fields. 135 (2) (2006),
265–310 .

[9] Ben Arous, G., and Cerf, R., Metastability of the three-dimensional Ising model on a torus
at very low temperatures. Electron. J. Probab. 1 (1996), 55 pp. (electronic).

[10] Catoni, O., and Cerf, R., The exit path of a Markov chain with rare transitions. ESAIM
Probab. Statist. 1 (1995/97), 95–144 (electronic).

[11] Davies, E. B., Metastable states of symmetric Markov semigroups. I. Proc. Lond. Math.
Soc. (3) 45 (1982), 133–150 .

[12] Davies, E. B., Metastable states of symmetric Markov semigroups. II. J. Lond. Math.
Soc. (2) 26 (1982), 541–556.

[13] Davies, E. B., Spectral properties of metastable Markov semigroups. J. Funct. Anal. 52
(1983), 315–329.

[14] Doyle, P. G., and Snell, J. L., Random walks and electrical networks. Carus Mathematical
Monographs 22, Mathematical Association of America, Washington, DC, 1984.

[15] Eyring, H., The activated complex in chemical reactions. J. Chem. Phys. 3 (1935), 107–115.

[16] Freidlin, M. I., and Wentzell, A. D., Random perturbations of dynamical systems. Second
edition, Grundlehren Math. Wiss. 260, Springer-Verlag, New York 1998.

[17] Gaveau, B., and Schulman, L. S., Theory of nonequilibrium first-order phase transitions
for stochastic dynamics. J. Math. Phys. 39 (1998), 1517–1533.

[18] Helffer, B., Klein, M., and Nier, F., Quantitative analysis of metastability in reversible
diffusion processes via a Witten complex approach. Mat. Contemp. 26 (2004), 41–85.

[19] Helffer, B., and Nier, F., Hypoelliptic estimates and spectral theory for Fokker-Planck
operators and Witten Laplacians, Lecture Notes in Math. 1862, Springer-Verlag, Berlin
2005.

[20] Helffer, B., and Nier, F., Quantitative analysis of metastability in reversible diffusion pro-
cesses via a Witten complex approach. The case with boundary. Preprint 04-40 IRMAR,
Université de Rennes I, 2004.

[21] den Hollander, F., Olivieri, E., and Scoppola, E., Metastability and nucleation for conser-
vative dynamics. Probabilistic techniques in equilibrium and non-equilibrium statistical
physics. J. Math. Phys. 41 (2000), 1424–1498.

[22] den Hollander, F., Nardi, F. R., Olivieri, E., and Scoppola, E., Droplet growth for three-
dimensional Kawasaki dynamics. Probab. Theory Related Fields 125 (2003), 153–194.

[23] den Hollander, F., Metastability under stochastic dynamics. Stochastic Process. Appl. 114
(2004), 1–26.

[24] Holley, R. A., Kusuoka, S., and Stroock, W.S., Asymptotics of the spectral gap with appli-
cations to the theory of simulated annealing. J. Funct. Anal. 83 (1989), 333–347.

[25] Huisinga, W., Meyn, S., and Schütte, Ch., Phase transitions and metastability for Markovian
and molecular systems. Ann. Appl. Probab. 14 (2004), 419–458.

[26] Kramers, H. A., Brownian motion in a field of force and the diffusion model of chemical
reactions. Physica 7 (1949), 284–304.

[27] Maier, R. S. and Stein, D. L., Limiting exit location distributions in the stochastic exit
problem. SIAM J. Appl. Math. 57 (1997), 752–79.



518 Anton Bovier

[28] Martinelli, F., On the kinetic Ising model below the critical temperature. In XIIIth Inter-
national Congress on Mathematical Physics (London, 2000), International Press, Boston,
MA, 2001, 297–301.

[29] Martinelli, F., Relaxation times of Markov chains in statistical mechanics and combinatorial
structures. In Probability on discrete structures, Encyclopaedia Math. Sci. 110, Springer-
Verlag, Berlin 2004, 175–262.

[30] Mathieu, P., Spectra, exit times, and long times asymptotics in the zero white noise limit.
Stoch. Stoch. Rep. 55 (1995), 1–20.

[31] Miclo, L., Comportement de spectres d’opérateurs de Schrödinger à basse température.
Bull. Sci. Math. 119 (1995), 529–553.

[32] Neves, E. J., and Schonmann, R. H., Critical droplets and metastability for a Glauber
dynamics at very low temperature. Commun. Math. Phys. 137 (1991), 209–230.

[33] Olivieri, E., and Scoppola, E., Markov chains with exponentially small transition proba-
bilities: first exit problem from a general domain. I. The reversible case. J. Statist. Phys.
79 (1995), 613–647.

[34] Olivieri, E., and Scoppola, E., Markov chains with exponentially small transition proba-
bilities: first exit problem from a general domain. II. The general case. J. Statist. Phys. 84
(1996), 987–1041.

[35] Olivieri, E., and Vares, M. E., Large deviations and metastability. Encyclopedia of Math-
ematics and its Applications 100, Cambridge University Press, Cambridge 2005.

Weierstrass-Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, 10117 Berlin,
and
Mathematics Institute, Technical University Berlin, Strasse des 17. Juni 136, 10623 Berlin,
Germany
E-mail: bovier@wias-berlin.de



On Ising droplets

Raphaël Cerf

Abstract. One of the fundamental goals of statistical mechanics is to understand the macroscopic
effects induced by the random forces acting at the microscopic level. Some satisfactory results
are now available for the Ising model at equilibrium in the phase coexistence regime in any
dimension: it is rigorously proved that the most likely shapes of the macroscopic droplets of one
pure phase floating in the other pure phase are close to the Wulff crystal of the model. However,
the dynamical processes leading to the emergence of a droplet are far from being understood. We
formulate a classical conjecture: the scaling limit of the Glauber microscopic dynamics should
be an anisotropic motion by mean curvature.

Mathematics Subject Classification (2000). Primary 82B20; Secondary 82C20.

Keywords. Ising model, Wulff crystal, Glauber dynamics, mean curvature motion.

1. Water and oil

Let us consider a volume of water in absence of gravity at ordinary temperature. We
start to pour a very small quantity of oil into the water. First, nothing noticeable
happens on the macroscopic scale, i.e., the oil is perfectly dissolved throughout the
water and the oil molecules are homogeneously spread within the water: by observing
the liquid at the macroscopic level, we cannot even tell that it is a mixture of two distinct
types of particles, which nevertheless have the tendency to repel each other. Let us
keep pouring oil into the water. We know that the solubility of oil in water is not
infinite; at some density threshold (which increases with the temperature), we obtain
a solution of water saturated with oil. This solution is still a pure phase, completely
homogeneous on the macroscopic level, and it realizes a perfect tradeoff between
entropy and energy; we call it the water phase. Let us pour in some more oil. The
excess of oil is not dissolved any more and it precipitates: macroscopic droplets of
oil emerge. These droplets are not regions where there are only oil molecules, rather
in these regions we observe the symmetric pure phase consisting of oil saturated with
water, which we call the oil phase. The droplets are delimited by an abrupt change of
the local density of water and oil molecules. We wish to understand the law governing
the evolution and the shapes of these droplets.

The classical phenomenological theory asserts the existence of a macroscopic
surface free energy � and that the droplets evolve so as to minimize � . For instance,
at equilibrium, in case � is isotropic, one observes a unique spherical droplet of the
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oil phase floating in the sea of the water phase. Our aim is to confirm the predictions
of the phenomenological theory starting from a truly microscopic model. We wish
to understand how the random forces acting at the atomic level, more precisely the
probabilistic repulsive effect between the two types of particles, can induce such
deterministic macroscopic effects. One of the most famous results in probability
theory is the law of large numbers: If (Xn)n∈N is a sequence of independent identically
distributed random variables with mean m, then, with probability one,

lim
n→∞

1
n
(X1 + · · · +Xn) = m.

What we have in mind is a generalization of the law of large numbers, but in a
fundamentally new context, which we could state informally as follows:

lim
number of particles→∞

(
global effect of the random

microscopic repulsive forces

)
= single droplet.

The limiting deterministic object is the shape of the droplet at equilibrium and the
problem is intrinsically geometric; we deal with spatially dependent random variables
and we leave radically and definitively the independent framework. Hence the ge-
ometry enters the problem in a decisive way, in the random interactions and in the
formulation of the result itself.

Let us try to set up a simple model of our experiment with water and oil. A con-
venient choice is a lattice model: each site of the lattice is occupied either by a water
particle or by an oil particle, which we indicate respectively by + or −. The inter-
action between different particles is repulsive and occurs when the substances are
in immediate contact. Hence a repulsive nearest neighbour interaction is a sensible
choice. Since we focus only on the repulsive interaction between different molecules,
we can assume that the two substances are symmetric and that their self-interactions
are of equal magnitude, or equivalently, equal to zero. We do not assume that the
self-interactions between two particles of the same type are negligible compared to
the repulsive effect; rather, we say that because of the symmetry, the global effect
of the self-interactions cancels out. Thus the total energy of a configuration should
be simply the number of all nearest neighbour pairs with different signs. We end up
exactly with the Hamiltonian of the famous Ising model (to be defined precisely in the
next section). In our experiment the density of oil is fixed, therefore we have a con-
straint on the possible configurations: the proportion of pluses and minuses has to be
fixed. This situation amounts to considering the Ising model with plus boundary con-
ditions (guaranteeing the water dominance) conditioned on the event that the average
magnetization is equal to a fixed value smaller than the spontaneous magnetization at
the given temperature.
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2. Definition of the Ising model

For reasons of technical simplicity, it is easier to build our model on a lattice. We will
work with the lattice Z

d ; each site of the lattice is occupied by one of the two types of
particles that we denote by − and +. Let � ⊂ Z

d be a cubic box. A configuration in
� is a map σ : �→ {−,+} and for x ∈ �, we denote by σ(x) the type of the particle
present at x. The energy or Hamiltonian H�(σ) of the configuration σ in � is, up to a
constant, twice the number of interfaces between the minuses and the pluses, that is,

H�(σ) = −1
2

∑
x,y∈�
|x−y|=1

σ(x)σ (y) = −
∑
{x,y}∈�2
|x−y|=1

σ(x)σ (y).

We use the standard rules to multiply signs: ++ = −− = +, −+ = +− = −. The
first sum is above ordered pairs (whence the factor 1/2) while the second is above
unordered pairs. We need also a mechanism to ensure the dominance of one type
of particles. This is achieved through boundary conditions. We consider only two
types of boundary conditions, by putting either a layer of pluses or of minuses around
the box �. The energy or Hamiltonian H ∗�(σ) with boundary conditions ∗ (where ∗
stands for− or+) is defined as above for the configurations σ such that σ(x) = ∗ for
all the sites x in � which are at a distance less than or equal to 1 from the complement
of � and H ∗�(σ) = +∞ otherwise. Next we add some randomness in the model. Let
T > 0 be the temperature. We build a probability law on the space {−,+}� of the
configurations. This space is huge but finite, hence to define the law we need to specify
the individual probability of each possible configuration. The natural way to do this
is to use the Boltzmann factor. So, the Gibbs measure μ∗�,T in � at temperature T

with boundary conditions ∗ is given by

μ∗�,T (σ ) = 1
Z∗�,T

exp−H ∗�(σ)

T
for all σ ∈ {−,+}�,

where the normalizing factor Z∗�,T , called the partition function, is equal to

Z∗�,T =
∑

σ∈{−,+}�
exp−H ∗�(σ)

T
.

Whenever the superscript ∗ is absent, the boundary conditions are not specified and
we have the Ising Gibbs measure μ�,T with free boundary conditions, associated to
the Hamiltonian H�. Let us take a closer look at this formula. The elements �, T ,
∗ ∈ {−,+} being fixed, the most likely configurations are those having a small energy,
i.e., those for which the contacts between the minuses and the pluses are reduced. Thus
we have built a complex probability law with strong spatial correlations. We shall
next play a bit with the elements controlling the Gibbs measures μ±�,T in order to get
some feeling for their influence.
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First asymptotics. Imagine that we fix the box � and that we set the boundary
conditions to +. If we send T to 0, then the measure μ+�,T concentrates on the
configuration which realizes the global minimum of the Hamiltonian H+� , in this case
the configuration where all the sites are pluses. On the contrary, if we send T to∞,
the value of the Hamiltonian becomes irrelevant and μ+�,T converges towards the
Bernoulli product law where all the sites are independent. The case of μ−�,T being
symmetric, we see that

Dirac mass at “all pluses” ←−−−− μ+�,T −−−−→ i.i.d. Bernoulli
T

⏐� 0 T
�⏐∞

Dirac mass at “all minuses” ←−−−− μ−�,T −−−−→ i.i.d. Bernoulli

Something remarkable has already happened: as T ↑ ∞, the boundary conditions are
forgotten, while as T ↓ 0, they completely determine the limit. However, we wish to
work at a fixed positive temperature T . In order to observe a sharp mathematical phe-
nomenon, we consider another kind of limit, namely the thermodynamic limit where
the number of particles goes to infinity. This is achieved by letting the box � grow
and invade the whole lattice Z

d . As � increases to Z
d , the expectation μ+�,T (σ (0))

decreases and converges towards a limiting quantity m∗(T ):

lim
�↑Zd

μ+�,T (σ (0)) = m∗(T ) = − lim
�↑Zd

μ−�,T (σ (0)).

Here is a heuristic explanation for this monotone convergence. Let us consider a huge
box � and the site at the center of the box �. With free boundary conditions, the law
of σ(0) under μ�,T is symmetric, hence it is the one of a fair coin, i.e.,

μ�,T (σ (0) = +) = 1/2 = μ�,T (σ (0) = −).

If we put + boundary conditions, these boundary conditions start to influence posi-
tively the sites at distance 1 from the boundary of the box, which themselves influence
the sites at distance 2 from the boundary. This effect propagates and reaches the origin,
so that the law of σ(0) under μ+�,T is slightly biased towards +:

μ+�,T (σ (0) = +) > 1/2 > μ+�,T (σ (0) = −).

The larger the box � is, the smaller is the resulting effect at the origin, hence the
influence of the boundary conditions decreases as the box increases and the following
monotone limit exists:

m∗(T ) = lim
�↑Zd

μ+�,T (σ (0)).

The fundamental and basic question is whether something of the influence of the
boundary conditions still remains after we have sent them to infinity. Equivalently, is
m∗(T ) equal to 0?

The quantity m∗(T ) is called the spontaneous magnetization at temperature T .
This terminology stems from the fact that the Ising model was originally introduced
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as a model of ferromagnetism: under some adequate conditions, a magnet submitted
to the influence of a magnetic field will remember the sign of the field even after it has
disappeared (see [24] and the references therein for a serious physical introduction to
the Ising model).

Phase transition. We say that there is a phase transition at temperatureT ifm∗(T ) > 0.
The first fundamental result concerning the phase transition in the Ising model is the
following.

Theorem 2.1. In any dimension d ≥ 2, there exists a positive and finite critical
temperature Tc(d) such that the Ising model exhibits a phase transition for T < Tc(d)

and it does not for T > Tc(d).

It is also possible to take the thermodynamic limit of the finite volume Gibbs
measure μ+�,T , and not only of the expected value μ+�,T (σ (0)). As � increases
to Z

d , the measure μ+�,T decreases stochastically and converges weakly towards the
infinite volume Gibbs measure μ+T , which is a probability measure on the space of
infinite volume configurations {−,+}Zd

. Similarly, μ−�,T increases weakly towards
a measure μ−T :

lim
�↑Zd

μ−�,T = μ−T , lim
�↑Zd

μ+�,T = μ+T .

The spontaneous magnetization m∗(T ) is equal to the expected value of σ(0) under μ+T
and there is a phase transition at temperature T if and only if μ−T and μ+T are distinct.
In other words, we have

m∗(T ) > 0, μ−T �= μ+T for all T < Tc(d),

whereas for T > Tc(d), we have m∗(T ) = 0 and μ−T = μ+T .

3. The Wulff crystal

We shall mimic mathematically the initial experiment of Section 1 with the help of
the Ising model. Let us consider a box �(n) of diameter n full of pluses. We take n

very large, of the order of the Avogadro number 6.02×1023. We start deleting pluses
and replacing them by minuses, first a small quantity of minuses. It is possible to
build a stochastic dynamics in the box which is conservative (i.e., the total numbers
of minuses and pluses remain unchanged or equivalently the empirical magnetization
n−d

∑
x∈�(n) σ (x) remains constant) and whose final equilibrium is the Gibbs mea-

sure μ+�(n),T conditioned to have the initial fixed magnetization. The simplest such
dynamics is the so-called Kawasaki dynamics: at random exponential times, a pair of
neighbouring particles might be exchanged according to a simple local probabilistic
rule (see Section 4). As long as the empirical magnetization is larger than m∗(T ),
the configuration in �(n) at equilibrium is expected to be spatially homogeneous. If



524 Raphaël Cerf

we keep pouring minuses into the box and removing pluses, we soon reach the value
m∗(T ), and at this point we obtain the saturated pure phase μ+T , i.e., the configuration
in �(n) looks like a finite sample of the infinite volume Gibbs measure μ+T . We finally
add some more minuses and we cross the threshold m∗(T ). We wish to understand
the response of the system and the most likely configurations inside the box when
there is an excess of minuses.

It turns out that this simple model indeed confirms the prediction of the phe-
nomenological theory. At equilibrium, with probability tending to 1 as n goes to∞,
a region emerges inside the box �(n) where the configuration statistically looks like
the minus phase μ−T , surrounded by a region filled with the plus phase μ+T . When
rescaled by a factor n, the shape of this region converges as n goes to∞ towards a
deterministic shape, called the Wulff crystal of the Ising model. This crystal is convex,
it depends on the temperature and on the initial lattice Z

d ; it bears the name of Wulff,
who studied it one century ago [33].

In order to detect conveniently the Wulff region, we rescale the box �(n) by a
factor n and we send it onto the d-dimensional unit cube [−1/2, 1/2]d . Let σ be
a spin configuration in �(n). To σ we associate a measure σn on [−1/2, 1/2]d by
setting

σn = 1
nd

∑
x∈�(n)

σ (x) δx/n

where δx/n is the Dirac mass at x/n. We call σn the empirical magnetization. The
expectation bn of σn is

bn = 1
nd+1

∑
x∈�(n)

σ (x)x.

We denote by Ld or simply by dx the d-dimensional Lebesgue measure.

Theorem 3.1. Let d ≥ 2 and let T < Tc(d). There exists a bounded, closed, convex
set W containing 0 in its interior, called the Wulff crystal of the Ising model such that
the following holds.

Let m < m∗ be close enough to m∗ so that the rescaled Wulff crystal

W(m) =
(

m∗ −m

2m∗
)1/d W

Ld(W)1/d

fits into the unit cube [−1/2, 1/2]d . Let wn be the random measure defined by

wn(x) dx =
(

1[−1/2,1/2]d (x)− 2 · 1W(m)

( bn

m∗ −m
+ x

))
m∗ dx.

This is the measure having density −m∗ on −bn/(m
∗ −m) +W(m) and m∗ on the

complement. Under the conditional probability

μn(·) = μ+�(n),T

(
·
∣∣∣ 1
nd

∑
x∈�(n)

σ (x) ≤ m
)
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the difference between the random measures σn and wn converges weakly in proba-
bility towards 0, i.e., for any continuous function f : [−1/2, 1/2]d → R,

lim
n→∞ μn

(|σn(f )− wn(f )| ≥ ε
) = 0 for all ε > 0.

The probabilities of the deviations are of order exp−cnd−1.

The last sentence of the theorem means the following. For any continuous function
f : [−1/2, 1/2]d → R, any ε > 0, there exist positive constants b, c depending on d,
T , f , ε such that

μn

(∣∣∣ 1
nd

∑
x∈�(n)

σ (x) f
(x

n

)
+

∫
W(m)

2m∗f
(
− bn

m∗ −m
+ x

)
dx

−
∫
[−1/2,1/2]d

m∗f (x) dx

∣∣∣ > ε
)
≤ b exp(−cnd−1).

The main assertion of the theorem is that the left-hand quantity goes to 0 for any
continuous function f and ε > 0. The objects appearing in the statement, namely
the spontaneous magnetization m∗ and the Wulff crystal W , are built as the thermo-
dynamic limit of finite volume quantities. These objects can equivalently be defined
with the help of the infinite volume Gibbs measure μ+T .

Simulation of the Ising Wulff crystal at T = 2.26 after 69 days on a 1 Ghz PC.
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Theorem 3.1 in dimension 2 is a consequence of the much finer results of Do-
brushin, Kotecký, Shlosman [23] and Pfister [29] for low temperatures and Ioffe and
Schonmann [25] for all subcritical temperatures. In dimensions 3 and higher, they
were proven by Bodineau [7] for low temperatures and by Cerf and Pisztora [17] until
the slab percolation threshold for temperatures such that the associated infinite volume
FK measure is unique. Recently, Bodineau proved that this slab percolation threshold
coincides with the true critical point [8] and that for any subcritical temperature, the
associated infinite volume FK measure is indeed unique [9].

In two dimensions the Wulff droplet can be identified with a random region sur-
rounded by a minus spin cluster. Its external boundary is therefore a large contour
separating plus and minus spins which follows closely the boundary of the Wulff
crystal in the sense of the Hausdorff metric [23], [25]. In dimension d ≥ 3, it is
widely believed that for low temperatures, the Wulff droplet can still be defined by
a microscopic contour. However for temperatures close to Tc, a fundamentally new
situation is expected. The dominant minus spin cluster of the Wulff droplet should
percolate all the way to the boundary of the box. More precisely, there should exist
two big spin clusters, one of pluses and one of minuses, and they should both be
omnipresent in the entire box; the densities of these clusters should undergo an abrupt
change at the boundary of the Wulff droplet. In this case the phase boundaries cannot
be described directly with contours.

Let us mention the most recent works on the Wulff crystal. The low temperature
expansion of the 3D Wulff crystal is computed in [14]. Alexander succeeded recently
in deriving cube root fluctuations of the random curve around the Wulff crystal in
the FK model in two dimensions [1], [4]. Couronné and Messikh provide a two
dimensional version of Pisztora’s coarse graining estimates [22]. Messikh analyzes
the phase coexistence phenomenon in the 2D Ising model close to criticality: the
Wulff crystal then becomes a circle [16], [27] (see also [28] for an application to image
segmentation). Couronné has shown that the statistical repartition of the large finite
clusters in the FK percolation model can be approximated by a Poisson process [21].
He has also studied the Wulff crystal for oriented percolation in dimension d ≥ 3 [20].
In this model, the Wulff crystal has a singular point. Bodineau, Schonmann and
Shlosman investigate the question of the flatness of the Wulff crystal [12]. Biskup,
Chayes and Kotecky study the formation/dissolution of equilibrium droplets in the
context of the 2D Ising model [5] and they derive the Gibbs–Thomson formula in
the droplet formation regime [6]. Alexander, Biskup and Chayes devise an Ising-
based model of a solvent-solute system [2], [3] and they study the associated phase
separation phenomenon. The book [13] contains the proof of Theorem 3.1 and the
corresponding statements in percolation.

The Wulff construction. The Wulff crystal W appearing in Theorem 3.1 can be
defined constructively. First we define the surface tension of the Ising model as
follows. Let ν ∈ Sd−1 be a unit vector in R

d and let A be a unit hypersquare
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orthogonal to ν. Let Dn be the cylinder

Dn = {na + tν : a ∈ A, |t | ≤ n}.
The set Dn \nA has two connected components, which we denote by Cn

1 and Cn
2 . For

i = 1, 2 and n ∈ N, let An
i be the set of the points of Cn

i ∩ Z
d which have a nearest

neighbour in Z
d \Dn:

An
i = {x ∈ Cn

i ∩ Z
d : there exists y ∈ Z

d \Dn such that |x − y| = 1}.
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The Ising Hamiltonian in Dn is

Hn(σ) = −1
2

∑
x,y∈Dn|x−y|=1

σ(x)σ (y) for all σ ∈ {−,+}Dn.

Let En be the set of the spin configurations σ inside Dn such that σ(x) = + for
x ∈ An

1 ∪ An
2. Let Fn be the set of the spin configurations σ inside Dn such that

σ(x) = − for x ∈ An
1 and σ(x) = + for x ∈ An

2. The partition functions Z+n , Z
−,+
n

corresponding to pure + and mixed −,+ boundary conditions at temperature T are

Z+n =
∑
σ∈En

exp−Hn(σ)

T
, Z−,+

n =
∑
σ∈Fn

exp−Hn(σ)

T
.

Let T > 0. The limit

τ(ν) = lim
n→∞−

1
nd−1 ln

Z
−,+
n

Z+n
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exists in [0,∞]. The function τ is called the surface tension of the Ising model. It
satisfies the weak simplex inequality, it is continuous and invariant under the isome-
tries which leave Z

d invariant. Moreover τ is positive in the regime T < Tc. The
Wulff crystal W appearing in Theorem 3.1 is the Wulff shape associated to the surface
tension τ , called also the crystal of τ , defined by

W = {x ∈ R
d : x · w ≤ τ(w) for all w in Sd−1}.

Large deviations. The way to prove Theorem 3.1 is rather long. The key is the
analysis of the deviations of the average magnetization from its typical value. We
have first a weak law of large numbers:

lim
n→∞μ+�(n),T

( 1

nd

∑
x∈�(n)

σ (x)
)
= m∗(T ) for all T > 0.

The large deviations from above are similar in nature to what happens for a sum of
independent identically distributed random variables.

Theorem 3.2. Let d ≥ 2 and let T > 0. For any α ∈ [−1, 1], the limit

J (α) = lim
n→∞ −

1
nd

ln μ+�(n),T

( 1
nd

∑
x∈�(n)

σ (x) ≥ α
)

exists and is finite. The map α ∈ [−1, 1] �→ J (α) ∈ R
+ is convex continuous. It

vanishes on [−1, m∗(T )] and it is strictly positive on ]m∗(T ), 1].
The deviations from above are of volume order. The function J appearing in

Theorem 3.2 vanishes on [0, m∗[ because on this interval the large deviations are
of surface order. As we are in the phase coexistence regime, a new large deviation
principle on the surface scale emerges.

Theorem 3.3. Let d ≥ 2 and let T < Tc(d). For m < m∗ close enough to m∗, so
that the rescaled Wulff crystal W(m) fits into the unit cube [−1/2, 1/2]d , we have

lim
n→∞

1

nd−1 ln μ+�(n),T

( 1

nd

∑
x∈�(n)

σ (x) ≤ m
)
= −d

(
m∗ −m

2m∗
)d−1

d Ld(W)
1
d .

Theorems 3.2 and 3.3 provide a complete picture of the large deviation behavior
of the average magnetization. The emergence of a droplet is responsible for the
asymptotic formula of Theorem 3.3. The full proofs of Theorems 3.2 and 3.3 can be
found in the book [13].
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4. Dynamics

Another very interesting topic is of course the dynamics. One should try to understand
the dynamical mechanism leading to the creation of a Wulff crystal. It is naturally
expected that several reasonable choices of microscopic dynamics induce the macro-
scopic dynamics associated to the motion by mean curvature. For instance it seems
to be the case for the non-conservative Glauber dynamics, which is relevant for the
beautiful theory of metastability (see [30], [31]). However the full understanding of
these dynamics seems currently out of reach and only partial results are available [11],
[15], [18], [19], [26], [32].

Phase separation under the Glauber dynamics at T = 2.1.

Let d ≥ 2 and let � ⊂ Z
d be a cubic box. We wish to build a stochastic dy-

namics on the configuration space {−,+}� which models the microscopic repulsive
forces between the particles. The interaction being microscopic, only one site or two
neighbouring sites can be altered at each step. For σ : �→ {−,+} and x ∈ �, we
denote

S(σ, x) =
∑

y:|x−y|=1

σ(y)

the sum of the spins of the neighbours of x.
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Let T > 0 be a positive temperature. We consider two dynamics, which are built
as discrete time Markov chains (σ (k))k≥0 with state space {−,+}�. We describe
next the transition mechanisms of each dynamics.

Glauber dynamics. We suppose that σ(k) is known and we explain how to build
σ(k+1). We first choose a site x ∈ � randomly with the uniform law on �. We then
compute 	 = 2σ(k, x)S(σ (k), x).

• If 	 < 0, we flip the spin at x.

• If 	 ≥ 0, we flip the spin at x with probability exp−(	/T ).

With the Glauber dynamics, at most one spin is changed at each time step.

Kawasaki dynamics. We suppose that σ(k) is known and we explain how to build
σ(k + 1). We first choose two neighbouring sites x, y ∈ � randomly with the
uniform law on the pairs of neighbours in �. We then compute 	 = (σ (k, x) −
σ(k, y))(S(σ (k), x)− S(σ(k), y)).

• If 	 < 0, we exchange the spins of the sites at x and y.

• If 	 ≥ 0, we exchange the spins of x and y with probability exp−(	/T ).

With the Kawasaki dynamics, at most two spins are changed at each time step.

A fundamental problem is to understand the scaling limits of these dynamics. For
the Glauber dynamics, the adequate scaling is expected to converge to an anisotropic
motion by mean curvature. More precisely, to the Markov chain (σ (k))k≥0 we as-
sociate a process (σn(t))t≥0 taking its values in the space of the Borel measures
on [−1/2, 1/2]d by setting

σn(t) = 1
nd

∑
x∈�(n)

σ (�n2t�, x) δx/n for all t > 0,

where δx/n is the Dirac mass at x/n. We call σn(t) the stochastic empirical magneti-
zation.

Let A be a subset of [−1/2, 1/2]d having smooth boundary. We take as initial
condition at step n the configuration defined by

σ(0, x) = 1− 2 · 1nA(x) for all x ∈ Z
d .

Let μ be a function defined on the unit sphere Sd−1 of R
d with values in R

+. Let
(A(t))t≥0 be the anisotropic mean curvature motion starting from A associated to the
function μ, that is the solution (in some weak sense) of the equation:

v(x) = −μ(ν(x)) κ(x) ν(x) for all t > 0, x ∈ ∂A(t),
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where v(x) is the speed at x, ν(x) is the normal vector to A(t) at x and κ(x) is the
curvature of A(t) at x. Let (w(t, x) dx)t≥0 be the measure valued process defined by

w(t, x) dx = m∗
(
1− 2 · 1A(t)(x)

)
dx for all t ≥ 0.

The big conjecture is that there exists a function μ : Sd−1 → R
+ such that the

stochastic empirical magnetization σn(t) converges weakly to the anisotropic mean
curvature motion associated to μ: there exists T > 0 such that, for any continuous
function f : [−1/2, 1/2]d → R,

lim
n→∞ P

(|σn(t)(f )− wn(t)(f )| ≥ ε
) = 0 for all t ∈ [0, T ], ε > 0.

We are still very far from the proof of such a result. In the two dimensional case at
zero temperature, some specific computations [15], [32] show that, if this conjecture
is correct, then the function μ governing the anisotropic motion by mean curvature
must be equal to

μ(x) = 1
2(| cos θ | + | sin θ |)2 ,

where θ is the angle between the horizontal axis and the tangent to the boundary
at x. The scaling limit of the conservative Kawasaki dynamics seems even more
challenging to understand.

Evolution of a square droplet under Glauber dynamics at T = 2.1.
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Simple random covering, disconnection, late and favorite
points

Amir Dembo

Abstract. We review recent advances in the study of the fractal nature of certain random sets,
the key to which is a multi-scale truncated second moment method. We focus on some of the fine
properties of the sample path of the most basic stochastic processes such as the simple random
walk and the Brownian motion. As we shall see, probability on trees inspires many of our proofs,
with trees used to model the relevant correlation structure. Along the way we also mention a few
open problems.

Mathematics Subject Classification (2000). Primary 60J15; Secondary 28A80, 60G17, 60J65,
82C41.

Keywords. Random walk, Brownian motion, Gaussian free field, cover time, late points, favorite
points, thick points, multi-fractal analysis, disconnection, intersection local time.

1. Introduction

The simple random walk (srw) on a graph G = (V , E) of finite degrees tracks the
movement on the set V of vertices by a particle which at each time step jumps with
equal probability to any one of the nearest neighbors of its current position, inde-
pendently of all previous positions. In particular, the srw on Z

d is a fundamental
object in probability theory. More than forty years ago, Erdős and Taylor posed in
[ET60] the following problem about the srw on Z

2: What is the maximal number
of visits by the walk to one lattice site during its first n steps? More formally, de-
note by Ln(x) the number of visits to x by the srw during its first n steps, and set
L∗

n := maxx∈Z2 Ln(x). Then, it was conjectured in [ET60, (3.11)] and proved in
[DPRZ01] that with probability one,

lim
n→∞

L∗
n

(log n)2 = 1

π
. (1.1)

As illustrated in Section 3, the key to proving (1.1) is a multi-scale truncated second
moment method, inspired by the study of the corresponding problem for srw on finite,
regular trees. As detailed in Section 2, the same approach provides information about
the location in Z

2 where L∗
n is attained, the number of sites x ∈ Z

2 for which Ln(x)

is exceptionally large, and the fractal dimension of the corresponding object for the
sample path of the planar Brownian motion.

Proceedings of the International Congress
of Mathematicians, Madrid, Spain, 2006
© 2006 European Mathematical Society
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The cover time CG for a srw on a finite graph G is the number of steps till the walk
has visited all sites of G at least once. It has been studied intensively by probabilists,
statistical physicists, combinatorialists and computer scientists (e.g. [Ald89], [Bro90],
[BH91], [NCF91], [MP94]). In particular, the srw on a finite graph is a time-reversible
Markov chain and the asymptotics of CG is an important aspect of the general theory
of reversible Markov chains, see [AF01]. The problem of determining the asymptotics
of the cover time Cn := CZ2

n
for the two dimensional lattice torus Z

2
n = Z

2/nZ
2 of

side length n was posed by Wilf, see [Wil89], and more formally by Aldous, who
conjectured in [Ald89] that

lim
n→∞

Cn

(n log n)2 = 4

π
in probability, (1.2)

and proved the upper bound of 4/π in (1.2). A lower bound 2/π was later proved
in [Law92] and the conjecture (1.2) resolved in [DPRZ04]. Whereas the general
theory of reversible Markov chains provides the correct growth order of Cn it fails
to provide the multiplying constant in (1.2). As described in Section 4, the proof of
(1.2) relies on the same multi-scale truncated second moment method used en-route
to (1.1). Further, this approach provides information about the number and spatial
distribution of the sites in Z

2
n for which the time of first visit by the srw is of the

order of the cover time. In addition, it allows us to answer the following questions of
Révész about (discrete) discs covered by the random walk on Z

2 till time n, namely,
where every site of the lattice within the disc is visited by the walk at least once.

• What is the radius ρn of the largest disc, centered at the origin that is covered
during the first n steps of the walk? It is shown in [DPRZ04] that

lim
n→∞ P

(
(log ρn)

2

log n
≥ y

)
= e−4y, (1.3)

for all y > 0 (in 1989 Révész derived upper and lower bounds for (1.3) with
non-matching constants 120 and 1/4; these have been improved to 4 and 2 in
[Law92] which also quotes (1.3) as a conjecture of Kesten).

• What is the radius Rn of the largest disc (of arbitrary center) that is covered
during the first n steps of the walk? It is shown in [DPR07] that with probability
one,

lim
n→∞

log Rn

log n
= 1

4
(1.4)

(non-matching bounds for (1.4) with constants other than 1/4 are given in
[Rév93] where the existence of the limit is also conjectured).

In Section 5 we detail additional results for intersection local times and for the
two dimensional Gaussian free field that have been obtained by the same approach
we review here.
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Statements such as (1.1) and (1.2) are easier to handle for the srw on Z
d , d ≥ 3

whose transience enables us to effectively localize the relevant occupation measures,
in contrast with the case of d = 2.

Let Gn = Z
d
n ×Z denote the infinite discrete cylinder based on the d-dimensional

discrete torus of side length n. We say that a finite subset � disconnects Gn if,
for large r the sets Z

d
n × [r, ∞) and Z

d
n × (−∞, −r] are contained in two distinct

connected components of Gn \ �. Consider the time Dn till the range of the srw
on Gn disconnects the cylinder. Clearly, the disconnection time Dn is between the
cover time Cn of the base Z

d
n by the projection of the srw and the cover time Ĉn of

the slice Z
d
n × {0} by the srw on Gn. It was shown in [DS06] that

lim
n→∞

log Dn

log n
= lim

n→∞
log Ĉn

log n
= 2d in probability. (1.5)

That is, the disconnection time is roughly of order n2d and comparable to Ĉn, but in
contrast to the case of d = 1, when d ≥ 2 it is substantially larger than the cover
time Cn (which is roughly of order nmax(d,2), up to logarithmic correction terms). We
outline in Section 6 the geometric argument which is the key to the proof of (1.5) and
explain in what sense (1.5) implies for d ≥ 2 a massive clogging of the truncated
cylinders of height nd−ε by the srw before it disconnects the infinite cylinder. See
also [Szn06] for recent universality results about the asymptotic of the disconnection
time for the srw on Hn × Z (under mild conditions on the finite graph Hn).

For earlier surveys of parts of this body of work see [Per03], [Dem05], [Shi06].
Many additional interesting examples of random fractals as well as numerous ref-
erences to earlier works on such problems are provided in the survey [Tay86]. See
also [LeG92] for more about the planar Brownian path and [Lyo05] for probability
on trees.

2. Favorite and thick points

2.1. Favorite points for srw on Z
d . Erdős and Révész in [ER84] call a site x ∈ Z

d

for which Ln(x) = L∗
n a favorite point of the srw. In a similar manner, for any 0 <

α < 1 we say that x ∈ Z
2 is an α-favorite point of the walk if Ln(x) ≥ (α/π)(log n)2.

The size of the set Fn(α) of α-favorite points can be estimated by the same approach
leading to (1.1). More precisely, it is shown in [DPRZ01] that for each α ∈ (0, 1],

lim
n→∞

log |Fn(α)|
log n

= 1 − α a.s. (2.1)

In other words, the nβ -most visited point during the first n steps of the walk is visited
approximately 1−β

π
(log n)2 times. This is in contrast with typical points on the path

of the walk, each of which has order log n visits.
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It is also shown in [DPRZ01] that any random sequence {xn} in Z
2 such that

Ln(xn)/L
∗
n → 1 must satisfy

lim
n→∞

log ‖xn‖
log n

= 1

2
a.s. (2.2)

In particular, the favorite points, i.e. those x∗
n where L∗

n is attained, are consistently
located near the frontier of the set of visited points, at least on a logarithmic scale.

For the srw on Z the analog of the statement (2.2) is contained in the results of
Bass and Griffin [BG85]. See also [Rév05, page 160] for a list of unsolved problems
about favorite points of the srw on Z, taken from [ER84]. Tóth provided recently a
partial answer to one of these questions, showing that the srw on Z has for sufficiently
large time n at most three different favorite points x∗

n (cf. [Tót01] for this result and
its history). However, not much is known about x∗

n . For example,

Open Problem 2.1.
• Determine for which d ≥ 1 the srw on Z

d has with probability one at most two
favorite points x∗

n for all n sufficiently large.
• Describe the evolution of n �→ x∗

n in any dimension d ≥ 2.
• How is the growth of time between the first and last visits to x∗

n prior to n, affected
by the dimension d?

2.2. Thick points for planar Brownian motion. Let w(m)(t) = √
d/mS
mt� denote

a time-space rescaled image of the srw (Sk, k ≥ 0) on Z
d . Donsker’s functional CLT

tells us that the distribution of (w(m)(t), t ≥ 0) converges as m → ∞, to that of
the Brownian motion (w(t), t ≥ 0). The latter is a continuous in time, R

d -valued
Gaussian stochastic process, of independent coordinates, each starting at zero and
having zero mean increments of variance |t − s|.

It is thus not surprising that the continuous time analogs of (1.1) and (2.1) can be
expressed in terms of the Brownian occupation measure

μw
t (A) =

∫ t

0
1A(w(s))ds, for all A ⊆ R

d Borel, (2.3)

in the planar case, that is, when d = 2. To this end, let D(x, r) denote the open
disc in R

2, centered at x and of radius r , and let θ̄ = inf{t ≥ 0 : ‖w(t)‖ ≥ 1}
be the exit time of the planar Brownian motion from the unit disc D(0, 1). Since
w([0, θ̄ ]) := {w(t) : 0 ≤ t ≤ θ̄} is a compact set, it follows that μw

θ̄
(D(x, r)) = 0

for any x /∈ w([0, θ̄ ]) and all r small enough. Further, it is not hard to show that
for almost all Brownian paths, the pointwise Hölder exponent of the random measure
μw

θ̄
, namely,

lim
r→0

log μw
θ̄
(D(x, r))

log r
,

takes the same value 2 for all points x ∈ w([0, θ̄ ]) (see also [Ray63, Theorem 1] for
the precise lim sup decay rate of μw

θ̄
(D(0, r)) when r → 0). Therefore, standard
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multi-fractal analysis must be refined in order to capture the delicate fluctuations of
the Brownian occupation measure and obtain a non-degenerate dimension spectrum.
Indeed, it is shown in [DPRZ01] that for any 0 < a ≤ 2,

dim{x : lim
r→0

μw
θ̄
(D(x, r))

r2(log r)2 = a} = 2 − a a.s. (2.4)

(where throughout dim(A) denotes the Hausdorff dimension of the set A). For a typi-
calx on the Brownian pathμw

θ̄
(D(x, r)) � r2| log r| (e.g. see [DPRZ01, Lemma 2.1]),

so the a-thick points, i.e. those in the set considered in (2.4), correspond to unusually
large occupation measure.

The identity (2.4), together with the appropriate upper bound, yields that

lim
r→0

sup
x∈R2

μw
θ̄
(D(x, r))

r2(log r)2 = 2 a.s. (2.5)

as conjectured by Perkins and Taylor. It is not hard to show then that both (2.4) and
(2.5) hold when θ̄ is replaced by any deterministic 0 < T < ∞ and it is in the
latter form that (2.5) was stated as [PT87, Conjecture 2.4]. As shown in [DPRZ02,
Theorem 1.2], both (2.4) and (2.5) apply even when the discs D(x, r) = x +rD(0, 1)

are replaced by the sets x + rK , provided the set K is normalized to have area
(Lebesgue measure) π and its boundary has zero Lebesgue measure.

See also [PPPY01] for the application of (2.5) to the problem of reconstructing
the range of spatial Brownian motion from the occupation measure projected to the
sphere.

2.3. From Brownian motion to srw. The passage from (2.5) and (2.4) to the cor-
responding results (1.1) and (2.1) for the discrete setting is based on the celebrated
strong approximation theorem of Komlós, Major and Tsunády [KMT75] which con-
structs in an enlarged probability space a one dimensional Brownian motion w and
a srw (Sk, k ≥ 0) on Z such that P(supt≤1 |w(t) − w(n)(t)| ≥ c(log n)/

√
n) → 0

when n → ∞. A simple geometric argument extends this conclusion to the srw
on Z

2. Further, applying Einmahl’s multidimensional version of this strong approxi-
mation theorem, the same argument allows [DPRZ01, Theorem 5.1] to establish (1.1),
(2.1) and (2.2) for a wide collection of two-dimensional lattice valued random walks
whose increments are of zero mean and finite moments. Here is an outline of such
an argument, revealing the source of the factor 2π between (1.1) and (2.5). Taking
r = r(n) = nη−1/2 for fixed η > 0 small, and fixing 0 < a < 2, one predicts from
(2.4) that there are about ra−2 discs of radius r , which are r-separated of each other,
each having a Brownian occupation measure of about ar2(log r)2. By strong approxi-
mation a similar result applies for the occupation measure of w(n). Since t �→ w(n)(t)

is piecewise constant on intervals of length 1/n, this translates to nar2(log r)2 visits
by w(n) to discs whose radius is approximately r . Further, with each of these discs
having about πr2n/2 of the sites of

√
2/nZ

2, we see that to these discs correspond
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distinct (random) points in Z
2 having at least 2a(log r)2/π visits during the first n

steps of the srw. So, for α = 2a(1/2 − η)2 these ra−2 = n1−2η−α/(1−2η) points are
α-favorite, and considering first n → ∞ then η → 0 gives the lower bound in (2.1)
and consequently also in (1.1).

As shown in [Ros05], (2.1) and (1.1) can also be proved without reference to
the Brownian motion results, by directly applying the multi-scale truncated second
moment approach of Section 3 to the srw on Z

2.

3. The multi-scale truncated second moment

Fixing a positive integer b ≥ 2 let �h denote the b-ary rooted regular tree of height h,
that is, the degree of each vertex of �h is b + 1, except for the root, denoted o, whose
degree is b and the bh leaves of this tree, each of whom has degree one. Starting a
srw (Xi) on �h at its left-most leaf let τo = inf{i ≥ 0 : Xi = o} denote the hitting
time of the root of �h and Lx the number of visits to x ∈ �h by {Xi, i ≤ τo}. Fixing
0 < α < 1 we call a leaf x of �h α-favorite if Lx ≥ αh2 log b and let Fh(α) denote
the set of α-favorite leaves. In Subsection 3.1 we outline the multi-scale truncated
second moment method in the context of proving that

lim
h→∞

1

h
log |Fh(α)| = (1 − α) log b in probability. (3.1)

As demonstrated in Subsection 3.2, this is the core of the computations leading to (2.4)
and (2.5), thereby also to (1.1), (2.1) and (2.2), where the trees �h serve in revealing
the hidden correlation structure across scale (i.e., the radius of discs), and space (i.e.,
their centers).

3.1. Favorite points for srw on regular trees. Let ∂�h denote the set of leaves
of �h and o ↔ x denote the shortest path in �h between o and x ∈ ∂�h, also called
the ray of x. Fixing x and projecting the srw on its ray, we see that Lx has the same
law as the number of visits to a reflecting boundary at h prior to absorption at 0, for
a srw (Yi) on {0, 1, . . . , h}. In particular, P(Lx ≥ t) ≤ (

1 − 1
h

)t−1 for any x ∈ ∂�h,
t ≥ 1. Taking t = th for th := αh2 log b yields the upper bound in (3.1) by an
application of the first moment bound P(Z ≥ 1) ≤ EZ for Z = Zh = b−βh|Fh(α)|
and β > 1 − α. With a little more work we find that as h → ∞ also E(Zh) → ∞
for β < 1 − α, supporting the validity of (3.1). To take advantage of diverging
expectations one usually relies on the second moment method. That is, applying the
classical bound P(Z ≥ δEZ) ≥ (1 − δ)2(EZ)2/EZ2 for some 0 < δ < 1 and the
preceding Z = Zh. However, at least for α > 1/2 this approach fails to work here.
Indeed, as shown in [Dem05, Lemma 4.2], then EZ2

h/(EZh)
2 → ∞ since for such α

and any 0 < ξ < 2α − 1 there exists η = η(α, ξ) > 0 such that for large enough h

b−2(1−α)h
∑

(x,y)∈∂ξ�h

P(Lx ≥ th, Ly ≥ th) ≥ bηh, (3.2)
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where ∂ξ�h denote the collection of pairs x, y ∈ ∂�h for which o ↔ x and o ↔ y

separate at distance ξh from o.
Starting the srw {Yi} at Y0 = h and assuming th returns to h prior to its absorption

at 0, the expected number of excursions between k − 1 and k till the th-th return to h

is about αk2 log b when k � 1 and h − k � 1 (cf. [Dem05, Lemma 4.3]). This
suggests that for a typical x ∈ Fh(α) the srw (Xi) has prior to τo about αk2 log b

visits to a vertex on o ↔ x which is at distance k from o. The analysis leading
to (3.2) reveals also that the main contribution of the collection ∂ξ�h to the second
moment of |Fh(α)| is via the rare events of having prior to τo a sufficiently excessive
number of srw excursions between the vertex z where o ↔ x and o ↔ y separate
and the leaves of the sub-tree rooted at z. The typical number of such excursions for
α-favorite leaves is only a fraction of what these events require, so they contribute
little to EZh when h is large. However, the occurrence of such rare event yields too
many α-favorite leaves at the sub-tree rooted at z, hence resulting with the excessive
growth of the second moment of Zh.

Since this problem occurs for any separation height ξh, ξ < 2α − 1, one should
pursue a multi-scaling truncation strategy. That is, apply the second moment method
for Zh = b−βh|Sh(α)|, replacing Fh(α) by a subset Sh(α) of leaves along the rays of
which various excursion counts are kept within a relatively small distance from the
typical excursion count profile for an α-favorite leaf. Of course we are to do so while
not changing much the mean of Zh, that is, keeping

P(x ∈ Sh(α)) = b−αh(1+o(1)) (3.3)

for all x ∈ ∂�h. To attain (3.3) only o(h) excursion counts are to be controlled along
each ray of �h. Specifically, fixing c > 0 large enough, we set heights h0 = 0,
h1 = 1 and hk = [ck log k] for k = 2, . . . , m, taking h = hm, and consider the
number Nx

k of complete excursions between vertices xk−1 and xk at distances hk−1
and hk from o along o ↔ x which occur between the first visit of the srw to x1
and its first successive visit to x0 = o. Recall that for a typical α-favorite leaf x,
the srw (Xi) makes about αh2

k log b visits to xk during this time interval. With
�k = hk − hk−1 = c log k(1 + o(1)) for large k, this translates to Nx

k being near
nk = αh2

k log b/(c log k) for a typical x ∈ Fh(α). Consequently, we take as Sh(α)

those x ∈ ∂�h such that |Nx
k −nk| ≤ k for k = 2, . . . , m. Per x ∈ ∂�h, the sequence

(Nx
k , k = 1, . . . , m) is the realization of a non-homogeneous Markov chain on Z+,

starting at Nx
1 = 1. The transition probabilities of this chain are given by explicit

hyper-geometric distributions. As nk+1 = nk(1 + 2/k)(1 + o(1)), for large k one
gets by normal approximation that the probability of the transition from Nx

k = [nk]
to Nx

k+1 = [nk+1] is about pk = b−α�k/
√

nk . With k/
√

nk → 0, further analysis
shows that for some finite constant C which depends only on (α, b, c) and for any
|�k − nk| ≤ k and |�k+1 − nk+1| ≤ k + 1, the probability of the transition from
Nx

k = �k to Nx
k+1 = �k+1 is between C−1pk and Cpk (cf. [Dem05, Lemma 4.6]).

Note that qm = P(x ∈ Shm(α)) is the same for any x ∈ ∂�hm . Also, in the definition
of the event {x ∈ Shm(α)}, for each k, the random variable Nx

k can take any one of
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2k + 1 possible values. Hence, by the preceding analysis m−1 log
(
qm/

[ ∏m−1
k=1 kpk

])
is bounded. Moreover, as nk = ζk2 log k for some positive constant ζ , it follows that
kpk = b−α�k(1+o(1)) and with m = o(hm), it is now easy to verify that (3.3) holds
(cf. [Dem05, Proposition 4.4]).

We turn next to study the correlation structure of {x ∈ Shm(α)} across x ∈ ∂�hm .
Specifically, let Bl,x = {|Nx

k −nk| ≤ k, l < k ≤ m} for l = 1, . . . , m−1, noting that
B1,x = {x ∈ Shm(α)}, so the second moment of |Shm(α)| is the sum of P(B1,x ∩B1,y)

over x, y ∈ ∂�hm . Let qm,l denote the maximum of these probabilities over pairs
(x, y) such that x1 = y1 and the rays o ↔ x and o ↔ y separate at a vertex z whose
distance from o is between hl−1 and hl . Since B1,y ⊆ Bl,y , it thus suffices for us to
get an upper bound on P(B1,x ∩ Bl,y). To this end, note that given the value of N

y
l+1,

the event Bl,y is independent of B1,x . Consequently,

qm,l ≤ qm

∑
|�−nl+1|≤l+1

P(Bl,y |Ny
l+1 = �).

By a similar reasoning,

qm ≥ ql+1 inf|�−nl+1|≤l+1
P(Bl,y |Ny

l+1 = �).

As we have already seen, the above terms P(Bl,y |Ny
l+1 = �) are almost constant (up

to a factor C2) with respect to �, leading to the bound

qm,l ≤ C2(2l + 3)
q2
m

ql+1
(3.4)

(cf. [Dem05, Lemma 4.8]). This is effectively the same correlation structure as for
independent percolation on the tree �hm projected to skeleton heights {hk} and with
level depending edge probabilities that are about pk . In particular, using the bound
of (3.4) leads to E[|Sh(α)|2] ≤ K(E|Sh(α)|)2 for some K = K(α) finite and any
h ∈ {hk}∞k=1 (cf. [Dem05, Lemma 4.9]). Combining this with the first moment esti-
mate of (3.3), an application of the second moment method yields that the probability
of hm

−1 log |Shm(α)| ≥ (1 − α) log b(1 + o(1)) is bounded away from zero (being
about 1/K).

It remains to improve this result to one that holds with probability approaching
one, and to connect the fact that Nx

m is near nm with the event {x ∈ Fhm(α)}. To this
end, for h ∈ [hm+1, hm+2) and any vertex v ∈ �h of height h − hm + 1 let Sv

hm
(α)

be defined in analogy to Shm(α), but for the subtree rooted at the ancestor of v and
consisting of those u ∈ �h with v on the shortest path from u to o. Next let S∗

h(α) be
the union of the sets Sv

hm
(α) over the Rh vertices v of height h − hm + 1 that the srw

on �h visits by time τo. The preceding bound applies for the srw within any regular
subtree of depth hm, hence for each of the sets Sv

hm
(α). Thus, as Rh → ∞ with high

probability, and the restrictions of the srw to within the subtrees of �h rooted at these
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vertices are independent of each other and of Rh, it follows that

lim
h→∞

1

h
log |S∗

h(α)| = (1 − α) log b in probability

(cf. [Dem05, Lemma 4.11]). Finally, a simple concentration argument shows that
during nm − m excursions between x ∈ ∂�h and a vertex on its ray at distance �m

from x, the srw visits x less than nm�m(1 − δ) times with probability that decays
to zero exponentially in nm (cf. [Dem05, Lemma 4.7]). This leads for any β < α to
P(S∗

h(α) ⊆ Fh(β)) → 1 and consequently completes the proof of (3.1).

3.2. From trees to Brownian motion. The approach of [DPRZ01] in proving (2.4)
and (2.5), which goes back to [Ray63], is to control Brownian occupation measures
using excursions between concentric discs. Specifically, fixing R′ > R > r , the
total occupation measure of D(x, r) during the first N excursions of the sample path
between D(x, R) and the complement of D(x, R′) is of the form

∑N
i=1 τi , where τi de-

notes the occupation measure of D(x, r) accumulated during the i-th such excursion.
Since these Brownian excursions are independent of each other, so are the random
variables {τi}. Further, the events of interest here involve exceptionally large occupa-
tion measures that translate into having numerous excursions around the same point.
Consequently, for the range of N values relevant here, the resulting total occupation
measure is highly concentrated around its mean NEτ1.

From the corresponding elliptic PDE we have that Eτ1 = r2 log(R′/R) which
by the strong Markov property of the Brownian motion implies also that P(τ1 ≥
t[r2 log(R′/r) + 1]) decays exponentially in t (cf. [Dem05, Lemma 5.5]). The
statement (2.5) can be shown to concern the maximum of the occupation measures
μw

θ̄
(D(xj , r)) for a suitable non-random discrete net of about r−2 points xj ∈ D(0, 1).

To upper bound such maximum, we take R′ = 2 in which case μw
θ̄
(D(x, r)) ≤ τ1.

Hence, for a > 2, we see from the tail probabilities of τ1 (at t = a log(1/r)), that the
expected number of discs with centers in this net and occupation measure exceeding
ar2(log r)2 decays to zero at rate ra−2. By the first moment method we get the upper
bound in (2.5), where the almost sure statement is attained by using the monotonicity
of r �→ μw

θ̄
((D(x, r)) to interpolate between radii rn such that

∑
n ra−2

n is finite.
The same argument shows that the expected number of such discs with occupation

measure exceeding tr = ar2(log r)2 diverges at rate ra−2 when a < 2, supporting the
validity of (2.5). Unfortunately, the second moment method fails to work here since
the recurrence of the planar Brownian motion precludes a fast decay of the correlation
between the events {μw

θ̄
((D(x, r)) ≥ tr} even for x and y of distance rδ of each other

(and δ a fixed small positive constant). A natural truncation of the second moment is
by localizing the occupation measures. For example, considering only the Brownian
occupation measure of D(x, r) during the interval between the first hitting time of
this disc by the Brownian path and its successive exit of D(x, R). For a suitable
R(r) → 0 such that R(r)/r → ∞ the second moment of the number of discs with
localized occupation measures exceeding tr is much smaller than the corresponding
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second moment for μw
θ̄
(D(x, r)). However, it comes at the cost of a substantial drop

in the corresponding first moment, so this strategy results with non-matching lower
and upper bounds (cf. [PT87]).

We note in passing that the same problem arises in the context of the srw on Z
2,

that is, in [ET60] treatment of (1.1), and more generally in all statements we make in
this paper.

We mitigate this problem by employing a multi-scale truncation, as done in Subsec-
tion 3.1. To this end, recall that the counts of Brownian excursions between concentric
discs of radii {e−j } have the same law as the bond occupation measure for the srw on
Z, which plays a key role in proving (3.1). Indeed, for x /∈ D(0, r1) taking rk = r1e

−hk

for hk = [ck log k], k = 2, . . . , m, the numbers Nx
k of Brownian excursions from

∂D(x, rk−1) to ∂D(x, rk) till hitting ∂D(x, r0) have the same joint law as the random
variables Nx

k for the srw on the regular tree �hm (to make this precise, take r0 = er1).
Thus, setting nk = ah2

k/(c log k) and partitioning the square S(1, 1) = [2r1, 4r1]2

into e2hm non-overlapping squares S(m, i) of edge length 2rm each, we now consider
the random set Shm(a) that consists of centers x = xm,i of squares S(m, i) for which
|Nx

k − nk| ≤ k, k = 2, . . . , m. As explained above, the estimate (3.3) applies here
(with α = a, b = e and h = hm), resulting with E|Shm(a)| = e(2−a)hm(1+o(1)). We
can further uniformly bound correlation terms of the form P(B1,x ∩Bl,y) for x = xm,i

and y = xm,j such that |x − y| ∈ (2rl, 2rl−1] in a similar manner to that for the srw
on regular trees, apart from two complications. First, to assure that ∂D(x, rk) does
not intersect ∂D(y, rl) we have to exclude k = l − 1. That is, remove from B1,x the
constraints on the values of Nx

l−1 and Nx
l . Even after this is done, given N

y
l+1 = �, the

event Bl,y still depends on B1,x via the locations of the initial and final points of the �

Brownian excursions from ∂D(y, rl+1) to ∂D(y, rl). Using the Poisson kernel for
the density of the exit location at z ∈ ∂D(y, R′) for a Brownian path starting at some
z′ ∈ D(y, R′), it can be shown that the probability of Bl,y given Nl+1 = � and the
terminal points of these � excursions is at most (1 + κrl+1/rl)

�
P(Bl,y |Ny

l+1 = �)

(cf. [DPRZ01, Lemma 7.4]). Taking c sufficiently large (c = 3 will do), pro-
vides enough separation for nl+1 � rl/rl+1 resulting with a bound of the form
of (3.4), apart from replacing C2(2l +3) by a larger polynomial factor (cf. [DPRZ01,
Lemma 8.1]). This is enough for deducing that E[|Shm(a)|2] ≤ K(E|Shm(a)|)2,
for some K = K(a) and all m. Since E|Shm(a)| → ∞, by the second moment
method also lim infm P(Shm(a) �= ∅) ≥ 1/K . By Fatou’s lemma, this implies the
existence with positive probability of some random m(j) → ∞ and yj ∈ Shm(j)

(a).
By compactness of S(1, 1), the sequence yj has at least one limit point y∗ ∈ S(1, 1).

Let Mx,r = μw
θ̄
(D(x, r))/[r2(log r)2]. We claim that My∗,r → a for r → 0.

That is, y∗ is an a-thick point, see (2.4). To this end, recall that for R′ = rk−1 and
R = r = rk we have Eτ1 = r2

k �k , whereas nk�k is about ah2
k = a(log rk)

2. With {τi}
of exponential tail probabilities, it follows that P(|Mx,rk − a| > η, |Nx

k − nk| ≤ k) ≤
e−γ nk for any η > 0, some γ = γ (a, η) > 0, all k and x ∈ S(1, 1). By the monotonic-
ity of the non-negative measure μw

θ̄
and the almost sure continuity properties of Mx,r
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in x and r , we further deduce the existence of δ(r, w) → 0 such that with probability
one, if x ∈ S(1, 1) and |Nx

k − k| ≤ nk for all k ≤ �, then |Mx,r − a| ≤ δ(r) for all
r ≥ r� (cf. [DPRZ01, Section 6]). Recall that for any fixed �, if j is sufficiently large
then |Nyj

k − nk| ≤ k for k = 2, . . . , �. Consequently, lim supj |Myj ,r − a| ≤ δ(r) for
any r > 0. Since |yj − y∗| → 0, the monotonicity of μw

θ̄
leads to |My∗,r − a| ≤ δ(r),

and so we deduce that with some positive probability there exists an a-thick point.
Fixing β < 2 − a, by a slightly more involved argument, the squares S(m, i)

whose centers are in Shm(a) support the density with respect to Lebesgue measure of
a random measure νm such that a non-zero weak limit point ν∞ of {νm} is supported
on a closed set of a-thick points and has a finite β-energy

Eβ(ν∞) :=
∫

|x − y|−βdν∞(x)dν∞(y) (3.5)

(cf. [DPRZ01, Section 3]). This in turns implies that with positive probability the
dimension of the set of a-thick points is at least β. Using Brownian scaling, it follows
by Blumenthal’s zero-one law that the latter property holds with probability one,
establishing the stated lower bound in (2.4) and hence also that of (2.5).

4. Fractal geometry: late points and covered discs

4.1. Cover times and covered discs. For 0 ≤ γ < 1 let Cn(γ ) denote the time it
takes until the largest disc unvisited by the srw on the two dimensional lattice torus
Z

2
n has radius nγ . It is shown in [DPRZ04] that

lim
n→∞

Cn(γ )

(n log n)2 = 4

π
(1 − γ )2 in probability, (4.1)

with (1.2) corresponding to the special case of γ = 0. In other words, at time βCn

the radius of the largest disc within the set unvisited by the srw is n(1−√
β)(1−o(1)).

In [PR04], Peres and Revelle deduce from (4.1) that the total variation convergence
to the stationary measure for the srw on the lamplighter group over Z

2
n requires at least

(4/π)(n log n)2(1 + o(1)) steps. This is based on their observation that starting at a
zero lamp configuration, the lamps remain identically zero on the sites of Z

2
n which

the lamplighter did not visit, while under the stationary (uniform) measure of this srw
the probability of having a disc of radius log n in Z

2
n with a zero lamp configuration

tends to zero with n. By general considerations, the asymptotic growth in n of the
total variation mixing time for the srw on the lamplighter group over Z

d
n, d ≥ 2, is

between EC
Zd

n
and half its value, but it is not known whether this upper bound is tight

also for d ≥ 3 (see [PR04]).
Let {wT2(t)} denotes a Brownian motion on the two dimensional unit torus T

2,
with the corresponding hitting times, τ(x, ε) = inf{t > 0 : wT2(t) ∈ DT2(x, ε)},
and the ε-cover time,

Cε = sup
x∈T2

{τ(x, ε)} . (4.2)
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Equivalently, Cr is the amount of time needed for the Wiener sausage of radius r to
completely cover T

2. It is shown in [DPRZ04] that

lim
r→0

Cr

(log r)2 = 2

π
a.s. (4.3)

Similarly to the argument we outline in Subsection 2.3, (4.1) is an immediate con-
sequence of (4.3). Indeed, we identify the vertices of n−1

Z
2
n with the corresponding

subset of T
2, noting that up to scaling by n, distances in Z

2
n match the corresponding

distances in T
2. Further identifying the latter with [0, 1)2, we represent wT2(t) as the

image of the planar Brownian motion w(t) via the non-expansive mapping x �→ x

mod Z
2. Similarly, if Sk denotes the srw on Z

2, then Xk = (n−1Sk) mod Z
2 is

the srw on n−1
Z

2
n. By Einmahl’s [Ein89, Theorem 1] multidimensional version of

KMT strong approximation theorem, we can construct {Sk} and {w(t)} on the same
probability space such that with probability approaching one as n → ∞, the dis-
tance in T

2 between wT2(t) and X
mt� is for m = 2n2 and t ≤ 2(log n)2 at most
δn = (log m)3/

√
m. Fixing γ > 0, since δn � nγ−1 = εn and wT2 completely

misses some disc DT2(x, εn) in T
2 till time Cεn , we deduce that (Xk) completely

misses a disc whose radius is about εn till time 2n2Cεn . That is, Cn(γ ) is about
2n2Cεn . Taking γ → 0 then provides the lower bound in (1.2). The matching upper
bound on Cn is easily obtained upon considering the expected number of sites that
are unvisited during the first α(4/π)(n log n)2 steps of the srw on Z

2
n, with α > 1

fixed and n → ∞.
The derivation of (1.3) follows a similar path, where setting εm = mγ−1 for γ > 0

one first checks that the lower bound in (4.3) applies also for the εm-cover time of
the disc DT2(0, brm) when rm = c(log m)−3 (with b, c fixed and m large). For
R > 0 sufficiently small, the expected time it takes wT2 to complete an excursion
between the discs of radii rm and R, centered at the origin, is about (1/π) log(R/rm).
By a concentration argument the number of such excursions made by wT2 till its
εm-cover time of DT2(0, brm) is thus about (2/π)(log εm)2/[(1/π)(log R/rm)]. For
1/2 < b < 1 and c < R/b this implies by a strong approximation argument that
with high probability the planar srw makes at least (1 − γ )32(log m)2/(3 log log m)

excursions between the discs of radii m(log m)3 and 2m, centered at the origin, till it
covers the concentric disc of radius m (cf. [DPRZ04, Lemma 5.1]). A similar argument
leads to the matching upper bound. The limit distribution of (1.3) then follows upon
studying the tail probabilities for the time it takes the planar srw to complete one
such excursion for large value of m (cf. [Law92]). By a similar technique, [HP06]
establishes the law of the iterated logarithm which corresponds to (1.3). That is,

lim sup
n→∞

(log ρn)
2

log n log3 n
= 1

4
, a.s.

(where log3 denotes three iterations of the log function).
Jonasson and Schramm proved in [JS00] that if G = (V , E) is a planar graph of

maximal degree D then there are constants kD and KD depending only on D such
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that kD|V |(log |V |)2 ≤ E[CG] ≤ KD|V |2. As illustrated already, (1.2) is a direct
consequence of (4.3), with the same argument applicable for finding the asymptotics
of the cover time for srw on different planar lattices. As explained in [DPRZ04,
Section 9], this leads to

Open Problem 4.1. Is the lattice Z
2 asymptotically the easiest to cover when D = 4?

That is, does lim inf E[CG]/(|V |(log |V |)2) = 1/π , where the lim inf is over all planar
graphs G = (V , E) of maximal degree D = 4 and for |V | → ∞?

The limit distribution of the cover time Cn for the srw on the lattice torus Z
2
n and

similar random fluctuations are likely related to behavior such as that of branching
Brownian motion, and hence to KPP-type partial differential equations (cf. [Ald91],
[Bra83], [Bra86], [McK75]). However, very little is known about it. For example,

Open Problem 4.2. Does there exist a non-random sequence bn such that bn(
√

Cn −
Med{√Cn}) converges in distribution to a non-degenerate random variable, and if so
what is the limit distribution?

Even the existence of a non-random normalizing sequence bn that results with
a tight, yet non-degenerate collection, is not obvious. See [BZ06] for a proof of
tightness for the simpler problem in the context of srw on the regular trees �h.

For any 0 < α < 1, let Rn(α) denote the radius of the largest disc (of arbitrary
center) consisting of α-favorite points for the srw on Z

2. The proof of (1.4) combines
the ideas behind the proofs of (1.1) and (1.2). Similarly, based on (2.1) and (4.1), it
is also shown in [DPR07] that for any 0 < α < 1, with probability one,

lim
n→∞

log Rn(α)

log n
= 1 − √

α

4
. (4.4)

Indeed, with hk = [ck log k] and rk = ehk , it takes about r2
m steps for the srw to

first exit D(0, rm). Hence, taking rm,k = ehm−hk , (4.4) follows by showing that
with probability one, if ζ = (bβ − √

α)/(1 − β) > 1 for some b < 1 and m is
large enough, there exists x ∈ D(0, rm) such that each z ∈ D(x, rm,βm) is visited
at least (4α/π)h2

m times prior to the first exit of the srw from D(0, rm), whereas
no such x exists if ζ < 1 for some b > 1. To this end, for each a < 2, by strong
approximation and the outline of the proof of the lower bound for (2.5), we have
that for some x ∈ D(0, rm) and nk(a) = ah2

k/(c log k), prior to exiting D(0, rm) the
srw completes at least nk(a)−k excursions between D(x, rm,k) and the complement
of D(x, rm,k−1). Thus, considering k = βm − 1 and b <

√
a/2 for which ζ =

ζ(b, β, α) > 1, for m large enough and any z ∈ D(x, rm,βm), the srw completes at
least K = 2(bβ)2h2

m/(c log m) excursions between D(z, R) and the complement of
D(z, R′) prior to exiting D(0, rm) (say, for R = 2rm,βm−1 and R′ = 0.5rm,βm−2).
Let L̂K(α) denote the collection of lattice sites z ∈ D(x, rm,βm) visited less than
(4α/π)h2

m times during the first K excursions of the srw between D(z, R) and the
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complement of D(z, R′). Since there are only exp(2(1−β)hm(1+o(1))) lattice sites
in D(x, rm,βm), upon showing that

P(z ∈ L̂K(α)) ≤ e−2(1−β)hmζ 2(1+o(1)), (4.5)

it follows that E|L̂K(α)| → 0 as m → ∞ sufficiently fast to produce the lower bound
in (4.4).

The bound (4.5) is obtained by a large deviations estimate of the following type.
If Ti are i.i.d. random variables, such that P(T1 > t) ≤ Qe−t/M for all t > 0, then
for γ < 1 and λ = (γ −1 − 1)/M > 0,

P

( K∑
i=1

Ti ≤ γ 2KQM
)

≤ eλγ 2KQM
E[e−λT1]K ≤ e−(1−γ )2KQ. (4.6)

The K excursions of the srw between D(z, R) and the complement of D(z, R′)
are approximately independent of each other. Further, by potential theory estimates
for the srw (cf. [Law91]), the probability Q that during such an excursion the srw
visits z is about (log(R′/R))/ log R′ which in turn is about (c log m)/((1 − β)hm).
By similar reasoning, upon visiting z at least once, the mean number of returns to z by
the srw during such an excursion, denoted M is about 2

π
log R′, and the number Ti of

such returns to z during the i-th excursion is such that P(Ti > t) ≤ Qe−t (1+o(1))/M

for all t > 0. Thus, with KQ being about 2(bβ)2hm/(1 − β) and KQM about
(4(bβ)2/π)h2

m, setting γ = √
α/(bβ) < 1 in (4.6) leads to (4.5).

As for the matching upper bound in (4.4), by the preceding reasoning, for each
a > 2, with probability that is fast approaching one (in m) for every x ∈ D(0, rm) the
srw completes fewer than nk(a) excursions between D(x, rm,k) and the complement
of D(x, rm,k−1) by the time it exits D(0, rm). Further, if ζ < 1 for some b > 1 then
for k = βm − 1 the expected size of the set L̂K(α) of z ∈ D(x, rm,k+1) with less
than (4α/π)h2

m visits by the srw during its first K = nk(2b2) excursions between
D(x, rm,k) and the complement of D(x, rm,k−1) diverges as m → ∞. A truncated
multi-scale second moment argument similar to that of Subsection 4.2 then allows
us to deduce that for each fixed x, with probability approaching one (in m), the set
L̂K(α) is non-empty, thus completing the proof of (4.4).

4.2. Late points for srw on regular trees. The cover time problem (4.3) is, in
a sense, dual of (2.5), in that it replaces “extremely large“ occupation measure by
“extremely small“ occupation measure. Indeed, the derivation in [DPRZ04] of the
lower bound for (4.3) is based on another toy problem involving the srw on a regular
tree. In this case it is the asymptotics of the number C̃h of returns to o by the srw
on �h, starting at o, till it visits all leaves of the tree.

Both [Ald91] and [Per03] show that EC̃h = h2b(1 + o(1)) log b as h → ∞.
However, these proofs rely on an embedded branching process argument exploiting
the tree structure of �h and as such are not suitable to deal with the corresponding



Simple random covering, disconnection, late and favorite points 549

Brownian result (4.3). We explain next how the multi-scale truncated second-moment
provides another derivation of the asymptotic of C̃h which is robust enough to be
adapted in [DPRZ04] to deal with the Brownian motion setting of (4.3).

Turning to deal with C̃h, fixing α > 0 we say that a leaf x of �h is α-late if the
number R̃x of returns to o by the srw on �h till its first visit to x ∈ ∂�h is at least
αh2b log b. Starting at o, the probability that the srw visits a specific leaf x before
returning to o is 1/(bh). Hence P(R̃x ≥ t) = (

1 − 1
bh

)t , yielding the first moment
estimate

E(|Lh(α)|) = bh(1−α)(1+o(1)),

for the set Lh(α) of α-late leaves of �h. By the first moment method, this shows that
for any α > 1 the set Lh(α) is empty with high probability. Since C̃h is the maximum
of R̃x over x ∈ ∂�h, we deduce that C̃h is about h2b log b upon showing that for each
0 < α < 1,

lim
h→∞

1

h
log |Lh(α)| = (1 − α) log b in probability. (4.7)

As in the derivation of the asymptotic (3.1) for the number of α-favorite leaves, the
second moment of |Lh(α)| is much larger than b2h(1−α)(1+o(1)). Let hk = [ck log k]
and nk = αh2

k log b/(c log k). Then, adapting the approach taken in Subsection 3.1,
the appropriate way of truncating Lh(α) is by considering for h ∈ [hm+ρ, hm+ρ+1)

and v ∈ �h of height h − hm + 1, the subset Sv
hm

(α) of leaves x in the subtree rooted
at v such that Nx

2 = 0 and |Nx
k − nk| ≤ k for k = 3, . . . , m − 1. In duality with the

case of α-favorite leaves, here we set x1 = x and for k = 2, . . . , m the vertex xk is at
distance hk − 1 from the leaf x along the ray v ↔ x (so that now xm = v). We then
have Nx

k count the number of complete excursions between xk−1 and xk which occur
during the first nm excursions of the srw between vertices xm−1 and xm.

Omitting the detailed computations for this case, we note in passing that similarly
to the derivation of (3.3), here qm = P(x ∈ Sv

hm
(α)) = b−αhm(1+o(1)), yielding the

desired asymptotic growth of E(|Sv
hm

(α)|). Further, similarly to the derivation of (3.4),
here we have that

qm,l := sup
xl−1 �=yl−1

P
(
x ∈ Sv

hm
(α) and y ∈ Sv

hm
(α)

) ≤ Clqmql−1,

for some C < ∞ and l = 2, . . . , m (with the convention of q1 = q2 = 1). Although
m �→ E(|Sv

hm
(α)|2)/E(|Sv

hm
(α)|)2 is now unbounded, its polynomial growth is easily

accommodated by considering the sum |S∗
h(α)| of the bh−hm+1 i.i.d. random variables

|Sv
hm

(α)|, provided ρ is large enough.
To complete the derivation of (4.7) it thus remains only to show that with high

probability S∗
h(α) ⊆ Lh(β) for β < α. To this end, recall that the condition Nx

2 = 0
guarantees that x ∈ Sv

hm
(α) is not visited by the srw during its first nm excursions

between the vertex v at level h − hm + 1 and a specific descendent u = u(x) of v

which is �m levels further from o. A concentration argument similar to that of
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[Dem05, Lemma 4.7] shows that the probability that the number of returns to o
during the first nm excursions between such pair v and u is less than (1 − δ)nmb�m,
decays exponentially in nm. Since nmb�m = αbh2(1 + o(1)) log b it follows that
P(S∗

h(α) ⊆ Lh(β)) → 1 for any β < α and h → ∞, as required.

4.3. Clustering of late points on Z
2
n. Simulations of the srw on Z

2
n reveal that the

points that are visited late by the walk appear in clumps of various sizes. Motivated
by [BH91], the geometric characteristics of these clumps are studied in [DPRZ06].
More precisely, with τx denoting the first hitting time of x by the srw on Z

2
n, it is

shown in [DPRZ06] that for α ∈ (0, 1] the set

Ln(α) = {x ∈ Z
2
n : τx ≥ α(4/π)(n log n)2},

of α-late points for the srw has typical size n2(1−α)+o(1) and that for any fixed x in Z
2
n

and 0 < β < 1,

lim
n→∞

log |Ln(α) ∩ D(x, nβ)|
log n

= 2β − 2α/β in probability (4.8)

(with D(x, nβ) the disc of radius nβ , centered at x ∈ Z
2
n). If the points of Ln(α) were

approximately evenly spread out in Z
2
n, then the number of α-late points in D(x, nβ)

would be n2β−2α+o(1), whereas (4.8) shows that there are significantly less of them
(as 2β − 2α/β < 2β − 2α). The clustering pattern of Ln(α) is confirmed by another
result of [DPRZ06], showing that for any 0 < α, β < 1, if Yn is chosen uniformly in
Ln(α) then,

lim
n→∞

log |Ln(α) ∩ D(Yn, n
β)|

log n
= 2β(1 − α) in probability. (4.9)

Counting pairs of late points one is tempted to apply the approximations

E[# of pairs of α-late points within distance nβ of each other]
� n2n2β

P(x, y are α-late when |x − y| � nβ)

� (Typical value of such number of pairs) (4.10)

� (# discs in nβ grid with α-late points)

× (Typical value of |Ln(α) ∩ D(x, nβ)| when x is α-late)2.

However, as seen in [DPRZ06], such approximations fail to hold and these three
quantities exhibit different power growth exponents.

All preceding results about the clustering of α-late points are derived in [DPRZ06]
by the same truncated multi-scale second moment method as in Subsection 4.2. In
contrast to the results of [DPRZ04] about cover times and covered discs, the derivation
of (4.9) requires conditioning upon the first hitting time at a point x ∈ Z

2
n for which

strong approximation theorems are ineffective. This is handled in [DPRZ06] by
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appealing to potential theory estimates for srw (cf. [Law91]) and relying on the fact
that only rough approximations of the probability that |Nx

k −nk| ≤ k are required. The
derivation of the power growth exponent for (4.10) is more technically challenging
since the mean of this object is already off its typical value. Further, the dominant
contribution is from pairs of α-late points having significantly less excursions between
discs at the intermediate scale nβ (in comparison with the typical excursion count
profile for α-late points), forcing an accumulation of many α-late points inside such
a disc. Thus, the evaluation of this power growth exponent is by a large deviations
analysis of various excursion counts, similar in spirit to that of (4.5).

Not much else is known about the late points. For example,

Open Problem 4.3.
• In [DPRZ06] the power growth exponent of pairs of α-late points within distance nβ

of each other is computed. Extend this to a “full multi-fractal analysis”. For example,
find the power growth exponent of triplets (x1, x2, x3) of α-late points, such that xi

is within distance nβ of xj for i, j = 1, 2, 3.
• What is the distribution of the distance between the last two points to be covered by
the srw in Z

2
n? In particular, does the chance that they are adjacent go to zero as n

grows?

Open Problem 4.4. Adapting the proof of (4.3) one can show that for any a ≤ 2,

dim
{
x ∈ T

2 : lim sup
ε→0

τ(x, ε)

(log ε)2 = a

π

}
= 2 − a a.s. (4.11)

It is not clear what to do when the lim sup in (4.11) is replaced by a limit or a lim inf,
since in this case we can no longer avoid considering the stochastic behavior of τ(x, ε)

across different scales (i.e. ε values) which are highly dependent when the scales are
close to each other.

5. Intersection local times and Gaussian free fields

5.1. Intersections and processes with jumps. While having the Markov property
is of much help for the results described here, [DPRZ02] deals with thick points for
intersection of planar sample path, whereby it is partially lost. For example, [DPRZ02,
Theorem 1.4] provides the analog of (2.4), showing that for any 0 < a ≤ 1,

dim
{
x : lim

r→0

�
θ̄ ,θ̄

′(D(x, r))

r2(log r)4 = a2
}

= 2 − 2a a.s. (5.1)

where �T ,T ′(A) denotes the projected intersection local time of two independent
planar Brownian motions (w(t), 0 ≤ t ≤ T ) and (w′(t ′), 0 ≤ t ′ ≤ T ′), normalized
by factor π (see [LeG92, Chapter VIII] for more on �T ,T ′( · ) and its properties). By
strong approximation this leads to the analogs of (1.1) and (2.1) for the intersections of



552 Amir Dembo

two independent srw on Z
2 (cf. [DPRZ02, Theorem 1.1]). The lower bound in (5.1)

is proved by first constructing for β < 2−a, along the lines of Subsection 3.2, a non-
zero random measure ν′∞ of finite β-energy (cf. (3.5)), that is supported on a closed set
of a-thick points for w′([0, θ̄

′]). The same construction is then repeated for w([0, θ̄ ]),
now using the squares S(m, i) whose centers are in Shm(a) to define the density of
the random measure νm with respect to ν′∞, instead of with respect to Lebesgue
measure. Fixing γ < β − a < 2 − 2a, the non-zero weak limit point of {νm} is then
of finite γ -energy and shown in [DPRZ02, Section 4.1] to be supported on a closed
subset of the a2-thick intersection points of (5.1). This strategy works since �

θ̄ ,θ̄
′(A)

is a continuous additive functional for w([0, θ̄ ]) with Revuz measure πρ such that
ρ(B) = μw′

θ̄
′ (A ∩ B); for almost every path w′([0, θ̄

′]), the accumulation on D(x, r)

of such an additive functional during one excursion of w(t) between D(x, R) and the
complement of D(x, R′) has a mean value ρ(D(x, r)) log(R′/R) ± Cr2(log r)2 and
exponentially decaying tail probabilities (cf. [DPRZ02, Lemma 2.3]).

With a slightly different approach of directly controlling the excursion counts for
two random walks, [DPR07, Theorem 1.3] shows that the radius of the largest discrete
disc in the intersection of the sample path of two independent srw on Z

2, each run
for n steps, is Rn,2 = n1/(2+2

√
2)+o(1). However,

Open Problem 5.1. The growth rate of the diameter Dn,2 of the largest connected
component of the intersection of two independent planar simple random walk path,
each run for n steps, is not known. A related open problem is to determine whether
the intersection of two independent planar Brownian motion path, each run for a unit
time, is almost surely a totally disconnected set.

The results described here depend mostly on the local properties of the stochastic
processes considered. They are thus not limited to Brownian motion or to random
walks. In particular, sample path continuity is not essential. For instance, Daviaud
[Dav05] considers the Cauchy process on R, that is, a stochastic process X(t) with
X(0) = 0 and stationary independent increments X(t + s) − X(t) each of whom
has the Cauchy density s/(π(s2 + x2)) with respect to Lebesgue measure. This is a
recurrent process, whose Green’s function has a logarithmic behavior, similar to that
of the planar Brownian motion (cf. [Dav05, Proposition 1.3]), but which has infinitely
many jumps. In analogy with (2.4), [Dav05] shows that for 0 ≤ a ≤ 1,

dim{x : lim
r→0

μX
θ̄
(D(x, r))

r(log r)2 = 2

π
a} = 1 − a a.s.

where D(x, r) is an interval of radius r and center x ∈ R and θ̄ = inf{t : |X(t)| ≥ 1}.
To avoid the technical difficulties due to jumps, [Dav05] relies on the representation
of the Cauchy process X(t), up to a well understood time change, as the intersection
of the planar Brownian motion w(t) and, say, the x-axis, thereby adapting the strategy
of [DPRZ02] to the case at hand.
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5.2. The Gaussian free field. The discrete d-dimensional Gaussian free field (ab-
breviated gff) on the square Vn = {1, . . . , n}d ⊂ Z

d is a Gaussian random vector
(φx, x ∈ Vn) of zero mean and covariance given by the Green’s function of the srw
restricted to Vn. That is, E[φxφy] is the expected number of visits to y by the srw on
Z

d , starting at x and run till its first exit from Vn. The gff (also called the harmonic
crystal) is a special case of the solid on solid model used in statistical physics to
describe the effective interface between two phases at low temperature (cf. [Gia01],
[Fun05] and the references therein).

In this context, the presence of a hard wall is manifested by the entropic repulsion
conditioning on the non-negativity constraint �+

n,ε = {φx ≥ 0 : x ∈ Vn,ε}, for small
ε > 0, where Vn,ε denotes the subset of points in Vn of distance at least nε to the
boundary of Vn. For d ≥ 3 it is well known that entropic repulsion pushes the gff far
from the wall, while asymptotically making no other changes to its law (cf. [Gia01,
Chapter 3] and the references therein). Both [BDG01] and [Dav06] consider the effect
of entropic repulsion on the two dimensional gff. To this end, [BDG01, Theorem 2]
shows that maxx∈Vn φx grows with n like gn = 2

√
2/π log n, from which they deduce

that upon conditioning on �+
n,ε, the gff is shifted by gn, that is, g−1

n φx → 1 uniformly
on Vn,ε.

Theorem 2 of [BDG01] is derived by a multi-scale truncated second moment
approach which is motivated by the similarity between the gff and a branching random
walk type model on regular trees. Whereas the profile of excursion counts along each
ray is the key object of study in Section 3.1, the approach of [BDG01] is to consider a
notion of success shared by all vertices of �h at a given height (i.e. distance from o).
Adapted to the context of (3.1), the hk-th level of �h is successful if for enough
vertices xk of �h at height hk , the srw completed by time τo at least nk −k excursions
between xk and its ancestor xk−1 (at height hk−1). Starting at distance δh from o with
enough independence to have sufficiently many such vertices at distance h2 further
from o, the success of the hk-th level propagates (in k) by counting the excursions
to vertices at height hk+1 during the first nk − k excursions between their ancestors
at heights hk−1 and hk . By controlling the union over the probabilities of failure
at the different steps k = 2, 3, . . . , m of this process, one concludes that with high
probability, the last step, consisting of ∂�h, is successful.

Pursuing the same approach, [Dav06] goes further in relating the conditioned gff
with the shifted gff by deriving in this context the analogs of the results of [DPRZ06]
and [DPR07]. For example, it is shown in [Dav06, Theorem 1.1] that conditioned
on �+

n,ε, the largest disc within Vn,ε for which all values of φx are below ηgn is of
radius nη/2(1+o(1)). Indeed, for the unconditional gff this is the radius of the largest
disc for which all values of φx exceed (1 − η)gn (see [Dav06, Theorem 1.7]), a result
which is the analog of (4.4). The transformation η = √

α between the two has to
do with the isomorphism between φ2

x/2 and the local time at x of a continuous time
planar srw.
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Open Problem 5.2. The results of [Dav06] suggest the possibility of simpler proofs
in the srw world by proving the corresponding results for the gff and applying an
isomorphism theorem. Can you find such a proof for (1.1)?

We note in passing that “level lines” of the continuous two dimensional gff are
intimately related to the conformally invariant Schramm–Loewner evolution (abbre-
viated sle). See [She06] for a survey of the continuous gff, [Wer04] for the sle
and its application for computing intersection exponents of independent Brownian
motions and [SS06] for the convergence of the zero level interface of an interpolated
gff with appropriate boundary values to variants of the sle(4) process. However,
though the path of the planar Brownian motion is also conformally invariant, we do
not know of any direct relation between the results presented here and the sle.

6. Disconnection of cylinders by random walks

Let (Xk) denote the srw on the infinite discrete cylinder Gn = Z
d
n ×Z (endowed with

its natural graph structure), which starts at X0 = 0. As Xk is an irreducible, recurrent
Markov chain, it is easy to see that the disconnection time Dn = inf{k ≥ 0 : X[0,k]
disconnects Gn} is almost surely finite. Further, Cn ≤ Dn ≤ Ĉn, where Cn denotes
the first time the projection of X· has visited all points of the base Z

d
n and Ĉn denotes the

cover time of the slice Z
d
n × {0} by the srw on Gn. When d = 1, it is straightforward

to argue that Dn is roughly of order n2 and comparable to Cn (and to Ĉn). Indeed,
by the general theory of Markov chains one knows that for any d ≥ 1, the sequence
log Cn/ log n converges in probability to max(d, 2) (as we have seen already, much
more in known about Cn). From (1.5) we see a different behavior for d ≥ 2 in which
case Dn = n2d+o(1) is much larger than Cn.

The upper bound in (1.5) is quite simple to prove. It is based on the fact that
Dn ≤ Ĉn and a relatively crude upper bound on the cover time Ĉn of the slice
Z

d
n × {0}. Indeed, fixing β > d − 1, though the hitting times of the sites on this slice

are of infinite mean, the first moment method works for the number Zn of non-visited
sites on it during the first nβ excursions of the srw between the truncated cylinders
Z

d
n ×[−n, n] and Z

d
n ×[−2n, 2n]. For large n it gives with high probability an upper

bound on Ĉn by the time it takes the walk to make these nβ excursions, which in turn
is bounded above by nγ for fixed γ > 2(β + 1).

Somewhat surprisingly, this rather primitive strategy of replacing Dn by Ĉn cap-
tures the correct rough order of magnitude of Dn. However, the lower bound is more
delicate because a direct enumeration over the huge collection of possible discon-
necting subsets of Gn seems to lead nowhere. Instead, we find a robust geometric
property that every disconnecting � ⊆ Gn must have, then show that with high prob-
ability X[0,n2d−δ] lacks this property. More precisely, [DS06, Lemma 2.4] shows that
for γ ∈ (0, 1) fixed and any n large enough, if � disconnects Gn then there exists
a box of side length nγ in Gn that contains at least order of ndγ points of �. This
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is a purely combinatorial argument, based on the following isoperimetric inequality
[DP96, (A.3)]:

For any ε > 0 and finite box B ⊂ Z
d+1,

|A ∩ B| ≤ (1 − ε)|B| �⇒ |∂B(A ∩ B)| ≥ δ|A ∩ B|d/(d+1), (6.1)

where ∂B(U) denotes the points of B \ U within distance one of U and the positive
constant δ depends only on ε and d ≥ 1. As shown in [DP96], the inequality (6.1) is a
direct consequence of the Loomis–Whitney inequality bounding the size of any finite
set A ⊂ Z

d+1 by the d-th root of the product of sizes of the (d + 1) projections of A

on the hyperplanes perpendicular to the coordinate axes (cf. [LW49, Theorem 2]).
The preceding combinatorial argument is complemented by a probabilistic analy-

sis involving the excursions between two concentric boxes of side length nγ and 2nγ .
Fixing 1 > δ > 3(d − 1)γ > 0, it shows that for some finite c0 the probability
that during its first n2d−δ steps the srw makes more than c0 log n such excursions for
some pair of boxes, decays to zero as n → ∞. Scaling the occupation measure of
the smaller box during one such excursion by n−2γ yields a random variable whose
moment generating function is bounded uniformly in n and the excursion’s starting
point. Consequently, for some finite c1 depending only on δ and γ , during its first
n2d−δ steps, the number of visits by the srw to any box of side length nγ does not
exceed c1(log n) n2γ . For d ≥ 3 and large n, this is substantially less than the order
of ndγ points that the walk must have visited for at least one such box by time Dn

(since by definition X[0,Dn] disconnects Gn), producing in this case the lower bound
on Dn as stated in (1.5).

Though the argument for d = 2 is of a similar flavor, it requires a considerable
refinement in order to utilize the much smaller differences, of only a logarithmic
growth in n, that we have here. To this end, by similar isoperimetric controls, [DS06,
Lemma 2.5] shows that for some finite, positive constants ci , i = 2, 3, 4, and n large
enough, if � disconnects Gn, then for one of the three two-dimensional coordinate
projections there exists a box of side length nγ and a collection of c2(log n)2α disjoint
sub-boxes, each of side length �n = nγ (log n)−α , whose centers lie on a common
c3�n-sub-grid of this box, such that the projection of the intersection of � with any
of these sub-boxes, contains at least c4�

2
n points. The stated lower bound on Dn in

case d = 2 is thus the result of a more careful probabilistic analysis which shows that
for γ small and α < 3/4 the probability that the set � = X[0,n4−δ] has this property,
tends to zero as n → ∞.

One consequence of (1.5) is that when d ≥ 2 and n is large, by the time Dn the
walk pretty much fills up the truncated cylinders of height nd−ε. More precisely,
with ρ(x, A) denoting the minimal length of a nearest neighbor path from x ∈ Gn to
A ⊆ Gn, for any d ≥ 2, ε > 0 and η > 0,

lim
n→∞ n−η max

x∈Zd
n×[−nd−ε,nd−ε]

ρ(x, X[0,Dn]) = 0 in probability. (6.2)

This is in contrast with the situation when d = 1, where with non-vanishing prob-
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ability there are points in such a truncated cylinder which are at distance n from
X[0,Dn]. The clogging effect of (6.2) is a direct consequence of the lower bound n2d−δ

on Dn, due to (1.5), as one can show that within n2d−δ steps, in a uniform fashion for
Z

d
n × [−nd−ε, nd−ε], the walk comes “often enough” within distance n of x, giving

it each time an opportunity to come even closer to x.

Acknowledgment. I thank Yuval Peres, Jay Rosen and Ofer Zeitouni, for valuable
feedback on a preliminary version of this manuscript, and the National Science Foun-
dation for funding the research on which it is based.

References

[AF01] Aldous, D. J., and Fill, J., Reversible Markov chains and random walks on graphs.
http://stat-www.berkeley.edu/users/aldous/RWG/book.html, 2001.

[Ald89] Aldous, D. J., Probability approximations via the Poisson clumping heuristic. Appl.
Math. Sci. 77, Springer-Verlag, New York 1989.

[Ald91] Aldous, D., Random walk covering of some special trees. J. Math. Analysis Appl.
157 (1) (1991), 271–283.

[BG85] Bass, R. F., and Griffin, P. S., The most visited site of Brownian motion and simple
random walk. Z. Wahrsch. Verw. Gebiete 70 (1985), 417–436.

[BDG01] Bolthausen, E., Deuschel, J.-D., and Giacomin, G., Entropic repulsion and the max-
imum of the two dimensional free field. Ann. Probab. 29 (4) (2001), 1670–1692.

[Bra83] Bramson, M., Convergence of solutions of the Kolmogorov equation to travelling
waves. Mem.Amer. Math. Soc. 44, no. 285,Amer. Math. Soc., Providence, RI, 1983.

[Bra86] Bramson, M., Location of the traveling wave for the Kolmogorov equation. Probab.
Theory and Related Fields 73 (4) (1986), 481–515.

[BZ06] Bramson, M., and O. Zeitouni, O., Recursions and tightness. Preprint, 2006.

[Bro90] Broder, A., Universal sequences and graph cover times. A short survey. In Sequences
(Naples/Positano, 1988), Springer-Verlag, New York 1990, 109–122.

[BH91] Brummelhuis, M., and Hilhorst, H., Covering of a finite lattice by a random walk.
Physica A 176 (1991), 387–408.

[Dav05] Daviaud, O., Thick points for the Cauchy process. Ann. Inst. H. Poincaré Probab.
Statist. 41 (2005), 953–970.

[Dav06] Daviaud, O., Extremes of the discrete two-dimensional gaussian free field. Ann.
Probab. 34 (3) (2006).

[Dem05] Dembo, A., Favorite points, cover times and fractals. In École d’été de probabilitiés
de Saint-Flour XXXIII – 2003, Lecture Notes in Math. 1869, Springer-Verlag, Berlin
2005, 5–108.

[DPR07] Dembo, A., Peres, Y., and Rosen, J., How large a disc is covered by a random walk
in n steps? Ann. Probab. 35 (2007).

[DPRZ01] Dembo, A., Peres, Y., Rosen, J., and Zeitouni, O., Thick points for planar Brownian
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Modelling genes: mathematical and statistical challenges
in genomics

Peter Donnelly

Abstract. The completion of the human and other genome projects, and the ongoing devel-
opment of high-throughput experimental methods for measuring genetic variation, have dra-
matically changed the scale of information available and the nature of the questions which can
now be asked in modern biomedical genetics. Although there is a long history of mathematical
modelling in genetics, these developments offer exciting new opportunities and challenges for
the mathematical sciences. We focus here on the challenges within human population genetics,
in which data document molecular genetic variation between different people. The explosion
of data on human variation allows us to study aspects of the underlying evolutionary processes
and the molecular mechanisms behind them; the patterns of genetic variation in different ge-
ographical regions and the ancestral histories of human populations; and the genetic basis of
common human diseases. In each case, sophisticated mathematical, statistical, and computa-
tional tools are needed to unravel much of the information in the data, with many of the best
methods combining complex stochastic modelling and modern computationally-intensive statis-
tical methods. But the rewards are great: key pieces of scientific knowledge simply would not
have been available by other means.

Mathematics Subject Classification (2000). Primary 92D10, 92D15; Secondary 65C05.

Keywords. Genetics, problems related to evolution, Monte Carlo methods.

1. Introduction

We begin with a brief review of the basic concepts and terminology from genetics.
The full picture is both more complicated and richer than we need, and we present
only a very high-level overview.

Genetic information is transmitted from parents to offspring, and carried in the
nucleus of each cell, in DNA (deoxyribonucleic acid). To a mathematician, DNA can
be thought of as a very long word over the four letter alphabet {A, C, G, T }, with each
letter representing one of the four chemical bases, or nucleotides, which are arranged
effectively linearly along the DNA molecule. It is the order in which the bases appear
which conveys the information. Some parts of the molecule are “read” by molecular
machinery, and the relevant part of the DNA is used as a template to make a particular
protein. These parts of the DNA are called genes. The totality of an organism’s DNA
is called its genome. The human genome consists of about 3×109 bases, and contains
around 25,000 genes, but most of the DNA in the human genome appears to have no
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function. The genomes of different organisms differ in size, with some much smaller
and some substantially larger than the human genome. Like many other organisms,
humans are diploid, in that we carry two copies of our genome, one inherited from
our mother, and one from our father. Human DNA is packaged into 23 pairs of
chromosomes, with one copy of each chromosome inherited from each parent.

Each human sperm or egg (collectively referred to as germ cells) contains a single
copy of each of the 23 chromosomes. For what follows, we need to understand a little
about the process during which germ cells are formed, called meiosis. Focus on a par-
ticular human chromosome. The individual (progenitor) producing the germ cell will
have two (slightly different) copies of this chromosome. Think of the process which
produces the chromosome for the germ cell as starting on one of the chromosomes in
the progenitor and copying from it along the chromosome. Occasionally, and for our
purposes randomly, the copying process will “cross over” to the other chromosome
in the progenitor, and then copy from that, perhaps later jumping back and copying
from the original chromosome, and so on. The chromosome in the germ cell will thus
be made up as a mosaic of the two chromosomes in the progenitor. The crossings
over are referred to as recombination events. In a typical human meiosis, there will
be only a few recombination events per chromosome. In addition to the process of re-
combination, there will be very occasional mutations: positions where the nucleotide
in the offspring is different from that in the progenitor chromosome from which it is
being copied. To give an idea of the scale of these effects in humans, the probability
of a mutation in any particular nucleotide position is of order 10−8 per meiosis, and
the average probability of a recombination event in a particular position is of the same
order. Mutation and recombination are two of the fundamental evolutionary forces.
Mutation introduces new variants into a population. (Some of these will make the
resulting chromosome better at doing its job than the progenitor chromosome). The
effect of recombination is more subtle, but equally important. Recombination allows
the shuffling of variants between different backgrounds: when a mutation arises it
occurs on a particular chromosome with a particular DNA sequence. Over genera-
tions, recombination events near this mutation allow it to be swapped onto different
backgrounds.

In effect, the human genome project read one copy of the human genome ([12],
[26]) – actually a mosaic made up of the genome from many individuals. The human
genome sequence is available on the web, along with annotations which show, for
example, which parts correspond to known and predicted genes, or regions which
regulate the expression of genes, or appear to be highly conserved across species. The
genomes of many other organisms are also now available, with more being completed
each month. In each case a major challenge within the science is to better understand
the function of, and interactions between, different parts of each of these genomes.

We can think of the human genome project as focussing on the aspects of our
genome which we all share: the things that make us human. But there are also
differences between people, in appearance, nature, abilities, and susceptibility to
different diseases. Some of these differences have a genetic component, resulting
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from differences in the DNA sequence between individuals. If we compared two
human chromosomes in the same region then they would differ at about 1 place
in 1000. (As a comparison, the human genome sequence differs from that of the
chimpanzee at about 1 position in 100.)

Following on from the human genome project, there was a major effort in a
public-private partnership to discover many of the positions at which human chromo-
somes differ. While there are a number of interesting ways in which DNA sequences
can differ, the most common is when at a particular position, or nucleotide, some
chromosomes in the population carry one letter (or base) while others carry a dif-
ferent letter (base). Such positions are called single nucleotide polymorphisms, or
SNPs (pronounced “snips”). These SNPs are catalogued in public databases (e.g.
http://www.bioinfo.org.cn/relative/dbSNP%20Home%20Page.htm). Over the cur-
rent decade the number of SNPs known in humans has grown from hundreds to
more than 8 million. Nonetheless, many remain undiscovered. For example it is
estimated that there are 10 million “common” SNPs, that is SNPs where the rarer
variant has a population frequency of at least 5% [11]. As noted above, the mutation
rate at any particular nucleotide position is very small (10−8). On the other hand the
human genome is large (3 × 109 nucleotides). SNPs can be thought of as positions
at which mutations happen to have occurred in the genome, where the chromosome
carrying the mutation has spread through the population. It is extremely rare for there
to be more than two variants present at a particular SNP.

Having read one copy of the human genome sequence, then catalogued many of
the DNA sequence variations present in human populations, a natural next step was to
understand the patterns in which these variants occur in different populations. This has
recently been undertaken by the International HapMap Consortium, a collaboration
involving five different countries (Canada, China, Japan, UK, USA), at a cost of about
$100M. Largely completed, the project typed around 3.5M SNPs in samples from four
populations around the world: 90 Caucasians from Utah, 90 Yorubans from Ibadan,
Nigeria, 45 Han Chinese from Beijing, and 45 Japanese from Tokyo. The first phase
of the project, involving just over 1M SNPs, was reported in [11].

It turns out that the variants present at SNPs close to each other on the same
chromosome are often correlated. That is, if at one SNP some chromosomes in the
population carry an A and others a G, while at a nearby SNP the two variants are T

and C, it might be that chromosomes which carry an A at the first SNP are more
likely to carry a T at the second SNP than those with a G at the first SNP. This kind
of correlation is known in population genetics as linkage disequilibrium (LD). The
correlations can be very strong (for example the extreme case where all chromosomes
carry either A and T or G and C, is not unusual) and as we will see below, are very
important for studies of the genetics of human disease. Amongst other things, the
HapMap project characterized patterns of linkage disequilibrium in the samples it
studied.

The reasons for linkage disequilibrium are apparent when one thinks about the
history of novel mutations. In the example above, suppose the mutation giving rise
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to the first SNP (A/G) occurred further into the past than that giving rise to the
second SNP, and suppose that at the second SNP the C variant (variants are often
called alleles in genetics) was the one present originally. The mutation creating a T

and giving rise to the second SNP will have occurred on a single chromosome in a
particular generation. Suppose it occurred on a chromosome carrying an A at the first
SNP. Then it is immediate that when it arose, a T at the second SNP would occur
with an A at the first SNP. Over subsequent generations, the number of copies of the
chromosome carrying the T is likely to have grown (otherwise it would not be present
today) and unless there is a recombination event between the two SNP positions on
one of these chromosomes, it will remain the case that a T at the second SNP would
always occur with an A at the first SNP. This association will only be broken down
by recombination events, and the extent of this will depend on two things: (i) how
many nucleotides separate the two SNPs on the chromosome (the closer together,
on average, the smaller is the chance of a recombination between them); and (ii)
the number of generations since the mutation giving rise to the second SNP (since a
larger number of generations will allow a greater chance for a recombination event).
In general, the observed patterns of LD depend on a number of factors, including
chance past recombination events, and the demographic history of the population
concerned.

2. Mathematical models

The arguments in the previous section were entirely qualitative. While helpful, they
do not allow quantitative assessments of the way in which various aspects of genetic
variation depend on the underlying evolutionary forces or demographic effects. To do
so requires the development and analysis of mathematical models of the evolutionary
process.

There has been a long history of mathematical modelling in population genetics,
dating back to Fisher and Wright early last century. For most questions of interest,
stochastic effects are important and the principal models are probabilistic. For most
of the period over which these models have been studied, empirical data against which
to compare the models have been sparse. Typically, what data there were came from
so-called model organisms (particular species of flies and worms for example). Over
the last few years, there has been an explosion of data documenting genetic variation
in humans, to the extent that our own species provides the richest setting in which to
apply these models.

We aim here only to give a brief flavour of the stochastic models which arise in
population genetics. The most basic models are finite Markov chains which describe
the way in which the genetic composition of the population changes over time. In most
cases, these models are not tractable, and interest moves to their limiting behaviour as
the population size grows large, under suitable re-scalings of time. When examined
forward in time, this leads to a nice family of measure-valued diffusions, called
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Fleming–Viot processes. In a complementary, and for many purposes more powerful
approach, one can instead look backwards in time, and focus on the genealogical tree
relating sampled chromosomes. In the large population limit, these (random) trees
converge to a particular process called the coalescent.

One simple discrete model for population demography is theWright–Fisher model.
Consider a population of fixed size N chromosomes which evolves in discrete gener-
ations. (For many purposes it turns out that we can ignore the fact that chromosomes
occur in pairs in individuals, and we do so here.) The random mechanism for forming
the next generation is as follows: each chromosome in the next generation chooses a
chromosome in the current generation (uniformly at random) and copies it, with the
choices made by different chromosomes being independent. An equivalent descrip-
tion is that each chromosome in the current generation gives rise to a random number
of copies in the next generation, with the joint distribution of these “offspring num-
bers” being symmetric multinomial. Under an assumption of genetic neutrality, all
variants in a population are equally fit. In this case, one can first generate the demog-
raphy of the population using, say, the Wright–Fisher model, and then independently
superimpose the genetic type for each chromosome, and the details of the (stochastic)
mutation process which may change types. The extent to which this neutrality as-
sumption applies is rather controversial in general, and for humans in particular, but
it seems likely that it provides a reasonable description for many parts of the genome.
Recombination (and if needed natural selection) can be naturally added to the model.
Where a recombination event occurs, the offspring chromosome will be made up from
two chromosomes in the current population. Although we have described it in terms
of chromosomes, it is natural only to apply the Wright–Fisher model to small regions
of a chromosome. In this case, the probabilities of mutation and recombination in a
copying event are both very small, and these events are rare.

The Wright–Fisher model may also be extended to allow for more realistic de-
mographic effects, including variation in population size, and geographical spatial
structure in the population (so that offspring chromosomes are more likely to be lo-
cated near to their parents). We will not describe these here. Somewhat surprisingly,
it transpires that the simple model described above, (constant population size, ran-
dom mating, and neutrality – the so-called “standard neutral” model), or rather its
large population limit, captures many of the important features of human evolution.
There is an aphorism in statistics that “all models are false, but some are useful”. The
standard neutral model has proved to be extremely useful.

In a Wright–Fisher or any other model, we could describe the genetic composition
of the population at any point in time by giving a list of the genetic types currently
present, and the proportion of the population currently of each type. Such a descrip-
tion corresponds to giving a probability measure on the set E of possible types. It
is sometimes helpful to think of this measure as the distribution of the type of an
individual picked at random from the population. In this framework, when we add
details of the mutation process and recombination to the Wright–Fisher model, we
obtain a discrete time (probability) measure-valued Markov process. As N becomes
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large a suitable rescaling of the process converges to a diffusion limit: time is mea-
sured in units of N generations, and mutation and recombination probabilities are
scaled as N−1. For general genetic systems, the limit is naturally formulated as a
measure-valued process, called the Fleming–Viot diffusion. The classical so-called
Wright–Fisher diffusion is a one dimensional diffusion on [0, 1] which arises when
there are only two genetic types and one tracks the population frequency of one of the
types. This is a special case of the Fleming–Viot diffusion, in which we can identify
the value of the classical diffusion, p ∈ [0, 1] with a probability measure on a set
with just two elements. The beauty of the more general, measure-valued, formula-
tion is that it allows much more complicated genetic types, which could track DNA
sequences, or more exotically even keep track of the time since particular mutations
arose in the population.

The Fleming–Viot process can thus be thought of as an approximation to a large
population evolving according to the Wright–Fisher model. For the Wright–Fisher
model, time is measured in units of N generations in this approximation (and the
approximation applies when mutation and recombination probabilities are of order
N−1). In fact the Fleming–Viot process arises as the limit of a wide range of demo-
graphic models, (and we refer to such models as being within the domain of attraction
of the Fleming–Viot process) although the appropriate time scaling can differ between
models. (See, for example, [5].) For background, including explicit formulations of
the claims made above, see for example [2], [3] [4], [5], [6]. Donnelly and Kurtz
([2], [3]) give a discrete construction of the Fleming–Viot process. As a consequence,
the process can actually be thought of as describing the evolution of a hypothetically
infinite population, and it explicitly includes the demography of that population.

There has been considerable recent interest in looking backwards in time to study
the genealogy of population genetics models. This is simplest in the absence of
recombination. Consider again the discrete Wright–Fisher model. If we consider two
different chromosomes in the current generation, they will share an ancestor in the
previous generation with probability 1/N . If not, they retain distinct ancestries, and
will share an ancestor in the previous generation with probability 1/N . The number of
generations until they share an ancestor is thus geometrically distributed with success
probability 1/N and mean N . In the limit for large N , with time measured in units
of N generations, this geometric random variable will converge to an exponential
random variable with mean 1.

More generally, if we consider k chromosomes, then for fixed k and large N , they
will descend from k distinct ancestors in the previous generation with probability

1 −
(

k

2

)
1

N
+ O(N−2).

Exactly two will share a common ancestor in the previous generation with probabil-
ity

(
k
2

) 1
N

+ O(N−2) and more than a single pair will share a common ancestor with
probability O(N−2). In the limit as N → ∞, with time measured in units of N gen-
erations, the time until any of the k share an ancestor will be exponentially distributed
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with mean
(
k
2

)−1
, after which time a randomly chosen pair of chromosomes will share

an ancestor.
Thus, in the large population limit, with time measured in units of N generations,

the genealogical history of a sample of size n, may be described by a random binary
tree. The tree initially has n branches, for a period of time Tn, after which a pair of
branches (chosen uniformly at random independently of all other events) will join, or
coalesce. More generally, the times Tk , k = n, n − 1, . . . , 2 for which the tree has k

branches are independent exponential random variables with

E(Tk) =
(

k

2

)−1

,

after which a pair of branches (chosen uniformly at random independently of all other
events) will join, or coalesce. The resulting random tree is called the n-coalescent, or
often just the coalescent.

In a natural sense the tree describes the important part of the genealogical history
of the sample, in terms of their genetic composition. It captures their shared ancestry,
due to the demographic process. A key observation is that in neutral models the
distribution of this ancestry is independent of the genetic types which happen to be
carried by the individuals in the population. Probabilistically, one can thus sample
the coalescent tree and then superimpose genetic types: first choose a type for the
most recent common ancestor of the population (the type at the root of the coalescent
tree) according to the stationary distribution of the mutation process, and then track
types forward through the tree from the common ancestor, where they will possibly
be changed by mutation.

The preceding recipe gives a simple means of simulating the genetic types of a
sample of size n from the population. Note that this is an early example of what
has recently come to be termed “exact simulation”: a finite amount of simulation
producing a sample with the exact distribution given by the stationary distribution
of a Markov process. In addition, it is much more computationally efficient than
simulating the entire population forward in time for a long period and then taking a
sample from it. Finally, it reveals the complex structure of the distribution of genetics
models at stationarity – the types of each of the sampled chromosomes are (positively)
correlated, exactly because of their shared ancestral history.

We motivated the coalescent from the Wright–Fisher model, but the same limiting
genealogical tree arises for any of the large class of demographic models in the domain
of attraction of the Fleming–Viot diffusion. Moreover, the way in which the tree
shape changes under different demographic scenarios (e.g. changes in population
size, geographical population structure) is well understood.

The discrete construction of the Fleming–Viot process described above actually
embeds the coalescent and the forward diffusion in the same framework, so that one
can think of the coalescent as describing the genealogy of a sample from the diffusion.

There is even a natural limit, as n → ∞ of the n-coalescents. This can be thought
of as the limit of the genealogy of the whole population, or as the genealogy of
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the infinite population described by the Fleming–Viot process, although the analysis
underlying the relevant limiting results is much more technical than that outlined
above for the fixed-sample-size case. It is easiest to describe this tree from the root,
representing the common ancestor of the population, forward to the tips, each of
which represents an individual alive at the reference time. The tree has k branches
for a random period of time Tk , after which a branch, chosen uniformly at random,
independently for each k, splits to form two branches. The times Tk , k = 2, 3, . . . ,
are independent exponential random variables, and independent of the topology of
the tree, with

E(Tk) =
(

k

2

)−1

.

Write

T =
∞∑

k=1

Tk

for the total depth of the tree, or equivalently for the time back until the population
first has a common ancestor. Note that T is a.s. finite. In fact E(T ) = 2.

Now we return to the case where recombination is allowed. The simplest way to
conceptualise this more general situation is that there is a genealogical tree, marginally
distributed as the coalescent, associated with each nucleotide position. As one moves
along the DNA sequence, these trees for different positions are highly positively
correlated. In fact, two neighbouring positions will have the same tree iff there is no
recombination event between those positions since their joint most recent common
ancestor, on a lineage leading to the current sample. If there is such a recombination,
the trees for the two positions will be identical back to that point, but (in general)
different before it. The correlation structure between the trees for different positions
is complex, and for example regarded as a process on trees as one moves along the
sequence, it is not Markov. But it is straightforward to simulate from the relevant joint
distribution of trees, and hence of sampled sequences. The trees for each position can
be embedded in a more general probabilistic object (this time a graph rather than a
tree) called the ancestral recombination graph ([8], [9]).

3. Disease mapping

One major current analytical challenge in the field is the development of statistical
methods in genetic studies of human disease. A common study design is case-control:
a (typically large) set of individuals with a particular disease (cases) and a set of healthy
individuals (controls) are typed at a (large) set of SNPs. If one variant at a particular
SNP predisposes individuals to (respectively protects them against) the disease in
question then the frequency of that variant should be higher (lower) in the cases than
the controls. The signal one looks for then is a difference in allele frequency between
cases and controls at a particular SNP.
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As one contemporary example, the Wellcome Trust Case Control Consortium is
a large UK-based study in which 2000 cases for each of 8 common diseases (Type 1
and Type 2 Diabetes, Hypertension, Coronary Heart Disease, Crohn’s Disease, Bipo-
lar Disorder, Rheumatoid Arthritis, and Tuberculosis) will be compared with 3000
controls at around 500,000 SNPs. This size of study is becoming more common,
and although expensive, is within reach of major biomedical research budgets. (For
example, the study just described will cost around US$15M.)

Some human disorders have a simple genetic component. In these, a single gene
will be involved, and mutations in that gene cause individuals to be affected. In some
cases, such as Huntington’s disease, individuals will be affected if either of their
chromosomes carries the mutation. (The inheritance is said to be dominant.) In others,
such as Cystic Fibrosis, individuals will be affected only if both their chromosomes
carry mutations at the gene in question. (The inheritance is said to be recessive.) In
these cases there is effectively a deterministic relationship between carrying mutated
copies of the gene in question and having the disease. These so-called simple genetic
diseases are typically rare, and often very debilitating. In a large number of cases the
exact genes involved are now known.

Most or all of the common human diseases also have a genetic component, but
one which acts in a more subtle, and complicated, way. We are some way from
understanding the full story, but for these common human diseases, it is thought
that mutations in genes may slightly increase (or decrease) the probability of the
individual developing the disease, rather than deterministically predicting it. Disease
susceptibility may well also involve the interaction between mutations in different
genes, and/or interactions between genes and environmental or lifestyle factors.

One major issue with case-control studies involves the need for cases and controls
to be as similar as possible apart from their disease status. A particular, genetic,
concern relates to geographical population structure. Most human populations differ
genetically – individuals from nearby geographical locations are more likely to be
genetically similar than those from distant locations. This is well documented in
comparisons between the major continental regions of the world. But the same effect
pertains, to a lesser extent, within continental or even national regions. Suppose for
simplicity that a population is actually made up of two subpopulations which differ
genetically at a particular genetic marker (say the A allele is more common in sub-
population 1 than in subpopulation 2), and that in addition, perhaps for environmental
reasons, the disease is more common in subpopulation 1. Then a random sample of
cases from the population as a whole will tend to include more individuals from sub-
population 1 than will a random sample of controls, and in turn the sample of cases
will have a higher frequency of A than will the controls. A naive analysis, which
ignores the population substructure, might wrongly conclude that the A variant at this
SNP played a role in disease susceptibility.

This tendency for geographical population structure to lead to false positives in
association studies actually led to the case-control design being largely ignored for
many years. More recently a range of statistical approaches has been developed to
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correct the problem. One class of approach uses all the markers typed to correct the
null distribution of the usual test statistics. Another uses the markers to infer the
underlying structure and assign individuals to subpopulations, with the comparisons
between cases and controls being made only within subpopulations. Perhaps counter-
intuitively, it is also the case that the problems caused by substructure increase with
the size of the study: even the small amounts of structure within national populations
might cause problems for the large studies currently being undertaken. See [19] for
further discussion and additional references.

If an association study directly tests a SNP causatively involved in disease suscep-
tibility, then we would expect to see frequency differences between cases and controls
at that SNP. For common diseases the effect of carrying one variant is typically small,
which will lead to only a small difference in the frequency of that variant between
cases and controls. The large sample sizes of current studies are needed to ensure
statistical power to detect small frequency differences.

Even were an investigator to restrict attention only to variants which occur at
appreciable frequency (e.g. so-called “common variants”, where the less common,
or “minor” allele has frequency > 5%), these cannot all be tested in an association
study. It is estimated that there are probably around 10 million such variants in the
human genome [11]. Firstly, many of these variants are not known, and secondly, the
cost of checking all known variants is prohibitive (even at levels of current biomedical
research funding).

Here, the correlations between alleles described above (recall the discussion of
linkage disequilibrium) is very helpful. In an extreme case, suppose variants at two
SNPs are perfectly correlated: each chromosome carrying an A at the first SNP carries
a T at the second, and chromosomes with a G at the first SNP carry a C at the second.
In this case, when an association study types one of the SNPs it effectively also types
the other. Put another way, if one of the two SNPs were causatively involved in the
disease, and a study typed the other SNP, then there should still be a signal.

In fact, this “extreme” case, of perfect correlation, is not uncommon. For exam-
ple, it is estimated that in a Caucasian population, 60% of common SNPs have the
property that there are at least three other SNPs with which they are perfectly corre-
lated, and 20% are perfectly correlated with more than 20 other SNPs; only around
20% are not perfectly correlated with any other SNPs [11]. (There is in general less
correlation between SNPs in samples from African populations.) The reasons for
this are now well understood. They follow from properties of coalescent trees, and
recently discovered facts about the human recombination process. Two SNPs will
be perfectly correlated iff they occur on the same branch of the coalescent tree. The
branches near the root of the tree are relatively long, thus allowing time for a num-
ber of mutations to occur. In addition, as we discuss in more detail below, it turns
out that in humans, recombination events do not occur uniformly along the chromo-
some, but instead cluster into small regions, called recombination hotspots, which
are typically widely separated. Between these regions there will often be effectively
a single coalescent tree for all nucleotide positions, and the placement of mutations
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on branches of this tree induces the correlations between SNPs.
Often two SNPs may be well correlated but not perfectly so. In this case, if one is

causative and the other is typed, it may still be possible to see a signal, and hence to
detect the untyped causative SNP. Under a simple disease model, this effect depends
simply on the correlation coefficient, r2, between the SNPs. If a sample size of n

were needed at given power to detect the SNP in a study in which it is typed directly,
then a sample size of n/r2 will be needed for the same power if only the correlated
SNP were typed.

The major point of the HapMap project was to describe these correlations between
SNPs in human populations. As a consequence, association studies can carefully
choose which SNPs to type so as to minimize the number of SNPs involved. For
example, it is estimated that in a Caucasian sample, genotyping a set of 300,000
SNPs will capture around 80% of all common SNPs with r2 > 0.8 [11].

Whatever strategy is chosen to select SNPs for typing in an association study, the
analytical challenge is how best to analyse the data. This can helpfully be thought
of as a statistical missing data problem. We have data at a set of SNPs in cases and
controls. For these SNPs we can directly test the possibility that their variants are
related to disease susceptibility in a variety of ways (e.g. by simple chi-squared tests
for differences in genotype frequencies, or by fitting say logistic regression models
relating genotype to disease status). If we had data at the SNPs not typed in the study
we could apply the same tests at those SNPs. Thinking of the data at the untyped SNPs
as missing data, the challenge then is to learn about the missing data from the data we
actually have. Some of the most promising approaches to this problem make use of
the mathematical models described above, (or approximations to them). Informally,
the models can be used to predict, or impute, data at the untyped SNPs from the data at
the SNPs actually typed, and then this imputed data is used to test for a disease effect.
The approach can be applied either at the positions of known SNPs not included
in the study, or more generally at arbitrary positions in the genome. It combines
the empirical information available from surveys such as HapMap, inferences as to
recombination rates in the human genome, and population genetics models.

4. Human recombination

Recall that recombination is the process by which germ cells are constructed to con-
tain part of each of the chromosomes in their progenitor. It has long been known
that recombination events do not happen uniformly along the human chromosomes.
(The rates of recombination even differ between males and females.) Over large
scales, this can be seen in pedigree (or family) studies: effectively through localising
the genomic positions of recombination events in comparisons between parents and
their children.

But pedigree studies have limited resolution for estimating recombination rates.
The average recombination rate across 10 million basepairs – 10 megabases (Mb) –
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is 10−1. Reliable estimation of probabilities of order 10−1 requires many tens, or
hundreds of observations. While this is realistic in human pedigree studies, the average
recombination rate across 1Mb is an order of magnitude lower, and requires an order
of magnitude more observations for accurate estimation, taking it effectively beyond
the limit of practicability for pedigree studies. As a consequence, our understanding
of the variation in human recombination rates based on pedigree studies does not go
below the megabase scale.

So what do recombination rates look like over finer scales. Two recent lines of
evidence suggested that the picture may be surprising and very interesting. The first
was the direct observation of recombination hotspots: small (typically 2 kilobase,
or kb) regions in which recombination events cluster, and for which the local re-
combination rate is much higher than in the surrounding DNA. These observations
typically involved studies of human sperm. Although realistic pedigree studies are
uninformative over these scales, clever and careful experimentation does allow de-
tection of sperm with recombination events in particular small regions, from which
recombination rates (in males) can be estimated over the region studied.

The second clue came from patterns of linkage disequilibrium (LD) in human pop-
ulations. Contrary to the predictions of simple models, human linkage disequilibrium
extended over much larger regions than expected, and in addition, the patterns showed
regions of extended LD interrupted by short regions of LD breakdown. Although both
the initial observations and the suggested causes were controversial, this pattern is now
well documented in humans [11]. One natural explanation was that recombination
events were not uniformly distributed but instead clustered into hotspots.

As we saw above, the patterns of genetic variation in human populations have
been shaped by a number of effects, including recombination. In principle then, such
data contain information about the underlying recombination rates. Armed with an
understanding of the stochastic models of section 2, we could then treat this as a
statistical problem, and try to use data to infer some of the parameters of the models,
in particular the recombination rates.

It turns out that this is a challenging inference problem, for a number of reasons.
In either classical or Bayesian statistical inference, a central role is played by the
likelihood: the probability of the observed data as a function of model parameters.
Although the stochastic models are well understood, and for example easy to simu-
late from, no explicit expressions are available for probabilities of interest, such as
the stationary distribution. In the statistical context, this means that the likelihood
associated with the model is not available analytically. One way of conceptualising
the difficulty is as follows: for a given genealogical tree (or graph in the context of
recombination) one could calculate the likelihood for given parameter values. The
actual likelihood could then be obtained by averaging this quantity over all possible
underlying trees or graphs. Herein lies the problem: the space of trees/graphs is so
large that this averaging is impracticable.

Various clever computational approaches have been developed in modern statis-
tics to overcome this type of problem, and there has been particular attention to these
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in the population genetics context (see for example [25]). A general observation is
that sophisticated understanding of the stochastic models allows big improvements
in the quality and efficiency of the statistical inference. For example, for inference of
recombination rates assumed constant across the region of interest, the best available
methods are more efficient then their predecessors by up to four orders of magni-
tude [7].

But even the best available statistical methods based on the coalescent are im-
practicable for estimating recombination rates of interest for a different reason: the
sheer size of available data sets. The Phase I HapMap data, for example, documents
genetic variation at 1M SNPs in 269 individuals. Two different approaches have
recently been developed to address this issue. In essence, each takes the view that
the coalescent model is itself an approximation to reality, so why not make further
judicious approximations in order to achieve tractability. One approach, pioneered
by Li and Stephens [18] involves an alternative model for genetic data with a hidden
Markov structure. (See [1] for application to the estimation of fine-scale recombina-
tion rates.) We concentrate here on the other approach, introduced by Hudson [10] in
the context of constant recombination rates, and developed by McVean and colleagues
for variable recombination rates [20], [21].

This approach retains the original coalescent model, and uses its exact likelihood
for data at a pair of SNPs, as a function of the recombination rate between them. But
rather than using the correct joint distribution for a set of more than two SNPs, the
approximation assumes each pair of SNPs to be independent. In this way, a so-called
pairwise composite likelihood is constructed as the product of the exact coalescent
likelihoods across all pairs of SNPs in the data. In the setting of variable recombi-
nation rate, the parameter of interest is a piecewise constant function specifying the
recombination rate between each pair of SNPs (so the function only changes value at
the positions of SNPs). McVean et al. [21] adopt a Bayesian approach to inference.
The prior distribution (here on function space) encourages smoothness in the rate
function and reversible jump Markov chain Monte Carlo, using the pairwise com-
posite likelihood, is used to explore the posterior distribution on recombination rates.
One attractive feature of the prior distribution putting weight on smooth functions
is that the approach “borrows” information from nearby SNPs – the estimated rate
between a pair of SNPs will be influenced by data at nearby SNPs. Another positive
consequence is the tendency to avoid overfitting: maximum likelihood estimation
with the same likelihood function would fit a different recombination rate between
each pair of SNPs. The paper also develops a formal likelihood ratio test for the pres-
ence of a recombination hotspot, based on the composite likelihood (with significance
levels determined by appropriate simulation). Tests on real and simulated data show
these methods to perform remarkably well. In spite of the approximations (firstly to
give the coalescent and secondly of the coalescent) involved, the models appear to be
capturing key features of the real world remarkably well.

These new statistical methods, applied to recent genome-wide variation data sets
such as the HapMap, have enormously extended our knowledge of human recombi-
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nation. For the first time, fine-scale estimates of recombination rates are available
across the human genome. These so-called genetic maps have resolution 2-3 orders
of magnitude finer than their predecessors from pedigree studies. They show striking
variation in rates, by up to four orders of magnitude, over kilobase scales, and provide a
powerful tool in studies of human disease. We now know that recombination hotspots
are a ubiquitous feature of the human genome: whereas around 15-20 hotspots had
been previously characterised, around 30,000 have been detected from the new ap-
proach, with an estimated average density of one hotspot per 50kb. The approach
has demonstrated, also for the first time, that recombination hotspots are definitively
a feature of female recombination, and more generally that the fine-scale recombi-
nation landscape appears similar between males and females. Contrary to previous
reports, recombination rates are systematically lower within genes, but interestingly,
systematically higher close to genes [11], [22].

One common general tool in genetics studies involves comparisons between
species, and this has proved informative for recombination as well. Two compar-
isons between humans and our closest neighbouring species, the chimpanzee, revealed
that recombination hotspots are a feature of chimpanzee recombination as well. But
whereas human and chimpanzee DNA sequences agree at about 99% of nucleotide
positions, the studies surprisingly found that the positions of recombination hotspots
do not match between the two species, suggesting that they have evolved rapidly over
evolutionary times [29], [23]. Comparisons between the time-averaged recombina-
tion rates estimated from population data and those in contemporary sperm suggest
an even more rapid evolution of recombination hotspots, with substantial changes
even over the half a million or so years over which human genetic variation has
accumulated [13].

Perhaps the best example of mathematical and statistical approaches adding sub-
stantially to scientific knowledge in this area comes from studies of motifs associated
with recombination hotspots. The question of why some parts of the DNA sequence
act as recombination hotspots and some do not has been a major focus of research
attention, and remains little understood. No clear pattern was available from the 15
hotspots directly characterised from human sperm typing. But by first identifying,
and then studying, 25,000 hotspots, Myers et al. [22] were able to identify several
short DNA sequence motifs associated with hotspots. (In fact the analysis was not
straightforward, essentially because most hotspots are localised only to within 5-10kb
by statistical methods. The key was to focus only on those hotspots containing spe-
cific sequences of several hundred basepairs – many such so-called repetitive elements
abound in the human genome – and to compare them with the same sequences out-
side hotspots.) Although also an exciting ongoing story, this approach was the first
to identify sequence motifs (one important example is the collection CCT CCCT of
eight basepairs) associated with human hotspots, and amongst the first to be identified
for any organism.
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5. Conclusion

In addition to explaining some of the science, our aim has been to give a sense of
the central role being played in modern genomics by mathematical modelling and
statistical methods. The Human Genome Project provided the foundation for a new
generation of genetics research. As we build on that foundation, in our understanding
of basic biology, of the genetic basis for disease susceptibility, and in the use of this
information to develop new therapies and preventions for human disease, it is clear
that the mathematical and computational sciences will continue to play a vital role.
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Geometric stochastic analysis on path spaces
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Abstract. An approach to analysis on path spaces of Riemannian manifolds is described. The
spaces are furnished with ‘Brownian motion’ measure which lies on continuous paths, though
differentiation is restricted to directions given by tangent paths of finite energy. An introduction
describes the background for paths on R

m and Malliavin calculus. For manifold valued paths the
approach is to use ‘Itô’ maps of suitable stochastic differential equations as charts. ‘Suitability’
involves the connection determined by the stochastic differential equation. Some fundamental
open problems concerning the calculus and the resulting ‘Laplacian’ are described. A theory
for more general diffusion measures is also briefly indicated. The same method is applied as
an approach to getting over the fundamental difficulty of defining exterior differentiation as a
closed operator, with success for one and two forms leading to a Hodge–Kodaira operator and
decomposition for such forms. Finally there is a brief description of some related results for
loop spaces.
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Keywords. Path space, Hodge–Kodaira theory, infinite dimensions, connection, de Rham coho-
mology, stochastic differential equations, Malliavin calculus, Sobolev spaces, abstract Wiener
spaces, differential forms.

1. Introduction

1.1. Analysis with Gaussian measures. Classical differential and geometric anal-
ysis is based on Lebesgue measure. The non-existence of an analogue of Lebesgue
measure in infinite dimensions is demonstrated by the following theorem:

Theorem 1.1. If μ is a locally finite Borel measure on a separable Banach space E

such that translations by every element of E preserve sets of measure zero, then either
μ = 0 or E is finite dimensional.

‘Local finiteness’here means that every point of E has a neighbourhood with finite
measure. The theorem is a special case of more general results, e.g. see Theorem 17.2
of [62]. In a sense it is behind many of the mathematical difficulties in ’path integra-
tion’ and has meant that infinite dimensional differential and geometric analysis has
had to develop its own techniques.
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The analysis proposed by Gross was based on his notion of abstract Wiener spaces.
These are triples {i, H, E} where i : H → E is a continuous linear injective map,
with dense range, of a Hilbert space (H, 〈 , 〉H ) into a separable Banach space E.
(Throughout this article all the linear spaces considered will be real.) The defining
property is that there is a Borel measure γ , say, on E whose Fourier transform γ̂ is
given by

γ̂ (l) :=
∫

E

e
√−1l(x) dμ(x) = e−|j (l)|2

H
2

for all l ∈ E∗ where j : E∗ → H is the adjoint of i. This was a generalisation
of classical Wiener space where some analysis had been previously investigated,
particularly by Cameron & Martin e.g. see [8], and also was influenced by Irving
Segal’s work. It was shown later that all, centred and strictly positive, so-called
‘Gaussian measures’ on a separable Banach space E arise from an essentially unique
abstract Wiener space structure on E, e.g. see [14].

Classical Wiener space can be considered as the special case when E is the space
C0([0, T ]; R

m) of continuous maps of a fixed interval [0, T ] into R
m which start

at the origin, and H , sometimes called the Cameron–Martin space, is the space of
finite energy paths L

2,1
0 ([0, T ]; R

m), i.e. those paths in C0([0, T ]; R
m) which have

distributional derivatives in L2. The map i is the inclusion. The norm for H is
given by |h|2H = ∫ t

0 |ḣ(t)|2dt , and the measure on E is the classical Wiener measure
constructed by Wiener, so that the canonical process [0, T ] × C0([0, T ]; R

m) → R
m

given by evaluation, is the standard model of Brownian motion. Denote that measure
by P .

The starting point for Gross’s analysis was his extension of Cameron & Martin’s
quasi-invariance theorem to the case of abstract Wiener spaces and their measures γ :

Theorem 1.2. Translation by an element v of E preserves sets of measure zero if and
only if v lies in the image of H . Moreover, for h ∈ H and integrable f : E → R we
have for any t ∈ R:∫

E

f (x) dγ =
∫

E

f (x + t i(h)) exp
(

− tP (h) − t2

2
|h|2H

)
dγ, (1)

where P : H → L2(E; R) is the Paley–Wiener map.

The Paley–Wiener map is an isometry into L2 defined as the L2-limit of any
sequence, {ln}n≥1 of elements in E∗ for which {j (ln)}n≥1 converges in H to h. For
classical Wiener space it is written as σ 	→ ∫ T

0 〈ḣ(s), dσ (s)〉 and called the Paley–
Wiener (stochastic) integral. If E = H = R

n then P (h)(x) = 〈h, x〉H which
accounts for the notation 〈h, x 〉̃H sometimes used for it in general.

The Gross–Cameron–Martin formula was given here with a parameter t in order
to obtain an integration by parts formula from it by differentiating with respect to t

at t = 0. If f is sufficiently regular, for example Fréchet differentiable and bounded
with bounded derivative Df : E → E∗, this yields:
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Corollary (Integration by parts). For all h ∈ H∫
E

Df (x)(i(h)) dγ (x) = −
∫

E

f (x) div(h)(x) dγ (x) (2)

where div(h) = −P (h).

Diffeomorphisms of the form x 	→ x+ijα(x) between open subsets of E where α

is a C1 map into E∗ were shown by H.-H. Kuo to also preserve sets of measure zero.
This led him, starting in his thesis, and then others, to the study of abstract Wiener
manifolds: Banach manifolds modelled on the space E of an abstract Wiener space
whose interchange of charts were of Kuo’s form, [42]. Such manifolds have a natural
class of Borel measures, locally equivalent to γ , and many of the usual constructions
and results of the finite dimensional situation go over to them, [43], [20], [18], [55].

For any abstract Wiener space the map i is compact. It follows that the derivatives
of transformations of Kuo’s type are linear maps which differ from the identity by a
compact operator. This implies that abstract Wiener manifolds are Fredholm mani-
folds, [18]. For a wide class of Banach spaces E the theory and classification of such
manifold structures showed that every separable metrisable manifold M modelled
on E can be given the structure of an abstract Wiener manifold, with the K-theory
of M playing the major role in their classification, [17].

It soon became clear that although interesting manifolds, such as path and loop
spaces on finite dimensional manifolds admit these structures, in most interesting
cases there is no natural one. Exceptions are finite codimensional submanifolds of
abstract Wiener spaces, such as the space of paths from one submanifold embedded
in R

m to another. Also see [32]. More general transformations preserving sets of
measure zero were described, notably by Ramer in 1974, and then using Malliavin
calculus by Kusuoka in 1982, and for flows of a class of vector fields on classical
Wiener space by Driver, [12]. However the form of these transformations is not so
different from those of Kuo, though the identity map in the decomposition may be
replaced by a ‘rotation’. See [61]. This together with the advent of Malliavin calculus,
in 1976, with emphasis on mappings determined by stochastic differential equations,
led to a move away from this approach, or at least a major modification of it [44], [45].

In [36] Gross shows that for any abstract Wiener space {i, H, E} there is an abstract
Wiener space {i′, H, E′} and a compact linear map k : E′ → E such that i = k � i′.
In other words, in the infinite dimensional case the measure γ can be considered to lie
in a smaller space than E; (however H itself has measure zero). In the classical case
this is demonstrated by the fact that the space of continuous functions can be replaced
by the closure of L

2,1
0 in the space of Hölder continuous functions of exponent α for

any 0 < α < 1/2. In Malliavin calculus on these linear spaces the space E loses its
importance, and in some treatments essentially disappears, e.g. see [39], and [50]. In
the latter it is the Paley–Wiener functions, {P (h) : h ∈ H } which play the dominant
role, returning to Segal’s ‘weak distribution’ theory, [57]. However in the non-linear
case of diffusion measures on path spaces of manifolds it seems necessary, at least at
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the moment, to deal with the actual manifold on which the measures sit, though this
could be taken to be Hölder continuous paths rather than continuous paths if that is
more convenient. The treatment of Malliavin calculus below is organised with this in
mind.

1.2. Malliavin calculus on E. From Gross’s work, especially [35], it was clear
that the basic differentiation operator on an abstract Wiener space should be the
H -derivative. This could be defined on a basic domain, Dom(dH ), of functions
f : E → R consisting of a set of Fréchet differentiable functions which is dense
in Lp and whose H -derivatives: dHf : E → H ∗ given by dHfx(h) = Df (x)(i(h))

lie in Lp, for all 1 ≤ p < ∞. The integration by parts formula, equation (2), implies
that dH is closable as a map between Lp spaces with closure a closed linear map

d : Dom(d) ⊂ Lp(E; R) → Lp(E; H ∗).

Let D
p,1 denote Dom(d) with its graph norm.

Our Paley–Wiener functionals, P (h), are easily seen to be in D
p,1 for all 1 ≤

p < ∞ with dP (h)x(k) = 〈h, k〉H for all x ∈ E and k ∈ H , despite their lack
of continuity in E. In fact the main point of the theory is that, for classical Wiener
space, more general stochastic integrals and solution maps of stochastic differential
equations, as described below, all lie in these Sobolev spaces.

The following characterisation of D
p,1 for 1 < p < ∞ was given by Sugita:

Theorem 1.3 ([60]). If f ∈ Lp(E; R) then f ∈ D
p,1 if and only if both of the

following hold.

1. For each h ∈ H there is a function fh : E × R → R which is absolutely
continuous in the second variable and has fh(x, t) = f (x + th), for almost
all x ∈ E, for each t ∈ R.

2. There exists df ∈ Lp(E; H ∗) such that for any h ∈ H , 1
t
(f (x + th) − f (x))

converges in measure to dfx(h) as t → 0.

From this we see that the spaces D
p,1, for 1 < p < ∞ are independent of any

reasonable choice of initial domain Dom(dH ). A comforting fact; but one which
is still open in the corresponding situation for paths on curved spaces, as will be
described below.

For functions with values in a separable Hilbert space G the spaces D
p,1(E; G) are

defined in the analogous way, with the derivative df now mapping E into L2(H ; G),
the space of Hilbert–Schmidt operators of H into G. This is a Hilbert space often
identified with the completed tensor product G⊗H . It occurs because a basic property
of an abstract Wiener space is that any continuous linear map from E to a Hilbert
space G, such as Df (x) if f : E → G is Fréchet differentiable, gives a Hilbert–
Schmidt operator when composed with i, e.g. see Thm 17.3 in [62]. We can iterate
this procedure to obtain higher order Sobolev spaces.
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As usual the gradient can be defined for functions in D
p,1, 1 < p < ∞, by

〈∇f (x), h〉H = dfx(h) to give an H -vector field, ∇f : E → H . It is a closed
operator between the Lp spaces with the negative of its adjoint denoted by div, a
closed operator from Dom(div) in Lq(E; H) to Lq(E; R), where q is the conjugate
of p. Similar we have the adjoint d∗ of d. From this we get the analogue of the
(Witten) Laplacian, or the ‘Ornstein–Uhlenbeck operator’, L = div ∇ = −d∗d. In
the case E = H = R

n this is given by

L(f )(x) = �f (x) − Df (x)(x)

for � the usual Laplacian (with negative spectrum) of R
n.

The Ornstein–Uhlenbeck operator acting on L2 is the well known operator whose
spectrum consists of 0 as unique ground state, together with the negative integers
as eigenvalues of infinite multiplicity, corresponding to the homogeneous chaos de-
composition of L2(E; R), and conjugate to the number operator of mathematical
physics acting on the real symmetric Fock space. For example from above we see
that for h ∈ H the map P (h) is an eigenvector of eigenvalue minus one (so giving
the ‘one-particle’ space). For more, see for example [37], [53], or [38].

For classical Wiener space an H-vector field V : C0 → L
2,1
0 is said to be non-

anticipating if for each time t its value V (σ)t at the path σ depends only on the
restriction of σ to the interval [0, T ]. If this holds and it is in L2, then it is in the
domain of the divergence operator and div(V )(σ ) is precisely the negative of the
Itô stochastic integral,

∫ T

0 V̇ (σ )t dσ (t), as shown by Gaveau. This is the integral
which is the basis of stochastic calculus. In the anticipating case it is the Skorohod, or
Ramer–Skorohod integral, now by definition: although here the word ‘integral’ can
be misleading since, as in finite dimensions, differentiation may be involved, [53].

An L2-deRham and Hodge–Kodaira theory was given in this context by Shige-
kawa [58]. The k-forms were ‘H -forms’, i.e. maps from E into ∧kH where ∧k denotes
the Hilbert space completion of the k-th exterior power, with the exterior derivative
being a closed operator derived from our H -derivative d. The Hodge decomposition
was just as in finite dimensional, standard, L2-theory, and Shigekawa proved a van-
ishing theorem, implying the expected triviality of the deRham cohomology. A theory
of finite co-dimensional forms was proposed by Ramer in his Thesis, in the context
of abstract Wiener manifolds; further developments were made by Kusuoka, [46], but
more is needed to develop the theory, even on domains in these linear spaces.

2. Scalar analysis on paths in M

2.1. Brownian motion measure and Bismut tangent spaces. Consider a smooth
manifold M . For a fixed time T > 0, and a fixed x0 ∈ M let Cx0([0, T ]; M), or
simply Cx0 , denote the space of continuous paths σ : [0, T ] → M starting at x0,
together with its usual C∞ Banach manifold structure, e.g. see [19] or [54]. The
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tangent space TσCx0 to Cx0 at a point σ can be identified with the space of continuous
paths v : [0, T ] → T M into the tangent bundle to M , such that v(0) = 0 and
v(t) ∈ Tσ(t)M for 0 ≤ t ≤ T . For a complete Riemannian manifold the Brownian
motion measure, μx0 , on Cx0 is the unique Borel measure for which

μx0({σ ∈ Cx0 : σ(tj ) ∈ Aj , j = 1, 2, . . . , k})

=
∫

A1

∫
A2

. . .

∫
An

j=k−1∏
j=0

ptj+1−tj (xj ; dxj+1)
(3)

where 0 = t0 < t1 < · · · < tk ≤ T , the Aj are Borel subsets of M , and the measures
pt(x, dy) are the heat kernel measures: pt(x, dy) = pt(x, y)dy for pt(x, y) the
fundamental solution of the heat equation ∂f

∂t
= 1

2� for � the Laplace Beltrami
operator, div grad, of M .

For simplicity we shall assume that M is compact. Let its dimension be n.
From the successes of the flat space case it was expected that, to do analysis on

the path space Cx0 using Brownian motion measure, the differentiation should only
take place in a special set of directions. In the case of Gaussian measures on linear
space a natural choice was given, as described above, by the linear structure together
with the measure: but there are other choices as we see in Section 2.3 below and it is
not clear if the measure plus the differential structure does determine a special one,
cf. [21]. Nevertheless a natural choice for Brownian motion measure is the Bismut
tangent spaces. These are Hilbert spaces, Hσ , of tangent vectors, defined for almost
all σ ∈ Cx0 by

Hσ = {v ∈ TσCx0 : (//·)−1v( · ) ∈ L2,1([0, T ]; Tx0M)} (4)

where //t denotes parallel translation along σ using the Levi-Civita connection.
Because our paths σ are typically so irregular, e.g. almost surely α-Hölder con-

tinuous only for α < 1/2, the parallel translation has to be constructed by stochastic
differential equations and so is only defined along almost all paths. However if we
set H = ∪σHσ ⊂ T Cx0 we will see that it has the rudiments of a bundle structure.
We will call its sections H -vector fields, and the sections of its dual bundle H∗ will
be called H -one-forms, cf. [40].

In [12], Driver extended Cameron–Martin’s theorem and the formulae (1), and (2)
to this situation, showing that if V h is the H -vector field whose value at σ is obtained
by parallel translation of a fixed element h ∈ L2,1([0, T ]; Tx0M) along σ then this
measurable vector field has a solution flow which preserves sets of μx0 -zero, with
consequent analogues of equations (1) and (2).

As for flat space the integration by parts formula gives closability of the H -
derivative dH : Dom(dH ) → L2�H∗ from its domain in L2 into the L2-H -one-
forms. It works for the Lp-spaces but we shall only mention L2 from now on for
simplicity. A natural, essentially the smallest natural, domain to choose is to let
Dom(dH ) be the space Cyl(M) of smooth cylinder functions: those maps of the form
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σ 	→ F(σ(ti), . . . , σ (tk)) for some smooth F defined on the k-fold product of M ,
some 0 ≤ t1 < · · · < tk ≤ T , any natural number k. Other choices include the space
of (Fréchet) C1- functions which are bounded together with their derivatives, using
the natural Finsler metric on Cx0 . However this time we do not know if these lead to
the same domain for the closure of dH , see [26], [27].

We must make a choice, and will choose Cyl(M) as basic domain. With this
choice let D

2,1(Cx0), or D
2,1, denote the domain of the L2-closure of dH with its

graph norm, with D
2,1(Cx0; G) for the corresponding space of G-valued functions,

G a separable Hilbert space. Let d denote the closure of dH , so if f : Cx0 → G is in
D

2,1(Cx0; G) then df is an L2-section of L2(H; G) the ‘bundle’ with fibre at σ the
space of Hilbert–Schmidt maps of Hσ into G, sometimes denoted by G ⊗ H .

With this we get a closed operator ∇ as usual, mapping its domain D
2,1 into

H -vector fields, with adjoint the negative of a closed operator div. As usual we have
a self adjoint ‘Laplacian’, or ‘Ornstein–Uhlenbeck’ operator L acting on functions,
defined by L = div ∇ = −d∗d. The associated Dirichlet forms and processes have
been studied, e.g. [13], [15]. Norris devised a stochastic partial differential equation
to construct associated ‘Brownian motions’ or ‘Ornstein–Uhlenbeck processes’ on
these path spaces, treating them as two parameter M-valued processes, [52]. The
existence of a spectral gap for L was proved by S. Fang, and Log Sobolev inequalities
independently by E. Hsu and Aida & Elworthy, see [37], [22]. However little, if
anything, appears to be known else about its spectrum.

To discuss higher derivatives it is convenient to have a ‘connection’ on H in
order to differentiate its sections. The most obvious choice is to use the trivialisation
of H obtained simply by parallel translating every element in each Hσ back to an
element of L2,1([0, T ]; Tx0M), so that H -vector fields can be considered as maps
of Cx0 into L2,1([0, T ]; Tx0M) to which we may try to apply our closed derivative
operator d. This approach was used effectively, for example in [47]. However it does
not conserve the CId([0, T ]; GL(n))-structure of our path space, nor as Cruziero&
Malliavin pointed out, does it fit well with the underlying ‘Markovianity’ of our set
up. This led them to the ‘Markovian’ connection, see [11], a modification of which
we will describe below.

2.2. Itô maps and the stochastic development. The stochastic development map
D : C0([0, T ]; Tx0M) → Cx0 is an almost surely defined version of the Cartan devel-
opment, describing ‘rolling without slipping’ along smooth paths. Its inverse is given
by D−1(σ )(t) = ∫ t

0 (//t )
−1 � dσ(t), where the integral is a Stratonovitch stochastic

integral, and //t refers to parallel translation along the path σ , (defined for almost all
paths). Reformulating Gangolli, [33], [18], it was shown by Eells & Elworthy that
it sends Wiener measure to the Brownian motion measure. A fundamental result of
Malliavin calculus is that, for each time t the map can be H -differentiated infinitely
often in the Sobolev sense. This was used by Driver to transfer his results about flows
of vector fields, and integration by parts formulae, from flat space to Cx0 , see [12]
where background details are included. However the use of D as a chart was lim-
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ited because its H -derivative does not map L
2,1
0 ([0, T ]; Tx0M) to the Bismut tangent

spaces. Furthermore from [49] it now seems that, unless M is flat, composition with D
will not pull elements in D

2,1(Cx0) back to elements in the domain of d: there will
be a loss of differentiability.

An alternative technique is to use the solution maps, Itô maps, of more sim-
ple stochastic differential equations as replacements for charts. For this take a
(Stratonovich) stochastic differential equation

dxt = X(xt ) � dBt + A(xt )dt (5)

on M . Here A is a smooth vector field and X gives linear maps X(x) : R
m →

TxM , smooth in x ∈ M . Also B is the canonical Brownian motion given by
Bt : C0([0, T ]; R

m) → R
m with Bt(ω) = ω(t) for C0([0, T ]; R

m) furnished with
its Wiener measure, which we shall now denote by P .

The solution xt : C0([0, T ]; R
m) → M to such an equation, starting from x0, can

be obtained by ‘Wong–Zakai approximation’: taking piecewise linear approxima-
tions B	

t to the Brownian motion, for each partition 	 of [0, T ], and solving the
family of ordinary differential equations

dx	(ω)

dt
= X(x	

t (ω))
dB	(ω)

dt
+ A(x	

t (ω))

starting at x0, for each ω. The required solution xt is given by xt (ω) = � (ω)t for �
the limit in probability of x	 : C0([0, T ]; R

m) → Cx0 as the mesh of 	 goes to zero.
The map � is the Itô map. To be precise we have to choose it as a representative
from an almost sure equivalence class of measurable maps. However, as with the
stochastic development these maps can be differentiated arbitrarily many times in the
sense of Malliavin calculus. In particular for almost all ω there is a linear H -derivative
Tω� : H → T� (ω)Cx0 .

The solutions to equation (5) form a Markov process with generator A where

A = 1

2

m∑
j=1

LXj LXj + LA. (6)

For them to be Brownian motions we need A = 1
2� which requires each mapping

X(x) : R
m → TxM to be surjective and induce the given Riemannian metric on the

tangent space, or equivalently for the adjoint Yx : TxM → R
m of X(x) to be a right

inverse of X(x). Given that, we may choose the vector field A appropriately. Then �
will map the flat Wiener measure P to our Brownian motion measure μx0 . In general
the dimension, m, of the space on which the driving Brownian motion runs, will be
larger than that of M so that � will not be injective. The disadvantage of this can be
reduced by ‘filtering out the redundant noise’ and to do this successfully we need to
note that our SDE for Brownian motion determines a metric connection,∇̆ on T M

by using X to project the trivial connection on the trivial R
m-bundle onto T M: for
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a vector field U and tangent vector v ∈ TxM the covariant derivative of U in the
direction v is given by

∇̆vU = X(x)(d[y 	→ YyU(y)]x(v)). (7)

It follows from Narasimhan & Ramanan’s theory of universal connections that every
metric connection on T M can be obtained by a suitable choice of X, see [22], or [56]
for a direct proof. To obtain the Levi-Civita connection we can use Nash’s theorem
to take an isometric embedding j : M → R

m for some m and then set X(x) = (dj)∗x ,
the adjoint of (dj)x . With A = 0 the resulting ‘gradient’ SDE has Brownian motions
as solutions as required. For Riemannian symmetric spaces it may be useful to use
the homogeneous space structure; for example if M is a compact Lie group with
bi-invariant metric we may take R

m to be a copy of the direct sum g ⊕ g of the Lie
algebra, g = TIdM , of M with itself and define X(x)(e, e′) = T Rx(e) − T Lx(e

′)
with A = 0, where T Rx and T Lx are the derivatives of left and right translation
by x, [22].

One basic result, extending estimates in [4], which contrasts with the stochastic
development is the following.

Theorem 2.1 ([27]). Suppose the connection ∇̆ induced by the SDE is the Levi-
Civita connection. The the pull back by � of cylindrical one-forms on Cx0 extends to
a continuous linear map � ∗ : L2H∗ → L2(C0([0, T ]; R

m); H ∗) of L2 H -one-forms
on Cx0 to those on the flat path space.

Here for a cylindrical, or other one form, φ, on Cx0 , the pull-back H -form � ∗(φ) is
given by � ∗(φ)ω(h) = φ(Tω� (h)) for h ∈ H . However, in general the H -derivative
T � does not map H into the Bismut tangent spaces and so for H -one-forms φ the
pullback does not have a classical meaning, though it does have an expression as
an Itô integral under our condition on ∇̆. If ∇̆ were not the Levi-Civita connection
this integral would be a Skorohod integral with a consequent loss of differentiability
expected, as for the stochastic development map in [49]. There is an important
equivalent dual, or ‘co-joint’, version to this result. For this suppose α : Cx0 → H

is an H -vector field in L2. For almost all σ ∈ Cx0 we can ‘integrate over the fibre
of � ’ at σ to obtain T � (α)σ ∈ TσCx0 . Mathematically that is achieved by taking the
conditional expectation with respect to the σ -algebra F x0 on Cx0 generated by � :

T � (α)σ = E{T � (α(−)) | � (−) = σ }.
Theorem 2.2 ([27]). Suppose the connection ∇̆ induced by the SDE is the Levi-
Civita connection. Then for all H -vector fields α in L2, we have T � (α)σ ∈ Hσ

almost surely, giving a continuous linear map T � (−) : L2(Cx0; H) → L2H .

When α is constant, with value h say, we write T Iσ (h) for T � (α)σ . This map was
known earlier, [22], to map H isomorphically onto Hσ , with our assumption on ∇̆.
In fact it has the explicit expression

T Iσ (h)t = W (X(σ(−))ḣ), (8)
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where W : L2([0, T ]; T M) → H is an isomorphism of the Bismut tangent ‘bundle’,
where defined, with the L2-tangent bundle L2T Cx0 of Cx0 given by

L2TσCx0 =
{
v : [0, T ] → T M such that v(t) ∈ Tσ(t)M, 0 � t � T

and
∫ T

0
|v(t)|2σ(t) dt < ∞

}
.

The isomorphism is the inverse of the ‘damped derivative’ along the paths of Cx0 :

D

dt
= D

dt
+ 1

2
Ric# : H → L2T Cx0, (9)

where Ric# : T M → T M corresponds to the Ricci curvature.
It is convenient to give H the Riemannian metric and bundle structure it inherits

from this isomorphism with the bundle of L2 ‘tangent vectors’. The latter is a smooth
Hilbert bundle over Cx0 with structure group CId([0, T ]; O(n)). It also has a natural
metric, ‘Levi-Civita’, connection, the ‘pointwise connection’ induced from the Levi-
Civita connection on M , [19]. Moving this to H by W gives a metric connection which
is easily seen to be that projected onto H by T � , in the same way as we defined ∇̆.
This connection agrees with the ‘damped Markovian’connection of Cruzeiro & Fang,
see [9], referred to above. It can be used to define higher order derivative operators
and Sobolev spaces, and Sobolev spaces of sections of H , e.g. D

2,1H , the domain
of the L2-closure of the covariant H -derivative acting on sections of H . The latter is
shown to be in the domain of div in [27]: a result proved by M. & P. Kree for classical
Wiener measure in 1983.

We can define an L2-function f : Cx0 → R to be weakly differentiable if it is in
the domain of the adjoint of the restriction of div to D

2,1H . Let W 2,1 denote the space
of such functions with its graph norm. Thus for f ∈ W 2,1 there exists d̃f ∈ L2H∗
such that if V ∈ D

2,1H then∫
Cx0

f (σ) div(V (σ )) dμx0 = −
∫

Cx0

d̃f (V (σ )) dμx0 .

For paths on R
m it follows from [60] that weak differentiability implies differentia-

bility, in our Sobolev sense.
We have the following intertwining result:

Theorem 2.3 ([27]). Suppose the connection ∇̆ induced by the SDE is the Levi-Civita
connection. Thenf ∈ W 2,1 if and only iff �� ∈ D

2,1C0([0, T ]; R
m)and composition

with � gives a continuous linear map of W 2,1 onto the space D
2,1
F x0 of those elements

in D
2,1C0([0, T ]; R

m) which are F x0-measurable. Moreover for f ∈ W 2,1 we have

d(f � � ) = � ∗d̃f .
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Preliminary versions of some of the above results were given in [24]. A funda-
mental question is whether W 2,1 = D

2,1. Applying results of Eberle, [15], it is shown
in [27] that this equality holds if and only if Markov uniqueness holds for the opera-
tor L defined above but with domain Cyl(M). Markov uniqueness is a weaker notion
than essential self-adjointness. Probabilistically it relates to uniqueness of solutions
to the martingale problem, and it essentially means that there is a unique extension
which generates a Markov semigroup. Equality would also imply the independence
of D

2,1 from the choice of initial domain Dom(dH ). We do not know of any non-flat
manifolds M for which an answer is known to these questions. A positive answer
would follow from a positive answer to the following.

Iff ∈ D
2,1C0([0, T ]; R

m), is its conditional expectation E{f |F x0}also in D
2,1?

This is described concisely in [26], and in detail in [27], describing some partial
results and correcting claims made in our 2004 Comptes-Rendues note. A discussion
somewhat related to the above question, by Airault, Malliavin & Ren, is in [5].

2.3. More general diffusion measures. Let A be a smooth diffusion generator
on M i.e. it is a semi-elliptic second order differential operator with no zero order
term, acting on real valued functions on M . Essentially as for the case A = 1

2�, there
is an induced measure μA

x0
on Cx0 .

To extend the previous results to do analysis with such a measure we will suppose
the principal symbol σA : T ∗M → T M of A has constant rank, and so has image in
a sub-bundle E of T M . This is equivalent to requiring that A has a Hormander form,
as equation (6), with the vector fields Xj being sections of E.

In general there is now no obvious choice of a connection with which to define
‘Bismut tangent’ spaces. We therefore choose any metric connection on E and as
before, using Narasimhan & Ramanan’s theorem, take a stochastic differential equa-
tion (5) for which the induced connection ∇̆ on E is that chosen one, and for which (6)
holds. To define the Bismut tangent spaces it is convenient to use the adjoint semi-
connection, ∇̂, which allows differentiation of all smooth vector fields, but only in
E-directions. It is defined by

∇̂U(x)V = ∇̆V (x)U + [U, V ](x) ∈ TxM

for U a section of E and V a vector field on M , [22].
Adjoint connections were used in a similar way in order to use different Bismut

tangent spaces for Brownian measures, by Driver in [12]. The adjoint of the Levi-
Civita connection is itself; that of the flat left invariant connection on a Lie group is
a flat right invariant connection. For more examples see [22]. Semi-connections are
also called ‘partial connections’ or ‘E-connections’.

We now defineHσ to be the set of thosev ∈ TσCx0 for which D̂

dt
(v) ∈ L2([0, T ]; E)

where
D̂

dt
= D̂

dt
+ 1

2
˘Ric# −∇̆−A (10)
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where the covariant differentiation is done using the semi-connection while
˘Ric# : T M → E corresponds to the Ricci curvature for ∇̆. If A does not take values in

E then this operator needs special interpretation, [22]. SinceL2([0, T ]; E)
⋂

L2T Cx0

is a smooth Hilbert bundle, as for the case E = T M , with pointwise connection in-
duced from ∇̆, we can induce all this structure, at least almost surely, on H . When
there is a metric on T M to which the semi-connection ∇̂ is adapted, the theory goes
essentially as before, [27]. If not there may be some loss of integrability in the
intertwining, for example, but the operator L has a spectral gap; indeed there is a
Log Sobolev inequality, [22]. The Dirichlet forms which arise in this situation are
discussed in [28].

3. Towards an L2-deRham–Hodge–Kodaira theory

3.1. The spaces of H -forms. Following Shigekawa’s rather complete L2-deRham
theory for H -forms on abstract Wiener spaces it would be natural to base such a
theory on sections of the dual bundles to the exterior products ∧kH of the Bismut
tangent bundle, using the Hilbert space completion of the exterior powers of each Hσ .
However this runs into difficulties even at defining the exterior derivative of an H one-
form, φ, say: Recall that the standard formula for the exterior derivative dφ is

dφ
(
U(x) ∧ V (x)

) = LU

(
φ(V (−))

)
(x) − LV

(
φ(U(−))

)
(x) − φ

([U, V ](x)
)

for vector fields U and V . However if U and V are H -vector fields their bracket
need not be and so if φ is an H -form the last term in the expression above will not in
general be defined. One way round this is to interpret this final term as a stochastic
integral, in general a Skorohod integral. This was carried through by Léandre in [47]
where he obtained a deRham complex in this situation and for loop spaces, proving
that the resulting deRham cohomology agrees with the topological real cohomology.
However this was not really an L2 theory and did not include a version of the Hodge–
Kodaira Laplacian.

A proposal made in [24] was to modify the definitions of k-forms by replacing
the spaces ∧kH by Hilbert spaces H (k), for k = 1, 2, . . . , continuously included
in the projective exterior powers ∧kT Cx0 . For the ‘projective exterior powers’ the
completion is made using the largest cross norm and the usual, geometric, differential
forms are sections of the dual bundles (∧kT Cx0)

∗. Our H -k-forms will be sections
of the dual bundles H (k)∗.

To define H (k), for simplicity we will deal only with the case of Brownian motion
measures and Levi-Civita connections. The more general situation is touched upon
in [25]; for details of the following see [23]. Take an SDE as in Section 2.2 with
corresponding Itô map � . It is shown that the map h1 ∧ · · · ∧ hk 	→ Tω� (h1) ∧
· · · ∧ Tω(hk) determines a continuous linear map ∧kTω� : ∧k H → ∧kT� (ω)Cx0

from Hilbert space to Banach space. As done in Section 2.2 integrate over the fibres
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of � to define
∧T �σ : ∧k H → ∧kTσCx0

for almost all σ ∈ Cx0 , by the conditional expectation:

∧T �σ (h) = E{∧kT � (h)|� = σ }

for h ∈ ∧kH . We then let H (k)
σ be the image of ∧T �σ with its quotient Hilbert space

structure. Thus H (1) = H . As with the case k = 1 these spaces depend only on
the Riemannian structure of M , not on the choice of SDE we used to construct them
(provided ∇̆ is the Levi-Civita connection).

For k = 2 there is a detailed description. For this let R : ∧2 T Cx0 → L(H; H) be
the curvature operator of the damped Markovian connection on H , see Section 2.2,
and let T : H × H → H be its torsion. We have

H (2) = {U ∈ ∧2T Cx0 : U − R(U) ∈ ∧2H}
with inner product having the norm |U |H2 = |U−R(U)|∧2H . Alternatively, inverting
Id −R, we have

H (2) = {V + Q(V ) : V ∈ ∧2H}
where the linear map Q can be expressed in terms of the curvature of M and involves a
‘damped translation’ of 2-vectors on M where the damping is by the second Weitzen-
bock curvature, just as the first, the Ricci curvature, appears in equation (9). It turns
out that ‘ div ’Q(u∧v) = 1

2T(u, v) for any bounded adapted H -vector fields u and v

in the sense that for any smooth cylindrical one-form φ on Cx0 we have∫
Cx0

dφ(Q(u ∧ v)dμx0 = −1

2

∫
Cx0

φ(T(u, v))dμx0 .

This relates to a result of Cruzeiro–Fang, [10], that for suitable u and v the torsion
T(u, v) has ‘divergence’ zero, in the corresponding sense.

If we define the exterior H -derivative as usual on cylindrical one forms φ but
restrict the resulting (dHφ)σ : ∧2 TσCx0 → R to H (2)

σ we obtain a map, with domain
the smooth cylindrical one forms, into the L2 H two-forms, L2 H (2)∗. The cylindrical
one forms when restricted to H∗ form a dense subspace of L2H∗ and it turns out that
this map is closable as an operator on L2H∗. We obtain a closed exterior derivative
operator

d1 : Dom(d) ⊂ L2H∗ → L2H (2)∗

with a dual operator div : Dom(div) ⊂ L2H (2) → L2H .
The covariant derivative determined by the damped Markovian connection on H

can be considered as a closed operator ∇ from its domain, D
2,1H , in L2H to

L2(H ⊗ H) and so has an adjoint ∇∗. The following suggests that our construc-
tion is a natural one, but the condition of adaptedness on the vector fields is essential:
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Proposition 3.1 ([23]). Let u and v be bounded and adapted H -vector fields on Cx0 .
Suppose u, v ∈ D

2,1H then u ∧ v ∈ Dom ∇∗ and

∇∗(u ∧ v) = div((Id +Q)(u ∧ v)).

It turns out that the exterior product φ1∧φ2 of two H -one-forms can be considered
as an H -two-form in a consistent way. Essentially this is because although an element
in some H (2)

σ is not in Hσ ⊗ Hσ , a space which can be identified with the Hilbert–
Schmidt maps on Hσ , it can be identified with a bounded linear map on Hσ , and
elements of the uncompleted tensor product of Hσ with itself act as linear functionals
on the bounded linear maps. We have then:

Proposition 3.2 ([23]). Suppose f ∈ D
2,1(Cx0; R) and φ is a bounded H -one-form

which is in the domain of the exterior derivative, and is bounded together with dφ.
Then f φ is in the domain of the exterior derivative and

d1(f φ) = df ∧ φ + f d1φ.

3.2. A Hodge–Kodaira decomposition for one and two forms. The key step to
prove closability of the exterior derivative on these H -k-forms is to prove an analogue
of Theorem 2.2. We would like a rich set of L2 maps h : Cx0 → ∧kH such that

∧kT � (h)σ := E{∧kT � (h)|� = σ } ∈ H (k)
σ

almost surely. For k = 1 this holds for all such h by Theorem 2.2. For k = 2 it is
claimed for an adequately rich family in [23], for all relevant Itô maps, and for all h

if the Itô map is defined via a symmetric space structure. It is unknown for higher k

largely because of the apparently complicated algebraic structure of the spaces H (k)

for higher k. (On the other hand in [25] it is shown that an important class of k-vector
fields, defined for k = 1, . . . , n − 1 are L2 sections of H (k) when k = 1, 2: these
are important in the sense that they give integration by parts results, or generalised
‘Bismut-formulae’, for the finite dimensional exterior derivatives dPtφ of the heat
semigroup on forms on M in terms of a path integral of φ itself.)

From these results for k = 1, 2 we have now closed operators

dk : Dom(dk) ⊂ L2�H (k) → L2�H (k+1)

for k = 1, 2 with d2d1 = 0. This leads to the Hodge–Kodaira decomposition:

L2�Hk = Im(d(k−1)) ⊕ Im((dk)∗) ⊕ (ker dk ∩ ker(d(k−1))∗) (11)

for k = 1, 2, as given for k = 1 in [24], and for k = 2 in [23]. Here d0 refers to d, and
in the case k = 1 the image of d is closed by Fang’s theorem, e.g. see the Clark–Ocone
formula in [22]. Moreover we have self-adjoint operators (dk)∗dk + d(k−1)(d(k−1))∗
acting on the spaces of L2 H -k-forms for k = 1, 2. For k = 1 the decomposition
plus Fang’s theorem shows that the space of L2 harmonic one-forms represents the
L2-deRham cohomology group of H -one-forms.
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3.3. Lie groups with flat connection. At present we have no information about even
the first L2 deRham group for non-flat manifolds. However in [31], Fang & Franchi
considered the case where M is a compact Lie group G with bi-invariant metric. For
the Bismut tangent spaces coming from a right invariant flat connection, the natural
Itô map to use is that of a left invariant SDE, dxt = T Lxt � dBt , for B. a Brownian
motion on the Lie algebra g. There is no ‘redundant noise’ and the derivative of
the Itô map maps the Cameron–Martin space into the Bismut tangent spaces, and
its exterior powers onto those of the Bismut spaces. There is no problem with the
definition of the exterior derivative and they showed that the Itô map can be used
to transfer Shigekawa’s results for classical Wiener space, determining a Hodge–
Kodaira decomposition, and giving the vanishing of L2 harmonic forms and so of the
corresponding deRham cohomology groups.

4. Loop spaces

We have not extended the Itô map techniques described above in any systematic way
to the case of loop spaces, (but see [1]), and here will only briefly describe the basic
set up and some relevant results. The surveys [48] and [2] give more information and
references. Special motivation for the development of analysis on these spaces has
come from the loop space approach to index theorems, as in [7], and the Hohn–Stolz
conjecture, [59]. However note that this theory is based on tangent spaces of vectors
which are in some sense in L2,1 and it is not clear that this is always what is relevant
to some physical or topological situations, e.g. see [32].

On the space of based loops, or more generally on the spaces Cx0,y0 of continuous
paths σ : [0, T ] → M with σ(0) = x0 and σ(1) = y0, for y0 ∈ M , a natural measure
to take is the Brownian Bridge measure, μx0,y0 , obtained by conditioning Brownian
motion from x0 to be at y0 at time T . If equation (5) has solutions which are Brownian
motions then the equation:

dbt = X(bt ) � dBt + A(bt )dt + � log pT −t (bt ; y0)dt (12)

will have Itô map which sends Wiener measure to μx0,y0 . Here pt(x, y) is the heat
kernel as in Section 2.1.

For the space L(M) of free loops, i.e. of continuous σ : S1 → M , there is Bismut’s
measure, μL, which can be defined as

∫
M

pT (y, y)μy,y dy with T = 2π , [7]. This
measure is invariant under the action of S1. A variant of this when M is a Lie group
is to average using normalised Haar measure rather than the heat kernel. Either of
these loop spaces could be furnished with a heat kernel measure, μh. This is defined
by choosing a base point, e.g. a constant loop, and constructing a ‘Brownian motion’
on the loop space starting at that point, running it for some fixed time, τ say, and
using its probability distribution as μh. This will depend on τ and for free loops
an extra averaging over the initial base point to retain S1-invariance is needed. The
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construction of such Brownian motions goes back to Baxendale, see [6] and Gaveau &
Mazet, [34] but has been most developed for loop groups, [51]. For based paths on a
compact simply connected Lie group this measure has been shown to be equivalent
to the Brownian Bridge measure, [3].

In these contexts, by results of several people including M. P. & P. Malliavin,
Driver, Hsu, Leandre, Enchev & Stroock, and Aida there are integration by parts
formulae and associated Sobolev spaces based on Bismut tangent spaces defined
similarly to those above, though for Lie groups flat connections are often used to
define the Bismut tangent spaces. For the Brownian bridge and Bismut measures there
are cohomology results: using stochastic Chen forms in [40], ‘Sobolev differential
forms’ [47], and more recently ‘Chen–Souriau cohomology’ defined via a ‘stochastic
diffeology’, see [48]. In general the resulting cohomology agrees with the usual
singular real cohomology. We refer the reader to MathScinet to see the variety of
constructions in these and related situations by R. Leandre.

For compact Lie groups with bi-invariant metrics, and with Bismut tangent spaces
defined by flat left, or right, invariant connections, Fang & Franchi were able to
extend their results for path spaces to based loops defining Hodge–Kodaira operators
on forms and giving a ‘Weitzenbock formulae’ for them, [30]. This formula rather
clearly shows the form of these operators as ‘Witten’or ‘Bismut’Laplacians where the
‘perturbing’ vector field is not an H -vector field, and gives rise to stochastic integrals
in the formulae. The curvature part of the formulae has a Ricci term, which requires
a careful summation, as in [32].

One striking result for the Brownian bridge measure is the following by Eberle:

Theorem 4.1 ([16]). Suppose the compact manifold M has a closed geodesic for
which there is a neighbourhood in M of constant negative curvature. Then on the
loop spaces Cx0,x0 with Brownian bridge measure, and L(M) with Bismut measure,
the self-adjoint operator L = −d∗d does not have a spectral gap.

Spectral gaps for the Hodge–Kodaira ‘Laplacians’ are important in Hodge theory
since they correspond to the (exterior) derivative operators having closed range in L2.
At present it is unknown if there is ever a spectral gap for L for these measures for
loops on non-flat manifolds, e.g. on spheres. However for heat kernel measures on
compact Lie groups with bi-invariant metrics Driver & Lohrenz proved the existence
of a Log Sobolev inequality and so of a spectral gap for L, see [29].

An alternative approach to based loops has been to represent them by ‘submani-
folds’of classicalWiener space by choosing a suitable (i.e. a quasi-continuous) version
of the stochastic development and considering the inverse image C̃, say, under it, of
the based loops on M . This construction is dependent on ‘quasi-sure’ analysis, see
[50], where our measure theoretic concepts are refined potential theoretically, so that

C̃ can be defined up to sets of capacity zero. To a certain extent this allows C̃ to
be treated as a submanifold of co-dimension the dimension of M , with a differential
form theory and Weitzenbock formula, see [41], and [45].



Geometric stochastic analysis on path spaces 591

References

[1] Aida, Shigeki, Differential calculus on path and loop spaces. II. Irreducibility of Dirichlet
forms on loop spaces. Bull. Sci. Math. 122 (8) (1998), 635–666.

[2] Aida, Shigeki, Stochastic analysis on loop spaces. Sugaku Expositions 13 (2) (2000),
197–214.

[3] Aida, Shigeki, and Driver, Bruce K., Equivalence of heat kernel measure and pinned Wiener
measure on loop groups. C. R. Acad. Sci. Paris Sér. I Math. 331 (9) (2000), 709–712.

[4] Aida, Shigeki, and Elworthy, David, Differential calculus on path and loop spaces. I. Log-
arithmic Sobolev inequalities on path spaces. C. R. Acad. Sci. Paris Sér. I Math. 321 (1)
(1995), 97–102.

[5] Airault, Hélène , Malliavin, Paul, and Ren, Jiagang, Geometry of foliations on the Wiener
space and stochastic calculus of variations. C. R. Math. Acad. Sci. Paris 339 (9) (2004),
637–642.

[6] Baxendale, Peter, Wiener processes on manifolds of maps. Proc. Roy. Soc. Edinburgh Sect.
A 87 (1–2) (1980/81), 127–152.

[7] Bismut, Jean-Michel, Index theorem and equivariant cohomology on the loop space. Comm.
Math. Phys. 98 (2) (1985), 213–237.

[8] Cameron, R. H., and Martin, W. T., The transformation of Wiener integrals by nonlinear
transformations. Trans. Amer. Math. Soc. 66 (1949), 253–283.

[9] Cruzeiro,Ana Bela, and Fang, Shizan,An L2 estimate for Riemannian anticipative stochas-
tic integrals. J. Funct. Anal. 143 (2) (1997), 400–414.

[10] Cruzeiro, Ana Bela, and Fang, Shizan, Weak Levi-Civita connection for the damped met-
ric on the Riemannian path space and vanishing of Ricci tensor in adapted differential
geometry. J. Funct. Anal. 185 (2) (2001), 681–698.

[11] Cruzeiro,Ana Bela, and Malliavin, Paul, Renormalized differential geometry on path space:
structural equation, curvature. J. Funct. Anal. 139 (1) (1996), 119–181.

[12] Driver, B. K., A Cameron-Martin type quasi-invariance theorem for Brownian motion on
a compact Riemannian manifold. J. Funct. Anal. 100 (1992), 272–377.

[13] Driver, Bruce K., and Röckner, Michael, Construction of diffusions on path and loop spaces
of compact Riemannian manifolds. C. R. Acad. Sci. Paris Sér. I Math. 315 (5) (1992),
603–608.

[14] Dudley, R. M., Feldman, Jacob, and Le Cam, L., On seminorms and probabilities, and
abstract Wiener spaces. Ann. of Math. (2) 93 (1971), 390–408.

[15] Eberle, Andreas, Uniqueness and non-uniqueness of semigroups generated by singular
diffusion operators. Lecture Notes in Math. 1718, Springer-Verlag, Berlin 1999.

[16] Eberle,Andreas,Absence of spectral gaps on a class of loop spaces. J. Math. Pures Appl. (9)

81 (10) (2002), 915–955.

[17] Eells, J., and Elworthy, K. D., On Fredholm manifolds. In Actes du Congrès International
des Mathématiciens (Nice, 1970), Tome 2, Gauthier-Villars, Paris 1971, 215–219.

[18] Eells, J., and Elworthy, K. D., Wiener integration on certain manifolds. In Problems in
non-linear analysis (C.I.M.E., IV Ciclo, Varenna, 1970), Edizioni Cremonese, Rome 1971,
67–94.

[19] Eliasson, H., Geometry of manifolds of maps. J. Differential Geom. 1 (1967), 169–194.



592 K. David Elworthy and Xue-Mei Li

[20] Elworthy, K. D., Gaussian measures on Banach spaces and manifolds. In Global analysis
and its applications (Lectures, Internat. Sem. Course, Internat. Centre Theoret. Phys.,
Trieste, 1972), Vol. II, Internat. Atomic Energy Agency, Vienna 1974, 151–166.

[21] Elworthy, K. D., Differential invariants of measures on Banach spaces. In Vector space
measures and applications (Proc. Conf., Univ. Dublin, Dublin 1977), II, Lecture Notes in
Math. 644, Springer-Verlag, Berlin 1978, 159–187.

[22] Elworthy, K. D., LeJan, Y., and Li, Xue-Mei, On the geometry of diffusion operators and
stochastic flows. Lecture Notes in Math. 1720, Springer-Verlag, Berlin 1999.

[23] Elworthy, K. D., and Li, Xue-Mei, An L2 theory for differential forms on path spaces. In
preparation.

[24] Elworthy, K. D., and Li, Xue-Mei, Special Itô maps and an L2 Hodge theory for one forms
on path spaces. In Stochastic processes, physics and geometry: new interplays, I (Leipzig,
1999), CMS Conf. Proc. 28, Amer. Math. Soc., Providence, RI, 2000, 145–162.

[25] Elworthy, K. D., and Li, Xue-Mei, Some families of q-vector fields on path spaces. Infin.
Dimens. Anal. Quantum Probab. Relat. Top. 6 (suppl.) (2003), 1–27.

[26] Elworthy, K. D., and Li, Xue-Mei, Intertwining and the Markov uniqueness problem on
path spaces. In Stochastic Partial Differential Equations and Applications VII, Lecture
Notes in Pure and Applied Mathematics 245, Chapman and Hall/CRC, Boca Raton, FL,
2006, 89–95.

[27] Elworthy, K. D., and Li, Xue-Mei, Ito maps and analysis on path spaces. Warwick Preprint,
also www.xuemei.org, 2005.

[28] Elworthy, K. David, and Ma, Zhi-Ming, Vector fields on mapping spaces related Dirichlet
forms and diffusions. Osaka J. Math. 34 (3) (1997), 629–651.

[29] Fang, Shizan, Integration by parts formula and logarithmic Sobolev inequality on the path
space over loop groups. Ann. Probab. 27 (2) (1999), 664–683.

[30] Fang, Shizan, and Franchi, Jacques, De Rham-Hodge-Kodaira operator on loop groups.
J. Funct. Anal. 148 (2) (1997), 391–407.

[31] Fang, Shizan, and Franchi, Jacques, A differentiable isomorphism between Wiener space
and path group. In Séminaire de Probabilités, XXXI, Lecture Notes in Math. 1655, Springer-
Verlag, Berlin 1997, 54–61.

[32] Freed, Daniel S., The geometry of loop groups. J. Differential Geom. 28 (2) (1988),
223–276.

[33] Gangolli, Ramesh, On the construction of certain diffusions on a differentiable manifold.
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 406–419.

[34] Gaveau, Bernard, and Mazet, Edmond, Diffusion et intégration sur les espaces de lacets.
C. R. Acad. Sci. Paris Sér. A-B 289 (13) (1979), A643–A646.

[35] Gross, Leonard, Potential theory on Hilbert space. J. Funct. Anal. 1 (1967), 123–181.

[36] Gross, Leonard, Abstract Wiener measure and infinite dimensional potential theory. In
Lectures in Modern Analysis and Applications, II, Lecture Notes in Math. 140. Springer-
Verlag, Berlin 1970, 84–116.

[37] Hsu, Elton P., Stochastic analysis on manifolds. Graduate Studies in Mathematics 38,Amer.
Math. Soc., Providence, RI, 2002.

[38] Ikeda, N., and Watanabe, S., Stochastic Differential Equations and Diffusion Processes.
Second edition, North-Holland, Kodansha Ltd., Amsterdam, Tokyo 1989.



Geometric stochastic analysis on path spaces 593

[39] Itô, Kiyosi,A measure-theoretic approach to Malliavin calculus. In New trends in stochastic
analysis (Charingworth, 1994), pages 220–287. World Sci. Publishing, River Edge, NJ,
1997.

[40] Jones, J. D. S., and Léandre, R., Lp-Chen forms on loop spaces. In Stochastic analysis
(Durham, 1990), London Math. Soc. Lecture Note Ser. 167, Cambridge University Press,
Cambridge, 1991, 103–162.

[41] Kazumi, Tetsuya, and Shigekawa, Ichiro, Differential calculus on a submanifold of an
abstractWiener space. II.Weitzenböck formula. In Dirichlet forms and stochastic processes
(Beijing, 1993), de Gruyter, Berlin 1995, 235–251.

[42] Kuo, Hui Hsiung, Integration theory on infinite-dimensional manifolds. Trans. Amer. Math.
Soc. 159 (1971), 57–78.

[43] Kuo, Hui Hsiung, Diffusion and Brownian motion on infinite-dimensional manifolds.
Trans. Amer. Math. Soc. 169 (1972), 439–459.

[44] Kusuoka, Shigeo, Degree theorem in certain Wiener Riemannian manifolds. In Stochastic
analysis (Paris, 1987), Lecture Notes in Math. 1322, Springer-Verlag, Berlin 1988, 93–108.

[45] Kusuoka, Shigeo, de Rham cohomology of Wiener-Riemannian manifolds. In Proceedings
of the International Congress of Mathematicians (Kyoto, 1990), Vol. II, Math. Soc. Japan.,
Tokyo 1991, 1075–1082.

[46] Kusuoka, Shigeo, Analysis on Wiener spaces. II. Differential forms. J. Funct. Anal. 103
(2) (1992), 229–274.

[47] Léandre, R., Cohomologie de Bismut-Nualart-Pardoux et cohomologie de Hochschild en-
tière. In Séminaire de Probabilités, XXX, Lecture Notes in Math. 1626, Springer-Verlag,
Berlin 1996, 68–99.

[48] Léandre, R., Analysis on loop spaces, and topology. Mat. Zametki 72 (2) (2002), 236–257.

[49] Li, Xiang-Dong, Sobolev spaces and capacities theory on path spaces over a compact
Riemannian manifold. Probab. Theory Relat. Fields 125 (2003), 96–134.

[50] Malliavin, P., Stochastic analysis. Grundlehren Math. Wiss. 313, Springer-Verlag, Berlin
1997.

[51] Malliavin, P., Diffusion on the loops. In Conference on harmonic analysis in honor of Antoni
Zygmund (Chicago, Ill., 1981), Vol. II, Wadsworth Math. Ser., Wadsworth, Belmont, CA,
1983, 764–782.

[52] Norris, J. R., Twisted sheets. J. Funct. Anal. 132 (2) (1995), 273–334.

[53] Nualart, David, The Malliavin calculus and related topics. Probab. Appl. (N.Y.), Springer-
Verlag, New York 1995.

[54] Palais, Richard S., Foundations of global non-linear analysis. Mathematics Lecture Note
Series, W. A. Benjamin, Inc., New York, Amsterdam 1968.

[55] Ann Piech, M., A model for an infinite-dimensional Laplace-Beltrami operator. Indiana
Univ. Math. J. 31 (3) (1982), 327–340.

[56] Quillen, D., Superconnections; character forms and the Cayley transform. Topology 27 (2)
(1988), 211–238.

[57] Segal, Irving, Algebraic integration theory. Bull. Amer. Math. Soc. 71 (1965), 419–489.
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Statistical challenges with high dimensionality:
feature selection in knowledge discovery

Jianqing Fan and Runze Li∗

Abstract. Technological innovations have revolutionized the process of scientific research and
knowledge discovery. The availability of massive data and challenges from frontiers of research
and development have reshaped statistical thinking, data analysis and theoretical studies. The
challenges of high-dimensionality arise in diverse fields of sciences and the humanities, ranging
from computational biology and health studies to financial engineering and risk management. In
all of these fields, variable selection and feature extraction are crucial for knowledge discovery.
We first give a comprehensive overview of statistical challenges with high dimensionality in these
diverse disciplines. We then approach the problem of variable selection and feature extraction
using a unified framework: penalized likelihood methods. Issues relevant to the choice of penalty
functions are addressed. We demonstrate that for a host of statistical problems, as long as the
dimensionality is not excessively large, we can estimate the model parameters as well as if the
best model is known in advance. The persistence property in risk minimization is also addressed.
The applicability of such a theory and method to diverse statistical problems is demonstrated.
Other related problems with high-dimensionality are also discussed.
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1. Introduction

Technological innovations have had deep impact on society and on scientific research.
They allow us to collect massive amount of data with relatively low cost. Observations
with curves, images or movies, along with many other variables, are frequently seen
in contemporary scientific research and technological development. For example, in
biomedical studies, huge numbers of magnetic resonance images (MRI) and func-
tional MRI data are collected for each subject with hundreds of subjects involved.
Satellite imagery has been used in natural resource discovery and agriculture, col-
lecting thousands of high resolution images. Examples of these kinds are plentiful in
computational biology, climatology, geology, neurology, health science, economics,
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and finance among others. Frontiers of science, engineering and the humanities dif-
fer in the problems of their concerns, but nevertheless share one common theme:
massive and high-throughput data have been collected and new knowledge needs to
be discovered using these data. These massive collections of data along with many
new scientific problems create golden opportunities and significant challenges for the
development of mathematical sciences.

The availability of massive data along with new scientific problems have reshaped
statistical thinking and data analysis. Dimensionality reduction and feature extraction
play pivotal roles in all high-dimensional mathematical problems. The intensive
computation inherent in these problems has altered the course of methodological
development. At the same time, high-dimensionality has significantly challenged
traditional statistical theory. Many new insights need to be unveiled and many new
phenomena need to be discovered. There is little doubt that the high dimensional data
analysis will be the most important research topic in statistics in the 21st century [19].

Variable selection and feature extraction are fundamental to knowledge discov-
ery from massive data. Many variable selection criteria have been proposed in the
literature. Parsimonious models are always desirable as they provide simple and in-
terpretable relations among scientific variables in addition to reducing forecasting
errors. Traditional variable selection such as Cp, AIC and BIC involves a combina-
torial optimization problem, which is NP-hard, with computational time increasing
exponentially with the dimensionality. The expensive computational cost makes tra-
ditional procedures infeasible for high-dimensional data analysis. Clearly, innovative
variable selection procedures are needed to cope with high-dimensionality.

Computational challenges from high-dimensional statistical endeavors forge cross-
fertilizations among applied and computational mathematics, machine learning, and
statistics. For example, Donoho and Elad [20] and Donoho and Huo [21] show that the
NP-hard best subset regression can be solved by a penalized L1 least-squares prob-
lem, which can be handled by a linear programming, when the solution is sufficiently
sparse. Wavelets are widely used in statistics function estimation and signal process-
ing [1], [14], [17], [23], [24], [64], [65], [71]. Algebraic statistics, the term coined by
Pistone, Riccomagno, Wynn [73], uses polynomial algebra and combinatorial algo-
rithms to solve computational problems in experimental design and discrete probabil-
ity [73], conditional inferences based on Markovian chains [16], parametric inference
for biological sequence analysis [72], and phylogenetic tree reconstruction [78].

In high-dimensional data mining, it is helpful to distinguish two types of statistical
endeavors. In many machine learning problems such as tumor classifications based
on microarray or proteomics data and asset allocations in finance, the interests often
center around the classification errors, or returns and risks of selected portfolios
rather than the accuracy of estimated parameters. On the other hand, in many other
statistical problems, concise relationship among dependent and independent variables
are needed. For example, in health studies, we need not only to identify risk factors,
but also to assess accurately their risk contributions. These are needed for prognosis
and understanding the relative importance of risk factors. Consistency results are
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inadequate for assessing the uncertainty in parameter estimation. The distributions
of selected and estimated parameters are needed. Yet, despite extensive studies in
classical model selection techniques, no satisfactory solutions have yet been produced.

In this article, we address the issues of variable selection and feature extraction
using a unified framework: penalized likelihood methods. This framework is appli-
cable to both machine learning and statistical inference problems. In addition, it is
applied to both exact and approximate statistical modeling. We outline, in Section 2,
some high-dimensional problems from computational biology, biomedical studies,
financial engineering, and machine learning, and then provide a unified framework
to address the issues of feature selection in Sections 3 and 4. In Sections 5 and 6, the
framework is then applied to provide solutions to some problems outlined in Section 2.

2. Challenges from sciences and humanities

We now outline a few problems from various frontiers of research to illustrate the
challenges of high-dimensionality. Some solutions to these problems will be provided
in Section 6.

2.1. Computational biology. Bioinformatic tools have been widely applied to ge-
nomics, proteomics, gene networks, structure prediction, disease diagnosis and drug
design. The breakthroughs in biomedical imaging technology allow scientists to
monitor large amounts of diverse information on genetic variation, gene and pro-
tein functions, interactions in regulatory processes and biochemical pathways. Such
technology has also been widely used for studying neuron activities and networks.
Genomic sequence analysis permits us to understand the homologies among differ-
ent species and infer their biological structures and functionalities. Analysis of the
network structure of protein can predict the protein biological function. These quanti-
tative biological problems raise many new statistical and computational problems. Let
us focus specifically on the analysis of microarray data to illustrate some challenges
with dimensionality.

DNA microarrays have been widely used in simultaneously monitoring mRNA
expressions of thousands of genes in many areas of biomedical research. There are
two popularly-used techniques: c-DNA microarrays [5] and Affymetrix GeneChip
arrays [61]. The former measures the abundance of mRNA expressions by mixing
mRNAs of treatment and control cells or tissues, hybridizing with cDNA on the chip.
The latter uses combined intensity information from 11-20 probes interrogating a part
of the DNA sequence of a gene, measuring separately mRNA expressions of treatment
and control cells or tissues. Let us focus further on the cDNA microarray data.

The first statistical challenge is to remove systematic biases due to experiment
variations such as intensity effect in the scanning process, block effect, dye effect,
batch effect, amount of mRNA, DNA concentration on arrays, among others. This
is collectively referred to as normalization in the literature. Normalization is critical
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for multiple array comparisons. Statistical models are needed for estimation of these
systematic biases in presence of high-dimensional nuisance parameters from treatment
effects on genes. See, for example, lowess normalization in [26], [83], semiparametric
model-based normalization by [36], [37], [50], and robust normalization in [63]. The
number of significantly expressed genes is relatively small. Hence, model selection
techniques can be used to exploit the sparsity. In Section 6.1, we briefly introduce
semiparametric modeling techniques to issues of normalization of cDNA microarray.

Once systematic biases have been removed, the statistical challenge becomes
selecting statistically significant genes based on a relatively small sample size of arrays
(e.g. n = 4, 6, 8). Various testing procedures have been proposed in the literature.
See, for example, [30], [37], [50], [83], [84]. In carrying out simultaneous testing
of orders of hundreds or thousands of genes, classical methods of controlling the
probability of making one falsely discovered gene are no longer relevant. Therefore
various innovative methods have been proposed to control the false discovery rates.
See, for example, [2], [22], [25], [27], [44], [57], [77]. The fundamental assumption
in these developments is that the null distribution of test statistics can be determined
accurately. This assumption is usually not granted in practice and new probabilistic
challenge is to answer the questions how many simultaneous hypotheses can be tested
before the accuracy of approximations of null distributions becomes poor. Large
deviation theory [45], [46], [53] is expected to play a critical role in this endeavor.
Some progress has been made using maximal inequalities [55].

Tumor classification and clustering based on microarray and proteomics data are
another important class of challenging problems in computational biology. Here,
hundreds or thousands of gene expressions are potential predictors, and the challenge
is to select important genes for effective disease classification and clustering. See, for
example, [79], [82], [88] for an overview and references therein.

Similar problems include time-course microarray experiments used to determine
the expression pathways over time [79], [80] and genetic networks used for under-
standing interactions in regulatory processes and biochemical pathways [58]. Chal-
lenges of selecting significant genes over time and classifying patterns of gene expres-
sions remain. In addition, understanding genetic network problems requires estimat-
ing a huge covariance matrix with some sparsity structure. We introduce a modified
Cholesky decomposition technique for estimating large scale covariance matrices in
Section 6.1.

2.2. Health studies. Many health studies are longitudinal: each subject is followed
over a period of time and many covariates and responses of each subject are col-
lected at different time points. Framingham Heart Study (FHS), initiated in 1948,
is one of the most famous classic longitudinal studies. Documentation of its first
50 years can be found at the website of National Heart, Lung and Blood Institute
(http://www.nhlbi.nih.gov/about/framingham/). One can learn more details about this
study from the website of American Heart Association. In brief, the FHS follows a
representative sample of 5,209 adult residents and their offspring aged 28–62 years in
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Framingham, Massachusetts. These subjects have been tracked using (a) standardized
biennial cardiovascular examination, (b) daily surveillance of hospital admissions, (c)
death information and (d) information from physicians and other sources outside the
clinic.

In 1971 the study enrolled a second-generation group to participate in similar
examinations. It consisted of 5,124 of the original participants’ adult children and
their spouses. This second study is called the Framingham Offspring Study.

The main goal of this study is to identify major risk factors associated with heart
disease, stroke and other diseases, and to learn the circumstances under which cardio-
vascular diseases arise, evolve and end fatally in the general population. The findings
in this studies created a revolution in preventive medicine, and forever changed the
way the medical community and general public view on the genesis of disease. In this
study, there are more than 25,000 samples, each consisting of more than 100 variables.
Because of the nature of this longitudinal study, some participant cannot be followed
up due to their migrations. Thus, the collected data contain many missing values.
During the study, cardiovascular diseases may develop for some participants, while
other participants may never experience with cardiovascular diseases. This implies
that some data are censored because the event of particular interest never occurred.
Furthermore, data between individuals may not be independent because data for indi-
viduals in a family are clustered and likely positively correlated. Missing, censoring
and clustering are common features in health studies. These three issues make data
structure complicated and identification of important risk factors more challenging.
In Section 6.2, we present a penalized partial likelihood approach to selecting signifi-
cant risk factors for censored and clustering data. The penalized likelihood approach
has been used to analyze a data subset of Frammingham study in [9].

High-dimensionality is frequently seen in many other biomedical studies. For
example, ecological momentary assessment data have been collected for smoking
cessation studies. In such a study, each of a few hundreds participants is provided a
hand-held computer, which is designed to randomly prompt the participants five to
eight times per day over a period of about 50 days and to provide 50 questions at
each prompt. Therefore, the data consist of a few hundreds of subjects and each of
them may have more than ten thousand observed values [60]. Such data are termed
intensive longitudinal data. Classical longitudinal methods are inadequate for such
data. Walls and Schafer [86] presents more examples of intensive longitudinal data
and some useful models to analyze this kind of data.

2.3. Financial engineering and risk management. Technological revolution and
trade globalization have introduced a new era of financial markets. Over the last
three decades, an enormous number of new financial products have been created to
meet customers’ demands. For example, to reduce the impact of the fluctuations
of currency exchange rates on corporate finances, a multinational corporation may
decide to buy options on the future of exchange rates; to reduce the risk of price
fluctuations of a commodity (e.g. lumbers, corns, soybeans), a farmer may enter
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into a future contract of the commodity; to reduce the risk of weather exposures,
amusement parks and energy companies may decide to purchase financial derivatives
based on the weather. Since the first options exchange opened in Chicago in 1973, the
derivative markets have experienced extraordinary growth. Professionals in finance
now routinely use sophisticated statistical techniques and modern computing power in
portfolio management, securities regulation, proprietary trading, financial consulting,
and risk management. For an overview, see [29] and references therein.

Complex financial markets [51] make portfolio allocation, asset pricing and risk
management very challenging. For example, the price of a stock depends not only on
its past values, but also its bond and derivative prices. In addition, it depends on prices
of related companies and their derivatives, and on overall market conditions. Hence,
the number of variables that influence asset prices can be huge and the statistical
challenge is to select important factors that capture the market risks. Thanks to
technological innovations, high-frequency financial data are now available for an array
of different financial instruments over a long time period. The amount of financial
data available to financial engineers is indeed astronomical.

Let us focus on a specific problem to illustrate the challenge of dimensionality. To
optimize the performance of a portfolio [10], [12] or to manage the risk of a portfolio
[70], we need to estimate the covariance matrix of the returns of assets in the portfolio.
Suppose that we have 200 stocks to be selected for asset allocation. There are 20,200
parameters in the covariance matrix. This is a high-dimensional statistical problem
and estimating it accurately poses challenges.

Covariance matrices pervade every facet of financial econometrics, from asset
allocation, asset pricing, and risk management, to derivative pricing and proprietary
trading. As mentioned earlier, they are also critical for studying genetic networks [58],
as well as other statistical applications such as climatology [54]. In Section 6.1, a
modified Cholesky decomposition is used to estimate huge covariance matrices using
penalized least squares approach proposed in Section 2. We will introduce a factor
model for covariance estimation in Section 6.3.

2.4. Machine learning and data mining. Machine learning and data mining extend
traditional statistical techniques to handle problems with much higher dimensionality.
The size of data can also be astronomical: from grocery sales and financial market
trading to biomedical images and natural resource surveys. For an introduction,
see the books [47], [48]. Variable selections and feature extraction are vital for
such high-dimensional statistical explorations. Because of the size and complexity
of the problems, the associated mathematical theory also differs from the traditional
approach. The dimensionality of variables is comparable with the sample size and can
even be much higher than the sample size. Selecting reliable predictors to minimize
risks of prediction is fundamental to machine learning and data mining. On the other
hand, as the interest mainly lies in risk minimization, unlike traditional statistics, the
model parameters are only of secondary interest. As a result, crude consistency results
suffice for understanding the performance of learning theory. This eases considerably
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the mathematical challenges of high-dimensionality. For example, in the supervised
(classification) or unsupervised (clustering) learning, we do not need to know the
distributions of estimated coefficients in the underlying model. We only need to know
the variables and their estimated parameters in the model. This differs from high-
dimensional statistical problems in health sciences and biomedical studies, where
statistical inferences are needed in presence of high-dimensionality. In Sections 4.2
and 6.4, we will address further the challenges in machine learning.

3. Penalized least squares

With the above background, we now consider the variable selection in the least-
squares setting to gain further insights. The idea will be extended to the likelihood or
pseudo-likelihood setting in the next section. We demonstrate how to directly apply
the penalized least squares approach for function estimation or approximation using
wavelets or spline basis, based on noisy data in Section 5. The penalized least squares
method will be further extended to penalized empirical risk minimization for machine
learning in Section 6.4.

Let {xi , yi}, i = 1, . . . , n, be a random sample from the linear regression model

y = xT β + ε, (3.1)

where ε is a random error with mean 0 and finite variance σ 2, and β = (β1, . . . , βd)T

is the vector of regression coefficients. Here, we assume that all important predictors,
and their interactions or functions are already in the model so that the full model (3.1)
is correct.

Many variable selection criteria or procedures are closely related to minimize the
following penalized least squares (PLS)

1

2n

n∑
i=1

(yi − xT
i β)2 +

d∑
j=1

pλj
(|βj |), (3.2)

where d is the dimension of x, and pλj
( · ) is a penalty function, controlling model

complexity. The dependence of the penalty function on j allows us to incorporate
prior information. For instance, we may wish to keep certain important predictors in
the model and choose not to penalize their coefficients.

The form of pλj
( · ) determines the general behavior of the estimator. With the

entropy or L0-penalty, namely, pλj
(|βj |) = 1

2λ2I (|βj | �= 0), the PLS (3.2) becomes

1

2n

n∑
i=1

(yi − xT
i β)2 + 1

2
λ2|M|, (3.3)

where |M| = ∑
j I (|βj | �= 0), the size of the candidate model. Among models with

m variables, the selected model is the one with the minimum residual sum of squares
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(RRS), denoted by RSSm. A classical statistical method is to choose m by maximizing
the adjusted R2, given by

Radj,m = 1 − n − 1

n − m

RSSm

RSS1
,

or equivalently by minimizing RSSm/(n−m), where RSS1 is the total sum of squares
based on the null model (using the intercept only). Using log(1 + x) ≈ x for small
x, it follows that

log{RSSm/(n − m)} ≈ (log σ 2 − 1) + σ−2
{

1

n
RSSm + 1

n
mσ 2

}
. (3.4)

Therefore, maximization of Radj,m is asymptotically equivalent to minimizing the
PLS (3.3) with λ = σ/

√
n. Similarly, generalized cross-validation (GCV) given by

GCV(m) = RSSm/{n(1 − m/n)2}
is asymptotically equivalent to the PLS (3.3) with λ = √

2σ/
√

n and so is the cross-
validation (CV) criterion.

Many popular variable selection criteria can be shown asymptotically equivalent
to the PLS (3.3) with appropriate values of λ, though these criteria were motivated
from different principles. See [69] and references therein. For instance, RIC [38]
corresponds to λ = √

2 log(d)(σ/
√

n). Since the entropy penalty function is discon-
tinuous, minimizing the entropy-penalized least-squares requires exhaustive search,
which is not feasible for high-dimensional problem. In addition, the sampling distri-
butions of resulting estimates are hard to derive.

Many researchers have been working on minimizing the PLS (3.2) with Lp-penalty
for some p > 0. It is well known that the L2-penalty results in a ridge regression esti-
mator, which regularizes and stabilizes the estimator but introduces biases. However,
it does not shrink any coefficients directly to zero.

The Lp-penalty with 0 < p < 2 yields bridge regression [39], intermediating
the best-subset (L0-penalty) and the ridge regression (L2-penalty). The non-negative
garrote [8] shares the same spirit as that of bridge regression. With the L1-penalty
specifically, the PLS estimator is called LASSO in [81]. In a seminal paper, Donoho
and Elad [20] show that penalized L0-solution can be found by using penalized L1-
method for sparse problem. When p ≤ 1, the PLS automatically performs variable
selection by removing predictors with very small estimated coefficients.

Antoniadis and Fan [1] discussed how to choose a penalty function for wavelets
regression. Fan and Li [33] advocated penalty functions with three properties:

a. Sparsity: The resulting estimator should automatically set small estimated
coefficients to zero to accomplish variable selection.

b. Unbiasedness: The resulting estimator should have low bias, especially when
the true coefficient βj is large.
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c. Continuity: The resulting estimator should be continuous to reduce instability
in model prediction.

To gain further insights, let us assume that the design matrix X = (x1, . . . , xn)
T for

model (3.1) is orthogonal and satisfies that 1
n
XT X = Id . Let z = (XT X)−1XT y be

the least squares estimate of β. Then (3.2) becomes

1

2n
‖y − Xz‖ + 1

2
‖z − β‖2 +

d∑
j=1

pλj
(|βj |).

Thus the PLS reduces to a componentwise minimization problem:

min
βj

{
1

2
(zj − βj )

2 + pλj
(|βj |)

}
, for j = 1, . . . , d,

where zj is the j -th component of z. Suppress the subscript j and let

Q(β) = 1

2
(z − β)2 + pλ(|β|). (3.5)

Then the first order derivative of Q(β) is given by

Q′(β) = β − z + p′
λ(|β|)sgn(β) = sgn(β){|β| + p′

λ(|β|)} − z.

Antoniadis and Fan [1] and Fan and Li [33] derived that the PLS estimator possesses
the following properties:

(a) sparsity if minβ{|β| + p′
λ(|β|)} > 0;

(b) unbiasedness p′
λ(|β|) = 0 for large |β|;

(c) continuity if and only if argminβ{|β| + p′
λ(|β|)} = 0.

The Lp-penalty with 0 ≤ p < 1 does not satisfy the continuity condition, the L1
penalty does not satisfy the unbiasedness condition, and Lp with p > 1 does not
satisfy the sparsity condition. Therefore, none of the Lp-penalties satisfies the above
three conditions simultaneously, and L1-penalty is the such penalty that is both convex
and produces sparse solutions. Of course, the class of penalty functions satisfying the
aforementioned three conditions are infinitely many. Fan and Li [33] suggested the
use of the smoothly clipped absolute deviation (SCAD) penalty defined as

pλ(|β|) =

⎧⎪⎨
⎪⎩

λ|β|, if 0 ≤ |β| < λ;
−(|β|2 − 2aλ|β| + λ2)/{2(a − 1)}, if λ ≤ |β| < aλ;
(a + 1)λ2/2, if |β| ≥ aλ.

They further suggested using a = 3.7. This function has similar feature to the penalty
function λ|β|/(1 + |β|) advocated in [71]. Figure 1 depicts the SCAD, L0.5-penalty,
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Figure 1. Penalty functions (left panel) and PLS estimators (right panel).

L1-penalty, and hard thresholding penalty (to be introduced) functions. These four
penalty functions are singular at the origin, a necessary condition for sparsity in
variable selection. Furthermore, the SCAD, hard-thresholding and L0.5 penalties are
nonconvex over (0, +∞) in order to reduce the estimation bias.

Minimizing the PLS (3.5) with the entropy penalty or hard-thresholding penalty
pλ(β) = λ2 − (λ − |β|)2+ (which is smoother) yields the hard-thresholding rule [23]
β̂H = zI (|z| > λ). With the L1-penalty, the PLS estimator is β̂S = sgn(z)(|z|−λ)+,
the soft-thresholding rule [3], [23]. The L2-penalty results in the ridge regression
β̂R = (1 + λ)−1z and the SCAD penalty gives the solution

β̂SCAD =

⎧⎪⎨
⎪⎩

sgn(z)(|z| − λ)+, when |z| ≤ 2λ;
{(a − 1)z − sgn(z)aλ}/(a − 2), when 2λ < |z| ≤ aλ;
z, when |z| > aλ.

These functions are also shown in Figure 1. The SCAD is an improvement over the
L0-penalty in two aspects: saving computational cost and resulting in a continuous
solution to avoid unnecessary modeling variation. Furthermore, the SCAD improves
bridge regression by reducing modeling variation in model prediction. Although
similar in spirit to the L1-penalty, the SCAD also improves the L1-penalty by avoid-
ing excessive estimation bias since the solution of the L1-penalty could shrink all
regression coefficients by a constant, e.g., the soft thresholding rule.
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4. Penalized likelihood

PLS can easily be extended to handle a variety of response variables, including binary
response, counts, and continuous response. A popular family of this kind is called
generalized linear models. Our approach can also be applied to the case where the
likelihood is a quasi-likelihood or other discrepancy functions. This will be demon-
strated in Section 6.2 for analysis of survival data, and in Section 6.4 for machine
learning.

Suppose that conditioning on xi , yi has a density f {g(xT
i β), yi}, where g is a

known inverse link function. Define a penalized likelihood as

Q(β) = 1

n

n∑
i=1

log f {g(xT
i β), yi} −

d∑
j=1

pλj
(|βj |). (4.1)

Maximizing the penalized likelihood results in a penalized likelihood estimator. For
certain penalties, such as the SCAD, the selected model based on the nonconcave
penalized likelihood satisfies βj = 0 for certain βj ’s. Therefore, parameter estimation
is performed at the same time as the model selection.

Example (Logistics Regression). Suppose that given xi , yi follows a Bernoulli dis-
tribution with success probability P {yi = 1|xi} = p(xi ). Take g(u) = exp(u)/(1 +
exp(u)), i.e. p(x) = exp(xT β)/{1 + exp(xT β)}. Then (4.1) becomes

1

n

n∑
i=1

[yi(x
T
i β) − log{1 + exp(xT

i β)}] −
d∑

j=1

pλj
(|βj |).

Thus, variable selection for logistics regression can be achieved by maximizing the
above penalized likelihood.

Example (Poisson Log-linear Regression). Suppose that given xi , yi follows a Pois-
son distribution with mean λ(xi ). Take g( · ) to be the log-link, i.e. λ(x) = exp(xT β).
Then (4.1) can be written as

1

n

n∑
i=1

{yi(x
T
i β) − exp(xT

i β)} −
d∑

j=1

pλj
(|βj |)

after dropping a constant. Thus, maximizing the above penalized likelihood with
certain penalty functions yields a sparse solution for β.

4.1. Oracle properties. Maximizing a penalized likelihood selects variables and
estimates parameters simultaneously. This allows us to establish the sampling prop-
erties of the resulting estimators. Under certain regularity conditions, Fan and Li [33]
demonstrated how the rates of convergence for the penalized likelihood estimators
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depend on the regularization parameter λn and established the oracle properties of the
penalized likelihood estimators.

In the context of variable selection for high-dimensional modeling, it is natural
to allow the number of introduced variables to grow with the sample sizes. Fan and
Peng [35] have studied the asymptotic properties of the penalized likelihood estimator
for situations in which the number of parameters, denoted by dn, tends to ∞ as the
sample size n increases. Denote βn0 to be the true value of β. To emphasize the
dependence of λj on n, we use notation λn,j for λj in this subsection. Define

an = max{p′
λn,j

(|βn0j |) : βn0j �= 0} and bn = max{|p′′
λn,j

(|βn0j |)| : βn0j �= 0}.
(4.2)

Fan and Peng [35] showed that if both an and bn tend to 0 as n → ∞, then under
certain regularity conditions, there exists a local maximizer β̂ of Q(β) such that

‖β̂ − βn0‖ = OP {√dn(n
−1/2 + an)}. (4.3)

It is clear from (4.3) that by choosing a proper λn,j such that an = O(n−1/2), there
exists a root-(n/dn) consistent penalized likelihood estimator. For example, for the
SCAD, the penalized likelihood estimator is root-(n/dn) consistent if all λn,j ’s tend
to 0.

Without loss of generality assume that, unknown to us, the first sn components
of βn0, denoted by βn01, are nonzero and do not vanish and the remaining dn − sn
coefficients, denoted by βn02, are 0. Denote by

� = diag
{
p′′

λn,1
(|βn01|), . . . , p′′

λn,sn
(|βn0sn |)

}
and

b = (
p′

λn,1
(|βn01|)sgn(βn01), . . . , p

′
λn,sn

(|βn0sn |)sgn(βn0sn)
)T

.

Theorem 1. Assume that as n → ∞, min1≤j≤sn |βn0j |/λn,j → ∞ and that the
penalty function pλj

(|βj |) satisfies

lim inf
n→∞ lim inf

βj→0+ p′
λn,j

(βj )/λn,j > 0. (4.4)

If λn,j → 0,
√

n/dnλn,j → ∞ and d5
n/n → 0 as n → ∞, then with probability

tending to 1, the root n/dn consistent local maximizers β̂ = (β̂T
n1, β̂

T
n2)

T must satisfy:

(i) Sparsity: β̂n2 = 0;
(ii) Asymptotic normality: for any q ×sn matrix An such that AnA

T
n → G, a q ×q

positive definite symmetric matrix,

√
nAnI

−1/2
1 {I 1 + �}{β̂n1 − βn10 + (I 1 + �)−1b

} D−→ N(0, G)

where I 1 = I 1(βn10, 0), the Fisher information knowing βn20 = 0.
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The theorem implies that any finite set of elements of β̂n1 are jointly asymptotically
normal. For the SCAD, if all λj,n → 0, an = 0. Hence, when

√
n/dnλn,j → ∞,

its corresponding penalized likelihood estimators possess the oracle property, i.e.,
perform as well as the maximum likelihood estimates for estimating βn1 knowing
βn2 = 0. That is, with probability approaching to 1,

β̂n2 = 0, and
√

nAnI
1/2
1 (β̂n1 − βn10) → N(0, G).

For the L1-penalty, an = maxj λj,n. Hence, the root-n/dn consistency requires
that λn,j = O(

√
dn/n). On the other hand, the oracle property in Theorem 2 requires

that
√

n/dnλn,j → ∞. These two conditions for LASSO cannot be satisfied simul-
taneously. It has indeed been shown that the oracle property does not hold for the
L1-penalty even in the finite parameter setting [90].

4.2. Risk minimization and persistence. In machine learning such as tumor classi-
fications, the primary interest centers on the misclassification errors or more generally
expected losses, not the accuracy of estimated parameters. This kind of properties is
called persistence in [42], [43].

Consider predicting the response Y using a class of model g(xT β) with a loss
function �{g(XT β), Y ). Then the risk is

Ln(β) = E�{g(XT β), Y },
where n is used to stress the dependence of dimensionality d on n. The minimum risk
is obtained at β∗

n = argminβLn(β). In the likelihood context, � = − log f . Suppose

that there is an estimator β̂n based on a sample of size n. This can be done by the
penalized empirical risk minimization similarly to (4.1):

n−1
n∑

i=1

�{g(xT
i β), yi} +

d∑
j=1

pλj
(|βj |), (4.5)

based on a set of training data {(xi , yi), i = 1, . . . , n}. The persistence requires

Ln(β̂n) − Ln(β
∗
n)

P−→ 0, (4.6)

but not necessarily the consistency of β̂n to β∗
n. This is in general a much weaker

mathematical requirement. Greenshtein and Ritov [43] show that if the non-sparsity
rate sn = O{(n/ log n)1/2} and dn = nα for some α > 1, LASSO (penalized L1 least-
squares) is persistent under the quadratic loss. Greenshtein [42] extends the results to
the case where sn = O{n/ log n} and more general loss functions. Meinshausen [66]
considers a case with finite non-sparsity sn but with log dn = nξ , with ξ ∈ (0, 1). It is
shown there that for the quadratic loss, LASSO is persistent, but the rate to persistency
is slower than a relaxed LASSO. This again shows the bias problems in LASSO.
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4.3. Issues in practical implementation. In this section, we address practical im-
plementation issues related to the PLS and penalized likelihood.

Local quadratic approximation (LQA). The Lp, (0 < p < 1), and SCAD penalty
functions are singular at the origin, and they do not have continuous second order
derivatives. Therefore, maximizing the nonconcave penalized likelihood is challeng-
ing. Fan and Li [33] propose locally approximating them by a quadratic function as
follows. Suppose that we are given an initial value β0 that is close to the optimizer of
Q(β). For example, take initial value to be the maximum likelihood estimate (without
penalty). Under some regularity conditions, the initial value is a consistent estimate
for β, and therefore it is close to the true value. Thus, we can locally approximate the
penalty function by a quadratic function as

pλn(|βj |) ≈ pλn(|β0
j |) + 1

2
{p′

λn
(|β0

j |)/|β0
j |}(β2

j − β02
j ), for βj ≈ β0

j . (4.7)

To avoid numerical instability, we set β̂j = 0 if β0
j is very close to 0. This corresponds

to deleting xj from the final model. With the aid of the LQA, the optimization
of penalized least-squares, penalized likelihood or penalized partial likelihood (see
Section 6.2) can be carried out by using the Newton–Raphson algorithm. It is worth
noting that the LQA should be updated at each step during the course of iteration
of the algorithm. We refer to the modified Newton–Raphson algorithm as the LQA
algorithm.

The convergence property of the LQA algorithm was studied in [52], whose authors
first showed that the LQA plays the same role as the E-step in the EM algorithm [18].
Therefore the behavior of the LQA algorithm is similar to the EM algorithm. Unlike
the original EM algorithm, in which a full iteration for maximization is carried out after
every E-step, we update the LQA at each step during the iteration course. This speeds
up the convergence of the algorithm. The convergence rate of the LQA algorithm is
quadratic which is the same as that of the modified EM algorithm [56].

When the algorithm converges, the estimator satisfies the condition

∂�(β̂)/∂βj + np′
λj

(|β̂j |)sgn(β̂j ) = 0,

the penalized likelihood equation, for non-zero elements of β̂.

Standard error formula. Following conventional techniques in the likelihood set-
ting, we can estimate the standard error of the resulting estimator by using the sand-
wich formula. Specifically, the corresponding sandwich formula can be used as an
estimator for the covariance of the estimator β̂1, the non-vanishing component of β̂.
That is,

ĉov(β̂1) = {∇2�(β̂1) − n�λ(β̂1)}−1ĉov{∇�(β̂1)}{∇2�(β̂1) − n�λ(β̂1)}−1, (4.8)

where ĉov{∇�(β̂1)} is the usual empirically estimated covariance matrix and

�λ(β̂1) = diag{p′
λ1

(|β̂1|)/|β̂1|, . . . , p′
λsn

(|β̂sn |)/|β̂sn |}
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and sn the dimension of β̂1. Fan and Peng [35] demonstrated the consistency of the
sandwich formula:

Theorem 2. Under the conditions of Theorem 1, we have

Anĉov(β̂1)A
T
n − An�nA

T
n

P−→ 0 as n → ∞
for any matrix An such that AnA

T
n = G, where �n = (I 1 + �)−1I−1

1 (I 1 + �)−1.

Selection of regularization parameters. To implement the methods described in
previous sections, it is desirable to have an automatic method for selecting the thresh-
olding parameter λ in pλ( · ) based on data. Here, we estimate λ via minimizing an
approximate generalized cross-validation (GCV) statistic in [11]. By some straight-
forward calculation, the effective number of parameters for Q(β) in the last step of
the Newton–Raphson algorithm iteration is

e(λ) ≡ e(λ1, . . . , λd) = tr[{∇2�(β̂) − n�λ(β̂)}−1∇2�(β̂)].
Therefore the generalized cross-validation statistic is defined by

GCV(λ) = −�(β̂)/[n{1 − e(λ)/n}2]
and λ̂ = argminλ{GCV(λ)} is selected.

To find an optimal λ, we need to minimize the GCV over a dn-dimensional space.
This is an unduly onerous task. Intuitively, it is expected that the magnitude of λj

should be proportional to the standard error of the maximum likelihood estimate of βj .
Thus, we set λ = λse(β̂MLE) in practice, where se(β̂MLE) denotes the standard error
of the MLE. Therefore, we minimize the GCV score over the one-dimensional space,
which will save a great deal of computational cost. The behavior of such a method
has been investigated recently.

5. Applications to function estimation

Let us begin with one-dimensional function estimation. Suppose that we have noisy
data at possibly irregular design points {x1, . . . , xn}:

yi = m(xi) + εi,

where m is an unknown regression and εi’s are iid random error following N(0, σ 2).
Local modeling techniques [31] have been widely used to estimate m( · ). Here we
focus on global function approximation methods.

Wavelet transforms are a device for representing functions in a way that is local in
both time and frequency domains [13], [14], [64], [65]. During the last decade, they
have received a great deal of attention in applied mathematics, image analysis, signal
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compression, and many other fields of engineering. Daubechies [17] and Meyer [68]
are good introductory references to this subject. Wavelet-based methods have many
exciting statistical properties [23]. Earlier papers on wavelets assume the regular
design points, i.e, xi = i

n
(usually n = 2k for some integer k) so that fast computation

algorithms can be implemented. See [24] and references therein. For an overview of
wavelets in statistics, see [87].

Antoniadis and Fan [1] discussed how to apply wavelet methods for function
estimation with irregular design points using penalized least squares. Without loss
of generality, assume that m(x) is defined on [0, 1]. By moving nondyadic points to
dyadic points, we assume xi = ni/2J for some ni and some fine resolution J that is
determined by users. To make this approximation errors negligible, we take J large
enough such that 2J ≥ n. Let W be a given wavelet transform at all dyadic points
{i/2J :, i = 1, . . . , 2J − 1}. Let N = 2J and ai be the ni-th column of W , an N ×N

matrix, and β = Wm be the wavelet transform of the function m at dyadic points.
Then it is easy to see that m(xi) = aT

i β. This yields an overparameterized linear
model

yi = aT
i β + εi, (5.1)

which aims at reducing modeling biases. However, one cannot find a reasonable
estimate of β by using the ordinary least squares method since N ≥ n. Directly
applying penalized least squares, we have

1

2n

n∑
i=1

(yi − aT
i β)2 +

N∑
j=1

pλj
(|βj |). (5.2)

If the sampling points are equally spaced and n = 2J , the corresponding design matrix
of linear model (5.1) becomes a square orthogonal matrix. From the discussion in
Section 3, minimizing the PLS (5.2) with the entropy penalty or the hard-thresholding
penalty results in a hard-thresholding rule. With the L1 penalty, the PLS estimator
is the soft-thresholding rule. Assume that pλ( · ) is nonnegative, nondecreasing, and
differentiable over (0, ∞) and that function−β−p′

λ(β) is strictly unimodal on (0, ∞),
p′

λ( · ) is nonincreasing and p′
λ(0+) > 0. ThenAntoniadis and Fan [1] showed that the

resulting penalized least-squares estimator that minimizes (5.2) is adaptively minimax
within a factor of logarithmic order as follows. Define the Besov space ball Br

p,q(C)

to be
Br

p,q(C) = {
m ∈ Lp : ∑

j (2
j (r+1/2−1/p)‖θj ·‖p)q < C

}
,

where θj · is the vector of wavelet coefficients of function m at the resolution level j .
Here r indicates the degree of smoothness of the regression functions m.

Theorem 3. Suppose that the regression function m( · ) is in a Besov ball with r +
1/2 − 1/p > 0. Then the maximum risk of the PLS estimator m̂( · ) over Br

p,q(C) is

of rate O(n−2r/(2r+1) log(n)) when the universal thresholding
√

2 log(n)/n is used.
It also achieves the rate of convergence O{n−2r/(2r+1) log(n)} when the minimax
thresholding pn/

√
n is used, where pn is given in [1].
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We next consider multivariate regression function estimation. Suppose that {xi , yi}
is a random sample from the regression model

y = m(x) + ε,

where, without loss of generality, it is assumed that x ∈ [0, 1]d . Radial basis and
neural-network are also popular for approximating multi-dimensional functions. In
the literature of spline smoothing, it is typically assumed that the mean function m(x)

has a low-dimensional structure. For example,

m(x) = μ0 +
∑
j

mj (xj ) +
∑
k<l

mkl(xk, xl).

For given knots, a set of spline basis functions can be constructed. The two most
popular spline bases are the truncated power spline basis 1, x, x2, x3, (x − tj )

3+, (j =
1, . . . , J ), where tj ’s are knots, and the B-spline basis (see [6] for definition). The
B-spline basis is numerically more stable since the multiple correlation among the
basis functions is smaller, but the power truncated spline basis has the advantage that
deleting a basis function is the same as deleting a knot.

For a given set of 1-dimensional spline bases, we can further construct a multi-
variate spline basis using tensor products. Let {B1, . . . , BJ } be a set of spline basis
functions on [0, 1]d . Approximate the regression function m(x) by a linear combina-
tion of the basis functions,

∑
βjBj (x), say. To avoid a large approximation bias, we

take a large J . This yields an overparameterized linear model, and the fitted curve
of the least squares estimate is typically undersmooth. Smoothing spline suggested
penalizing the roughness of the resulting estimate. This is equivalent to the penalized
least squares with a quadratic penalty. In a series of work by Stone and his collab-
orators (see [76]), they advocate using regression splines and modifying traditional
variable selection approaches to select useful spline subbases. Ruppert et al. [75]
advocated penalized splines in statistical modeling, in which power truncated splines
are used with the L2 penalty. Another kind of penalized splines method proposed
by [28] shares the same spirit of [75].

6. Some solutions to the challenges

In this section, we provide some solutions to problems raised in Section 2.

6.1. Computational biology. As discussed in Section 2.1, the first statistical chal-
lenge in computational biology is how to remove systematic biases due to experiment
variations. Thus, let us first discuss the issue of normalization of cDNA-microarrays.
Let Yg be the log-ratio of the intensity of gene g of the treatment sample over that
of the control sample. Denote by Xg the average of the log-intensities of gene g at
the treatment and control samples. Set rg and cg be the row and column of the block



612 Jianqing Fan and Runze Li

where the cDNA of gene g resides. Fan et al. [37] use the following model to estimate
the intensity and block effect:

Yg = αg + βrg + γcg + f (Xg) + εg, g = 1, . . . , N (6.1)

where αg is the treatment effect on gene g, βrg and γcg are block effects that are
decomposed into the column and row effect, f (Xg) represents the intensity effect
and N is the total number of genes. Based on J arrays, an aim of microarray data
analysis is to find genes g with αg statistically significantly different from 0. However,
before carrying multiple array comparisons, the block and treatment effects should
first be estimated and removed. For this normalization purpose, parameters αg are
nuisance and high-dimensional (recall N is in the order of tens of thousands). On the
other hand, the number of significantly expressed genes is relatively small, yielding
the sparsity structure of αg .

Model (6.1) is not identifiable. Fan et al. [37] use within-array replicates to infer
about the block and treatment effects. Suppose that we have I replications for G

genes, which could be a small fraction of N . For example, in [37], only 111 genes
were repeated at random blocks (G = 111, I = 2), whereas in [63], all genes were
repeated three times, i.e. I = 3 and N = 3G, though both have about N ≈ 20, 000
genes printed on an array. Using I replicated data on G genes, model (6.1) becomes

Ygi = αg + βrgi
+ γcgi

+ f (Xgi) + εgi, g = 1, . . . , G, i = 1, . . . , I. (6.2)

With estimated coefficients β̂ and γ̂ and the function f̂ , model (6.1) implies that the
normalized data are Y ∗

g = Yg − β̂rg − γ̂cg − f̂ (Xg) even for non-repeated genes.
Model (6.2) can be used to remove the intensity effect array by array, though the

number of nuisance parameters is very large, a fraction of total sample size in (6.2).
To improve the efficiency of estimation, Fan et al. [36] aggregate the information from
other microarrays (total J arrays):

Ygij = αg + βrgi ,j + γcgi ,j + fj (Xgij ) + εgi, j = 1, . . . , J, (6.3)

where the subscript j denotes the array effect.
The parameters in (6.2) can be estimated by the profile least-squares method using

the Gauss–Seidel type of algorithm. See [36] for details. To state the results, let us
write model (6.2) as

Ygi = αg + ZT
giβ + f (Xgi) + εgi, (6.4)

by appropriately introducing the dummy variable Z. Fan et al. [36] obtained the
following results.

Theorem 4. Under some regularity conditions, as n = IG → ∞, the profile least-
squares estimator of model (6.4) has

√
n(β̂ − β)

D−→ N

(
0,

I

I − 1
σ 2�−1

)
,
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where � = E{Var(Z|X)} and σ 2 = Var(ε). In addition, f̂ (x)−f (x) = OP (n−2/5).

Theorem 5. Under some regularity conditions, as n = IG → ∞, when X and Z

are independent, the profile least-squares estimator based on (6.3) possesses

√
n(β̂j − βj )

D−→ N

(
0,

I (J − 1) + 1

J (I − 1)
σ 2�−1

)
.

The above theorems show that the block effect can be estimated at rate OP (n−1/2)

and intensity effect f can be estimated at rate OP (n−2/5). This rate can be improved
to OP (n−1/2 +N−2/5) when data in (6.1) are all used. The techniques have also been
adapted for the normalization of Affymetrix arrays [30]. Once the arrays have been
normalized, the problem becomes selecting significantly expressed genes using the
normalized data

Y ∗
gj = αg + εgj , g = 1, . . . , N, j = 1, . . . , J, (6.5)

where Y ∗
gj is the normalized expression of gene g in array j . This is again a high-

dimensional statistical inference problem. The issues of computing P-values and false
discovery are given in Section 2.1.

Estimation of high-dimensional covariance matrices is critical in studying genetic
networks. PLS and penalized likelihood can be used to estimate large scale covariance
matrices effectively and parsimoniously [49], [59]. Let w = (W1, . . . , Wd)T be a
d-dimensional random vector with mean zero and covariance �. Using the modified
Cholesky decomposition, we have L�LT = D, where L is a lower triangular matrix
having ones on its diagonal and typical element −φtj in the (t, j)th position for
1 ≤ j < t ≤ d, and D = diag{σ 2

1 , . . . , σ 2
d )T is a diagonal matrix. Denote e =

Lw = (e1, . . . , ed)T . Since D is diagonal, e1, . . . , ed are uncorrelated. Thus, for
2 ≤ t ≤ d

Wt =
t−1∑
j=1

φtjWj + et . (6.6)

That is, the Wt is an autoregressive (AR) series, which gives an interpretation for
elements of L and D, and allows us to use PLS for covariance selection. We first
estimate σ 2

t using the mean squared errors of model (6.6). Suppose that wi , i =
1, . . . , n, is a random sample from w. For t = 2, . . . , d , covariance selection can be
achieved by minimizing the following PLS functions:

1

2n

n∑
i=1

(
Wit −

t−1∑
j=1

φtjWij

)2 +
t−1∑
j=1

pλt,j
(|φtj |). (6.7)

This reduces the non-sparse elements in the lower triangle matrix L. With esti-
mated L, the diagonal elements can be estimated by the sample variance of the com-
ponents in L̂wi . The approach can easily be adapted to estimate the sparse precision
matrix �−1. See [67] for a similar approach and a thorough study.
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6.2. Health studies. Survival data analysis has been a very active research topic be-
cause survival data are frequently collected from reliability analysis, medical studies,
and credit risks. In practice, many covariates are often available as potential risk fac-
tors. Selecting significant variables plays a crucial role in model building for survival
data but is challenging due to the complicated data structure. Fan and Li [34] derived
the nonconcave penalized partial likelihood for Cox’s model and Cox’s frailty model,
the most commonly used semiparametric models in survival analysis. Cai et al. [9]
proposed a penalized pseudo partial likelihood for marginal Cox’s model with mul-
tivariate survival data and applied the proposed methodology for a subset data in the
Framingham study, introduced in Section 2.2.

Let T , C and x be respectively the survival time, the censoring time and their
associated covariates. Correspondingly, let Z = min{T , C} be the observed time
and δ = I (T ≤ C) be the censoring indicator. It is assumed that T and C are
conditionally independent given x, that the censoring mechanism is noninformative,
and that the observed data {(xi , Zi, δi) : i = 1, . . . , n} is an independently and
identically distributed random sample from a certain population (x, Z, δ). The Cox
model assumes the conditional hazard function of T given x

h(t |x) = h0(t) exp(xT β), (6.8)

where h0(t) is an unspecified baseline hazard function. Let t0
1 < · · · < t0

N denote the
ordered observed failure times. Let (j) provide the label for the item failing at t0

j so
that the covariates associated with the N failures are x(1), . . . , x(N). Let Rj denote
the risk set right before the time t0

j : Rj = {i : Zi ≥ t0
j }. Fan and Li [34] proposed

the penalized partial likelihood

Q(β) =
N∑

j=1

[
xT

(j)β − log
{ ∑

i∈Rj

exp(xT
i β)

}]
− n

d∑
j=1

pλj
(|βj |). (6.9)

The penalized likelihood estimate of β is to maximize (6.9) with respect to β.
For finite parameter settings, Fan and Li [34] showed that under certain regularity

conditions, if both an and bn tend to 0, then there exists a local maximizer β̂ of the
penalized partial likelihood function in (6.9) such that ‖β̂ − β0‖ = OP (n−1/2 + an).
They further demonstrated the following oracle property.

Theorem 6. Assume that the penalty function pλn(|β|) satisfies condition (4.4).
If λn,j → 0,

√
nλn,j → ∞ and an = O(n−1/2), then under some mild regular-

ity conditions, with probability tending to 1, the root n consistent local maximizer
β̂ = (β̂T

1 , β̂T
2 )T of Q(β) defined in (6.9) must satisfy

β̂2 = 0, and
√

n(I1 + �)
{
β̂1 − β10 + (I1 + �)−1b

} D−→ N
{
0, I1(β10)

}
,

where I1 is the first s × s submatrix of the Fisher information matrix I (β0) of the
partial likelihood.
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Cai et al. [9] investigated the sampling properties of penalized partial likelihood
estimate with a diverging number of predictors and clustered survival data. They
showed that the oracle property is still valid for penalized partial likelihood estimation
for the Cox marginal models with multivariate survival data.

6.3. Financial engineering and risk management. There are many outstanding
challenges of dimensionality in diverse fields of financial engineering and risk man-
agement. To be concise, we focus only on the issue of covariance matrix estimation
using a factor model.

Let Yi be the excess return of the i-th asset over the risk-free asset. Let f1, . . . , fK

be the factors that influence the returns of the market. For example, in the Fama–
French 3-factor model, f1, f2 and f3 are respectively the excessive returns of the
market portfolio, which is the value-weighted return on all NYSE, AMEX and NAS-
DAQ stocks over the one-month Treasury bill rate, a portfolio constructed based on
the market capitalization, and a portfolio constructed based on the book-to-market
ratio. Of course, constructing factors that influence the market itself is a high-
dimensional model selection problem with massive amount of trading data. The
K-factor model [15], [74] assumes

Yi = bi1f1 + · · · + biKfK + εi, i = 1, . . . , d, (6.10)

where {εi} are idiosyncratic noises, uncorrelated with the factors, and d is the number
of assets under consideration. This an extension of the famous Capital Asset Pricing
Model derived by Sharpe and Lintner (See [10], [12]). Putting it into the matrix form,
we have y = Bf + ε so that

� = Var(Bf ) + Var(ε) = B Var(f )BT + �0, (6.11)

where � = Var(y) and �0 = Var(ε) is assumed to be diagonal.
Suppose that we have observed the returns of d stocks over n periods (e.g., 3 years

daily data). Then, applying the least-squares estimate separately to each stock in
(6.10), we obtain the estimates of coefficients in B and �0. Now, estimating Var(f )

by its sample variance, we obtain a substitution estimator �̂ using (6.11). On the
other hand, we can also use the sample covariance matrix, denoted by �̂sam, as an
estimator.

In the risk management or portfolio allocation, the number of stocks d can be
comparable with the sample size n so it is better modeled as dn. Fan et al. [32]
investigated thoroughly when the estimate �̂ outperforms �̂sam via both asymptotic
and simulation studies. Let us quote some of their results.

Theorem 7. Let λk(�) be the k-th largest eigenvalue of �. Then, under some regu-
larity conditions, we have

max
1≤k≤dn

|λk(�̂) − λk(�)| = oP {(log n d2
n/n)1/2} = max

1≤k≤dn

|λk(�̂sam) − λk(�)|.
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For a selected portfolio weight ξn with 1T ξn = 1, we have∣∣ξT
n �̂ξn − ξT

n �ξn

∣∣ = oP {(log n d4
n/n)1/2} = ∣∣ξT

n �̂samξn − ξT
n �nξn

∣∣.
If, in addition, the all elements in ξn are positive, then the latter rate can be replaced
by oP {(log n d2

n/n)1/2}.
The above result shows that for risk management where the portfolio risk is ξT

n �ξn,
no substantial gain can be realized by using the factor model. Indeed, there is no
substantial gain for estimating the covariance matrix even if the factor model is correct.
These have also convincingly been demonstrated in [32] using simulation studies.
Fan et al. [32] also gives the order dn under which the covariance matrix can be
consistently estimated.

The substantial gain can be realized if �−1 is estimated. Hence, the factor model
can be used to improve the construction of the optimal mean-variance portfolio, which
involves the inverse of the covariance matrix. Let us quote one theorem of [32]. See
other results therein for optimal portfolio allocation.

Theorem 8. Under some regularity conditions, if dn = nα , then for 0 ≤ α < 2,

d−1
n tr(�−1/2�̂�−1/2 − Idn)

2 = OP (n−2β)

with β = min(1/2, 1 − α/2), whereas for α < 1, d−1
n tr(�−1/2�̂sam�−1/2 − Idn)

2 =
OP (dn/n). In addition, under the Frobenius norm

d2
n‖�̂−1 − �−1‖2 = o(d4

n log n/n) = ‖�̂−1
sam − �−1‖2.

6.4. Machine learning and data mining. In machine learning, our goal is to build a
model with the capability of good prediction of future observations. Prediction error
depends on the loss function, which is also referred to as a divergence measure. Many
loss functions are used in the literature. To address the versatility of loss functions,
let us use the device introduced by [7]. For a concave function q( · ), define a q-class
of loss function �( · , · ) to be

�(y, m̂) = q(m̂) − q(y) − q ′(m̂)(m̂ − y) (6.12)

where m̂ ≡ m̂(x), an estimate of the regression function m(x) = E(y|x). Due to the
concavity of q, �( · , · ) is non-negative.

Here are some notable examples of �-loss constructed from the q-function. For
binary classification, y ∈ {−1, 1}. Letting q(m) = 0.5 min{1 − m, 1 + m} yields
the misclassification loss, �1(y, m̂) = I {y �= I (m̂ > 0)}. Furthermore, �2(y, m̂) =
[1 − ysgn(m̂)]+ is the hinge loss if q(m) = 1

4 min{1 − m, 1 + m}. The function

q3(m) = √
1 − m2 results in �3(y, m̂) = exp{−0.5y log{(1 + m̂)/(1 − m̂)}, the

exponential loss function in AdaBoost [40]. Taking q(m) = cm − m2 for some
constant c results in the quadratic loss �4(y, m̂) = (y − m̂)2.
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For a given loss function, we may extend the PLS to a penalized empirical risk
minimization (4.5). The dimensionality d of the feature vectors can be much larger
than n and hence the penalty is needed to select important feature vectors. See, for
example, [4] for an important study in this direction.

We next make a connection between the penalized loss function and the popu-
larly used support vector machines (SVMs), which have been successfully applied
to various classification problems. In binary classification problems, the response y

takes values either 1 or −1, the class labels. A classification rule δ(x) is a mapping
from the feature vector x to {1, −1}. Under the 0–1 loss, the misclassification error
of δ is P {y �= δ(x)}. The smallest classification error is the Bayes error achieved
by argminc∈{1,−1}P(y = c|x). Let {xi , yi}, i = 1, . . . , n be a set of training data,
where xi is a vector with d features, and the output yi ∈ {1, −1} denotes the class
label. The 2-norm SVM is to find a hyperplane xT β, in which xi1 = 1 is an intercept
and β = (β1, β

T
(2))

T , that creates the biggest margin between the training points from
class 1 and −1 [85]:

max
β

1

‖β(2)‖2 subject to yi(β
T xi ) ≥ 1 − ξi, for all i, ξi ≥ 0,

∑
ξi ≤ B, (6.13)

where ξi are slack variables, and B is a pre-specified positive number that controls the
overlap between the two classes. Due to its elegant margin interpretation and highly
competitive performance in practice, the 2-norm SVM has become popular and has
been applied for a number of classification problems. It is known that the linear SVM
has an equivalent hinge loss formulation [48]

β̂ = argminβ

n∑
i=1

[1 − yi(x
T
i β)]+ + λ

d∑
j=2

β2
j .

Lin [62] shows that the SVM directly approximates the Bayes rule without estimating
the conditional class probability because of the unique property of the hinge loss. As
in the ridge regression, the L2-penalty helps control the model complexity to prevent
over-fitting.

Feature selection in the SVM has received increasing attention in the literature of
machine learning. For example, the last issue of volume 3 (2002-2003) of Journal of
Machine Learning Research is a special issue on feature selection and extraction for
SVMs. We may consider a general penalized SVM

β̂ = argminβ

n∑
i=1

[1 − yi(x
T
i β)]+ +

d∑
j=1

pλj
(|βj |).

The 1-norm (or LASSO-like) SVM has been used to accomplish the goal of automatic
feature selection in the SVM ([89]). Friedman et al. [41] shows that the 1-norm SVM
is preferred if the underlying true model is sparse, while the 2-norm SVM performs
better if most of the predictors contribute to the response. With the SCAD penalty,
the penalized SVM may improve the bias properties of the 1-norm SVM.
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Random matrices and enumeration of maps

Alice Guionnet

Abstract. We review recent developments in random matrix theory related with the enumeration
of connected oriented graphs called maps. In particular, we show that the long standing use
of matrix integrals in physics to tackle such issues can be made rigorous and discuss some
applications. This talk is based on joint works with E. Maurel-Segala and O. Zeitouni.
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1. Introduction

A map is a connected oriented diagram which can be embedded into a surface. Its
genus g is by definition the smallest genus of a surface in which it can be embedded
in such a way that edges do not cross and the faces of the graph (which are defined
by following the boundary of the graph) are homeomorphic to a disc. One has the
formula for the Euler characteristic χ :

χ = 2 − 2g = � vertices + � faces − � edges.

Figure 1. Examples of maps with 2 vertices of degree 3 and 5 respectively, with g = 1 and g = 0.

In the sequel, we shall be interested in the enumeration of maps up to equivalence
classes, namely up to homeomorphisms of the oriented surface. This amounts to
consider the purely combinatorial problem of enumerating the possible arrangements
of the edges of graphs with prescribed vertices and genus. A dual point of view goes
as follows. We can replace each vertex with valence k by a face whose boundary is
made of k edges (each of them crossing a different edge adjacent to the vertex). The
problem can then be reformulated as the enumeration of possible tilings of a surface
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of given genus by a given number of faces with prescribed degree (the degree of the
face is the number of edges that border the face). For some problems (for instance
related with statistical mechanics), one would like eventually to color the edges or the
vertices of the map and impose additional constraints for the gluing of edges/vertices
of different colors.

The problem of enumerating maps was first tackled in the sixties by W. Tutte [34],
[35] who was motivated by combinatorial problems such as the four color problem
(see [26] or [4] for combinatorial motivations and problems). Tutte considered rooted
planar maps. The root of a map is a distinguished oriented edge. Fixing a root allows
to reduce the number of symmetries of the problem; enumerating rooted maps is
equivalent to count maps with labelled edges. Tutte showed that diverse ‘chirurgical’
operations on rooted planar maps allow to obtain equations for the generating functions
of the numbers of these maps with a given number of faces, each face having the same
fixed degree. One of the examples of the maps which were exactly enumerated by
Tutte are triangulations (i.e maps with faces of degree 3); he proved [34] that the
number of rooted triangulations with 2n faces is given by 2n+1(3n)!/(2n+ 2)!n! (see
e.g. E. Bender and E. Canfield [5] for generalizations). In general, the equations
obtained by Tutte’s approach are not exactly solvable; their analysis was the subject
of subsequent developments (see e.g. [19]).

Because this last problem is in general difficult, a bijective approach was developed
after the work of R. Cori and B.Vauquelin [13] and G. Schaeffer’s thesis (see e.g. [32]).
It was shown that planar triangulations and quadrangulations can be encoded by
labelled trees, which are much easier to count. This idea proved to be very fruitful
in many respects. It allows not only to study the number of maps but also part of
their geometry; P. Chassaing and G. Schaeffer [12] could prove that the diameter

of uniformly distributed quadrangulations with n vertices behaves like n
1
4 . This

technique was first applied to triangulations or quadrangulations, but soon generalized
to other maps, see e.g. [10] or [9]. The case of planar bi-colored maps related to the
so-called Ising model on random planar graphs could also be studied [7]. Further, it
allows also to tackle maps with higher genus, an avenue recently opened by M. Marcus
and G. Schaeffer. In general, this approach give more complete results than the
other methods. However, it yet can not cover all the models which were analysed in
physics by the so-called matrix models approach and when it does, the solution for
the enumeration problem has the same flavour than the solution obtained with matrix
models (see [9]).

The question of enumerating maps has been studied intensively in physics for
more than thirty years. One of the first motivation came in QCD (which stands for
Quantum Chromodynamics) with a large number N of colors; ’t Hooft [33] noticed
in the seventies that as N is large, physical quantities can be expanded, via Feynamnn
diagrams, as sums over maps. This fundamental remark allowed the connection
between quantum field theory and the problem of enumerating maps, and in particular
led to the use of matrix integrals to count maps (In [11], this technique was used to
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enumerate planar maps with vertices of degree 4). The interest in enumerating maps
was revived by quantum gravity in the eighties; random triangulations could be used
for instance to approximate fluctuating geometries. As a side product, people got
interested by statistical models defined on random graphs. Such models should in fact
be related at criticality with the corresponding model on Z

2 (see [28]). Maps were
also used to approximate low-dimensional string theory (see e.g. the review [15]).
Although recently the methods introduced by R. Cori, B. Vauquelin and G. Scheaffer
began to be developed in physics too (by P. Di Francesco et al.), the most common
approach has been to use matrix models, a rather indirect but quite powerful method
that we shall describe in this survey (see also A. Zvonkin [36]). It is based on the
particular form of Gaussian moments as given by Wick formula; if (G1, . . . , G2n) is
a centered Gaussian vector, then Wick formula asserts that

E[G1G2 . . . G2n] =
∑

1≤s1<s2 ..<sn≤2n
ri>si

n∏
j=1

E[Gsj Grj ].

Alternatively, this formula can be represented by Feynman diagrams. Let us now con-
sider matrices from the Gaussian Unitary Ensemble (GUE). For a fixed dimension N ,
let HN be the set of N × N Hermitian matrices. The law of the GUE is then given as
the Gaussian law on HN

μN(dA) = 1

ZN

e−N
2 tr(A2)dA.

In other words, Alk = Ākl for 1 ≤ k < l ≤ N and

Akl = (2N)−
1
2 (g1

kl + ig2
kl) for k < l, Akk = N− 1

2 g1
kk,

where the (g1
kl, g

2
kl, k ≤ l) are independent identically distributed standard Gaussian

variables. One can then observe that Wick formula implies that for all integer numbers
pi, 1 ≤ i ≤ k, all k ∈ N, N ∈ N,

∫ k∏
i=1

(N tr(Api )) dμN(A) =
∑
F≥0

NF+k−
∑

pi
2 G((pi)1≤i≤k, F ) (1)

with

G((pi)1≤i≤k, F ) = � {oriented graphs with F faces and

1 vertex of degree pi, 1 ≤ i ≤ k }.
In G((pi)1≤i≤k, F ), the edges of the graph are labelled. One should notice that the

number F +k −
∑

pi

2 corresponds to 2−2g, with g the genus of the surface on which
a connected oriented graph with F faces and one vertex of degree pi for 1 ≤ i ≤ k
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can be embedded, since such a graph has k vertices and 2−1 ∑
pi edges. Hence, if

we see the dimension N of the matrices as a parameter, the expectation of the trace of
moments of matrices from the GUE can be seen as a generating function for the number
of oriented graphs with a given genus and a given number of vertices with prescribed
degree. Laplace transforms of traces of matrices from the GUE should therefore be
generating functions for maps. In fact, we find, by expanding the exponential and
using (1) that, with t = (t1, . . . , tk),

log ZN(t) := log
∫

e− ∑k
i=1 tiN tr(Api ) dμN(A) =

∑
g≥0

N2−2gFg(t) (2)

with

Fg(t) :=
∑

n1,...,nk∈Nk

k∏
i=1

(−ti)
ki

ki ! M((pi, ni)1≤i≤k; g)

the generating function for the number M((pi, ni)1≤i≤k; g) of maps with genus g

and ni vertices of degree pi for i ∈ {1, . . . , k}. Note here that we now count maps,
and so oriented graphs that are connected, due to the fact that we took the logarithm.
Formula (2) is only formal, i.e means that all the derivatives of the functions on each
side of the equality match at (t1, . . . , tk) = (0, . . . , 0).

An interesting feature of the relation (1) is that it can be generalized to several
matrices, corresponding then to the enumeration of colored-edges maps. Namely,
let us introduce a bijection between non-commutative monomials and oriented ver-
tices with colored half-edges and a distinguished half-edge as follows; to the letters
(X1, . . . , Xm) we associate half-edges with m different colors c1, . . . , cm, and to a
monomial q(X1, . . . , Xm) = Xi1 . . . Xik a clockwise oriented vertex with first half-
edge (which is distinguished) of color ci1 , second of color ci2 till the last half-edge of
color cik . We call such a vertex, equipped with its colored half-edges, orientation and
distinguished edge, a star of type q. It defines a bijection between monomials and
stars. We then can generalize (2) as follows; let (q1, . . . , qk) be k non-commutative
monomials of m indeterminates, then

∫ k∏
i=1

(N tr(qi(A1, . . . , Am)) dμN(A1) . . . dμN(Am)

=
∑
F≥0

Nk+F−
∑

pi
2 Gc((qi)1≤i≤k, F ),

(3)

with Gc((qi)1≤i≤k, F ) the number of oriented graphs with F faces and one star of
type qi, 1 ≤ i ≤ k, the gluing between half-edges of different colors being forbidden.
(2) also generalizes to this multi-matrix setting and we find that

log ZN(t) = log
∫

e−N
∑k

i=1 ti tr(qi (A1,...,Am))
m∏

i=1

dμN(Ai) (4)
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expends formally as a generating function of colored maps (here M((pi, ni), 1 ≤
i ≤ k; g) has to be replaced by the number Mc((qi, ni), 1 ≤ i ≤ k; g) of maps with
genus g and ni stars of type qi , the gluing between half-edges of different colors being
forbidden.)

As we said before, these considerations have been intensively used in physics to
analyze various combinatorial models via their representations in terms of matrices.
It is no surprise that mathematicians end up wondering what physicists are doing or
come to cross the same lines of thoughts. In the last ten years, progress in the theory of
random matrices led to a better mathematical understanding of this approach. The first
natural question is to find a reasonable domain of the parameters (t1, . . . , tn) where
the expansion (2) or (4) are not only formal. Because the right hand side is a priori
a diverging series, this expansion can not be obtained analytically in a neighborhood
of the origin, but we would like to show that equality holds up to some error term
N−2k provided the parameters belong to some neighborhood of the origin. Once this
question is settled, one can try to ‘solve’(and then in which sense?) the combinatorial
problem by estimating the matrix integral.

As we shall see in the next section, the first goal has received a rather complete
answer in the last few years. For the second question and one matrix setting, it turns
out that at least the first order asymptotics of the left-hand-side of (2) can be computed
by using standard saddle point (or large deviations) techniques. The answer is yet not
very transparent since it is given by a variational formula and we shall review part of
its analysis. In the multi-matrix setting, very few results have been obtained so far, a
few of which we shall describe.

2. Expansion of the free energy of matrix models

2.1. One matrix integrals. In the case of one matrix, the free energy of the matrix
model can be expressed as an integral over the eigenvalues of the random matrix. It
is well known (see [30]) that the law of the eigenvalues of the GUE can be described
by a Coulomb gas law;

dσN(λ1, . . . , λN) = 1

ZN

∏
i<j

|λi − λj |2e−N
2

∑N
i=1(λi )

2 ∏
dλi

with ZN the normalizing constant. It therefore turns out that (2) is given by

ZN(t) = Z−1
N

∫
e−N

∑N
i=1[Vt (λi )+ 1

2 (λi )
2] ∏

i<j

|λi − λj |2
∏

dλi (5)

with Vt (x) = ∑k
i=1 tix

pi . To make sure that ZN(t) is finite for each N ∈ N, we
shall assume that pk = maxl≤k pl is even and tk > 0. It was conjectured by Bessis,
Itzykson and Zuber [6] that log ZN(t) can be expanded in the vicinity of the origin. It
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was only twenty years later that this question met its complete mathematical treatment
in [17] (see also [2], [1] for previous advances in the subject). It was indeed shown
in [17], Theorem 1.1, that if we let

T(T , γ ) = {
t ∈ R

k : ∑k
i=1 |ti | ≤ T , tk > γ

∑k−1
i=1 |ti |

}
,

then the following result holds:

Theorem 2.1. For all k ∈ N, there is T > 0 and γ > 0 so that for t ∈ T(T , γ ), for
all k ∈ N, one has the expansion

N−2 log ZN(t) =
k∑

l=0

N−2lFl(t) + O(N−2k−2).

Moreover,

Fl(t) =
∑

n1,...,nk∈Nn

k∏
l=1

(−ti)
ni

ni ! M((pi, ni), 1 ≤ i ≤ k; g)

with M((pi, ni)1≤i≤k; g) the number of maps with genus g and ni vertices of degree
pi for 1 ≤ i ≤ k.

This result is based on an expansion for the mean empirical density of the eigen-
values under the associated Gibbs measure

dσN
t (λ1, . . . , λN) = ZN(t)−1e−N

∑N
i=1 Vt (λi )

∏
i<j

|λi − λj |2e−N
2

∑N
i=1(λi )

2 ∏
dλi.

Indeed, if we set μN
t to be the probability measure on R given for any bounded

measurable test function f by

∫
f (x)dμN

t (x) =
∫

1

N

N∑
i=1

f (λi) dσN
t (λ1, . . . , λN),

it is proved in [17], Theorem 1.3, that

Theorem 2.2. For all k ∈ N, there is T > 0 and γ > 0 so that for t ∈ T(T , γ ), for
all k ∈ N, one has the expansion

∫
f (x)dμN

t (x) =
k∑

g=0

N−2gfg(t) + O(N−2k−2)

for any smooth function f which grows no faster than a polynomial at infinity. More-
over, for all p ∈ N, if f (x) = xp,

fg(t) =
∑

n1,...,nk∈Nn

k∏
l=1

(−ti)
ni

ni ! M((p, 1), (pi, ni)1≤i≤k; g).
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Note that this second theorem implies the first since for all l,

∂tl log ZN(t) = μN
t (xpl )

gives

log
ZN(t)

ZN(0)
=

k∑
l=1

∫ tl

0
μN

(0,...,0,s,tl+1,...,tk)
(xpl ) ds.

The proof of these results are based on orthogonal polynomials; because the inter-
action between the eigenvalues (λ1, . . . , λN) are given in terms of the square of a
Vandermonde determinant, the density of the law μN

t can be expressed in terms of
orthogonal polynomials, whose limits are well known (since they are completely in-
tegrable). The theory of integrable systems allowed many important breakthroughs in
the theory of matrix models, but we want to argue in the next section that the large N

expansion of matrix models can be obtained by more direct arguments.

2.2. Many matrix integrals. In [22], [23], [29], following (3), we considered the
multi-matrix integral defined, for k non-commutative monomials of m indeterminates
(q1, . . . , qk), by

ZN(t) =
∫

e−N
∑k

i=1 ti tr(qi (A1,...,Am)) dμN(A1) . . . dμN(Am). (6)

To make this integral finite and not oscillatory, we assume the following. Let ∗ be the
involution on polynomial functions of m non-commutative integrals given by

(zXi1 . . . Xip )∗ = z̄Xip . . . Xi1

for any p ∈ N and any ij ∈ {1, . . . , m}. Then, to avoid possible oscillations, we
assume that Vt (X1, . . . , Xm) = ∑k

i=1 tiqi(X1, . . . , Xm) is self-adjoint, i.e. Vt = V ∗
t .

To bound the integral, we assume that there exists c > 0 so that Vt is c-convex, i.e
W(X1, . . . , Xm) = Vt (X1, . . . , Xm) + (1−c)

2

∑k
i=1 X2

i is convex in the sense that for
any N ∈ N, the application

(X1, . . . , Xm) ∈ Hm
N → tr(W(X1, . . . , Xm))

is a convex function of the entries of (X1, . . . , Xm). Observe that, by Klein’s lemma,
if V is a convex function of one real variable, V is convex in the above sense and
therefore our condition includes all Vt of the form

Vt (X1, . . . , Xm) =
∑

Vi(
∑

κ
j
i Xj ) +

∑
βjlXiXj

with Vi convex functions of one variable, real numbers κ
j
i and βjl small enough

constant (depending on c). This assumption generalizes that of Theorem 2.2 since
if γ is large enough and T small enough, for t ∈ T(T , γ ), the potential Vt (x) =
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∑k
i=1 tix

pi + 2−1(1 − c)x2 is strictly convex. In [22], [23], [29], the analogue
of Theorems 2.1 and 2.2 were obtained for a range of parameters which are small
enough and so that Vt stays uniformly c-convex for some c > 0. For the analogue of
Theorem 2.2, μN

t is generalized into the linear form on non-commutative polynomials
given by

μN
t (P ) = 1

ZN(t)

∫
1

N
tr(P (A1, . . . , Am))e−N

∑k
l=1 ti tr(qi (A1,...,Am))

∏
dμN(Ai).

The techniques are complectly different from those of [17] (in fact, orthogonal poly-
nomial techniques are unknown for general multi-matrix models) and rely on com-
binatorial interpretations of non-commutative differential operators. For instance,
for the first order expansion, it can be shown under our hypothesis that for any
non-commutative polynomial P , μN

t (P ) converges towards some quantity τ(P ).
Furthermore, τ satisfies some ‘non-commutative differential equation’, called the
Schwinger–Dyson equation, which says that for all polynomials P ,

τ((Xi + DiVt )P ) = τ ⊗ τ(∂iP ), τ (1) = 1 (7)

with ∂i (resp. Di) the non-commutative derivative (resp. the cyclic derivative) given
on a monomial P by

∂iP =
∑

P=P1XiP2

P1 ⊗ P2, DiP =
∑

P=P1XiP2

P2P1

where the sums run over all the possible decomposition of the monomial P into
P1XiP2. It turns out that in our range of parameters, there is only one solution to (7)
(which satisfies some boundedness properties that the limit points of μN

t share), which
corresponds to the generating function for planar maps. This last identification comes
out because ∂i and Di have very simple combinatorial interpretations; if you think
of τ as the generating function of maps, you will see that ∂i consists in the operation
of splitting your map into two disjoint maps when two edges of the color ci of one
vertex are glued together, whereas Di will consist in the operation of erasing one edge
when two different vertices are connected via an edge of the color ci , then obtaining
a single bigger vertex (see [22]). Amazingly, it turns out that these non-commutative
derivatives play exactly the same role than the surgery initially introduced by Tutte.
One could then wonder what matrix models brought so far. At least a funny remark;
the limit τ , whose moments are generating functions for maps, is a tracial state. In
particular, in the one matrix case, it is a probability measure. Another remark is
that the higher orders in the expansion of matrix integrals can be expressed in terms
of τ and the differential operators defined by the ∂i and the Di . Thus the expansion
describes, without further thinking, the operations that one can do on a map of genus g

to enumerate it in terms of lower genus maps. In the next section, we shall therefore
concentrate on planar maps and the analysis of the limiting state τ .
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3. Estimating matrix integrals

We shall focus in this section on the first order of matrix integrals, that is on planar
maps.

3.1. One matrix integrals. It is easily seen by a saddle point method (or large
deviations, see e.g. [3]) that with ZN(t) given by (5) and Vt (x) = ∑k

i=1 tix
pi , we

have

lim
N→∞

1

N2 log ZN(t) = sup
μ∈P (R)

{∫
log |x−y| dμ(x)dμ(y)−

∫ (
Vt (x)+x2

2

)
dμ(x)

}

(8)
up to a universal constant coming from the limit of N−2 log ZN . Moreover, the above
supremum is achieved at a unique probability measure μt and we have for all bounded
continuous function,

lim
N→∞ μN

t (f ) = μt (f ).

In particular, at least for t ∈ T(T , γ ) as in Theorem 2.2, for all integer p, μt (x
p) is a

generating function for maps with one vertex of degree p and so at least formally,

Gμt (z) :=
∫

1

z − x
dμt (x)

= 1

z

∑
l≥0

z−l
∑

n1,...,nk

k∏
i=1

(−ti)
ni

ni ! M((l, 1), (pi, ni)1≤i≤k; 0)

is a generating function for maps too. In [14] (see also [17]), the solution to the
variational problem (8) has been studied. It turns out that in the small range of
parameters we are considering, we have the following characterization of μt ;

μt (dx) = 1[α(t),β(t)]
2π

√
(x − α(t))(β(t) − x)ht (x)dx

with ht a polynomial given explicitly in terms of Vt and α(t), β(t) determined by the
set of equations

∫ β(t)

α(t)

(V ′
t (s) + s)√

(s − α(t))(β(t) − s)
ds = 0,

∫ β(t)

α(t)

s(V ′
t (s) + s)√

(s − α(t))(β(t) − s)
ds = 2π.

α(t), β(t) are analytic functions of t ∈ T(T , γ ). This however does not give a
very explicit formula for Gμt . When Vt is a monomial, more detailed analysis were
performed in [14]. It turns out that when Vt is even (see [9]), the analysis is more
simple and, in the case Vt = tx4, can be pushed to obtain explicit formulas (see [11]).
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3.2. Many matrix integrals. The problem of enumerating colored, or decorated,
maps is much more challenging. In combinatorics, only the so-called Ising model on
random quadrangulations could be tackled so far (see [7]). The list of models which
could be ‘solved’ in physics is slightly longer; it includes for instance the so called
Potts model, induced QCD, ABAB model, dually weighted graphs (see e.g. [20] and
references therein). Basically, all these models can be written in terms of quadratic
interaction models, either by definition or by using character expansions. Thus, they
are closely related with the Ising model we shall describe below. The Ising model is
given by the partition function

ZN(t, c) =
∫

e−N tr(V 1
t (A))−N tr(V 2

t (B))−Nc tr(AB) dμN(A)dμN(B)

with V 1
t and V 2

t two polynomials of one real variable with coefficients depending on
parameters t . By paragraph 2.2, if V 1

t , V 2
t are convex, for small enough parameters

(t, c), the free energy log ZN(t) expands into a generating function for two-colored
maps with vertices prescribed by V 1

t and V 2
t . The interaction AB serves to generate

edges between vertices of different colors. Thus, when V 1
t (x) = V 2

t (x) = tx4, the
model really looks like a generalization of the standard Ising model, with spins lying
on a random quadrangulation rather than on Z

2. Indeed, we have for small enough
parameters t , c,

1

N2 log ZN(t, c)

= (1 − c2)−1
k∑

g=0

1

N2g

∑
k,


1

k!
( −t

(1 − c2)2

)k
(−c)



! C(k, 
, g) + o(N−2k)

with C(k, 
, g) the number of maps with genus g with k vertices of valence 4 being
assigned the sign +1 or −1, with exactly 
 edges between vertices of different signs.
This formula is reminiscent of the standard grand canonical partition function for the
Ising model in Z

2, where C(k, 
, g) is simply replaced by the number of configurations
on a subset of Z

2 rather than on random graphs. The genus is then related with the
boundary conditions. In this case, where V 1

t (x) = V 2
t (x) = tx4, an explicit formula

for the limiting free energy was obtained in [31] from which important information
such as phase transition could be derived [8] (these results were recovered in [7] by
a purely combinatorial approach). For more general potentials, variational formulas
generalizing those of the one matrix setting were obtained in [20]. A more detailed
analysis of these limits is under study. The basic ingredient for these general potentials
estimates is based on the remark that under μN , A = UDU∗ with U a unitary matrix
following the Haar measure and D a diagonal matrix, independent of U . Therefore,
the interaction in the Ising model is given by the spherical, or Itzykson–Zuber–Harish-
Chandra, integral

I (D1, D2) =
∫

eNc tr(D1UD2U
∗) dU
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with D1 and D2 the diagonal matrices of the eigenvalues of A, B and dU the Haar
measure on the set of N × N unitary matrices. In [25], we obtained the large N

asymptotics of spherical integrals. Namely, take a sequence of diagonal matrices
(DN

1 , DN
2 ) so that the empirical measures N−1 ∑N

i=1 δDN
j (ii) converges weakly to-

wards a probability measures μj for j = 1, 2. Then, if we set

I (μ) = −1

2

∫ ∫
log |x − y|dμ(x)dμ(y) + 1

2

∫
x2dμ(x),

we have, if I (μ1) < ∞, I (μ2) < ∞,

lim
N→∞

1

N2 log I (DN
1 , DN

2 )

= −1

2
inf

{ ∫ 1

0

∫
ut (x)2ρt (x)dxdt + π2

3

∫ 1

0

∫
ρt (x)3dxdt

}
+ I (μ1) + I (μ2).

The above infimum is taken over (ρ, u) on (0, 1) × R so that νt (dx) = ρt (x)dx is a
probability measure on R for all t ∈ (0, 1), t → νt is continuous with limit as t goes
to zero (resp. one) given by μ1 (resp. μ2) and for all t ∈ (0, 1), all x ∈ R,

∂tρt (x) + ∂x(ρt (x)ut (x)) = 0.

In [20] it was shown that the infimum is taken at a couple (ρ, u) so that f = u + iπρ

satisfies the complex Burgers equation

∂tft (x) + ft (x)∂xft (x) = 0.

These formulae are proved by large deviation estimates for N non-intersecting Brow-
nian motions evaluated at extremely small time N−1. Complex Burgers equation also
appears in discrete analogous settings coming from tiling, see e.g. [27]. Spherical
integrals are rather fundamental objects since they are related with the characters of
the symmetric group; the above limits give asymptotics of Schur functions, cf. [21].

4. Conclusion: Matrix models input in combinatorics

Even though rather indirect, the matrix model approach to the enumeration of maps
have proved to be powerful since it permits to consider quite general maps. For general
type of vertices, the formulas obtained by this method are often not so much explicit,
but this should be no surprise. When possible, the bijective approach provides more
detailed information, such as the diameter of the graph with a given number of vertices
(an information which was never grasped by the matrix model approach so far). The
matrix model approach shows that some (maybe) unexpected tools can be used to
solve these combinatorial problems; let us cite characters expansions (see [24] and
references therein), Brownian motion and stochastic calculus (see [25]). We believe
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also that the description of the generating functions μt (x
p) as the expectation under a

probability measure, or tracial state, is a rather powerful remark. It allows to give some
information on Tutte’s solutions to the equations for generating functions of maps,
seen as a solution to Schwinger–Dyson’s equation (7). For instance, it was shown
in [16] that the generating function τ(z − A)−1 for the Ising model with general
polynomial potentials satisfies an algebraic equation.

This field has experienced quite a lot of developments in the last few years, attract-
ing the interests of theoretical physicists and of mathematicians from diverse fields
such as combinatorics, integrable systems or probability. Central in the problem of
the enumeration of maps is the Schwinger–Dyson equation (7) which encodes most of
the induction relations satisfied by the numbers of interest. The study of its solution is
the heart of the problem of enumerating maps and, at least in the multi-matrix model,
also attracted the attention of free probabilists. Indeed, in free probability, the reverse
question (i.e. given a tracial state, find a potential Vt so that (7) is satisfied) serves to
define the so-called conjugate variables which are central in free entropy questions.
However, most issues in free probability are not related with small perturbative po-
tentials as considered in this survey but on the contrary with very strong potentials.
The understanding of matrix models is then extremly limited, since even the question
of the convergence of the free energy is still unsettled.
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The weak/strong survival transition on trees
and nonamenable graphs

Steven P. Lalley∗

Abstract. Various stochastic processes on nonamenable graphs and manifolds of exponential
volume growth exhibit phases that do not occur in the corresponding processes on amenable
graphs. Examples include: (1) branching diffusion and random walk on hyperbolic space,
which for intermediate branching rates may survive globally but not locally; (2) contact pro-
cesses on homogeneous trees, which likewise can survive globally while dying out locally; and
(3) percolation on Cayley graphs of nonamenable groups, where for certain parameter values
infinitely many infinite percolation clusters may coincide. This article surveys some of what is
known about the intermediate phases and the upper phase transitions for these processes.
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Keywords. Weak survival, nonamenable graph, contact process, percolation, branching Brow-
nian motion, hyperbolic plane, Fuchsian group.

1. Branching Brownian motion and random walk

B.B.M. in the hyperbolic plane. Branching Brownian motion in the hyperbolic
plane H is perhaps the simplest process exhibiting the weak/strong survival transition.
It evolves as follows: At time 0, a single particle located at a specific point x0 ∈ H

begins a Brownian motion. At random exponentially distributed times with mean 1/λ,
independent of the motion, the particle undergoes binary fission, in which a replicate
particle is created at the current location of the fissioning particle. The offspring
particles behave as their parents, executing Brownian motions from the places of their
births and undergoing further binary fissions at exponentially distributed random
times; their behavior is completely independent of their parents’ and other particles’
behaviors, except for the locations of their births.

The behavior of the branching Brownian motion is controlled by the fission pa-
rameter λ. The size Nt of the population at times t is a simple continuous-time
Galton–Watson process with ENt = eλt . If a particle is chosen at random from
the Nt particles in existence at time t , the distribution of its position has as its density
the heat kernel pt(x, ·). This is known to behave asymptotically as t → ∞ like

pt(x, y) ∼ Cx,yt
−3/2 exp{−t/8} (1)
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for constants 0 < Cx,y < ∞ varying smoothly with x, y. Thus, the mean number
of particles located in a bounded neighborhood U of y grows/decays roughly as
exp{(λ − 1/8)t}. It is not difficult to deduce the following.

Proposition 1. For λ ≤ 1/8, branching Brownian motion survives weakly, that is, for
every bounded region U the number of particles located in U is eventually 0, w.p.1.
For λ > 1/8 it survives strongly, that is, for every open set U the number of particles
located in U converges to ∞ as t → ∞, w.p.1.

In the weak survival phase, all particle trajectories tend to the boundary circle ∂H

of the hyperbolic plane. Define � to be the set of all accumulation points of particle
trajectories in ∂H. With probability 1, � is a nonempty, compact subset of ∂H.

Theorem 2 ([14]). For λ ∈ (0, 1/8], the limit set � is, with probability 1, a Cantor
set of Hausdorff dimension

δ = δ(λ) = 1

2
(1 − √

1 − 8λ). (2)

Observe that as λ → 1/8 from below, the Hausdorff dimension approaches 1/2,
not 1 (the dimension of the ambient boundary ∂H), as one might at first suspect. In the
strong survival phase λ > 1/8 the limit set � is the entire boundary ∂H, so Theorem 2
shows that the Hausdorff dimension behaves discontinuously at the critical parameter
λ = 1/8. Moreover, it shows that the critical exponent for δ(λ) at the transition
is 1/2. This, as it turns out, is closely related to the exponent 3/2 appearing in the
asymptotic formula (1) for the heat kernel.

Theorem 2 has been generalized to branching Brownian motion and certain other
isotropic branching random walks on higher-dimensional hyperbolic spaces H

d by
Karpelevich, Pechersky, and Suhov [8]: they prove that, for branching Brownian
motion in H

d , the Hausdorff dimension δ(λ)of the limit set� converges up to (d−1)/2
as λ approaches the critical point from below.

Branching random walk on T
d . The existence of a weak survival phase for B.B.M.

in H is a consequence of the exponential decay (1) of the heat kernel. A fundamental
theorem of Kesten [9], [10] asserts that exponential decay of random walk transition
probabilities is characteristic of nonamenable groups. Thus, branching random walk
in any nonamenable group must also have a weak survival phase.

The transition from weak survival to strong survival is understood only for branch-
ing random walk on the homogeneous tree T

d of degree d ≥ 3 (the Cayley graph of
the free product �d := (Z2)

∗d ). Let {pi}i∈A∪{1} be a positive probability distribution
on A ∪ {1} where A is the set of generators of �d , and denote by pn(x, y) the n-step
transition probabilities of the random walk with step distribution {pi}. The branch-
ing random walk associated with the probability distribution {pi} is constructed as
follows: At time n = 0, the process is initiated by a single particle located at the
site 1 (the root of the tree). The population Xn+1 of each subsequent generation n+1
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is obtained from Xn in two steps: First, each particle ζ in Xn reproduces, creating
a random number Nζ ≥ 1 of replica particles, all located at the same vertex of T

d

as ζ . The distribution of the offspring count Nζ is geometric+1 with mean λ > 1.
Second, each particle moves to a randomly chosen neighboring vertex, according to
the distribution {pi}.

Let R > 1 be the spectral radius of the base random walk, that is,

R−1 := lim
n→∞ pn(x, y)1/n. (3)

Just as for B.B.M. in H, if the mean offspring number λ exceeds R then the number of
particles located at the root vertex 1 will explode almost surely. However, if λ ≤ R,
then the branching random walk survives only weakly: although the total population
size grows exponentially at rate λ, the number of particles located at any particular
vertex will eventually be zero, w.p.1. (That the B.R.W. survives only weakly at the
critical point λ = R follows because the base random walk is R-transient: see [24].)
Thus, for λ ≤ R, particle trajectories converge to the space ∂T

d of ends of the tree.
Hence, we may define

� := {ends in which the BRW survives}. (4)

The Hausdorff dimension δH (�), computed with respect to the natural metric1 on
∂T

d , is a natural measure of the growth of the B.R.W. in the weak survival phase, for
the following reason: If Mm is the number of vertices of T

d at distance m from the
root that are ever visited by particles of the B.R.W., then with probability one,

lim
m→∞ M

1/m
m = θ(λ) (5)

where [7],

δH (�) = log θ(λ)

log 2
. (6)

Denote by Gx(λ) the Green’s function and Fx(λ) the first-passage generating
function of the base random walk, that is,

Gx(λ) =
∞∑

n=0

pn(1, x), (7)

Fx(λ) = Gx(λ)/G1(λ).

Theorem 3 ([7]). The Malthusian parameter θ(λ) is the unique positive number such
that ∑

i∈A

Fi(λ)

Fi(λ) + θ(λ)
= 1. (8)

1The natural metric d is defined by d(α, β) = 2−N(α,β), where N(α, β) denotes the number of common
edges in the geodesic segments from the root to α and from the root to β.
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This parameter has critical exponent 1/2 at the critical point λ = R: that is, there
exists a constant C > 0 such that as λ → R from below,

θ(R) − θ(λ) ∼ C
√

R − λ. (9)

Furthermore,
θ(λ) ≤ √

d − 1 (10)

and equality holds if and only if the step distribution {pi} is isotropic.

The formula (8) makes it clear that the critical exponent 1/2 in (9) is related to the
exponent 3/2 occurring in the power law

pn(1, x) ∼ CxR
−nn−3/2 (11)

for the base random walk transition probabilities [24]. This is because (11) is de-
termined by the singularity of the Green’s function Gx(λ) at λ = R, by standard
Tauberian theorems, and this in turn has the same singular asymptotics as the first-
passage generating functions Fx(λ). It is conjectured that the local limit theorem
(11) holds more generally for random walks on nonelementary Fuchsian groups (dis-
crete groups of isometries of the hyperbolic plane), but this has been proved only for
Fuchsian groups containing free groups as subgroups of finite index. It is natural to
expect that branching random walks on such groups will have weak/strong survival
transitions of the same type as on homogeneous trees.

2. Contact processes

Weak survival. Let G = (V , E) be the Cayley graph of a finitely generated group �,
with edges labeled by elements of the generating set A, and let P = {pa}a∈A be a
probability distribution on A. The contact process with intensity parameter λ > 0
and infection rates P is a Markov process on the configuration space {0, 1}V (here
0 = “healthy” and 1 = “infected”) that evolves as follows: (A) Infected vertices
“recover” (become healthy) at rate 1. (B) Healthy vertices x become infected at rate

λ
∑

j∈A:xj∈ξt

pj

where ξt is the set of vertices that are infected at time t . If the probability distribution P
is uniform on A, the contact process is said to be isotropic. If the generating set A

and the rates P are symmetric (that is, a ∈ A implies a−1 ∈ A and pa = pa−1) then
the contact process is said to be symmetric. The default initial condition is ξ0 = {1},
where 1 denotes the group identity. The contact process is said to survive weakly if
ξt �= ∅ for all t > 0 but ξt ∩ F = ∅ eventually for every finite set F ⊂ V . It survives
strongly if for every nonempty set F ⊂ V , the intersection ξt ∩ F is nonempty at
indefinitely large times t .
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Most of what is known about existence of weak and strong survival phases for
contact processes is restricted to groups � whose associated Cayley graphs G are
trees.

Theorem 4 ([20], [18], [23], [25]). Assume that G is the homogeneous tree T
d of

degree d ≥ 3. Then for the isotropic contact process there exist constants 0 < λc <

λu < ∞ (depending on d) so that

(a) λ ≤ λc �⇒ ultimate extinction with probability 1.

(b) λc < λ ≤ λu �⇒ weak survival with positive probability.

(c) λ > λu �⇒ strong survival with positive probability.

Unlike the corresponding results for branching random walks and branching Brow-
nian motion on hyperbolic spaces, Theorem 4 is surprisingly difficult (at least for
small d). The proofs in [20], [18], and [23] rely heavily on both isotropy and the ab-
sence of cycles in the graph. The following result weakens the isotropy requirement.

Theorem 5 ([16]). Assume that G is a homogeneous tree of degree d ≥ 3. Assume
further that the rates P are symmetric and weakly isotropic in the sense that there
are generators a, b with a �= b±1 so that pa = pb. Then the contact process with
rates P has a weak survival phase, that is, there exist 0 < λc < λu < ∞ so that
conclusions (a), (b), and (c) of Theorem 4 are valid.

Alan Stacey (unpublished) has recently shown that the weak isotropy hypothesis
is unnecessary.

Size of the limit set. Consider now the isotropic contact process on a homogeneous
tree T

d of degree d ≥ 3. By Theorem 4, there is a nontrivial weak survival phase
λc < λ < λu. By definition of weak survival, any finite set of vertices must eventually
be vacated, with probability 1. Therefore, the set of occupied vertices must recede to
∂T

d as t → ∞. As for branching random walk in T
d , define the limit set � to be the

set of ends in which the contact process survives.

Theorem 6 ([15]). For the isotropic contact process in the weak survival phase, the
Hausdorff dimension δH (�) of the limit set � is a.s. constant on the event of survival,
and satisfies the inequality

δH (�) ≤ 1

2
δH (∂T

d). (12)

Furthermore, δH (�) is continuous [22] and strictly increasing [12] in the parameter λ,
and equality in (12) holds at λ = λu.

The inequality (12) holds for essentially the same reason as for branching random
walk: If δH (�) were greater than (1/2)δH (∂T

d) then there would be particle trajec-
tories extending from the root vertex to vertices far from the root and then back to
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the root, contradicting weak survival. As for branching random walk on a homoge-
neous tree, the inequality (12) remains valid for nonisotropic but symmetric contact
processes.

The Hausdorff dimension of the limit set � is simply related to a hitting probability
associated to the contact process. Let x ∈ V be a vertex at distance n from the root
vertex 1, and define

un = P {x ∈ ξt for some t > 0} (13)

to be the probability that the vertex x is ever infected. By isotropy, this probability is
the same for all vertices x at distance n from 1. It is apparent that um+n ≥ umun, and
so

lim
n→∞ u

1/n
n := β = β(λ) (14)

exists and is ≤ 1.

Theorem 7 ([15]).

δH (�) = − log(d − 1)β

log 2
. (15)

Critical exponent. For the isotropic contact process on the tree T
d of degree d ≥ 3,

the Hausdorff dimension δ(λ) := δH (�) varies continuously with the intensity λ for
λ ≤ λu [22], and increases strictly with λ in the interval {λ : δ(λ) < 1/2δH (∂T

d)}
[12]. Define

λ∗ = sup{λ : δ(λ) < 1/2δH (∂T
d)}. (16)

Conjecture 8. λ∗ = λu.

Recall that the critical exponent at the upper critical point for branching random
walk on T

d is 1/2, by formula (9). It is believed that the phase transition for the contact
process is of the same type as the corresponding phase transition for branching random
walk, and so it is natural to conjecture that the critical exponent is again 1/2:

Conjecture 9.

lim
λ→λ∗

log(δH (∂T
d) − 2δ(λ))

λ∗ − λ
= 1

2
.

Further evidence for the truth of this conjecture is provided by the main result of
[17], which we now describe. Consider the isotropic contact process ξt on T

d in the
weak survival phase λ ∈ (λc, λu]. For any site x, the total infection time

J (x) :=
∫ ∞

0
1{x ∈ ξt } dt (17)

is finite with probability 1. It is known [12] that if λ < λ∗ then P {x ∈ ξt } is
exponentially decaying in t , and so EJ(x) < ∞. Because the hitting probability un

decays exponentially in n even at the critical point λ = λ∗, it is natural to expect that
the conditional expectation of J (x) given J (x) > 0 is finite.
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Conjecture 10. There exists a constant C = Cd depending only on the degree d of
the tree T

d such that, for every vertex x and all λ ≤ λ∗,

E(J (x) | J (x) > 0) ≤ C. (18)

The analogous statement is known to be true for branching random walk. For the
contact process, it is at least as plausible as Conjecture 9.

Theorem 11 ([17]). If Conjecture 10 is true then there is a finite constant C = Cd

so that for all λ < λ∗,

1

2
δH (∂T

d) − δ(λ) ≤ C
√

λ∗ − λ. (19)

Thus, if Conjecture 10 is true, and if there is a critical exponent, then it cannot be
less than 1/2. The proof of Theorem 11 in [17] also suggests that 1/2 is the correct
value, as the inequalities in the proof are very likely approximate equalities.

3. Percolation

Coexistence of infinite clusters. In Bernoulli site (resp., bond) percolation on a
graph G, vertices (resp., edges) are colored blue or red independently, blue with
probability p, red with probability 1 − p. For brevity we shall discuss only site
percolation; however, most of the results and conjectures have natural analogues for
bond percolation.

In site percolation, interest focuses on the connected clusters of blue vertices,
and in particular on the existence/uniqueness and geometry of infinite blue clusters.
Percolation is said to occur if there is an infinite blue cluster. For any infinite graph
there exists a unique threshold pc ∈ [0, 1] for the Bernoulli parameter p above
which percolation occurs with positive probability, and below which it occurs with
probability zero. Burton and Keane [5] showed that if the ambient graph G is the
Cayley graph of a finitely generated, amenable group, then infinite blue clusters, if
they exist, are unique w.p.1. Grimmett and Newman [6] showed that uniqueness of
infinite clusters need not hold in nonamenable graphs: in particular, they showed that
Bernoulli percolation on Z×T

d has infinitely many infinite clusters for certain values
of p, provided the degree d is sufficiently large.

A graph is called transitive if its automorphism group acts transitively on the vertex
set, and is called nonamenable if there exists a constant ε > 0 such that for any finite
set V0 of vertices, |∂V0| > ε|V0|. (Here ∂V0 denotes the set of vertices not in V0 that
are connected by edges to vertices of V0.)

Conjecture 12 ([1]). If G is a transitive, nonamenable graph, then there exists a
nonempty interval I = (pc, pu) such that for all p ∈ I , Bernoulli-p site percolation
has infinitely many infinite blue clusters.
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In full generality, this remains unresolved. However, two important results have
been obtained:

Theorem 13 ([2]). Let G be a transitive, nonamenable, planar graph with one end.
Then there exist constants 0 < pc < pu < 1 such that

(a) p ≤ pc �⇒ no infinite blue clusters;

(b) pc < p < pu �⇒ infinitely many infinite blue clusters;

(c) pu ≤ p �⇒ one infinite blue cluster.

A connected, transitive graph is said to have one end if the subgraph obtained by
deleting any finite set of vertices remains connected. Observe that the theorem asserts
uniqueness of the infinite cluster at the upper transition point pu: this contrasts with
the analogous transition on Z × T

d , where it is known [21] that at least for large d

there are infinitely many infinite clusters at pu. See [3], [4] fr discussion of related
issues.

Theorem 14 ([19]). For every finitely generated, nonamenable group there is a Cayley
graph for which Conjecture 12 is true.

Percolation clusters in hyperbolic tessellations. A Fuchsian group is a discrete
group of isometries of the hyperbolic plane H. Let � be a co-compact Fuchsian group
with finite, symmetric generating set A, and let G be the Cayley graph. Then G may
be naturally embedded in H in such a way that edges are geodesic segments in H, and
so that any compact subset of H contains only finitely many vertices of G. Denote by
x0 ∈ H the vertex of G corresponding to the group identity 1 ∈ �.

Consider Bernoulli-p site percolation on G, and let K be the connected blue cluster
containing x0. On the event that K is infinite, vertices in K will accumulate at the
boundary circle ∂H: define � to be the (closed) set of accumulation points.

Theorem 15 ([11]). If pc < p < pu then on the event that K is infinite the limit set
� is a Cantor set of Lebesgue measure 0.

Recall that for the contact process on a homogeneous tree, the Hausdorff dimension
of the limit set is discontinuous at the transition from weak to strong survival. It is
natural to ask how the Hausdorff dimension of the limit set � of a percolation cluster
in H behaves as p → pu from below.

Theorem 16 ([13]). For each p ∈ (pc, pu) the Hausdorff dimension δ(p) of the
limit set � in Bernoulli-p site percolation is almost surely constant. The function
p �→ δ(p) is continuous and strictly increasing in p, with limit 1 as p → pu.

Thus, the nature of the phase transition for Bernoulli percolation seems to be
different from that for contact processes and branching random walks.
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The use of δ(p) as a measure of the size of percolation clusters is not unreasonable
for Fuchsian hyperbolic groups, but a more natural measure might be the volume
growth rate


 = 
(p) = lim
R→∞ R−1 log cardKR (20)

where KR denotes the intersection of the cluster K with the ball of radius R centered at
the root x0. (For Fuchsian groups, it can be shown that 
(p) = δ(p).) Whereas δ(p)

depends for its definition on the existence of a geometric boundary of the ambient
space, 
(p) can in principle be used for an arbitrary infinite group, using the graph
metric to measure volume growth (existence of the limit must be proved, of course).

Conjecture 17. Assume that G is a transitive, nonamenable graph with nonempty
coexistence phase (pc, pu). If there is a unique infinite cluster a.s. at p = pu, then

(p) converges, as p → pu from below, to the volume growth rate of the ambient
graph G.

The proof of Theorem 16 leads to an interesting variational formula for the Haus-
dorff dimension δ(p) of percolation clusters in co-compact Fuchsian groups. Define
the connectivity function τ : � → [0, 1] as follows:

τ(x) = τ(x; p) = Pp{x ∈ K}. (21)

By the FKG inequality, τ satisfies a log-subadditivity inequality on �:

τ(xy) ≥ τ(x)τ (y). (22)

The function τ may be extended to a function on the entire hyperbolic plane H by
setting τ(w) = τ(x) where x is the vertex of the Cayley graph G nearest w (with
some convention for ties). Now consider the geodesic flow �t on the unit tangent
bundle of H/�: geodesics may be lifted to H, and so by (21) the log-connectivity
function evaluated along geodesics is subadditive for the geodesic flow. Therefore,
by Kingman’s subadditive ergodic theorem, for any ergodic, invariant probability
measure μ for the flow �t , there exists a constant β(μ) = β(μ; p) so that μ-almost
surely, the connectivity function τ decays at rate β(μ) along geodesics, that is,

lim
t→∞ t−1 log τ � �t = β(μ). (23)

Denote by � the set of all invariant probability measures for the geodesic flow, and
by h(μ) the Kolmogorov–Sinai entropy of the geodesic flow relative to the invariant
measure μ.

Theorem 18 ([13]). The decay rate function is jointly continuous in μ and p, and for
each μ is strictly increasing in p for p ∈ (pc, pu). Moreover, β(μ; p) = 0 for all
μ ∈ � and all p ≥ pu. For every p the Hausdorff dimension δ(p) of the limit set �

is, Pp-almost surely on the event |K| = ∞, given by

δ(p) = max
μ∈�

(h(μ) + β(μ; p)). (24)
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Although it is by no means obvious, this is the natural analogue of formula (8)
for the H.D. of the limit set of a branching random walk on T

d . Formula (24) has
further implications for the geometry of percolation clusters. Recall that KR is the
intersection of the percolation cluster K with the (hyperbolic) ball of radius R centered
at x0. The cardinality of KR grows exponentially, at rate δ(p) (see (20)), and most
of the vertices in KR are at distance nearly R from x0. Suppose that one of these is
chosen at random: then the geodesic ray from x0 through the randomly chosen vertex
of KR will be approximately μ-generic, where μ is the maximizing measure in (24).
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Introduction

A stationary motion on the real line with independent increments is described by a
Levy process, or equivalently by a convolution semigroup of probability measures.
This naturally extends to “rigid” motions represented by Levy processes on Lie groups.
If one assumes the continuity of the paths, a convolution semigroup on a Lie groupG
is determined by an element of the Lie algebra g (the drift) and a scalar product
on g (the diffusion matrix). We call them the local characteristics of the convolution
semigroup. We will be interested in stationary “fluid” random evolutions which have
independent increments. They can be modelled by stochastic differential equations
driven by Wiener processes. These have been studied for more than fifty years.
In particular, it was shown that stochastic flows driven by smooth Brownian vector
fields on a compact manifold define flows of diffeomorphisms. This is also true on
non compact manifolds under appropriate conditions of non explosion ([7]). Such
flows can be viewed as infinitely divisible limits of products of i.i.d. (independant and
indentically distributed) random diffeomorphisms, and the theory is at least formally
very similar to the theory of Brownian motion on Lie groups ([14], [19], [12]). Their
laws can be viewed as convolution semigroups of probability measures on the group
of diffeomorphisms. They are characterized by two functions: the covariance of the
Brownian vector field, or equivalently its auto reproducing space, which plays the
role of a metric on the Lie algebra and a drift vector field. One can similarly extend
the notion of Levy processes by introducing Poisson measures on the group itself. A
remarkable result of Tsirelson (cf. [24]) shows that there is essentially no other way
to define a process Xt with stationary independent increments on the unitary group
of the Hilbert space. The noise defined by the increments of the flow, i.e. the family
of σ -fields Fs,t = σ {XvX−1

u , s ≤ u ≤ v ≤ t} is classical, i.e. generated by additive
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increments of Wiener and (or) Poisson processes. But in recent years it appeared that
this picture was not complete: indeed flows of non invertible transformations, and as
well of transition probabilities, appear to play an important role in the theory.

To be more precise, on a compact manifold let V0, V1, . . . , Vn be vector fields and
B1, . . . , Bn be independent Brownian motions. Consider the SDE

dXt =
n∑
k=1

Vk(Xt) � dBkt + V0(Xt ) dt, (1)

which equivalently can be written as

df (Xt) =
n∑
k=1

Vkf (Xt)dB
k
t + 1

2
Af (Xt)dt (2)

for every smooth function f and Af = ∑n
k=1 Vk(Vkf ) + V0f . Observe that

Af 2 − 2fAf = ∑n
k=1(Vkf )

2. Then strong solutions of this SDE produce a flow of
maps ϕt such that, for every x, ϕt (x) is a strong solution of the SDE with ϕ0(x) = x.
When the vector fields are smooth, strong solutions are known to exist and to be
unique. The framework can be extended to include flows of maps driven by vector
field valued Brownian motions, which means essentially that n = ∞ (see for example
[3], [12], [14], [19], [23]).

In a joint paper ([15]) with Olivier Raimond this was extended again to include
flows of Markovian operators St which are solutions of the SPDE

dStf =
∞∑
k=1

St (Vkf )dB
k
t + 1

2
St (Af )dt, (3)

assuming that the covariance function C = ∑∞
k=1 Vk ⊗ Vk of the Brownian vector

field
∑∞
k=1 VkB

k is compatible with A, namely that

Af 2 − 2fAf ≥
∞∑
k=1

(Vkf )
2. (4)

Existence and uniqueness of a flow of Markovian operators St , which is a Wiener
solution of the previous SPDE in the sense that St is a function of the Brownian paths
(Bi)i≥1 up to time t , hold under rather weak assumptions.

The local characteristics of these flows are given by A and the covariance func-
tion C, and they determine the SDE or the SPDE. Under Lipschitz conditions we
actually get strong solutions of stochastic differential equations. These solutions are
of a regular type, namely:

(a) The probability that two points thrown in the fluid at the same time and at
distance ε, separate at distance one in one unit of time tends to 0 as ε tends to 0.
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(b) Such points will never hit each other.

But it was shown in [15] that covariance functions which are not smooth on the
diagonal (e.g. covariance associated with Sobolev norms of order between d/2 and
(d + 2)/2, d being the dimension of the space) can produce Wiener solutions which
define random evolutions of different types:

– turbulent evolutions where (a) is not satisfied, which means that two points
thrown initially at the same place separate, even when there is no pure diffusion,
i.e. that Af 2 − 2fAf = ∑∞

k=1(Vkf )
2;

– coalescing evolutions where (b) does not hold.

That paper was motivated by the works of physicists working on the Kraichnan model
for turbulent advection (cf., for example, [9], [10], [4], [6]).

In a subsequent paper [16] we adopted a more general approach based on consistent
systems of n-point Markovian Feller semigroups which can be viewed as determining
the law of the motion of n indivisible points thrown into the fluid. Regular and
coalescing evolutions are represented by flows of maps, and turbulent evolutions by
flows of probability kernels Ks,t (x, dy) describing how a point mass (made of a
continuum of indivisible points) in x at time s is spread at time t . (Note that in this
case, the motion of an indivisible point is not fully determined by the flow.)

Among turbulent evolutions, we can distinguish the intermediate ones where two
points thrown in the fluid at the same place separate but can meet later, i.e. where (a)
and (b) are both not satisfied. These flows can always be coupled with a coalescent
flow.

Let us explain in more detail the contents of the paper. We give in the first
section construction results from [16], which generalize a theorem by De Finetti on
exchangeable variables. A stochastic flow of kernels K is associated with a general
compatible family (P(n)t , n ≥ 1) of Feller semigroups. The flow K is induced by a
flow of measurable mappings when

P(2)t f
⊗2(x, x) = Pt f

2(x),

for all f ∈ C(M), x ∈ M and t ≥ 0. The Markov process associated with P(n)t
represents the motion of n indivisible points thrown in the fluid. The key point is that
the two notions are shown to be equivalent: the law of a stochastic flow of kernels is
uniquely determined by the compatible system of n-point motions.

In Section 2 we define the noise associated with a flow and recall the notion of
“black noise” introduced by Tsirelson.

Coalescing flows are defined in Section 3. A coalescing flow can be obtained from
any flow of kernels the two-point motion of which hits the diagonal. Then the original
flow is recovered by filtering the coalescing flow with respect to a sub-noise.

We give the example of Arratia’s flow and consider briefly sticky flows.
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In Section 4, we present the result of [18] in which the classification of solutions
of Tanaka’s equation is given.

Finally, in Section 5, we consider stochastic flows on the circle defined by SDE’s
driven by the white noise W , which exhibit most of the features of more general
isotropic flows considered in [15] and [16].

1. Flows and their construction

This first section is rather formal since we chose to give a precise result. Its intuitive
content is rather simple: flows of maps, and more generally flows of transition kernels,
are described by their moments which are Markovian semigroups describing the
motion of any finite number of points transported by the flow. We refer to [24] for an
alternative approach to this construction.

1.1. Flows of maps. Let M be a compact separable metric space.

Definition 1.1.1. Let (P(n)t , n ≥ 1) be a family of Feller semigroups1, defined onMn

and acting on C(Mn), respectively. We say that this family is consistent as soon as
for all k ≤ n,

P(k)t f (x1, . . . , xk) = P(n)t g(y1, . . . , yn), (1.1)

where f and g are any continuous functions such that

g(y1, . . . , yn) = f (yi1, . . . , yik ) (1.2)

with {i1, . . . , ik} ⊂ {1, . . . , n} and (x1, . . . , xk) = (yi1, . . . , yik ). We will de-

note by P(n)(x1,...,xn)
the law of the Markov process associated with P(n)t starting from

(x1, . . . , xn).

This Markov process will be called the n-point motion (see also [21]).
We equipM with its Borel σ -field B(M). Let (F,F ) be the space of measurable

mappings on M equipped with the σ -field generated by the evaluations at x for all x
in M .

Definition 1.1.2. A probability measure Q on (F,F ) is called regular if there exists
a measurable mapping J : (F,F ) → (F,F ) such that

(M × F,B(M)⊗ F ) → (M,B(M)),

(x, ϕ) 
→ J(ϕ)(x)

1P(n)t is a Feller semigroup onMn if and only if P(n)t is positive (i.e. P(n)t f ≥ 0 for every f ≥ 0), P(n)t 1 = 1

and for every continuous function f , P(n)t f is continuous and limt→0 P(n)t f (x) = f (x), which implies the

uniform convergence of P(n)t f towards f .
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is measurable and for every x ∈ M ,

Q(dϕ)-a.s., J(ϕ)(x) = ϕ(x), (1.3)

i.e. J is a measurable modification of the identity mapping on (F,F ,Q). We call it
a measurable presentation of Q.

Let Q1 and Q2 be two probability measures on (F,F ). Assume that Q1 is regular.
Let J be a measurable presentation of Q1. Then the mapping

(F 2,F ⊗2) → (F,F ),

(ϕ1, ϕ2) 
→ J(ϕ1) � ϕ2

is measurable. Moreover, if J′ is another measurable presentation of Q1, then for
every x ∈ M ,

Q1(dϕ1)⊗ Q2(dϕ2)-a.s., J(ϕ1) � ϕ2(x) = J′(ϕ1) � ϕ2(x). (1.4)

Note that (ϕ1, ϕ2) 
→ J(ϕ1) � ϕ2 is measurable, but (ϕ1, ϕ2) 
→ ϕ1 � ϕ2 is not
measurable.

Definition 1.1.3. The convolution product of Q1 and Q2, denoted by Q1 ∗ Q2, is
the law of the random variable (ϕ1, ϕ2) 
→ J(ϕ1) � ϕ2 defined on the probability
space (F 2,F ⊗2,Q1 ⊗ Q2). A convolution semigroup on (F,F ) is a family (Qt )t≥0
of regular probability measures on (F,F ) such that for all nonnegative s and t ,
Qs+t = Qs ∗ Qt .

A convolution semigroup (Qt )t≥0 on (F,F ) is called Feller if

(i) for all f ∈ C(M), limt→0 supx∈M
∫
(f � ϕ(x)− f (x))2Qt (dϕ) = 0;

(ii) for all f ∈ C(M) and t ≥ 0, limd(x,y)→0
∫
(f �ϕ(x)−f �ϕ(y))2Qt (dϕ) = 0.

Let (Qt )t≥0 be a Feller convolution semigroup on (F,F ). For all n ≥ 1, f ∈ C(Mn)

and x ∈ Mn set

P(n)t f (x) =
∫
f � ϕ⊗n(x) Qt (dϕ). (1.5)

Then (P(n)t , n ≥ 1) is a compatible family of Feller semigroups on M satisfying

P(2)t f
⊗2(x, x) = Pt f

2(x) (1.6)

for all f ∈ C(M), x ∈ M and t ≥ 0. The semigroup (Qt )t≥0 is uniquely determined
by (P(n)t , n ≥ 1).

In the following we will consider only probability spaces (�,A,P) which are
separable, i.e., the corresponding Hilbert space L2(�,A,P) is separable.
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Definition 1.1.4. Let (�,A,P) be a probability space and (Th)h∈R a one parameter
group of P-preserving L2-continuous transformations of �. A family of (F,F )-
valued random variables (ϕs,t , s ≤ t) is called a measurable stochastic flow of
mappings if for all s ≤ t the mapping

(M ×�,B(M)⊗ A) → (M,B(M)),

(x, ω) 
→ ϕs,t (x, ω)

is measurable and if it satisfies the following properties.

(a) (Cocycle property) For all s < u < t and x ∈ M , P-almost surely, ϕs,t (x) =
ϕu,t � ϕs,u(x).

(b) (Stationarity) For all s ≤ t , ϕs+h,t+h = ϕs,t � Th.

(c) The flow has independent increments, i.e. for all t1 < t2 < · · · < tn, the family
{ϕti ,ti+1, 1 ≤ i ≤ n− 1} is independent.

(d) For every f ∈ C(M), lim(u,v)→(s,t) supx∈M E[(f �ϕs,t (x)−f �ϕu,v(x))2] = 0.

(e) For all f ∈ C(M) and s ≤ t , limd(x,y)→0 E[(f � ϕs,t (x)− f � ϕs,t (y))2] = 0.

Let ϕ = (ϕs,t , s ≤ t) be a stochastic flow of mappings. For all n ≥ 1, f ∈ C(Mn)

and x ∈ Mn set
P(n)t f (x) = E[f � ϕ⊗n

0,t (x)]. (1.7)

Then (P(n)t , n ≥ 1) is a compatible family of Feller semigroups onM satisfying (1.6).
The law of ϕ is uniquely determined by (P(n)t , n ≥ 1).

Theorem 1.1.5. 1) Let (P(n)t , n ≥ 1) be a compatible family of Feller semigroups on
M satisfying

P(2)t f
⊗2(x, x) = Pt f

2(x) (1.8)

for all f ∈ C(M), x ∈ M and t ≥ 0. Then there exists a unique Feller convolution
semigroup (Qt )t≥0 on (F,F ) such that for all n ≥ 1, t ≥ 0, f ∈ C(Mn) and x ∈ Mn,

P(n)t f (x) =
∫
f � ϕ⊗n(x) Qt (dϕ). (1.9)

2) For every Feller convolution semigroup Q = (Qt )t≥0 on (F,F ) there exists a
stochastic flow of mappings associated with Q (or equivalently with (P(n)t , n ≥ 1)).

Let V, V1, . . . , Vk be bounded Lipschitz vector fields on a smooth locally com-
pact manifold M . We also assume that V1, . . . , Vk are C1. Let W 1, . . . ,Wk be k
independent real white noises. We consider the following SDE on M:

dXt =
k∑
i=1

Vi(Xt ) � dWi
t + V (Xt) dt, t ∈ R. (1.10)
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From the usual theory of strong solutions of SDEs (see for example [12]) it is
possible to construct a stochastic flow of diffeomorphisms (ϕs,t , s ≤ t) such that for
every x ∈ M , ϕs,t (x) is a strong solution of the SDE (1.10) with ϕs,s(x) = x.

Using this stochastic flow, it is possible to construct a compatible family of Marko-
vian semigroups (P(n)t , n ≥ 1) with

P(n)t h(x1, . . . , xn) = E[h(ϕ0,t (x1), . . . , ϕ0,t (xn))] (1.11)

for h ∈ C(Mn) and x1, . . . , xn in M . It is easy to check that these semigroups are
Feller and that the canonical stochastic flow of maps associated with this family of
semigroups is equal in law to (ϕs,t , s ≤ t).

1.2. Flows of transition kernels. We denote by P (M) the space of probability
measures on M , equipped with the weak convergence topology. P (M) is a compact
metric space. Let us recall that a kernelK onM is a measurable mapping fromM into
P (M), M and P (M) being equipped with their Borel σ -fields. For all f ∈ C(M)

and x ∈ M ,Kf (x) denotes
∫
f (y) K(x, dy). For every μ ∈ P (M), μK denotes the

probability measure defined by
∫
f (y) μK(dy) = ∫

Kf (x) μ(dx). We denote by E
the space of all kernels on M , and we equip E with the σ -field E generated by the
mappings K 
→ μK for every μ ∈ P (M). Convolution semigroups on the space of
kernels can be defined in a similar way as on the space of measurable maps (cf. [16]).

Definition 1.2.1. Let (�,A,P) be a probability space and (Th)h∈R a one parameter
group of P-preserving L2-continuous transformations of�. Then a family of (E, E)-
valued random variables (Ks,t , s ≤ t) is called a (measurable) stochastic flow of
kernels if for all s ≤ t ,

(x, ω) 
→ Ks,t (x, ω) (1.12)

is a measurable mapping from (M × �,B(M)⊗ A) onto (P (M),B(P (M))) and
if it satisfies the following properties.

(a) (Cocycle property) For all s < u < t and x ∈ M , P-almost surely, for every
f ∈ C(M), Ks,tf (x) = Ks,u(Ku,tf )(x).

(b) (Stationarity) For all s ≤ t , Ks+h,t+h = Ks,t � Th.

(c) The flow has independent increments, i.e. for all t1 < t2 < · · · < tn, the family
{Kti,ti+1, 1 ≤ i ≤ n− 1} is independent.

(d) For every f ∈ C(M),
lim

(u,v)→(s,t)
sup
x∈M

E[(Ks,tf (x)−Ku,vf (x))
2] = 0. (1.13)

(e) For all f ∈ C(M) and s < t ,

lim
d(x,y)→0

E[(Ks,tf (x)−Ks,tf (y))
2] = 0. (1.14)
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Let (Ks,t , s ≤ t) be a stochastic flow of kernels. For all n ≥ 1, f ∈ C(Mn) and
x ∈ Mn set

P(n)t f (x) = E[K⊗nf (x)]. (1.15)

Then (P(n)t , n ≥ 1) is a compatible family of Feller semigroups on M .

Theorem 1.2.2. 1) For every compatible family (P(n)t , n ≥ 1) of Feller semigroups
on M there exists a unique Feller convolution semigroup (νt )t≥0 on (E, E) such that
for all n ≥ 1, t ≥ 0, f ∈ C(Mn) and x ∈ Mn,

P(n)t f (x) =
∫
K⊗nf (x) νt (dK). (1.16)

2) For every Feller convolution semigroup ν = (νt )t≥0 on (E, E) there exists a
stochastic flow of kernels associated with ν (or equivalently with (P(n)t , n ≥ 1)).

Remark 1.2.3. If (1.6) is satisfied the stochastic flow of kernels K is induced by a
stochastic flow of mappings ϕ.

2. Noise and stochastic flows

The definition of a noise we give here is very close to the one given by Tsirelson
in [25].

Definition 2.1.1. A noise consists of a separable probability space (�,A,P), a one
parameter group (Th)h∈R of P-preserving L2-continuous transformations of � and a
family {Fs,t , − ∞ ≤ s ≤ t ≤ ∞} of sub-σ -fields of A such that

(a) Th maps Fs,t onto Fs+h,t+h for all h ∈ R and s ≤ t ,

(b) Fs,t and Ft,u are independent for all s ≤ t ≤ u,

(c) Fs,t ∨ Ft,u = Fs,u for all s ≤ t ≤ u.

A classical white noise or a stationary Poisson measure clearly define a noise in
this sense.

A square integrable random variable with zero mean is said to belong to the first
chaos if the sum of its conditional expectations with respect to the fields associated
with disjoint intervals is the conditional expectation with respect to the field associated
with the union of these intervals. The noise is called black when the first chaos reduces
to zero. Clearly, the white noise or the Poisson noise are not black.

Let (�,A,Pν) denote the probability space of a stochastic flow of kernels K =
(Ks,t , s ≤ t) associated with a Feller convolution semigroup ν.

For all −∞ ≤ s ≤ t ≤ ∞ let Fs,t be the sub-σ -field of A generated by the random
variables Ku,v for all s ≤ u ≤ v ≤ t . Then the cocycle property of K implies that
Nν := (�,A, (Fs,t )s≤t ,Pν, (Th)h∈R) is a noise (Th is L2-continuous by the Feller
property). We call it the noise generated by the flow K .
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3. Stochastic coalescing flows

Starting from a compatible family of Feller semigroups, under the hypothesis that the
two-point motion hits the diagonal almost surely, we construct another compatible
family of Feller semigroups to which is associated a stochastic coalescing flow. It
appears that the stochastic flow of kernels associated with the first family of semi-
groups can be recovered by filtering the stochastic coalescing flow with respect to a
sub-noise of an extension of its noise.

Finally, we give the example of Arratia’s flow ([2]), which describes a space-time
continuum of independent Brownian motions sticking together when they meet. The
construction of a stochastic coalescing flow solution of SDE’s will be presented in
the next sections (see also [11], [5]).

3.1. Definition and construction

Definition 3.1.1. A stochastic flow of mappings on M , (ϕs,t , s ≤ t), is called a
stochastic coalescing flow if for all (x, y) ∈ M2, Tx,y = inf{t ≥ 0, ϕ0,t (x) =
ϕ0,t (y)} is finite and for every t ≥ Tx,y , ϕ0,t (x) = ϕ0,t (y) almost surely.

This definition depends only on the two-point motion.
Let (P(n)t , n ≥ 1) be a compatible family of Feller semigroups on a compact

separable metric spaceM , ν = (νt )t∈R the associated Feller convolution semigroup on
(E, E) andKt the associated flow of kernels. Let�n = {x ∈ Mn, there exists i �= j

such that xi = xj } and T�n = inf{t ≥ 0, X(n)t ∈ �n}, where X(n)t denotes the

n-point motion, i.e. the Markov process on Mn associated with the semigroup P(n)t .
Denoting by P(2)(x,y) the law of the Markov process associated with P(2)t starting from
(x, y) and �2 by �, assume that for all t > 0 and x ∈ M ,

lim
y→x

P(2)(x,y)[{T� > t}] = 0,

and that for all x and y in M , P(2)(x,y)[T� < ∞] = 1.

Theorem 3.1.2. There exists a unique compatible family (P(n),ct , n ≥ 1) of Feller
semigroups on M such that if X(n),c is the associated n-point motion and T c�n =
inf{t ≥ 0, X(n),ct ∈ �n}, then

• (X(n),ct , t ≤ T c�n) is equal in law to (X(n)t , t ≤ T�n),

• for t ≥ T c�n , X(n),ct ∈ �n.

Moreover, (P(n),ct , n ≥ 1) satisfies (1.6) and is associated with a coalescing
flow ϕcs,t .

We denote by νc the associated Feller convolution semigroup. An important result
is the following:
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Theorem 3.1.3. There is a joint realisation of K and ϕc such that Ks,tg(y) =
E[ϕcs,t (y)|σ(K)]

We say that the convolution semigroup νc weakly dominates ν.

3.2. Arratia’s coalescing flow of independent Brownian motions. The first exam-
ple of coalescing flows was given by Arratia [2]. On R, or on the unit circle, let Pt be
the semigroup of a Brownian motion. With this semigroup we define the compatible
family (P⊗n

t , n ≥ 1) of Feller semigroups. Note that the n-point motion of this family
of semigroups is given by n independent Brownian motions. Let us also remark that
the canonical stochastic flow of kernels associated with this family of semigroups is
not random and is given by (Pt−s, s ≤ t).

Let (P(n)t , n ≥ 1) be the compatible family of Markovian coalescent semigroups
associated with (P⊗n

t , n ≥ 1). Note that the n-point motion of this family of semi-
groups is given by n independent Brownian motions which stick together when they
meet.

Theorem 3.2.1. The family (P(n)t , n ≥ 1) is constituted of Feller semigroups and is
associated with a coalescing flow. The noise defined by this flow is black

Blackness of the noise was first proved in [25] and then in a different way in
[17]. It may seem a paradox but note that the increments of a one point motion
between two times depend on the position of that point at the first time and not only
on the increment of the flow of maps. In the latter paper a related family of flows of
kernels, called sticky flows, was also constructed. The associated n point motions are
given by Brownian paths which are independent except they stick together (during a
Cantor type set of times of positive Lebesgue measure) when they meet. These flows
interpolate between the heat flow and Arratia’s flow. They also define a black noise.
Any flow of kernels induces naturally a Markov process on measures which has often
an invariant probability distribution. For sticky flows it is explicitly given in terms
of the Poisson Dirichlet distribution. Finally, let us mention that a discrete model
converging to these flows was presented in [13].

4. Tanaka’s equation

Tanaka’s stochastic differential equation (SDE) is one of the simplest examples of
an SDE that does not have a strong solution in the usual sense. The objective is
to apply to this example the theory of flows of transition kernels and to classify all
the solutions of Tanaka’s SDE, extended to transition kernels. It is shown that they
can be characterized by a probability measure on [0, 1]. The domination and the
weak domination relations (defined in [15]) between different solutions are then fully
understood in terms of barycenter and balayage of the associated measures.
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On a probability space (�,F ,P) letW = (Ws,t , s ≤ t) be a real white noise and
K = (Ks,t , s ≤ t) (resp. ϕ = (ϕs,t , s ≤ t)) be a stochastic flow of kernels (resp.
flow of measurable maps) on the real line. Recall that for all s ≤ t ,Ks,t : R → P (R)
is measurable, with P (R) denoting the set of probability measures on R equipped
with the topology of weak convergence. We say that (K,W) solves Tanaka’s SDE if
for all s ≤ t , f ∈ C2

K(R) and x ∈ R,

Ks,tf (x) = f (x)+
∫ t

s

Ks,u(f
′sgn)(x)W(du)+ 1

2

∫ t

s

Ks,u(f ")du, (4.1)

with sgn(x) = 1x≥0 − 1x<0. Note that (4.1) is a generalization of the SDE

dXt = sgn(Xt )dWt ,

where Wt = W0,t1t≥0 −Wt,01t<0.
It can be shown that this implies that σ(W) ⊂ σ(K). Let NK be the noise of K .

The noiseNW ofW is a subnoise ofNK. So we can simply say thatK solves Tanaka’s
SDE (sinceW is a function ofK). We say that a flow of maps ϕ solves Tanaka’s SDE
if δϕ solves Tanaka’s SDE. The law of a solution K is given by a Feller convolution
semigroup ν = (νt , t ≥ 0), where νt is the law of K0,t .

Two particular solutions of Tanaka’s SDE are given in [15]: the coalescing so-
lution ϕc and the Wiener solution KW. The solution KW is the only solution of
Tanaka’s SDE such that NK = NW, and ϕc is the only flow of maps solution of
Tanaka’s SDE. The Wiener solution can be obtained by filtering the coalescing solu-
tion: KW = E[δϕ|W ]. An explicit expression of KW can be given. For x ∈ R set
τx = inf{t > 0, W0,t = −|x|}. Let W+ = (W+

t , t ≥ 0) be defined by

W+
t = W0,t − inf

s≤t W0,s .

It is well known that the law of (W+
t )t≥0 and the law of (|Wt |)t≥0 coincide. Note

that W0,. can be recovered out of W+ by Doob–Meyer decomposition. Then for
t ≥ 0,

KW
0,t (x) = δx+sgn(x)W0,t1{t≤τx} + 1

2
(δW+

t
+ δ−W+

t
)1{t>τx}. (4.2)

Let θWh be the shift operator such that Ws,t � θWh = Ws+h,t+h. Then for all s < t ,
KW
s,t = KW

0,t−s � θWs . The coalescing solution ϕc can be defined by the consistent
family of its n-point motions obtained by transforming the n-point motion associated
with KW into a coalescing motion. A more explicit definition can be given in this
special case, as is shown in [18], where we also prove the following result:

Theorem 4.1.1. a) Each solution K of Tanaka’s SDE verifies KW = E[K|W ] (this
means in particular that the support of K has at most two points). It defines a
probability measure m on [0, 1] with mean 1/2, which is the law of

∫ ∞
0 K0,t (0, dy)

for all t > 0.
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b) The mapping defined in a) is a bijection between solutions of (4.1) and proba-
bility measures on [0, 1] with mean 1/2. The Feller convolution semigroup associated
with a measure m is denoted {νmt , t ≥ 0} or νm.

c) KW is associated with δ1/2 and ϕc with 1
2 (δ0 + δ1).

Let us now describe the domination relations.

Definition 4.1.2. Let m1 and m2 be probability measures on [0, 1].
a) m1 is swept bym2 if and only if for all positive convex function f ,

∫
f dm2 ≤∫

f dm1.

b) m2 is a barycenter ofm1 if and only if there exists a measurable mapψ : [0, 1] →
[0, 1] such that ψ∗m1 = m2 and ψ∗(I · m1) = I · m2 (where I denotes the
identity function).

It can easily be seen that a) and b) define partial order relations. The order defined
in a) is the balayage order. The fact that m2 is a barycenter of m1 is equivalent to
saying that ifU1 is a random variable of lawm1, then there exists a σ(U1)-measurable
random variable U2 of law m2 such that E[U1|U2] = U2.

In [16], a domination and a weak domination relation between (laws of) stochastic
flow of kernels is defined: Let ν1 and ν2 be two Feller convolution semigroups. We
recall that Definition 3.3 in [16] essentially says that ν1 dominates ν2 if and only if there
is a joint realisation (K1,K2) such that K1 (resp. K2) is a stochastic flow of kernels
associated to ν1 (resp. to ν2) satisfying E[K1|K2] = K2 and σ(K2) ⊂ σ(K1). One
says that ν1 weakly dominates ν2 when only the conditional expectation assumption
is verified (σ(K2) needs not be a sub-σ -field of σ(K1)). A full understanding of the
solutions of a general SDE should involve a classification of the solutions according
to these domination relations. As we will see in the following section, this is not
achieved yet even in relatively simple cases.

Theorem 4.1.3. Letm1 andm2 be two probability measures on [0, 1] with mean 1/2.

a) νm1 dominates νm2 if and only if m2 is a barycenter of m1.

b) νm1 weakly dominates νm2 if and only if m1 is swept by m2.

5. Stochastic flows of kernels and SDEs: an example on the circle

Notation. In all the following we will denote by S the unit circle R/2πZ, by m the
Lebesgue measure on S and by P (S) the set of Borel probability measures on S.

Let (W ,F W,PW) be the canonical probability space of a sequence of independent
Wiener processes (Wk

t , k ≥ 0, t ≥ 0). For all s < t let F W
s,t denote the σ -field

generated by the random variables Wk
v − Wk

u , s ≤ u < v ≤ t and k ≥ 0. Being
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given (ak)k≥0 a sequence of nonnegative numbers such that
∑
k≥0 a

2
k < ∞, we set

C(z) = ∑
k≥0 a

2
k cos(kz). Note that all real positive definite functions on S can be

written in this form and that C(0) = ∑
k≥0 a

2
k .

5.1. Flows of diffeomorphisms. Assume that
∑
k≥1 k

2a2
k < ∞. Then by a stochas-

tic version of Gronwall’s lemma it can be shown that for each x0 ∈ S the stochastic
differential equation (SDE)

xt = x0 + a0W
0
t

+
∑
k≥1

ak

(∫ t

0
sin(kxs)dW

2k−1
s +

∫ t

0
cos(kxs)dW

2k
s

)
(5.1)

has a unique strong solution. These solutions can be considered jointly to form a
stochastic flow of diffeomorphisms (ϕs,t )s<t . Set ϕt = ϕ0,t .

Note that the one point motion xt := ϕt (x) is a Brownian motion on S starting
at x. Denote the associated heat semigroup Pt . For h ∈ C2(S2) set A(2)h(x, y) =
C(0)

2 (∂2
xxh(x, y)+∂2

yyh(x, y))+C(x−y)∂2
xyh(x, y). The two point motion (xt , yt ) :=

(ϕt (x), ϕt (y)) is a diffusion on S
2 satisfying

• for all h ∈ C2(S2), h(xt , yt )− ∫ t
0 A

(2)h(xs, ys)ds is an L2-martingale.

This in particular implies the following:

• For all x, y ∈ S, f ∈ C(S), if Zt = ϕt (x) − ϕt (y), Zt is a diffusion on S and
f (Zt )− ∫ t

0 (C(0)− C(Zs))f
′′
(Zs)ds is an L2-martingale.

For all x, y ∈ S, limt→∞(ϕt (x)−ϕt (y)) = 0. Using the isotropy one can compute
the Lyapounov exponent of the flow: for all x ∈ S,

lim
t→∞

1

t
log |ϕ′

t (x)| = −1

2

∑
k≥1

k2a2
k .

The Lyapounov exponent of the flow being negative, the flow is stable. In the
particular case a2

k = k−(1+α), for α > 2 the condition
∑
k≥1 k

2a2
k < ∞ is satisfied.

When α is close to the boundary case, α = 2, the Lyapounov exponent gets close
to −∞. In the following we will define stochastic flows corresponding to the case
α ≤ 2 which are not flows of diffeomorphisms.

5.2. Wiener chaos expansion: Lipschitz case. Suppose that
∑
k k

2a2
k < ∞ and

let ϕs,t be the flow defined in the previous section. For any function f ∈ C(S), x ∈ S

and s ≤ t , f � ϕs,t (x) belongs to the Wiener space L2(PW). Following the original
idea of [26], its Wiener chaos expansion can be explicitly computed as follows.
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Proposition 5.2.1. For all s ≤ t and f ∈ C(S),
f � ϕs,t (x) = Pt−sf (x)+

∑
n≥1

J ns,tf (x) in L2(PW), (5.2)

where J n is defined recursively as follows (denoting ck the function x 
→ cos(kx)
and sk the function x 
→ sin(kx)):

J n+1
s,t f (x) = a0

∫ t

s

J ns,u((Pt−uf )′)(x)dW 0
u

+
∑
k≥1

ak

( ∫ t

s

J ns,u(sk(Pt−uf )′)(x)dW 2k−1
u

+
∫ t

s

J ns,u(ck(Pt−uf )′)(x)dW 2k
u

)

for n ≥ 0 with J 0
s,t = Pt−s .

Remark 5.2.2. The chaos expansion (5.2) can be extended to all f ∈ L2(m), the two
terms being equal in L2(m⊗ PW).

5.3. Non-Lipschitz case. From now on we assume
∑
k∈N

k2a2
k = ∞. In this case,

using Gronwall’s inequality, the existence of a strong solution to the SDE (5.1) cannot
be proven. But the series giving the Wiener chaos expansion of f �ϕs,t in the Lipschitz
case for f ∈ L2(m) also converges in L2(m⊗ PW) in the non-Lipschitz case.

We can construct a family Sns,t of random operators acting of L2(m) recursively:
let S0

s,t = Pt−s and for f ∈ L2(m) and n ≥ 0 set

Sn+1
s,t f = Pt−sf + a0

∫ t

0
Sns,u((Pt−uf )′)dW 0

u

+
∑
k≥1

ak

(∫ t

s

Sns,u(sk(Pt−uf )′)dW 2k−1
u +

∫ t

s

Sns,u(ck(Pt−uf )′)dW 2k
u

)
.

It can be seen that for all n, E[(Sns,tf )2] ≤ Pt−sf 2 and

Sns,tf =
n∑
k=0

J ks,tf, (5.3)

where J ks,tf belongs to the k-th Wiener chaos. Thus all these terms are orthogonal
and Sns,tf converges in L2(m⊗ PW) towards a limit we denote by Ss,tf . The family
S = (Ss,t ) of random operators acting on L2(m) satisfies the following.

(i) Cocycle property: Ss,u = Ss,tSt,u for all s < t < u.
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(ii) Stationary increments: for all s ≤ t , Ss,t and S0,t−s have the same law.

(iii) Independent increments: for t0 ≤ · · · ≤ tn, St0,t1, . . . , Stn−1,tn are independent.

(iv) Solution of the SDE

Ss,tf = f + a0

∫ t

s

Ss,u(f
′)dW 0

u

+
∑
k≥1

ak

(∫ t

s

Ss,u(skf
′)dW 2k−1

u +
∫ t

s

Ss,u(ckf
′)dW 2k

u

)

+ C(0)

2

∫ t

s

Ss,uf
′′du,

(5.4)

for all f ∈ H 2(S) and all s < t .

Moreover, S is the unique family of random operators acting on L2(m) verify-
ing E[(Ss,tf )2] ≤ Pt−sf 2, satisfying (i), (ii), (iii), (iv) and such that Ss,t is F W

s,t -
measurable.

Obviously Ss,t1 = 1, and it can be proved that Ss,t is nonnegative as follows.
Consider an independent stationary Brownian motion Bt with diffusion coefficient
C(0) on S. Set, for k ≥ 1,

W̃ 2k−1
t = W 2k−1

t + ak

∫ t

0
sk(Bs)dBs − aka0

∫ t

0
sk(Bs)dW

0
s

− ak
∑
l≥1

al

(∫ t

0
sksl(Bs)dW

2l−1
s +

∫ t

0
skcl(Bs)dW

2l
s

)

and, for k ≥ 0,

W̃ 2k
t = W 2k

t + ak

∫ t

0
ck(Bs)dBs − aka0

∫ t

0
ck(Bs)dW

0
s

− ak
∑
l≥1

al

(∫ t

0
cksl(Bs)dW

2l−1
s +

∫ t

0
ckcl(Bs)dW

2l
s

)
.

These formulas are obtained by conditioning the “velocity differential” at time t and
site Bt to be dBt . Then W̃ forms a family of independent Wiener processes. Set

S̃s,tf (x) = E[f (Bt )|W̃ , Bs = x].
It is clear that S̃ is nonnegative and that S̃ verifies the properties listed above ((i), (ii),
(iii) and (iv)) with respect to W̃ . This implies S̃ = S and proves that S is nonnegative.

Two cases may occur:

(a) Ss,tf 2 = (Ss,tf )
2 for all f ∈ L∞(m).

(b) Ss,tf 2 > (Ss,tf )
2 for some f ∈ L∞(m), and in fact for all non constant

f ∈ L∞(m).
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5.4. n-point motions. Let P(n)t be the family of random operators acting onL∞(m⊗n)
defined by

P(n)t f1 ⊗ · · · ⊗ fn = E[S0,t f1 ⊗ · · · ⊗ S0,t fn].
Properties (i), (ii) and (iii) imply that P(n)t is a Markovian semigroup. As in the case
of R

d or S
d studied in [16], one can show that the isotropy implies that P(n)t is a Feller

semigroup acting on C(Sn).

The n-point motion of (Ss,t ) is the diffusion on S
n associated with P(n)t . The

generator A(n) of this diffusion is given by

A(n) = 1

2

∑
1≤i,j≤n

C(xi − xj )∂xi ∂xj . (5.5)

The case (a) appears when the diagonal is absorbing for the two-point motion. If this
is not the case we are in case (b).

5.5. Diffusive or coalescing? In case (a) it can be shown (using the Feller property)
that there exists a flow of random mappings ϕ = (ϕs,t ) such that for all s ≤ t

and all f ∈ L2(m), we have Ss,tf = f � ϕs,t in L2(m ⊗ PW). Furthermore,
ϕs,t : (S × W ,B(S)⊗ F W) → (S,B(S)) is measurable and solves the SDE (5.1).

In case (b) it can be shown that there exists a flow of random kernels K = (KW
s,t )

such that Ss,tf = KW
s,tf in L2(m ⊗ PW) for all s ≤ t and all f ∈ L2(m). The

stochastic flow of kernels will be called diffusive when the kernels are not induced by
maps, which clearly happens in case (b). This flow solves the SDE in the sense that
for all f ∈ C2(S), s ≤ t and x ∈ S,

KW
s,tf = f +

∑
k≥1

ak

(∫ t

s

KW
s,u(skf

′)dW 2k−1
u +

∫ t

s

KW
s,u(ckf

′)dW 2k
u

)

+ a0

∫ t

s

KW
s,u(f

′)dW 0
u + C(0)

2

∫ t

s

KW
s,uf

′′du.
(5.6)

In the following the flow ϕ (in case (a)) or the flowKW (in case (b)) will be called the
Wiener solution of the SDE (5.1). Since (Ss,t ) is the unique solution of (5.4) which is
F W
s,t -measurable, the Wiener solution ϕ (or KW ) is the unique solution of SDE (5.1)

(or of (5.6)) which is F W
s,t -measurable.

A diffusive flow is called diffusive with hitting if the two-point motion hits the
diagonal � = {(x, x), x ∈ S} .

The diffusion zt ∈ [0, 2π) such that zt = Xt − Yt modulo 2π , where (Xt , Yt ) is
the two point motion, has a natural scale. The speed measure m of this diffusion is
given by m(dz) = (C(0)−C(z))−1dz. Let κ be defined by κ(z) = ∫ z

π
z−x

C(0)−C(x)dx.
Note that κ(0+) = ∞ implies that m((0, 2π)) = ∞.
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Theorem 5.5.1. 1) If κ(0+) = ∞ then the Wiener solution is a stochastic flow of
maps, which is not a coalescing flow.

2) If m((0, 2π)) = ∞ and κ(0+) < ∞ then the Wiener solution is a coalescing
flow.

3) If m((0, 2π)) < ∞ then the Wiener solution is a diffusive flow with hitting.

Corollary 5.5.2. Let a2
k = k−(1+α) with α > 0.

1) If α > 2, then the Wiener solution is a stochastic flow of C1-diffeomorphisms.

2) If α = 2 then the Wiener solution is a stochastic flow of maps, which is not a
coalescing flow.

3) If α ∈ [1, 2) then the Wiener solution is a coalescing flow.

4) If α ∈ (0, 1) then the Wiener solution is a diffusive flow with hitting.

Remark 5.5.3. The case α = 2 has been studied in [1], [8], [22]. It is shown in
particular that the maps of the flow are homeomorphisms.

5.6. Extension of the noise and weak solution. Let (�,A,P) be an extension of the
probability space (W ,F W,PW). We say that a measurable flow of maps ϕ = (ϕs,t ) is
a weak solution of (5.1) if it satisfies (5.1) without being F W

s,t -measurable. Similarly,
a measurable flow of kernels K = (Ks,t ) will be called weak (generalized) solution
of the SDE (5.1) if it satisfies (5.6) without being F W

s,t -measurable.
We have seen that uniqueness is verified if one assumes in addition Wiener mea-

surability: Ks,t is F W
s,t -measurable for all s ≤ t .

In case (b) a different consistent system of Feller semigroups P(n),ct can be con-
structed by considering the coalescing n-point motion X(n),ct associated with X(n)t ,
the n-point motion of the Wiener solution. A measurable flow of coalescing maps ϕcs,t
whose n-point motion isX(n),ct can be defined on an extension (�,A,P) of the prob-
ability space (W ,F W,PW). This coalescing flow also solves the SDE (5.1). It is a
weak solution.

For s ≤ t set F c
s,t = σ(ϕcu,v, s ≤ u ≤ v ≤ t). Then (F c

s,t )s≤t defines a noise.
It can be seen (for details see [16]) that F W

s,t ⊂ F c
s,t (this property also holds for any

flow solution of SDE). This solution being different from the Wiener solution implies
F W
s,t �= F c

s,t . The noise (F c
s,t ) cannot be generated by Brownian motions. It is a

non-classical noise (see also [27], [28]). The Wiener solution KW can be recovered
by filtering:

KW
s,tf = E[f � ϕcs,t |F W

s,t ], for all f ∈ C(S).
It can be shown that in case (a) there is no weak solution different in law from the

Wiener solution. In case (b), ϕcs,t is the only solution which is a flow of maps. There
are certainly other “intermediate” kernel solutions similar to the sticky flows, but they
have not been constructed yet.
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Final remarks. Similar results hold in a more general context, especially in the
case of S

d and R
d (including d = 1). In fact, for isotropic flows in dimension d ≥ 2,

a different phase appears, in which the Wiener solution is a diffusive flow without
hitting. This solution cannot be represented by filtering a coalescing solution defined
on an extended probability space and there are no weak (generalized) solutions. In
dimension 2 and 3 the coalescing phase (where the Wiener solution is a coalescing
flow) and the phase of non uniqueness (where the Wiener solution is diffusive with
hitting) still occurs.

Many important questions remain open: for example, the nature of the noises
when they are not classical, the possible relations with rough paths ([20]), and the
classifications of all solutions, starting with the isotropic case.
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Stochastic classification models

Peter McCullagh and Jie Yang∗

Abstract. Two families of stochastic processes are constructed that are intended for use in
classification problems where the aim is to classify units or specimens or species on the basis of
measured features. The first model is an exchangeable cluster process generated by a standard
Dirichlet allocation scheme. The set of classes is not pre-specified, so a new unit may be assigned
to a previously unobserved class. The second model, which is more flexible, uses a marked point
process as the mechanism generating the units or events, each with its associated class and feature.
The conditional distribution given the superposition process is obtained in closed form for one
particular marked point process. This distribution determines the conditional class probabilities,
and thus the prediction rule for subsequent units.

Mathematics Subject Classification (2000). Primary 62H30; Secondary 68T10.

Keywords. Cluster process, Cox process, Dirichlet process, Gauss–Ewens process, lack of
interference, marked point process, permanent polynomial, Random subset, supervised learning.

1. Introduction

1.1. Classification. The problem of numerical taxonomy is to classify individual
specimens or units u on the basis of measured variables or features x(u) ∈ X. The
units may be anything from tropical insects to bitmap images of handwritten digits
or vocalizations of English words. The feature variables may be length or width or
weight measurements in the case of insects, or the Fourier transformation at certain
frequencies in the case of spoken words. The choice of feature variables is an important
problem in its own right, but this matter is of little concern in the present paper.

A deterministic classification model is a rule or algorithm that associates with
each feature value x ∈ X a class y(x) ∈ C. Ordinarily the model must be primed or
trained on a sample of units with measured features and known classes. In the dialect
of artificial intelligence and computer science, the classifier learns the characteristics
peculiar to each class and classifies subsequent units accordingly. When the training
is over, each subsequent input is a feature value x(u′) for a new unit, and the output
is the assigned class. The error rate is the fraction of wrong calls.

A stochastic classification model is a process determining a rule that associates
with each feature value x a probability distribution p( · ; x) on the set of classes.

∗We are grateful to Jim Pitman for helpful comments. Support for this research was provided by NSF Grant
DMS-0305009.
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Once again, the classification model must be primed or trained on a sample of units
with measured features and known classes. In statistical language, the classifier
is a statistical model with unknown parameters to be estimated from the training
data. Subsequent units are classified in the usual stochastic sense by computing the
conditional distribution given the training data and the feature value for the new unit.

Three stochastic models are described in the sections that follow. The first of
these is a regression model with independent components in which the feature values
are treated as covariates. The second is an exchangeable cluster process closely
related to Fisher’s discriminant model, but different in several fundamental ways.
The third model is also an exchangeable cluster process, called a permanent cluster
process because the conditional distributions are expressed in terms of permanent
polynomials.

The distinction between a closed classification model with a pre-determined set of
labelled classes, and an open model with unlabelled classes is emphasized. A model
of the latter type has a mathematical framework that permits a new unit to be assigned
to a class that has not previously been observed and therefore does not have a name.
The goal is to construct a classification model with no more than 4–5 parameters
to be estimated regardless of the number of classes or the dimension of the feature
space. In this way, the technically difficult problems associated with consistency
and parameter estimation in high dimensional models are evaded. Ideally, the model
should be capable of adapting to classification problems in which one or more classes
occupies a non-convex region, or even several disconnected regions, in the feature
space.

1.2. Remarks on the literature. The literature on stochastic classification is very
extensive, the modern theory beginning with Fisher’s discriminant model ([12]). Lo-
gistic regression models emerged in the 1960s, and with the advent of faster comput-
ing, smoothed versions using penalized likelihood became more popular. Stochastic
models used in the statistical literature are sometimes complicated, but they are fre-
quently of the most elementary form with independent components such that

log(pr(Y (u) = r | X)) = fr(X(u)).

The goal is to estimate the functions fr under certain smoothness conditions, which are
enforced through penalty functions added to the log likelihood. For a good overview
see [29], [15], [27] or [16].

At the more mathematical end of the statistical spectrum, the same model with
independent components is frequently used, with f belonging to a suitable space
of functions, usually a Besov space. The stated mathematical goal is to obtain the
best estimate of f under the most adverse conditions in very large samples ([9]).
Smoothing is usually achieved by shrinkage or thresholding of coefficients in a wavelet
expansion.

The past decade has seen an upsurge of work in the computer science community
under the headings of artificial intelligence, data mining and supervised learning.
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Methods used include neural nets, support vector machines and tree classifiers. The
emphasis is primarily on algorithms, regularization, efficiency of computation, how
best to combine weak classifiers ([13]), and so on. Few algorithms and methods of
this type have an overt connection with a generative stochastic process beyond the
simple additive form with independent components.

In the Bayesian literature, more complicated processes are constructed using mix-
ture models with Dirichlet priors for the class frequencies ([11], [2], [24], [14]). The
cluster process in Section 3 is in fact a simple special case of a more general clas-
sification model ([4], [8]). It is used here mainly for illustrative purposes because
the distributions can be studied analytically, which is rare for processes generated by
Dirichlet allocation schemes.

The semi-parametric models described in Section 4 are of a different type. They
are based on Cox processes ([5]) with a baseline intensity measure μ treated as an
unknown parameter. One major attraction for practical work is that the conditional
distribution of the class labels given the observed features does not depend on the
baseline measure. The unknown nuisance parameter is eliminated by conditioning
rather than by integration, and this conditional distribution is the basis for inference
and classification.

2. Logistic discrimination

2.1. Non-interference and regression models. Let U be the set of units, the infinite
set of objects such as plots or subjects or specimens, on which the process Y is defined.
A covariate x : U → X is a function on the units, the values of which are thought
to have an effect on the distribution. In a logistic regression model it is the class
Y (u) ∈ C that is regarded as the response, and the measured feature x(u) is the
covariate.

In practical work, it is often helpful to distinguish between covariates such as sex,
age and geographical position that are intrinsic to the unit, and treatment variables
such as medication or variety that can in principle be controlled by the experimenter.
For mathematical purposes it is more useful to distinguish between a covariate as a
function on the units, and a relationship as a function on pairs of units. Examples of
the latter include distance if the units are arrayed in space, temporal ordering for time
points, genetic or familial relationships if the units are individual organisms, or a block
factor as an equivalence relation on units. The statistical distinction, roughly speaking,
is that a covariate affects one-dimensional marginal distributions, while a relationship
affects bivariate distributions. For present purposes, however, distinctions of this sort
are unnecessary.

A regression model is a process in which the joint distribution of the re-
sponse (Y (u1), . . . , Y (un)) on n units is determined by the covariate values x =
(x(u1), . . . , x(un)) on those units. We write Pn( · ; x) for the joint distribution
on an ordered set of n distinct units, implying that two sets of units having the
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same ordered list of covariate values, also have the same distribution. In other
words, if (x(u1), . . . , x(un)) = (x(u′

1), . . . , x(u′
n)) then (Y (u1), . . . , Y (un)) and

(Y (u′
1), . . . , Y (u′

n)) are both distributed as Pn( · ; x).
In general, the probability assigned to an event A ⊂ Cn depends on the covariate

vector (x1, . . . , xn). However, the lack of interference condition

Pn(A; (x1, . . . , xn)) = Pn+1(A × C; (x1, . . . , xn, xn+1)) (2.1)

implies that the probability assigned by Pn+1 to the event A × C does not depend on
the final component xn+1 of x. The failure of this condition means that the probability
assigned by P2 to an event of the form Y (u1) = 0 depends on the value of x(u2).
Since the value assigned by P1 to the same event depends only on x(u1), the two
probability distributions are mutually inconsistent. At the very least, interference of
this sort may lead to ambiguities in the calculation of probabilities.

Consider two disjoint sets of units with associated vectors X(1), Y (1), X(2), Y (2),
all regarded as random variables. Lack of interference is equivalent to the condition
that the response Y (1) be conditionally independent of X(2) given X(1). The condition
is asymmetric in X and Y . As a consequence, the covariate value on unit u′ has
no effect on the joint distribution for other units. The same term is used in the
applied statistical literature ([6], section 2.4; [26]) with a similar meaning, though
usually interpreted as a physical or biological property of the system rather than a
mathematical property of the model. Without this property, it is difficult to give the
model a causal interpretation, so lack of interference is often taken for granted as a
logical necessity in applications involving deliberate intervention or assignment of
treatment to units.

For applications in which the x-values are generated by a process, the preced-
ing argument is not compelling, and the non-interference condition is in fact unduly
restrictive. The classification model in Section 3 is derived from an exchangeable
bivariate process (Y (u), X(u))u∈U with finite-dimensional distributions Qn. The
conditional distributions Qn( · | X = x) determine the joint classification probabili-
ties for n units having the given covariate values as generated by the process. This is
not a regression model because the non-interference condition (2.1) is not satisfied by
the conditional distributions. As a result, the response distribution for a set of units
selected on the basis of their covariate values is not easily determined and is not equal
to Qn( · | X = x).

We argue that condition (2.1) is unnecessarily strong for certain applications, and
that a weaker condition is sufficient for applications in which intervention does not
arise. Consider a family of distributions Pn( · ; x), one such distribution for each
covariate configuration. It may happen that there exists a bivariate process with
distributions Qn such that, for each covariate configuration x and each event A ⊂ Cn,
the conditional distributions satisfy Pn(A; x) = Qn(A | X = x). The distributions
{Pn( · ; x)} are then said to be weakly compatible with one another. If such a bivariate
process exists, it is not unique because the marginal distribution of the X-process is
arbitrary. Since the units in the bivariate process have no covariates to distinguish one
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from another, the bivariate process is ordinarily exchangeable. Lack of interference
implies weak compatibility, but the converse is false.

2.2. Logistic regression. In a logistic regression model, the components Y (u1), . . .

are independent, so the joint distributions are determined by the one-dimensional
marginal distributions. The dependence on x is determined by a suitable collection
of discriminant functions, fj : X → R, which could be the coordinate projections
if X = Rq , but might include quadratic or other non-linear functions. For a unit u

whose feature value is x = x(u) the class probabilities are

log pr(Y (u) = r) =
∑
j

βrjfj (x),

where the coefficients βrj are parameters to be estimated from the training data. In
particular, if there are only two classes, the log odds for class 0 are

log(pr(Y (u) = 0)/ pr(Y (u) = 1)) =
∑
j

(β0j − β1j )fj (x). (2.2)

For a model with k classes and q linearly independent discriminant functions, the
number of parameters is q(k − 1), which can be large.

The lack of interference condition is automatically satisfied by the logistic regres-
sion model, and in fact by any similar model with independent components.

3. An exchangeable cluster process

3.1. Random permutations and random partitions. A partition B of the set [n] =
{1, . . . , n} is a set of disjoint non-empty subsets called blocks whose union is the
whole set. The symbol #B denotes the number of blocks, and for each block b ∈ B,
#b is the number of elements. The partition is also an equivalence relation on [n], i.e. a
function B : [n] × [n] → {0, 1} that is reflexive, symmetric and transitive. Finally,
B is also a symmetric binary matrix with components B(i, j). No distinction is made
in the notation between B as a set of subsets, B as a matrix, and B as an equivalence
relation. If the partition is regarded as a matrix, #B is its rank.

Denote by Bn the set of partitions of [n]. Thus, B2 = {12, 1|2} has two elements,
and B3 has five elements

123, 12|3, 13|2, 23|1, 1|2|3,

where 13|2 is an abbreviation for {{1, 3}, {2}}, containing two blocks. The 15 elements
of B4 can be grouped by block sizes as follows

1234, 123|4 [4], 12|34 [3], 12|3|4 [6], 1|2|3|4
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where 12|34 [3] is an abbreviation for the three distinct partitions 12|34, 13|24, 14|23,
each having two blocks of size two. The number of elements in Bn is the nth Bell
number, the coefficient of tn/n! in the generating function exp(et − 1). The first few
values are 1, 2, 5, 15, 52, 203, 877,…, increasing rapidly with n.

Consider a probability distribution on the symmetric group Sn in which the prob-
ability assigned to the permutation σ depends on the number of cycles as follows:

pn(σ ) = λ#σ�(λ)/�(n + λ), (3.1)

where λ > 0, and the ratio of gamma functions is the required normalizing constant.
This is the exponential family generated from the uniform distribution with weight
function λ#σ , canonical parameter log λ and canonical statistic #σ the number of
cycles. It is evident that the distribution is invariant under the action of the group
on itself by conjugation, so pn is finitely exchangeable. Less obvious but easily
verified is the fact that pn is the marginal distribution of pn+1 under the natural
deletion operation σ ′ �→ σ from Sn+1 into Sn, which operates as follows. Write σ ′
in cycle form, for example σ ′ = (1, 3)(5)(2, 6, 4) for n = 5, and delete element
n+ 1 = 6 giving σ = (1, 3)(5)(2, 4). This construction, together with the associated
Chinese restaurant process, is described by Pitman ([24], section 4). The projection
Sn+1 → Sn is not a group homomorphism, but successive deletions are commutative.
For each λ > 0, these distributions determine an exchangeable permutation process
closely related to the Ewens process on partitions.

The cycles of the permutation σ ∈ Sn determine a partition of the set [n], and thus
a map Sn → Bn. The inverse image of B ∈ Bn contains

∏
b∈B �(#b) permutations

all having the same probability. Thus, the marginal distribution on partitions induced
by (3.1) is

pn(B; λ) = �(λ)λ#B

�(n + λ)

∏
b∈B

�(#b) (3.2)

for B ∈ Bn and λ > 0 ([10], [1]). This distribution is symmetric in the sense that
for each permutation σ : [n] → [n], the permuted matrix (Bσ )ij = Bσ(i),σ (j) has
the same distribution as B. The partition Bσ has the same block sizes as B, which
are maximal invariant, and the probability pn(B; λ) depends only on the block sizes.
In addition if B ′ ∼ pn+1( · ; λ) is a random partition of [n + 1], the leading n × n

submatrix B is a random partition of [n] whose distribution is pn( · ; λ) ([19]). For
each λ > 0, the sequence of distributions {pn} determines an exchangeable process
called the Ewens partition process. For further details, see Pitman ([25]).

The Ewens process is by no means the only example of an exchangeable partition
process, but it is one of the simplest and most natural, and it is sufficient to illus-
trate the ideas in the sections that follow. Some simple extensions are described by
Pitman ([24]).

3.2. Gauss–Ewens cluster process. A cluster process with state space X is an infi-
nite sequence of X-valued random variables X(u) for u ∈ U, together with a random
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partition B : U × U → {0, 1}, which determines the clusters. An observation on a
finite set of units {u1, . . . , un} consists of the values X(u1), . . . , X(un) together with
the components of the matrix Bij = B(ui, uj ). The finite-dimensional distributions
on Bn ×Xn with densities pn satisfy the obvious Kolmogorov consistency condition:

pn(B, x1, . . . , xn) =
∑

B ′:φB ′=B

∫
X

pn+1(B
′, x1, . . . , xn+1) dxn+1

where φ : Bn+1 → Bn is the deletion operator that removes the last row and column.
In the Gauss–Ewens process, X = Rq is a vector space. The observation

(B, (X1, . . . , Xn)) on a finite set of n units has a joint density in which B is a partition
with distribution (3.2). The conditional distribution given B is Gaussian with constant
mean vector, here taken to be zero, and covariance matrix �B = In ⊗ � + B ⊗ �1,
where �, �1 are q × q covariance matrices. In component form

cov(Xir , Xjs | B) = δij�rs + Bij�1 rs .

This construction implies that X is a sum of two independent processes, one i.i.d. on
the units, and one with i.i.d. components for each block.

If X = R, the coefficient matrices are scalars and the joint density is

pn(B, x) = �(λ)λ#B

�(n + λ)

∏
b∈B

�(#b) × (2π)−n/2|�B |−1/2 exp(−x′�−1
B x/2).

It is helpful here to re-parameterize by writing xb for the mean in block b, θ = σ 2
1 /σ 2

for the ratio of variance components, wb = #b/(1 + θ #b) and x = ∑
wbxb/

∑
wb,

in which case we have

|�B |−1/2 = σ−n
∏
b∈B

(1 + θ #b)−1/2,

x′�−1
B x =

∑
b∈B

(S2(b) + wbx
2
b)/σ 2,

where S2(b) is the sum of squares for block b.
A permutation of the units sends X1, . . . , Xn to Xσ(1), . . . , Xσ(n) and also trans-

forms the components of B in such a way that the i, j component of Bσ is Bσ(i)σ (j).
Evidently, the distribution pn is unaffected by such permutations, so the Gauss–Ewens
process is infinitely exchangeable. As it stands, the Gauss–Ewens process is not a
mixture of independent and identically distributed processes because the observation
space Bn × Xn for a finite set of n units is not an n-fold product space. However, if
the blocks are labelled at random, the new process is equivalent in every way to the
original, and the new process does follow the de Finetti characterization ([25], p. 44).
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3.3. Conditional distributions. Given the observed list of feature values x =
(x1, . . . , xn), the conditional distribution on partitions induced by the one-dimensional
Gauss–Ewens process is

pn(B | x) ∝
∏
b∈B

λ�(#b)(1 + θ #b)−1/2 exp((−S2(b) − wbx
2
b)/(2σ 2)).

This is a distribution of the product-partition type pn(B) ∝ ∏
b∈B C(b; x) ([17]) with

cohesion function

C(b; x) = λ�(#b)(1 + θ #b)−1/2 exp((−S2(b) − wbx
2
b)/(2σ 2))

depending on the feature values of the units in block b only. In particular, C(b; x)

does not depend on #B or on n. Evidently, two sets of units having the same ordered
list of feature values are assigned the same conditional distribution. The marginal
distribution on Bn induced from pn+1( · | (x, xn+1)) by deleting the last component,
depends on the value of xn+1, so these conditional distributions do not determine
a process. However, there is no contradiction here because these are conditional
distributions, and the two conditioning events are different. Since they are derived
from a bivariate process, the distributions are weakly compatible with one another in
the sense of Section 2.1.

For the multivariate Gauss–Ewens process, the conditional distributions are not
of the product-partition type unless the coefficient matrices are proportional, i.e.
�1 = θ�. When this condition is satisfied, the cohesion function is an obvious
multivariate analogue of the univariate version.

Product partition distributions are certainly convenient for use in applied
work, but the great majority of product partition models are incompatible with any
process. Consider for example, the product partition model with cohesion function
C(b, x) = λ, independent of the covariate values. For λ = 1, the distributions are
uniform on each Bn. But the distribution on Bn induced from the uniform distribution
on Bn+1 is not uniform. The Ewens distributions with cohesion function λ�(#b) are
the only product partition models that are compatible with an exchangeable process.

3.4. Stochastic classification. Given the observation (B, x(u1), . . . , x(un)) on n

units, plus the feature value x(u′) on a subsequent unit, we aim to calculate the
conditional distribution pn+1( · | data) on Bn+1 given the observed values generated
by the process. The only missing piece of information is the block to which unit u′ is
assigned, so the conditional distribution is determined by the probabilities assigned
to the events u′ �→ b for those blocks b ∈ B or b = ∅.

A straightforward calculation for a product partition model shows that

pr(u′ �→ b | data) ∝
{

C(b ∪ {u′}, (x, x′))/C(b, x) b ∈ B,

C({u′}, x′) b = ∅,
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where (x, x′) is the complete list of n + 1 observed feature values. For b ∈ B, the
cohesion ratio for the univariate Gauss–Ewens process is

#bγ 1/2 exp(−γ (x′ − θ#bxb/(1 + θ#b))2/(2σ 2))

where γ = (1 + θ#b)/(1 + θ(#b + 1)). If θ#b is large, blocks whose sample means
are close to x′ have relatively high probability, which is to be expected.

The predictive distribution for the general multivariate Gauss–Ewens process in-
volves a ratio of multivariate normal densities. Although preference is given to larger
blocks, the predictive distribution also puts more weight on those classes whose block
means are close to x′. If x′ is sufficiently far removed from all observed block means,
the empty set (new class) is given relatively greater weight. When the empty set is
excluded from consideration the parameter λ has no effect, and the predictive distri-
bution is roughly the same as that obtained from the Fisher discriminant model with
prior probabilities proportional to class sizes.

4. Point process models

4.1. Permanent polynomial. To each square matrix K of order n there corresponds
a polynomial of degree n,

pert (K) =
∑
σ

t#σK1σ(1) · · · Knσ(n)

where the sum runs over permutations of {1, . . . , n}, and #σ is the number of cycles.
The conventional permanent is the value at t = 1, and the determinant is det(K) =
per−1(−K). The coefficient of t is the sum of cyclic products

cyp(K) = lim
t→0

t−1 pert (K) =
∑

σ :#σ=1

K1σ(1) · · · Knσ(n).

For certain types of patterned matrices, the permanent polynomial can be evaluated
in closed form or by recursion. Consider, for example, the matrix J of order n such
that Jii = ζ and Jij = 1 otherwise. The permanent polynomial is the value fn(t)

obtained by recursion (
fn+1(t)

hn+1(t)

)
=

(
ζ t n

t n

) (
fn(t)

hn(t)

)

starting with f0(t) = h0(t) = 1. In particular, for ζ = 1 and t = λ we obtain the value
fn(λ) = �(n + λ)/�(λ), which is the normalizing constant in the distribution (3.1).

4.2. Gaussian moments. The permanent polynomial arises naturally in statistical
work associated with factorial moment measures of Cox processes as follows. LetZ be
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a zero-mean real Gaussian process on X with covariance function cov(Z(x), Z(x′)) =
K(x, x′)/2. The joint cumulant and the joint moment of the squared variables
|Z(x1)|2, . . . , |Z(xn)|2 are

cumn

(|Z(x1)|2, . . . , |Z(xn)|2
) = cyp[K](x1, . . . , xn)/2,

E
(|Z(x1)|2 · · · |Z(xn)|2

) = per1/2[K](x1, . . . , xn),

where [K](x1, . . . , xn) is the symmetric matrix of order n whose entries are K(xi, xj ).
More generally, if 
(x) = |Z1(x)|2 + · · · + |Zk(x)|2 is the sum of squares of k

independent and identically distributed Gaussian processes, we have

cumn(
(x1), . . . , 
(xn)) = α cyp[K](x1, . . . , xn),

E(
(x1) · · · 
(xn)) = perα[K](x1, . . . , xn)
(4.1)

with α = k/2 ([22]). Thus, if 
 is the intensity function for a doubly stochastic
Poisson process, the nth order product density at x = (x1, . . . , xn) is perα[K](x). In
other words, the expected number of ordered n-tuples of distinct events occurring in
an infinitesimal ball of volume dx centered at x ∈ Xn is perα[K](x) dx.

The analogous result for zero-mean complex-valued processes with covariance
function cov(Z(x), Z(x′)) = K(x, x′) and 
 as defined above is the same except
that α = k rather than k/2. A proof for α = 1 can be found in Macchi ([21]), and for
general k in McCullagh and Møller ([22]). Although K is Hermitian, the polynomial
is real because inverse permutations have conjugate coefficients.

4.3. Convolution semi-group properties. Permanent polynomials also have a semi-
group convolution property that is relevant for probability calculations connected
with the superposition of independent processes. In describing this property, it is
helpful to regard the points x = {x1, . . . , xn} as distinct and unordered, so x is a
finite subset of X. Since perα[K](x1, . . . , xn) is a symmetric function of x, we
may write perα[K](x) without ambiguity for non-empty sets. For the empty subset,
perα[K](∅) = 1. It is shown in McCullagh and Møller ([22]) that∑

w⊂x

perα[K](w) perα′ [K](w) = perα+α′ [K](x) (4.2)

where the sum is over all 2n subsets, and w is the complement of w in x.
Suppose that perα[K](x) is the density at x, with respect to some product measure

μ(dx1) · · · μ(dxn), of a finite point process in X. The convolution property implies
that the superposition of two independent processes having the same covariance func-
tion K has a distribution in the same family with parameter α + α′. Furthermore, the
ratio

q(w; x) = perα[K](w) perα′ [K](w)

perα+α′ [K](x)
(4.3)
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determines a probability distribution on the subsets of x. If in fact some components
of x are duplicated, these duplicates must be regarded as distinct units that happen to
have the same x-value, and q is then regarded as a distribution on subsets of the n units.
In the extreme case where all components are identical, all components of the matrix
[K](x) are equal, and the distribution reduces to

q(w; x) = �(#w + α) �(#w + α′) �(α + α′)
�(n + α + α′) �(α) �(α′)

.

In other words, #w has the beta-binomial distribution.
The statistical construction ensures that the polynomial perα(K) is positive at all

positive half-integer values of α provided only that K is real symmetric and positive
semi-definite. In view of the convolution property, it is natural to ask whether the
permanent polynomial of a real symmetric positive semi-definite matrix is positive
for all α ≥ 1/2. The numerical evidence on this point is compelling, but so far there
is no proof. On the one hand, there exist positive semi-definite symmetric matrices
such that perα(K) < 0 for values in the interval 0 < α < 1/2. On the other hand,
extensive numerical work has failed to produce a positive semi-definite matrix such
that the permanent polynomial has a root whose real part exceeds one half. Although
no proof is offered, it seems safe to proceed as if perα(K) ≥ 0 for all α ≥ 1/2 and
positive semi-definite symmetric K . In applications where the covariance function is
non-negative, the permanent polynomial is clearly positive for all α > 0.

4.4. A marked point process. Consider a Poisson process X in X with intensity
measure μ. In the first instance, X is a counting measure in X such that the number
of events X(A) has the Poisson distribution with mean μ(A). In addition, for non-
overlapping sets A, A′, the event counts X(A) and X(A′) are independent. The
process is said to be regular if it has no multiple events at the same point and is finite
on compact sets. In that case X is a random subset of X such that X ∩ A is finite
for compact sets A. For linguistic convenience, we use the terminology associated
with random sets rather than the terminology associated with random measures or
multisets. All processes are assumed to be regular.

A Poisson process driven by a random intensity measure 
(x)μ(dx) is called a
doubly stochastic Poisson process, or a Cox process. Details of such processes can
be found in the books by Kingman ([20]) and Daley and Vere-Jones ([7]).

Let μ be a non-random measure in X serving as a baseline for the construction of
subsequent point processes. For probabilistic purposes, μ is a fixed measure defined
on a suitable algebra of subsets of X that includes all singletons. For statistical
purposes, μ is a parameter to be estimated, if necessary, from the data. Given a
random non-negative intensity function 
(x), the associated Cox process is such that
the expected number of events occurring in an infinitesimal ball dx centered at x is
E(
(x)) μ(dx). Likewise, the expected number of ordered pairs of distinct events
in the infinitesimal product set dx dx′ at (x, x′) is E(
(x)
(x′)) μ(dx) μ(dx′), and
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so on. In general, for x = (x1, . . . , xn),

m(n)(x) = E(
(x1) · · · 
(xn))

is called the nth order product density at x ∈ Xn. These expectations are the den-
sities of the factorial moment measures of the process with respect to the product
measure μn. The order is implicit from the argument x ∈ Xn, so we usually write
m(x) rather than m(n)(x).

Ordinarily, in typical ecological applications or studies of the spatial interactions
of particles, an observation on a point process consists of a census X ∩ S of all
events occurring in the bounded set S. The observation tells us not only that an event
occurred at certain points in S, but also that no events occurred elsewhere in S. For
the sorts of applications with which we are concerned, however, the training sample
is not exhaustive, so the observation is regarded as a sample of the events in X. Such
an observation tells us only that an event occurred at certain points in X, and says
nothing about the occurrence or non-occurrence of events elsewhere.

Suppose now that X(1), . . . , X(k) are k independent Cox process on X driven by
independent random intensity functions 
1(x), . . . , 
k(x), all relative to the same
measure μ. The marked process can be represented by the pair (X, y) in which
X = ∪X(r) is the superposition process, and y : X → C is the list of labels. Then
the rth component process X(r) = y−1(r) is the inverse image of label r .

Let x ⊂ X be a given finite point configuration consisting of n points. Given that
x ⊂ X, i.e. that the superposition process contains x, each event x ∈ x has a label
y(x) in the marked process so there are kn possible values for the labels of the events
in x. Denote by x(r) the subset x ∩y−1(r), possibly empty, consisting of those events
in x having label r . The conditional distribution of the class labels given x ⊂ X is
proportional to the product of the product densities of the component processes

pn(y | x) =
∏

r∈C mr(x
(r))

m.(x)
. (4.4)

In this expression, mr(x
(r)) is the product density of order #x(r) at x(r) for the process

labelled r , and m.(x) is the nth order product density for the superposition process
at x. For the empty set, mr(∅) = 1. A key point to note is that the conditional
distribution of the class labels depends only on the product densities, and not on the
baseline measure μ.

The conditional distribution of the unlabelled partition B is obtained by ignor-
ing labels, in effect by multiplying by the combinatorial coefficient k!/(k − #B)!.
Since the combinatorial coefficient depends on the number of blocks, the conditional
distribution of the unlabelled partition is not a product partition model, but it is a
distribution of Gibbs type ([25], p. 26)

These conditional distributions do not determine a regression model because they
fail to satisfy the lack of interference condition (2.1). However, they are derived from
a bona fide bivariate process, so they are mutually compatible in the weak sense.
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In this context of prediction, it may be helpful to think of each event as a unit or
specimen, in such a way that x(u) is the position or feature value of the event, and
y(u) is the label. To classify a new unit or event u′ such that x(u′) = x′, it is sufficient
to calculate the conditional distribution as determined by pn+1 given the extended
configuration x′ = x ∪ {x′} plus the labels of those points in x. The conditional
probabilities are proportional to the ratio of product densities

pn+1(y(u′) = r | data) ∝ mr(x
(r) ∪ {x′})/mr(x

(r)) (4.5)

for r ∈ C.

4.5. Specific examples. We consider two examples, one in which the intensity is
the square of a Gaussian process with product density (4.1), and one in which the
intensity is log normal.

Permanent process. Suppose that each component process is a permanent process
and that the product density for process r is mr(x) = perαr

[K](x). Then the product
density for the superposition process is perα.

[K](x) and the conditional distribution
of the labels given x is

pn(y | x) = perα1
[K](x(1)) · · · perαk

[K](x(k))

perα.
[K](x)

. (4.6)

This distribution determines a random labelled partition of the given events into k

classes, some of which may be empty. It is the ‘multinomial’ generalization of (4.3),
and is closed under aggregation of classes.

For a new unit u′ such that x(u′) = x′, the conditional probability of class r is
proportional to the permanent ratio

pn+1(y(u′) = r | data) ∝ perαr
[K](x(r), x′)/ perαr

[K](x(r)).

This expression is restricted to the set of k classes in C, but it may include classes for
which x(r) is empty, i.e. named classes that do not occur in the training sample. In
the extreme case where x is empty, the probability of class r is αr/α. regardless of x′.

The derivation of the conditional distribution from the marked point process
requires each α to be a half-integer, and K to be positive semi-definite. Alterna-
tively, K could be Hermitian and αr a whole integer. However, if K is non-negative
on X, the distribution (4.6) exists for arbitrary αr > 0, even if K is not positive
semi-definite. We shall therefore consider the limit in which αr = α and k → ∞
such that α. = kα = λ > 0 is held fixed. The limit distribution for the unlabelled
partition is

pn(B | x; λ) = λ#B
∏

b∈B cyp[K](x(b))

perλ[K](x)
, (4.7)

which is a product partition model, and reduces to the Ewens distribution if K is
constant on X. For a new unit u′ such that x(u′) = x′, the conditional probability of



682 Peter McCullagh and Jie Yang

assignment to block b is

pn+1(u
′ �→ b | data) ∝

{
cyp[K](x(b), x′)/ cyp[K](x(b)) b ∈ B,

λK(x′, x′) b = ∅.

Our experience with these classification rules is restricted to the simplest versions
of the model in which X is Euclidean space and K(x, x′) = exp(−|x − x′|2/ρ2) or
similar versions such as exp(−|x − x′|/ρ). On the whole, the smoother version is
better, and the value of α in (4.6) has only minor effects. It is necessary to select a
suitable value of the range parameter ρ, but the qualitative conclusions are the same
for all ρ. The region in the X-space for which the predictive probability of class r is
high need not be convex or simply connected. In that sense, both of these classification
rules are qualitatively different from the one derived from the Gauss–Ewens process.

Log Gaussian Cox processes. Suppose that each component process is log Gaussian,
i.e. log 
r is a Gaussian process with mean and variance

E log 
r(x) = θr(x), cov(log 
r(x), log 
r(x
′)) = Kr(x, x′).

Then the nth order product density at x = (x1, . . . , xn) is

mr(x) = exp
(∑

j

θr (xj ) + 1
2

∑
ij

Kr(xi, xj )
)
.

Given that x occurs in the superposition process, the conditional distribution of the
labels satisfies

log pn(y | x) =
∑
x∈x

θy(x)(x) + 1
2

∑
x,x′∈x

y(x)=y(x′)

Ky(x)(x, x′) + const.

Finally, a new unit with x(u′) = x′ generated from the process is assigned to
class r with probability

log pn+1(y(u′) = r | data) = θr(x
′) + 1

2Kr(x
′, x′) +

∑
x∈x(r)

Kr(x
′, x) + const.

Thus, if θr(x) = ∑
j βrjfj (x) as in Section 2.2, and there are only two classes with

K0 = K1 = K , the conditional log odds that the new unit is assigned to class 0 are

∑
j

(β0j − β1j )fj (x
′) +

∑
x∈x(0)

K(x′, x) −
∑

x∈x(1)

K(x′, x), (4.8)

coinciding with (2.4) when K = 0.
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4.6. Numerical illustration. A simple artificial example suffices to illustrate the
qualitative difference between classification models based on Cox processes, and
classification models of the type described in Section 3. We use the two-class perma-
nent model (4.6) with α1 = α2 = 1. The feature space is a 3 × 3 square in the plane,
the covariance function is K(x, x′) = exp(−‖x−x′‖2/ρ2) with ρ = 0.5, and the true
class is determined by a 3 × 3 chequerboard pattern with white in the center square.
The training data consists of 90 units, with 10 feature values uniformly distributed
in each small square as shown in the first panel of Figure 1. The second panel is a
density plot, and the third panel a contour plot, of the conditional probability that a
new unit at that point is assigned to class ‘white’. These probabilities were computed
by an approximation using a cycle expansion for the permanent ratio.
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Figure 1. Predictive probability of class I using a permanent model.

For the parameter values chosen, the range of predictive probabilities depends to
a moderate extent on the configuration of x-values in the training sample, but the
extremes are seldom below 0.1 or above 0.9 for a configuration of 90 points with 10
in each small square. The range of predictive probabilities decreases as ρ increases,
but the 50% contour is little affected, so the classification is fairly stable. Given that
the correct classification is determined by the chequerboard rule, the error rate for the
permanent model using this particular training configuration can be computed exactly:
it is around 13% for a point chosen uniformly at random from the large square. This
error rate is a little misleading because most of those errors occur near an internal
boundary where the predictive probability is close to 0.5. Gross errors are rare.

5. Parameter estimation

Let (y, x) be the training data, and let x′ be the feature value for a subsequent unit. In
principle, the likelihood function should be computed for the full data including the
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value for the subsequent unit. In practice, it is more convenient to base the likelihood
on the training data alone, i.e. pn(y, x; θ) at the parameter point θ . Ordinarily, the
information sacrificed by ignoring the additional factor is negligible for large n, and
the gain in simplicity may be substantial.

Likelihood computations are straightforward for logistic regression models, and
the same is true for the Gauss–Ewens process, but the state of affairs is more com-
plicated for point process models. Consider a marked permanent process model with
αr = α, in which X is a Euclidean space and K(x, x′) = exp(−‖x − x′‖2/ρ2). The
parameters of the process are the scalars α, ρ plus the baseline measure μ. However,
the conditional likelihood given the observation x from the training sample depends
only on α, ρ, and the predictive distribution also depends only on (α, ρ). In this
setting, the distribution of x is governed largely by the baseline measure μ, so the in-
formation for (α, ρ) in the superposition process must be negligible. Accordingly, we
use the conditional likelihood instead of the full likelihood, for parameter estimation.

Even though the most troublesome component of the parameter has been elimi-
nated, computation of the likelihood for the remaining parameters does present dif-
ficulties. In the case of the log Gaussian model, the normalizing constant is not
available in closed form. In the case of the permanent models (4.6) or (4.7), for which
the normalizing constants are available, the only remaining obstacle is the calculation
of cyclic products and permanent polynomials. The permanent of a large matrix is
notoriously difficult to compute exactly ([28]), and the permanent polynomial appears
to be even more challenging. For α = 1, polynomial-time algorithms are available
for fixed-rank matrices ([3]). In addition, the existence of polynomial-time Monte
Carlo algorithms for non-negative matrices, has been demonstrated but not imple-
mented ([18]).

Our experience for positive definite matrices is less pessimistic than the preceding
remarks suggest. Reasonably accurate polynomial-time continued-fraction approxi-
mations for the ratio of permanent polynomials can be developed without resorting
to Monte Carlo approximation. We use a cycle expansion whose accuracy improves
as α increases. Here, reasonably accurate means within 2–3% for typical covariance
matrices of order n = 100, and for α ≥ 1/2. These expansions, which were used in
the construction of Figure 1, will be described elsewhere.
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Random partitions and instanton counting

Andrei Okounkov∗

Abstract. We summarize the connection between random partitions and N = 2 supersymmetric
gauge theories in 4 dimensions and indicate how this relation extends to higher dimensions.

Mathematics Subject Classification (2000). Primary 81T13; Secondary 14J60.

1. Introduction

1.1. Random partitions. A partition of n is a monotone sequence

λ = (λ1 ≥ λ2 ≥ · · · ≥ 0)

of nonnegative integers with sum n. The number n is denoted |λ| and called the size
of λ. A geometric object associated to a partition is its diagram; it contains λ1 squares
in the first row, λ2 squares in the second row and so on. An example, flipped and
rotated by 135� can be seen in Figure 1. Partitions naturally label many basic objects

Figure 1. The diagram of λ = (10, 8, 7, 4, 4, 3, 2, 2, 1, 1), flipped and rotated by 135�. Bullets
indicate the points of S(λ). The profile of λ is plotted in bold.

in mathematics and physics, such as e.g. conjugacy classes and representations of the
symmetric group S(n), and very often appear as modest summation ranges or indices.
A simple but fruitful change of perspective, which I wish to stress here, is to treat sums
over partitions probabilistically, that is, treat them as expectations of some functions
of a random partition.
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A survey of the theory of random partitions may be found in [33]. Of the several
natural measures on partitions, the Plancherel measure

MPlanch(λ) = (dim λ)2

n! , |λ| = n, (1)

stands out as the one with deepest properties and widest applications. Here dim λ

is the dimension of the corresponding representation of S(n). This is a probability
measure on partitions of n. It can be viewed as a distinguished discretization of the
GUE ensemble of the random matrix theory. Namely, a measure on partitions can be
made a point process on a lattice by placing particles in positions

S(λ) = {
λi − i + 1

2

} ⊂ Z + 1
2 .

Figure 1 illustrates the geometric meaning of this transformation. An important theme
of recent research was to understand how and why for a Plancherel random partition
of n → ∞ the particles S(λ) behave like the eigenvalues of a random Hermitian
matrix. See [3], [4], [14], [31] and e.g. [15], [32], [33] for a survey.

In these notes, we consider a different problem, namely, the behavior of (1) in a
periodic potential, that is, additionally weighted by a multiplicative periodic function
of the particles’ positions. This leads to new phenomena and new applications. As
we will see, the partition function of MPlanch in a periodic potential is closely related
to Nekrasov partition function from supersymmetric gauge theory. This relationship
will be reviewed in detail in Section 2 and its consequences may be summarized as
follows.

1.2. Instanton counting. In 1994, Seiberg and Witten proposed an exact description
of the low-energy behavior of certain supersymmetric gauge theories [38], [39]. In
spite of the enormous body of research that this insight has generated, only a modest
progress was made towards its gauge-theoretic derivation. This changed in 2002,
when Nekrasov proposed in [28] a physically meaningful and mathematically rigorous
definition of the regularized partition function Z for supersymmetric gauge theories
in question.

Supersymmetry makes the gauge theory partition function the partition function
of a gas of instantons. Nekrasov’s idea was to use equivariant integration with respect
to the natural symmetry group in lieu of a long-distance cut-off for the instanton gas.
He conjectured that as the regularization parameter ε → 0

lnZ ∼ − 1

ε2 F

where the free energy F expressed by the Seiberg–Witten formula in terms of periods
of a certain differential dS on a certain algebraic curve C.

This conjecture was proven in 2003 by Nekrasov and the author for a list of gauge
theories with gauge group U(r), namely, pure gauge theory, theories with matter
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fields in fundamental and adjoint representations of the gauge group, as well as 5-
dimensional theory compactified on a circle [29]. Simultaneously, independently,
and using completely different ideas, the formal power series version of Nekrasov’s
conjecture was proven for the pure U(r)-theory by Nakajima and Yoshioka [25]. The
methods of [29] were applied to classical gauge groups in [30] and to the 6-dimensional
gauge theory compactified on a torus in [11]. Another algebraic approach, which
works for pure gauge theory with any gauge group, was developed by Braverman [5]
and Braverman and Etingof [6].

In these notes, we outline the results of [29] in the simplest, yet fundamental, case
of pure gauge theory. As should be obvious from the title, the main idea is to treat the
gauge theory partition function Z as the partition function of an ensemble of random
partitions. The ε → 0 limit turns out to be the thermodynamic limit in this ensemble.
What emerges in this limit is a nonrandom limit shape, an example of which may be
seen in Figure 6. This is a form of the law of large numbers, analogous, for example, to
Wigner’s semicircle law for the spectrum of a large random matrix. The limit shape
is characterized as the unique minimizer ψ� of a certain convex functional S(ψ),
leading to

F = min S.

We solve the variational problem explicitly and the limit shape turns out to be an
algebraic curve C is disguise. Namely, the limit shape is essentially the graph of the
function

	
∫ x

x0

dS,

where dS is the Seiberg–Witten differential. Thus all ingredients of the answer appear
very naturally in the proof.

Random matrix theory and philosophy had many successes in mathematics and
physics. Here we have an example when random partitions, while structurally re-
sembling random matrices, offer several advantages. First, the transformation into a
random partition problem is geometrically natural and exact. Second, the discretiza-
tion inherent in partitions regularizes several analytic issues. For further examples
along these lines the reader may consult [33].

1.3. Higher dimensions. The translation of the gauge theory problem into a ran-
dom partition problem is explained in Section 2. In Section 3, we analyze the latter
problem, in particular, derive and solve the variational problem for the limit shape.
Section 4 summarizes parallel results for 3-dimensional partitions, where similar al-
gebraic properties of limit shapes are now proven in great generality.

The surprising fact that free energy F is given in terms of periods of a hidden
algebraic curve C is an example of mirror symmetry. A general program of inter-
preting mirror partners as limit shapes was initiated in [34]. Known results about
the limit shapes of periodically weighted 3-dimensional partitions, together with the
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conjectural equality of Gromov–Witten and Donaldson–Thomas theories of projec-
tive algebraic 3-folds [22] can be interpreted as a verification of this program for toric
Calabi–Yau 3-folds. See [35] for an introduction to these ideas.

Note that something completely different is expected to happen in dimensions> 3,
where the behavior of both random interfaces and Gromov–Witten invariants changes
qualitatively.

2. The gauge theory problem

2.1. Instantons. We begin by recalling some basic facts, see [9] for an excellent
mathematical treatment and [8], [10], [44] for a physical one. This will serve as
motivation for the introduction of Nekrasov’s partitions function in (8) below.

In gauge theories, interactions are transmitted by gauge fields, that is, unitary
connections on appropriate vector bundles. In coordinates, these are matrix-valued
functions Ai(x) that define covariant derivatives

∇i = ∂

∂xi
+ Ai(x), A∗

i = −Ai.

We consider the most basic case of the trivial bundle R4 × Cr over the flat Euclidean
space-time R4, where such coordinate description is global.

The natural (Yang–Mills) energy functional for gauge fields is L2-norm squared
‖F‖2 of the curvature

F =
∑ [∇i ,∇j ] dxi ∧ dxj .

The path integral in quantum gauge theory then takes the form
∫

connections/G
DA exp

(−β ‖F‖2) × · · · , (2)

where dots stand for terms involving other fields of the theory and G is the group of
gauge transformations g : R4 → U(r) acting by

∇ 
→ g∇ g−1.

In these notes, we will restrict ourselves to pure gauge theory, which is already quite
challenging due to the complicated form of the energy. A parallel treatment of certain
matter fields can be found in [29].

Our goal is to study (2) as function of the parameter β (and boundary conditions
at infinity, see below). A head-on probabilistic approach to this problem would be
to make it a theory of many interacting random matrices through a discretization
of space-time. This is a fascinating topic about which I have nothing to say. In a
different direction, when β � 0, the minima of ‖F‖2 should dominate the integral.
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In supersymmetric gauge theory, there is a way to make such approximation exact,
thereby reducing the path integral to the following finite-dimensional integrals.

Local minima of ‖F‖2 are classified by a topological invariant c2 ∈ Z,

c2 = 1

8π2

∫
R4

tr F 2,

called charge, and satisfy a system of first order PDEs

F ± �F = 0, (3)

where � is the Hodge star operator on 2-forms on R4. With the plus sign, (3) corre-
sponds to c2 > 0 and is called the anti-self-duality equation. Its solutions are called
instantons. Minima with c2 < 0 are obtained by reversing the orientation of R4.

The ASD equations (3) are conformally invariant and can be transported to a
punctured 4-sphere S4 = R4 ∪{∞} via stereographic projection. From the removable
singularities theorem of Uhlenbeck it follows that any instanton on R4 extends, after
a gauge transformation, to an instanton on S4. Thus we can talk about the value of an
instanton at infinity.

Let G0 be the group of maps g : S4 → U(r) such that g(∞) = 1. Modulo G0,
instantons on S4 with c2 = n are parametrized by a smooth manifold M(r, n) of real
dimension 4rn. Naively, one would like the contribution from charge n instantons to
(2) to be the volume of M(r, n) in a natural symplectic structure. However, M(r, n)

is noncompact (and its volume is infinite) for two following reasons.
Approximately, an element of M(r, n) can be imagined as a nonlinear superpo-

sition of n instantons of charge 1. Some of those may become point-like, i.e. their
curvature may concentrate in a δ-function spike, while others may wander off to infin-
ity. A partial compactification of M(r, n), constructed by Uhlenbeck, which replaces
point-like instanton by just points of R4, takes care of the first problem but not the
second. Nekrasov’s idea was to use equivariant integration to regularize the instanton
contributions.

2.2. Equivariant regularization. The group

K = SU(2)× SU(r)

acts on M(r, n) by rotations of R4 = C2 and constant gauge transformation, respec-
tively. Our plan is to use this action for regularization. Let us start with the following
simplest example: suppose we want to regularize the volume of R2. A gentle way to
do it is to introduce a Gaussian well∫

R2
e−tπ(x2+y2)dx dy = 1

t
, 	t ≥ 0 (4)

and thus an effective cut-off at the |t |−1/2 scale. Note that the Hamiltonian flow
on R2 generated by H = 1

2 (x
2 + y2) with respect to the standard symplectic form
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ω = dx ∧ dy is rotation about the origin with angular velocity one. This makes (4) a
simplest instance of theAtiyah–Bott–Duistermaat–Heckman equivariant localization
formula [2]. We will use localization in the following complex form.

Let T = C∗ act on a complex manifoldX with isolated fixed pointsXT . Suppose
that the action of U(1) ⊂ T is generated by a Hamiltonian H with respect to a
symplectic form ω. Then

∫
X

eω−2πtH =
∑
x∈XT

e−2πtH(x)

det t |TxX
, (5)

where t should be viewed as an element of Lie(T ) ∼= C, an so it acts in the complex
tangent space TxX to a fixed point x ∈ X. While (5) is normally stated for compact
manifoldsX, example (4) shows that with care it can work for noncompact ones, too.
Scaling both ω and H to zero, we get from (5) a formal expression∫

X

1
def=

∑
x∈XT

1

det t |TxX
, (6)

which does not depends on the symplectic form and vanishes if X is compact.
A theorem of Donaldson identifies instantons with holomorphic bundles on

C2 = R4 and thus gives a complex description of M(r, n). Concretely, M(r, n)

is the moduli space of rank r holomorphic bundles E → CP2 with given 2nd Chern
class c2(E) = n and a given trivialization along the line

L∞ = CP2 \ C2

at infinity. Note that existence of such trivialization implies that c1(E) = 0. A similar
but larger moduli space M(r, n) of torsion-free sheaves, see e.g. [12], [24], is a smooth
partial compactification of M(r, n).

The complexification of K

KC = SL(2)× SL(r)

acts on M(r, n) by operating on C2 and changing the trivialization at infinity. Equiv-
ariant localization with respect to a general t ∈ Lie(K)

t = (diag(−iε, iε), diag(ia1, . . . , iar)) (7)

combines the two following effects. First, it introduces a spatial cut-off parameter
ε as in (4). Second, it introduces dependence on the instanton’s behavior at infinity
through the parameters ai . While the first factor in K works to shepherd run-away
instantons back to the origin, the second works to break the gauge invariance at infin-
ity. In supersymmetric gauge theories, the parameters ai correspond to the vacuum
expectation of the Higgs field and thus are responsible for masses of gauge bosons.
In short, they are live physical parameters.
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2.3. Nekrasov partition function. We are now ready to introduce our main object
of study, the partition function of the pure (N = 2 supersymmetric) U(r) gauge
theory:

Z(ε; a1, . . . , ar ;�) = Zpert

∑
n≥0

�2rn
∫

M(r,n)

1, (8)

where the integral is defined by (6) applied to (7),

� = exp(−4π2β/r),

and Zpert is a certain perturbative factor to be discussed below. The series in (8)
is denoted Zinst. Because of factorials in denominators, see (24), Zinst converges
whenever we avoid zero denominators, that is, on the complement of

ai − aj ≡ 0 mod ε. (9)

In essence, these factorials are there because the instantons are unordered. Also note
that Z is an even function of ε and a symmetric function of the ai’s.

Since by our regularization rule

vol R4 =
∫

R4
1 = 1

ε2 ,

we may expect that as ε → 0

lnZ(ε; a;�) ∼ − 1

ε2 F (a;�),

where F is the free energy. At first, the poles (9) ofZinst, which are getting denser and
denser, may look like a problem. Indeed, poles of multiplicityO(ε−1)may affect the
free energy, but it is a question of competition with the other terms in Zinst, which the
pole-free terms win if |ai − aj | � 0. As a result, either by passing to a subsequence
of ε, or by restricting summation in Zinst to the relevant pole-free terms, we obtain a
limit

Finst = − lim ε2Zinst,

which is analytic and monotone far enough from the walls of the Weyl chambers.
Recall that Weyl chambers for SU(r) are the r! cones obtained from

C+ = {
a1 > a2 > · · · > ar,

∑
ai = 0

}

by permuting the coordinates. As |ai − aj | get small, poles do complicate the asymp-
totics. This is the origin of cuts in the analytic function F (a), ai ∈ C.

Nekrasov conjectured in [28] that the free energy F is the Seiberg–Witten pre-
potential, first obtained in [38], [39] through entirely different considerations. It is
defined in terms of a certain family of algebraic curves.
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2.4. Seiberg–Witten geometry. In the affine space of complex polynomials of the
form P(z) = zr +O(zr−2) consider the open set U of polynomials such that

P(z) = ±2�r (10)

has 2r distinct roots. Over U , we have a g-dimensional family of complex algebraic
curves C of genus g = r − 1 defined by

�r
(
w + 1

w

)
= P(z), P ∈ U . (11)

The curve (11) is compactified by adding two points ∂C = {w = 0,∞}.
Let M ⊂ U be the set ofP(z) for which all roots of (10) are real. The corresponding

curves C are called maximal and play a special role, see e.g. [40]. They arise, for
example, as spectral curves of a periodic Toda chain [41]. A maximal curve C has r
real ovals, as illustrated in Figure 2. Note that for z ∈ R, w is either real or lies on
the unit circle |w| = 1.

–2

–1

0

1

2

–3 –2 –1 3
z

1 2

Figure 2. 	w (bold) and �w for w + 1/w = z3 − 3.5 z and z ∈ R.

The intervals P−1([−2�r, 2�r ]) ⊂ R on which |w| = 1 are called bands. The
intervals between the bands are called gaps. The smaller (in absolute value) root
w of the equation (11) can be unambiguously defined for z ∈ C \ {bands}. On the
corresponding sheet of the Riemann surface of w, we define cycles

αi ∈ H1(C − ∂C), βi ∈ H1(C, ∂C), i = 1, . . . , r (12)

as illustrated in Figure 3, where dotted line means that βi continues on the other sheet.
Note that αi ∩ βj = δij and that

αi = −αi, βi = βi, (13)

where bar stands for complex conjugation. The ovals in Figure 2 represent the cycles
αi and βi − βi+1.
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α1 α2 α3

β1 β2 β3

β1 − β2

Figure 3. Cycles βi go from w = ∞ to w = 0. Bold segments indicate bands.

The Seiberg–Witten differential

dS = 1

2πi
z
dw

w
= ± r

2πi

(
1 +O

(
z−2)) dz

is holomorphic except for a second order pole (without residue) at ∂C. Its derivatives
with respect to P ∈ U are, therefore, holomorphic differentials on C. In fact, this
gives

TPU ∼= holomorphic diff. on C.

Nondegeneracy of periods implies the functions

ai
def=

∫
αi

dS,
∑

ai = 0, (14)

which are real on M by (13), are local coordinates on U , as are

a ∨
i − a ∨

i+1
def= 2πi

∫
βi−βi+1

dS,
∑

a ∨
i = 0. (15)

Further, there exists a function F (a;�), which is real and convex on M, such that(
∂

∂ai
− ∂

∂ai+1

)
F = − (

a ∨
i − a ∨

i+1

)
. (16)

Indeed, the Hessian of F equals (−2πi) times the period matrix of C, hence sym-
metric (and positive definite on M). The function F is called the Seiberg–Witten
prepotential. Note that F is multivalued on U and, in fact, its monodromy played a
key role in the argument of Seiberg and Witten. By contrast, M is simply-connected,
indeed

a ∨ : M → C+
is a diffeomorphism, see e.g. [18] for a more general result. Note that the periods (15)
are the areas enclosed by the images of real ovals of C under (z, w) 
→ (z, ln |w|). A
similar geometric interpretation of the ai’s will be given in (40) below. In particular,
the range

A = a(M)
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of the coordinates (14) is a proper subset of C− = −C+. At infinity of M, we have

ai ∼ {roots of P }, a1 � a2 � · · · � ar .

2.5. Main result. We have now defined all necessary ingredients to confirm Nekra-
sov’s conjecture in the following strong form:

Theorem 1 ([29]). For a ∈ A,

− lim
ε→0

ε2 lnZ(ε; a;�) = F (a;�), (17)

where F is the Seiberg–Witten prepotential (16).

At the boundary of A, free energy has a singularity of the form

F = −(
a ∨
i − a ∨

j

)2 ln
(
a ∨
i − a ∨

j

) + · · ·
where dots denote analytic terms. This singularity is one of the main physical features
of the Seiberg–Witten theory.

In broad strokes, the logic of the proof was explained in the Introduction. We now
proceed with the details.

3. The random partition problem

3.1. Fixed points contributions. A rank 1 torsion-free sheaf on C2 is a fancy name
to call an ideal I of C[x, y]. Any partition λ defines one by

Iλ = (xλ1, xλ2 y, xλ3 y2, . . . ) ⊂ C[x, y].
It is easy to see that all torus-fixed points of M(r, n) have the form

F =
r⊕
k=1

Iλ(k) ,
∑ ∣∣λ(k)∣∣ = n, (18)

where λ(k) is an r-tuple of partitions. Our goal now is to compute the character of the
torus action in the tangent space to the fixed point (18) and thus the contribution of F

to the sum in (6).
By construction of M(r, n), its tangent space at F equals Ext1

P2(F,F(−L∞)).
From the vanishing of the other Ext-groups we conclude

tr et |Ext1
P2 (F,F(−L∞)) = XO⊕r (t)− XF(t), (19)

where XF(t) is the character

XF(t) = tr et |χ
C2 (F,F)



Random partitions and instanton counting 697

of the infinite-dimensional virtual representation

χC2(F,F) = Ext0
C2(F,F)− Ext1

C2(F,F)+ Ext2
C2(F,F).

Any graded free resolution of F gives

XF(t) = |GF(t)|2, t ∈ Lie(K),

where GF(t) is, up to a factor, the character of F itself

Gλ(1),...,λ(r) (t) = (e−iε/2 − eiε/2) tr et |F

=
r∑
k=1

eiak
∞∑
j=1

exp
(
iε

(
λ
(k)
j − j + 1

2

))
. (20)

It is also a natural generating function of the r-tuple λ(k).
Note that the weight of any F is real and positive, being a product of purely

imaginary numbers in conjugate pairs.

3.2. Perturbative factor. In the spirit of the original uncompactified gauge theory
problem on R4, we would like to drop the first term in (19) and declare its contribution
canceled by Zpert. In view of (20), this requires a regularization of the following
product

Zpert “=”
r∏

k,k′=1

∞∏
j,j ′=1

i(ak − ak′ + ε(j − j ′)).

A natural regularization is provided by Barnes’ double �-function (21), see e.g. [37].
For c1, c2 ∈ R and 	w � 0, define

ζ2(s;w | c1, c2) = 1

�(s)

∫ ∞

0

dt

t
ts

e−wt∏
(1 − e−ci t )

.

This has a meromorphic continuation in s with poles at s = 1, 2. Define

�2(w | c1, c2) = exp
d

ds
ζ(s;w | c1, c2)

∣∣
s=0. (21)

Through the difference equation

w�2(w) �2(w + c1 + c2) = �2(w + c1) �2(w + c2) (22)

it extends to a meromorphic function of w. We define

Zpert =
∏
k,k′

�2

(
i(ak − ak′)

�

∣∣∣∣ iε� ,
−iε
�

)−1

. (23)
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where �2 is analytically continued to imaginary arguments using

�2 (Mw |Mc,−Mc) = M
w2

2c2 − 1
12 �2(w | c,−c ), M /∈ (−∞, 0].

The scaling by � is introduced in (23) to make (8) homogeneous of degree 0 in a, ε,
and �. Note also

�2(0| 1,−1) = e−ζ ′(−1).

Our renormalization rule (23) fits nicely with the following transformation of the
partition function Z.

3.3. Dual partition function. For r = 1, the weight of Iλ in (8) equals

�2n det−1t
∣∣
TIλM(1,n)

= 1

n!
(
�2

ε2

)n
MPlanch(λ), (24)

where MPlanch is the Plancherel measure (1) and the prefactor is the Poisson weight
with parameter �2/ε2. For r > 1, we will transform Z into the partition function
(29) of the Plancherel measure in a periodic potential with period r .

Let a function ξ : Z + 1
2 → R be periodic with period r and mean 0. The energy

�(λ) of the configuration S(λ) in the potential ξ is defined by Abel’s rule

�(λ) =
∑

x∈S(λ)

ξ(x)
def= lim

z→+0

∑
x∈S(λ)

ξ(x) ezx.

Grouping the points of S(λ) modulo r uniquely determines an r-tuple of partitions
λ(k), known as r-quotients of λ, and shifts sk ∈ Q such that

S(λ) =
r⊔
k=1

r
(
S

(
λ(k)

) + sk
)

(25)

and
rs ≡ ρ mod r Zr0, ρ = (

r−1
2 , . . . , 1−r

2

)
,

where Zr0 denotes vectors with zero sum. It follows from (25) that

Gλ (ε/r) = Gλ(1),...,λ(r) (ε; εs). (26)

Letting ε → 2πik, k = 1, . . . , r − 1, in (26) gives

�(λ) = (s, ξ) =
∑

si ξi, ξi = ξ
( 1

2 − i
)
, (27)

while the ε → 0 limit in (26) yields

|λ| = r

( ∑ ∣∣λ(k)∣∣ +
∑ s2

k

2

)
+ 1 − r2

24
.
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Using these formulas and the difference equation (22), we compute

Z ∨(ε; ξ1, . . . , ξr ;�) def=
∑

a∈ε(ρ+rZr0)
exp

(
(ξ, a)

rε2

)
Z(rε; a;�) (28)

= eζ
′(−1)+ πi

24
∑
λ

∣∣∣∣�
ε

∣∣∣∣
2|λ|− 1

12
(

dim λ

|λ|!
)2

exp

(
�(λ)

ε

)
. (29)

We call (28) the dual partition function. By (29), it equals the partition function of a
periodically weighted Plancherel measure on partitions.

While it will play no role in what follows, it may be mentioned here that Z ∨ is
a very interesting object to study not asymptotically but exactly. For example, Toda
equation for ln Z∨ may be found in Section 5 of [29].

3.4. Dual free energy. Define the dual free energy by

F ∨(ξ ;�) = − lim
ε→0

ε2 lnZ ∨. (30)

Since (28) is a Riemann sum for Laplace transform, we may expect that

F ∨(ξ ;�) = min
a∈Rr0

1

r2 F (a;�)− 1

r
(ξ, a) (31)

that is, up to normalization, F ∨ is the Legendre transform of F . This is because the
asymptotics of Laplace transform is determined by one point – the maximum. Our
plan is apply to same logic to the infinite-dimensional sum (29), namely, to show that
its ε → 0 asymptotics is determined by a single term, the limit shape.

The law of large numbers, a basic principle of probability, implies that on a large
scale most random system are deterministic: solids have definite shape, fluids obey
the laws of hydrodynamics, etc. Only magnification reveals the full randomness of
nature.

In the case at hand, the weight of a partition λ in (29), normalized by the whole
sum, defines a probability measure on the set of partitions. This measure depends on a
parameter ε and as ε → 0 it clearly favors partitions of larger and larger size. In fact,
the expected size of λ grows as ε−2. We thus expect the diagram of λ, scaled by ε in
both directions, to satisfy a law of large numbers, namely, to have a nonrandom limit
shape. By definition, this limit shape will dominate the leading ε → 0 asymptotics
of Z ∨. In absence of the periodic potential �, such analysis is a classical result of
Logan–Shepp and Vershik–Kerov [21], [42], [43].

Note that the maximum in (31) is over all of a, including the problematic region
where |ai − aj | get small. However, this region does not contribute to F ∨ as the
convexity of free energy is lost there. We will see this reflected in the following
properties of F ∨: it is strictly concave, analytic in the interior of the Weyl chambers,
and singular along the chambers’ walls.
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3.5. Variational problem for the limit shape. The profile of a partition λ is, by
definition, the piecewise linear function plotted in bold in Figure 1. Let ψλ be the
profile of λ scaled by ε in both directions. The map λ 
→ ψλ embeds partitions into
the convex set � of functions ψ on R with Lipschitz constant 1 and

|ψ | =
∫

|ψ(x)− |x|| dx < ∞.

The Lipschitz condition implies

‖ψ1 − ψ2‖C ≤ ‖ψ1 − ψ2‖1/2
L1 , ψ1, ψ2 ∈ �,

and so � is complete and separable in the L1-metric. Some function of a partition
have a natural continuous extension to �, for example

Gλ(ε) = 1

eiε/2 − e−iε/2

(
1 − 1

2

∫
eix (ψλ(x)− |x|) dx

)
,

while others, specifically the ones appearing in (29), do not. An adequate language
for dealing with this is the following.

Let f (λ) ≥ 0 be a function on partitions depending on the parameter ε. We say
that it satisfies a large deviation principle with action (rate) functional Sf (ψ) if for
any set A ⊂ �

− lim ε2 ln
∑
ψλ∈A

f (λ) ⊂ [
inf
A

Sf , inf
A� Sf

] ⊂ R ∪ {+∞}, (32)

where lim denotes all limit points, A� and A stand for the interior and closure of A,
respectively.

For the Plancherel weight (24), Logan–Shepp and Vershik–Kerov proved a large
deviation principle with action

Spl(ψ) = 1

2

∫
x<y

(1 + ψ ′(x))(1 − ψ ′(y)) ln
|x − y|
�

dx dy. (33)

Note that in this case the sum in (32) may be replaced by maximum because the
number of partitions of n grows subexponentially in n. In other words, there is no
entropic contribution in (33).

The periodic potential�(λ)produces a surface tension addition to the total actionS

S = Spl + Ssurf, Ssurf(ψ) = 1

2

∫
σ(ψ ′) dt,

where σ is a convex piecewise-linear function of the kind plotted in Figure 4. It is
linear on segments of length 2/r with slopes {ξi}, in increasing order. The form of
Ssurf is easy to deduce directly; it can also be seen as e.g. the most degenerate case of
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Figure 4. The surface tension σ for r = 4 and ξ = {− 4
3 ,− 2

3 ,
1
2 ,

3
2

}
.

the surface tension formula from Section 4.2. The singularities in the surface tensionσ
are responsible for facets, that is, linear pieces, in the minimizer, see Figure 6. The
slopes of these facets are precisely the points where σ ′ is discontinuous1. Note that σ
and hence S is a symmetric function of the ξi’s.

The functional S is strictly convex and its sublevel sets S−1((−∞, c]) are compact,
which can be seen by rewriting Spl in terms of the SobolevH 1/2 norm, see [21], [43].
Therefore it has a unique minimumψ� – the limit shape. The large deviation principle
and the definition of the dual free energy and (30) together imply

F ∨(ξ ;�) = S(ψ�). (34)

Our business, therefore, is to find this minimizer ψ�.

3.6. The minimizer. By convexity, a local minimum of S is automatically a global
one. Since σ has one-sided derivatives, a local minimum can be characterized by
nonnegativity of all directional derivatives. This leads to the following complementary
slackness conditions for the convolution of ψ ′′

� (x) with the kernel

L(x) = x ln
|x|
�

− x =
∫ x

0
ln

∣∣∣ y
�

∣∣∣ dy.
There exists a constant c0, which is the Lagrange multiplier from the constraint∫
δψ ′ = 0, such that

L ∗ ψ ′′
� (x)+ c0 = ξi, ψ ′

�(x) ∈ (−1 + 2i−2
r
,−1 + 2i

r

)
,

L ∗ ψ ′′
� (x)+ c0 ∈ [ξi, ξi+1], ψ ′

�(x) = −1 + 2i
r
,

(35)

where to simplify notation we assumed that

ξ ∈ C−, ξ0 = −∞, ξr+1 = +∞.

1There are many advantages in viewing random partitions as 2-dimensional slices of random 3-dimensional
objects discussed in Section 4. From the probability viewpoint, this links random partitions with rather realistic
models of crystalline surfaces with local interaction, enriching both techniques and intuition. In particular,
coexistence of facets and curved regions in our limit shapes is the same phenomenon as observed in natural
crystals. From the gauge theory viewpoint, it is also very natural, especially in the context of 5-dimensional
theory on R4 × S1, which corresponds to the K-theory of the instanton moduli spaces.
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Recall that C− denotes the negative Weyl chamber.
The function ψ ′′

� will turn out to be nonnegative and supported on a union of r
intervals, which are precisely the bands of Section 2.4. The gaps will produce the
facets in the limit shape.

It is elementary to see that for a maximal curve (11) the map

�(z) = 1 + 2

πir
lnw = 1 + 2

πi
ln
�

z
+O(z−1), z → ∞ (36)

where w is the smaller root of (11), defines a conformal map of the upper half-plane
to a slit half-strip

� ⊂ {z |�z > 0, |	z| < 1 }
as in Figure 5. The slits in � go along

	z = −1 + 2i/r, i = 1, . . . , r − 1,

and their lengths are, essentially, the critical values of the polynomialP(z). The bands
and gaps are preimages of the horizontal and vertical segments of ∂�, respectively.

�

�

Figure 5. Conformal map defined by a maximal curve.

We claim that
ψ ′
� = 	�∣∣

R
, (37)

where the polynomial P(z) is determined by the relation (39) below. The equations
(35) are verified for (37) as follows. Since �′(z) = O(z−1), z → ∞, we have the
Hilbert transform relation

P.V.
1

x
∗ 	�′∣∣

R
= π��′∣∣

R
.

Integrating it once and using (36) to fix the integration constant, we get

(L ∗ 	�′ )′ = π��.
Therefore, the function L ∗ 	�′ is constant on the bands and strictly increasing on
the gaps, hence (37) satisfies (35) with

ξi+1 − ξi = π

∫
ith gap

��(x) dx (38)
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Integrating (38) by parts and using definitions from Section 2.4 gives

ξ = −a
∨

r
, (39)

thus every limit shape ψ� comes from a maximal curve. For example, the limit shape
corresponding to the curve from Figure 2 is plotted in Figure 6. Note also that for
C ∈ M, we have

ai = r

2
(Ii−1 − Ii) , (40)

where Ii is the intercept of the ith facet of the limit shape. In particular, A ⊂ C−.

0

1

2

–2 –1 20 1

Figure 6. Limit shape corresponding to the curve from Figure 2. Thin segments are facets.

For given ξ ∈ C−, consider the distribution of the r-quotientsλ(i) of the partitionλ,
as defined in Section 3.3. For the shifts sk in (25) we have using (27)

εs → −∂F
∨

∂ξ
, ε → 0,

in probability. Observe that

∂

∂ξ
F ∨(ξ) =

[
∂

∂ξ
S

]
(ψ�)

since the other term, containing ∂
∂ξ
ψ�, vanishes by the definition of a maximum.

Definitions and integration by parts yield

−
(
∂

∂ξi
− ∂

∂ξi+1

)
F ∨ = ai − ai+1

r
.

By (26), this means that the resulting sum over the r-quotients λ(i) is the original
partition function Z with parameters a ∈ A. This concludes the proof.
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4. The next dimension

4.1. Stepped surfaces

An obvious 3-dimensional generalization of a partition,
also known as a plane partition can be seen on the right.
More generally, we consider stepped surfaces, that is, con-
tinuous surfaces glued out of sides of a unit cube, spanning
a given polygonal contour in R3, and projecting 1-to-1 in
the (1, 1, 1) direction, see Figure 7. Note that stepped sur-
faces minimize the surface area for given boundary con-
ditions, hence can be viewed as zero temperature limit of
the interface in the 3D Ising model.

The most natural measure on stepped surfaces is the uniform one with given bound-
ary conditions, possibly conditioned on the volume enclosed. It induces Plancherel-
like measures on 2-dimensional slices. Stepped surfaces are in a natural bijection with
fully packed dimers on the hexagonal lattice and Kasteleyn theory of planar dimers
[16] forms the basis of most subsequent developments.

The following law of large numbers for stepped surfaces was proven in [7]. LetCn
be a sequence of boundary contours such that each Cn can be spanned by at least one
stepped surface. Suppose that n−1Cn converge to a given curve C ⊂ R3. Then,
scaled by n−1, uniform measures on stepped surfaces spanning Cn converge to the
δ-measure on a single Lipschitz surface spanningC – the limit shape. This limit shape
formation is clearly visible in Figure 7.

Figure 7. A limit shape simulation. The frozen boundary is the inscribed cardioid.

The limit shape is the unique minimizer of the following functional. Let the
surface be parameterized by x3 = h(x3 −x1, x3 −x2), where h is a Lipschitz function
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with gradient in the triangle � with vertices (0, 0), (0, 1), (1, 0). Let� be the planar
region enclosed by the projection of C in the (1, 1, 1) direction. We will use (x, y) =
(x3 − x1, x2 − x1) as coordinates on �. The limit shape is the unique minimizer of

Sstep(h) =
∫
�

σstep(∇h) dx dy, (41)

where, in the language of [20], the surface tension σstep is the Legendre dual of the
Ronkin function of the straight line

z+ w = 1. (42)

We recall that for a plane curve P(z,w) = 0, its Ronkin function [23] is defined by

R(x, y) = 1

(2πi)2

∫∫
|z|=ex
|w|=ey

log |P(z,w)| dz
z

dw

w
. (43)

The gradient ∇R always takes values in the Newton polygon �(P ) of the polyno-
mial P , so �(P ) is naturally the domain of the Legendre transform R∨. For the
straight line as above, the Newton polygon is evidently the triangle �.

The surface tension σstep is singular and not strictly convex at the boundary of �,
which leads to formation of facets and edges in the limit shape (which can be clearly
seen in Figure 7). This models facet formation in natural interfaces, e.g. crystalline
surfaces, and is the most interesting aspect of the model. Note that facets are com-
pletely ordered (or frozen). The boundary between the ordered and disordered (or
liquid) regions is known as the frozen boundary.

The following transformation of the Euler-Lagrange equation for (41) found in
[19] greatly facilitates the study of the facet formation. Namely, in the liquid region
we have

∇h = 1

π
(argw,− arg z), (44)

where the functions z and w solve the differential equation

zx

z
+ wy

w
= c (45)

and the algebraic equation (42). Here c is the Lagrange multiplier for the volume
constraint

∫
�
h = const, the unconstrained case is c = 0. At the boundary of the

liquid region, z and w become real and the ∇h starts to point in one of the coordinate
directions.

The first-order quasilinear equation (45) is, essentially, the complex Burgers equa-
tion zx = zzy and, in particular, it can be solved by complex characteristics as follows.
There exists an analytic function Q(z,w) such that

Q(e−cxz, e−cyw) = 0. (46)
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In other words, z(x, y) can be found by solving (42) and (46). In spirit, this is very
close to Weierstraß parametrization of minimal surfaces in terms of analytic data.

Frozen boundary can only develop if Q is real, in which case the roots (z, w)
and (z̄, w̄) of (46) coincide at the frozen boundary. At a smooth point of the frozen
boundary, the multiplicity of this root will be exactly two, hence ∇h has a square-root
singularity there. As a result, the limit shape has an x3/2 singularity at the generic
point of the frozen boundary, thus recovering the well-known Pokrovsky–Talapov law
[36] in this situation. At special points of the frozen boundary, triple solutions of (46)
occur, leading to a cusp singularity. One such point can be seen in Figure 7.

Remarkably, for a dense set of boundary condition the function Q is, in fact, a
polynomial. Consequently, the frozen boundary takes the form R(ecx, ecy) = 0,
where R is the polynomial defining the planar dual of the curve Q = 0. This allows
to use powerful tools of algebraic geometry to study the singularities of the solutions,
see [19]. The precise result proven there is

Theorem 2 ([19]). Suppose the boundary contour C is a connected polygon with 3k
sides in coordinate directions (cyclically repeated) which can be spanned by a Lips-
chitz function with gradient in �. Then Q = 0 is an algebraic curve of degree k and
genus zero.

For example, for the boundary contour in Figure 7 we have k = 3 (one of the
boundary edges there has zero length) and hence R is the dual of a degree 3 genus 0
curve – a cardioid. The procedure of determining Q from the boundary conditions
is effective and can be turned into a practical numeric homotopy procedure, see [19].
Higher genus frozen boundaries occur for multiply-connected domains, in fact, the
genus of Q equals the genus of the liquid region.

Of course, for a probabilist, the law of large numbers is only the beginning and the
questions about CLT corrections to the limit shape and local statistics of the surface in
various regions of the limit shape follow immediately. Conjecturally, the limit shape
controls the answers to all these questions. For example, the function e−cxz defines
a complex structure on the liquid region and, conjecturally, the Gaussian correction
to the limit shape is given by the massless free field in the corresponding conformal
structure. In the absence of frozen boundaries and without the volume constraint,
this is proven in [17]. See e.g. [15], [17], [20], [32] for an introduction to the local
statistics questions.

4.2. Periodic weights. Having discussed periodically weighted Plancherel measure
and a 3-dimensional analog of the Plancherel measure, we now turn to periodically
weighted stepped surfaces. This is very natural if stepped surfaces are interpreted as
crystalline interfaces. Periodic weights are introduced as follows: we weight each
square by a periodic function of x3 − x1 and x2 − x1 (with some integer period M).

The role previously played by the straight line (42) is now played by a certain
higher degree curve P(z,w) = 0, the spectral curve of the corresponding periodic
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Kasteleyn operator. In particular, the surface tension σstep is now replaced by the
Legendre dual of the Ronkin function of P , see [20]. We have

degP = M

and the coefficients of P depend polynomially on the weights.
The main result of [20], known as maximality, says that for real and positive

weights the curve P is always a real algebraic curve of a very special kind, namely,
a Harnack curve, see [23]. Conversely, as shown in [18], all Harnack curves arise in
this way.

Harnack curves are, in some sense, the best possible real curves; their many
remarkable properties are discussed in [23]. One of several equivalent definitions of
a Harnack curve is that the map

(z, w) 
→ (log |z|, log |w|) (47)

from P(z,w) = 0 to R2 is 1-to-1 on the real locus of P and 2-to-1 over the rest. The
image of P = 0 under (47) is known as the amoeba of P . Note from (43) that the
gradient ∇R of the Ronkin function of P is nonconstant precisely for (x, y) in the
amoeba of P . In other words, the Ronkin function has a facet (that is, a linear piece)
over every component of the amoeba complement. The 2-to-1 property implies that
the number of compact facets of Ronkin function equals the (geometric) genus of the
curve P . Each of these facets translates into the singularity of the surface tension and,
hence, into facets with the same slope in limit shapes.

By Wulff’s theorem, the Ronkin function itself is a minimizer, corresponding to
its own (“crystal corner”) boundary conditions. An example of the Ronkin function
of a genus 1 Harnack curve can be seen in Figure 8.

Figure 8. The (curved part of the) Ronkin function of a genus 1 curve. Its projection to the plane
is the amoeba.

Maximality implies persistence of facets, namely, for fixed periodM , there will be(
M−1

2

)
compact facets of the Ronkin function and

(
M−1

2

)
corresponding singularities
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of the surface tension, except on a codimension 2 subvariety of the space of weights.
It also implies e.g. the following universality of height fluctuations in the liquid region

Var(h(a)− h(b)) ∼ 1

π
ln ‖a − b‖, ‖a − b‖ → ∞.

Remarkably, formulas (44), (45), and (46) need no modifications for periodic
weights. Replacing (42) by P(z,w) = 0 is the only change required, see [19].

From our experience with periodically weighted Plancherel measure, it is natural
to expect that, for some special boundary conditions, the partition function of periodi-
cally weighted stepped surfaces will encode valuable physical information. A natural
choice of “special boundary conditions” are the those of a crystal corner, when we
require the surface to be asymptotic to given planes at infinity, as in Figure 8. For
convergence of the partition function, one introduces a fugacity factor qvol, where the
missing volume is measured with respect to the “full corner”.

I hope that further study will reveal many special properties of such crystal corner
partition functions. Their extremely degenerate limits have been identified with all-
genera, all-degree generating functions for Donaldson–Thomas invariants of toric
Calabi–Yau threefolds. Namely, as the periodic weights become extreme, all limit
shapes, and the Ronkin function in particular, degenerate to piecewise linear functions.
This is known as the tropical limit. The only remaining features of limit shapes are
the edges and the triple points, where 2 and 3 facets meet, respectively. In this tropical
limit, the partition function becomes the partition function of ordinary, unweighted,
3D partitions located at triple points. These 3D partitions may have infinite legs along
the edges, as in Figure 9 and through these legs they interact with their neighbors.
This description precisely matches the localization formula for Donaldson–Thomas
invariants of the toric threefold whose toric polyhedron is given by the piecewise
linear limit shape, see [22].

Figure 9. Two 3D partitions connected at an angle through an infinite leg.

Donaldson–Thomas theory of any 3-fold has been conjectured to be equivalent, in
a nontrivial way, to the Gromov–Witten theory of the same 3-fold in [22]. For the toric
Calabi–Yau 3-folds, this specializes to the earlier topological vertex conjecture of [1].
It is impossible to adequately review this subject here, see [35] for an introduction.
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This is also related to the supersymmetric gauge theories considered in Section 2,
or rather their 5-dimensional generalizations, via a procedure called geometric engi-
neering of gauge theories. See for example [13] and references therein.

I find such close and unexpected interaction between rather basic statistical models
and instantons in supersymmetric gauge and string theories very exciting and promis-
ing. The field is still full of wide open questions and, in my opinion, it is also full of
new phenomena waiting to be discovered.
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Estimation in inverse problems and second-generation
wavelets

Dominique Picard and Gérard Kerkyacharian

Abstract. We consider the problem of recovering a function f when we receive a blurred (by a
linear operator) and noisy version: Yε = Kf + εẆ . We will have as guides 2 famous examples
of such inverse problems: the deconvolution and the Wicksell problem. The direct problem (K
is the identity) isolates the denoising operation. It cannot be solved unless accepting to estimate
a smoothed version of f : for instance, if f has an expansion on a basis, this smoothing might
correspond to stopping the expansion at some stage m. Then a crucial problem lies in finding
an equilibrium for m, considering the fact that for m large, the difference between f and its
smoothed version is small, whereas the random effect introduces an error which is increasing
withm. In the true inverse problem, in addition to denoising, we have to ‘inverse the operator’K ,
an operation which not only creates the usual difficulties, but also introduces the necessity to
control the additional instability due to the inversion of the random noise. Our purpose here is
to emphasize the fact that in such a problem there generally exists a basis which is fully adapted
to the problem, where for instance the inversion remains very stable: this is the singular value
decomposition basis. On the other hand, the SVD basis might be difficult to determine and
to numerically manipulate. It also might not be appropriate for the accurate description of the
solution with a small number of parameters. Moreover, in many practical situations the signal
provides inhomogeneous regularity, and its local features are especially interesting to recover.
In such cases, other bases (in particular, localised bases such as wavelet bases) may be much
more appropriate to give a good representation of the object at hand. Our approach here will
be to produce estimation procedures keeping the advantages of a localisation properly without
loosing the stability and computability of SVD decompositions. We will especially consider
two cases. In the first one (which is the case of the deconvolution example) we show that a
fairly simple algorithm (WAVE-VD), using an appropriate thresholding technique performed on
a standard wavelet system, enables us to estimate the object with rates which are almost optimal
up to logarithmic factors for any Lp loss function and on the whole range of Besov spaces. In
the second case (which is the case of the Wicksell example where the SVD basis lies in the
range of Jacobi polynomials) we prove that a similar algorithm (NEED-VD) can be performed
provided one replaces the standard wavelet system by a second generation wavelet-type basis:
the needlets. We use here the construction (essentially following the work of Petrushev and
co-authors) of a localised frame linked with a prescribed basis (here Jacobi polynomials) using
a Littlewood–Paley decomposition combined with a cubature formula. Section 5 describes the
direct case (K = I ). It has its own interest and will act as a guide for understanding the ‘true’
inverse models for a reader who is not familiar with nonparametric statistical estimation. It can
be read first. Section 1 introduces the general inverse problem and describes the examples of
deconvolution and Wicksell’s problem. A review of standard methods is given with a special
focus on SVD methods. Section 2 describes the WAVE-VD procedure. Section 3 and 4 give a
description of the needlets constructions and the performances of the NEED-VD procedure.
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1. Inverse models

Let H and K be two Hilbert spaces. K is a linear operator: f ∈ H �→ Kf ∈ K. The
standard linear ill-posed inverse problem consists of recovering a good approximation
fε of f , solution of

g = Kf, (1)

when only a perturbation gε of g is observed. In this paper we will consider the case
where this perturbation is an additive stochastic white noise. Namely, we observe Yε
defined by the following equation:

Yε = Kf + εẆ, H, K, (2)

where ε is the amplitude of the noise. It is supposed to be a small parameter which
will tend to 0. Our error will be measured in terms of this small parameter.

Ẇ is a K-white noise: i.e. for any g, h in K, ξ(g) := (Ẇ, g)K, ξ(h) := (Ẇ, h)K
form a random gaussian vector, centered, with marginal variance ‖g‖2

K
, ‖h‖2

K
, and

covariance (g, h)K (with the obvious extension when one considers k functions instead
of 2).

Equation (2) means that for any g in K, we observe Yε(g) := (Yε, g)K =
(Kf, g)K + εξ(g) where ξ(g) ∼ N(0, ‖g‖2), and Yε(g), Yε(h) are independent
random variables for orthogonal functions g and h.

The case whereK is the identity is called the ‘direct model’ and is summarized as
a memento in Section 5. The reader who is unfamiliar with nonparametric statistical
estimation is invited to consult this section, which will act as a guide for understanding
the more general inverse models. In particular it is recalled therein that the model
(2) is in fact an approximation of models appearing in real practical situations, for
instance the case where (2) is replaced by a discretisation.

1.1. Two examples: the problem of deconvolution and Wicksell’s problem

1.1.1. Deconvolution. The following problem is probably one of the most famous
among inverse problems in signal processing. In the deconvolution problem we
consider the following operator. In this case let H = K be the set of square integrable
periodic functions with the standard L2([0, 1]) norm and consider

f ∈ H �→ Kf =
∫ 1

0
γ (u− t)f (t) dt ∈ H, (3)

where γ is a known function of H, which is generally assumed to be a regular function
(often in the sense that its Fourier coefficients γ̂k behave like k−ν). A very common
example is also the box-car function: γ (t) = 1

2a I{[−a, a]}(k).
The following figures show first four original signals to recover, which are well-

known test-signals of the statistical literature. They provide typical features which are
difficult to restore: bumps, blocks and Doppler effects. The second and third series of
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pictures show their deformation after blurring (i.e. convolution with a regular function)
and addition of a noise. These figures show how the convolution regularizes the signal,
making it very difficult to recover, especially the high frequency features. A statistical
investigation of these signals can be found in [22].

A variant of this problem consists in observing Y1, . . . , Yn, n independent and
identically distributed random variables where eachYi may be written asYi = Xi+Ui ,
whereXi andUi again are independent, the distribution ofUi is known and of densityγ
and we want to recover the common density of the Xi’s. The direct problem is the
case where Ui = 0, for all i, and is corresponding to a standard density estimation
problem (see Section 5.1) . Hence the variables Ui are acting as perturbations of the
Xi’s, whose density is to be recovered.
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1.1.2. Wicksell’s problem. Another typical example is the following classicalWick-
sell problem [42]. Suppose a population of spheres is embedded in a medium. The
spheres have radii that may be assumed to be drawn independently from a density f .
A random plane slice is taken through the medium and those spheres that are inter-
sected by the plane furnish circles the radii of which are the points of observation
Y1, . . . , Yn. The unfolding problem is then to infer the density of the sphere radii
from the observed circle radii. This unfolding problem also arises in medicine, where
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the spheres might be tumors in an animal’s liver [36], as well as in numerous other
contexts (biological, engineering,…), see for instance [9].

Following [42] and [23], Wicksell’s problem corresponds to the following opera-
tor:

H = L2([0, 1], dμ) dμ(x) = (4x)−1dx,

K = L2([0, 1], dλ) dλ(x) = 4π−1(1 − y2)1/2dy

Kf (y) = π

4
y(1 − y2)−1/2

∫ 1

y

(x2 − y2)−1/2f (x)dμ.

Notice, however, that in this presentation, again in order to avoid additional tech-
nicalities, we handle this problem in the white noise framework, which is simpler
than the original problem expressed above in density terms.

1.2. Singular value decomposition and projection methods. Let us begin with a
quick description of well-known methods in inverse problems with random noise.

Under the assumption that K is compact, there exist 2 orthonormal bases (SVD
bases) (ek) of H and (gk) of K, respectively, and a sequence (bk), tending to 0 when k
goes to infinity, such that

Kek = bkgk, K∗gk = bkek

if K∗ is the adjoint operator.
For the sake of simplicity we suppose in the sequel that K and K∗ are into.

Otherwise we have to take care of the kernels of these operators. The bases (ek)
and (gk) are called singular value bases, whereas the bk’s are simply called singular
values.

Deconvolution. In this standard case simple calculations prove that the SVD bases
(ek) and (gk) both coincide with the Fourier basis. The singular values are corre-
sponding to the Fourier coefficients of the function γ :

bk = γ̂k. (4)

Wicksell. In this case, following [23], we have the following SVD:

ek(x) = 4(k + 1)1/2x2P
0,1
k (2x2 − 1),

gk(y) = U2k+1(y).

P
0,1
k is the Jacobi polynomial of type (0, 1) with degree k, and Uk is the second type

Chebyshev polynomial with degree k. The singular values are

bk = π

16
(1 + k)−1/2. (5)
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1.2.1. SVD method. The singular value decomposition (SVD) of K ,

Kf =
∑
k

bk〈f, ek〉gk,

gives rise to approximations of the type

fε =
N∑
k=0

b−1
k 〈yε, gk〉ek,

where N = N(ε) has to be chosen properly. This SVD method is very attractive
theoretically and can be shown to be asymptotically optimal in many situations (see
Mathé and Pereverzev [31], Cavalier and Tsybakov [6], Mair and Ruymgaart [29]). It
also has the big advantage of performing a quick and stable inversion of the operator.
However, it suffers from different types of limitations. The SVD bases might be
difficult to determine as well as to numerically manipulate. Secondly, while these
bases are fully adapted to describe the operator K , they might not be appropriate for
the accurate description of the solution with a small number of parameters.

Also in many practical situations the signal provides inhomogeneous regularity,
and its local features are especially interesting to recover. In such cases other bases
(in particular localised bases such as wavelet bases) may be much more appropriate
to give a good representation of the object at hand.

1.2.2. Projection methods. Projection methods which are defined as solutions of
(1) restricted to finite dimensional subspaces HN and KN (of dimension N) also give
rise to attractive approximations of f , by properly choosing the subspaces and the
tuning parameterN (Dicken and Maass [10], Mathé and Pereverzev [31] together with
their non linear counterparts Cavalier and Tsybakov [6], Cavalier et al. [7], Tsybakov
[41], Goldenshluger and Pereverzev [19], Efromovich and Koltchinskii [16]). In the
case where H = K and K is a self-adjoint operator, the system is particularly simple
to solve since the restricted operatorKN is symmetric positive definite. This is the so-
called Galerkin method. Obviously, restricting to finite subspaces has similar effects
and can also be seen as a Tychonov regularisation, i.e. minimizing the least square
functional penalised by a regularisation term.

The advantage of the Galerkin method is to allow the choice of the basis. However
the Galerkin method suffers from the drawback of being unstable in many cases.

Comparing the SVD and Galerkin methods exactly states one main difficulty of
the problem. The possible antagonism between the SVD basis where the inversion
of the system is easy, and a ‘localised’ basis where the signal is sparsely represented,
will be the issue we are trying to address here.

1.3. Cut-off, linear methods, thresholding. The reader may profitably look at Sub-
sections 5.3 and 5.4, where the linear methods and thresholding techniques are pre-
sented in detail in the direct case.
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SVD as well as Galerkin methods are very sensitive with respect to the choice of
the tuning parameter N(ε). This problem can be solved theoretically. However the
solution heavily depends on prior assumptions of regularity on the solution, which
have to be known in advance.

In the last ten years, many nonlinear methods have been developed especially in
the direct case with the objective of automatically adapting to the unknown smooth-
ness and local singular behavior of the solution. In the direct case, one of the most
attractive methods is probably wavelet thresholding, since it allies numerical simplic-
ity to asymptotic optimality on a large variety of functional classes such as Besov or
Sobolev classes.

To adapt this approach in inverse problems, Donoho [11] introduced a wavelet-like
decomposition, specifically adapted to the operator K (wavelet–vaguelette-decom-
position) and provided a thresholding algorithm on this decomposition. In Abramo-
vitch and Silverman [1], this method was compared with the similar vaguelette–
wavelet-decomposition. Other wavelet approaches, might be mentioned such as An-
toniadis and Bigot [2], Antoniadis et al. [3] and, especially for the deconvolution
problem, Penski and Vidakovic [37], Fan and Koo [17], Kalifa and Mallat [24], Nee-
lamani et al. [34].

Later, Cohen et al. [8] introduced an algorithm combining a Galerkin inversion
with a thresholding algorithm.

The approach developed in the sequel is greatly influenced by these previous
works. The accent we put here is on constructing (when necessary) new generation
wavelet-type bases well adapted to the operatorK , instead of sticking to the standard
wavelet bases and reducing the range of potential operators covered by the method.

2. Wave-VD-type estimation

We explain here the basic idea of the method, which is very simple. Let us expand f
using a well-suited basis (‘the wavelet-type’ basis’, to be defined later):

f =
∑

(f, ψλ)Hψλ.

Using Parseval’s identity we have βλ = (f, ψλ)H = ∑
fiψ

i
λ for fi = (f, ei)H and

ψiλ = (ψλ, ei)H. Let us put Yi = (Yε, gi)K. We then have

Yi = (Kf, gi)K +εξi = (f,K∗gi)K +εξi =
( ∑

j

fj ej ,K
∗gi

)
H

+εξi = bifi+εξi,

where the ξi’s are forming a sequence of independent centered gaussian variables with
variance 1. Furthermore,

β̂λ =
∑
i

Yi

bi
ψiλ
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is such that E(β̂λ) = βλ (i.e. its average value is βλ). It is a plausible estimate of βλ.
Let us now put ourselves in a multiresolution setting, taking λ = (j, k) for j ≥ 0, k
belonging to a set χj , and consider

f̂ =
J∑

j=−1

∑
k∈χj

t (β̂jk)ψjk,

where t is a thresholding operator. (The reader who is unfamiliar with thresholding
techniques is referred to Section 5.4.)

t (β̂jk) = β̂jkI {|β̂jk| ≥ κtεσj }, tε = ε
√

log 1/ε, (6)

where I {A} denotes the indicator function of the setA∗. Here κ is a tuning parameter
of the method which will be properly chosen later. A main difference here with the
direct case is the fact that the thresholding is depending on the resolution level through
the constant σj which also will be stated more precisely later. Our main discussion
will concern the choice of the basis (ψjk). In particular, we shall see that coherence
properties with the SVD basis are of special interest.

We will particularly focus on two situations (corresponding to the two examples
discussed in the introduction). In the first type of cases, the operator has as SVD bases
the Fourier basis. In this case, this ‘coherence’ is easily obtained with ‘standard’
wavelets (still, not any kind of standard wavelet as will be seen). However, more
difficult problems (and typically Wicksell’s problem) require, when we need to mix
these coherence conditions with the desired property of localisation of the basis, the
construction of new objects: second generation-type wavelets.

2.1. WAVE-VD in a wavelet scenario. In this section we take {ψjk, j ≥ −1,
k ∈ χj } to be a standard wavelet basis. More precisely, we suppose as usual that
ψ−1 stands for the scaling function and, for any j ≥ −1, χj is a set of order 2j

contained in N. Moreover, we assume that the following properties are true. There
exist constants cp, Cp, dp such that

cp2j (
p
2 −1) ≤ ‖ψjk‖pp ≤ Cp2j (

p
2 −1), (7)∥∥∥ ∑

k∈χj
ukψjk

∥∥∥p
p

≤ Dp
∑
k∈χj

|upk |‖ψjk‖pp for any sequence uk. (8)

It is well known (see for instance Meyer [32]) that wavelet bases provide charac-
terisations of smoothness spaces such as Hölder spaces Lip(s), Sobolev spaces Ws

p

as well as Besov spaces Bspq for a range of indices s depending on the wavelet ψ .
For the scale of Besov spaces which includes as particular cases Lip(s) = Bs∞∞ (if
s 
∈ N) and Ws

p = Bspp (if p = 2), the characterisation has the following form:

If f =
∑
j≥−1

∑
k∈Z

βjkψjk, then ‖f ‖Bspq ∼ ∥∥(
2j [s+

1
2 − 1

p
]‖βj ·‖lp

)
j≥−1

∥∥
lq
. (9)
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As in Section 5, we consider the loss of a decision f̂ if the truth is f as the Lp

norm ‖f̂ − f ‖p, and its associated risk

E‖f̂ − f ‖pp .
Here E denotes the expectation with respect to the random part of the observation yε.
The following theorem is going to evaluate this risk, when the strategy is the one
introduced in the previous section, and when the true function belongs to a Besov ball
(f ∈ Bsπ,r (M) ⇐⇒ ‖f ‖Bspq ≤ M). One nice property of this estimation procedure
is that it does not need the a priori knowledge of this regularity to get a good rate of
convergence. If (ek) is the SVD basis introduced in Section 1.2, bk are the singular
values and ψijk = 〈ei, ψjk〉, we consider the estimator f̂ defined in the beginning of
Section 2.

Theorem 2.1. Assume that 1 < p < ∞, 2ν + 1 > 0 and

σ 2
j :=

∑
i

[
ψijk

bi

]2

≤ C22jν for all j ≥ 0. (10)

Put κ2 ≥ 16p, 2J = [tε] −2
2ν+1 . If f belongs to Bsπ,r (M) with π ≥ 1, s ≥ 1/π , r ≥ 1

(with the restriction r ≤ π if s = (2ν + 1)
( p

2π − 1
2

)
), then we have

E‖f̂ − f ‖pp ≤ C log(1/ε)p−1[ε2 log(1/ε)]αp, (11)

with

α = s

1 + 2(ν + s)
if s ≥ (2ν + 1)

( p
2π − 1

2

)
,

α = s − 1/π + 1/p

1 + 2(ν + s − 1/π)
if 1
π

≤ s < (2ν + 1)
( p

2π − 1
2

)
.

Remarks. 1. Condition (10) is essential here. As will be shown later, this condition is
linking the wavelet system with the singular value decomposition of the kernelK . If
we set ourselves in the deconvolution case, the SVD basis is the Fourier basis in such
a way that ψijk is simply the Fourier coefficient of ψjk . If we choose as wavelet basis
the periodized Meyer wavelet basis (see Meyer [32] and Mallat [30]), conditions (7)
and (8) are satisfied. In addition, as the Meyer wavelet has the remarkable property
of being compactly supported in the Fourier domain, simple calculations prove that,
for any j ≥ 0, k, the number of i’s such that ψijk 
= 0 is finite and equal to 2j . Then
if we assume to be in the so-called ‘regular’ case (bk ∼ k−ν , for all k), it is easy to
establish that (10) is true. This condition is also true for more general cases in the
deconvolution setting such as the box-car deconvolution, see [22], [27].

2. These results are minimax (see [43]) up to logarithmic factors. This means
that if we consider the best estimator in its worst performance over a given Besov
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ball, this estimator attains a rate of convergence which is the one given in (11) up to
logarithmic factors.

3. If we compare these results with the rates of convergence obtained in the direct
model (see Subsections 5.3 and 5.4), we see that the difference (up to logarithmic
terms) essentially lies in the parameter ν which acts as a reducing factor of the rate
of convergence. This parameter quantifies the extra difficulty offered by the inverse
problem. It is often called coefficient of illposedness. If we recall that in the decon-
volution case, the coefficients bk are the Fourier coefficients of the function γ , the
illposedness coefficient then clearly appears to be closely related to the regularity of
the blurring function.

This result has been proved in the deconvolution case in [22]. The proof of the
theorem is given in Appendix I.

2.2. WAVE-VD in Jacobi scenario: NEED-VD. We have seen that the results given
above are true under the condition (10) on the wavelet basis.

Let us first appreciate how the condition (10) links the ‘wavelet-type’ basis to the
SVD basis (ek). To see this let us put ourselves in the regular case:

bi ∼ i−ν.
(By this we mean more precisely that there exist two positive constants c and c′ such
that c′i−ν ≤ bi ≤ ci−ν .)

If (10) is true, we have

C22jν ≥
∑
m

∑
2m≤i<2m+1

[
ψijk

bi

]2

.

Hence, for all m ≥ j , ∑
2m≤i<2m+1

[ψijk]2 ≤ c22ν(j−m).

This suggests the necessity to construct a ‘wavelet-type’ basis having support, at
the level j , with respect to the SVD basis (sum in i) concentrated on the integers
between 2j and 2j+1 and exponentially decreasing after this band. This is exactly the
case of Meyer’s wavelet, when the SVD basis is the Fourier basis.

In the general case of an arbitrary linear operator giving rise to an arbitrary SVD
basis (ek), and if in addition to (10) we add a localisation condition on the basis, we
do not know if such a construction can be performed. However, in some cases, even
quite as far from the deconvolution as the Wicksell problem, one can build a ‘second
generation wavelet-type’ basis, with exactly these properties.

The following construction due to Petrushev and collaborators ([33], [39], [38])
exactly realizes the paradigm mentioned above, producing a frame (the needlet basis)
in the case of Jacobi polynomials (as well as in different other cases such as spherical
harmonics, Hermite functions, Laguerre polynomials) which has the property of being
localised.
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3. Petrushev construction of needlets

Frames were introduced in the 1950s by Duffin and Schaeffer [15] to represent func-
tions via over-complete sets. Frames including tight frames arise naturally in wavelet
analysis on R

d . Tight frames which are very close to orthonormal bases are especially
useful in signal and image processing.

We will see that the following construction has the advantage of being easily
computable and producing well-localised tight frames constructed on a specified or-
thonormal basis.

We recall the following definition.

Definition 3.1. Let H be a Hilbert space. A sequence (en) in H is said to be a tight
frame (with constant 1) if

‖f ‖2 =
∑
n

|〈f, en〉|2 for all f ∈ H.

Let now Y be a metric space, μ a finite measure. Let us suppose that we have the
decomposition

L2(Y, μ) =
∞⊕
k=0

Hk,

where the Hk’s are finite dimensional spaces. For the sake of simplicity we suppose
that H0 is reduced to the constants.

Let Lk be the orthogonal projection on Hk:

Lk(f )(x) =
∫

Y
f (y)Lk(x, y)dμ(y) for all f ∈ L2(Y, μ),

where

Lk(x, y) =
lk∑
i=1

eki (x)ē
k
i (y),

lk is the dimension of Hk and (eki )i=1,...,lk is an orthonormal basis of Hk . Observe
that we have the following property of the projection operators:∫

Lk(x, y)Lm(y, z)dμ(z) = δk,mLk(x, z). (12)

The construction, also inspired by the paper of Frazier, Jawerth and Weiss [18], is
based on two fundamental steps: Littlewood–Paley decomposition and discretization,
which are summarized in the following two subsections.
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3.1. Littlewood–Paley decomposition. Letϕ be aC∞ function supported in |ξ | ≤ 1
such that 1 ≥ ϕ(ξ) ≥ 0 and ϕ(ξ) = 1 if |ξ | ≤ 1

2 . We define

a2(ξ) = ϕ(ξ/2)− ϕ(ξ) ≥ 0

so that ∑
j

a2(ξ/2j ) = 1 for all |ξ | ≥ 1. (13)

We further define the operator

�j =
∑
k≥0

a2(k/2j )Lk

and the associated kernel

�j(x, y) =
∑
k≥0

a2(k/2j )Lk(x, y) =
∑

2j−1<k<2j+1

a2(k/2j )Lk(x, y).

The following assertion is true.

Proposition 3.2. For all f ∈ H

f = lim
J→∞L0(f )+

J∑
j=0

�j(f ) (14)

and

�j(x, y)=
∫
Mj(x, z)Mj (z, y)dμ(z) for Mj(x, y)=

∑
k

a(k/2j )Lk(x, y). (15)

Proof.

L0(f )+
J∑
j=0

�j(f ) = L0 +
J∑
j=0

( ∑
k

a2(k/2j )Lk
)

=
∑
k

ϕ(k/2J+1)Lk (16)

Hence ∥∥∥ ∑
k

ϕ(k/2J+1)Lk(f )− f

∥∥∥2

=
∑
l≥2J+1

‖Ll(f )‖2 +
∑

2J≤l<2J+1

‖Ll(f )(1 − ϕ(l/2J+1)‖2

≤
∑
l≥2J

‖Ll(f )‖2 −→ 0, when J → ∞.

(15) is a simple consequence of (12). �
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3.2. Discretization. Let us define

Kk =
k⊕

m=0

Hm,

and let us assume that some additional assumptions are true:

1. f ∈ Kk �⇒ f̄ ∈ Kk .

2. f ∈ Kk , g ∈ Kl �⇒ fg ∈ Kk+l .

3. Quadrature formula: for all k ∈ N, there exists a finite subset χk of Y and
positive real numbers λξ > 0 indexed by the elements ξ of χk such that∫

f dμ =
∑
ξ∈χk

λξf (ξ) for all f ∈ Kk .

Then the operator Mj defined in the subsection above is such that Mj(x, z) =
Mj(z, x) and

z �→ Mj(x, z) ∈ K2j+1−1.

Hence
z �→ Mj(x, z)Mj (z, y) ∈ K2j+2−2,

and we can write

�j(x, y) =
∫
Mj(x, z)Mj (z, y) dμ(z) =

∑
ξ∈χ2j+2−2

λξMj (x, ξ)Mj (ξ, y).

This implies

�jf (x) =
∫
�j(x, y)f (y) dμ(y) =

∫ ∑
ξ∈χ2j+2−2

λξMj (x, ξ)Mj (ξ, y)f (y) dμ(y)

=
∑

ξ∈χ2j+2−2

√
λξMj (x, ξ)

∫ √
λξMj (y, ξ)f (y) dμ(y).

This can be summarized in the following way if we put
√
λξMj (x, ξ) = ψj,ξ (x) and

χ2j+2−2 = Zj :

�jf (x) =
∑
ξ∈Zj

〈f,ψj,ξ 〉ψj,ξ (x).

Proposition 3.3. The family (ψj,ξ )j∈N,ξ∈Zj
is a tight frame.
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Proof. As

f = lim
J→∞(L0(f )+

∑
j≤J

�j (f )),

we have

‖f ‖2 = lim
J→∞(〈L0(f ), f 〉 +

∑
j≤J

〈�j(f ), f 〉),

but

〈�j(f ), f 〉 =
∑
ξ∈Zj

〈f,ψj,ξ 〉〈ψj,ξ , f 〉 =
∑
ξ∈Zj

|〈f,ψj,ξ 〉|2,

and if ψ0 is a normalized constant we have 〈L0(f ), f 〉 = |〈f,ψ0〉|2 so that

‖f ‖2 = |〈f,ψ0〉|2 +
∑

j∈N, ξ∈Zj

|〈f,ψj,ξ 〉|2.

But this is exactly the characterization of a tight frame. �

3.3. Localisation properties. This construction has been performed in different
frameworks by Petrushev and coauthors giving in each situation very nice localisation
properties.

The following figure (thanks to Paolo Baldi) is an illustration of this phenomenon:
it shows a needlet constructed as explained above using Legendre polynomials of
degree 28. The highly oscillating function is a Legendre polynomial of degree 28,
whereas the localised one is a needlet centered approximately in the middle of the
interval. Its localisation properties are remarkable considering the fact that both
functions are polynomials of the same order.
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In the case of the sphere of R
d+1, where the spaces Hk are spanned by spherical

harmonics, the following localisation property is proved in Narcowich, Petrushev and
Ward [33]: for any k there exists a constant Ck such that

|ψjη(ξ)| ≤ Ck2dj/2

[1 + 2j arccos < η, ξ >]k .

A similar result exists in the case of Laguerre polynomials on R+ [25].
In the case of Jacobi polynomials on the interval with Jacobi weight, the following

localisation property is shown by Petrushev and Xu [38]. For any k there exist
constants C, c such that

|ψjη(cos θ)| ≤ C2j/2

(1 + (2j |θ − arccos η|)k
√
wαβ(2j , cos θ)

,

wherewαβ(n, x) = (1−x+n−2)α+1/2(1+x+n−2)β+1/2, −1 ≤ x ≤ 1 if α > −1/2,
β > −1/2.

4. NEED-VD in the Jacobi case

Let us now come back to the estimation algorithm.
We consider the inverse problem (2) with

H = L2(I, dγ (x)), I = [−1, 1], dγ (x) = ωα,β(x)dx,

ωα,β(x) = (1 − x)α(1 + x)β; α > −1/2, β > −1/2.

For the sake of simplicity, let us suppose α ≥ β. (Otherwise we can exchange the
parameters.)

LetPk be the normalized Jacobi polynomial for this weight. We suppose that these
polynomials appear as SVD basis of the operator K , as it is the case for the Wicksell
problem with β = 0, α = 1, bk ∼ k−1/2.

4.1. Needlets and condition (10). Let us define the ‘needlets’ as constructed above:

ψj,ηk (x) =
∑
l

â(l/2j−1)Pl(x)Pl(ηk)
√
bj,ηk . (17)

The following proposition asserts that such a construction always implies the
condition (10) in the regular case.

Proposition 4.1. Assume that ψj,ηk is a frame. If bi ∼ i−ν then

σ 2
j :=

∑
i

[
ψijk

bi

]2

≤ C22jν .
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Proof. Suppose the family ψj,ηk is a frame (not necessarily tight). As the elements of
a frame are bounded and the set {i, ψijk 
= 0} is included in the set {C12j , . . . , C22j },
we have ∑

i

[
ψijk

bi

]2

≤ C2jν‖ψj,ηk‖2 ≤ C′2jν . �

4.2. Convergence results in the Jacobi case. The following theorem is the analo-
gous of Theorem 2.1 in this case. As can be seen, the results there are at the same
time more difficult to obtain (the following theorem does not cover the same range as
the previous one) and richer since they furnish new rates of convergence.

Theorem 4.2. Suppose that we are in the Jacobi case as stated above (α ≥ β > − 1
2 ).

We put

tε = ε
√

log 1/ε,

2J = t
− 2

1+2ν
ε ,

choose κ ≥ 16p
[
1 + (

α
2 − α+1

p

)
+
]
, and suppose that we are in the regular case, i.e.

bi ∼ i−ν, ν > −1

2
.

Then, if f = ∑
j

∑
k βj,ηkψj,ηk is such that( ∑
|βj,ηk |p‖ψj,ηk‖pp

)1/p ≤ ρj2−js, (ρj ) ∈ lr ,
it follows that

E‖f̂ − f ‖pp ≤ C[log(1/ε)]p−1[ε√log(1/ε)
]μp

with

1. if p < 2 + 1
α+1/2 , then

μ = s

s + ν + 1
2

;

2. if p > 2 + 1
α+1/2 , then

μ = s

s + ν + α + 1 − 2(1+α)
p

.

This theorem is proved in Kerkyacharian et al. [26]. Simulation results on these
methods are given there, showing that their performances are far above the usual SVD
methods in several cases. It is interesting to notice that the rates of convergence which
are obtained here agree with the minimax rates evaluated in Johnstone and Silverman
[23] where the case p = 2 is considered. But the second case (p > 2+ 1

α+1/2 ) shows
a rate of convergence which is new in the literature. In [26], where the whole range
of Besov bodies is considered, more atypical rates are given.
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5. Direct models (K = I ): a memento

5.1. The density model. The most famous nonparametric model consists in observ-
ing n i.i.d. random variables having a common density f on the interval [0, 1], and
in trying to give an estimation of f .

A standard route to perform this estimation consists in expanding the density f in
an orthonormal basis {ek, k ∈ N} of a Hilbert space H – assuming implicitly that f
belongs to H:

f =
∑
l∈N

θlel.

If H happens to be the space L2 = {g : [0, 1] �→ R, ‖g‖2
2 := ∫ 1

0 g
2 < ∞}, we

observe that

θl =
∫ 1

0
el(x)f (x)dx = Eel(Xi).

Replacing the expectation by the empirical one leads to a standard estimate for θl :

θ̂l = 1

n

n∑
i=1

el(Xi).

At this step, the simplest choice of estimate for f is obviously:

f̂m =
m∑
i=1

θ̂lel . (18)

5.2. From the density to the white noise model. Before analysing the properties of
the estimator defined above, let us observe that the previous approach (representing
f by its coefficients {θk, k ≥ 0}, leads to summarize the information in the following
sequence model:

{θ̂k, k ≥ 0}. (19)

We can write θ̂k =: θk + uk , with

uk = 1

n

n∑
i=1

[ek(Xi)− θk],

The central limit theorem is a relatively convincing argument that the model (19) may
be approximated by the following one:{

θ̂k = θk + ηk√
n
, k ≥ 0

}
, (20)

where the ηk’s are forming a sequence of i.i.d. gaussian, centered variables with fixed
variance σ 2, say. Such an approximation requires more delicate calculations than
these quick arguments and is rigourously proved in Nussbaum [35], see also Brown
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and Low [5]. This model is the sequence space model associated to the following
global observation, the so-called white noise model (with ε = n−1/2):

dYt = f (t)dt + εdWt, t ∈ [0, 1],
where for anyϕ ∈ L

2([0, 1], dt), ∫[0,1] ϕ(t)dYt = ∫
[0,1] f (t)ϕ(t)dt+ε

∫
[0,1] ϕ(t)dWt

is observable.
(20) formally consists in considering all the observables obtained for ϕ = ek for

all k in N. Among nonparametric situations, the white noise model considered above
is one of the simplest, at least technically. Mostly for this reason, this model has
been given a central place in statistics, particularly by the Russian school, following
Ibraguimov and Has’minskii (see for instance their book [20]). However it arises
as an appropriate large sample limit to more general nonparametric models, such as
regression with random design, or non independent spectrum estimation, diffusion
models – see for instance [21], [4],. . . .

5.3. The linear estimation: how to choose the tuning parameter m? In (18), the
choice of m is crucial.

To better understand the situation let us have a look at the risk of the strategy f̂m.
If we consider that, when deciding f̂m when f is the truth, we have a loss of order
‖f̂m − f ‖2

2, then our risk will be the following mathematical expectation:

E‖f̂m − f ‖2
2.

Of course this way of measuring our risk is arguable since there is no particular
reason for the L2 norm to reflect well the features we want to recover in the signal.
For instance, an L∞-norm could be preferred because it is easier to visualize. In
general, several Lp norms are considered (as it is the case in Sections 2.1 and 4.2).
Here we restrict to the L2 case for sake of simplicity.

To avoid technical difficulties, we set ourselves in the case of a white noise model,
considering that we observe the sequence defined in (20). Hence,

E(θ̂l − θl)
2 = 1

n

∫ 1

0
el(x)

2dx = 1

n
:= ε2.

We are now able to obtain

E‖f̂m − f ‖2
2 =

∑
l≤m

(θ̂l − θl)
2 +

∑
l>m

θ2
l ≤ mε2 +

∑
l>m

θ2
l .

Now assume that f belongs to the following specified compact set of l2:∑
l>k

θ2
l ≤ Mk−2s for all k ∈ N∗, (21)
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for some s > 0 which is here an index of regularity directly connected to the size of
the compact set in l2 containing the function f . Then we obtain

E‖f̂m − f ‖2
2 ≤ mε2 +Mm−2s .

We observe that the RHS is the sum of two factors: one (called the stochastic term)
is increasing inm and reflects the fact that because of the noise, the more coefficients
we have to estimate, the larger the global error will be. The second one (called the
bias term or approximation term) does not depend on the noise and is decreasing inm.

The RHS is optimised by choosing m = m∗(s) =: c(s,M)ε −2
1+2s . Then

E‖f̂m∗(s) − f ‖2 ≤ c′(s,M)ε
−4s

1+2s .

Let us observe that the more f is supposed to be regular (in the sense the larger s
is), the less coefficients we need to estimate: a very irregular function (s close to 0)
requires almost as much as ε−2 = n coefficients, which corresponds to estimate as
many coefficients as the number of available observations – in the density model for
instance. The rate obtained in (5.3) can be proved to be optimal in the following sense
(minimax): if we consider the best estimator in its worst performance over the class
of functions verifying (21), this estimator attains a rate of convergence which is (up
to a constant) the one given in (5.3). See Tsybakov [40] for a detailed review of the
minimax point of view.

5.4. The thresholding estimation. Let us now suppose that the constant s, which
plays an essential role in the construction of the previous estimator is not known.
This is realistic, since it is extremely rare to know in advance that the function we are
seeking has a specified regularity. Also, the previous approach takes very seriously
into account the order in which the basis is taken. Let us now present a very elegant
way of addressing at the same time both of these issues. The thresholding techniques
which have been known for long by engineers in electronic and telecommunications,
was introduced in statistics in Donoho and Johnstone [14] and later in a series of
papers on wavelet thresholding [12], [13]. It allies numerical simplicity to asymptotic
optimality.

It starts from a different kind of observation. Let us introduce the following
estimate:

f̃ =
B∑
k=0

θ̂kI{|θ̂k| ≥ κtε}ek. (22)

Here the point of view is the following. We choose B very large (i.e. almost corre-
sponding to s = 0):

B = ε−2log 1/ε.

But instead of keeping all the coefficients θk such that k is between 0 and B, we
decide to kill those which are not above the threshold tε. The intuitive justification of
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this choice is as follows. Assuming that f has some kind of regularity condition like
(21) (unknown, but real...), essentially means that the coefficients θk of f are of small
magnitude except perhaps a small number of them. Obviously, in the reconstruction
of f , only the large coefficients will be significant. tε is chosen in such a way that the
noise θ̂k − θk due to the randomness of the observation might be neglected:

tε = ε[log 1/ε]−1/2.

Now let us assume another type of condition on f – easily interpreted by the
fact that f is sparsely represented in the basis (ek) – namely: there exists a positive
constant 0 < q < 2 such that

sup
λ>0

λq#{k, |θk| ≥ λ} ≤ M for all k ∈ N∗, (23)

E‖f̃ − f ‖2
2 =

∑
l≤B
(θ̂lI{|θ̂l| ≥ κtε} − θl)

2 +
∑
l>B

θ2
l

≤
∑
l

(θ̂l − θl)
2
I{|θl| ≥ κtε/2} +

∑
l

θ2
l I{|θl| ≤ 2κtε}

+
∑
l≤B

[(θ̂l − θl)
2 + θ2

l ]I{|θ̂l − θl| ≥ κtε/2} +
∑
l>B

θ2
l .

Now, using the probabilistic bounds

E(θ̂l − θl)
2 = ε2, P(|θ̂l − θl| ≥ λ) ≤ 2 exp − λ2

2ε2 for all λ > 0,

and the fact that condition (23) implies∑
l

θ2
l I{|θl| ≤ 2κtε} ≤ Ct2−q

ε ,

we get

E‖f̃ − f ‖2
2 ≤ Mε2t−qε + C′t2−q

ε + εκ
2/8B +

∑
l>B

θ2
l .

It remains now to choose κ2 ≥ 32 in order to get

E‖f̃ − f ‖2
2 ≤ C′t2−q

ε +
∑
l>B

θ2
l ,

and if we assume in addition to (23) that∑
l>k

θ2
l ≤ Mk− 2−q

2 for all k ∈ N∗, (24)
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then we get

E‖f̃ − f ‖2
2 ≤ C"t2−q

ε

Note that the interesting point in this construction is that the regularity conditions
imposed on the function f are not known by the statistician, since they do not enter
into the construction of the procedure. This property is called adaptation.

Now, to compare with the previous section, let us take q = 2
1+2s . It is not difficult

to prove that as soon as f verifies (21), it automatically verifies (23) and (24). Hence
f̃ and f̂m∗(s) have the same rate of convergence up to a logarithmic term. If we neglect
this logarithmic loss, we substantially gain here the fact that we need not know the
apriori regularity conditions on the aim function. It can also be proved that in fact
conditions (23) and (24) are defining a set which is substantially larger than the set
defined by condition (21): for instance its entropy is strictly larger (see [28]).

6. Appendix: Proof of Theorem 2.1

In this proof, C will denote an absolute constant which may change from one line to
the other.

We can always suppose p ≥ π . Indeed, if π ≥ p it is very simple to see

that Bsπ,r (M) is included into Bsp,r (M): as 2j [s+
1
2 − 1

p
]‖βj ·‖lp ≤ 2j [s+ 1

2 − 1
π

]‖βj ·‖lπ
(since χj is of cardinality 2j ).

First we have the following decomposition:

E‖f̂ − f ‖pp ≤ 2p−1
{
E

∥∥∥ J∑
j=−1

∑
k∈χj

(t (β̂jk)− βjk)ψjk

∥∥∥p
p

+
∥∥∥ ∑
j>J

∑
k∈χj

βjkψjk

∥∥∥p
p

}
=: I + II.

The term II is easy to analyse: since f belongs toBsπ,r (M), using standard embedding
results (which in this case simply follows from direct comparisons between lq norms)

we have that f also belong to B
s−( 1

π
− 1
p
)+

p,r (M ′), for some constant M ′. Hence∥∥∥ ∑
j>J

∑
k∈χj

βjkψjk

∥∥∥
p

≤ C2−J [
¯
s−( 1

π
− 1
p
)+]
.

Then we only need to verify that
s−( 1

π
− 1
p
)+

1+2ν is always larger that α, which is not
difficult.

Bounding the term I is more involved. Using the triangular inequality together
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with Hölder’s inequality and property (8) for the second line, we get

I ≤ 2p−1Jp−1
J∑

j=−1

E

∥∥∥ ∑
k∈χj

(t (β̂jk)− βjk)ψjk

∥∥∥p
p

≤ 2p−1Jp−1Dp

J∑
j=−1

∑
k∈χj

E|t (β̂jk)− βjk|p‖ψjk‖pp .

Now, we separate four cases:

J∑
j=−1

∑
k∈χj

E|t (β̂jk)− βjk|p‖ψjk‖pp

=
J∑

j=−1

∑
k∈χj

E|t (β̂jk)− βjk|p‖ψjk‖pp
{
I {|β̂jk| ≥ κtεσj } + I {|β̂jk| < κtεσj }

}

≤
J∑

j=−1

∑
k∈χj

[
E|β̂jk − βjk|p‖ψjk‖ppI {|β̂jk| ≥ κtεσj }
{
I
{
|βjk| ≥ κ

2
tεσj

}
+ I

{
|βjk| < κ

2
tεσj

}}
+ |βjk|p‖ψjk‖ppI {|β̂jk| ≤ κtεσj }{
I {|βjk| ≥ 2κtεσj } + I {|βjk| < 2κtεσj }

}]
≤: Bb + Bs + Sb + Ss.

Notice that β̂jk − βjk = ∑
i
Yi−bifi
bi

ψijk = ε
∑
i ξi

ψijk
bi

is a centered gaussian random

variable with variance ε2 ∑
i

[ψijk
bi

]2. Also recall that we set σ 2
j =: ∑

i[
ψijk
bi

]2 ≤ C22jν

and denote by sq the qth absolute moment of the gaussian distribution when centered
and with variance 1. Then, using standard properties of the gaussian distribution, for
any q ≥ 1 we have

E|β̂jk − βjk|q ≤ sqσ
q
j ε

q, P{|β̂jk − βjk| ≥ κ

2
tεσj } ≤ 2εκ

2/8.

Hence

Bb ≤
J∑

j=−1

∑
k∈χj

spσ
p
j ε

p‖ψjk‖ppI {|βjk| ≥ κ

2
tεσj },

Ss ≤
J∑

j=−1

∑
k∈χj

|βjk|p‖ψjk‖ppI {|βjk| < 2κtεσj }
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and

Bs ≤
J∑

j=−1

∑
k∈χj

[E|β̂jk − βjk|2p]1/2
[
P

{
|β̂jk − βjk| ≥ κ

2
tεσj

}]1/2

‖ψjk‖ppI
{
|βjk| < κ

2
tεσj

}
≤

J∑
j=−1

∑
k∈χj

s
1/2
2p σ

p
j ε

p21/2εκ
2/16‖ψjk‖ppI

{
|βjk| < κ

2
tεσj

}

≤ C

J∑
j=−1

2jp(ν+
1
2 )εpεκ

2/16 ≤ Cεκ
2/16.

Now, if we remark that the βjk’s are necessarily all bounded by some constant (de-
pending on M) since f belongs to Bsπ,r (M), and using (7),

Sb ≤
J∑

j=−1

∑
k∈χj

|βjk|p‖ψjk‖ppP{|β̂jk − βjk| ≥ 2κtεσj }I {|βjk| ≥ 2κtεσj }

≤
J∑

j=−1

∑
k∈χj

|βjk|p‖ψjk‖pp2εκ
2/8I {|βjk| ≥ 2κtεσj }

≤ C

J∑
j=−1

2j
p
2 εκ

2/8 ≤ Cε
κ2
8 − p

2(2ν+1) .

It is easy to check that in all cases, if κ2 ≥ 16p the terms Bs and Sb are smaller
than the rates given in the theorem.

Using (7) and condition (10), for any z ≥ 0 we have

Bb ≤ Cεp
J∑

j=−1

2j (νp+ p
2 −1)

∑
k∈χj

I
{
|βjk| ≥ κ

2
tεσj

}

≤ Cεp
J∑

j=−1

2j (νp+ p
2 −1)

∑
k∈χj

|βjk|z[tεσj ]−z

≤ Ctε
p−z

J∑
j=−1

2j [ν(p−z)+ p
2 −1] ∑

k∈χj
|βjk|z.
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Also, for any p ≥ z ≥ 0,

Ss ≤ C

J∑
j=−1

2j (
p
2 −1)

∑
k∈χj

|βjk|zσp−z
j [tε]p−z

≤ C[tε]p−z
J∑

j=−1

2j (ν(p−z)+ p
2 −1)

∑
k∈χj

|βjk|z.

So in both cases we have the same bound to investigate. We will write this bound
in the following form (forgetting the constant):

I + II = tε
p−z1

[ j0∑
j=−1

2j [ν(p−z1)+ p
2 −1] ∑

k∈χj
|βjk|z1

]

+ tε
p−z2

[ J∑
j=j0+1

2j [ν(p−z2)+ p
2 −1] ∑

k∈χj
|βjk|z2

]
.

The constants zi and j0 will be chosen depending on the cases.
Let us first consider the case where s ≥ (

ν + 1
2

)(p
π

− 1
)
. Put

q = p(2ν + 1)

2(s + ν)+ 1

and observe that, on the considered domain, q ≤ π and p > q. In the sequel it will
be used that we automatically have s = (

ν + 1
2

)(p
q

− 1
)
. Taking z2 = π we get

II ≤ tε
p−π[ J∑

j=j0+1

2j [ν(p−π)+ p
2 −1] ∑

k∈χj
|βjk|π

]
.

Now, as
p

2q
− 1

π
+ ν

(
p

q
− 1

)
= s + 1

2
− 1

π

and ∑
k∈χj

|βjk|π = 2−j (s+ 1
2 − 1

π
)τj

with (τj )j ∈ lr (this is a consequence of the fact that f ∈ Bsπ,r (M) and (6)), we can
write

II ≤ tε
p−π ∑

j=j0+1

2jp(1− π
q
)(ν+ 1

2 )τπj

≤ Ctε
p−π2j0p(1− π

q
)(ν+ 1

2 ).
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The last inequality is true for any r ≥ 1 if π > q and for r ≤ π if π = q. Notice
that π = q is equivalent to s = (ν + 1

2 )(
p
π

− 1). Now if we choose j0 such that

2j0
p
q
(ν+ 1

2 ) ∼ tε
−1 we get the bound

tε
p−q

which exactly gives the rate asserted in the theorem for this case.
As for the first part of the sum (before j0), we have, taking now z1 = q̃, with

q̃ ≤ π , so that
[ 1

2j
∑
k∈χj |βjk|q̃

] 1
q̃ ≤ [ 1

2j
∑
k∈χj |βjk|π

] 1
π , and using again (6),

I ≤ tε
p−q̃[ j0∑

−1

2j [ν(p−q̃)+ p
2 −1] ∑

k∈χj
|βjk|q̃

]

≤ tε
p−q̃[ j0∑

−1

2j [ν(p−q̃)+ p
2 − q̃

π
] ∑
k∈χj

|βjk|π ] q̃π
]

≤ tε
p−q̃

j0∑
−1

2j [(ν+
1
2 )p(1− q̃

q
)]
τ
q̃
j

≤ Ctε
p−q̃2j0[(ν+ 1

2 )p(1− q̃
q
)]

≤ Ctε
p−q .

The last two lines are valid if q̃ is chosen strictly smaller than q (this is possible since
π ≥ q).

Let us now consider the case where s <
(
ν + 1

2

)(p
q

− 1
)
, and choose

q = p

2
(
s + ν − 1

π

) + 1

in such a way that we easily verify thatp−q = 2 s−1/π+1/p
1+2(ν+s−1/π) , q−π = (p−π)(1+2ν)

2
(
s+ν− 1

π

)
+1
>

0, because s is supposed to be larger than 1
π

. Furthermore we also have s + 1
2 − 1

π
=

p
2q − 1

q
+ ν

(p
q

− 1
)
.

Hence taking z1 = π and using again the fact that f belongs to Bsπ,r (M),

I ≤ tε
p−π[ j0∑

−1

2j [ν(p−π)+ p
2 −1] ∑

k∈χj
|βjk|π

]

≤ tε
p−π

j0∑
−1

2j [(ν+
1
2 − 1

p
)
p
q
(q−π)]

τπj

≤ Ctε
p−π2j0[(ν+ 1

2 − 1
p
)
p
q
(q−π)]

.
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This is true since ν + 1
2 − 1

p
is also strictly positive because of our constraints. If we

now take 2j0
p
q
(ν+ 1

2 − 1
p
) ∼ tε

−1 we get the bound

tε
p−q

which is the rate stated in the theorem for this case.
Again, for II, we have, taking now z2 = q̃ > q (> π),

II ≤ tε
p−q̃[ J∑

j=j0+1

2j [ν(p−q̃)+ p
2 −1] ∑

k∈χj
|βjk|q̃

]
≤ Ctε

p−q̃ ∑
j=j0+1

2j [(ν+
1
2 − 1

p
)
p
q
(q−q̃)]

z
q̃
π

j

≤ Ctε
p−q̃2j0[(ν+ 1

2 − 1
p
)
p
q
(q−q̃)]

≤ Ctε
p−q .
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Conformal restriction properties

Wendelin Werner∗

Abstract. We give an introduction to some aspects of recent results concerning conformally
invariant measures. We focus in this note on the conformal restriction properties of some mea-
sures on curves and loops in the plane, and see that these properties in fact almost characterize
the measures and allow to classify them. For example, there basically exists a unique measure μ
on the set of self-avoiding loops in the plane, such that for any two conformally equivalent do-
mainsD andD′, the restrictions ofμ to the set of loops remaining inD and inD′ are conformally
equivalent.

This enables to show that a priori different discrete models define the same curves in the
scaling limit and exhibit some surprising symmetries. It gives also a way to tie links between
these concrete measures on curves and conformal field theory. Important roles in this theory are
played by Brownian loops and by the Schramm–Loewner Evolutions (SLE).

Most of the results described in this paper were derived in joint work with Greg Lawler, and
Oded Schramm.

Mathematics Subject Classification (2000). Primary 60K35; Secondary 82B27, 60J65, 30Cxx.

Keywords. Conformal invariance, random curves, random loops, Brownian motion, percola-
tion.

1. A very brief introduction

The last years have seen progress in the mathematical understanding of random two-
dimensional structures arising as scaling limits of two-dimensional systems from
statistical physics. These probabilistic questions are related to complex analysis con-
siderations (because conformal invariance plays an important role in the description
of these objects) and to conformal field theory (that had been developed by theoretical
physicists precisely to understand these questions).

Mathematically speaking, one can broadly distinguish two types of questions:
Firstly, proving the convergence of the natural discrete lattice-based models from
statistical physics to conformally invariant scaling limits. This aspect based on specific
lattice models will be discussed in Schramm’s and Smirnov’s papers in the present
proceedings, and will not be the main focus of the present paper. The second type of
questions is to define directly the possible continuous limiting objects and to study their
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properties. Two ideas have emerged and can be fruitfully combined to study these
continuous objects: The Schramm–Loewner Evolutions (SLE) are random planar
curves that are explicitly defined via iterations of random conformal maps, and they
appear to be the only ones that combine conformal invariance with a certain Markov
property. This shows that they are the only possible conformally invariant scaling
limits of interfaces of the critical lattice models. Another instrumental idea is to study
how close or how different the random objects defined in different but close domains
are, and to see what the conformally invariant possibilities are. This very last approach
will be the main focus of the present survey. We warn the reader that we will here
remain on a rather general introductory level.

2. Conformal invariance of planar Brownian paths

In this section, we first recall Paul Lévy’s result on conformal invariance of planar
Brownian paths. We then describe some conformally invariant measures on Brownian
loops and Brownian excursions.

2.1. Paul Lévy’s theorem. Consider a simple random walk (Sn, n ≥ 0) on the
square lattice Z

2 (but in fact any planar lattice with some rotational symmetry would
do) started from the origin (i.e. S0 = 0). At each integer time, this random walk moves
independently to one of its four neighbors with probability 1/4. In other words, the
probability that the first n steps of S are exactly a given nearest-neighbor path on the
lattice is equal to 4−n. It is a simple consequence of the central limit theorem that when
N → ∞, the law of (S[2Nt]/

√
N, t ≥ 0) converges in some suitable topology to that

of a continuous random two-dimensional path (Bt , t ≥ 0)with Gaussian independent
increments called planar Brownian motion.

It should be noted that planar Brownian paths have a rather complicated geome-
try. Even if their Lebesgue measure in the plane is almost surely equal to zero, the
Hausdorff dimension of a Brownian path is equal to 2 (this can be related to the

√
N

normalization of the simple random walk). Also, there almost surely exists excep-
tional points of any (including infinite) multiplicity on planar Brownian paths (see
[24] and the references therein).

Elementary properties of Gaussian random variables show that the law of the
process B is invariant under rotations in the plane, and that it is also scale-invariant
(this is also quite clear from the normalization of the random walk) in the following
sense: For each given λ > 0, the laws of (Bλ2t , t ≥ 0) and of (λBt , t ≥ 0) are
identical. In other words, if one looks at the path of a Brownian motion with a
magnifying glass, one sees exactly a Brownian motion, but running at a faster “speed”.
Paul Lévy (see e.g. [25]) has observed more than fifty years ago that planar Brownian
paths exhibit conformal invariance properties that generalize scale-invariance and
rotation-invariance, and that we are now describing:
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Consider two given conformally equivalent planar domains D and D′: These are
two open subsets of C such that there exists an angle-preserving (and orientation-
preserving) bijection (i.e. a conformal map) � from D onto D′. Recall that when D
andD′ are two simply connected proper open subsets of the plane, then by Riemann’s
mapping Theorem, there exists a three-dimensional family of such conformal maps
from D onto D′. Consider a point z in D and define its image z′ = �(z). Then,
define a planar Brownian motion (Bt , t ≥ 0) that is started from B0 = z, and denote
by T its exit time from the domain D (i.e. T = inf{t ≥ 0 : Bt /∈ D}). For each
t < T , one can therefore define �(Bt), and when t → T , �(Bt) hits the boundary
of D′ = �(D). Then:

Theorem 2.1 (Paul Lévy). The path (�(Bt ), t ≤ T ) is a time-changed planar Brown-
ian motion in D′, started at z′ and stopped at its first exit time of D′.

The time-change means that there exists a (random continuous increasing) time-
reparametrization t = t (s) such that (�(Bt(s)), s ≥ 0) is exactly a Brownian motion
in D′. In order to state exact conformal invariance properties, we will from now on
consider paths defined “modulo increasing time reparametrization”.

Lévy’s Theorem is nowadays usually viewed as a standard application of stochastic
calculus (Itô’s formula). It has led to probabilistic approaches to aspects of potential
theory and complex analysis.

2.2. Brownian excursions, Brownian loops. It might be desirable to define con-
formally invariant random objects in a domain D ⊂ C, but where no marked point
in D is given. In Lévy’s Theorem, the starting point of the Brownian path is such a
special prescribed point. There are (at least) two natural ways to get rid of it without
loosing conformal invariance, that both give rise to infinite measures (i.e. measures
with an infinite total mass) on Brownian curves.

• A first possibility, described in [22], is to consider Brownian paths that start
and end at the boundary of D: Call an excursion in D a continuous path
(e(t), 0 ≤ t ≤ T ) such that e(0, T ) ⊂ D and e(0) ∈ ∂D, e(T ) ∈ ∂D. Then,
for each D, one can define an infinite measure excD on the set of “Brownian”
excursions in D (with unprescribed time-length) in such a way that the image
under a conformal map � from D onto D′ of the measure excD is identical to
excD′ modulo time-change.

One way to describe the measure in the case where D is equal to the unit
disc U (and therefore in the case of all other simply connected domains D via
conformal invariance) is to take the limit when ε goes to zero of ε−1 times
the law of a Brownian motion started uniformly on the circle (1 − ε)∂U and
stopped at its first hitting time of the unit circle ∂U. One can also view these
measures excD as the scaling limits (when δ → 0) of the measures on discrete
excursions on approximations of D by a subset of δZ2 that assign a mass 4−n
to each discrete excursion with n steps (see e.g. [12] for precise estimates).



744 Wendelin Werner

Figure 1. A Brownian excursion in the upper half-plane.

Figure 2. Its conformal image in the unit disc.

• A second possibility, described in [23], that will be important in the present
paper, is to consider loops instead of open-ended paths. We say that a continuous
planar path (�t , 0 ≤ t ≤ T ) is a rooted loop if �0 = �T . The term rooted is
used to emphasize that with this definition, there is a marked point on the
loop, namely the starting point �0. Note that it is possible to re-root a given
loop by defining (�′t = �t+t0 , 0 ≤ t ≤ T ) for a given fixed t0 (where � is
extended into a T -periodic function). We may want to say however that �
and �′ define in fact the same unrooted loop. Hence, we call an unrooted loop
the equivalence class of a rooted loop modulo the equivalence defined by this
re-rooting procedure. In order to simplify the conformal invariance statements,
we will also say that an unrooted loop is defined modulo increasing continuous
time-reparametrizations.

Then [23], there exists a measureM on the set of unrooted (Brownian) loops in
the plane with strong conformal invariance properties: For any two conformally
equivalent open domains D and D′ = �(D), if MD (resp. M ′

D) denotes the
measure M restricted to the set of loops that stay in D (resp. D′), then the
image measure of MD under the conformal map � from D onto D′ is exactly
the measure MD′ .

One can view this measureM as the limit when δ goes to zero of the measures
on discrete unrooted loops in δZ2 that assign a mass 4−n to each loop with n
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Figure 3. A Brownian loop.

steps (see e.g. [20] for precise estimates). A direct construction of M goes
as follows ([23]): It is easy to define the law Pz,T of a Brownian loop with a
given time-length T that starts and ends at a given point z. This can be viewed
as the conditioning of a Brownian path (Bt , t ≤ T ) started from B0 = z by
the event BT = z (this event has zero probability but it is no big deal to make
sense of this). Then, one can define a measure M̃ on rooted Brownian loops
by integrating the starting point z with respect to the Lebesgue measure in the
plane, and the time-length by the measure dT /T 2. Then,M is just the measure
on the set of unrooted loops induced by M̃ .

Note that excD and M are infinite measures (this follows readily from the scale
invariance of M and from the scale-invariance of the excursion measure excH in the
upper half-plane), so that we can in both cases choose a normalization constant as
we wish (i.e. multiply the measures by a well-chosen constant). In fact, the different
descriptions of the measures that we did (and will) give differ by a multiplicative
constant, and we will not really care here about the exact choice of the constant in the
definition of M .

Since these are measures on Brownian paths, they are supported on the set of paths
with Hausdorff dimension equal to two, but that the mass of the set of paths that go
through any given prescribed point z is equal to zero.

In a way, both these measures are invariant under a larger class of conformal
transformations than the killed Brownian motions defined in the previous subsection
because no marked starting point is prescribed. Just as killed Brownian motions
describe conformally invariant quantities associated to a given marked point such as
the harmonic measure, these two measures define also natural conformally invariant
quantities that can be related to extremal distances or Schwarzian derivatives for
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instance.

Let us finally define a further useful Brownian measure, the Brownian excursion
measure with prescribed endpoints: The excursion measure excU can be decomposed
according to the starting and endpoints of the Brownian excursions. This gives rise for
eachA �= B on ∂U to a probability measure eU,A,B on the set of Brownian excursions
fromA toB in U. This defines (not surprisingly) again a conformally invariant family
of probability measures (eD,A,B) where (D,A,B) spans the set T the set of triplets
(D,A,B) such that D is a simply connected proper subset of C and A and B denote
two distinct prime ends ofD. When the boundary ofD is a smooth self-avoiding loop,
this means that A and B are two distinct boundary points. When � is a conformal
map from D onto D′, then “�(A)” and “�(B)” are then by definition distinct prime
ends of D′ = �(D).

3. Conformal restriction

We have so far defined some measures on Brownian paths with conformal invariance
properties. This means that for each (simply connected) domain, we had a measure
mD on paths in D, and that the family (mD) is conformally invariant (i.e. � �mD =
m�(D)). But when D′ ⊂ D, it is also natural to compare mD′ with the measure mD
restricted to those paths that stay in D′. The conformal restriction property basically
requires that these two measures coincide (and that conformal invariance also holds).

3.1. Loops. Suppose that ν is a measure on loops in the plane. As in the rest of the
paper, the loops are unrooted and defined modulo increasing time-reparametrizations.
For each open domain D, we define νD to be the measure ν restricted to the set of
loops that stay in D.

Definition 3.1. We say that ν satisfies conformal restriction (resp. conformal restric-
tion for simply connected domains) if for any open domain (resp. open simply con-
nected domain)D and any conformal map� : D → �(D), one has� � νD = ν�(D).

We have already seen one measure satisfying conformal restriction in the previous
section: The measure M on Brownian loops in the plane.

Let us now describe a simple argument that shows that all measures that satisfy
conformal restriction are closely related. Before that, let us introduce the notion of
the filling of a loop. If γ is a loop in the plane, we define its filling K(γ ) to be the
complement of the unbounded connected component of C \ γ . In other words,K(γ )
is obtained by filling in all the bounded connected components of the complement
of γ . Clearly, any measure on loops defines a measure on their fillings, and we can
also define the conformal restriction property for measures on fillings.
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Proposition 3.2 ([42]). Up to multiplication by a positive constant, there exists a
unique measure on fillings that satisfies conformal restriction for simply connected
domains. It can be defined as the measure on filling of Brownian loops.

Figure 4. A self-avoiding loop.

Proof (sketch). In this proof, we will always discuss conformal restriction for simply
connected domains. The existence part of the proposition follows from the fact that
the measure M on Brownian loops exists and satisfies conformal restriction (so that
the fillings of Brownian loops satisfy conformal restriction as well). It remains to
prove the uniqueness statement.

Consider the family U of conformal maps ϕ from some (unprescribed) simply
connected subset U of the unit disc U containing the origin onto the unit disc U,
such that ϕ(0) = 0 and ϕ′(0) is a positive real number. Riemann’s mapping theorem
shows that for any simply connected domainU ⊂ U with 0 ∈ U , there exists a unique
ϕ = ϕU ∈ U fromU onto U. Note that U is closed under composition: If ϕU and ϕV
are in U, then so isψ = ϕU �ϕV (it is a conformal map from ϕ−1

V �ϕ−1
U (U) = ϕ−1

V (U)

onto U with the right properties at the origin). Note that of course, logψ ′(0) =
logϕ′

U(0) + logϕ′
V (0). It is also straightforward to check that ϕ′

V (0) ≥ 1 because
V ⊂ U.
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Suppose now that a measure ν on fillings satisfies conformal restriction. Let us
define for each ϕU ∈ U,

A(ϕU) = ν({K : 0 ∈ K, K ⊂ U, K �⊂ U}).
This is the mass of fillings containing the origin, that stay in U but not in U . Then, it
is easy to see that

A(ϕU � ϕV ) = A(ϕU)+ A(ϕV ).

Indeed, there are two types of fillings that contain the origin, stay in U but not in
ϕ−1
V � ϕ−1

U (U):

• Those that do not stay in V = ϕ−1
V (U) and the set of these fillings has a ν-mass

equal to A(ϕV ) by definition.

• Those that stay in V = ϕ−1
V (U) but not in ϕ−1

V (ϕ−1
U )(U) = ϕ−1

V (U). But by
conformal invariance (via the mapping ϕV ), this set is conformally equivalent
to the set of loops that stay in U and not in U . So, its ν-mass is A(ϕU).

Rather soft considerations (for instance involving Loewner’s approximation of any
mapping in U by iterations of slit mappings) then imply that the functional A is
necessarily of the form A(ϕU) = c logϕ′

U(0) for a positive constant c.
Hence, it follows by conformal invariance that for each z ∈ D′ ⊂ D, the ν-mass

of the set of fillings that contain z, stay in the simply connected domain D but not in
the simply connected domain D′ is equal to c times the logarithm of the derivative
at z of the conformal map from D′ onto D that fixes z and has positive derivative
at z. Soft arguments (of the type “a finite measure is characterized by its values on
a intersection-stable set that generates the σ -field”) then show that (for each choice
of c) this characterizes the measure ν uniquely. This implies the uniqueness part of
the proposition. �

It is possible to show that the boundary of a Brownian loop is almost surely a self-
avoiding loop (the fact that it is a continuous loop is straightforward, but the fact that
it has no double point requires some estimates, see e.g. [4]). Hence, the proposition
shows that modulo multiplication by a positive constant, there is a unique measureμon
self-avoiding loops that satisfies conformal restriction for simply connected domains.
As we shall see later, it turns out that it satisfies also the general conformal restriction
property.

In [15], [16] (see also Schramm’s contribution in these proceedings), it is proved
that the Hausdorff dimension of the outer boundary of a Brownian path is almost
surely 4/3 (the proof uses SLE considerations and we shall explain why later in this
paper). Hence:

Corollary 3.3. For the (up-to-constants) unique measure on fillings that satisfies
conformal restriction, the boundary of the filling is almost surely a self-avoiding loop
with dimension 4/3.
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3.2. The chordal case. Suppose that for each (D,A,B) ∈ T , we have the law
PD,A,B of a random excursion from A to B in D. We say that the family (PD,A,B)
is conformally invariant if for any D,A,B and any conformal map from D onto
some domain D′ = �(D), the image measure of PD,A,B under � is the measure
P�(D),�(A),�(B).

This implies in particular thatPD,A,B is invariant under any conformal map fromD
onto itself that preserves the boundary points A and B. For instance, for D = H,
A = 0 and B = ∞, this means that PH,0,∞ is scale-invariant (i.e. for each λ > 0, γ
and λγ have the same law modulo time-reparametrization). We then say that the
probability measure PD,A,B is conformally invariant.

Conversely, if one has a probability measure P on excursions fromA0 toB0 inD0
for some given triplet (D0, A0, B0) that is conformally invariant, one can simply define
for each D,A,B in T the measure PD,A,B to be the conformal image of P under a
conformal map from (D0, A0, B0) onto (D,A,B). The obtained family (PD,A,B) is
then conformally invariant.

We say that the family (PD,A,B) is restriction-invariant if for anyD,A,B, and any
simply connected subset D′ of D such that the distance between {A,B} and D \D′
is positive (this implies in particular that A and B are on ∂D′), one has

PD,A,B( · | γ ⊂ D′) = PD′,A,B( · ).
In other words, if γ is defined under PD,A,B , the conditional law of γ given γ ⊂ D′
is exactly PD′,A,B .

Definition 3.4. We say that the probability measure PD,A,B for some (D,A,B) ∈ T
satisfies conformal restriction if:

• It is conformally invariant.

• The conformally invariant family that it defines is restriction-invariant

Note that an excursion γ from A to B in D defines also a filling K(γ ), and that
one can generalize the conformal restriction property to fillings also.

For a fixed tripletD,A,B, we call DD,A,B the set of all simply connected domains
D′ ⊂ D such that the distance between D \ D′ and {A,B} is strictly positive. For
each such D′, we define a conformal map from D′ back onto D with �(A) = A and
�(B) = B. In the case where ∂D is smooth in the neighborhood ofA and B, one can
define �′(A) and �′(B) (which are real numbers) and note that the product of these
two derivatives does not depend on which� (in the possible one-dimensional family
of maps) one did choose. When ∂D is not smooth in the neighborhood of A and B, it
is still possible to make sense of the quantity “�′(A)�′(B)” by conformal invariance
(mapD onto the unit disc, and look at the corresponding quantity for the image of A,
B andD′). In short, the quantity�′(A)�′(B) is a conformally invariant quantity that
measures how smaller D′ is compared to D, seen from the two points/prime ends A
and B.
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Theorem 3.5 ([17]). For each triple (D,A,B) ∈ T , there exists exactly (and in
particular: no more than) a one-parameter family of measures on fillings that satisfy
conformal restriction. It is parametrized by a number α ∈ [5/8,∞) and for each α,
the corresponding measure PαD,A,B is characterized by the property that for each
D′ ∈ DD,A,B ,

PαD,A,B(K ⊂ D′) = (�′(A)�′(B))α.

Proof (sketch). The uniqueness part is analogous to the loop case: By conformal
invariance, we may choose D, A, B to be U,−1, 1. Then, the set D := DU,−1,1 is
the family of simply connected subsets U of U such that U \U is at positive distance
from 1 and −1. For each suchU , we define ψ = ψU to be the unique conformal map
from U onto U such that ψ(−1) = −1, ψ(1) = 1 and ψ ′(−1) = 1. The family of
these conformal maps is closed under composition, and for two such mapsψ1 andψ2,
(ψ1 � ψ2)

′(1) = ψ ′
1(1)ψ

′
2(1).

Suppose that the measure P on fillings of excursions from −1 to 1 in U satisfies
conformal restriction. We then define for each such U ∈ D ,

A(ψU) = P(K ⊂ U).

Conformal restriction implies readily that A(ψU �ψV ) = A(ψU)×A(ψV ) for all U
and V in D , and this leads to the fact that there exists a positive constant α such that

P(K ⊂ U) = A(ψU) = ψ ′
U(1)

α.

But the probability measure P is fully characterized by the knowledge of all the
probabilities P(K ⊂ U) for U ∈ D .

It then remains to see that for each α ≥ 5/8, these identities indeed describe a
probability measure on fillings, and that when α < 5/8, no such measure exists.
The way we prove this in [17] is that we explicitly construct the measure when
α ≥ 5/8 using the Schramm–Loewner Evolution (SLE) process. For α < 5/8, we
also construct what would be the unique possible candidate (that satisfies a weaker
condition – called the one-sided conformal restriction property – than the conformal
restriction property that we described) for P (via SLE or Brownian means), and we
show that this candidate fails to satisfy the actual conformal restriction property. �

It is easy to check that the Brownian excursions fromA toB inD (and their fillings
therefore also) defined by eD,A,B do satisfy conformal restriction for α = 1, so that
for P 1

D,A,B the boundary of the filling is almost surely supported on sets of Hausdorff
dimension 4/3.

Let us give a partial description of the boundary of these fillings for general α in
terms of Brownian excursions. Let us stick to case of the triplet U,−1, 1. Suppose
that K is a filling satisfying conformal restriction. Then it turns out that K ∩ ∂U =
{−1, 1} and that the complement ofK in U consists of two connected components: The
upper one O+ such that ∂O+ contains the upper half-circle ∂+ := {eiθ , θ ∈ (0, π)}
and the lower oneO−, such that ∂O− contains the lower semi-circle ∂−. The boundary
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Figure 5. A Brownian excursion from −1 to 1 in the unit disc (sketch).

ofO+ (resp.O−) then consists of the upper (resp. lower) semi-circle and a continuous
curve γ+ (resp. γ−) joining −1 to +1 in U. It is then not difficult to see that the law
of γ+ is characterized by the fact that for any U ∈ D , such that U \ U is at positive
distance of the lower semi-circle (i.e. U \ U is attached to the upper semi-circle)

Pα(γ+ ⊂ U) = ϕ′
U(1)

α

(we will call D+ this subset of D). One way to construct such a random curve uses
a Poissonization argument and the Brownian excursion measure that we described
earlier. Since a similar Poissonization argument will be useful in another setup a little
bit later, let us briefly describe this classical idea in abstract terms:

Suppose that N is a σ -finite measure without atoms on some space X. We can
define the law of a random countable family X = {Xj, j ∈ J } of elements of X in
such a way that:

• For eachA1, A2 ⊂ X in the σ -field on whichN is defined, such thatA1∩A2 =
∅, the random families X ∩ A1 and X ∩ A2 are independent.

• For eachA1 as above, the probability thatX∩A1 is empty equals exp(−N(A1)).

The law of X is in fact characterized by these two properties. It is easy to see that for
each A, the cardinality of X ∩ A is a Poisson random variable with mean N(A) (so
that it is a.s. infinite if and only if N(A) = ∞). X is called a Poisson point process
with intensity N .

Note that if X1 and X2 are two independent Poisson point processes on the same
space X with respective intensityN1 andN2, thenX1 ∪X2 is a Poisson point process
with intensity N1 +N2.

Using this idea, one can define on the same probability space a collection
(Xc, c ≥ 0) of Poisson point processes in such a way thatXc ⊂ Xc′ for all c ≤ c′, and
such that the intensity of Xc is cN . One intuitive way to view this is to say that with
time, elements of X appear independently. During a time-interval dt , an element of
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a set A ⊂ X will appear with probability dt × N(A). Then, Xc denotes the family
of elements that did appear before time c.

Let us now use this construction for a measureN on the space of excursions in U.
More precisely, we define X the set of excursions in U that start and end on the lower
semi-circle ∂−, and we define N to be excU restricted to this set of excursions.

Hence, for each c, the previous procedure defines a random countable collection
of Brownian excursions Ec = (ej , j ∈ Jc) starting and ending on the negative half-
circle. Despite the fact that this collection is almost surely infinite (because the total
mass of N is infinite), the total number of excursions of diameter greater than ε is
almost surely finite for all positive ε (because the N-mass of this set of excursions
is finite). In particular, this implies that the “upper boundary” γ+ of the union of all
excursions in Ec does not intersect the upper semi-circle ∂+. It does not exit a given
U ∈ D+ if and only if no excursion inEc does exitU , and by definition, this happens
with probability exp(−cN({γ : γ �⊂ U})).

The conformal restriction property of the excursion measure shows that for each
U ∈ D+, the image under ϕU of the measureN restricted to the set of excursions that
stay in U is exactly equal to N . It follows readily from this fact that exp(−N({γ :
γ �⊂ U})) = ϕ′

U(1)
α1 for some α1. Hence, for each α > 0, if one chooses c = α/α1,

the curve γ+ does indeed satisfy P(γ+ ⊂ U) = ϕ′
U(1)

cα1 = ϕ′
U(1)

α .
The fact that α < 5/8 is not possible corresponds to the fact that the probability

that γ+ goes “below” the origin becomes larger than 1/2, which is not possible for
symmetry reasons if it is equal to the upper boundary of a filling satisfying conformal
restriction.

For more precise statements and also other possible descriptions of the joint law
of (γ+, γ−), see [17], [39], [40].

4. Related models

So far, we have defined only measures on Brownian curves, and we have basically
shown that any measure satisfying conformal restriction defines the same outer bound-
ary as that of these Brownian measures. The theory becomes interesting when we
note that some a priori different measures do also satisfy conformal restriction.

4.1. Percolation. We now very briefly describe the percolation model that has been
proved by Smirnov [35] to be conformally invariant in the scaling limit. Consider
the honeycomb lattice (the regular tiling of the plane by hexagons) with mesh size δ.
Each hexagon is colored independently in black or in white with probability 1/2.
Then, we are interested in the connectivity properties of the set of white (resp. black)
cells. We call white (resp. black) cluster a connected component of the union of the
white (resp. black) cells. This model is sometimes called “critical site-percolation on
the triangular lattice”.
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Figure 6. A rescaled large percolation cluster.

By now classical arguments due to Russo, Seymour and Welsh show that the
number of clusters that are of diameter ε > 0 in the unit disc remains tight when
δ → 0. This suggests the existence of a scaling limit for the joint law on all clusters
when δ (in an appropriately chosen topology). Smirnov [35] proved the existence
of the limit of certain observables (the crossing probabilities) and their conformal
invariance.

A consequence of this result is [36] that it is possible to use SLE computations from
[14], [15] and earlier results from Kesten [11] to deduce the existence and the value
of the critical exponents for critical percolation as predicted by theoretical physicists
such as Cardy, Duplantier, Saleur (see e.g. the references in [36]). But, we would here
like to focus on the conformal restriction aspect of the scaling limit of percolation and
its consequences. We will remain on a heuristic level, but what follows can be made
rigorous:

A percolation configuration is described by its white (say) clusters (Cj , j ∈ J ).
Smirnov’s result can be shown to imply (see [5]) the convergence in law of this family
when δ → 0 to the joint law of a collection of “clusters” (Cj , j ∈ J ) in the plane.
A slightly weaker statement is that the measure on clusters πδ that assigns to each
possible cluster the probability that this cluster indeed occurs converges when δ → 0
towards a measure on “clusters” π . The measure π satisfies conformal restriction.
This is due to the combination of conformal invariance (due to Smirnov’s result) and
of the independence properties of percolation from which restriction immediately
follows in the scaling limit. Hence:

Proposition 4.1. The measure π on scaling limits of critical percolation clusters
satisfies conformal restriction.

So, π defines exactly the same fillings as (a multiple) of the Brownian loop mea-
sure M , and it defines a measure on outer boundaries that is exactly a multiple of μ.
In other words, the shape of the outer perimeter of a very large percolation cluster has
(in the scaling limit) the same law than the outer boundary of a Brownian loop.
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4.2. The self-avoiding walk conjectures. A classical open problem is to understand
the behavior of very long self-avoiding paths, sampled uniformly among all such long
self-avoiding paths on some planar lattice with a given starting point and a given
length N , in the limit when N → ∞.

It is believed that in the scaling limit (for regular periodic lattices with some
rotational symmetry) these paths exhibit conformal invariance properties. This led
to various striking predictions by theoretical physicists concerning this model and its
critical exponents.

For instance, it is believed that the diameter of a typical self-avoiding path withN
steps is of the order of N3/4. This can be loosely phrased in terms of “fractal di-
mension” since it means that one requires N steps of size N−3/4 to cover a long
self-avoiding walk of macroscopic size on the lattice N−3/4

Z
2. More precisely, this

could mean that in the scaling limit, self-avoiding walks converge in law to some
continuous measure on paths supported on the set of paths with dimension equal
to 4/3.

Note that the number of self-avoiding walks of lengthN on Z
2 that start at the origin

can easily (via a sub-multiplicativity argument) be shown to behave likeλN+o(N) when
N → ∞, whereλ is a positive real number called the connectivity constant of Z

2. One
of the striking conjectures in this field is the more precise prediction λNN11/32+o(1)
by Nienhuis [28].

Here are two possible ways to state this existence of scaling-limit conjecture (in
the case of the square lattice):

• Self-avoiding loops: The measure on self-avoiding loops on δZ2 that assigns a
mass λ−N to each loop with N steps has a (non-trivial) limit when δ → 0.

• Excursions: The probability measure on self-avoiding excursions from −1 to
1 in an approximation of U by a sublattice of δZ2 that assigns a probability
proportional to λ−N to each excursion with N steps converges (when δ → 0)
to a (non-trivial) scaling limit.

In the first case, the scaling limit is then a measure S supported on the set of loops
in the plane. In the second one, it is then a probability measure PS on the set of
excursions from −1 to 1 in U.

If one assumes furthermore that these measures exhibit conformal invariance prop-
erties, then S should be a measure on self-avoiding loops satisfying conformal restric-
tion: By the previously described results, it is therefore a multiple of the measure μ
on outer boundaries of Brownian loops and of the measure on outer boundaries of
percolation clusters. Similarly, we get that PS should satisfy chordal conformal re-
striction. Hence, it should be a measure on excursions without double points that
coincides with one of the Pα’s. This gives an explanation (but not a proof) of the
4/3-dimension conjecture for self-avoiding walks.

Let us note that in his book [26], Mandelbrot had already proposed the name
“self-avoiding Brownian motion” for the outer boundary of a planar Brownian loop.
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The above results show that this would be indeed an appropriate name.

5. Related SLEs

The (chordal) Schramm–Loewner Evolutions (SLE) first introduced in [31] are con-
formally invariant random planar excursions in a domain with prescribed endpoints.
They are defined via iterations of random conformal maps and they are the only ones
satisfying a certain Markov property. Since the discrete analogue of this Markovian
property is obviously satisfied by the interfaces of many discrete lattice-models from
statistical physics (including for instance percolation), this shows that if these discrete
interfaces converge to conformally invariant scaling limits, then they have to be one
of the SLE curves. For details on the definition and properties of SLEs, their relations
(conjectured and proved) to lattice-models, there are now many surveys, lecture notes,
a book (e.g. [13], [37] and the references therein); see also Schramm’s contribution
to the present ICM proceedings.

There exists a one-parameter family of SLE’s: For each κ > 0, the SLE with pa-
rameter κ (in short: SLEκ ) is a mathematically well-defined random planar excursion
joining prescribed boundary points in a simply connected domain [30], [18]. One
can then see if these random excursions satisfy conformal restriction (in the chordal
case). It turns out that:

Proposition 5.1 ([17]). SLE 8/3 is a random excursion without double points that
satisfies chordal restriction. Its law is exactly P 5/8. No other SLE satisfies chordal
conformal restriction.

In fact, one can prove that it is the only measure supported on excursions without
double points that satisfies chordal conformal restriction (i.e. that for all α > 5/8,
the measure Pα is not supported on self-avoiding curves). Hence, the SLE8/3 is the
conjectural scaling limit of self-avoiding excursions, i.e.PS = P 5/8. Not surprisingly
given all what we have said so far, it can be proved directly that it is supported on
the set of excursions with Hausdorff dimension 4/3 [17], [2]. The computation of
the critical exponents for SLE (e.g. [14], [15]) allow also to recover the physicists’
predictions on critical exponents such as the 11/32 mentioned above (see e.g. [19]).

Also, there is a rather direct relation between discrete self-avoiding loops and self-
avoiding excursions (the self-avoiding excursion tells how to finish a loop if we know
part of it). This suggests a direct relation between the outer boundaries of planar
Brownian loops and the SLE8/3 processes. Indeed (see e.g. [23]), it is possible to
define a measure on SLE8/3 loops and to see that it is a measure on self-avoiding
loops in the plane that satisfies conformal restriction:

Proposition 5.2. The measure μ can be viewed as a measure on SLE 8/3 loops.

In fact, this has a deeper consequence, which is not really surprising if one thinks
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ofμ in terms of the conjectural scaling limit S of the measure on discrete self-avoiding
loops:

Theorem 5.3 ([42]). The measure μ on self-avoiding loops satisfies conformal re-
striction also for non-simply connected domains D.

A particular instance of the theorem is that the measure μ is invariant under the
inversion z �→ 1/z. This implies [42] that the inner boundaries of Brownian loops
(and those of the scaling limits of critical percolation clusters) have exactly the same
distribution than the outer boundaries. More precisely, if one looks at the boundary of
the connected component that contains the origin of the complement of a Brownian
loop (defined underM) then it is defined under exactly the same measure as the outer
boundary. This is by no means an obvious fact.

Another consequence is the following:

Corollary 5.4 ([42]). It is possible to extend the definition of the planar measure μ
on self-avoiding loops to any Riemann surface (possibly with boundaries) in such a
way that conformal restriction still holds.

This gives a direct description of various conformally invariant quantities in the
framework of Riemann surfaces.

The SLE6 process can be shown (see e.g. [14], [15]) to be the only SLE satisfying
a so-called locality property that makes it the only possible candidate for the (confor-
mally invariant) scaling limit of percolation interfaces. In fact, using Smirnov’s result
[35] and ideas, it is possible to deduce [5] that SLE6 is indeed this scaling limit for
critical percolation on the triangular lattice. Hence, it should not be surprising that
it is possible to define directly (from the definition of SLE6) conformally invariant
measures on loops and excursions that satisfy conformal restriction (see e.g. [17]).
This is one of the ways to see that chordal restriction for α = 2 is very closely related
to the loop measure μ.

6. Restriction defect

Most models arising from statistical physics should however not satisfy conformal
restriction in the scaling limit. Self-avoiding walks and percolation are in this respect
rather exceptional cases. We now describe how one can extend the conformal restric-
tion property to cover the more generic cases. It is useful to start with a specific model
to illustrate the basic ideas and to show why the Brownian loop-soup can be useful.

6.1. Loop-erased random walks. Suppose that S = (Sn, n ≤ N) is a discrete
nearest neighbor-walk of length N on a finite connected graph G. It is as a path
joining the two points o = S0 and e = SN that can have double points. One can
however associate to S a path from o to e without double-points by following S and
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erasing the loops as they appear. This gives rise to the loop-erasure L = L(S) of S.
It is the only simple path from o = L0 to e = Lp (the length p of L is not greater
than N but it can be smaller and it depends on the length of the loops erased during
this procedure) with the property that for each i ≤ p − 1, Li+1 = Sni+1, where
ni = sup{n ≤ N : Sn = Li}.

If we are given the two points o and e, we can choose S randomly to be a simple
random walk on the graph, started at o and stopped at its first hitting of e. Its loop-
erasure L = L(S) is then the so-called loop-erased random walk from o to e. It has
many nice combinatorial features, that are not obvious at first sight. For instance, the
law of the loop-erased random walk from o to e and of the loop-erased random walk
from e to o are the same (modulo time-reversal of course). It can also be interpreted as
the law of the unique (simple) path joining o to e in a spanning tree chosen uniformly
among all spanning trees of the graphG (i.e. choose uniformly a subgraph ofG with
just one connected component but no cycle, and look at the unique path joining o to e
in this subgraph). This result by Pemantle [29] has been extended by Wilson into a
complete construction of a uniformly chosen spanning tree of G using loop-erased
random walks [43]. It shows that loop-erased random walks belong to a wider general
class of models from statistical physics (the random-cluster models) that includes also
the Ising models.

A fine-grid approximation of the Brownian excursion measure eU,−1,1 goes as
follows: Consider a fine-mesh approximation of the unit disc with two boundary
points o and e close to −1 and 1, and consider a simple random walk started from o,
stopped at e, and conditioned to exit U through e.

Theorem 6.1 ([18]). The loop-erasure of this discrete excursion converges when the
mesh-size converges to zero to a conformally invariant scaling limit, the SLE2 from
−1 to 1 in U. Similarly, for any triplet (D,A,B) ∈ T , the loop-erasure of a fine-grid
approximation of an excursion defined under eD,A,B converges to the SLE2 from A

to B in D.

For a givenU ⊂ U that still has −1 and 1 on its boundary, it happens with positive
probability that the loop-erasure L of the discrete excursion S stays in U , but that the
path S does exit U (i.e. one of the erased loops went out of U ). This feature pertains
in the scaling limit and shows that conformal restriction is not satisfied by SLE2. The
lack of restriction can be quantified in terms of the erased random walk loops (i.e. in
the scaling limit in terms of a quantity involving Brownian loops). More precisely, for
a given simple nearest neighbor path from o ∼ −1 to e ∼ 1 on the δZ2-approximation
of U ⊂ U, the ratio between the probability that L = l for the LERW from o to e
in U and the probability that L = l for the LERW in U is given by

Fδ(l) = cst(U)PU(none of the erased loops did exit U |L = l).

This function Fδ converges to a non-trivial function F when δ → 0 that measures the
restriction-defect of SLE2 and that can be expressed in terms of Brownian loops.
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6.2. The Brownian loop soup. Consider the (properly normalized) Brownian loop-
measure M . Recall that it is a measure on the set of unrooted Brownian loops in the
entire plane. For each c > 0, we define a Poisson point process with intensity cM .
This is a random countable collection {bj , j ∈ J } of Brownian loops in the plane.

For each domain D, we define J (D) = {j ∈ J : bj ⊂ D}. It is clear from the
definition that this corresponds to a Poisson point process with intensity cMD .

In [23], we show that:

Proposition 6.2 ([23]). The function F(l) is equal to the probability that no loop in
the loop-soup with intensity 2MU intersects both the excursion l and the complement
of U .

This indicates that the loops that have been erased correspond to the loops in the
loop-soup that the path l intersects. This is not so surprising if one thinks of Wilson’s
algorithm (that in some sense shows that the law of the constructed uniform spanning
tree is independent of the erased loops).

It shows [23] that if one adds to an SLE2 the loops that it intersects in a Brownian
loop-soup, one recovers exactly a path satisfying conformal restriction (in fact with
parameter α = 1, the one of the Brownian excursion excU,−1,1).

A similar coupling of the SLEκ ’s for κ < 8/3 with a Brownian loop-soup of
parameter c = c(κ) = (8 − 3κ)(6 − κ)/2κ . By adding the loops of this loop-soup
to the SLE curve, one compensates its lack of restriction and constructs a filling
that satisfies conformal restriction with parameter α = (6 − κ)/2κ . These relations
correspond to the relation between the central charge (−c), the highest weight (α)
and the degeneracy factor (κ/4) of degenerate highest-weight representations of the
Virasoro Algebra, as predicted by conformal field theory (see e.g. [9], [1], [3]).

6.3. Loop-soup clusters, CLEs. This does not describe the type of restriction-
defects of the SLE’s with parameter κ > 8/3 that should arise as scaling limits
of various lattice models, corresponding in the physics language to models with pos-
itive central charge. Loosely speaking, these are the curves that are attracted by the
boundaries of a domain (as opposed for instance to the SLE2 that was “repelled” from
the boundary). The previous case κ < 8/3 corresponded to a negative central charge.

For this, it is useful to consider the geometry of the union of all loops in a loop-
soup of intensity cμU (recall that the measureμU corresponds to the outer boundaries
of the Brownian loops defined by MU). This loop-soup is a countable collection
Cc = {�j , j ∈ Jc} of self-avoiding loops in the unit disc that can overlap with each
other. Recall that can couple all Cc’s in such a way that c �→ Cc is increasing.

When c is large and fixed, it is not difficult to see that almost surely every point
in U is surrounded by a loop in Cc, so that all the loops hook up into one single
connected component i.e. the set

⋃
j∈Jc �j has just one connected component.

On the other hand, when c is small, it is also easy for instance by coupling this
problem with the so-called fractal percolation (sometimes also called Mandelbrot
percolation) studied in [7], [27] to see that this phenomenon does not pertain: The
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Figure 7. A CLE (very very sketchy).

set
⋃
j∈Jc �j has countably many connected components. The outermost boundaries

of these clusters of loops define a family of non-overlapping and non-nested loops
uc = {uci , i ∈ Ic} in U.

This leads to the following definition [34]:

Definition 6.3. Suppose thatu = {ui, i ∈ I } is a random collection of non-intersecting
and non-nested self-avoiding loops in U. We say that it is a simple conformal loop-
ensemble (CLE) if the following properties hold:

• It is invariant under the conformal transformation from U onto itself. This
allows to define the law PU of the collection of loops in any simply connected
domain U by taking the conformal image of u.

• Let U be any simply connected subset of U with d(U \ U, 1) > 0. Consider
I ′ = {i ∈ I, ui �⊂ U} and let Ũ denote the connected component ofU\⋃

i∈I ′ ui
that has 1 on its boundary. Then, conditionally on {ui, i ∈ I ′}, the law of
{ui, i ∈ I and ui ⊂ Ũ} is P

Ũ
.

Loosely speaking, this means that each loop (once it is discovered) plays the role
of the boundary of the domain in which the others are yet to be discovered. Note that
a CLE almost surely is an infinite collection of loops (because the number of loops
contained in U and in Ũ ⊂ U have the same law).

The previous considerations show that the outermost boundaries of cluster of
loops for sub-critical (i.e. for small c) loop-soups, are conformal loop ensembles (so
that CLEs exist). This gives rise to measures on loops that do not satisfy conformal
restriction, but have the same type of restriction defect as that of SLEs for κ ∈ (8/3, 4].
The intensity c of the loop-soup corresponds to the central charge of the model.

Conformal loop-ensembles (and SLEs) arise also in the context of level-lines (or
flow-lines) of the Gaussian Free Field [33] in the ongoing work of Oded Schramm and
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Figure 8. The CLE in Ũ when U is the semi-disc.

Scott Sheffield [32]. Combining all these arguments should [34] describe all CLEs
as loop-cluster boundaries and their boundaries as SLE loops for κ ≤ 4.

Acknowledgments. I would like to express many thanks to Greg Lawler and Oded
Schramm for the opportunity to interact and work with them during these last years.
I also thank Pierre Nolin for Figures 4 and 6.
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in polyhedra and beyond

Alexander Barvinok∗

Abstract. Motivated by the formula for the sum of the geometric series, we consider various
classes of sets S ⊂ Zd of integer points for which an a priori “long” Laurent series or polynomial∑

m∈S xm can be written as a “short” rational function f (S; x). Examples include the sets of
integer points in rational polyhedra, integer semigroups, and Hilbert bases of rational cones,
among others. We discuss applications to efficient counting and optimization and open questions.
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1. Introduction

Our inspiration comes from a formula for the sum of a finite geometric series:

n∑
m=0

xm = 1 − xn+1

1 − x
. (1.1)

We look at the formula from several points of view.
Geometrically, the left hand side of (1.1) represents the sum over all integer points

in a one-dimensional polytope. Namely, with every integer point m we associate a
monomial xm and then consider the sum over all integer points in the interval [0, n].

From the computational complexity point of view, the left hand side of (1.1) is a
“long” polynomial whereas the right hand side of (1.1) is a “short” rational function.
More precisely, to write an integer m we need about log m digits or bits. Consequently,
to write the left hand side of (1.1), we need about n log n bits. On the other hand, to
write the right hand side of (1.1) we need only about log n bits. Thus the left hand
side is exponentially longer than the right hand side.

Finally, let us read (1.1) from right to left. We can ask how to extract various
facts about the set S of integer points in the interval [0, n] from the rational function
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encoding. For example, to compute the number |S| of points we substitute x = 1 into
the right hand side of (1.1). Although x = 1 is a pole of the rational function, we can
compute the desired value by applying l’Hospital’s rule.

Let Rd be Euclidean space with the standard basis e1, . . . , ed , so a point x ∈ Rd

is identified with the d-tuple x = (ξ1, . . . , ξd) of its coordinates, and let Zd ⊂ Rd

be the standard integer lattice, that is the set of points with integer coordinates. With
every integer point m = (μ1, . . . , μd) we associate the Laurent monomial

xm = x
μ1
1 . . . x

μd

d

in d complex variables x = (x1, . . . , xd). We agree that x0
i = 1.

Let S ⊂ Zd be a finite set and let us consider the sum

f (S; x) =
∑
m∈S

xm.

Thus f (S; x) is a Laurent polynomial that is the generating function of the set S.
We are interested in the following general questions:

• For which sets S ⊂ Zd a potentially long Laurent polynomial f (S; x) can be
written as a short rational function?

• What information about the set S can be extracted from f (S; x) given as a short
rational function?

The paper is organized as follows.
In Section 2, we discuss necessary preliminaries from the theory of computational

complexity, define what “long” and “short” means and show that if S is the set of
integer points in a rational polyhedron P ⊂ Rd then the generating function f (S; x)

can be computed in polynomial time as a short rational function, provided the dimen-
sion d of the ambient space is fixed in advance. We discuss applications to efficient
counting and optimization and practical implementations of the algorithms.

In Section 3, we discuss what information can we extract from a set S ⊂ Zd defined
by its generating function f (S; x) written as a rational function. In particular, we show
that if S1, S2 ⊂ Zd are two finite sets defined by their rational generating functions
f (S1; x) and f (S2; x), then the generating function f (S; x) of their intersection
S = S1 ∩ S2 can be computed in polynomial time as a rational function.

In Section 4, we show that if S ⊂ Z+ is an integer semigroup with a fixed number d

of generators, then f (S; x) can be computed in polynomial time as a short rational
function. This result is obtained as a corollary of a more general result that the
projection of the set of integer points in a rational polytope admits a polynomial time
computable rational generating function. We mention some other examples such as
Hilbert bases of rational cones.

In Section 5, we consider the results of Sections 2 and 4 in the general context of
Presburger arithmetic. We argue that the “natural” class of sets S ⊂ Zd with short
rational generating functions f (S; x) would have been the class of sets defined by
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formulas of Presburger arithmetic where all combinatorial parameters (the number of
variables and Boolean operations) are fixed and only numerical constants are allowed
to vary. As the paper is being written, this is still a conjecture.

In Section 6, we try to identify the natural boundaries of the developed theory. We
also discuss the emerging picture of what happens if the dimension d of the ambient
space is allowed to grow.

2. Rational polyhedra

Formula (1.1) admits an extension to general rational polyhedra.

Definition 2.1. The set P ⊂ Rd of solutions to a system of finitely many linear
inequalities is called a polyhedron:

P =
{
(ξ1, . . . , ξd) :

d∑
j=1

αij ξj ≤ βi, i = 1, . . . , n
}
. (2.1)

Here αij and βi are real numbers. A bounded polyhedron is called a polytope. A
polyhedron P is called rational if in (2.1) one can choose all αij and βi integer.

To state an analogue of formula (1.1) we need to discuss the notion of the input
size. As we remarked earlier, to write an integer a we need roughly �log2(|a|+1)�+1
bits. Consequently, to define a rational polyhedron P ⊂ Rd by the inequalities (2.1)
we need about

L = n(d + 1) +
∑
i,j

�log2(|αij | + 1)� +
∑

i

�log2(|βi | + 1)� (2.2)

bits. The number L is called the input size of representation (2.1) of P .
We are interested in the computational complexity of formulas and algorithms. In

particular, we are interested in polynomial time algorithms, that is, in the algorithms
whose running time is at most LO(1), where L is the input size. In what follows, often
the dimension d of the ambient space will be fixed in advance and the algorithms will
run in polynomial time for any fixed dimension d. In other words, the running time
of such an algorithm is at most Lφ(d) for some function φ. We use [28] as a general
reference in the area of computational complexity and algorithms.

Let P ⊂ Rd be a rational polyhedron with a vertex (equivalently, a non-empty
polyhedron without lines), possibly unbounded, and let S = P ∩ Zd be the set of
integer points in P .

To simplify notation, we denote the generating function

f (S; x) =
∑
m∈S

xm,

where S = P ∩ Zd , just by f (P, x).
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It is not hard to show that there exists a non-empty open set U ⊂ Cd such that for
all x ∈ U the series

f (P, x) =
∑

m∈P∩Zd

xm

converges absolutely and uniformly on compact subsets of U to a rational function
in x. It turns out that this rational function can be efficiently computed as long as the
dimension d of the ambient space is fixed in advance.

The following result was proved, essentially, in [3] although the formal statement
and better complexity bounds did not appear until [4].

Theorem 2.2. Let us fix d. Then there exists a polynomial time algorithm, which, for
a rational polyhedron P ⊂ Rd without lines defined by inequalities (2.1) computes
the generating function

f (P, x) =
∑

m∈P∩Zd

xm

in the form

f (P, x) =
∑
i∈I

εi

xvi

(1 − xui1) . . . (1 − xuid )
, (2.3)

where εi ∈ {−1, 1}, vi, uij ∈ Zd , and uij 	= 0 for all i, j .

The complexity of the algorithm is LO(d), where L is the input size of P defined
by (2.2). In particular, the number |I | of terms in (2.3) is LO(d), which is why we
call (2.3) a short rational function.

Rational cones play the crucial role in the proof of Theorem 2.2.

2.1. Rational cones. A non-empty rational polyhedron K is called a rational cone
if for every x ∈ K and λ ≥ 0 we have λx ∈ K . We are interested in pointed rational
cones, that is, cones not containing lines (equivalently, cones for which 0 is the vertex).
A basic example of a pointed rational cone is provided by the non-negative orthant Rd+
consisting of the points with non-negative coordinates. The generating function for
the set of integer points in Rd+ is a multiple geometric series

f (Rd+, x) =
∑

m∈Zd+

xm =
d∏

i=1

1

1 − xi

.

A unimodular cone K is the set of non-negative linear combinations of a given basis
u1, . . . , ud of the lattice Zd . Up to an integral change of coordinates, a unimodular
cone K looks like the non-negative orthant Rd+. Consequently, the generating function
for the set of integer points in K is a multiple geometric series

f (K, x) =
∑

m∈K∩Zd

xm =
d∏

i=1

1

1 − xui
.
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It is well known that any rational cone K can be subdivided into unimodular cones,
cf., for example, Section 2.6 of [16]. However, even for d = 2, the number of the
unimodular cones may have to be exponentially large in the input size: consider the
cone K ⊂ R2 spanned by (1, 0) and (1, n) for a positive integer n. Nevertheless,
where exists a computationally efficient procedure for constructing a more general
decomposition of a rational cone into unimodular cones.

Definition 2.3. For a set A ⊂ Rd , let [A] : Rd −→ R be the indicator of A defined
by

[A](x) =
{

1 if x ∈ A

0 if x /∈ A.

Let P (Qd) be the vector space (over C) spanned by the indicators [P ] of rational
polyhedra P ⊂ Rd . We call P (Qd) the algebra of rational polyhedra. The vector
space P (Qd) possesses an interesting and useful algebra structure, cf. [26], which we
do not discuss here.

The idea is to write the indicator [K] of a given rational cone K ⊂ Rd as a linear
combination of indicators of unimodular cones. For d = 2 such an efficient procedure
has long been known via the continued fractions method, cf., for example, [22]. We
give a simple example below.

Suppose that K ⊂ R2 is the cone spanned by vectors (1, 0) and (31, 164). Writing
the continued fraction expansion, we obtain

164

31
= 5 + 1

3 + 1

2 + 1

4

,

so we write 164/31 = [5; 3, 2, 4]. Next, we compute the convergents

[5; 3, 2] = 5 + 1

3 + 1

2

= 37

7
, [5; 3] = 5 + 1

3
= 16

3
, and [5] = 5

1

and notice that
[K] = [K0] − [K1] + [K2] − [K3] + [K4],

where K0 is spanned by (1, 0) and (0, 1), K1 is spanned by (0, 1) and (1, 5), K2 is
spanned by (1, 5) and (3, 16), K3 is spanned by (3, 16) and (7, 37), and K4 is spanned
by (7, 37) and (31, 164). Since Ki turn out to be unimodular for i = 0, 1, 2, 3, 4, we
get the short rational function expression

f (K, x) = 1

(1 − x1)(1 − x2)
− 1

(1 − x2)(1 − x1x
5
2)

+ 1

(1 − x1x
5
2)(1 − x3

1x16
2 )

− 1

(1 − x3
1x16

2 )(1 − x7
1x37

2 )
+ 1

(1 − x7
1x37

2 )(1 − x31
1 x164

2 )
.
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A polynomial time algorithm for computing a unimodular cone decomposition in
any (fixed in advance) dimension d was suggested in [3]. Using triangulations, it is
not hard to reduce the case of an arbitrary rational cone to that of a simple rational
cone K ⊂ Rd

K =
{ d∑

i=1

λiui : λi ≥ 0
}

spanned by linearly independent vectors u1, . . . , ud ∈ Zd , which may not, however,
constitute a basis of the lattice Zd . As a measure of how far is K from being unimod-
ular, we introduce the index ind(K) of K as the index of the sublattice generated by
u1, . . . , ud in the ambient lattice Zd . Thus ind(K) is a positive integer and ind(K) = 1
if and only if K is a unimodular cone.

Let us consider the parallelepiped

� =
{ d∑

i=1

λiui : |λi | ≤ ind−1/d(K) for i = 1, . . . , d
}
.

Then � is a convex body symmetric about the origin and vol � = 2d . Therefore,
by the Minkowski Theorem there is a non-zero point w ∈ � ∩ Zd , cf., for example,
Section VII.3 of [5]. Moreover, such a point w can be constructed in polynomial time
as long as the dimension d is fixed, cf. Section 6.7 of [17]. Replacing w by −w if
needed, we can also ensure that w lies in the same halfspace as u1, . . . , ud . Let Ki

be the cone spanned by u1, . . . , ud with the vector ui replaced by w and let εi = 1 or
εi = −1 depending on whether this replacement preserves or reverses the orientation
of the set u1, . . . , ud (we choose εi = 0 if we obtain a linearly dependent set). Then
we observe that

[K] =
d∑

i=1

εi[Ki] ± indicators of lower-dimensional cones, and

ind(Ki) ≤ ind(d−1)/d(K) if dim Ki = d.

(2.4)

As we iterate the above procedure, on the nth step, we obtain a decomposition of
the cone K as a linear combination of at most dn cones Ki (not counting smaller-
dimensional cones) with

ind(Ki) ≤ (ind(K))

(
d−1
d

)n

.

To ensure that all Ki are unimodular, we can choose n = O(d log log ind(K)),
which results in a polynomial time algorithm for a fixed d.

To prove a weaker version of Theorem 2.2 (with d replaced by d + 2 in (2.3) and
LO(d2) complexity) one can note that a rational polyhedron P ⊂ Rd without lines
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can be represented as the section of a pointed rational cone K ⊂ Rd+1 by the affine
hyperplane ξd+1 = 1. Consequently, we have

f (P, x) = ∂

∂xd+1
f (K, (x, xd+1))

∣∣
xd+1=0. (2.5)

2.2. Using identities in the algebra of polyhedra. The following remarkable result
was proved by A. G. Khovanskii and A. V. Pukhlikov [23], and, independently, by
J. Lawrence [25].

Theorem 2.4. Let P (Qd) be the vector space spanned by the indicators of rational
polyhedra and let C(x) be the vector space of rational functions in d complex variables
x = (x1, . . . , xd). There exists a linear transformation F : P (Qd) −→ C(x) such
that the following holds.

(1) If P ⊂ Rd is a rational polyhedron with a vertex then F ([P ]) = f (P, x),
where f (P, x) is the rational function defined as the sum of the series∑

m∈P∩Zd

xm

when the series converges absolutely.

(2) If P ⊂ Rd is a rational polyhedron without vertices then F ([P ]) = 0.

Proof. Let us fix a decomposition

Rd =
∑
i∈I

αi[Qi] (2.6)

for some rational polyhedra Qi with vertices and some numbers αi . Multiplying (2.6)
by [P ], we get

[P ] =
∑
i∈I

αi[P ∩ Qi], (2.7)

from which we deduce that P (Qd) is spanned by indicators of rational polyhedra
with vertices.

Suppose that we have a linear relation∑
j∈J

βj [Pj ] = 0 (2.8)

for some polyhedra Pj with vertices. Multiplying (2.8) by [Qi], we get

∑
j∈J

βj [Pj ∩ Qi] = 0.
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Since Qi has a vertex and Pj ∩ Qi ⊂ Qi , there exists a non-empty open set Ui ⊂ Cd

such that for all x ∈ Ui all the series defining f (Pj ∩ Qi, x) converge absolutely and
uniformly on compact subsets of Ui . Therefore, we must have∑

j∈J

βjf (Pj ∩ Qi, x) = 0 for all i ∈ I.

Similarly, from (2.7) we get

f (Pj , x) =
∑
i∈I

αif (Pj ∩ Qi, x) for all j ∈ J.

Combining the last two equations, we conclude that∑
j∈j

βjf (Pj , x) =
∑

i∈I,j∈J

αiβjf (Pj ∩ Qi, x) = 0. (2.9)

Thus a linear dependence (2.8) among indicators of rational polyhedra Pj with vertices
implies the corresponding linear dependence (2.9) among the generating functions
f (Pj , x). Therefore, the correspondence

[P ] �−→ f (P, x)

extends to a linear transformation F : P (Qd) −→ C(x). It remains to show that
F ([P ]) = 0 if P is a rational polyhedron with a line.

We observe that if P ′ = P + u is a translation of P by a lattice vector u, we must
have f (P ′, x) = xuf (P, x) for all rational polyhedra P with vertices. By linearity,
we must have F ([P + u]) = xuF ([P ]) for all rational polyhedra P . However, if P

contains a line then there is a vector u ∈ Zd \ {0} such that P + u = P . Therefore,
we must have F ([P ]) = 0 for P with a line. �

Theorem 2.4 provides a powerful tool for computing the generating function of
the set of integer points in a rational polyhedron. The following “duality trick” going
back to the seminal paper of M. Brion [11] turns out to be particularly useful.

Let 〈 ·, · 〉 be the standard scalar product in Rd and let K ⊂ Rd be a cone. The
cone

K∗ = {x ∈ Rd : 〈x, y〉 ≥ 0 for all y ∈ K}
is called the dual to K . It is easy to see that if K is rational (resp. unimodular) cone
then K∗ is a rational (resp. unimodular) cone, and that if K contains a line (resp. lies
in a proper subspace of Rd ) then K∗ lies in a proper subspace of Rd (resp. contains
a line). A standard duality argument implies that (K∗)∗ = K for closed convex
cones K . A less obvious observation is that duality preserves linear relations among
indicators of closed convex cones:∑

i∈I

αi[Ki] = 0 implies
∑
i∈I

αi[K∗
i ] = 0,
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see, for example, Section IV.1 of [5] for a proof.
Now, to compute the generating function f (K, x) one can do the following. First,

we compute the dual cone K∗, and, iterating (2.4), we compute unimodular cones Ki

and numbers εi ∈ {−1, 1} such that

[K∗] ≡
∑
i∈I

εi[Ki] modulo indicators of lower-dimensional cones.

Then, dualizing again, we get

[K] ≡
∑
i∈I

εi[K∗
i ] modulo indicators of cones with lines. (2.10)

In view of Theorem 2.4, cones with lines can be ignored as far as generating functions
are concerned. This gives us

f (K, x) =
∑
i∈I

εif (K∗
i , x).

Since K∗
i are unimodular cones, this completes computation of f (K, x). This trick

allows us to reduce the complexity of the algorithm in Theorem 2.2 from LO(d2) to
LO(d), where L is the size of the input.

Another important identity is Brion’s Theorem [11], which expresses the generat-
ing function of the set of integer points in P as the sum of generating functions for the
sets of integer points in the tangent (supporting) cones at the vertices of P . Namely,
for a vertex v of a polyhedron P let us define the tangent cone Kv as

Kv = {x : εx + (1 − ε)v ∈ P for all sufficiently small ε > 0}.
We note that Kv is not a cone per se but rather a translation of the cone Kv − v.

Theorem 2.5 (Brion’s Theorem). For a rational polyhedron P we have

f (P, x) =
∑

v

f (Kv, x),

where the sum is taken over all vertices of P and the identity is understood as the
identity among rational functions.

Discovered by M. Brion [11], Theorem 2.5 started an avalanche of research. The
original proof of Theorem 2.5 was based on algebro-geometric methods. Later, ele-
mentary proofs were discovered in [23] and [25]. One can deduce Theorem 2.5 from
Theorem 2.4 and an elementary identity

[P ] ≡
∑

v

[Kv] modulo indicators of polyhedra with lines,

cf. Section VIII.4 of [5].
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Theorem 2.5 together with the unimodular decomposition of Section 2.1 and the
duality trick provide the proof of Theorem 2.2 as stated. Another advantage of using
Theorem 2.5 is that it allows us to understand how the generating function f (P, x)

changes as the facets of P move parallel to themselves so that the combinatorial
structure of P does not change. In this case, the tangent cones Kv get translated by
vectors linearly depending on the displacements of the facets of P . Writing Kv as
combinations of translated unimodular cones Ki +v as in (2.10), we notice that as far
as lattice points are concerned, a rational translation Ki +v of a unimodular cone Ki

is equivalent to a certain integer translation Ki + u:

(Ki + v) ∩ Zd = (Ki + u) ∩ Zd for some u ∈ Zd

and hence we have

f (Ki + v, x) = f (Ki + u, x) = xuf (Ki, x).

If K = Rd+ then u is obtained from v by rounding up the coordinates to the near-
est integer. The case of a general unimodular cone differs by a unimodular linear
transformation, see [4] for details.

2.3. Implementation. The algorithm of Theorem 2.2 appears to be practical. First,
it was implemented by J. De Loera et al. [12], who wrote the LattE (Lattice point
enumeration) software package. The authors of LattE discovered that often the
most practically efficient way to handle computations is to represent a polyhedron P

as a hyperplane section of a higher-dimensional cone as in (2.5) and then use the
“dualized” decomposition (2.10). The package allows one to compute the number
of integer points in a given rational polytope. Formally speaking, to compute the
number |P ∩Zd | of integer points in a given rational polytope P , we should substitute
x = (1, . . . , 1) into the rational function f (P, x). However, we need to be careful
since this particular value is a pole of every fraction in (2.3). Nevertheless, the
substitution can be done efficiently, see Section 3.1 and [3], [4], [7], and [12] for
details.

In addition, LattE allows one to compute the Ehrhart (quasi)-polynomial of a
given rational polytope P , that is, to find a formula for the number of integer points
in the dilated polytope nP , where n is a positive integer, see also Section 6.1.

Testing whether a given rational polyhedron P contains an integer point, or, equiv-
alently, whether f (P, x) 	≡ 0 is a non-trivial problem related to the general integer
programming problem of optimizing a given linear function on the set P ∩Zd . LattE
package contains also an implementation of an integer programming algorithm based
on rational functions f (P, x).

Another implementation, called barvinok , was written by S. Verdoolaege,
see [36]. Among other features, the implementation allows one to obtain closed
explicit formulas for the number of integer points in a parametric polytope as a func-
tion of displacement parameters when the facets of the polytope move parallel to
themselves, see Theorem 2.5 and the subsequent discussion.
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There is an extensive literature devoted to the lattice point enumeration in poly-
topes, whether from algorithmic, structural, or application points of view. For the
classical Ehrhart theory in the context of enumerative combinatorics, see [34] and [9]
for a clever simplification of the proofs of the main results of the theory. For an ap-
proach featuring Dedekind sums and other analytic tools, see [8]. It does not seem to
be possible to survey all the literature in the paper. In addition to already mentioned
papers, we provide only a few references among many good papers which appeared
after the survey [4].

Efficient counting in special situations with applications to computational ques-
tions in representation theory and network flows is discussed in [2]. For a recent
advance connecting lattice point counting with algebraic geometry, see [29]. For
a computationally efficient version of the Euler–Maclaurin formula, satisfying, in
addition, some natural “local” conditions, see [10].

3. Operations on sets and generating functions

Motivated in part by Theorem 2.2, let us consider sets S ⊂ Zd defined by their
generating functions

f (S; x) =
∑
m∈S

xm

written as rational functions in the form

f (S; x) =
∑
i∈I

εi

xai

(1 − xbi1) . . . (1 − xbik )
. (3.1)

Here I is a finite set of indices, εi ∈ Q, ai, bij ∈ Zd , and bij 	= 0 for all i, j . To avoid
ambiguity, we assume that either S is finite, or, if S is infinite, then there is a non-
empty open set U ⊂ Cd such that the series defining f (S; x) converges absolutely
and uniformly on compact subsets of U and for every fraction in (3.1) there is the
Laurent series (multiple geometric series) expansion

xai

(1 − xbi1) . . . (1 − xbik )
=

∑
(μ1,...,μk)∈Zk+

xai+μ1bi1+···+μkbik

in U .
To indicate the computational complexity level of our set S, we consider the

two parameters fixed in formula (3.1): the number d of variables and the number k of
binomials in the denominator of each fraction. Note that if we happen to have a smaller
number of binomials in some fraction, we can formally “pad” it to k by multiplying
both the numerator and denominator of the fraction by some artificial binomials.
Since k is fixed, that would increase the length of the formula by a constant factor.

Next, we discuss what information about the set S can be extracted from f (S; x)

given in the form of (3.1).
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3.1. Monomial substitutions and differentiation. One piece of information we can
get is the cardinality |S| of a finite set S. To compute |S|, we would like to substitute
x = (1, . . . , 1) in (3.1), but this should be done carefully since this particular value
of x is the pole of every single fraction in (3.1). The procedure is introduced in [3].

We choose a sufficiently generic vector c ∈ Zd , c = (γ1, . . . , γd), so that
〈c, bij 〉 	= 0 for all i, j . For a τ ∈ C, let

x(τ ) = (eτγ1, . . . , eτγd ).

Thus we want to compute
lim

τ−→0
f (S; x(τ )).

Let us compute
αi = 〈c, ai〉 and βij = 〈c, bij 〉.

Then

f (S; x(τ )) =
∑
i∈I

εi

eαiτ

(1 − eβi1τ ) . . . (1 − eβikτ )
. (3.2)

Next, we note that f (S; x(τ )) is a meromorphic function in τ and that we want to
compute the constant term of its Laurent expansion in the neighborhood of τ = 0. To
do that, we deal with every fraction separately. We write each fraction of (3.2) as

eαiτ

(1 − eβi1τ ) . . . (1 − eβikτ )
= τ−keαiτ

k∏
j=1

gij (τ ), where gij (τ ) = τ

1 − eβij τ
.

Now, eachgij (τ ) is an analytic function of τ and we compute isTaylor series expansion
pij (τ ) up to the τ k+1 term:

τ

1 − eβij τ
≡ pij (τ ) mod τ k+1.

Similarly, we compute a polynomial qi(τ ) such that

eαiτ ≡ qi(τ ) mod τ k+1.

Finally, successively multiplying polynomials mod τ k+1 we compute the polyno-
mial hi(τ ) with deg hi ≤ k such that

qipi1 . . . pik ≡ hi mod τ k+1.

Letting
h(τ) =

∑
i∈I

hi(τ ),

we conclude that the coefficient of τ k in h(τ) is the desired value of (3.2) at τ = 0
and hence is the value f (S; x) at x = (1, . . . , 1). We note that the procedure has a
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polynomial time complexity even if both k and d are allowed to vary and if we allow
different numbers ki ≤ k of binomials in different fractions of (3.1).

A more general operation which can be computed in polynomial time is that
of a monomial substitution. Let f (x) be an expression of the type (3.1). Let
z = (z1, . . . , zn) be a new set of variables, let l1, . . . , ld ∈ Zn be vectors, and let
φ : Cn −→ Cd be the transformation defined by

(z1, . . . , zn) �−→ (x1, . . . , xd) where xi = zli .

If the image φ(Cn) does not lie in the set of poles of f , one can define a rational
function g(z) = f (φ(z)). Function g can be computed in polynomial time in the
form

g(z) =
∑
i∈I ′

δi

zqi

(1 − zbi1) . . . (1 − zbiki )
,

where δi ∈ Q, qi, bij ∈ Zn, bij 	= 0 for all i, j and ki ≤ k for all i ∈ I ′.
The case of l1 = · · · = ld = 0 corresponds to the case of x = (1, . . . , 1)

considered above. As above, the general case of a monomial substitution is handled by
a one-parametric perturbation and computation with univariate polynomials. Details
can be found in [7] (the assumption that k is fixed in advance is not needed there).

The operation of monomial substitution has the following geometric interpretation.
Let T : Rd −→ Rn be the linear transformation whose matrix in the standard bases
consists of the integer column vectors l1, . . . , ld . Let S ⊂ Zd be a set and suppose
that for all m ∈ T (S) the set T −1(m)∩S is finite. The monomial substitution xi = zli

into the generating function f (S; x) produces the weighted generating function g(z)

of the image T (S) ⊂ Zn, where each monomial zm for m ∈ T (S) is counted with
multiplicity |T −1(m) ∩ S|.

Another useful operation is that of differentiation. Let p be a d-variate polynomial.
We can write

∑
m∈S

p(m)xm = p

(
x1

∂

∂x1
, . . . , xd

∂

∂xd

)
f (S; x).

As long as k is fixed in advance, the result can be computed in polynomial time in the
form ∑

i∈I ′
δi

xqi

(1 − xbi1)γi1 . . . (1 − xbik )γik
,

where δi ∈ Q, ai, bij ∈ Zd , bij 	= 0, and γij are non-negative integers such that
γi1 + · · · + γik ≤ k + deg p for all i, see [6].

This observation is used in [6], see also [10] and [13].
One corollary of Theorem 2.2 is that we can efficiently perform set-theoretic op-

erations (intersection, union, difference) of finite sets defined by (3.1). The following
result is proved in [7].
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Theorem 3.1. Let us fix positive integers d and k. Then there exists a polynomial
time algorithm, which, for any two finite sets S1, S2 ⊂ Zd given by their rational
generating functions

f (S1; x) =
∑
i∈I1

αi

xpi

(1 − xai1) . . . (1 − xaik )
(3.3)

and

f (S2; x) =
∑
i∈I2

βi

xqi

(1 − xbi1) . . . (1 − xbik )
(3.4)

computes the generating function f (S; x) of their intersection S = S1 ∩ S2 in the
form

f (S; x) =
∑
i∈I

γi

xui

(1 − xvi1) . . . (1 − xvis )
,

where s ≤ 2k.

Proof. The idea of the proof is to linearize the operation of intersection of sets.
Suppose we have two Laurent series

g1(x) =
∑

m∈Zd

ρ1mxm and g2(x) =
∑

m∈Zd

ρ2mxm.

Let us define their Hadamard product g1(x) � g2(x) as

g(x) =
∑

m∈Zd

ρmxm where ρm = ρ1mρ2m.

Then, clearly,
f (S1 ∩ S2; x) = f (S1; x) � f (S2; x).

Without loss of generality, we assume that there is a non-empty open set U ⊂ Cd

such that for all x ∈ U and every fraction of (3.3) and (3.4) we have the multiple
geometric series expansions:

xpi

(1 − xai1) . . . (1 − xaik )
=

∑
(μ1,...,μk)∈Zk+

xpi+μ1ai1+···+μkaik (3.5)

and
xqi

(1 − xbi1) . . . (1 − xbik )
=

∑
(ν1,...,νk)∈Zk+

xqi+ν1bi1+···+νkbik . (3.6)

As usual, we assume that for all x ∈ U the convergence in (3.5) and (3.6) is absolute
and uniform on all compact subsets of U . To ensure that such a set U indeed exists,
we choose a sufficiently generic linear function � : Rd −→ R and make sure that
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�(aij ), �(bij ) > 0 for all i, j by reversing, if necessary, the direction of aij and bij

via the identity
1

1 − xa
= − x−a

1 − x−a
.

Here we use that S1 and S2 are finite so that f (S1; x) and f (S2; x) are, in fact, Laurent
polynomials.

Since the Hadamard product is a bilinear operation on series, in order to compute
f (S1; x) � f (S2; x) it suffices to compute the Hadamard product of every pair of
series (3.5) and (3.6).

In the space R2k of 2k-tuples (x, y), where x = (ξ1, . . . , ξk) and y = (η1, . . . , ηk),
let us introduce the polyhedron

Qi =
{

(x, y) : ξ1, . . . , ξk; η1, . . . , ηk ≥ 0

pi + ξ1ai1 + · · · + ξkaik = qi + η1bi1 + · · · + ηkbik

}
(3.7)

and let Z2k ⊂ R2k be the standard integer lattice.
Since the Hadamard product is bilinear and for monomials we have

xm1 � xm2 =
{

xm if m1 = m2 = m

0 if m1 	= m2,

the Hadamard product of the series (3.5) and (3.6) can be expressed as the sum∑
(m,n)∈Qi∩Z2k

xpi+μ1ai1+···+μkaik , (3.8)

where m = (μ1, . . . , μk) and n = (ν1, . . . , νk). On the other hand, (3.8) is obtained
from the generating function f (Qi, z) with z = (z1, . . . , z2k) by the monomial sub-
stitution

zi = xai for i = 1, . . . , k and zi = 1 for i = k + 1, . . . , 2k (3.9)

and multiplication by xpi .
We use Theorem 2.2 to compute f (Qi, z). The monomial substitution (3.9) can

also be computed in polynomial time, cf. Section 3.1. �

Therefore, one can compute the generating functions of the union and difference:

f (S1 ∪ S2; x) = f (S1; x) + f (S2; x) − f (S1 ∩ S2; x)

and

f (S1 \ S2; x) = f (S1; x) − f (S1 ∩ S2; x).
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Theorem 3.1 allows us to work with generating functions (3.1) directly as with data
structures bypassing any more explicit descriptions of sets S in question. Of course,
there is a price to pay: with every set-theoretic operation, the complexity level of the
set, the number k of binomials in the denominator of each fraction in (3.1), doubles.
From the definition (3.7) of Qi we can notice that in a sufficiently general position we
will have dim Qi = 2k−d, so we would be able to choose s = 2k−d in Theorem 3.1.
Theorem 3.1 admits an extension to infinite sets S1 and S2 provided there is a non-
empty open set U ⊂ Cd such that the multiple geometric series expansions (3.5)
and (3.6) hold for all fractions in (3.3) and (3.4). K. Woods [38] used the construction
of the Hadamard product to show that in any fixed dimension there is a polynomial
time algorithm to check if a given integer is a period of the Ehrhart quasi-polynomial
of a given rational polytope.

4. Beyond polyhedra: projections

There are other interesting sets admitting short rational generating functions (3.1).
We start with examples.

4.1. Integer semigroups. Let S be the semigroup generated by positive coprime
integers a1 and a2, that is, the set of all non-negative integer combinations of a1
and a2:

S = {μ1a1 + μ2a2 : μ1, μ2 ∈ Z+}.
It is not hard to show that

f (S; x) = 1 − xa1a2

(1 − xa1)(1 − xa2)

(the series defining f (S; x) converges for all |x| < 1).
Let S be the semigroup generated by positive coprime integers a1, a2, and a3,

S = {μ1a1 + μ2a2 + μ3a3 : μ1, μ2, μ3 ∈ Z+}.
Then there exist positive integers p1, p2, p3, p4, and p5, not necessarily distinct, such
that

f (S; x) = 1 − xp1 − xp2 − xp3 + xp4 + xp5

(1 − xa1)(1 − xa2)(1 − xa3)
.

This interesting result was rediscovered a number of times. It was explicitly stated
by M. Morales [27]; the proof was not published though. Independently, the proof
was rediscovered by G. Denham [14]. Both proofs are algebraic and based on the
interpretation of f (S; x) as the Hilbert series of a graded ring C[ta1, ta2, ta3]. In
this special case (a Cohen–Macaulay ring of codimension 2), the Hilbert series can
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be computed via the Hilbert–Burch Theorem, cf. also [18]. Meanwhile, a combi-
natorial proof of a somewhat weaker result (up to 12 monomials in the numerator)
independently appeared in [35].

The pattern breaks down for semigroups with d ≥ 4 generators, meaning that if
we choose the denominator of f (S; x) in the form (1−xa1) . . . (1−xad ), the number
of monomials in the numerator does not remain constant for a particular value of d,
and, moreover, grows exponentially with the input size of a1, . . . , ad . As shown
in [35], for d = 4 the number of the monomials in the numerator can grow as fast as
min1/2{a1, a2, a3, a4}, whereas the input size is only about log(a1a2a3a4).

Nevertheless, the generating function f (S; x) admits a short rational function
representation for any number d of generators fixed in advance. The following result
was proved in [7].

Theorem 4.1. Let us fix d. Then there exists a positive integer s = s(d) and a poly-
nomial time algorithm, which, given positive integers a1, . . . , ad , computes the gen-
erating function f (S; x) of the semigroup

S =
{ d∑

i=1

μiai : μ1, . . . , μd ∈ Z+
}

generated by a1, . . . , ad in the form

f (S; x) =
∑
i∈I

αi

xpi

(1 − xbi1) . . . (1 − xbis )
, (4.1)

where αi ∈ Q, pi, bij ∈ Z and bij 	= 0 for all i, j .

In particular, for any fixed d, the number |I | of fractions in (4.1) is bounded by a
polynomial in the input size, that is, in log(a1 . . . ad).

Theorem 4.1 is obtained as a corollary of a more general result that the projection
of the set of integer points in a rational polytope of a fixed dimension admits a short
rational generating function [7].

Theorem 4.2. Let us fix d. Then there exists a number s = s(d) and a polynomial
time algorithm, which, given a rational polytope P and a linear transformation
T : Rd −→ Rk such that T (Zd) ⊂ Zk , computes the generating function f (S; x)

for S = T (P ∩ Zd), S ⊂ Zk , in the form

f (S; x) =
∑
i∈I

xpi

(1 − xbi1) . . . (1 − xbis )
, (4.2)

where αi ∈ Q, pi, bij ∈ Zk and bij 	= 0 for all i, j .

One can observe that Theorem 4.1 is a corollary of Theorem 4.2. Indeed, let
T : Rd −→ R be the linear transformation defined by

T (ξ1, . . . , ξd) = a1ξ1 + · · · + adξd .
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Then the semigroup S generated by a1, . . . , ad is the image S = T (Zd+) of the set
Zd+ of integer points in the rational polyhedron Rd+ ⊂ Rd . The polyhedron Rd+ is
unbounded, so Theorem 4.2 cannot be applied immediately. However, it is not hard
to show that S ⊂ Z+ stabilizes after a while (if a1, . . . , ad are coprime then S includes
all sufficiently large positive integers). Thus only the initial interval of S is of interest,
to get which we replace Rd+ by a sufficiently large simplex

P =
{
(ξ1, . . . , ξd) :

d∑
i=1

ξi ≤ t and ξi ≥ 0 for i = 1, . . . , d
}
,

see [7] for details.

We sketch the proof of Theorem 4.2 below.
Without loss of generality we assume that dim ker T = d − k. The proof then

proceeds by induction on d − k. If d = k we are in the situation of Theorem 2.2.
We note that for any k and d, if the restriction T : P ∩ Zd −→ S is one-to-one,
we can compute the generating function f (S; x) from that of the set P ∩ Zd using
an appropriate monomial substitution, cf. Section 3.1. Otherwise, the monomial
substitution will account for each point m ∈ S with the multiplicity equal to the
number of the points in P ∩ Zd mapped onto m. Thus our goal is to eliminate
multiplicities.

The case of d = k + 1 illuminates some of the ideas used in the proof for an
arbitrary d − k. Suppose that

T : Rk+1 −→ Rk, (ξ1, . . . , ξk+1) �−→ (ξ1, . . . , ξk)

is the projection (this is a sufficiently general case). Let Ŝ = P ∩ Zk+1 and let us
consider the restriction T : Ŝ −→ S. Then, for every point m ∈ S, the preimage
T −1(m) ⊂ Ŝ is the set of integer points in the interval T −1(m)∩P which all agree in
their first k coordinates and disagree in the last coordinate. Let ek+1 be the last basis
vector and let us consider

Y = Ŝ \ ( Ŝ + ek+1).

In words: we subtract from Ŝ its translation by 1 in the last coordinate.
Then the restriction T : Y −→ S is one-to-one since the preimage T −1(m) ⊂ Y

consists of the single point in T −1(m) ⊂ Ŝ with the smallest last coordinate. Now, Ŝ

is the set of integer points in a rational polytope and we compute its generating
function using Theorem 2.2. Then we compute the generating function of Y using
Theorem 3.1. Finally, we obtain f (S; x) by substituting xk+1 = 1 in the generating
function f (Y ; (x, xk+1)), cf. Section 3.1.

Let us consider the case of general k and d. Let pr : Zk+1 −→ Zk be the natural
projection, pr(μ1, . . . , μk+1) = (μ1, . . . , μk). Let T̂ : Zd −→ Zk+1 be a linear
transformation which is a lifting of T so that pr(T̂ (m)) = T (m) for all m ∈ Zd . We
define Ŝ = T̂ (S), Ŝ ⊂ Zk+1, and consider the restriction

pr : Ŝ −→ S.
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For every m ∈ S the preimage pr−1(m) ⊂ Ŝ consists of the points which differ in
their last coordinate only. Suppose that we managed to construct T̂ in such a way that
the set pr−1(m) ⊂ Ŝ has small gaps, meaning that there exists a constant l = l(d)

such that if there are two points in pr−1(m) whose (k + 1)st coordinates differ by
more than l, there must be a point in pr−1(m) lying strictly between them.

In this case, we compute f (S; x) as follows. Let us define

Y = Ŝ \
l⋃

j=1

(Ŝ + jek+1).

In words: we subtract from Ŝ its l translates by 1, . . . , l in the last coordinate. Because
of the small gap property, the restriction pr : Y −→ S is one-to-one: now, the preimage
pr−1(m) ⊂ Y consists of the single point in pr−1(m) ⊂ Ŝ with the smallest last
coordinate. Using the induction hypothesis, we compute the generating function
of Ŝ. Then, applying Theorem 3.1 l times, we compute the generating function of Y .
Finally, f (S; x) is obtained from f (Y ; (x, xk+1)) by the substitution xk+1 = 1, see
Section 3.1.

In general, we cannot construct a lifting T̂ with the small gap property but the next
best thing is possible. Namely, we can construct in polynomial time a decomposition
Rk = ⋃

i Qi of Rk into a union of non-overlapping rational polyhedra Qi such that
for each piece Si = S ∩ Qi a lifting T̂i with the small gap property indeed exists.
The generating functions f (Si; x) are computed as above and then patched together
into a single generating function f (S; x). The construction of such polyhedra Qi

and liftings T̂i is based on the results of [21] and [20]. The main tool is the following
Flatness Theorem, see, for example, Section 6.7 of [17] or Section VII.8 of [5].

Theorem 4.3 (Flatness Theorem). For each dimension d there exists a constant ω(d)

with the following property: if V is a d-dimensional real vector space, � ⊂ V is a
lattice of rank d, �∗ ⊂ V ∗ is the reciprocal lattice, and K ⊂ V is a convex compact
set with non-empty interior such that K ∩ � = ∅ then there is an � ∈ �∗ \ {0} such
that

max
x∈K

�(x) − min
x∈K

�(x) ≤ ω(d). (4.3)

In words: a lattice-free convex body is flat in some lattice direction. The num-
ber in the left hand side of (4.3) is called the width of K with respect to � and
denoted width(K, �). The infimum of width(K, �) over all � ∈ �∗ is called the
lattice width of K and denoted width(K). A simple and crucial observation re-
lating the lattice width and the small gap property is that if for � ∈ �∗ we have
width(K, �) ≤ γ width(K) then the gaps between the consecutive integers in the set
�(K ∩ �) do not exceed γω(d).

We go back to finish the sketch of the proof of Theorem 4.2. Let � = Zk ∩ker(T )

be the lattice in ker(T ). For y ∈ Rd , let Py = P∩T −1(x) be the fiber of the polytope P

over x. We will measure the lattice width of Py with respect to �. The results of [21]
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and [20] allow us to construct a polyhedral decomposition Rk = ⋃
i Qi and vectors

�i ∈ �∗ such that for all y ∈ Qi we have either width(Py, �i) ≤ 2 width(Py) or
width(Py, �i) ≤ 1. We then define

T̂i(x) = (T (x), �i(x)) if T (x) ∈ Qi.

This completes the sketch of proof of Theorem 4.2.

4.2. Applications. Theorem 4.1 implies polynomial time solvability of a variety
of problems about integer semigroups. Suppose that the generators a1, . . . , ad are
coprime. As is known, all sufficiently large integers lie in the semigroup S generated
by a1, . . . , ad . In the situation when the number d of generators is fixed, R. Kannan
[20] constructed a polynomial time algorithm to compute the largest integer not in S.
Theorem 4.1 implies that one can compute in polynomial time the number of positive
integers not in S, the number of integers in S belonging to a particular interval, etc.

Unlike the algorithm of Theorem 2.2, the algorithms of Theorems 4.1 and 4.2
seem to be unimplementable at the moment. Indeed, the way Theorem 4.2 is proved
gives s = d�(d) at best and, similarly, in Theorem 4.1. It is not clear at the moment
whether a smaller value of s is possible.

In Theorem 4.1, apart from d = 1, 2, 3, the value of d = 4 seems to indicate a
possibility of a “special treatment”. The approach of [33] combined with the continued
fraction method, see Section 2.1, may lead to a practically efficient algorithm to
compute f (S; x).

Theorem 4.2 implies that some other interesting sets admit short rational generat-
ing functions. One class of such sets consists of the Hilbert bases of rational cones.
Let K ⊂ Rd be a pointed rational cone. The set S ⊂ K ∩ Zd , 0 /∈ S, is called the
(minimal) Hilbert basis of the semigroup K ∩ Zd if every point in K ∩ Zd can be
represented as a sum of some points in S and if no point in S is a sum of other points
in S. In other words, S consists of the points in K ∩Zd that cannot be written as a sum
of non-zero points in K ∩ Zd . Theorem 4.2 implies that as long as the dimension d

remains fixed, given a rational cone K , the generating function f (S; x) can be com-
puted in polynomial time as a short rational function of the type (3.1). Consequently,
the number |S| of points in the Hilbert basis of K ∩Zd can be computed in polynomial
time.

To deduce this result from Theorem 4.2, let Q ⊂ K be a rational polyhedron
containing all integer points in K except 0 (to get Q from K , we cut the vertex of K

by a hyperplane), let P = Q × Q ⊂ Rd ⊕ Rd = R2d and let T be the projection
P �−→ K , T (x, y) = x + y. Then the Hilbert basis S is the complement in Q ∩ Zd

of the image T (P ∩ Z2d). The obstacle that the polyhedron Q is not bounded, so
Theorem 4.2 cannot be applied immediately, can be easily fixed since only the “initial
part” of the semigroup K ∩ Zd is of interest, see [7].

Another class of sets allowing short rational generating functions via Theorem 4.2
are the test sets in integer programming, see [30].
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It should be noted that the short rational function description provides only very
general characterization of the set. For example, many of the fine properties of test
sets [30] do not seem to be picked up by rational generating functions and some
empirically observed phenomena are still waiting for their explanation. For structural
results (without complexity estimates) regarding f (S; x), where S is the projection
of the set of integer points in a rational polyhedron, see [24].

5. Beyond projections: Presburger arithmetic

Let us consider formulas we can construct by using integer variables, operations of
addition, subtraction, and multiplication by an integer constant (but not multiplication
of two integer variables), comparison (<, >, =), Boolean operations (“and”, “or”,
“not”), and quantifiers (∀, ∃). The realm of such formulas is Presburger arithmetic.
Thus the set P ∩ Zd of integer points in a rational polyhedron can be described by
a quantifier-free formula of Presburger arithmetic: the set P ∩ Zd consists of the
d-tuples of integer variables that satisfy a number of linear constraints with constant
integer coefficients. Similarly, the projection T (P ∩ Zd) of the set of integer points
in a polyhedron is described by a formula of Presburger arithmetic with existential
quantifiers only (no quantifier alternations).

With a little work, Theorem 2.2 can be extended as follows. Let us fix the number d

of variables. Then there exists a polynomial time algorithm, which, given a quantifier-
free formula F of Presburger arithmetic, computes the generating function f (S; x)

of the set S ⊂ Zd defined by F as a rational function (2.3). Some routine precautions
regarding convergence of the series defining f (S; x), if S is infinite, should be taken.
The general case of a set defined by a quantifier-free formula F reduces to that of
the set integer points in a rational polyhedron by some more or less straightforward
“cutting and pasting” of polyhedra. Since the dimension d of the ambient space is
fixed, this cutting and pasting can be performed in polynomial time.

Theorem 4.2 can be extended as follows. Let us fix the number of variables and the
number of Boolean operations used. Then there exists a polynomial time algorithm,
which, given a formula F of Presburger arithmetic without quantifier alternations,
computes the generating function f (S; x) of the finite set S ⊂ Zk defined by F as a
rational function (4.2). Note that here we have to fix not only the number of variables
but also the number of Boolean operations. For example, unless P = NP one cannot
hope to compute the generating function of the projection of the set of integer points
in a union of rational polytopes if the number of polytopes is allowed to vary, cf.
Section 5.3 of [37] and [31].

One can ask whether the results can be extended even further. Let us fix the num-
ber of variables and the number of Boolean operations, making numerical constants
essentially the only parameters of the formula. Is there a polynomial time algorithm
which computes the generating function (3.1) of the (finite) set S of points described
by such a formula? This indeed seems very plausible, see the discussion in Chapter V
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of [37]. Intuitively, such sets should have some “hidden periodicity” and short rational
generating functions should reveal that periodicity. Besides, it seems hard to prove
that a particular finite, but large, set S ⊂ Zd does not admit a short rational generating
function: if a particular candidate expression for f (S; x) is not short, one can argue
that we have not searched hard enough and that there is another, better candidate.

We mention that the result of R. Kannan [19] establishes polynomial time solvabil-
ity of decision problems for formulas with not more than one quantifier alternation. If
the number of variables is not fixed, the complexity of decision problems in Presburger
arithmetic is double exponential by the result of M. Fischer and M. Rabin [15].

6. Concluding remarks

One can ask whether some of the technique discussed in this paper can be extended
to lattice points satisfying some non-linear constraints. The answer seems to be “no”.
For example, lattice points in the standard Euclidean ball exhibit phenomena explained
not by rational but rather by theta functions. Let

Bn = {(ξ1, ξ2, ξ3, ξ4) : ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4 ≤ n}
be the Euclidean ball of radius equal to

√
n. Jacobi’s formula asserts that the number

|Bn ∩ Z4| − |Bn−1 ∩ Z4| of integer points on the sphere of radius
√

n is equal to

8
∑

4 � r|n
r

(in words: eight times the sum of divisors of n that are not divisible by four). One
can then show ([1]) that if one can count points in a 4-dimensional ball efficiently
(in polynomial time), one can factor integers efficiently (in randomized polynomial
time).

We note also that lattice points in irrational polyhedra exhibit a very interesting
behavior, see [32].

6.1. Large dimensions. Almost everywhere in this paper we assumed that the di-
mension d of the ambient space is fixed in advance. But what if the dimension is
allowed to grow? Given a rational polyhedron P ⊂ Rd , it is an NP-hard problem to
determine whether P ∩ Zd = ∅ (even when P is a rational simplex). Thus there is
little hope to compute the generating function f (P, x) in polynomial time. However,
it appears that some interesting “residues” or “shadows” of f (P, x) can be efficiently
computed even when the dimension d is allowed to grow, cf. [10] and [6].

The number e(P ) = |P ∩ Zd | of integer points in a rational polyhedron is an
example of a lattice invariant valuation, see [26]. That is, the map P �−→ e(P )

extends to a linear functional on the space spanned by the indicators [P ] of rational
polyhedra, cf. Definition 2.3, and the linear functional is invariant under lattice shifts:
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e(P ) = e(P +u), u ∈ Zd . One can ask if there is another lattice invariant valuation ν

on rational polytopes which is efficiently computable in interesting cases and which,
in some sense, approximates the counting valuation e(P ). For example, the volume
vol P may serve as the “0th” approximation to e(P ).

With every lattice invariant valuation ν one can associate the expression

ν(nP ) =
d∑

i=0

νi(P ; n)ni, (6.1)

where nP is a dilation of P by an integer factor n and the coefficients νi(P ; n)

are quasi-periodic: νi(P ; n + t) = νi(P ; n) provided tP is a polytope with integer
vertices, cf. [26]. In the case of the counting valuation e, the expression (6.1) is called
the Ehrhart quasi-polynomial of P and ed(P ; n) = vol P . As the kth approximation
to the counting valuation e we consider a lattice invariant valuation ν which agrees
with e in the k + 1 highest terms:

νi(P ; n) = ei(P ; n) for i = d, d − 1, . . . , d − k.

A natural goal is to construct such a valuation ν, which is computable in polynomial
time (at least, in some interesting cases) for any k fixed in advance.

Abstractly speaking, to define the counting valuation e, we have to choose a finite-
dimensional real vector space V and a lattice � ⊂ V . Then we define e(P ) = |P ∩�|
for every polytope P ⊂ V such that the vertices of tP belong to � for some integer t .
Apparently, to make a canonical choice of ν, we have to fix some additional structure
in V . In [6] a canonical valuation ν is constructed for rational polytopes whose facets
are parallel to hyperplanes from a given finite collection of hyperplanes. Valuation ν

agrees with e in the k+1 highest terms and for any fixed k valuation ν is polynomially
computable on polytopes with the number facets exceeding the dimension d by not
more than a constant fixed in advance (in particular, on rational simplices). In [10]
a different canonical valuation μ is constructed provided a scalar product on V is
chosen. Valuation μ also agrees with e on the k + 1 highest terms and polynomially
computable on the same class of polytopes.
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Rational and algebraic series in combinatorial enumeration

Mireille Bousquet-Mélou

Abstract. Let A be a class of objects, equipped with an integer size such that for all n the
number an of objects of size n is finite. We are interested in the case where the generating
function

∑
n ant

n is rational, or more generally algebraic. This property has a practical interest,
since one can usually say a lot on the numbers an, but also a combinatorial one: the rational
or algebraic nature of the generating function suggests that the objects have a (possibly hidden)
structure, similar to the linear structure of words in the rational case, and to the branching
structure of trees in the algebraic case. We describe and illustrate this combinatorial intuition,
and discuss its validity. While it seems to be satisfactory in the rational case, it is probably
incomplete in the algebraic one. We conclude with open questions.

Mathematics Subject Classification (2000). Primary 05A15; Secondary 68Q45.

Keywords. Enumerative combinatorics, generating functions, rational and algebraic power
series, formal languages.

1. Introduction

The general topic of this paper is the enumeration of discrete objects (words, trees,
graphs,…) and more specifically the rational or algebraic nature of the associated
generating functions. Let A be a class of discrete objects equipped with a size:

size : A → N

A �→ |A|.
Assume that for all n, the number an of objects of size n is finite. The generating
function of the objects of A, counted by their size, is the following formal power series
in the indeterminate t :

A(t) :=
∑
n≥0

ant
n =

∑
A∈A

t |A|. (1)

To take a very simple example, if A is the set of words on the alphabet {a, b} and the
size of a word is its number of letters, then the generating function is

∑
n≥0 2ntn =

1/(1 − 2t).
Generating functions provide both a tool for solving counting problems, and a

concise way to encode their solution. Ideally, one would probably dream of finding a
closed formula for the numbers an. But the world of mathematical objects would be
extremely poor if this was always possible. In practise, one is usually happy with an
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expression of the generating function A(t), or even with a recurrence relation defining
the sequence an, or a functional equation defining A(t).

Enumerative problems arise spontaneously in various fields of mathematics, com-
puter science, and physics. Among the most generous suppliers of such problems, let
us cite discrete probability theory, the analysis of the complexity of algorithms [56],
[44], and the discrete models of statistical physics, like the famous Ising model [5].
More generally, counting the objects that occur in one’s work seems to answer a
natural curiosity. It helps to understand the objects, for instance to appreciate how
restrictive are the conditions that define them. It also forces us to get some under-
standing of the structure of the objects: an enumerative result never comes for free,
but only after one has elucidated, at least partly, what the objects really are.

We focus in this survey on objects having a rational, or, more generally, algebraic
generating function. Rational and algebraic formal power series are well-behaved ob-
jects with many interesting properties. This is one of the reasons why several classical
textbooks on enumeration devote one or several chapters to these series [43], [74],
[75]. These chapters give typical examples of objects with a rational [resp. algebraic]
generating function (GF). After a while, the collection of these examples builds up
a general picture: one starts thinking that yes, all these objects have something in
common in their structure. At the same time arises the following question: do all
objects with a rational [algebraic] GF look like that? In other words, what does it
mean, what does it suggest about the objects when they are counted by a rational
[algebraic] GF?

This question is at the heart of this survey. For each of the two classes of series
under consideration, we first present a general family of enumerative problems whose
solution falls invariably in this class. These problems are simple to describe: the first
one deals with walks in a directed graph, the other with plane trees. Interestingly,
these families of objects admit alternative descriptions in language theoretic terms:
they correspond to regular languages, and to unambiguous context-free languages,
respectively. The words of these languages have a clear recursive structure, which
explains directly the rationality [algebraicity] of their GF.

The series counting words of a regular [unambiguous context-free] language are
called N-rational [N-algebraic]. It is worth noting that a rational [algebraic] series
with non-negative coefficients is not necessarily N-rational [N-algebraic]. Since we
want to appreciate whether our two generic classes of objects are good representatives
of objects with a rational [algebraic] GF, the first question to address is the following:
do we always fall in the class of N-rational [N-algebraic] series when we count objects
with a rational [algebraic] GF? More informally, do these objects exhibit a structure
similar to the structure of regular [context-free] languages? Is such a structure usually
clearly visible? That is to say, is it easy to feel, to predict rationality [algebraicity]?

We shall see that the answer to all these questions tends to be yes in the rational
case (with a few warnings...) but is probably no in the algebraic case. In particular,
the rich world of planar maps (planar graphs embedded in the sphere) abounds in
candidates for non-N-algebraicity. The algebraicity of the associated GFs has been
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known for more than 40 years (at least for some families of maps), but it is only
in the past 10 years that a general combinatorial explanation of this algebraicity has
emerged. Moreover, the underlying constructions are more general that those allowed
in context-free descriptions, as they involve taking complements.

Each of the main two sections ends with a list of questions. In particular, we
present at the end of Section 3 several counting problems that are simple to state and
have an algebraic GF, but for reasons that remain mysterious.

The paper is sometimes written in an informal style. We hope that this will not stop
the reader. We have tried to give precise references where he/she will find more details
and more material on the topics we discuss. In particular, this survey borrows a lot to
two books that we warmly recommend: Stanley’s Enumerative Combinatorics [74],
[75], and Flajolet & Sedgewick’s Analytic Combinatorics [43].

Notation and definitions. Given a (commutative) ring R, we denote by R[t] the ring
of polynomials in t having coefficients in R. A Laurent series in t is a series of the
form A(t) = ∑

n≥n0
ant

n, with n0 ∈ Z and an ∈ R for all n. If n0 ≥ 0, we say that
A(t) is a formal power series. The coefficient of tn is denoted an := [tn]A(t). The
set of Laurent series forms a ring, and even a field if R is a field. The quasi-inverse
of A(t) is the series A∗(t) := 1/(1 − A(t)). If A(t) is a formal power series with
constant term 0, then A∗(t) is a formal power series too.

In most occasions, the series we consider are GFs of the form (1) and thus have
rational coefficients. However, we sometimes consider refined enumeration problems,
in which every object A is weighted, usually by a monomial w(A) in some additional
indeterminates x1, . . . , xm. The weighted GF is then

∑
A∈A w(A)t |A|, so that the

coefficient ring is Q[x1, . . . , xm] rather than Q.
We denote [[k]] = {1, 2, . . . , k}. We use the standard notation N, Z, Q, and

P := {1, 2, 3, . . . }.

2. Rational generating functions

2.1. Definitions and properties. The Laurent series A(t) with coefficients in the
field R is said to be rational if it can be written in the form

A(t) = P(t)

Q(t)

where P(t) and Q(t) belong to R[t].
There is probably no need to spend a lot of time explaining why such series are

simple and well-behaved. We refer to [74, Ch. 4] and [43, Ch. IV] for a survey of
their properties. Let us review briefly some of them, in the case where R = Q. The
set of (Laurent) rational series is closed under sum, product, derivation, reciprocals
– but not under integration as shown by A(t) = 1/(1 − t). The coefficients an of
a rational series A(t) satisfy a linear recurrence relation with constant coefficients:
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for n large enough,

an = c1an−1 + c2an−2 + · · · + ckan−k.

The partial fraction expansion of A(t) provides a closed form expression of these
coefficients of the form:

an =
k∑

i=0

Pi(n)μn
i (2)

where the μi are the reciprocals of the roots of the denominator Q(t), and the Pi are
polynomials. In particular, if A(t) has non-negative integer coefficients, its radius of
convergence ρ is one its the poles (Pringsheim) and the “typical” asymptotic behaviour
of an is

an ∼ κρ−nnd (3)

where d ∈ N and κ is an algebraic number. The above statement has to be taken with
a grain of salt: all poles of minimal modulus may actually contribute to the dominant
term in the asymptotic expansion of an, as indicated by (2).

Let us add that Padé approximants allow us to guess whether a generating function
whose first coefficients are known is likely to be rational. For instance, given the 10
first coefficients of the series

A(t) = t + 2 t2 + 6 t3 + 19 t4 + 61 t5 + 196 t6

+ 629 t7 + 2017 t8 + 6466 t9 + 20727 t10 + O(t11),

it is easy to conjecture that actually

A(t) = t (1 − t)3

1 − 5 t + 7 t2 − 4 t3 .

Padé approximants are implemented in most computer algebra packages. For instance,
the relevant Maple command is convert/ratpoly.

2.2. Walks on a digraph. We now introduce our typical “rational” objects. Let
G = (V , E) be a directed graph with (finite) vertex set V = [[p]] and (directed) edge
set E ⊂ V ×V . A walk of length n on G is a sequence of vertices w = (v0, v1, . . . , vn)

such that for all i, the pair (vi, vi+1) is an edge. Such a walk goes from v0 to vn. We
denote |w| = n. Now assign to each directed edge e a weight (an indeterminate) xe.
Define the weight xw of the walk w as the product of the weights of the edges it visits:
more precisely,

xw =
n−1∏
i=0

x(vi ,vi+1).

See Figure 1 (a) for an example. Let X denote the (weighted) adjacency matrix of G:
for i and j in [[p]], the entry Xi,j is xe if (i, j) = e is an edge of G and 0 otherwise.
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Figure 1. (a) A weighted digraph. The default value of the weight is 1. (b) A deterministic
automaton on the alphabet {a, b, c, a, b, c}. The initial state is 1 and the final states are 2 and 3.

Let Wi,j (t) be the weighted generating function of walks going from i to j :

Wi,j (t) =
∑

w : i�j

xwt |w|.

It is well-known, and easy to prove, that Wi,j is a rational function in t with coeffici-
cients in Q[xe, e ∈ E] (see [74, Thm. 4.7.1]).

Theorem 2.1. The series Wi,j (t) is the (i, j)-entry in the matrix (1 − tX)−1.

This theorem reduces the enumeration of walks on a digraph to the calculation of
the inverse of a matrix with polynomial coefficients. It seems to be little known in
the combinatorics community that this inverse matrix can be computed by studying
the elementary cycles of the digraph G. This practical tool relies on Viennot’s theory
of heaps of pieces [81]. Since it is little known, and often convenient, let us advertise
it here. It will be illustrated further down.

An elementary cycle of G is a closed walk w = (v0, v1, . . . , vn−1, v0) such that
v0, . . . , vn−1 are distinct. It is defined up to a cyclic permutation of the vi . That is,
(v1, v2, . . . , vn−1, v0, v1) is the same cycle as w. A collection γ = {γ1, . . . , γr} of
(elementary) cycles is non-intersecting if the γi are pairwise disjoint. The weight xγ

of γ is the product of the weights of the γi . We denote |γ | = ∑ |γi |.
Proposition 2.2 ([81]). The generating function of walks going from i to j reads

Wi,j (t) = Ni,j

D
,

where

D =
∑

γ={γ1,...,γr }
(−1)rxγ t |γ | and Ni,j =

∑
w;γ={γ1,...,γr }

(−1)rxwxγ t |w|+|γ |.

The polynomial D is the alternating generating function of non-intersecting collec-
tions of cycles. In the expression of N , γ a non-intersecting collection of cycles and
w a self-avoiding walk going from i to j , disjoint from the cycles of γ .
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To illustrate this result, let us determine the generating function of walks going
from 1 to 2 and from 1 to 3 on the digraph of Figure 1 (a). This graph contains 4
cycles of length 1, 2 cycles of length 2, 2 cycles of length 3 and 1 cycle of length 4.
By forming all non-intersecting collections of cycles, one finds:

D(t) = 1−(3+x)t+(3+3x−2)t2+(−1−3x+3+x−2)t3+(x−1−x+1+x−y)t4

= 1 − (3 + x)t + (1 + 3x)t2 − 2xt3 + (x − y)t4.

There is only one self-avoiding walk (SAW) going from 1 to 2, and one SAW going
from 1 to 3 (via the vertex 2). The collections of cycles that do not intersect these
walks are formed of loops, which gives

N1,2 = t (1 − t)2(1 − xt) and N1,3 = t2(1 − t)2.

Hence the generating function of walks that start from 1 and end at 2 or 3 is:

W1,2 +W1,3 = N1,2 + N1,3

D
= t (1 − t)2(1 + t − xt)

1 − (3 + x)t + (1 + 3x)t2 − 2xt3 + (x − y)t4 . (4)

2.3. Regular languages and automata. There is a very close connection between
the collection of walks on a digraph and the words of regular languages. Let A
be an alphabet, that is, a finite set of symbols (called letters). A word on A is a
sequence u = u1u2 . . . un of letters. The number of occurrences of the letter a in
the word u is denoted |u|a . The product of two words u1u2 . . . un and v1v2 . . . vm is
the concatenation u1u2 . . . unv1v2 . . . vm. The empty word is denoted ε. A language
on A is a set of words. We define two operations on languages:

– the product LK of two languages L and K is the set of words uv, with u ∈ L
and v ∈ K; this product is easily seen to be associative,

– the star L∗ of the language L is the union of all languages Lk , for k ≥ 0. By
convention, L0 is reduced to the empty word ε.

A finite state automaton onA is a digraph (V , E)with possibly multiple edges, together
with:

– a labelling of the edges by letters of A, that is to say, a function L : E → A,

– an initial vertex i,

– a set Vf ⊂ V of final vertices.

The vertices are usually called the states of the automaton. The automaton is deter-
ministic if for every state v and every letter a, there is at most one edge labelled a

starting from v.
To every walk on the underlying multigraph, one associates a word on the alpha-

bet A by reading the letters met along the walk. The language L recognized by the
automaton is the set of words associated with walks going from the initial state i to
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one of the states of Vf . For j ∈ V , let Lj denote the set of words associated with
walks going from i to j . These sets admit a recursive description. For the automaton
of Figure 1 (b), one has L = L2 ∪ L3 with

L1 = {ε},
L2 = L1c ∪ L2a ∪ L3a ∪ L4c, L4 = L2a ∪ L3a ∪ L4a ∪ L5b,

L3 = L2c ∪ L3b ∪ L3c, L5 = L2c ∪ L3b ∪ L3c ∪ L5b.

Remarkably, there also exists a non-recursive combinatorial description of the
languages that are recognized by an automaton [52, Thms. 3.3 and 3.10].

Theorem 2.3. Let L be a language on the alphabet A. There exists a finite state
automaton that recognizes L if and only if L can be expressed in terms of finite
languages on A, using a finite number of unions, products and stars of languages.

If these conditions hold, L is said to be regular. Moreover, there exists a deter-
ministic automaton that recognizes L.

Regular languages and walks on digraphs. Take a deterministic automaton, and
associate with it a weighted digraph as follows: the vertices are those of the automaton,
and for all vertices j and k, if m edges go from j to k in the automaton, they are replaced
by a single edge labelled m in the digraph. For instance, the automaton of Figure 1 (b)
gives the digraph to its left, with x = y = 2. Clearly, the length GF of words of L
is the GF of (weighted) walks of this digraph going from the initial vertex i to one of
the final vertices of Vf . For instance, according to (4), the length GF of the language
recognized by the automaton of Figure 1 (b) is

A(t) = t (1 − t)3

1 − 5 t + 7 t2 − 4 t3 . (5)

Take a regular language L recognized by a deterministic automaton A. There
exists another deterministic automaton that recognizesL and does not contain multiple
edges. The key is to create a state (j, a) for every edge labelled a ending at j in the
automaton A. The digraph associated with this new automaton has all its edges
labelled 1, so that there exists a length preserving bijection between the words of L
and the walks on the digraph going from a specified initial vertex v0 to one of the
vertices of a given subset Vf of vertices.

Conversely, starting from a digraph with all edges labelled 1, together with a
specified vertex v0 and a set Vf of final vertices, it is easy to construct a regular
language that is in bijection with the walks of the graph going from v0 to Vf (consider
the automaton obtained by labelling all edges with distinct letters). This shows that
counting words of regular languages is completely equivalent to counting walks in
digraphs. In particular, the set of rational series obtained in both types of problems
coincide, and have even been given a name:

Definition 2.4. A series A(t) = ∑
n≥0 ant

n with coefficients in N is said to be
N-rational if there exists a regular language having generating function A(t) − a0.
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The description of regular languages given by Theorem 2.3 implies that the set
of N-rational series contains the smallest set of series containing N[t] and closed
under sum, product and quasi-inverse. The converse is true [71, Thm. II.5.1]. There
exists a simple way to decide whether a given rational series with coefficients in N is
N-rational [71, Thms. II.10.2 and II.10.5].

Theorem 2.5. A series A(t) = ∑
n≥0 ant

n with coefficients in N is N-rational if and
only if there exists a positive integer p such that for all r ∈ {0, . . . , p}, the series

Ar,p(t) :=
∑
n≥0

anp+r t
n

has a unique singularity of minimal modulus (called dominant).

There exist rational series with non-negative integer coefficients that are not N-
rational. For instance, let α be such that cos α = 3/5 and sin α = 4/5, and define
an = 25n cos(nα)2. It is not hard to see that an is a non-negative integer. The
associated series A(t) reads

A(t) = 1 − 2t + 225t2

(1 − 25t)(625t2 + 14t + 1)
.

It has 3 distinct dominant poles. As α is not a rational multiple of π , the same holds
for all series A0,p(t), for all values of p. Thus A(t) is not N-rational.

2.4. The combinatorial intuition of rational generating functions. We have de-
scribed two families of combinatorial objects that naturally yield rational generating
functions: walks in a digraph and words of regular languages. We have, moreover,
shown that the enumeration of these objects are equivalent problems. It seems that
these families convey the “right” intuition about objects with a rational GF. By this,
we mean informally that:

(i) “every” family of objects with a rational GF has actually an N-rational GF,

(ii) for almost all families of combinatorial objects with a rational GF, it is easy
to foresee that there will be a bijection between these objects and words of a
regular language.

Point (ii) means that most of these families F have a clear automatic structure, similar
to the automatic structure of regular languages: roughly speaking, the objects of F can
be constructed recursively using unions of sets and concatenation of cells (replacing
letters). A more formal definition would simply paraphrase the definition of automata.

Point (i) means simply that I have never met a counting problem that would
yield a rational, but not N-rational GF. This includes problems coming from algebra,
like growth functions of groups. On the contrary, Point (ii) only concerns purely
combinatorial problems (but I do not want to be asked about the border between
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combinatorics and algebra). It admits very few counter-examples. Some will be
discussed in Section 2.5. For the moment, let us illustrate the two above statements
by describing the automatic structure of certain classes of objects (some being rather
general), borrowed from [74, Ch. 4].

2.4.1. Column-convex polyominoes. A polyomino is a finite union of cells of the
square lattice, whose interior is connected. Polyominoes are considered up to a
translation. A polyomino is column-convex (cc) if its intersection with every vertical
line is connected. Let an be the number of cc-polyominoes having n cells, and let
A(t) be the associated generating function. We claim that these polyominoes have an
automatic structure.

Consider a cc-polyomino P having n cells. Let us number these cells from 1
to n as illustrated in Figure 2. The columns are visited from left to right. In the first
column, cells are numbered from bottom to top. In each of the other columns, the
lowest cell that has a left neighbour gets the smallest number; then the cells lying

c
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b b

a

c

c

a

b

a c

a

1
2
3

4
5

6
7
8

9 10
13

11
12

14
15

Figure 2. A column-convex polyomino, with the numbering and encoding of the cells.

below it are numbered from top to bottom, and finally the cells lying above it are
numbered from bottom to top. Note that for all i, the cells labelled 1, 2, . . . , i form
a cc-polyomino. This will be essential in our description of the automatic structure
of these objects. Associate with P the word u = u1 . . . un on the alphabet {a, b, c}
defined by

– ui = c (like Column) if the ith cell is the first to be visited in its column,

– ui = b (like Below) if the ith cell lies below the first visited cell of its column,

– ui = a (like Above) if the ith cell lies above the first visited cell of its column.

Then, add a bar on the letter ui if the ith cell of P has a South neighbour, an East
neighbour, but no South-East neighbour. (In other words, the barred letters indicate
where to start a new column, when the bottommost cell of this new column lies above
the bottommost cell of the previous column.) This gives a word v on the alphabet
{a, b, c, a, b, c}. It is not hard to see that the map that sends P on the word v is
a size-preserving bijection between cc-polyominoes and words recognized by the
automaton of Figure 1 (b). Hence by (5), the generating function of column-convex
polyominoes is [76]:

A(t) = t (1 − t)3

1 − 5 t + 7 t2 − 4 t3 .
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2.4.2. P -partitions. A partition of the integer n into at most k parts is a non-
decreasing k-tuple λ = (λ1, . . . , λk) of nonnegative integers that sum to n. This
classical number-theoretic notion is generalized by the notion of P-partitions. Let P

be a natural partial order on [[k]] (by natural we mean that if i < j in P , then i < j

in N). A P -partition of n is a k-tuple λ = (λ1, . . . , λk) of nonnegative integers that
sum to n and satisfy λi ≤ λj if i ≤ j in P . Thus when P is the natural total order on
[[k]], a P -partition is simply a partition1.

We are interested in the following series:

FP (t) =
∑
λ

t |λ|,

where the sum runs over all P -partitions and |λ| = λ1 + · · · + λk is the weight of λ.
The case of ordinary partitions is easy to analyze: every partition can be written

in a unique way as a linear combination

c1λ
(1) + · · · + ckλ

(k) (6)

where λ(i) = (0, 0, . . . , 0, 1, 1, . . . , 1) has exactly i parts equal to 1 and ci ∈ N. The
weight of λ(i) is i, and one obtains:

FP (t) = 1

(1 − t)(1 − t2) . . . (1 − tk)
. (7)

The automatic structure of (ordinary) partitions is transparent: since they are con-
structed by adding a number of copies of λ(1), then a number of copies of λ(2), and
so on, there is a size preserving bijection between these partitions and walks starting
from 1 and ending anywhere in the following digraph:

1 42 3

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[4]

[3] [4]

Note that this graph corresponds to k = 4, and that an edge labelled [	] must be
understood as a sequence of 	 edges. These labels do not correspond to multiplic-
ities. Observe that the only cycles in this digraph are loops. This, combined with
Proposition 2.2, explains the factored form of the denominator of (7).

Consider now the partial order on [[4]] defined by 1 < 3, 2 < 3 and 2 < 4. The
partitions of weight at most 2 are

(0, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 1, 0), (0, 0, 1, 1), (0, 0, 2, 0), (0, 0, 0, 2),

1A P -partition is usually defined as an order-reversing map from [[k]] to N [74, Section 4.5]. Both notions
are of course completely equivalent.
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so that FP (t) = 1 + 2t + 4t2 + O(t3). If one is brave enough to list P -partitions
of weight at most 20, the Padé approximant of the truncated series thus obtained is
remarkably simple:

FP (t) = 1 + t + t2 + t3 + t4

(1 − t)(1 − t2)(1 − t3)(1 − t4)
+ O(t21),

and allows one to make a (correct) conjecture.
It turns out that the generating function of P -partitions is always a rational series

of denominator (1 − t)(1 − t2) . . . (1 − tk). Moreover, P -partitions obey our general
intuition about objects with a rational GF. The following proposition, illustrated below
by an example, describes their automatic structure: the set of P -partitions can be
partitioned into a finite number of subsets; in each of these subsets, partitions have
a structure similar to (6). Recall that a linear extension of P is a bijection σ on [[k]]
such that σ(i) < σ(j) if i < j in P .

Proposition 2.6 ([74], Section 4.5). Let P be a natural order on [[k]].
For every P -partition λ, there exists a unique linear extension σ of P such that

for all i, λσ(i) ≤ λσ(i+1), the inequality being strict if σ(i) > σ(i + 1). We say that λ

is compatible with σ .
Given a linear extension σ , the P -partitions that are compatible with σ can be

written in a unique way as a linear combination with coefficients in N:

λ(σ,0) + c1λ
(σ,1) + · · · + ckλ

(σ,k) (8)

where λ(σ,0) is the smallest P -partition compatible with σ :

λ
(σ,0)
σ (j) = |{i < j : σ(i) > σ(i + 1)}| for 1 ≤ j ≤ k,

and for 1 ≤ i ≤ k,

(λ
(σ,i)
σ (1) , . . . , λ

(σ,i)
σ (k) ) = (0, 0, . . . , 0, 1, 1, . . . , 1)

has exactly i parts equal to 1. Thus the GF of these P -partitions is

FP,σ (t) = te(σ )

(1 − t)(1 − t2) . . . (1 − tk)

where e(σ ) is a variant of the Major index of σ :

e(σ ) =
∑

i:σ(i)>σ(i+1)

(k − i).

Example. Let us return to the order 1 < 3, 2 < 3 and 2 < 4. The 5 linear extensions
are 1234, 2134, 1243, 2143 and 2413. Take σ = 2143. The P -partitions λ that are
compatible with σ are those that satisfy λ2 < λ1 ≤ λ4 < λ3. The smallest of
them is thus λ(σ,0) = (1, 0, 2, 1). Then λ(σ,1) = (0, 0, 1, 0), λ(σ,2) = (0, 0, 1, 1),
λ(σ,3) = (1, 0, 1, 1) and λ(σ,4) = (1, 1, 1, 1).
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2.4.3. Integer points in a convex polyhedral cone ([74], Sec. 4.6). Let H be a finite
collection of linear half-spaces of Rm of the form c1α1 +· · ·+cmαm ≥ 0, with ci ∈ Z.
We are interested in the set E of non-negative integer points α = (α1, . . . , αm) lying
in the intersection of those half-spaces. For instance, we could have the following
set E , illustrated in Figure 3 (a):

E = {(α1, α2) ∈ N2 : 2α1 ≥ α2 and 2α2 ≥ α1}. (9)

α2

α3

α2

α1α1

(a) (b)

Figure 3. Integer points in a polyhedral cone.

Numerous enumerative problems (including P -partitions) can be formulated in
terms of linear inequalities as above. The generating function of E is

E(t) =
∑
α∈E

t |α|,

where |α| = α1 + · · · + αm. In the above example, E(t) = 1 + t2 + 2t3 + t4 + 2t5 +
3t6 + 2t7 + O(t8).

The set E is a monoid (it is closed under summation). In general, it is not a free
monoid. Geometrically, the set C of non-negative real points in the intersection of
the half-spaces of H forms a pointed convex polyhedral cone (the term pointed means
that it does not contain a line), and E is the set of integer points in C.

The simplicial case. In the simplest case, the cone C is simplicial. This implies
that the monoid E is simplicial, meaning that there exists linearly independent vectors
α(1), . . . , α(k) such that

E = {α ∈ Nm : α = q1α
(1) + · · · + qkα

(k) with qi ∈ Q, qi ≥ 0}.
This is the case in Example (9), with α(1) = (1, 2) and α(2) = (2, 1). The interior
of E (the set of points of E that are not on the boundary of C) is then

E = {α ∈ Nm : α = q1α
(1) + · · · + qkα

(k) with qi ∈ Q, qi > 0}. (10)
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Then there exists a finite subset D of E [resp. D of E ] such that every element of E

[resp. E ] can be written uniquely in the form

α = β + c1α
(1) + · · · + ckα

(k), (11)

with β ∈ D [resp. β ∈ D] and ci ∈ N [74, Lemma 4.6.7]. In our running example (9),
taken with α(1) = (1, 2) and α(2) = (2, 1), one has D = {(0, 0), (1, 1), (2, 2)}
while D = {(1, 1), (2, 2), (3, 3)}. Compare (11) with the structure found for P -
partitions (8). Thus E and E have an automatic structure and their GFs read

E(t) =
∑

β∈D t |β|
∏k

i=1(1 − t |α(i)|)
resp. E(t) =

∑
β∈D

t |β|
∏k

i=1(1 − t |α(i)|)
.

In Example (9), one thus obtains

E(t) = 1 + t2 + t4

(1 − t3)2 = 1 − t + t2

(1 − t)(1 − t3)
and E(t) = t2E(t).

The general case. The set E can always be partitioned into a finite number of sets F
of the form (10), where F is a simplicial monoid [74, Ch. 4, Eq. (24)]. Thus E , as
a finite union of sets with an automatic structure, has an automatic structure as well.
The associated generating function E(t) is N-rational, with a denominator which is a
product of cyclotomic polynomials.

Consider, for example, the set

E = {(α1, α2, α3) ∈ N3 : α3 ≤ α1 + α2}.
The cone C of non-negative real points α satisfying α3 ≤ α1+α2 is not simplicial, as it
has 4 faces of dimension 2, lying respectively in the hyperplanes αi = 0 for i = 1, 2, 3
and α3 = α1 +α2 (Figure 3 (b)). But it is the union of two simplicial cones C1 and C2,
obtained by intersecting C with the half-spaces α1 ≥ α3 and α1 ≤ α3, respectively.
Let E1 [resp. E2] denote the set of integer points of C1 [resp. C2].

The fastest way to obtain the generating function E(t) is to write

E(t) = E1(t) + E2(t) − E12(t) (12)

where E12(t) counts integer points in the intersection of C1 and C2 (that is, in the
plane α1 = α3). Since E1, E2 and E1 ∩ E2 are simplicial cones (of dimension 3, 3
and 2 respectively), the method presented above for simplicial cones applies. Indeed,
E1 [resp. E2; E12] is the set of linear combinations (with coefficients in N) of (1, 0, 1),
(0, 1, 0) and (1, 0, 0) [resp. (1, 0, 1), (0, 1, 0) and (0, 1, 1); (1, 0, 1) and (0, 1, 0)].
This implies:

E(t) = 1

(1 − t)2(1 − t2)
+ 1

(1 − t)(1 − t2)2 − 1

(1 − t)(1 − t2)
= 1 + t + t2

(1 − t)(1 − t2)2 .
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However, the “minus” sign in (12) prevents us from seeing directly the automatic
nature of E (the difference of N-rational series is not always N-rational). This structure
only becomes clear when we write E as the disjoint union of the interiors of all
simplicial monoids induced by the triangulation of C into C1 and C2. These monoids
are the integer points of the faces (of all possible dimensions) of C1 and C2. As there
are 12 such faces (more precisely, 1 [resp. 4, 5, 2] faces of dimension 0 [resp. 1,
2, 3]), this gives E as the disjoint union of 12 sets having an automatic structure of
the form (10).

2.5. Rational generating functions: more difficult questions.

2.5.1. Predicting rationality. We wrote in Section 2.4 that it is usually easy to
foresee, to predict when a class of combinatorial objects has a rational GF. There are
a few exceptions. Here is one of the most remarkable ones.

Example 2.7 (Directed animals). A directed animal with a compact source of size k

is a finite set of points A on the square lattice Z2 such that:

– the points (−i, i) for 0 ≤ i < k belong to A; they are called the source points,

– all the other points in A can be reached from one of the source points by a path
made of North and East steps, having all its vertices in A.

See Figure 4 for an illustration. A similar notion exists for the triangular lattice.
It turns out that these animals have extremely simple generating functions [50], [10].

Figure 4. Compact-source directed animals on the square and triangular lattices.

Theorem 2.8. The number of compact-source directed animals of cardinality n is
3n−1 on the square lattice, and 4n−1 on the triangular lattice.

The corresponding GFs are respectively t/(1 − 3t) and t/(1 − 4t), and are as
rational as a series can be. There is at the moment no simple combinatorial intuition
as to why these animals have rational GFs. A bijection between square lattice animals
and words on a 3-letter alphabet was described in [50], but it does not shed a clear
light on the structure of these objects. Still, there is now a convincing explanation of
the algebraicity of these series (see Section 3.4.2).

Example 2.9 (The area under Dyck paths). Another family of (slightly less natural)
examples is provided by the enumeration of points lying below certain lattice paths.
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For instance, let us call Dyck path of length 2n any path P on Z2 formed of steps (1, 1)

and (1, −1), that starts from (0, 0) and ends at (2n, 0) without ever hitting a point
with a negative ordinate. The area below P is the number of non-negative integer
points (i, j), with i ≤ 2n, lying weakly below P (Figure 5). It turns out that the sum
of the areas of Dyck paths of length 2n is simply

∑
P :|P |=2n

a(P ) = 4n.

Again, the rationality of the associated generating function does not seem easy to
predict, but there are good combinatorial reasons explaining why it is algebraic.
See [33], [65] for a direct explanation of this result, references, and a few variations
on this phenomenon, first spotted by Kreweras [58].

Figure 5. The 5 Dyck paths of length 6 and the 43 = 64 points lying below.

Finally, let us mention that our optimistic statement about how easy it is to predict
the rationality of a generating function becomes less and less true as we move from
purely combinatorial problems to more algebraic ones. For instance, it is not espe-
cially easy to foresee that a group has an automatic structure [39]. Let us give also
an example coming from number theory. Let P(x) ≡ P(x1, . . . , xr) be a polynomial
with integer coefficients, and take p a prime. For n ≥ 0, let an be the number of
x ∈ (Z/pnZ)r such that P(x) = 0 mod pn. Then the generating function

∑
n ant

n

is rational. A related result holds with p-adic solutions [37], [53].

2.5.2. Computing a rational generating function. Let us start with an elementary,
but important observation. Many enumerative problems, including some very hard,
can be approximated by problems having a rational GF. To take one example, consider
the notoriously difficult problem of counting self-avoiding polygons (elementary cy-
cles) on the square lattice. It is easy to convince oneself that the generating function
of SAP lying in a horizontal strip of height k is rational for all k. This does not mean
that it will be easy (or even possible, in the current state of affairs) to compute the
corresponding generating function when k = 100. Needless to say, there is at the
moment no hope to express this GF for a generic value of k. The generating function
of SAP having 2k horizontal steps can also be seen to be rational. Moreover, these
SAP can be described in terms of linear inequalities (as in Section 2.4.3), which im-
plies that the denominator of the corresponding series Gk is a product of cyclotomic
polynomials. But again, no one knows what this series is for a generic value of k, or
even for k = 100. Still, some progress have been made recently, since it has been
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proved that the series Gk have more and more poles as k increases, which means that
their denominators involve infinitely many cyclotomic polynomials [68]. This may
be considered as a proof of the difficulty of this enumerative problem [51].

In general, computing the (rational) generating function of a family of objects
depending on a parameter k may be non-obvious, if not difficult, even if the objects
are clearly regular, and even if the final result turns out to be nice. A classical
example is provided by the growth functions of Coxeter groups [61]. Here is a more
combinatorial example. A partition λ = (λ1, . . . , λk) is said to be a k-Lecture Hall
partition (k-LHP) if

0 ≤ λ1

1
≤ λ2

2
≤ · · · ≤ λk

k
.

Since these partitions are defined by linear inequalities, it follows from Section 2.4.3
that their weight generating function is rational, with a denominator formed of cyclo-
tomic polynomials. Still, there is no clear reason to expect that [15]:

∑
λ k−LHP

t |λ| = 1

(1 − t)(1 − t3) . . . (1 − t2k−1)
.

Several proofs have been given for this result and variations on it. See for instance [16],
[35] and references in the latter paper. Some of these proofs are based on a bijection
between lecture hall partitions and partitions into parts taken in {1, 3, . . . , 2k − 1},
but these bijections are never really simple [82], [40].

2.5.3. N-rationality. As we wrote in Section 2.4, we do not know of a counting
problem that would yield a rational, but not N-rational series. It would certainly be
interesting to find one (even if it ruins some parts of this paper).

Let us return to Soittola’s criterion for N-rationality (Theorem 2.5). It is not always
easy to prove that a rational series has non-negative coefficients. For instance, it was
conjectured in [46] that for any odd k, the number of partitions of n into parts taken
in {k, k + 1, . . . , 2k − 1} is a non-decreasing function of n, for n ≥ 1. In terms of
generating functions, this means that the series

q + 1 − q

(1 − qk)(1 − qk+1) . . . (1 − q2k−1)

has non-negative coefficients. This was only proved recently [67]. When k is even, a
similar result holds for the series

q + 1 − q

(1 − qk)(1 − qk+1) . . . (1 − q2k)(1 − q2k+1)
.

Once the non-negativity of the coefficients has been established, it is not hard to
prove that these series are N-rational. This raises the question of finding a family of
combinatorial objects that they count.
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3. Algebraic generating functions

3.1. Definitions and properties. The Laurent series A(t) with coefficients in the
field R is said to be algebraic (over R(t)) if it satisfies a non-trivial algebraic equation:

P(t, A(t)) = 0

where P is a bivariate polynomial with coefficients in R. We assume below R = Q.
Again, the set of algebraic Laurent series possesses numerous interesting proper-

ties [75, Ch. 6], [43, Ch. VII]. It is closed under sum, product, derivation, reciprocals,
but not under integration. These closure properties become effective using either the
theory of elimination or Gröbner bases, which are implemented in most computer
algebra packages. The coefficients an of an algebraic series A(t) satisfy a linear
recurrence relation with polynomial coefficients: for n large enough,

p0(n)an + p1(n)an−1 + p2(n)an−2 + · · · + pk(n)an−k = 0.

Thus the first n coefficients can be computed using a linear number of operations.
There is no systematic way to express the coefficients of an algebraic series in

closed form. Still, one can sometimes apply the Lagrange inversion formula:

Proposition 3.1. Let � and 
 be two formal power series and let U ≡ U(t) be the
unique formal power series with no constant term satisfying

U = t�(U).

Then for n > 0, the coefficient of tn in 
(U) is:

[tn]
(U) = 1

n
[tn−1] (


 ′(t)�(t)n
)
.

Given an algebraic equation P(t, A(t)) = 0, one can decide whether there exists
a series U(t) and two rational series � and 
 satisfying

U = t�(U) and A = 
(U). (13)

Indeed, such series exist if and only if the genus of the curve P(t, a) is zero [1, Ch. 15].
Moreover, both the genus and a parametrization of the curve in the form (13) can be
determined algorithmically.

Example 3.2 (Finding a rational parametrization). The following algebraic equa-
tion was recently obtained [22], after a highly non-combinatorial derivation, for the
GF of certain planar graphs carrying a hard-particle configuration:

0 = 23328 t6A4 + 27 t4(91 − 2088 t)A3

+ t2(86 − 3951 t + 46710 t2 + 3456 t3)A2

+ (1 − 69 t + 1598 t2 − 11743 t3 − 14544 t4)A

− 1 + 66 t − 1495 t2 + 11485 t3 + 128 t4.

(14)
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The package algcurves of Maple, and more precisely the commands genus and
parametrization, reveal that a rational parametrization is obtained by setting

t = −3
(3 U + 7)

(
9 U2 + 33 U + 37

)
(3 U + 1)4 .

Of course, this is just the net result of Maple, which is not necessarily very meaningful
for combinatorics. Still, starting from this parametrization, one obtains after a few
attempts an alternative parametrizing series V with positive coefficients:

V = t

(1 − 2V )(1 − 3V + 3V 2)
. (15)

The main interest of such a parametrization for this problem does not lie in the pos-
sibility of applying the Lagrange inversion formula. Rather, it suggests that a more
combinatorial approach exists, based on the enumeration of certain trees, in the vein
of [19], [27]. It also gives a hint of what these trees may look like.

Another convenient tool borrowed from the theory of algebraic curves is the pos-
sibility to explore all branches of the curve P(t, A(t)) = 0 in the neighbourhood of
a given point t0. This is based on Newton’s polygon method. All branches have a
Puiseux expansion, that is, an expansion of the form:

A(t) =
∑
n≥n0

an(t − t0)
n/d

with n0 ∈ Z, d ∈ P. The coefficients an belong to C (in general, to an algebraic
closure of the ground field). These expansions can be computed automatically using
standard software. For instance, the Maple command puiseux of the algcurves
package tells us that (14) has a unique solution that is a formal power series, the other
three solutions starting with a term t−2.

Such Puiseux expansions are crucial for studying the asymptotic behaviour of
the coefficients of an algebraic series A(t). As in the rational case, one has first to
locate the singularities of A(t), considered as a function of a complex variable t .
These singularities are found among the roots of the discriminant and of the leading
coefficient of P(t, a) (seen as a polynomial in a). The singular expansion of A(t)

near its singularities of smallest modulus can then be converted, using certain transfer
theorems, into an asymptotic expansion of the coefficients [42], [43, VII.4].

Example 3.3 (Asymptotics of the coefficients of an algebraic series). Consider the
series V (t) defined by (15). Its singularities lie among the roots of the discriminant

�(t) = −3 + 114t − 4635t2 + 55296t3.

Only one root is real. Denote it t0 ∼ 0.065. The modulus of the other two roots is
smaller than t0, so they could, in theory, be candidates for singularities. However,
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V (t) has non-negative coefficients, and this implies, by Pringsheim’s theorem, that
one of the roots of minimal modulus is real and positive. Hence V (t) has a unique
singularity, lying at t0. A Puiseux expansion at this point gives

V (t) = c0 − c1
√

1 − t/t0 + O(t − t0),

for some explicit (positive) algebraic numbers c0 and c1, which translates into

[tn]V (t) = c1

2
√

π
t−n
0 n−3/2 (1 + o(1)) .

The determination of asymptotic expansions for the coefficients of algebraic series
is probably not far from being completely automated, at least in the case of series with
non-negative coefficients [31], [43]. The “typical” behaviour is

an ∼ κ

�(d + 1)
ρ−nnd, (16)

where κ is an algebraic number and d ∈ Q \ {−1, −2, −3, . . . }. Compare with the
result (3) obtained for rational series. Again, the above statement is not exact, as
the contribution of all dominant singularities must be taken into account. See [43,
Thm. VII.6] for a complete statement.

Let us add that, again, one can guess if a series A(t) given by its first coefficients
satisfies an algebraic equation P(t, A(t)) = 0 of a given bi-degree (d, e). The guess-
ing procedure requires to know at least (d + 1)(e + 1) coefficients, and amounts
to solving a system of linear equations. It is implemented in the package Gfun of
Maple [72]. For instance, given the 10 first coefficients of the series V (t) satisfying
V (0) = 0 and (15), one automatically conjectures (15).

3.2. Plane trees. Our typical “algebraic” objects will be (plane) trees. Let us begin
with their usual intuitive recursive definition. A tree is a graph formed of a distin-
guished vertex (called the root) to which are attached a certain number (possibly
zero) of trees, ordered from left to right. The number of these trees is the degree
of the root. The roots of these trees are the children of the root. A more rigorous
definition describes a tree as a finite set of words on the alphabet P satisfying certain
conditions [63]. We hope that our less formal definition and Figure 6 (a) suffice to
understand what we mean. The vertices of a tree are often called nodes. Nodes of
degree 0 are called leaves, the others are called inner nodes.

The enumeration of classes of trees yields very often algebraic equations. Let us
consider for instance the complete binary trees, that is, the trees in which all vertices
have degree 0 or 2 (Figure 12). Let an be the number of such trees having n leaves.
Then, by looking at the two (sub)trees of the root, one gets, for n > 1:

an =
n−1∑
k=1

akan−k.
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(b)(a) (c)

Figure 6. (a) A plane tree. (b) A rooted planar map. (c) The corresponding 4-valent map (thick
lines).

The initial condition is a1 = 1. In terms of GFs, this gives A(t) = t + A(t)2, which
is easily solved:

A(t) = 1 − √
1 − 4t

2
=

∑
n≥0

1

n + 1

(
2n

n

)
tn+1. (17)

More generally, many algebraic series obtained in enumeration are given as the
first component of the solution of a system of the form

Ai = Pi(t, A1, . . . , Ak), (18)

for some polynomials Pi(t, x1, . . . , xk) having coefficients in Z. This system is said
to be proper if Pi has no constant term (Pi(0, . . . , 0) = 0) and does not contain any
linear term xi . It is positive if the coefficients of the Pi are non-negative. For instance,

A1 = t2 + A1A2 and A2 = 2tA3
1

is a proper positive system. The system is quadratic if every Pi(t, x1, . . . , xk) is a
linear combination of the monomials t and x	xm, for 1 ≤ 	 ≤ m ≤ k.

Theorem 3.4 ([75], Thm. 6.6.10 and [71], Thm. IV.2.2). A proper algebraic system
has a unique solution (A1, . . . , Ak) in the set of formal power series in t with no
constant term. This solution is called the canonical solution of the system. The
series A1 is also the first component of the solution of

– a proper quadratic system,
– a proper system of the form Bi = tQi(t, B1, . . . , B	), for 1 ≤ i ≤ 	.

These two systems can be chosen to be positive if the original system is positive.

Proof. Let us prove the last property, which we have not found in the above references.
Assume A1 satisfies (18) and that this system is quadratic. The ith equation reads
Ai = mit+niAσ(i)Aτ(i). Rewrite each monomial AiAj as tUij and add the equations
Uij = t

(
mimj + minjUσ(j)τ (j) + mjniUσ(i)τ (i) + ninjUσ(i)τ (i)Uσ(j)τ (j)

)
. The new

system has the required properties. �

Definition 3.5. A series A(t) is N-algebraic if it has coefficients in N and if A(t)−A(0)

is the first component of the solution of a proper positive system.
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Proper positive systems like (18) can always be given a combinatorial interpreta-
tion in terms of trees. Every vertex of these trees carries a label (i, c) where i ∈ [[k]]
and c ∈ P. We say that i is the type of the vertex and that c is its colour. The type of
a tree is the type of its root. Write A0 = t , so that Ai = Pi(A0, A1, . . . , Ak). Let A0
be the set reduced to the tree with one node, labelled (0, 1). For i ∈ [[k]], let Ai be
the set of trees such that

– the root has type i,
– the types of the subtrees of the root, visited from left to right, are 0, . . . , 0,

1, . . . , 1, . . . , k, . . . , k, in this order,
– if exactly ej children of the root have type j , the colour of the root is any integer

in the interval [1, m], where m is the coefficient of x
e0
0 . . . x

ek

k in Pi(x0, . . . , xk).
Then it is not hard to see that Ai(t) is the generating function of trees of type i,

counted by the number of leaves. This explains why trees will be, in the rest of this
paper, our typical “algebraic” objects.

3.3. Context-free languages. As in the case of rational (and, more precisely, N-
rational) series, there exists a family of languages that is closely related to algebraic
series. A context-free grammar G consists of

– a set S = {S1, . . . , Sk} of symbols, with one distinguished symbol, say, S1,
– a finite alphabet A of letters, disjoint from S,
– a set of rewriting rules of the form Si → w where w is a non-empty word on

the alphabet S ∪ A.
The grammar is proper if there is no rule Si → Sj . The language L(G) generated

by G is the set of words on the alphabet A that can be obtained from S1 by applying
iteratively the rewriting rules. A language is context-free is there exists a context-free
grammar that generates it. In this case there exists also a proper context-free grammar
that generates it.

Example 3.6 (Dyck words). Consider the grammar G having only one symbol, S,
alphabet {a, b}, and rules S → ab + abS + aSb + aSbS (which is short for
S → ab, S → abS, S → aSb, S → aSbS). It is easy to see that L(G) is
the set of non-empty words u on {a, b} such that |u|a = |u|b and for every prefix v

of u, |v|a ≥ |v|b. These words, called Dyck words, provide a simple encoding of the
Dyck paths met in Example 2.9.

A derivation tree associated with G is a plane tree in which all inner nodes are
labelled by symbols, and all leaves by letters, in such a way that if a node is labelled Si

and its children w1, . . . , wk (from left to right), then the rewriting rule Si → w1 . . . wk

is in the grammar. If the root is labelledS1, then the word obtained by reading the labels
of the leaves in prefix order (i.e., from left to right) belongs to the language generated
by G. Conversely, for every word w in L(G), there exists at least one derivation tree
with root labelled S1 that gives w. The grammar is said to be unambiguous if every
word of L(G) admits a unique derivation tree.
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Assume G is proper. For 1 ≤ i ≤ k, let Ai(t) be the generating function of
derivation trees rooted at Si , counted by the number of leaves. With each rule r ,
associate the monomial M(r) = x

e0
0 . . . x

ek

k where e0 [resp. ei , with i > 0] is the
number of letters of A [resp. occurrences of Si] in the right-hand side of r . Then
the series A1, . . . , Ak form the canonical solution of the proper positive system (18),
with

Pi(x0, x1, . . . , xk) =
∑

r

M(r),

where the sum runs over all rules r with left-hand side Si .
Conversely, starting from a positive system Bi = tQi(t, B1, . . . , Bk) and its

canonical solution, it is always possible to construct an unambiguous grammar with
symbols S1, . . . , Sk such that Bi is the generating function of derivation trees rooted
at Si (the idea is to introduce a new letter ai for each occurrence of t). In view of
Theorem 3.4 and Definition 3.5, this gives the following alternative characterization
of N-algebraic series:

Proposition 3.7. A series A(t) is N-algebraic if and only if only A(0) ∈ N and there
exists an unambiguous context-free language having generating function A(t)−A(0).

3.4. The combinatorial intuition of algebraic generating functions. We have de-
scribed two families of combinatorial objects that naturally yield algebraic GFs: plane
trees and words of unambiguous context-free languages. We have, moreover, shown
a close relationship between these two types of objects. These two families convey
the standard intuition of what a family with an algebraic generating function looks
like: the algebraicity suggests that it may (or should...) be possible to give a recursive
description of the objects based on disjoint union of sets and concatenation of objects.
Underlying such a description is a context-free grammar. This intuition is the basis
of the so-called Schützenberger methodology, according to which the “right” com-
binatorial way of proving algebraicity is to describe a bijection between the objects
one counts and the words of an unambiguous context-free language. This approach
has led in the 80s and 90s to numerous satisfactory explanations of the algebraicity of
certain series, and we describe some of them in this subsection. Let us, however, warn
the reader that the similarities with the rational case will stop here. Indeed, it seems
that the “context-free” intuition is far from explaining all algebraicity phenomena in
enumerative combinatorics. In particular,

(i) it is very likely that many families of objects have an algebraic, but not N-
algebraic generating function,

(ii) there are many families of combinatorial objects with an algebraic GF that do
not exhibit a clear “context-free” structure, based on union and concatenation.
For several of these families, there is just no explanation of this type, be it clear
or not.

This will be discussed in the next subsections. For the moment, let us illustrate the
“context-free” intuition.
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3.4.1. Walks on a line. Let S be a finite subset of Z. Let W be the set of walks
on the line Z that start from 0 and take their steps in S. The length of a walk is its
number of steps. Let Wk be the set of walks ending at position k. For k ≥ 0, let Mk

be the subset of Wk consisting of walks that never visit a negative position, and let M
be the union of the sets Mk . In probabilistic terms, the walks in M would be called
meanders and the walks of M0 excursions. Of course, a walk is simply a sequence
of steps, hence a word on the alphabet S. Thus the sets of walks we have defined can
be considered as languages on this alphabet.

Theorem 3.8. The language W is simply S∗ and is thus regular. The languages M,
Wk and Mk are unambiguous context-free for all k.

Proof. We only describe the (very simple) case S = {+1, −1}, to illustrate the ideas
that are involved in the construction of the grammar. We encode the steps +1 by the
letter a, the steps −1 by b, and introduce some auxiliary languages:

• M−
0 , the subset of W0 formed of walks that never visit a positive position,

• W+
0 [resp. W−

0 ], the subset of W0 formed of walks that start with a [resp. b].

The language M0 will be generated from the symbol M0, and similarly for the other
languages. By looking at the first time a walk of M0 [resp. M−

0 ] reaches position 0
after its first step, one obtains

M0 → a(1 + M0)b(1 + M0) and M−
0 → b(1 + M−

0 )a(1 + M−
0 ).

By considering the last visit to 0 of a walk of Mk , one obtains, for k > 0:

Mk → (1 + M0)a (1k=1 + Mk−1) .

This is easily adapted to general meanders:

M → M0 + (1 + M0)a (1 + M) .

Considering the first step of a walk of W0 gives

W0 → W+
0 + W−

0 with W+
0 → M0(1 + W−

0 ) and W−
0 → M−

0 (1 + W+
0 ).

Finally, for k > 0, looking at the first visit at 1 [resp. −1] of a walk of Wk [resp. W−k]
yields

Wk → (1 + M−
0 )a (1k=1 + Wk−1) [resp. W−k → (1 + M0)b(1k=1 + W−(k−1))].

For a general set of steps S, various grammars have been described for the lan-
guages Mk of meanders [38], [60], [59]. For Wk , we refer to [59, Section 4] where
the (representative) case S = {−2, −1, 0, 1, 2} is treated. �

Theorem 3.8 is often described in terms of walks in Z2 starting from (0, 0) and
taking their steps in {(1, j), j ∈ S}. The conditions on the positions of the walks
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that lead to the definition of Mk and Wk are restated in terms of conditions on the
ordinates of the vertices visited by the walk. A harmless generalization is obtained
by taking steps in a finite subset S of P × Z. A walk is still encoded by a word on
the alphabet S. The languages Wk remain unambiguous context-free. If each step
(i, j) is, moreover, weighted by a rational number wi,j , then the generating function
of walks of W , counted by the coordinates of their endpoint, is

W(t, s) = 1

1 − ∑
(i,j)∈S wi,j t isj

.

The generating function Wk(t) that counts (weighted) walks ending at ordinate k is
the coefficient of sk in W(t, s). Since Wk is unambiguous context-free, the series
Wk(t) is algebraic. This gives a combinatorial explanation of the following result [75,
Thm. 6.3.3].

Theorem 3.9 (Diagonals of rational series). Let A(x, y) = ∑
m,n≥0 am,nx

myn be
a series in two variables x and y, with coefficients in Q, that is rational. Then the
diagonal of A, that is, the series �A(t) = ∑

n≥0 an,nt
n, is algebraic.

Proof. By linearity, it suffices to consider the case

A(x, y) = xayb

1 − ∑
0≤m,n≤d cm,nxmyn

,

with c0,0 = 0. Set x = ts and y = t/s. The diagonal of A satisfies

�A(t2) = [s0]A(ts, t/s) = ta+b[sb−a] 1

1 − ∑
0≤m,n≤d cm,ntm+nsm−n

,

which is algebraic as it counts weighted paths in Wb−a , for a certain set of steps.
Hence �A(t) is algebraic too. �

The converse of Theorem 3.9 holds: every series B(t) that is algebraic over Q(t)

is the diagonal of a bivariate rational series A(x, t) [70].

Note. If one is simply interested in obtaining a set of algebraic equations defining
the GFs of the sets Mk and Wk , a more straightforward approach is to use a partial
fraction decomposition (for Wk) and the kernel method (for Mk). See [75, 6.3], and
[17, Example 3].

3.4.2. Directed animals. Let us move to an example where a neat context-free exists,
but is uneasy to discover. We return to the directed animals defined in Section 2.5.1.
As discussed there, there is no simple explanation as to why the number of compact-
source animals is so simple (Theorem 2.8). Still, there is a convincing explanation
for the algebraicity of the corresponding series: directed animals have, indeed, a
context-free structure. This structure was discovered a few years after the proof of
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Theorem 2.8, with the development byViennot of the theory of heaps [81], a geometric
version of partially commutative monoids [30]. Intuitively, a heap is obtained by
dropping vertically some solid pieces, the one after the other. Thus, a piece lies either
on the “floor” (then it is said to be minimal), or covers, at least partially, another piece.

Directed animals are, in essence, heaps. To see this, replace every point of the
animal by a dimer (Figure 7). Note that if the animal has a unique source, the
associated heap has a unique minimal piece. Such heaps are named pyramids.

(a) (b)

Figure 7. (a) A directed animal and the associated pyramid. (b) A half-pyramid.

What makes heaps interesting here is that there exists a monoid structure on the
set of heaps: The product of two heaps is obtained by putting one heap above the
other and dropping its pieces. This product is the key in our context-free description
of directed animals.

Let us begin with the description of pyramids (one-source animals). A pyramid is
either a half-pyramid (Figure 7 (b)), or the product of a half-pyramid and a pyramid
(Figure 8, top). Let P(t) denote the GF of pyramids counted by the number of dimers,
and H(t) denote the GF of half-pyramids. Then P(t) = H(t)(1 + P(t)). Now, a
half-pyramid may be reduced to a single dimer. If it has several dimers, it is the
product of a single dimer and of one or two half-pyramids (Figure 8, bottom), which
implies H(t) = t + tH(t) + tH 2(t).

HP

P

H

Figure 8. Decomposition of pyramids (top) and half-pyramids (bottom).
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A trivial computation finally provides the GF of directed (single-source) animals:

P(t) = 1

2

(√
1 + t

1 − 3t
− 1

) (
while H(t) = 1 − t − √

(1 + t)(1 − 3t)

2t

)
.

The enumeration of compact-source directed animals is equivalent to the enumeration
of heaps having a compact basis (the minimal dimers are adjacent). The generating
function of heaps having a compact basis formed with k dimers is P(t)H(t)k−1

(Figure 9), which implies that the generating function of compact-source animals is

P(t)

1 − H(t)
= t

1 − 3t
.

P H H H

Figure 9. Decomposition of heaps having a compact basis.

3.5. The world of planar maps. We have seen in Section 3.2 that plane trees are the
paradigm for objects with an algebraic generating function. A more general family
of plane objects seems to be just as deeply associated with algebraic series, but for
reasons that are far more mysterious: planar maps.

A (planar) map is a proper embedding of a planar graph in the sphere (Figure 6 (b)).
In order to avoid symmetries, all the maps we consider are rooted: this means that
one edge is distinguished and oriented. Maps are only considered up to a continuous
deformation of the sphere. A map induces a 2-cell decomposition of the sphere: the
cells of dimension 0 [resp. 1, 2] are called vertices [resp. edges, faces]. Hence plane
trees are maps with a single face.

The interest for the enumeration of planar maps dates back to the early 60s, in
connection with the 4-colour theorem. The first results are due to Tutte [77], [78], [79].
Ten to fifteen years later, maps started to be investigated independently in theoretical
physics, as a model for 2-dimensional quantum gravity [28], [9]. However, neither the
recursive approach used by Tutte and his disciples, nor the physics approach based
on matrix integrals were able to explain in a combinatorially satisfactory way the
following observations:

– the generating functions of many classes of planar maps are algebraic,

– the associated numbers are often irritatingly simple.

Let us illustrate this with three examples.

1. General maps. The number of planar maps having n edges is [80]:

gn = 2.3n

(n + 1)(n + 2)

(
2n

n

)
. (19)
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The associated generating function G ≡ G(t) = ∑
n≥0 gnt

n satisfies:

−1 + 16t + (1 − 18t)G + 27t2G2 = 0. (20)

2. Loopless triangulations. The number of loopless triangulations (maps in which
all faces have degree 3) having 2n + 2 faces is [62]:

tn = 2n

(n + 1)(2n + 1)

(
3n

n

)
.

The associated generating function T ≡ T (t) = ∑
n tnt

n satisfies

1 − 27t + (−1 + 36t)T − 8tT 2 − 16t2T 3 = 0.

3. Three-connected triangulations. The number of 3-connected triangulations hav-
ing 2n + 2 faces is [77]:

mn = 2

(n + 1)(3n + 2)

(
4n + 1

n

)
.

The associated generating function M ≡ M(t) = ∑
n tnt

n satisfies

−1 + 16t + (1 − 20t)M + (3t + 8t2)M2 + 3t2M3 + t3M4 = 0.

These maps are in bijection with rooted maximal planar simple graphs (graphs with
no loop nor multiple edge that lose planarity as soon as one adds an edge).

At last, in the past ten years, a general combinatorial picture has emerged, sug-
gesting that maps are, in essence, unrooted plane trees. In what follows, we illustrate
on the example of general maps the main three approaches that now exist, and give
references for further developments of these methods.

3.5.1. The recursive approach. We leave to the reader to experience personally
that maps do not have an obvious context-free structure. Still, maps do have a simple
recursive structure, based on the deletion of the root-edge. However, in order to
exploit this structure, one is forced to keep track of the degree of the root-face (the
face lying to the right of the root edge). The decomposition illustrated in Figure 10
leads in a few lines to the following equation:

G(u, t) = 1 + tu2G(u, t)2 + tu
uG(u, t) − G(1, t)

u − 1
, (21)

where G(u, t) counts planar maps by the number of edges (t) and the degree of the
root-face (u).

It can be checked that the above equation defines G(u, t) uniquely as a formal
power series in t (with polynomial coefficients in u). However, it is not clear on
the equation why G(1, t) (and hence G(u, t)) are algebraic. In his original paper,
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+ +=

Figure 10. Tutte’s decomposition of rooted planar maps.

Tutte first guessed the value of G1(t) := G(1, t), and then proved the existence of
a series G(u, t) that fits with G1(t) when u = 1, and satisfies the above equation.
Still, a bit later, Brown came with a method for solving (21): the so-called quadratic
method [29], [49, Sec. 2.9]. Write (21) in the form (2aG(u, t) + b)2 = δ, where a, b

and δ are polynomials in t, u and G1(t). That is,
(
2tu2(u − 1)G(u, t) + tu2 − u + 1

)2

= 4t2u3(u − 1)G1 + (1 − u)2 − 4tu4 + 6tu3 + u4t2 − 2tu2.

It is not hard to see, even without knowing the value of G(u, t), that there exists a
(unique) formal power series in t , say U ≡ U(t), that cancels the left-hand side of
this equation. That is,

U = 1 + tU2 + 2tU2(U − 1)G(U, t).

This implies that the series U is a double root of the polynomial δ that lies on the
right-hand side. The discriminant of this polynomial (in u) thus vanishes: this gives
the algebraic equation (20) satisfied by G(1, t).

The enumeration of many other families of planar maps can also be attacked
by a recursive description based on the deletion of an edge (or vertex, or face...).
See for instance [62] for 2-connected triangulations, or [6] for maps with prescribed
face degrees. (For maps with high connectivity, like 3-connected triangulations, an
additional composition formula is often required [77], [3].) The resulting equations
are usually of the form

P(F(u), F1, . . . , Fk, t, u) = 0, (22)

where F(u) ≡ F(t, u), the main generating function, is a series in t with polynomial
coefficients in u, and F1, . . . , Fk are series in t only, independent of u. Brown’s
quadratic method applies as long as the degree in F(u) is 2 (for the linear case, see
the kernel method in [17], [2]). Recently, it was understood how these equations
could be solved in full generality [22]. Moreover, the solution of any (well-founded)
equation of the above type was shown to be algebraic. This provides two types of
enumerative results:

– the proof that many map generating functions are algebraic: it now suffices to
exhibit an equation of the form (22), or to explain why such an equation exists,

– the solution of previously unsolved map problems (like the enumeration of hard-
particle configurations on maps, which led to (14), or that of triangulations with high
vertex degrees [8]).
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3.5.2. Matrix integrals. In the late 70s, it was understood by a group of physicists
that certain matrix integral techniques coming from quantum field theory could be
used to attack enumerative problems on maps [28], [9]. This approach proved to
be extremely efficient (even if it is usually not fully rigorous). The first step is fairly
automatized, and consists in converting the description of maps into a certain integral.
For instance, the relevant integral for the enumeration of 4-valent maps (maps in which
all vertices have degree 4) is

Z(t, N) = 2N(N−1)/2

(2π)N
2/2

∫
dHetr(−H 2/2+tH 4/N),

where the integration space is that of hermitian matrices H of size N , equipped with
the Lebesgue measure dH = ∏

dxkk

∏
k<	 dxk	dyk	 with hk	 = xk	 + iyk	. As there

is a classical bijection between 4-valent maps with n vertices and planar maps with n

edges (Figure 6 (c)), we are still dealing with our reference problem: the enumeration
of general planar maps. The connection between the above integral and maps is

G(t) = tE′(t) with E(t) = lim
N→∞

1

N2 log Z(t, N).

Other map problems lead to integrals involving several hermitian matrices [55]. We
refer to [83] for a neat explanation of the encoding of map problems by integrals, and
to [45], [41] (and references therein) for the evaluation of integrals.

3.5.3. Planar maps and trees. We finally come to a combinatorial explanation of
the formula/equation for gn and G(t). Take a plane binary tree with n (inner) nodes,
planted at a leaf, and add to every inner node a new distinguished child, called a bud.
At each node, we have three choices for the position of the bud (Figure 11 (a)). The
new tree, called budding tree, has now n buds and n + 2 leaves. Now start from
the root and walk around the tree in counterclockwise order, paying attention to the
sequence of buds and leaves you meet. Each time a bud is immediately followed by

leaf

bud

root-leaf

node

(a) (b) (c) The final edge

Figure 11. (a). A budding tree. (b) An intermediate step in the matching procedure. (c) The
resulting 4-valent map, with its marked face.
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a leaf in this sequence, match them by forming a new edge (Figure 11 (b)) and then
go on walking around the plane figure thus obtained. At the end, exactly two leaves
remain unmatched. Match them together and orient this final edge in one of the two
possible ways. Also, mark the face to the left of the matching edge that ends at the
root-leaf.

Theorem 3.10 ([73]). The above correspondence is a bijection between pairs (T , ε)

where T is a budding tree having n inner nodes and ε ∈ {0, 1}, and 4-valent maps
with n vertices and a marked face.

The value of ε tells how to orient the final matching edge. Schaeffer first used this
bijection to explain combinatorially the formula (19). Indeed, the number of budding
trees with n inner nodes is clearly 3n

(2n
n

)
/(n + 1) (see (17)), while the number of

4-valent maps with n vertices and a marked face is (n + 2)gn. Eq. (19) follows.
Later, it was realized that this construction could also be used to explain the

algebraicity of the series G(t) [23]. Say that a budding tree is balanced if the root-
leaf is not matched by a bud. Take such a tree, match all buds, and orient the final
edge from the root-leaf to the other unmatched leaf. This gives a bijection between
balanced budding trees and 4-valent maps. We thus have to count balanced trees, or,
equivalently, the unbalanced ones. By re-rooting them at the bud that matches the
root-leaf, one sees that they are in bijection with a node attached to three budding
trees. This gives

G(t) = B(t) − tB(t)3, where B(t) = 3t (1 + B(t))2

counts budding trees by (inner) nodes. The above construction involves taking a dif-
ference of N-algebraic series, which needs not be N-algebraic. We actually conjecture
that the series G(t) is not N-algebraic (see Section 3.6.4).

There is little doubt that the above construction (once described in greater detail…)
explains in a very satisfactory way both the simplicity of the formula giving gn and the
algebraicity of G(t). Moreover, this is not an ad hoc, isolated magic trick: over the
past ten years, it was realized that this construction is one in a family of constructions
of the same type, which apply to numerous families of maps (Eulerian maps [73],
maps with prescribed vertex degrees [23], constellations [18], bipartite maps with
prescribed degrees [19], maps with higher connectivity [66], [47]). Definitely, these
constructions reveal a lot about the combinatorial nature of planar maps.

To conclude this section, let us mention that a different combinatorial construction
for general planar maps, discovered in the early 80s [34], has recently been simpli-
fied [32] and adapted to other families of maps [36], [54], [25], [26]. It is a bit less
easy to handle than the one based on trees with buds, but it allows one to keep track
of the distances between some vertices of the map. This has led to remarkable con-
nections with a random probability distribution called the Integrated SuperBrownian
Excursion [32]. A third type of construction has emerged even more recently [7] for
2-connected triangulations, but no ones knows at the moment whether it will remain
isolated or is just the tip of another iceberg.
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3.6. Algebraic series: some questions. We begin with three simple classes of ob-
jects that have an algebraic GF, but for reasons that remain mysterious. We then
discuss a possible criterion (or necessary condition) for N-algebraicity, and finally the
algebraicity of certain hypergeometric series.

3.6.1. Kreweras’ words and walks on the quarter plane. Let L be the set of
words u on the alphabet {a, b, c} such that for every prefix v of u, |v|a ≥ |v|b and
|v|a ≥ |v|c. These words encode certain walks on the plane: these walks start at
(0, 0), are made of three types of steps, a = (1, 1), b = (−1, 0) and c = (0, −1),
and never leave the first quadrant of the plane, defined by x, y ≥ 0. The pumping
lemma [52, Thm. 4.7], applied to the word anbncn, shows that the language L is not
context-free. However, its generating function is algebraic. More precisely, let us
denote by 	i,j (n) the number of words u of L of length n such that |u|a − |u|b = i

and |u|a − |u|c = j . They correspond to walks of length n ending at position (i, j).
Then the associated three-variable generating function is

L(u, v; t) =
∑
i,j,n

	i,j (n)uivj tn

=
(
1/W − u

) √
1 − uW 2 + (

1/W − v
) √

1 − vW 2

uv − t (u + v + u2v2)
− 1

uvt

where u = 1/u, v = 1/v and W ≡ W(t) is the unique power series in t satisfying
W = t (2+W 3). Moreover, the number of walks ending at (i, 0) is remarkably simple:

	i,0(3n + 2i) = 4n(2i + 1)

(n + i + 1)(2n + 2i + 1)

(
2i

i

)(
3n + 2i

n

)
.

The latter formula was proved in 1965 by Kreweras, in a fairly complicated way [57].
This rather mysterious result has attracted the attention of several combinatorialists
since its publication [14], [48], [64]. The first combinatorial explanation of the above
formula (in the case i = 0) has just been found by Bernardi [7].

Walks in the quarter plane do not always have an algebraic GF: for instance, the
number of square lattice walks (with North, South, East and West steps) of size 2n

that start and end at (0, 0) and remain in the quarter plane is

1

(2n + 1)(2n + 4)

(
2n + 2

n + 1

)2

∼ 42n+1

πn3 ,

and this asymptotic behaviour prevents the corresponding generating function from
being algebraic (see (16)). The above formula is easily proved by looking at the
projections of the walk onto the horizontal and vertical axes.

3.6.2. Walks on the slit plane. Take now any finite set of steps S ⊂ Z × {−1, 0, 1}
(we say that these steps have small height variations). Let si,j (n) be the number of
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walks of length n that start from the origin, consist of steps of S, never return to the
non-positive horizontal axis {(−k, 0), k ≥ 0}, and end at (i, j). Let S(u, v; t) be the
associated generating function:

S(u, v; t) =
∑

i,j∈Z,n≥0

si,j (n)uivj tn.

Then this series is always algebraic, as well as the series Si,j (t) := ∑
n si,j (n)tn that

counts walks ending at (i, j) [13], [20]. For instance, when S is formed of the usual
square lattice steps (North, South, West and East), then

S(u, v; t) =
(
1 − 2t (1 + u) + √

1 − 4t
)1/2 (

1 + 2t (1 − u) + √
1 + 4t

)1/2

1 − t (u + u + v + v)

with u = 1/u and v = 1/v. Moreover, the number of walks ending at certain specific
points is remarkably simple. For instance:

s1,0(2n + 1) = C2n+1, s0,1(2n + 1) = 4nCn, s−1,1(2n) = C2n,

where Cn = (2n
n

)
/(n + 1) is the nth Catalan number, which counts binary trees (17),

Dyck words, and numerous other combinatorial objects [75, Ch. 6]. The first of
these three identities has been proved combinatorially [4]. The others still defeat our
understanding.

3.6.3. Embedded binary trees. We consider again the complete binary trees met at
the beginning of Section 3.2. Let us associate with each (inner) node of such a tree
a label, equal to the difference between the number of right steps and the number of
left steps one takes when going from the root to the node. In other words, the label
of the node is its abscissa in the natural integer embedding of the tree (Figure 12).

1

1

2

−1

0

0

1

Figure 12. The integer embedding of a binary tree.

Let Sj ≡ Sj (t, u) be the generating function of binary trees counted by the number
of nodes (variable t) and the number of nodes at abscissa j (variable u). Then for all
j ∈ Z, this series is algebraic of degree (at most) 8 (while Sj (t, 1) is quadratic) [12].
Moreover, for j ≥ 0,

Sj = T
(1 + μZj)(1 + μZj+5)

(1 + μZj+2)(1 + μZj+3)
,
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where

T = 1 + tT 2, Z = t
(1 + Z2)2

(1 − Z + Z2)
,

and μ ≡ μ(t, u) is the unique formal power series in t satisfying

μ = (u − 1)
Z(1 + μZ)2(1 + μZ2)(1 + μZ6)

(1 + Z)2(1 + Z + Z2)(1 − Z)3(1 − μ2Z5)
.

Why is that so? This algebraicity property holds as well for other families of
labelled trees [12], [24]. From these series, one can derive certain limit results on
the distribution of the number of nodes at abscissa �λn1/4� in a random tree with n

nodes [12]. These results provide some information about the law of the integrated
super-Brownian excursion [12], [21].

3.6.4. N-algebraicity. N-algebraic series have been defined in Section 3.2 in terms of
positive proper algebraic systems. The author has been unable to find in the literature
a criterion, or even a necessary condition for an algebraic series with coefficients in N

to be N-algebraic. Nor even an algebraic series with coefficients in N that would not
be N-algebraic (together with a proof of this statement...).

A partial answer could be provided by the study of the possible asymptotic be-
haviour of coefficients of N-algebraic series. It is very likely that not all behaviours of
the form (16) are possible. An important result in this direction states that, if a proper
positive system (18) is strongly connected, the nth coefficient of, say, A1 follows the
general pattern (16), but with d = −3/2 [43, Thm. VII.7]. The system is strongly
connected if, roughly speaking, the expression of every series Ai involves (possibly
after a few iterations of the system) every other series Aj . For instance, the system
defining the walks ending at 0 in Section 3.4.1 reads

M0 = t2(1 + M0)
2 and W0 = M0(2 + W0).

This system is not strongly connected, as M0 does not involve W0. Accordingly, the
number of 2n-step walks returning to 0 is

(2n
n

) ∼ κ4nn−1/2.
If one can rule out the possibility that d = −5/2 for N-algebraic series, then this

will prove that most map generating functions are not N-algebraic (see the examples
in Section 3.5).

3.6.5. Some algebraic hypergeometric series. Consider the following series:

F(t) =
∑
n≥0

fnt
n =

∑
n≥0

∏d
i=1(ain)!∏e
j=1(bjn)! t

n,

where a1, . . . , ad, b1, . . . , be are positive integers. This series is algebraic for some
values of the ai’s and bj ’s, as shown by the case

∑
n≥0

(2n)!
n!2 tn = 1√

1 − 4t
.
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Can we describe all algebraic cases? Well, one can easily obtain some necessary
conditions on the sequences a and b by looking at the asymptotics of fn. First,
an algebraic power series has a finite, positive radius of convergence (unless it is a
polynomial). This, combined with Stirling’s formula, gives at once

a1 + · · · + ad = b1 + · · · + be. (23)

Moreover, by looking at the dominant term in the asymptotic behaviour of fn, and
comparing with (16), one obtains that either e = d, or e = d +1. The case d = e only
gives the trivial solution F(t) = 1/(1 − t), and the complete answer to this problem
is as follows [11], [69]:

Theorem 3.11. Assume (23) holds and F(t) �= 1/(1−t). The series F(t) is algebraic
if and only if fn ∈ N for all n and e = d + 1.

Here are some algebraic instances:

fn = (6n)!(n)!
(3n)!(2n)!2 , fn = (10n)!(n)!

(5n)!(4n)!(2n)! , fn = (20n)!(n)!
(10n)!(7n)!(4n)! .

The degree of these series is rather big: 12 [resp. 30] for the first [second] series above.
This theorem provides a collection of algebraic series with nice integer coefficients:
are these series N-algebraic? Do they count some interesting objects?

Acknowledgements. The parts of this survey that do not deal exactly with the enu-
meration of combinatorial objects have often been influenced by discussions with
some of my colleagues, including Frédérique Bassino, Henri Cohen, Philippe Flajo-
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1. Introduction

We are currently undertaking a program of research aimed at extending the results
and techniques of the Graph Minors Project of Robertson and Seymour to matrices
and matroids. Here we report on where we stand and where we expect to go.

In particular, we discuss the structure of “minor-closed” classes of matrices over a
fixed finite field. This requires a peculiar synthesis of graphs, topology, connectivity,
and algebra. In addition to proving several long-standing conjectures in the area, we
expect the structure theory will help to find efficient algorithms for a general class of
problems on matrices and graphs.

Most combinatorial computational problems are trivial in the sense that they are
typically finite. However, even for modest size problems, enumerating the possi-
bilities is practically infeasible; it often results in algorithms whose running time is
exponential in the size of the problem. We seek smarter, more efficient, algorithms. In
the theory of algorithms efficient typically means that the running time is polynomial
in the size of the problem.

Often the problems are modeled by graphs (networks) or matrices. The better
picture we have of the model, the more likely it is that we can develop a quick al-
gorithm for the problem. For instance, the problem at hand may be more tractable
if the modeling graph can be drawn in the plane, or some other particular surface,
without crossings. Then it is relevant that we can test efficiently if the graph has such
advantageous appearance. Surface embeddability, and other related properties, are
preserved when deleting an edge from the graph or contracting an edge (contracting
means deleting the edge and identifying its ends). The result of any series of such
deletions and contractions is called a minor of the graph. In this terminology, testing
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surface embeddability is testing a particular minor-closed graph property. So moti-
vated by real-word computational problems, we end up with the fundamental question
if minor-closed graph properties can be tested efficiently.

That this is possible indeed for any fixed minor-closed graph property is one of
the consequences of the ground-breaking work of Robertson and Seymour in their
Graph Minors Project. One major outcome of this project is their proof of Wagner’s
Conjecture that graphs are “well-quasi-ordered” under the minor-order, which is the
following theorem.

The Graph Minors Theorem ([31]). Any infinite family of graphs contains two
members such that one is isomorphic to a minor of the other.

This implies that for any minor-closed graph property there are only finitely many
excluded minors, these are graphs that do not have the property but whose proper
minors do have the property. For planarity, for instance, there are exactly two excluded
minors: K5 and K3,3; this is Kuratowski’s famous characterization of planarity [22].

So, by the Graph Minors Theorem, to test a minor-closed graph property we only
need to test containment of each of its excluded minors individually. That this is
possible is another crucial outcome of Robertson and Seymour’s work.

The Graph Minor Recognition Theorem ([29]). For each graph H , there exists a
polynomial-time algorithm for testing if a graph has a minor isomorphic to H .

This answered one of the twelve open problems in Garey and Johnson’s 1979 book
on computational complexity [8].

So minor-closed graph properties can be tested efficiently. However, as noted
earlier, also matrices are widely used as modeling tools, for example in integer pro-
gramming models for operations research. Integer programming models are very
general and powerful, but in a sense too general; they lead to “NP-hard” problems.
However if the matrix in an integer programming model is totally unimodular, that
means if all subdeterminants are 0, 1 or −1, then linear programming methods do
solve the problem [20], and these methods are efficient. So this raises the issue of
testing totally unimodularity, another open problem back in ’79, in Garey and John-
son’s book. Now, it turns out that a matrix being totally unimodular means that it
is in a certain sense representable over any field, and also this embeddability prop-
erty is closed under certain minor-operations. So also here the fundamental issue of
testing minor-closed properties arises. For that we work at extending Robertson and
Seymour’s graph minor theory to matrices. As the issues involved do not so much
concern the actual matrices, but rather the underlying “matroids”, we work in that
setting.

A matroid consists of a finite set E, the ground set of the matroid, and a function r ,
the rank function of the matroid. This rank function is defined on the subsets of E and
satisfies the following properties: 0 ≤ r(X) ≤ |X| for X ⊆ E; r(X) ≤ r(Y ) for all
X ⊆ Y ⊆ E and r(X∪Y )+r(X∩Y ) ≤ r(X)+r(Y ) for all X, Y ⊆ E. We call r(X)

the rank of X and r(E) the rank of the matroid. The rank function of a matroid M is
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denoted by rM . Two matroids are isomorphic if there is a rank-preserving bijection
between their ground sets.

Matrices yield matroids: If A = (ae : e ∈ E) is a matrix with columns ae over a
field F, then the linear rank of the column submatrices (ae : e ∈ F) with F ⊆ E is the
rank function of a matroid, the vector matroid M(A) of A. If a matroid is isomorphic
to a vector matroid of a matrix over F, we say that the matroid is representable over F

or F-representable. (A vector matroid is often described as a configuration of points in
a linear, affine or projective space instead of as the collection of columns of a matrix.)

Also graphs yield matroids: Let G be a graph with edge set E and vertex set V .
The rank of a graph is the number of its vertices minus the number of its components.
If F ⊆ E, then the rank of F is the rank of the subgraph of G with edge set equal
to F . This rank yields the rank function of a matroid, the cycle matroid M(G) of G.
A matroid isomorphic to such a cycle matroid of a graph is called graphic. A graphic
matroid is representable over any field by a matrix with two non-zero entries in every
column, one equal to 1 and one equal to −1. We assume the reader to be familiar with
the standard notions from graph theory. For matroid theory we refer to Oxley [25] or
Welsh [43], but we will define the matroid terminology we use, as we go.

Now we define matroid minors. Let e be an element of the ground set E of
a matroid M . Deleting e from M is replacing M by the matroid with ground set
E − {e} and with rank function equal to the restriction of rM to subsets of E − {e}.
Contracting e from M is replacing M by the matroid with ground set E−{e} and with
rank function rM(X ∪ {e}) − rM({e}) for each X ⊆ E − {e}. A minor of a matroid is
the result of any sequence of deletions and contractions.

A minor of a vector matroid over a field F is representable over the field as well. In-
deed, deleting an element amounts to just deleting the corresponding column whereas
contracting an element f amounts to removing af from (ae : e ∈ E) and projecting all
other columns in the direction of af on some arbitrary hyperplane not containing af .
Deletions and contractions in a graph are in one-one correspondence with deletions
and contractions in its cycle matroid. Thus the cycle matroid of a minor of a graph is
a minor of the cycle matroid of the graph.

So the notion of graph minors is in essence algebraic, or geometric, and in that
sense it generalizes to matrices and matroids. This raises the question to what extent
Robertson and Seymour’s graph minor theory extends to matroids. The following
conjecture was by Robertson and Seymour, although to our knowledge not in print.

The Well-Quasi-Ordering Conjecture. Let F be a finite field. Then any infinite set
of F-representable matroids contains two matroids, one of which is isomorphic to a
minor of the other.

As yet, the Well-Quasi-Ordering Conjecture has not been resolved for any fi-
nite field. Note that it is equivalent to the conjecture that, for a finite field F, any
minor-closed class of F-representable matroids has a finite number of F-representable
excluded minors.



830 Jim Geelen, Bert Gerards, and Geoff Whittle

The finiteness of the field in the Well-Quasi-Ordering Conjecture is essential.
Indeed, suppose F is an infinite field and consider for each integer n ≥ 3, a 2n × 3
matrix with columns p1, . . . , pn and q1, . . . , qn, where p1, . . . , pn are vectors in
general position in F

3 and each qi is spanned by pi and pi+1, but is not spanned by
any other pair among p1, . . . , pn (where pn+1 = p1). As F is infinite, such matrices
clearly exist. Among the vector matroids of these matrices none is a minor of another.
Indeed, all members of the collection have rank 3, so all minors that use a contraction
have too low rank to be in the collection; deleting an element from a member of the
collection destroys the unique cyclic arrangement of linearly dependent triples pi , qi ,
pi+1 in a way that cannot be repaired by further deletions.

We conjecture additionally that for matroids that are representable over a finite
field minor-closed properties can be recognized in polynomial time, in other words
we conjecture that also the Graph Minor Recognition Theorem extends.

The Minor-Recognition Conjecture. For any finite field F and any F-representable
matroid N , there is a polynomial-time algorithm for testing whether an F-repre-
sentable matroid contains a minor isomorphic to N .

At the heart of the Graph Minors Project is Robertson and Seymour’s Graph Minors
Structure Theorem [30]. It describes constructively the graphs that do not contain a
given graph as a minor. This constructive description enables techniques to establish
the well-quasi-ordering and algorithmic consequences. For matroids, Seymour [36]
used this approach successfully for characterizing total unimodularity (see Section 3).
Our hope is to use the same strategy for general matroids that are representable over
finite fields. Therefore we are developing a structure theory for such matroids. As
a major role in the theory of graph minors is played by connectivity, we need an
extension of graph connectivity to matroids.

The basic ingredients of graph connectivity are separations, which tell where
the connectivity is not that high, and Menger’s Theorem, which provides a way of
certifying that the connectivity is not that low. A separation of a graph G is a pair
(G1, G2) of subgraphs of G such that G = G1 ∪ G2; the order of the separation
(G1, G2) is the number of vertices of G that lie in both G1 and G2. A graph is
k-connected if it has no separation (G1, G2) of order l less than k such that G1 and
G2 have at least l edges each. One of the fundamental theorems of graph theory is
Menger’s Theorem.

Menger’s Theorem ([24]). If G is a graph and S and T are two sets of vertices, then
there either exist k disjoint paths, each connecting a vertex in S with a vertex in T , or
(exclusively) G has a separation (G1, G2) of order less than k such that S lies in G1
and T in G2.

As an illustration of how this theorem plays a role in finding minors consider the
following easy result of Dirac [4]: A 3-connected graph with at least 4 vertices has a
minor isomorphic to K4. (Kn denotes the complete graph with n vertices; complete
means that every pair of vertices is connected by an edge.) Here is a proof of Dirac’s
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result: we may assume the graph has two non-adjacent vertices s and t , otherwise
the graph is complete and we are done. Apply Menger’s Theorem to the set S of
neighbours of s and the set T of neighbours of t . This yields three P1, P2 and P3
from s to t that only meet at their ends. As G is 3-connected, G − s − t is connected,
so there exists a path Q that connects two of these paths and misses the third path.
The union of P1, P2, P3 and Q clearly has a minor isomorphic to K4. So Dirac’s
result follows. This is a very easy result of course, but it may convince the reader
of the need of a notion of matroid connectivity and a matroidal version of Menger’s
Theorem.

A separation of a matroid M is a partition (X, Y ) of the ground set E. The order
of the separation (X, Y ) is rM(X)+ rM(Y )− rM(E)+ 1; for a representable matroid
this is the dimension of the intersection of the subspaces spanned by X and Y plus 1.
A matroid is k-connected if it has no separation (X, Y ) of order l less than k such
that X and Y have size l or more. If (G1, G2) is a separation of G where E1 and E2
are the edge sets of G1 respectively G2, then (E1, E2) is a separation of M(G). When
G1, G2, and G are connected graphs, the orders of these separations are the same.
This is enough to consider matroid separations and matroid connectivity as genuine
generalizations of these notions for graphs. And there is a matroidal generalization
of Menger’s Theorem as well.

Tutte’s Linking Theorem ([42]). Let M be a matroid and X and Y be disjoint subsets
of its ground set. Then there exists a minor of M in which (X, Y ) is a separation of
order at least k or (exclusively) M has a separation (A, B) of order less than k with X

in A and Y in B.

This follows quite easily from Edmonds’Matroid Intersection Theorem [7], which
is one of the fundamental theorems of matroid theory. So we see that the basic theory
of graph connectivity does extend quite well to matroids.

Besides the fact that a matroid structure theory will help proving the Well-Quasi-
Ordering Conjecture and Minor-Recognition Conjecture for matroids, we also expect
that it will provide a handle on the following conjecture, probably the most famous
open question in matroid theory.

Rota’s Conjecture ([33]). Let F be a finite field. There are, up to isomorphism, only
finitely many excluded minors for the class of F-representable matroids.

This also has computational relevance, namely for the question how hard it is to
decide if a matroid given by an oracle for the rank function is representable over a
field F. Unfortunately, it does take exponentially many oracle calls to decide this,
for any field [38]. But if Rota’s conjecture is true, then for every finite field F there
exists, for every non-F-representable matroid, a polynomial-length certificate for this
non-representability, that requires only a constant number of oracle calls. (It is known
that this can be done by a quadratic number of oracle calls [14].)

For the three smallest fields all excluded minors for representability over the field
are known: there is one for GF(2) (Tutte [40]), there are four for GF(3) (Bixby [1]
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and Seymour [37], independently), and there are seven for GF(4) (Geelen, Gerards
and Kapoor [9]). For all other finite fields, Rota’s conjecture is still open. A structure
theory could well provide a way to prove it.

Also in Rota’s conjecture finiteness of the field is essential. Lazarson [23] showed
that there are an infinite number of excluded minors for representability over the reals
and this is certainly true for all other infinite fields.

Summarizing, en route for these three conjectures we are working at establishing
the structure of minor-closed proper subclasses of matroids representable over a finite
field. This work has already had some success. It turns out that excluding the cycle
matroid of a planar graph as a minor imposes tangible structure on matroids over finite
fields, so we begin with discussing that.

2. Excluding a planar graph

Let F be a finite field and let H be a planar graph. We give a constructive structural
description of F-representable matroids with no M(H)-minor and show that this de-
scription enables significant progress on the three conjectures in Section 1. Essentially
the structure is to be decomposable into small pieces along low-order separations. We
will first explain what that means.

A branch-decomposition of matroid M is a tree T in which all vertices have
degree 1 or 3, where the degree-1 vertices of T are in 1-1 correspondence with the
elements of the ground set E of M . The width of an edge e in T is the order of
the separation (X, Y ) of M where X contains the elements of E that correspond to
the degree-1 vertices of T in one component of T − e and Y the elements of E that
correspond to the degree-1 vertices of T in the other component of T − e. So a
branch-decomposition is a data-structure for a collection of separations. The width
of a branch-decomposition is the maximum of the widths of its edges and the branch-
width of a matroid is the minimum of the widths of all its branch-decompositions.
So roughly low branch-width means to be decomposable into small pieces along
low-order separations.

Branch-width is a matroid generalization of branch-width for graphs defined by
Robertson and Seymour [28]. For graphs it is, up to a constant multiplicative bound,
the same as tree-width, also introduced by Robertson and Seymour. In the Graph
Minors Project they mainly use tree-width and that notion does extend to matroids
[19] as well. But branch-width is easier to work with for matroids, so here we will
only use branch-width, also for graphs. Robertson and Seymour prove the following
result.

The Grid Theorem for graphs ([27]). For each planar graph H there is an integer k

such that any graph with branch-width at least k has a minor isomorphic to H .

This result is called the Grid Theorem because, as every planar graph is a minor
of a grid, it suffices to prove it for the case that H is a grid. Here, a grid, or rather
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an n by n grid, refers to the graph with a vertex (i, j) for each pair of integers i

and j between 1 and n and an edge between any two pairs (i1, j1) and (i2, j2) with
|i1 − i2|+ |j1 − j2| = 1. If a matroid has a minor isomorphic to a cycle matroid of an
n by n grid, we say it has a grid-minor. To convince oneself that each planar graph
H is a minor of a sufficiently large grid, visualize H as drawn without crossings and
with the edges and vertices as thick lines and dots on a piece of grid paper with a very
fine grid.

Consider a class of graphs that do not have a fixed planar graph as a minor. By the
Grid Theorem for graphs, the members of that class have bounded branch-width. This
constructive characterization provides considerable traction for both algorithmic and
structural problems. For example, Robertson and Seymour [26] prove that any class
of graphs of bounded branch-width is well-quasi-ordered. This extends to matroids
over finite fields.

Theorem ([12]). Let F be a finite field and k an integer. Then each infinite set of
F-representable matroids with branch-width at most k has two members such that
one is isomorphic to a minor of the other.

Johnson, Robertson, and Seymour [21] conjectured that also the Grid Theorem
for graphs extends to matroids over finite fields and this is indeed the case.

The Grid Theorem for matroids ([13]). For each finite field F and each planar
graph H , there exists an integer k such that each F-representable matroid with branch-
width at least k has a minor isomorphic to M(H).

As a consequence we obtain the following partial result towards the Well-Quasi-
Ordering Conjecture.

Corollary. Let F be a finite field and H a planar graph. Then any infinite set of
F-representable matroids with no minor isomorphic to M(H) contains two matroids
such that one is isomorphic to a minor of the other.

In combination with results of Hliněný [18], we also obtain partial progress towards
the Minor-Recognition Conjecture.

Corollary. For each finite field F and each planar graph H , there is a polynomial-
time algorithm for testing whether or not an F-representable matroid contains a minor
isomorphic to M(H).

So for matroids over a fixed finite field we can efficiently test all minor-closed
properties that do not hold for the cycle matroid of all planar graphs.

Geelen and Whittle [17] show that for a finite field F and integer k, the number of
excluded minors for F-representability that have branch width at most k is finite. In
combination with the Grid Theorem for matroids this yields the following result.

Corollary. For each finite field F and each planar graph H , there are only finitely
many excluded minors for F-representability that do not have M(H) as a minor.
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We see that the structure imposed on a class of matroids by excluding the matroid
of a planar graph as a minor yields restricted solutions to the Well-Quasi-Ordering
Conjecture, the Minor-Recognition Conjecture, and Rota’s Conjecture, and that is a
promising beginning.

The Grid Theorem for matroids is absolutely central in developing a structure
theory for matroids. When specialized to graphs, the proof in [13] is different from
the existing proofs in [3], [27], [32]. It is important to note that we had access
to an extraordinary 150-page handwritten manuscript [21] of Johnson, Robertson,
and Seymour describing their progress towards a grid theorem for matroids. The
techniques we learned from their manuscript played a crucial role in parts of our
proof. The proof also makes use of earlier results we obtained together with Neil
Robertson [10], [11].

Regarding the result above on well-quasi-ordering of F-representable matroids
of bounded branch-width it is interesting to note that the finiteness of F is essential
there. This is illustrated by the sequence of matrices given in Section 1, below the
Well-Quasi-Ordering Conjecture; they all have branch-width at most 3, as they all
have rank 3. On the other hand, there are only finitely many excluded minors for the
class of all matroids of branch width at most k, representable or not [11].

We conclude this section with a comment regarding Rota’s Conjecture. We have
seen that for every finite field GF(q) there are a finite number of excluded minors for
GF(q)-representability of any given branch width. In [15] it is proved that an excluded
minor for GF(q)-representability of sufficiently large branch width cannot contain a
PG(q + 6, q)-minor. (PG(n, q) is the matroid represented by points of the projective
geometry of order n over GF(q).) So it follows that if Rota’s Conjecture fails for
GF(q), then there must exist excluded minors with arbitrarily large grid-minors and
no large projective geometry as a minor.

3. An example: the structure of regular matroids

With the results in the previous section in hand we proceed towards a structure theory
for matroids over finite fields. One of the prototypes of structural matroid theory and
its algorithmic consequences concerns the totally unimodular matrices mentioned in
Section 1. The question if a certain given matrix is totally unimodular can be trans-
lated into the question if a related, easy-to-construct, GF(2)-representable matroid is
representable over all fields. Such matroids are called regular. Regularity is a minor-
closed property. Tutte [40] proved that a GF(2)-representable matroid is regular if and
only if it does not have a minor isomorphic to PG(2, 2), also called the Fano matroid,
or to the dual of PG(2, 2). Here the dual of a matroid M is the matroid M∗ with the
same ground set E as M and with rank-function rM∗(X) = |X|−rM(E−X)+rM(E).
Representability over a field F is closed under duality, hence so is regularity. Taking
minors commutes with duality; although the roles of deletion and contraction swap.
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Tutte’s excluded minor characterization of regular matroids is one of the gems
of matroid theory, but it does not tell how to decide if a given GF(2)-representable
matroid is regular or not. That question was answered by a structural result, Seymour’s
Regular Matroid Decomposition Theorem [36]: A matroid over GF(2) is regular if
and only if it is the 1-, 2- or 3-sum of graphic matroids, duals of graphic matroids
and copies of a particular 10-element matroid called R10. Here a 1-, 2- or 3-sum of
two (representable) matroids is carried out by embedding each of them in a distinct
projective space and then combining these projective spaces by taking either their
direct sum, in case of a 1-sum, or identifying single points or lines, in case of a 2-sum
or a 3-sum. These “meeting” points or lines should be in both matroids and may or
may not be deleted from the matroid after the composition. The sums as well as the
reversed “decomposition” operations preserve regularity.

So Seymour’s result gives a structural description of the class of regular matroids.
Their “global structure” is that they are composed from smaller pieces along low-
order separations. The pieces sit together in a tree-like fashion. The description of
these pieces provides the “local structure”: each piece is either a graphic matroid, the
dual of a graphic matroid or isomorphic to R10. This combination of global and local
structure is typical for all structural results in this paper.

Seymour’s structural characterization of regular matroids is constructive, it can be
used to design an algorithm for testing regularity in polynomial time. This goes as
follows. First decide if the matroid is a 1-, 2- or 3-sum of smaller matroids. This can be
done in polynomial time, as gluing two matrices together leaves a separation of order
at most 3 in the composed matroid and Cunningham and Edmonds [2] observed that
detecting these is a matroid intersection problem, which is solvable in polynomial time
(Edmonds [7]). When the matroid is fully decomposed into “4-connected pieces”,
each piece is tested for being isomorphic to R10, which is trivial, or being a graphic
matroid or the dual of a graphic matroid, which can be done by Tutte’s polynomial-
time algorithm for testing graphicness [41]. If all pieces pass the test, the original
matroid is regular, otherwise it is not.

By the relation between regularity and total unimodularity this yields an algorithm
for testing if a real matrix is totally unimodular or not (see Schrijver [35, Chapter 20]
for a description of this algorithm in terms of the matrices). This is the only known
polynomial-time algorithm for testing totally unimodularity. Thus the structure of
matroids is crucial for the algorithmic aspects of this central property in operations
research and combinatorial optimization. Actually matroids in general do play a major
role in the theory of combinatorial optimization, see Schrijver [34]. A book on matroid
decomposition is Truemper [39], it mainly concerns regular matroid decomposition
and related topics.

With Seymour’s regular matroid decomposition in mind we next discuss what we
expect to be the structure of minor-closed classes of matroids that are representable
over a finite field. It should be noted that the results will not be as “tight” as in Sey-
mour’s decomposition theorem. Seymour provided a constructive description of all
binary matroids that contain neither the Fano matroid nor its dual as a minor. More-
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over, none of the matroids obtained via that construction contain the Fano matroid
or its dual. In contrast, the Grid Theorem for graphs provides a construction for the
graphs that do not contain a given planar graph H as a minor, but some graphs ob-
tained via the construction may contain H as a minor. The construction is, however,
sufficiently restrictive that it does not build all planar graphs. For algorithmic and
well-quasi-ordering purposes, this is good enough.

4. Global structure and local structure

In Section 2 we discussed the structure of classes of matroids over finite fields that
do not have a minor isomorphic to the cycle matroid of a particular planar graph:
they can be decomposed into small pieces along low-order separations; they have low
branch-width. So explorations beyond that concern matroids with high branch-width.
The existence of large grid-minors in such matroids is useful in investigating their
structure, but a matroid may have several high branch-width parts that are separated by
low-order separations and we have to describe the structure of these parts separately.
To get a handle on these parts, Robertson and Seymour [28] introduce tangles. A
tangle really just indicates for each low-order separation on which side a particular
high branch-width part lies. Formally, a tangle of order t assigns to each separation
(X, Y ) of order less than t one of X and Y as the small side of (X, Y ) and the other
side as the big side of (X, Y ). It is required that no three small sides of the tangle
cover the ground set of the matroid and that no singletons are big. It turns out that the
maximum order of a tangle in a matroid is the branch-width of the matroid; for graphs
this was shown by Robertson and Seymour [28] and for matroids by Dhamatilike [5]
(although this result was implicit in [28]).

Combining this with the Grid Theorem, we see that grid-minors yield tangles.
Indeed, if F ⊆ M is the set of elements of an n by n grid-minor of M , then F

partitions naturally in the “horizontal” and “vertical” lines of the grid. If we consider
for each separation (X, Y ) of order less than n the side that contains a line in F as big,
then that yields a tangle of order n. It was shown in [16] that for any finite field F and
any n there exists an integer t such that in any F-representable matroid any tangle of
order t controls an n by n grid-minor. This generalizes a result from [32] for graphs.
Here a tangle controls a minor N of M if no small side of a separation of order less
than the rank of N contains all elements of N .

So tangles “locate” highly connected areas of the matroid. If all small sides of
one tangle are small in some other tangle, then they both seem to refer to the same
highly connected part but the latter tangle does that more accurately. Therefore we
are mainly interested in the maximal tangles, those for which the collection of small
sets is inclusion-wise maximal. It turns out that matroids, like graphs [28], can be
viewed as consisting of their maximal tangles put together in a tree-shaped structure,
see [16] for details. This provides a global picture of a matroid. To complete that
picture we have to describe the individual tangles, the local structure.
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To explain what we mean with that, we first explain what it means to reduce a
set S in an F-represented matroid M . Consider M as a collection E of points in a
projective geometry. Let X be the span of E − S in that projective geometry. For
each S′ ⊆ S whose span meets X in a single point, we call that point xS′ . Let Y be the
set of all points xS′ for all such sets S′. Replacing M by the matroid represented by
the union of Y and E − S is called reducing S. (For graphs, this more or less means
to remove the edges in S and to add an edge between any pair of vertices that both lie
in S and in the complement of S.)

Let C be a class of matroids. A tangle has local structure in C if there exist
separations (S1, B1), . . . , (Sk, Bk) in M with disjoint small sides S1, . . . , Sk such
that the matroid obtained from M by reducing each of S1, . . . , Sk is in C. To describe
the full structure we only need to characterize the minor-closed classes C that provide
the local structure of tangles in matroids over the finite field that do not contain a
particular minor.

5. The local structure of graph tangles

The Graph Minor Structure Theorem says that for any n there exists a surface � and
integers m, d, k such that the tangles of a graph with no minor isomorphic to Kn have
local structure in the class of graphs that lie on a surface � with m vortices of depth
at most d and k extra vertices. We explain what this means.

A vortex with connectors v1, . . . , vp is a graph H that is the union of graphs
H1, . . . , Hp such that vi is a vertex in Hi for each i = 1, . . . , p and such that if a
vertex v of H occurs in Hi and Hj for some i, j = 1, . . . , p then v either occurs in all
of Hi+1, . . . , Hj−1 or in all of Hj+1, . . . , Hi−1 (indices modulo n). The maximum
size of the subgraphs H1, H2, . . . , Hp is the depth of the vortex.

A graph is on a surface � with m vortices of depth at most d if it can be constructed
as follows: take a graph drawn on �, select m faces and add to each of these faces a
vortex of depth d to G that meets G and the other added vortices only in its connectors
v1, . . . , vn which lie in that order around the boundary of the face. If we additionally
add k new vertices and new edges from these vertices to each other and to the rest
of the graph, we obtain a graph that lies on a surface � with m vortices of depth at
most d and k extra vertices.

6. The local structure of matroid tangles

What are the minor-closed classes needed to describe the local structure of matroids
that are representable over a finite field? One natural minor-closed class is the class
of graphic matroids. Also, if F

′ is a subfield of F, then the class of F
′-representable

matroids is a minor-closed class of F-representable matroids. There is another natural
class, of Dowling matroids. They are like graphs and originally introduced by Dowling
[6] and studied in greater depth by Zaslavsky [44], [45].
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A Dowling matroid is a matroid that can be represented over a field F by a matrix
with the property that every column has at most two non-zero elements. We call
such matrix a Dowling representation of the matroid. If the ratio between the non-
zero elements in each column of a Dowling representation is in a subgroup � of the
multiplicative group of F, we call the matroid a Dowling matroid over �. One can
naturally associate a graph G(A) with a Dowling representation A. Each row of A is
a vertex of G(A) and each column of A with two non-zeroes yields an edge in G(A)

connecting the vertices corresponding to the rows that have the non-zeroes in that
column. Thus we get for each surface and each subgroup of the multiplicative group
of F the class of F-representable Dowling matroids that have Dowling representations
over the subgroup and whose associated graphs embed on the surface. Obviously
such a class is minor-closed.

In fact, we can extend such minor-closed class by allowing a bounded number
of “vortices” of bounded depth, these are obtained by adding matroid elements into
bounded-rank subspaces arranged in a cyclic manner around a face in the embedding,
similar to vortices in graphs.

Finally we can extend a minor-closed class C of matroids by considering for some
integer k the class of all rank-l perturbations of the members of C with l ≤ k. Here an
F-representable matroid M is a rank-l perturbation of an F-representable matroid N

if M and N have representations A and B, respectively, with the linear rank of A−B

equal to l.
Splitting a vertex in a graph amounts to a rank-1 perturbation of its cycle matroid.

So adding k vertices to a graph amounts to adding a single vertex followed by a
rank-(k − 1) perturbation of the cycle matroid. Adding a single vertex to a graph G

does in general not correspond to a low-rank perturbation. However, fortunately, the
cycle matroid of the resulting graph has a Dowling representation A with G(A) = G.
Hence the Graph Minors Structure Theorem is captured by the matroid classes given
above.

Now we state our main results and conjectures on the structure of minor-closed
classes over a finite field GF(q), where q = pk for some fixed prime p and some fixed
integer k. We distinguish between three types of minor-classes. The first type are the
classes that do not contain the cycle matroid of large complete graphs nor their duals.
The second type are the classes that do not contain large projective geometries over
the prime field GF(p) of GF(q). The third type are the classes that do not contain
large projective geometries over GF(q). In each of the cases, T is a tangle in a
GF(q)-representable matroid.

Below n is a fixed integer and each of the qualitative bounds “low”, “bounded”,
or “sufficiently large” indicates a bound only depending on q and n, so not on the
particular tangles or matroids.

Excluding M(Kn) and M(Kn)∗. We believe that we have proved that if T has
sufficiently large order and does not control a minor isomorphic to M(Kn) or to
M(Kn)

∗, then T has local structure in the class of low-rank perturbations of GF(q)-
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representable matroids that can be obtained by adding a bounded number of vortices
of bounded depth to a Dowling matroid whose associated graph is embedded in a
surface of low genus, or of the duals of such matroids. This implies the Graph Minors
Structure Theorem.

With this result and duality, we can now restrict our attention to tangles that control
the cycle matroid of a large complete graph.

Excluding PG(n, p). We conjecture that if T controls a minor isomorphic to M(Km)

for a sufficiently large integer m but T does not control a minor isomorphic to
PG(n, p), then T has local structure in the class of low-rank perturbations of GF(q)-
representable Dowling matroids.

Roughly speaking the conjectures above state that if M is a GF(q)-representable
matroid with no minor isomorphic to PG(n, p), then M admits a tree-like decom-
position such that each part is either essentially a Dowling matroid or is essentially
the dual of a Dowling matroid. For a field of prime order this would give the re-
quired constructive structural characterization of the minor-closed proper subclasses
of matroids representable over the field.

It is interesting to note here that a slight extension of Seymour’s regular matroid
decomposition says that if a GF(2)-representable matroid has no minor isomorphic
to PG(2, 2) then it can be constructed from graphic matroids, their duals, and copies
of R10 and copies of the dual of PG(2, 2), by 1-, 2- and 3-sums [36]. As graphic ma-
troids are GF(2)-representable Dowling matroids and as R10 and the dual of PG(2, 2)

are low-rank perturbations of a trivial matroid, this result of Seymour’s implies the
conjecture above for case that q = 2 and n = 2.

Excluding PG(n, q). For the case that q is not prime, we conjecture that if T con-
trols a minor isomorphic to PG(m, p) for a sufficiently large integer m but T does
not control a minor isomorphic to PG(n, q), then T has local structure in the class of
GF(q)-representable low-rank perturbations of matroids that are representable over a
proper subfield of GF(q).

Finally we can summarize all of the above into a single conjecture. For any minor-
closed proper subclass M of GF(q)-representable matroids, each matroid in M admits
a tree-like decomposition such that each part is either essentially a Dowling matroid,
or is essentially the dual of a Dowling matroid, or is essentially represented over a
proper subfield of GF(q).
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Cherednik algebras, Macdonald polynomials
and combinatorics

Mark Haiman∗

Abstract. In the first part of this article we review the general theory of Cherednik algebras and
non-symmetric Macdonald polynomials, including a formulation and proof of the fundamental
duality theorem in its proper general context. In the last section we summarize some of the com-
binatorial results in this area which we have recently obtained in collaboration with J. Haglund
and N. Loehr.
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1. Introduction

The record is very long. The facts are few and may be briefly stated.
—Miller v. San Francisco Methodist Episcopal (1932)

This article consists of an overview of the theory of Cherednik algebras and non-
symmetric Macdonald polynomials, followed by the combinatorial formula for non-
symmetric Macdonald polynomials of typeAn−1 recently obtained by Haglund, Loehr
and the author.

The main points in the theory are duality (Theorems 4.10, 5.11), and its con-
sequence, the intertwiner recurrence for Macdonald polynomials (Corollary 6.15),
which is the key to the combinatorial study of non-symmetric Macdonald polynomi-
als. The intertwiner recurrence can also be used to deduce other important results in
the theory, such as the norm and evaluation formulas, but I have omitted those for
lack of space.

The theory of course did not spring into being in the tidy form in which I have
attempted to package it here. Rather, it has been gradually clarified over almost
twenty years through the efforts of many people, in a large literature which I will not
attempt to cite in full. Let me only mention the origins of the theory in the works
of Macdonald [13], [14], [15], Opdam [17], and Cherednik [1], [2] and remark that
further important contributions were made by Ion, Knop, Koornwinder, Sahi, and van
Diejen, among others.
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The overview given here necessarily has much in common with Macdonald’s
monograph [16], which serves a similar purpose, but there are also several differences.
I have systematically used the lattice formulation for root systems, because it is most
natural from related points of view (algebraic groups, quantum groups), because it
puts affine and other root systems on an equal footing, and because important elements
of the theory (§2, 5.1–5.5, 5.13–5.15) apply to arbitrary root systems. I give a new
and somewhat more general proof of the duality theorem; Macdonald’s proof, strictly
speaking, applies to the root system of SLn, for instance, but not GLn or PGLn,
although it can be adjusted to cover these cases. For the triangularity property of
the Macdonald polynomials Eλ (Theorem 6.6), I use the affine Bruhat order on the
weight lattice X, rather than the orbit-lexicographic order used by Macdonald. This
simplifies some arguments, and is more natural in that the coefficient of xμ in Eλ is
non-zero if and only ifμ < λ in Bruhat order. I have also tried to use more transparent
notation.

2. Root systems

2.1. We always consider root systems realized in a lattice. So, for us, a root system(
X, (αi), (α

∨
i )
)

consists of a finite-rank free abelian group X, whose dual lattice
Hom(X,Z) is denotedX∨, a finite set of vectors α1, . . . , αn ∈ X, called simple roots,
and a finite set of covectors α∨

1 , . . . , α
∨
n ∈ X∨, called simple coroots. We denote by

XQ (resp. XR) the Q-vector space X ⊗Z Q (resp. R-vector space X ⊗Z R) spanned
by X.

The n × n matrix A with entries aij = 〈αj , α∨
i 〉 is assumed to be a generalized

Cartan matrix, satisfying the axioms

(i) 〈αi, α∨
i 〉 = 2,

(ii) 〈αj , α∨
i 〉 ≤ 0 for all j 	= i,

(iii) 〈αj , α∨
i 〉 = 0 if and only if 〈αi, α∨

j 〉 = 0.

The Dynkin diagram is the graph with nodes i = 1, . . . , n and an edge {i, j} for each
aij 	= 0, usually with some decoration on the edges to indicate the values of aij , aji .
If the Dynkin diagram is connected, A is indecomposable. If there exist non-zero
integers di such that 〈αj , diα∨

i 〉 = 〈αi, djα∨
j 〉 for all i, j , then A is symmetrizable.

The integers di can be assumed positive. If A is symmetrizable and indecomposable,
the di are unique up to an overall common factor. Then di is length of the root αi . If
there are only two root lengths, we call them long and short. If there is only one root
length, every root is both long and short.

2.2. Let α ∈ X and α∨ ∈ X∨ satisfy 〈α, α∨〉 = 2. The linear automorphism

sαα∨(λ) = λ− 〈λ, α∨〉α
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of X is a reflection. It fixes the hyperplane 〈λ, α∨〉 = 0 pointwise, and sends α to
−α. Thus (sα,α∨)2 = 1. The reflection on X∨ dual to sα,α∨ is equal to sα∨,α .

If α∨ is implicitly associated to α, we write sα for both sα,α∨ and sα∨,α . When
α = αi and α∨ = α∨

i are a simple root and corresponding coroot, we write si for sαi .
The si are called simple reflections.

2.3. The root system
(
X, (αi), (α

∨
i )
)

is non-degenerate if the simple roots αi are
linearly independent. When the Cartan matrix A is non-singular, e.g., for any finite
root system, then bothX and its dual

(
X∨, (α∨

i ), (αi)
)

are necessarily non-degenerate.
WhenA is singular, for instance if the root system is affine (Definition 3.1), it is often
convenient to take the simple roots to be a basis of XQ, in which case X is non-
degenerate but its dual is degenerate.

2.4. Assume in what follows that
(
X, (αi), (α

∨
i )
)

is non-degenerate. TheWeyl groupW
is the group of automorphisms ofX (and ofX∨) generated by the simple reflections si .
The sets of roots and coroots are

R =
⋃
i

W(αi), R∨ =
⋃
i

W(α∨
i ).

The root and coroot lattices are

Q = Z{α1, . . . , αn} ⊆ X, Q∨ = Z{α∨
1 , . . . , α

∨
n } ⊆ X∨.

The set of positive roots is R+ = R ∩Q+, where

Q+ = N{α1, . . . , αn}.
The dominant weights are the elements of the cone

X+ = {λ ∈ X : 〈λ, α∨
i 〉 ≥ 0 for all i}.

The root system
(
X, (αi), (α

∨
i )
)

is finite ifW is a finite group, or equivalently,R is
a finite set. The Cartan matrixA of a finite root system is symmetrizable, with positive
definite symmetrizationDA. Conversely, ifA has a positive definite symmetrization,
then R is finite. The finite root systems classify reductive algebraic groups G over
any algebraically closed field k. Then X is the character group of a maximal torus in
G, or weight lattice.

Example 2.5. Let X = Zn, and identify X∨ with X using the standard inner product
on Zn such that the unit vectors ei are orthogonal. Let αi = α∨

i = ei − ei+1 for
i = 1, . . . , n− 1. This gives the root system of the group GLn.

Replacing X with the root lattice Q and restricting the simple coroots to Q, we
obtain the root system of the adjoint group PGLn (GLn modulo its center).

The constant vector ε = e1 + · · · + en satisfies 〈ε, α∨
i 〉 = 0 for all i. Let X′ =

X/(Zε), with simple roots and coroots induced by those of X. This gives the root
system of the simply connected group SLn. It is dual to the root system of PGLn. All
three root systems have the same Cartan matrix, of type An−1.



846 Mark Haiman

2.6. We recall some standard facts. First, R = R+ ∪ −R+, i.e., every root is positive
or negative (note that R = −R, since si(αi) = −αi for all i). The Weyl group W ,
with its generating set S of simple reflections si , is a Coxeter group with defining
relations

s2
i = 1, (1)

sisj si . . . = sj sisj . . . (mij factors on each side), (2)

where if aij aji = 0, 1, 2 or 3, thenmij = 2, 3, 4, or 6, respectively, and if aij aji ≥ 4,
there is no relation between si , sj .

The length l(w) of w ∈ W is the minimal l such that w = si1 . . . sil . Such an
expression is called a reduced factorization. More generally, if w = u1u2 . . . ur with
l(w) = l(u1)+ · · · + l(ur) we call u1 · u2 . . . ur a reduced factorization.

If w = sj1 . . . sjl is a second reduced factorization, then the identity sj1 . . . sjl =
si1 . . . sil holds in the monoid with generators si and the braid relations (2), that is, it
does not depend on the relations s2

i = 1.
The length ofw is equal to the number of positive roots carried into negative roots

by w, i.e., l(w) = |R+ ∩ w−1(−R+)|. In particular, αi is the only positive root α
such that si(α) ∈ −R+. The following conditions are equivalent: (i) l(wsi) < l(w);
(ii) w(αi) ∈ −R+; (iii) some reduced factorization of w ends with si . We abbreviate
these conditions to wsi < w, and write siw < w when w−1si < w−1.

If α = w(αi) = w′(αj ), then w(α∨
i ) = w′(α∨

j ), so there is a well-defined coroot
α∨ = w(α∨

i ) associated to α and satisfying 〈α, α∨〉 = 2, and accordingly a well-
defined reflection sα = sα,α∨ = wsiw

−1. Warning: the correspondence α �→ α∨
need not be bijective if the dual root system is degenerate.

The map W → {±1}, w �→ (−1)l(w) is a group homomorphism. In particular,
l(sα) is always odd, and l(wsα) 	= l(w). We put wsα < w if l(wsα) < l(w). The
Bruhat order is the partial order onW given by the transitive closure of these relations.

2.7. The braid group B(W) is the group with generators Ti and the braid relations (2)
with Ti in place of si . If w = si1 . . . sil is a reduced factorization, we set Tw =
Ti1 . . . Til . These elements are well-defined and satisfy

TuTv = Tuv when uv = u · v is a reduced factorization. (3)

There is a canonical homomorphism B(W) → W , Ti �→ si . By the symmetry of the
braid relations, there is an automorphism Ti ↔ T −1

i of B(W).

2.8. The affine Weyl group of
(
X, (αi), (α

∨
i )
)

is the semidirect product W � X. In
this context, we use multiplicative notation for the group X, denoting λ ∈ X by xλ.
Explicitly,W�X is generated by its subgroupsW andX with the additional relations

six
λsi = xsi(λ). (4)
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2.9. The (left) affine braid group B(W,X) of
(
X, (αi), (α

∨
i )
)

is the group generated
by B(W) and X, with the additional relations

Tix
λ = xλTi if 〈λ, α∨

i 〉 = 0 (i.e., if si(λ) = λ); (5)

Tix
λTi = xsi(λ) if 〈λ, α∨

i 〉 = 1. (6)

These two relations may be combined into the following analog of (4):

T ai x
λT bi = xsi(λ), where a, b ∈ {±1} and 〈λ, α∨

i 〉 = (a + b)/2 (7)

(the case a = b = −1 follows by taking inverses on both sides in (6)). The canonical
homomorphism B(W) → W extends to a homomorphism B(W,X) → W � X

which is the identity on X.
For clarity when dealing with double affine braid groups later on, we define sep-

arately the right affine braid group B(X,W), generated by W and X with additional
relations

Tix
λ = xλTi if 〈λ, α∨

i 〉 = 0 ; (8)

T −1
i xλT −1

i = xsi(λ) if 〈λ, α∨
i 〉 = 1. (9)

There is an isomorphism B(X,W) ∼= B(W,X) which maps Ti �→ T −1
i and is the

identity on X.

2.10. If
(
X, (αi), (α

∨
i )
)

is a non-degenerate root system, the root lattice Q is free

with basis (αi). Identify Q∨ with a quotient of the free abelian group Q̂∨ with basis
(α∨
i ), and set P = Hom(Q̂∨,Z). The roots and coroots in X are then given by

homomorphisms Q → X → P , where the matrix of the composite Q → P is the
Cartan matrix A. Suppose that X → P factors through a second lattice X′ as

Q → X →
j
X′ → P.

This induces a root system
(
X′, (α′

i ), (α
′∨
i )
)

inX′ with the same Cartan matrix A and
canonically isomorphic Weyl and braid groups W ′ = W , B(W ′) = B(W). There is
an induced homomorphism of affine braid groups jB : B(W,X) → B(W,X′)which
restricts to j on X and to the canonical isomorphism on B(W).

Theorem 2.11. The image of jB : B(W,X) → B(W,X′) is normal in B(W,X′),
and the induced maps ker(j) → ker(jB), coker(j) → coker(jB) are isomorphisms.

Proof (outline). First suppose that X′ = X ⊕ Zν, where 〈ν, α∨
i 〉 ∈ {0, 1} for all i.

One proves that there exists an automorphism η of B(W,X) which fixes X, such
that η(Ti) = Ti if 〈ν, α∨

i 〉 = 0, and η(Ti) = T −1
i x−αi if 〈ν, α∨

i 〉 = 1. Then
one checks that ηZ � B(W,X) ∼= B(W,X′), with η �→ xν . Iterating this gives
B(W,X ⊕ P) ∼= P � B(W,X), and similarly, B(W,X′ ⊕ P) ∼= P � B(W,X′).
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ReplacingX,X′ withX⊕P ,X′ ⊕P , we may assume thatX → P andX′ → P are
surjective.

Next one verifies that if X → X′ is surjective, with kernel Z, then B(W,X′) ∼=
B(W,X)/Z. Applying this to 0 → Z → X → P → 0 and 0 → Z′ → X′ →
P → 0, we get surjections B(W,X) → B(W, P ), B(W,X′) → B(W, P ) with
kernels Z, Z′. The theorem then follows by some easy diagram chasing. �

2.12. Let
(
X, (αi), (α

∨
i )
)

be a root system. It may happen that for one or more of the
simple roots αi , we have α∨

i ∈ 2X∨. Then we can form another (degenerate) root sys-
tem by adjoining a new simple root 2αi and coroot α∨

i /2. Note that s(2αi),(α∨
i /2)

= si ,
so this new root system has the same Weyl group as the original one, but a larger set
of roots R′ = R ∪W(2αi).

If a root system contains two simple roots αi , αi′ such that si = si′ and αi 	= ±αi′ ,
it is said to be non-reduced, otherwise it is reduced. We remark that si′ = si implies
αi′ = dαi , α∨

i′ = (1/d)α∨
i , where d ∈ {±1,±2,±1/2}. Hence every non-reduced

root system is constructed by extensions as above from a reduced root system with
the same Weyl group.

3. Affine root systems and affine Weyl groups

Definition 3.1. A root system
(
X, (αi), (α

∨
i )
)

is affine if its Cartan matrixA is singular,
and for every proper subset J of the indices, the root system

(
X, (αi)i∈J , (α∨

i )i∈J
)

is
finite.

3.2. The definition implies that the nullspace of A is one-dimensional. If X is non-
degenerate, then {λ ∈ Q : 〈λ, α∨

i 〉 = 0 for all i} is a sublattice of rank 1. It always
has a (unique) generator δ ∈ Q+, called the nullroot.

We index the simple roots by i = 0, 1, . . . , n. We always assume that i = 0
is an affine node, meaning that α0 ∈ Qα + Qδ for some root α of the finite root
system

(
X, (α1, . . . , αn), (α

∨
1 , . . . , α

∨
n )
)
. This condition is equivalent to s1, . . . , sn

generating the finite Weyl groupW0 = W/Q′
0, whereW is the Weyl group andQ′

0 is
the kernel of its induced action on X/(X ∩ Qδ). Every affine root system has at least
one affine node.

3.3. The affine Cartan matrices are classified in Kac [8] and Macdonald [16]. They
are symmetrizable and indecomposable. We refer to them using Macdonald’s nomen-
clature, but with a tilde over the names to distinguish them from finite types. Those
denoted X̃n, or X(1)n in Kac, are the untwisted types, where Xn = An, Bn, Cn, Dn,
E6,7,8, F4, or G2 is a Cartan matrix of finite type. Their duals (if different) B̃∨

n , C̃∨
n ,

F̃∨
4 , G̃∨

2 are the dual untwisted types, denoted A(2)2n−1, D(2)n+1, E(2)6 , and D(3)4 in Kac.

The remaining mixed types, denotedA(2)2n in Kac, are exceptional in that they have
three root lengths. Although the mixed types are isomorphic to their duals, we prefer
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to distinguish between them, denoting a mixed type as B̃Cn when the distinguished
affine root α0 is the longest simple root, and B̃C

∨
n when α0 is the shortest simple root.

Types B̃n, C̃∨
n , B̃Cn, B̃C

∨
n contain one or more simple roots αi such that 〈αj , α∨

i 〉
is even for all j . There exist affine root systemsX of these types such that α∨

i ∈ 2X∨.
A non-reduced affine root system is a non-reduced extension (§2.12) of such a root
system X.

3.4. The Weyl group Wa of any affine root system
(
X, (αi), (α

∨
i )
)

is isomorphic to
the affine Weyl group W = Q′

0 � W0 of some finite root system
(
Y, (α′

i ), (α
′∨
i )
)
.

Conversely, the affine Weyl group Y � W0 of any finite root system is a semidirect
extension ��Wa of the Weyl group of a corresponding affine root system. We now
fix precise notation and explain how this correspondence comes about.

3.5. Let
(
Y, (α′

i ), (α
′∨
i )
)
, i = 1, . . . , n, be a finite root system, with Weyl group W0

and root lattice Q′
0. Let φ′ be the (unique) dominant short root. Let We = Y �W0

be the affine Weyl group of Y , and set Wa = Q′
0 �W0 ⊆ We. Write yλ for λ ∈ Y

regarded as an element of We. The orbit W0(φ
′) consists of all the short roots, and

spans Q0. Defining s0 = yφ
′
sφ′ , it follows that s0 and s1, . . . , sn ∈ W0 generate Wa .

We will construct an affine root system whose Weyl group W is isomorphic to Wa ,
with simple reflections corresponding to the generators s0, . . . , sn.

3.6. LetX = Y∨ ⊕Z, and fix a non-zero element δ in the second summand. We need
not assume that δ is a generator, so in general we have X = Y∨ ⊕ Zδ/m for some
positive integer m. Define the pairing 〈X, Y 〉 → Z, extending the canonical pairing
〈Y∨, Y 〉 → Z, with 〈δ, Y 〉 = 0.

Let θ = φ′∨ be the highest coroot. For i 	= 0, set αi = α′∨
i and α∨

i = α′
i (regarded

as a linear functional on X via 〈· , ·〉). Put α0 = δ − θ and α∨
0 = −φ′. The subgroup

W0 ⊆ Wa acts via its original action on Y∨, fixing δ. The subgroup Q′
0 ⊆ Wa acts

by translations, given by the formula

yβ
′
(μ∨) = μ∨ − 〈μ∨, β ′〉δ, (10)

One checks that the element yφ
′
sφ′ ∈ Wa acts as the simple reflection s0, identifying

Wa with the Weyl group W of X.
For Y of type Zn (Z = A,B, . . . ,G), the affine root system X just constructed is

of untwisted type Z̃n, with nullroot δ. In this case the affine roots are

R = R′∨
0 + Zδ, (11)

and the positive roots are R+ = (R′∨
0 + Z>0δ) ∪ (R′∨

0 )+.

3.7. Let
(
X, (α0, . . . , αn), (α

∨
0 , . . . , α

∨
n )
)

be any affine root system, W its Weyl
group. Let Q0, W0 be the root lattice and Weyl group of the finite root system(
X, (α1, . . . , αn), (α

∨
1 , . . . , α

∨
n )
)
. If X is of untwisted type, we have just seen that

W ∼= Q′
0 �W0, where Q′

0 = Q∨
0 . If X∨ is of untwisted type, then W ∼= W(X∨) ∼=
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Q′
0 � W0, where Q′

0 = (Q∨
0 )

∨ = Q0. If X is of mixed type, its Weyl group is of
type C̃n, so W ∼= Q′

0 �W0 where Q′
0 is of type Cn, hence Q′

0 = Q∨
0 for B̃Cn, and

Q′
0 = Q0 for B̃C

∨
n .

3.8. Twisted affine root systems can also be constructed in the manner of §3.6, by
taking θ to be any dominant coroot of Y or of a non-reduced finite root system
containing Y . This yields dual untwisted types when θ is short, and mixed types
when θ is one-half of a long coroot or twice a short coroot. However, when θ 	= φ′∨,
we no longer have W = Q′

0 �W0.

3.9. We now return to the situation of §3.5, fixing the finite root systemY and untwisted
affine root system X = Y∨ ⊕ Zδ/m in what follows. The affine Weyl group We =
Y �W0 of Y is called the extended affine Weyl group. The action of Q′

0 on X given
by (10) extends to an action of Y , hence the action ofWa = Q′

0 �W0 extends toWe.
By (11), We preserves the set of affine roots R.

3.10. The further properties ofWa andWe are best understood in terms of the following
“alcove picture.” LetH = {x ∈ X∨

R : 〈δ, x〉 = 1} be the level 1 plane, and let�∨
0 ∈ H

be the linear functional�∨
0 (Y

∨) = 0, 〈δ,�∨
0 〉 = 1. The groupWe fixes δ, hence acts

on H . The translations Y ⊂ We act on H by

yλ(μ) = μ+ λ, (12)

and the finite Weyl group W0 is generated by reflections fixing �∨
0 . In particular, the

map yλ �→ �∨
0 +λ identifies Y ∼= We/W0 with the orbitWe(�

∨
0 ) ⊂ H , equivariantly

with respect to the original action ofW0 onY , and the action ofQ′
0 ⊆ Y by translations.

Each affine root α ∈ R induces an affine-linear functional α(x) = 〈α, x〉 on H .
Its zero set hα = {x ∈ H : α(x) = 0} is an affine hyperplane inH , and sα ∈ W = Wa

fixes hα pointwise. The space H is tessellated by affine alcoves bounded by the root
hyperplanes hα . We distinguish the dominant alcove A0 = H ∩ (R+X∨+) = {x ∈
H : α(x) ≥ 0 for all α ∈ R+}.

The alcove A0 is a fundamental domain for the action of Wa on H . Its walls are
the root hyperplanes hαi for the simple affine roots α0, . . . , αn. Let � ⊆ We be the
stabilizer of A0, or equivalently, � = {π ∈ We : π(R+) = R+}. Since � preserves
the set of simple roots, it normalizes the subgroup Wa ⊆ We and the set of Coxeter
generators S = {s0, . . . , sn} ⊆ Wa . The following are immediate.

Corollary 3.11. With the notation above, we have We = � �Wa . Moreover, � is
the normalizer in We of the set of Coxeter generators S = {s0, . . . , sn}.
Corollary 3.12. The canonical homomorphism Y ⊂ We → We/Wa = � induces
an isomorphism Y/Q′

0
∼= �. In particular, � is abelian.

To make this explicit, write π ∈ � uniquely as

π = yλπ · vπ ∈ Y �W0. (13)
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Thenπ maps to the coset of λπ in Y/Q′
0. In the notation of §3.10, we have�∨

0 +λπ =
yλπ (�∨

0 ) = π(�∨
0 ) ∈ A0. Equivalently, λπ ∈ Y is a dominant weight such that

〈λ, φ′∨〉 ≤ 1, or minuscule weight. Conversely, if λ ∈ Y is minuscule, there is
a unique π ∈ � such that yλ−λπ ∈ Wa . Then λ = λπ , because both weights
are minuscule and A0 is a fundamental domain for Wa . The minuscule weights λπ
(including λ1 = 0) are thereby in bijection with �.

3.13. The distinguished elements

yφ
′ = s0sφ′, yλπ = πv−1

π , (14)

whereφ′ is the dominant short root andλπ are the minuscule weights, are characterized
as the unique translations such that s0 ∈ yφ

′
W0, π ∈ yλπW0, consistent with our

having written We = Y �W0. If we write We = W0 � Y , we instead distinguish the
translations

y−φ′ = sφ′s0, y−λπ = vππ
−1 (15)

corresponding to the anti-dominant short root and the “anti-minuscule” weights. Of
course (14) and (15) are equivalent, but the corresponding formulas for the left and
right affine braid groups will not be (see Theorem 4.2, Corollary 4.3).

4. Double affine braid groups

4.1. LetWe = Y �W0 = ��Wa be an extended affine Weyl group (§3.9–3.13). By
Corollary 3.11, � acts on Wa by Coxeter group automorphisms. Hence � also acts
on B(Wa), and we can form the extended affine braid group B(We) = �� B(Wa).

Define the length function on We = � � Wa by l(πw) = l(w). Note that
l(wπ) = l(πwπ) = l(wπ) = l(w). The length of v = πw is again equal to
|R+ ∩ v−1(−R+)|, or to the number of affine hyperplanes hα separating v(A0) from
A0 in the alcove picture (§3.10). Identity (3) continues to hold in B(We).

The counterpart to Corollary 3.11 is the following theorem of Bernstein (see [9,
(4.4)]).

Theorem 4.2. The identification��Wa = Y�W0 lifts to an isomorphism B(We) ∼=
B(Y,W0) between the extended affine braid group defined above, and the (right)
affine braid group (§2.9) of the finite root system Y . The isomorphism is the identity
on B(W0) and given on the remaining generators by yφ

′ ↔ T0Tsφ′ , yλπ ↔ πT
v−1
π

,
in the notation of §3.5 and (13).

We describe the restriction of the isomorphism to Y ⊆ B(Y,W0)more explicitly.
If λ,μ ∈ Y+ are dominant, the alcove picture shows that l(yλ+μ) = l(yλ) + l(yμ).
Hence Tyλ+μ = TyλTyμ in B(We). It follows that there is a well-defined group

homomorphism φ : Y → B(We) such that yλ−μ �→ TyλT
−1
yμ for λ,μ ∈ Y+. In

particular, this yields the formulas yφ
′ �→ T

yφ
′ = T0Tsφ′ , yλπ �→ Tyλπ = πT

v−1
π

.
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One verifies using the alcove picture that the elements φ(yλ) and the generators
Ti of B(W0) satisfy the defining relations of B(Y,W0). Hence φ extends to a homo-
morphism B(Y,W0) → B(We). Next one verifies (with the help of Lemma 4.20,
below) that the element yφ

′
T −1
sφ′ ∈ B(Q′

0,W0) satisfies braid relations with the gen-

erators Ti , giving a homomorphism B(Wa) → B(Q′
0,W0) inverse to φ. Hence φ

maps B(Q′
0,W0) isomorphically onto B(Wa), and by Theorem 2.11, it follows that

φ is an isomorphism.

Corollary 4.3. For a (left) extended affine Weyl group Wa � � = W0 � X, there
is an isomorphism B(We) ∼= B(W0, X) between the extended affine braid group
and the left affine braid group of X, which is the identity on B(W0), and satisfies
x−φ ↔ TsφT0, x−λπ ↔ Tvπ π

−1.

4.4. We come now to the key construction in the theory. Fix two finite root systems(
X, (αi), (α

∨
i )
)
,
(
Y, (α′

i ), (α
′∨
i )
)

with the same Weyl group W0. More accurately,
assume given an isomorphism of Coxeter groups W0 = (W(X), S) ∼= (W(Y ), S′),
and label the simple roots so that si corresponds to s′i for each i = 1, . . . , n.

Let φ ∈ Q0 ⊆ X, φ′ ∈ Q′
0 ⊆ Y be the dominant short roots. Let θ ∈ Q0, θ ′ ∈ Q′

0
be the dominant roots such that sθ = sφ′ , sθ ′ = sφ . There are unique W0-equivariant
pairings (X,Q′

0) → Z, (Q0, Y )
′ → Z such that (β, φ′) = 〈β, θ∨〉 for all β ∈ X

and (φ, β ′)′ = 〈β ′, θ ′∨〉 for all β ′ ∈ Y . One checks that (φ, φ′) = (φ, φ′)′ = 2
if sφ = sφ′ , and (φ, φ′) = (φ, φ′)′ = 1 if sφ 	= sφ′ . By W0-equivariance, the
two pairings therefore agree on Q0 ×Q′

0. Fix a W0-invariant pairing (X, Y ) → Q

extending the two pairings (· , ·) and (· , ·)′, and choose m such that (X, Y ) ⊆ Z/m.

Remark 4.5. The Cartan matrices of X and Y are clearly either of the same type
(Zn, Zn), or of dual types (Zn, Z∨

n ). In the symmetric case (Zn, Zn), the roots θ = φ,
θ ′ = φ′ are short, and the pairing (· , ·) restricts on Q0 = Q′

0 to the W0-equivariant
pairing such that (α, α) = 2 for short roots α. In the dual case (Zn, Z∨

n ), θ and θ ′ are
long, and the pairing restricts to the canonical pairing between Q0 and Q′

0 = Q∨
0 .

Types G2 and F4 are isomorphic to their duals, but only after relabelling the simple
roots. Thus there is a genuine difference between types (G2,G2) and (G2,G

∨
2 ), for

instance. In particular, θ = φ in the first case, and θ 	= φ in the second.

4.6. Given the data in §4.4, set X̃ = X⊕ Zδ/m, Ỹ = Y ⊕ Zδ′/m. Extend the linear
functionals α∨

i on X to X̃ so that 〈δ, α∨
i 〉 = 0. Define α0 = δ − θ , and let α∨

0 be the
extension of −θ∨ such that 〈δ, α∨

0 〉 = 0. Making similar definitions in Ỹ , we get two
affine root systems(

X̃, (α0, . . . , αn), (α
∨
0 , . . . , α

∨
n )
)
,

(
Ỹ , (α′

0, . . . , α
′
n), (α

′∨
0 , . . . , α

′∨
n )
)
.

Let Y act on X̃ and X on Ỹ by

yλ(μ) = μ− (μ, λ)δ, xμ(λ) = λ− (μ, λ)δ′.
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Since (· , ·) isW0-invariant, this extends to actions of the extended affine Weyl groups

We = Y �W0, W ′
e = W0 �X

on X̃ and Ỹ , respectively. The semidirect products We � X̃, Ỹ � W ′
e are the (left,

right) extended double affine Weyl groups. We have the following easy counterpart of
Corollary 3.11.

Corollary 4.7. There is a canonical isomorphism We � X̃ ∼= Ỹ �W ′
e, which is the

identity onX, Y andW0, and maps q = xδ to y−δ′ . In fact, both groups are identified
with W0 � (X � Y ), where X � Y is the Heisenberg group generated by X, Y and
central element q1/m, with relations

xμyλ = q(μ,λ)yλxμ.

Remarks 4.8. (a) For consistency, set q = y−δ′ in the “right” double affine Weyl
group Ỹ �W ′

e. Then the isomorphism maps q to q.
(b) WhenX and Y are of dual types, the affine root systems X̃, Ỹ are of untwisted

type (§3.6). When X and Y are of the same type, then X̃, Ỹ are of dual untwisted
type (§3.8).

(c) The requirement that (· , ·) extend the pairings (X,Q′
0) → Z and (Q0, Y

′)′ →
Z in §4.4 ensures that

We � yφ′
sφ′ = s0 ∈ W(X̃), W ′

e � sφx−φ = s′0 ∈ W(Ỹ ).
Under the action of We = Y �W0 = � �Wa on X̃, the subgroup Wa = Q′

0 �W0

is therefore identified with the Weyl group of X̃. By Corollary 3.11, � ⊂ We acts
on X̃ by automorphisms of the root system, i.e. it permutes the affine simple roots
and coroots. So We acts on X̃ as the semi-direct product of the Weyl group Wa and
the group of automorphisms �. In particular, the extended double affine Weyl group
We � X̃ is the semidirect product

�� (Wa � X̃)

of � with the affine Weyl group (§2.8) of the affine root system X̃. Similar remarks
apply to Ỹ �W ′

e.

4.9. Since� acts by automorphisms of the affine root system X̃, it also acts naturally
on B(Wa, X̃) (§2.9), and we can form the semidirect product�� B(Wa, X̃), which
we may regard as an extended (left) affine braid group B(We, X̃) of the affine root
system X̃. Similarly, we can define B(Ỹ ,W ′

e) = B(Ỹ ,W ′
a) � �′. Define q = xδ

in B(We, X̃), and q = y−δ′ ∈ B(Ỹ ,We), as in Remark 4.8(a). We come now to the
fundamental theorem.

Theorem 4.10. The isomorphism We � X̃ ∼= Ỹ � W ′
e lifts to an isomorphism

B(We, X̃) ∼= B(Ỹ ,W ′
e), which is the identity on X, Y , and B(W0), and maps
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q = xδ to q = y−δ′ . (Here X, Y are identified with their images under B(W0, X) ∼=
B(W ′

e) → B(Ỹ ,W ′
e) and B(Y,W0) ∼= B(We) → B(We, X̃), using Theorem 4.2

and Corollary 4.3)

The group B(We, X̃) = B(Ỹ ,W ′
e) is the (extended) double affine braid group.

4.11. By §2.9, there is an isomorphism � : B(Ỹ ,W ′
e) → B(W ′

e, Ỹ ) given by

�(yλ) = yλ, �(T ′
0) = T ′−1

0 ,

�(π) = π ′ (π ′ ∈ �′), �(Ti) = T −1
i (i = 1, . . . , n).

The element T0 in B(Ỹ ,W ′
e) is defined by T0 = yφ

′
T −1
sφ′ , whereas T0 in B(W ′

e, Ỹ )

is given by T0 = T −1
sφ′ y

−φ′
. Similarly, � → B(Ỹ ,W ′

e) is given by π = yλπ vπ �→
yλπ T −1

v−1
π

, whereas � → B(W ′
e, Ỹ ) is given by π−1 �→ T −1

vπ
y−λπ , and therefore

π �→ yλπ Tvπ . Moreover,X is embedded in B(Ỹ ,W ′
e) via the identification B(W ′

e) =
�′ � B(W0, X), which is characterized by x−φ �→ TsφT0 and x−λπ ′ �→ Tvπ ′π ′−1,
whereas X ⊂ B(W ′

e, Ỹ ) is given via B(W ′
e) = B(X,W0) � �′ by xφ �→ T0Tsφ ,

xλπ ′ �→ π ′T
v−1
π ′ . In B(W ′

e, Ỹ ), finally, q denotes yδ
′
. Taking into account that

�(Tw) = T −1
w−1 for all w ∈ W0, all this implies

�(xμ) = xμ, �(T0) = T −1
0 ,

�(π) = π (π ∈ �), �(q) = q−1.

Theorem 4.10 therefore has the following equivalent alternate formulation.

Corollary 4.12. There is an isomorphism B(We, X̃) ∼= B(W ′
e, Ỹ ), which is the

identity on X, Y , � and �′, maps q = xδ to q−1 = y−δ′ , and maps the generators
Ti of B(W0) to T −1

i .

4.13. Cherednik [1] announced Theorem 4.10 in the case X = Y , and suggested a
possible topological proof, which was completed by Ion [7]. Macdonald [16, 3.5–3.7]
gave an elementary proof, which however involves quite a bit of case-checking and
only applies whenX = Hom(Q∨

0 ,Z), Y = Hom(Q′∨
0 ,Z). We now outline a different

elementary proof. First assume that the theorem holds in the “unextended” case,
X = Q0, Y = Q′

0, We = Wa , W ′
e = W ′

a . We will deduce the general case.
By Theorem 2.11, B(Q̃′

0,W
′
a) embeds in B(Ỹ ,W ′

a) as a normal subgroup, with
quotient Ỹ /Q̃′

0 = Y/Q′
0

∼= �. Moreover, � ⊆ B(We) = B(Y,W0) is a subgroup
of B(Ỹ ,W ′

a), giving the semidirect decomposition B(Ỹ ,W ′
a)

∼= � � B(Q̃′
0,W

′
a).

By assumption, we have B(Wa, Q̃0) ∼= B(Q̃′
0,W

′
a), hence B(Ỹ ,W ′

a)
∼= � �

B(Wa, Q̃0) = B(We,Q0). This establishes the case where X = Q0 and Y is
general. ExchangingX and Y , we also get the case Y = Q′

0,We = Wa , where nowX
and W ′

e are general.
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By definition, B(Q̃′
0,W

′
e) = B(Q̃′

0,W
′
a)��

′ and B(Ỹ ,W ′
e) = B(Ỹ ,W ′

a)��
′,

with �′ ∼= X/Q0 the same for both groups. Again, Theorem 2.11 implies that the
first group is a normal subgroup of the second, with quotient�. So we can repeat the
preceding argument to get the general case.

4.14. Now fix X = Q0, Y = Q′
0, so We = Wa , W ′

e = W ′
a . Using Theorem 4.2 and

Corollary 4.3, we identify B(W ′
a) = B(W0, X), B(Wa) = B(Y,W0). Then each

group B(Wa, X̃), B(Ỹ ,W ′
a) has generators T0, T ′

0, T1, . . . , Tn, q1/m. In both groups,
q1/m is central, the generators T0, T1, . . . , Tn satisfy the braid relations of B(Wa),
and T ′

0, T1, . . . , Tn satisfy those of B(W ′
a).

The additional relations (7) for λ ∈ Q0 and i = 0 complete a presentation of
B(Wa, X̃), since those for i 	= 0 already hold in B(W0, X) = B(W ′

a). For con-
venience, we write down these extra relations again here, after applying the identity
〈λ, α∨

0 〉 = −〈λ, θ∨〉:

T a0 x
λT b0 = xs0(λ), where a, b ∈ {±1} and −〈λ, θ∨〉 = (a + b)/2. (16)

In view of Corollary 4.12, to prove the theorem it suffices to express (16) in a “self-
dual” form, in the sense that the substitutions T0 ↔ T ′−1

0 , Ti ↔ T −1
i , q ↔ q−1

(i 	= 0) should transform (16) into its counterpart with the roles of X and Y inter-
changed.

Lemma 4.15. Relations (16) reduce to the case when λ is a short positive root α 	= θ

(i.e., α 	= φ if θ = φ is short).

Proof. The short roots β 	= ±θ spanQ0. Hence we can always write λ = β1 +· · ·+
βm, where βi ∈ (R0)short \ {±θ}. In particular, 〈βi, θ∨〉 ∈ {0,±1} for all i. Given
that 〈λ, θ∨〉 ∈ {0,±1}, we can always order the βi so that those with 〈βi, θ∨〉 = 1
and those with 〈βi, θ∨〉 = −1 alternate. Writing (16) in the form T a0 x

λ = xs0(λ)T −b
0 ,

it is easy to see that it follows from the same relation for each βi . This reduces us to
the case that α 	= ±θ is a short root. The case of (16) for 〈λ, θ∨〉 = 1 implies the
case for 〈λ, θ∨〉 = −1, so positive roots α suffice. �

4.16. A parabolic subgroup of W0 is a subgroup of the form WJ = 〈si : i ∈ J 〉,
where J ⊆ {1, . . . , n}. Since φ and φ′ are dominant, their stabilizers are parabolic
subgroups WJ , WJ ′ respectively, where J = {i : 〈φ, α∨

i 〉 = 0}, and J ′ = {i :
〈φ′, α′∨

i 〉 = 0}. Recall that each left, right and double coset vWJ ,WJ ′v,WJ ′vWJ has
a unique representative of minimal length, which is also minimal in the Bruhat order.

Proposition 4.17. Relations (16) for λ = α 	= θ a short positive root reduce to
relations of the following two forms:

(a) For v such that (v(φ), φ′) = 0 and v minimal in WJ ′vWJ , the relation

T0 TvT
′−1
0 T −1

v = TvT
′−1
0 T −1

v T0.
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(b) For v = v1 such that (v(φ), φ′) = 1 and v minimal in WJ ′vWJ , define v2,
v3, v4 minimal respectively in WJ ′vsφWJ , WJ ′sθvsφWJ , WJ ′sθvWJ ; this given, the
relation

T −1
0 Tv1T

′−1
0 T −1

v2
T −1

0 Tv3T
′−1
0 T −1

v4
= q.

Proof. We can always write α = v(φ) with v minimal in vWJ . If i ∈ J ′, then Ti
commutes with T0. In B(W ′

a) = B(W0,Q0) we have xsi(α) = T εi x
αT ε

′
i , ε, ε′ = ±1

for every positive short root α. These facts imply that relations (16) are invariant
under replacement of α with w(α) ∈ WJ ′α. Hence we can assume v minimal in
WJ ′vWJ .

We show that when 〈α, θ∨〉 = (v(φ), φ′) = 0, relation (16), which in this case
reads T0x

α = xαT0, is equivalent to (a). The minimality of v in vWJ implies that if
v = si1 . . . sil is a reduced factorization, then 〈sik+1 . . . sil (φ), α

∨
ik
〉 = 1 for all k. Hence

xα = Tvx
φTv−1 = TvT

′−1
0 T −1

sφ
Tv−1 . The minimality also implies that sφ = v−1sαv is

a reduced factorization. Therefore T −1
sφ
Tv−1 = T −1

v T −1
sα

, and xα = TvT
′−1
0 T −1

v T −1
sα

.
Now, since 〈α, θ∨〉 = 0, we have s0sα = sαs0, and both sides of this equation are
reduced factorizations. Hence T0 commutes with Tsα , so (16) is equivalent to T0
commuting with TvT

′−1
0 T −1

v .
For 〈α, θ∨〉 = (v(φ), φ′) = 1, we have s0(α) = α + α0 = α − θ + δ, and

thus relation (16) in this case reads T −1
0 xαT −1

0 = qx−β , or T −1
0 xαT −1

0 xβ = q,
where β = −sθ (α) satisfies α + β = θ . Let u be the minimal representative of
sθvsφWJ . Then β = u(φ), and the same reasoning as in the previous paragraph gives
xα = TvT

′−1
0 T −1

vsφ
, xβ = TuT

′−1
0 T −1

usφ
. Our relation now takes the form

T −1
0 TvT

′−1
0 T −1

vsφ
T −1

0 TuT
′−1
0 T −1

usφ
= q. (17)

Using §2.6 and the fact that sφ(αi) = αi for all i ∈ J , we deduce (for any J ′)

(*) if x, y are minimal in WJ ′x, WJ ′y = WJ ′xsφ , respectively, and xw is
minimal in WJ ′xWJ , then yw is minimal in WJ ′yWJ .

By construction, u and v are minimal in their leftWJ cosets, and (*) implies the same
for usφ and vsφ . Hence the elements v1 = v, v2, v3, v4 defined in (b) are the minimal
representatives of WJ ′v, WJ ′vsφ , WJ ′u, WJ ′usφ respectively. By the analog of (*)
for sθ (operating on the left), we see that v1 = v implies v4 = usφ , and if we set
v2 = wvsφ , then v3 = wu. Now w ∈ WJ ′ commutes with T0, and the factorizations
vsφ = w−1v2, u = w−1v3 are reduced, so (17) reduces to (b). �

Corollary 4.18. The (unextended) double affine braid group B(Wa, Q̃0), where
B(Wa) = B(Q′

0,W0), has a presentation with generators T0, T ′
0, T1, . . . , Tn, q1/m

and the following (manifestly self-dual) relations: q1/m is central; braid relations
for T0, T1, . . . , Tn ∈ B(Wa) and for T ′

0, T1, . . . , Tn ∈ B(W ′
a); and the relations in

Proposition 4.17.
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Example 4.19. Let X = Y be of type An−1, with αi = α∨
i = ei − ei+1 as in

Example 2.5. Then φ = θ = φ′ = θ ′ = e1 − en, and WJ = WJ ′ = 〈s2, . . . , sn−2〉.
The presentation of B(Wa, Q̃0) is given by q central, braid relations and

(a) T0 commutes with T1Tn−1T
′−1
0 (T1Tn−1)

−1,

(b) T −1
0 T1T

′−1
0 T −1

1 T −1
2 . . . T −1

n−1T
−1

0 Tn−1T
′−1
0 T −1

n−1T
−1
n−2 . . . T

−1
1 = q.

There are seven double cosets WJvWJ ′ . Two have v(φ) = ±φ, one yields (a), and
the other four provide the elements v1, . . . , v4 in (b). In fact, in every type there turns
out to be only one relation of type (b) and at most two of type (a), except for D̃4,
which has three of type (a).

Lemma 4.20. If φ is the dominant short root of a finite root system X, and v ∈ W0
is such that α = v(φ) ∈ (R0)+, then in B(W0, X) we have

Tvx
φTsφT

−1
v = xαTsα .

Proof. This reduces to the case that v is minimal in vWJ (in the notation of §4.16). As
in the proof of Proposition 4.17 we then have TvxφTsφ = xαT −1

v−1Tsφ = xαTsαTv . �

Lemma 4.20 will be used in the proof of Theorem 5.11. Its variant for B(Y,W0)

is T −1
v−1y

φT −1
sφ
Tv−1 = yαT −1

sα
, which is useful for verifying the braid relations in the

proof of Theorem 4.2.

5. Hecke algebras and Cherednik algebras

5.1. Let
(
X, (αi), (α

∨
i )
)

be a non-degenerate root system, with Cartan matrixA, Weyl
group W , and roots R. To each W -orbit in R we associate a parameter uα , uα = uβ
if β = w(α). Set ui = uαi . The ui are assumed to be invertible elements of some
commutative ground ring A. If α∨

i ∈ 2X∨, we also introduce a second parameter u′
i .

Lemma 5.2. Let H be an A-algebra containing the group algebra AX, and Ti ∈ H .
(i) If α∨

i 	∈ 2X∨, then commutation relations (5)–(6) and the quadratic relation

(Ti − ui)(Ti + u−1
i ) = 0 (18)

imply the more general commutation relations, for all λ ∈ X,

Tix
λ − xsi(λ)Ti = (ui − u−1

i )

1 − xαi
(xλ − xsi(λ)). (19)

(ii) If α∨
i ∈ 2X∨, then (5)–(6), (18) and the additional quadratic relation

(T −1
i x−αi − u′

i )(T
−1
i x−αi + u′−1

i ) (20)
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imply

Tix
λ − xsi(λ)Ti = (ui − u−1

i )+ (u′
i − u′−1

i )xαi

1 − x2αi
(xλ − xsi(λ)) (21)

(iii) Given (18), relation (21) implies (20), and (19) implies that (20) holds with
u′
i = ui .

Note that the denominators in (19), (21) divide xλ − xsi(λi ).
For the well-known proof, observe that each side of (19), (21), viewed as an

operator on xλ, satisfies F(xλxμ) = F(xλ)xμ + xsi(λ)F (xμ). Hence (19), (21) for
xλ, xμ, imply the same for xλ±μ. This reduces (i) to the special cases 〈λ, α∨

i 〉 ∈ {0, 1},
which in turn reduce to (5)–(6), using the identity T −1

i = Ti − ui + u−1
i , which is

equivalent to (18). Similarly, (ii) reduces to the special cases 〈λ, α∨
i 〉 = 0, which is

(5) ((6) is vacuous if α∨
i ∈ 2X∨), and λ = αi (since 〈αi, α∨

i 〉 = 2). Modulo (18), this
last case is equivalent to (20), which also gives (iii) in case (ii). For (iii) in case (i),
observe that (19) is just (21) with u′

i = ui .

Definition 5.3. The affine Hecke algebra H(W,X) is the quotient (AB(W,X))/j,
where j is the 2-sided ideal generated by the quadratic relations (18) for all i, plus (20)
for each i such that α∨

i ∈ 2X∨.
Equivalently, H(W,X) is generated by elements xλ (λ ∈ X) and Ti satisfying the

braid relations of B(W), quadratic relations (18), and relations (19) or (21) depending
on whether or not α∨

i ∈ 2X∨.

Proposition 5.4. The subalgebra of H(W,X) generated by the elements Ti is isomor-
phic to the ordinary Hecke algebra H(W), with basis {Tw : w ∈ W }, and H(W,X)

has basis {Twxλ}.
Proof. The commutation relations (19), (21) imply that the elements Twxλ span; they
are independent because the specialization ui = u′

i = 1 collapses H(W,X) to the
group algebra A · (W � X). (More precisely, specialization implies the result for
A = Z[u±1

i , u′±1
i ], and the general case follows by extension of scalars.) �

5.5. Let � be a group acting by automorphisms of the root system
(
X, (αi), (α

∨
i )
)
,

and assume that ui = uj , u′
i = u′

j for αj ∈ �(αi). Then� acts on H(W,X), and we
define the extended affine Hecke algebra to be the twisted group algebra� ·H(W,X)

generated by� and H(W,X)with relationsπf = π(f )π forπ ∈ �, f ∈ H(W,X).
Up to now the root systemXwas arbitrary. IfX is finite, withW0�X = Wa�� as

in Corollary 4.3, then H(W0, X) is isomorphic to the twisted group algebra H(Wa)·�
of the ordinary Hecke algebra of Wa . The most interesting case is when X is affine;
specifically when X = X̃ as constructed in §4.6.

Definition 5.6. Given X, Y , (· , ·), X̃, Ỹ , We = � � Wa , W ′
e = W ′

a � �′ as in
§4.4–4.9, the (left) Cherednik algebra H(We, X̃) is the extended affine Hecke algebra
� · H(Wa, X̃).
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Equivalently, H(We, X̃) is generated by xλ ∈ X, π ∈ �, T0, . . . , Tn and q±1/m,
satisfying the relations of the double affine braid group B(We, X̃) and the quadratic
relations (18), plus (20) if α∨

i ∈ 2X̃∨.

5.7. We will also define a right Cherednik algebra H(Ỹ ,W ′
e), but first we must re-

index the parameters. For convenience, we define u′
j = uj if α∨

j 	∈ 2X̃∨. Define
ui′ = ui for i 	= 0, and set u0′ = u′

j , where αj is a short simple root of the finite root

system X. If α′∨
i ∈ 2Ỹ∨ for i 	= 0 (there is at most one such index i), set u′

i′ = u0 .
If α′∨

0 ∈ 2Ỹ∨, set u′
0′ = u′

0.
We now define H(Ỹ ,W ′

e) to be the algebra with generators yμ (μ ∈ Y ), π ′ ∈ �′,
T ′

0, T1, . . . , Tn, q±1/m satisfying the relations of the right affine braid groupB(Ỹ ,W ′
e),

relations (18) with ui′ in place of ui , and for α′∨
i ∈ 2Ỹ∨, the relations

(T ′−1
i yα

′
i − u′

i′)(T
′−1
i yα

′
i + u′−1

i′ ), (22)

where we define T ′
i = Ti if i 	= 0.

Corollary 5.8. The elements {yμTwxλ} (μ ∈ Y , λ ∈ X,w ∈ W0) form an A[q±1/m]-
basis of the Cherednik algebras H(We, X̃), H(Ỹ ,W ′

e).

This follows easily from Proposition 5.4 for H(We, X̃) and by symmetry for
H(Ỹ ,W ′

e). We remark that the factors yμTwxλ can be taken in any order.

Lemma 5.9. We have α′∨
0 ∈ 2Ỹ∨ if and only if X, Y are both of type Bn and � acts

trivially on the simple roots of X̃.

Proof. By definition, α′∨
0 = −θ ′∨. We can only have θ ′∨ ∈ 2Y∨ if Y is of type Bn

and θ = φ is short, hence X is also of type Bn. Let P ′
0 be the image of the canonical

homomorphism Y → Hom(Q′∨
0 ,Z). For type Bn we have either Q′

0 = P ′
0 or

P ′
0/Q

′
0

∼= Z/2Z, with Q′
0 = P ′

0 iff the short roots α′ satisfy α′∨ ∈ 2Y∨. The
isomorphism � ∼= Y/Q′

0 (Corollary 3.12) identifies P ′
0/Q

′
0 with the quotient of �

by the kernel of its action on the simple roots of X̃. �

Remark 5.10. If X, Y are of type Bn, then X̃, Ỹ are of type C̃∨
n . Label the Dynkin

diagram
•⇐•—•— · · · —•⇒•
0 1 2 n−1 n

. (23)

If α′∨
0 	∈ 2Ỹ∨, then � acts non-trivially, exchanging nodes 0 and n, and similarly for

α∨
0 and �′. The four associated parameters are related by the diagram

(u′
0 = u′

0′) = (u′
n = u0′)

‖ ‖
(u0 = u′

n′) = (un = un′) , (24)

where the horizontal equalities hold if α′∨ 	∈ 2Y∨ for short roots α′ ∈ Y , and the
vertical ones hold if α∨ 	∈ 2X∨ for short roots α ∈ X.
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Theorem 5.11. There is an isomorphism H(We, X̃) ∼= H(Ỹ ,W ′
e), which is the

identity on all the generators X, Y , q, Ti , T0, T ′
0, π , π ′.

Proof. For the most part, this is Theorem 4.10, but we must prove that relations (22)
and the case of (18) for T ′

0 hold in H(We, X̃). By definition, T ′
0 = T −1

sφ
x−φ . By

Lemma 4.20, this is conjugate to T −1
j x−αj for a short simple root αj . Then (20) for

Tj implies (18) for T ′
0. Similarly, if i 	= 0 in (22), then α′

i is short, and T ′−1
i yαi

is conjugate to yαi T ′−1
i and in turn to T0 = yφ

′
T −1
sφ′ . By Lemma 5.9, we only

have i = 0 in (22) when X, Y are both of type Bn, so θ = φ, θ ′ = φ′. Then
T ′−1

0 yα
′
0 = q−1xφTsφy

−φ′ = x−α0T −1
0 , which is conjugate to T −1

0 x−α0 . �

Corollary 5.12. Assume given an automorphism ε : A → A such that ε(ui) = u−1
i ,

ε(u′
i ) = u′−1

i . Then there is an ε-linear isomorphism H(We, X̃) ∼= H(W ′
e, Ỹ )

which is the identity on X, Y , �, �′, maps q to q−1, and maps Ti to T −1
i for all

i = 0′, 0, 1, . . . , n, where the parameters ui′ , u′
i′ for H(W ′

e, Ỹ ) are as in §5.7.

Proof. The map � in §4.11, composed with ε, preserves (18) and interchanges (22)
with the version of (20) for Ỹ in place of X̃. �

5.13. Let H = � · H(W,X) be an extended affine Hecke algebra. The ordinary
(extended) Hecke algebra � · H(W) has a one-dimensional representation 1 = Ae

such that πe = e, Tie = uie. The induced representation IndH
�H(W)(1) is the

polynomial representation. Proposition 5.4 implies that it is isomorphic to the left
regular representation AX of X, with � acting via its action on X, and T0, . . . , Tn
acting as the operators

Ti = uisi + (ui − u−1
i )

1 − xαi
(1 − si) (25)

= ui − u−1
i

1 − u2
i x
αi

1 − xαi
(1 − si) (26)

= −u−1
i + ui(1 + si)

1 − u−2
i xαi

1 − xαi
(27)

or, if α∨
i ∈ 2X∨,

Ti = uisi + (ui − u−1
i )+ (u′

i − u′−1
i )xαi

1 − x2αi
(1 − si) (28)

= ui − u−1
i

(1 − uiu
′
ix
αi )(1 + (ui/u

′
i )x

αi )

1 − x2αi
(1 − si) (29)

= −u−1
i + ui(1 + si)

(1 − (uiu
′
i )

−1xαi )(1 + (u′
i/ui)x

αi )

1 − x2αi
. (30)
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In particular, these operators satisfy braid relations. The quadratic relations can be
seen directly from (26)–(27) and (29)–(30). The polynomial representation specializes
at ui = u′

i = 1 to the A-linearization of the action of�� (W �X) onX. It is faithful
if � acts faithfully.

5.14. For any root α ∈ R, define a partial ordering on X by μ <α λ if λ − μ ∈ Zα

and |〈μ, α∨〉| < |〈λ, α∨〉|, or 〈μ, α∨〉 = −〈λ, α∨〉 > 0. Each root string λ + Zα is
totally ordered by <α . Explicitly,

λ <α λ+ α <α λ− α <α λ+ 2α <α λ− 2α <α · · · if 〈λ, α∨〉 = 0,

λ <α λ− α <α λ+ α <α λ− 2α <α λ+ 2α <α · · · if 〈λ, α∨〉 = 1.

If B ⊆ R, define <B to be the transitive closure of the union
⋃
α∈B <α . In general

<B is not a partial order; we may have λ <B λ.

Proposition 5.15. Let w ∈ W , B = R+ ∩ w−1(−R+). In the polynomial represen-
tation, we have

Tw(x
λ) = uρB(λ)xw(λ) +

∑
μ<w(B) w(λ)

aμx
μ,

where aμ ∈ A and uρB(λ) = ∏
α∈B u

σ(−〈λ,α∨〉)
α , σ(k) = ±1 as k ≥ 0 or k < 0.

Proof. The case w = si follows from formulas (25), (28), and the general case by
induction on l(w), using the fact that if w = siv > v and B ′ = R+ ∩ v−1(−R+),
then B = B ′ ∪ {v−1(αi)}. �

6. Macdonald polynomials

6.1. Let
(
X̃, (αi), (α

∨
i )
)

be a non-degenerate reduced affine root system (§3). As
always, we take i = 0 to be an affine node, denote the Weyl group, roots, etc. by W ,
R,R+,Q,Q+, and letW0,R0,Q0, etc. denote the same for the finite root system with
simple roots α1, . . . , αn. We also allow non-reduced affine root systems, regarded as
extensions (§2.12) of a reduced affine root system X̃, with a larger set of roots R. In
the non-reduced case, we do not give the extra simple roots their own symbols, but
designate them simply as 2αi .

Let δ be the nullroot, and assume that the dual of X̃ is degenerate, i.e., δ∨ = 0.
Possibly after adjoining a fractional multiple of δ, we can always assume that X̃ =
X ⊕ Zδ/m, where Q0 ⊆ X. Fix such a decomposition.

To each i such that 2αi 	∈ R, we associate a parameter ui and put ti = u2
i . To each i

such that 2αi ∈ R we associate two parameters ui , u′
i and put ti = uiu

′
i , t

′
i = ui/u

′
i .

We require that simple roots in the same W -orbit have the same parameters, and put
tα = tαi , t

′
α = t ′αi if α ∈ W(αi). We denote by Q(t) the field of rational functions

in the parameters. The group algebra Q(t)X̃ is the ring of Laurent polynomials
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Q(t)[x±ε1, . . . , x±εN ], where {ε1, . . . , εN } is a basis of X̃. As in §4, we let q = xδ .
Then Q(t)X̃ = Q(t)[q±1/m]X, and we identify it with a subring of Q(q, t)X.

As in §3.7, letW = Q′
0 �W0, whereQ′

0 = Q∨
0 if X̃ is of untwisted type or B̃Cn,

and Q′
0 = Q0 otherwise. In either case, Q′

0 acts on Q(q, t)X by the formula

yμ(xλ) = q−(λ,μ)xλ, (31)

in terms of the W0-invariant pairing (Q0,Q
′
0) → Z in §4.4 (see also §4.6).

6.2. Let Q(q, t)X̂ denote the Q(q, t)-vector space of possibly infinite formal linear
combinations f = ∑

λ∈X aλxλ. The space Q(q, t)X̂ is a Q(q, t)X-module – i.e., it
makes sense to multiply f ∈ Q(q, t)X̂ by p ∈ Q(q, t)X. We regard Q(q, t)X as a
submodule of Q(q, t)X̂. Write

[xλ]f = aλ

for the coefficient of xλ in f . Let · denote the involution on Q(q, t) and Q(q, t)X

such that

ui = u−1
i , u′

i = u′−1
i , tα = t−1

α , t ′α = t ′−1
α , q = q−1, xλ = x−λ.

It extends to Q(q, t)X̂ by the rule
∑
λ aλx

λ = ∑
λ aλx

−λ. The following theorem
is due to Cherednik.

Theorem 6.3. There is a unique element �0 = �0 ∈ Q(q, t)Q0̂ ⊆ Q(q, t)X̂ with
constant term [1]�0 = 1, such that for each Coxeter generator si of W ,

si(�0) = 1 − tix
αi

ti − xαi
�0, or si(�0) = (1 − tix

αi )(1 + t ′ixαi )
(ti − xαi )(t ′i + xαi )

�0, (32)

where the second formula applies if 2αi ∈ R.

Proof. Define a formal series � ∈ Q[[q, t]]Q0̂ by

� =
∏
α∈R+

2α 	∈R, α 	∈2R

1 − xα

1 − tαxα

∏
α∈R+
2α∈R

1 − x2α

(1 − tαxα)(1 + t ′αxα)
.

The coefficients [xλ]� ∈ Q[[q, t]] are not rational functions. Define�0 = �/([1]�).
Since si leaves the set R+ \ {αi, 2αi} invariant, it follows that � and �0 satisfy (32).
By construction, �0 has constant term 1. These conditions can be expressed as a
system of linear equations over Q(q, t) in the coefficients [xλ]�0, which therefore
have a solution �′

0 with coefficients in Q(q, t).
Now, �′

0/�0 is W -invariant. For 0 	= λ ∈ Q0, choose μ ∈ Q′
0 such that

(λ, μ) 	= 0. Then (31) implies that [xλ](�′
0/�0) = 0, i.e., �′

0/�0 is a constant.
Hence �′

0 = �0, since they both have constant term 1. This shows that �0 has
coefficients in Q(q, t) and is unique. One checks that (32) is · -invariant, which
implies �0 = �0 by uniqueness. �
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The Macdonald constant term identity [16, (5.8.20)] provides an explicit infinite
product expansion for [1]�, but it is not practicable to compute the coefficients of
�0 directly from the formula �0 = �/([1]�). A better procedure is to equate the
coefficients of yφ

′
(�0) = s0sφ′(�0), as given by (31) on the one hand, and by (32)

on the other. This leads to a recurrence which determines the coefficients.

Definition 6.4. Cherednik’s inner product on Q(q, t)X is defined by the formula

〈f, g〉0 = [1](f g �0).

It is linear in f and · -hermitian by Theorem 6.3, i.e., 〈g, f 〉0 = 〈f, g〉0.

Lemma 6.5. Let B = (R0)+. Under the identification of X with the set W ′
e/W0 of

minimal left coset representatives inW ′
e = W0 �X, the ordering<B defined in §5.14

coincides with the Bruhat order < in W ′
e.

Proof. Let wλ be minimal in xλW0. If sβwλ < wλ for a reflection sβ ∈ W ′
a , then

clearly wsβ(λ) < wλ. The Bruhat order on W ′
e/W0 is the transitive closure of these

relations. In the alcove picture (§3.10), sβ belongs to a root β = α∨ + kδ′ of the
affine root system X∨ ⊕ Zδ′, where we can assume that α ∈ (R0)+. The condition
sβwλ < wλ means that hβ separates �∨

0 + λ from the dominant alcove A0. This
is equivalent to sβ(λ) <α λ, and <B is by definition the transitive closure of these
relations. �

We fix the partial ordering <B on X, with B = (R0)+, and denote it by <.

Theorem 6.6. There is a unique basis {Eλ : λ ∈ X} of Q(q, t)X satisfying the
orthogonality and triangularity conditions

(i) 〈Eλ,Eμ〉0 = 0 for λ 	= μ,
(ii) Eλ = xλ +∑

μ<λ cλμx
μ, cλμ ∈ Q(q, t).

TheEλ are the (non-symmetric) Macdonald polynomials. Let us review how their
existence and other properties are established using Cherednik algebras.

6.7. If X̃ is of untwisted or dual untwisted type, choose Y and (X, Y ) → Z/m as in
§4.4. One can always take Y = Q′

0, but other choices may be more convenient – for
instance, in type An−1, it is handy to let X = Y = Zn be the weight lattice of GLn
(Example 2.5).

Non-reduced and mixed types are handled as follows. If 2αi ∈ R, the specializa-
tion u′

i = ui , hence t ′i = 1, collapses �0 and 〈· , ·〉0 to their counterparts for the root
system with 2αi omitted. Similarly, specializing u′

i = 1 omits αi . The restriction of<
to cosets of the (possibly smaller) root lattice Q0 in the resulting root system does
not change. It follows that if Macdonald polynomials Eλ exist for the original root
system, then they specialize at u′

i = 1 (resp. u′
i = ui) toEλ for the root system with αi

(resp. 2αi) omitted. To be fully correct, we must also show that the coefficients ofEλ
do not have poles at these specializations. This will follow from Corollary 6.15.
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Every affine root system X̃ of mixed or non-reduced type embeds as above (perhaps
after adjoining δ/2) into a root system of one of two maximally non-reduced types:
(a) X̃ of type C̃∨

n with 2α0, 2αn adjoined (indexing the simple roots as in (23)), or
(b) X̃ of type B̃n, with 2αn adjoined. For these types, choose Y and (· , ·) as for X̃ of
reduced type C̃∨

n or B̃n, respectively. Specifically X, Y are of types (Bn, Bn) in (a),
or (Bn, Cn) in (b), and we have α∨ ∈ 2X̃∨ for all short roots α. In case (a) we also
require Y to satisfy α′∨ ∈ 2Ỹ∨ for short roots α′, so as not to force the parameters for
i = 0 and i = n to coincide (Remark 5.10).

Let H = H(We, X̃) be the Cherednik algebra (Definition 5.6) attached to X, Y ,
(· , ·), with ground ringA = Q(t), and parametersui equated with those in §6.1, setting
u′
i = ui in the reduced case. We identify Q(q, t)X with the underlying space of the

polynomial representation (§5.13) of H , after extension of scalars from Q(t)[q±1]
to Q(q, t). Note that in formulas (25)–(30) for i = 0, we have xα0 = qx−θ , and
s0(x

λ) = q〈λ,θ∨〉sθ (xλ), where δ = α0 + θ .

Proposition 6.8. The operators Ti (§5.13) are unitary with respect to 〈· , ·〉0.

Proof. For any operator T , let T ∗ denote its adjoint, 〈T ∗f, g〉0 = 〈f, T g〉0. We are
to show that T ∗

i = T −1
i = Ti − ui + u−1

i , or equivalently, since u∗
i = ui = u−1

i , that

(Ti − ui)
∗ = (Ti − ui).

From (32), we deduce that

s∗i = 1 − tix
αi

ti − xαi
si = si

ti − xαi

1 − tixαi

if 2αi 	∈ R, or

s∗i = (1 − tix
αi )(1 + t ′ixαi )

(ti − xαi )(t ′i + xαi )
si = si

(ti − xαi )(t ′i + xαi )

(1 − tixαi )(1 + t ′ixαi )

if 2αi ∈ R. The fractions appearing in these expressions are self-adjoint, since s∗i si
and sis∗i are self-adjoint. The result now follows easily from (26)–(27) in the first case
(where ti = u2

i ), and (29)–(30) in the second (where ti = uiu
′
i , t

′
i = ui/u

′
i). �

Proposition 6.9. For i 	= 0, introduce formal “logarithms” ki , kα = ki for α ∈
W0(αi), with the convention that qki = ui . Set

ρ∨ =
∑

α∈(R0)+
kαα

∨, ρ′∨ =
∑

α∈(R0)+
kαα

′∨,

whereα′ ∈ (R′
0)+ is the positive root such that sα′ = sα . Then the Cherednik operators

yμ ∈ H , acting on Q(q, t)X, satisfy

yμ(xλ) = q−(λ,μ)+〈μ,wλ(ρ′∨)〉xλ +
∑
μ<λ

bλμx
μ, bλμ ∈ Q(q, t), (33)

where wλ is the minimal representative of xλW0 in W ′
e.
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Proof. It suffices to take μ ∈ Y+ dominant, so yμ = Tyμ . Bear in mind that X̃ is
now a reduced affine root system of untwisted or dual untwisted type (§6.7), not the
root system we started with in §6.1. The affine roots are α + dZδ for α ∈ R0, where
d = (α, α′)/2, both for untwisted types and their duals. We have (α, μ) = d〈μ, α′∨〉
for all μ ∈ Y .

If β = α + kδ is a root, then yμ(β) = α + (k − (α, μ))δ, and the condition
β ∈ B = R+ ∩ y−μ(−R+) holds if and only if 0 ≤ k < (α,μ) and α ∈ (R0)+. It
follows that for any α ∈ (R0)+, the number of roots of the form α + kδ ∈ B is equal
to 〈μ, α′∨〉. We also have xy

μ(λ) = q−(λ,μ)xλ by (31). The form of (33) now follows
from Proposition 5.15, with leading coefficient given by

q−(λ,μ) ∏
α∈(R0)+

u〈μ,α′∨〉σ(−〈λ,α∨〉)
α .

This is equal to q−(λ,μ)+〈μ,wλ(ρ′∨)〉 because wλ(ρ′∨) = ∑
α∈(R0)+ ±kαα′∨, with a

minus sign if α∨ ∈ wλ(−(R∨
0 )+), or equivalently, if 〈λ, α∨〉 > 0 (see the next

remark). �

Note that ρ∨, ρ′∨ are characterized by 〈αi, ρ∨〉 = 〈α′
i , ρ

′∨〉 = 2ki .

Remark 6.10. The action ofW ′
e = W0�X onY∨ factors throughW0. Hence,wλ(ρ′∨)

in (33) depends only on the image ofwλ inW0, which is the minimal element vλ such
that v−1

λ (λ) ∈ −X+. A better way to write (33) is as follows. Define �∨
0 ∈ Ỹ∨

Q by
�∨

0 (Y ) = 0, 〈δ′,�∨
0 〉 = 1. Let η : X → Y∨

Q be the homomorphism induced by the
pairing (X, Y ) → Q, that is, (λ, μ) = 〈μ, η(λ)〉. Then wλ(�∨

0 ) = �∨
0 + η(λ), and

(33) takes the form

yμ(xλ) = q−〈μ,wλ(�∨
0 −ρ′∨)〉xλ +

∑
μ<λ

bλμx
μ, bλμ ∈ Q(q, t), (34)

valid for all μ ∈ Ỹ .

Corollary 6.11. Theorem 6.6 holds with Eλ ∈ (Q(q, t)Q0)x
λ determined uniquely

as the joint eigenfunction with eigenvalue q−〈μ,wλ(�∨
0 −ρ′∨)〉 of the operators yμ, nor-

malized so that [xλ]Eλ = 1.

Proof. The yμ act on (Q(q, t)Q0)x
λ as commuting, lower-triangular operators with-

out repeated joint eigenvalues. Since the yμ are unitary by Proposition 6.8, their joint
eigenfunctions Eλ are orthogonal. �

6.12. Relation (19) can be written φixλ = xsi(λ)φi , where φi = Ti− (ui−u−1
i )/(1−

xαi ). By Corollary 5.12, we also have ψiyμ = ysi(μ)ψi for i = 0′, 1, . . . , n, where
ψi = T −1

i − (u−1
i − ui)/(1 − yα

′
i ) = Ti − (ui − u−1

i )/(1 − y−α′
i ), and similarly

for (21). It is advantageous to use uiψi instead here. To this end, set

T̃i = uiTi (i = 1, . . . , n);
T̃0′ = u0′T0′ = u0′T −1

sφ
x−φ = u′

j T
−1
v T −1

j x−αj Tv = tφT̃
−1
v T̃ −1

j x−αj T̃v,
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where sφ = v−1sj v is a reduced factorization (Lemma 4.20). These operators depend
only on the parameters ti , t ′i . The intertwining relations uiψiyμ = ysi(μ)uiψi , along
with π ′yμ = yπ

′(μ)π ′ for π ∈ �′ imply the following proposition.

Proposition 6.13. If Eλ is a joint eigenfunction of the operators yμ, μ ∈ Ỹ with
eigenvalue q〈μ,�〉, then �i(Eλ) is a joint eigenfunction with eigenvalue q〈μ,si (�)〉,
where i = 0′, 1, . . . , n, and

�i = T̃i + 1 − ti

1 − q−〈α′
i ,�〉 , or �i = T̃i + 1 − ti t

′
i + (t ′i − ti)q

−〈α′
i ,�〉

1 − q−2〈α′
i ,�〉 ,

the second formula applying in case α′∨
i ∈ 2Ỹ∨. Similarly, π ′(Eλ) is a joint eigen-

function with eigenvalue q〈μ,π ′(�)〉, for any π ′ ∈ �′.

Corollary 6.14. For i 	= 0, if si(λ) = λ, then siEλ = Eλ.

Proof. Proposition 6.13 implies that TiEλ is a scalar multiple of Eλ, and from the
leading coefficient we deduce TiEλ = uiEλ, which is equivalent to siEλ = Eλ. �

Corollary 6.15. The Macdonald polynomials satisfy the recurrence

Evπ ′ (λ)+λπ ′ = q
−〈λ

(π ′−1),wλ(ρ
∨)〉
xλπ ′Tvπ ′ (Eλ), π ′ = xλπ ′vπ ′ ∈ �′, (35)

Esi(λ) =
(
T̃i + 1 − ti

1 − q(λ,α
′
i )−〈α′

i ,wλ(ρ
′∨)〉

)
Eλ, 〈λ, α∨

i 〉 > 0, i 	= 0′, t ′i = 1, (36)

Esφ(λ)+φ = t ′φq−〈φ,wλ(ρ∨)〉
(
T̃0′ + 1 − t0′

1 − q1−(λ,θ ′)+〈θ ′,wλ(ρ′∨)〉

)
Eλ,

〈λ, φ∨〉 < 1, t ′0′ = 1.
(37)

If t ′i 	= 1, (36) becomes instead

Esi(λ) =
(
T̃i + 1 − ti t

′
i + (t ′i − ti)q

(λ,α′
i )−〈α′

i ,wλ(ρ
′∨)〉

1 − q2((λ,α′
i )−〈α′

i ,wλ(ρ
′∨)〉)

)
Eλ, (38)

with a corresponding modification to (37) if t ′0′ 	= 1.

The base of the recurrence isEλ = xλ for λminuscule, i.e., 〈λ, α∨
i 〉 ≥ 0 for i 	= 0

and 〈λ, φ∨〉 ≤ 1. With this base, (35) is not essential to the recurrence, but it is often
useful nevertheless.

To prove Corollary 6.15, first observe that the map X → ỸQ, λ �→ �∨
0 + λ

is equivariant with respect to the action of W ′
e on Ỹ and on X = W ′

e/W0. Then
Proposition 6.13 and Corollary 6.11 imply that �i(Eλ) (resp. π ′(Eλ)) is a scalar
multiple of Esi(λ) (resp. Eπ ′(λ) = Evπ ′ (λ)+λπ ′ ).

The action of�′ onX = W ′
e/W0 preserves the Bruhat order. Assuming by induc-

tion that (35) holds for ν < λ, we conclude that π ′ = xλπ ′Tvπ ′ carries Q(q, t){xν :
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ν < λ} into Q(q, t){xν : ν < vπ ′(λ) + λπ ′ }. Hence the coefficient of xvπ ′ (λ) in
Tvπ ′ (xλ) determines the scalar factor in (35). For 〈λ, α∨

i 〉 > 0 (resp. 〈λ, φ∨〉 < 1),
we have siwλ > wλ (resp. s0′wλ > wλ). We may assume by induction that Ti
(resp. T0′) leaves invariant the space Q(q, t){xν, xsi(ν) : ν < λ}. For i 	= 0′ and
si(λ) > λ, we have [xsi(λ)]T̃i(xλ) = 1, giving (36), and the coefficient of xsφ(λ)+φ
in T̃0′(xλ) determines the scalar factor in (37). The next lemma supplies the missing
scalar factors.

Lemma 6.16. (i) We have [xvπ ′ (λ)]Tvπ ′ (xλ) = q
〈λ
(π ′−1),wλ(ρ

∨)〉 for any π ′ ∈ �′.
(ii) For 〈λ, φ∨〉 < 1, we have [xsφ(λ)+φ]T̃0′(xλ) = t ′−1

φ q〈φ,wλ(ρ∨)〉.

Proof. (i) Let B = (R0)+ ∩ v−1
π ′ (−(R0)+). We claim that for any α ∈ (R0)+,

〈λ(π ′−1), α
∨〉 = 1 if α ∈ B, 0 otherwise. Then Proposition 5.15 gives

[xvπ ′ (λ)]Tvπ ′ (x
λ) =

∏
α∈(R0)+

u
〈λ
(π ′−1),α

∨〉σ(−〈λ,α∨〉)
α = q

〈λ
(π ′−1),wλ(ρ

∨)〉

by the argument in the proof of Proposition 6.9.
As to the claim, if vπ ′ = 1, thenB = ∅ and 〈λ(π ′−1), α

∨〉 = 0 for all α. Otherwise,

λ(π ′−1) = −v−1
π ′ (λπ ′), and 〈λ(π ′−1), α

∨〉 = −〈λπ ′, vπ ′(α∨)〉 ∈ {0, 1} for all α ∈
(R0)+, since λ(π ′−1) is minuscule. Now, vπ ′(α∨

j ) = −φ∨, where π ′−1(α′
0) = α′

j ,
and vπ ′(α∨

i ) is a simple coroot for i 	= j . Since vπ ′ 	= 1, we have 〈λπ ′, φ∨〉 = 1,
and it follows that 〈λ(π ′−1), α

∨
i 〉 = δij . Given α ∈ (R0)+, if 〈λ(π ′−1), α

∨〉 = 1, then
vπ ′(α) ∈ −(R0)+ since λπ ′ ∈ X+. Conversely, if 〈λ(π ′−1), α

∨〉 = 0, the coefficient
of α∨

j in α∨ must be zero, hence vπ ′(α) ∈ (R0)+.
(ii) Let B = (R0)+ ∩ sφ(−(R0)+). The operator sφTsφ is lower-triangular by

Proposition 5.15, hence so is T −1
sφ
sφ , and [xsφ(λ)+φ]T −1

sφ
(xλ−φ) is inverse to

[xλ−φ]Tsφ (xsφ(λ)+φ) =
∏
α∈B

u
σ(−〈sφ(λ)+φ , α∨〉)
α =

∏
α∈B

uσ(〈λ−φ , α∨〉)
α ,

using sφ(B) = −B in the last equation. Now, φ is short and dominant, hence
〈φ, α∨〉 ∈ {0, 1} for α ∈ (R0)+ \ {φ}. Moreover, sφ(α∨) = α∨ − 〈φ, α∨〉φ∨,
and since φ∨ is the highest coroot, this implies that 〈φ, α∨〉 > 0 if and only if
sφ(α) ∈ −(R0)+. Thus for α ∈ (R0)+ \ {φ}, we have 〈φ, α∨〉 = 1 if α ∈ B, 0
otherwise. Since 〈λ, φ∨〉 ≤ 0, it follows that

[xsφ(λ)+φ]T̃0′(xλ) = u′
φ[xsφ(λ)+φ]T −1

sφ
(xλ−φ) = u′

φuφ
∏

α∈B\{φ}
u−σ(〈λ,α∨〉−1)
α

= (u′
φ/uφ)

∏
α∈(R0)+

u〈φ,α∨〉σ(−〈λ,α∨〉)
α = t ′−1

φ q〈φ,wλ(ρ∨)〉.
�
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6.17. Suppose X̃ is dual to an untwisted type. ThenX, Y are of the same type, φ = θ ,
φ′ = θ ′, sφ = sφ′ , and in H we have the identities T0′ = xφT −1

0 yφ
′ + u0′ − u−1

0′ and

π ′ = xλπ ′πyλ(π−1) for π ′ ∈ �′, π ∈ � such that vπ ′ = vπ . Using these identities,
(35) and (38) for i = 0′ become

Evπ ′ (λ)+λπ ′ = q
−(λ,λ

(π−1))xλπ ′π(Eλ), π ′ ∈ �′, π ∈ �, vπ = vπ ′

Esθ (λ)+θ = q1−(λ,θ ′)
(
uθx

−α0T −1
0 + (uθ/u

′
0 − uθu

′
0)+ (uθ/u0′ − uθu0′)qr

1 − q2r

)
Eλ,

where r = 1 − (λ, θ ′)+ 〈θ ′, wλ(ρ′∨)〉. Note that the second formula simplifies to an
analog of (36) if u0′ = u′

0.

6.18. Although our chief concern is with non-symmetric Macdonald polynomials, let
us say a little about the symmetric version. Given λ ∈ X+, let Vλ = Q(q, t){Eν :
ν ∈ W0(λ)}. By Corollaries 6.14, 6.15, Vλ is an H(W0)-submodule of Q(q, t)X. It
follows that there is a unique W0-invariant element Pλ ∈ Vλ such that [xλ]Pλ = 1.
The Pλ are symmetric Macdonald polynomials. They are orthogonal and are joint
eigenfunctions of all W0-invariant operators f (y) ∈ (Q(q, t)Y )W0 . The coefficients
of Pλ in terms of the Eν can be determined explicitly using Corollary 6.15.

The Pλ are also orthogonal with respect to Macdonald’s inner product, which is
a symmetrization of 〈· , ·〉0. They were originally defined by Macdonald [14], [15] in
terms of this orthogonality. When ti = q(αi ,α

′
i )/2, they specialize to the irreducible

characters of the algebraic groupG with weight lattice X and root systemQ0. Other
specializations yield Hall–Littlewood and Jack polynomials, and spherical functions
for classical and p-adic symmetric spaces.

For GLn, the Pλ are symmetric polynomials in x1, . . . , xn, with coefficients in
Q(q, t). As n → ∞, they converge to symmetric functions Pλ(x; q, t) in infinitely
many variables xi . A transformed and renormalized variant H̃λ(x; q, t) of Pλ(x; q, t)
was the subject of Macdonald’s positivity conjecture, proved in [6] by identifying
H̃λ(x; q, t) with the character of the fiber of a certain vector bundle on the Hilbert
scheme H of 0-dimensional subschemes in C2, at a distinguished point of H corre-
sponding to λ.

6.19. Macdonald polynomials for the maximally non-reduced extensions of affine

root systems of type C̃∨
n are Koornwinder polynomials. Their coefficients belong to

Q(t0, t
′
0, tn, t

′
n, t1, q). Specializing the five t parameters in various ways yields most

Macdonald polynomials for the infinite families of affine root systems.
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7. A combinatorial formula

7.1. From Corollary 6.15 and the definition of the operators T̃i it is clear that for a
reduced affine root system, Eλ can be expressed as a sum of terms of the form

±xμqr ts
∏
j

1 − tij

1 − qaj tbj
,

where t s , tbj stand for monomials in the parameters ti . It may be conjectured, at
least for equal parameters ti = t , that Eλ is a positive sum of such terms. With
Haglund and Loehr [5], we proved this for type Ãn−1 by means of a combinatorial
formula, which we will now present (referring the reader to [5] for the proof). Some
of the combinatorial structure is the same as in Knop and Sahi’s earlier formula [10]
for non-symmetric Jack polynomials, but the lift to Macdonald polynomials requires
more ingredients.

7.2. Take X = Y = Zn the root system of GLn, as in Example 2.5. The pairing
(X, Y ) → Z (§4.4) is the standard inner product on Zn. We have φ = θ = φ′ = θ ′ =
e1 − en, and � = �′ is cyclic, with generator π ′ acting on X = W ′

e/W0 by

π ′(λ) = (λn + 1, λ1, . . . , λn−1).

To π ′ corresponds an element π ∈ � such that vπ = vπ ′ , which acts on Q(q, t)X̃ by

π(xλ) = q−λnx(λn,λ1,...,λn−1), or πf (x1, . . . , xn) = f (x2, . . . , xn, x1/q).

We have λπ ′ = λπ = e1, λ(π ′−1) = λ(π−1) = −en.
The simple roots are all W -conjugate, so there is a single parameter ti = t for

all i. For i 	= 0, the operators T̃i (§5.13, 6.12) are given by

T̃i = tsi − 1 − t

1 − xi/xi+1
(1 − si), (39)

where si is the transposition xi ↔ xi+1. The analogous formula for i = 0 has qxn/x1
in place of xi/xi+1, and s0 acts as x1 �→ qxn, xn �→ x1/q.

Letλ be the rearrangement of (1, 2, . . . , n) such thatλi > λj if and only ifλi > λj ,
for i < j . Then wλ(ρ∨) = −kλ, modulo a constant vector. From §6.17 and (36), we
obtain Knop’s recurrence, which determines Eλ for all λ ∈ X:

E(0,...,0) = 1, (40)

E(λn+1,λ1,...,λn−1) = qλnx1Eλ(x2, . . . , xn, x1/q), (41)

Esi(λ) =
(
T̃i + 1 − t

1 − qλi−λi+1 tλi−λi+1

)
Eλ, λi > λi+1, i 	= 0. (42)
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7.3. By (41), we have Eλ+(r,r,...,r) = (x1 . . . xn)
rEλ. Without loss of generality,

therefore, we restrict attention to compositions λ such that λi ≥ 0 for all i. The
column diagram of λ is

dg(λ) = {(i, j) ∈ N2 : 1 ≤ i ≤ n, 1 ≤ j ≤ λi},
pictured as an array of n columns of boxes, with λi boxes in column i. The augmented
diagram of λ,

d̂g(λ) = dg(λ) ∪ {(i, 0) : 1 ≤ i ≤ n},
is formed by adjoining an extra box in row 0 at the bottom of each column. The arm
and leg of a box u = (i, j) ∈ dg(λ) are defined by

l(u) = μi − j,

a(u) = |{(i′, j)∈dg(λ) : i′ < i, λi′ ≤ λi} ∪ {(i′, j − 1)∈ d̂g(λ) : i′ > i, λi′ < λi}|.
In the example below, the box marked l contributes to the leg of u, and those marked
a contribute to the arm, giving l(u) = 1, a(u) = 4.

λ = (2, 0, 1, 3, 2, 0, 3, 1, 2), d̂g(λ) = l
a a u

a a

With these definitions, if λi > λi+1 and u = (i, μi+1 + 1), equation (42) can be
written

Esi(λ) =
(
T̃i + 1 − t

1 − ql(u)+1ta(u)

)
Eλ.

A filling of λ is a function σ : dg(λ) → [n] = {1, . . . , n}. Its associated augmented
filling is the extension σ̂ : d̂g(λ) → [n] of σ such that σ̂ ((j, 0)) = j for j = 1, . . . , n.
Distinct boxes u = (i, j), v = (i′, j ′) ∈ d̂g(λ) attack each other if either

(a) they are in the same row, j = j ′, or

(b) they are in consecutive rows, and the lower box is to the right of the upper box:
j ′ = j − 1 and i < i′ or vice versa.

A filling σ is non-attacking if σ̂ (u) 	= σ̂ (v) whenever u and v attack each other
(non-attacking fillings are called admissible in [10]).

7.4. Let d(u) = (i, j − 1) denote the box directly below a box u = (i, j). A box
u ∈ dg(λ) is a descent of a filling σ if σ̂ (u) > σ̂ (d(u)). Define

Des(σ ) = {descents of σ }, maj(σ ) =
∑

u∈Des(σ )

(l(u)+ 1).

The reading order is the total ordering < of the boxes in d̂g(λ) row by row, from
top to bottom, and from right to left within each row. A triple consists of three boxes
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u < v < w = d(u) in d̂g(λ), as shown:

u
w v

,
v u

w
,

Type I Type II

with the proviso that the column containing u, w is strictly taller than the column
containing v in Type I, and weakly taller in Type II, i.e., v contributes to the arm
of u. A co-inversion triple of σ is a triple such that σ(u) < σ(v) < σ(w) or
σ(v) < σ(w) < σ(u) or σ(w) < σ(u) < σ(v). Define

coinv(σ ) = |{co-inversion triples of σ }|.
Example 7.5. The figure below shows the augmentation σ̂ of a non-attacking filling
σ of λ = (2, 1, 3, 0, 0, 2).

σ̂ =
2

6© 4© 5
1 2 3 5
1 2 3 4 5 6

.

The circled boxes are Des(σ ), giving maj(σ ) = 3. Row 0 is the bottom row. There

are two co-inversion triples, one of Type I formed by the 3 and the 5 in row 1 with the
4 in row 2, and one of Type II formed by the 6 and the 4 in row 2 with the 3 in row 1,
giving coinv(σ ) = 2.

Theorem 7.6. The Macdonald polynomials Eλ for GLn are given by

Eλ =
∑

σ : λ→[n]
non-attacking

xσ qmaj(σ )tcoinv(σ )
∏

u∈dg(λ)
σ̂ (u)	=σ̂ (d(u))

1 − t

1 − ql(u)+1ta(u)+1
, (43)

where xσ = ∏
u∈dg(λ) xσ(u).

7.7. Earlier, in [4], we gave a combinatorial formula for the symmetric Macdonald
polynomials Pλ for GLn, which had originally been conjectured by Haglund [3]. The
combinatorial statistics coinv(σ ) and maj(σ ) first appeared in the formula for the
symmetric case, which is expressed similarly as a sum over fillings of a diagram. Our
work in the symmetric case relies heavily on the special theory of GLn Macdonald
polynomials in the n → ∞ stable limit. It seems likely that the non-symmetric
formula will provide better clues as to what we might expect for other root systems.

7.8. The proof of Theorem 7.6 is a direct verification that (43) satisfies Knop’s recur-
rence (40)–(42). It is not difficult to check (41), and (40) is trivial. The hard part is
to verify (42). In fact, we were only able to do it in the special case that λi+1 = 0,
which fortunately is enough. The difficulty lies in applying the operator T̃i in (39)
to (43), which is intractable if attempted head-on. To get around this, we recast (42)
as asserting that certain expressions related to (43) are si-invariant. This is proved
with the help of a symmetry lemma which originated in the theory of LLT polynomi-
als [11], [12], and was also at the heart of our work in [4]. We invite the reader to
consult [5] for more detail.
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Poisson cloning model for random graphs

Jeong Han Kim

Abstract. In the random graphG(n, p) with pn bounded, the degrees of the vertices are almost
i.i.d. Poisson random variables with mean λ := p(n− 1). Motivated by this fact, we introduce
the Poisson cloning model GPC(n, p) for random graphs in which the degrees are i.i.d. Poisson
random variables with mean λ.

We first establish a theorem that shows that the new model is equivalent to the classical model
G(n, p) in an asymptotic sense. Next, we introduce a useful algorithm to generate the random
graph GPC(n, p), called the cut-off line algorithm. Then GPC(n, p) equipped with the cut-off
line algorithm enables us to very precisely analyze the sizes of the largest component and the
t-core of G(n, p). This new approach for the problems yields not only elegant proofs but also
improved bounds that are essentially best possible.

We also consider the Poisson cloning model for random hypergraphs and the t-core problem
for random hypergraphs.

Mathematics Subject Classification (2000). Primary 05C80; Secondary 05D40.

Keywords. Random graph, giant component, core, Poisson distribution.

1. Introduction

The notion of a random graph was first introduced in 1947 by Erdős [14] to show
the existence of a graph with a certain Ramsey property. A decade later, the theory
of random graphs began with the paper entitled On Random Graphs I by Erdős and
Rényi [15], and they further developed the theory in a series of papers [16], [17], [18],
[19], [20]. Since then, the subject has become one of the most active research areas.
Many researchers have devoted themselves to studying various properties of random
graphs, such as the emergence of the giant component [16], [5], [32], the connectivity
[15], [17], [11], the existence of perfect matching [18], [19], [20], [11], the existence
of Hamiltonian cycle(s) [31], [6], [10], the k-core problem [6], [34], [38], and the
graph invariants like the independence number [9], [36] and the chromatic number
[39], [8], [33]. (The list of references here is far from being exhaustive.)

There are two canonical models for random graphs, both of which were originated
in the simple model introduced in [14]. In the binomial modelG(n, p) on a set V of n
vertices, each of

(
n
2

)
possible edges is in the graph with probability p, independently

of other edges. Thus, the probability of G(n, p) being a fixed graph G with m edges
is pm(1−p)(n2)−m. The uniform modelG(n,m) on V is a graph chosen uniformly at
random from the set of all graphs on V withm edges. HenceG(n,m) becomes a fixed
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© 2006 European Mathematical Society
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graph G with probability
((n2)
m

)−1
, provided G has m edges. Most of the asymptotic

behavior of the two models is almost identical if their expected numbers of edges
are the same. (See Proposition 1.13 in [27].) The random graph process, in which
random edges are added one by one, is also extensively studied. For more about
models and/or basics of random graphs we recommend two books with the same title:
Random Graphs by Bollobás [7] and by Janson, Łuczak and Ruciński [27].

The phase transition phenomenon is one of the interesting topics in random graphs.
Specifically, the phase transition phenomena regarding the emergences of the giant
(connected) component and the t-core have attracted much attention. In the monu-
mental paper On the Evolution of Random Graphs [16], Erdős and Rényi proved that,
for the size �1(n, p) of the largest component of G(n, p),

�1(n, p) =
{
O(log n), if lim supn→∞ p(n− 1) < 1,

(1 + o(1))θλn, if limn→∞ pn = λ > 1,

where θλ is the positive solution of the equation 1 − θ − e−λθ = 0 and all other
components are of size O(log n).

Why does the size of the largest component change so dramatically around λ = 1?
It was Karp [28] who nicely explained the reason. To find a component C(v) of a
fixed vertex v in G(n, p), one may first expose the vertices that are adjacent to v
and keep on repeating the same procedure by taking each of those adjacent vertices.
Initially, v is active and all other vertices are neutral. At each step we take an active
vertex w and expose all neutral vertices adjacent to w. This can be done by checking
{w,w′} ∈ G(n, p) or not for all neutral vertices w′. Then activate all neutral vertices
that are adjacent tow. The vertexw is no longer active, and only non-activated neutral
vertices remain neutral. The process terminates when there is no more active vertex
left. Clearly, the process will stop after finding all the vertices in the component
containing v. If the number of neutral vertices does not decrease so fast, the number
of newly activated vertices is close to the binomial random variable Bin(n − 1, p),
where

Pr[Bin(n− 1, p) = �] =
(
n− 1

�

)
p�(1 − p)n−1−�.

Particularly, the mean number is close to pn. If pn ≤ 1 − δ for a fixed δ > 0,
then the process is expected to die out quickly almost every time. Thus, all C(v)
are expected to be small. If pn ≥ 1 + δ, then the process may survive forever with
positive probability. Hence, C(v) can be large with positive probability. As there
are n trials, at least one of the C(v)’s is expected to be large. Applying this approach
to the random directed graph, Karp was able to prove a phase transition phenomenon
for the size of the largest strong component.

Notice that, when pn = �(1), the distribution of Bin(n− 1, p) is very close the
Poisson distribution with parameter λ := p(n−1). Hence we may further expect that
the process described above could be approximated by the Galton–Watson branching
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process defined by a Poisson random variable Poi(λ) with mean λ, where

Pr[Poi(λ) = �] = e−λ λ
�

�! .

Generally, the Galton–Watson branching process defined by a random variable X
starts with a single unisexual organism. The organism will give birth to X1 children,
where X1 is a random variable with the same distribution as X. The same but inde-
pendent birth process continues from each of the children, the grandchildren and so
on, until no more descendant exists. (For more information regarding Galton–Watson
branching processes, one may refer [4].) For simplicity we call the Galton–Watson
branching process defined by Poi(λ) the Poisson(λ) branching process.

The Poisson cloning model. To convert the above observation to a rigorous proof, it
is needed to overcome or bypass two main obstacles. Firstly, the degrees of vertices of
G(n, p) are not exactly i.i.d. Poisson random variables. Though they have the same
distribution as Bin(n − 1, p), they are not mutually independent. For example, the
sum of all degrees must be even as it is twice the number of edges, which cannot be
guaranteed if the degrees are independent. Secondly, the number of neutral vertices
keeps decreasing. Even if both obstacles do not cause substantial differences in many
cases, one needs at least to keep tracking small differences for rigorous proofs. Since
this kind of small differences occurs almost everywhere in the analysis, it sometimes
makes rigorous analysis significantly difficult, if not impossible.

As an approach to bypass the first obstacle, we introduce the Poisson cloning
model GPC(n, p) for random graphs in which the degrees are i.i.d. Poisson random
variables with mean λ = p(n − 1). Moreover, the new model is equivalent to the
classical model G(n, p) in an asymptotic sense. Actually, defining the model is
not extremely difficult: First take i.i.d. Poisson λ random variables d(v)′s indexed by
all vertices in the vertex set V . Then take d(v) copies, or clones, of each vertex v.
If the sum of d(v)’s is even, then we generate a uniform random perfect matching
on the set of all clones. An edge {v,w} is in the random graph GPC(n, p) if a clone
of v is matched to a clone of w in the random perfect matching. If the sum is odd,
one may just take a graph with a self loop. Hence the graph is not simple if the sum
is odd.

It is also possible to extend the model to uniform hypergraphs, where a k-uniform
hypergraph on the vertex set V is a collection of subsets of V with size k. A graph is
then a 2-uniform hypergraph. In the binomial modelH(n, p ; k) for random k-uniform
hypergraphs each of

(
n
k

)
edges is in the hypergraph with probability p, independently

of other edges. The Poisson cloning model for random k-uniform hypergraphs is
denoted byHPC(n, p ; k). In the next section the Poisson cloning model is defined in
detail.

The following theorem shows that the Poisson cloning model is essentially equiv-
alent to the binomial model.
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Theorem 1.1. Suppose k ≥ 2 and p = �(n1−k). Then for any collection H of
k-uniform simple hypergraphs,

c1Pr[HPC(n, p ; k) ∈ H] ≤ Pr[H(n, p ; k) ∈ H]
≤ c2

(
Pr[HPC(n, p ; k) ∈ H] 1

k + e−n
)
,

where

c1 = k1/2e
p
n (
k
2)(

n
k)+ p2

2 (
n
k) +O(n−1/2), c2 =

( k

k − 1

)(
c1(k − 1)

)1/k + o(1),

and o(1) goes to 0 as n goes to infinity.

To overcome the second obstacle we present an algorithm, called the cut-off line
algorithm, that enables us to generate the Poisson cloning model and analyze problems
simultaneously. As a consequence the size of the largest component of GPC(n, p)

can be described very precisely. It is also possible to analyze the size of t-core of the
random hypergraph HPC(n, p ; k), where the t-core of a hypergraph H is the largest
subhypergraph of H with minimum degree at least t .

The emergence of the giant component. After the phase transition result of Erdős
and Rényi it remained to determine the size of the largest component when pn→ 1.
Though Erdős and Rényi suggested that the size �1(n, p) of the largest compo-
nent could be one of O(log n), �(n2/3), and �(n), Bollobás [5] showed that
�1(n, p) increases rather continuously by estimating it quite accurately for pn− 1 ≥
n−1/3√log n /2. Later Łuczak [32] was able to estimate �1(n, p) forpn−1 	 n−1/3.

Before stating the result of Łuczak a convention is introduced: when the expression
x 	 y is used as part of the hypotheses, it means ‘there exists a (large) constantK > 0
so that, if x ≥ Ky . . . ’. We also denote λ(n, p) = p(n− 1).

Theorem 1.2 (Supercritical phase). Suppose λ = λ(p, n) = 1 + ε with ε 	 n−1/3.
Then for large enough n, with probability at least 1 − 7(ε3n/8)−1/9

|�1(n, p)− θλn| ≤ n2/3

5
,

and all other components are smaller than n2/3.

Using estimations for the numbers of connected graphs with certain number of
vertices and edges and the first and second moment methods, one may also obtain the
following result for the subcritical phase.

Theorem 1.3 (Subcritical phase). Let λ(n, p) = 1 − ε with n−1/3 
 ε 
 1. Then
for any positive constant δ ≤ 1/3 and large enough n, with probability at least
1 − ( 8

ε3n

)δ/4 ∣∣∣∣�1(n, p)− 2 log(ε3n)

ε2

∣∣∣∣ ≤ δ log(ε3n)

ε2 .
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For results regarding the structure of the largest component readers are referred
to [27], [32], [25], [35] and references therein.

For Poisson branching processes a duality principle has been known. A pair
(μ, λ) with μ < 1 < λ is called a conjugate pair if μe−μ = λe−λ. It is easy to
see that μ = (1 − θλ)λ for a conjugate pair (μ, λ). For a conjugate pair (μ, λ) the
distribution of the Poisson(λ) branching process conditioned that the process dies
out is exactly the same as that of the Poisson(μ) branching process. (See e.g. [2],
p. 164.) A similar duality was observed for the random graph G(n, p) and G(n∗, p)
with λ = λ(n, p) > 1 and n∗ = (1 − θλ)n. (Recall that λ(n, p) = p(n − 1).)
Notice that 1 − θλ is the extinction probability for the Poisson(λ) branching process.
It is known that the component sizes ofG(n∗, p) and those ofG(n, p) excluding the
largest component are the same in an asymptotic sense (see [2]).

The Poisson cloning modelGPC(n, p) equipped with the cut-off line algorithm en-
ables us to not only estimate �1(n, p) more accurately but also to establish a dis-
crete duality principle: in the supercritical phase λ := λ(n, p) = 1+ ε with n−1/3 

ε 
 1;GPC(n, p) can be decomposed by three vertex disjoint graphsC, S andGwhp
(with high probability), whereC is a connected graph of size about θλn, S is a smaller
graph of size about ε−2 
 θλn, andG has the same distribution asGPC(n

∗, p∗) with
n∗ ≈ (1 − θλ)n and p∗ ≈ p, which yields λ(n∗, p∗) ≈ μ := (1 − θλ)λ. In the
subcritical phase λ = 1 − ε with n−1/3 
 ε 
 1 the largest component is of size

log(ε3n)− 2.5 log log(ε3n)+O(1)

−(ε + log(1 − ε))

whp. The precise statements are as follows. We concentrate on the cases ε 
 1
for which more careful analysis is required. It is believed that the proofs are easily
modified for the cases of positive constants ε.

Theorem 1.4. Supercritical phase: Let λ := λ(n, p) = 1 + ε with n−1/3 
 ε 
 1,
μ := (1−θλ)λ and 1 
 α 
 (ε3n)1/2. Then with probability 1−e−	(α2) GPC(n, p)

may be decomposed by three vertex disjoint graphsC, S andG, whereC is connected
and

θλn− α(n/ε)1/2 ≤ |C| ≤ θλn+ α(n/ε)1/2,

|S| ≤ α2

ε2 , G has the same distribution as GPC(n
∗, p∗) for some n∗ and p∗ satisfying

(1 − θλ)n− α(n/ε)1/2 ≤ n∗ ≤ (1 − θλ)n+ α(n/ε)1/2,

and
μ− α(εn)−1/2 ≤ λ(n∗, p∗) ≤ μ+ α(εn)−1/2.

Subcritical phase: Suppose λ := λ(n, p) = 1 − ε with n−1/3 
 ε 
 1. Then the
size �PC

1 (n, p) of the largest component of GPC(n, p) satisfies

Pr
[
�PC

1 (n, p) ≥ log(ε3n)− 2.5 log log(ε3n)+ c

−(ε + log(1 − ε))

]
≤ 2e−	(c),
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and

Pr
[
�PC

1 (n, p) ≤ log(ε3n)− 2.5 log log(ε3n)− c

−(ε + log(1 − ε))

]
≤ 2e−e	(c)

for any constant c > 0.

Inside window: Suppose λ := λ(n, p) = 1 + ε with |ε| = O(n1/3). Then whp

�PC
1 (n, p) = �(n2/3).

(All constants in the 	( · )’s do not depend on any of ε, α and c.)

By Theorem 1.1 a corollary regarding G(n, p) follows.

Corollary 1.5. Supercritical region: Suppose λ = λ(n, p) = 1 + ε with n−1/3 

ε 
 1, and 1 
 α 
 (ε3n)1/2. Then, in G(n, p),

Pr[ |�1(n, p)− θλn| ≥ α(n/ε)1/2] ≤ 2e−	(α2).

Moreover, for the size �2(n, p) of the second largest component and ε∗ = 1−(1−θλ)λ,

Pr
[
�2(n, p) ≥ log((ε∗)3n)− 2.5 log log((ε∗)3n)+ c

−(ε∗ + log(1 − ε∗))

]
≤ 2e−	(c)

and

Pr
[
�2(n, p) ≤ log((ε∗)3n)− 2.5 log log((ε∗)3n)− c

−(ε∗ + log(1 − ε∗))

]
≤ 2e−e	(c) ,

for any constant c > 0.

Subcritical region: Suppose λ = 1 − ε with n−1/3 
 ε 
 1. Then for any
constant c > 0,

Pr
[
�1(n, p) ≥ log(ε3n)− 2.5 log log(ε3n)+ c

−(ε + log(1 − ε))

]
≤ 2e−	(c)

and

Pr
[
�1(n, p) ≤ log(ε3n)− 2.5 log log(ε3n)− c

−(ε + log(1 − ε))

]
≤ 2e−e	(c) .

Inside window: Suppose λ := λ(n, p) = 1 + ε with |ε| = O(n1/3). Then whp

�1(n, p) = �(n2/3).

The emergence of the t-core. There are at least two possible directions to extend
the problem of (connected) component. Observing that the minimum degree in a
component must be larger than or equal to 1, one may consider subgraphs with min-
imum degree at least t ≥ 2. For a graph G, the t-core is the largest subgraph with
minimum degree at least t . Since the minimum degree of the union of two subgraphs
is larger than or equal to the smaller minimum degree of the two, the t-core of a graph
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is unique. It is also easy to see that the t-core must be an induced subgraph. For this
reason the t-core ofG sometimes refers to its vertex set. Denote by Vt(G) (the vertex
set of) the t-core ofG. As the 1-core V1(G) is the set of all non-isolated vertices, we
consider the cases t ≥ 2 throughout this paper. If there is no subgraph with minimum
degree t , the t-core is defined to be empty.

Another direction is to consider the t-connectivity, where a graph is t-connected
if the graph remains connected after any t − 1 vertices are removed. Higher orders
of connectivity have been used to understand various structures of graphs. Clearly, if
a non-empty subgraph is t-connected, then its minimum degree must be t or larger.

In 1984, Bollobás [6] initiated the study of t-core, t ≥ 2, and observed that,
provided t ≥ 3 and pn is larger than a fixed constant, the t-core of G(n, p) is non-
empty and t-connected whp. Łuczak [34] proved that for t ≥ 3 there is an absolute
constant c such that the t-core of G(n, p) is either empty, or larger than cn and t-
connected, whp. In particular, as far as the random graph G(n.p) is concerned, the
t-core problem is the same as the t-connectivity problem. Moreover, if λ(n, p) is
less than 1, then the t-core of G(n, p) is empty whp since the size of the largest
component is O(n2/3) whp. As p increases while n is fixed, the probability of the
t-core of G(n, p) being non-empty keeps increasing. Let pt (n, δ) be the infimum of
all p that makes the probability larger than or equal to a constant δ with 0 < δ < 1.
Then Bollobás’s result implies that npt (n, δ) is bounded from above by a constant.
Though npt (n, δ) may still have no limit value as n goes to infinity, it seems to be
more natural to expect that the limit exists. Furthermore, as it happens often in phase
transition phenomena, the limit, if it exists, is also expected to be independent of δ.
In other words, the phase transition is expected to be sharp.

For t = 2, the 2-core of a graphG is non-empty if and only ifG contains a cycle.
It is easy to see by the first moment method that G(n, p) with p = o(1/n) does
not contain a cycle whp. For a constant c with 0 < c < 1, G(n, p) may or may
not have a cycle with positive probability. In particular, the phase transition for the
existence of a non-empty 2-core is not sharp. In the graph process (G(n,m))m=0,1,...
in which a random edge is added one by one without repetition, Janson [24] found
the limiting distribution for the length of the first cycle, especially he showed that
the length is bounded whp. However, the expectation of the length is known to be
�(n1/6) due to Flajolet et al. [23]. The two facts do not contradict each other, since
there are random variables X that are bounded whp, but E[X] is not. For example,
Pr[X = 1] = 1 − 1/n and Pr[X = n2] = 1/n.

Bollobás [6] proved that, if t ≥ 5 and λ(n, p) := p(n − 1) ≥ max{67, 2t + 6},
thenG(n, p) has a non-empty t-core. Chvátal [12] introduced the notion of critical λt ,
without proving existence, satisfying the following. As n goes to infinity,

Pr[G(n, p) has a non-empty t-core ] −→
{

0 if λ(n, p) < λt − δ,

1 if λ(n, p) > λt + δ

for any constant δ > 0. He also proved that λ3 ≥ 2.88 if it exists, and claimed that
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λ4 ≥ 4.52 and λ5 ≥ 6.06 etc. could be proven by the same method. Pittel, Spencer
and Wormald [38] proved a general theorem which implies that λt exists for fixed
t ≥ 3 and identified their values. We present a slightly weaker version of this result.

For a Poisson random variable Poi(ρ) with mean ρ let P(ρ, i) = Pr[Poi(ρ) = i]
and Q(ρ, i) = Pr[Poi(ρ) ≥ i], i.e.,

P(ρ, i) = e−ρ ρ
i

i! and Q(ρ, i) :=
∞∑
j=i

P (ρ, j) = e−ρ
∞∑
j=i

ρj

j ! ,

and let
λt = min

ρ>0

ρ

Q(ρ, t − 1)
.

Theorem 1.6. Let t ≥ 3, λ(n, p) = p(n− 1). Then

Pr[G(n, p) has a non-empty t-core] −→
{

0 if λ(n, p) < λt − n−δ ,
1 if λ(n, p) > λt + n−δ

for any δ ∈ (0, 1/2), and the t-core whenλ(n, p) > λt+n−δ has (1+o(1))Q(θλλ, t)n
vertices, whp, where θλ is the largest solution for the equation

θ −Q(θλ, t − 1) = 0.

There are many studies about the t-cores of various types of random graphs and
random hypergraphs. Fernholz and Ramachandran [21], [22] studied random graph
conditions on given degree sequences. Cooper [13] found the critical values for
t-cores of a uniform multihypergraph with given degree sequences that includes the
random k-uniform hypergraphH(n, p ; k). Molloy [37] considered cores for random
hypergraphs and random satisfiability problems for Boolean formulas. Recently,
S. Janson and M. J. Luczak [26] also gave seemingly simpler proofs for t-core prob-
lems that contain the result of Pittel, Spencer and Wormald. For more information
and techniques used in the above mentioned papers readers are referred to [26].

Using the Poisson cloning model for random hypergraphs together with the cut-off
line algorithm we are able to completely analyze the t-core problem for the random
uniform hypergraph. We also believe that the cut-off line algorithm can be used to
analyze the t-core problem for random hypergraphs conditioned on certain degree
sequences as in [13], [21], [22], [26].

As the 2-core of G(n, p) behaves quite differently from the other t-cores of
H(n, p ; k), we exclude the case k = t = 2, which will be studied in a subse-
quent paper. The critical value for the problem turns out to be the minimum λ such
that there is a positive solution for the equation

θ −Q(θk−1λ, t − 1) = 0. (1.1)

It is not difficult to check that the minimum is

λcrt(k, t) := min
ρ>0

ρ

Q(ρ, t − 1)k−1 . (1.2)
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For λ>λcrt(k, t), let θλ be the largest solution of the equation θ
1
k−1 −Q(θλ, t−1)=0.

Theorem 1.7. Let k, t ≥ 2, excluding k = t = 2, and σ 	 n−1/2.

Subcritical phase: If λ(n, p ; k) := p
(
n−1
k−1

) = λcrt −σ is uniformly bounded from

below by 0 and i0(k, t) is the minimum i such that
(
i
k

) ≥ t i/k, then

Pr[Vt(H(n, p ; k)) 
= ∅] = e−	(σ 2n) +O
(
n−(t−1−t/k)i0(k,t)),

and for any δ > 0,

Pr[|Vt(H(n, p ; k))| ≥ δn] = e−	(σ 2n) + e−	(δ2k/(k−1))n). (1.3)

Supercritical phase: If λ = λ(n, p ; k) = λcrt + σ is uniformly bounded from
above, then for all α in the range 1 
 α 
 σn1/2,

Pr
[∣∣|Vt(n, p ; k)| −Q(θλλ, t)n

∣∣ ≥ α(n/σ)1/2
] = e−	(α2), (1.4)

and, for any i ≥ t and the sets Vt(i) (resp.Wt(i)) of vertices of degree i (resp. larger
than or equal to i) in the t-core,

Pr
[∣∣|Vt(i)| − P(θλλ, i)n

∣∣ ≥ δn
] ≤ 2e−	(min{δ2σn,σ 2n}),

and

Pr
[∣∣|Wt(i)| −Q(θλλ, i)n

∣∣ ≥ δn
] ≤ 2e−	(min{δ2σn,σ 2n}).

In particular, for λ = λcrt + σ and ρcrt := θλcrt(k,t)λcrt(k, t),

|Vt(i)| = (
1 +O(σ 1/2)

)i
P (ρcrt , i)n+O

(
(n/σ)1/2 log n

)
,

with probability 1 − 2e−	(min{log2 n,σ 2n}).

As one might guess, we will prove a stronger theorem (Theorem 6.2) for the
Poisson cloning model HPC(n, p ; k), from which Theorem 1.7 easily follows.

In the next section the Poisson cloning model is defined in detail. The cut-off
line algorithm and the cut-off line lemma are presented in Section 3. In Section 4
we study Chernoff type large derivation inequalities that will be used in most of our
proofs. In Section 5, a generalized core is defined and the main lemma is presented.
Section 6 is devoted to the proof of Theorem 1.7. As the proof of Theorem 1.4 is
more sophisticated, we only give the proof ideas in Section 7. We conclude this paper
with final remarks in Section 8. Due to the space limitation, many proofs are omitted.
They can be found on the author’s web site.
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2. The Poisson cloning model

To construct the Poisson cloning model GPC(n, p) for random graphs, let V be a set
of n vertices. We take i.i.d. Poisson λ = p(n − 1) random variables d(v), v ∈ V ,
and then take d(v) copies of each vertex v ∈ V . The copies of v are called clones
of v, or simply v-clones. Since the sum of Poisson random variables is also a Poisson
random variable, the total numberNλ := ∑

v∈V d(v) of clones is a Poissonλn random
variable. It is sometimes convenient to take a reverse, but equivalent, construction.
We first take a Poisson λn = 2p

(
n
2

)
random variablesNλ and then takeNλ unlabelled

clones. Each clone is independently labelled as v-clone uniformly at random, in the
sense that v is chosen uniformly at random from V . It is well known that the numbers
d(v) of v-clones are i.i.d. Poisson random variables with mean λ.

If Nλ is even, the multigraph GPC(n, p) is defined by generating a (uniform)
random perfect matching of those Nλ clones, and contracting clones of the same
vertex. That is, if a v-clone and a w-clone are matched, then the edge {v,w} is
in GPC(n, p) with multiplicity. In the case that v = w, it produces a loop that
contributes 2 to the degree of v. If Nλ is odd, we may define GPC(n, p) to be any
graph with a special loop that, unlike other loops, contributes only 1 to the degree of
the corresponding vertex. In particular, ifNλ is odd,GPC(n, p) is not a simple graph.

Strictly speaking, GPC(n, p) varies depending on how to define it when Nλ is
odd. However, if only simple graphs are concerned, the case of Nλ being odd would
not matter. For example, the probability that GPC(n, p) is a simple graph with a
component larger than 0.1n does not depend on how GPC(n, p) is defined when Nλ
is odd, as it is not a simple graph anyway. Generally, for any collection G of simple
graphs, the probability thatGPC(n, p) is in G is totally independent of howGPC(n, p)

is defined when Nλ is odd. Notice that properties of simple graphs are actually
mean collections of simple graphs. Therefore, when properties of simple graphs are
concerned, it is not necessary to describe GPC(n, p) for odd Nλ.

Here are two specific ways to generate the uniform random matching.

Example 2.1. One may keep matching two clones chosen uniformly at random among
all unmatched clones.

Example 2.2. One may keep choosing his or her favorite unmatched clone, and
matching it to a clone selected uniformly at random from all other unmatched clones.

If Nλ is even both examples would yield uniform random perfect matchings. If
Nλ is odd, then each of them would yield a matching and an unmatched clone. We
may create the special loop consisting of the vertex for which the unmatched clone is
labelled. More specific ways to choose random clones will be described in the next
section.

Generally for k ≥ 3, the Poisson cloning model HPC(n, p ; k) for k-uniform hy-
pergraphs may be defined in the same way: We take i.i.d. Poisson λ = p

(
n−1
k−1

)
random

variables d(v), v ∈ V , and then take d(v) clones of each v. If Nλ := ∑
v∈V d(v) is
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divisible by k, the multihypergraph HPC(n, p; k) is defined by generating a uniform
random perfect matching consisting of k-tuples of those Nλ clones, and contracting
clones of the same vertex. That is, if v1-clone, v2 -clone, …, v

k
-clone are matched

in the perfect matching, then the edge {v1, v2, . . . , vk } is in HPC(n, p ; k) with mul-
tiplicity. If Nλ is not divisible by k, HPC(n, p ; k) may be any hypergraph with a
special edge consisting of Nλ − k�Nλ/k� vertices. In particular, HPC(n, p ; k) is not
k-uniform whenNλ is not divisible by k. Therefore, as long as properties of k-uniform
hypergraphs are concerned, we do not have to describeHPC(n, p ; k) when Nλ is not
divisible by k.

We show that the Poisson cloning model HPC(n, p ; k), k ≥ 2, is contiguous to
the classical model H(n, p ; k) when the expected average degree is a constant.

Theorem 1.1 (restated). Suppose k ≥ 2 and p = �(n1−k). Then for any collection
H of k-uniform simple hypergraphs,

c1 Pr[HPC(n, p ; k) ∈ H] ≤ Pr[H(n, p ; k) ∈ H]
≤ c2

(
Pr[HPC(n, p ; k) ∈ H] 1

k + e−n
)
,

where

c1 = k1/2e
p
n (
k
2)(

n
k)+ p2

2 (
n
k) +O(n−1/2), c2 =

( k

k − 1

)(
c1(k − 1)

)1/k + o(1),

and o(1) goes to 0 as n goes to infinity.

Proof. See [30]. �

3. The λ-cell and the cut-off line algorithm

To generate a uniform random perfect matching ofNλ clones, we may keep matching k
unmatched clones uniformly at random (cf. Example 2.1). Another way is to choose
the first clone as we like and match it to k − 1 clones selected uniformly at random
among all other unmatched clones (cf. Example 2.2). As there are many ways to
choose the first clone, we may take a way that makes the given problem easier to
analyze. Formally, a sequence S = (Si) of choice functions determines how to
choose the first clone at each step, where Si tells us which unmatched clone is to be
the first clone for the ith edge in the random perfect matching. A choice function
may be deterministic or random. If less than k clones remain unmatched, the edge
consisting of those clones will be added. The clone chosen by Si is called the ith

chosen clone, or simply a chosen clone.
We also present a more specific way to select the k − 1 random clones to be

matched to the chosen clone. The way introduced here will be useful to solve problems
mentioned in the introduction. First, independently assign to each clone a uniform
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random real number between 0 and λ = p
(
n−1
k−1

)
. For the sake of convenience, a clone

is called the largest, the smallest, etc. if so is the number assigned to it. In addition, a
clone is called θλ-large (resp. θλ-small) if its assigned number is larger than or equal
to (resp. smaller than) θλ. To visualize the labelled clones with assigned numbers,
one may consider n horizontal line segments from (0, j) to (λ, j), j = 0, . . . , n−1 in
the two-dimensional plane R

2. The v
j
-clone with assigned number x can be regarded

as the point (x, j) in the corresponding line segment. Then each line segment with
the points corresponding to clones with assigned numbers is an independent Poisson
arrival process with density 1, up to time λ. The set of these Poisson arrival processes
is called a Poisson (λ, n)-cell or simply a λ-cell.

We will consider sequences of choice functions that choose an unmatched clone
without changing the joint distribution of the numbers assigned to all other unmatched
clones. Such a choice function is called oblivious. A sequence of oblivious choice
functions is also called oblivious. The choice function that chooses the largest un-
matched clone is not oblivious, as the numbers assigned to the other clones must
be smaller than the largest assigned number. As an example of an oblivious choice
function one may consider the choice function that chooses a v-clone for a vertex v
with fewer than 3 unmatched clones. For a more general example, let a vertex v and
its clones be called t-light if there are fewer than t unmatched v-clones.

Example 3.1. Suppose there is an order of all clones which is independent of the
assigned numbers. The sequence of the choice functions that choose the first t-light
clone is oblivious.

A cut-off line algorithm is determined by an oblivious sequence of choice func-
tions. Once a clone is obliviously chosen, the largest k−1 clones among all unmatched
clones are to be matched to the chosen clone. This may be further implemented by
moving the cut-off line to the left until k − 1 vertices are found: Initially, the cut-off
line of the λ-cell is the vertical line in R

2 containing the point (λ, 0). The initial cut-off
value, or cut-off number, is λ. At the first step, once the chosen clone is given, move
the cut-off line to the left until exactly k− 1 unmatched clones, excluding the chosen
clone, are on or in the right side of the line. The new cut-off value, which is denoted
by �1, is to be the number assigned to the (k − 1)th largest clone. The new cut-off
line is, of course, the vertical line containing (�1, 0). Repeating this procedure, one
may obtain the ith cut-off value �i and the corresponding cut-off line.

Notice that, after the ith step ends with the cut-off value�i , all numbers assigned
to unmatched clones are i.i.d. uniform random numbers between 0 to�i , as the choice
functions are oblivious. Let Ni be the number of unmatched clones after step i. That
is, Ni = Nλ − ik. Since the (i + 1)th choice function tells how to choose the first
clone to form the (i + 1)th edge without changing the distribution of the assigned
numbers, the distribution of �i+1 is the distribution of the (k − 1)th largest number
among Ni − 1 independent uniform random numbers between 0 and �i . Let 1 − Tj
be the random variable representing the largest number among j independent uni-
form random numbers between 0 and 1. Or equivalently, Tj is the random variable
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representing the smallest number among the random numbers. Then the largest num-
ber among the Ni − 1 random numbers has the same distribution as �i(1 − TNi−1).
Repeating this k − 1 times, we have

�i+1 = �i(1 − TNi−1)(1 − TNi−2) . . . (1 − TNi−k+1),

and hence

�i+1 = �i(1 − TNi−1) . . . (1 − TNi−k+1)

= �i−1(1 − TNi−1−1) . . . (1 − TNi−1−k+1) · (1 − TNi−1) . . . (1 − TNi−k+1)

= λ

Nλ−(i+1)k+1∏
j=Nλ−1
k�Nλ−j

(1 − Tj ).

It is crucial to observe that, once Nλ is given, all Ti are mutually independent
random variables. This makes the random variable �i highly concentrated near
its mean, which enables us to develop theories as if �i were a constant. The cut-
off value �i will provide enough information to resolve some otherwise difficult
problems.

For θ in the range 0 ≤ θ ≤ 1, let �(θ) be the cut-off value when
(
1 − θ

k
k−1

)
λn

or more clones are matched for the first time. Conversely, let N(θ) be the number of
matched clones until the cut-off line reaches θλ.

Lemma 3.2 (Cut-off line lemma). Let k ≥ 2 and λ > 0 be fixed. Then for θ1 < 1
uniformly bounded below from 0 and 0 < 
 ≤ n,

Pr
[

max
θ :θ1≤θ≤1

|�(θ)− θλ| ≥ 

n

] ≤ 2e
−	(min{
, 
2

(1−θ1)n })

and

Pr
[

max
θ :θ1≤θ≤1

|N(θ)− (1 − θ
k
k−1 )λn| ≥ 


] ≤ 2e
−	(min{
, 
2

(1−θ1)n })
.

Proof. See [30]. �

4. Large deviation inequalities

In this section a generalized Chernoff bound and an inequality for random process
is given. Let X1, . . . , Xm be a sequence of random variables such that the distribu-
tion of Xi is determined if all the values of X1, . . . , Xi−1 are known. For example,
Xi = �(θi) with 1 ≥ θ1 ≥ · · · ≥ θm ≥ 0 in a Poisson λ-cell. If the upper
and/or lower bounds are known for the conditional means E[Xi |X1, . . . , Xi−1] and
for the conditional second and third monuments, then Chernoff type large deviation
inequalities may be obtained not only for

∑m
j=1Xj but for min1≤i≤m

∑i
j=1Xj and/or
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max1≤i≤m
∑i
j=1Xj . Large deviation inequalities for such minima or maxima are es-

pecially useful in various situations. Lemma 3.2 can be shown using such inequalities
too.

Lemma 4.1. Let X1, . . . , Xm be a sequence of random variables. Suppose that

E[Xi |X1, . . . , Xi−1] ≤ μi, (4.1)

and that there are positive constants a
i

and b
i

such that

E[(Xi − μi)
2|X1, . . . , Xi−1] ≤ ai, (4.2)

and
E[(Xi − μi)

3eξ(Xi−μi)|X1, . . . , Xi−1] ≤ bi for all 0 ≤ ξ ≤ ξ0 . (4.3)

Then for any α with 0 < α ≤ ξ0

( ∑m
i=1 ai

)1/2
,

Pr
[ m∑
i=1

Xi ≥
m∑
i=1

μi + α
( m∑
i=1

ai

)1/2] ≤ exp

(
− α2

2

(
1 + α

∑m
i=1 bi

3
( ∑m

i=1 ai
)3/2

))
.

Similarly,
E[Xi |X1, . . . , Xi−1] ≥ μi (4.4)

together with (4.2) and

E[(Xi − μi)
3eξ(Xi−μi)|X1, . . . , Xi−1] ≥ bi for all ξ0 ≤ ξ < 0 (4.5)

implies that

Pr
[ m∑
i=1

Xi ≤
m∑
i=1

μi − α
( m∑
i=1

ai

)1/2] ≤ exp

(
− α2

2

(
1 − α

∑m
i=1 bi

3
( ∑m

i=1 ai
)3/2

))
.

Proof. See [30]. �

As it is sometimes tedious to point out the value of α and to check the required
bounds for it, the following forms of inequalities are often more convenient.

Corollary 4.2 (Generalized Chernoff bound). If δξ0

∑
bi ≤ ∑

a
i
for some 0< δ ≤ 1,

then (4.1)–(4.3) imply

Pr
[ m∑
i=1

Xi ≥
m∑
i=1

μi + R
]

≤ e−
1
3 min{δξ0R, R

2/
∑m
i=1 ai}

for all R > 0. Similarly, if −δξ0

∑
bi ≤ ∑

a
i

for some 0 < δ ≤ 1, then (4.2), (4.4)
and (4.5) yield

Pr
[ m∑
i=1

Xi ≤
m∑
i=1

μi − R
]

≤ e−
1
3 min{δξ0R, R

2/
∑m
i=1 ai}

for all R > 0.
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LetXθ , θ ≥ 0, be random variables which are possibly set-valued. Here θ may be
integers as well as real numbers. Suppose that �(θ) is a random variable depending
on {Xθ ′ }θ ′≤θ and θ , and

ψ = ψ({Xθ ′ }θ ′≤θ1; θ0, θ1) and ψθ = ψθ({Xθ ′ }θ ′≤θ1; θ0, θ, θ1).

The random variables ψ and ψθ are used to bound �(θ).

Example 4.3. Let X1, X2, . . . be i.i.d. Bernoulli random variables with mean p and
Si = ∑i

j=1Xj . Set �(i) = |Si − ip| and

ψ = �(n) and ψi = |Sn − Si − (n− i)p|.
Then, since

Si − ip = Sn − np − (Sn − Si − (n− i)p)

we have
�(i) ≤ ψ + ψi.

Example 4.4. Consider the (λ, n)-cell defined in the previous section. Let vθ be
the vertex that has its largest clone at (1 − θ)λ. If such a vertex does not exist, vθ
is defined to be ℵ, assuming ℵ 
∈ V . As there is no possibility that two distinct
clones are assigned the same number, vθ is well-defined. Let Xθ = vθ and V (θ) be
the set of vertices that contain no clone larger than or equal to (1 − θ)λ. That is,
V (θ) = V \ {vθ ′ : 0 ≤ θ ′ ≤ θ}. Clearly, E[|V (θ)|] = e−θλn. Observing that for
θ0 ≤ θ ≤ θ1 one has

e−(θ1−θ)λ∣∣|V (θ)| − e−θλn
∣∣ ≤ ∣∣|V (θ1)| − e−θ1λn

∣∣ + ∣∣|V (θ1)| − e−(θ1−θ)λ|V (θ)|∣∣,
we may set �(θ) = ||V (θ)| − e−θλn|,

ψ = e(θ1−θ0 )�(θ1) and ψθ = e(θ1−θ0 )
∣∣|V (θ1)| − e−(θ1−θ)λ|V (θ)|∣∣.

We bound the probabilities maxθ0≤θ≤θ1 �(θ) ≥ R and minθ0≤θ≤θ1 �(θ) ≤ R

under some conditions.

Lemma 4.5. Let 0 ≤ θ0 < θ1,R = R1+R2,R1, R2 > 0 and�θ be events depending
on {Xθ ′ }θ ′≤θ . If

�(θ) ≤ ψ + ψθ for all θ0 ≤ θ ≤ θ1,

then

Pr
[

max
θ0≤θ≤θ1

�(θ) ≥ R
] ≤ Pr

[
ψ ≥ R1

] + Pr
[ ⋃
θ :θ0≤θ≤θ1

�θ

]

+ max
θ :θ0≤θ≤θ1

max{Xθ ′ }θ ′≤θ
1(�θ)Pr

[
ψθ ≥ R2 | {Xθ ′ }θ ′≤θ

]
.
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Similarly, if
�(θ) ≥ ψ + ψθ for all θ0 ≤ θ ≤ θ1,

then

Pr
[

min
θ0≤θ≤θ1

�(θ) ≤ −R] ≤ Pr
[
ψ ≤ −R1

] + Pr
[ ⋃
θ :θ0≤θ≤θ1

�θ

]

+ max
θ :θ0≤θ≤θ1

max{Xθ ′ }θ ′≤θ
1(�θ)Pr

[
ψθ ≤ −R2 | {Xθ ′ }θ ′≤θ

]
.

Proof. See [30]. �

Example 4.3 (continued). As

Pr[ψ ≥ R1] ≤ e
−	(min{R1,

R2
1

p(1−p)n })

and

Pr[ψi ≥ R2|X1, . . . , Xi] = Pr[ψi ≥ R2] ≤ e
−	(min{R2,

R2
2

p(1−p)(n−i) }),

Lemma 4.5 for R1 = R2 = R/2 and �θ = ∅ gives

Pr[ max
i:0≤i≤n |Si − pi| ≥ R] ≤ e

−	(min{R, R2
p(1−p)n })

.

Example 4.4 (continued). Since

|V (θ)| =
∑
v∈V

1(v has no (1 − θ)λ-large clone)

is a sum of i.i.d. Bernoulli random variables with mean e−θλ,

Pr
[∣∣|V (θ)| − e−θλn

∣∣ ≥ R
] ≤ e−	(min{R,R2

θn
}),

especially

Pr
[
ψ ≥ R/2

] ≤ e
−	(min{R, R2

θ1n
})
.

Once {Xθ ′ }θ ′≤θ is given, V (θ) is determined and

V (θ1) =
∑
v∈V (θ)

1(v has no (1 − θ1)λ-large clone)

is a sum of i.i.d. Bernoulli random variables with mean e−(θ1−θ)λ. Thus

Pr
[
ψθ ≥ R/2 | {Xθ ′ }θ ′≤θ

] ≤ 2e
−	(min{R, R2

(θ1−θ)|V (θ)| }) ≤ 2e−	(min{R,R2
θn

}),

and Lemma 4.5 for θ0 = 0 and �θ = ∅ yields

Pr
[

max
θ :0≤θ≤θ1

|V (θ)− e−θλn| ≥ R
] ≤ 2e−	(min{R,R2

θn
}).
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5. Generalized cores and the main lemma

In this section we introduce generalized cores and the main lemma. The main lemma
will play a crucial roles in the proofs of the theorems mentioned in the introduction.

We start with some terminology. A generalized degree is an ordered pair (d1, d2) of
non-negative integers. The inequality between two generalized degrees is determined
by the inequality between the first coordinates and the reverse inequality between the
second coordinates. That is, (d1, d2) ≥ (d ′

1, d
′
2) if and only if d1 ≥ d ′

1 and d2 ≤ d ′
2. A

property for generalized degrees is simply a set of generalized degrees. A property P
is increasing if generalized degrees larger than an element in P are also in P . When a
property P depends only on the first coordinate of generalized degrees, it is simply a
property of degrees. For the t-core problem, we will use Pt-core = {(d1, d2) : d1 ≥ t}.
To estimate the size of the largest component, we will setPcomp = {(d1, d2) : d2 = 0}.

Given the Poisson λ-cell on the set V of n vertices and θ with 0 ≤ θ ≤ 1, let
dv(θ) be the number of v-clones smaller than θλ. Similarly, d̄v(θ) is the number of
v-clones larger than or equal to θλ. Then Dv(θ) := (dv(θ), d̄v(θ)) are i.i.d. random
variables. In particular, for any property P the events Dv(θ) ∈ P are independent
and occur with the same probability, say p(θ, λ;P), or simply p(θ).

For an increasing property P , the P -process is defined as follows. Construct
the Poisson λ-cell as described in Section 3, where λ = p

(
n−1
k−1

)
. The vertex set

V = {v0, . . . , vn−1} will be regarded as an ordered set so that the ith vertex is v
i−1 .

The P -process is a generalization of Example 2.2 for which choice functions choose
t-light clones.

The P -process. Initially, the cut-off value � = λ. Activate all vertices v with
Dv(1) 
∈ P . All clones of the activated vertices are activated too. Put those clones in
a stack in an arbitrary order. However, this does not mean that the clones are removed
from the λ-cell.

(a) If the stack is empty, go to (b). If the stack is nonempty, choose the first clone in
the stack and move the cut-off line to the left until the largest k−1 unmatched clones,
excluding the chosen clone, are found. (So, the cut-off value � keeps decreasing.)
Then match the k − 1 clones to the chosen clone. Remove all matched clones from
the stack and repeat the process. A vertex that has not been activated is to be activated
as soon asDv(�/λ) 
∈ P . This can be done even before all k−1 clones are found. Its
unmatched clones are to be activated too and put into the stack immediately. Clones
found while moving the cut-off line are also in the stack until they are matched.

(b) Activate the first vertex in V which has not been activated. Its clones are
activated too. Put those clones into the stack. Then go to (a).

Clones in the stack are called active. The steps carried out by the instruction
described in (b) are called forced steps as it is necessary to artificially activate a
vertex.

When the cut-off line is at θλ, all θλ-large clones are matched or will be matched
at the end of the step and all vertices v withDv(θ) 
∈ P have been activated. All other
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vertices can have been activated only by forced steps. Let V (θ) = VP (θ) be the set
of vertices v with Dv(θ) ∈ P , and let M(θ) = MP (θ) be the number of θλ-large
clones plus the number of θλ-small clones of vertices v not in V (θ). That is,

M(θ) =
∑
v∈V

d̄v(θ)+ dv(θ)1(v 
∈ V (θ)) =
∑
v∈V

d̄v(θ)+ dv(θ)1(Dv(θ) 
∈ P).

Recalling thatN(θ) is the number of matched clones until the cut-off line reaches
θλ, the number A(θ) of active clones (when the cut-off value� is) at θλ is at least as
large as M(θ)− N(θ). On the other hand, the difference A(θ)− (M(θ)− N(θ)) is
at most the number F(θ) of clones activated in forced steps until θλ, i.e.,

M(θ)−N(θ) ≤ A(θ) ≤ M(θ)−N(θ)+ F(θ). (5.1)

As the cut-off lemma gives a concentration inequality for N(θ),

Pr
[

max
θ :θ1≤θ≤1

|N(θ)− (1 − θ
k
k−1 )λn| ≥ 


] ≤ 2e
−	(min{
, 
2

(1−θ1)n }
,

a concentration inequality for M(θ) will be enough to obtain a similar inequality
for B(θ) := M(θ) − N(θ). More precisely, we will show that under appropriate
hypotheses

Pr
[

max
θ :θ1≤θ≤1

|M(θ)− (λ− q(θ))n| ≤ 

] ≤ 2e

−	(min{
, 
2
(1−θ1)n })

,

where
q(θ) = q(θ, λ;P) = E

[
dv(θ)1(Dv(θ) ∈ P)].

As the dv(θ)’s and Dv(θ)’s are identically distributed, q(θ) does not depend on v.
Also, recall that p(θ) = Pr[Dv(θ) ∈ P ].

As we will see later, B(θ) is very close to A(θ). Hence a concentration inequality
for B(θ) plays a very important roles in all of our proofs.

Lemma 5.1 (Main lemma). In the P -process, if θ1 < 1 uniformly bounded from
below by 0, 1 − p(θ1) = O(1 − θ1) and p(θ1) = 	(1), then for all 
 in the range
0 < 
 ≤ n we have

Pr
[

max
θ :θ1≤θ≤1

∣∣|V (θ)| − p(θ)n
∣∣ ≤ 


] ≤ 2e
−	(min{
, 
2

(1−θ1)n })

and

Pr
[

max
θ :θ1≤θ≤1

∣∣B(θ)− (λθ
k
k−1 − q(θ))n

∣∣ ≤ 

] ≤ 2e

−	(min{
, 
2
(1−θ1)n })

.

Proof. See [30]. �
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6. Cores of random hypergraphs

In this section we prove Theorem 1.7. Let λ > 0 and H(λ) = HPC(n, p), where
λ = p

(
n−1
r−1

)
. Let the property P = {(d1, d2) : d1 ≥ t}. Then

p(θ) = Q(θλ, t) and q(θ) = θλQ(θλ, t − 1).

The main lemma gives

Corollary 6.1. For θ1 ≤ 1 uniformly bounded from below by 0 and 
 in the range
0 < 
 ≤ n,

Pr
[

max
θ :θ1≤θ≤1

∣∣|V (θ)| −Q(θλ, t)n
∣∣ ≥ 


] ≤ 2e−	(min{
,
2
n

})

and

Pr
[

max
θ :θ1≤θ≤1

∣∣B(θ)− (θ
1
k−1 −Q(θλ, t − 1))θλn

∣∣ ≥ 

] ≤ 2e−	(min{
,
2

n
}).

Subcritical Region: For λ = λcrt − σ , σ > 0 and θ1 = δ/λcrt with δ = 0.1 it is
easy to see that there is a constant c > 0 such that

(θ
1
k−1 −Q(θλ, t − 1))θλn ≥ cσn for all θ with θ1 ≤ θ ≤ 1.

Let τ be the first time the number A(θ) of active clones at θλ becomes 0. Then the
second part of Corollary 6.1 gives

Pr[τ ≥ θ1] ≤ Pr[B(θ) = 0 for some θ with θ1 ≤ θ ≤ 1]
≤ Pr

[
max

θ :θ1≤θ≤1

∣∣B(θ)− (θ
1
k−1 −Q(θλ, t − 1))θλn

∣∣ ≥ cσn
]

≤ 2e−	(σ 2n).

As θ1λ ≤ θ1λcrt = δ, and hence Q(θ1λ, t) ≤ δ/2 for t ≥ 2, the first part of
Corollary 6.1 yields

Pr[|Vt(HPC(n, p ; k))| ≥ δn] ≤ Pr[τ ≥ θ1] + Pr[|V (θ1)| ≥ δn] ≤ 2e−	(σ 2n).

Therefore Theorem 1.1 implies that

Pr[|Vt(H(n, p ; k))| ≥ δn] ≤ 2e−	(σ 2n).

To complete the proof, we observe that the t-core of size i has at least t i/k
edges. Let Zi be the number of subgraphs on i vertices with at least t i/k edges,
i = i0, . . . , δn, where i0 = i0(k, t) is the least i such that

(
i
k

) ≥ t i/k. Then

E[Zi] ≤
(
n

i

)( (
i
k

)
t i/k

)
pti/k ≤ ni

i!
iti

(ti/k)!p
ti/k =: Li, (6.1)
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where t i/k actually means �t i/k�. Hence

Li+k
Li

= O

(
nk

ik

ikt

it
n−(k−1)t

)
= O

(( i
n

)(k−1)t−k) = O(δ(k−1)(t−1)−1).

That is, Li+k/Li exponentially decreases. For i = i0, . . . , i0 + k − 1,

Li = O(nin−i(k−1)t/k) = O(n−i(t−1−t/k))

implies that

Pr[Vt(H(n, p ; k)) 
= ∅] ≤ 2e−	(σ 2n) +O(n−i0 (t−1−t/k)),

as desired. �

Supercritical region: We will prove the following theorem.

Theorem 6.2. Suppose thatp
(
n−1
k−1

) ≥ λcrt +σ and 0 < δ ≤ 1. Then, with probability

1 − 2e−	(min{δ2σn,σ 2n}), Vt = Vt(HPC(n, p ; k)) satisfies

Q(θλλ, t)n− δn ≤ |Vt | ≤ Q(θλλ, t)n+ δn, (6.2)

and the degrees of vertices of the t-core are i.i.d. t-truncated Poisson random variables
with parameter�t := θλλ+β for some β with |β| ≤ δ. Moreover, the distribution of
the t-core is the same as that of the t-truncated Poisson cloning model with parameters
|Vt | and �t .

Proof. Let λ = λcrt + σ , σ > 0 and θλ be the largest solution for the equation

θ
1
k−1 −Q(θλ, t − 1) = 0.

Then it is not hard to check that there are constants c1, c2 > 0 such that for θ in the
range θλ ≤ θ ≤ 1,

θ
1
k−1 −Q(θλ, t − 1) ≥ c1σ

1/2(θ − θλ),

and for θ in the range θλ − c2σ
1/2 ≤ θ ≤ θλ,

θ
1
k−1 −Q(θλ, t − 1) ≤ −c1σ

1/2(θλ − θ).

Let τ be the largest θ with A(θ) = 0. Then V (τ) is the t-core of HPC(n, p; k).
For θ1 = θλ + δ and θ2 = θλ − min{δ, c2σ

1/2} with 0 < δ ≤ 1, Corollary 6.1 gives

Pr[τ ≥ θ1] ≤ Pr[B(θ) = 0 for some θ with θ1 ≤ θ ≤ 1]
≤ Pr

[
max

θ :θ1≤θ≤1
|B(θ)− (θ

1
k−1 −Q(θλ, t − 1))θλn| ≥ c1σ

1/2δn
]

≤ 2e−	(δ2σn)
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and

Pr[τ < θ2] ≤ Pr[B(θ2) > 0]
≤ Pr

[|B(θ2)− (θ
1
k−1

2 −Q(θ2λ, t − 1))θ2λn| ≥ c1σ
1/2 min{δ, c2σ

1/2}n]
≤ 2e−	(min{δ2σn,σ 2n}).

Since d
dθ
Q(θλ, t) = λP (θλ, t − 1) ≤ λ, we have

Q(θ1λ, t) ≤ Q(θλλ, t)+ λδ, and Q(θ2λ, t) ≥ Q(θλλ, t)− λδ,

and Corollary 6.1 implies that

Pr[V (θ1)−Q(θλλ, t)n ≥ 2λδn] ≤ 2e−	(δ2n)

and
Pr[V (θ2)−Q(θλλ, t)n ≤ −2λδn] ≤ 2e−	(δ2n).

Therefore

Pr[|τ − θλ| > δ] ≤ Pr[τ ≥ θ1] + Pr[τ ≤ θ2] ≤ 2e−	(min{δ2σn, σ 2n})

and, replacing δ by δ
2λ ,

Pr[|V (τ)−Q(θλλ, t)n| ≥ δn] ≤ Pr[τ ≥ θ1] + Pr[τ ≤ θ2] + 2e−	(δ2n)

≤ 2e−	(min{δ2σn, σ 2n}).

Clearly, once V (τ) and�t := τλ are given, the residual degrees dv(τ ), v ∈ V (τ),
are i.i.d. t-truncated Poisson random variables with parameter �t . �

Once Vt and �t are given, |Vt(i)|, i ≥ t , is the sum of i.i.d. Bernoulli random
variables with mean p

i
(�t) := P(�t ,i)

Q(�t ,t)
. Similarly, the size of Wt(i) = ⋃

j≥i Vt (j) is

the sum of i.i.d. Bernoulli random variables with mean q
i
(�t ) := Q(�t ,i)

Q(�t ,t)
.Applying

the generalized Chernoff bound (Lemma 4.2), we have

Pr
[∣∣|Vt(i)| − p

i
(�t)|Vt |

∣∣ ≥ δ|Vt ||Vt ,�t
] ≤ 2e−	(δ2|Vt |)

and
Pr

[∣∣|Wt(i)| − q
i
(�t )|Vt |

∣∣ ≥ δ|Vt ||Vt ,�t
] ≤ 2e−	(δ2|Vt |).

Combining this with Lemma 6.2 and using

|P(ρ, i)− P(ρ′, i)| ≤ |ρ − ρ′|, and |Q(ρ, i)−Q(ρ′, i)| ≤ |ρ − ρ′|,
we obtain, for any i,

Pr
[∣∣|Vt(i)| − P(θλλ, i)n

∣∣ ≥ δn
] ≤ 2e−	(min{δ2σn,σ 2n}),
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and
Pr

[∣∣|Wt(i)| −Q(θλλ, i)n
∣∣ ≥ δn

] ≤ 2e−	(min{δ2σn,σ 2n}).

In particular, as θλ = θcrt +�(σ 1/2) for uniformly bounded σ it follows that for
λ = λcrt + σ ,

|Vt(i)| = (1 +O(σ 1/2))iP (θcrtλcrt, i)n+O
(
(n/σ)1/2 log n

)
,

with probability 1 − 2e−	(min{log2 n,σ 2n}).

7. The emergence of the giant component

In this section we just give ideas for the proof of Theorem 1.4. Let the property P
be {(d1, d2) : d2 = 0}. Then p(θ) = e−(1−θ)λ and q(θ) = θλe−(1−θ)λ, and the main
lemma gives

Corollary 7.1. For θ1 ≥ 1 uniformly bounded from above by 1 and 
 in the range
0 < 
 ≤ n,

Pr
[

max
θ :0≤θ≤θ1

∣∣|V (θ)| − e−(1−θ)λn
∣∣ ≥ 


] ≤ 2e
−	(min{
, 
2

(1−θ1)n })

and

Pr
[

max
θ :0≤θ≤θ1

∣∣B(θ)− (θ − e−(1−θ)λ)θλn
∣∣ ≥ 


] ≤ 2e
−	(min{
, 
2

(1−θ1)n })
.

To estimateA(θ) it is now enough for us to estimateF(θ) by (5.1). Once good esti-
mations forF(θ) are established, we may take similar (but slightly more complicated)
approaches used in the previous section.

It is convenient to consider an (imaginary) secondary stack with parameter ρ, or
simply ρ-secondary stack. Initially, the secondary stack with parameter ρ consists
of the first ρn vertices v0, . . . , vρn−1 of V . The set of those ρn vertices is denoted
by Vρ . Whenever the primary stack is empty, the first vertex in the secondary stack
that has not been activated must be activated. Its clones are activated too and put into
the primary stack. The activated vertex as well as vertices activated by other means
are no longer in the secondary stack. If the secondary stack is empty, go back to the
regular procedure. This does not change the P -process at all, but will be used just
for the analysis. Let τρ be the largest τ such that, at τλ, the primary stack becomes
empty after the secondary stack is empty. Thus, once the cut-off line reaches τρλ, no
active clones are provided from the secondary stack. Denote by C(ρ) the union of
the components containing any vertex in Vρ .

The following lemma is useful to predict how large τρ is.
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Lemma 7.2. Suppose 0 < δ, ρ < 1 and θ1, θ2 ≤ 1 are uniformly bounded from
below by 0. Then

Pr[τρ ≥ θ1] ≤ Pr
[

min
θ :θ1≤θ≤1

B(θ) ≤ −(1 − δ)θ1λe
−(1−θ1)λρn

] + 2e−	(δ2ρn),

and conversely,

Pr[τρ ≤ θ2] ≤ Pr[B(θ2) ≥ −(1 + δ)θ2λe
−(1−θ2 )λρn] + 2e−	(δ2ρn).

Proof. See [30]. �

Once the value of τρ is known quite precisely, a good estimation ofF(θ) is possible.
Using similar (but slightly more complicated) arguments used in the previous section,
estimation ofA(θ) is also possible. Due to space limitation, the proof of Theorem 1.4
is omitted.

8. Closing remarks

The Poisson λ-cell is introduced to analyze those properties of GPC(n, p), for which
the degrees are i.i.d. Poisson random variables with mean λ = p(n−1). Then various
nice properties of Poisson random variables are used to analyze sizes of the largest
component and the t-core of GPC(n, p). We believe that the approaches presented
in this paper are useful to analyze problems with similar flavors, especially problems
related to branching processes. For example, we can easily modify the proofs of
Theorem 1.7 to analyze the pure literal rule for the random k-SAT problems, k ≥ 3.
Another example may be the Karp–Sipser Algorithm to find a large matching of the
random graph. (See [29], [3].) In a subsequent paper, we will analyze the structure of
the 2-core ofG(n, p) and the largest strong component of the random directed graph
as well as the pure literal rule for the random 2-SAT problem.

For the random (hyper)graph with a given sequence (di), we may also introduce
the (di)-cell, in which the vertex v

i
has di clones and each clone is assigned a uniform

random real number between 0 and the average degree 1
n

∑n−1
i=0 di . Though it is not

possible to use all of the nice properties of Poisson random variables any more, we
believe that the (di)-cell equipped the cut-off line algorithm can be used to prove
stronger results for the t-core problems considered in various papers including [13],
[21], [22], [26], [37].

Recall that the degrees in G(n, p) has the binomial distribution with parameters
n − 1 and p. By introducing the Poisson cloning model, we somehow first take the
limit of the binomial distribution, which is the Poisson distribution. In general, many
limiting distributions like Poisson and Gaussian ones have nice properties. In our
opinion this is because various small differences are eliminated by taking the limits,
and limiting distributions have some symmetric and/or invariant properties. Thus
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one may wonder whether there is an infinite graph that shares most properties of the
random graphs G(n, p) with large enough n. So, in a sense, the infinite graph, if it
exists, can be regarded as the limit of G(n, p). An infinite graph which Aldous [1]
considered to solve the linear assignment problem may or may not be a (primitive)
version of such an infinity graph. Though it may be impossible to construct such a
graph, the approaches taken in this paper might be useful to find one, if any.

Acknowledgement. The author thanks C. Borgs, J. Chayes, B. Bollobás andY. Peres
for helpful discussions.
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[31] Komlś, J., Szemerédi E., Limit distributions for the existence of Hamilton cycles in a

random graph. Discrete Math. 43 (1983), 55–63.
[32] Łuczak, T., Component behavior near the critical point of the random graph process. Ran-

dom Structures Algorithms 1 (1990), 287–310.
[33] Łuczak, T., The chromatic number of random graphs. Combinatorica 11 (1991), 45–54.
[34] Łuczak, T., Size and connectivity of the k-core of a random graph. Discrete Math. 91

(1991), 61–68.
[35] Łuczak, T., Pittel, B., Wierman, J., The birth of the giant component. Trans. Amer. Mat.

Soc. 341 (1994), 721–748.
[36] Matula, D., The largest clique size in a random graph.Tech. Rep., Dept. Comp. Sci., Southern

Methodist University, Dallas, 1976.
[37] Molloy, M., Cores in random random hypergraphs and Boolean formulas. Random Struc-

tures Algorithms 27 (2005), 124–135.
[38] Pittel, B., Spencer J., Wormald, N., Sudden emergence of a giant k-core in a random graph.

J. Combin. Theory Ser. B 67 (1996), 111–151.
[39] Shamir, E., Spencer, J., Sharp concentration of the chromatic number on random graph

Gn,p . Combinatorica 7 (1987), 124–129.

Microsoft Research, One Microsoft Way, Redmond, WA 98052, U.S.A
E-mail: jehkim@microsoft.com





Randomness and regularity

Tomasz Łuczak

Abstract. For the last ten years the theory of random structures has been one of the most
rapidly evolving fields of discrete mathematics. The existence of sparse structures with good
‘global’ properties has been vital for many applications in mathematics and computer science,
and studying properties of such objects led to many challenging mathematical problems. In
the paper we report on recent progress on this subject related to some variants of Szemerédi’s
Regularity Lemma.

Mathematics Subject Classification (2000). Primary 05C80, 05D05; Secondary 05C35, 05C65,
05D40.

Keywords. Random graphs, extremal graph theory, regularity lemma, removal lemma, density
theorems.

1. Introduction

In the paper we consider ‘extremal’properties of families of sets, i.e., we study the size
of maximal subfamilies of a given family with certain property. Let [A]r be the family
of all r-sets (i.e. sets of r elements) contained in A; if A = [n] = {1, 2, . . . , n} we put
[n]r = [[n]]r . Two classical examples of extremal results for [n]r are Szemerédi’s and
Turán’s theorems. Let us recall that Szemerédi’s density theorem [17] states that if
rk(n) denote the maximum size of a subset of [n] = [n]1 which contains no non-trivial
arithmetic progression of length k, then, rk(n) = o(n). In order to formulate Turán’s
theorem, we need some notation. For given r, s, n, n ≥ s > r ≥ 2, let ex([s]r , [n]r )
denote the size of the largest family A ⊆ [n]r such that for no set B ⊆ [n], |B| = s,
we have [B]r ⊆ A. Furthermore, let

α(m, r) = lim sup
n→∞

ex([m]r , [n]r )(
n
r

) . (1)

Turán’s theorem [21] states that α(m, 2) = m−2
m−1 for m ≥ 2. Let us remark that we do

not know the value of α(m, r) for any pair (m, r) with m > r > 2; e.g., the question
whether α(4, 3) = 5/9 is a well known open problem of extremal set theory.

The main problem we are concerned in this paper is the existence of families
of r-sets which are ‘sparse’, or, at least, ‘locally sparse’, yet preserve some of the
properties of [n]r stated in the theorems above. In the following section, we state a
few specific problems on the existence of locally sparse structures with good ‘global’

Proceedings of the International Congress
of Mathematicians, Madrid, Spain, 2006
© 2006 European Mathematical Society



900 Tomasz Łuczak

properties. Then, we explain why the standard probabilistic method cannot be directly
used to study extremal properties of graphs and hypergraphs. Next we recall another
important result of modern combinatorics: Szemerédi’s Regularity Lemma and show
how it could help in dealing with such problems. We conclude with a few remarks
on possible generalizations of known results and some speculation on developments
which are still to come.

2. Locally sparse structures with good extremal properties

Let us introduce first some notation. An r-uniform hypergraph is a pair H = (V , E),
where V is the set of vertices of H and E ⊆ [V ]r denotes the set of its edges. We say
that a hypergraph H ′ = (V ′, E′) is a subhypergraph of a hypergraph H ′′ = (V ′′, E′′),
if V ′ ⊆ V ′′ and E′ ⊆ E′′. The complete r-uniform hypergraph ([m], [m]r ) we denote
by K

(r)
m , and set K

(2)
m = Km. A 2-uniform hypergraph is called a graph.

Let H = (V , E) be an r-uniform hypergraph, and let C = {W1, . . . , Wt } be a
family of s-subsets of V such that [Wi]r ⊆ E, for i = 1, . . . , , t . We say that C is a
loose (s, t)-circuit if t ≥ 3, (s, t) �= (3, 3), Wi ∩ Wi+1 �= ∅, for i = 1, 2, . . . , t − 1,
and W1∩Wt �= ∅. We call C a tight (s, t)-circuit if either t = 2 and |W1∩W2| ≥ r+1,
or t ≥ 3 and |Wi ∩ Wi+1| ≥ r , for i = 1, 2, . . . , t − 1, as well as |W1 ∩ Wt | ≥ r .

Finally, for r-uniform hypergraphs H = (V , E) and H ′ = (V ′, E′), let ex(H ′, H)

be the number of edges in the largest subhypergraph of H which contains no copies
of H ′, and ex(H ′, H) = ex(H ′, H)/|E|. It is easy to see (e.g., [8], Prop.8.4.), that for
a given H ′ the function ex(H ′, H) is maximized for complete H , i.e., ex(H ′, H) ≤
ex(H ′, [V ]r ).

One of the first results on the existence of locally sparse structures with good
extremal properties was proved by Erdős [1] nearly fifty years ago. It states that there
are graphs with large girth and no large independent sets (and so with large chromatic
number).

Theorem 2.1. For each � and ε > 0 there exists a graph G(�, ε) = (V , E) such
that G(�, ε) contains no (2, t)-circuits with t ≤ �, but each subset W ⊆ V such that
|W | ≥ ε|V | contains an edge of G(�, ε).

In the following section we present Erdős’ elegant non-constructive proof of this
fact. Then we shall try to use a similar idea to get the following sparse version of
Turan’s theorem.

Conjecture 2.2. For any r , s, ε > 0, and �, there exist an n = n(r, m, �, ε) and an
r-uniform hypergraph G(r)(s, �, ε) = (V , E) such that

(i) G(r)(s, �, ε) contains no tight (s, t)-cycles with 2 ≤ t ≤ �;

(ii) each subhypergraph H(r) ⊆ G(r)(s, �, ε) with at least (α(s, r) + ε)|E| edges
contains a subset B, |B| = s, such that [B]r ⊆ H(r), i.e.,

ex([n]s, G(r)(s, �, ε)) ≤ α(s, r) + ε .
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In Sections 3-5 below we describe how to approach Conjecture 2.2 using a spe-
cial version of the Regularity Lemma. Here we remark only that the existence of
G(r)(s, �, ε) has been shown only for r = 2, s = 3 (Frankl and Rödl [2] and Haxell et
al. [7]), r = 2, s = 4 (Kohayakawa et al. [10]), and recently for r = 2, s = 5 (Gerke
et al. [4]).

We conclude this section with a conjecture on a sparse version of Szemerédi’s
density theorem. Here a (k, t)-arithmetic circuit is a family of t non-trivial arithmetic
progressions A1, . . . , At of length k such that Ai ∩ Ai+1 �= ∅ for i = 1, 2 . . . , t − 1,
and A1 ∩ At �= ∅.

Conjecture 2.3. For any k, �, and α > 0, there exist an ε = ε(α, k, �) > 0, n =
n(k, α, �), and a set A = A(k, �, α, n) ⊆ [n] such that

(i) A contains no (k, t)-arithmetic circuits for t ≤ �;

(ii) any non-trivial arithmetic progression of length nε in [n] contains at most k

elements of A;

(iii) each subset B of A with at least α|A| elements contains a non-trivial arithmetic
progression of length k.

Kohayakawa et al. [9] showed the existence of A = A(3, �, α, n) for any α > 0
and �. Their proof was based on the idea used by Ruzsa and Szemerédi [16] to show
that r3(n) = o(n). Let us also mention that since Szemerédi’s density theorem can be
deduced from some extremal results for hypergraphs (see Frankl and Rödl [3], Nagle
et al. [13], and Rödl and Skokan [15]) it is in principle possible, although somewhat
unlikely, that one can imitate the argument from [9] and verify Conjecture 2.3 for all
k ≥ 4 (cf., Conjecture 6.2 below).

3. Random structures

For 0 ≤ p ≤ 1 and natural numbers n, r , let G
(r)(n, p) denote the random r-uniform

hypergraph with vertex set [n], where edges G
(r)(n, p) are chosen from [n]r indepen-

dently with probability p. Thus, the number of edges of G
(r)(n, p) is a binomially

distributed random variable with parameters
(
n
r

)
and p. Typically, we are interested

only in the asymptotic behavior of G
(r)(n, p) when n → ∞ and the probability p may

depend on n. In particular, we say that for a given function p = p(n) the hypergraph
G

(r)(n, p) has a property A a.a.s. if the probability that G
(r)(n, p) has A tends to 1

as n → ∞. Since in this note we deal mainly with graphs, instead of G
(2)(n, p) we

write briefly G(n, p).
Let us recall Erdős’ proof of Theorem 2.1. Fix � and ε > 0. Let n be very large

and p be the probability which is neither too small (so G(n, p) contains no large
independent sets) nor too large (so G(n, p) is locally sparse). A good choice for p

is, say, p = p(n) = n−1+1/2�, but, for n large enough, any p = p(n) such that
10/ε ≤ np ≤ n1/�/10 would do.
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Let X = X(n, �) be the random variable which counts (2, t)-circuits with t ≤ �

in G(n, p). Then, for n large enough, we have

EX ≤
�∑

i=3

(
i

2

)(
i

2

)2i

pi ≤ �2�+3(np)� ≤ n1/2 . (2)

Thus, from Markov’s inequality, Pr(X ≥ n/2) ≤ 2n−1/2, and so, for large enough n,
with probability at least 2/3 > 1 − 2n−1/2, we have X ≤ n/2. On the other hand,
for the number Y = Y (n, k) of independent sets of size k in G(n, p) we have

Pr(Y > 0) ≤ EX =
(

n

k

)
(1 − p)(

k
2) ≤ 2n exp

(
− p

(
k

2

))
. (3)

If k = εn/2 then Pr(Y > 0) tends to 0 as n → ∞, i.e., for n large enough we have
Pr(Y > 0) < 2/3. Now, let G(�, ε) be a graph obtained from G(n, p) by removing
one vertex from each (2, t)-circuit with t ≤ �. Then, with probability at least 1/3,
G(�, ε) fulfills the assertion of Theorem 2.1.

The main goal of this paper is to discuss how one can verify Conjecture 2.2 using a
modified version of Erdős’ approach. We shall concentrate on the simplest non-trivial
case of Conjecture 2.2, when s = 3 and r = 2. In order to deduce the existence of
G(2)(3, �, ε) from appropriate properties of the random graph G(n, p) first we need
to guess what value of p we are to use. More specifically, we should find the smallest
possible value of p0 = p0(n) such that a.a.s. in each subgraph of G(n, p0) which
contains, say, 51% of its edges one can find a triangle. Note that if a graph G contains
m edges and t triangles, then there is a triangle-free subgraph of G with at least m− t

edges. Thus, it seems that in G(n, p0) the expected number of triangles (equal to(
n
3

)
p3

0) must be at least of the order of the expected number of edges (equal
(
n
2

)
p0),

i.e., p0 = p0(n) should be at least as large as �(n−1/2). It turns out that this necessary
condition is also sufficient and the following holds (see Frankl and Rödl [2], Haxell
et al. [7]).

Theorem 3.1. For every δ > 0 there exists c = c(δ) such that if p = p(n) ≥ cn−1/2,
then a.a.s. each subgraph of G(n, p) with at least (1/2 + δ)

(
n
2

)
p edges contains a

triangle.

Let us try to prove Theorem 3.1 using Erdős’ argument. To this end one has
to bound the expected number of triangle-free subgraphs H of G(n, p), containing
51% of edges of G(n, p), using a formula similar to (3). In order to do that one
needs to estimate the probability that such a large subgraph H of G(n, p) contains no
triangles. The first problem which immediately emerges is the fact that our argument
must depend strongly on the fact that H has more than 51% of edges of G(n, p), since
in every graph G one can find a large bipartite subgraph which contains more than
half of its edges. Thus, we have to use some property of H shared by all subgraphs
of G(n, p) with more than half of its edges, and does not hold for, say, bipartite



Randomness and regularity 903

subgraphs of G(n, p); i.e., we should consider only graphs H which are ‘essentially
non-bipartite’. Then, we need to show that a.a.s. each subgraph of G(n, p) containing
at least 51% of its edges is ‘essentially non-bipartite’, and estimate the probability
that a ’random essentially non-bipartite’ graph is triangle-free.

However, now we face another, more serious obstacle. The number of subsets
of the set of edges of G(n, p) is much larger then the number of subsets of the set
of vertices of G(n, p). Consequently, the factor 2n in (3) should be replaced by
exp(�(n2p)). Hence, we should estimate the probability that a ‘random essentially
non-bipartite’ subgraph H of G(n, p) is triangle-free by a quantity which is much
smaller than the probability that G(n, p) contains no edges at all! This is the crucial
and most difficult part of the whole argument. It is also precisely the reason why we
can show Conjecture 2.2 only for r = 2 and s = 3, 4, 5; for all other cases the proof
breaks at this point.

Finally, it is easy to check that if p = p(n) = n−1/2+o(1), then for any given �

a.a.s. G(n, p) contains fewer than o(n2p) tight (3, t)-circuits for t ≤ � which can be
removed from G(n, p) without affecting much its extremal properties. Unfortunately,
one cannot deal in the same way with loose (3, t)-circuits. The reason is quite simple:
for t ≥ 4 the number of loose (3, t)-circuits grows much faster than the number of
triangles, because, roughly speaking, two triangles of G(n, p) are much more likely to
share a vertex than an edge. Clearly, the same is true if instead of G(n, p) we consider
a shadow of G

(3)(n, p), i.e., we randomly generate triples of vertices and then replace
each of them by a triangle. Still, it is not inconceivable that Conjecture 2.2 can
be settled in the affirmative by a non-constructive method using more sophisticated
models of random hypergraphs; there have been a fair amount of attempts in this
direction but so far all of them have failed miserably.

4. Regularity Lemma

One of the main ingredients of Szemerédi’s ingenious proof of the density theorem
was the Regularity Lemma which for the last thirty years has become one of the most
efficient tools of modern graph theory. In order to formulate it rigorously we need a
few technical definitions.

For a graph G = (V , E) and W, W ′ ⊆ V let e(W, W ′) denote the number of
edges joining W and W ′. A pair (A, B) of disjoint subsets of vertices of G is called
an ε-regular pair, if for every subsets A′ ⊆ A, |A′| ≥ ε|A|, B ′ ⊆ B, |B ′| ≥ ε|B|,

∣∣∣∣e(A
′, B ′)

|A′||B ′| − e(A, B)

|A||B|
∣∣∣∣ ≤ ε. (4)

An ε-regular pair behaves in many respects as the bipartite random graph
G(A, B, ρ), in which edges between A and B appear independently with proba-
bility ρ = e(A, B)/|A||B|. In particular, it is easy to check, that if a pair (A, B)
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is ε-regular then the number of subgraphs of a given size in the bipartite subgraph
G[A, B] induced by A∪B in G is close to the expected number of such subgraphs in
G(A, B, ρ). For instance, if (A, B) is ε-regular, then the number of cycles of length
four in G[A, B] is equal (ρ4/4 ± h(ε))|A|2|B|2, where h(ε) is a function which
tends to 0 as ε → 0. The implication in the other direction holds as well: if the
number of cycles of length four in G[A, B] is smaller than (ρ4/4 + ε)|A|2|B|2, then
the pair (A, B) is h′(ε)-regular for some function h′(ε) which tend to 0 as ε → 0.
Let us also mention that ε-regularity implies the correct number of small subgraphs
even if we consider more than one ε-regular pair. For instance, if three disjoint sets
A1, A2, A3 ⊆ V are such that each of the pairs (A1, A2), (A2, A3), (A1, A3) is
ε-regular with density ρ, the number of triangles in the tripartite graph induced in G

by these sets is (ρ3 ± h′′(ε))|A1||A2||A3|, where h′′(ε) → 0 as ε → 0.
A partition V = V1 ∪ · · · ∪ Vk of the vertex set of a graph G = (V , E) is called a

(k, ε)-partition if for all i, j = 1, 2, . . . , k we have
∣∣|Vi | − |Vj |

∣∣ ≤ 1 and all except at
most εk2 pairs (Vi, Vj ), 1 ≤ i < j ≤ k, are ε-regular. Now Szemerédi’s Regularity
Lemma (see [17] and [18]) can be stated as follows.

Lemma 4.1 (Szemerédi’s Regularity Lemma). For every ε > 0 there exists K such
that each graph G with more than 1/ε vertices admits a (k, ε)-regular partition for
some k, 1/ε < k < K .

Note that if k > 1/ε, then for a (k, ε)-regular partition there are at most n2/k +
εn2 ≤ 2εn2 edges of G which are either contained inside sets Vi or join pairs which
are not ε-regular. Thus, Szemerédi’s Regularity Lemma says that all but 2εn2 edges of
any graph G can be partitioned into at most k ε-regular pairs, for some 1/ε ≤ k ≤ K ,
where K does not depend on the number of vertices in G. Unfortunately, K = K(ε)

grows very fast to infinity as ε → 0 (see Gowers [5]), so most of the applications of
the Regularity Lemma give very poor bounds of estimated quantities.

The Regularity Lemma can be reformulated and generalized in several ways. For
instance, one can view it as a statement on the compactness of certain metric space
(Lovász and Szegedy [12]); an information-theoretic approach to it can be found in
Tao [19]. Another versions of the Regularity Lemma ensure the existence of ‘weak’
(k, ε)-partitions, or ‘partial ε-covers’consisting of reasonably large ε-pairs. However
the two most important developments in this area are, in my opinion, generalizations
of the Regularity Lemma to sparse graphs and to hypergraphs. In the following
sections we discuss how the Regularity Lemma can be modified to work efficiently
for sparse graphs; here we say a few words on a much harder (both to state and to
prove) version of the Regularity Lemma for hypergraphs. Several years ago Frankl
and Rödl [3] generalized the Regularity Lemma to r-uniform hypergraphs and proved
it, together with a supplementary ‘counting lemma’, for r = 3. The case r ≥ 4 has
been dealt with by Rödl and Skokan [15] and Nagle et al. [13], and, independently,
by Gowers [6]. As was noticed by Frankl and Rödl [3], their version of the Regularity
Lemma implies the following Removal Lemma which, in turn, can be used to show
Szemerédi’s density theorem (for details see Rödl et al. [14]).
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Lemma 4.2 (Removal Lemma). For m ≥ r ≥ 2 and every δ > 0 there exist η > 0
and n0 so that for every r-uniform hypergraph F on m vertices and r-uniform hy-
pergraph H on n, n ≥ n0, vertices the following holds. If H contains at most ηnm

copies of F , then one can delete δnr edges of H to destroy all copies of F .

Thus, the Removal Lemma states that if the number of copies of F is large enough,
then they must be, in some sense, uniformly distributed in H , i.e., the large number
of copies of F makes a hypergraph H , or at least parts of it, close to a random graph.
In fact all known proofs of Lemma 4.2 are based on this idea. We should apply the
Regularity Lemma to H , and then show that, if the number of copies of F in H is large,
then there exists a big random-like subgraph H ′ of H which contains an anticipated
number of copies of F .

5. Regularity Lemma: sparse graphs

Note that Lemma 4.1 is basically meaningless for sparse graphs since the definition (4)
of ε-regular pair (A, B) does not say much on the distribution of edges between A

and B if the density ρ = e(A, B)/|A||B| is smaller than ε. Thus, let us modify the
definition of an ε-regular pair by ‘scaling’ the density of the pair by d which, typically,
is the density of the graph G = (V , E). Hence, we say that a pair (A, B) of disjoint
subsets of vertices of a graph G = (V , E) is (d, ε)-regular, if for each pair of subsets
A′ ⊆ A, |A′| ≥ ε|A|, B ′ ⊆ B, |B ′| ≥ ε|B|, we have

∣∣∣∣ e(A′, B ′)
|A′||B ′| − e(A, B)

|A||B|
∣∣∣∣ ≤ dε. (5)

If dG = |E|/(|V |
2

)
we call a (dG, ε)-regular pair strongly ε-regular. A strongly (k, ε)-

regular partition of vertices of G is defined in a similar way as (k, ε)-regular partition.
Moreover, we say that a graph G = (V , E) with density dG = |E|/(|V |

2

)
is (η, b)-

bounded if each subgraph H of G with r ≥ η|V | vertices contains not more than br2

edges. As was observed independently by Kohayakawa and by Rödl (see Kohayakawa
and Rödl [11] and references therein), one can mimic the proof of Szemerédi’s Reg-
ularity Lemma to get the following result.

Lemma 5.1. For every ε > 0 and b there exist η and K such that each (η, b)-bounded
graph G with more than 1/ε vertices admits a strongly (k, ε)-regular partition for
some k, 1/ε < k < K .

The assumption that G is (η, b)-bounded is typically not very restrictive. For
instance, if η > 0 and np → ∞ as n → ∞, then the random graph G(n, p) is a.a.s.
(η, 2)-bounded. Consequently, a.a.s. each subgraph of such G(n, p) which contains
at least half of its edges is (η, 4)-bounded.

A more serious problem is that, unlike in the dense case, from the fact that a sparse
pair is strongly ε-regular it does not follow that the number of cycles of length four
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in that pair is close to the number of cycles of length four in the random bipartite
graph of the same density. In a similar way, for every ε > 0 there exists δ > 0 and
a tripartite graph G with vertex set V1 ∪ V2 ∪ V3, |V1| = |V2| = |V3| = n such
that all three pairs (V1, V2), (V2, V3), and (V1, V3) are strongly ε-regular pairs with
densities larger than δ, yet G is triangle-free. Nevertheless, Kohayakawa, Łuczak,
and Rödl conjectured in [10] that such triangle-free tripartite graphs consisting of
dense ε-regular triples are so rare that a.a.s. the random graph G(n, p) contains none
of them as a subgraph.

In order to state the conjecture rigorously we need one more definition. Let
G(n, p; ε, s) be a graph chosen at random from the family of all s-partite graphs with
vertex set V1 ∪ V2 ∪ · · · ∪ Vs , |V1| = |V2| = · · · = |Vs | = n, such that for each i, j ,
1 ≤ i < j ≤ s, the pair (Vi, Vj ) spans a bipartite strongly ε-regular graph with �pn2

edges. Then the conjecture of Kohayakawa, Łuczak and Rödl for complete graphs
goes as follows (for a more general statement see [10]).

Conjecture 5.2. For every s and δ > 0 there exist ε > 0 and C such that if nsp(s
2) >

Cn2p, then the probability that G(n, p; ε, s) contains no copies of Ks is smaller
than δn2p.

A stronger ‘counting’ version of Conjecture 5.2 goes as follows.

Conjecture 5.3. For every s and δ > 0 there exist ε > 0 and C such that if nsp(s
2) >

Cn2p, then the probability that G(n, p; ε, s) contains fewer than nsp(s
2)/2 copies

of Ks is smaller than δn2p.

So far Conjectures 5.2 and 5.3 have been shown only for s = 3, 4, 5 (see Gerke
et al. [4] and the references therein).

Let us observe that Theorem 3.1 follows immediately from the fact that Conjec-
ture 5.2 holds for s = 3. Indeed, let us fix δ > 0 and let p = C/

√
n, where C is

a large constant. Take a subgraph H of G(n, p) with at least (1/2 + δ)
(
n
2

)
p edges.

Choose ε > 0 much smaller than δ and apply Lemma 5.1 to H to find in it a strong
(k, ε)-partition with 1/ε < k < K (as we have already pointed out for every η > 0,
a.a.s. G(n, p) is (2, η)-bounded and so H is (4, η)-bounded and fulfills assumptions
of the lemma). Since H contains more than half of the edges of G(n, p), and edges in
G(n, p) are uniformly distributed around the graph, there exist three sets V ′, V ′′, V ′′′
of the partition such that each of the pairs (V ′, V ′′), (V ′′, V ′′′), (V ′, V ′′′), is strongly
ε-regular and has density at least δp/10. (Let us remark that now a vague notion of an
‘essentially non-bipartite’subgraph H we have used in Section 3 can be made precise:
a graph H is essentially non-bipartite if it contains a balanced tripartite graph on �(n)

vertices which consists of three dense strongly ε-regular pairs.) Now, one can use
Conjecture 5.2 and argue as in (3) that a.a.s. each tripartite subgraph of G(n, p) of
such a type contains a triangle. Thus, H contains a triangle and Theorem 3.1 follows.

Finally, let us also note that if, say, p = log n/
√

n, then elementary calculations
similar to that used by Erdős (cf. (3)) reveal that for every fixed � a.a.s. the number
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of tight (3, t)-circuits in G(n, p) with t ≤ � is o(n2p). Thus, one can obtain a
graph G(2)(3, �, δ) with all the properties specified in Conjecture 2.2 by deleting
from G(n, p) all edges which belong to tight (3, t)-circuits, t ≤ �.

6. Final remarks

It is easy to see that, arguing as in the proof of Theorem 3.1 above, one can show
the existence of a graph G(2)(s, �, δ) (see Conjecture 2.2) for every s for which
Conjecture 5.2 holds. A precise formulation of analogs of Conjectures 5.2 and 5.3 for
hypergraphs would become very technical, thus we only mention that if appropriately
stated hypergraph version of Conjecture 5.3 is true then the following straightforward
‘probabilistic’ generalization of the Removal Lemma holds.

Conjecture 6.1. For s > r ≥ 2 and every δ > 0 there exist η > 0 such that a.a.s. in
each subhypergraphH of the random r-uniform hypergraph G

(r)(n, p)which contains
fewer than ηnsp(s

r) copies of K
(r)
s one can destroy all these copies by removing fewer

than δnrp hyperedges of H .

An analogous question on the validity of a probabilistic version of Szemerédi’s
density theorem can be stated as follows.

Conjecture 6.2. For every δ > 0 and k there exists η > 0 such that a.a.s. in each
subset A of G

(1)(n, p) with fewer than ηn2pk non-trivial arithmetic progressions of
length k all these progressions can be destroyed by removing fewer than δnp elements
from A.

Conjecture 6.1 states that a.a.s. a random hypergraphs G
(r)(n, p) has a property A

such that if a hypergraph G has A each subgraph H of G with fewer than ηnsp(s
r)

copies of K
(r)
s can be made K

(r)
s -free by deleting fewer than δnrp hyperedges. One

can ask if A follows from some simple property A′, i.e., whether there is a compact
characterization of ‘pseudorandom’ sparse hypergraphs. A natural candidate for A′
is the property that the number of some special subhypergraphs in G is close to the
expected value of the number of such subhypergraphs in the random hypergraph with
the same density. In the case of graphs a good choice for ‘probing’ graphs seem to
be cycles of length four. It is known (see Thomasson [20]) that if the number of
cycles of length four in a graph G is close to the anticipated one, then edges in G

are ‘uniformly distributed’ around G. Nonetheless we do not know if the ‘correct’
number of cycles of length four, possibly matched with some additional requirements
ensuring that G is locally sparse, can guarantee that G has good ‘extremal’ properties
like those described in Conjecture 6.1. Another challenging problem is to strengthen
the definition of a strongly ε-regular pair to, say, a ‘super ε-regular pair’ such that
the analog of Lemma 5.1 remains valid in this setting (i.e., each dense subgraph
of a random-like graph G admits a ‘super (k, ε)-partition’) and furthermore, each
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tripartite graph which consists of three dense super ε-regular pairs contains a triangle.
Similar questions can be asked for hypergraphs, as well as for the subsets of [n] (or,
in somewhat more natural setting, for subsets of Zn, where n is a prime).
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Additive combinatorics and geometry of numbers

Imre Z. Ruzsa∗

Abstract. We meditate on the following questions. What are the best analogs of measure and
dimension for discrete sets? How should a discrete analogue of the Brunn–Minkowski inequality
look like? And back to the continuous case, are we happy with the usual concepts of measure
and dimension for studying the addition of sets?
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1. Introduction

“Additive combinatorics” is a name coined by (I think) Tao and Van for the title of
their book in preparation to denote the study of additive properties of general sets –
mainly of integers, but also in other structures. Works on this topics are generally
classified as additive or combinatorial number theory.

The first result that connects additive properties to geometrical position is perhaps
the following theorem of Freiman.

Theorem 1.1 (Freiman [3], Lemma 1.14). Let A ⊂ R
d be a finite set, |A| = m.

Assume that A is proper d-dimensional, that is, it is not contained in any affine
hyperplane. Then

|A + A| ≥ (d + 1)m − d(d + 1)

2
.

This theorem is exact, equality can occur, namely it holds when A is a “long
simplex”, a set of the form

Ldm = {0, e1, 2e1, . . . , (m − d)e1, e2, e3, . . . , ed}. (1.1)

In particular, if no assumption is made on the dimension, then the minimal possible
cardinality of the sumset is 2m − 1, with equality for arithmetic progressions.

This result can be extended to sums of different sets. This extension is problematic
from the beginning, namely the assumption “d-dimensional” can be interpreted in
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different ways. We can stipulate that both sets be d-dimensional, or only one, or, in
the weakest form, make this assumption on the sumset only.

An immediate extension of Freiman’s above result goes as follows.

Theorem 1.2 ([11], Corollary 1.1). If A, B ⊂ R
d , |A| ≤ |B| and dim(A + B) = d,

then we have

|A + B| ≥ |B| + d|A| − d(d + 1)

2
.

We can compare these results to the continuous case. Let A, B be Borel sets in R
d ;

μ will denote the Lebesgue measure. The celebrated Brunn–Minkowski inequality
asserts that

μ(A + B)1/d ≥ μ(A)1/d + μ(B)1/d, (1.2)

and here equality holds if A and B are homothetic convex sets, and under mild and
natural assumptions this is the only case of equality. It can also be observed that the
case A = B is completely obvious here: we have

μ(A + A) ≥ μ(2 · A) = 2dμ(A).

Also the constant 2d is much larger than the constant d + 1 in Theorem 1.1. This
is necessary, as there are examples of equality, however, one feels that this is an
exceptional phenomenon and better estimations should hold for “typical” sets. A
further difference is the asymmetrical nature of the discrete result and the symmetry
of the continuous one. Finally, when |A| is fixed, Theorem 1.2 gives a linear increment,
while (1.2) yields

μ(A + B) ≥ μ(B) + dμ(A)1/dμ(B)1−1/d .

In the next section we tell what can be said if we use cardinality as the discrete
analog of measure, and prescribe only the dimension of the sets. Later we try to find
other spatial properties that may be used to study sumsets.

We meditate on the following questions (without being able to even conjecture a
definitive answer). What are the best analogs of measure and dimension for discrete
sets? How should a discrete analogue of the Brunn–Minkowski inequality look like?
The partial answers also suggest questions in the continuous case. Should we be
satisfied with the usual concepts of measure and dimension for studying the addition
of sets?

Most of the paper is a survey, however, there are some new results in Sections 4
and 6.

We end the introduction by fixing some notations, which were tacitly used above.
For two sets A, B (in any structure with an operation called addition) by their sum

we mean the set
A + B = {a + b : a ∈ A, b ∈ B}.

We use A − B similarly. For repeated addition we write

kA = A + · · · + A (k times),
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in contrast to
k · A = {ka : k ∈ A}.

Mostly our sets will be in an Euclidean space R
d , and e1, . . . , ed will be the system

of unit vectors. We define initially the dimension dim A of a set A ⊂ R
d as the

dimension of the smallest affine hyperplane containing A. (This definition will be
modified in Section 3).

2. Results using cardinality and dimension

We consider finite sets in an Euclidean space R
d .

Put

Fd(m, n) = min{|A + B| : |A| = m, |B| = n, dim(A + B) = d},
F ′

d(m, n) = min{|A + B| : |A| = m, |B| = n, dim B = d},
F ′′

d (m, n) = min{|A + B| : |A| = m, |B| = n, dim A = dim B = d}.
Fd is defined for m+n ≥ d+2, F ′

d for n ≥ d+1 and F ′′
d for m ≥ d+1, n ≥ d+1. Fd

and F ′′
d are obviously symmetric, while F ′

d may not be (and, in fact, we will see that
for certain values of m, n it is not), and they are connected by the obvious inequalities

Fd(m, n) ≤ F ′
d(m, n) ≤ F ′′

d (m, n).

I determined the behaviour of Fd and of F ′
d for m ≤ n. The more difficult problem

of describing F ′′
d and F ′

d for m > n was solved by Gardner and Gronchi [4]; we shall
quote their results later.

To describe Fd define another function Gd as follows:

Gd(m, n) = n +
m−1∑
j=1

min(d, n − j), n ≥ m ≥ 1

and for m > n extend it symmetrically, putting Gd(m, n) = Gd(n, m). In other
words, if n − m ≥ d, then we have

Gd(m, n) = n + d(m − 1).

If 0 ≤ t = n − m < d, then for n > d we have

Gd(m, n) = n+d(m−1)− (d − t)(d − t − 1)

2
= n(d +1)− d(d + 1)

2
− t (t + 1)

2
,

and for n ≤ d

Gd(m, n) = n + (m − 1)(2n − m)

2
.

With this notation we have the following result.
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Theorem 2.1 ([11], Theorem 1). For all positive integers m, n and d satisfying
m + n ≥ d + 2 we have

Fd(m, n) ≥ Gd(m, n).

Theorem 1.2 is an immediate consequence.
Theorem 2.1 is typically exact; the next theorem summarizes the cases when we

have examples of equality.

Theorem 2.2 ([11], Theorem 2). Assume 1 ≤ m ≤ n. We have

Fd(m, n) = F ′
d(m, n) = Gd(m, n)

unless either n < d + 1 or m ≤ n − m ≤ d (in this case n ≤ 2d).

The construction goes as follows.
Assume 1 ≤ m ≤ n, n ≥ d + 1. Let B be a long simplex, B = Ldn as defined

in (1.1).
If n − m ≥ d, we put

A = {0e1, 1e1, . . . , (m − 1)e1}.
This set satisfies |A| = m. The set A + B consists of the vectors ie1, 0 ≤ i ≤
n + m − d − 1 and the vectors ie1 + ej , 0 ≤ i ≤ m − 1, 2 ≤ j ≤ d, consequently

|A + B| = n + d(m − 1) = Gd(m, n).

If n − m = t < d, write t = d − k and assume k ≤ m. Now A is defined by

A = {0e1, 1e1, . . . , (m − k)e1} ∪ {e2, . . . , ek}.
This set satisfies |A| = m. The set A+B consists of the vectors ie1, 0 ≤ i ≤ 2(n−d),
the vectors ie1 + ej , 0 ≤ i ≤ n − d, 2 ≤ j ≤ d, finally ei + ej , 2 ≤ i, j ≤ k, hence

|A + B| = 2(n − d) + 1 + (d − 1)(n − d + 1) + k(k − 1)

2

= n(d + 1) − d(d + 1)

2
− t (t + 1)

2
= Gd(m, n).

These constructions cover all pairs m, n except those listed in Theorem 2.2. Ob-
serve that A is also a long simplex of lower dimension. For a few small values the
exact bounds are yet to be determined.

We now describe Gardner and Gronchi’s [4] bound for F ′
d(m, n). Informally their

main result (Theorem 5.1) asserts that the |A + B| is minimalized when B = Ldn,
a long simplex, and A is as near to the set of points inside a homothetic simplex
as possible. More exactly the define (for a fixed value of n) the weight of a point
x = (x1, . . . , xd) as

w(x) = x1

n − d
+ x2 + · · · + xd.
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This defines an ordering by writing x < y if either w(x) < w(y) or w(x) = w(y)

and for some j we have xj > yj and xi = yi for i < j .
Let Ddmn be the collection of the first m vectors with nonnegative integer coordi-

nates in this ordering. We have Ddnn = Ldn = B, and, more generally, Ddmn = rB

for any integer m such that

m = |rB| = (n − d)

(
r + d − 1

d

)
+

(
r + d − 1

d − 1

)
.

For such values of m we also have

|A + B| = |(r + 1)B| = (n − d)

(
r + d

d

)
+

(
r + d

d − 1

)
.

With this notation their result sounds as follows.

Theorem 2.3 (Gardner and Gronchi [4], Theorem 5.1). If A, B ⊂ R
d , |A| = m,

|B| = n and dim B = d, then we have

|A + B| ≥ |Ddmn + Ldn|.

For m < n this reproves Theorem 2.2. For m ≥ n the extremal set Ddmn is also
d-dimensional, thus this result also gives the value of F ′′

d .

Corollary 2.4. For m ≥ n > d we have

F ′′
d (m, n) = F ′

d(m, n) = |Ddmn + Ldn|.

A formula for the value of this function is given in [4], Section 6. We quote some
interesting consequences.

Theorem 2.5 (Gardner and Gronchi [4], Theorem 6.5). If A, B ⊂ R
d , |A| = m ≥

|B| = n and dim B = d, then we have

|A + B| ≥ m + (d − 1)n + (n − d)1−1/d(m − d)1/d − d(d − 1)

2
.

Theorem 2.6 (Gardner and Gronchi [4], Theorem 6.6). If A, B ⊂ R
d , |A| = m,

|B| = n and dim B = d, then we have

|A + B|1/n ≥ m1/d +
(

n − d

d!
)1/d

.

This result is as close to the Brunn–Minkowski inequality as we can get by using
only the cardinality of the summands.
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3. The impact function and the hull volume

While we will focus our attention to sets in Euclidean spaces, some definitions and
results can be formulated more clearly in a more general setting. So let now G be a
commutative group. For a fixed finite set B ⊂ G we define its impact function by

ξB(m) = ξB(m, G) = min{|A + B| : A ⊂ G, |A| = m}.
This is defined for all positive integers if G is infinite, and for m ≤ |G| if G is finite.

This function embodies what can be told about cardinality of sumsets if one of
the set is unrestricted up to cardinality. The name is a translation of Plünnecke’s
“Wirkungsfunktion”, who first studied this concept systematically for density [9].

We will be interested mainly in the infinite case, and in this case the dependence
on G can be omitted.

Lemma 3.1. Let G, G′ be infinite commutative groups, G′ ⊂ G, and let B ⊂ G′ be
a finite set. We have

ξB(m, G) = ξB(m, G′) (3.1)

for all m.

Proof. Take an A ⊂ G, |A| = m with |A + B| = ξB(m, G). Let A = A1 ∪ · · · ∪ Ak

be its decomposition according to cosets of G′. For each 1 ≤ i ≤ k take an element xi

from the coset containing Ai so that the sets Ai −xi are pairwise disjoint; this is easily
done as long as G′ is infinite. The set

A′ =
⋃

(Ai − xi)

satisfies A′ ⊂ G′, |A′| = n and

|A′ + B| ≤
∑

|Ai − xi + B| =
∑

|Ai + B| = |A + B| = ξB(m, G),

hence ξB(m, G′) ≤ ξB(m, G). The inequality in the other direction is obvious. �

In the case of finite groups the connection between ξB(m, G) and ξB(m, G′)
can also be described by arguments like in chapters 3 and 4 of Plünnecke’s above
mentioned book [9]. We restrict our attention to infinite groups, and henceforth omit
the reference to G and write just ξB(m) instead.

Let G be a torsionfree group. Take a finite B ⊂ G, and let G′ be the subgroup
generated by B − B, that is, the smallest subgroup such that B is contained in a
single coset. Let B ′ = B − a with some a ∈ B, so that B ′ ⊂ G′. The group G′, as
any finitely generated torsionfree group, is isomorphic to the additive group Z

d for
some d. Let ϕ : G′ → Z

d be such an isomorphism and B ′′ = ϕ(B ′). By Lemma 3.1
we have

ξB = ξB ′ = ξB ′′,
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so when studying the impact function we can restrict our attention to sets in Z
d that

contain the origin and generate the whole lattice; we then study the set “in its natural
habitat”.

Definition 3.2. Let B be a finite set in a torsionfree group G. By the dimension of B

we mean the number d defined above, and denote it by dim B. By the hull volume of
B we mean the volume of the convex hull of the set B ′′ described above and denote
it by hv B.

The set B ′′ is determined up to an automorphism of Z
d . These automorphisms are

exactly linear maps of determinant ±1, hence the hull volume is uniquely defined.
Observe that this dimension is not the same as the dimension described in the

Introduction; in the case when B ⊂ R
k with some k, this is its dimension over the

field of rationals.

Theorem 3.3. Let B be a finite set in a torsionfree group G, d = dim B, v = hv B.
We have

lim |kB|k−d = v.

A proof can be found in [12], Section 11, though this form is not explicitly stated
there. An outline is as follows. By using the arguments above we may assume
that B ⊂ Z

d , 0 ∈ B and B generates Z
d . Let B∗ be the convex hull of B. Then

kB is contained in k · B∗. The number of lattice points in k · B is asymptotically
μ(k ·B∗) = kdv; this yields an upper estimate. To get a lower estimate one proves that
with some constant p, kB contains all the lattice points inside translate of (k−p) ·B∗;
this is Lemma 11.2 of [12].

This means that the hull volume can be defined without any reference to convexity
and measure, and this definition can even be extended to commutative semigroups.
This follows from the following result of Khovanskii [5], [6]; for a simple proof
see [8].

Theorem 3.4 (Khovanskii). Let B be a finite set in a commutative semigroup. There
is a k0, depending on the set B, such that |kB| is a polynomial function of k for k > k0.

Definition 3.5. Let B be a finite set in a commutative semigroup, and let vkd be
the leading term of the polynomial which coincides with |kB| for large k. By the
dimension of B we mean the degree d of this polynomial, and by the hull volume we
mean the leading coefficient v.

It turns out that in Z
d , hence in any torsionfree group, the dimension and hull

volume determine the asymptotic behaviour of the impact function.

Theorem 3.6. Let B be a finite set in a torsionfree commutative group G, d = dim B,
v = hv B. We have

lim(ξB(m)1/d − m1/d) = v1/d .
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This is the main result (Theorem 3.1) of [12]. In the same paper I announce
the same result for non necessarily torsionfree commutative groups without proof
(Theorem 3.4). In a general semigroup A + B may consist of a single element, so an
attempt to an immediate generalization fails.

Problem 3.7. Does the limit lim ξB(m)1/d − m1/d exist in general commutative
semigroups? Is there a condition weaker than cancellativity to guarantee its positivity?

Theorem 3.6 can be effectivized as follows (Theorems 3.2 and 3.3 of [12]).

Theorem 3.8. With the notations of the previous theorem, if d ≥ 2 and m ≥ v, we
have

ξB(m) ≤ m + dv1/dm1−1/d + c1v
2/dm1−2/d,

ξB(m)1/d − m1/d ≤ v1/d + c2v
2/dm−1/d .

(c1, c2 depend on d.) With n = |B| for large m we have

ξB(m) ≥ m + dv1/dm1−1/d − c3v
d+3
2d n−1/2m1− 3

2d ,

ξB(m)1/d − m1/d ≥ v1/d − c4v
d+3
2d n−1/2m−1/(2d).

Probably the real error terms are much smaller than these estimates. For d = 1
we have the obvious inequality ξB(m) ≤ m+v, with equality for large m because the
integers ξB(m)−m cannot converge to v otherwise. For d = 2 already

√
ξB(m)−√

m

can converge to
√

v from both directions.

Theorem 3.9. The impact function of the set B = {0, e1, e2} ⊂ Z
2 satisfies√

ξB(m) − √
m >

√
v (3.2)

for all m.
The impact function of the set B = {0, e1, e2, −(e1 + e2)} ⊂ Z

2 satisfies√
ξB(m) − √

m <
√

v (3.3)

for infinitely many m.

Inequality (3.2) was announced in [12] without proof as Theorem 4.1, and it is a
special case of Gardner and Gronchi’s Theorem 2.6. Inequality 3.3 is Theorem 4.3
of [12].

I cannot decide whether there is a set such that
√

ξB(m) − √
m <

√
v for all m.

4. The impact volume

Besides cardinality we saw the hull volume as a contender for the title “discrete
volume”. For both we had something resembling the Brunn–Minkowski inequality;
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for cardinality we had Gardner and Gronchi’s Theorem 2.6, which has the (necessary)
factor d!, and for the hull volume we have Theorem 3.6, which only holds asymp-
totically.

There is an easy way to find a quantity for which the analogue of the Brunn–
Minkowski inequality hods exactly: we can make it a definition.

Definition 4.1. The d-dimensional impact volume of a set B (in an arbitrarily com-
mutative group) is the quantity

ivd(B) = inf
m∈N

(
ξB(m)1/d − m1/d

)d
.

Note that the d above may differ from the dimension of B, in fact, it need not be
an integer. It seems, however, that the only really interesting case is d = dim B.

The following statement list some immediate consequences of this definition.

Statement 4.2. Let B be a finite set in a commutative torsionfree group.

(a) ivd(B) is a decreasing function of d.

(b) If |B| = n, then
iv1(B) = n − 1

and
ivd(B) ≤ (

n1/d − 1
)d (4.1)

for every d.

(c) ivd(B) = 0 for d > dim B.

(d) For every pair A, B of finite sets in the same group and every d we have

ivd(A + B)1/d ≥ ivd(A)1/d + ivd(B)1/d . (4.2)

The price we have to pay for the discrete Brunn–Minkowski inequality (4.2) is
that there is no easy way to compute the impact volume for a general set. We have
the following estimates.

Theorem 4.3. Let B be a finite set in a commutative torsionfree group, dim B = d,
|B| = n. We have (

n − d

d!
)

≤ ivd(B) ≤ hv B, (4.3)

with equality in both places if B is a long simplex.

The first inequality follows form Theorem 2.6 of Gardner and Gronchi, the second
from Theorem 3.6.

Problem 4.4. What is the maximal possible value of ivd(B) for n-element d-dimen-
sional sets? Is perhaps the bound in (4.1) exact?
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We now describe the impact volume for another important class of sets, namely
cubes.

Theorem 4.5. Let n1, . . . , nd be positive integers and let

B = {(x1, . . . , xd) ∈ Z
d : 0 ≤ xi ≤ ni}. (4.4)

We have
ivd(B) = hv B = v = n1 . . . nd .

Problem 4.6. Is is true that when B is the set of lattice points within a convex lattice
polytope, then hv B and ivd(B) are very near?

They may differ, as the second example in Theorem 3.9 shows.
We shall deduce Theorem 4.5 from the following one.

Theorem 4.7. Let G = G1 × G2 be a commutative group represented as the direct
product of the groups G1 and G2. Let B = B1 ×B2 ⊂ G be a finite set with B1 ⊂ G1,
B2 ⊂ G2. We have

ivd(B) ≥ ivd−1(B1)iv1(B2). (4.5)

Proof. Write ivd(B) = v, ivd−1(B1) = v1, iv1(B2) = v2 (which is = |B|− 1 if G2 is
torsionfree). We want to estimate |A + B| from below for a general set A ⊂ G with
|A| = m.

Firs we transform them to some standard form; this will be the procedure what
Gardner and Gronchi call compression. Let A1 be the projection of A to G1, and for
an x ∈ A1 write

A(x) = {y ∈ G2 : (x, y) ∈ A}.
Let

A′ = {(x, i) : x ∈ A1, i ∈ Z, 0 ≤ i ≤ |A(x)| − 1}
and

B ′ = {(x, i) : x ∈ B1, i ∈ Z, 0 ≤ i ≤ v2}.
We have A′, B ′ ⊂ G′ = G1 × Z.

Lemma 4.8. We have

|A′| = |A|, |A′ + B ′| ≤ |A + B|. (4.6)

Proof. The equality is clear. To prove the inequality, write S = A+B, S′ = A′ +B ′.
With the obvious notation, we will show that

|S′(x)| ≤ |S(x)|
for each x. To this end observe that

S(x) =
⋃

x′+x′′=x

(A(x′) + B(x′′)) =
⋃

x′∈x−B1

A(x′) + B2,
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hence
|S(x)| ≥ max

x′∈x−B1
|A(x′) + B2| ≥ max

x′∈x−B1
|A(x′)| + v2.

Similarly

S′(x) =
⋃

x′+x′′=x

(A′(x′) + B ′(x′′)) =
⋃

x′∈x−B1

[0, |A(x′)| + v2 − 1],

and so
|S′(x)| = max

x′∈x−B1
|A(x′)| + v2. �

Now we continue the proof of the theorem. Decompose A′ into layers according
to the value of the second component; write

A′ =
k⋃

i=0

Li × {i},

where k = max |A(x)|, Li ⊂ G1. Write |Li | = mi . We have L0 ⊃ L1 ⊃ · · · ⊃ Lk ,
consequently m0 ≥ m1 ≥ · · · ≥ mk .

The set S′ is the union of the sets (Li + B1) × {i + j}, 0 ≤ i ≤ v2. By the above
inclusion it is sufficient to consider the Li with the smallest possible i, that is,

S′ = (L0 + B1) × {0, 1, . . . , v2} ∪
k⋃

i=1

(Li + B1) × {i + v2}.

We obtain that

|S′| = v2|L0 + B1| +
k∑

i=0

|Li + B1|. (4.7)

To estimate the summands we use the d − 1-dimensional impact of B1, and we
get

|Li + B1| ≥
(
m

1
d−1
i + v

1
d−1
1

)d−1

≥ mi

m0

(
m

1
d−1
0 + v

1
d−1
1

)d−1

;
the second inequality follows from mi ≤ m0. By substituting this into (4.7) and
recalling that

∑
mi = m we obtain

|S| ≥
(
v2 + m

m0

)(
m

1
d−1
0 + v

1
d−1
1

)d−1

. (4.8)

Consider the right side as a function of the real variable m0. By differentiating we
find that it assumes its minimum at

m0 = v
1/d
1 (m/v2)

1−1/d .

(This minimum typically is not attained; this m0 may be < 1 or > m, and it is generally
not integer). Substituting this value of m0 into (4.8) we obtain the desired bound

|S| ≥ (
m1/d + (v1v2)

1/d
)d

. �
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Problem 4.9. Does equality always hold in Theorem 4.7?

I expect a negative answer.

Problem 4.10. Can Theorem 4.7 be extended to an inequality of the form

ivd1+d2(B1 × B2) ≥ ivd1(B1)ivd2(B2)?

Proof of Theorem 4.5. To prove ≥ we use induction on d. The case d = 1 is obvious,
and Theorem 4.7 provides the inductive step.

This means that with the cube B defined in (4.4) we have

|A + B| ≥ (|A|1/d + v1/d
)d

.

Equality can occur for infinitely many values of |A|, namely it holds whenever A is
also a cube of the form

A = {(x1, . . . , xd) ∈ Z
d : 0 ≤ xi ≤ kni − 1}

with some integer k; we have |A| = kdv, |A + B| = (k + 1)dv. It may be difficult to
describe ξB(m) for values of m which are not of the form kdv. Possibly an argument
like Gardner and Gronchi’s for the simplex may work.

Observe that these special sets A are not homothetic to B; in particular, A = B

may not yield a case of equality. �

As Theorem 4.3 shows, the impact volume can be d! times smaller than cardi-
nality. The example we have of this phenomenon, the long simplex, is, however,
“barely” d-dimensional, and I expect that a better estimates hold for a “substantially”
d-dimensional set.

Definition 4.11. The thickness ϑ(B) of a set B ⊂ R
d is the smallest integer k

with the property that there is a hyperplane P of R
d and x1, . . . , xk ∈ R

d such that
B ⊂ ⋃k

i=1 P + xj .

Conjecture 4.12. For every ε > 0 and d there is a k such that for every B ⊂ R
d with

ϑ(B) > k we have ivd(B) > (1 − ε)|B|.
This conjecture would yield a discrete Brunn–Minkowski inequality of the form

|A + B|1/d ≥ |A|1/d + (1 − ε)|B|1/d

assuming a bound on the thickness of B. Such an inequality is true at least in the
special case A = B. This can be deduced from a result of Freiman ( [3], Lemma 2.12;
see also Bilu [1]), which sounds as follows. If A ⊂ R

d and |2A| < (2d − ε)|A|, then
there is a hyperplane P such that |P ∩ A| > δ|A|, with δ = δ(d, ε) > 0.
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5. Meditation on the continuous case

Let A, B be Borel sets in R
d . The Brunn–Minkowski inequality (1.2) estimates

μ(A + B) in a natural way, with equality if A and B are homothetic convex sets.
Like in the discrete case, we can define the impact function of the set B by

ξB(a) = inf{μ(A + B) : μ(A) = a}.
Thus (1.2) is equivalent to

ξB(a) ≥ (
a1/d + μ(B)1/d

)d
,

and this is the best possible estimate in terms of μ(B) only.
To measure the degree of nonconvexity we propose to use the measure of the

convex hull beside the measure of the set. This is analogous to the hull volume, and
it is sufficient to describe the asymptotic behaviour of ξ .

Theorem 5.1 ([13], Theorem 1.). For every bounded Borel set B ⊂ R
d of positive

measure we have
lim

a→∞ ξB(a)1/d − a1/d = μ(conv B)1/d .

This is the continuous analogue of Theorem 3.6, and there is an analogue to the
effective version Theorem 3.8 as well.

Note that by considering sets homothetic to conv B we immediately obtain

ξB(a)1/d ≤ a1/d + μ(conv B)1/d,

thus we need only to give a lower estimate. This is as follows.

Theorem 5.2 ([13], Theorem 2.). Let μ(B) = b, μ(conv B) = v. We have

ξB(a)1/d ≥ a1/d + v1/d
(
1 − c(v/b)1/2(v/a)1/(2d)

)

ξB(a) ≥ a + dv1/da1−1/d
(
1 − c(v/b)1/2(v/a)1/(2d)

)
with a suitable positive constant c depending on d.

If v > b, we get a nontrivial improvement over the Brunn–Minkowski inequality
for a > a0(b, v). It would be desirable to find an improvement also for small values
of a, or, even more, to find the best estimate in terms of μ(B) and μ(conv B).

The exact bound and the structure of the extremal set may be complicated. This is
already so in the case d = 1, which was solved in [10]. Observe that in one dimension
μ(conv B) is the diameter of B.

Theorem 5.3 ([10], Theorem 2). Let B ⊂ R, and write μ(B) = b, μ(conv B) = v.
If

a ≥ v(v − b)

2b
+ b{v/b}(1 − {v/b})

2
, (5.1)
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then ξB(a) = a + v. If (5.1) does not hold, then let k be the unique positive integer
satisfying

k(k − 1)

2
≤ a

b
<

k(k + 1)

2

and define δ by
a

b
= k(k − 1)

2
+ δk.

We have

ξB(a) ≥ a + (k + δ)b,

and equality holds if B = [0, b] ∪ {v}.
A set A such that ξB(a) = μ(A + B) for the above set B is given by

A = [0, (k − 1 + δ)b] ∪ [v, v + (k − 2 + δ)b] ∪ · · · ∪ [(k − 1)v, (k − 1)v + δb].

A less exact, but simple and still quite good lower bound sounds as follows.

Corollary 5.4 ([10], Theorem 1). Let B ⊂ R, and write μ(B) = b, μ(conv B) = v.
We have

ξB(a) ≥ min
(
a + v, (

√
a + √

b/2)2).
A comparison with the 2-dimensional Brunn–Minkowski inequality gives the fol-

lowing interpretation: initially a long one-dimensional set B tries to behave as if it
were a two-dimensional set of area b/2.

It can be observed that (5.4) is weaker than the obvious inequality

μ(A + B) ≥ μ(A) + μ(B) (5.2)

for small a. For small values of a Theorem 5.3 yields the following improvement
of (5.2).

Corollary 5.5 ([10], Corollary 3.1). If a ≤ b, then we have

μ(A + B) ≥ min(2a + b, a + v).

If b < a ≤ 3b, then we have

μ(A + B) ≥ min
(

3

2
(a + b), a + v

)
.

Problem 5.6. How large must μ(A+B) be if μ(A), μ(B), μ(conv A) and μ(conv B)

are given?
What are the minima of μ(A + A) and μ(A − A) for fixed μ(A) and μ(conv A)?
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The results above show that for d = 1 (like in the discrete case, but for less obvious
reasons) the limit relation becomes an equality for a > a0. Again, this is no longer
the case for d = 2.

An example of a set B ⊂ R
2 such that

ξB(a)1/2 < a1/2 + v1/2

will hold for certain arbitrarily large values of a is as follows.
Let 0 < c < 1 and let B consist of the square [0, c] × [0, c] and the points

(0, 1), (1, 0) and (1, 1). Hence b = c2 and v = 1.
For an integer n ≥ 1 put

An = [0, n] × [0, n] ∪
n⋃

j=0

[j, j + c] × [n, n + c] ∪
n−1⋃
j=0

[n, n + c] × [j, j + c].

Thus An consists of a square of side n and 2n + 1 small squares of side c, hence

μ(An) = n2 + (2n + 1)b.

We can easily see that An + B = An+1. Hence by considering the set A = An we
see that for a number a of the form a = n2 + (2n + 1)b we have

ξB(a) ≤ μ(An+1) = (n + 1)2 + (2n + 3)b <
(√

a + 1
)2

.

A more detailed calculation leads to

ξB(a)1/2 ≤ a1/2 + 1 − ca−1

(for these special values of a).
If we tried to define an impact volume in the continuous case, we would recover

the volume, at least for compact sets. Still, the above results and questions suggest
that ordinary volume is not the best tool to understand additive properties. Perhaps
one could try to modify the definition of impact volume by requiring μ(A) ≥ μ(B).
So put

iv∗(B) = inf
a≥μ(B)

(
ξB(a)1/d − a1/d

)d
.

Problem 5.7. Find a lower estimate for iv∗(B) in terms of μ(B) and μ(conv B).

6. Back to one dimension

The results in the previous section, Theorem 5.3 and Corollaries 5.4 and 5.5 show that
one can have nontrivial results in the seemingly uninteresting one-dimensional case.
We now try to do the same, and will find bounds on |A + B| using the cardinality and
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hull volume of B. Observe that in one dimension the hull volume is the smallest l such
that B is contained in an arithmetic progression {b, b + q, . . . , b + lq}: the reduced
diameter of B.

It is possible to give bounds using nothing else than the hull volume.

Theorem 6.1. Let B be a one-dimensional set in a torsionfree commutative group,
hv B = v ≥ 3.

(a) For

m >
(v − 1)(v − 2)

2
we have ξB(m) = m + v.

(b) If
(k − 1)(k − 2)

2
< m ≤ k(k − 1)

2
with some integer 2 ≤ k < v, then ξB(m) ≥ m + k. Equality holds for the set
B = {0, 1, v} ⊂ Z.

For v ≤ 2 we have obviously ξB(m) = m + v for all m (such a set cannot be
anything else than a v + 1-term arithmetic progression).

This will be deduced from the following result, where the cardinality of B is also
taken into account.

Theorem 6.2. Let B be a one-dimensional set in a torsionfree commutative group,
hv B = v ≥ 3, |B| = n. Define w by

w = min
d|v, d≤n−2

d

[
n − 2

d

]
. (6.1)

For every m we have

ξB(m) ≥ m + min
(
v,

w

2
+ min

t∈N

(
m

t
+ tw

2

))
. (6.2)

The minimum is attained either at the floor or at the ceiling of
√

2m/w. Unlike
the previous theorem, typically we do not have examples of equality, and the extremal
value and the structure of extremal sets is probably complicated. Also the value of w

depends on divisibility properties of v and n. After the proof we give a less exact but
simpler corollary.

Proof. By Lemma 3.1 we may assume that B ⊂ Z, its smallest element is 0 and it
generates Z; then its largest element is just v.

Lemma 6.3. Let B ′ be the set of residues of elements of B modulo v. For every
nonempty X ⊂ Zv we have

|X + B ′| ≥ min(|X| + w, v). (6.3)
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Proof. By Kneser’s theorem we have

|X + B ′| ≥ |X + H | + |B ′ + H | − |H |
with some subgroup H of the additive group Zv . Write |H | = d; clearly d|v. If
d = v, we have |X + H | = v and we are ready. Assume d < v. B ′ contains 0 and it
generates Zv , hence it cannot be contained in H so we have |B ′ + H | ≥ 2|H | = 2d.
This gives the desired bound if d > n − 2. Assume d ≤ n − 2. Since |B ′ + H | is a
multiple of d and it is at least |B ′| = n − 1, we obtain

|B ′ + H | ≥ d

⌈
n − 1

d

⌉
= d

(
1 +

[
n − 2

d

])
≥ d + w. �

We resume the proof of Theorem 6.2. Take a set A ⊂ Z, |A| = m. We are going
to estimate |A + B| from below.

For j ∈ Zv let u(j) be the number of integers a ∈ A, a ≡ j (mod v) and let
U(j) be the corresponding number for the sumset A + B. We have

U(j) ≥ u(j) + 1 (6.4)

whenever U(j) > 0; this follows by adding the numbers 0, v to each element of A in
this residue class if u(j) > 0, and holds obviously for u(j) = 0. We also have

U(j) ≥ u(j − b) (6.5)

for every b ∈ B ′. Write
r(k) = {j : u(j) ≥ k},
R(k) = {j : U(j) ≥ k}.

Inequality (6.4) implies

R(k) ⊃ r(k − 1) (k ≥ 2), (6.6)

and inequality (6.5) implies

R(k) ⊃ r(k) + B ′ (k ≥ 1). (6.7)

First case. U(j) > 0 for all j . In this case by summing (6.4) we get

|A + B| =
∑

U(j) ≥ v +
∑

u(j) = |A| + v.

Second case. There is a j with U(j) = 0. Then we have |R(k)| < v for every
k > 0. An application of Lemma 6.3 to the sets r(k) yields, in view of (6.7),

|R(k)| ≥ |r(k)| + w (6.8)
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as long as r(k) �= ∅. Let t be the largest integer with r(t) �= ∅. We have (6.8) for
1 ≤ k ≤ t , and (6.6) yields

|R(k)| ≥ |r(k − 1)| (6.9)

for all k ≥ 2. Consequently for 1 ≤ k ≤ t + 1 we have

|R(k)| ≥ k − 1

t
|r(k − 1)| +

(
1 − k − 1

t

)
(|r(k)| + w). (6.10)

Indeed, for k = 1 (6.10) is identical with (6.8), for k = t + 1 it is identical with (6.9)
and for 2 ≤ k ≤ t it is a linear combination of the two.

By summing (6.10) we obtain

|A + B| =
∑
k≥1

|R(k)| ≥
t+1∑
k=1

|R(k)| ≥ t + 1

2
w +

(
1 + 1

t

) t∑
k=1

|r(k)|

= t + 1

2
w +

(
1 + 1

t

)
|A|,

as claimed in (6.2). �

Corollary 6.4. With the assumptions and notations of Theorem 6.2 we have

ξB(m) ≥ min
(
m + v,

(√
m + √

w/2
)2

)
. (6.11)

Proof. This follows from (6.2) and the inequality of arithmetic and geometric means.
�

This can be interpreted as that the set tries to imitate a two-dimensional set of
area w/2.

Proof of Theorem 6.1. Parts (a)–(b) of the theorem can be reformulated as follows:
if ξB(n) ≤ m + k with some k < v, then m ≤ k(k − 1)/2. Theorem 6.2 yields (using
only that w ≥ 1) the existence of a positive integer t such that

m

t
+ t + 1

2
≤ k,

hence

m ≤ kt + t (t + 1)

2
.

The right side, as a function of t , is increasing up to k−1/2 and decreasing afterwards;
the minimal values at integers are assumed at t = k − 1 and k, and both are equal to
k(k − 1)/2.

To show the case of equality in case (b), write m = k(k − 1)/2 − l with 0 ≤ l ≤
k − 2. The set A will contain the integers in the intervals [iv, iv + k − 3 − i] for
0 ≤ i ≤ l − 1 and [iv, iv + k − 2 − i] for l ≤ i ≤ k − 2. �
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We illustrate the strength of Theorem 6.2 by deducing from it the two-dimensional
estimate

ξL(m) >
(√

m + √
(n − 2)/2

)2

for the long triangle L = L2n. Indeed, a suitable linear mapping maps this set L onto
the set B = {0, 1, . . . , n − 2, v} with arbitrary v. If we choose v to be prime, then in
(6.1) we have w = n − 2, and if v is so large that m + l >

(√
m + √

w
)2, then from

Corollary 6.4 we obtain

ξL(m) ≥ ξB(m) ≥ (√
m + √

w/2
)2

.

This is essentially the two-dimensional case of Theorem 2.6 of Gardner and Gronchi.
On the other hand, for small values of m this inequality is weak, can even be

worse than the obvious bound |A + B| ≥ |A| + |B| − 1. There are results that are
especially suited to the study of small values; we quote two of them. In both let
A, B ⊂ Z, A = {a1, . . . , am}, B = {b1, . . . , bn} with 0 = a1 < · · · < am = u,
0 = b1 < · · · < bn = v.

Theorem 6.5 (Freiman [2]). If gcd(a1, . . . , am, b1, . . . , bn) = 1 and u ≤ v, then

|A + B| ≥ min(m + v, m + n + min(m, n) − 3).

This bears a remarkable similarity to the two-dimensional case of Theorem 1.2
(and it can be deduced like Theorem 2.6)

Theorem 6.6 (Lev and Smelianski [7]). If gcd(b1, . . . , bn) = 1 and u ≤ v, then

|A + B| ≥ min(m + v, n + 2m − δ),

where δ = 3 if u = v and δ = 2 if u < v.

Observe that the above theorems cannot be directly compared to ours because of
the somewhat different structure of the assumptions.

Problem 6.7. Find a common generalization of Theorems 6.2 and 6.6.
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Geometric bistellar flips: the setting, the context
and a construction

Francisco Santos ∗

Abstract. We give a self-contained introduction to the theory of secondary polytopes and
geometric bistellar flips in triangulations of polytopes and point sets, as well as a review of
some of the known results and connections to algebraic geometry, topological combinatorics,
and other areas.

As a new result, we announce the construction of a point set in general position with a
disconnected space of triangulations. This shows, for the first time, that the poset of strict
polyhedral subdivisions of a point set is not always connected.

Mathematics Subject Classification (2000). Primary 52B11; Secondary 52B20.

Keywords. Triangulation, point configuration, bistellar flip, polyhedral subdivision, discon-
nected flip-graph.

Introduction

Geometric bistellar flips are “elementary moves”, that is, minimal changes, between
triangulations of a point set in affine space R

d . In their present form they were in-
troduced around 1990 by Gel’fand, Kapranov and Zelevinskii during their study of
discriminants and resultants for sparse polynomials [28], [29]. Not surprisingly, then,
these bistellar flips have several connections to algebraic geometry. For example,
the author’s previous constructions of point sets with a disconnected graph of trian-
gulations in dimensions five and six [64], [67] imply that certain algebraic schemes
considered in the literature [4], [13], [33], [57], including the so-called toric Hilbert
scheme, are sometimes not connected.

Triangulations of point sets play also an obvious role in applied areas such as com-
putational geometry or computer aided geometric design, where a region of the plane
or 3-space is triangulated in order to approximate a surface, answer proximity or vis-
ibility questions, etc. See, for example, the survey articles [8], [10], or [25]. In these
fields, flips between triangulations have also been considered since long [40]. Among
other things, they are used as the basic step to compute an optimal triangulation of a
point set incrementally, that is, adding the points one by one. This incremental flip-
ping algorithm is the one usually preferred for, for example, computing the Delaunay
∗Partially supported by the Spanish Ministry of Education and Science, grant number MTM2005-08618-

C02-02.
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© 2006 European Mathematical Society
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triangulation, as “the most intuitive and easy to implement” [8], and yet as efficient
as any other.

In both the applied and the theoretical framework, the situation is the same: a
fixed set of points A ⊂ R

d is given to us (the “sites” for a Delaunay triangulation
computation, the test points for a surface reconstruction, or a set of monomials,
represented as points in Z

d , in the algebro-geometric context) and we need to either
explore the collection of all possible triangulations of this set A or search for a
particular one that satisfies certain optimality properties. Geometric bistellar flips are
the natural way to do this. For this reason, it was considered one of the main open
questions in polytope theory ten years ago whether point sets exist with triangulations
that cannot be connected via these flips [80]. As we have mentioned above, this
question was answered positively by the author of this paper, starting in dimension
five. The question is still open in dimensions three and four.

This paper intends to be an introduction to this topic, organized in three parts.
The first section is a self-contained introduction to the theory of geometric bistellar

flips and secondary polytopes in triangulations of point sets, aimed at the non-expert.
The results in it are certainly not new (most come from the original work of Gel’fand,
Kapranov and Zelevinskii mentioned above) but the author wants to think that this
section has some expository novelty; several examples that illustrate the theory are
given, and our introduction of geometric bistellar flips first as certain polyhedral sub-
divisions and only afterwards as transformations between triangulations is designed
to show that the definition is as natural as can be. This section finishes with an account
of the state-of-the-art regarding knowledge of the graph of flips for sets with “few”
points or “small” dimension, with an emphasis on the differences between dimensions
two and three.

The second section develops in more detail the two contexts in which we have
mentioned that flips are interesting (computational geometry and algebraic geome-
try) together with other two, that we call “combinatorial topology” and “topological
combinatorics”. Combinatorial topology refers to the study of topological manifolds
via triangulations of them. Bistellar flips have been proposed as a tool for manifold
recognition [18], [46], and triangulations of the 3-sphere without bistellar flips other
than “insertion of new vertices” are known [24]. Topological combinatorics refers
to topological methods in combinatorics, particularly to the topology of partially or-
dered sets (posets) via their order complexes. The graph of triangulations of a point
set A consists of the first two levels in the poset of polyhedral subdivisions of A,
which in turn is just an instance of several similar posets studied in combinatorics
with motivations and applications ranging from oriented matroid theory to bundle
theories in differential geometry.

The third section announces for the first time the construction of a point set in
general position whose graph of triangulations is not connected. The details of the
proof appear in [68]. The point set is also the smallest one known so far to have a
disconnected graph of flips.
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Theorem. There is a set of 17 points in general position in R
6 whose graph of

triangulations is not connected.

As usual in geometric combinatorics, a finite point set A ⊂ R
d is said to be in

general position if no d + 2 of the points lie in an affine hyperplane. Equivalently, if
none of the

( |A|
d+1

)
determinants defined by the point set vanish. Point sets in general

position form an open dense subset in the space R
n×d of sets of dimension d with n

elements. That is to say, “random point sets” are in general position. Point sets that
are not in general position are said to be in special position.

The connectivity question has received special attention in general position even
before disconnected examples in special position were found. For example, Chal-
lenge 3 in [80] and Problem 28 in [50] specifically ask whether disconnected graphs
of flips exist for point sets in special position (the latter asks this only for dimen-
sion 3). Although it was clear (at least to the author of this paper) from the previous
examples of disconnected graphs of flips that examples in general position should
also exist, modifying those particular examples to general position and proving that
their flip-graphs are still not connected is not an easy task for quite intrinsic reasons:
the proofs of non-connectednes in [64], [67] are based on the fact that the point sets
considered there are cartesian products of lower dimensional ones.

In our opinion, an example of a disconnected graph of flips in general position is
interesting for the following three reasons:

1. The definition of flip that is most common in computational geometry coin-
cides with ours (which is the standard one in algebraic geometry and polytope
combinatorics) only for point sets in general position. In special position, the
computational geometric definition is far more restrictive and, in particular,
taking it makes disconnected graphs of flips in special position be “no sur-
prise”. For example, Edelsbrunner [25] says that the flip-graph among the
(three) triangulations of a regular octahedron is not connected; see Section 2.1.

2. Leaving aside the question of definition, in engineering applications the co-
ordinates of points are usually approximate and there is no loss in perturbing
them into general position. That is, the general position case is sometimes the
only case.

3. Even in a purely theoretical framework, point sets in general position have
somehow simpler properties than those in special position. If a point set A in
special position has a non-connected graph of flips then automatically some
subset of A (perhaps A itself) has a disconnected poset of subdivisions. This
poset is sometimes called the Baues poset of A and its study is (part of) the
so-called generalized Baues problem. See Section 2.3, or [61] for more precise
information on this. In particular, the present example is the first one (proven)
to have a disconnected Baues poset.

Corollary. There is a set of at most 17 points in R
6 whose poset of proper polyhedral

subdivisions is not connected.



934 Francisco Santos

1. The setting

1.1. Triangulations. Regular triangulations and subdivisions

Triangulations and polyhedral subdivisions. A (convex) polytope P is the convex
hull of a finite set of points in the affine space R

d . A face of P is its intersection
with any hyperplane that does not cross the relative interior of P . (Here, the relative
interior of S ⊆ R

d is the interior of S regarded as a subset of its affine span). We
remind the reader that the faces of dimensions 0, 1, d − 2 and d − 1 of a d-polytope
are called vertices, edges, ridges and facets, respectively. Vertices of P form the
minimal S such that P = conv(S).

A k-simplex is a polytope whose vertices (necessarily k+ 1) are affinely indepen-
dent. It has

(
k+1
i+1

)
faces of each dimension i = 0, . . . , k, which are all simplices.

Definition 1.1. Let A be a finite point set in R
d . A triangulation of A is any collec-

tion T of affinely spanning and affinely independent subsets of A with the following
properties:

1. if σ and σ ′ are in T , then conv(σ ) ∩ conv(σ ′) is a face of both conv(σ ) and
conv(σ ′). That is, T induces a geometric simplicial complex in R

k;

2.
⋃

σ∈T conv(σ ) = conv(A). That is, T covers the convex hull of A.

Note that our definition allows for some points of A not to be used at all in a
particular triangulation. Extremal points (vertices of conv(A)) are used in every
triangulation. The elements of a triangulation T are called cells.

We can define polyhedral subdivisions of A by removing the requirement of the
sets σ to be affinely independent in Definition 1.1. Since a general subset σ of A may
contain points which are not vertices of conv(σ ), now the fact that the elements of a
subdivision are subsets of A rather than “subpolytopes” is not just a formality: points
which are not vertices of any “cell” in the subdivision may still be considered “used”
as elements of some cells. In order to get a nicer concept of polyhedral subdivision,
we also modify part 1 in Definition 1.1, adding the following (redundant for affinely
independent sets) condition:

conv(σ ∩ σ ′) ∩ σ = conv(σ ∩ σ ′) ∩ σ ′ for all σ, σ ′ ∈ T .

That is, if A contains some point in the common face conv(σ ∩ σ ′) of conv(σ ) and
conv(σ ′) but not a vertex of it, that point is either in both or in none of σ and σ ′.

Polyhedral subdivisions of A form a partially ordered set (or poset) with respect
to the following refinement relation:

S refines S′ :⇔ for all σ ′ ∈ S′ there exists σ ∈ S such that σ ⊆ σ ′.

Triangulations are, of course, the minimal elements in this poset. The poset has a
unique maximal element, namely the trivial suvdivision {A}.



Geometric bistellar flips: the setting, the context and a construction 935

Example 1.2. Let A be the following set of five points a1, . . . , a5 in the plane. We
take the convention that points are displayed as columns in a matrix, and that an extra
homogenization coordinate (the row of 1’s in the following matrix) is added so that
linear algebra, rather than affine geometry, can be used for computations:

A =
⎛
⎜⎝

a1 a2 a3 a4 a5

0 3 0 3 1

0 0 3 3 1

1 1 1 1 1

⎞
⎟⎠ (1)

The following are the nine polyhedral subdivisions of A. Arrows represent the refine-
ment relation, pointing from the coarser to the finer subdivision. For clarity, we write
“125” meaning {a1, a2, a5}, and so on. Figure 1 shows pictures of the subdivisions. In
the corners are the four triangulations of A and in the middle is the trivial subdivision.

{125, 135, 235, 234} ← {1235, 234} → {135, 234}
↑ ↑ ↑

{125, 135, 2345} ← {12345} → {1234}
↓ ↓ ↓

{125, 135, 245, 345} ← {1245, 1345} → {124, 134}
The last two columns of subdivisions geometrically induce the same decomposition

4

1 2

3

5

4

1 2

3

5

4

1 2

3

5

4

1 2

3

5

4

1 2

3

5

4

1 2

3

5

4

1 2

3 4

1 2

3 4

1 2

3

Figure 1. The nine polyhedral subdivisions of a certain point set.

of conv(A) into subpolygons. Still, we consider them different subdivisions since the
middle column “uses” the interior point 5 while the right column does not.
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Regular subdivisions. Let a point set A be given, and choose a function w : A→ R

to lift A to R
d+1 as the point set

Aw := {(a, w(a) : a ∈ A}.
A lower facet of conv(Aw) is a facet whose supporting hyperplane lies below the inte-
rior of conv(Aw). The following is a polyhedral subdivision of A, where π : Rd+1 →
R

d is the projection that forgets the last coordinate:

Tw := {π(F ∩Aw) : F is a lower facet of conv(Aw)}.
Geometrically, we are projecting down onto A the lower envelope of Aw, keeping
track of points that lie in the lower boundary even if they are not vertices of a facet.

Definition 1.3. The polyhedral subdivisions and triangulations that can be obtained
in this way are called regular.

If w is sufficiently generic then Tw is clearly a triangulation. Regular triangulations
are particularly simple and yet quite versatile. They appear in different contexts under
different names such as coherent [29], convex [36], [77], Gale [49], or generalized
(or, weighted ) Delaunay [25] triangulations. The latter refers to the fact that the
Delaunay triangulation of A, probably the most used triangulation in applications,
is the regular triangulation obtained with w(a) = ‖a‖2, where ‖ · ‖ is the euclidean
norm.

Example 1.4. Let

A =
⎛
⎝

a1 a2 a3 a4 a5 a6

4 0 0 2 1 1
0 4 0 1 2 1
0 0 4 1 1 2

⎞
⎠.

This is a configuration of six points in the affine plane with equation x1+x2+x3 = 4
in R

3. Since the matrix is already homogeneous (meaning precisely that columns lie in
an affine hyperplane) we do not need the extra homogenization row. The configuration
consists of two parallel equilateral triangles, one inside the other. We leave it to the
reader to check that the following are two non-regular triangulations (see Figure 2):

T1 := {124, 235, 136, 245, 356, 146, 456},
T2 := {125, 236, 134, 145, 256, 346, 456}.

This example is the smallest possible, since 1-dimensional point configurations and
point configurations with at most d + 3 points in any dimension d only have regular
triangulations. The former is easy to prove and the latter was first shown in [44]. The
earliest appearance of these two non-regular triangulations that we know of is in [20],
although they are closely related to Schönhardt’s classical example of a non-convex
3-polytope that cannot be triangulated [69].1

1We describe Schönhardt’s polyhedron and its relation to this example in Example 1.21.
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a2

a1

a3

a5

a4

a6

T1 T2

Figure 2. A point configuration with two non-regular triangulations.

Remark 1.5. Suppose that two point sets A = {a1, . . . , an} and B = {b1, . . . , bn}
have the same oriented matroid [17], or order type. This means that for every subset
I ⊂ {1, . . . , n} of labels, the determinants of the point sets {ai : i ∈ I } and {bi : i ∈ I }
have the same sign.2 It is an easy exercise to check that then A and B have the
same triangulations and subdivisions.3 However, they do not necessarily have the
same regular subdivisions. For example, the points of example 1.4 are in general
position and, hence, their oriented matroid does not change by a small perturbation
of coordinates. But any sufficiently generic perturbation makes one of the two non-
regular triangulations T1 and T2 become regular.

Still, the following is true [65]: the existence of non-regular triangulations of A
depends only on the oriented matroid of A.

The secondary polytope. Let LA denote the space of all lifting functions w : A→ R

on a certain point set A ⊂ R
d with n elements. In principle LA is isomorphic to R

n in
an obvious way; but we mod-out functions that lift all of A to a hyperplane, because
adding one of them to a given lifting function w does not (combinatorially) change
the lower envelope of Aw. We call these particular lifting functions affine. They form
a linear subspace of dimension d+1 of R

n. Hence, after we mod-out affine functions
we have LA

∼= R
n−d−1.

For a given polyhedral subdivision T of A, the subset of LA consisting of func-
tions w that produce T = Tw, is a (relatively open) polyhedral cone; that is, it is
defined by a finite set of linear homogeneous equalities and strict inequalities. Equal-
ities appear only if T is not a triangulation and express the fact that if σ ∈ T is not
affinely independent then w must lift all σ to lie in a hyperplane. Inequalities express
the fact that for each σ ∈ T and point a ∈ A \ σ , a is lifted above the hyperplane
spanned by the lifting of σ .

The polyhedral cones obtained for different choices of T are glued together form-
ing a polyhedral fan, that is, a “cone over a polyhedral complex”, called the secondary
fan of A. The prototypical example of a fan is the normal fan of a polytope, whose

2Observe that the bijection between A and B implicit by the labels is part of the definition.
3More precisely, the implicit bijection between A and B induces a bijection between their polyhedral subdi-

visions.
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cones are the exterior normal cones of different faces of P . A seminal result in the
theory of triangulations of polytopes is that the secondary fan is actually polytopal;
that is, it is the normal fan of a certain polytope:

Theorem 1.6 (Gel’fand–Kapranov–Zelevinskii [28], [29]). For every point set A of n
points affinely spanning R

d there is a polytope �(A) in LA
∼= R

n−d−1 whose normal
fan is the secondary fan of A.

In particular, the poset of regular subdivisions of A is isomorphic to the poset of
faces of �(A). Vertices correspond to regular triangulations and �(A) itself (which
is, by convention, considered a face) corresponds to the trivial subdivision. The
polytope �(A) is called the secondary polytope of A.

There are two standard ways to construct the secondary polytope �(A) of a point
set A.4 The original one, by Gel’fand, Kapranov and Zelevinskii [28], [29] gives,
for each regular triangulation T of A, coordinates of the corresponding vertex vT of
�(A) in terms of the volumes of simplices incident in T to each point of A.

The second one, by Billera and Sturmfels [14], describes the whole polytope σ(A)

as the Minkowski integral of the fibers of the affine projection π : �A → conv(A),
where �A is a simplex with |A| vertices (hence, of dimension |A| − 1) and π bijects
the vertices of �A to A (see Theorem 2.8).

Example 1.7 (Example 1.2 continued). Figure 3 shows the secondary fan of the five
points. To mod-out affine functions we have taken w(a1) = w(a2) = w(a3) = 0,
and the horizontal and vertical coordinates in the figure give the values of w(a4) and
w(a5), respectively. The triangulation corresponding to each two-dimensional cone is
displayed. In this example all nine polyhedral subdivisions are regular (in agreement

Figure 3. The secondary fan of Example 1.2.

with the result of [44] mentioned in Example 1.4) and the secondary polytope is a
quadrilateral.

4Polytopality of a fan is equivalent to the feasibility of a certain system of linear equalities and strict inequalities.
But here we mean more direct and intrinsic constructions of the secondary polytope.
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Example 1.8 (Example 1.4 continued). The secondary polytope of this point set is
3-dimensional, and contains a hexagonal face corresponding to the regular subdivision

{1245, 2356, 1346, 456}.
This regular subdivision can be refined to a triangulation in eight ways, by indepen-
dently inserting a diagonal in the quadrilaterals 1245, 2356 and 1346. Six of these
triangulations are regular, and correspond to the vertices of the hexagon. The other
two, T1 and T2, are non-regular and they “lie” in the center of the hexagon.

We have mentioned that if the point set is perturbed slightly then one of the trian-
gulations becomes regular. What happens in the secondary polytope is the following:
the perturbation “inflates” the hexagon so that the eight points (the vertices of the
hexagon and the two interior points representing T1 and T2) become, combinatori-
ally, the vertices of a cube. The points corresponding to T1 and T2 move in opposite
directions, one of them going to the interior of the secondary polytope and the other
becoming a new vertex of it. The hexagonal face gets refined into three quadrilaterals.
Of course, the vertices of the hexagon also move in the process, and are no longer
coplanar.

Example 1.9 (The convex n-gon and the associahedron). All triangulations of a
convex n-gon are regular and their number is the n− 2nd Catalan number

Cn−2 := 1

n− 1

(
2n− 4

n− 2

)
.

The corresponding secondary polytope is called the associahedron. The name comes
from the fact that there is a bijection between triangulations of the n-gon and the ways
to put the n− 2 parentheses in an associative product of n− 1 factors.

The associahedron is a classical object in combinatorics, first studied5 by Stasheff
and Tamari [76], [72]. It was shown to be polytopal by Haiman (unpublished) and
Lee [43]. That its diameter equals 2n−10 “for every sufficiently big n”6 was shown by
Sleator, Tarjan and Thurston [71], with motivations coming from theoretical computer
science and tools from hyperbolic geometry.

Remark 1.10. In Sections 2.3 and 2.4 we will mention triangulations of a set of
vectors rather than points. They are defined exactly as triangulations of point sets, just
changing the word “affinely” to “linearly” and the operator “conv” to “pos” (“positive
span”) in Definition 1.1. Put differently, a triangulation of a vector set A ⊂ R

d+1

is a simplicial fan covering pos(A) and whose rays are in the positive directions of
(not necessarily all) the elements of A. Equivalently, and perhaps closer to readers
familiar with classical geometry, we can, without loss of generality, normalize all

5As a combinatorial cell complex, without an explicit polytopal realization.
6Sleator et al. do not say “how big” is “sufficiently big” in their statement, but conjecture that n ≥ 13 is

enough. We consider this an interesting and somehow shameful open question.
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vectors of A to lie in the unit sphere Sd . Then, triangulations of A are the geodesic
triangulations, with vertices contained in A, of the spherical convex hull of A.

The existence and properties of regular subdivisions and secondary fans (and of
the bistellar flips introduced in the next section) generalize almost without change to
vector configurations.7

1.2. Geometric bistellar flips

Flips as polyhedral subdivisions. In order to introduce the notion of local move (flip)
between triangulations of A, we use the secondary fan as a guiding light: whatever our
definition is, restricted to regular triangulations a flip should correspond to crossing a
“wall” between two full-dimensional cones in the secondary fan; that is, a flip between
two regular triangulations T1 and T2 can be regarded as certain regular subdivision T0
with the property that its only two regular refinements are precisely T1 and T2. Some
thought will convince the reader that the necessary and sufficient condition for a
lifting function w : A→ R to produce a Tw with this property is that there is a unique
minimal affinely dependent subset in A whose lifting is contained in some lower facet
of the lifted point set Aw. This leads to the following simple, although perhaps not
very practical, definition.

Definition 1.11. Let T be a (not-necessarily regular) subdivision of a point set A.
We say that T is a flip if there is a unique affinely dependent subset C ∈ A contained
in some cell of T .

Lemma 1.12. If T is a flip, then there are exactly two proper refinements of T , which
are both triangulations.

Proof. Let T1 be a refinement of T . Let C be the unique affinely dependent subset of
A contained in some cell of T . Each cell of T containing C gets refined in T1, while
each cell not containing C is also a cell in T1.

The statement then follows from the understanding of the combinatorics of point
sets with a unique affinely dependent subset C. Let S be such a point set. Each point
in S \ C is affinely independent of the rest, so S is an “iterated cone” over C. In
particular, there is a face F of S such that S ∩ F = C and every refinement of S

consists of a refinement of F coned to the points of S \ C. Moreover, all cells of T

containing C must have F refined the same way, so that there is a bijection between
the refinements of T and the polyhedral subdivisions of C, as a point set. The result
then follows from the fact (see below) that a minimal affinely dependent set C has
exactly three subdivisions: the trivial one and two triangulations. �

7Although with one notable difference. For a general vector configuration not every function w : A → R

produces a lift with a well-defined “lower envelope”. Only the functions that do, namely those for which a linear
hyperplane exists containing or lying below all the lifted vectors, define a regular polyhedral subdivision. These
functions form a cone in LA. The secondary fan is still well-defined but, of course, it cannot be the normal fan of
a polytope. It is, however, the normal fan of an unbounded convex polyhedron, called the secondary polyhedron
of A [12].
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This lemma allows us to understand a flip, even in the non-regular case, as a
relation or a transformation between its two refinements. This is the usual usage of
the word “flip”, and our next topic.

Flips as elementary changes. A minimal affinely dependent set C is called a circuit
in geometric combinatorics. The points in a circuit C = {c1, . . . , ck} satisfy a unique
(up to a constant) affine dependence equation λ1c1+ · · · + λkck = 0 with

∑
λi = 0,

and all the λi must be non zero (or otherwise C is not minimally dependent). This
affine dependence implicitly decomposes C into two subsets

C+ = {ci : λi > 0}, C− = {ci : λi < 0}.
The pair (C+, C−) is usually called a signed or oriented circuit. We will slightly abuse
notation and speak of “the circuit C = (C+, C−)”, unless we need to emphasize the
distinction between the set C (the support of the circuit) and its partition.

A more geometric description is that (C+, C−) is the only partition of C into two
subsets whose convex hulls intersect, and that they intersect in their relative interiors.
This is usually called Radon’s property [58] and the oriented circuit a Radon partition.

Spanning and affinely independent subsets of C are all the sets of the form C\{ci}.
Moreover, by Radon’s property two such sets C \ {ci} and C \ {cj } can be cells in the
same triangulation of C if and only if ci and cj lie in the same side of the partition.
In other words:

Lemma 1.13. A circuit C = (C+, C−) has exactly two triangulations:

T C+ := {C \ {ci} : ci ∈ C+}, T C− := {C \ {ci} : ci ∈ C−}.
This leads to a second definition of flip, equivalent to Definition 1.11, but more

operational. This is the definition originally devised by Gel’fand, Kapranov and
Zelevinskii [29]. The link of a set τ ⊆ A in a triangulation T of A is defined as

linkT (τ ) := {ρ ⊆ A : ρ ∩ τ = ∅, ρ ∪ τ ∈ T }.
Definition 1.14. Let T1 be a triangulation of a point set A. Suppose that T1 contains
one of the triangulations, say T C+ , of a circuit C = (C+, C−). Suppose also that all
cells τ ∈ T C+ have the same link in T1, and call it L.

Then, we say that C supports a geometric bistellar flip (or a flip, for short) in T1
and that the following triangulation T2 of A is obtained from T1 by this flip:

T2 := T1 \ {ρ ∩ τ : ρ ∈ L, τ ∈ T C+ } ∪ {ρ ∩ τ : ρ ∈ L, τ ∈ T C− }.
If i = |C+| and j = |C−|we say that the flip is of type (i, j). Flips of types (1, j)

and (i, 1) are called, insertion and deletion flips, since they add or remove a vertex in
the triangulation.

The graph of flips of A has as vertices all the triangulations of A and as edges the
geometric bistellar flips between them.
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Of course, an (i, j) flip can always be reversed, giving a (j, i) flip. The reason for
the words “geometric bistellar” in our flips can be found in Section 2.2.

Example 1.15 (Examples 1.2 and 1.7 continued). The change between the two top
triangulations in Figure 3 is a (2, 2) flip, as is the change between the two bottom ones.
The flip from the top-right to the bottom-right is a (1, 3) flip (“1 triangle disappears
and 3 are inserted”) and the flip from the top-left to the bottom-left is a (1, 2) flip
(“one edge is removed, together with its link, and two are inserted, with the same
link”). The latter is supported in the circuit formed by the three collinear points.

We omit the proof of the following natural statement.

Theorem 1.16. Definitions 1.11 and 1.14 are equivalent: two triangulations T1 and
T2 of a point set A are connected by a flip in the sense of 1.14 if and only if they are
the two proper refinements of a flip in the sense of 1.11.

The following two facts are proved in [65]:

Remark 1.17. 1. If all proper refinements of a subdivision T are triangulations,
then T has exactly two of them and T is a flip. That is to say, flips are exactly the
“next-to-minimal” elements in the refinement poset of all subdivisions of A.

2. Every non-regular subdivision can be refined to a non-regular triangulation.
In particular, not only edges of the secondary polytope correspond to flips between
two regular triangulations, but also every flip between two regular triangulations
corresponds to an edge.

Detecting flips. Definitions 1.11 and 1.14 are both based on the existence of a flip-
pable circuit C with certain properties. But in order to detect flips only some circuits
need to be checked:

Lemma 1.18. Every flip in a triangulation T other than an insertion flip is supported
in a circuit contained in the union of two adjacent cells of T .

Observe that the circuit contained in two adjacent cells always exists and is unique.
Also, that the insertion flips left aside in this statement are easy to detect:8 There is
one for each point a ∈ A not used in T , that inserts the point a by subdividing the
minimum (perhaps not full-dimensional) simplex τ ⊆ σ ∈ T such that a ∈ conv(τ ).
The flippable circuit is ({a}, τ ).

Proof. Let C = (C+, C−) be a circuit that supports a flip in T , with |C+| ≥ 2.
Observe that |C+| is also the number of many maximal simplices in T C+ , so let τ1
and τ2 be two of them, which differ in a single element, and let ρ be an element of
linkT (τ1) = linkT (τ2). Then, ρ ∪ τ1 and ρ ∪ τ2 are adjacent cells in T and C is the
unique circuit contained in τ1 ∪ τ2 ∪ ρ. �

8We mean, theoretically. Algorithmically, insertion flips are far from trivial since they imply locating the
simplex of T that contains the point a to be inserted, which takes about the logarithm of the number of simplices
in T . This is very expensive, since algorithms in computational geometry that use flipping in triangulations
usually are designed to take constant time per flip other than an insertion flip. See Section 2.1.
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Monotone sequences of flips. The graph of flips among regular triangulations of
a point set A of dimension d is connected, since it is the graph of a polytope.9 A
fundamental fact exploited in computational geometry is that one can actually flip
between regular triangulations monotonically, in the following sense.

Let w : A → R be a certain generic lifting function. We can use w to lift every
triangulation T of A as a function HT,w : conv(A) → R, by affinely interpolating
w in each cell of T . We say that T1 <w T2 (“T1 is below T2, with respect to w”)
if HT1,w ≤ HT2,w pointwise and HT1,w �= HT2,w globally. This defines a partial
order <w on the set of all triangulations, whose global minimum and maximum are,
respectively, Tw and T−w.10

Definition 1.19. A sequence of flips is monotone with respect to w if every flip goes
from a triangulation T to a triangulation T ′ <w T .

By definition of the secondary polytope �(A) as having the secondary fan as its
normal fan, lifting functions are linear functionals on it. Then, it is no surprise that
for the regular triangulations T1 and T2 corresponding to vertices vT1 and vT2 of the
secondary polytope one has11:

T1 <w T2 ⇒ 〈w, vT1〉 < 〈w, vT1〉.
In fact, 〈w, vT 〉 equals the volume between the graphs of the functions HTw,w and
HT,w. Since the converse implication holds whenever T1 and T2 are related by a flip,
we have:

Lemma 1.20. For every lifting function w and every regular triangulation T there is
a w-monotone sequence of flips from T to the regular triangulation Tw.

If T is not regular this may be false, even in dimension 2:

Example 1.21 (Examples 1.4 and 1.8 continued). Let A be the point configuration of
Example 1.4 (see Figure 2), except perturbed by slightly rotating the interior triangle
“123” counter-clockwise. That is,

A =
⎛
⎝

a1 a2 a3 a4 a5 a6

4− ε 0 ε 2 1 1
ε 4− ε 0 1 2 1
0 ε 4− ε 1 1 2

⎞
⎠,

9Even more, it is (|A| − d − 1)-connected. Remember that a graph is called k-connected if removing less
than k vertices from it it stays connected. A classical theorem of Balinski [79] says that the graph of a k-polytope
is k-connected.

10In case they are triangulations. If not, every triangulation that refines Tw or T−w is, respectively, minimal
or maximal.

11The same is true for non-regular triangulations. The point vT is well-defined, via the Gel’fand-Kapranov-
Zelevinskii coordinates for the secondary polytope, even if T is not regular. The only difference is that if T is
not regular then vT is not a vertex of the secondary polytope.
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for a small ε > 0. This perturbation keeps the triangulation T1 non-regular and
makes T2 regular. Let w : A→ R lift the exterior triangle 123 to height zero and the
interior triangle 456 to height one. The graph of HT2,w is a strictly concave surface
(that is, T2 = T−w) and there is no w-monotone flip in T1, since its only three flips
are the diagonal-edge flips on “16”, “24” and “35”, which are “towards HT2,w”. This
example appeared in [26].

Another explanation of why no w-monotone flip exists in T1 is that when we close
the graph of the function HT1,w by adding to it the triangle 123, it becomes a non-
convex polyhedron P with the property that no tetrahedron (with vertices contained in
those of P ) is completely contained in the region enclosed by P . This polyhedron is
affinely equivalent to Schönhardt’s [69] classical example of a non-convex polyhedron
in R

3 that cannot be triangulated without additional vertices.

1.3. The cases of small dimension or few points. Throughout this section A de-
notes a point set with n elements and dimension d.

Sets with few points. If n = d+1, then A is independent and the trivial subdivision
is its unique triangulation. If n = d + 2 then A has a unique circuit and exactly two
triangulations, connected by a flip. If n = d + 3, it was proved by Lee [44] that all
triangulations are regular. Since the secondary fan is 2-dimensional, the secondary
polytope is a polygon, whose graph (a cycle) is the graph of flips. If n = d+4, then A
can have non-regular triangulations (see Example 1.4). Still, it is proven in [7] that
every triangulation has at least three flips and that the flip-graph is 3-connected.

For point sets with n = d + 5 the flip-graph is not known to be always connected.

Dimension 1. Triangulating a one-dimensional point set is just choosing which of
the interior points are used. That is, n points in dimension 1 have 2n−2 triangulations.
The flip-graph is the graph of an (n− 2)-dimensional cube and all triangulations are
regular. The secondary polytope is the same cube.

Dimension 2. In dimension two the graph of (2, 2)-flips among triangulations using
all points of A 12 is known to be connected since long [40], and connectivity of the
whole graph—including the triangulations that do not use all points and the insertion
or deletion flips—is straightforward from that. Even more, one can always flip mono-
tonically13 from any triangulation to the Delaunay triangulation using only (2, 2)

flips. Quadratically many (with respect to the number of points) flips are sometimes
necessary and always suffice (see, e.g., [25, p. 11]).

However, with general flips:

Proposition 1.22. The flip-graph of any A ⊆ R
2 has diameter smaller than 4n.

12This is the graph usually considered in two-dimensional computational geometry literature.
13With respect to the lift w(a) := ‖a‖2.
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Proof. Let a be an extremal point of A and T an arbitrary triangulation. If T has
triangles not incident to a then there is at least a flip that decreases the number of
them (proof left to the reader). Since the number of triangles in a planar triangulation
with vi interior vertices and vb boundary vertices is exactly 2vi + vb − 2 (by Euler’s
formula) we can flip from any triangulation to one with every triangle incident to a

in at most 2vi + vb − 3 < 2n− nb flips.
Now, exactly as in the 1-dimensional case, the graph of flips between triangulations

in which every triangle is incident to a is the graph of a cube of dimension equal to
the number of “boundary but non-extremal” points of A. Hence, we can flip between
any two triangulations in (2n− nb)+ nb + (2n− nb) < 4n flips. �

Remark 1.23. The preceding proof is another example of monotone flipping, this
time with respect to any lifting function w : A → R with w(a) << w(b), for all
b ∈ A \ {a}. In essence, this lifting produces the so-called pulling triangulation
of A. More precisely, for a point set A in arbitrary dimension and a given ordering
a1, . . . , an of the points in A one defines [17], [44], [45], [79]:

• The pulling triangulation of A, as the regular triangulation given by the lift
w(ai) := −t i , for a sufficiently big constant t ∈ R. It can be recursively
constructed as the triangulation that joins the last point an to the pulling trian-
gulation of every facet of conv(A) that does not contain an.

• The pushing triangulation of A, as the regular triangulation given by the lift
w(ai) := t i , for a sufficiently big constant t ∈ R. It can be recursively
constructed as the triangulation that contains Tn−1 and joins an to the part of
the boundary of Tn−1 visible from an, where Tn−1 is the pushing triangulation
of A \ {an}.

Pushing and pulling triangulations are examples of lexicographic triangulations, de-
fined by the lifts w(ai) := ±t i for sufficiently big t .

Summing up, monotone flipping in the plane (a) works even for non-regular tri-
angulations if the “objective function” w is either the Delaunay or a lexicographic
one (the proof for the pushing case is left to the reader); (b) gives a linear sequence
of flips for the pulling case, but may produce a quadratic one for the Delaunay case;
(c) does not work for arbitrary w (Example 1.21).

Let us also mention that in dimension two every triangulation is known to have at
least n−3 flips [23] (the dimension of the secondary polytope), and at least �(n−4)/2�
of them of type (2, 2) [35]. The flip-graph is not known to be (n− 3)-connected.

Dimension 3. Things start to get complicated:
If A is in convex position 14 then every triangulation of it has at least n−4 flips [23],

but otherwise A can have flip-deficient triangulations.15 The smallest possible exam-
ple, with eight points, is described in [7], based on Example 1.4. Actually, for every n

14Convex position means that all points are vertices of conv(A).
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there are triangulations with essentially n2 vertices and only O(n) flips [63]. This is
true even in general position.16

The flip-graph is not known to be connected, even if A is in convex and general
position. The main obstacle to proving connectivity (in case it holds!) is probably
that one cannot, in general, monotonically flip to either the Delaunay, the pushing,
or the pulling triangulations. For the Delaunay triangulation this was shown in [37].
For the other two we describe here an example.

Example 1.24 (Examples 1.4, 1.8 and 1.21 continued). Let A consist of the following
eight points in dimension three:

A =

⎛
⎜⎜⎝

a1 a2 a3 b1 b2 b3 c1 c2

4− ε 0 ε 2 1 1 4/3 4/3
ε 4− ε 0 1 2 1 4/3 4/3
0 ε 4− ε 1 1 2 4/3 4/3
0 0 0 1 1 1 10 −10

⎞
⎟⎟⎠,

The first six points are exactly the (lifted) point set of Example 1.21, and have the
property that no tetrahedron with vertices contained in these six points is contained in
the non-convex Schönhardt polyhedron P having as boundary triangles {a1, a2, a3},
{b1, b2, b3}, {ai, ai+1, bi} and {ai+1, bi, bi+1} (the latter for the three values of i, and
with indices regarded modulo three). The last two points c1 and c2 of the configuration
lie far above and far below this polyhedron. c1 sees every face of P except the big
triangle {a1, a2, a3}, while c2 sees only this triangle.

Let T be the triangulation T of A obtained removing the big triangle from the
boundary of P , and joining the other seven triangles to both c1 and c2. We leave it to the
reader to check that there is no monotone sequence of flips towards the pushing trian-
gulation with respect to any ordering ending in c2, and there is no monotone sequence
of flips towards the pulling triangulation with respect to any ordering ending in c1.

Higher dimension. There are the following known examples of “bad behavior”:

• In dimension four, there are triangulations with arbitrarily many vertices and a
bounded number of flips [63]. They are constructed adding several layers of
“the same” triangulated 3-sphere one after another.

• In dimension five, there are point sets with a disconnected graph of triangula-
tions [67]. The smallest one known has 26 points, but one with 50 points is
easier to describe: It is the Cartesian product of {0, 1} with the vertex set and
the centroid of a regular 24-cell.

15We say a triangulation is flip-deficient if it has less than n − d − 1 flips; that is, less than the dimension of
the secondary polytope.

16Although this is not mentioned in [63], the construction there can be perturbed without a significant addition
of flips.
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• In dimension six, there are triangulations without flips at all [64]. The example
is again a cartesian product, now of a very simple configuration of four points in
R

2 and a not-so-simple (although related to the 24-cell too) configuration of 81
points in R

4. There are also point sets in general position with a disconnected
graph of triangulations (Section 3 of this paper and [68]). Only 17 points are
needed.

2. The context

2.1. Bistellar flips and computational geometry. The first and most frequently
considered flips in computational geometry are (2, 2) flips in 2-dimensional point
sets. Seminal papers of Lawson [40], [41] prove that every triangulation can be
monotonically transformed to the Delaunay triangulation by a sequence of O(n2)

such flips.
Lawson himself, in 1986 [42], is close to defining flips in arbitrary dimension, even

in the case of special position. Around 1990,17 B. Joe realizes that in dimension three
one cannot, in general, monotonically flip from any triangulation to the Delaunay
triangulation [37] but, still, the following incremental algorithm works [38]: insert
the points one by one, each by an insertion flip in the Delaunay triangulation of the
already inserted points. After each insertion, monotonically flip to the new Delaunay
triangulation by flips that increase the star of the inserted point.

V. T. Rajan [59] does essentially the same in arbitrary dimension and Edelsbrunner
and Shah [26], already aware at least partially of the theory of secondary polytopes,
generalize this to flipping towards the regular triangulation Tw by w-monotone flips,
for an arbitrary w.

If one disregards the efficiency of the algorithm, the main result of [26] follows
easily from Lemma 1.20. But efficiency is the main point in computational geometry,
and one of the important features in [38] and [26] is to show that the sequence of flips
can be found and performed spending constant time per flip (in fixed dimension).
An exception to this time bound are the insertion steps. Theoretically, they are just
another case of flip. But in the algorithm they have a totally different role since they
involve locating where the new point needs to be inserted. To get good time bounds
for the location step, the standard incremental algorithm is “randomized”,18 and it is
proved that the total expected time taken by the n insertion steps is bounded above by
O(n log n) in the plane and O(n�d/2�) in higher dimension. The latter is the same as
the worst-case size of the Delaunay triangulation, or actually of any triangulation.

This incremental-randomized-flipping method can be considered the standard al-
gorithm for the Delaunay triangulation in current computational geometry. It is the
only one described in the textbooks [21] and [25]. In the survey [8], it is the first of

17Birth year of secondary polytopes and geometric bistellar flips as we have defined them [28].
18That is, the ordering in which the points are inserted is considered random among the n! possible orderings.

This trick was first introduced in [19] for convex hulls, then applied to 2-D Delaunay triangulations in [32].
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four described in the plane but the only one detailed in dimension three, as “the most
intuitive and easy to implement”.

Remark 2.1. Computational geometry literature normally only considers full-dimen-
sional flips; that is, flips of type (i, j) with i + j = d + 2. In particular, [8], [21],
[25], [26] and [38] describe the incremental flipping algorithm only for point sets
in general position. The only mention in those references to the effect of allowing
special position in the flipping process seems to be that, according to [25], for the
six vertices of a regular octahedron “none of the three tetrahedrizations permits the
application of a two-to-three or a three-to-two flip. The flip graph thus consists of
three isolated nodes”.

However, with the general definition of flip the incremental-flipping algorithm can
be directly applied to point sets in special position, as done recently by Shewchuk [70].
Shewchuk’s algorithm actually computes the so-called constrained regular triangu-
lation of the point set for any lift w and constraining complex K . This is defined as
the unique19 triangulation T containing K and in which every simplex of T \ K is
lifted by w to have a locally convex star.20

2.2. Bistellar flips and combinatorial topology. Bistellar flips can be defined at a
purely combinatorial level, for an abstract simplicial complex. Let � be a simplicial
complex, and let σ ∈ � be a simplex, of any dimension. The stellar subdivision
on the simplex σ is the simplicial complex obtained inserting a point in the relative
interior of σ . This subdivides σ , and every simplex τ containing it, into dim σ + 1
simplices of the same dimension. Two simplicial complexes �1 and �2 are said to
differ in a bistellar flip if there are simplices σ1 ∈ �1 and σ2 ∈ �2 such that the
stellar subdivisions of �1 and �2 on them produce the same simplicial complex. The
bistellar operation from �1 to �2 is said to be of type (i, j) if i = dim σ1 + 1 and
j = dim σ2 + 1. Observe that geometric bistellar flips, as defined in Definition 1.14,
are combinatorially bistellar flips.

Combinatorial bistellar flips have been proposed as an algorithmic tool for ex-
ploring the space of triangulations of a manifold 21 or to recognize the topological
type of a simplicial manifold [18], [46]. In particular, Pachner [56] has shown that
any two triangulations of PL-homeomorphic manifolds are connected by a sequence
of topological bistellar flips. But for this connectivity result additional vertices are
allowed to be inserted into the complex, via flips of type (i, 1).

19If it exists, which is not always the case.
20Shewchuk’s algorithm is incremental, treating the simplices in K similarly to the points in the standard

incremental algorithm: they are inserted one by one (in increasing order of dimension) and after each insertion
the regular, constrained to the already added simplices, triangulation is updated using geometric bistellar flips.
The algorithm’s running time is O(n�d/2�+1 log n). The extra log n factor comes from a priority queue that is
needed to decide in which order the flips are performed, to make sure that no “local optima” instead of the true
constrained Delaunay triangulation, is reached. The extra n factor (only in even dimension) is what randomization
saves in the standard incremental-flipping algorithm. Randomization would not do the same here (Shewchuk,
personal communication).

21Besides its intrinsic interest, this problem arises in quantum gravity modelization [3], [54].
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The situation is much different if we do not allow insertion flips: Dougherty
et al. [24] show that there is a topological triangulation of the 3-sphere, with 15
vertices, that does not admit any flip other than insertion flips.22 If this triangulation
was realizable geometrically in R

3 (removing from the 3-sphere the interior of any
particular tetrahedron) it would provide a triangulation in dimension three without
any geometric bistellar flips. Unfortunately, Dougherty et al. show that it cannot be
geometrically embedded.

2.3. Bistellar flips and topological combinatorics. A standard construction in topo-
logical combinatorics [16] is to associate to a poset P its order complex: an abstract
simplicial complex whose vertices are the elements of P and whose simplices are the
finite chains (totally ordered subsets) of P . In this sense one can speak of the topology
of the poset. If the poset has a unique maximum (as is the case with the refinement
poset of subdivisions of a point set A) or minimum, one usually removes them or
otherwise the order complex is trivially contractible (that is, homotopy equivalent to
a point). This is what we mean when we say that the refinement poset of subdivisions
of the point set of Section 3 is not connected.

The refinement poset of polyhedral subdivisions of A is usually called the Baues
poset of A and its study is the generalized Baues problem. To be precise, Baues posets
were introduced implicitly in [14] and explicitly in [13] in a more general situation
where one has an affine projection π from the vertex set of a polytope P ∈ R

d ′ to
a lower dimensional affine space R

d . In this general setting, one considers the point
set A := π(vertices(P )) and is interested in the polyhedral subdivisions of A that
are compatible with π in a certain sense (basically, that the preimage of every cell is
the set of vertices of a face in P ). In the special case were P is a simplex (and hence
d ′ = n − 1, where n is the number of points in A) every polyhedral subdivision is
compatible. This is the case of primal interest in this paper, but there are at least the
following two other cases that have attracted attention. (See [61] for a very complete
account of different contexts in which Baues posets appear, and [79, Chapter 9] for a
different treatment of the topic):

• When P is a cube, its projection is a zonotope Z and the π -compatible subdi-
visions are the zonotopal tilings of Z [79]. The finest ones are cubical tilings,
related by cubical flips.

• When d = 1 and P is arbitrary, the π -compatible subdivisions are called
cellular strings, since they correspond to monotone sequences of faces of P .
The finest ones are monotone paths of edges and are related by polygon flips.

22Dougherty et al. only say that their triangulation does not have any (3, 2), (2, 3) or (1, 4) flips, which are
the “full-dimensional” types of flips. But their arguments prove that even considering degenerate flips, the only
possible ones in their triangulation are insertion flips of type (i, 1). Indeed, the two basic properties that their
triangulations has are that (a) its graph is complete, which prevents flips of type (3, 2), but also (2, 2) and (1, 2)

and (b) no edge is incident to exactly three tetrahedra, which prevents flips of type (1, 4) and (2, 3), but also
(1, 3).
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The name Baues for these posets comes from the fact that H. J. Baues was interested
in their homotopy type in a very particular case (in which, among other things, d = 1)
and conjectured it to be that of a sphere of dimension d ′ − 2 [9]. Billera et al. [13]
proved this conjecture for all Baues posets with d = 1, and the conjecture that the
same happened for arbitrary d (with the dimension of the sphere being now d ′−d−1)
became known as the generalized Baues conjecture. It was inspired by the fact that
the fiber polytope associated to the projection π—a generalization of the secondary
polytope, introduced in [14]—has dimension d ′ − d and its face lattice is naturally
embedded in the Baues poset.

Even after the conjecture in its full generality was disproved by a relatively simple
example with d ′ = 5 and d = 2 [60], the cases where P is either a simplex or a cube
remained of interest. As we have said, the latter is disproved in the present paper
for the first time. The former remains open and has connections to oriented matroid
theory, as we now show.

Recall that the oriented matroid (or order type) of a point set A of dimension d (or
of a vector configuration of rank d + 1) is just the information contained in the map( A
d+1

)→ {−1, 0,+1} that associates to each (d + 1)-element subset of A the sign of
its determinant (that is, its orientation). But oriented matroids (see [17] as a general
reference) are axiomatically defined structures which may or may not be realizable as
the oriented matroids of a real configuration, in much the same way as, for example,
a topological space may or may not be metrizable.

It turns out that the theory of triangulations of point and vector configurations
generalizes nicely to the context of perhaps-non-realizable oriented matroids, with
the role of regular triangulations being played by the so-called lifting triangulations:
triangulations that can be defined by an oriented matroid lift (see [17, Section 9.6] or
[66, Section 4]).

One of the basic facts in oriented matroid duality is that the lifts of an oriented
matroid M are in bijection to the one-point extensions of its dual M∗. In particular,
the space of lifts of M equals the so-called extension space of the dual oriented
matroid M∗. Here, both the space of lifts and the space of extensions are defined
as the simplicial complexes associated to the natural poset structures in the set of
all lifts/extensions of the oriented matroid. This makes the following conjecture of
Sturmfels and Ziegler [75] be relevant to this paper:

Conjecture 2.2. The extension space of a realizable oriented matroid of rank r is
homotopy equivalent to a sphere of dimension r − 1.

The reader may be surprised that we call this a conjecture: if the extension space
of an oriented matroid is the analogue of a secondary fan, should not the extension
space of a realizable oriented matroid be automatically “a fan”, hence a sphere? Well,
no: even if an oriented matroid M is realizable, some of its extensions may not be
realizable. Those will appear in the extension space. Even worse, if M is realized
as a vector configuration A, some realizable extensions of M may only be realizable
as extensions of other realizations of M. Actually, Sturmfels and Ziegler show that
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the space of realizable extensions of a realizable oriented matroid does not in general
have the homotopy type of a sphere!

Example 2.3 (Example 1.4 continued). Consider the point configuration of Exam-
ple 1.4 (two parallel triangles one inside the other). An additional point added to
this configuration represents an extension of the underlying oriented matroid. In
particular, there is an extension by a point collinear with each of the three pairs of
corresponding vertices of the two triangles.

But any small perturbation of the point set gives another realization of the same
oriented matroid, since the original point set is in general position. However, this
perturbation will, in general, not keep the lines through those three pairs of vertices
colliding. So, the extension we have described is no longer realizable as a geometric
extension of the new realization.

There is a class of configurations specially interesting in this context: the so-called
Lawrence polytopes. A Lawrence oriented matroid is an oriented matroid whose dual
is centrally symmetric. Similarly, a Lawrence polytope is a polytope whose vertex set
has a centrally symmetric Gale transform. There is essentially one Lawrence polytope
associated to each and every realizable oriented matroid. The following result is a
combination of a theorem of Bohne and Dress (see [79], for example) and one of the
author of this paper [34], [66]:

Theorem 2.4. Let M be a realizable oriented matroid and let P be the associated
Lawrence polytope. Then, the following three posets are isomorphic:

1. The refinement poset of polyhedral subdivisions of P .

2. The extension space of the (also realizable) dual oriented matroid M∗.
3. The refinement poset of zonotopal tilings of the zonotope associated to (any

realization of ) M.

Corollary 2.5. The following three statements are equivalent:

1. The generalized Baues conjecture for the polyhedral subdivisions of Lawrence
polytopes.

2. The extension space conjecture for realizable oriented matroids.

3. The generalized Baues conjecture for the zonotopal tilings of zonotopes.

Moreover, if A is a point configuration and P its associated Lawrence polytope,
then there is a surjective map between the poset of subdivisions of P and the poset of
lifting (in the oriented matroid sense) subdivisions of A. This follows from that facts
that “Lawrence polytopes only have lifting subdivisions” and “lifting subdivisions
can be lifted to the Lawrence polytope”, both proved in [66].

In particular, if the flip-graph of a certain point set A is not connected and has
lifting triangulations in several connected components, then the graph of cubical flips
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between zonotopal tilings of a certain zonotope is not connected either, thus answering
question 1.3 in [61]. If, moreover, A is in general position, it would disprove the three
statements in Corollary 2.5. We do not know whether the disconnected flip-graph in
Section 3 has this property. The examples in [64], [67] are easily seen to be based in
non-lifting triangulations.

Remark 2.6. The extension space conjecture is the case k = d − 1 of the following
far-reaching conjecture by MacPherson, Mnëv and Ziegler [61, Conjecture 11]: that
the poset of all strong images of rank k of any realizable oriented matroid M of rank d

(the so-called OM-Grassmannian of rank k of M) is homotopy equivalent to the real
Grassmannian Gk(Rd). This conjecture is relevant in matroid bundle theory [5] and
the combinatorial differential geometry of MacPherson [48].

An important achievement in this context is the recent result of Biss [15] prov-
ing this conjecture whenever M is a “free oriented matroid”. In this case the OM-
Grassmannian is the space of all oriented matroids of a given cardinality and rank,
usually called the MacPhersonian. The result of Biss includes the case n = ∞ (in
which the MacPhersonian is defined as a direct limit of all the MacPhersonians of a
given rank) and implies that the theory of “oriented matroid bundles for combinatorial
differential manifolds” developed by MacPherson [48] is equivalent to the theory of
real vector bundles on real differential manifolds. A first, seminal, result in this direc-
tion was the “combinatorial formula” by Gel’fand and MacPherson for the Pontrjagin
class of a triangulated manifold [30].

2.4. Bistellar flips and algebraic geometry. Bistellar flips are related to algebraic
geometry from their very birth. Indeed, Definition 1.14, as well as that of secondary
polytope and Theorem 1.6 were first given by Gel’fand, Kapranov and Zelevinskii
during their study of discriminants of a sparse polynomial [28]. By a sparse polyno-
mial we mean, here, a multivariate polynomial f whose coefficients are considered
parameters but whose set of (exponent vectors of) monomials is a fixed point set
A ⊆ Z

d . Gel’fand, Kapranov and Zelevinskii prove that the secondary polytope
of A equals the Newton polytope of the Chow polynomial of f , where the Chow
polynomial is a certain resultant defined in terms of f . Similarly, the secondary
polytope is related to the discriminant of f (the A-discriminant) although a bit less
directly: it is a Minkowski summand of the Newton polytope of the A-discriminant.

A stronger, and more classical, relation between triangulations of point sets and
algebraic geometry comes from the theory of toric varieties [27], [55]. As is well-
known, every rational convex polyhedral fan � (in our language, every polyhedral
subdivision of a rational vector configuration) has an associated toric variety X� ,
of the same dimension. X� is non-singular if and only if � is simplicial (i.e., a
triangulation) and unimodular. The latter means that every cone is spanned by integer
vectors with determinant ±1. If � is a non-unimodular triangulation, then X� is an
orbifold; that is, it has only quotient singularities.

A stellar subdivision, that is, an insertion flip, in � corresponds to an equivariant
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blow-up in X� . Hence, a deletion flip produces a blow-down and a general flip
produces a blow-up followed by a blow down. In this sense, the connectivity question
for triangulations of a vector configuration is closely related to the following result,
conjectured by Oda [51] and proved by Morelli and Włodarczyk [52], [78].23

Theorem 2.7. Every proper and equivariant birational map f : X� → X�′ between
two nonsingular toric varieties can be factorized into a sequence of blowups and
blowdowns with centers being smooth closed orbits (weak Oda’s conjecture).

More precisely, Oda’s conjecture, in its weak form, is equivalent to saying that
every pair of unimodular simplicial fans can be connected by a sequence of bistellar
flips passing only through unimodular fans (and, actually, it is proved this way).
But observe that in this result the set of vectors allowed to be used is not fixed in
advance: additional ones are allowed to be flipped-in and eventually flipped-out. Our
construction in [67] actually shows that the result is not true if we do not allow for
extra vectors to be inserted.

The relation of the graph of flips to toric geometry is even closer if one looks at
certain schemes associated to a toric variety. In order to define them we first look at
secondary polytopes in a different way, as a particular case of fiber polytopes [14]:

Assume that A is an integer point configuration and let � be the unit simplex of
dimension |A| − 1 in R

|A|. Let Q = conv(A) and let π : � → Q be the affine
projection sending the vertices of � to A. The chamber complex of A is the coarsest
common refinement of all its triangulations. It is a polyhedral complex with the
property that for any b and b′ in the same chamber the fibers π−1(b) and π−1(b′) are
polytopes with the same normal fan.

Theorem 2.8 (Billera et al. [14]). The secondary polytope of A equals the Minkowski
integral of π−1(b) over Q.

Combinatorially, then, the secondary polytope of A equals the Minkowski sum
of a finite number of π−1(b)’s, with one b chosen in each chamber.

Now, for each b ∈ Q, consider the toric variety associated to the normal fan of the
fiber π−1(b). Since the normal fan is the same whenever b and b′ lie in (the relative
interior of) the same cell of the chamber complex, we denote this toric variety Vσ ,
where σ is a cell (of any dimension) of the chamber complex. If b ∈ σ and b′ ∈ τ

for two chambers with τ ⊆ σ then the normal fan of π−1(b) refines the normal fan of
π−1(b′), which implies that there is a natural equivariant morphism fστ : Vσ → Vτ .
We finally denote 
A := lim←−Vσ the inverse limit of all the Vσ and morphisms Vστ .
It has the following two interpretations:

1. Let X� be the projective space of dimension |A|− 1, which is the toric variety
associated with the simplex � (what follows is valid for any polytope �). The

23Morelli’s paper [52] claimed to have proved the following: that we can insist on the sequence to consist of
first a sequence of only blowups and then one of only blowdowns (strong Oda’s conjecture). Some errors were
found in this part of his paper [2, 53] and, according to [1], the strong conjecture is still open, even in dimension
three.
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toric varieties Vσ are the different toric geometric invariant theory quotients of
X� modulo the algebraic sub-torus whose characters are the monomials with
exponents in A [39, Section 3]. 
A is the inverse limit of all of them, which
contains the Chow quotient as an irreducible component [39, Section 4].

2. In [4], Alexeev is interested, among other things, in the moduli space M of
stable semi-abelic toric pairs for an integer polytope Q (see Sections 1.1.A
and 1.2.B in [4] for the definitions). The author shows that there is a finite
morphism M → 
A (Corollary 2.11.11), where A is the set of all integer
points in Q, and uses 
A (that he denotes Msimp) as a simplified model for
studying M .

Although there A is assumed to be the set of all lattice points in a polytope, the
connection of 
A with �c(A) carried out in the proof of the following theorem
is independent of this fact.

Theorem 2.9. The scheme 
A is connected if and only if the graph of triangulations
of A is connected.

Proof (Sketch). Alexeev introduces the following poset structure on the set of all
polyhedral subdivisions of A: Given two subdivisions S1 and S2 we consider S1 < S2
if: (a) S1 refines S2, (b) the restriction of S1 to each cell B of S2 is a regular sub-
division SB of B, and (c) the lifting functions of the regular subdivisions of cells of S2
can be chosen so that the restrictions of them to common faces of cells differ by an
affine function.

This poset is called the “coherent poset of subdivisions of A” in [64], to distinguish
it from the usual poset of subdivisions, where only the first condition (refinement)
is imposed. Then, he shows that the scheme 
A is connected if and only if the
coherent refinement poset is connected. (More precisely, he shows that there is a
natural moment map defined on 
A whose image is the topological model of the
poset). In turn, it is proven in [64] that the coherent refinement poset is connected if
and only if the graph of triangulations of A is connected. �

A second scheme that relates triangulations and toric geometry is precisely the
so-called toric Hilbert scheme. The toric ideal IA ⊆ K[x1, . . . , xn] associated to
A = {a1, . . . , an} ∈ R

d is generated by the binomials
{
xλ − xμ : λ, μ ∈ N

n,
∑

λiai =∑
μiai

}
.

Here, xλ := x
λ1
1 · · · xλn

n . In other words, IA is the lattice ideal of the lattice of integer
affine dependences among A. A defines the following A-grading of monomials in
K[x1, . . . , xn]: the A-degree of xλ is the vector x

λ1
1 · · · xλn

n ∈ Z
d . Of course, IA is

homogeneous with respect to this grading.
If I is another A-homogeneous ideal, the Hilbert function of I is the map Z

d → N

defined by b �→ dimK Ib where Ib is the part of I of degree b. The toric Hilbert scheme
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of A consists, as a set, of all the A-homogenous ideals with the same Hilbert function
as the toric ideal IA. It contains IA as well as all its initial ideals, which form an
irreducible component in its scheme structure.

The toric Hilbert scheme was introduced by Sturmfels in [73] (see also [74])
although its scheme structure was explicited later by Peeava and Stillman [57], who
ask whether non-connected toric Hilbert schemes exist.

Sturmfels shows, among other things, that there is a natural map from the toric
Hilbert scheme to the set of polyhedral subdivisions of A. Moreover, the map is
continuous when the latter is given either the poset topology or the “coherent poset
topology” introduced in the proof of Theorem 2.9. The map is not surjective in general,
so disconnected graphs of triangulations do not automatically imply disconnected
Hilbert schemes.24 However, Maclagan and Thomas [47], modifying the arguments
of Theorem 2.9, show that the image of the map contains at least al the unimodular
triangulations of A. In particular:

Corollary 2.10. If the graph of triangulations of an integer point configuration A
is not connected and contains unimodular triangulations in non-regular connected
components, then the toric Hilbert scheme of A is not connected.

The example in [67] satisfies the hypothesis of this corollary. Hence:

Theorem 2.11 (Santos [67]). Let A50 ⊂ R
5 be the point set A25 × {0, 1} where

A25 ⊂ R
4 consists of the centroid and the 24 vertices of a regular 24-cell. The toric

Hilbert scheme of A and the scheme 
A defined above are both non-connected. They
have at least 13 connected components, each with at least 348 torus-fixed points.

3. A construction

Let A(t) ⊂ R
6 be the point set defined by the columns of the following matrix,

where t is a positive real number. The matrix is written in two pieces for typographic
reasons. As usual, the first row is just a homogenization coordinate:

A(t) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

O a+1 (t) a+2 (t) a+3 (t) a+4 (t) a+5 (t) a+6 (t) a+7 (t) a+8 (t)

1 1 1 1 1 1 1 1 1
x1 0 1 −t 0 0 1 t 0 0
x2 0 t 1 0 0 −t 1 0 0
x3 0 0 0 1 −t 0 0 1 t

x4 0 0 0 t 1 0 0 −t 1
x5 0

√
2 1 0 −1 −√2 −1 0 1

x6 0 0 1
√

2 1 0 −1 −√2 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. . .

24Haiman and Sturmfels [33] have shown that this map factors as a morphism from the toric Hilbert scheme
to the scheme 
A of the previous discussion, followed by the natural map from that scheme to the poset of
subdivisions. The first map is the non-surjective one.
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. . .

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a−1 (t) a−2 (t) a−3 (t) a−4 (t) a−5 (t) a−6 (t) a−7 (t) a−8 (t)

1 1 1 1 1 1 1 1
−1 t 0 0 −1 −t 0 0
−t −1 0 0 t −1 0 0
0 0 −1 t 0 0 −1 −t

0 0 −t −1 0 0 t −1√
2 1 0 −1 −√2 −1 0 1

0 1
√

2 1 0 −1 −√2 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A(t) is not in general position. For example, for every i = 1, 2, 3, 4 we have:

a+i (t)+ a+i+4(t)+ a−i (t)+ a−i+4(t) = 4O.

However, it is “sufficiently in general position” for the following to be true:

Theorem 3.1. If t is sufficiently small and A′(t) is any perturbation of A(t) in general
position, then the graph of triangulations of A′(t) is not connected.

When we say that a point set A′ is a perturbation of another one A with the same
cardinal n and dimension d we mean that all the determinants of d + 1 points that are
not zero in A keep their sign in A′.25 This concept also allows us to be precise as to
how small do we need t to be. Any t such that A(t) is a perturbation of A(0) works.

The proof of Theorem 3.1 will appear in [68]. Here we only give a description of
the combinatorics of A(t) and the ingredients that make the proof work. We look at
A(0) first. In it:

• The projection to the first four coordinates x1, . . . , x4 sends the eight pairs
of points {a+i (t), a+i+4(t)}, and {a−i (t), a−i+4(t)} (i = 1, 2, 3, 4) to the eight
vertices of a 4-dimensional cross-polytope (that is, to the standard basis vectors
and their opposites).

• The projection to the last two coordinates x5, x6 sends the eight pairs of points
{a+i (t), a−i (t)} (i = 1, . . . , 8) to the eight vertices of a regular octagon.

The configuration A(0) already has a disconnected graph of triangulations.

Theorem 3.2. There is a triangulation K of the boundary of conv(A(0)) with the
following two properties:

1. There are triangulations of A(0) inducing K on the boundary.

2. No flip in a triangulation of A(0) inducing K on the boundary affects the
boundary.

In fact, there are eight such triangulations. Hence:

25In oriented matroid language, the oriented matroid of A is a weak image of that of A′.
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Corollary 3.3. The flip-graph of A(0) has at least nine connected components.26

Of course, to describe the triangulation K of the boundary of conv(A0) we need
only specify how we triangulate each non-simplicial facet. The facets of conv(A(0))

are 96 simplices, and 16 non-simplicial facets Fδ1,δ2,δ3,δ4 (δi ∈ {+,−}), each with
eight vertices. More precisely,

Fδ1,δ2,δ3,δ4 = {aδ1
1 (0), a

δ2
2 (0), a

δ3
3 (0), a

δ4
4 (0), a

δ1
5 (0), a

δ2
6 (0), a

δ3
7 (0), a

δ4
8 (0)}.

All the F∗,∗,∗,∗’s are equivalent under affine symmetries of A(0). For example, they
are transitively permuted by the sixteen sign changes on the first four coordinates.
Hence, the crucial point in the proof of Theorem 3.2 is to understand the triangulations
of the point set F+,+,+,+. This point set has dimension d = 5 and only eight (= d+3)
points. In particular, all its triangulations are regular and their graph of flips is a cycle.
Moreover, it is easy to check27 that:

Lemma 3.4. 1. conv(F+,+,+,+) has 12 facets. Eight of them are simplices and
the other four have six points each, forming a (3, 3) circuit. In particular, there are
sixteen ways to triangulate the boundary of F+,+,+,+.

2. F+,+,+,+ has eight triangulations.
3. Each flip in a triangulation of F+,+,+,+ keeps the triangulation induced in

three of the non-simplicial facets and switches the triangulation in the other.

To construct the complex K of Theorem 3.2 we choose the triangulations of the
individual F∗,∗,∗,∗ such that for every non-simplicial facet G of an Fδ1,δ2,δ3,δ4 , the
triangulations chosen on Fδ1,δ2,δ3,δ4 and on the neighbor Fδ′1,δ′2,δ′3,δ′4 agree on G and
one of them has the property that no flip on it changes the triangulation induced in G.
In these conditions, no flip in any of the triangulations of the F∗,∗,∗,∗’s is possible,
since it would be incompatible with the triangulation of one of its neighbors.

Example 3.5. Lemma 3.4 implies, in particular, that only eight of the sixteen tri-
angulations of the boundary of F+,+,+,+ can be extended to the interior (without
using additional interior points as vertices). Similar behavior occurs also in three-
dimensional examples such as the set of vertices of a cube or a triangular prism.

Let us analyze the latter. It has three non-simplicial facets, whose vertex sets are
(2, 2) circuits; in particular, there are eight ways to triangulate its boundary. But only
six of them extend to the interior (all except the two “cyclic” ones). Each flip in a
triangulation of F+,+,+,+ keeps the triangulation induced in two of the non-simplicial
facets and switches the triangulation in the other one.28

26Here, the ninth component is the one containing all the regular triangulations.
27For example, noting that a Gale transform of F+,+,+,+ consists again of the eight vertices of a regular

octagon, except in different order.
28The reader probably has noticed the similarities between this example and the configuration F+,+,+,+.

These similarities, and the fact that the constructions in [64] and [67] are ultimately based on glueing triangular
prisms to one another, reflect the truth in (an instance of) Gian Carlo Rota’s fifth lesson [62].
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Let us now look at the perturbations A(t) and A′(t). The fact that A(t) (or
A′(t)) is a perturbation of A(0) implies that every triangulation of A(0) is still a
geometric simplicial complex on A(t), except it may not cover the whole convex
hull. In particular, the triangulation K of the boundary of conv(A(0)) mentioned in
Theorem 3.2 can be embedded as a simplicial complex on A(t). We still call K this
perturbed simplicial complex. Then, Theorem 3.1 follows from the following more
precise statement.

Theorem 3.6. Let t be a sufficiently small and positive constant. Then:

1. There are triangulations of A(t) containing the simplicial complex K .

2. If T is a triangulation of A(t) containing the simplicial complex K , then every
triangulation obtained from T by a flip contains the simplicial complex K . In
particular, the graph of triangulations of A(t) is not connected.

3. The previous two statements remain true if A(t) is perturbed into general
position in an arbitrary way.
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A survey of Pfaffian orientations of graphs

Robin Thomas∗

Abstract. An orientation of a graph G is Pfaffian if every even cycle C such that G\V (C)

has a perfect matching has an odd number of edges directed in either direction of the cycle.
The significance of Pfaffian orientations is that if a graph has one, then the number of perfect
matchings (a.k.a. the dimer problem) can be computed in polynomial time.

The question of which bipartite graphs have Pfaffian orientations is equivalent to many other
problems of interest, such as a permanent problem of Pólya, the even directed cycle problem, or
the sign-nonsingular matrix problem for square matrices. These problems are now reasonably
well-understood. On the other hand, it is not known how to efficiently test if a general graph is
Pfaffian, but there are some interesting connections with crossing numbers and signs of edge-
colorings of regular graphs.

Mathematics Subject Classification (2000). Primary 05C75; Secondary 05C10, 05C20, 05C38,
05C70, 05C83, 05C85, 68R10, 82B20.

Keywords. Graph, matching, dimer problem, Pfaffian orientation, even directed cycle, brick,
brace, Pólya’s permanent problem, sign-nonsingular matrix, crossing number.

1. Introduction

All graphs in this paper are finite, do not have loops or multiple edges and are undi-
rected. Directed graphs, or digraphs, do not have loops or multiple edges, but may
have two edges between the same pair of vertices, one in each direction. Most of our
terminology is standard and can be found in many textbooks, such as [4], [10], [65].
In particular, cycles and paths have no repeated vertices. A subgraph H of a graph G

is called central if G\V (H) has a perfect matching (we use \ for deletion). An even
cycle C in a directed graph D is called oddly oriented if for either choice of direction
of traversal around C, the number of edges of C directed in the direction of traversal
is odd. Since C is even, this is clearly independent of the initial choice of direction
of traversal. Finally, an orientation D of (the edges of) a graph G is Pfaffian if every
even central cycle of G is oddly oriented in D. We say that a graph G is Pfaffian if it
has a Pfaffian orientation.

The significance of Pfaffian orientations stems from the fact that if a graph G has
one, then the number of perfect matchings of G (as well as other related problems)
can be computed in polynomial time. We survey this in Section 2. The following
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is a classical theorem of Kasteleyn [23]. A special case is implicit in the work of
Fisher [16] and Temperley and Fisher [55]. Different proofs may be found in [25],
[26], [32], [38].

Theorem 1.1. Every planar graph is Pfaffian.

The smallest non-Pfaffian graph is the complete bipartite graph K3,3. This paper
is centered around the question of which graphs are Pfaffian. For bipartite graphs
this is equivalent to many other problems of interest, and is by now reasonably well-
understood. We list several such problems in Section 3, including a question of Pólya
from 1913 whether the permanent of a square matrix can be calculated by a reduction
to a determinant of a related matrix, the even directed cycle problem for digraphs, and
the sign-nonsingular matrix problem. In Section 4 we discuss two characterizations
of bipartite Pfaffian graphs. The first is in terms of excluded obstructions; it turns out
that for bipartite graphs K3,3 is the only obstruction with respect to the “matching
minor” partial order, defined later. This is an analogue of the graph minor relation and
is well-suited for problems involving perfect matchings. Unfortunately, it no longer
has many of the nice properties of the usual minor order. The second characterization
is structural and describes the structure of all bipartite Pfaffian graphs. It turns out
those graphs and only those graphs can be built from planar graphs and one sporadic
nonplanar graph by certain composition operations. This characterization implies a
polynomial-time algorithm to decide whether a bipartite graph is Pfaffian, and hence
solves all the problems listed in Section 3. Applications of the structure theorem are
discussed in Section 5.

We then turn to general graphs. In Section 6 we review a matching decomposition
procedure of Lovász and Plummer that decomposes every graph into “bricks” and
“braces”. The decomposition has the property that a graph is Pfaffian if and only if all
its constituent bricks and braces are Pfaffian. Furthermore, braces are bipartite, and
hence whether they are Pfaffian can be decided using the algorithm of Section 4. Thus
in order to test whether an input graph is Pfaffian it suffices to design an algorithm for
bricks. Motivated by this we present a recent theorem that describes how to construct
an arbitrary brick, and later we discuss various examples and results that were obtained
using this theorem.

In the next section we talk about results of Norine that relate Pfaffian graphs
and crossing numbers. The starting point here is Theorem 7.1 that characterizes
Pfaffian graphs in terms of drawings in the plane. Norine then generalized it to T -
joins, whereby the generalization implies several well-known results about crossing
numbers, and in a different direction proved an analogue for 4-Pfaffian graphs and
drawings in the torus. The latter suggests a general conjecture that is still open.

In Section 8 we discuss the relationship between signs of edge-colorings (in the
sense of Penrose [46]) and Pfaffian orientations. We mention a proof of a conjecture
of Goddyn that in a k-regular Pfaffian graph all k-edge-colorings have the same sign,
which holds more generally for graphs that admit a “Pfaffian labeling.” We present a
partial converse of this, and then describe two characterizations of graphs that admit a
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Pfaffian labeling. The above research led Norine and the author to make the following
conjecture [44].

Conjecture 1.2. Every 2-connected 3-regular Pfaffian graph is 3-edge-colorable.

Let us recall that by Tait’s result [54] (see also [65]) the Four-Color Theorem is
equivalent to the statement that every 2-connected 3-regular planar graph is 3-edge-
colorable. Thus, if true, Conjecture 1.2 would imply the Four-Color Theorem by
Theorem 1.1.

In the last section we discuss the prospects for characterizing general Pfaffian
graphs, either structurally or by means of excluded matching minors.

2. Pfaffian orientations and counting perfect matchings

Pfaffian orientations were invented by the physicists M. E. Fisher, P. W. Kasteleyn,
and H. N. V. Temperley as a tool for enumerating the number of perfect matchings
in a graph (or, in physics terminology, to solve the dimer problem). Let us start
by explaining their approach. Let A = (aij ) be a skew symmetric n × n matrix;
that is aij = −aji . For each partition π = {{i1, j1}, {i2, j2}, . . . , {ik, jk}} of the set
{1, 2, . . . , n} into unordered pairs (“partition into pairs”) we define the quantity

σπ = sgn

(
1 2 3 4 . . . 2k − 1 2k

i1 j1 i2 j2 . . . ik jk

)
ai1j1ai2j2 . . . aikjk

, (1)

where sgn denotes the sign of the indicated permutation. Clearly, there is no partition
into pairs if n is odd. The Pfaffian of A is defined by Pf(A) = ∑

σπ , where the
summation is over all partitions of {1, 2, . . . , n} into pairs. Since A is skew symmetric
the value of σπ does not depend on the order of blocks of π or on the order in which
the members of a block are listed, and hence Pf(A) is well-defined. We will need the
following lemma from linear algebra [23], [37].

Lemma 2.1. If A is a skew symmetric matrix, then det A = (Pf(A))2.

Now let G be a graph with vertex-set {1, 2, . . . , n}, and let D be an orientation
of (the edges of) G. To the orientation D there corresponds a skew adjacency matrix
A = (aij ) of G defined by saying that aij = 0 if i is not adjacent to j , and otherwise
aij = 1 if the edge ij is directed in D from i to j and aij = −1 if the edge ij is
directed in D from j to i. If π is a partition of {1, 2, . . . , n} into pairs, then σπ �= 0 if
and only if each pair in π is an edge of G, or, in other words, π is a perfect matching
of G. Thus the summation in the definition of Pf(A) might as well be restricted to
perfect matchings of G. We define sgnD(M), the sign of a perfect matching M of D,
as σM , or, equivalently, by

sgnD(M) = sgn

(
1 2 3 4 . . . 2k − 1 2k

i1 j1 i2 j2 . . . ik jk

)
, (2)
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where the edges of M are listed as i1j1, i2j2, . . . , ikjk in such a way that it jt is directed
from it to jt in D. It is not hard to see that D is a Pfaffian orientation of G if and
only if sgnD(M) does not depend on M . If that is the case, then |Pf(A)| is equal
to the number of perfect matchings of G, and by Lemma 2.1 the number of perfect
matchings of G can be computed efficiently.

This is significant, because Valiant [63] proved that counting the number of perfect
matchings in general graphs (even in bipartite graphs) is #P-complete, and therefore
is unlikely to be polynomial-time solvable. Furthermore, Theorem 1.1 guarantees
that there is an interesting and useful class of graphs for which this technique can be
applied.

The dimer problem of statistical mechanics is concerned with the properties of a
system of diatomic molecules, or dimers, adsorbed on the surface of a crystal. Usually
it is assumed that the adsorption points form the vertices of a lattice graph, such as
the 2-dimensional grid. A crucial problem in the calculation of the thermodynamic
properties of such a system of dimers is that of enumerating all ways in which a
given number of dimers can be arranged on the lattice without overlapping each
other. In the related monomer-dimer model some sites may be left unoccupied, but
in the dimer model it is assumed that the dimers cover all the vertices of the graph;
in other words, they form a perfect matching. Kasteleyn [21], [22], [23], Fisher [16]
and Temperley and Fisher [55] used the method described in this section to solve the
2-dimensional dimer problem. The method is more general in the sense that it allows
the computation of the dimer partition function, and that, in turn, can be used to solve
the 2-dimensional Ising problem [23]. Let us remark that the 3-dimensional dimer
problem remains open.

3. Some equivalent problems

Vazirani andYannakakis [64] used a deep theorem of Lovász [31] to show the follow-
ing.

Theorem 3.1. The decision problems “Is a given orientation of a graph Pfaffian”
and “Is an input graph Pfaffian” are polynomial-time equivalent.

This is reasonably easy for bipartite graphs. There does not seem to be an elemen-
tary proof for general graphs, but the theorem can be easily deduced from the results
discussed in Section 6.

Computing the permanent of a matrix seems to be of a different computational
complexity from computing the determinant. While the determinant can be calculated
using Gaussian elimination, no efficient algorithm for computing the permanent is
known, and, in fact, none is believed to exist. More precisely, Valiant [63] has shown
that computing the permanent is #P-complete even when restricted to 0-1 matrices.

It is therefore reasonable to ask if perhaps computing the permanent can be some-
how reduced to computing the determinant of a related matrix. In particular, the
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following question was asked by Pólya [47] in 1913. If A is a 0-1 square matrix, does
there exist a matrix B obtained from A by changing some of the 1’s to −1’s in such
a way that the permanent of A equals the determinant of B? For the purpose of this
paper let us say that B (when it exists) is a Pólya matrix for A.

Let G be a bipartite graph with bipartition (X, Y ). The bipartite adjacency matrix
of G has rows indexed by X, columns indexed by Y , and the entry in row x and
column y is 1 or 0 depending on whether x is adjacent to y or not. Vazirani and
Yannakakis [64] proved the following.

Theorem 3.2. Let G be a bipartite graph, and let A be its bipartite adjacency matrix.
Then A has a Pólya matrix if and only if G has a Pfaffian orientation.

Let us turn to directed graphs now. A digraph D is even if for every weight function
w : E(D) → {0, 1} there exists a cycle in D of even total weight. It was shown in [53]
and is not difficult to see that testing evenness is polynomial-time equivalent to testing
whether a digraph has an even directed cycle. (This is equivalent to Theorem 3.1 for
bipartite graphs.) Let G be a bipartite graph with bipartition (A, B), and let M be a
perfect matching in G. Let D = D(G, M) be obtained from G by directing every edge
from A to B, and contracting every edge of M . Little [27] has shown the following.

Lemma 3.3. Let G be a bipartite graph, and let M be a perfect matching in G. Then
G has a Pfaffian orientation if and only if D(G, M) is not even.

We say that two n × m matrices A = (aij ) and B = (bij ) have the same sign-
pattern if for all pairs of indices i, j the entries aij and bij have the same sign; that
is, they are both strictly positive, or they are both strictly negative, or they are both
zero. A square matrix A is sign-nonsingular if every real matrix with the same sign
pattern is nonsingular.

In economic analysis one may not know the exact quantitative relationships be-
tween different variables, but there may be some qualitative information such as that
one quantity rises if and only if another does. For instance, it is generally agreed that
the supply of a particular commodity increases as the price increases, even though
the exact dependence may vary. Thus we may want to deduce qualitative information
about the solution to a linear system Ax = b from the knowledge of the sign-patterns
of the matrix A and vector b. That motivates the following definition. We say that the
linear system Ax = b is sign-solvable if for every real matrix B with the same sign-
pattern as A and every vector c with the same sign-pattern as b the system By = c

has a unique solution y, and its sign-pattern does not depend on the choice of B and c.
The study of sign-solvability was first proposed by Samuelson [51].

It follows from standard linear algebra that sign-solvability can be decided effi-
ciently if and only if sign-nonsingularity can. But for square matrices the latter is
equivalent to testing whether a given orientation of a bipartite graph is Pfaffian. To
state the result, let D be a bipartite digraph with bipartition (X, Y ). The directed
bipartite adjacency matrix of D has rows indexed by X, columns indexed by Y , and
the entry in row x and column y is 1, −1 or 0 depending on whether D has an edge
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directed from x to y, or D has an edge directed from y to x, or x and y are not adja-
cent in D. By Theorem 3.1 the following result implies that testing sign-solvability
is polynomial-time equivalent to testing whether a bipartite graph is Pfaffian.

Theorem 3.4. Let D be a directed bipartite graph with a perfect matching, and let A

be its directed bipartite adjacency matrix. Then A is sign-nonsingular if and only
if D is a Pfaffian orientation of its underlying undirected graph.

The next problem is about hypergraph coloring. A hypergraph H is a pair
(V (H), E(H)), where V (H) is a finite set and E(H) is a collection of distinct
nonempty subsets of V (H). We say that H is 2-colorable if V (H) can be col-
ored using two colors in such a way that every edge includes vertices of both colors.
We say that H is minimally non-2-colorable if H is not 2-colorable, has no isolated
vertices, and the deletion of any member of E(H) results in a 2-colorable hypergraph.
Seymour [52] proved the following.

Theorem 3.5. Let H be a hypergraph with no isolated vertices and |E(H)| = |V (H)|,
let D be the digraph with bipartition (V (H), E(H)) defined by saying that D has an
edge directed from v ∈ V (H) to E ∈ E(H) if and only if v ∈ E, and let G be the
underlying undirected graph of D. Then H is minimally non-2-colorable if and only
if G is connected, every edge of G belongs to a perfect matching of G and D is a
Pfaffian orientation of G.

Our last problem is about the polytope of even permutation matrices. The convex
hull of permutation matrices has been characterized by Birkhoff [3] as precisely the
set of doubly stochastic matrices. It is an open problem to characterize the convex
hull of even permutation matrices. More precisely, it is not known if there exists a
polynomial-time algorithm to test whether a given n × n matrix belongs to this poly-
tope. By a fundamental result of Grötschel, Lovász and Schrijver [19] this problem
is solvable in polynomial time if there exists a polynomial-time algorithm for the
optimization problem: Given a fixed n × n matrix M , find the maximum of M · X

over all even permutation matrices X, where “·” denotes the dot product in R
n2

and
both matrices are regarded as vectors of length n2.

A special case of the above optimization problem when A is a 0-1 matrix and we
want to determine if the maximum is n can be reformulated as follows. Let G be
a bipartite graph with bipartition (A, B), and let D be the orientation of G defined
by orienting every edge from A to B. The problem is: “Decide if G has a perfect
matching M such that sgnD(M) = 1.” By Theorem 3.1 this is polynomial-time
equivalent to deciding whether a bipartite graph has a Pfaffian orientation.

4. Characterizing bipartite Pfaffian graphs

We have seen in the previous section that characterizing bipartite Pfaffian graphs is
of interest. In this section we discuss two such characterizations and a recognition
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algorithm. We begin with an elegant theorem of Little [27]. Let H be a graph, and
let v be a vertex of H of degree two. By bicontracting v we mean contracting both
edges incident with v and deleting the resulting loops and parallel edges. A graph G is
a matching minor of a graph H if G can be obtained from a central subgraph of H by
repeatedly bicontracting vertices of degree two. It is fairly easy to see that a matching
minor of a Pfaffian graph is Pfaffian.

Theorem 4.1. A bipartite graph admits a Pfaffian orientation if and only if it has no
matching minor isomorphic to K3,3.

By Lemma 3.3 the above implies a characterization of even digraphs. Seymour and
Thomassen obtained such characterization from first principles in [53]. Interestingly,
the latter involves infinitely many excluded minors, rather than one.

Unfortunately, Theorem 4.1 does not seem to imply a polynomial-time algorithm
to test whether a bipartite graph is Pfaffian, the difficulty being that it is not clear how
to efficiently test for the presence of a matching minor isomorphic to K3,3. The next
result gives a structural description of bipartite Pfaffian graphs, and can be used to
derive a polynomial-time recognition algorithm. We need some definitions first.

Let G0 be a graph, let C be a central cycle of G0 of length four, and let G1, G2, G3
be three subgraphs of G0 such that G1 ∪ G2 ∪ G3 = G0, and for distinct integers
i, j ∈ {1, 2, 3}, Gi ∩ Gj = C and V (Gi) − V (C) �= ∅. Let G be obtained from G0
by deleting some (possibly none) of the edges of C. In these circumstances we say
that G is a trisum of G1, G2 and G3. The Heawood graph is the bipartite graph
associated with the incidence matrix of the Fano plane (see Figure 1).

Figure 1. The Heawood graph.

A graph G is k-extendable, where k ≥ 0 is an integer, if every matching of size
at most k can be extended to a perfect matching. A connected 2-extendable bipartite
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graph is called a brace. It is easy to see (and will be outlined in Section 6) that the
problem of finding Pfaffian orientations of bipartite graphs can be reduced to braces.
The following was shown in [35] and, independently, in [50].

Theorem 4.2. A brace has a Pfaffian orientation if and only if either it is isomorphic to
the Heawood graph, or it can be obtained from planar braces by repeated application
of the trisum operation.

Let us turn to testing whether a bipartite graph is Pfaffian. We wish to apply
Theorem 4.2, and for that the following result [50, Theorem 8.3] is very helpful.

Theorem 4.3. Let G be a brace that has a Pfaffian orientation, and let G be a trisum
of G1, G2 and G3. Then G1, G2 and G3 have a Pfaffian orientation.

A polynomial-time algorithm now follows easily. Given a bipartite graph G we
first decompose it into braces (more on that in Section 6), and apply the algorithm
recursively to each brace in the decomposition. Thus we may assume that G is a
brace. Now we test if G has a set X ⊆ V (G) of size four such that G\X has at
least three components. If it does, then G can be expressed as a trisum of three
smaller graphs, and by Theorem 4.3 we may apply the algorithm recursively to each
of the three smaller graphs. On the other hand, if G has no set X as above, then by
Theorem 4.2 G is Pfaffian if and only if it is planar or isomorphic to the Heawood
graph. It is clear that this is a polynomial-time algorithm. In [50] it is shown how to
implement it to run in time O(|V (G)|3). By using more modern algorithmic results
the running time can be reduced to O(|V (G)|2).

5. Applications of the characterization of bipartite Pfaffian graphs

As a corollary of Theorem 4.2 we get the following extremal result.

Corollary 5.1. No brace with n ≥ 3 vertices and more than 2n − 4 edges has a
Pfaffian orientation.

Proof. Every planar bipartite graph on n ≥ 3 vertices has at most 2n − 4 edges. The
result follows from Theorem 4.2 by induction. �

Since every digraph is isomorphic to D(G, M) for some G and M , Theorem 4.2
gives a characterization of even directed graphs, using Lemma 3.3. Let us state the
characterization explicitly, but first let us point out a relation between extendability
and strong connectivity. A digraph D is strongly connected if for every two vertices u

and v it has a directed path from u to v. It is strongly k-connected, where k ≥ 1 is an
integer, if for every set X ⊆ V (D) of size less than k, the digraph D\X is strongly
connected. The following is straightforward.
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Lemma 5.2. Let G be a connected bipartite graph, let M be a perfect matching in G,
and let k ≥ 1 be an integer. Then G is k-extendable if and only if D(G, M) is strongly
k-connected.

Let D be a digraph, and let (X, Y ) be a partition of V (G) into two nonempty
sets in such a way that no edge of G has tail in X and head in Y . Let D1 = D\Y
and D2 = D\X. We say that D is a 0-sum of D1 and D2. Now let v ∈ V (D),
and let (X, Y ) be a partition of V (D) − {v} into two nonempty sets such that no
edge of D has tail in X and head in Y . Let D1 be obtained from D by deleting
all edges with both ends in Y ∪ {v} and identifying all vertices of Y ∪ {v}, and
let D2 be obtained by deleting all edges with both ends in X ∪ {v} and identifying all
vertices of X ∪ {v}. We say that D is a 1-sum of D1 and D2. Let D0 be a directed
graph, let u, v ∈ V (D0), and let uv, vu ∈ E(D0). Let D1 and D2 be such that
D1 ∪D2 = D0, V (D1)∩V (D2) = {u, v}, V (D1)−V (D2) �= ∅ �= V (D2)−V (D1)

and E(D1) ∩ E(D2) = {uv, vu}. Let D be obtained from D0 by deleting some
(possibly neither) of the edges uv, vu. We say that D is a 2-sum of D1 and D2. Now
let D0 be a directed graph, let u, v, w ∈ V (D0), let uv, wv, wu ∈ E(D0), and assume
that D0 has a directed cycle containing the edge wv, but not the vertex u. Let D1 and
D′

2 be such that D1∪D′
2 = D0, V (D1)∩V (D′

2) = {u, v, w}, V (D1)−V (D′
2) �= ∅ �=

V (D′
2)−V (D1) and E(D1)∩E(D′

2) = {uv, wv, wu}, let D′
2 have no edge with tail v,

and no edge with head w. Let D be obtained from D0 by deleting some (possibly
none) of the edges uv, wv, wu, and let D2 be obtained from D′

2 by contracting the
edge wv. We say that D is a 3-sum of D1 and D2. Finally let D0 be a directed
graph, let x, y, u, v ∈ V (D0), let xy, xv, uy, uv ∈ E(D0), and assume that D0 has a
directed cycle containing precisely two of the edges xy, xv, uy, uv. Let D1 and D′

2
be such that D1 ∪D′

2 = D0, V (D1)∩V (D′
2) = {x, y, u, v}, V (D1)−V (D′

2) �= ∅ �=
V (D′

2) − V (D1) and E(D1) ∩ E(D′
2) = {xy, xv, uy, uv}, let D′

2 have no edge with
tail y or v, and no edge with head x or u. Let D be obtained from D0 by deleting
some (possibly none) of the edges xy, xv, uy, uv, and let D2 be obtained from D′

2
by contracting the edges xy and uv. We say that D is a 4-sum of D1 and D2. We say
that a digraph is strongly planar if it has a planar drawing such that for every vertex
v ∈ V (D), the edges of D with head v form an interval in the cyclic ordering of
edges incident with v determined by the planar drawing. Let F7 be the directed graph
D(H, M), where H is the Heawood graph, and M is a perfect matching of H . This
defines F7 uniquely up to isomorphism, irrespective of the choice of the bipartition
of H or the choice of M . Lemma 3.3 and Theorem 4.2 imply the following.

Theorem 5.3. A digraph D is not even if and only if it can be obtained from strongly
planar digraphs and F7 by means of 0-, 1-, 2-, 3- and 4-sums.

From Corollary 5.1 and Lemmas 3.3 and 5.2 we deduce the following extremal
result.

Corollary 5.4. Let D be a strongly 2-connected directed graph on n ≥ 2 vertices.
If D has more than 3n − 4 edges, then D is even.
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Corollary 5.4 does not hold for strongly connected digraphs. However, Thomas-
sen [59] has shown that every strongly connected directed graph with minimum in-
and out-degree at least three is even. This is equivalent to the following by Lemma 3.3.

Corollary 5.5. Let G be a 1-extendable bipartite graph such that every vertex has
degree at least four. Then G does not have Pfaffian orientation.

If G is a brace, then the corollary follows from Corollary 5.1; otherwise the
corollary follows by induction using the matching decomposition explained in the
next section. The details may be found in [50, Corollary 7.8].

In [33] McCuaig used Theorem 4.2 to answer a question of Thomassen [58] by
proving the following.

Theorem 5.6. The digraph F7 is the unique strongly 2-connected digraph with no
even cycle.

6. Matching decomposition

We have seen in the preceding sections that the problem of understanding which bi-
partite graphs are Pfaffian is reasonably well-understood and has applications outside
of this subfield. We now turn our attention to the same question for general graphs.
This problem seems much harder, but there are some interesting and unexpected
connections.

The brick decomposition procedure of Lovász and Plummer [32] can be used to
reduce the question of characterizing Pfaffian graphs to “bricks”. The purpose of this
section is to give an overview of this decomposition technique and to discuss recent
additions to it.

A graph is matching covered if it is connected and every edge belongs to a perfect
matching. Clearly, when deciding whether a graph G is Pfaffian we may assume
that G is matching covered, for edges that belong to no perfect matching may be
deleted without affecting the outcome.

Let G be a graph, and let X ⊆ V (G). We use δ(X) to denote the set of edges
with one end in X and the other in V (G) − X. A cut in G is any set of the form δ(X)

for some X ⊆ V (G). A cut C is tight if |C ∩ M| = 1 for every perfect matching M

in G. Every cut of the form δ({v}) in a graph with a perfect matching is tight; those
are called trivial, and all other tight cuts are called nontrivial.

Here are three important examples of tight cuts. Let G be a matching covered
graph. Assume first that G is bipartite with bipartition (A, B), and that G is not a
brace. Then by Hall’s theorem there is a set X ⊆ A such that |N(X)| = |X| + 1 and
N(X) �= B, where N(X) denotes the set of all vertices v ∈ V (G)−X with a neighbor
in X. Then δ(X ∪N(X)) is a nontrivial tight cut. Now assume that G is not bipartite.
If there exist distinct vertices u, v ∈ V (G) such that G\u\v has no perfect matching,
then by Tutte’s 1-factor theorem [61] there exists a nonempty set X ⊆ V (G) such
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that G\X has exactly |X| odd components. Furthermore, by repeatedly adding to X

one vertex from each even component of G\X we may assume that G\X has no even
components. Since G is matching covered no edge of G has both ends in X, and
since G is not bipartite some component of G\X, say C, has more than one vertex.
But then δ(V (C)) is a nontrivial tight cut. Finally, if G is not 3-connected, then let
u, v be distinct vertices of G such that G\u\v is disconnected. Let A be the vertex-set
of a component of G\u\v and let B be the union of all the remaining components.
Notice that if |A| is odd, then G\u\v has no perfect matching. If |A| is even, then
δ(A ∪ {u}) is a nontrivial tight cut.

It is not true that every nontrivial tight cut arises as described above, but Theo-
rem 6.1 below implies that if a graph has a nontrivial tight cut, then it has a nontrivial
tight cut that arises in one of the ways described in the previous paragraph. A brick is
a 3-connected graph G such that G\u\v has a perfect matching for every two distinct
vertices u, v of G.

Let δ(X) be a nontrivial tight cut in a graph G, let G1 be obtained from G by
identifying all vertices in X into a single vertex and deleting all resulting parallel
edges, and let G2 be defined analogously by identifying all vertices in V (G)−X. Then
many matching-related problems can be solved for G if we are given the corresponding
solutions for G1 and G2.

The above decomposition process can be iterated, until we arrive at graphs with
no nontrivial tight cuts. Lovász [31] proved that the list of indecomposable graphs
obtained at the end of the procedure does not depend on the choice of tight cuts made
during the process. These indecomposable graphs were characterized by Edmonds,
Lovász and Pulleyblank [12], [13]:

Theorem 6.1. Let G be a matching covered graph. Then G has no nontrivial tight
cut if and only if G is a brick or a brace.

In light of this theorem and the previous discussion we say that a brick or a brace H

is a brick or a brace of a graph G if H is obtained when the tight cut decomposition
procedure is applied to G.

Vazirani andYannakakis [64] used the tight cut decomposition procedure to reduce
the study of Pfaffian graphs to bricks and braces:

Theorem 6.2. A graph G is Pfaffian if and only if every brick and brace of G is
Pfaffian.

In particular, this justifies our earlier claim that in order to understand Pfaffian
bipartite graphs it suffices to understand Pfaffian braces. Since Pfaffian braces are
characterized by Theorem 4.2, in order to understand Pfaffian graphs it suffices to
understand Pfaffian bricks. We return to this problem later, but in the remainder of
this section we describe a characterization of bricks, developed for the purpose of
studying Pfaffian bricks. We need a few definitions first.

Let G be a graph, and let v0 be a vertex of G of degree two incident with the
edges e1 = v0v1 and e2 = v0v2. Let H be obtained from G by contracting both e1
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and e2 and deleting all resulting parallel edges. We say that H was obtained from G

by bicontracting or bicontracting the vertex v0, and write H = G/v0. Let us say that
a graph H is a reduction of a graph G if H can be obtained from G by deleting an
edge and bicontracting all resulting vertices of degree two. By a prism we mean the
unique 3-regular planar graph on six vertices. The following is a generation theorem
of de Carvalho, Lucchesi and Murty [9].

Theorem 6.3. If G is a brick other than K4, the prism, and the Petersen graph, then
some reduction of G is a brick other than the Petersen graph.

Thus if a brick G is not the Petersen graph, then the reduction operation can be
repeated until we reach K4 or the prism. By reversing the process Theorem 6.3 can
be viewed as a generation theorem.

Theorem 6.3 has interesting applications. First of all, it implies several results
about various spaces generated by perfect matchings, including a deep theorem of
Lovász [31] that characterizes the matching lattice of a graph. Second, it implies
Theorem 3.1 (more precisely the most difficult part of that theorem, namely that it
holds for bricks). Third, it can be used to prove a uniqueness theorem for Pfaffian
orientations [8]:

Theorem 6.4. A Pfaffian orientation of a graph G can be transformed to any other
Pfaffian orientation of G by repeatedly applying the following operations:

(1) reversing the direction of all edges of a cut of G,
(2) reversing all edges with both ends in S for some tight cut δ(S),
(3) reversing the direction of all edges of G.

There is a strengthening of Theorem 6.3, which we now describe. First, the starting
graph can be any matching minor of G except K4 and the prism, and second, reduction
can be replaced by a more restricted operation, the following. We say that a graph H is
a proper reduction of a graph G if it is a reduction in such a way that the bicontractions
involved do not produce parallel edges. Unfortunately, Theorem 6.3 does not hold
for proper reductions, but all the exceptions can be conveniently described. Let us do
that now.

Let C1 and C2 be two vertex-disjoint cycles of length n ≥ 3 with vertex-sets
{u1, u2, . . . , un} and {v1, v2, . . . , vn} (in order), respectively, and let G1 be the graph
obtained from the union of C1 and C2 by adding an edge joining ui and vi for each
i = 1, 2, . . . , n. We say that G1 is a planar ladder. Let G2 be the graph consisting
of a cycle C with vertex-set {u1, u2, . . . , u2n} (in order), where n ≥ 2 is an integer,
and n edges with ends ui and un+i for i = 1, 2, . . . , n. We say that G2 is a Möbius
ladder. A ladder is a planar ladder or a Möbius ladder. Let G1 be a planar ladder as
above on at least six vertices, and let G3 be obtained from G1 by deleting the edge
u1u2 and contracting the edges u1v1 and u2v2. We say that G3 is a staircase. Let
t ≥ 2 be an integer, and let P be a path with vertices v1, v2, . . . , vt in order. Let G4
be obtained from P by adding two distinct vertices x, y and edges xvi and yvj for
i = 1, t and all even i ∈ {1, 2, . . . , t} and j = 1, t and all odd j ∈ {1, 2, . . . , t}.
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Let G5 be obtained from G4 by adding the edge xy. We say that G5 is an upper
prismoid, and if t ≥ 4, then we say that G4 is a lower prismoid. A prismoid is a
lower prismoid or an upper prismoid. We are now ready to state a strengthening of
Theorem 6.3, proved in [43].

Theorem 6.5. Let H, G be bricks, where H is isomorphic to a matching minor of G.
Assume that H is not isomorphic to K4 or the prism, and G is not a ladder, wheel,
staircase or prismoid. Then a graph isomorphic to H can be obtained from G by
repeatedly taking proper reductions in such a way that all the intermediate graphs
are bricks not isomorphic to the Petersen graph.

As a counterpart to Theorem 6.5, [43] describes the starting graphs for the gener-
ation process. Notice that K4 is a wheel, a Möbius ladder, a staircase and an upper
prismoid, and that the prism is a planar ladder, a staircase and a lower prismoid.

Theorem 6.6. Let G be a brick not isomorphic to K4, the prism or the Petersen graph.
Then G has a matching minor isomorphic to one of the following seven graphs: the
graph obtained from the prism by adding an edge, the lower prismoid on eight vertices,
the staircase on eight vertices, the staircase on ten vertices, the planar ladder on ten
vertices, the wheel on six vertices, and the Möbius ladder on eight vertices.

If H is a brick isomorphic to a matching minor of a brick G and G is a ladder,
wheel, staircase or prismoid, then H itself is a ladder, wheel, staircase or prismoid,
and can be obtained from a graph isomorphic to G by taking (improper) reductions in
such a way that all intermediate graphs are bricks. Thus Theorems 6.5 and 6.6 imply
Theorem 6.3. Theorems 6.5 and 6.6 were used to prove two results about minimal
bricks [42], and to generate interesting examples of Pfaffian bricks. We will discuss
some of those later.

McCuaig [34] proved an analogue of Theorem 6.5 for braces and used it in his
proof of Theorem 4.2 in [35]. To state his result we need another exceptional class of
graphs. Let C be an even cycle with vertex-set v1, v2, . . . , v2t in order, where t ≥ 2
is an integer and let G6 be obtained from C by adding vertices v2t+1 and v2t+2 and
edges joining v2t+1 to the vertices of C with odd indices and v2t+2 to the vertices
of C with even indices. Let G7 be obtained from G6 by adding an edge v2t+1v2t+2.
We say that G7 is an upper biwheel, and if t ≥ 3 we say that G6 is a lower biwheel.
A biwheel is a lower biwheel or an upper biwheel. McCuaig’s result is as follows.

Theorem 6.7. Let H, G be braces, where H is isomorphic to a matching minor of G.
Assume that if H is a planar ladder, then it is the largest planar ladder matching
minor of G, and similarly for Möbius ladders, lower biwheels and upper biwheels.
Then a graph isomorphic to H can be obtained from G by repeatedly taking proper
reductions in such a way that all the intermediate graphs are braces.

Actually, Theorem 6.7 follows from a stronger version of Theorem 6.5 proved
in [43].
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7. Crossing numbers and k-Pfaffian graphs

By a drawing � of a graph in a surface � we mean an immersion of G in � such
that edges are represented by homeomorphic images of [0, 1], not containing vertices
in their interiors. Edges are permitted to intersect, but there are only finitely many
intersections and each intersection is a crossing. For edges e, f of a drawing �

let cr(e, f ) denote the number of times the edges e and f cross. For a perfect
matching M let cr�(M), or cr(M) when � is understood from the context, denote∑

cr(e, f ), where the sum is taken over all unordered pairs of distinct edges e, f ∈ M .
The following theorem was proved by Norine [38]. The “if” part was known to
Kasteleyn [23] and was proved by Tesler [56]. Norine’s proof of that implication is
different.

Theorem 7.1. A graph G is Pfaffian if and only if there exists a drawing of G in the
plane such that cr(M) is even for every perfect matching M of G.

The theory of crossing numbers is fairly well-developed, but only few results
involve parity of crossing numbers, and I am not aware of any about crossings of
perfect matchings. The closest relative of Theorem 7.1 seems to be the following
classical result of Hanani [20] and Tutte [62].

Theorem 7.2. Let � be a drawing of a graph in the plane such that cr(e, f ) is even
for every two distinct non-adjacent edges e, f of G. Then G is planar.

In fact, there is a deeper connection between the last two theorems. Norine [40]
generalized Theorem 7.1 to a statement about the parity of self-intersections of differ-
ent T -joins of a graph, and this generalization implies Theorem 7.2 as well as other
results about crossing numbers. We omit the precise statement and instead refer the
readers to [40].

A graph G is k-Pfaffian if there exist orientations D1, D2, . . . , Dk of G and real
numbers α1, α2, . . . , αk such that

∑k
i=1 αisgnDi

(M) = 1 for every perfect match-
ing M of G. Thus if k is fixed and the orientations and coefficients as above are
given, then the number of perfect matchings of G can be calculated efficiently, using
Lemma 2.1. The following was noted by Kasteleyn [23] and proved by Galluccio and
Loebl [17] and Tesler [56].

Theorem 7.3. Every graph that has an embedding in the orientable surface of genus g

is 4g-Pfaffian.

In light of Theorem 7.1 one might speculate that 4-Pfaffian graphs are related to
graphs drawn on the torus subject to the parity condition of Theorem 7.1. That is
indeed true, as shown by Norine [41].

Theorem 7.4. Every 3-Pfaffian graph is Pfaffian. A graph G is 4-Pfaffian if and only
if it can be drawn on the torus such that cr(M) is even for every perfect matching M

of G.
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It is therefore sensible to conjecture a generalization to surfaces of arbitrary genus,
as does Norine in [41]:

Conjecture 7.5. For a graph G and integer g ≥ 0 the following conditions are
equivalent:

(1) There exists a drawing of G on the orientable surface of genus g such that
cr(M) is even for every perfect matching M of G.

(2) The graph G is 4g-Pfaffian.
(3) The graph G is (4g+1 − 1)-Pfaffian.

Norine [41] has shown that every 5-Pfaffian graph is 4-Pfaffian, but his method
breaks down after that.

8. Signs of edge-colorings

In this section we relate signs of edge-colorings (as in Penrose [46]) with “Pfaffian
labelings”, a generalization of Pfaffian orientations, whereby edges are labeled by
elements of an Abelian group with an element of order two.

A graph G is called k-list-edge-colorable if for every set system {Se : e ∈ E(G)}
such that |Se| = k there exists a proper edge coloring c with c(e) ∈ Se for ev-
ery e ∈ E(G). The following famous list-edge-coloring conjecture was suggested
independently by various researchers and first appeared in print in [5].

Conjecture 8.1. Every k-edge-colorable graph is k-list-edge-colorable.

In a k-regular graphGone can define an equivalence relation on k-edge colorings as
follows. Let c1, c2 : E(G) → {1, . . . , k} be two (proper) k-edge colorings of G. For
v ∈ V (G) let πv : {1, . . . , k} → {1, . . . , k} be the permutation such that πv(c1(e)) =
c2(e) for every e ∈ E(G) incident with v, and let c1 ∼ c2 if

∏
v∈V (G) sgn(πv) = 1.

Obviously ∼ is an equivalence relation on the set of k-edge colorings of G and ∼ has
at most two equivalence classes. We say that c1 and c2 have the same sign if c1 ∼ c2
and we say that c1 and c2 have opposite signs otherwise.

A powerful algebraic technique developed by Alon and Tarsi [2] implies [1] that
if in a k-edge-colorable k-regular graph G all k-edge colorings have the same sign
then G is k-list-edge-colorable. In [14] Ellingham and Goddyn prove the following
theorem.

Theorem 8.2. In a k-regular planar graph all k-edge colorings have the same sign.
Therefore every k-edge-colorable k-regular planar graph is k-list-edge-colorable.

Goddyn [18] conjectured that Theorem 8.2 generalizes to Pfaffian graphs. This
turned out to be true, even for the somewhat larger class of graphs that admit Pfaffian
labelings. Let us introduce those graphs now.

Let � be an Abelian multiplicative group, let 1 be the identity of � and let −1
be some element of order two in �. Let G be a graph with V (G) = {1, 2, . . . , n},
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and let D be the orientation of G in which every edge ij is oriented from i to j ,
where i < j . Let us recall that sgnD(M) was defined in Section 2. We say that
l : E(G) → � is a Pfaffian labeling of G if for every perfect matching M of G,
sgnD(M) = ∏

e∈M l(e). We say that G admits a Pfaffian �-labeling if there exists a
Pfaffian labeling l : E(G) → � of G. We say that G admits a Pfaffian labeling if G

admits a Pfaffian �-labeling for some Abelian group � as above. It is easy to see that
a graph G admits a Pfaffian Z2-labeling if and only if G admits a Pfaffian orientation.
Note also that the existence of a Pfaffian labeling of a graph does not depend on the
ordering of its vertices. The results of the remainder of this section are from [44].

Theorem 8.3. Let G be a k-regular graph with V (G) = {1, . . . , 2n}. If G admits a
Pfaffian labeling then all k-edge-colorings of G have the same sign.

Using the theory of Alon and Tarsi mentioned above this implies a proof of God-
dyn’s conjecture:

Corollary 8.4. Every k-edge-colorable k-regular graph that admits a Pfaffian label-
ing is k-list-edge-colorable.

Theorem 8.3 has the following partial converse.

Theorem 8.5. If a graph G does not admit a Pfaffian labeling then there exist an
integer k, a k-regular multigraph G′ whose underlying simple graph is a spanning
subgraph of G and two k-edge colorings of G′ of different signs.

The above two theorems suggest the study of graphs that admit a Pfaffian labeling.
First, there is an analogue of Theorem 6.2.

Lemma 8.6. Let � be an Abelian group. A matching covered graph G admits a
Pfaffian �-labeling if and only if each of its bricks and braces admits a Pfaffian
�-labeling.

Thus it suffices to characterize bricks and braces that have a Pfaffian labeling. The
Petersen graph is not Pfaffian, but it admits a Pfaffian μ4-labeling, where μn is the
multiplicative group of the nth roots of unity. Figure 2 shows an example of such a
labeling. Using Theorems 6.3 and 6.7 it is not hard to show that the Petersen graph is
the only brick or brace with that property. Using Lemma 8.6 we obtain:

Theorem 8.7. A graph G admits a Pfaffian labeling if and only if every brick and
brace in its decomposition is either Pfaffian or isomorphic to the Petersen graph. If
G admits a Pfaffian �-labeling for some Abelian group � then G admits a Pfaffian
μ4-labeling.

The last result of this section characterizes graphs that admit a Pfaffian labeling in
terms of their drawing in the projective plane. We say that a region C of the projective
plane is a crosscap if its boundary is a simple closed curve and its complement is a
disc. We say that a drawing � of a graph G in the projective plane is proper with
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Figure 2. A μ4-labeling of the Petersen graph.

respect to the crosscap C if no vertex of G is mapped to C and for every edge e ∈ E(G)

intersecting C and every crosscap C′ ⊆ C the image of e intersects C′.

Theorem 8.8. A graph G admits a Pfaffian labeling if and only if there exists a cross-
cap C in the projective plane and a proper drawing � of G in the projective plane with
respect to C such that |M ∩ S| and cr�(M) are even for every perfect matching M

of G, where S ⊆ E(G) denotes the set of edges whose images intersect C.

9. On characterizing Pfaffian graphs

Norine’s theorem, Theorem 7.1, is a beautiful result, but, unfortunately, does not
seem to help testing whether a graph is Pfaffian. Theorems 4.1 and 4.2 suggest two
possible ways of characterizing Pfaffian graphs, but neither has been carried out, and
there appear to be serious difficulties.

Fischer and Little [15] extended Theorem 4.1 as follows. A matching covered
graph is near bipartite if it has two edges whose deletion makes the graph bipartite
and matching covered. Let Cubeplex be the graph obtained from the (skeleton of the
3-dimensional) cube by subdividing three edges of a perfect matching and adding
a vertex of degree three adjacent to the three resulting vertices, and let Twinplex be
obtained from the Petersen graph by subdividing two edges that form an induced
matching and joining the resulting vertices by an edge. This defines both graphs
uniquely up to isomorphism. We say that a graph is a weak matching minor of another
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if the first can be obtained from a matching minor of the second by contracting odd
cycles and deleting all resulting loops and parallel edges.

Theorem 9.1. A near bipartite graph is Pfaffian if an only if it has no weak matching
minor isomorphic to K3,3, Cubeplex or Twinplex.

Let us say that a graph G is minimally non-Pfaffian if G is not Pfaffian but every
proper weak matching minor of G is. Thus K3,3, Cubeplex and Twinplex are mini-
mally non-Pfaffian, and so is the Petersen graph, as is easily seen. Fischer and Little
(private communication) conjectured that those are the only minimally non-Pfaffian
graphs; in other words they conjectured that upon adding the Petersen graph to the list
of excluded weak matching minors, Theorem 9.1 holds for all graphs. Unfortunately,
that is not the case. Here is an infinite family of minimally non-Pfaffian graphs [45].

Let k ≥ 2, let C2k+1 be the cycle of length 2k + 1 with vertices 1, 2, . . . , 2k + 1
in order, and let M be a matching in C, possibly empty. Let the graph G(k, M) be
defined by saying that its vertex-set is {u1, u2, . . . , u2k+1, v1, v2, . . . , v2k+1, w1, w2}
and that G(k, M) has the following edges, where index arithmetic is taken modulo
2k + 1:

• uivi for all i = 1, 2, . . . , 2k + 1,
• uiui+1 and viw2 if {i, i + 1} �∈ M ,
• viw1 if {i − 1, i} �∈ M ,
• uivi+1 and viui+1 if {i, i + 1} ∈ M .

Notice that the graph G(2, {{1, 2}, {3, 4}}) is isomorphic to Cubeplex.

Theorem 9.2. For every integer k ≥ 2 and every matching M of C2k+1 the graph
G(k, M) is minimally non-Pfaffian.

Thus an extension of Theorem 9.1 to all graphs would have to involve infinitely
many excluded weak matching minors. On the other hand, as noted in [45], the family
G(k, M) suggests a possible weakening of the weak matching minor ordering, and it
is possible that if weak matching minor is replaced by this weakening, then the list of
excluded might be finite (and of a reasonable size).

There is also the possibility of extending Theorem 4.2 to all graphs. That could
be potentially very profitable, because it might lead to a polynomial-time recognition
algorithm, but the prospects for that are not very bright. The class of planar graphs
can be enlarged to a bigger class of Pfaffian graphs defined by means of surface
embeddings. Let us say that an embedding of a graph G in the Klein bottle is cross-
cap-odd if every cycle C in G that does not separate the surface is odd if and only if it
is 1-sided. If G is embedded in the Klein bottle with all faces even (that is, bounded by
a walk of even length), then the embedding is cross-cap-odd if and only if the 1-sided
cycles are precisely the odd cycles in G. Please note that every planar graph can be
embedded in the Klein bottle so that the embedding will be cross-cap-odd, and every
embedding of a non-bipartite graph in the projective plane with all faces even may
be regarded as a cross-cap-odd embedding in the Klein bottle. The following result,
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proved in [39], resulted from earlier conversations of the author with Neil Robertson
and Paul Seymour. By the remark above it implies Theorem 1.1.

Theorem 9.3. Every graph that admits a cross-cap-odd embedding in the Klein bottle
is Pfaffian.

It may seem reasonable to expect an analogue of Theorem 4.2, something along
the lines that every Pfaffian brick can be obtained from graphs that admit a cross-cap-
odd embedding in the Klein bottle and a few sporadic exceptional graphs by means of
certain composition operations. Unfortunately, the following construction of Norine
seems to give a counterexample.

Theorem 9.4. For every integer n ≥ 1 there exists a Pfaffian brick that has a subgraph
isomorphic to Kn.

There is a chance that a notion analogous to tree-width can help us get around
Norine’s construction. A tree is ternary if all its vertices have degree one or three; the
vertices of degree one are called leaves. A matching decomposition of a graph G is a
pair (T , τ ), where T is a ternary tree and τ is a bijection from the set of leaves of T to
V (G). For an edge e ∈ E(T ) fix one of the two components of T \e, and let Ve be the
set of all leaves of T that belong to that component. We define the width of e as the
maximum, over all perfect matchings M of G, of |δ(τ (Ve))∩M|. We define the width
of (T , τ ) as the maximum width of an edge of T , and we define the matching-width
of a graph G as the minimum width of a matching decomposition of G. The graphs
Norine constructed in the proof of Theorem 9.4 all have low matching-width, and
so that leaves open the possibility that Pfaffian graphs of high matching-width might
exhibit more structure. Further, Norine [39] describes a polynomial-time algorithm
to test whether an input graph G is Pfaffian, assuming a matching decomposition of G

of bounded width is given as part of the input instance. Thus there is some hope, but
at the moment it is not clear if these ideas can be turned into a meaningful theorem or
a polynomial-time algorithm to test whether an input graph is Pfaffian. The following
conjecture of Norine and the author [39], modeled after the excluded grid theorem of
Robertson and Seymour [48] (see also [11], [49]), seems relevant.

Conjecture 9.5. There exists a function f such that every graph of matching-width
at least f (k) has a matching minor isomorphic to the 2k × 2k grid.
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Determinant versus permanent

Manindra Agrawal

Abstract. We study the problem of expressing permanents of matrices as determinants of
(possibly larger) matrices. This problem has close connections to the complexity of arithmetic
computations: the complexities of computing permanent and determinant roughly correspond
to arithmetic versions of the classes NP and P respectively. We survey known results about their
relative complexity and describe two recently developed approaches that might lead to a proof of
the conjecture that the permanent can only be expressed as the determinant of exponential-sized
matrices.

Mathematics Subject Classification (2000). Primary 68Q17; Secondary 68W30.

Keywords. Arithmetic computation, complexity classes, determinant, permanent.

1. Introduction

The determinant of square matrices plays a fundamental role in linear algebra. It
is a linear function of rows (and columns) of the matrix, and has several nice inter-
pretations. Geometrically it is the volume of the parallelopied defined by rows (or
columns) of the matrix, and algebraically it is the product of all eigenvalues, with
multiplicity, of the matrix. It also satisfies a number of other interesting properties,
e.g., it is multiplicative, invariant under linear combinations of rows (and columns)
etc. The permanent of a square matrix is a number that is defined in a way similar to
the determinant. For a matrix X = [xi,j ]1≤i,j≤n,

per X =
∑
π∈Sn

n∏
i=1

xi,π(i),

where Sn is the symmetric group on n elements. The only difference to the determinant
is in the signs of terms:

det X =
∑
π∈Sn

sgn(π) ·
n∏

i=1

xi,π(i),
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where sgn(π) ∈ {1, −1} is the sign of the permutation π .1 Despite the similarity in
definition, the permanent has much fewer properties than the determinant. No nice
geometric or algebraic interpretation is known for permanent; and it is neither mul-
tiplicative nor invariant under linear combinations of rows or columns. Perhaps for
this reason, permanents did not get much attention until the late 1970s, and just about
everything known about it until then is in the book [10]. In 1979, Leslie Valiant [24]
completely changed the view on permanents by showing that the complexity of com-
puting permanent precisely captures the arithmetic version of the class NP, called
VNP. Since then, properties of the permanent have been extensively studied by com-
plexity theorists.

One of the most natural questions about permanents is to investigate its relationship
with determinants. It is easy to see that the determinant of a matrix X can be expressed
as the permanent of a related matrix X̂ whose entries are 0, 1, or xi,j s and which is of
size O(n) (set up entries of X̂ such that det X̂ = det X and the product corresponding
to every permutation that has an even cycle is zero). For the converse, the best known
bound on the size of a matrix X̂ whose entries are constants and xi,j s, and for which
det X̂ = per X is 2�(n). This suggests that the complexity of computing the permanent
is much higher than that of the determinant. Although widely believed, this remains
a conjecture. This conjecture has a close connection to the conjectured separation
of arithmetic NP from arithmetic P (the class of all functions that can be efficiently
computed by arithmetic operations, see next section for a precise definition). It is
known that the complexity of determinant is close to the complexity of arithmetic P:
every function computed by n arithmetic operations can be expressed as determinant
of a matrix of size nO(log n). This lends more importance to the problem of settling
the conjecture.

There have been some attempts to answer the conjecture positively [14], [6], [15]
[8]. A sequence of arithmetic operations can be modeled as an arithmetic circuit,
and the size of an arithmetic circuit is the number of arithmetic operations in the
sequence. In [8], monotone circuits were considered, these are circuits in which no
constant is negative. For computability by such restricted circuits, an exponential
lower bound was shown for the complexity of permanent. A different restriction on
arithmetic circuits is that of depth – the number of layers of operations. These circuits
were considered in [14], [19], [6] and lower bounds were shown for the complexity
of computing permanent by depth three circuits. Finally, [15] considers yet another
restriction. In this restriction, every gate of the circuit is required to compute a multi-
linear polynomial. A superpolynomial lower bound is shown on formulas (circuits
with outdegree one) of this kind computing permanent.

All the above lower bounds hold for very restricted settings, and the techniques
used do not seem to generalize. Over the last few years, however, two new tech-

1Both permanent and determinant are special forms of immanents defined as immχ X = ∑
π∈Sn

χ(π) ·∏n
i=1 xi,π(i) where χ : Sn �→ C is a character of Sn. For the permanent, χ = id and for the determinant, χ

equals the sign of the permutation.
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niques have been proposed that hold some promise. The first of these was proposed
by Mulmuley and Sohoni [11]. They transform the problem to algebraic geometry
domain where it is reduced to showing that the permanent polynomial does not lie in
the closure of a certain orbit of the determinant polynomial.

The second approach was proposed by Kabanets and Impagliazzo [9]. They re-
duced the problem to that of finding a deterministic, subexponential-time algorithm
for the Identity Testing. The Identity Testing problem is defined as follows: given
an arithmetic circuit computing polynomial p in n variables, test if p = 0. There
exist several randomized polynomial-time algorithms for solving this. Kabanets and
Impagliazzo show that any deterministic, subexponential-time algorithm for the prob-
lem will imply either a superpolynomial lower bound for arithmetic circuits comput-
ing permanent, or a boolean lower bound on the class NEXP. This connection was
strengthened in [1] to show that if there exist special kinds of deterministic algorithms
for testing identities given by superconstant depth arithmetic circuits, then permanent
requires superpolynomial sized arithmetic circuits.

In this article, we will describe the known results on lower bounds on permanent
as well as the two new approaches outlined above.

2. Definitions

Q, R, and C are respectively the fields of rational, real, and complex numbers.
An arithmetic circuit over a field F is a directed, acyclic graph with labelled

vertices. Vertices of indegree zero are labelled with either a variable xi or a constant
from F . Vertices labelled with variables are called input gates. The remaining vertices
are labelled with either ‘+’ or ‘∗’ and are called addition or multiplication gates
respectively. Vertices with outdegree zero are also called output gates. We restrict
our attention to circuits with exactly one output gate. The fanin of a gate equals the
number of edges incident to the gate. In this article, gates have unbounded fanin when
not mentioned otherwise. The size of a circuit C equals the number of gates in it.
The depth of a circuit C equals the length of the longest path from an input gate to an
output gate. The degree of C is inductively defined as follows: the degree of an input
gate is one or zero depending on whether it is labelled by a variable or constant; the
degree of an addition gate is the maximum of the degree of the gates whose edges are
incident to the gate; the degree of a multiplication gate is the sum of the degrees of
the gates whose edges are incident to the gate; finally, the degree of C is the degree
of its output gate.

An arithmetic circuit C computes a polynomial as follows. The polynomial com-
puted at an input gate equals the label of the gate. For any other gate g, let g1, . . . , gk

be all the gates that have an edge incident to g and let pgi
be the polynomial com-

puted at gate gi . Then the polynomial computed at the gate g equals
∑k

i=1 pgi
if g is

an addition gate, and equals
∏k

i=1 pgi
if g is a multiplication gate. The polynomial
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computed by the circuit is the polynomial computed at its output gate.
Let {pn}n>0 be a family of polynomials with pn a polynomial of degree d(n)

in n variables. A circuit family {Cn}n>0 is said to compute {pn} if for every n, the
polynomial computed by Cn equals pn. In the following we shall simply write {pn}
for the family {pn}n>0.

Arithmetic branching programs are a restricted form of arithmetic circuits in which
every multiplication gate has fanin exactly two, and in addition at least one of the two
gates, from which edges are incident to the multiplication gate, is an input gate. Such
circuits are also called skew circuits.

The class VPF , the arithmetic analog of class P, is defined to be the set of polyno-
mial families {pn} over a field F such that (1) each pn is of degree nO(1), and (2) there
exists a circuit family {Cn} computing {pn} such that Cn is of size nO(1).2 The class
VNPF , the arithmetic analog of class NP, is defined to be the set of polynomial fam-
ilies {pn} over a field F such that (1) each pn is of degree nO(1), and (2) there exists
a family of polynomials {qn} ∈ VPF such that for every n,

pn(x1, x2, . . . , xn) =
1∑

y1=0

1∑
y2=0

· · ·
1∑

ym=0

qn+m(x1, x2, . . . , xn, y1, y2, . . . , ym)

with m = nO(1).3

Given two polynomials p(x1, x2, . . . , xn) and q(y1, y2, · · · , ym) over a field F ,
we say that p is a projection of q if p(x1, x2, . . . , xn) = q(α1, α2, · · · , αm) where
each αi ∈ F ∪ {x1, x2, . . . , xn}. Given two polynomial families {pn} and {qn}, we
say that {pn} is a p-projection of {qn} if for every n there exists an m = nO(1) such
that pn is a projection of qm.4

Let perF = {perF,n} and detF = {detF,n} denote the families of permanent and
determinant polynomials over a field F respectively. Both these families contain
polynomials in n2 variables for each n.

Valiant [24] proved that:

Theorem 2.1 ([24]). For any F , perF ∈ VNPF . In addition, for any F , char(F ) �= 2,
for any polynomial family {pn} in VNPF , {pn} is a p-projection of perF .

So permanent is as hard to compute as any polynomial family in VNP. In contrast,
determinant can be computed efficiently. A nice characterization of determinant was
shown in [4], [21], [25]:

Theorem 2.2 ([4], [21], [25]). For any F , detF can be computed by polynomial-
sized arithmetic branching programs. In addition, for any F and for any polynomial

2In addition, circuit Cn must be efficiently computable given 1n. This property does not seem to play any
role in obtaining lower bounds.

3The class #PF is the ‘functional’ version of the class VNPF : a polynomial family {pn} ∈ VNPF belongs to
#PF when for each n, pn is viewed as a map from Fn to F .

4Again, given 1n, the projection specified by (α1, α2, . . . , αm) should be efficiently computable.
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family {pn} computed by polynomial-sized arithmetic branching programs, {pn} is a
p-projection of detF .

In fact, all families in VP are almost p-projections of determinant.

Theorem 2.3 ([23]). Let C be a circuit of size s computing a polynomial of degree d.
There exists another circuit computing the same polynomial of size sO(1) and depth
O(log s + log d).

Corollary 2.4. Any circuit family in VPF can be computed by circuit families of
polynomial size and logarithmic depth.

Corollary 2.5. For every circuit family {pn} ∈ VPF and for every n, pn is a projection
of detF,m where m = nO(log n).

The above characterizations of complexities of determinant and permanent imply
that, in order to separate VPF from VNPF , it is enough to show that perF is not an
almost p-projection of detF (in the sense above).

3. Known lower bounds on permanent

Lower bounds are known on permanent only for restricted circuits. In this section,
we describe important lower bounds of this kind. Three major restrictions have been
considered for proving such lower bounds: monotone circuits, constant depth circuits,
and multilinear formulas.

3.1. Monotone circuits. A circuit over Q or R is monotone if all the constants in the
circuit are non-negative. This is a very restricted class of circuits since no cancellations
can occur in it. Jerrum and Snir [8] showed that any monotone circuit family that
computes permanent must have exponential size.

3.2. Constant depth circuits. In this restriction, the depth of a circuit family is fixed,
i.e., it is independent of n. Permanent (or any polynomial of degree nO(1) for that
matter) can be computed by an exponential size depth two circuit family. Conversely,
it is easy to see that any depth two circuit family computing permanent must have
exponential size.

Depth three circuit families are, however, non-trivial. A depth three circuit can be
of the form “sum-of-products-of-sums” or “product-of-sums-of-products.” The latter
form can easily be seen to require exponential size to compute permanent (the topmost
multiplication gate can be shown to be redundant transforming the circuit to a depth
two circuit). Circuit families of the first form are powerful: Ben Or observed that
they can efficiently compute all symmetric polynomials of degree nO(1) over fields
of characteristic zero.
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The best known lower bound in fields of characteristic zero is by Shpilka and
Wigderson [19] who proved that permanent (and determinant) requires a circuit family
of size �(n2). Their idea is to consider the space spanned by all partial derivatives
of the polynomials computed at each gate of a given circuit. They show that for a
depth three circuit with small size, the space spanned by the derivatives of the output
polynomial would be of small dimension while the space spanned by derivatives of
permanent is of large dimension.

Over finite fields, the situation is better. Grigoriev and Razborov [6] showed an
exponential lower bound on the size of depth three circuit families computing de-
terminant and permanent. Their approach was to show that polynomial computed
by a depth three circuit of small size can be ‘approximated’ by a low-degree poly-
nomial (approximated in the sense that the two polynomials agree on a large set of
points from the field). Then they observed that determinant and permanent cannot be
approximated by low-degree polynomials.

3.3. Multilinear formulas. Multilinear formulas are circuits such that (1) the out-
degree of every gate is at most one, and (2) the polynomial computed at every gate
is multilinear. Such circuits have severely limited multiplication gates – the poly-
nomials input to a multiplication gate must be over disjoint sets of variables. Using
a combination of partial derivative technique and random restrictions (setting some
input variables to random values), Raz [15] proved a lower bound of n�(log n) on the
size of families of multilinear formulas computing permanent and determinant.

4. The algebraic geometry approach

Mulmuley and Sohoni [11] have offered a completely new approach to the problem
of proving a lower bound on permanent for unrestricted circuits by transforming the
problem to geometric settings. In this section, we give a brief overview of their
approach.

Suppose, for F = Q, perF,n is a projection of detF,m, m > n. Define p̂erF,m =
xm−n

m2 · perF,n. It follows that p̂erF,m is also a projection of detF,m (just multiply all
constants of the projection by xm2 ). This can be written as

p̂erF,m(x1, x2, . . . , xm2) = A · detF,m = detF,m((x1, x2, . . . , xm2) · A),

where A is an m2×m2 matrix over Q. The matrix A is singular whenever m > n since
the variables xn2+1, . . ., xm2−1 do not occur in p̂erF,m. Let Aε̄ be a slight ‘perturbation’
of A obtained by adding εi,j to the (i, j)th entry of A. For nearly all values of ε̄ close to
zero, Aε̄ is non-singular and the polynomial Aε̄ ·detF,m approximates the polynomial
p̂erF,m very well (all the coefficients of two polynomials are close to each other). Now

consider the space V = CM with M = (
m2+m−1

m

)
. Every homogeneous polynomial of

degree m in m2 variables can be viewed as a point in this space (degree m monomials
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forming the basis). So both detF,m and p̂erF,m are points in V (since F = Q and both
polynomials are of degree m in m2 variables). Let O be the orbit of detF,m under the
action of GLm2(C), i.e.,

O = {B · detF,m | B is an invertible matrix over C}.
Set O can be viewed as a set of points in V . The above argument shows the following:

Lemma 4.1 ([11]). If perF,n is a projection of detF,m then the point corresponding
to p̂erF,m in V lies in the closure of the set O in V . Conversely, if p̂erF,m lies in the
closure of O then perF,n can be approximated by projections of detF,m to any desired
accuracy.

This (near) characterization is the starting point of their approach. Instead of V ,
we can work in the projective space P(V ) too since both the polynomials are homoge-
neous. The same near characterization holds in P(V ) as well with GLm2(C) replaced
by SLm2(C), the group of all matrices with determinant 1. The advantage of working
in P(V ) is that the closure of O (under the classical Euclidean topology) coincides
with the closure of O under Zariski topology [12]. In Zariski topology, there is the
well-studied notion of stability that captures this problem: detF,m is p̂erF,m-stable
under SLm2(C) if p̂erF,m lies in the closure of the orbit O (we abuse notation here
by using the same names for polynomials and sets in P(V ) as for the corresponding
ones in V ).

Points in the orbit O have a useful property. For any point p ∈ P(V ), let

Gp = {A ∈ SLm2(C) | A · p = p}.
The group Gp is called the stabilizer of p.

Lemma 4.2. For any point p ∈ O, Gp is a conjugate of GdetF,m
.

Proof. Let p = B · detF,m ∈ O. Then Gp = B · GdetF,m
· B−1. �

Suppose the orbit of the polynomial p̂erF,m under SLm2(C) is a closed set (such
polynomials are called stable). Let Q be the orbit of p̂erF,m under SLm2(C). By
Luna’s slice theorem, there is a neighborhood N of Q such that for any point p ∈ N ,
Gp is a conjugate of a subgroup of Gp̂erF,m

. Since the closure of O contains p̂erF,m,
there is a point in N , say q, such that q = B · detF,m. This means Gq is a conjugate
of GdetF,m

. Therefore, GdetF,m
is a conjugate of a subgroup of Gp̂erF,m

. On the other
hand, it is well known that GdetF,m

is ‘larger’ than Gp̂erF,m
: GdetF,m

is characterized
by the transformations of the kind X �→ A · X · B−1 where A, B ∈ GLm(C) while
Gp̂erF,m

is characterized by the transformations of the kind X �→ A · X · B−1 where
A, B ∈ GLm(C) and both A and B are either diagonal or permutation matrices.
Therefore, GdetF,m

cannot be a conjugate of a subgroup of Gp̂erF,m
. (This is a rough

argument; to make it precise, more work is needed.)
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Unfortunately, p̂erF,m is not stable (interestingly, perF,n is stable in the smaller
dimensional space defined by degree n homogeneous polynomials in n2 variables;
the translation to higher dimensional space ruins the stability). Mulmuley and Sohoni
define the notion of partial stability and show that p̂erF,m is partially stable. Now
their aim is to make the above argument work even for partially stable points. A more
detailed explanation of their approach is in [16].

5. The derandomization approach

Kabanets and Impagliazzo [9] have discovered another new approach for proving
lower bounds on permanent. Unlike the previous one, this approach is based on
arithmetic circuits. In this section we outline their approach and its variation in [1].

The Identity Testing problem is defined as follows: given an arithmetic circuit C

over a field F as input, decide if the polynomial computed by the circuit is the zero
polynomial. This is a classical problem in computational algebra and there exist
several randomized polynomial-time algorithms for it. Perhaps the simplest one is by
Schwartz and Zippel [17], [26]: randomly choose values for variables of C from a set
in F of size 2d, here d is the degree of C (if |F | < 2d then extend F slightly); output
ZERO if C evaluates to zero, otherwise NON-ZERO. An easy argument shows that
this test is correct with probability at least 1

2 when C computes a non-zero polynomial
and always correct when C computes a zero polynomial.

Kabanets and Impagliazzo show that if there exists a deterministic subexponential
(= 2no(1)

) time algorithm for solving Identity Testing problem then at least one of the
following two lower bounds hold:

1. NEXP requires superpolynomial sized boolean circuits.

2. Permanent requires superpolynomial sized arithmetic circuits.

To see this, suppose that permanent has polynomial sized arithmetic circuits for
some field F of characteristic different from two. Consider a non-deterministic ma-
chine that, on input 1n, guesses the circuit that computes perF,n and verifies it to
be correct. It does this by inductively verifying that the circuit, under appropriate
settings of its inputs, computes perF,n−1 correctly and then verifying the equation for
perF,n that expresses it in terms of perF,n−1. Verifying the equation is an instance of
Identity Testing problem and so can be done in subexponential time by assumption.
Therefore, given any matrix A ∈ Fn2

, per A can be computed in non-deterministic
subexponential time. Now assume that NEXP has polynomial sized boolean circuits.
By [3], [22], it follows that NEXP ⊆ P#P. Since the complexity of #P is exactly the
complexity of computing permanent, it follows that NEXP is in non-deterministic
subexponential time contradicting the non-deterministic time hierarchy theorem [18].

This result falls short of pointing a way for proving lower bounds on permanent –
besides finding a deterministic algorithm for Identity Testing, one needs to assume
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NEXP has polynomial sized boolean circuits which is very unlikely to be true. How-
ever, it does point to a connection between Identity Testing problem and permanent
lower bounds. This connection was strengthened in [1] by defining pseudo-random
generators for arithmetic circuits. Pseudo-random generators in the boolean settings
have been studied intensively (see, e.g., [5], [13], [7], [20]). It is known that construct-
ing pseudo-random generators is equivalent to proving lower bounds in the boolean
settings. In [1], pseudo-random generators are defined in arithmetic settings and a
similar equivalence is observed.

Let ACF be the class of all arithmetic circuits over F and AF ⊆ ACF .

Definition 5.1. A function f : N → (F [y])∗ is called an (�(n), n)-pseudo-random
generator against AF if the following holds:

• f (n) ∈ (F [y])n+1 for every n > 0.

• Let f (n) = (f1(y), . . . , fn(y), g(y)). Then each fi(y) as well as g(y) is a
polynomial of degree at most 2�(n).

• For any circuit C ∈ AF of size n with m ≤ n inputs:

C(x1, x2, . . . , xm) = 0 iff C(f1(y), f2(y), . . . , fm(y)) = 0 (mod g(y)).

A direct application of Schwartz–Zippel lemma [17], [26] shows that there always
exist (O(log n), n)-pseudo-random generators against ACF . Call such generators
optimal pseudo-random generators. Pseudo-random generators that can be efficiently
computed are of special interest.

Definition 5.2. An (�(n), n)-pseudo-random generator f against AF is efficiently
computable if f (n) is computable in time 2O(�(n)).

An easy argument shows that if there exists an efficiently computable (�(n), n)-
pseudo-random generator against ACF then the Identity Testing problem can be
solved deterministically in time 2O(�(n)): evaluate the given circuit C of size n mod-
ulo g(y) after substituting for the ith input variable the polynomial fi(y) where
f (n) = (f1(y), . . . , fn(y), g(y)). In particular, if there exists an efficiently com-
putable optimal pseudo-random generator against ACF then Identity Testing can be
solved in polynomial time.

An efficiently computable pseudo-random generator also results in a lower bound.

Theorem 5.3 ([1]). Let f be an efficiently computable (�(n), n)-pseudo-random gen-
erator against AF . Then there is a multilinear polynomial in 2�(n) variables, com-
putable in time 2O(�(n)), that cannot be computed by any circuit in AF of size n.

Proof. For any m = �(n), define the polynomial qf (x1, x2, . . . , x2m) by

qf (x1, x2, . . . , x2m) =
∑

S⊆[1,2m]
cS ·

∏
i∈S

xi.
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The coefficients cS satisfy the condition
∑

S⊆[1,2m]
cS ·

∏
i∈S

fi(y) = 0

where f (n) = (f1(y), f2(y), . . . , fn(y), g(y)). Such a qf always exists as the fol-
lowing argument shows.

The number of coefficients of qf are exactly 22m. These need to satisfy a
polynomial equation of degree at most 2m · 2m. So the equation gives rise
to at most 2m · 2m + 1 homogeneous constraints on the coefficients. Since
(2m · 2m + 1) < 22m for m ≥ 3, there is always a non-trivial polynomial qf

satisfying all the conditions.

The polynomial qf can be computed by solving a system of 2O(m) linear equations
in 2O(m) variables over the field F . Each of these equations can be computed in time
2O(m) using computability of f . Therefore, qf can be computed in time 2O(m). Now
suppose qf can be computed by a circuit C ∈ AF of size n. By the definition of the
polynomial qf , it follows that C(f1(y), f2(y), . . . , f2m(y)) = 0. The size of circuit C
is n and it computes a non-zero polynomial. This contradicts the pseudo-randomness
of f . �

A partial converse of this theorem can also be shown: if there exists a polynomial
family computable in time 2O(�(n)) that cannot be computed by any size n circuit
family in AF then there exists an efficiently computable (�2(n), n)-pseudo-random
generator against AF , when the degree of every size n circuit in AF is bounded
by nO(1).

An efficient optimal pseudo-random generator against ACF yields a polynomial
that requires exponential (in the number of variables) sized circuits. However, it
is not clear whether the polynomial qf can be computed as permanent of a matrix
of size mO(1). To get this, one needs to show that all the coefficients cS of qf are
themselves efficiently computable. If this is done, then using the VNP characterization
of permanent, it follows that qf equals the permanent of a matrix of size mO(1). This
results in an exponential lower bound on permanent.

For a superpolynomial lower bound one needs either an (no(1), n)-pseudo ran-
dom generator against ACF or an optimal pseudo-random generators against a much
smaller class of circuits.

Theorem 5.4 ([1]). Let f be an efficiently computable optimal pseudo-random gen-
erator against the class of circuits of depth ω(1) such that the associated polynomial
qf is in VNP. Then permanent cannot computed by any polynomial sized circuit.

Proof. From the previous theorem, it follows that the polynomial qf cannot be com-
puted by exponential sized circuits of depth ω(1). A size nd , depth d log n arithmetic
circuit with fanin two multiplication gates can be translated to a subexponential sized
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depth d circuit by “cutting” the circuit into log n layers of depth d each, and then
“flattening” each layer to a subexponential sized circuit of depth two. Since every
polynomial sized circuit computing permanent can be transformed to a depthO(log n),
size nO(1) circuit with fanin two multiplication gates [23], the theorem follows. �

It is not clear at the moment how to construct optimal pseudo-random generators
against constant depth circuits. In [1] a generator is conjectured. Unconditionally,
we only know generators against depth two, polynomial sized circuits (the proof is
easy, see [1]). We know an optimal generator against the following very special class
of circuits too:

A = {Cn(x) | Cn(x) = (1 + x)n − 1 − xn over the ring Zn}.
Notice that the circuits in the class A are not over a fixed field (or ring), and the size of
the circuit Cn is O(log n) and the degree is n. In [2], the following optimal generator
was constructed against A:

f (m) =
(
x, 0, . . . , 0, x16m5 ·

16m5∏
r=1

4m4∏
a=1

((x − a)r − 1)
)
.

6. Concluding remarks

The problem of proving that the permanent of a size n matrix cannot be expressed
as determinant of size nO(log n) matrix is of great importance in complexity theory.
While the existing approaches have failed to shed light on this, one hopes that at least
one of the two new approaches will eventually lead to a solution of the problem.

Acknowledgements. I wish to thank Somenath Biswas for enjoyable discussions and
help in preparing this article.
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The additivity problem in quantum information theory
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Abstract. In this lecture we survey the present status of the additivity problem for the classical
capacity and related characteristics of quantum channels – one of the most profound mathematical
problems of quantum information theory.
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1. Introduction

The problems of data transmission and storage by quantum information carriers re-
ceived increasing attention during past decade, owing to the burst of activity in the
field of quantum information and computation [42], [22]. At present we are witnessing
emergence of theoretical and experimental foundations of the quantum information
science. It represents a new exciting research field addressing a number of fundamen-
tal issues both in quantum physics and in information and computer sciences. On the
other hand, it provides a rich source of well-motivated mathematical problems, often
having simple formulations but hard solutions.

A central result in the classical information theory is the coding theorem, estab-
lishing the possibility of reliable data transmission and processing at rates lower than
the capacity of the communication channel. The issue of the information capacity
of quantum channels arose soon after publication of Shannon’s pioneering paper and
goes back to the works of Gabor, Brillouin and Gordon, asking for fundamental limits
on the rate and quality of information transmission. These works laid a physical foun-
dation and raised the question of consistent mathematical treatment of the problem.
Important steps in this direction were made in the seventies when quantum statistical
decision theory was created, making a noncommutative probability frame for this
circle of problems, see [21] for a survey.

A dramatic progress has been achieved during the past decade [42], [6], [22]. In
particular, a number of coding theorems was discovered, moreover, it was realized
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that the quantum channel is characterized by the whole spectrum of capacities de-
pending on the nature of the information resources and the specific protocols used
for the transmission, see [6], [14]. This new age of quantum information science is
characterized by emphasis onto the new possibilities (rather than mere restrictions)
inherent in the quantum nature of the information processing agent. On the other
hand, the questions of information capacities turned out to be relevant to the theory
of quantum computations, particularly in connection with quantum error-correction,
communication protocols, algorithmic complexity and a number of other important
issues.

The quantum information processing systems have a specifically novel resource,
entanglement, a kind of non-classical correlation between parts of the composite
quantum system. Among many other unusual features it underlies the strict super-
additivity of Shannon information due to entangled decodings in a situation formally
similar to the classical memoryless channels [20], [22], [6]. Namely, for independent
quantum systems there are entangled measurements which can bear more informa-
tion than the arithmetic sum of information from these systems. This property has
profound consequences for the theory of quantum communication channels and their
capacities.

A closely related issue is the additivity of the capacity-related quantities for the
memoryless quantum channels with respect to entangled encodings. Should the addi-
tivity fail, this would mean that applying entangled inputs to several independent uses
of a quantum channel may result in superadditive increase of its capacity for trans-
mission of classical information. However so far there is neither a single evidence of
such a non-additivity, nor a general proof for the additivity. In this lecture we survey
the present status of this problem.

We start in Section 2 with the classical case, where the additivity holds for almost
obvious reasons. We then describe the problem in the finite-dimensional quantum
setting in Section 3, discussing also the various formulations of the additivity con-
jecture and connections between them. Positive results for several concrete classes
of channels are briefly surveyed in Section 4, where also an important counterex-
ample to the additivity of the minimal output quantum Rényi entropy is discussed.
Since quantum communication channels are described mathematically as completely
positive maps, we devote Subsection 4.1 to the description of their structure paying
attention to the notion of complementary maps which leads to new examples of addi-
tivity. Section 5 is devoted to different formulations of the additivity conjecture using
tools from convex analysis. In Subsection 5.4 we present an argument, essentially
due to P. Shor, implying the global equivalence of different forms of the additivity
conjecture. We conclude with Section 6, where we briefly outline the works treating
the infinite-dimensional case.
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2. Additivity in the classical information theory

Let X, Y be two finite sets (alphabets), and let [�(x, y)]x∈X,y∈Y be a stochastic
matrix, i.e.,

1. �(x, y) ≥ 0, x ∈ X, y ∈ Y;

2.
∑
y∈Y�(x, y) = 1, x ∈ X.

In information theory a stochastic matrix describes a (noisy) channel from X to Y.
It transforms an input probability distribution π on X into the output probability
distribution π ′ = �π on Y. Denote by

P (X) =
{
π : π(x) ≥ 0,

∑
x∈X

π(x) = 1
}

the simplex of all probability distributions π on X. Extreme points of P (X) are the
degenerate probability distributions δx on X. Notice the following obvious property:

For a direct product X1 × X2 of two alphabets, extreme points of P (X1 × X2)

are precisely the products of extreme points of P (Xj ):

extP (X1 × X2) = extP (X1)× extP (X2). (1)

The most important characteristic of a channel is its capacity

C(�) = max
π∈P (X)

{
H(�π)−

∑
x

π(x)H(�δx)
}
, (2)

where the expression in curly brackets is equal to the Shannon mutual information
between the input and the output of the channel. Here

H(π) = −
∑
x

π(x) logπ(x)

is the entropy of the probability distribution π .
One of the main results of information theory – the coding theorem for memoryless

channels, see e.g. [10] – says that the quantity (2) is the ultimate rate of asymptotically
perfect transmission of information by n independent uses of the channel �, when
n → ∞. The capacity has the fundamental additivity property

C(�1 ⊗�2) = C(�1)+ C(�2). (3)

Here the inequality ≥ (superadditivity) follows by restricting to the independent in-
puts, while the opposite inequality can be proved by using subadditivity of the output
entropy H(�π) and the property (1) for the second term in the Shannon informa-
tion (which is equal to minus the conditional output entropy). The additivity is an
important ingredient of the proof of the coding theorem, implying

C(�⊗n) = nC(�),
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where�⊗n = �⊗ · · · ⊗�︸ ︷︷ ︸
n

. It expresses the “memoryless” character of the informa-

tion transmission scheme based on the independent uses of the channel. For schemes
with memory the capacity can be strictly superadditive.

In what follows we are going to describe the noncommutative analog of the quantity
C(�), as well as several other related quantities playing a basic role in quantum
information theory. The corresponding additivity property was conjectured to hold
also in the noncommutative case, although so far there is neither a general proof, nor
a counterexample; moreover the additivity is no longer “natural” since an analog of
the underlying basic fact (1) breaks dramatically in the noncommutative case.

3. Quantum channels

3.1. The χ -capacity. Let H be a unitary space and let M(H) be the algebra of all
linear operators in H . By choosing an orthonormal basis, H can be identified with
the space Hd of d-dimensional complex vectors and M(H) with the algebra Md of
complex d × d-matrices.

We shall consider linear maps�which take operators F in d-dimensional unitary
space H to operators F ′ = �(F) in a d ′-dimensional space H ′. Sometimes these are
called “superoperators” or “supermatrices” because they can be described as matrices
with d2 × d ′2 entries [9].

Let �j : M(Hj ) → M(H ′
j ); j = 1, 2, be two such maps, and let �1 ⊗ �2 :

M(H1) ⊗ M(H2) → M(H ′
1) ⊗ M(H ′

2) be their tensor product defined by the
natural action on product operators and then extended by linearity.

An operator F ∈ M(H) is called positive, F ≥ 0, if the corresponding matrix is
positive semidefinite and the map � : M(H) → M(H ′) is called positive if F ≥ 0
implies �(F) ≥ 0.

Especially important for us will be the class of completely positive (CP) maps [51],
[9], [43]. The map � : M(H) → M(H ′) is completely positive, if for d = 1, 2, . . .
the maps �⊗ Idd are all positive, where Idd : Md → Md is the identity map of the
algebra of d × d- matrices. It follows that the tensor product of CP maps is again CP,
since

�1 ⊗�2 = (Idd ′
1
⊗�2) 	 (�1 ⊗ Idd2).

There are positive maps that are not CP, a basic example being provided by the matrix
transposition F → F
 in a fixed basis.

Finite quantum system is described by a unitary space H . The convex subset

S(H) = {ρ : ρ ≥ 0, Tr ρ = 1}
of M(H) is called the quantum state space. The operators ρ ∈ S(H) are called
density operators or quantum states. The state space is a compact convex set with the
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extreme boundary

P(H) = extS(H) = {ρ : ρ ≥ 0, Tr ρ = 1, ρ2 = ρ}.
Thus extreme points of S(H), which are also called pure states, are one-dimensional
projectors, ρ = Pψ for a vector ψ ∈ H with unit norm, see, e.g. [42], [22].

Instead of the classical relation (1), one has the following relation for a tensor
product H1 ⊗ H2 of two unitary spaces

extS(H1 ⊗ H2) � extS(H1)× extS(H2), (4)

since apparently there are continually many pure states Pψ in H1 ⊗ H2, given by
vectors ψ not representable as a tensor product ψ1 ⊗ ψ2. In quantum theory the
tensor product H1 ⊗ H2 describes the composite (bipartite) system. Vectors that are
not of the formψ1⊗ψ2, as well as the corresponding pure states, are called entangled.
In an entangled pure state of a bipartite quantum system, neither of the parts is in a
pure state, in a sharp contrast to the classical systems.

A CP map � is called a (quantum) channel, if it is trace preserving, i.e. if it
maps quantum states into quantum states (possibly in another unitary space H ′). A
channel � is called unital if d = d ′ and �(I) = I ′, where I (I ′) is the identity
operator in H resp. H ′.

The von Neumann entropy of a density operator ρ

H(ρ) = − Tr ρ log ρ

is nonnegative concave continuous function on S(H) vanishing on P(H) and taking
the maximal value log d on the chaotic state ρ = I

d
. The noncommutative analog of

the quantity (2) is the χ -capacity [20], [22] of the channel �,

Cχ(�) = max
π

{
H

(
�

( ∑
x

π(x)ρ(x)
))

−
∑
x

π(x)H(�(ρ(x)))
}
, (5)

where the maximum is taken over all state ensembles i.e. finite probability distri-
butions π on the quantum state space S(H) ascribing probabilities π(x) to density
operators ρ(x)1. The additivity conjecture is whether the analog of the property (3)
holds for quantum channels, i.e.

Cχ(�1 ⊗�2)
?= Cχ(�1)+ Cχ(�2). (6)

Here again ⊗ is the tensor product of the two channels describing independent uses
of the channels on the states of the composite system. This is the earliest additivity
conjecture in quantum information theory which can be traced back to [5], see also
[20], [6].

1In the finite dimensional case we are considering the maximum is indeed attained on π with support having
at most d2 states, where d = dimH [50].
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In physical terms this problem can also be formulated as: “Can entanglement be-
tween input states help to send classical information through quantum channels?” The
classical capacity of a quantum channel is defined as the maximal transmission rate
per use of the channel, with coding and decoding chosen for an increasing number n
of independent uses of the channel

�⊗n = �⊗ · · · ⊗�︸ ︷︷ ︸
n

such that the error probability goes to zero as n → ∞. A basic result of quantum
information theory – the quantum coding theorem [19], [49] – implies that the classical
capacity C(�) and the χ -capacity Cχ(�) are connected by the formula

C(�) = limn→∞(1/n)Cχ(�⊗n).

Since Cχ(�) is easily seen to be superadditive, i.e.

Cχ(�1 ⊗�2) ≥ Cχ(�1)+ Cχ(�2),

one has C(�) ≥ Cχ(�). If the additivity (6) holds, then Cχ(�⊗n) = nCχ(�), and
this would imply C(�) = Cχ(�). Such a result would be very much welcome from
a mathematical point of view, giving a relatively easily computable “single-letter”
expression for the classical capacity of a quantum channel.

On the other hand, such an equality is rather counter-intuitive in view of the
relation (4) and existence of waste variety of pure entangled states. In fact, there are
several quantities that are nonadditive under the tensor product of quantum channels
such as: a) the Shannon information maximized over entangled outputs [20]; b) the
quantum capacity [6]; c) the minimal output Rényi entropy [53] and some others, the
classical counterparts of which are additive. In the following we shall consider the
case c) which is most relevant to our main problem (6).

3.2. Entropic characteristics of CP maps and channels. The quantum Rényi en-
tropy of order p > 1 of a density operator ρ is defined as

Rp(ρ) = 1

1 − p
log Tr ρp, (7)

so that the minimal output Rényi entropy of the channel � is

Řp(�) = min
ρ∈S(H)

Rp(�(ρ)) = p

1 − p
log νp(�),

where

νp(�) = max
ρ∈S(H)

[Tr�(ρ)p]1/p (8)
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is a “measure of output purity” of the channel� introduced in [3]2. In the limit p ↓ 1
the quantum Rényi entropies monotonically increase and uniformly converge to the
entropy of a density operator ρ,

lim
p↓1

Rp(ρ) = H(ρ),

so that introducing the minimal output entropy

Ȟ (�) = min
ρ∈S(H)

H(�(ρ)) (9)

of the quantum channel �, one has limp↓1 Řp(�) = Ȟ (�).
The classical analog of the quantity (8) is

νp(�) = max
π∈P (X)

‖�π‖p,

where ‖f ‖p = ( ∑
x∈X |f (x)|p)1/p is the lp-norm of f = (f (x))x∈X. The function

π → ‖�π‖p is convex continuous and hence attains the maximum at an extreme
point of P (X), i.e. on a degenerate probability distribution δx . Hence the basic
property (1) implies the multiplicativity relation

νp(�1 ⊗�2) = νp(�1)νp(�2), (10)

which is equivalent to the additivity property of the minimal output Rényi entropies

Řp(�1 ⊗�2) = Řp(�1)+ Řp(�2), (11)

implying in turn
Ȟ (�1 ⊗�2) = Ȟ (�1)+ Ȟ (�2), (12)

in the limit p ↓ 1. Notice that the inequality ≤ is obvious in (11), (12).
Unlike the classical case, there is no apparent reason for these multiplicativ-

ity/additivity properties to hold in the case of quantum channels. Nevertheless there
are several important classes of channels for which the multiplicativity (10) can be
proved for all p > 1, although there is also an example where it breaks for suffi-
ciently large p. This, however, does not preclude that it can hold for p close to 1,
and the validity of (10) for p ∈ (1, 1 + ε), with ε > 0, implies validity of the addi-
tivity property (12), which, as we shall see, is closely related to the additivity of the
χ -capacity (6).

Here we would also like to mention that multiplicativity of more general (q → p)-
norms was studied for the cases where at least some of the maps�1,�2 is not CP, see
[38], [37], [35]. Basing on the advanced theory of the operator Lp-spaces [44], [43],
there is an interesting study concerning the multiplicativity of completely bounded
p-norms, which however is related to the additivity of a completely different entropic
quantity [15].

2In the finite-dimensional case all the functions of the state we are considering are easily seen to be continuous
and their extrema on the state space are attained. However it is not so in infinite-dimensional case, and then the
attainability of the extrema requires separate study, see Section 6.
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4. Some classes of CP maps and channels

4.1. Representations of CP maps. Here we recollect some facts concerning the
structure of CP maps and channels. Given three unitary spaces HA, HB , HC and a
linear operator V : HA → HB ⊗ HC , the relation

�(ρ) = TrHC
VρV ∗, �̃(ρ) = TrHB

VρV ∗; ρ ∈ M(HA) (13)

defines two CP maps � : M(HA) → M(HB), �̃ : M(HA) → M(HC), which are
called mutually complementary [25] (or conjugate [36]). If V is an isometry then
both maps are channels.

For any linear map � : M(H) → M(H ′) the dual map �∗ : M(H ′) → M(H)

is defined by the formula

Tr�(ρ)X = Tr ρ�∗(X); ρ ∈ M(H), X ∈ M(H ′).

If � is CP, then �∗ is also CP. The relations (13) are equivalent to

�∗(X) = V ∗(X ⊗ IC)V ; X ∈ M(HB), (14)

�̃∗(X) = V ∗(IB ⊗X)V ; X ∈ M(HC). (15)

The Stinespring dilation theorem [51] concerning CP maps on arbitrary C∗-algebras,
for the particular case in question amounts to the statement that for a given CP map
there are a space HC and an operator V satisfying (14). This implies that given a CP
map �, a complementary map �̃ always exists.

By introducing a basis {eCj } in HC and operators Vj : HA → HB defined by

(ϕ, Vjψ) = (
ϕ ⊗ eCj , V ψ

); ϕ ∈ HB, ψ ∈ HA,

the first relation in (13) can be rewritten as

�(ρ) =
dC∑
j=1

VjρV
∗
j ; ρ ∈ M(HA). (16)

The map (16) is a channel if and only if
∑dC
j=1 V

∗
j Vj = I . The relation (16) is usually

called the Kraus representation (see also Choi [9]). Of course, there are similar
representations for the complementary map �̃ and the dual maps.

Theorem 4.1 ([25], [36]). If one of the relations (11), (12) holds for the CP maps
(channels) �1,�2, then similar relations holds for the pair of their complementary
maps �̃1, �̃2. If one of these relations holds for a given�1 and arbitrary�2, then a
similar relation holds for the complementary map �̃1 and arbitrary �2.

Validity of the multiplicativity conjecture (10) for all p ≥ 1 and of the additivity
conjectures (12), (6) was established in a number of cases where one channel is
arbitrary and the other belongs to one of the classes we are going to discuss.
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4.2. Entanglement-breaking maps and their complementary maps. Any linear
map � : M(H) → M(H ′) admits a representation

�(X) =
∑
j

N ′
j TrXMj, (17)

where {Mj }, {N ′
j } are finite collections of operators in H and H ′, respectively. This

simply follows from the finite dimensionality of H , H ′ and the fact that any linear
functional on M(H) has the form X → TrXM , where M ∈ M(H).

Proposition 4.2. For a linear map � : M(H) → M(H ′) the following conditions
are equivalent:

(i) There is a representation (17) such that Mj ≥ 0, N ′
j ≥ 0.

(ii) The map � is CP and has the representation (16) with rank one operators Vj .

(iii) For d = 2, 3, . . . and any ρ12 ∈ S(H ⊗ Hd),

(�⊗ Idd)(ρ12) =
∑
α

Aα ⊗ Bα (18)

where Aα ≥ 0 and Bα ≥ 0.

Channels satisfying the condition (i) were introduced in [20], and the above charac-
terization was obtained in [29] where such maps were termed entanglement-breaking.
In the case of channels, (18) means that the output state (� ⊗ Idd)(ρ12) is always
separable, i.e. a convex combination of (unentangled) product states. Entanglement-
breaking channels can be written in the form

�(ρ) =
∑
j

ρ′
j Tr ρMj , (19)

where {ρ′
j } is a finite collection of states in H ′, and {Mj } a resolution of the identity

in H , i.e. a collection of operators satisfying

Mj ≥ 0,
∑
j

Mj = I.

Resolutions of the identity describe quantum observables [22], and the channel (19)
corresponds to a measurement of the observable {Mj } over an input state ρ resulting
in a probability distribution {Tr ρMj }, which is followed by preparation of the output
state ρ′

j . Thus, there is a classical information processing stage inside the channel
which is responsible for the entanglement-breaking.

The simplest example is the completely depolarizing channel

�(ρ) = I

d
Tr ρ

which maps an arbitrary state to the chaotic state I
d

.
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As shown in [25], [36], the complementary maps to the entanglement-breaking
maps have the form

�̃(ρ) =
dC∑

j,k=1

cjk〈ψj |ρ|ψk〉Ejk, ρ ∈ M(HA), (20)

where [cjk] is a nonnegative definite matrix, {ψj }j=1,dC
a system of vectors in HA,

and the Ejk’s are the matrix units in HC . In the special case where {ψj }j=1,dC
is

an orthonormal basis, (20) is the diagonal CP map in the sense of [31]. Diagonal
channels are characterized by the additional property cjj ≡ 1.

A simplest example of the diagonal channel is the ideal channel Id, which is
complementary to the completely depolarizing channel.

For general entanglement-breaking channels the additivity property (12) with ar-
bitrary second channel was established by Shor [47], preceded by results in [20]
on special subclasses of such channels. The multiplicativity property (10) for all
p > 1 was established by King [32], basing on the Lieb–Thirring inequality [40]: for
A,B ∈ M(H), A,B ≥ 0, and p ≥ 1

Tr(AB)p ≤ TrApBp. (21)

By Theorem 4.1 this implies the corresponding properties for the complementary
maps and channels of the form (20).

4.3. Covariant channels. Let G be a group (either finite or continuous) and let
g → UAg ,U

B
g , g ∈ G, be two projective (unitary) representations of G in HA, HB .

The CP map � : M(HA) → M(HB) is covariant if

�(UAg ρU
A∗
g ) = UBg �(ρ)U

B
g

∗ (22)

for all g ∈ G and all ρ. For a covariant CP map there exists a covariant Stinespring
dilation: namely, there is a projective representation g → UCg in HB , such that

(UBg ⊗ UCg )V = VUAg ,

see e.g. [24]. It follows that the complementary map is also covariant:

�̃(UAg ρU
A∗
g ) = UCg �̃(ρ)U

C
g

∗.

Lemma 4.3. If the representation UAg is irreducible, then

Cχ(�) = H

(
�

(
IA

dA

))
− Ȟ (�). (23)

Since the tensor product of irreducible representations of possibly different groups
G1, G2 is an irreducible representation of the group G1 × G2, it follows that the
additivity properties (12) and (6) are equivalent for channels satisfying the condition
of Lemma 4.3. Symmetry considerations also help to compute explicitly the entropic
characteristics of covariant channels. Then, in the case of additivity, C = Cχ gives
an explicit expression for the classical capacity of the channel.
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4.4. The unital qubit channels. The simplest and yet fundamental quantum system
is the qubit (quantum bit), where dimH = 2. A convenient basis in M2 is formed by
the Pauli matrices

σ0 ≡ I =
[

1 0
0 1

]
, σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
.

It is known [45] that an arbitrary unital channel � : M2 → M2 can be decomposed
as

�(ρ) = U2
(U1ρU
∗
1 )U

∗
2 , (24)

where U1, U2 are unitary matrices and 
 has the following canonical Kraus repre-
sentation:


(ρ) =
∑

γ=0,x,y,z

μγ σγ ρσγ , (25)

where {μγ } is a probability distribution. The unital qubit channels (25) are covariant
with respect to the projective representation of the group Z2 × Z2 defined by

U00 = σ0, U01 = σz, U10 = σx, U11 = −iσy.
Therefore the relation (23) holds for this class of channels.

By using a convex decomposition into diagonal channels of special form and
applying to these the Lieb–Thirring inequality (21), King [33] established (10) for all
p > 1, (12) and (6) for the case where�1 is an arbitrary unital qubit channel and�2
is an arbitrary channel. There are recent positive results concerning nonunital qubit
channels [35].

4.5. Depolarizing channel. The depolarizing channel in Hd is

�(ρ) = (1 − p)ρ + p
I

d
Tr ρ, 0 ≤ p ≤ d2

d2 − 1
. (26)

If p ≤ 1 this describes a mixture of the ideal channel Id and the completely depo-
larizing channel. For the whole range 0 ≤ p ≤ d2

d2−1
complete positivity can be

proven by using the Kraus decomposition, see e.g. [42]. The depolarizing channel is
characterized by the property of unitary covariance,

�(UρU∗) = U�(ρ)U∗,

for an arbitrary unitary operator U in H .
The properties (10) for all p > 1, (12) and (6) were proved in [34] for the case

where�1 is a depolarizing channel and�2 is arbitrary, using a method similar to the
case of the unital qubit channels.

Complementarity for depolarizing channels is computed in [11].
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4.6. A transpose-depolarizing channel. Let us consider in some detail the extreme
transpose-depolarizing channel

�(ρ) = 1

d − 1

[
I Tr ρ − ρ
]

, (27)

whereρ
 is the transpose ofρ in an orthonormal basis {ej } in Hd . Complete positivity
of the map (27) follows from the representation

�(ρ) = 1

2(d − 1)

d∑
j,k=1

(Ejk − Ekj )ρ(Ejk − Ekj )
∗. (28)

It has the covariance property

�(UρU∗) = U�(ρ)U∗

for an arbitrary unitary U , where U is complex conjugate in the basis {ej }. It follows
that the relation (23) holds for this channel.

This channel is interesting in that it breaks the additivity of the minimal Rényi
entropy (11) with�1 = �2 = � for d > 3 and large enough p [53]. At the same time
it fulfills (12), see [41], [12], and even (11) for 1 ≤ p ≤ 2 [13]. For generalizations
to broader classes of channels as well as to the more general forms of additivity, see
[41], [1], [54]. This example also shows that although the Lieb–Thirring inequality
can be used in several cases to prove the additivity conjecture (11) for all p > 1, it
cannot serve for a general proof. Moreover, there is even no general proof covering
all these cases, since each time application of the Lieb–Thirring inequality is supplied
with an argument specific to the case under consideration.

The complementary channel which shares the multiplicativity/additivity properties
with the channel (27) is

�̃(ρ) = 2

(d − 1)
P−(ρ ⊗ I2)P− (29)

(see [25] for more details). Here P− is the projector onto the antisymmetric subspace
of H ⊗ H of dimension d(d−1)

2 . The covariance property of the channel (29) is

�̃(UρU∗) = (U ⊗ U)�̃(ρ)(U∗ ⊗ U∗),

as follows from the fact that P−(U ⊗ U) = (U ⊗ U)P−.

5. A hierarchy of the additivity conjectures

5.1. Convex closure. To find out the intrinsic connection between the output entropy
and the χ -capacity, let us define the average ρ̄π = ∑

x π(x)ρ(x) of the ensemble π
and rewrite the expression (5) in the form

Cχ(�) = max
ρ∈S(H)

[
H(�(ρ))− Ĥ�(ρ)

]
, (30)
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where

Ĥ�(ρ) = min
π :ρ̄π=ρ

∑
x

π(x)H(�(ρ(x)))

is the convex closure [30] of the output entropy H(�(ρ))3. The function Ĥ�(ρ) is a
natural generalization of another important quantity in quantum information theory,
namely the “entanglement of formation” [6] and reduces to it when the channel �
is a partial trace. This quantity has the conjectured superadditivity property: for an
arbitrary state ρ12 ∈ S(H1 ⊗ H2) and arbitrary channels �1, �2,

Ĥ�1⊗�2(ρ12) ≥ Ĥ�1(ρ1)+ Ĥ�2(ρ2), (31)

where ρ1, ρ2 are the partial traces of ρ12 in H1,H2 .
It is not difficult to see that this property implies additivity of both the minimal

output entropy and the χ -capacity:

Proposition 5.1. The superadditivity property (31) implies the additivity properties
(12) and (6) for given channels �1, �2.

In the spirit of Theorem 4.1, one can prove ([25]) that

if the relation (31) holds for the pair of CP maps (channels) �1,�2, then similar
relation holds for the pair of their complementary maps �̃1, �̃2. If one of these
relations holds for given �1 and arbitrary �2, then a similar relation holds for the
complementary map �̃1 and arbitrary �2.

Let {pj } be a finite probability distribution and let�j : M(H) → M(H ′
j ) be a col-

lection of channels. The channel � : M(H) → M
( ∑

j ⊕H ′
j

)
is called orthogonal

convex sum of the channels �j , if �(ρ) = ∑
j ⊕pj�j (ρ) for all ρ ∈ S(H).

Proposition 5.2 ([26]). Let �2 be an arbitrary channel. The properties (11), (12),
(31) hold if�1 is an orthogonal convex sum of either an ideal channel or completely
depolarizing channel and a channel�(0) such that the corresponding property holds
for �(0) and �2.

It follows that such a �1 fulfils the additivity of χ -capacity (6).
In this way, for example, one obtains all the additivity properties for the important

case of the erasure channel

�(ρ) =
[
pρ 0
0 (1 − p)Tr ρ

]
,

as it is the orthogonal convex sum of an ideal and a completely depolarizing channel.

3Here the same comment applies as to the attainability of the maximum in (5).
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5.2. Additivity for constrained channels. In this section we consider several equiv-
alent formulations of the additivity conjecture for channels with arbitrarily constrained
inputs [26], which formally is substantially stronger than additivity of the uncon-
strained χ -capacity. Let us denote

χ�(ρ) = H(�(ρ))− Ĥ�(ρ), (32)

then the function χ�(ρ) is continuous and concave on the set S(H) of all states in H .
Consider the constraint on the ensemble π with the average ρ̄π = ∑

x π(x)ρ(x),
defined by the requirement ρ̄π ∈ A, where A is a closed subset of states. A particular
case is the linear constraint A = {ρ : Tr ρA ≤ α} for a positive operator A and a
number α ≥ 0. Define the χ -capacity of the A-constrained channel � by

Cχ(�; A) = max
ρ∈A

χ�(ρ). (33)

Note that the χ -capacity for the unconstrained channel is Cχ(�) = C(�; S(H)).
On the other hand, χ�(ρ) = Cχ(�; {ρ}).

Let �1, �2 be two channels with the constraints A1, A2. For the channel
�1 ⊗�2 we introduce the constraint A1 ⊗ A2 ≡ {ρ : TrH2 ρ ∈ A1,TrH1 ρ ∈ A2}
and consider the conjecture

Cχ(�1 ⊗�2; A1 ⊗ A2) = Cχ(�1; A1)+ Cχ(�2; A2), (34)

which apparently implies (6).

Theorem 5.3. Let �1 and �2 be two fixed channels. The following properties are
equivalent:

(i) Equality (34) holds for arbitrary linear constraints A1,A2.

(ii) Equality (34) holds for arbitrary closed A1,A2.

(iii) For arbitrary ρ12 ∈ S(H1 ⊗ H2),

χ�1⊗�2
(ρ12) ≤ χ�1(ρ1)+ χ�2(ρ2). (35)

(iv) Inequality (31) holds for arbitrary ρ12 ∈ S(H1 ⊗ H2).

Here each property is easily seen to imply the preceding one, while the implication
(i) ⇒ (iv) is nontrivial. By Proposition 5.1 any of these properties imply the additivity
properties (12), (6).

5.3. The convex duality formulation. In [4], tools from convex analysis were ap-
plied to study the relation of the additivity problem to superadditivity of entanglement
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of formation. Here we apply a similar approach to the conjecture (31). Given a chan-
nel�, its output entropyH(�(ρ)) is a continuous concave function on the state space
S(H). Consider its modified Legendre transform

H ∗
�(X) = min

ρ∈S(H)
{Tr ρX +H(�(ρ))}

= min
ρ∈S(H)

{Tr ρX + Ĥ�(ρ)}, X ∈ Mh(H),
(36)

where Mh(H) is a real normed space of Hermitian operators in H .
Now let �1, �2 be two channels.

Lemma 5.4. The superadditivity (31) of the convex closure Ĥ�(ρ) is equivalent to
the following additivity property of H ∗

�(X):

H ∗
�1⊗�2

(X1 ⊗ I2 + I1 ⊗X2) = H ∗
�1
(X1)+H ∗

�2
(X2), (37)

for all X1 ∈ Mh(H1),X2 ∈ Mh(H2).

Since H ∗
�(0) = Ȟ (�), by letting X1 = X2 = 0, the relation (37) implies addi-

tivity of the minimal output entropy (12).

5.4. The global equivalence. A remarkable result was obtained by Shor [48] who
showed that different forms of the additivity conjecture become equivalent if one
considers their validity for all channels. Here we describe a basic construction from
[48] which in combination with Proposition 5.1 and Theorem 5.3 suffices for the proof
of the following result.

Theorem 5.5. The conjectures (6), (12), (31), (34) are globally equivalent in the
sense that if one of them holds true for all channels �1,�2, then any of the others is
also true for all channels.

Let us argue that if additivity of the minimal output entropy (12) holds for all
channels, then (37) holds for all channels. By Lemma 5.4 this will imply (31) and
hence, by Theorem 5.3, all the other properties.

First of all we observe that H ∗
�(X + λI) = H ∗

�(X) + λ, which implies that it is
sufficient to establish (37) only for X1, X2 ≥ 0. The idea of proof is to build, for any
channel � and X ≥ 0, a sequence of channels �′

X,n such that

min
ρ
H(�′

X,n(ρ)) ≡ Ȟ (�′
X,n) = min

ρ
[H(�(ρ))+ Tr ρX] + o(1) ≡ H ∗

�(X)+ o(1).

One can then apply the convex duality argument to deduce for the original channels
the additivity property (37), which is equivalent to (31), from the additivity of the
minimal output entropy for channels �′

X,n.
Given a channel � : M(H) → M(H ′) and a positive X ∈ H , the new channel

�′
X,n is constructed as follows. Choose a constant c ≥ ‖X‖, thenE = c−1X satisfies

0 ≤ E ≤ I . Let qn ∈ (0, 1) be such that

(1 − qn) log n = c, n = 2, 3, . . . .
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Then �′
X,n : M(H) → M(H ′

n), where H ′
n = H ′⊕Hn ⊕ C, acts on ρ ∈ M(H) as

follows:

�′
X,n(ρ) =

⎡
⎣qn�(ρ) 0 0

0 (1 − qn)(Tr ρE)In
n

0
0 0 (1 − qn)Tr ρ(I − E)

⎤
⎦ . (38)

This is an orthogonal convex sum of CP maps, preserving trace, and hence is a channel.
The intuition is that the action of �′

X,n(ρ) can be described as follows. With
probability qn (which tends to 1 as n → ∞) it acts as the channel �, resulting in the
state �(ρ). With probability (1 − qn), however, a quantum measurement described
by the resolution of the identity (the quantum observable) {E, I − E} is made, so
that the first outcome appears with probability Tr ρE, while the second appears with
probability Tr ρ(I − E). In the first case the output is the chaotic state In

n
in the

n-dimensional unitary space Hn; in the second case the output is a pure state or-
thogonal to H ′⊕Hn. In this way the channel �′

X,n(ρ) with high probability qn
acts as the initial channel, while with a small probability (1 − qn)(Tr ρE) outputs
a high dimensional chaotic state In

n
, providing the knowledge about the value of

Tr ρE = c−1 Tr ρX involved in the definition of H ∗
�(X). This is formalized by

proving the uniform estimate

H
(
(�′

X,n ⊗�2)(ρ12)
) = qnH

(
(�⊗�2)(ρ12)

) + Tr ρ1X + o(1),

double application of which reduces the property (37) for initial channels to the
additivity of the minimal output entropy for the channels �′

X,n.
A modification of this construction can be also used to show that if the uncon-

strained additivity (6) holds for all channels, then additivity (34) for all channels
with arbitrary constraints holds as well [26]. This completes the global equivalence.

6. Infinite-dimensional channels

We have seen that the additivity problem is not completely solved even for the minimal
dimension 2. Nevertheless there are several good reasons to consider the problem in
infinite dimensions.

There is an important and interesting class of Bosonic Gaussian channels, see [28],
which act in infinite dimensional Hilbert space. Analysis of continuity properties of
the entropic characteristics of an infinite-dimensional channel becomes important
since, as is well known, the entropy may then have a rather pathological behavior.
It is only lower semicontinuous and “almost everywhere” infinite in the infinite-
dimensional case [52]. Another issue is the study of conditions for compactness of
subsets of quantum states and ensembles, giving a key for attainability of extrema in
expressions for the capacity and the convex closure of the output entropy.

The proof of global equivalence of different forms of the additivity conjecture for
finite dimensional channels (Section 5.4), using infinitely growing channel extensions
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in fact relies upon the discontinuity of the χ -capacity as a function of the channel in
infinite dimensions. This also calls for a study of continuity properties of the entropic
quantities related to the classical capacity of infinite dimensional channels. Such a
study was undertaken in a series of works [23], [27], [46]. In particular it was shown
that in spite of the aforementioned discontinuities, additivity for all finite-dimensional
channels implies additivity of the χ -capacity of infinite-dimensional channels with
arbitrary constraints [46].

There are two important features essential for channels in infinite dimensions.
One is the necessity of the input constraints (such as mean energy constraint for
Gaussian channels) to prevent from infinite capacities (although considering input
constraints was shown quite useful also in the study of the additivity conjecture for
channels in finite dimensions [26]). The other is the natural appearance of infinite,
and, in general, “continuous” state ensembles understood as probability measures on
the set of all quantum states. By using compactness criteria from probability and
operator theory one can show that the set of all such generalized ensembles with the
barycenter in a compact set of states is itself weakly compact. With this in hand a
sufficient condition for existence of an optimal generalized ensemble for a constrained
quantum channel can be given. This condition can be efficiently verified in the case
of Bosonic Gaussian channels with constrained mean energy [27].

However apart from mere existence one would like to have an explicit description
of the optimal states and ensembles in the case of quantum Gaussian channels. In
classical information theory Gaussian channels have Gaussian maximizers, and there
is an analytical counterpart of this phenomenon for (q → p)-norms of integral op-
erators with Gaussian kernels, see [39]. Whether a similar description holds true for
Bosonic Gaussian channels is another open question (for some partial results in this
direction see [28], [17], [18], [55]). We only mention here that a positive solution
of this question may also depend on the validity of the multiplicativity/ additivity
conjecture [39], [55].
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Complex networks and decentralized search algorithms

Jon Kleinberg∗

Abstract. The study of complex networks has emerged over the past several years as a theme
spanning many disciplines, ranging from mathematics and computer science to the social and
biological sciences. A significant amount of recent work in this area has focused on the de-
velopment of random graph models that capture some of the qualitative properties observed in
large-scale network data; such models have the potential to help us reason, at a general level,
about the ways in which real-world networks are organized.

We survey one particular line of network research, concerned with small-world phenomena
and decentralized search algorithms, that illustrates this style of analysis. We begin by describing
a well-known experiment that provided the first empirical basis for the “six degrees of separation”
phenomenon in social networks; we then discuss some probabilistic network models motivated by
this work, illustrating how these models lead to novel algorithmic and graph-theoretic questions,
and how they are supported by recent empirical studies of large social networks.
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1. Introduction

Over the past decade, the study of complex networks has emerged as a theme run-
ning through research in a wide range of areas. The growth of the Internet and the
World Wide Web has led computer scientists to seek ways to manage the complexity of
these networks, and to help users navigate their vast information content. Social scien-
tists have been confronted by social network data on a scale previously unimagined:
datasets on communication within organizations, on collaboration in professional
communities, and on relationships in financial domains. Biologists have delved into
the interactions that define the pathways of a cell’s metabolism, discovering that the
network structure of these interactions can provide insight into fundamental biologi-
cal processes. The drive to understand all these issues has resulted in what some have
called a “new science of networks” – a phenomenological study of networks as they
arise in the physical world, in the virtual world, and in society.

At a mathematical level, much of this work has been rooted in the study of random
graphs [14], an area at the intersection of combinatorics and discrete probability that
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is concerned with the properties of graphs generated by random processes. While
this has been an active topic of study since the work of Erdös and Rényi in the
1950s [26], the appearance of rich, large-scale network data in the 1990s stimulated
a tremendous influx of researchers from many different communities. Much of this
recent cross-disciplinary work has sought to develop random graph models that more
tightly capture the qualitative properties found in large social, technological, and
information networks; in many cases, these models are closely related to earlier work
in the random graphs literature, but the issues arising in the motivating applications
lead to new types of mathematical questions. For surveys covering different aspects
of this general area, and in particular reflecting the various techniques of some of the
different disciplines that have contributed to it, we refer the reader to recent review
papers by Albert and Barabási [4], Bollobás [15], Kleinberg and Lawrence [39],
Newman [52], and Strogatz [60], the volume of articles edited by Ben-Naim et al.
[10], and the monographs by Dorogovtsev and Mendes [23] and Durrett [25], as well
as books by Barabási [8] and Watts [62] aimed at more general audiences.

What does one hope to achieve from a probabilistic model of a complex network
arising in the natural or social world? A basic strategy pursued in much of this
research is to define a stylized network model, produced by a random mechanism
that reflects the processes shaping the real network, and to show that this stylized
model reproduces properties observed in the real network. Clearly the full range
of factors that contribute to the observed structure will be too intricate to be fully
captured by any simple model. But a finding based on a random graph formulation
can help argue that the observed properties may have a simple underlying basis, even
if their specifics are very complex. While it is crucial to realize the limitations of
this type of activity – and not to read too much into the detailed conclusions drawn
from a simple model – the development of such models has been a valuable means
of proposing concrete, mathematically precise hypotheses about network structure
and evolution that can then serve as starting points for further empirical investigation.
And at its most effective, this process of modeling via random graphs can suggest
novel types of qualitative network features – structures that people had not thought to
define previously, and which become patterns to look for in new network datasets.

In the remainder of the present paper, we survey one line of work, motivated by
the “small-world phenomenon” and some related search problems, that illustrates
this style of analysis. We begin with a striking experiment by the social psychologist
Stanley Milgram that frames the empirical issues very clearly [50], [61]; we describe a
sequence of models based on random graphs that capture aspects of this phenomenon
[64], [36], [37], [38], [63]; and we then discuss recent work that has identified some
of the qualitative aspects of these models in large-scale network data [1], [43], [49].
We conclude with some further extensions to these random graph models, discussing
the results and questions that they lead to.
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2. The small-world phenomenon

The small-world phenomenon – the principle that we are all linked by short chains
of acquaintances, or “six degrees of separation” [29] – has long been the subject of
anecdotal fascination among the general public, and more recently has become the
subject of both experimental and theoretical research. At its most basic level, it is a
statement about networks, and human social networks in particular; it concerns the
graph with one node corresponding to each person in the world, and an edge joining
two people if they know each other on a first-name basis. When we say that this graph
is a “small world,” we mean, informally, that almost every pair of nodes is connected
by a path with an extremely small number of steps.

One could worry about whether this graph is precisely specified – for example,
what exactly it means to know someone on a first-name basis – but however one fixes
a working definition for this, it is clear that the resulting graph encodes an enormous
amount of information about society in general. It is also clear that it would be
essentially impossible to determine its structure precisely. How then could one hope
to test, empirically, the claim that most pairs of nodes in this graph are connected by
short paths?

The social psychologist Stanley Milgram [50], [61] took up this challenge in the
1960s, conducting an experiment to test the small-world property by having people
explicitly construct paths through the social network defined by acquaintanceship. To
this end, he chose a target person in the network, a stockbroker living in a suburb
of Boston, and asked a collection of randomly chosen “starter” individuals each to
forward a letter to the target. He provided the target’s name, address, occupation,
and some personal information, but stipulated that the participants could not mail
the letter directly to the target; rather, each participant could only advance the letter
by forwarding it to a single acquaintance that he or she knew on a first-name basis,
with the goal of reaching the target as rapidly as possible. Each letter thus passed
successively from one acquaintance to another, closing in on the stockbroker outside
Boston.

The letters thus acted as virtual “tracers,” mapping out paths through the social
network. Milgram found that the median length among the completed paths was
six, providing the first concrete evidence for the abundance of short paths connecting
far-flung pairs of individuals in society, as well as supplying the basis for the number
“six” in the resulting pop-cultural mantra. One needs to be careful in interpreting this
finding, of course: many of the chains never reached the target, and the target himself
was a relatively “high-status” individual who may have been easier to reach than an
arbitrary person (see e.g. the recent critique by Kleinfeld [41]). But since Milgram’s
work, the overall conclusion has been accepted at least at a qualitative level: social
networks tend to exhibit very short paths between essentially arbitrary pairs of nodes.
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3. Basic models of small-world networks

Why should social networks exhibit this type of a small-world property? Earlier
we suggested that interesting empirical findings about networks often motivate the
development of new random graph models, but we have to be careful in framing the
issue here: a simple abundance of short paths is in fact something that most basic
models of random graphs already “get right.” As a paradigmatic example of such a
result, consider the following theorem of Bollobás and de la Vega [14], [17].

Theorem 3.1 ([17]). Fix a constant k ≥ 3. If we choose uniformly at random from
the set of all n-node graphs in which each node has degree exactly k, then with high
probability every pair of nodes will be joined by a path of length O(log n).

(Following standard notation and terminology, we say that the degree of a node
is the number of edges incident to it. We say that a function is O(f (n)) if there is a
constant c so that for all sufficiently large n, the function is bounded by cf (n).) In
fact, [17] states a much more detailed result concerning the dependence on n, but this
will not be crucial for our purposes here.

Path lengths that are logarithmic inn – or more generally polylogarithmic, bounded
by a polynomial function of log n – will be our “gold standard” in most of this
discussion. We will keep the term “small world” itself informal; but we will consider
a graph to be a small world, roughly, when all (or most) pairs of nodes are connected
by paths of length polylogarithmic in n, since in such a case the path lengths are
exponentially smaller than the number of nodes.

Watts and Strogatz [64] argued that there is something crucial missing from the
picture provided by Theorem 3.1. A standard random graph (for example, as in
Theorem 3.1) is locally very sparse; with reasonably high probability, none of the
neighbors of a given node v are themselves neighbors of one another. But this is
far from true in most naturally occurring networks: in real network data, many of a
node’s neighbors are joined to each other by edges. (For example, in a social network,
many of our friends know each other.) Indeed, at an implicit level, this is a large part
of what makes the small-world phenomenon surprising to many people when they
first hear it: the social network appears from the local perspective of any one node to
be highly “clustered,” rather than the kind of branching tree-like structure that would
more obviously reach many nodes along very short paths.

Thus, Watts and Strogatz proposed thinking about small-world networks as a kind
of superposition: a structured, high-diameter network with a relatively small number
of “random” links added in. As a model for social networks, the structured underlying
network represents the “typical” social links that we form with the people who live
near us, or who work with us; the additional random links are the chance, long-range
connections that play a large role in creating short paths through the network as a
whole.

This kind of hybrid random graph model had been studied earlier by Bollobás and
Chung [16]; they showed that a small density of random links can indeed produce
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short paths very effectively. In particular they proved the following, among other
results.

Theorem 3.2 ([16]). Consider a graph G formed by adding a random matching to
an n-node cycle. (In other words, we assume n is even, pair up the nodes on the cycle
uniformly at random, and add edges between each of these node pairs.) With high
probability, every pair of nodes will be joined by a path of length O(log n).

Here too, Bollobás and Chung in fact proved a much more detailed bound on the
path lengths; see [16] for further details.

This is quite close to the setting of the Watts-Strogatz work, who also considered
cycles with random matchings as a model system for analysis. For our purposes
here, we will begin with the following grid-based model, which is qualitatively very
similar. We start with a two-dimensional n × n grid graph, and then for each node v,
we add one extra directed edge to some other node w chosen uniformly at random.
(We will refer to w as the long-range contact of v; to distinguish this, we will refer
to the other neighbors of v, defined by the edges of the grid, as its local contacts.)
Following the Watts-Strogatz framework, one can interpret this model as a metaphor
for a social network embedded in an underlying physical space – people tend to know
their geographic neighbors, as well as having friendships that span long distances.
It is also closely related to long-range percolation models, though the questions we
consider are fairly different; we discuss these connections in Section 7. For the
present discussion, though, the essential feature of this model is its superposition of
structured and random links, and it is important to note that the results to follow carry
over directly to a wide range of variations on the model. Indeed, a significant part of
what follows will be focused on a search for the most general framework in which to
formulate these results.

4. Decentralized search in small-world networks

Thus far we have been discussing purely structural issues; but if one thinks about it,
the original Milgram experiment contains a striking algorithmic discovery as well:
not only did short paths exist in the social network, but people, using knowledge only
of their own acquaintances, were able to collectively construct paths to the target.
This was a necessary consequence of the way Milgram formulated the task for his
participants; if one really wanted the shortest path from a starting person to the target,
one should have instructed the starter to forward a letter to all of his or her friends,
who in turn should have forwarded the letter to all of their friends, and so forth. This
“flooding” of the network would have reached the target as rapidly as possible; but for
obvious reasons, such an experiment was not a feasible option. As a result, Milgram
was forced to embark on the much more interesting experiment of constructing paths
by “tunneling” through the network, with the letter advancing just one person at a
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time – a process that could well have failed to reach the target, even if a short path
existed.

This algorithmic aspect of the small-world phenomenon raises fundamental ques-
tions – why should the social network have been structured so as to make this type
of decentralized routing so effective? Clearly the network contained some type of
“gradient” that helped participants guide messages toward the target, and this is some-
thing that we can try to model; the goal would be to see whether decentralized routing
can be proved to work in a simple random-graph model, and if so, to try extracting
from this model some qualitative properties that distinguish networks in which this
type of routing can succeed. It is worth noting that these issues reach far beyond
the Milgram experiment or even social networks; routing with limited information is
something that takes place in communication networks, in browsing behavior on the
World Wide Web, in neurological networks, and in a number of other settings – so an
understanding of the structural underpinnings of efficient decentralized routing is a
question that spans all these domains.

To begin with, we need to be precise about what we mean by a decentralized
algorithm. In the context of the grid-based model in the previous section, we will
consider algorithms that seek to pass a message from a starting node s to a target
node t , by advancing the message along edges. In each step of this process, the
current message-holder v has knowledge of the underlying grid structure, the location
of the target t on the grid, and its own long-range contact. The crucial point is that it
does not know the long-range contacts of any other nodes. (Optionally, we can choose
to have v know the path taken by the message thus far, but this will not be crucial
in any of the results to follow.) Using this information, v must choose one of its
network neighbors w to pass the message to; the process then continues from w. We
will evaluate decentralized algorithms according to their delivery time – the expected
number of steps required to reach the target, over a randomly generated set of long-
range contacts, and randomly chosen starting and target nodes. Our goal will be to
find algorithms with delivery times that are polylogarithmic in n.

It is interesting that while Watts and Strogatz proposed their model without the
algorithmic aspect in mind, it is remarkably effective as a simple system in which to
study the effectiveness of decentralized routing. Indeed, to be able to pose the question
in a non-trivial way, one wants a network that is partially known to the algorithm and
partially unknown – clearly in the Milgram experiment, as well as in other settings,
individual nodes use knowledge not just of their own local connections, but also of
certain global “reference frames” (comparable to the grid structure in our setting) in
which the network is embedded. Furthermore, for the problem to be interesting, the
“known” part of the network should be likely to contain no short path from the source
to the target, but there should be a short path in the full network. The Watts-Strogatz
model combines all these features in a minimal way, and thus allows us to consider
how nodes can use what they know about the network structure to construct short
paths.

Despite all this, the first result here is negative.
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Theorem 4.1 ([36], [37]). The delivery time of any decentralized algorithm in the
grid-based model is �(n2/3).

(We say that a function is �(f (n)) if there is a constant c so that for infinitely
many n, the function is at least cf (n).)

This shows that there are simple models in which there can be an exponential
separation between the lengths of paths and the delivery times of decentralized algo-
rithms to find these paths. However, it is clearly not the end of the story; rather, it says
that the random links in the Watts-Strogatz model are somehow too “unstructured” to
support the kind of decentralized routing that one found in the Milgram experiment.
It also raises the question of finding a simple extension of the model in which efficient
decentralized routing becomes possible.

To extend the model, we introduce one additional parameter α ≥ 0 that controls the
extent to which the long-range links are correlated with the geometry of the underlying
grid. First, for two nodes v and w, we define their grid distance ρ(v, w) to be the
number of edges in a shortest path between them on the grid. The idea behind the
extended model is to have the long-range contacts favor nodes at smaller grid distance,
where the bias is determined by α. Specifically, we define the grid-based model with
exponent α as follows. We start with a two-dimensional n × n grid graph, and then
for each node v, we add one extra directed edge to some other long-range contact; we
choose w as the long-range contact for v with probability proportional to ρ(v, w)−α .
Note that α = 0 corresponds to the original Watts-Strogatz model, while large values
of α produce networks in which essentially no edges span long distances on the grid.

We now have a continuum of models that can be studied, parameterized by α.
When α is very small, the long-range links are “too random,” and can’t be used
effectively by a decentralized algorithm; whenα is large, the long-range links appear to
be “not random enough,” since they simply don’t provide enough of the long-distance
jumps that are needed to create a small world. Is there an optimal operating point
for the network, where the distribution of long-range links is sufficiently balanced
between these extremes to be of use to a decentralized routing algorithm?

In fact there is; as the following theorem shows, there is a unique value of α in the
grid-based model for which a polylogarithmic delivery time is achievable.

Theorem 4.2 ([36], [37]). (a) For 0 ≤ α < 2, the delivery time of any decentralized
algorithm in the grid-based model is �(n(2−α)/3).

(b) For α = 2, there is a decentralized algorithm with delivery time O(log2 n).
(c) For α > 2, the delivery time of any decentralized algorithm in the grid-based

model is �(n(α−2)/(α−1)).

(We note that the lower bounds in (a) and (c) hold even if each node has an arbitrary
constant number of long-range contacts, rather than just one.)

The decentralized algorithm achieving the bound in (b) is very simple: each node
simply forwards the message to a neighbor – long-range or local – whose grid distance
to the target is as small as possible. (In other words, each node uses its long-range
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contact if this gets the message closer to the target on the grid; otherwise, it uses a
local contact in the direction of the target.) The analysis of this algorithm proceeds
by showing that, for a constant ε > 0, there is a probability of at least ε/ log n in
every step that the grid distance to the target will be halved. It is also worth noting
that the proof can be directly adapted to a grid in any constant number of dimensions;
an analogous trichotomy arises, with polylogarithmic delivery time achievable only
when α is equal to the dimension.

At a more general level, the proof of Theorem 4.2(b) shows that the crucial prop-
erty of exponent α = 2 is the following: rather than producing long-range contacts
that are uniformly distributed over the grid (as one gets from exponent α = 0), it
produces long-range contacts that are approximately uniformly distributed over “dis-
tance scales”: the probability that the long-range contact of v is at a grid distance
between 2j−1 and 2j away from v is approximately the same for all values of j

from 1 to log n.
From this property, one sees that there is a reasonable chance of halving the

message’s grid distance to the target, independent of how far away it currently is.
The property also has an intuitively natural meaning in the context of the original
Milgram experiment; subject to all the other simplifications made in the grid model,
it says very roughly that decentralized routing can be effective when people have
approximately the same density of acquaintances at many different levels of distance
resolution. And finally, this approximate uniformity over distance scales is the type
of qualitative property that we mentioned as a goal at the outset. It is something that
we can search for in other models and in real network data – tasks that we undertake
in the next two sections.

5. Decentralized search in other models

Hierarchical models. A natural variation on the model of the previous section is
to suppose that the network is embedded in a hierarchy rather than a grid – in other
words, that the nodes reside at the leaves of a complete b-ary tree, and the underlying
“distance” between two nodes is based on the height of their lowest common ancestor
in this tree.

There are a number of settings where such a model suggests itself. To begin
with, follow-up work on the Milgram experiment found that most decisions made by
participants on how to forward the letter were based on one of two kinds of cues:
geographical and occupational [35]. And if a two-dimensional grid is natural as a
simple abstraction for the role of geography, then a hierarchy is a reasonable, also
simple, approximation of the way in which people categorize occupations. Another
domain in which hierarchies arise naturally is in the relationships among Web pages:
for example, a Web page about sequence analysis of the yeast genome could be
classified as being about genetics, more generally about biology, and more generally
still about science, while a Web page reviewing performances of Verdi’s Aida could
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be classified as being about opera, more generally about music, and more generally
still about the arts.

A natural assumption is that the density of links is lower for node pairs that are
more widely separated in the underlying hierarchy, and this forms the basis for the
following hierarchical model with exponent β. We begin with a complete b-ary tree
having n leaves (and hence of height h = logb n). For two leaves v and w, let us
define their tree distance h(v, w) to be the height of their lowest common ancestor
in the underlying tree. We now define the following random directed graph G on
the set V of leaves: for a value k and for each node v in V , we construct k edges
out of v, choosing w as the endpoint of the ith edge independently with probability
proportional to b−βh(v,w). (We will refer to k as the out-degree of the model.)

Thus, β works much like α did in the grid-based model; when β = 0, we get
uniform random selection, while larger values of β bias the selection more toward
“nearby” nodes. Now, in this case, a decentralized search algorithm is given the
locations of a starting node s and a target node t in the hierarchy, and it must construct
a path from s to t , knowing only the edges out of nodes that it explicitly visits. Note that
in defining the performance metric for a decentralized search algorithm in this model,
we face a problem that we didn’t encounter in the grid-based model: the graph G

may not contain a path from s to t . Thus, we say that a decentralized algorithm here
has delivery time f (n) if, on a randomly generated n-node network, and with s and t

chosen uniformly at random, the algorithm produces a path of length O(f (n)) with
probability at least 1 − ε(n), where ε(·) is a function going to 0 as n increases.

We now have the following analogue of Theorem 4.2, establishing that there is
a unique value of β for which polylogarithmic delivery time can be achieved when
the network has polylogarithmic out-degree. This is achieved at β = 1, when the
probability that v links to a node at tree distance h is almost uniform over choices
of h. Also by analogy with the grid-based model, it suffices to use the simple “greedy”
algorithm that always seeks to reduce the tree distance to the target by as much as
possible.

Theorem 5.1 ([38]). (a) In the hierarchical model with exponentβ = 1 and out-degree
k = c log2 n, for a sufficiently large constant c, there is a decentralized algorithm
with polylogarithmic delivery time.

(b) For every β �= 1 and every polylogarithmic function k(n), there is no decen-
tralized algorithm in the hierarchical model with exponent β and out-degree k(n) that
achieves polylogarithmic delivery time.

Watts, Dodds, and Newman [63] independently proposed a model in which each
node resides in several distinct hierarchies, reflecting the notion that participants in
the small-world experiment were simultaneously taking into account several different
notions of “proximity” to the target. Concretely, their model constructs a random
graph G as follows. We begin with q distinct complete b-ary trees, for a constant q,
and in each of these trees, we independently choose a random one-to-one mapping
of the nodes onto the leaves. We then apply a version of the hierarchical model
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above, separately in each of the trees; the result is that each node of G acquires edges
independently through its participation in each tree. (There are a few minor differences
between their procedure within each hierarchy and the hierarchical model described
above; in particular, they map multiple nodes to the same leaf in each hierarchy, and
they generate each edge by choosing the tail uniformly at random, and then the head
according to the hierarchical model. The result is that nodes will not in general all
have the same out-degree.)

Precisely characterizing the power of decentralized search in this model, at an
analytical level, is an open question, but Watts et al. describe a number of interesting
findings obtained through simulation [63]. They study what is perhaps the most
natural search algorithm, in which the current message-holder forwards the message
to its neighbor who is closest (in the sense of tree distance) to the target in any of the
hierarchies. Using an empirical definition of efficiency on networks of several hundred
thousand nodes, they examined the set of (β, q) pairs for which the search algorithm
was efficient; they found that this “searchable region” was centered around values of
β ≥ 1 (but relatively close to 1), and on small constant values of q. (Setting q equal
to 2 or 3 yielded the widest range of β for which efficient search was possible.) The
resulting claim, at a qualitative level, is that efficient search is facilitated by having a
small number of different ways to measure proximity of nodes, and by having a small
bias toward nearby nodes in the construction of random edges.

Models based on set systems. One can imagine many other ways to construct net-
works in this general style – for example, placing nodes on both a hierarchy and a
lattice simultaneously – and so it becomes natural to consider more general frame-
works in which a range of these bounds on searchability might follow simultaneously
from a single result. One such approach is based on constructing a random graph from
an underlying set system, following the intuition that individuals in a social network
often form connections because they are both members of the same small group [38].
In other words, two people might be more likely to form a link because they live in
the same town, work in the same profession, have the same religious affiliation, or
follow the work of the same obscure novelist.

Concretely, we start with a set of nodes V , and a collection of subsets S =
{S1, S2, . . . , Sm} of V , which we will call the set of groups. It is hard to say much of
interest for arbitrary set systems, but we would like our framework to include at least
the collection of balls or subsquares in a grid, and the collection of rooted sub-trees
in a hierarchy. Thus we consider set systems that satisfy some simple combinatorial
properties shared by these two types of collections. Specifically, for constants λ < 1
and κ > 1, we impose the following three properties.

(i) The full set V is one of the groups.

(ii) If Si is a group of size g ≥ 2 containing a node v, then there is a group Sj ⊆ Si

containing v that is strictly smaller than Si , but has size at least min(λg, g −1).
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(iii) If Si1, Si2, Si3, . . . are groups that all have size at most g and all contain a
common node v, then their union has size at most κg.

The most interesting property here is (iii), which can viewed as a type of “bounded
growth” requirement; one can easily verify that it (along with (i) and (ii)) holds for
the set of balls in a grid and the set of rooted sub-trees in a hierarchy.

Given a collection of groups, we construct a random graph as follows. For nodes v

and w, we define g(v, w) to be the size of the smallest group containing both of them –
this will serve as a notion of “distance” between v and w. For a fixed exponent γ and
out-degree value k, we construct k edges out of each nodev, choosingw as the endpoint
of the ith edge from v independently with probability proportional to g(v, w)−γ . We
will refer to this as the group-based model with set system S, exponent γ , and out-
degree k. A decentralized search algorithm in such a random graph is given knowledge
of the full set system, and the identity of a target node; but it only learns the links out
of a node v when it reaches v. We now have the following theorem.

Theorem 5.2 ([38]). (a) Given an arbitrary set system S satisfying properties (i), (ii),
and (iii), there is a decentralized algorithm with polylogarithmic delivery time in the
group-based model with set system S, exponent γ = 1, and out-degree k = c log2 n,
for a sufficiently large constant c.

(b) For every set system S satisfying properties (i), (ii), and (iii), every γ < 1, and
every polylogarithmic function k(n), there is no decentralized algorithm achieving
polylogarithmic delivery time in the group-based model with set system S, exponent γ
and out-degree k(n).

In other words, efficient decentralized search is possible when nodes link to each
other with probability inversely proportional to the size of the smallest group con-
taining both of them. As a simple concrete example, if the groups are the balls in a
two-dimensional grid, then the size of the smallest group containing two nodes at dis-
tance ρ is proportional to ρ2, and so the link probability indicated by Theorem 5.2 (a)
is proportional to ρ−2; this yields an analogue of Theorem 4.2 (b), the inverse-square
result for grids. (The present setting is not exactly the same as the one there; here,
we do not automatically include the edges of the original grid when constructing the
graph, but we construct a larger number of edges out of each node.)

Simple examples show that one cannot directly formulate a general negative result
in this model for the case of exponents γ > 1 [38]. At a higher level, the group-based
model is clearly not the only way to generalize the results thus far; in the next section
we will discuss one other recent approach, and the development of other general
models is a natural direction for further research.

6. Design principles and network data

In addition to their formulation as basic questions about search algorithms in graphs,
the models we have been discussing thus far have been used as design principles in
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file-sharing systems; and they have been found to capture some of the large-scale
structure of human social networks as reflected in on-line data.

Peer-to-peer systems and focused web crawling. A recurring theme in recent work
on complex networks is the way in which simple probabilistic models can rapidly
become design principles for new types of networked systems. In the case of small-
world networks, one observes this phenomenon in the development of protocols for
peer-to-peer file sharing. The design of such protocols has become an active topic of
research in the area of computer systems, motivated in part by the explosion of popular
interest in peer-to-peer applications following the emergence of Napster and music
file-sharing in 1999. The goal of such applications was to allow a large collection
of users to share the content residing on their personal computers, and in their initial
conception, the systems supporting these applications were based on a centralized
index that simply stored, in a single place, the files that all users possessed. This
way, queries for a particular piece of content could be checked against this index, and
routed to the computer containing the appropriate file.

The music-sharing application of these systems, of course, ran into significant legal
difficulties; but independent of the economic and intellectual property issues raised
by this particular application, it is clear that systems allowing large user communities
to share content have a much broader range of potential, less controversial uses,
provided they can be structured in a robust and efficient way. This has stimulated much
subsequent study in the research community, focusing on decentralized approaches
in which one seeks file-sharing solutions that do not rely on a single centralized index
of all the content.

In this decentralized version of the problem, the crux of the challenge is clear:
each user has certain files on his or her own computer, but there is no single place
that contains a global list of all these files; if someone poses a query looking for
a specific piece of content, how can we efficiently determine which user (if any)
possesses a copy of it? Without a central index, we are in a setting very much like that
of the Milgram experiment: users must pose the query to a subset of their immediate
network neighbors, who in turn can forward the query to some of their neighbors,
and so forth. And this is where small-world models have played a role: a number of
approaches to this problem have tried to explicitly set up the network on which the
protocol operates so that its structure makes efficient decentralized search possible.
We refer the reader to the surveys by Aspnes and Shah [6] and Lua et al. [44] for
general reviews of this body of work, and the work of Clarke et al. (as described
in [32]), Zhang et al. [67], Malkhi et al. [45], and Manku et al. [46] for more specific
discussions of the relationship to small-world networks.

A related set of issues comes up in the design of focused Web crawlers. Whereas
standard Web search engines first compile an enormous index of Web pages, and then
answer queries by referring to this index, a focused crawler attempts to locate pages
on a specific topic by following hyperlinks from one page to another, without first
compiling an index. Again, the underlying issue here is the design of decentralized
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search algorithms, in this case for the setting of the Web: when searching for relevant
pages without global knowledge of the network, what are the most effective rules
for deciding which links to follow? Motivated by these issues, Menczer [49] studied
the extent to which the hierarchical model described in the previous section captures
the patterns of linkage in large-scale Web data, using the hierarchical organization of
topics provided by the Open Directory.

Social network data. The previous two applications – peer-to-peer systems and
focused Web crawling – are both concerned with the structure of computer and infor-
mation networks, although in both cases there are obvious social forces underlying
their construction. Recent work has also investigated the extent to which the models
described in the previous sections are actually reflected in data on human social net-
works. In other words, these small-world models make very concrete claims about
the ways in which networks should be organized to support efficient search, but it is
not a priori clear whether or not naturally occurring networks are organized in such
ways. Two recent studies of this flavor have both focused on social networks that
exist in on-line environments – as with the previous applications, we again see an
intertwining of social and technological networks, but in these cases the emphasis
is on the social component, with the on-line aspect mainly providing an opportune
means of performing fine-grained analysis on a large scale.

In one study of this flavor, Adamic and Adar [1] considered the e-mail network
of a corporate research lab: they collected data over a period of time, and defined an
edge between any two people who exchanged at least a certain number of messages
during this period. They overlaid the resulting network on a set system representing
the organizational structure, with a set for each subgroup of the lab’s organizational
hierarchy. Among other findings, they showed that the probability of a link between
individuals v and w scaled approximately proportional to g(v, w)−3/4, compared with
the value g(v, w)−1 for efficient search from Theorem 5.2(a). (As above, g(v, w)

denotes the size of the smallest group containing both v and w.) Thus, interactions
in their data spanned large groups at a slightly higher frequency than the optimum for
decentralized search. Of course, the e-mail network was not explicitly designed to
support decentralized search, although one can speculate about whether there were
implicit factors shaping the network into a structure that was easy to search; in any
case, it is interesting that the behavior of the links with respect to the collection of
groups is approximately aligned with the form predicted by the earlier theorems.

An even closer correlation with the structure predicted for efficient search was
found in a large-scale study by Liben-Nowell et al. [43]. They considered LiveJournal,
a highly active on-line community with several million participants, in which members
communicate with one another, update personal on-line diaries, and post messages to
community discussions. LiveJournal is a particularly appealing domain for studying
the geographic distribution of links, because members provide explicit links to their
friends in the system, and a large subset (roughly half a million at the time of the
study in [43]) also provide a hometown in the continental U.S. As a result, one has
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the opportunity to investigate, over a very large population, how the density of social
network links decays with distance.

A non-trivial technical challenge that must be overcome in order to relate this
data to the earlier models is that the population density of the U.S. is extremely non-
uniform, and this makes it difficult to interpret predictions based on a model in which
nodes are distributed uniformly over a grid. The generalization to group structures in
the previous section is one way to handle non-uniformity; Liben-Nowell et al. propose
an alternative generalization, rank-based friendships, that they argue may be more
suitable to the geographic data here [43]. In the rank-based friendship model, one has
a set of n people assigned to locations on a two-dimensional grid, where each grid
node may have an arbitrary positive number of people assigned to it. By analogy with
the grid-based model from Section 4, each person v chooses a local contact arbitrarily
in each of the four neighboring grid nodes, and then chooses an additional long-range
contact as follows. First, v ranks all other people in order of their distance to herself
(breaking ties in some canonical way); we let rankv(w) denote the position of w in v’s
ordered list, and say that w is at rank r with respect to v. v then chooses w as her
long-range contact with probability proportional to 1/rankv(w).

Note that this model generalizes the grid-based model of Section 4, in the sense
that the grid-based model with the inverse-square distribution corresponds to rank-
based friendship in which there is one person resident at each grid node. However,
the rank-based friendship construction is well-defined for any population density, and
Liben-Nowell et al. prove that it supports efficient decentralized search in general.
They analyze a decentralized greedy algorithm that always forwards the message to a
grid node as close as possible to the target’s; and they define the delivery time in this
case to be the expected number of steps needed to reach the grid node containing the
target. (So we can imagine that the task here is to route the message to the hometown of
the target, rather than the target himself; this is also consistent with the data available
from LiveJournal, which only localizes people to the level of towns.)

Theorem 6.1 ([43]). For an arbitrary population density on a grid, the expected
delivery time of the decentralized greedy algorithm in the rank-based friendship model
is O(log3 n).

On the LiveJournal data, Liben-Nowell et al. examine the fraction of friendships
(v, w) where w is at rank r with respect to v. They find that this fraction is very
close to inverse linear in r , in close alignment with the predictions of the rank-based
friendship model.

This finding is notable for several reasons. First, as with the e-mail network
considered by Adamic and Adar, there is no a priori reason to believe that a large,
apparently amorphous social network should correspond so closely to a distribution
predicted by a simple model for efficient decentralized search. Second, geography
is playing a strong role here despite the fact that LiveJournal is an on-line system in
which there are no explicit limitations on forming links with people arbitrarily far
away; as a result, one might have (incorrectly) conjectured that it would be difficult
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to detect the traces of geographic proximity in such data. And more generally, the
analytical results of this section and the previous ones have been based on highly
stylized models that nonetheless make very specific predictions about the theoretical
“optimum” for search; to see these concrete predictions approximately borne out on
real social network data is striking, and it suggests that there may be deeper phenomena
yet to be discovered here.

7. Further results on small-world networks and decentralized search

Long-range percolation. The grid-based models we have been considering are
closely related to the problem of long-range percolation. In the basic version of
long-range percolation, one takes the infinite d-dimensional integer lattice Z

d , and
for each pair of nodes (v, w) one includes an undirected edge between them inde-
pendently with probability ρ(v, w)−α , where ρ(v, w) is the grid distance between v

and w and α ≥ 0 is a parameter of the model. Note that there are some small dif-
ferences from the grid-based model described in Section 4: the graph is infinite, it is
undirected, its nodes do not all have the same degree, and it does not automatically
include edges between nearest neighbors on the lattice. In addition to these, a broader
difference is in the nature of the questions investigated, with the initial work on long-
range percolation focusing on the range of parameters for which an infinite connected
component is likely to exist [3], [51], [57].

Motivated in part by the interest in small-world networks, work on long-range
percolation began to investigate diameter issues – the maximum D for which every
node is connected by a path of at most D steps. Benjamini and Berger [11] studied this
problem in one dimension, modifying the model so that the graph is finite (restricted to
the integers {1, 2, . . . , n}), and so that edges are guaranteed to exist between adjacent
integers. (They also studied the case in which the distance ρ(·, ·) is defined by
assuming that the integers are “wrapped” into a cycle, so that ρ(i, j) is not |j − i|
but min(|j − i|, n − |j − i|).) Their work was followed by results of Coppersmith et
al. [20] and Biskup [13], who obtained sharper bounds in some cases and considered
higher-dimensional lattices as well, in which the node set is {1, 2, . . . , n}d . As a
result of this work, we know that the diameter of the graph changes qualitatively at
the “critical values” α = d and α = 2d. In particular, with high probability, the
diameter is constant when α < d (due in essence to a result of [12]), is proportional to
log n/ log log n when α = d [20], is polylogarithmic in n when d < α < 2d (with an
essentially tight bound provided in [13]), and is lower-bounded by a polynomial in n

when α > 2d [11], [20]. The case α = 2d is largely open, and conjectured to have
diameter polynomial in n with high probability [11], [13]. It is also open whether the
diameter for α > 2d is in fact linear in n; this has been proved for the one-dimensional
case [11] and conjectured to hold for higher dimensions as well [11], [13], [20].

This pair of transitions at α = d and α = 2d was observed in a somewhat
different setting by Kempe et al. [34], resolving a conjecture of Demers et al. [21] on
the behavior of gossip algorithms. In this model, there are nodes located on the finite
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d-dimensional lattice {1, 2, . . . , n}d , and in each time step each node v picks a single
other node and tells everything it currently knows to w; node w is selected as the
recipient of this information with probability proportional to ρ(v, w)−α . Information
originating at one node thus spreads to other nodes, relayed in an epidemic fashion
over time. Now, if a single node v initially possesses a new piece of information
at time 0, how long will it take before knowledge of this information has spread
to a given node w? The main result of [34] is that the time required for this is
polylogarithmic in n for α ≤ d, is polylogarithmic in ρ(v, w) but independent of n

for d < α < 2d, and is polynomial in ρ(v, w) for α > 2d. Here too the case
α = 2d is not well understood, which is interesting because this transitional value has
particular importance in applications of gossip algorithms to distributed computing
systems [54]. (See [34] for partial results concerning α = 2d.)

For the specific grid-based model described in Section 4, Martel and Nguyen
showed that with high probability the diameter is proportional to log n for α ≤ d, in
the d-dimensional case [48]. They also identified transitions at α = d and α = 2d

analogous to the case of long-range percolation [53]. In particular, their results show
that while decentralized search can construct a path of length O(log2 n) when α = d,
there in fact exist paths that are shorter by a logarithmic factor. (Note also the contrast
with the corresponding results for the long-range percolation model when α ≤ d;
in the grid-based model, the out-degree of each node is bounded by a constant, so a
diameter proportional to log n is the smallest one could hope for; in the case of long-
range percolation, on the other hand, the node degrees will be unbounded, allowing
for smaller diameters.)

Decentralized search with additional information. A number of papers have stud-
ied the power of decentralized search algorithms that are provided with small amounts
of additional information [28], [42], [47], [48], [66]. Whereas the model of decentral-
ized algorithms in Section 4 charged unit cost to the algorithm for each node visited,
the models in these subsequent papers make the following distinction: a node may
“consult” a small number of nearby nodes, and then based on what it learns from this
consultation, it chooses a node to forward the messages to. In bounding the number
of steps taken by the algorithm, only the message-forwarding operations are counted,
not the consultation.

In particular, Lebhar and Schabanel [42] consider an algorithm in which the node
currently holding the message consults a set S of up to O(log n) nodes within a small
number of steps of it; after this, it forwards the message along a path to the node w

in S that is closest to the target in grid distance. They show that, in total, the expected
number of nodes consulted by this process is O(log2 n) (as in the decentralized al-
gorithm from Section 4), and that the actual path constructed to the target has only
O(log n(log log n)2) steps.

Manku, Naor, and Wieder [47] consider a simpler algorithm in the long-range
percolation model on the d-dimensional lattice {1, 2, . . . , n}d with α = d. Note that
nodes here will have unbounded degrees – proportional to log n in expectation, rather
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than constant as in the grid-based model. Manku et al. analyze a neighbor-of-neighbor
search algorithm in which the current message-holder v consults each of its neighbors
to learn the set S of all of their neighbors; v then forwards the message along the two-
step path to the node in S that lies closest to the target. They show that with high
probability, this algorithm produces a path to the target of at most O(log n/ log log n)

steps, matching the bound of Coppersmith et al. [20] on the diameter of this network.
Moreover, they show that the basic greedy algorithm, which simply forwards the
message to the neighbor closest to the target, requires an expected number of steps
proportional to log n to reach the target. Thus, one step of lookahead provides an
asymptotic improvement in delivery time; and since one step of lookahead yields
path lengths matching the diameter, additional lookahead does not offer any further
asymptotic improvements.

Thus, the results of Manku et al. provide a rather sharp characterization of the
power of lookahead in the long-range percolation model at the exponent α = d that
allows for efficient decentralized search; determining a similarly precise delineation
on the power of lookahead in the grid-based model (extending the aforementioned
results of Lebhar and Schabanel) is an interesting open question.

Small-world networks built on arbitrary underlying graphs. The results in Sec-
tion 5 describe various methods for constructing searchable networks based on under-
lying structures other than d-dimensional grids. In several recent papers, a number
of further structures have been proposed as “scaffolds” for small-world networks [9],
[27], [31], [53], [59].

In principle, one can consider adding long-range edges to any underlying graph G;
Fraigniaud [27] asks whether any G can be converted through such a process into a
network that is efficiently searchable by a greedy algorithm. Specifically, suppose we
choose a distribution over long-range contacts for each node of G, and we use this
to generate a random graph G′ by adding a single long-range edge out of each node
of G. We then consider the natural greedy algorithm for forwarding the message to
a target t : the current message-holder passes the message to a neighbor that has the
shortest path to the target as measured in G (not in G′). Is it the case that for every
graph G, there is a distribution over long-range contacts such that this algorithm has
a delivery time that is polylogarithmic in n?

This question is open in general; note that the challenge in resolving it comes
from the fact that a single choice of distribution per node must work (in expectation)
over any possible destination, and that even if the graph G′ has nicely-structured
short paths, the search algorithm is constrained to behave “greedily” in the original
graph G. Fraigniaud answers the question in the affirmative for graphs of bounded
tree-width as well as graphs in which there is no induced cycle of greater than a fixed
length [27]; he also discusses some respects in which such underlying graphs are
qualitatively consistent with observed properties of social networks. Duchon et al.
answer the question in the affirmative for graphs satisfying a certain “bounded growth
rate” property [24].
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Slivkins [59] considers a different setting, in which nodes are embedded in an
underlying metric space. He shows that if the metric is doubling, in the sense that
every ball can be covered by a constant number of balls of half the radius (see e.g. [7],
[30]), then there is a model such that each node generates a polylogarithmic number
of long-range contacts from specified distributions, and a decentralized algorithm
is then able to achieve a polylogarithmic delivery time. (Some of the logarithmic
dependence here is on the aspect ratio of the metric – the ratio of the largest to the
smallest distance – but it is possible to avoid this dependence in the bound on the
delivery time. See [59] for further details on this issue.)

Finally, other work has studied search algorithms that exploit differences in node
degrees. There are indications that people navigating social structures, in settings
such as small-world experiments, take into account the fact that certain of their ac-
quaintances simply know a large number of people [22]. Similarly, in peer-to-peer
networks, it is also the case that certain nodes have an unusually large number of
neighbors, and may thus be more useful in helping to forward queries. Adamic et
al. [2] formalize these considerations by studying a random graph model in which
high-degree nodes are relatively abundant, and decentralized search algorithms only
have access to information about degrees of neighboring nodes, not to any embed-
ding of the graph (spatial or otherwise). Through simulation, they find that for certain
models, knowledge of degrees provides an improvement in search performance.

Simsek and Jensen [58] consider a model which combines spatial embedding with
variable node degrees. Specifically, they study a variant of the grid-based model from
Section 4 in which nodes have widely varying degrees, and a decentralized algorithm
has access both to the locations of its neighbors and to their degrees. Through sim-
ulation, they find that a heuristic taking both these factors into account can perform
more efficiently than decentralized algorithms using only one of these sources of
information. Finding the optimal way to combine location and degree information
in decentralized search, and understanding the range of networks that are searchable
under such optimal strategies, is an interesting direction for further research.

8. Conclusion

We have followed a particular strand of research running through the topic of complex
networks, concerned with short paths and the ability of decentralized algorithms to
find them. As suggested initially, the sequence of ideas here is characteristic of the
flavor of research in this area: an experiment in the social sciences that highlights
a fundamental and non-obvious property of networks (efficient searchability, in this
case); a sequence of random graph models and accompanying analysis that seeks to
capture this notion in a simple and stylized form; a set of measurements on large-scale
network data that parallels the properties of the models, in some cases to a surprising
extent; and a range of connections to further results and questions in algorithms, graph
theory, and discrete probability.
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To indicate some of the further directions in which research on this topic could
proceed, we conclude with a list of open questions and issues related to small-world
networks and decentralized search. Some of these questions have already come up
implicitly in the discussion thus far, so one goal of this list is to collect a number of
these questions in a single place. Other questions here, however, bring in issues that
reach beyond the context of the earlier sections. And as with any list of open questions,
we must mention a few caveats: the questions here take different forms, since some
are concretely specified while other are more designed to suggest problems in need
of a precise formulation; the questions are not independent, in that the answer to one
might well suggest ways of approaching others; and several of the questions may well
become more interesting if the underlying model or formulation is slightly varied or
tweaked.

1. Variation in node degrees. As we discussed at the end of the previous section,
decentralized search in models that combine wide variation in node degrees with some
kind of spatial embedding is an interesting issue that is not well understood. Simsek
and Jensen’s study [58] of this issue left open the question of proving bounds on
the efficiency of decentralized algorithms. For example, consider the d-dimensional
grid-based model with exponent α, and suppose that rather than constructing a fixed
number of long-range contacts for each node, we draw the number of long-range
contacts for each node v independently from a given probability distribution. To be
concrete, we could consider a distribution in which one selects k long-range contacts
with probability proportional to k−δ for a constant δ.

We now have a family of grid-based models parameterized by α and δ, and we can
study the performance of decentralized search algorithms that know not only the long-
range contacts out of the current node, but also the degrees of the neighboring nodes.
Decentralized selection of a neighbor for forwarding the message has a stochastic
optimization aspect here, balancing the goal of forwarding to a node close to the
target with the goal of forwarding to a high-degree node. We can now ask the general
question of how the delivery time of decentralized algorithms varies in both α and δ.
Note that it is quite possible this question becomes more interesting if we vary the
model so that long-range links are undirected; this way, a node with a large degree is
both easy to find and also very useful once it is found. (In a directed version, a node
with large out-degree may be relatively useless simply because it has low in-degree
and so is unlikely to be found.)

2. The case of α = 2d. In both the grid-based model and the related long-range
percolation models, very little is known about the diameter of the graph when α is
equal to twice the dimension. (It appears that a similar question arises in other versions
of the group-based models from Section 5, when nodes form links with probability
inversely proportional to the square of the size of the smallest group containing both
of them.) Resolving the behavior of the diameter would shed light on this transitional
point, which lies at the juncture between “small worlds” and “large worlds.” This open
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question also manifests itself in the gossip problem discussed in Section 7, where we
noted that the transitional value α = 2d arises in distributed computing applications
(see the discussion in [34], [54]).

3. Paths of logarithmic length. It would be interesting to know whether there is
a decentralized algorithm in the d-dimensional grid-based model, at the “searchable
exponent” α = d, that could construct paths of length O(log n) while visiting only
a polylogarithmic number of nodes. This would improve the result of Lebhar and
Schabanel [42] to an asymptotically tight bound on path length.

4. Small-world networks with an arbitrary base graph. It would also be interest-
ing to resolve the open problem of Fraigniaud [27] described in Section 7, formalizing
the question of whether any graph can be turned into an efficiently searchable small
world by appropriately adding long-range links1.

5. Extending the group-based model. Theorem 5.2 on the group-based model
contained a positive result generalizing the ones for grids and hierarchies, and it
contained a general negative result for the case when long-range connection were “too
long-range” (i.e. with exponent γ < 1). However, it does not fully generalize the
results for grids and hierarchies, because there are set systems satisfying conditions (i),
(ii), and (iii) of the theorem for which efficient decentralized search is possible even for
exponents γ > 1. It would be interesting to find a variation on these three properties
that still generalizes grids and hierarchies in a natural way, and for which γ = 1 is
the unique exponent at which efficient decentralized search is possible.

6. Multiple hierarchies. Obtaining provable bounds for decentralized search in the
“multiple hierarchies” model of Watts, Dodds, and Newman [63] is also an open ques-
tion. Such results could form an interesting parallel with the findings they discovered
through simulation. With some small modifications to the model of Watts et al., one
can cast it in the group-based model of Section 5, and so it is entirely possible that
progress on this question and the previous could be closely connected.

7. The evolution of searchable networks. The remaining questions have a more
general flavor, where much of the challenge is the formalization of the underlying
issue. To begin with, the current models supporting efficient decentralized search
are essentially static, in that they describe how the underlying network is organized
without suggesting how it might have evolved into this state. What kinds of growth
processes or selective pressures might exist to cause networks to become more ef-
ficiently searchable? Interesting network evolution models addressing this question
have been proposed by Clauset and Moore [19] and by Sandberg [56], both based on
feedback mechanisms by which nodes repeatedly perform decentralized searches and

1Note added in proof: Fraigniaud, Lebhar, and Lotker have very recently announced a negative resolution of
this question, constructing a family of graphs that cannot be turned into efficiently searchable small worlds by
this process.
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in the process partially “rewire” the network. Obtaining provable guarantees for these
models, or variations on them, is an open question. A number of peer-to-peer file-
sharing systems include similar feedback mechanisms, achieving good performance
in practice. Freenet [18] is a good example of such a system, and the relationship of
its feedback mechanism to the evolution of small-world networks is studied by Zhang
et al. [67].

Game theory may provide another promising set of techniques for studying the
evolution of small-world networks. A growing body of recent work has considered
game-theoretic models of network formation, in which agents controlling nodes and
edges interact strategically to construct a graph – the basic question is to understand
what types of structures emerge when each agent is motivated by self-interest. For
surveys of this area, see [5], [33], [65]. In the present case, it would be interesting
to understand whether there are ways to define incentives such that the collective
outcome of self-interested behavior would be a searchable small-world network.

8. Decentralized search in the presence of incentives. Game-theoretic notions
can provide insight not just into the growth of a network, but also into the processes
that operate on it. A topic of interest in peer-to-peer systems, as well as in the
design of on-line communities, is the way in which the incentives offered to the
members of the system influence the extent to which they are willing to forward
queries and information. In the case of decentralized search, suppose that there
is some utility associated with routing the message from the starting node to the
target, and intermediate nodes behave strategically, demanding compensation for their
participation in the construction of the path. How do results on decentralized path
formation change when such behavior is incorporated into the model?

In [40], this question is made precise in a setting where the underlying network is a
random tree, constructed via a branching process. It would be interesting to consider
analogous issues in richer classes of networks.

9. Reconstruction. The networks we have considered here have all been embedded
in some underlying “reference frame” – grids, hierarchies, or set systems – and most
of our analysis has been predicated on a model in which the network is presented
together with this embedding. This makes sense in many contexts; recall, for example,
the discussion from Section 6 of network data explicitly embedded in Web topic
directories [49], corporate hierarchies [1], or the geography of the U.S. [43]. In
some cases, however, we may be presented with just the network itself, and the
goal is to determine whether it has a natural embedding into a spatial or hierarchical
structure, and to recover this embedding if it exists. For example, we may have
data on communication within an organization, and the goal is to reconstruct the
hierarchical structure under the assumption that the frequency of communication
decreases according to a hierarchical model – or to reconstruct the positions of the
nodes under the assumption that the frequency of communication decreases with
distance according to a grid-based or rank-based model.
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One can formulate many specific questions of this flavor. For example, given a
network known to be generated by the grid-based model with a given exponent α,
can we approximately reconstruct the positions of the nodes on the grid? What if
we are not told the exponent? Can we determine whether a given network was more
likely to have been generated from a grid-based model with exponent α or α′? Or
what if there are multiple long-range contacts per node, and we are only shown the
long-range edges, not the local edges? A parallel set of questions can be asked for
the hierarchical model.

Questions of this type have been considered by Sandberg [55], who reports on
the results of computational experiments but leaves open the problem of obtaining
provable guarantees. Benjamini and Berger [11] pose related questions, including the
problem of reconstructing the dimension d of the underlying lattice when presented
with a graph generated by long-range percolation on a finite piece of Z

d .

10. Comparing network datasets. As we saw earlier, the models proposed in
Sections 4 and 5 suggest a general perspective from which to analyze network datasets,
by studying the way in which the density of links decays with increasing distance or
increasing group size (e.g. [1], [43]). One could naturally use this style of analysis to
compare related network datasets – for example taking the patterns of communication
within k different organizations (as Adamic and Adar did for the corporate lab they
studied), and determining exponents γ1, γ2, . . . , γk for each such that the probability
of a link between individuals v and w in a group of size g scales approximately as g−γi

in the ith organization. Differences among these exponents would suggest structural
differences between the organizations at a global level – communication in some is
more long-range, while in others it is more clustered at the low levels of the hierarchy.
It would be interesting to understand whether these differences in turn were naturally
reflected in other aspects of the organizations’ behavior and performance.

More generally, large-scale social, technological, and information networks are
sufficiently complex objects that the guiding principles provided by simple models
seem crucial for our understanding of them. The perspective suggested here has of-
fered one such collection of principles, highlighting in particular the ways in which
these networks are intertwined with the spatial and organizational structures that they
inhabit. One can hope that as we gather an increasing range of different perspec-
tives, our understanding of complex networks will continue to deepen into a rich and
informative theory.
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On expander graphs and connectivity in small space
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Abstract. This presentation is aimed to communicate a recently found deterministic algorithm
for determining connectivity in undirected graphs [40]. This algorithm uses the minimal amount
of memory possible, up to a constant factor. Specifically, the algorithm’s memory is comparable
to that needed to store the name of a single vertex of the graph (i.e., it is logarithmic in the size
of the graph).

Our algorithm also implies a deterministic, short (i.e. of polynomial length), universal se-
quence of steps which explores all the edges of every regular undirected graph. Such a sequence
will get one out of every maze, and through the streets of every city. More formally we give
universal exploration sequences for arbitrary graphs and universal traversal sequences for graphs
with some natural restriction on their labelling. Both sequences are constructible with logarith-
mic memory and are thus only polynomially long.

To obtain this algorithm, we give a method to transform (using small memory), an arbitrary
connected undirected graph into an expander graph (which is a sparse but highly connected
graph).
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space (SL), pseudorandomness.

1. Introduction

An undirected graph is a pair of finite sets G = (V , E) where V is the set of ver-
tices and E is the set of edges. An edge is simply a pair of vertices (we say that the
edge is adjacent to these two vertices and the two vertices are adjacent to it). Special
cases of graphs that may be useful to visualize are mazes and road maps where a
vertex corresponds to an intersection and an edge directly connects the two vertices
adjacent to it.1 Given as input an undirected graph G and two vertices s and t, the
undirected st-connectivity (denoted USTCON) problem is to decide whether or not
the two vertices are connected by a path (i.e. a sequence of edges) in G . This funda-
mental combinatorial problem has received a lot of attention in the last few decades
and was studied in a large variety of computational models. It is a basic building
block for more complex graph algorithms and is complete2 for an interesting class

∗Incumbent of the Walter and Elise Haas Career Development Chair, Research supported by US-Israel Bina-
tional Science Foundation Grant 2002246.

1In a directed graph an edge is an ordered pair of vertices and we can therefore think of an edge as a
unidirectional road going from the first vertex to the second vertex.
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of computational problems known as SL (these are problems solvable by symmet-
ric, non-deterministic, log-space computations [25]). A few interesting examples of
problems in SL are deciding if a graph is bipartite (equivalently if it is 2-colorable),
if a bounded degree graph is planar and identifying chordal graphs, interval graphs,
split graphs and permutation graphs (see [8] for a recent study of SL and quite a few
of its complete problems).

The time complexity of USTCON is well understood as basic search algorithms,
particularly breadth-first search (BFS) and depth-first search (DFS), are capable of
solving USTCON in linear time. In fact, these algorithms apply to the more complex
problem of st-connectivity in directed graphs, denoted STCON (which is complete for
the class NL of non-deterministic log-space computations). Unfortunately, the space
required to run these algorithms is linear as well. In a recent paper [40] we resolve
the space (memory) complexity of USTCON, up to a constant factor, by presenting
a log-space (polynomial-time) algorithm for solving it (our algorithm also solves the
corresponding search problem, of finding a path from s to t if such a path exists).
In this presentation (which is in large part borrowed from [40]) we will discuss this
algorithm. We will also discuss the connection of this question to the possible tradeoff
between two resources of computation: randomness and memory. Finally, we will
discuss explicit (and space efficient) constructions of fascinating combinatorial objects
known as universal traversal and universal exploration sequences. Loosely, these are
short sequences of simple directions that lead a walk through all of the edges of any
graph of an appropriate size. Our main technical tool is borrowed from a combinatorial
construction of expander graphs due to Reingold, Vadhan and Wigderson [43]. We
will further elaborate on the connection to expander graphs.

Background. Given the inefficiency in terms of memory of BFS and DFS, Sav-
itch’s [47] introduced an algorithm which solves STCON in space log2( · ) (and
super-polynomial time). Major progress in understanding the space complexity
of USTCON was made by Aleliunas, Karp, Lipton, Lovász, and Rackoff [2], who
gave a randomized log-space algorithm for the problem. Specifically, they showed
that a random walk (a path that selects a uniform edge at each step) starting from an ar-
bitrary vertex of any connected undirected graph will visit all the vertices of the graph
in polynomial number of steps. Therefore, the algorithm can perform a random walk
starting from s and verify that it reaches t within the specified polynomial number of
steps. Essentially all that the algorithm needs to remember is the name of the current
vertex and a counter for the number of steps already taken. With this result we get the
following view of space complexity classes: L ⊆ SL ⊆ RL ⊆ NL ⊆ L2 (where RL
is the class of problems that can be decided by randomized log-space algorithms with
one-sided error and Lc is the class of problems that can be decided deterministically
in space logc( · )).

2A complete problem for a class is such that any other problem “efficiently reduces” to it. Therefore, an
algorithm for this problem implies an algorithm (which is almost as efficient) for any other problem in the class.
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The existence of a randomized log-space algorithm for USTCON puts this problem
in the context of derandomization. Can this randomized algorithm be derandomized
without substantial increase in space? Furthermore, the study of the space com-
plexity of USTCON has gained additional motivation as an important test case for
understanding the tradeoff between two central resources of computations, namely
between memory space and randomness. Particularly, a natural goal on the way to
proving RL = L is to prove that USTCON ∈ L, as USTCON is undoubtedly one of
the most interesting problems in RL.

Following [2], most of the progress on the space complexity of USTCON indeed
relied on the tools of derandomization. In particular, this line of work greatly ben-
efited from the development of pseudorandom generators that fool space-bounded
algorithms [1], [10], [33], [19] and it progressed concurrently with the study of the L
vs. RL problem. Another very influential notion, introduced by Stephen Cook in the
late 70s, is that of a universal-traversal sequence. Loosely, this is a fixed sequence of
directions that guides a deterministic walk through all of the vertices of any connected
graph of the appropriate size (see further discussion below).

While Nisan’s space-bounded generator [33], did not directly imply a more space
efficient USTCON algorithm it did imply quasi-polynomially-long, universal-traversal
sequences, constructible in space log2( · ). These were extremely instrumental in the
work of Nisan, Szemeredi and Wigderson [34] who showed that USTCON ∈ L3/2 –
The first improvement over Savitch’s algorithm in terms of space (limited of course to
the case of undirected graphs). Using different methods, but still heavily relying on
[33], Saks and Zhou [46] showed that every RL problem is also in L3/2 (their result
in fact generalizes to randomized algorithms with two-sided error). Relying on the
techniques of both [34] and [46], Armoni, et. al. [9] showed that USTCON ∈ L4/3.
Their USTCON algorithm was the most space-efficient one previous to this work. We
note that the most space-efficient polynomial-time algorithm for USTCON previously
known was Nisan’s [32], which still required space log2( · ). Independent of our work
(and using different techniques), Trifonov [49] has presented an O(log n log log n)-
space, deterministic algorithm for USTCON.

Our approach. The essence of our algorithm is in the following very natural ap-
proach: If you want to solve a connectivity problem on your input graph, first improve
its connectivity. In other words, transform your input graph (or rather, each one of
its connected components), into an expander.3 We will also insist on the final graph
being constant degree (i.e., every vertex is adjacent to a constant number of edges).
Once the connected component of s is a constant-degree expander, then it is trivial
to decide if s and t are connected: Since expander graphs have logarithmic diameter,

3The exact definition of expander graphs is less important for now, and the following description could be
understood by viewing expanders as graphs with very strong connectivity properties. Still, for the knowledgable
reader, the particular measure that seems the most convenient to work with is the second eigenvalue (in absolute
value) of the adjacency matrix of the graph (we will only need to work with regular graphs). It may however be
that other, more combinatorial, measures will also do (see [41] for a more detailed discussion).
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it is enough to enumerate all logarithmically long paths starting with s and to see if
one of these paths visits t . Since the degree is constant, the number of such paths is
polynomial and they can easily be enumerated in log space.

How can we turn an arbitrary graph into an expander? First, we note that every
connected, non-bipartite, graph can be thought of as an expander with very small (but
non-negligible) expansion. Consider for example an arbitrary connected graph with
self-loops added to each one of its vertices. The number of neighbors of every strict
subset of the vertices is larger than its size by at least one. In this respect, the graph
can be thought of as expanding by a factor 1+ 1/N (where N is the total number of
vertices in the graph). Now, a very natural operation that improves the expansion of
the graph is powering. The kth power of G contains an edge between two vertices v

and w for every path of length k in G. Formally, it can be shown that by taking some
polynomial power of any connected non-bipartite graph (equivalently, by repeatedly
squaring the graph logarithmic number of times), it will indeed turn into an expander.

The down side of powering is of course that it increases the degree of the graph.
Taking a polynomial or any non-constant power is prohibited if we want to maintain
constant degree. Fortunately, there exist operations that can counter this problem.
Consider for example the replacement product of a D-regular graph G with a d-regu-
lar graph H on D vertices (with d � D). This can be loosely defined as follows:
Each vertex v of G is replaced with a “copy” Hv of H . Each of the D vertices of Hv

is connected to its neighbors in Hv but also to one vertex in Hw, where (v, w) is
one of the D edges going out of v in G. The degree in the product graph is d + 1
(which is smaller than D). Therefore, this operation can transform a graph G into
a new graph (the product of G and H ) of smaller degree. It turns out that if H is a
“good enough” expander, the expansion of the resulting graph is “not worse by much”
than the expansion of G. Formal statements to this affect were proven by Reingold,
Vadhan and Wigderson [43] for both the replacement product and the zig-zag product,
introduced there. Independently, Martin and Randall [30], building on previous work
of Madras and Randall [27], proved a decomposition theorem for Markov chains that
also implies that the replacement product preserves expansion.

Given the discussion above, we are ready to informally describe our USTCON
algorithm. First, turn the input graph into a constant-degree, regular graph with
each connected component being non-bipartite (this step is very easy). Then, the
main transformation turns each connected component of the graph, in logarithmic
number of phases, into an expander. Each phase starts by raising the current graph to
some constant power and then reducing the degree back via a replacement or a zig-
zag product with a constant-size expander. We argue that each phase enhances the
expansion at least as well as squaring the graph would, and without the disadvantage
of increasing the degree. Finally, all that is left is to solve USTCON on the resulting
graph (which is easy as the diameter of each connected component is only logarithmic).

To conclude that USTCON ∈ L, we need to argue that all of the above can be done
in logarithmic space, which easily reduces to showing that the main transformation can
be carried out in logarithmic space. For that, consider the graph Gi obtained after i
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phases of the transformation. We note that a step on Gi (i.e., evaluating the j ’th
neighbor of some vertex v in Gi) is composed of a constant number of operations that
are either a step on the graph Gi−1 from the previous phase or an operation that only
requires a constant amount of memory. As the memory for each of these operations
can be freed after it is performed, the memory for carrying out a step on Gi is only
larger by an additive constant than the memory for carrying out a step on Gi−1. This
implies that the entire transformation is indeed log space.

Universal traversal sequences While universal-traversal sequences were intro-
duced as a way for proving USTCON ∈ L, these are interesting combinatorial objects
in their own right. A universal-traversal sequence for D-regular graphs on N -vertices,
is a sequence of edge labels in {1, . . . , D} such that for every such graph, for every
labelling of its edges, and for every start vertex, the deterministic walk defined by
these labels (where in the i’th step we take the edge labeled by the i’th element of
the sequence), visits all of the vertices of the graph. Aleliunas et. al. [2] showed
that polynomial-length universal-traversal sequence exists, and in fact almost ev-
ery sequence of the appropriate length will do. We are interested in obtaining a
polynomially-long, universal-traversal sequence that is constructible in logarithmic
space (even less explicit sequences may still be very interesting). This is again a de-
randomization problem. Namely, can we derandomize the probabilistic construction
of universal-traversal sequences?

Explicit constructions of polynomially-long universal-traversal sequences are only
known for extremely limited classes of graphs. Even for expander graphs, such
sequences are only known when the edges are “consistently labelled” [18] (this means
that the labels of all edges that lead to any particular vertex are distinct). It is therefore
not very surprising that our algorithm on its own does not imply full fledged universal-
traversal sequences. Still, our algorithm can be shown to imply a very local, and
quite oblivious, deterministic procedure for exploring a graph. We can think of our
algorithm as maintaining a single pebble, that is placed on the edges of the graph.
The pebble is moved either from one side of the edge to another, or between different
edges that are adjacent to the same vertex (say to the next or to the previous edge). As
with universal-traversal sequences, the fixed sequence of instructions is good for every
graph, for every labelling of its edges, and for any starting point on the graph. The only
difference from universal-traversal sequences is that the pebble here is placed on the
edges rather than on the vertices of the graph. In particular, we get polynomially-long,
universal-exploration sequences for all undirected graphs. In universal-exploration
sequences, introduced by Koucky [23], the elements of the sequence are not interpreted
as absolute edge-labels but rather as offsets from the previous edge that was traversed.
In terms of traversal sequences, our algorithm implies a polynomially-long, universal-
traversal sequence that is constructible in logarithmic space under some restrictions
on the labelling. These restrictions were relaxed in a subsequent work [41] to be
identical to those of [18]. For more details see Section 5.
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More on previous work Graph connectivity problems and space-bounded deran-
domization are the focus of a vast and diverse body of research. The scope of this paper
only allows for an extremely partial discussion of this area. Some very beautiful and
influential research (as many of the papers mentioned above) is only briefly touched
upon, other areas will not be discussed at all (examples include, time-space tradeoffs
for deterministic and randomized connectivity algorithms, restricted constructions of
universal traversal sequences, and analysis of connectivity in many other computa-
tional models). Insightful, though somewhat outdated, surveys on these topics were
given by Wigderson [50] and by Saks [45]. Useful discussion and pointers were also
given by Koucky [24]. We continue here by mentioning a few of the most related
previous results (most of which are subsumed by the results of this paper). A more
technical comparison with some previous work appears in Section 6.

Following Aleliunas et. al. [2], Borodin et. al. [12] gave a zero-error, randomized,
log-space algorithm for USTCON. An upper bound of different nature on SL was
given by Karchmer and Wigderson [21], who showed SL ⊆ ⊕L.

Nisan and Ta-Shma [35] showed that SL is closed under complement, thus col-
lapsing the “symmetric log-space hierarchies” of both Reif [39] and Ben Asher et.
al. [11], and putting some very interesting problems into SL. To give just one example,
the planarity of bounded-degree undirected graphs was placed in SL as a corollary
(we refer again to [8] for a list of SL-complete problems).

A research direction initiated by Ajtai et. al. [1], and continued with Nisan and
Zuckerman [36] is to fully derandomize (i.e., to put in L) log n-space computations
that use fewer than n random bits (poly log n bits in the case of [36]). Raz and
Reingold [38] showed how to derandomize 2

√
log n bits for subclasses of RL. One

of their main applications can be viewed as derandomizing 2
√

log n bits for SL. It is
interesting to note (and personally gratifying to the author) that the techniques of [38]
played a major roll in the definition of the zig-zag product and with this work found
their way back to the study of space-bounded derandomization.

Goldreich and Wigderson [17] gave an algorithm that on all but a tiny fraction of
the graphs, evaluates USTCON correctly (and on the rest of the graphs outputs an
error message).

Based on rather relaxed computational hardness assumptions, Klivans and van
Melkebeek [22] proved both that RL = L and that efficiently constructible, polyno-
mial length, universal traversal sequences exist.

2. Preliminaries

This section discusses various aspects of graphs: their representation, eigenvalue
expansion, graph powering, and two graph products (the replacement product and
the zig-zag product). The definitions and notation used here are borrowed directly
from [43].
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2.1. Graphs representations. There are several standard representations of graphs.
Fortunately, there exist log-space transformations between natural representations.
Thus, the space complexity of USTCON is to a large extent independent of the rep-
resentation of the input graph.

When discussing the eigenvalue expansion of a graph, we will consider its adja-
cency matrix. That is, the matrix whose (nonnegative, integral) entry (u, v) equals to
the number of edges that go from vertex u to vertex v. Note that this representation
allows graphs with self loops and parallel edges (and indeed such graphs may be gen-
erated by our algorithm). A graph is undirected iff its adjacency matrix is symmetric
(implying that for every edge from u to v there is an edge from v to u). It is D-regular
if the sum of entries in each row (and column) is D (so exactly D edges are incident
to every vertex).

Let G be a D-regular undirected graph on N vertices. When considering a walk
on G, we would like to assume that the edges leaving each vertex of G are labeled
from 1 to D in some arbitrary, but fixed, way. We can then talk about the i’th edge
incident to a vertex v, and similarly about the i’th neighbor of v. A central insight
of [43] is that when taking a step on a graph from vertex v to vertex w, it may be
useful to keep track of the edge traversed to get to w (rather than just remembering
that we are now at w). This gave rise to a new representation of graphs through the
following permutation on pairs of vertex name and edge label:

Definition 2.1. For a D-regular undirected graph G, the rotation map RotG : [N] ×
[D] → [N]×[D] is defined as follows: RotG(v, i) = (w, j) if the i’th edge incident
to v leads to w, and this edge is the j ’th edge incident to w.

Rotation maps will indeed be the representation of choice for this work. Specifi-
cally, the first step of our algorithm will be to transform the input graph into a regular
one specified by its rotation map (in particular, this step will give labels to the edges
of the graph).

2.2. Eigenvalue expansion and st-connectivity for expanders. Expanders are
sparse graphs which are nevertheless highly connected. The strong connectivity prop-
erties of expanders make them very desirable in our context. Specifically, since the
diameter of expander graphs is only logarithmically long, there is a trivial log-space
algorithm for finding paths between vertices in constant-degree expanders. The par-
ticular formalization of expanders used in this paper is the (algebraic) characterization
based on the spectral gap of their adjacency matrix. Namely, the gap between the first
and second eigenvalues of the (normalized) adjacency matrix.

The normalized adjacency matrix M of a D-regular undirected graph G, is the
adjacency matrix of G divided by D. In terms of the rotation map, we have:

Mu,v = 1

D
· ∣∣{(i, j) ∈ [D]2 : RotG(u, i) = (v, j)}∣∣ .

M is simply the transition probability matrix of a random walk on G. By the D-regu-
larity of G, the all-1’s vector 1N = (1, 1, . . . , 1) ∈ R

N is an eigenvector of M of
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eigenvalue 1. It turns out that all the other eigenvalues of M have absolute value at
most 1. We denote by λ(G), the second largest eigenvalue (in absolute value) of G’s
normalized adjacency matrix. We refer to a D-regular undirected graph G on N

vertices such that λ(G) ≤ λ as an (N, D, λ)-graph. It is well-known that the second
largest eigenvalue of G is a good measure of G’s expansion properties. In particular, it
was shown by Tanner [48] andAlon and Milman [5] that second-eigenvalue expansion
implies (and is in fact equivalent [3]) to the standard notion of vertex expansion. In
particular, for every λ < 1 there exists ε > 0 such that for every (N, D, λ)-graph G

and for any set S of at most half the vertices in G, at least (1+ ε) · |S| vertices of G

are connected by an edge to some vertex in S. This immediately implies that G has
a logarithmic diameter:

Proposition 2.2. Let λ < 1 be some constant. Then for every (N, D, λ)-graph G and
any two vertices s and t in G, there exists a path of length O(log N) that connects s

to t .

Proof. By the vertex expansion of G, for some � = O(log N) both s and t have more
than N/2 vertices of distance at most � from them in G. Therefore, there exists a
vertex v that is of distance at most � from both s and t . �

We can therefore conclude that st-connectivity in constant-degree expanders can
be solved in log-space:

Proposition 2.3. Let λ < 1 be some constant. Then there exists a space O(log D ·
log N) algorithm A such that when a D-regular undirected graph G on N vertices
is given to A as input, the following hold:

1. If s and t are in the same connected component and this component is an
(N ′, D, λ)-graph then A outputs ‘connected’.

2. If A outputs ‘connected’ then s and t are indeed in the same connected com-
ponent.

Proof. The algorithm A simply enumerates all D� paths of length � = O(log N)

from s. (Where the leading constant in the big-O notation depends on λ as in Propo-
sition 2.2.) The algorithm A outputs ‘connected’ if and only if at least one of these
paths encounters t .

Following any particular path from s of length � requires space O(log N), (when
given as input the sequence of � edge labels in [D] = {1, 2, . . . D} traversed by
this path). Enumerating all these D� paths requires space O(log D · log N). By
Proposition 2.2, in case (1), s and t are of distance at most � of each other and A
will indeed find a path from s to t and will output ‘connected’. On the other hand, A
never outputs ‘connected’ unless it finds a path from s to t , implying (2). �

Using the probabilistic method, Pinsker [37] showed that most 3-regular graphs are
expanders (in the sense of vertex expansion), and this result was extended to eigenvalue
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bounds in [3], [13], [15], [14]. Various explicit families of constant-degree expanders,
some with optimal tradeoff between degree and expansion, were given in literature
(cf. [28], [16], [20], [5], [4], [26], [29], [31], [43]). Our algorithm will employ a single
constant size expander with rather weak parameters. This expander can be obtained
by exhaustive search or by any of the explicit constructions mentioned above. In fact,
one can use simpler explicit constructions than the ones given above, as we can afford
a rather large degree (with respect to the number of vertices), rather than a constant
degree. An example of a simpler construction that would suffice is the one given by
Alon and Roichman [6], (see also related discussions in [43] regarding their “base
graph”).

Proposition 2.4. There exists some constant De and a ((De)
16, De, 1/2)-graph.

Finally, a key fact for our algorithm is that every connected, non-bipartite graph
has a spectral gap which is at least inverse polynomial in the size of the graph (recall
that a graph is non-bipartite if there is no partition of the vertices such that all the
edges go between the two sides of the partition).

Lemma 2.5 ([7]). For every D-regular, connected, non-bipartite graph G on [N] it
holds that λ(G) ≤ 1− 1/DN2.

2.3. Powering. Our main transformation will take a graph and transform each one
of its connected components (that in itself will be a connected, non-bipartite graph),
into a constant degree expander. If we ignore the requirement that the graph remains
constant degree, a simple way of amplifying the (inverse polynomial) spectral gap of
a graph is by powering.

Definition 2.6. Let G be a D-regular multigraph on [N] given by rotation map RotG.
The t’th power of G is the Dt -regular graph Gt whose rotation map is given by
RotGt (v0, (a1, a2, . . . , at )) = (vt , (bt , bt−1, . . . , b1)), where these values are com-
puted via the rule (vi, bi) = RotG(vi−1, ai).

Proposition 2.7. If G is an (N, D, λ)-graph, then Gt is an (N, Dt , λt )-graph.

Proof. The normalized adjacency matrix of Gt is the t’th power of the normalized
adjacency matrix of G, so all the eigenvalues also get raised to the t’th power. �

2.4. Two graph products. While taking a power of a graph reduces its second
eigenvalue, it also increases its degree. As we are interested in producing constant-
degree graphs, we need a complementing operation that reduces the degree of a graph
without harming its expansion by too much. We now discuss two graph products that
are capable of doing exactly that.

The first is the very natural product, known as the replacement product. Assume
that G is a D-regular graph on [N] and H is a d-regular graph on [D] (where d is
significantly smaller than D). Very intuitively, the replacement product of the two
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graphs is defined as follows: Each vertex v of G is replaced with a “copy” Hv of H .
Each of the D vertices of Hv is connected to its neighbors in Hv but also to one vertex
in Hw, where (v, w) is one of the D edges going out of v in G. The degree in the
product graph is d + 1 (which is smaller than D).4 A second, slightly more evolved,
product introduced by Reingold, Vadhan and Wigderson [43], is the zig-zag graph
product. Here too we replace each vertex v of G with a “copy” Hv of H . However, the
edges of the zig-zag product of G and H correspond to a subset of the paths of length
three in the replacement product of these graphs5 (see formal definition below). The
degree of the product graph here is d2 (which should still be thought of as significantly
smaller that D).

It is immediate from their definition, that both products can transform a graph G

to a new graph (the product of G and H ) of smaller degree. As discussed in the
introduction, it was previously shown [43], [30] that if H is a “good enough” expander,
then the expansion of the resulting graph is “not worse by much” than the expansion
of G (see formal statement below for the zig-zag product). Either one of these products
can be used in our USTCON algorithm (with some variation in the parameters). We
find it more convenient to work with the zig-zag product (even though it is a bit more
involved), hence we proceed by formally defining it.

Definition 2.8 ([43]). If G is a D-regular graph on [N]with rotation map RotG and H

is a d-regular graph on [D]with rotation map RotH , then their zig-zag product G©z H

is defined to be the d2-regular graph on [N ] × [D] whose rotation map RotG©z H is as
follows (see Figure 1 for an illustration):

�
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Figure 1. On the left – an edge of the zig-zag product is composed of three steps: a “short step”
(in Hv), a “big step” (between Hv and Hw which corresponds to an edge of G between v and w),
and a final “small step” (in Hw). The values i ,i′, j and j ′ are labels of edges of H (going out
of the H vertices a, a′, b′ and b respectively). On the right – the projection of these steps on the
graph G (which corresponds to the middle step specified by (w, b′) = RotG(v, a′)).

4Sometimes it is better to consider the balanced replacement product, where every edge in G is taken d times
in parallel. The degree of the product graph in this case is 2d instead of d + 1.

5Those length three paths that are composed of a “short edge” (an edge inside one of the copies Hv), a “long
edge” (one that corresponds to an edge of G), and finally one additional “short edge”.
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RotG©z H((v, a), (i, j)):

1. Let (a′, i′) = RotH (a, i).

2. Let (w, b′) = RotG(v, a′).

3. Let (b, j ′) = RotH (b′, j).

4. Output ((w, b), (j ′, i′)).

In [43], λ(G©z H) was bounded as a function of λ(G) and λ(H). The interesting
case there was when both λ(G) and λ(H) were small constants (and in fact, λ(G) is
significantly smaller than λ(H)). In our context, λ(H) will indeed be a small constant
but G may have an extremely small spectral gap (recall that the spectral gap of G is
1 − λ(G)). In this case, we want the spectral gap of G©z H to be roughly the same
as that of G (i.e., smaller by at most a constant factor). It turns out that the stronger
bound on λ(G©z H), given in [43] implies a useful bound also in this case. We note
that a simpler proof for the sort of bound on the zig-zag product we need is given
in [41] (in a more general setting than the one considered in [43]).

Theorem 2.9 ([43]). If G is an (N, D, λ)-graph and H is a (D, d, α)-graph, then
G©z H is a (N ·D, d2, f (λ, α))-graph, where

f (λ, α) = 1

2
(1− α2)λ+ 1

2

√
(1− α2)2λ2 + 4α2.

As a simple corollary, we have that the spectral gap of G©z H is smaller than that
of G by a factor that only depends on λ(H).

Corollary 2.10. If G is an (N, D, λ)-graph and H is a (D, d, α)-graph, then

1− λ(G©z H) ≥ 1

2
(1− α2) · (1− λ).

Proof. Since λ ≤ 1 we have that

1

2

√
(1− α2)2λ2 + 4α2 ≤ 1

2

√
(1− α2)2 + 4α2 = 1

2
(1+ α2) = 1− 1

2
(1− α2).

Therefore, f (λ, α) from Theorem 2.9 satisfies f (λ, α) ≤ 1− 1
2 (1−α2)(1−λ). �

3. Transforming graphs into expanders

This section gives a log-space transformation that essentially turns each one of the
connected components of a graph into an expander. This is the main part of our
USTCON algorithm.
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Definition 3.1 (Main transformation). On input G and H , where G is a D16-regular
graph on [N ] and H is a D-regular graph on [D16], both given by their rotation maps,
the transformation T outputs the rotation map of a graph G� defined as follows:

• Set � to be the smallest integer such that (1− 1/DN2)2�
< 1/2.

• Set G0 to equal G, and for i > 0 define Gi recursively by the rule:

Gi = (Gi−1©z H)8.

Denote by Ti (G, H) the graph Gi , and T (G, H) = G�

Note that by the basic properties of powering and the zig-zag product, it follows
inductively that each Gi is a D16-regular graph over [N] × ([D16])i . In particular,
the zig-zag product of Gi and H is well defined. In addition, if D is a constant,
then � = O(log N) and G� has poly(N) vertices. Our first lemma shows that T is
capable of turning an input graph G into an expander G� (as long as H is in itself an
expander).

Lemma 3.2. Let G and H be the inputs of T as in Definition 3.1. If λ(H) ≤ 1/2
and G is connected and non-bipartite then λ(T (G, H)) ≤ 1/2.

Proof. Since G = G0 is connected and non-bipartite we have by Lemma 2.5 that
λ(G0) ≤ 1 − 1/DN2. By the choice of � it is therefore enough to prove that for
every i > 0, it holds that λ(Gi) ≤ max{λ(Gi−1)

2, 1/2}. Denote λ = λ(Gi−1). Since
λ(H) ≤ 1/2, we have by Corollary 2.10 that λ(Gi−1©z H) ≤ 1 − 3/8(1 − λ) <

1− 1/3(1−λ). By the definition of Gi and by Proposition 2.7 we have that λ(Gi) <

[1 − 1/3(1 − λ)]8. We now consider two cases. First, if λ < 1/2 then λ(Gi) <

(5/6)8 < 1/2. Otherwise, elementary calculation shows that [1− 1/3(1− λ)]4 ≤ λ

and therefore λ(Gi) < λ2. The lemma follows. �

As we are working our way to solving st-connectivity, rather than solving connec-
tivity (the problem of deciding if the input graph is connected or not), our transforma-
tion should be meaningful even for graphs that are not connected (as even in this case
the two input vertices s and t may still be in the same connected component). For
that, we will argue that T operates separately on each connected component of G.
The reason is that T is composed of two operations (the zig-zag product and power-
ing), that also operate separately on each connected component. We will need some
additional notation: For any graph G and subset of its vertices S, denote by G|S the
subgraph of G induced by S (i.e., the graph on S which contains all of the edges in G

between vertices in S). A set S is a connected component of G if G|S is connected
and the set S is disconnected from the rest of G (i.e., there are no edges in G between
vertices in S and vertices outside of S).

Lemma 3.3. Let G and H be the inputs of T as in Definition 3.1. If S ⊆ [N ] is a
connected component of G then

T (G|S, H) = T (G, H)|S×([D16])� .
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Proof. We will only rely on S being disconnected from the rest of G, and will prove
inductively that Ti (G|S, H) = Ti (G, H)|S×([D16])i . Note that for i > 0 this directly
implies that S × ([D16])i is disconnected from the rest of Ti (G, H) (since both
Ti (G|S, H) and Ti (G, H) are D16-regular, and thus all of the D16 edges incident to
a vertex in S × ([D16])i reside inside Ti (G, H)|S×([D16])i ). The base case i = 0 is
trivial, and here too S×([D16])i = S is disconnected from the rest of Ti (G, H) = G,
by assumption.

Assume by induction that Ti (G|S, H) = Ti (G, H)|S×([D16])i . Set Gi = Ti (G, H)

and Si = S × ([D16])i (and recall that Si is disconnected from the rest of Gi). Then,
by the definition of the zig-zag product, Si × [D16] is disconnected from the rest of
Gi©z H and the edges incident to Si×[D16] in Gi©z H are exactly as in Gi |Si×[D16]©z H .
By the definition of powering we now have that Si × [D16] is disconnected from the
rest of (Gi©z H)8 and the edges incident to Si × [D16] in (Gi©z H)8 are exactly as
in (Gi |Si×[D16]©z H)8. This proves the induction hypothesis for i + 1 and completes
the proof. �

Finally, we need to argue that T is a log-space transformation (when D is a
constant). The reason is that the evaluation of the rotation map RotGi+1 of each graph
Gi+1 in the definition of T requires just a constant additional amount of memory
over the evaluation of RotGi

. Simply, the evaluation of RotGi+1 is composed of a
constant number of operations, where each operation is either an evaluation of RotGi

or it requires constant amount of memory (and the same memory can be used for each
one of these operations). So the additional memory needed for evaluating RotGi+1 is
essentially a constant size counter (keeping track of which operation we are currently
performing).

Lemma 3.4. For every constant D the transformation T of Definition 3.1 can be
computed in space O(log N) on inputs G and H , where G is a D16-regular graph on
[N ] and H is a D-regular graph on [D16].
Proof. We describe an algorithm A that on inputs G and H computes the rotation
map RotG�

of G� = T (G, H). Namely, given G and H (written on the read-
only input tape), it enumerates all values (v, a) in the domain of RotG�

and outputs
[(v, a), RotG�

(v, a)]. Recall that a value (v, a) in the domain of RotG�
consists of

v ∈ [N] × ([D16])� which is the name of a G� vertex, and a ∈ [D16], which is the
label of a G� edge. Since � = O(log N) and D is a constant, the length of each
value (v, a) is O(log N) and therefore enumerating all of these values can be done
in space O(log N). It remains to show that for any particular value (v, a), evaluating
RotG�

(v, a) can also be done in the required space.
The algorithm A will first allocate the following variables: v which will take value

in [N] (specifying a vertex of G), and �+1 variables a0, a1, . . . , a� each taking value
in [D16] (and each specifying a vertex name of H ; In addition, a0 may specify an edge
label of G). It is sometimes convenient to view each one of a1, . . . , a� as specifying
a sequence of 16 edge labels of H . In this case we denote ai = ki,1 . . . ki,16. Now, A
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will copy the value (v, a) into the above mentioned variables: v into v, a0, . . . , a�−1
and a into a�. Throughout the execution of A, the values of these variables will slowly
evolve such that when A finishes (for this particular (v, a)), the same variables will
contain the desired output RotG�

(v, a) (which is of the same range as the input (v, a)).
We describe the operation of A in a recursive manner that closely follows the

definition of T . Particularly, at each level of the recursion, A will evaluate RotGi
for

some i on the appropriate prefix v, a0, . . . , ai of the variables defined above. For the
base case i = 0, RotG0 = RotG is written on the input tape, and can therefore be
evaluated in space O(log N) by simply searching the input tape for the desired entry.
For larger i, the evaluation of RotGi

is as follows:

For j = 1 to 16:

• Set ai−1, ki,j ← RotH (ai−1, ki,j ).

• If j is odd, recursively set v, a0 . . . ai−1 ← RotGi−1((v, a0 . . . ai−2), ai−1).

• If j = 16, reverse the order of the individual labels in ai : Set ki,1, . . . , ki,16 ←
ki,16, . . . , ki,1.

The correctness of A immediately follows from the definition of T and from
the operations of which it consists (powering and the zig-zag product). Essentially,
going over the operations (in the first two bullets) for any two consecutive values
of j corresponds to one step on (Gi−1©z H). Repeating eight times implies a path
of length eight on (Gi−1©z H), or alternatively one step on (Gi−1©z H)8. The third
bullet reverses the order of labels to fit the definition of zig-zag and powering.

We therefore concentrate on the space complexity of A. Note that each node of
the recursion tree performs a constant number of operations and makes a constant
number of recursive calls. In addition the depth of the recursion is �+1 = O(log N).
Therefore, maintaining the recursion can be done in space O(log N). Furthermore,
each one of the basic operations (evaluating RotG, evaluating RotH , and reversing
the order of labels in the last step) can be performed in space O(log N). Finally, the
only memory that needs to be kept after a basic operation is performed, is the memory
holding the variables v, a0, . . . , a� (that are shared by all of these operations), and
the memory for maintaining the recursion. We therefore conclude that the space
complexity of A is O(log N) which completes the proof. �

4. A log-space algorithm for USTCON

This section puts together the tools developed above into a deterministic log-space
algorithm that decides undirected st-connectivity. As will be discussed in Section 5,
the algorithm can also output a path from s to t if such a path exists.

Theorem 4.1. USTCON ∈ L.
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As undirected USTCON is complete for SL [25], Theorem 4.1 can be rephrased
as follows.

Theorem 4.2. SL = L.

Proof of Theorem 4.1. We give an algorithm A that gets as input a graph G over the
set of vertices [N], and two vertices s and t in [N ]. For concreteness, we assume that
the graph is given via the adjacency matrix representation. A will answer ‘connected’
if and only if there exists a path in G between s and t (i.e., s and t are in the same
connected component). Furthermore, G will use space which is logarithmic in its
input size.

The algorithm A will need to evaluate the rotation map of a ((De)
16, De, 1/2)-

graph H , where De is some constant. By Proposition 2.4, there exists such a graph and
therefore A can obtain it by exhaustive search using constant amount of memory (a
more efficient alternative is of course to obtain H by any of the explicit constructions
of expanders mentioned in Section 2.2).

Let T be the transformation given by Definition 3.1. We would like to apply T to G

and H in order to obtain a graph where each connected component is an expander. For
such graphs, st-connectivity can be solved in logarithmic space by Proposition 2.3.
However, we will first need to preprocess G in order to get a new graph Greg such
that (Greg, H) is a correct input to T . In particular, we need Greg to be a D16

e -regular
graph given by its rotation map. There are various ways of transforming G to Greg.
The one given here was selected for its simplicity even though it is not the most
efficient one possible (in terms of the size of Greg). Essentially, we replace every
vertex of G with a cycle of length N and each of the vertices (v, w), where there is
an edge between v and w in G, is also connected to (w, v) (the rest of the edges are
self loops). The rotation map RotGreg : ([N ]× [N])×[D16

e ] �→ ([N]× [N ])×[D16
e ]

of Greg is formally defined as follows:

• RotGreg((v, w), 1) = ((v, w′), 2), where w′ = w + 1 if w < N and w′ = 1
otherwise.

• RotGreg((v, w), 2) = ((v, w′), 1), where w′ = w − 1 if w > 1 and w′ = N

otherwise.

• In case there is an edge between v and w in G then RotGreg((v, w), 3) =
((w, v), 3). Otherwise, RotGreg((v, w), 3) = ((v, w), 3).

• For i > 3, RotGreg((v, w), i) = ((v, w), i).

The transformation from G (given by its adjacency matrix) to Greg (given by its
rotation map) is clearly computable in logarithmic space. Furthermore, Greg is D16

e -
regular by definition and all its connected components are non-bipartite (as every
vertex in Greg has self loops). Finally, for every connected component S ⊆ [N ] of G

we have that S × [N] is a connected component in Greg. To see that, we first note
that for every vertex v ∈ [N ] the set of vertices v × [N] is in the same connected
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component of Greg (as this set is connected by a cycle). Furthermore, there is an edge
in Greg between some vertex in v × [N ] and some vertex in w × [N] if and only if v

and w are connected by an edge in G (the only possible edge that can connect these
subsets is an edge between (v, w) and (w, v) which only exists in Greg if there is an
edge between v and w in G).

Now define Gexp = T (Greg, H), and � = O(log N) is the corresponding value
as in Definition 3.1. Let S be the connected component of G, such that s ∈ S. By
the arguments above, S × [N] is a connected component of Greg, and Greg|S×[N ]
is non-bipartite. By Lemma 3.3, S × [N] × ([D16])� is a connected component of
Gexp (as both Gexp and Gexp|S×[N ]×([D16])� are D16

e -regular). By Lemma 3.2 and
Lemma 3.3, we have that λ(Gexp|S×[N ]×([D16])�) ≤ 1/2.

Let A′ be the algorithm guaranteed by Proposition 2.3 (which decides undirected
st-connectivity correctly in graphs where the connected component of the starting
vertex is an expanders). The algorithm A will now invoke A′, on the graph Gexp
and the vertices s′ = (s, 1�+1) and t ′ = (t, 1�+1). If A′ outputs that s′ and t ′ are
connected in Gexp then A will output that s and t are connected in G. Otherwise, A
will output that s and t are not connected.

The algorithm A is log-space since it is composed of a constant number of log-
space procedures: (1) The transformation from G to Greg. (2) The transformation
from Greg to Gexp, which is log-space by Lemma 3.4. (3) The algorithm A′ which is
log-space by Proposition 2.3. Correctness of A is argued as follows. First, s′ and t ′ are
connected in Gexp if and only if s and t are connected in G (since S×[N ]× ([D16])�
is a connected component of Gexp, where S is the connected component of G that
contains s). The correctness of A now follows since Proposition 2.3 implies that A′
will output ‘connected’ if and only if s′ and t ′ are indeed connected in Gexp (as
λ(Gexp|S×[N ]×([D16])�) ≤ 1/2). �

5. Universal traversal and exploration sequences

In this section, we look closer into our USTCON algorithm and conclude that it also
solves the corresponding search problem (i.e., finding the path from s to t if such a path
exist). In addition, it implies efficiently-constructible universal-traversal sequences
for graphs with restricted labelling, and universal exploration sequences for general
graphs. The sort of restriction we pose on the labelling of graphs is a strengthening
of the “consistent labelling” used in [18]. In a subsequent work [41], our restriction
is relaxed to that of [18].

We start by analyzing T , the main transformation of the algorithm, given by
Definition 3.1. We show that every edge in T (G, H) translates to a path in G between
the appropriate vertices, and that this path is log-space constructible (as this path
is indeed computed during the log-space evaluation of T ). Looking ahead to the
universal-traversal sequences, we note that if we restrict the labelling of G, then the
labels of edges, traversed along this path, are independent of G.
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Definition 5.1. Let π be a permutation over [D] and RotG the rotation map of a
D-regular graph G. Then RotG is π -consistent if for every v, i, w and j such that
RotG(v, i) = (w, j), it holds that j = π(i). In such a case we may also say that the
labelling of G is π -consistent.

An example of a π -consistent labelling is symmetric labelling where π is simply
the identity. Namely, every edge is labelled in the same way from both its end points.
However, other kinds of π -consistent labellings come up naturally. An example for
that is the labelling of Greg in the proof of Theorem 4.1. We can now state the
appropriate technical lemma regarding the transformation T .

Lemma 5.2. Let D be some constant. Let G be a D16-regular graph on [N] and let H
be aD-regular graph on [D16], both given by their rotation maps. LetG� = T (G, H),
where T and � are given by Definition 3.1.

There exists a log-space algorithm such that given RotG, RotH and (v, a) in the
domain of RotG�

, it outputs a sequence of labels in [D16]with the following property:
If the first element of v is a vertex u ∈ [N] and the first element of RotG�

(v, a) is a
vertex w ∈ [N], then the walk on G from u using the labels that the algorithm outputs
leads to w.

Furthermore, for every fixed permutation π on [D16], if the labelling of G is
π -consistent, the log-space algorithm can evaluate the sequence of labels without
access to RotG.

Proof. Consider the log-space algorithm A in the proof of Theorem 3.4, as it evaluates
RotG�

(v, a). We enhance it a bit, to define an algorithm A′ as claimed by the lemma.
Consider in particular the two variables v and a0 used by A. To begin with, v will
be initialized to the value u (the first element of v). At the end, v will contain
the value w. Throughout the run of A, the variable v is only updated by the rule
v, a0 ← RotG(v, a0) (used at the bottom of the recursion). Therefore, all that A′
needs to do is to output the value of a0 just before each time A updates v.

Regarding the second part of the lemma. We note that the value of a0 is only influ-
enced by RotG, through the evaluations v, a0 ← RotG(v, a0). If G is π -consistent,
then A′ can completely ignore the variable v and the rotation map of G. To simu-
late A, it is sufficient that whenever A evaluates v, a0 ← RotG(v, a0), then A′ will
evaluate a0 ← π(a0). �

Using Lemma 5.2, it is not hard to obtain the algorithm that finds paths in undi-
rected graphs.

Theorem 5.3. There exists a log-space algorithm that gets as input a graph G over
the set of vertices [N], and two vertices s and t in [N ], and outputs a path from s to
t if such a path exists (otherwise it outputs ‘not connected’).

Proof. Consider the algorithm A from the proof of Theorem 4.1. We revise it to an
algorithm A′ as required by the theorem. First, we note that it is enough for A′ to
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output a path from (s, 1) to (t, 1) in Greg if such a path exists, as it is easy to transform
(in log-space) such a path to a path from s to t in G (and the existence of the two
paths is equivalent).

Next we note that A enumerates all logarithmically-long paths from s′ = (s, 1�+1)

in Gexp. If it does not find a path that visits t ′ = (t, 1�+1), it concludes that s and t

are not connected in G. Therefore, in such a case, A′ can output ‘not connected’.
Otherwise A found a short path from s′ to t ′. Apply the algorithm guaranteed by
Lemma 5.2 on each edge on the path from s′ to t ′. Each time the algorithm outputs
a sequence of edge-labels in Greg. Let �a be the concatenation of these sequences. It
follows from Lemma 5.2 that the path in Greg starting from (s, 1) and following the
edges according to the labels in �a leads to (t, 1). The theorem now follows. �

To give our result regarding universal-traversal sequences, we need some notation.
Let �a = {a1, . . . , am} be a sequence of values in [D] (these are interpreted as edge
labels). �a is an (N, D)-universal traversal sequence, if for every connected D-regular,
labelled graph G on N vertices, and every start vertex s ∈ [N], the walk that starts
at s and follows the edges labelled a1, . . . , am, visits every vertex in the graph. For a
permutation π over [D], we say that �a is an (N, D) π -universal traversal sequence,
if the above property holds for every connected D-regular graph on N vertices, that
has a π -consistent labelling, (rather than for all such graphs).

Theorem 5.4. There exists a log-space algorithm that takes as input 1N and a per-
mutation π over [D] and outputs an (N, D) π-universal traversal sequence.

Proof. First we argue that it is enough to construct an (N · D, D16
e ) π ′-universal

sequence for the following simple permutation: π ′(1) = 2, π ′(2) = 1 and for every
i > 2 π ′(i) = i. Furthermore, all we need is that the sequence will traverse non-
bipartite graphs. Consider a (connected) D-regular graph G on N vertices that has a
π -consistent labelling. This graph can be transformed into a D16

e -regular (connected
and non-bipartite) graph G′ on N ·D vertices that has a π ′-consistent labelling. Each
vertex v ∈ N is transformed into a cycle over D vertices (v, 1), . . . , (v, D), the edges
of the cycle are labelled 1 and 2 (just as in the definition of Greg in the proof of
Theorem 4.1). The edge labelled 3 going out of (v, i) will lead to RotG(v, i) (and
will be labelled 3 from that end as well). All other edges are self loops.

Assume that a sequence of labels a1, . . . , am, visits every vertex of G′ starting from
every vertex (v, 1) (this is even less general than what we obtain). We can translate
this (in log space) into a sequence of labels b1, . . . , bm′ that traverses G from every
vertex v. To do that, we simulate the walk on G′ from an arbitrary vertex (v, 1). As v

is unknown and our simulation does not rely on G, it will only know at each point
the value b such that the walk at this point visits some vertex (w, b) of G′ (where w

is unknown). First b is set to 1. Then, during the simulation, labels ai > 3 can be
ignored (as they are self loops). Given labels 1 and 2, b can easily be updated (these
are edges on the cycle). Finally, when encountering ai = 3 the walk moves from a
vertex (w, b) to a vertex (w′, π(b)) (as the labelling of G is π -consistent), and so it is
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easy to update the value of b (given access to π ). The projection of the walk on G is
exactly the edges labelled 3 that are taken by the walk on G′. Therefore, to transform
the sequence of ai’s to the sequence of bi’s we can simply output (throughout the
simulation) the current value of b, whenever we encounter a label ai = 3.

Now we consider a D16
e -regular (connected and non-bipartite) graph G′ on N ·D

vertices that has a π ′-consistent labelling. Let H be a ((De)
16, De, 1/2)-graph. Fi-

nally let G� = T (G, H), where T and � are given by Definition 3.1. By Lemma 3.2,
λ(G�) ≤ 1/2 and therefore its diameter is logarithmic. Therefore, for every two
vertices v and u of G′ one of the polynomially many sequences of labels (of the
appropriate logarithmic length) will visit (u, 1�), starting at (v, 1�). Let B be the set
of all these sequences of labels. Lemma 5.2 gives a way to translate in log-space
each one of the sequences in B into a corresponding sequence of edge-labels of G′.
Let B ′ be the set of translated sequences. By Lemma 5.2 and the above argument,
for every two vertices v and u of G′ one of the sequences in B ′ will lead a walk
in G′ that starts in v through the vertex u. We should also note that given a sequence
�a = a1, . . . , am that leads from a vertex v to a vertex u, we have that the sequence
π ′−1(am), . . . , π ′−1(a1) leads from u to v (this operation simply reverses the walk).
We refer to this latter sequence as the reverse of �a. Finally, we can define a sequence
that traverses all of the vertices of G′ regardless of the starting vertex. Simply, we
concatenate for each sequences in B ′ its reversed sequence and concatenate all of
these sequences one after the other. By the arguments above, for every vertex v,
the sequence we obtain will visit v after every pair of a sequence and its reversed
sequence. Furthermore, for every vertex u, one of these sequences will lead to u.
As the log-space construction of this sequence ignores the graph G′ (and only relies
on π ′), we obtained the desired (N ·D, D16

e ) π ′-universal sequence for non-bipartite
graphs. The theorem follows. �

In an (N, D)-universal exploration sequence, the sequence of labels is interpreted
as offsets rather than absolute labels. This means that if we entered a vertex v on
an edge labelled a (from v’s view point), and we are reading the label b, then we
will leave v on the edge labelled a + b (or a + b − D if a + b > D). In fact this
notion can apply to graphs that are not-regular (it then makes sense to allow negative
elements in the sequence). Universal-exploration sequences have more flexibility
than universal-traversal sequences. For example, it is not clear how to transform
a universal-traversal sequence for degree-3 graphs to one for higher-degree graphs.
This is easy for universal-exploration sequences (and seems desirable as USTCON
can easily be reduced to USTCON for regular-graphs of any degree larger than 2).
Koucky [24] showed how to transform a universal-traversal sequence to a universal-
exploration sequence. His transformation (which is essentially the same as the one
from G to G′ in the proof of Theorem 5.4), only needs the universal-sequence to
work for graphs with π -consistent labelling for some simple permutation π . We can
therefore conclude from Theorem 5.4 a log-space construction for general universal-
exploration sequences.
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Corollary 5.5. There exists a log-space algorithm that takes as input (1N, 1D) and
produces an (N, D)-universal exploration sequence.

6. Discussion and further research

We start by comparing the techniques of this paper with some previous ones, with
the goal of shading some light on the source of our improvements. We continue by
discussing some open problems and the results of a subsequent work.

Comparison with previous techniques The USTCON algorithms of [47], [34], [9]
also operate by transforming, in phases, the input graph into a more accommodating
one. In each one of these algorithms, each phase “charges” logarithmic amount to
the space complexity of the algorithm. The improvement in the space complexity is
directly correlated to reducing the number of phases needed for the transformation.
With this approach, the only way to obtain a log-space algorithm is to reduce the
number of phases to a constant. We deviate from this direction, as we use a loga-
rithmic number of phases (just as in Savitch’s algorithm), to gradually improve the
connectivity of the input graph. The space efficiency of our algorithm stems from
each transformation being significantly less costly in space.

The parameter being improved by [34], [9], is the size of the graph (each transfor-
mation shrinks the graph by collapsing it to a “representative” subset of the vertices).
In contrast, our transformation will in fact expand the graph by a polynomial factor (as
each phase, enlarges our graph by a constant factor). The parameter Savitch’s trans-
formation improves is the diameter of the graph, which is much closer to the parameter
we improve (the expansion). In fact, each phase of Savitch’s algorithm can be de-
scribed very similarly to our algorithm. Each one of these phases consists of squaring
the graph and then removing parallel edges (which may reduce the degree). Although
all that is needed is indeed that the diameter of the resulting graph will be small, our
analysis relies on bounding the expansion of intermediate graphs – a stronger notion
of connectivity than the diameter. This allows our transformation to preserve constant
degree of the graph (rather than linear degree in Savitch’s algorithm), which is crucial
for our analysis of the space complexity.

It also seems instructive to compare with the combinatorial construction of ex-
pander graphs of [43]. There, an arbitrarily large expander graphs was constructed,
starting with a constant size expander. This small expander is made larger and larger,
while its degree is kept constant via the zig-zag or the replacement product. Our
main transformation shows how to turn any connected graph (which is already large)
into an expander. This means that the above mentioned products need to be applied
when one of the graphs is an extremely weak expander (whereas in [43] both graphs
were fairly good expanders). Very fortunately, both products work quite well in this
unusual setting of parameters.
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Further Research There are many open problems and new research directions
brought up by this work, we discuss just a few of those. A very natural question is
whether the techniques of this paper can be used towards a proof of RL = L. While
progress in the context of RL does not seem immediate (as the case of symmetric
computations does seem easier), we feel that it is still quite plausible. We also feel
that this paper should give an opportunity to reevaluate the common conjecture that
Savitch’s algorithm is optimal for STCON. While this conjecture may very well
be correct, we feel that there is not enough evidence supporting it. Another open
problem is to come up with full-fledged, efficiently-constructible, universal-traversal
sequences. Interestingly, it seems that this problem shares some of the obstacles that
one encounters when trying to generalize the USTCON algorithm to solving RL (this
is formalized to some extent in the results of [41] mentioned below).

In a subsequent work, Reingold, Trevisan andVadhan [41], make some progress on
extending our techniques to dealing with the general RL case, obtaining the following
results:

1. They exhibit a new complete problem for RL: STCON restricted to directed
graphs for which the random walk is promised to have polynomial mixing time.

2. Generalizing our techniques, they present a deterministic, log-space algorithm
that given a regular directed graph G (i.e., a directed graph where all in-degrees
and out-degrees are equal) and two vertices s and t , finds a path between s and t

if one exists.

3. Using the same techniques as in Item 2, they give a “pseudorandom generator”
for random walks on “consistently labelled” regular directed graphs. Roughly
speaking, given a random seed of logarithmic length, the generator constructs,
in log-space, a “short” pseudorandom walk that ends at an almost-uniformly dis-
tributed vertex when taken in any consistently labelled regular directed graph.

4. They prove that if their pseudorandom generator from Item 3 could be gener-
alized to all regular directed graphs (instead of just consistently labelled ones),
then their complete problem from Item 1 can be solved in log-space and hence
RL = L.

Finally, we have made no attempt to optimize our algorithm in terms of running
time (or the constant in the space complexity). Major improvements in efficiency
can come about by better analysis of the zig-zag and replacement products. These
may also determine which one of these products yields a more efficient algorithm.
In a subsequent work Rozenman and Vadhan [44] give a log-space algorithm for
USTCON. Their algorithm makes substantial progress in terms of reducing the run-
ning time of the algorithm (compared to ours). Their key technical tool is a new
operation they introduce and name “derandomized squaring”. This operation reduces
the second eigenvalue of a graph “similarly” to standard squaring but increases the
degree much more moderately. Very loosely, this operation can replace in our algo-
rithm the combination of (standard) powering and zig-zag product. Their analysis for
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the new operation is tight (unlike the analysis we currently know for the zig-zag and
replacement products) and it is simple and very appealing.6
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Potential functions and the inefficiency of equilibria

Tim Roughgarden∗

Abstract. We survey one area of the emerging field of algorithmic game theory: the use of
approximation measures to quantify the inefficiency of game-theoretic equilibria. Potential
functions, which enable the application of optimization theory to the study of equilibria, have been
a versatile and powerful tool in this area. We use potential functions to bound the inefficiency of
equilibria in three diverse, natural classes of games: selfish routing networks, resource allocation
games, and Shapley network design games.
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1. Introduction

The interface between theoretical computer science and microeconomics, often called
algorithmic game theory, has been an extremely active research area over the past
few years. Recent points of contact between the two fields are diverse and include,
for example, increased attention to computational complexity and approximation in
combinatorial auctions (e.g. [9]); a new focus on worst-case analysis in optimal auction
design (e.g. [17]); and a renewed emphasis on the computability and learnability of
equilibrium concepts (e.g. [14], [18], [26]). This survey touches on just one connection
between theoretical computer science and game theory: the use of approximation
measures to quantify the inefficiency of game-theoretic equilibria.

1.1. Quantifying the inefficiency of equilibria. Even in very simple settings, self-
ish behavior can lead to highly inefficient outcomes [11]. A canonical example of
this phenomenon is provided by the “Prisoner’s Dilemma” [28], in which strategic
behavior by two captured and separated prisoners inexorably draws them into the
worst-possible outcome. We will see several concrete examples of the inefficiency of
selfish behavior in networks later in the survey.

Must more recently, researchers have sought to quantify the inefficiency of selfish
behavior. Koutsoupias and Papadimitriou [23] proposed a framework to systemati-
cally study this issue. The framework presupposes a strategic environment (a game),
a definition for the outcome of selfish behavior (an equilibrium concept), and a real-
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valued, nonnegative objective function defined on the possible outcomes of the game.
The price of anarchy [23], [26] is then defined as the ratio between the objective
function value of an equilibrium and that of an optimal solution. (For the moment, we
ignore the question of whether or not equilibria exist and are unique.) If the price of
anarchy of a game is 1, then its equilibria are fully efficient. More generally, bounding
the price of anarchy in a class of games provides a guarantee on the worst-possible
inefficiency of equilibria in these games.

The price of anarchy is directly inspired by other popular notions of approximation
in theoretical computer science [23]. One example is the approximation ratio of a
heuristic for a (typically NP-hard) optimization problem, defined as the largest ratio
between the objective function value of the solution produced by the heuristic and
that of an optimal solution. While the approximation ratio measures the worst-case
loss in solution quality due to insufficient computational effort, the price of anarchy
measures the worst-case loss arising from insufficient ability (or willingness) to control
and coordinate the actions of selfish individuals. Much recent research on the price
of anarchy is motivated by optimization problems that naturally occur in the design
and management of large networks (like the Internet), in which users act selfishly, but
implementing an optimal solution is not practical.

1.2. Potential functions. The price of anarchy has been successfully analyzed in a
diverse array of game-theoretic models (see e.g. [32], [33] and the references therein).
This survey discusses three of these models, with the goal of illustrating a single math-
ematical tool for bounding the price of anarchy: potential functions. The potential
function technique is by no means the only one known for bounding the inefficiency
of equilibria, but (so far) it has been the most versatile and powerful.

Potential functions enable the application of optimization theory to the study of
equilibria. More precisely, a potential function for a game is a real-valued function,
defined on the set of possible outcomes of the game, such that the equilibria of the
game are precisely the local optima of the potential function. This idea was first used
to analyze selfish behavior in networks by Beckmann, McGuire, and Winsten [4],
though similar ideas were used earlier in other contexts.

When a game admits a potential function, there are typically consequences for
the existence, uniqueness, and inefficiency of equilibria. For example, suppose a
game admits a potential function and either: (1) there are a finite number of distinct
outcomes; or (2) the set of outcomes is compact and the potential function is contin-
uous. In either case, the potential function achieves a global optimum, which is also
a local optimum, and hence the game has at least one equilibrium. This is a much
more elementary approach to establishing the existence of equilibria than traditional
fixed-point proofs (e.g. [25]). Moreover, if the potential function has a unique local
optimum, then the game has a unique equilibrium. Finally, if the potential function
is “close to” the true objective function, then the equilibria that are global optima
of the potential function have nearly-optimal objective function value, and are thus
approximately efficient.
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The power of the potential function approach might suggest that its applicability
is limited. Fortunately, many important and natural classes of games admit well-
behaved potential functions. To suggest what such functions look like, we briefly
interpret some classical results about electric networks in terms of potential functions.
Consider electrical current in a two-terminal network of resistors. By Kirchhoff’s
equations and Ohm’s law, we can interpret this current as an “equilibrium”, in the
sense that it equalizes the voltage drop along all paths in the network between the two
terminals. (View current as a large population of “selfish particles”, each seeking out
a path with minimum voltage drop.) On the other hand, Thomson’s principle states
that electrical current also minimizes the dissipated energy over all flow patterns that
achieve the same total current. In other words, energy dissipation serves as a potential
function for current in an electrical network. For further details and discussion, see
Kelly [21] and Doyle and Snell [10].

1.3. Survey overview. Each of the next three sections introduces a model of self-
ish behavior in networks, and uses a potential function to bound the inefficiency of
equilibria in the model. We focus on these three examples because they are simple,
natural, and diverse enough to illustrate different aspects of potential function proof
techniques. In order to emphasize the most important concepts and provide a number
of self-contained proofs, we often discuss only special cases of more general models
and results.

Section 2 discusses selfish routing networks, a model that generalizes the electrical
networks of Subsection 1.2 and has been extensively studied by the transportation,
networking, and theoretical computer science communities. Section 3 analyzes the
performance of a well-studied distributed protocol for allocating resources to hetero-
geneous users. Section 4 bounds the inefficiency of equilibria in a model of selfish
network design. Section 5 concludes.

2. Selfish routing and the price of anarchy

2.1. The model. In this section, we study the inefficiency of equilibria in the fol-
lowing model of noncooperative network routing. A multicommodity flow network,
or simply a network, is a finite directed graph G = (V , E), with vertex set V and
(directed) edge set E, together with a set (s1, t1), . . . , (sk, tk) of source-sink vertex
pairs. We also call such pairs commodities. We denote the set of simple si-ti paths
by Pi , and always assume that this set is non-empty for each i. We allow the graph G

to contain parallel edges, and a vertex can participate in multiple source-sink pairs.
A flow in a network G is a nonnegative vector indexed by the set P = ⋃k

i=1 Pi .
For a flow f and a path P ∈ Pi , we interpret fP as the amount of traffic of commodity i

that chooses the path P to travel from si to ti . We use r to denote a nonnegative vector
of traffic rates, indexed by the commodities of G. A flow f is feasible for r if it routes
all of the prescribed traffic: for each i ∈ {1, 2, . . . , k}, ∑

P∈Pi
fP = ri .
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We model the negative consequences of network congestion in the following sim-
ple way. For a flow f in a network G and an edge e of G, let fe = ∑

P∈P : e∈P fP

denote the total amount of traffic employing edge e. Each edge e then has a non-
negative, continuous, and nondecreasing cost function ce, which describes the cost
incurred by traffic using the edge e as a function of fe. We call a triple of the form
(G, r, c) a selfish routing network or simply an instance.

Next we describe a notion of equilibrium in selfish routing networks – the expected
outcome of “selfish routing”. Define the cost of a path P with respect to a flow f as
the sum of the costs of the constituent edges: cP (f ) = ∑

e∈P ce(fe). Assuming that
selfish traffic attempts to minimize its incurred cost, we obtain the following definition
of a Wardrop equilibrium [38].

Definition 2.1 ([38]). Let f be a feasible flow for the instance (G, r, c). The flow f

is a Wardrop equilibrium if, for every commodity i ∈ {1, 2, . . . , k} and every pair
P, P̃ ∈ Pi of si-ti paths with fP > 0, cP (f ) ≤ c

P̃
(f ).

In Definition 2.1, we are implicitly assuming that every network user controls a
negligible portion of the overall traffic, so that the actions of an individual user have
essentially no effect on the network congestion. In the game theory literature, games
with this property are called nonatomic [35]. Atomic variants of selfish routing have
also been extensively studied (see e.g. [32]). We will study other types of atomic
games in Sections 3 and 4.

Example 2.2 (Pigou’s example [27]). Consider the two-vertex, two-edge network
shown in Figure 1. There is one commodity and the traffic rate is 1. Note that the
lower edge is cheaper than the upper edge if and only if less than one unit of traffic
uses it. There is thus a unique Wardrop equilibrium, with all traffic routed on the
lower edge. In this flow, all traffic incurs one unit of cost.

s t

c(x) = 1

c(x) = x

Figure 1. Pigou’s example (Example 2.2).

Pigou’s example already illustrates that equilibria can be inefficient. More specif-
ically, note that routing half of the traffic on each of the two edges would produce a
“better” flow: all of the traffic would incur at most one unit of cost, while half of the
traffic would incur only 1/2 units of cost.
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The inefficiency of the Wardrop equilibrium in Example 2.2 arises from what is
often called a congestion externality – a selfish network user accounts only for its own
cost, and not for the costs that its decision imposes on others. The “better” routing
of traffic in Example 2.2 is not a Wardrop equilibrium because a selfish network user
routed on the upper edge would switch to the lower edge, indifferent to the fact that
this switch (slightly) increases the cost incurred by a large portion of the population.

In Example 2.2, there is a unique Wardrop equilibrium. In Subsection 2.2 we will
use a potential function to prove the following theorem, which states that Wardrop
equilibria exist and are “essentially unique” in all selfish routing networks.

Theorem 2.3 ([4]). Let (G, r, c) be an instance.

(a) The instance (G, r, c) admits at least one Wardrop equilibrium.

(b) If f and f̃ are Wardrop equilibria for (G, r, c), then ce(fe) = ce(f̃e) for every
edge e.

The Wardrop equilibrium in Example 2.2 is intuitively inefficient; we next quantify
this inefficiency. We define our objective function, the cost of a flow, as the sum of
the path costs incurred by traffic:

C(f ) =
∑
P∈P

cP (f )fP =
∑
e∈E

ce(fe)fe. (1)

The first equality in (1) is a definition; the second follows easily from the definitions.
An optimal flow for an instance (G, r, c) is feasible and minimizes the cost. Since
cost functions are continuous and the set of feasible flows is compact, every instance
admits an optimal flow. In Pigou’s example (Example 2.2), the Wardrop equilibrium
has cost 1, while routing half of the traffic on each edge yields an optimal flow with
cost 3/4.

Definition 2.4 ([23], [26]). The price of anarchy ρ(G, r, c) of an instance (G, r, c) is

ρ(G, r, c) = C(f )

C(f ∗)
,

where f is a Wardrop equilibrium and f ∗ is an optimal flow. The price of anarchy
ρ(� ) of a non-empty set � of instances is sup(G,r,c)∈� ρ(G, r, c).

Definition 2.1 and Theorem 2.3(b) easily imply that all Wardrop equilibria have
equal cost, and thus the price of anarchy of an instance is well defined unless there is
a flow with zero cost. In this case, all Wardrop equilibria also have zero cost, and we
define the price of anarchy of the instance to be 1.

Example 2.5 (Nonlinear Pigou’s example [34]). The inefficiency of the Wardrop
equilibrium in Example 2.2 can be amplified with a seemingly minor modification
to the network. Suppose we replace the previously linear cost function c(x) = x on
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the lower edge with the highly nonlinear one c(x) = xp for p large (Figure 2). As
in Example 2.2, the cost of the unique Wardrop equilibrium is 1. The optimal flow
routes a small ε fraction of the traffic on the upper edge and has cost ε + (1 − ε)p+1.
Since this approaches 0 as ε tends to 0 and p tends to infinity, the price of anarchy of
this selfish routing network grows without bound as p grows large.

s t

c(x) = 1

c(x) = xp

Figure 2. A nonlinear variant of Pigou’s example (Example 2.5).

Example 2.5 demonstrates that the price of anarchy can be large in (very simple)
networks with nonlinear cost functions. In Subsection 2.2 we use a potential function
to show the converse: the price of anarchy is large only in networks with “highly
nonlinear” cost functions.

2.2. A potential function for wardrop equilibria. We now show that Wardrop
equilibria can be characterized as the minima of a potential function, and use this
characterization to prove both Theorem 2.3 and upper bounds on the price of anarchy
of selfish routing. To motivate this potential function, we first characterize the optimal
flows of an instance.

Optimal flows for an instance (G, r, c) minimize the cost (1) subject to linear flow
feasibility constraints. Assume for the moment that for every edge e, the function
x · ce(x) is convex. The cost (1) is then a convex (separable) function, and we can
apply the Karush–Kuhn–Tucker conditions (see e.g. [5]) to characterize its global
minima. To state this characterization cleanly, assume further that all cost functions
are differentiable, and let c∗

e (x) = (x ·ce(x))′ = ce(x)+x ·c′
e(x) denote the marginal

cost function for the edge e. The KKT conditions then give the following.

Proposition 2.6 ([4]). Let (G, r, c) be an instance such that, for every edge e, the
function x ·ce(x) is convex and differentiable. Let c∗

e denote the marginal cost function
of the edge e. Then f ∗ is an optimal flow for (G, r, c) if and only if, for every
commodity i ∈ {1, 2, . . . , k} and every pair P, P̃ ∈ Pi of si-ti paths with fP > 0,
c∗
P (f ) ≤ c∗

P̃
(f ).

Comparing Definition 2.1 and Proposition 2.6, we discover that Wardrop equilib-
ria and optimal flows are essentially the same thing, just with different sets of cost
functions.
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Corollary 2.7. Let (G, r, c) be an instance such that, for every edge e, the function
x · ce(x) is convex and differentiable. Let c∗

e denote the marginal cost function of
the edge e. Then f ∗ is an optimal flow for (G, r, c) if and only if it is a Wardrop
equilibrium for (G, r, c∗).

To construct a potential function for Wardrop equilibria, we need to “invert” Corol-
lary 2.7: of what function do Wardrop equilibria arise as global minima? The answer
is simple: to recover Definition 2.1 as an optimality condition, we seek a function
he(x) for each edge e – playing the previous role of x ·ce(x) – such that h′

e(x) = ce(x).
Setting he(x) = ∫ x

0 ce(y) dy for each edge e thus yields the desired potential function.
Precisely, call

�(f ) =
∑
e∈E

∫ fe

0
ce(x) dx (2)

the potential function for an instance (G, r, c). Analogously to Corollary 2.7, the
following proposition holds.

Proposition 2.8 ([4]). Let (G, r, c) be an instance. A flow feasible for (G, r, c) is
a Wardrop equilibrium if and only if it is a global minimum of the corresponding
potential function � given in (2).

Remark 2.9. Thomson’s principle for electrical networks (Subsection 1.2) can be
viewed as the special case of Proposition 2.8 for single-commodity flow networks
with linear cost functions (of the form ce(x) = aex).

Theorem 2.3 now follows easily.

Proof of Theorem 2.3 (Sketch). Since cost functions are continuous and the set of
feasible flows is compact, part (a) of the theorem follows immediately from Propo-
sition 2.8 and Weierstrass’s Theorem. Since cost functions are nondecreasing, the
potential function � in (2) is convex; moreover, the set of feasible flows is convex.
Part (b) of the theorem now follows from routine convexity arguments. �

Much more recently, the potential function (2) has been used to upper bound the
price of anarchy of selfish routing. The intuition behind this connection is simple: if
Wardrop equilibria exactly optimize a potential function (2) that is a good approxi-
mation of the objective function (1), then they should also be approximately optimal.
Formally, we have the following.

Theorem 2.10 ([34]). Let (G, r, c) be an instance, and suppose that x · ce(x) ≤
γ · ∫ x

0 ce(y) dy for all e ∈ E and x ≥ 0. Then the price of anarchy ρ(G, r, c) is at
most γ .

Proof. Let f and f ∗ be a Wardrop equilibrium and an optimal flow for (G, r, c),
respectively. Since cost functions are nondecreasing, the cost of a flow (1) is always
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at least its potential function value (2). The hypothesis ensures that the cost of a flow
is at most γ times its potential function value. The theorem follows by writing

C(f ) ≤ γ · �(f ) ≤ γ · �(f ∗) ≤ γ · C(f ∗),

with the second inequality following from Proposition 2.8. �

Theorem 2.10 implies that the price of anarchy of selfish routing is large only
in networks with “highly nonlinear” cost functions. For example, if ce is a polyno-
mial function with degree at most p and nonnegative coefficients, then x · ce(x) ≤
(p + 1)

∫ x

0 ce(y) dy for all x ≥ 0. Applying Theorem 2.10, we find that the price
of anarchy in networks with cost functions that are polynomials with nonnegative
coefficients grows at most linearly with the degree bound p.

Corollary 2.11 ([34]). If (G, r, c) is an instance with cost functions that polynomials
with nonnegative coefficients and degree at most p, then ρ(G, r, c) ≤ p + 1.

This upper bound is nearly matched by Example 2.5. (The upper and lower
bounds differ by roughly a ln p multiplicative factor.) Qualitatively, Example 2.5 and
Corollary 2.11 imply that a large price of anarchy can be caused by highly nonlin-
ear cost functions, but not by complex network topologies or by a large number of
commodities.

2.3. An optimal bound on the price of anarchy. We have established that the price
of anarchy of selfish routing depends on the “degree of nonlinearity” of the network
cost functions. However, even in the simple case of polynomial cost functions, there
is gap between the lower bound on the price of anarchy provided by Example 2.5
and the upper bound of Theorem 2.10. We conclude this section by showing how a
different analysis, which can be regarded as a more “global” application of potential
function ideas, provides a tight bound on the price of anarchy for essentially every set
of allowable cost functions.

We first formalize a natural lower bound on the price of anarchy based on “Pigou-
like examples”.

Definition 2.12 ([7], [31]). Let C be a nonempty set of cost functions. The Pigou
bound α(C) for C is

α(C) = sup
c∈C

sup
x,r≥0

r · c(r)

x · c(x) + (r − x)c(r)
, (3)

with the understanding that 0/0 = 1.

The point of the Pigou bound is that it lower bounds the price of anarchy in
instances with cost functions in C.

Proposition 2.13. Let C be a set of cost functions that contains all of the constant
cost functions. Then ρ(C) ≥ α(C).
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Proof. Fix a choice of c ∈ C and x, r ≥ 0. We can complete the proof by exhibit-
ing a selfish routing network with cost functions in C and price of anarchy at least
c(r)r/[c(x)x + (r − x)c(r)]. Since c is nondecreasing, this expression is at least 1 if
x ≥ r; we can therefore assume that x < r .

Let G be a two-vertex, two-edge network as in Figure 1. Give the lower edge the
cost function c1(y) = c(y) and the upper edge the constant cost function c2(y) = c(r).
By assumption, both of these cost functions lie in C. Set the traffic rate to r . Routing
all of the traffic on the lower edge yields a Wardrop equilibrium with cost c(r)r .
Routing x units of traffic on the lower edge and r − x units of traffic on the upper
edge gives a feasible flow with cost [c(x)x + (r − x)c(r)]. The price of anarchy in
this instance is thus at least c(r)r/[c(x)x + (r − x)c(r)], as desired �

Proposition 2.13 holds more generally for every set C of cost functions that is
inhomogeneous in the sense that c(0) > 0 for some c ∈ C [31].

We next show that, even though the Pigou bound is based only on Pigou-like exam-
ples, it is also an upper bound on the price of anarchy in general multicommodity flow
networks. The proof requires the following variational inequality characterization of
Wardrop equilibria, first noted by Smith [36].

Proposition 2.14 ([36]). A flow f feasible for (G, r, c) is a Wardrop equilibrium if
and only if ∑

e∈E

ce(fe)fe ≤
∑
e∈E

ce(fe)f
∗
e

for every flow f ∗ feasible for (G, r, c).

Proposition 2.14 can be derived as an optimality condition for minimizers of the
potential function (2), or can be proved directly using Definition 2.1.

We now show that the Pigou bound is tight.

Theorem 2.15 ([7], [31]). Let C be a set of cost functions and α(C) the Pigou bound
for C. If (G, r, c) is an instance with cost functions in C, then

ρ(G, r, c) ≤ α(C).

Proof. Let f ∗ and f be an optimal flow and a Wardrop equilibrium, respectively, for
an instance (G, r, c) with cost functions in the set C. The theorem follows by writing

C(f ∗) =
∑
e∈E

ce(f
∗
e )f ∗

e

≥ 1

α(C)

∑
e∈E

ce(fe)fe +
∑
e∈E

(f ∗
e − fe)ce(fe)

≥ C(f )

α(C)
,

where the first inequality follows from Definition 2.12 and the second from Proposi-
tion 2.14. �
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Different, more recent proofs of Theorem 2.15 can be found in [8], [37].
Proposition 2.13 and Theorem 2.15 establish the qualitative statement that, for

essentially every fixed restriction on the allowable network cost functions, the price
of anarchy is maximized by Pigou-like examples. Determining the largest-possible
price of anarchy in Pigou-like examples (i.e., the Pigou bound) is a tractable problem
in many cases. For example, it is precisely 4/3 when C is the affine functions [34],
and more generally is [1 − p · (p + 1)−(p+1)/p]−1 ≈ p/ ln p when C is the set of
polynomials with degree at most p and nonnegative coefficients [31]. In these cases,
the maximum price of anarchy (among all multicommodity flow networks) is achieved
by the instances in Examples 2.2 and 2.5. For further examples, see [7], [31].

For much more on topics related to the price of anarchy of selfish routing, including
many extensions and generalizations of the results described in this section, see [32],
[33] and the references therein.

3. Efficiency loss in resource allocation protocols

We next study the performance of a protocol for allocating resources to heterogeneous
users. While there are a number of conceptual differences between this model and the
selfish routing networks of Section 2, the inefficiency of equilibria in these models
can be analyzed in a similar way.

3.1. The model. We consider a single divisible resource – the capacity of a single
network link, say – to be allocated to a finite number n > 1 of competing users.
These users are heterogeneous in the sense that different users can have different
values for capacity. We model this by giving each user i a nonnegative real-valued
utility function Ui that expresses this user’s value for a given amount of capacity. We
assume that each Ui is concave, strictly increasing, and continuously differentiable.
A resource allocation game is defined by the n utility functions U1, . . . , Un and the
link capacity C > 0.

An allocation for a resource allocation game is a nonnegative vector (x1, . . . , xn)

with
∑n

i=1 xi = C. We study the following protocol for allocating capacity. Each
user i submits a nonnegative bid bi for capacity. The protocol allocates capacity in
proportion to bids, with

xi = bi∑n
j=1 bj

· C (4)

units of capacity allocated to user i. The payoff Qi to a user i is defined as its value
for the capacity it receives, minus the bid that it made (and presumably now has to
pay):

Qi(b1, . . . , bn) = Ui(xi) − bi = Ui

(
bi∑n

j=1 bj

· C

)
− bi.

Assume that if all users bid zero, then all users receive zero payoff.
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An equilibrium is then a bid vector in which each user bids optimally, given
the bids of the other users. To state this precisely, we use the notation b−i =
(b1, b2, . . . , bi−1, bi+1, . . . , bn) to denote the bids of the users other than i, and some-
times write (bi, b−i ) for a bid vector (b1, . . . , bn).

Definition 3.1. A bid vector (b1, . . . , bn) is an equilibrium of the resource allocation
game (U1, . . . , Un, C) if for every user i ∈ {1, 2, . . . , n},

Qi(bi, b−i ) = sup
b̃i≥0

Qi(b̃i, b−i ). (5)

One easily checks that in every equilibrium, at least two users submit strictly
positive bids.

While equilibria are most naturally defined for bid vectors, we will be interested in
the quality of the corresponding allocations. An equilibrium allocation is an allocation
(x1, . . . , xn) induced by an equilibrium bid vector – i.e., there is an equilibrium
(b1, . . . , bn) such that (4) holds for each user i. We next give a characterization
of equilibrium allocations that will be crucial for designing a potential function for
resource allocation games.

First, a simple calculation shows that concavity of the utility function Ui (in xi)
implies strict concavity of the payoff function Qi (in bi) for every fixed vector b−i with
at least one strictly positive component. Similarly, the latter function is continuously
differentiable for each such fixed b−i . We can therefore characterize solutions to (5)
via standard first-order optimality conditions, which yields the following.

Proposition 3.2 ([16], [20]). Let (U1, . . . , Un, C) be a resource allocation game and
(b1, . . . , bn) a bid vector with at least two strictly positive bids. Let B = ∑n

j=1 bj

denote the sum of the bids. This bid vector is an equilibrium if and only if

U ′
i

(
bi

B
· C

)(
1 − bi

B

)
≤ B

C

for every user i ∈ {1, 2, . . . , n}, with equality holding whenever bi > 0.

Reformulating Proposition 3.2 in terms of allocations gives the following corollary
(cf., Definition 2.1).

Corollary 3.3 ([16], [20]). Let (U1, . . . , Un, C) be a resource allocation game. An al-
location (x1, . . . , xn) is an equilibrium if and only if for every pair i, j ∈ {1, 2, . . . , n}
of users with xi > 0,

U ′
i (xi)

(
1 − xi

C

)
≥ U ′

j (xj )
(

1 − xj

C

)
.

Proof. The “only if” direction follows easily from Proposition 3.2 and equation (4).
For the “if” direction, suppose (x1, . . . , xn) satisfies the stated condition. There is
then a scalar λ ≥ 0 such that U ′

i (xi)[1 − (xi/C)] ≤ λ for all users i, with equality
holding whenever xi > 0. Setting bi = λxi for each i yields a bid vector that meets
the equilibrium condition in Proposition 3.2. �
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Example 3.4 ([20]). Consider a resource allocation game in which the capacity C

is 1, one user has the utility function U1(x1) = 2x1, and the other n − 1 users have
the utility function Ui(xi) = xi . Corollary 3.3 implies that in the unique equilibrium
allocation, the first user receives 1

2 + ε units of capacity, while each of the other
n − 1 users receive δ units of capacity (with ε, δ → 0 as n → ∞). In this allocation,
U ′

i (xi)(1−xi) is the same for each user i, and is slightly less than 1. The corresponding
equilibrium bid vector is roughly the same as the equilibrium allocation vector.

In the next subsection, we use a potential function to show that every resource
allocation game has a unique equilibrium allocation.

We claim that the equilibrium allocation in Example 3.4 is suboptimal. As in the
previous section, we formalize this claim by introducing an objective function and
studying the price of anarchy. We define the efficiency of an allocation (x1, . . . , xn)

of a resource allocation game to be the sum of the users’ utilities:

E(x1, . . . , xn) =
n∑

i=1

Ui(xi). (6)

An optimal allocation has the maximum-possible efficiency.
The price of anarchy of a resource allocation game is the ratio E(x)/E(x∗), where x

is the equilibrium allocation and x∗ is an optimal allocation. Note that the price of
anarchy of such a game is at most 1. In Example 3.4, the optimal allocation gives
all of the capacity to the first user and has efficiency 2. The equilibrium allocation
has efficiency approaching 3/2 as n → ∞; the price of anarchy can therefore be
arbitrarily close to 3/4 in this family of examples.

Why does inefficiency arise in Example 3.4? First, note that if the first user is the
only one bidding a strictly positive amount (leading to the optimal allocation), then the
bid vector cannot be an equilibrium: the first user can bid a smaller positive amount
and continue to receive all of the capacity. A similar argument holds whenever the first
user’s bid comprises a sufficiently large fraction of the sum of the users’bids: if the first
user lowers its bid, its allocation diminishes, but the price it pays per unit of bandwidth
decreases by a large enough amount to increase its overall payoff. This intuition is
mathematically reflected in Corollary 3.3 in the term U ′

i (xi)(1 − xi) – the marginal
benefit of increased capacity to a user becomes increasing tempered as its allocation
grows. Inefficiency thus arises in Example 3.4 because of “market power” – the fact
that the actions of a single user have significant influence over the effective price of
capacity. Indeed, resource allocation games were initially studied by Kelly [22] under
the assumption that no users have nontrivial market power. Under this assumption,
equilibria are fully efficient – i.e., the price of anarchy is always 1 [22]. See [19,
§1.3–1.4] for further discussion.

Remark 3.5. Selfish routing networks and resource allocation games differ in a num-
ber of ways. In the former, there is a continuum of selfish network users that each have
a finite set of strategies (paths); in the latter, there is a finite set of users, each with a
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continuum of strategies (bids). In selfish routing, the objective is cost minimization;
in resource allocation, it is efficiency maximization. Finally, and perhaps most funda-
mentally, inefficiency appears to arise for different reasons in the two models. Recall
that in selfish routing networks, inefficiency stems from congestion externalities (see
the discussion following Example 2.2). Example 3.4 shows that market power is
the culprit behind inefficient equilibria in resource allocation games. Despite all of
these conceptual differences, the next two subsections show that the inefficiency of
equilibria can be quantified in the two models via remarkably similar analyses.

3.2. A potential function for equilibria. As in Subsection 2.2, our first step toward
constructing a potential function for equilibrium allocations is to characterize optimal
allocations. Since efficiency (6) is a separable concave function, a straightforward
application of first-order optimality conditions yields the following.

Proposition 3.6. Let (U1, . . . , Un, C) be a resource allocation game. An allocation
(x1, . . . , xn) is optimal if and only if for every pair i, j ∈ {1, 2, . . . , n} of users with
xi > 0, U ′

i (xi) ≥ U ′
j (xj ).

Given the near-identical characterizations of equilibrium and optimal allocations
in Corollary 3.3 and Proposition 3.6, respectively, we again ask: of what function
does an equilibrium allocation arise as the global maximum? To recover Corol-
lary 3.3 as an optimality condition, we seek a function Hi for each user i such that
H ′

i (xi) = U ′
i (xi)[1 − (xi/C)] for all xi ≥ 0. Setting Hi(xi) = Ui(xi)[1 − (xi/C)] +[ ∫ xi

0 Ui(y) dy
]
/C thus yields the desired potential function. Precisely, for the re-

source allocation game (U1, . . . , Un, C), define

�RA(x1, . . . , xn) =
n∑

i=1

Ûi(xi), (7)

where

Ûi(xi) =
(

1 − xi

C

)
· Ui(xi) + xi

C
·
(

1

xi

∫ xi

0
Ui(y) dy

)
. (8)

A simple calculation shows that each function Ûi is strictly concave, increasing,
and continuously differentiable. Regarding (Û1, . . . , Ûn, C) as a resource allocation
game, applying Proposition 2.6 to it, and appealing to Corollary 3.3 formalizes the
fact that �RA is a potential function.

Proposition 3.7 ([16], [20]). An allocation of the game (U1, . . . , Un, C) is an equi-
librium allocation if and only if it is a global maximum of the corresponding potential
function �RA.

Existence and uniqueness of equilibrium allocations follow immediately.

Proposition 3.8 ([16], [20]). In every resource allocation game, there is a unique
equilibrium allocation.
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Proof. Existence follows from Proposition 3.7 and the facts that the potential func-
tion (7) is continuous and the set of all allocations is compact. Uniqueness follows
from Proposition 3.7 and the fact that the potential function (7) is strictly concave. �

Proposition 3.7 also has consequences for the price of anarchy in resource allo-
cation games. To see why, note that the value of Ûi(xi) in (8) can be viewed as a
weighted average of two quantities – the “true utility” Ui(xi) and the “average utility”[ ∫ xi

0 Ui(y) dy
]
/xi . Since Ui is increasing, the latter quantity can only underestimate

the utility Ui(xi), and hence Ûi(xi) ≤ Ui(xi) for all i and xi ≥ 0. On the other hand,
since Ui is nonnegative and concave, the average utility between 0 and xi is at least
half of the utility Ui(xi) at xi . Thus Ûi(xi) ≥ Ui(xi)/2 for all i and xi ≥ 0. It follows
that

E(x1, . . . , xn) ≥ �RA(x1, . . . , xn) ≥ E(x1, . . . , xn)/2

for every allocation (x1, . . . , xn). Following the proof of Theorem 2.10 now gives a
lower bound of 1/2 on the price of anarchy in resource allocation games.

Theorem 3.9 ([20]). In every resource allocation game, the price of anarchy is at
least 1/2.

3.3. An optimal bound on the price of anarchy. There is a gap between the lower
bound of 1/2 on the price of anarchy given in Theorem 3.9 and the upper bound of
3/4 that is achieved (in the limit) in Example 3.4. As in Subsection 3.3, an optimal
(lower) bound can be obtained by leveraging the potential function characterization
of equilibria (Proposition 3.7) in a less crude way. Our argument will again be based
on a “variational inequality”, which can be derived directly from Corollary 3.3 or
viewed as a first-order optimality condition for the potential function (7).

Proposition 3.10. Let (U1, . . . , Un, C) be a resource allocation game. For each user
i, define the modified utility function Ûi as in (8). An allocation x̂ is an equilibrium
for (U1, . . . , Un, C) if and only if

n∑
i=1

Û ′
i (x̂i)x̂i ≥

n∑
i=1

Û ′
i (x̂i)xi

for every feasible allocation x.

Next is the analogue of the Pigou bound (Definition 2.12) for resource allocation
games. This definition is primarily motivated by the upper bound on the price of anar-
chy provided by Example 3.4; we state it in a form that also permits easy application
of Proposition 3.10 in the proof of Lemma 3.13 below.

Definition 3.11. Let U denote the set of real-valued, nonnegative, strictly increasing,
continuously differentiable, and concave (utility) functions. Define the JT bound β

by

β = inf
U∈U

inf
C>0

inf
0≤x̂,x∗≤C

U(x̂) + Û ′(x̂)(x∗ − x̂)

U(x∗)
, (9)
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where Û is defined as in (8), as a function of U and C.

In the rest of this section, we show that the JT bound is exactly the worst price of
anarchy occurring in resource allocation games, and explicitly compute the bound.

Lemma 3.12. For every ε > 0, there is a resource allocation game with price of
anarchy at most β + ε, where β is the JT bound.

Lemma 3.13. In every resource allocation game, the price of anarchy is at least the
JT bound β.

Lemma 3.14. The JT bound β is exactly 3/4.

Lemmas 3.12–3.14 give an explicit optimal bound on the price of anarchy in
resource allocation games.

Theorem 3.15 ([20]). In every resource allocation game, the price of anarchy is at
least 3/4. Moreover, this bound is tight.

We now prove Lemmas 3.12–3.14 in turn.

Proof of Lemma 3.12. Fix a choice of a utility function U , a capacity C > 0, and
values for x̂, x∗ ∈ [0, C]. We aim to exhibit a resource allocation game with price of
anarchy (arbitrarily close to)

U(x̂) + Û ′(x̂)(x∗ − x̂)

U(x∗)
. (10)

Recall from (8) that Û ′(x̂) = U ′(x̂) · [1 − (x̂/C)]. A calculation shows that (10) is at
least 1 if x̂ ≥ x∗, so we can assume that x̂ < x∗. Since (10) is decreasing in C, we
can assume that C = x∗.

Define a resource allocation game in which the capacity is C, the first user has
the utility function U1(x1) = U(x1), and the other n − 1 users each have the linear
utility function Ui(xi) = Û ′(x̂) · xi . Giving all of the capacity to the first user is
a feasible allocation with efficiency U1(C) = U(x∗). Arguing as in Example 3.4,
the equilibrium allocation has efficiency approaching U1(x̂) + (C − x̂) · Û ′(x̂) =
U(x̂)+ Û ′(x̂)(x∗ − x̂) as the number n of users tends to infinity. The price of anarchy
in this family of instances thus tends to (at most) the expression in (10) as n → ∞,
completing the proof. �

Proof of Lemma 3.13. Let (U1, . . . , Un, C) be a resource allocation game. Let x∗
and x̂ denote optimal and equilibrium allocations, respectively. Define the modified
utility function Ûi as in (8). The lemma follows by writing

n∑
i=1

Ui(x
∗
i ) ≤

n∑
i=1

[
1

β

(
Ui(x̂i) + Û ′

i (x̂i)(x
∗
i − x̂i )

)]

≤ 1

β

n∑
i=1

Ui(x̂i),
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where the first inequality follows from Definition 3.11 and the second from Proposi-
tion 3.10. �

Proof of Lemma 3.14. Setting U to the identity function, x̂ = 1/2, and C = x∗ = 1
shows that the JT bound is at most 3/4. Now fix arbitrary choices of U , C, and
x̂, x∗ ∈ [0, C]. We need to show that (10) is at least 3/4. As in the proof of
Lemma 3.12, we can assume that x̂ < x∗ = C. We can then write

U(x̂) + Û ′(x̂)(x∗ − x̂) = U(x̂) +
(

1 − x̂

x∗
)
U ′(x̂)(x∗ − x̂)

≥ U(x̂) +
(

1 − x̂

x∗
) (

U(x∗) − U(x̂)
)

=
(

x̂

x∗
)

· U(x̂) +
(

1 − x̂

x∗

)
· U(x∗)

≥
(

x̂

x∗
)2

· U(x∗) +
(

1 − x̂

x∗

)
· U(x∗)

≥ 3

4
· U(x∗),

where the first equality follows from the definition of Û in (8), the first and second
inequalities follow from the concavity and nonnegativity of U , and the final inequality
follows from the fact that the function y2−y+1 is uniquely minimized when y = 1/2.
The proof is complete. �

Remark 3.16. The original proof of Theorem 3.15 is fairly different than the one given
here. Specifically, Johari and Tsitsiklis [20] first show that the price of anarchy is
minimized in games in which all users have linear utility functions, and then explicitly
determine a worst-case example (the same as Example 3.4) by analyzing a linear
program. We instead presented the proof above to further highlight the connections
between resource allocation games and selfish routing networks.

Despite the numerous common features in our analyses of the price of anarchy
in selfish routing networks and in resource allocation games, the precise relationship
between the two models is not completely understood. In particular, we lack a unifying
analysis of the price of anarchy in the two models.

Open Question 1. Find a compelling generalization of selfish routing networks and
resource allocation games in which the price of anarchy can be analyzed in a uniform
way. Ideally, such a generalization would unify Theorems 2.15 and 3.15, and would
also apply to several of the more general classes of games described in [19], [32].

As with selfish routing networks, we have only scratched the surface of the liter-
ature on the price of anarchy in resource allocation games. For much more on the
subject, including generalizations of these games to general networks, see Johari and
Tsitsiklis [20] and Johari [19].
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4. The price of stability in network design games

Our final class of games is a model of network design with selfish users. These games
share some features with selfish routing networks, but also differ in a few fundamental
respects.

4.1. The model. In this section we study Shapley network design games, first pro-
posed by Anshelevich et al. [1]. The game occurs in a directed graph G = (V , E),
in which each edge e ∈ E has a fixed nonnegative cost ce. There is a finite set of
k selfish players, and each player i ∈ {1, 2, . . . , k} is identified with a source-sink
vertex pair (si, ti). Let Pi denote the set of simple si-ti paths.

Each player i chooses a path Pi ∈ Pi from its source to its destination. This
creates a network

(
V,

⋃
i Pi

)
, and we define the cost of this outcome as

c(P1, . . . , Pk) =
∑

e∈⋃
i Pi

ce. (11)

We assume that this cost is shared among the players in the following way. First, if
edge e lies in fe of the chosen paths, then each player choosing such a path pays a
proportional share πe = ce/fe of the cost. The overall cost ci(P1, . . . , Pk) to player i

is then the sum
∑

e∈Pi
πe of these proportional shares. Selfish players naturally

attempt to minimize their incurred cost.
We next define our notion of equilibria for Shapley network design games. In

contrast to selfish routing networks and resource allocation games, these network
design games are finite games – there is a finite set of players, each with a finite set of
strategies. This is the classical setting for Nash equilibria [25]. As in Definition 3.1,
we use P−i to denote the vector of strategies chosen by the players other than i.

Definition 4.1. An outcome (P1, . . . , Pk) of a Shapley network design game is a
(pure-strategy) Nash equilibrium if for every player i,

ci(Pi, P−i ) = min
P̃i∈Pi

ci(P̃i , P−i ).

In a pure-strategy Nash equilibrium, every player chooses a single strategy. In
a mixed-strategy Nash equilibrium, a player can randomize over several strategies.
We will not discuss mixed-strategy Nash equilibria in this survey, though the price of
anarchy of such equilibria has been studied in different models (see e.g. [3], [23]).

Example 4.2 ([2]). Consider the network shown in Figure 3. There are k players,
each with the same source s and sink t . The edge costs are k and 1 + ε, where ε > 0
is arbitrarily small. In the minimum-cost outcome, all players choose the lower edge.
This outcome is also a Nash equilibrium. On the other hand, suppose all of the players
choose the upper edge. Each player i then incurs cost 1, and if player i deviates to
the lower edge it pays the full cost of 1 + ε. This outcome is thus a second Nash
equilibrium, and it has cost k.
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s t

k

1 + ε

Figure 3. Multiple Nash equilibria in Shapley network design games (Example 4.2).

Example 4.2 shows that Shapley network design games are more ill-behaved than
selfish routing networks and resource allocation games in a fundamental respect: there
can be multiple equilibria, and different equilibria can have very different objective
function values. (Cf., Theorem 2.3 and Proposition 3.8.) The definition of the price of
anarchy is ambiguous in games with multiple equilibria – we would like to quantify
the inefficiency of an equilibrium, but of which one?

The price of anarchy is historically defined as the ratio between the objective
function value of the worst equilibrium and that of an optimal solution [23], [26].
This definition is natural from the perspective of worst-case analysis. In Example 4.2,
the price of anarchy is (arbitrarily close to) k. It is also easy to show that the price of
anarchy in every Shapley network design game is at most k.

In this section, we instead focus on the ratio between the cost of the best Nash
equilibrium of a Shapley network design game and that of an optimal solution. This
measure is called the price of stability [1]. Our motivation is twofold. First, as
Example 4.2 shows, the price of anarchy is large and trivial to determine. Second, the
price of stability has a reasonably natural interpretation in network design games – if
we envision the network as being designed by a central authority for subsequent use
by selfish players, then the best Nash equilibrium is an obvious solution to propose.
In this sense, the price of stability measures the necessary degradation in solution
quality caused by imposing the game-theoretic constraint of stability. See [1], [2],
[6], [7] for further discussion and examples of the price of stability.

The price of stability in Example 4.2 is 1. We conclude this subsection with an
example showing that this is not always the case.

Example 4.3 ([1]). Consider the network shown in Figure 4. There are k players, all
with the same sink t , and ε > 0 is arbitrarily small. For each i ∈ {1, 2, . . . , k}, the
edge (si, t) has cost 1/i. In the minimum-cost outcome, each player i chooses the
path si → v → t and the cost is 1+ ε. This is not a Nash equilibrium, as player k can
decrease its cost from (1 + ε)/k to 1/k by switching to the direct path sk → t . More
generally, this direct path is a dominant strategy for the kth player – it is the minimum-
cost strategy, independent of the paths chosen by the other players. It follows that
in every Nash equilibrium, the kth player selects its direct path. Arguing inductively
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about the players k − 1, k − 2, . . . , 1, we find that the unique Nash equilibrium is
the outcome in which each player i chooses its direct path si → t to the sink. The
cost of this outcome is exactly the kth harmonic number Hk = ∑k

i=1(1/i), which
is roughly ln k. The price of stability can therefore be (arbitrarily close to) Hk in
Shapley network design games.

. . . 

. . . 

. . . 

t

1 1/2 1/3 1/(k − 1) 1/k

s1 s2 s3 sk−1 sk

1 + ε

v

0 0 0 00

Figure 4. The price of stability in Shapley network design games can be at leastHk (Example 4.3).

4.2. A potential function for Nash equilibria. In this subsection we use a potential
function to prove the existence of pure-strategy Nash equilibria and upper bound
the price of stability in Shapley network design games. Recall that for both selfish
routing networks and resource allocation games, we designed potential functions using
a characterization of optimal solutions as a guide (see Propositions 2.6 and 3.6). In
Shapley network design games, computing an optimal solution is an NP-hard network
design problem [15], and we cannot expect to find an analogous characterization.

There are two ways that Shapley network design games differ from selfish routing
networks that prevent the characterization of optimal solutions (Proposition 2.6) from
carrying over. First, there are a finite number of players in the former model, and a
continuum of players in the latter model. Second, cost functions in selfish routing
networks are nondecreasing, whereas Shapley network design games effectively have
cost functions that are decreasing in the “congestion” – if x ≥ 1 players use an edge e

with fixed cost ce, then the per-player cost on that edge is ce/x.

On the bright side, the potential function (2) for selfish routing networks is easily
modified to account for these two differences. First, note that this function � remains
well-defined for decreasing cost functions. Second, passing from an infinite player set
to a finite one merely involves changing the integrals in (2) to sums. This motivates
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the following proposal for a potential function for a Shapley network design game:

�ND(P1, . . . , Pk) =
∑
e∈E

fe∑
i=1

ce

i
, (12)

where fe denotes the number of paths Pi that include edge e. While equilibria in
selfish routing networks and resource allocation games can be characterized as the
global optima of their respective potential functions (2) and (7), we will see that
the Nash equilibria of a Shapley network design game are characterized as the local
optima of the potential function (12). This idea is originally due to Rosenthal [29],
[30], who also considered the broader context of “atomic congestion games”.

The next lemma, which is crucial for the rest of this section, states that the potential
function “tracks” the change in cost experienced by a deviating player.

Lemma 4.4 ([1], [30]). Let (G, c) denote a Shapley network design game with k

players and �ND the corresponding potential function (12). Let i ∈ {1, 2, . . . , k} be
a player, and let (Pi, P−i ) and (P̃i, P−i ) denote two outcomes that differ only in the
strategy chosen by the ith player. Then

ci(P̃i , P−i ) − ci(Pi, P−i ) = �ND(P̃i, P−i ) − �ND(Pi, P−i ). (13)

Proof. Let fe denote the number of players that choose a path containing the edge e

in the outcome (Pi, P−i ). Then both sides of (13) are equal to

∑
e∈P̃i\Pi

ce

fe + 1
−

∑
e∈Pi\P̃i

ce

fe

.

�

In the game theory literature, equation (13) is often taken as the definition of a
potential function in the context of finite games. See Monderer and Shapley [24] for
a fairly general treatment of potential functions for finite games.

While simple, Lemma 4.4 has a number of non-trivial consequences. First, Nash
equilibria of a Shapley network design game are the local minima of the corresponding
potential function. Formally, two outcomes of a Shapley network design game are
neighbors if they differ in at most one component, and an outcome is a local minimum
of �ND if it has no neighbor with strictly smaller potential function value.

Corollary 4.5 ([1], [30]). An outcome of a Shapley network design game is a Nash
equilibrium if and only if it is a local minimum of the corresponding potential func-
tion �ND .

Proof. Immediate from the definitions and Lemma 4.4. �

Since every Shapley network design game has a finite number of outcomes, its
corresponding potential function has a global (and hence local) minimum.
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Corollary 4.6 ([1], [30]). In every Shapley network design game, there is at least one
(pure-strategy) Nash equilibrium.

We note in passing that several related classes of network games do not always
have pure-strategy Nash equilibria [2], [6], [13], [30].

A stronger version of Corollary 4.6 also holds. In a finite game, better-response
dynamics refers to the following process: start with an arbitrary initial outcome;
if the current outcome is not a Nash equilibrium, pick an arbitrary player that can
decrease its cost by switching strategies, update its strategy to an arbitrary superior
one, and repeat. Better-response dynamics terminate if and only if a Nash equilibrium
is reached. Even in extremely simple two-player games, better-response dynamics
need not terminate (e.g., in “rock-paper-scissors”). On the other hand, the potential
function (12) ensures that such dynamics always converge in Shapley network design
games.

Corollary 4.7 ([1], [30]). In every Shapley network design game, better-response
dynamics always converges to a Nash equilibrium in a finite number of iterations.

Proof. By Lemma 4.4, every iteration of better-response dynamics strictly decreases
the value of the potential function �ND . Better-response dynamics therefore cannot
visit an outcome more than once and eventually terminates, necessarily at a Nash
equilibrium. �

Corollary 4.7 does not address the number of iterations required to reach a Nash
equilibrium; see [1], [12] for further study of this issue.

Finally, the potential function (12) has direct consequences for the price of stability
in Shapley network design games. Comparing the definitions of cost (11) and potential
function value (12) of such a game, we have

c(P1, . . . , Pk) ≤ �ND(P1, . . . , Pk) ≤ Hk · c(P1, . . . , Pk) (14)

for every outcome (P1, . . . , Pk). As a result, a global minimum of the potential
function �ND of a Shapley network design game is both a Nash equilibrium (by
Corollary 4.6) and has cost at most Hk times that of optimal (by the argument in the
proof of Theorem 2.10). This gives the following theorem

Theorem 4.8 ([1]). In every k-player Shapley network design game, the price of
stability is at most Hk .

A similar argument shows that the bound of Hk in Theorem 4.8 applies to every
Nash equilibrium reachable from an optimal solution via better-response dynamics.
The bound also carries over to numerous extensions of Shapley network design games;
see [1] for details.

Example 4.3 shows that the bound in Theorem 4.8 is tight for every k ≥ 1. Thus,
unlike for selfish routing networks and resource allocation games, a direct application
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of a potential function argument yields an optimal upper bound on the inefficiency of
equilibria.

The upper bound in Theorem 4.8 is not optimal for some important special cases
of Shapley network design games, however. For example, suppose we insist that the
underlying network G is undirected. There is no known analogue of Example 4.3 for
undirected Shapley network design games – the best lower bound known on the price
of stability in such games is 2. On the other hand, it is not clear how to significantly
improve the Hk bound in Theorem 4.8 for undirected networks.

Open Question 2. Determine the largest-possible price of stability in undirected
Shapley network design games.

5. Conclusion

This survey has discussed three natural types of games: selfish routing networks,
resource allocation games, and Shapley network design games. These classes of
games differ from each other, both conceptually and technically, in a number of ways.
Despite this, the worst-case inefficiency of selfish behavior is fairly well understood
in all of these models, and in each case can be determined using a potential function
characterization of equilibria.

While the entire field of algorithmic game theory is still in a relatively nascent
stage, several broad research agendas are emerging. For the problem of quantifying
the inefficiency of noncooperative equilibria, a central research issue is to understand
characteristics of games that guarantee approximately optimal equilibria, and to de-
velop flexible mathematical techniques for proving such guarantees. While many
research accomplishments from the past few years have improved our understanding
of these intertwined goals, there is clearly much left to be done. Perhaps the current
state of the art in bounding the inefficiency of equilibria can be compared to the field
of approximation algorithms circa twenty-five years ago, when the most fundamental
problems and the most powerful algorithmic techniques (such as linear programming)
were only beginning to crystallize. Motivated by this analogy, we conclude with the
following question: will potential functions be as ubiquitous in bounds on the in-
efficiency of equilibria as linear programming is in bounds on the performance of
approximation algorithms?

Open Question 3. We have seen that a potential function characterization of equilibria
leads a bound on the inefficiency of equilibria. Under what conditions and to what
extent does a converse hold? When does a bound on the inefficiency of the equilibria
of a game imply the existence of some form of a potential function for the game?
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Sublinear time algorithms
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Abstract. Sublinear time algorithms represent a new paradigm in computing, where an algorithm
must give some sort of an answer after inspecting only a very small portion of the input. We
discuss the sorts of answers that one might be able to achieve in this new setting.
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1. Introduction

The goal of algorithmic research is to design efficient algorithms, where efficiency
is typically measured as a function of the length of the input. For instance, the
elementary school algorithm for multiplying two n digit integers takes roughly n2

steps, while more sophisticated algorithms have been devised which run in less than
n log2 n steps. It is still not known whether a linear time algorithm is achievable
for integer multiplication. Obviously any algorithm for this task, as for any other
nontrivial task, would need to take at least linear time in n, since this is what it would
take to read the entire input and write the output. Thus, showing the existence of
a linear time algorithm for a problem was traditionally considered to be the gold
standard of achievement.

Nevertheless, due to the recent tremendous increase in computational power that
is inundating us with a multitude of data, we are now encountering a paradigm shift
from traditional computational models. The scale of these data sets, coupled with the
typical situation in which there is very little time to perform our computations, raises
the issue of whether there is time to consider any more than a miniscule fraction of the
data in our computations? Analogous to the reasoning that we used for multiplication,
for most natural problems, an algorithm which runs in sublinear time must necessar-
ily use randomization and must give an answer which is in some sense imprecise.
Nevertheless, there are many situations in which a fast approximate solution is more
useful than a slower exact solution.

A first example of sublinear time computation that comes to mind is the classical
result from the theory of sampling that one can, in time independent of the size of the
data, determine a good estimate of the average value of a list of numbers of bounded
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magnitude. But what about more interesting algorithmic questions? For example,
given access to all transcripts of trades in the stock exchange, can we determine
whether there is a trend change? This is easily detectable after a careful scan of
the entire transcript, but by the time the scan is performed, it might be too late to
make use of the information. However, it might be feasible to construct much faster
algorithms based on random sampling. The recently emerging theory of sublinear
time algorithms addresses questions of precisely this nature for problems in various
domains.

This paper will describe a number of problems that can be solved in sublinear
time, using different types of approximations.

Outline of the paper. We begin by giving a motivating example of a sublinear time
algorithm in Section 2. In Section 3 we formalize the definitions of approximations
that sublinear time algorithms are able to achieve. We then describe various examples
of sublinear time algorithms.

2. A simple example: monotonicity of a list

Let us begin with a simple example, which will motivate our subsequent definitions of
the types of approximations that we will be interested in achieving. A list of integers
�x = x1, . . . , xn, is monotone (increasing) if xi ≤ xj for all 1 ≤ i < j ≤ n. Given
input �x, the task is to determine whether or not �x is monotone.

In order to construct an algorithm that runs in sublinear time for determining
whether �x is monotone, we first need to make our model of computation precise. For
example, if our algorithm must scan x1, . . . , xi−1 in order to reach xi , then there is no
hope for the existence of a sublinear time algorithm. However, it is often natural to
assume that our algorithms have query (also called oracle) access to the input. That
is, they can access xi in one step for any 1 ≤ i ≤ n.

Even with this model of computation, it is clear that finding a sublinear time
algorithm for the above task is impossible, since any algorithm that does not look at
some xj could be fooled by an input for which all the xi’s are in monotone order for
i �= j . Thus, we can only hope to solve an approximate version of this problem, but
what is a meaningful notion of an approximation?

One natural approximate version is defined as follows: Say that x1, . . . , xn is
ε-close to monotone if by changing at most εn of the values of the xi’s one can
transform x1, . . . , xn into a monotone list. Then, a property tester for monotonicity
is a randomized algorithm that on input �x, ε, must output “pass” if x1, . . . , xn is
monotone, and “fail” if x1, . . . , xn is not ε-close to monotone. The algorithm is
allowed to err with probability at most 1/3. However, once an algorithm with error
probability at most 1/3 is achieved, it is easy to see that for any β, a probability of
error of at most β can be achieved by repeating the algorithm O

(
log 1

β

)
times and

taking the majority answer. Note that if x1, . . . , xn is, say, ε/2-close to monotone,
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the property testing algorithm is allowed to output “pass” or “fail”. Indeed, in this
case, since the list is close to monotone, it may not be too harmful to pass it. On the
other hand, since it is not actually monotone, it is also not a big injustice to fail it.

How do we construct a property tester for monotonicity? On first thought, one
might try picking random indices i, j and performing tests of the form “is xi ≤ xj ?”
or “is xi ≤ xi+1?”. However, these tests do not work very well. It is easy to construct
examples showing that there are lists that are not even

(
1 − 1√

n

)
-close to monotone,

yet pass such tests with probability at least 1 − 1
n1/4 . This means that at least n1/4

such tests must be performed if one is to find a reason to output “fail”. Though this
does not rule out the possibility of a sublinear time property tester, we will see that
one can do much better. In the following, we describe an O(log n) time algorithm
from the work of Ergün et. al. [17] which tests if �x has a long monotone increasing
subsequence. Note that the problem is known to require �(log n) queries [17], [20].

Let c be a constant that is set appropriately. For simplicity, let us assume that the
elements in �x are distinct. The last assumption is without loss of generality, since one
can append the index of an item to the least significant bits of its value in order to
break ties.

1. Let � = c/ε. Choose indices i1, . . . , i� uniformly from [n].
2. For each such chosen index ij , assume the list is monotone and perform a binary

search in �x as if to determine whether xij is present in �x or not.

3. Output “fail” if the binary search fails to find any xij in location ij or finds a
pair of out-of-order elements along the search path. Output “pass” if all the �

binary searches succeed.

The running time of the algorithm is O((1/ε) log n). Moreover, if �x is monotone,
then the algorithm will always output “pass” as each of the binary searches will
succeed. To show that if �x is not ε-close to monotone, then the algorithm will output
“fail” with probability at least 2/3, we show the contrapositive. Namely, assume that
the input is such that the algorithm outputs “pass” with probability at least 1/3. To
see that �x has a long increasing subsequence, let G ⊆ [n] denote the set of indices for
which the binary search would succeed, i.e., i ∈ G if and only if xi can be found by a
binary search on �x that sees no pair of out-of-order elements along the search path. The
constant c can be chosen such that if |G| < (1 − ε)n, then the algorithm would pick
some ij �∈ G with probability at least 1/3, causing it to output “fail”. Thus, since the
algorithm outputs “pass” with probability at least 1/3, we know that |G| ≥ (1 − ε)n.
We now argue that the restriction of �x to the indices in G is an increasing subsequence:
Let i, j ∈ G and i < j . Let k be the least common ancestor index where the binary
searches for xi and xj diverge. Then xi < xk and xk < xj , which implies xi < xj .
Finally, if �x has an increasing subsequence of size at least (1 − ε)n then it is easy to
see that �x is ε-close to monotone. Thus we have the following theorem:

Theorem 2.1 ([17]). There is an algorithm that, given a sequence �x = x1, . . . , xn

and an ε > 0, runs in O((1/ε) log n) time and outputs (1) “pass”, if �x is monotone
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and (2) “fail”, with probability 2/3, if �x does not have an increasing subsequence of
length at least (1 − ε)n (in particular, if �x is ε-far from monotone).

3. What do we mean by an “approximation”?

Now that we have developed some intuition, we present our model and definitions
in more detail: We are interested in computing some function f on input x without
reading all of x. This is an impossible task in general, since a change to a single bit
of x could alter the value of f . When f is the characteristic function of a property,
i.e., f (x) = 1 if x has the property and f (x) = 0 otherwise, the following notion
of approximation has emerged: Given an input, a property tester tries to distinguish
whether the input has the property from the case where the input is not even close to
having the property. We first formalize what it means to be close.

Definition 3.1. An input x, represented as a function x : D → R, is ε-close to
satisfying property P if there is some y satisfying P such that x and y differ on
at most ε|D | places in their representation. Otherwise, x is said to be ε-far from
satisfying P .

In the monotonicity example of the previous section, D = [n] and x(i) returns
the ith element of the list.

We now formalize what it means for an algorithm to test a property. As in the
previous section, we assume in our model of computation that algorithms have query
access to the input.

Definition 3.2. Let P be a property. On input x of size n = |D | and ε, a property
tester for P must satisfy the following:

• If x satisfies property P , the tester must output “pass” with probability at
least 2/3.

• If x is ε-far from satisfying P , the tester must output “fail” with probability at
least 2/3.

The probability of error may depend only on the coin tosses of the algorithm and
not on any assumptions of the input distribution. The number of queries made by
the property tester q = q(ε, n) is referred to as the query complexity of the property
tester. We say that a property tester for P has 1-sided error if it outputs “pass” with
probability 1 when x satisfies P . If the query complexity is independent of n, then
we say that the property is easily testable.

Note that if x does not satisfy P but x is also not ε-far from satisfying P , then the
output of the property tester can be either “pass” or “fail”. We have already seen that
it is this gap which allows property testers to be so efficient.
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The probability that the property tester errs is arbitrarily set to 1/3 and may al-
ternatively be defined to be any constant less than 1/2. It is then easy to see that for
any β, a probability of error of at most β can be achieved by repeating the algorithm
O

(
log 1

β

)
times and taking the majority answer.

Property testing was first defined by Rubinfeld and Sudan [37] in the context
of program testing. Goldreich, Goldwasser, Ron [23] refined and generalized the
definition. Various more general definitions are given in several works, including
[17], [25], [31], which mostly differ in terms of the generality of the distance function
and natural generalizations as to when the tester should accept and reject.

4. Algebraic problems

In this section, we consider property testing algorithms for problems that are al-
gebraic in nature. We begin with the problem of testing whether a function is a
homomorphism. We then show that the ideas used to construct property testers for
homomorphisms extend to other properties with similar underlying structure.

4.1. Homomorphism testing. We begin with an example that was originally moti-
vated by applications in program testing [14] and was later used in the construction of
Probabilistically Checkable Proof systems [6]. Suppose you are given oracle access
to a function f : D → R, that is, you may query the oracle on any input x ∈ D and
it will reply with f (x). Is f a homomorphism?

In order to determine the answer exactly, it is clear that you need to query f on
the entire domain D . However, consider the property testing version of the problem,
for which on input ε, the property tester should output “pass” with probability at
least 2/3 if f is a homomorphism and “fail” with probability at least 2/3 if f is
ε-far from a homomorphism (that is, there is no homomorphism g such that f and
g agree on at least (1 − ε)|D | inputs). In order to construct such a property tester,
a natural idea would be to test that the function satisfies certain relationships that all
homomorphisms satisfy. We next describe two such relationships and discuss their
usefulness in constructing property testers.

Two characterizations of homomorphisms over Zq . Consider the case when f

is over the domain and range D = R = Zq for large integer q. The set of ho-
momorphisms over Zp can be characterized as the set of functions which satisfy
f (x + 1) − f (x) = f (1) for all x. This suggests that a property tester might test
that f (x + 1) − f (x) = f (1) for most x. However, it is easy to see that there are
functions f which are very far from any homomorphism, but would pass such a test
with overwhelmingly high probability. For example, g(x) = x mod �√q� satisfies
g(x + 1) − g(x) = g(1) for 1 − 1√

q
fraction of the x ∈ Zq but g(x) is

(
1 − 1√

q

)
-far

from a homomorphism.
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The set of homomorphisms over D can alternatively be characterized as the set
of functions which satisfy f (x) + f (y) = f (x + y) for all x, y. This suggests that
one might test that f (x) + f (y) = f (x + y) for most x, y. It might be worrisome
to note that when q = 3n, the function h(x) defined by h(x) = 0 if x ≡ 0 mod 3,
h(x) = 1 if x ≡ 1 mod 3 and h(x) = 3n − 1 if x ≡ −1 mod 3 passes the above
test for 7/9 fraction of the choices of pairs x, y ∈ D and that h(x) is 2/3-far from
a homomorphism [16]. However, here the situation is much different: one can show
that for any δ < 2/9, if f (x) + f (y) = f (x + y) for at least 1 − δ fraction of the
choices of x, y ∈ D , then there is some homomorphism g, such that f (x) = g(x) on
at least 1 − δ/2 fraction of the x ∈ D [13].

Once one has established such a theorem, then one can construct a property tester
based on this characterization by sampling O(1/ε) pairs x, y and ensuring that each
pair in the sample satisfies f (x) + f (y) = f (x + y). This property tester clearly
passes all homomorphisms. On the other hand, if f is ε-far from a homomorphism
then the above statement guarantees that at least 2ε fraction of the choices of x, y

pairs do not satisfy f (x) + f (y) = f (x + y), and the property tester is likely to fail.
In both cases, homomorphisms are characterized by a collection of local con-

straints, where by local, we mean that few function values are related within each
constraint. What is the difference between the first and the second characterization
of a homomorphism that makes the former lead to a bad test and the latter to a much
better test? In [37] (see also [36]), the notion of a robust characterization was intro-
duced to allow one to quantify the usefulness of a characterization in constructing a
property test. Loosely, a robust characterization is one in which the “for all” quantifier
can be replaced by a “for most” quantifier while still characterizing essentially the
same functions. That is, for a given ε, δ, a characterization is (ε, δ)-robust if for any
function f that satisfies at least 1 − δ fraction of the constraints, f must be ε-close to
some function g that satisfies all of the constraints and is thus a solution of the “for all”
characterization. As we saw above, once we have an (ε, δ)-robust characterization
for a property, it is a trivial matter to construct a property tester for the property. We
are interested in the relationship between ε and δ as well as the range of δ for which
the property is (ε, δ)-robust, since the value of δ directly influences the running time
of the property tester.

Homomorphism testing, a history. Let G, H be two finite groups. For an arbitrary
map f : G → H , define δ, the probability of group law failure, by

1 − δ = Pr
x,y

[f (x) + f (y) = f (x + y)] .

Define ε such that ε is the minimum τ for which f is τ -close to a homomorphism.
We will be interested in the relationship between ε and δ.

Blum, Luby and Rubinfeld [14], considered this question and showed that over
cyclic groups, there is a constant δ0, such that if δ ≤ δ0, then the one can upper bound
ε in terms of a function of δ that is independent of |G|. This yields a homomorphism
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tester with query complexity that depends (polynomially) on 1/ε, but is independent
of |G|, and therefore shows that the property of being a homomorphism is easily
testable. The final version of [14] contains an improved argument due to Coppersmith
[16], which applies to all Abelian groups, shows that δ0 < 2/9 suffices, and that ε

is upper bounded by the smaller root of x(1 − x) = δ (yielding a homomorphism
tester with query complexity linear in 1/ε). Furthermore, the bound on δ0 was shown
to be tight for general groups [16]. In [13], it was shown that for general (non-
Abelian) groups, for δ0 < 2/9, then f is ε-close to a homomorphism where ε =
(3 − √

9 − 24δ)/12 ≤ δ/2 is the smaller root of 3x − 6x2 = δ. The condition on δ,
and the bound on ε as a function of δ, are shown to be tight, and the latter improves
that of [14], [16]. Though δ0 < 2/9 is optimal over general Abelian groups, using
Fourier techniques, Bellare et. al. [12] have shown that for groups of the form (Z/2)n,
δ0 ≤ 45/128 suffices.

A proof of a homomorphism test. We describe the following proof, essentially due
to Coppersmith [14], [16] of the robustness of the homomorphism characterization
over Abelian groups. Though this is not the strongest known result, we include this
proof to give a flavor of the types of arguments used to show robustness of algebraic
properties.

Theorem 4.1. Let G be a finite Abelian group and f : G → G. Let δ be such that

1 − δ = Pr
x,y

[f (x) + f (y) = f (x + y)] .

Then if δ < 2/9, f is 2δ-close to a homomorphism.

Proof. Define φ(x) = majy∈G(f (x + y) − f (y)), that is, let φ(x) be the value that
occurs with the highest probability when evaluating f (x + y) − f (y) over random y

(breaking ties arbitrarily).
The theorem follows immediately from the following two claims showing that φ

is a homomorphism and that f and φ are 2δ-close.

Claim 4.2. |{y|f (y) = φ(y)}| ≥ (1 − 2δ)|G|.
Proof of Claim 4.2. Let B = {x ∈ G : Pry[f (x) �= f (x + y) − f (y)] > 1/2]}.
If x /∈ B, then φ(x) = f (x). Thus, it suffices to bound |B|

|G| . If x ∈ B, then
Pry[f (x) + f (y) �= f (x + y)] > 1/2. Thus δ = Prx,y[f (x) �= f (x + y) − f (y)] ≥
|B|
|G| · 1

2 or equivalently |B|
|G| ≤ 2δ. �

Claim 4.3. If δ < 2/9, then φ(x) + φ(z) = φ(x + z) for all x, z.

Proof of Claim 4.3. Fix x, we first show that most pairs y1, y2 agree to vote for the
same value of φ(x). Pick random y1, y2 ∈ G, and we have:

Pry1,y2[f (x + y1) − f (y1) = f (x + y2) − f (y2)] = Pry1,y2[f (x + y1) + f (y2)

= f (x + y2) + f (y1)].
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x + y1 and y2 are both uniformly distributed elements of G. Therefore we have
Pry1,y2[f (x + y1) + f (y2) �= f (x + y1 + y2)] = δ < 2/9. Similarly, we have
Pry1,y2[f (x + y2) + f (y1) �= f (x + y1 + y2)] = δ < 2/9. If neither of the above
events happens, then f (x + y1) − f (y1) = f (x + y2) − f (y2). Via a union bound
we have that

Pry1,y2[f (x + y1) − f (y1) = f (x + y2) − f (y2)] > 1 − 2δ ≥ 5/9.

It is straightforward to show that for any distribution in which the collision probability
is at least 5/9, the maximum probability element must have probability at least 2/3.
Thus,

Pr
y

[φ(x) �= f (x + y) − f (y)] < 1/3 for all x ∈ G. (1)

To show that for all x, z ∈ G, φ(x) + φ(z) = φ(x + z), fix x and z. Then apply
Equation (1) to x, z and x + z to get

Pry[φ(x) �= f (x + (y − x)) − f (y − x)] < 1/3, (2)

Pry[φ(z) �= f (z + y) − f (y)] < 1/3, (3)

Pry[φ(x + z) �= f ((x + z) + (y − x)) − f (y − x)] < 1/3. (4)

Thus Pry[φ(x) = f (y) − f (y − x) and φ(z) = f (z + y) − f (y) and φ(x + z) =
f (z + y) − f (y − x)] > 0, and so there exists a y for which

φ(x)+φ(z) = (f (y)−f (y−x))+(f (z+y)−f (y)) = f (z+y)−f (y−x) = φ(x+z).

The above equality holds for every x, z ∈ G, showing that φ is a homomorphism and
completing the proof of Claim 4.3. �

�

A word about self-correcting. In the proof, we note that φ is defined so that it is
the “self-correction” of f . Observe that there is a simple randomized algorithm
that computes φ(x) given oracle access to f : pick c log 1/β values y, compute
f (x + y) − f (y) and output the value that you see most often. If f is 1

8 -close
to a homomorphism φ, then since both y and x +y are uniformly distributed, we have
that for at least 3/4 of the choices of y, φ(x + y) = f (x + y) and φ(y) = f (y), in
which case f (x +y)−f (y) = φ(x). Thus it is easy to show that there is a constant c

such that if f is 1
8 -close to a homomorphism φ, then the above algorithm will output

φ(x) with probability at least 1 − β.

4.2. Other algebraic functions. It is natural to wonder what other classes of func-
tions have robust characterizations as in the case of homomorphisms? There are many
other classes of functions that are defined via characterizations that are local. The field
of functional equations is concerned with the prototypical problem of characterizing
the set of functions that satisfy a given set of properties (or functional equations). For
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example, the class of functions of the form f (x) = tan Ax are characterized by the
functional equation

f (x + y) = f (x) + f (y)

1 − f (x)f (y)
for all x, y.

D’Alembert’s equation

f (x + y) + f (x − y) = 2f (x)f (y) for all x, y

characterizes the functions 0, cos Ax, cosh Ax. Multivariate polynomials of total
degree d over Zp for p > md can be characterized by the equation

d+1∑

i=0

αif (x̂ + iĥ) = 0 for all x̂, ĥ ∈ Zm
p ,

where αi = (−1)i+1
(
d+1

i

)
. All of the above characterizations are known to be (ε, δ)-

robust for ε and δ independent of the domain size (though for the case of polynomials,
there is a polynomial dependence on the total degree d) thus showing that the corre-
sponding properties are easily testable [36], [37]. A long series of works have given
increasingly robust characterizations of functions that are low total degree polynomi-
als (cf. [6], [32], [7], [34], [3], [29], [27]).

We note that all of these results can be extended to apply over domains that
are subsets of infinite cyclic groups. They can further be extended to the case of
computation with finite precision, which requires that one address the stability of
functional equations [18], [30].

Convolutions of distributions. We now turn to a seemingly unrelated question about
distributions that are close to their self-convolutions: Let A = {ag | g ∈ G} be a
distribution on group G. The convolution of distributions A, B is

C = A ∗ B, cx =
∑

y,z∈G
yz=x

aybz.

Let A′ be the self-convolution of A, A ∗ A, i.e. a′
x = ∑

y,z∈G;yz=x ayaz. It is known
that A = A′ exactly when A is the uniform distribution over a subgroup of G. Suppose
we know that A is close to A′, can we say anything about A in this case? Suppose
dist(A, A′) = 1

2

∑
x∈G |ax −a′

x | ≤ ε for small enough ε. Then [13] show that A must
be close to the uniform distribution over a subgroup of G. More precisely, in [13] it is
shown that for a distribution A over a group G, if dist(A, A′) = 1

2

∑
x∈G |ax − a′

x | ≤
ε ≤ 0.0273, then there is a subgroup H of G such that dist(A, UH ) ≤ 5ε, where UH

is the uniform distribution over H [13]. On the other hand, in [13] there is an example
of a distribution A such that dist(A, A ∗A) ≈ .1504, but A is not close to uniform on
any subgroup of the domain.
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A weaker version of this result, was used to prove a preliminary version of the
homomorphism testing result in [14]. To give a hint of why one might consider the
question on convolutions of distributions when investigating homomorphism testing,
consider the distribution Af achieved by picking x uniformly from G and outputting
f (x). It is easy to see that the error probability δ in the homomorphism test is at
least dist(Af , Af ∗Af ). The other, more useful, direction is less obvious. In [13] it is
shown that this question on distributions is “equivalent” in difficulty to homomorphism
testing:

Theorem 4.4. Let G, H be finite groups. Assume that there is a parameter β0 and
function φ such that the following holds:

For all distributions A over group G, if dist(A ∗ A, A) ≤ β ≤ β0 then A is
φ(β)-close to uniform over a subgroup of G.

Then, for any f : G → H and δ < β0 such that 1− δ = Pr[f (x)∗f (y) = f (x ∗y)],
and φ(δ) ≤ 1/2, we have that f is φ(δ)-close to a homomorphism.

5. Combinatorial objects

In 1996, Goldreich, Goldwasser and Ron [23] focused attention on the problem of
testing various properties of graphs and other combinatorial objects. Their work
introduced what is now referred to as the dense graph model of property testing. In
this model, a graph on n nodes is represented via an n × n adjacency matrix, where
the (i, j)th entry of the matrix contains a 1 if the edge (i, j) is present in the graph
and a 0 otherwise. Two graphs G and H are ε-close if at most εn2 edges need to
be modified (inserted or deleted) to turn G into H . In [23], several graph properties
were shown to be easily testable. In fact, as we shall soon see, the question of which
graph properties are easily testable has led to a series of intriguing results.

One property that [23] consider is that of k-colorability – is it possible to assign
one of k colors to each of the nodes so that no pair of nodes that have an edge between
them are assigned the same color? The property of k-colorability is NP-complete to
determine – meaning, that though we know how to verify that a certain coloring is a
valid k-coloring, we have no idea how to determine whether a graph has a k coloring
in time polynomial in the size of the graph. Somewhat surprisingly, k-colorability
is easily testable, so we can distinguish k-colorable graphs from those that are ε-far
from k-colorable in constant time. Thus we see that the efficiency of a property tester
is not directly related to the complexity of deciding the property exactly.

Though the proof of correctness of the property tester for k-colorability is involved,
the algorithm used to conduct the property test is easy to describe: It simply picks
a constant sized random sample of the vertices, queries all the edges among this
random sample and then outputs “pass” or “fail”, according to whether the sample is
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k-colorable. Since the sample is of constant size, the determination of whether the
sample is k-colorable can be made in constant time.

Such algorithms that (1) pick a constant sized random sample of the vertices, (2)
query all the edges among this random sample, and then (3) output “pass” or “fail”
based on whether the subgraph has the property or not, are referred to as “natural
algorithms”. Modulo a technicality about how the final output decision is made,
Goldreich and Trevisan [26] essentially show that for any graph property that is easily
testable, the natural algorithm gives a property tester. Thus, all easily testable graph
properties provably have easy-to-describe algorithms.

The work of [23] sparked a flurry of results in the dense graph model. A very
interesting line of work was initiated in the work of Alon, Fischer, Krivelevich and
Szegedy [2], in which they use the Szemerédi Regularity Lemma to show that the
property of a graph being H -free (that is, the graph does not contain any copy of H

as a subgraph) is easily testable for any constant sized graph H .
Very recently, the above line of work culminated in the following amazing result:

Alon and Shapira [5] have shown that one can completely characterize the classes
of graph properties that are easily testable with 1-sided error in the dense graph
model. Before describing their result, we make two definitions. A graph property P

is hereditary if it is closed under the removal of vertices (but not necessarily under
the removal of edges). A graph property P is semi-hereditary if there is a hereditary
graph property H such that (1) any graph satisfying P also satisfies H and (2) for
any ε > 0, there is an M(ε), such that any graph G of size at least M(ε) which is
ε-far from satisfying P does not satisfy H . The result of Alon and Shapira is then the
following:

Theorem 5.1. A graph property P is easily testable with one-sided error if and only
if P is semi-hereditary.

Hereditary graph properties include all monotone graph properties (including k-
colorability and H -freeness), as well as other interesting non-monotone graph prop-
erties such as being a perfect, chordal, or interval graph. The techniques used by Alon
and Shapira are quite involved, and are based on developing new variants of the Sze-
merédi Regularity Lemma. Previously in the literature, the “Regularity Lemma type”
arguments were used to develop testers for graph properties that were characterized
by a finite set of forbidden subgraphs. Here the set of forbidden subgraphs may be
infinite, and they are forbidden as induced subgraphs.

Several interesting questions regarding easily testable graph properties remain.
For example, because of the use of the Szemerédi Regularity Lemma, the upper
bounds given by the previously mentioned results have a dependence on 1/ε that
is enormous. It would be interesting to characterize which problems have property
testers whose dependence on 1/ε is polynomial (cf. [1]).

There are many interesting properties that are not easily testable, but do have
sublinear time property testers. For example, the graph isomorphism problem asks
whether two graphs are identical under relabeling of the nodes. In [21], it is shown
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that the property testing problem requires �(n) queries and that there is a property
tester for this problem which uses O(n5/4 polylog n) queries, which is sublinear in
the input size n2.

The area of property testing has been very active, with a number of property
testers devised for other models of graphs as well as other combinatorial objects. The
testability of a problem is very sensitive to the model in which it is being tested.
In contrast to the dense graph model, where k-colorability is easily testable, it is
known that there are no sublinear time property testers for the k-colorability problem
in models suitable for testing sparse graphs [15]. Property testers have also been
studied in models of general graphs, and threshold-like behaviors have been found
for the complexity of the testing problems in terms of the average degree of the graph
[28], [4].

Property testers for combinatorial properties of matrices, strings, metric spaces
and geometric objects have been devised. We refer the reader to the excellent surveys
of Goldreich [22], Ron [35] and Fischer [19].

6. Testing properties of distributions

In a wide variety of settings, data is most naturally viewed as coming from a probability
distribution. In order to effectively make use of such data, one must understand various
properties of the underlying probability distribution. Some of these properties are
“local” in nature, for example focusing on whether or not a specific domain element
appears with large probability. Other properties have a rather “global” feel in the sense
that they are a property of the distribution as a whole and not of a small subset of the
domain elements. Unlike the case for local properties, it makes sense to characterize
a distribution in terms of some meaningful distance measure to the closest distribution
that has the global property. This yields a somewhat different model than the property
testing model in terms of the assumption on how the data is presented for here we do
not assume that an explicit description of the distribution is given.

In the following, we assume that there is an underlying distribution from which
the testing algorithm receives independent identically distributed (iid) samples. The
complexity of the algorithm is measured in terms of the number of samples required in
order to produce a meaningful answer (the sample complexity). As mentioned in the
introduction, it is a classical result from the theory of sampling that one can, in time
independent of the size of the data, determine a good estimate of the average value
of a list of numbers of bounded magnitude. However, more recently, properties such
as closeness between two distributions, closeness to an explicitly given distribution,
independence, and high entropy, have been studied in this model [24], [10], [9].
For many properties, well-known statistical techniques, such as the χ2-test or the
straightforward use of Chernoff bounds, have sample complexities that are at least
linear in the size of the support of the underlying probability distribution. In contrast,
there are algorithms whose sample complexity is sublinear in the size of the support
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for various properties of distributions.
We mention one illustrative example: Given samples of a distribution X on [n],

for example all the previous winners of the lottery, how can one tell whether X is
close to uniform? We will measure closeness in terms of the L2 norm, i.e., letting
X(i) denote the probability that X assigns to i,

‖X‖2 =
∑

i∈[n]
(X(i) − 1/n)2.

Goldreich and Ron [24] note that since
∑

i∈[n]
(X(i) − 1/n)2 =

∑

i∈[n]
X(i)2 − 1/n,

it is enough to estimate the collision probability. They then show that this can be done
by considering only O(

√
n) samples and counting the number of pairs that are the

same. By bounding the variance of their estimator, they obtain the following:

Theorem 6.1 ([24]). There is an algorithm that, given a distribution X on [n] via
a generation oracle, approximates ‖X‖2 to within a multiplicative factor of (1 ± ε)

using O(
√

n/ε2) samples, with constant probability.

Such techniques are very useful for achieving sublinear time algorithms for testing
whether distributions satisfy several other global properties. For example, for the
properties of closeness of two arbitrary distributions [10], independence of a joint
distribution [9], high entropy [8], and monotonicity of the probability density function
(when the distribution is over a totally ordered domain) [11], the testing problem can
be reduced to the problem of testing the near-uniformity of the distribution on various
subdomains.

7. Some final comments

We have seen several contexts in which one can test properties in sublinear time. The
study of sublinear time algorithms has led to a new understanding of many problems
that had already been well-studied. Though we have mentioned only property testing
problems in this survey, other, more traditional, types of approximations are achievable
in sublinear time. Such algorithms have been used to design very fast approximation
algorithms for graph problems and for string compressibility problems (cf. [23], [10],
[33]). Some of these algorithms have even resulted in better linear time approximation
algorithms than what was previously known.

Probabilistically Checkable Proof Systems (PCPs) can be thought of as a way to
write down a proof so that another person can verify it by viewing only a constant
number of locations (cf. [6]). PCPs can thus be viewed as a type of robust charac-
terization and their verification is a sublinear algorithm. More interestingly, property
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testers for homomorphisms and low degree polynomials are used as key ingredients
in the construction of Probabilistically Checkable Proof Systems.

As we have seen, the study of sublinear algorithms gives a new perspective that
has yielded insights to other areas of theoretical computer science. Much still remains
to be understood about the scope of sublinear time algorithms, and we expect that this
understanding will lead to further insights.
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Pseudorandomness and combinatorial constructions

Luca Trevisan∗

Abstract. In combinatorics, the probabilistic method is a very powerful tool to prove the exis-
tence of combinatorial objects with interesting and useful properties. Explicit constructions of
objects with such properties are often very difficult, or unknown. In computer science, proba-
bilistic algorithms are sometimes simpler and more efficient than the best known deterministic
algorithms for the same problem.

Despite this evidence for the power of random choices, the computational theory of pseudo-
randomness shows that, under certain complexity-theoretic assumptions, every probabilistic
algorithm has an efficient deterministic simulation and a large class of applications of the prob-
abilistic method can be converted into explicit constructions.

In this survey paper we describe connections between the conditional “derandomization” re-
sults of the computational theory of pseudorandomness and unconditional explicit constructions
of certain combinatorial objects such as error-correcting codes and “randomness extractors.”
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1. Introduction

1.1. The probabilistic method in combinatorics. In extremal combinatorics, the
probabilistic method is the following approach to proving existence of objects with
certain properties: prove that a random object has the property with positive proba-
bility. This simple idea has been amazingly successful, and it gives the best known
bounds for most problems in extremal combinatorics. The idea was introduced (and,
later, greatly developed) by Paul Erdős [18], who originally applied it to the follow-
ing question: define R(k, k) to be the minimum value n such that every graph on n

vertices has either an independent set of size at least k or a clique of size at least k.1

It was known that R(k, k) is finite and that it is at most 4k , and the question was
to prove a lower bound. Erdős proved that a random graph with 2k/2 vertices has a
positive probability of having no clique and no independent set larger than k, and so

∗The author is supported in part by NSF grant CCF 0515231.
1Here by “graph” we mean an undirected graph, that is, a pair G = (V , E) where V is a finite set of vertices

and E is a set of pairs of elements of E, called edges. A clique in a graph G = (V , E) is a set C ⊆ V of vertices
such that {u, v} ∈ E for every two vertices u, v ∈ C. An independent set is a set I ⊆ V of vertices such that
{u, v} �∈ E for every two vertices u, v ∈ I .
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R(k, k) ≥ 2k/2. The method, of course, gives no indication of how to actually con-
struct a large graph with no small clique and no small independent set. Remarkably, in
the past 60 years, there has been no asymptotic improvement to Erdős’s lower bound
and, perhaps more significantly, the best explicit construction of a graph without a
clique of size k and without an independent set of size k has only about klog k vertices
[20], a bound that has not been improved in 25 years.

Shannon [59] independently applied the same idea to prove the existence of encod-
ing schemes that can optimally correct from errors in a noisy channel and optimally
compress data. The entire field of information theory arose from the challenge of
turning Shannon’s non-constructive results into algorithmic encoding and decoding
schemes. We will return to the problem of encodings for noisy channels in Sec-
tion 2. Around the same time, Shannon [60] applied the probabilistic method to prove
the existence of boolean functions of exponential circuit complexity (see Section 4).
Proving that certain specific boolean functions (for example, satisfiability of boolean
formulae or 3-colorability of graphs) require exponential size circuits is a fundamental
open problem in computational complexity theory, and little progress has been made
so far.

The probabilistic method has found countless applications in the past 60 years,
and many of them are surveyed in the famous book by Alon and Spencer [4].

For most problems in extremal combinatorics, as well as in information theory
and complexity theory, probabilistic methods give the best known bound, and explicit
constructions either give much worse bounds, or they give comparable bounds but at
the cost of technical tours de force.

1.2. Probabilistic methods in computer science. In computer science, an impor-
tant discovery of the late 1970s was the power of probabilistic algorithms. The most
famous (and useful) of such algorithms are probably the polynomial time probabilis-
tic algorithms for testing primality of integers [65], [47]. In these algorithms one
looks for a “certificate” that a given number n is composite; such a certificate could
be for example an integer a such that an �≡ a (mod n), or four distinct square roots
(mod n) of the same integer. Rabin, Solovay and Strassen [65], [47] proved that there
is a good chance of finding such certificates just by picking them at random, even
though no efficient method to deterministically construct them was known.2 Two
other important and influential algorithms were discovered around the same time: an
algorithm to test if two implicitly represented multivariate polynomials are identical
[85], [56] (evaluate them at a random point chosen from a domain larger than the de-
gree) and an algorithm to check if two vertices in a graph are connected by a path [2]
(start a random walk at the first vertex, and see if the second vertex is reached after a
bounded number of steps).3

2Note the similarity with the probabilistic method.
3The algorithm of Aleliunas et al. [2] broke new grounds in terms of memory use, not running time. It was

already known that the Depth-First-Search algorithm could be used to solve the problem using linear time and
a linear amount of memory. The random walk algorithm, however, needs only O(log |V |) bits of memory, and



Pseudorandomness and combinatorial constructions 1113

A different type of probabilistic algorithms was developed starting in the late
1980s with the work of Sinclair and Jerrum [61]. These algorithms solve approximate
“counting” problems, where one wants to know the number of solutions that satisfy
a given set of combinatorial constraints. For example, given a bipartite graph, one
would like to know, at least approximately, how many perfect matchings there are.4

Sinclair and Jerrum introduced an approach based on a reduction to the problem of
approximately sampling from the uniform distribution of all possible solutions. Since
the latter problem involves randomness in its very definition, this approach inevitably
leads to probabilistic algorithms.

1.3. The computational theory of pseudorandomness. In light of such algorithmic
results, it was initially conjectured that probabilistic algorithms are strictly more
powerful than deterministic ones and that, for example, there exist problems that can
be solved probabilistically in polynomial time but that cannot be solved in polynomial
time using deterministic algorithms.

This belief has been overturned by developments in the computational theory of
pseudorandomness. The theory was initiated by Blum [9], Goldwasser and Micali
[22], and Yao [84], with the motivation of providing sound foundations for cryp-
tography. From the very beginning, Yao [84] realized that the theory also provides
conditional derandomization results, that is, theorems of the form

“if assumption X is true, then every problem that can be solved by a prob-
abilistic polynomial time algorithm can also be solved by a deterministic
algorithm of running time Y.”

Yao showed that we can take X to be “there is no polynomial time algorithm that on
input a random integer finds its prime factorization”5 and Y to be “time 2nε

for every
ε > 0.”

An important project in complexity theory in the 1980s and 1990s was to strength-
en Y to be “polynomial time” with a plausible X. The goal was achieved 1997 in a
landmark paper by Impagliazzo and Wigderson [31], building on a considerable body
of previous work.

At a very high level, the Impagliazzo–Wigderson result is proved in two steps.
The first step (which is the new contribution of [31]) is the proof that an assumption
about the worst-case complexity of certain problems implies a seemingly stronger
assumption about the average-case complexity of those problems. A result of this
kind is called an amplification of hardness result, because it “amplifies” a worst-case
hardness assumption to an average-case one. The second step, already established

exponential improvement.
4A bipartite graph is a triple G = (U, V, E) where U, V are disjoint sets of vertices and E ⊆ U × V is a set

of edges. A perfect matching is a subset M ⊆ E such that for every u ∈ U there is precisely one v ∈ V such that
(u, v) ∈ M , and vice versa.

5More generally, Yao showed that X can be “one-way permutations exist,” see 5 for more details. The
assumption about integer factorization implies the existence of one-way permutations, provided that we restrict
ourselves to “Blum integers.”
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ten years earlier by Nisan and Wigderson [44], is the proof that the average-case
assumption suffices to construct a certain very strong pseudorandom generator, and
that the pseudorandom generator suffices to simulate deterministically in polynomial
time every polynomial time probabilistic algorithm.

In conclusion, assuming the truth of a plausible complexity-theoretic assumption,
every polynomial time probabilistic algorithm can be “derandomized,” including the
approximation algorithms based on the method of Sinclair and Jerrum. Furthermore,
under the same assumption, a large class of applications of the probabilistic method
in combinatorics can be turned into explicit constructions. We give some more details
about the Impagliazzo–Wigderson Theorem in Section 6. The reader is also referred
to the excellent survey paper of Impagliazzo [28] in the proceedings of the last ICM.

It is remarkable that many of the “predictions” coming from this theory have been
recently validated unconditionally: Agrawal et al. [1] have developed a deterministic
polynomial time algorithm for testing primality and Reingold [53] has developed a
deterministic O(log n) memory algorithm for undirected graph connectivity. One can
read about such developments elsewhere in these proceedings.

Here is an example of a question that is still open and that has a positive answer
under the complexity-theoretic assumption used in the Impagliazzo–Wigderson work:

• Is there a deterministic algorithm that, on input an integer n, runs in time
polynomial in log n and return a prime between n and 2n?

1.4. When randomness is necessary. Suppose that, in a distant future, someone
proves the assumption used in the Impagliazzo–Wigderson work, so that we finally
have an unconditional polynomial time derandomization of all probabilistic algo-
rithms. Would this be the end of the use of randomness in computer science? The
answer is no, for at least two reasons.

One reason is that such derandomization would probably not be practical. At
a broad qualitative level, we consider polynomial-time algorithms as “efficient” and
super-polynomial-time algorithms as “inefficient,” and then such a result would estab-
lish the deep fact that “efficient” probabilistic algorithms and “efficient” deterministic
algorithms have the same power. If the derandomization, however, causes a consider-
able (albeit polynomial) slow-down, and if it turns a practical probabilistic algorithm
into an impractical deterministic one, then the probabilistic algorithm will remain the
best choice in applications.

A more fundamental reason is that there are several applications in computer
science where the use of randomness is unavoidable. For example, consider the task
of designing a secure cryptographic protocol in a setting where all parties behave
deterministically.

These observations lead us to consider the problem of generating randomness to
be used in probabilistic algorithms, cryptographic protocols, and so on. Such genera-
tion begins by measuring a physical phenomenon that is assumed to be unpredictable
(such as a sequence of physical coin flips) and that will be called a random source in
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the following. Typically, one has access to random sources of very poor quality, and
converting such measurements into a sequence of independent and unbiased random
bits is a difficult problem. In Section 8 we discuss various approaches and impos-
sibility results about this problem, leading to the definition of seeded randomness
extractor due to Nisan and Zuckerman [45], [86].

Seeded randomness extractors have an amazing number of applications in com-
puter science, often completely unrelated to the original motivation of extracting
random bits from physical sources. They are related to hash functions, to pseudo-
random graphs, to error-correcting codes and they are useful in complexity theory to
prove, among other things, negative results for the approximability of optimization
problems.

Ironically, the problem of generating high-quality random bits for cryptographic
application is not satisfactorily solved by seeded randomness extractors (even though
it was the original motivation for the research program that led to their definition).
Seedless randomness extractors are needed for such application, and their theory is
still being developed.

1.5. Connections. So far, we have discussed (i) the power of probabilistic methods,
(ii) the conditional results proving that all probabilistic algorithms have a polynomial-
time derandomization under complexity assumption, and (iii) the use of seeded ran-
domness extractors to unconditionally run probabilistic algorithms in a setting in
which only a weak source of randomness is available.

In Section 8 we describe a recently discovered connection between (ii) and (iii)
and, more generally, between conditional results proved in the computational theory of
pseudorandomness and unconditional explicit constructions of combinatorial objects.

One connection is between error-correcting codes and “hardness amplification”
results. This connection has led to the application of coding-theoretic techniques in
the study of average-case complexity. It is also possible to use complexity-theoretic
techniques to build error-correcting codes, but so far this approach has not been
competitive with previously known coding-theoretic techniques.

The second connection is between pseudorandom generators and seeded random-
ness extractors. This connection has led to improvements in both settings.

Various impossibility results are known for error-correcting codes and random-
ness extractors. Via these connections, they imply impossibility results for hardness
amplification and conditional derandomization. In Section 7 we discuss approaches
to sidestep these negative results.

2. Pseudorandom objects: codes and graphs

In this section we introduce two examples of very useful combinatorial objects whose
existence easily follows from the probabilistic method: error-correcting codes and
expander graphs. Explicit constructions of such objects are also known.
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2.1. Error-correcting codes. Consider the process of picking a random set S ⊆
{0, 1}n of size 2k , k < n. If, say, k = n/2, then it is easy to show that there is an
absolute constant δ > 0 such that, with high probability, every two elements u, v ∈ S

differ in at least δn coordinates. By a more careful estimate, we can also see that
there is an absolute constant c such that, for every ε > 0, it is likely that every two
elements of S differ in at least (1/2 − ε)n coordinates with high probability, provided
k ≤ cε2n. For reasons that will be clear shortly, let us change our perspective
slightly, and consider the (equivalent) process of picking a random injective function
C : {0, 1}k → {0, 1}n: clearly the same bounds apply.

For two strings u, v ∈ {0, 1}n, the Hamming distance between u and v (denoted
dH (u, v)) is the number of coordinates where u and v differ, that is

dH (u, v) := |{i : ui �= vi}|. (1)

Definition 2.1 (Error-correcting code). We say that C : {0, 1}k → {0, 1}n is an
(n, k, d)-code if dH (C(x), C(y)) ≥ d for every two distinct x, y ∈ C.

This concept is due to Hamming [25]. Error-correcting codes are motivated by the
following scenario. Suppose we, the sender, have a k-bit message M ∈ {0, 1}k that
we want to transmit to a receiver using an unreliable channel that introduces errors,
and suppose we have an (n, k, d)-code C. Then we can compute c = C(M) and
transmit c over the channel. The receiver gets a string c′, which is a corrupted version
of c, and looks for the message M ′ that minimizes dH (C(M ′), c′). If the channel
introduces fewer than d/2 errors, then the receiver correctly reconstructs M .6

Keeping this application in mind, for every given k, we would like to construct
(n, k, d)-codes where d is as large as possible (because then the receiver can tolerate
more errors) and n is as small as possible (so that we do not have to communicate a
very long encoding). Furthermore, we would like C and the decoding procedure run
by the receiver to be computable by efficient algorithms.

One trade-off between the parameters is that d
n

≤ 1
2 + ok(1). Keeping in mind

that the number of errors that can be corrected is at most d/2, this means that the
receiver can correctly reconstruct the message only if the number of errors is at most(1

4 + ok(1)
)
n.

It is possible to do better if we are willing to settle for the notion of “list-
decodability,” introduced by Elias [17].

Definition 2.2 (List-decodable code). We say that C : {0, 1}k → {0, 1}n is (L, δ)-list
decodable if for every u ∈ {0, 1}n,

|{x ∈ {0, 1}k : dH (C(x), u) ≤ δn}| ≤ L.

6It is also easy to see that this analysis is tight. If there are two messages M, M ′ such that dH (C(M), C(M ′)) =
d and we send M , then it is possible that even a channel that introduces only d/2 errors can fool the receiver into
thinking that we sent M ′.
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Here the idea is that we send, as before, the encoding C(M) of a message M .
The receiver gets a string u and computes the list of all possible messages M ′ such
that dH (C(x), u) ≤ δn. If C is an (L, δ)-code, then the list is guaranteed to be of
length at most L, and if the channel introduces at most δn errors then our message is
guaranteed to be in the list.

Using the probabilistic method, it is easy to show the existence of (L, 1/2−ε)-list
decodable codes C : {0, 1}k → {0, 1}n for every k and ε, where n = O(kε−2) and L =
O(ε−2). It was also known how to define efficiently encodable codes with good (but
not optimal) parameters. It took, however, 40 years until Sudan [66] defined the first
efficient list-decoding algorithm for such codes. Sudan’s algorithm suffices to define
(ε−O(1), 1/2 − ε)-list decodable codes C : {0, 1}k → {0, 1}n with n = (k/ε)O(1) for
every k, ε, and the codes are encodable and list-decodable in time polynomial in n.
This means that even if the channel introduces close to n/2 errors, it is still possible
for the receiver to gain considerable information about the message. (Namely, the
fact that the message is one out of a small list of possibilities.) Other list-decoding
algorithms are now known, but they are beyond the scope of this survey. See Sudan’s
survey [67], Guruswami’s thesis [23] and two recent breakthrough papers [24], [46].

2.2. Expander graphs. Consider the process of picking at random a graph accord-
ing to the Gn, 1

2
distribution.(The Gn, 1

2
distribution is the uniform distribution over the

set of 2(n
2) graphs over n vertices.) A simple calculation shows that for every two dis-

joint sets of vertices A, B there are
( 1

2 ± on(1)
) |A||B| edges with one endpoint in

A and one endpoint in B. Chung, Graham and Wilson [15] call a family of graphs
satisfying the above properties a family of quasi-random graphs, and prove that six
alternative definitions of quasi-randomness are all equivalent. Explicit constructions
of quasi-random graphs are known, and the notion has several applications in combi-
natorics. (See the recent survey paper by Krivelevich and Sudakov [37].) Consider
now a process where we randomly generate an n-vertex graph where every vertex has
degree at most d (think of d as a fixed constant and n as a parameter). For exam-
ple, consider the process of picking d perfect matchings and then taking their union.
Then it is possible to show that for every two disjoint sets of vertices A, B there are
(1 ± on,d(1))d

|A||B|
n

edges with one endpoint in A and one endpoint in B. (Families
of) graphs with this property are called expanders, and they have several applications
in computer science. To gain a sense of their usefulness, imagine that an expander
models a communication network and note that if o(dn) edges are deleted, the graph
still has a connected component with (1 − o(1))n vertices. Furthermore, expander
graphs have several other interesting properties: they have small diameter, it is pos-
sible to find several short edge-disjoint paths between any two vertices, and so on.
There are other possible definitions of expanders, which are related but not equivalent.
In one possible (and very useful) definition, expansion is measured in terms of the
eigenvalue gap of the adjacency matrix of the graph (see e.g. the discussion in [37]).
For this definition, Lubotzky, Phillips and Sarnak [41] provide an optimal explicit
construction. Another possible measure is the edge expansion of the graph. Optimal
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explicit constructions for this measure are not known, but considerable progress is
made in [13], [3].

3. Randomness extractor

Randomness extractors are procedures originally designed to solve the problem of
generating truly random bits. As we will see, randomness extractors can be seen as a
sort of pseudorandom graphs, they can be constructed using techniques from the field
of pseudorandomness, and they are tightly related to constructions error-correcting
codes, expanders and other random-like combinatorial objects.

3.1. Generating random bits. In order to generate random bits in practice, one
starts by measuring a physical phenomenon that is assumed to contain randomness.7

For example, in many computer systems one starts by collecting statistics on the user’s
keystrokes or mouse movement, or on the latency time of disk access, and so on. This
raw data, which is assumed to contain some amount of entropy, is then passed to a
“hash function,” and the output of the function is assumed to be a sequence of truly
random bits. Such systems, widely used in practice, are typically not validated by
any rigorous analysis.

In a mathematical modeling of this situation, we have a random variable X rep-
resenting our physical measurement, ranging, say, over {0, 1}n. We would like to
construct a function Ext : {0, 1}n → {0, 1}m such that, by making as little assump-
tions on X as possible, we can prove that Ext(X) is distributed uniformly over {0, 1}m,
or at least it is approximately so.

Von Neumann [82] studied a version of this problem where X is a sequence of
independent and identically distributed biased coin tosses. The independence as-
sumption is crucially used. The general problem was extensively studied in computer
science in the 1980s [55], [80], [79], [78], [14], [16]. Notably, the goal was to define a
single function Ext that would work for as large as possible a class of distributions X.
An early conclusion was that the extraction problem is impossible [55], as defined
above, even if just very weak forms of dependencies between different bits are al-
lowed in the distribution of X. Two approaches have been considered to circumvent
this impossibility.

1. One approach is to consider a model with a small number of mutually indepen-
dent random variables X1, . . . , Xk , each satisfying weak randomness require-
ments. This line of work, initiated in [55], [80], [14], saw no progress for a
long time, until recent work by Barak et al. [7] made such progress possible by
a breakthrough in additive combinatorics [12], [36]. This is now a very active
area of research [8], [53], [11], [87], [48] with connections to other areas of
combinatorics.

7We will not get into the physical and philosophical problems raised by such assumption.
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2. The other approach, initiated in [79], is to stick to the model of a single sam-
ple X and to consider the following question: suppose we have a randomized
algorithm A (that is correct with high probability given the ability to make truly
random choices) and suppose we have an input x. Can we efficiently find what
is the most probable output of A(x)?

3.2. The definition of randomness extractors. To formalize approach (2) it is con-
venient to think of a probabilistic algorithm A( · , · ) as having two inputs: a “random”
input r and a “regular” input I . We say that “A computes a function f with high prob-
ability” if, for every I ,

P[A(r, I ) = f (I)] ≥ .9

where the probability is taken with respect to the uniform distribution over bit strings r

of the proper length.8

Let Un denote a random variable uniformly distributed over {0, 1}n.
Suppose that our algorithm A requires m truly random bits to process a given

input x. Furthermore, suppose that we can define a function Ext : {0, 1}n ×{0, 1}d →
{0, 1}m such that if X is our physical source and Ud is uniformly distributed over
{0, 1}d then Ext(X, Ud) is uniformly distributed over {0, 1}m. Here is a way to
simulate A( · ) using X: (i) get a sample x ∼ X, (ii) for every s ∈ {0, 1}d , compute
as := A(Ext(x, s), I ), (iii) output the most common value among the as .

It is now easy to show that the above algorithm computes f (I) with probability
at least .8, over the choice of X. This is because P[A(Ext(Ud, X), I ) = f (I)] ≥ .9
and so

P
X

[
P
Ud

[A(Ext(Ud, X), I ) = f (I)] > 1
2

] ≥ .8. (2)

The running time of our simulation of A is 2d times the running time of A, which
is polynomial in the running time of A provided that d is logarithmic.

For this reasoning to work it is not necessary that Ext(X, Ud) be distributed exactly
uniformly, but it is enough if it approximates the uniform distribution in an appropriate
technical sense. If X and Y are two random variables taking values in �, then we
define their variational distance (also called statistical distance) as

‖X − Y‖SD := max
T ⊆�

| P[X ∈ T ] − P[Y ∈ T ]|. (3)

We will sometimes call sets T ⊆ � statistical tests. If ‖X − Y‖SD ≤ ε then we say
that X is ε-close to Y .

We say that Ext : {0, 1}n → {0, 1}d → {0, 1}m is a seeded extractor for a distri-
bution X with error parameter ε if Ext(X, Ud) is ε-close to Um.

8The reader may find .9 to be a poor formalization of the notion of “with high probability,” but it is easy to
reduce the error probability at the cost of a moderate increase of the running time.
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Vazirani and Vazirani [79] provided extractors for a certain class of distributions.
(Their terminology was different.) Zuckerman [86] was the first to show that extrac-
tors exist for a very general class of distributions. Define the min-entropy of X as
H∞(X) := mina log2

1
P[X=a] . If H∞(X) ≥ k, then we say that X is a k-source.

Definition 3.1. A function Ext : {0, 1}n → {0, 1}d → {0, 1}m is a (k, ε) seeded
extractor if Ext(X, Ud) is ε-close to Um for every k-source X.

The definition is implicit in [86]. The term extractor was coined in [45]. The term
“seeded” refer to the truly random input of length d, which is called a seed. From
now, we will refer to seeded extractors as simply “extractors.”

Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε)-extractor. Construct a bipartite
graph G = ([N], [M], E) with N = 2n vertices on the left, M = 2m vertices on the
right. Connect two vertices u, v if there is an s that v = Ext(u, s). Then if we pick
any subset S ⊆ [N] on the left and any subset T ⊆ [M] on the right, the number of
edges is |S| · 2d · |T |/2m plus or minus ε|S|2d , provided |S| ≥ 2k . This is similar
to one of the definitions of expander. Zuckerman and Wigderson [83] prove that one
can derive expanders with very strong “edge expansion” from extractors.

Radakrishnan and Ta-Shma show that, in every extractor, d ≥ log(n − k) +
2 log(1/ε)−O(1) and that m ≤ k+d −O(1). Non-constructively, one can show that
such bounds are achievable up to the additive constant factor, but explicit constructions
are difficult. We will discuss explicit constructions later.

3.3. Applications. Randomness extractors have several applications, some of which
are described below. See the tutorial by Salil Vadhan [76] and the survey by Ronen
Shaltiel [57] for more examples and a broader discussion.

Simulation of randomized algorithms. Suppose we have a randomized algo-
rithm A that on input I computes f (I) with probability, say, .9, and suppose that
Ext is a (k′, 1/4)-extractor and that X is a k-source. As before, let us sample x ∼ X

and compute A(Ext(x, s), I ) for every s and output the majority value. Let B be the
set of x such that the algorithm fails. If |B| ≥ 2k′

, then consider a random variable Y

uniformly distributed over B. It has entropy k, so Ext(Y, Ud) should be 1/4-close to
uniform. Consider the statistical test T defined as

T := {r : A(r, I )} = f (I)}. (4)

Then P[Un ∈ T ] ≥ .9 by assumption and P[Ext(Y, Ud) ∈ T ] ≤ 1/2 by construction.
This would contradict Ext being an extractor. We then conclude that |B| ≤ 2k′

, and
so the probability that our algorithm fails is at most P[X ∈ B] ≤ |B|/2k ≤ 2k′−k .

This is very useful even in a setting in which we assume access to a perfect random
source. In such a case, by using n truly random bits we achieve an error probability
that is only 2k′−n. Note that, in order to achieve the same error probability by running
the algorithm several times independently we would have used O((n−k′)·m) random
bits instead of n.
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Other applications. Randomness extractors are also very useful in settings where
we assume a fully random distribution, say, over n bits, that is unknown to us, except
for some partial information of entropy at most n − k bits.

Then the distribution of the unknown string conditioned on our knowledge still
has entropy at least k. If an extractor is applied to the unknown string, then the output
of the extractor will be uniformly distributed even conditioned on our knowledge. In
other words, our knowledge in useless in gaining any information about the output of
the extractor.

This approach is used in the cryptographic settings of privacy amplification and
everlasting security and in the design of pseudorandom generators for space-bounded
algorithms. See [39], [77] and the references therein for the application to everlasting
security and [45], [30], [51] for the application to pseudorandom generators.

4. Circuit complexity

In order to discuss the computational approach to pseudorandomness we need to
define a measure of efficiency for algorithms. We will informally talk about the
“running time” of an algorithm on a given input without giving a specific definition.
The reader can think of it as the number of elementary operations performed by an
implementation of the algorithm on a computer. A more formal definition would be
the number of steps in a Turing machine implementation of the algorithm. (See e.g.
[64] for a definition of Turing machine.)

We say that a set L ⊆ {0, 1}∗ is decidable in time t (n) if there is an algorithm that
on input x ∈ {0, 1}n decides in time ≤ t (n) whether x ∈ L.

We are also interested in a more “concrete” measure of complexity, called circuit
complexity. For integers n and i ≤ n, define the set Pi,n := {(a1, . . . , an) ∈ {0, 1}n :
ai = 1}. We say that a set S ⊆ {0, 1}n has a circuit of size K if there is a sequence of
sets S1, . . . , SK such that: (i) SK = S and (ii) each Sj is either a set Pi,n, or it is the
complement of a set Sh, h < j , or it is the union Sh ∪ S� of two sets, with h, � < j

or it is the intersection Sh ∩ S� of two sets, with h, k < j . We say that a function
f : {0, 1}n → {0, 1} has a circuit of size K if it is the characteristic function of a set
that has a circuit of size K .

The circuit complexity of a set S is the minimum K such that S has a circuit of
size K . (Similarly for boolean functions.)

It is easy to see that there are subsets of {0, 1}n whose circuit complexity is at least
c 2n

n
for some constant c > 0: if a set has circuit complexity at most K , then it can be

described by using only O(K log K) bits, and so there are 2O(K log K) sets of circuit
complexity at most K . If this number is less than 22n

then there exists a set of circuit
complexity larger than K . Indeed, by the same argument, a random set has circuit
complexity at least c 2n

n
with very high probability.

If L ⊆ {0, 1}∗ is a set decidable in time t (n), then for every n there is a circuit
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of size O((t (n))2) for L ∩ {0, 1}n. This implies that in order to prove lower bounds
on the running time of algorithms for a given decision problem it is enough to prove
lower bounds for the circuit complexity of finite fragments of it.9

So far there has been very little success in proving circuit complexity lower bounds
for “explicit sets,” such as sets in NP. The strongest known lower bound is 5n [38],
[32], and even an n log n lower bound is considered hopelessly out of reach of current
techniques.

This is perhaps surprising given the simplicity of the definition of circuit com-
plexity. The definition looks like a finite version of the definition of complexity for
Borel sets, and one may hope that one could transfer techniques from topology to this
setting. Sipser describes this idea in [62], [63], but, unfortunately, so far it has not led
to any lower bound for general circuits.

Complexity theorists’ failure to prove strong circuit lower bounds is partly ex-
plained by a famous paper by Razborov and Rudich [52]. They describe a general
class of approaches to lower bounds that they call “natural proofs.” Razborov and
Rudich show that all known methods to prove lower bounds for restricted classes
of circuits yield natural proofs, but that (under certain complexity-theoretic assump-
tions) natural proofs cannot prove lower bounds for general circuits. The complexity
theoretic assumption is itself about circuit lower bounds, and it is used to construct
certain pseudorandom generators. The pseudorandom generators, in turn, imply the
impossibility result. Somewhat inaccurately, the Razborov–Rudich result can be
summarized as:

Circuit lower bounds are difficult to prove because they are true.

5. Pseudorandom generators and their application to derandomization

Informally, a pseudorandom generator is an efficiently computable map G : {0, 1}t →
{0, 1}m, where m is much bigger than t , such that, for a uniformly selected x ∈
{0, 1}t , the distribution G(x) is pseudorandom, that is, it “looks like” the uniform
distribution over {0, 1}m. We begin by describing how to formalize the notion of a
distribution “looking like” the uniform distribution, and, more generally, the notion
of two distributions “looking like” one other.

Recall that we use Un to denote a random variable that is uniformly distributed in
{0, 1}n.

Ideally, we would like to say that G( · ) is a good pseudorandom generator if
G(Ut) and Um are close in statistical distance. Then, as we already discussed in
Section 3, every application in which m truly random bits are needed could be realized
using the output of the generator (with a small increase in the probability of error).
Unfortunately, this is too strong a definition: consider the statistical test T defined to be
the set of all possible outputs of G. Then P[G(Ut) ∈ T ] = 1 but P[Um ∈ T ] ≤ 2t−m.

9The converse is not true: one can have undecidable sets of bounded circuit complexity.
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The great idea that came from the work of Blum, Goldwasser, Micali and Yao in
1982 ([9], [22], [84]) was to modify the notion of statistical distance by considering
only efficiently computable statistical tests.

Definition 5.1 (Computational indistinguishability). Two distributions μX and μY

over {0, 1}m are (K, ε)-indistinguishable if for every set T ⊆ {0, 1}m of circuit
complexity at most K ,

∣∣
P

x∼μX

[x ∈ T ] − P
y∼μY

[y ∈ T ]∣∣ ≤ ε.

Definition 5.2 (Pseudorandomness). A distribution μX over {0, 1}m is (K, ε)-pseudo-
random if it is (K, ε)-indistinguishable from the uniform distribution. That is, for
every T ⊆ {0, 1}m of circuit complexity ≤ K ,

∣∣
P

x∼μX

[x ∈ T ] − |T |
2m

∣∣ ≤ ε.

The following definition is due to Nisan and Wigderson [44].

Definition 5.3 (Quick pseudorandom generator). Suppose that for every n there is
a Gn : {0, 1}t (n) → {0, 1}n that is (n2, 1/n)-pseudorandom, and that there is an
algorithm G that, given n, s, computes Gn(s) in time 2O(t(n). Then G is called a
t (n)-quick pseudorandom generator.

Suppose that an O(log n)-quick pseudorandom generator (abbreviated logQPRG)
exists, and suppose that f is a function and A is a polynomial time randomized algo-
rithm that computes f with probability at least 3/4. We now describe a derandom-
ization of the algorithm A.

Let I be an input, and let m be the number of random bits used by A on input I .
Let K be an efficiently computable upper bound for the circuit complexity pf T :=
{r : A(r, I ) = f (I)}. Choose n to be large enough so that: (i) n2 ≥ K , (ii) n ≥ m,
and (iii) n ≥ 5. Because of our assumption that A runs in polynomial time, n is
polynomial in the length of I .10

Now compute A(Gn(s), I ) for each s, and output the value that is returned most
often. This completes the description of a polynomial time deterministic algorithm.

Regarding correctness, we assumed P[A(Um, I) = f (I)] ≥ 3
4 , and so

P[A(Gn(Ut(n)), I ) = f (I)] ≥ 3
4 − 1

n
> 1

2 . (5)

Otherwise, the set T = {r : A(r, I ) = f (I)} contradicts the pseudorandomness
of Gn. Something similar can be done if A is only guaranteed to approximate f with
high probability, for example if f (I) is the number of perfect matchings in the graph

10It should be noted that we may not know how to construct a circuit for T , because it seems that to construct
such a circuit we need to know f (I). In order to compute a polynomially bounded upper bound for the circuit
complexity of T , however, we just need to find out how large the circuit for T is that we would be able to build
if we knew f (I).
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represented by I and A is the Jerrum–Sinclair–Vigoda probabilistic approximation
algorithm for this problem [33]. The only difference is that we take the median of the
outputs instead of the most common one.

The applications of logQPRGs to the probabilistic method is as follows. Suppose
that:

• For every n, we have a set �n of “objects of size n” (for example, graphs with n

vertices and maximum degree d, where d is a fixed constant). It is convenient
to assume the sets �n to be disjoint.

• We define P ⊆ ⋃
n �n to be the set of interesting objects that we would like

to construct. (For example, expander graphs.)

• Property P is computable in polynomial time. That is, there is an algorithm
that, given n and x ∈ �n, runs in time polynomial in n and determines whether
x ∈ P .

• The probabilistic method proves that such graphs exist and are “abundant.”
That is, for every n, we define a probability distribution μn over �n and we
prove that Px∼�n[x ∈ P ] ≥ 1/2. (The constant 1/2 is not important.)

• The distributions μn are polynomial time samplable. That is, there is a proba-
bilistic algorithm A that, given n, generates in time polynomial in n a sample
from μn.

This formalization captures the way the probabilistic method is typically used in
practice, with the exception of the efficient computability of P , which sometimes is
not true. (For example, in the problem of finding lower bounds for R(k, k).) Finally,
suppose that a logQPRG exists. Givennhere is how we construct an element inP∩�n.
Let m be the number of random bits used by A to sample an element of μn, and let K be
an upper bound for the size of a circuit for the set T := {r : A(n, r) ∈ P }. As before,
we can use the assumption that A is computable in polynomial time and P is decidable
in polynomial time to conclude that m and K are upper bounded by polynomials in n.
Let N be large enough so that (i) N ≥ 3, (ii) N2 ≥ K and (iii) N ≥ m. Then
compute A(n, GN(N, s)) for every s, and let s0 be such that A(n, GN(N, s0)) ∈ P .
Such an s0 must exist, otherwise T contradicts the pseudorandomness of GN . Output
A(n, GN(N, s0)).

6. Conditional constructions of pseudorandom generators

Blum and Micali [9] construct no(1)QPRGs, according to a slightly different defi-
nition, assuming a specific number-theoretic assumption. Yao [84] proves that the
Blum–Micali definition is equivalent to a definition based on indistinguishability and
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constructs no(1)QPRGs under the more general assumption that one-way permuta-
tions exist. Yao [84] also recognizes that no(1)QPRGs imply a 2no(1)

derandomization
of every probabilistic algorithm.

Blum, Micali and Yao do not use the parametrization that we adopted in the def-
inition of quick pseudorandom generators. In the cryptographic applications that
motivate their work, it is important that the generator be computable in time polyno-
mial in the length of the output (rather than exponential in the length of the input),
and, if m is the length of the output, one desires (S(m), ε(m))-pseudorandomness
where S(m) and 1/ε(m) are super-polynomial in m. Their constructions satisfy these
stronger requirements.

Håstad et al. [26] show that the weaker assumption that one-way functions exist
suffices to construct no(1)QPRGs. Their construction satisfies the stronger require-
ments of [9], [84]. We do not define one-way permutations and one-way functions
here and we refer the interested reader to Goldreich’s monograph [21], the definitive
treatment of these results.

Nisan and Wigderson [44] introduced the definition of quick pseudorandom gen-
erator that we gave in the previous section and presented a new construction that
works under considerably weaker assumptions than the existence of one-way func-
tions.11 The Nisan–Wigderson construction also “scales” very well, and it gives more
efficient QPRGs if one is willing to start from stronger assumptions. A sufficiently
strong assumption implies optimal logQPRGs, and this is the only version of the
Nisan–Wigderson results that we will discuss.

We first need to define the notion of average-case circuit complexity. We say that
a set S ⊆ {0, 1}n is (K, ε)-hard on average if for every set T computable by a circuit
of size ≤ K we have P[1S(x) = 1T (x)] ≤ 1

2 +ε, where we use the notation 1S for the
characteristic function of the set S. We say that a set L ⊆ {0, 1}∗ is (K(n), ε(n))-hard
on average if, for every n, L ∩ {0, 1}n is (K(n), ε(n))-hard on average.

Theorem 6.1 (Nisan andWigderson [44]). Suppose there is a set L such that: (i) L can
be decided in time 2O(n) and (ii) there is a constant δ > 0 such that L is (2δn, 2−δn)-
hard on average. Then a logQPRG exists.

When Theorem 6.1 was announced in 1988, average-case complexity was much
less understood than worst-case complexity and it was not even clear if the assumption
used in the theorem was plausible.

This motivated a long-term research program on average-case complexity. Build-
ing on work by Babai, Fortnow, Impagliazzo, Nisan and Wigderson [6], [27], Im-
pagliazzo and Wigderson finally proved in 1997 that the assumption of Theorem 6.1
is equivalent to a seemingly weaker worst-case assumption.

11On the other hand, the Nisan–Wigderson generator does not satisfy the stronger properties of the pseudoran-
dom generators of Blum, Micali, Yao, Håstad et al. [9], [84], [26]. This is unavoidable because the existence of
such stronger pseudorandom generators is equivalent to the existence of one-way functions.
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Theorem 6.2 (Impagliazzo and Wigderson [31]). Suppose there is a set L such that:
(i) L can be decided in time 2O(n) and (ii) there is a constant δ > 0 such that the
circuit complexity of L is at least 2δn.

Then there is a set L′ such that: (i) L′ can be decided in time 2O(n) and (ii) there
is a constant δ′ > 0 such that L′ is (2δ′n, 2−δ′n)-hard on average.

In conclusion, we have optimal logQPRG and polynomial time derandomization of
probabilistic algorithms under the assumptions that there are problems of exponential
circuit complexity that are computable in exponential time. Such an assumption is
considered very plausible.

There are other applications of these techniques that we will not have space
to discuss, including extensions to the case of pseudorandomness against “non-
deterministic statistical tests,” which imply surprising results for the Graph Isomor-
phism problem [35], [43].

7. Average-case complexity and codes

We now come to a connection between the Impagliazzo–Wigderson Theorem and
error-correcting codes. Due to space limitations we will only give a short discussion.
The interested reader is referred to our survey paper [72] for more details.

Impagliazzo and Wigderson derive Theorem 6.2 from the following “hardness
amplification” reduction.

Theorem 7.1 (Impagliazzo and Wigderson [31]). For every δ > 0 there are constants
δ′ > 0, c > 1, and an algorithm with the following property.

If S ⊆ {0, 1}n is a set of circuit complexity at least 2δn, then, on input S, the
algorithm outputs a set S′ ⊆ {0, 1}cn that is (2δ′n, 2−δ′n)-hard on average.

Like most results in complexity theory, the proof is by contradiction: suppose
we have a set T computable by a circuit of size 2δ′n such that Px∼{0,1}n[1S′(x) =
1T (x)] ≥ 1/2 + 2−δ′n; then Impagliazzo and Wigderson show how to use such a
circuit for T to construct a circuit for S of size 2δn.

Phrased this way, the result has a strong coding-theoretic flavor: we can think of S

as a “message,” of S′ as the “encoding” of S, of T as the “corrupted transmission” that
the receiver gets, and of the process of reconstructing (a circuit for) S from (a circuit
for) T as a “decoding” process. Given this perspective, introduced in [68], it is natural
to try and apply coding-theoretic algorithms to hardness amplification. In doing so,
we encounter the following difficulty: viewed as a message, a set S ⊆ {0, 1}n is
(or can be represented as) a bit-string of length N = 2n, and so a polynomial time
coding-theoretic algorithm that reconstructs S from a corrupted encoding of S takes
time NO(1) = 2O(n). In Theorem 7.1 however we need to produce a circuit of size
2δn = Nδ , and so the circuit cannot simply be an implementation of the decoding
algorithm.
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It seems that what we need is the following type of error-correcting code (we use
the notation P (A) to denote the set of all subsets of a set A): a map C : P ({0, 1}n) →
P ({0, 1}n′

) with n′ = O(n) such that there is an algorithm that – given a set T ∈
P ({0, 1}n′

) close to the encoding C(S) of a message S ∈ P ({0, 1}n′
) and an element

a ∈ {0, 1}n – determines in time at most 2δn whether a ∈ S or not. If we think of a set
S ∈ P ({0, 1}n) as simply a bit-string in {0, 1}N , N = 2n, then we are looking for
an error correcting code C : {0, 1}N → {0, 1}N ′

, N ′ = NO(1), such that there is an
algorithm that, given a string u ∈ {0, 1}N ′

close to an encoding C(x) and given an
index i ∈ {1, . . . , N}, computes in time at most Nδ the bit xi . It remains to specify
how to “give in input” a string u of length N ′ > N to an algorithm of running time,
say, N.001: the algorithm does not even have enough time to read the input. This can
be handled by modeling the input as an “oracle” for the algorithm, which is a standard
notion.

The existence of error-correcting codes with this kind of “sub-linear time decoding
algorithms” was well known, but the problem is that this notion is still not sufficient
for the application to Theorem 7.1. The reason is that we have described a decoding
algorithm that gives a unique answer and, as discussed in Section 2, such algorithms
cannot recover from more than a 1/4+o(1) fraction of errors. Theorem 7.1, however,
requires us to correct from close to 1/2 fraction of errors.

In Section 2 we remarked that it is possible to do list-decoding even after almost a
1/2 fraction of errors occur. So we need a definition of sub-linear time list decoding
algorithm. The definition is too technical to be given here. It was formulated, for
a different application, in [5]. A reasonably simple sub-linear time list-decoding
algorithm giving a new proof of Theorem 7.1 is presented in [68]. The coding-
theoretic proof is considerably simpler than the original one.

The connection between error-correcting and hardness amplification also goes
in the other direction: it is possible to view the techniques of [6], [27], [31] as
defining list-decodable codes with sub-linear time decoding algorithm. This reverse
connection has been used to transfer known coding theoretic impossibility results to
the setting of amplification of hardness.

Recall that if we want to correct from 1/2 − ε errors, then unique decoding is
impossible. Codes that are (L, 1/2 − ε)-list decodable exist, but it is possible to
prove that for such codes we need L = �(ε−2). In our proof [68] of Theorem 6.2,
this is not a problem because when we realize the decoding algorithm as a circuit we
can “hard-wire” into the circuit the correct choice from the list. Suppose, however,
that we want to prove a version of Theorem 6.2 where “algorithm of running time K”
replaces “circuits of size K .” Then such a theorem would not follow from [68]: if we
try to follow the proof we see that from a good-on-average algorithm for L′ ∩ {0, 1}n′

we can only construct a list of algorithms such that one of them computes L∩ {0, 1}n
correctly, and it is not clear how to choose one algorithm out of this list.12 This problem
is solved in [74], where we do prove a version of Theorem 6.2 with “probabilistic

12This difficulty is discussed in [74].



1128 Luca Trevisan

algorithm” in place of “circuit.”
Viola [81] proves that error-correcting codes cannot be computed in certain very

low complexity classes, and this means that the exponentially big error-correcting
code computations occurring in [68] must add a very strong complexity overhead.
This means that coding-theoretic techniques cannot be used to prove a version of
Theorem 6.2 where “computable in time 2O(n)” is replaced by “computable in NP.”
Indeed, it remains a fundamental open question whether a theorem showing equiv-
alence of worst-case complexity and average-case complexity in NP can be proved.
Results of [19], [10] show that this is unlikely.

Impagliazzo [28] wonders about a positive use of the fact that amplification of
hardness results imply error-correcting codes, and whether the techniques of [6],
[27], [31] would lead to practical error-correcting codes. We explore this question in
[71], focusing on an optimization of the techniques of [27], but our results are far from
being competitive with known constructions and algorithms of list-decodable codes.
On the other hand, our work in refining the techniques of [27], while not successful in
deriving good coding-theoretic applications, has led to interesting applications within
complexity theory [71], [73].

8. Extractors and pseudorandom generators

We now come to what is perhaps the most surprising result of this survey, the fact that
(the proofs of) Theorems 6.1 and 6.2 directly lead to unconditional constructions of
extractors.

First, let us give a very high-level description of the pseudorandom generator
construction that follows from Theorems 6.1 and 6.2.

Let L be the set of exponential circuit complexity as in the assumption of The-
orem 6.2, and let m be a parameter such that we want to construct a generator
Gm : {0, 1}O(log m) → {0, 1}m whose output is (m2, 1/m)-pseudorandom. First, we
define � = O(log m) such that L ∩ {0, 1}� has circuit complexity at least mc, for a
certain absolute constant c. Then we define our generator as Gm(z) = IWm(L ∩
{0, 1}�, z), where IWm(S, z) is a procedure that takes as input a set S ⊆ {0, 1}� and
a string z ∈ {0, 1}O(log m), outputs a string in {0, 1}m, and is such that if S has circuit
complexity at least mc then IWm(S, UO(log m)) is (m2, 1/m)-pseudorandom. Proving
that IWm( ·, ·) has this property is of course quite complicated, but the general outline
is as follows. As usual we proceed by contradiction and start from a statistical test T

of circuit complexity at most m2 such that, supposedly,

| P[Um ∈ T ] − P[IWm(S, UO(log m)) ∈ T ]| > 1
m

.

Then we modify the circuit for T and build a new circuit for S of size < mc, thus
contradicting the hypothesis.

The analysis, indeed, proves a more general result. We will need some additional
definitions before stating this more general result. For sets T ⊆ {0, 1}m and S ⊆
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{0, 1}�, we say that S has a circuit with T -gates of size K if there is a sequence of sets
S1, . . . , Sm such that Sm = S, and each Sj is either a set of the form Pi,n, or it is the
complement of a set Sh h < j , or it is the union or the intersection of two sets Sh, Sh′
with h, h′ < j , or it is defined as

Sj := {a ∈ {0, 1}� : (1Sh1
(a), . . . , 1Shm

(a)) ∈ T }
for some h1, . . . , hm < j . It is not hard to show that if S has a circuit with T -gates
of size K1, and T has a regular circuit of size K2, then S has a regular circuit of size
at most K1 · K2. With these definitions in place we can be more specific about the
analysis in [44], [31]: the analysis shows that if S ⊆ {0, 1}� and T ⊆ {0, 1}m are two
arbitrary sets such that

| P[Um ∈ T ] − P[IWm(S, UO(log m)) ∈ T ]| > 1
m

then there is a circuit with T -gates for S of size < mc−2. (Note that this implies our
previous statement.)

Here is the main idea in [70]: suppose that we have access to a weak random
source, that is, a random variable X taking values in {0, 1}n and having min-entropy
at least k. Suppose that n = 2�. Then we can, equivalently, regard X as being
distributed over P ({0, 1}�), the set of all subsets of {0, 1}�. What can we say about the
distribution of IWm(X, UO(log m))? We claim that, if k is large enough, the distribution
IWm(X, UO(log m)) is close in statistical distance to the uniform distribution; in other
words, IWm( ·, ·) is an extractor.

Let us see how to prove this by contradiction. Let T be a statistical test such that

| P[Um ∈ T ] − P[IWm(X, UO(log m)) ∈ T ]| > 1
m

and call a set S ∈ P ({0, 1}�) bad if | P[Um ∈ T ] − P[IWm(S, UO(log m)) ∈ T ]| > 2
m

.
Let B be the set of all bad sets. Then, by Markov’s inequality, P[X ∈ B] ≥ 2

m
, and

since X has min-entropy k we have |B| ≥ 2k−log m−1. On the other hand, if S is bad,
then there is a circuit with T -gates of size at most mc−2 that computes S. The number
of such circuits is at most 2O(mc−1

, and so |B| ≤ 2O(mc−1
. So if k ≥ c′mc−1, where

c, c′ are absolute constants, we reach a contradiction. Thus, ‖IWm(X, UO(log m)) −
Um‖SD ≤ 1

m
.

If we look more closely at how IWm(S, z) is defined, we see that (especially if we
use the proof of Theorem 6.2 in [68]) it can be seen as IWm(S, z) := NWm(C(S), z),
where C is an error-correcting code and NWm is the relatively simple pseudorandom
generator construction of Nisan and Wigderson. For the application to derandom-
ization, it is important that C be a “sub-linear time list-decodable” error-correcting
code. However, in order for our argument about randomness extraction to work, it
is sufficient that C be an arbitrary list-decodable code, and not even a polynomial
time list-decoding algorithm is needed. This means that one can get extractors by us-
ing standard error-correcting codes and the simple Nisan–Wigderson generator. The
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resulting construction is described and analysed in [70] in about two pages and, at
the time, it was the best known extractor construction, improving over very technical
previous work.

What makes these calculations work is the intuition that the proofs of Theorems 6.1
and 6.2 prove more than the intended statement. In particular, the proof works if we
replace “circuit complexity” with “description complexity” which we exploited in the
previous argument. See [70] for further discussion of this point.

The connection with pseudorandomness and the general idea of analysing an ex-
tractor by finding short descriptions of the output of the source based on a hypothetical
statistical test (the so-called “reconstruction method” to analyse extractors) has led to
remarkable advances in extractor constructions in the past five years, together with
other ideas. The best distillation of the reconstruction method is in [58], providing
a near-optimal and simple construction of extractors.13 The extractor motivation has
also led to improvements in pseudorandom generator constructions, see [58], [75].
Currently, the best known extractor construction [40] uses the notion of “condenser”
introduced in [69], [54] and a combination of several components, one of which is
analysed with the reconstruction method. The extractors of Lu et al. [40] is almost
best possible.

9. Conclusions

We have discussed how, starting from worst-case complexity assumptions, it is possi-
ble to construct very strong pseudorandom generators and derive conditional deran-
domization results for all probabilistic algorithms.

What about proving circuit lower bounds and deriving unconditional derandom-
ization results? The results of Razborov and Rudich [52] show that a significant
departure from current techniques will be required to prove such lower bounds. What
about deriving derandomization results without proving lower bounds? Impagliazzo,
Kabanets and Wigderson [29] prove that any general derandomization result implies
a circuit lower bound.14

Short of proving such elusive circuit lower bounds, we should test the prediction
of the theory and look for polynomial time deterministic versions of known proba-
bilistic polynomial time algorithms. The four most important probabilistic algorithms
(or collections of algorithms) are: primality testing, graph connectivity using random
walks, polynomial identity testing, and algorithms for approximate counting. Pri-
mality testing and graph connectivity using random walks have been derandomized
[1], [53]. Kabanets and Impagliazzo [34] prove that any derandomized polynomial
identity testing algorithms implies circuit lower bounds.15

13The construction is simple but the analysis is quite non-trivial.
14Here is what we mean by “general derandomization”: if f is a function and A is randomized algorithm that

with high probability achieves a good approximation of f , then there is a deterministic algorithm that achieves
a good approximation of f and whose running time is polynomial in the running time of A.
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The possibility of derandomizing approximate counting algorithms with current
techniques is quite open. Here is perhaps the simplest question: given an n-variable
boolean formula in disjunctive normal form and ε > 0, compute in time polynomial
in the size of the formula and in 1/ε an approximation to the number of satisfying
assignments up to an additive error ≤ 2nε. See [42] for a nearly polynomial time
deterministic algorithm for this problem.

The construction of an optimal (seeded) extractor with parameters matching the
known lower bounds remains an elusive open question. It would also be interesting
to match the parameters of [40] with a simpler construction.

There has been very exciting recent progress towards constructing good seed-
less extractors for independent sources, and for the related problem of constructing
bipartite Ramsey graphs [8], [11]. The broader area of seedless extractor construc-
tions for general classes of distributions has seen much recent progress. In the long
run, we would expect this research to define simple and powerful seedless extractors
working for a wide and natural class of distributions. Such extractors would be very
useful in practice, giving a principled approach to the production of random bits for
cryptographic applications.

References

[1] Agrawal, Manindra, Kayal, Neeraj, and Saxena, Nitin, PRIMES is in P. Ann. of Math. 160
(2) (2004), 781–793.

[2] Aleliunas, Romas, Karp, Richard M., Lipton, Richard J., Lovász, László, and Rackoff,
Charles, Random walks, universal traversal sequences, and the complexity of maze prob-
lems. In Proceedings of the 20th IEEE Symposium on Foundations of Computer Science,
IEEE, New York 1979, 218–223.

[3] Alon, Noga, and Capalbo, Michael R., Explicit unique-neighbor expanders. In Proceedings
of the 43rd IEEE Symposium on Foundations of Computer Science, IEEE, NewYork 2002,
73–79.

[4] Alon, Noga, and Spencer, Joel, The Probabilistic Method. Wiley-Intersci. Ser. Discrete
Math. Optim., John Wiley and Sons, New York 2000.

[5] Arora, Sanjeev, and Sudan, Madhu, Improved low degree testing and its applications.
Combinatorica 23 (3) (2003), 365–426.

[6] Babai, László, Fortnow, Lance, Nisan, Noam, and Wigderson, Avi, BPP has subexponen-
tial time simulations unless EXPTIME has publishable proofs. Comput. Complexity 3 (4)
(1993), 307–318.

[7] Barak, Boaz, Impagliazzo, Russell, and Wigderson, Avi, Extracting randomness using
few independent sources. In Proceedings of the 45th IEEE Symposium on Foundations of
Computer Science, IEEE, New York 2004, 384–393.

15Fortunately, these are not of the kind ruled out by [52], so there is some hope. Indeed Raz [49], [50] has
recently proved lower bounds that are weaker than, but in the spirit of, what is needed to derandomize polynomial
identity testing.



1132 Luca Trevisan

[8] Barak, Boaz, Kindler, Guy, Shaltiel, Ronen, Sudakov, Benny, and Wigderson, Avi, Sim-
ulating independence: new constructions of condensers, Ramsey graphs, dispersers, and
extractors. In Proceedings of the 37th ACM Symposium on Theory of Computing, ACM
Press, New York 2005, 1–10.

[9] Blum, Manuel, and Micali, Silvio, How to generate cryptographically strong sequences of
pseudorandom bits. SIAM J. Comput. 13 (4) (1984), 850–864.

[10] Bogdanov, Andrej, and Trevisan, Luca, On wost-case to average-case reductions for NP
problems. In Proceedings of the 44th IEEE Symposium on Foundations of Computer Sci-
ence, IEEE, New York 2003, 308–317.

[11] Bourgain, Jean, More on the sum-product phenomenon in prime fields and its applications.
Int. J. Number Theory 1 (1) (2005), 1–32.

[12] Bourgain, Jean, Katz, Nets, and Tao, Terence, A sum-product estimate for finite fields, and
applications. Geom. Funct. Anal. 14 (2004), 27–57.

[13] Capalbo, Michael R., Reingold, Omer, Vadhan, Salil P., and Wigderson, Avi, Random-
ness conductors and constant-degree lossless expanders. In Proceedings of the 34th ACM
Symposium on Theory of Computing, ACM Press, New York 2002, 659–668.

[14] Chor, Benny, and Goldreich, Oded, Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM J. Comput. 17 (2) (1988), 230–261.

[15] Chung, Fan R. K., Graham, Ronald L., and Wilson, Richard M., Quasi-random graphs.
Combinatorica 9 (4) (1989), 345–362.

[16] Cohen, Aviad, and Wigderson, Avi, Dispersers, deterministic amplification, and weak ran-
dom sources. In Proceedings of the 30th IEEE Symposium on Foundations of Computer
Science, IEEE, New York 1989, 14–19.

[17] Elias, Peter, List decoding for noisy channels. Technical Report 335, Research Laboratory
of Electronics, MIT, 1957.

[18] Erdős, Paul, Some remarks on the theory of graphs. Bull. Amer. Math. Soc. 53 (1947),
292–294.

[19] Feigenbaum, Joan, and Fortnow, Lance, Random-self-reducibility of complete sets. SIAM
J. Comput. 22 (1993), 994–1005.

[20] Frankl, Peter, and Wilson, Richard M., Intersection theorems with geometric consequences.
Combinatorica 1 (4) (1981), 357–368.

[21] Goldreich, Oded, Foundations of Cryptography. Volume 1, Cambridge University Press,
Cambridge 2001.

[22] Goldwasser, Shafi, and Micali, Silvio, Probabilistic encryption. J. Comput. System Sci. 28
(2) (1984), 270–299.

[23] Guruswami, Venkatesan, List Decoding of Error-Correcting Codes. PhD thesis, MIT, 2001.

[24] Guruswami,Venkatesan, and Rudra,Atri, Explicit capacity-achieving list-decodable codes.
Technical Report TR05-133, Electronic Colloquium on Computational Complexity, 2005.

[25] Hamming, Richard, Error detecting and error correcting codes. Bell System Tech. J. 29
(1950), 147–160.

[26] Håstad, Johan, Impagliazzo, Russell, Levin, Leonid, and Luby, Michael, A pseudorandom
generator from any one-way function. SIAM J. Comput. 28 (4) (1999), 1364–1396.



Pseudorandomness and combinatorial constructions 1133

[27] Impagliazzo, Russell, Hard-core distributions for somewhat hard problems. In Proceedings
of the 36th IEEE Symposium on Foundations of Computer Science, IEEE, New York 1995,
538–545.

[28] Impagliazzo, Russell, Hardness as randomness: a survey of universal derandomization.
Proceedings of the International Congress of Mathematicians (Beijing, 2002), Vol. III,
Higher Ed. Press, Beijing 2002, 659–672.

[29] Impagliazzo, Russell, Kabanets, Valentine, and Wigderson, Avi, In search of an easy wit-
ness: exponential time vs. probabilistic polynomial time. J. Comput. System Sci. 65 (4)
(2002), 672–694.

[30] Impagliazzo, Russell, Nisan, Noam, and Wigderson, Avi, Pseudorandomness for network
algorithms. In Proceedings of the 26th ACM Symposium on Theory of Computing, ACM
Press, New York 1994, 356–364.

[31] Impagliazzo, Russell, and Wigderson, Avi, P = BPP unless E has sub-exponential cir-
cuits. In Proceedings of the 29th ACM Symposium on Theory of Computing, ACM Press,
New York 1997, 220–229.

[32] Iwama, Kazuo, and Morizumi, Hiroki, An explicit lower bound of 5n − o(n) for boolean
circuits. In Proceedings of the 27th Symposium on Mathematical Foundations of Computer
Science, Lecture Notes in Comput. Sci. 2420, Springer-Verlag, London 2002, 353–364.

[33] Jerrum, Mark, Sinclair, Alistair, and Vigoda, Eric, A polynomial-time approximation al-
gorithm for the permanent of a matrix with nonnegative entries. J. ACM 51 (4) (2004),
671–697.

[34] Kabanets, Valentine, and Impagliazzo, Russell, Derandomizing polynomial identity tests
means proving circuit lower bounds. Comput. Complexity 13 (1–2) (2004), 1–46.

[35] Klivans, Adam, and van Melkebeek, Dieter, Graph nonisomorphism has subexponential
size proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput. 31 (5) (2002),
1501–1526.

[36] Konyagin, Sergei, A sum-product estimate in fields of prime order. math.NT/0304217,
2003.

[37] Krivelevich, Michael, and Sudakov, Benny, Pseudo-random graphs. Preprint, 2005.

[38] Lachish, Oded, and Raz, Ran, Explicit lower bound of 4.5n − o(n) for boolean circuits.
In Proceedings of the 33rd ACM Symposium on Theory of Computing, ACM Press, New
York 2001, 399–408.

[39] Lu, Chi-Jen, Encryption against storage-bounded adversaries from on-line strong extrac-
tors. J. Cryptology 17 (1) (2004), 27–42.

[40] Lu, Chi-Jen, Reingold, Omer, Vadhana, Salil P., and Wigderson,Avi, Extractors: optimal up
to constant factors. In Proceedings of the 35th ACM Symposium on Theory of Computing,
ACM Press, New York, 602–611.

[41] Lubotzky, Alexander, Phillips, R., and Sarnak, Peter, Ramanujan graphs. Combinatorica 8
(1988), 261–277.

[42] Luby, Michael, and Velickovic, Boban, On deterministic approximation of DNF. Algorith-
mica 16 (4/5) (1996), 415–433.

[43] Miltersen, Peter B., and Vinodchandran, N. V., Derandomizing Arthur-Merlin games using
hitting sets. In Proceedings of the 40th IEEE Symposium on Foundations of Computer
Science, IEEE, New York 1999, 71–80.



1134 Luca Trevisan

[44] Nisan, Noam, and Wigderson, Avi, Hardness vs randomness. J. Comput. System Sci. 49
(1994), 149–167.

[45] Nisan, Noam, and Zuckerman, David, Randomness is linear in space. J. Comput. System
Sci. 52 (1) (1996), 43–52.

[46] Parvaresh, Farzad, and Vardy, Alexander, Correcting errors beyond the Guruswami-Sudan
radius in polynomial time. In Proceedings of the 46th IEEE Symposium on Foundations of
Computer Science, IEEE, New York 2005, 285–294.

[47] Rabin, Michael, Probabilistic algorithm for testing primality. J. Number Theory 12 (1980),
128–138.

[48] Rao, Anup, Extractors for a constant number of polynomially small min-entropy indepen-
dent sources. In Proceedings of the 38th ACM Symposium on Theory of Computing, ACM
Press, New York 2006, 497–506.

[49] Raz, Ran, Multi-linear formulas for permanent and determinant are of super-polynomial
size. In Proceedings of the 36th ACM Symposium on Theory of Computing, ACM Press,
New York 2004, 633–641.

[50] Raz, Ran, Multilinear-NC1 �= multilinear-NC2. In Proceedings of the 45th IEEE Sympo-
sium on Foundations of Computer Science, IEEE, New York 2004, 344–351.

[51] Raz, Ran, and Reingold, Omer, On recycling randomness in space bounded computation.
In Proceedings of the 31st ACM Symposium on Theory of Computing, ACM Press, New
York 1999, 159–168.

[52] Razborov, Alexander A., and Rudich, Steven, Natural proofs. J. Comput. System Sci. 55
(1) (1997), 24–35.

[53] Reingold, Omer, Undirected ST-connectivity in log-space. In Proceedings of the 37th ACM
Symposium on Theory of Computing, ACM Press, New York 2005, 376–385.

[54] Reingold, Omer, Shaltiel, Ronen, and Wigderson, Avi, Extracting randomness by repeated
condensing. In Proceedings of the 41st IEEE Symposium on Foundations of Computer
Science, IEEE, New York 2000, 22–31.

[55] Santha, Miklos, and Vazirani, Umesh, Generating quasi-random sequences from slightly
random sources. J. Comput. System Sci. 33 (1986), 75–87.

[56] Schwartz, Jacob T., Fast probabilistic algorithms for verification of polynomial identities.
J. ACM 27 (1980), 701–717.

[57] Shaltiel, Ronen, Recent developments in explicit constructions of extractors. Bull. Eur.
Assoc. Theor. Comput. Sci. EATCS 77 (2002), 67–95.

[58] Shaltiel, Ronen, and Umans, Christopher, Simple extractors for all min-entropies and a
new pseudorandom generator. J. ACM 52 (2) (2005), 172–216.

[59] Shannon, Claude, A mathematical theory of communications. Bell System Tech. J. 27
(1948), 379–423, 623–656, 1948.

[60] Shannon, Claude, The synthesis of two-terminal switching circuits. Bell System Tech. J. 28
(1949), 59–98.

[61] Sinclair,Alistair, and Jerrum, Mark,Approximate counting, uniform generation and rapidly
mixing Markov chains. Inform. and Comput. 82 (1) (1989), 93–133.

[62] Sipser, Michael, Borel sets and circuit complexity. In Proceedings of the 15th ACM Sym-
posium on Theory of Computing, ACM Press, New York 1983, 61–69.



Pseudorandomness and combinatorial constructions 1135

[63] Sipser, Michael,A topological view of some problems in complexity theory. In Proceedings
of the Symposium on Mathematical Foundations of Computer Science, IEEE, New York
1984, 567–572.

[64] Sipser, Michael, Introduction to the Theory of Computation. PWS Publishing Co., Boston,
MA, 1997.

[65] Solovay, Robert, and Strassen, Volker, A fast Monte-Carlo test for primality. SIAM J.
Comput. 6 (1) (1977), 84–85.

[66] Sudan, Madhu, Decoding of Reed-Solomon codes beyond the error-correction bound.
J. Complexity 13 (1) (1997), 180–193.

[67] Sudan, Madhu, List decoding: Algorithms and applications. SIGACT News 31 (1) (2000),
16–27.

[68] Sudan, Madhu, Trevisan, Luca, and Vadhan, Salil, Pseudorandom generators without the
XOR lemma. J. Comput. System Sci. 62 (2) (2001), 236–266,.

[69] Ta-Shma, Amnon, Umans, Christopher, and Zuckerman, David, Loss-less condensers, un-
balanced expanders, and extractors. In Proceedings of the 33rd ACM Symposium on Theory
of Computing, ACM Press, New York 2001, 143–152.

[70] Trevisan, Luca, Extractors and pseudorandom generators. J. ACM 48 (4) (2001), 860–879.

[71] Trevisan, Luca, List-decoding using the XOR Lemma. In Proceedings of the 44th IEEE
Symposium on Foundations of Computer Science, IEEE, New York 2003, 126–135.

[72] Trevisan, Luca, Some applications of coding theory in computational complexity. Quad.
Mat. 13 (2004), 347–424.

[73] Trevisan, Luca, On uniform amplification of hardness in NP. In Proceedings of the 37th
ACM Symposium on Theory of Computing, ACM Press, New York 2005, 31–38.

[74] Trevisan, Luca, and Vadhan, Salil, Pseudorandomness and average-case complexity via
uniform reductions. In Proceedings of the 17th IEEE Conference on Computational Com-
plexity, IEEE, New York 2002, 129–138.

[75] Umans, Christopher, Pseudo-random generators for all hardnesses. J. Comput. System Sci.
67 (2) (2003), 419–440.

[76] Vadhan, Salil, Randomness extractors and their many guises. In Proceedings of the 43rd
IEEE Symposium on Foundations of Computer Science, IEEE, New York 2002, 9–10.

[77] Vadhan, Salil P., Constructing locally computable extractors and cryptosystems in the
bounded-storage model. J. Cryptology 17 (1) (2004), 43–77.

[78] Vazirani, Umesh, Randomness, Adversaries and Computation. PhD thesis, University of
California, Berkeley, 1986.

[79] Vazirani, Umesh, and Vazirani, Vijay, Random polynomial time is equal to slightly random
polynomial time. In Proceedings of the 26th IEEE Symposium on Foundations of Computer
Science, IEEE, New York 1985, 417–428.

[80] Vazirani, Umesh V., Strong communication complexity or generating quasirandom se-
quences form two communicating semi-random sources. Combinatorica 7 (4) (1987),
375–392.

[81] Viola, Emanuele, The complexity of constructing pseudorandom generators from hard
functions. Comput. Complexity 13 (3–4) (2004), 147–188.

[82] von Neumann, John, Various techniques used in connection with random digits. J. Res.
Nat. Bur. Standards App. Math. Ser. 12 (1951), 36–38.



1136 Luca Trevisan

[83] Wigderson,Avi, and Zuckerman, David, Expanders that beat the eigenvalue bound: Explicit
construction and applications. Combinatorica 19 (1) (1999), 125–138.

[84] Yao, Andrew C., Theory and applications of trapdoor functions. In Proceedings of the 23th
IEEE Symposium on Foundations of Computer Science, IEEE, New York 1982, 80–91.

[85] Zippel, Richard, Probabilistic algorithms for sparse polynomials. In Symbolic and algebraic
computation (ed. by Edward W. Ng), Lecture Notes in Comput. Sci. 72, Springer-Verlag,
Berlin 1979, 216–226.

[86] Zuckerman, David, General weak random sources. In Proceedings of the 31st IEEE Sym-
posium on Foundations of Computer Science, IEEE, New York 1990, 534–543.

[87] Zuckerman, David, Linear degree extractors and the inapproximability of max clique and
chromatic number. In Proceedings of the 38th ACM Symposium on Theory of Computing,
ACM Press, New York 2006, 681–690.

Computer Science Division, U.C. Berkeley, 679 Soda Hall, Berkeley, CA 94720-1776,
U.S.A.
E-mail: luca@cs.berkeley.edu



Least-squares finite element methods

Pavel Bochev∗and Max Gunzburger†

Abstract. Least-squares finite element methods are an attractive class of methods for the nu-
merical solution of partial differential equations. They are motivated by the desire to recover, in
general settings, the advantageous features of Rayleigh–Ritz methods such as the avoidance of
discrete compatibility conditions and the production of symmetric and positive definite discrete
systems. The methods are based on the minimization of convex functionals that are constructed
from equation residuals. This paper focuses on theoretical and practical aspects of least-square
finite element methods and includes discussions of what issues enter into their construction,
analysis, and performance. It also includes a discussion of some open problems.
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1. Introduction

Finite element methods (FEMs) for the approximate numerical solution of partial
differential equations (PDEs) were first developed and analyzed for problems in lin-
ear elasticity and other settings for which solutions can be characterized as (uncon-
strained) minimizers of convex, quadratic functionals on infinite-dimensional Hilbert
spaces [46]. A Rayleigh–Ritz approximation of such solutions is defined by mini-
mizing the functional over a family of finite-dimensional subspaces. An FEM results
when these spaces consist of piecewise polynomial functions defined with respect to
a family of grids. When applied to problems such as linear elasticity or the Poisson
equation, the Rayleigh–Ritz setting gives rise to FEMs with several advantageous
features that led to their great success and popularity:

1. general regions and boundary conditions are relatively easy to treat in a sys-
tematic manner;

2. the conformity1 of the finite element spaces suffices to guarantee the stability
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1An approximating space is referred to as being conforming if it is a subspace of the underlying infinite-
dimensional Hilbert space.
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and optimal accuracy2 of the approximate solutions;
3. all variables can be approximated using a single type of finite element space,

e.g., the same degree piecewise polynomials defined with respect to a same
grid;

4. the resulting linear systems are
a) sparse; b) symmetric; c) positive definite.

The success of FEMs in the Rayleigh–Ritz setting quickly led both engineers and
mathematicians to apply and analyze FEMs in other settings, motivated by the fact
that properties 1 and 4a are retained for all FEMs.3 For example, mixed FEMs arose
from minimization problems constrained by PDEs such as the Stokes problem; the La-
grange multiplier rule was applied to enforce the constraints, resulting in saddle-point
problems [19]. In this setting, the only other property retained from the Rayleigh–Ritz
setting is 4b. More generally, Galerkin FEMs can, in principle, be defined for any
PDE by forcing the residual of the PDE (posed in a weak, variational formulation) to
be orthogonal to the finite element subspace [3]. In this general setting, one usually
loses all the features of the Rayleigh–Ritz setting other than 1 and 4a. Using the
same formalisms, Galerkin FEMs were even applied to nonlinear problems such as
the Navier–Stokes equations [34]. It is a testament to the importance of advantage 1
that despite the loss of other advantages, mixed and Galerkin FEMs are in widespread
use and have also been extensively analyzed.4

Not surprisingly, despite the success of mixed and Galerkin FEMs in general
settings, there has been substantial interest and effort devoted to developing finite
element approaches that recover at least some of the advantages of the Rayleigh–Ritz
setting. Notable among these efforts have been penalty and stabilized FEMs, e.g.,
for the Stokes problem, stabilized FEMs [4]–[5], [6], [12], [15], [29], [30], [36],
[37], [44] recover advantages 2 and 3 but fail to recover advantage 4c and often lose
advantage 4b.

Least-squares finite element methods (LSFEMs) can be viewed as another attempt
at retaining the advantages of the Rayleigh–Ritz setting even for much more general
problems. In fact, they offer the possibility of, in principle, retaining all of the
advantages of that setting for practically any PDE problem. In §2, we show how this
is possible. However, this is not the whole story. Any FEM, including an LSFEM,
must also meet additional practicality criteria:

A. bases for conforming subspaces are easily constructed;

B. linear systems are easily assembled;

C. linear systems are relatively well conditioned.

2An approximate solution is referred to as being optimally accurate if the corresponding error is bounded by
a constant times the error of the best approximation.

3These properties follow from the way finite element spaces are constructed, e.g., based on grids and choosing
basis functions of compact support.

4It should be noted that in the general settings for which FEMs lose many of the advantages they possess in
the Rayleigh–Ritz setting, they do not suffer from any disadvantages compared to other discretization methods
such as finite difference, finite volume, and spectral methods.
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In judging whether or not an LSFEM meets theses criteria, we will measure them up
against Galerkin FEMs for the Poisson equation; in particular, we will ask the ques-
tions: can we use standard, piecewise polynomial spaces that are merely continuous
and for which bases are easily constructed? can the assembly of the linear systems be
accomplished by merely applying quadrature rules to integrals? and, are the condition
numbers of the linear systems of5 O(h−2)? Unfortunately, naively defined LSFEMs
often fail to meet one or more of the practicality criteria.

LSFEMs possess two additional advantageous features that other FEMs, even in
the Rayleigh–Ritz setting, do not possess. First, least-square functionals provide
an easily computable residual error indicator that can be used for adapting grids.
Second, the treatment of general boundary conditions, including nonhomogeneous
ones, is greatly facilitated because boundary condition residuals can be incorporated
into the least-square functional.

2. The most straightforward LSFEM

Let � denote a bounded domain in �d , d = 2 or 3, with boundary �. Consider the
problem

Lu = f in � and Ru = g on �, (1)

where L is a linear differential operator and R is a linear boundary operator. We
assume that the problem (1) is well posed so that there exists a solution Hilbert
space S, data Hilbert spaces H� and H� , and positive constants α1 and α2 such that

α1‖u‖2
S ≤ ‖Lu‖2

H�
+ ‖Ru‖2

H�
≤ α2‖u‖2

S for all u ∈ S. (2)

Then consider the least-squares functional6

J (u; f, g) = ‖Lu− f ‖2
H�

+ ‖Ru− g‖2
H�

(3)

and the unconstrained minimization problem

min
u∈S J (u; f, g). (4)

Note that the functional (3) measures the residuals of the components of the system (1)
using the data space norms H� and H� and the minimization problem (4) seeks a
solution in the solution spaceS for which (2) is satisfied. It is clear that the problems (1)
and (4) are equivalent in the sense that u ∈ S is a solution of (4) if and only if it is
also a solution, perhaps in a generalized sense, of (1).

An LSFEM can be defined by choosing a family of finite element subspacesSh ⊂ S

parameterized by h tending to zero and then restricting the minimization problem (4)

5Usually, h is a measure of the size of the grid used in the construction of the finite element space.
6A least-squares functional may be viewed as an “artificial” energy that plays the same role for LSFEMs as a

bona fide physically energy plays for Rayleigh–Ritz FEMs.
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to the subspaces. Thus, the LSFEM approximation uh ∈ Sh to the solution u ∈ S of
(1) or (4) is the solution of the problem

min
uh∈Sh

J (uh; f, g). (5)

The Euler–Lagrange equations corresponding to the minimization problems (4)
and (5) are given by

seek u ∈ S such that B(u, v) = F(v) for all v ∈ S, (6)

seek uh ∈ Sh such that B(uh, vh) = F(vh) for all vh ∈ Sh, (7)

respectively, where for all u, v ∈ S,

B(u, v) = (Lv,Lu)H�+(Rv,Ru)H� and F(v) = (Lv, f )H�+(Rv, g)H� . (8)

If we choose a basis {Uj }Jj=1, where J = dim(Sh), then we have that uh =∑J
j=1 cjUj for some constants {cj }Jj=1 and then the discretized problem (7) is equiv-

alent to the linear system
K c = f , (9)

where the elements of the matrix K ∈ �J×J and the vectors f ∈ �J and c ∈ �J are
given, for i, j = 1, . . . , J , by cj = cj ,

Kij = (LUi,LUj)H� + (RUi,RUj)H� , and f i = (LUi, f )H� + (RUi, g)H� .
The results of the following theorem follow directly from (2).

Theorem 2.1. Assume that (2) holds and that Sh ⊂ S. Then,
– the bilinear form B( · , · ) defined in (8) is continuous, symmetric, and coercive;
– the linear functional F(·) defined in (8) is continuous;
– the problem (6) has a unique solution u ∈ S that is also the unique solution of

the minimization problem (4);
– the problem (7) has a unique solution uh ∈ Sh that is also the unique solution

of the minimization problem (5);
– for some constant C > 0, we have that ‖u‖S ≤ C(‖f ‖H� + ‖g‖H�) and

‖uh‖S ≤ C(‖f ‖H� + ‖g‖H�) ;
– for some constant C > 0, u and uh satisfy the error estimate

‖u− uh‖S ≤ C inf
vh∈Sh

‖u− vh‖S ; (10)

– the matrix K of (9) is symmetric and positive definite.

Note that it is not assumed that the system (1) is self-adjoint or positive as it
would have to be in the Rayleigh–Ritz setting; it is only assumed that it is well posed.
Despite the generality of the system (1), the LSFEM based on (5) recovers all desirable
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features of FEMs in the Rayleigh–Ritz setting. Note that (10) shows that least-squares
finite element approximations are optimally accurate with respect to solution norm
‖ · ‖S for which the system (1) is well posed.

In defining the least-squares principle (4), we have not restricted the spaces S
and Sh to satisfy the boundary conditions. Instead, we have included the residual
Ru − g of the boundary condition in the functional J ( · ; ·, ·) defined in (3). Thus,
we see that LSFEMs possess a desirable feature that is absent even from standard
FEMs in the Rayleigh–Ritz setting: the imposition of boundary conditions can be
effected through the functional and need not be imposed on the finite element spaces.7

Notwithstanding this advantage, one can impose essential boundary conditions on the
space S in which case all terms in (2)–(8) involving the boundary condition are omitted
and we also set H� = H . Note also that since

J (uh; f, g) = ‖Luh − f ‖2
H�

+ ‖Ruh − g‖2
H�

= B(uh, uh)− 2F(uh)+ (f, f )H� + (g, g)H� ,

the least-square functionalJ (uh; f, g)provides a computable indicator for the residual
error in the LSFEM approximation uh. Such indicators are in widespread used for
grid adaption.

The problems (6) and (7) display the normal equation form typical of least-squares
systems; see (8). It is important to note that since L is a differential operator, (6)
involves a higher-order differential operator. We shall see that this observation has a
profound effect on how practical LSFEMs are defined.

2.1. The practicality of the straightforward LSFEM. The complete recovery, in
general settings, of all desirable features of the Rayleigh–Ritz setting is what makes
LSFEMs intriguing and attractive. But, what about the practicality of the method
defined by (5)? We explore this issue using examples.

2.1.1. An impractical application of the straightforward LSFEM. Consider the
problem

−�u = f in � and u = 0 on �, (11)

where we assume that � is either a convex, Lipschitz domain or that it has a smooth
boundary. Of course, this is a problem which fits into the Rayleigh–Ritz framework
so that there is no apparent need8 to use any other type of FEM. However, let us
proceed and use the LSFEM method anyway, and see what happens. Here we have
that (2) holds with9 S = H 2(�)∩H 1

0 (�),H = L2(�), and L = −�. We then have

7This advantage of LSFEM can be useful for imposing inhomogeneous boundary conditions, essential bound-
ary conditions such as Dirichlet boundary conditions for second-order elliptic PDEs, and boundary conditions
involving a particular component, e.g., the normal component, of a vector variable.

8Inhomogeneous Dirichlet boundary conditions provide a situation in which one might want to use LSFEMs
even for the Poisson problem.

9We use standard Sobolev space notation throughout the paper. Also, in this and most of our examples, we
will be imposing the boundary condition on the solutions space S.
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that, for all u, v ∈ H 2(�) ∩H 1
0 (�),

J (u; f ) = ‖�u+ f ‖2
0, F (v) =

∫
�

f�v d�, and B(u, v) =
∫
�

�v�ud�.

Note that minimizing the least-squares functional has turned the second-order Poisson
problem into a fourth-order problem.

An LSFEM is defined by choosing a subspace Sh ⊂ S = H 2(�) ∩ H 1
0 (�) and

then posing the problem (7). It is well known that in this case, the finite element
space Sh has to consist of continuously differentiable functions; this requirement
greatly complicates the construction of bases and the assembly of the matrix prob-
lem. Furthermore, it is also well known that the condition number of the matrix
problem is O(h−4) which should be contrasted with the O(h−2) condition number
obtained through a Rayleigh–Ritz discretization of the Poisson equation. Thus, for
this problem, the straightforward LSFEM fails all three practicality tests.

Since it is also true that (2) holds with S = H 1
0 (�) and H = H−1(�), one could

develop an LSFEM based on the functional J (u; f ) = ‖�u+ f ‖−1 and the solution
space S = H 1

0 (�). This approach would allow one to use a finite element space Sh

consisting of merely continuous functions so that bases may be easily constructed.
Moreover, it can be shown that because of the use of the H−1(�) inner product, the
condition number of the resulting matrix system is O(h−2) which is the same as for
a Rayleigh–Ritz discretization. However, the H−1(�) inner product is computed by
inverting the Laplacian operator which leads to the loss of property 4a and also makes
the assembly of the matrix problem more difficult. So, as it stands, the straightforward
LSFEM remains impractical for the second-order Poisson problem.

2.1.2. A practical application of the straightforward LSFEM. Consider now the
problem

−∇ · u = f and ∇ × u = g in � and n · u = 0 on �. (12)

Here u ∈ S = H 1
n(�) = {v ∈ H 1(�) | n · v = 0 on �} and {f,g} ∈ H =

L2
0(�) × L2

s (�), where L2
0(�) = {f ∈ L2(�) | ∫

�
f d� = 0}, and L2

s (�) = {g ∈
L2(�) | ∇ · g = 0 in �}. We then have that (2) holds so that we may define the
least-squares functional

J (u; f,g) = ‖∇ · u + f ‖2
0 + ‖∇ × u − g‖2

0 for all u ∈ S = H 1
n(�) (13)

that results in

B(u, v) =
∫
�

(
(∇ · u)(∇ · v)+ (∇ × u) · (∇ × v)

)
d� for all u, v ∈ S = H 1

n(�)

and

F(v) =
∫
�

( − f∇ · v + g · ∇ × v
)
d� for all v ∈ S = H 1

n(�).
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An LSFEM is defined by choosing a subspace Sh ⊂ S = H 1
n(�) and then solving

the problem (7).
The LSFEM based on the functional (13) not only recovers all the good properties

of the Rayleigh–Ritz setting for the problem (12), but also satisfies all three practi-
cality criteria. Since we merely require that Sh ⊂ H 1

n(�), we can choose standard
finite element spaces for which bases are easily constructed. Furthermore, since the
functional (13) only involves L2(�) inner products, the assembly of the matrix sys-
tem is accomplished in a standard manner. Finally, it can be shown that the condition
number of the matrix system is O(h−2).

2.2. Norm-equivalence vs. practicality. Since (2) and (3) imply that

α1‖u‖2
S ≤ J (u; 0, 0) ≤ α2‖u‖2

S, (14)

we refer to the functional J ( · ; ·, ·) as being norm equivalent. This property of the
functional causes the LSFEM defined by (5) to recover all the desirable properties
of the Rayleigh–Ritz setting. However, the norms that enter the definition of the
functional J ( · ; ·, ·) as well as the form of the PDE system (1) can render the resulting
LSFEM impractical. Thus, in order to define a practical LSFEM, one may have to
define a least-squares functional that is not norm equivalent in the sense of (14). We
take up this issue in §3. Here, we examine the examples of §2.1 to see what guidance
they give us about what makes an LSFEM practical.

2.2.1. First-order system form of the PDEs. Perhaps the most important observa-
tion that can be made from the examples of §2.1 is that the example of §2.1.2 involved
a first-order system of PDEs and an LSFEM that allowed for the easy construction
of finite element bases (because one could work with merely continuous finite ele-
ment spaces) and resulted in matrix systems with relative good conditioning. As a
result, all modern LSFEMs are based on first-order formulations of PDE systems. Of
course, many if not most PDEs of practical interest are not usually posed as first-order
systems. Thus, the first step in defining an LSFEM should be recasting a given PDE
system into a first-order system.

Unfortunately, there is no unique way to do this. For example, the three problems

⎧⎨
⎩

u + ∇φ = 0 in �
∇ · u = f in �
φ = 0 on �

⎫⎬
⎭ ,

⎧⎪⎪⎨
⎪⎪⎩

u + ∇φ = 0 in �
∇ · u = f in �
∇ × u = 0 in �
φ = 0 on �

⎫⎪⎪⎬
⎪⎪⎭ ,

⎧⎨
⎩

∇ · u = f in �
∇ × u = 0 in �
n × u = 0 on �

⎫⎬
⎭

are all first-order systems that are equivalent to the Poisson problem (11). Each
happens to be norm equivalent, but with respect to different norms. If we assume that
in each case the boundary condition is imposed on the solutions space, we have that,
for the three problems, the space S in (2) is respectively given byH 1

0 (�)×H(�, div),
H 1

0 (�)×H 1(�), and H 1
τ (�), whereH(�, div) = {v ∈ L2(�) | ∇ ·v ∈ L2(�)} and

H 1
τ (�) = {v ∈ H 1(�) | n × v = 0 on �}.
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2.2.2. Functionals formed using L2 norms of equation residuals. Another obser-
vation that can be gleaned from the examples of §2.1 is that if one wants to be able to
assemble the matrix system using standard finite element techniques, then one should
use L2 norms of equation residuals in the definition of the least-squares functional.
Unfortunately, it is not always the case that the resulting least-squares functional is
norm equivalent. Let us explore this issue in more detail.

Consider the Stokes problem

−�u + ∇p = f , ∇ · u = 0 in � and u = 0 on �. (15)

The most popular LSFEM for this problem is based on the first-order system

∇ × ω + ∇p = f , ω = ∇ × u, ∇ · u = 0 in � and u = 0 on � (16)

that is known for obvious reasons as the velocity–vorticity–pressure formulation. One
would then be tempted to use the functional

J0(u,ω, p; f ) = ‖∇ × ω + ∇p − f ‖2
0 + ‖∇ × u − ω‖2

0 + ‖∇ · u‖2
0 (17)

that involves onlyL2(�) norms of equation residuals. Indeed, this is the most popular
approach for defining LSFEM for the Stokes equations. Unfortunately, the functional
(17) is not norm equivalent [13]. On the other hand, the functional

J−1(u,ω, p; f ) = ‖∇ × ω + ∇p − f ‖2−1 + ‖∇ × u − ω‖2
0 + ‖∇ · u‖2

0

is equivalent to ‖u‖2
1 + ‖ω‖2

0 + ‖p‖2
0 [13]. So, on the one hand, the lack of norm

equivalence for the functional J0( · , · , · ; ·) results in a loss of accuracy of the LSFEM
approximations based on that functional. On the other hand, the appearance of the
H−1(�) norm in the functional J−1( · , · , · ; ·) results in an impractical LSFEM
because the matrix systems are not easily assembled.10

3. More sophisticated LSFEMs

To define the least-squares principle (4), one had to choose the pair {S, J ( · ; f, g)},
whereS denotes a solution Hilbert space andJ ( · ; f, g) a functional defined overS that
satisfies the norm-equivalence relation (14). We refer to the variational principle (4)
as the continuous least-squares principle.11 The straightforward LSFEM was defined
by choosing a finite element subspace Sh ⊂ S and then minimizing the functional
J ( · ; f, g) over Sh; see (5). We refer to the straightforward LSFEM as the conforming
LSFEM. For such LSFEMs, we obtain the error estimate (10).

10A similar dilemma arises when one imposes boundary conditions through the least-squares functional.
11Here, “continuous” refers to the fact that solutions of (4) are also solutions of the PDE system (1). Recall

also that (14) follows from the well-posedness relation (2) for the PDE system.
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Conforming LSFEMs can be generalized so that their applicability and practicality
are enhanced. Here, we briefly discuss some of these generalizations. We still have
in mind approximating solutions of the continuous least-squares principle (4) or what
is equivalent, solutions of the PDE system (1). We again choose a finite element
space Sh and a convex, quadratic functional Jh( · ; f, g) defined over Sh. The pair
{Sh, Jh( · ; f, g)} gives rise to the discrete least-squares principle

min
uh∈Sh

Jh(u
h; f, g). (18)

Since we only require that the functional Jh( · ; f, g) be defined for functions in Sh,
we refer to LSFEMs constructed in this manner as discrete LSFEMs.

The functional Jh( · ; f, g) is required to satisfy the following non-restrictive as-
sumptions.

H1. There exists a discrete energy inner product ( · , · )h : Sh × Sh 
→ � and a
discrete energy norm ‖ · ‖h = ( · , · )1/2h such that Jh(uh; 0, 0) = (uh, uh)h =
‖uh‖2

h for all uh ∈ Sh.

H2. There exist bilinear formsE( · , · ) andT ( · , · ) such that for all smooth functions
u ∈ S and all uh ∈ Sh

Jh(u
h; Lu,Ru) = ‖u− uh‖2

h + E(u, uh)+ T (u, u). (19)

The two assumptions are sufficient to prove the following results about solutions
of (18).

Theorem 3.1. Assume that hypotheses H1 and H2 hold for the discrete principle
{Sh, Jh( · ; f, g)} and let u denote a sufficiently smooth solution of (1). Then the
problem (18) has a unique solution uh ∈ Sh. Moreover, uh satisfies

‖u− uh‖h ≤ inf
vh∈Sh

‖u− vh‖h + sup
vh∈Sh

E(u, vh)

‖vh‖h . (20)

A discrete least-squares functional Jh( · ; f, g) will be referred to being order r-
consistent if there exists a positive number r such that for all sufficiently smooth
functions u ∈ S, the second term on the right-hand side of (20) can be bounded from
above by C(u)hr , where C(u) is a positive number whose value may depend on u but
not on h. If Jh( · ; f, g) is order r-consistent, then (20) implies that

‖u− uh‖h ≤ inf
vh∈Sh

‖u− vh‖h + C(u)hr . (21)

Theorem 3.1 shows that discrete LSFEMs can work under a minimal set of as-
sumptions. It also explains why LSFEMs tend to be much more robust than their
mixed FEM counterparts; unlike the inf-sup conditions that are required for the latter
type of method, defining pairs {Sh, Jh( · ; f, g)} such that the assumptions H1 and H2
are satisfied is not a difficult task.
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Constructing discrete least-squares functionals. Theorem 3.1 provides estimates
for the error with respect to the discrete norm ‖ · ‖h. Of greater interest is estimating
errors using the (mesh-independent) solution norm ‖ · ‖S associated with the PDE
problem (1). Since Sh ⊂ S, it is certainly true that ‖ · ‖S acts as another norm
on Sh, in addition to ‖ · ‖h. Thus, since Sh is finite dimensional, these two norms
are comparable. However, the comparability constants may depend on h; if they do,
then error estimates analogous to (20) and (21) but in terms of the norm ‖ · ‖S will
surely involve constants that depend on inverse powers of h and, at the least, accuracy
may be compromised. We conclude that hypotheses H1 and H2 do not sufficiently
connect Jh( · ; f, g) to the problem (1) for us to determine much about the properties
of the error in the discrete LSFEM solution with respect to ‖ · ‖S norm. Thus, we
now discuss how to construct discrete least-squares functionals so that we can get a
handle on these properties.

We assume that (2) and (14) hold for the problem (1), the least-squares functional
J ( · ; f, g), the solution space S, and the data spaces H� and H� . Let DS , D�, and
D� denote norm-generating operators that allow us to relate the norms on S, H�,
and H� , respectively, to12 L2(�) norms, i.e., such that, for all u ∈ S, f ∈ H�, and
g ∈ H� , ‖u‖S = ‖DSu‖0, ‖f ‖H� = ‖D�f ‖0, and ‖g‖H� = ‖D�g‖0,� . We then
let

Jh(u
h; f, g) = ‖Dh

�(L
huh − Qh

�f )‖2
0 + ‖Dh

�(R
huh − Qh

�g)‖2
0,

where Dh
�, Dh

� , Lh, and Rh are approximations of the operators D�, D� , L, and R,
respectively, and Qh

� : H� 
→ L2(�) and Qh
� : H� 
→ L2(�) are projections. It can

be shown that Jh(uh; f, g) satisfies (19) with a specific form for E(u, vh).
The operators L and R define the problem (1) that is being solved so that the main

objective in choosing Lh and Rh is to make Jh(u; f, g) as small as possible for the
exact solutions u. An appropriate choice is to use operators that will lead to truncation
errors of order r in (19), i.e., Lh and Rh should be such that (21) holds. On the other
hand, D� and D� define the energy balance of (1), i.e., the proper scaling between
data and solution spaces. As a result, the main objective in the choice of Dh

� and Dh
�

is to ensure that the scaling induced by Jh( · ; f, g) is as close as possible to (2), i.e.,
to “bind” {Sh, Jh( · ; f, g)} to the energy balance of {S, J ( · ; f, g)}.

For norm-equivalent discrete least-squares principles, Jh(·, f, g) satisfies

α̂1‖uh‖S ≤ Jh( · ; 0, 0) ≤ α̂2‖uh‖S for all uh ∈ Sh.

If the finite element space satisfies standard inverse assumptions, minimizers of this
functional satisfy the error estimate

‖u− uh‖S ≤ C

{
inf
vh∈Sh

‖u− vh‖S +
(

inf
vh∈Sh

‖u− vh‖h + sup
vh∈Sh

E(u, vh)

‖vh‖h
)}
.

12Recall from §2.2 that the use of L2(�) norms in the definition of the least-squares functional is a key factor
to making an LSFEM practical.
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For quasi norm-equivalent discrete least-squares principles, Jh( · ; f, g) satisfies

α̂h1‖uh‖S ≤ Jh( · ; 0, 0) ≤ α̂h2‖uh‖S,
where α̂h1 > 0 and α̂h2 > 0 for all h > 0 but may depend on h. Under additional
assumptions, error estimates can also be derived in this case.

4. Compatible LSFEMs

Stable mixed finite element methods (MFEMs) for the Poisson equation13 based on
first-order formulations involving a scalar variable φ and a vector (or flux) variable u

require the use of finite element spaces that satisfy an appropriate inf-sup condi-
tion [19], [20]. It is well known that pairs of standard, nodal-based, continuous finite
element spaces fail the inf-sup condition and lead to unstable mixed methods. It is also
well known that the inf-sup condition is circumvented if one uses such simple element
pairs in LSFEMs based on L2 least-squares functionals. Ever since such LSFEMs
for first-order formulations of the Poisson equation were first considered in [38], this
fact has been deemed as an important advantage of those methods over MFEMs. On
the other hand, such LSFEMs suffer from two deficiencies. Computationally-based
observations indicate that nodal-based LSFEMs do a poor job, compared to stable
MFEMs, of conserving mass, i.e., of locally satisfying ∇ ·u = 0. In addition, except-
ing in one special case, such methods produce suboptimally accurate (with respect to
L2(�) norms) flux approximations.14

Already in [38], optimal L2 error estimates for LSFEMs were established for
the scalar variable; however, there and in all subsequent analyses, optimal L2 error
estimates for the flux could not be obtained15 without the addition of a “redundant”
curl equation; see, e.g., [23], [24], [26], [39], [43]. Moreover, computational studies
in [32] strongly suggested that optimal L2 convergence for flux approximations may
in fact be nearly impossible to obtain if one uses pairs of standard, nodal-based,
continuous finite element spaces. A notable exception was a case studied in [32] for
which optimalL2 error estimates for both the scalar variable and the flux were obtained
when these variables were approximated by continuous nodal spaces corresponding
to a criss-cross grid. The key to proving these results was the validity of a grid
decomposition property (GDP) which was established for the criss-cross grid in [33].
So far, the criss-cross grid remains the only known case of a continuous, nodal-based

13Although we consider only the Poisson problem, much of what we discuss can be easily extended to other
systems of elliptic PDEs.

14The least-squares functionals in question are norm equivalent so that optimally accurate approximations are
obtained with respect to the norms for which the equivalences hold. Here, we are interested in error estimates in
weaker L2(�) norms for which the norm equivalence of the least-square functional does not by itself guarantee
optimal accuracy.

15A somewhat different situation exists for negative-norm-based LSFEMs for which it is known that the L2

accuracy of the flux is optimal with respect to the spaces used; however, for such methods, no error bound for
the divergence of the flux could be established; see [18].
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finite element space for which the GDP can be verified. More importantly, it was
shown in [33] (see also [17]) that the GDP is necessary and sufficient for the stability
of MFEMs.

The correlation between the stability of MFEMs and the optimal accuracy of
LSFEMs, established in [32], opens up the intriguing possibility that optimal L2

accuracy for the flux may be obtainable for an LSFEM, provided that this variable is
approximated using finite element spaces that are stable for an appropriate MFEM.
Today, the stability of MFEMs is well understood, and many examples of stable finite
element pairs are known. We will show that the use of some of these spaces in an
LSFEM indeed can help improve the L2 accuracy of flux approximations.

What we conclude is that if one gives up the use of nodal-based, continuous finite
element spaces for the approximation of the flux, one can obtain optimally accurate
approximations of the flux with respect to L2(�) norms. While this conclusion may
disappoint the adherents of equal-order implementations,16 our results do not void
LSFEMs as a viable or even preferable computational alternative to MFEMs. To the
contrary, they demonstrate that an LSFEM can be designed that combines the best
computational properties of two dual MFEMs and at the same time manages to avoid
the inf-sup conditions and indefinite linear systems that make the latter more difficult
to solve. Although we reach this conclusion in the specific context of MFEMs and
LSFEMs for the Poisson problem, the idea of defining the latter type of method so that
it inherits the best characteristics of a pair of mixed methods that are related through
duality may have considerably wider application.

In the rest of this section, we focus the Poisson equation

−�φ = f in �, φ = 0 on �d, and ∂φ/∂n = 0 on �n, (22)

where � denotes a bounded region in �d , d = 2, 3, with a Lipschitz continuous
boundary � that consists of two disjoint parts denoted by �d and �n.

4.1. MFEMs for the Poisson problem. So as to provide a background for subse-
quent discussions concerning LSFEMs, we first consider two17 (dual) MFEMs for
the Poisson problem (22) written in the first-order form

∇ · u = f, u + ∇φ = 0 in �, φ = 0 on �d, u · n = 0 on �n. (23)

4.1.1. Stable MFEMs for the Dirichlet principle. Continuous, nodal finite ele-
ment spaces built from mth degree polynomials, m ≥ 1, and whose elements satisfy
the boundary condition φ = 0 on �n are denoted by S0

m. Note that S0
m ⊂ {ψ ∈

H 1(�) |ψ = 0 on �d}. We denote by S1
m the space ∇(S0

m).
18

16Recall that the ability to approximate all variables using simple nodal finite element spaces was one or the
advantages of the FEMs in the Rayleigh–Ritz setting that we set out to recover using LSFEMs.

17Because they can be derived from two classical optimization problems, we will refer to the two methods as
the discretized Dirichlet and Kelvin principles, respectively.

18Except for m = 1, S1
m is not a complete (m− 1)st degree polynomial space. However, characterizing S1

m is
not difficult and turns out to be unnecessary in practice.
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A stable MFEM based on the Dirichlet principle is defined as follows: seek ψh ∈
S0
m and uh ∈ S1

m = ∇(S0
m) such that⎧⎪⎪⎨

⎪⎪⎩

∫
�

uh · vh d�+
∫
�

∇φh · vh d� = 0 for all vh ∈ S1
m,∫

�

∇ψh · uh d� = −
∫
�

fψh d� for all ψ ∈ S0
m.

(24)

Note that since S1
m = ∇(S0

m), even at the discrete level, we may eliminate the flux
approximation to obtain the equivalent discrete problem for φh ∈ S0

m∫
�

∇φh · ∇ψh d� =
∫
�

fψh d� for all ψ ∈ S0
m (25)

that we recognize as the standard Galerkin discretization of (22). In fact, (24) and
(25) are equivalent in that whenever φh is a solution of (25), then φh and uh = ∇φh
are a solution pair for (24) and conversely. In this way we see that for (24), i.e.,
the Dirichlet principle, the required inf-sup condition is completely benign in the
sense that it can be avoided by eliminating the flux approximation uh from (24) and
solving (25) instead. The required inf-sup condition is implicitly satisfied by the pair
of spaces S0

m and S1
m = ∇(S0

m). If one insists on solving (24), then one needs to

explicitly produce a basis for S1
m; this is easily accomplished.

From either (24) or (25) one obtains, for the Dirichlet principle, that if φ ∈
Hm+1(�) ∩H 1

d (�), then

‖φ−φh‖0 ≤ hm+1‖φ‖m+1 and ‖u−uh‖0 = ‖∇(φ−φh)‖0 ≤ hm‖φ‖m+1. (26)

4.1.2. Stable MFEMs for the Kelvin principle. The BDMk and RTk spaces on �
are built from the individual element spaces defined with respect to a finite element K
in a partition Th of �

BDMk(K) = (Pk(K))n and RTk(K) = (Pk(K))n + xPk(K)

in a manner that ensures the continuity of the normal component across element
boundaries; see [20] for details and definitions of the corresponding element degrees
of freedom. Since BDMk and RTk both contain complete polynomials of degree k,
their approximation properties inL2 are the same. Since RTk also contains the higher-
degree polynomial component xPk(K), it approximates the divergence of the flux
with better accuracy than does BDMk . Note, however, that this additional component
does not help to improve the L2 accuracy of RTk spaces because it does not increase
to k + 1 the order of the complete polynomials contained in RTk .

In what follows, we will denote by S2
k the RT and BDM spaces having equal

approximation orders with respect to the divergence operator, i.e., we set S2
k =

{v ∈ Hn(�, div) | v|K ∈ S2
k (K)}, where S2

k (K) is one of the finite element spaces
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RTk−1(K) or BDMk(K) andHn(�, div) = {v ∈ Hn(�, div) | v ·n = 0 on �n}. We
denote by S3

k the space ∇ · (S2
k ). For characterizations of these spaces, see [20].

A stable MFEM based on the Kelvin principle is defined as follows: we seek
uh ∈ S2

k and φh ∈ S3
k = ∇ · (S2

k ) such that

⎧⎪⎪⎨
⎪⎪⎩

∫
�

uh · vh d�−
∫
�

φh∇ · vh d� = 0 for all vh ∈ S2
k ,∫

�

ψh∇ · uh d� =
∫
�

fψh d� for all ψh ∈ S3
k .

(27)

For (27), the required inf-sup condition is much more onerous than for (24) in the
sense that defining a pair of stable finite element spaces for the scalar variable and the
flux is not so straightforward a matter. We refer to [20] for a proof that (S3

k ,S
2
k ) is a

stable pair for the mixed finite element problem (27). Moreover, one can show [20]
that for any sufficiently regular exact solution of (23), one has

‖u − uh‖0 ≤ Chr‖u‖r
⎧⎨
⎩

for 1 ≤ r ≤ k if S2
k (K) =RTk−1,

for 1 ≤ r ≤ k + 1 if S2
k (K) =BDMk,

(28)

‖∇ · (u − uh)‖0 ≤ Chr‖∇ · u‖r for 1 ≤ r ≤ k (29)

and

‖φ − φh‖0 ≤ Chr(‖φ‖r + ‖u‖r ) for 1 ≤ r ≤ k. (30)

It is important to note that if one uses continuous, nodal based finite element
spaces for both the scalar variable and the flux, then (24) and (27) are identical
discrete systems. It is well known that this leads to unstable approximations, so that
one cannot use such pairs of finite element spaces in the MFEMs (24) or (27).

4.1.3. The grid decomposition property. The following result establishes the GDP
for the spaces S2

k used for the discretized Kelvin principle (27);19 for a proof, see [14].

Theorem 4.1. For every uh ∈ S2
k , there exist wh, zh in S2

k such that

uh = wh + zh, ∇ · zh = 0,
∫
�

wh · zh d� = 0, and

‖wh‖0 ≤ C
(‖∇ · uh‖−1 + h‖∇ · uh‖0

)
.

(31)

It was shown in [33] that the GDP, i.e., (31), along with the relation S3
k = ∇ · (S2

k ),
are necessary and sufficient for the stability of the discretized Kelvin principle (27).

19An analogous GDP can be defined in the context of the finite element spaces S0
m used for the discretized

Dirichlet principle (24) but it is trivially satisfied.
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4.2. LSFEMs for the Poisson problem. An LSFEM for the Poisson problem (22)
can be defined based on the quadratic functional

J (φ,u; f ) = ‖∇ · u − f ‖2
0 + ‖∇φ + u‖2

0 (32)

and the least-squares principle

min
(φ,u)∈H 1

d (�)×Hn(�,div)
J (φ,u; f ). (33)

Note that we have used the first-order form (23) of the Poisson problem and that we
use L2(�) norms to measure the equation residuals. Also, we require the functions
in the spaces H 1

d (�) and Hn(�, div) to satisfy the boundary conditions φ = 0 on �d
and u · n = 0 on �n, respectively. The Euler–Lagrange equations corresponding to
(33) are given by: seek {φ,u} ∈ H 1

d (�)×Hn(�, div) such that

B({φ,u}, {ψ, v}) = F({ψ, v}) for all {ψ, v} ∈ H 1
d (�)×Hn(�, div), (34)

where

B({φ,u}, {ψ, v}) =
∫
�

(∇ · u)(∇ · v) d�+
∫
�

(∇φ + u) · (∇ψ + v) d� (35)

and

F({ψ, v}) =
∫
�

f (∇ · v) d�. (36)

To define an LSFEM, we restrict (33) to the conforming subspace S0
m×S2

k ⊂ H 1
d (�)×

Hn(�, div) or, equivalently, restrict (34) to those subspaces to obtain the discrete
problem: seek {φh,uh} ∈ S0

m × S2
k such that

B({φh,uh}, {ψh, vh}) = F({ψh, vh}) for all {ψh, vh} ∈ S0
m × S2

k . (37)

The next theorem states that the functional (32) is norm equivalent.20 For a proof, see
any of [21], [23], [24], [43].

Theorem 4.2. There exist positive constants α1 and α2 such that for any {φ,u} ∈
H 1
d (�)×Hn(�, div),

α1
(‖φ‖2

1 + ‖u‖2
H(�,div)

) ≤ J (φ,u; 0) ≤ α2
(‖φ‖2

1 + ‖u‖2
H(�,div)

)
. (38)

Thus, the LSFEM defined through (37) is an example of an LSFEM that recovers all
the desirable properties of the Rayleigh–Ritz setting, except that by using the finite
element spaces S0

m and S2
k , we have forced ourselves to not use continuous, nodal-

based finite element spaces for the flux approximation.21 Because we are using finite
element spaces that are compatible for the MFEMs (24) and (27), we refer to the
LSFEM defined by (37) as a compatible LSFEM.

20In the theorem, we have that ‖u‖H(�,div) = (‖u‖2
0 + ‖∇ · u‖2

0)
1/2.

21We could, of course, use such spaces for the flux approximation, but, as indicated previously, we would then
not be able to obtain optimal error estimates with respect to L2(�) norms.
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4.2.1. Error estimates in H 1(�) × H(�, div). We now review the convergence
properties of LSFEMs for the Poisson equation with respect to theH 1(�)×H(�, div)
norm. For a proof of the following theorem, see [14].

Theorem 4.3. Assume that the solution {φ,u} of (34) satisfies {φ,u} ∈ H 1
d (�) ∩

Hm+1(�) × Hn(�, div) ∩ H k+1(�) for some integers k,m ≥ 1. Let {φh,uh} ∈
S0
m × S2

k be the solution of the least-squares finite element problem (37). Then there
exists a constant C > 0 such that

‖φ − φh‖1 + ‖u − uh‖H(�,div) ≤ C
(
hk‖u‖k+1 + hm‖φ‖m+1

)
. (39)

The error estimate (39) remains valid if u is approximated in the continuous, nodal-
based finite element space (Pk(�))n.

Theorem 4.3 shows that the errors in uh and φh are equilibrated when k = m and
that (S0

k ,S
2
k ) has the same asymptotic accuracy in the norm of H 1(�) × H(�, div)

as the C0 pair (S0
k , (Pk)

n). For this reason, in the implementation of the LSFEM, one
usually chooses the nodal-based pair (S0

k , (Pk)
n) because it is easier to implement.

Indeed, the ability to use equal-order interpolation has been often cited as a primary
reason for choosing to use LSFEMs. Nevertheless, the pair is not flawless because
optimal L2 norm errors for the flux approximation have proven impossible to obtain
without using the very restrictive criss-cross grid or augmenting (23) with an additional
redundant curl constraint equation.22 Also, as we have already mentioned, numerical
studies in [32] indicate that the L2 convergence of the flux is indeed suboptimal with
such finite element spaces.

We will see that if the nodal approximation of the flux is replaced by an approx-
imation in S2

k , it may be possible to recover optimal L2 convergence rates without
adding the curl constraint. As in [32], the key to this is the GDP.

4.2.2. Error estimates in L2. We assume that the solution of the problem

−�ψ = η in �, ψ = 0 on �d,
∂ψ

∂n
= 0 on �n

satisfies the regularity estimate ‖ψ‖s+2 ≤ C‖η‖s for s = 0, 1 and for all η ∈ Hs(�).
This is needed since L2 error estimates are based on duality arguments.

L2 error estimates for the scalar variable.

Theorem 4.4. Assume that the regularity assumption is satisfied, and assume that the
solution (φ,u) of (34) satisfies (φ,u) ∈ H 1

d (�)∩Hm+1(�)×Hn(�, div)∩H k+1(�)

22The redundant curl constraint ∇ × u = 0, first introduced in the least-squares finite element setting in [26]
and subsequently utilized by many others (see, e.g., [21], [23], [24], [39]), renders the least-squares functional
norm-equivalent with respect to theH 1(�)×H 1(�) norm but, in some situations, may unduly restrict the range
of the data and should be avoided.
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for some integers k,m ≥ 1. Let (φh,uh) ∈ S0
m × S2

k be the solution of the least-
squares finite element problem (37). Then there exists a constant C > 0 such that
‖φ − φh‖0 ≤ C(hk+1‖u‖k+1 + hm+1‖φ‖m+1).

For a proof of this theorem, see [14]. The optimal L2 error bound of Theorem 4.4
for the scalar variable does not require that the finite element space for flux approx-
imations satisfy (31), i.e., the GDP. Thus, it remains valid even when continuous,
nodal-based finite element spaces are used for the flux approximations, a result first
shown in [38]. On the other hand, we will see that the GDP is needed if one wants to
improve the L2 accuracy of the flux.

L2 error estimate for the flux. The L2 error estimates for approximations to the
flux depend on whether S2

k represents the RTk−1 or the BDMk family. To this end,
we have the following result whose proof may be found in [14].

Theorem 4.5. Assume that the hypotheses of Theorem 4.4 hold with k = m = r .
Then there exists a constant C > 0 such that

‖u − uh‖0 ≤ C

⎧⎨
⎩
hr(‖u‖r+1 + ‖φ‖r+1) if S2

r (�) = RTr−1,

hr+1(‖u‖r+1 + ‖φ‖r+1) if S2
r (�) = BDMr .

(40)

Consider, for example, the lowest-order case for which r = 1, S0
1(�) = P1,

and S2
1(�) is either RT0 or BDM1. If the least-squares finite element method is

implemented with RT0 elements, (40) specializes to

‖u − uh‖0 ≤ h(‖u‖2 + ‖φ‖2).

If instead we use BDM1 elements, we then obtain the improved error bound

‖u − uh‖0 ≤ h2(‖u‖2 + ‖φ‖2).

4.3. Interpretation of results and mass conservation. We have seen that an LS-
FEM method implemented using equal-order, continuous, nodal-based finite element
spaces approximates the scalar variable with the same accuracy (with respect to both
H 1(�) and L2(�) norms) as the Galerkin method (25) (or, equivalently, the mixed
method (24) for the Dirichlet principle. However, the approximation properties of
the Kelvin principle (27) are only partially inherited in the sense that the accuracy in
the approximation to the divergence of the flux is recovered, but the accuracy in the
flux approximation itself may be of one order less. This should not be too much of a
surprise because continuous, nodal-based finite elements provide stable discretization
only for the Dirichlet principle (with the exception of the criss-cross grid; see [32]).
While least-squares minimization is stable enough to allow for the approximation of
scalar variables and the flux by equal-order, continuous, nodal-based finite element
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spaces, it cannot completely recover from the fact that such spaces are unstable for
the Kelvin principle.

The key observation from §4.2.2 is that an LSFEM can inherit the best properties
of both the discretized Dirichlet principle (24) and Kelvin principle (27), provided the
scalar variable and the flux are approximated by finite element spaces that are stable
with respect to these two principles, respectively. Then least-squares finite element
solutions recover the accuracy of the Dirichlet principle for the scalar variable and the
accuracy of the Kelvin principle for the flux. In a way, we see that, implemented in this
particular manner, the LSFEM represents a balanced mixture of the two principles.
In [16], an explanation of this observation using the apparatus of differential form
calculus is provided as are the results of several illustrative computational experiments.

Unlike LSFEMs based on the use of continuous, nodal-based finite element spaces
for all variables, it can be shown that through a simple local post-processing proce-
dure, the compatible LSFEM inherits the local mass conservation properties of the
discretized Kelvin principle (27); see [16] for details.

5. Alternative LSFEMs

The LSFEMs considered so far follow variants of the template established in §2: first,
spacesS,H�, andH� that verify (2) are determined, then a least-squares functional (3)
is defined by measuring equation residuals in the norms of H� and H� and, finally,
an LSFEM is obtained by minimizing (3) over a finite-dimensional subspace Sh

of S. Here, we provide examples of methods that, while still relying on least-squares
notions, deviate in more significant ways from that template.

5.1. Collocation LSFEMs. The least-squares optimization steps (3) and (4) precede
the discretization step (5). In the broadest sense, collocation LSFEM (CLSFEM) are
methods [25], [31], [41] that reverse the order of these two steps. They are also known
as point least-squares or overdetermined collocation methods.

Let {Uj(x)}Jj=1 denote a basis for a finite element space. We seek an approximate

solution of (1) of the formu(x) ≈ ûh(x)= ∑J
j=1 cjUj (x), where c = (c1, c2, . . . , cJ )

is a vector of unknown coefficients. Then collocation points {xi}M1
i=1 ⊂ � and

{xi}Mi=M1+1 ⊂ � are chosen in such a way that the corresponding point residuals
Lûh(xi )−f (xi ) and Rûh(xi )−g(xi ) are well defined. Then a CLSFEM is defined
by minimizing, over c ∈ �J , the discrete functional

Jc(c; f, g) =
M1∑
i=1

αi
(
Lûh(xi )− f (xi )

)2 +
M∑

i=M1+1

βi
(
Rûh(xi )− g(xi )

)2
.

The weights αi and βi can be used to adjust the relative importance of the terms in
the functional. The necessary condition for the minimization of Jc( · ; f, g) gives rise
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to anM × J linear system Ac = b. IfM = J , then the method reduces to a standard
collocation method. If M > J , the solution c is obtained in a least-squares sense by
solving the normal equations A

T
Ac = A

T b. If the collocation points and weights
correspond to a quadrature rule, then the CLSFEM is equivalent to an LSFEM in
which integrals are approximated by a quadrature rule.

Since only a finite set of collocation points belonging to the domain � need
be specified, collocation LSFEMs are attractive for problems posed on irregularly
shaped domains; see [41]. On the other hand, since the normal equations tend to
become ill-conditioned, such methods require additional techniques such as scaling
or orthonormalization in order to obtain a reliable solution; see [31].

5.2. Discontinuous LSFEMs. The LSFEMs of §2, 3, and 4 are defined using a con-
forming finite element subspace Sh of the solution space S. Discontinuous LSFEMs
(DLSFEMs) are an alternative approach that use finite element subspaces of L2(�)

that consist of piecewise polynomial functions that are not constrained by inter-
element continuity requirements. The degrees of freedom on each element can be
chosen independently of each other and the elements can have hanging nodes. These
features offer great flexibility in implementing adaptive methods because first, reso-
lution on each element can be adjusted as needed and second, new elements can be
added by simple subdivisions of existing elements.

In general, the least-squares problem (4) cannot be restricted to a discontinuous
space Sh because it is not a proper subspace of S. To take advantage of discontin-
uous spaces, it is necessary to modify (3) so that it is well defined on the “broken”
(with respect to a partition Th of the domain �) data space S = {u ∈ L2(�) | u ∈
S(K) for all K ∈ Th}. The first DLSFEMs appeared in [2], [22] as least-squares
formulations for interface and transmission problems for the Poisson equation. We
follow [22], where a DLSFEM is developed for the problem

⎧⎨
⎩

∇ · (aiui ) = fi and ui + ∇φi = 0 in �i, i = 1, 2,
φi = 0 on �i,d and ui · ni = 0 on �i,n, i = 1, 2,
φ1 = φ2 and a1u1 · n1 + a2u2 · n2 = 0 on �12

(41)

that is a first-order formulation of a transmission problem for the Poisson equation.23

Here,�1 and�2 are two24 open subsets of� such that�1∪�2 = � and�1∩�2 = ∅.
The set�12 = �1∪�2 is the interface between the two subdomains and�i,d = �d∩�i
and �i,n = �n ∩�i , i = 1, 2.

In the conforming case, an LSFEM for the Poisson equation was defined by using
the functional (32) and conforming subspaces of the solution space S = H 1

d (�) ×
Hn(�, div). For the problem (41), we instead use the “broken” (with respect to the

23The functions a1 and a2 denote a “media property” that is discontinuous across �12.
24The generalization to more than two subdomains is straightforward.
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partition {�1,�2}) solution space S = H 1
d(�)× H n(�, div), where

H 1
d(�) = {φ̃ = {φ1, φ2} | φi ∈ H 1

d (�i), i = 1, 2} for the scalar variable,
H n(�, div) = {̃u = {u1,u2} | ui ∈ Hn(�i, div), i = 1, 2} for the flux.

To define a DLSFEM, we also need to replace (32) by a least-squares functional that
can be minimized over S. Of course, we also want a functional whose minimizer is
a solution of (41). A functional with the desired properties is given by (see [22])

J12(φ̃, ũ; f1, f2) =
2∑
i=1

(
‖∇ · (aiui )− fi‖2

0,�hi
+ ‖ui + ∇φi‖2

0,�hi

)

+ |φ1 − φ2‖2
1/2,�12

+ ‖a1u1 · n1 + a2u2 · n2‖2−1/2,�12
.

(42)

Interface terms in (42) are treated in exactly the same way as one would impose
weak Dirichlet and Neumann conditions, respectively. To obtain a practical method,
they are replaced by weighted L2 norms on �12. Choosing Sh ⊂ S completes the
formulation of the DLSFEM; see [22] for further details.

The Treffetz element least-squares method [42], [45] can be viewed as a variant
of the DLSFEM. The term “Treffetz elements” usually refers to methods that use
approximation spaces consisting of piecewise analytic solutions of the PDE. Such
spaces provide highly accurate approximations of the broken solution space S so that
they also require functionals that are well-posed with respect to that space. Given a
Treffetz element space, it is a trivial matter to use (42) to define a DLSFEM; see [42],
[45] for further details.

6. Open problems in LSFEM

We close with a brief discussion of some of the open problems that exist in the theory
and application of LSFEMs.

6.1. Hyperbolic PDEs. Recovery of the Rayleigh–Ritz properties by LSFEMs relies
on the existence of Hilbert spaces that validate the bounds (2) for (1). Such bounds are
natural for elliptic PDEs and can be derived for any such PDE by using the Agmon–
Douglis–Nirenberg theory [1]. On the other hand, for hyperbolic PDEs such bounds
are not so natural, partly because they admit data in Lp spaces and their solutions
may have contact discontinuities and shock waves.

Recall that (7) can be viewed as a Galerkin method applied to a higher-order PDE.
As a result, LSFEMs for hyperbolic equations designed using a Hilbert space setting
are equivalent to a Galerkin discretization of a degenerate elliptic PDE. The result is
an LSFEM that will have excellent stability properties but which will smear shocks
and discontinuities; see [11] for numerical examples.
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To illustrate some of the pitfalls that can be encountered with hyperbolic PDEs, it
suffices to consider the simple linear convection-reaction problem

∇ · (bu)+ cu = f in � and u = g on �−, (43)

where b is a given convection vector, c(x) is a bounded measurable function on �,
and �− = {x ∈ � | n(x) · b(x) < 0} is the inflow part of the boundary �. A straight-
forward L2(�) norm-based least-squares principle for (43) is defined by minimizing
the functional

J (v; f, g) = ‖∇ · (bv)+ cv − f ‖2
0 + ‖v − g‖2

0,�− (44)

over the Hilbert space S = {u ∈ L2(�) | Lu = ∇ · (bv) + cv ∈ L2(�)}. Then the
following theorem can be obtained [10].

Theorem 6.1. Assume that �− is non-characteristic and c + 1
2∇ · b ≥ σ > 0 for

some constant σ . Then J (v; 0, 0) = ‖∇ · (bv)+ cv‖2
0 + ‖v‖2

0,�− is equivalent to the

graph norm ‖v‖2
S = ‖v‖2

0 +‖Lv‖2
0. For every f ∈ L2(�) and g ∈ L2(�−), (44) has

a unique minimizer u ∈ S and for that u we have that J (u; 0, 0) ≤ ‖f ‖0 + ‖g‖2
0,�− .

This theorem shows that if the data belongs to L2, all the prerequisites needed to
define an LSFEM are fulfilled. We can proceed as in §2 and define a method in the
most straightforward way by restricting the Euler–Lagrange equation corresponding
to the minimization of (44) to a finite dimensional subspace Sh ⊂ S.

However, the convection-reaction problem (43) is meaningful even if the data25

f belongs only to the Banach space L1(�). In this case, proper solution and data
spaces for (43) are given by S = {v ∈ L1(�) | ∇ · (bv) ∈ L1(�)} and H = L1(�),
respectively. One can show [35] that L is an isomorphism S 
→ H and so, instead
of (2), we have a similar bound but in Banach spaces: α1‖u‖S ≤ ‖Lu‖H for all
u ∈ S.

Now, consider the unconstrained minimization problem associated with the spaces
S and H :

min
u∈S J1(u; f ), where J1(u; f ) = ‖Lu− f ‖L1(�) =

∫
�

|Lu− f | d�. (45)

For our model equation (43), this is the “correct” minimization problem that, restricted
to Sh ⊂ S, will have solutions that do not smear discontinuities. This fact has been
recognized independently in [40] and more recently in [35]. In [35], it is also shown
that under some reasonable assumptions on Sh, the discrete problem

min
uh∈Sh

J1(u
h; f ) (46)

has at least one global minimizer, no local minimizers, and a solution that satisfies
the stability bound ‖uh‖S ≤ C‖f ‖H .

25We assume now that g = 0.
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We can view (45) as yet another example of the conflict between practicality and
optimality. In this case, however, the practicality issue is much more severe because
(45) is not differentiable, we cannot write a first-order optimality condition, and the
discrete problem (46) does not give rise to a matrix problem. This is the chief reason
that so far there are only two examples [35], [40] of FEMs for (43) based on the L1

optimization problem (45). In [35], the minimizer of (46) is approximated by solving
a sequence of regularized L1 optimization problems that are differentiable. The
method of [40] uses a sequence of more conventional L2 least-squares approaches,
but defined using an adaptively weighted L2 inner product. The weights are used
to weaken contributions to the least-squares functional from elements that contain
solution discontinuities.

At this point, there is very limited experience with solving hyperbolic PDEs by
minimizing functionals over Banach spaces. For problems with non-smooth data,
computational experiments with the methods of [35] and [40] show that they are su-
perior to LSFEMs defined through the minimization of (44); most notable is their
ability to provide sharp discontinuity profiles without over- and under-shooting. A
series of experiments in [35] also points strongly towards a possibility that the nu-
merical solutions actually obey a maximum principle on general unstructured grids
and that the L1-based algorithm seems to be able to select viscosity solutions. How-
ever, at present, there are no mathematical confirmations of these facts, nor is it known
whether such algorithms for hyperbolic conservation laws are able to provide accurate
shock positions and speeds.

Despite the promise of L1 optimization techniques, the state of LSFEMs for hy-
perbolic problems is far from satisfactory. Straightforward L2 norm-based LSFEMs
are clearly not the most appropriate as they are based on the “wrong” stability estimate
for the problem. L1 norm-based techniques give far better results but are more com-
plex and, in the case of [35], require the solution of nonlinear optimization problems.
Thus, the jury is still out on whether or not it is possible to define a simple, robust,
and efficient LSFEMs for hyperbolic problems that will be competitive with specially
designed, upwind schemes employing flux limiters.

6.2. Mass conservation. In §4 it was shown that LSFEMs for the Poisson equation
can be implemented in a way that allows them to inherit the best computational
properties of MFEMs for the same problem. In particular, it is possible to define an
LSFEM for (23) so that the approximation locally conserves mass.

Currently, the methods in §4 are the only such example. Achieving local mass
conservation in LSFEMs for incompressible, viscous flows remains an important open
problem. All existing LSFEMs for incompressible, viscous flows conserve mass only
approximately so that ‖∇ · uh‖0 = O(hr), where r is the approximation order of
the finite element space. For low-order elements, which are among the most popular
and easy to use elements, LSFEMs have experienced severe problems with mass
conservation. For LSFEMs based on the velocity–vorticity–pressure system (16),
these problems were first identified in [27] where also a solution was proposed that



Least-squares finite element methods 1159

combines least-squares principles and Lagrange multipliers to achieve element-wise
mass conservation. Then the resulting restricted LSFEM treats the continuity equation
∇ · u = 0 as an additional constraint that is enforced on each element by a Lagrange
multiplier. The method achieves remarkable local conservation but compromises the
main motivation underlying LSFEMs: to recover a Rayleigh–Ritz setting for the PDE.
In particular, property 4c does not hold.

An alternative to exact local conservation is an LSFEM with enhanced total mass
conservation. This can be effected by increasing the importance of the continuity
residual by using weights. A weighted LSFEM for (16) using the functional

JW(ω, p,u) = ‖∇ × ω + ∇p− f ‖2
0 +

∑
K∈Th

h2
K

(
W‖∇ · u‖2

0,K + ‖∇ × u − ω‖2
0,K

)
was studied in [28] where numerical studies showed that fairly a small weight, e.g.,
W = 10, helps to significantly improve total mass conservation.

Thus, for the Stokes problem, at present there are methods that either recover local
mass conservation but forfeit some important advantages of the Rayleigh–Ritz settings
or retain all those advantages but can at best provide improved global conservation.
It is of interest to explore whether or not the ideas of §4 can be extended to develop
compatible LSFEMs for viscous flows that retain all the Rayleigh–Ritz advantages
and at the same time locally conserve mass.

6.3. LSFEMs for nonlinear problems. Consider the nonlinear version of (1)

Lu+ G(u) = f in � and Ru = g on �, (47)

where G(u) is a nonlinear term. Formally, a least-squares principle for (1) can be
easily extended to handle (47) by modifying (4) and (3) to

min
u∈S JG(u; f, g), where JG(u; f, g) = ‖Lu+ G(u)− f ‖2

H�
+ ‖Ru− g‖2

H�
(48)

and then define an LSFEM by restricting (48) to a family Sh ⊂ S. While the extension
of LSFEMs to (47) is trivial, its analysis is not and remains one of the open problems in
LSFEMs. Compared with the well-developed mathematical theory for linear elliptic
problems [2], [13], [18], [21], [23], [24], [26], [32], [38], analyses of LSFEMs for
nonlinear problems are mostly confined to the Navier–Stokes equations [7]–[9].

It can be shown that the Euler–Lagrange equation associated with the least-squares
principle (48) for the Navier–Stokes equations has the abstract form

F(λ,U) ≡ U + T ·G(λ,U) = 0, (49)

where λ is the Reynolds number, T is a least-squares solution operator for the asso-
ciated Stokes problem, and G is a nonlinear operator. As a result, the corresponding
discrete nonlinear problem has the same abstract form

Fh(λ,Uh) ≡ Uh + T h ·G(λ,Uh) = 0, (50)
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where T h is an approximation of T . The importance of (50) is signified by the fact
that discretization in (50) is introduced solely by means of an approximation to the
linear operator T in (49). As a result, under some assumptions, one can show that the
error in the nonlinear approximation defined by (50) is of the same order as the error
in the least-squares solution of the linear Stokes problem.

One of the obstacles in extending this approach to a broader class of nonlinear
problems is that after the application of a least-squares principle, the (differentiation)
order of the nonlinear term may change.
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A posteriori error analysis and adaptive methods for partial
differential equations

Zhiming Chen∗

Abstract. The adaptive finite element method based on a posteriori error estimates provides a
systematic way to refine or coarsen the meshes according to the local a posteriori error estimator
on the elements. One of the remarkable properties of the method is that for appropriately designed
adaptive finite element procedures, the meshes and the associated numerical complexity are
quasi-optimal in the sense that in two space dimensions, the finite element discretization error
is proportional to N−1/2 in terms of the energy norm, where N is the number of elements of
the underlying mesh. The purpose of this paper is to report some of the recent advances in the
a posteriori error analysis and adaptive finite element methods for partial differential equations.
Emphases will be paid on an adaptive perfectly matched layer technique for scattering problems
and a sharp L1 a posteriori error analysis for nonlinear convection-diffusion problems.

Mathematics Subject Classification (2000). Primary 65N15; Secondary 65N30.

Keywords. A posteriori error estimates, adaptivity, quasi-optimality.

1. Introduction

The aim of the adaptive finite element method (AFEM) for solving partial differential
equations is to find the finite element solution and the corresponding mesh with least
possible number of elements in terms of discrete errors. The task to find the mesh with
the desired property is highly nontrivial because the solution is a priori unknown. The
basic idea of the seminal work [3] is to find the desired mesh under the principle of
error equidistribution, that is, the discretization errors should be approximately equal
on each element. The errors on the elements which are also unknown can, however,
be estimated by a posteriori error estimates. Today AFEM based on a posteriori
error estimates attracts increasing interests and becomes one of the central themes
of scientific computation. The purpose of this paper is to report some of the recent
advances in the a posteriori error analysis and AFEM for partial differential equations.

A posteriori error estimates are computable quantities in terms of the discrete so-
lution and data, which provide information for adaptive mesh refinement (and coars-
ening), error control, and equidistribution of the computational effort. We describe
here briefly the basic idea of AFEM using the example of solving the Possion equation
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on a polygonal domain � in R
2

−�u = f in �, u = 0 on ∂�. (1.1)

Here the source function f is assumed to be in L2(�). It is well known that the
solution of the problem (1.1) may be singular due to the reentrant corners of the
domain in which case the standard finite element methods with uniform meshes are
not efficient.

Let Mh be a regular triangulation of the domain � and Bh be the collection of
all inter-element sides of Mh. Denote by uh the piecewise linear conforming finite
element solution over Mh. For any inter-element side e ∈ Bh, let�e be the collection
of two elements sharing e and define the local error indicator ηe as

η2
e :=

∑
K∈�e

‖hKf ‖2
L2(K)

+ ‖h1/2
e Je ‖2

L2(e)
,

where hK := diam(K), he := diam(e), and Je := [[ ∇uh ]]e · ν stands for the jump
of flux across side e which is independent of the orientation of the unit normal ν to e.
The following a posteriori error estimate is well known [2]:

‖ u− uh ‖2
H 1(�)

≤ C
∑
e∈Bh

η2
e .

That ηe really indicates the error locally is explained by the following local lower
bound [39]:

η2
e ≤ C

∑
K∈�e

‖ u− uh ‖2
L2(K)

+ C
∑
K∈�e

‖hK(f − fK) ‖2
L2(K)

,

where fK = 1
|K|

∫
K
f dx.

Based on the local error indicator, the usual adaptive algorithm solving the elliptic
problem (1.1) reads as follows:

Solve → Estimate → Refine.

The important convergence property, which guarantees the iterative loop terminates
in finite steps starting from any initial coarse mesh, is proved in [23], [30]. It is also
widely observed that for appropriately designed adaptive finite element procedures,
the meshes and the associated numerical complexity are quasi-optimal in the sense
that

‖ ∇(u− uh) ‖L2(�) ≈ CN−1/2 (1.2)

is valid asymptotically, where N is the number of elements of the underlying finite
element mesh. Since the nonlinear approximation theory [5] indicates that N−1/2

is the highest attainable convergence order for approximating functions in H 1(�) in
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two space dimensions over a mesh with N elements, one concludes that AFEM is an
optimal discretization method for solving the elliptic problem (1.1).

In Section 2 we consider to use AFEM to solve the Helmholtz-type scattering
problems with perfectly conducting boundary

�u+ k2u = 0 in R
2\D̄, (1.3a)

∂u

∂n
= −g on �D, (1.3b)

√
r

(
∂u

∂r
− iku

)
→ 0 as r = |x| → ∞. (1.3c)

HereD ⊂ R
2 is a bounded domain with Lipschitz boundary �D , g ∈ H−1/2(�D)

is determined by the incoming wave, and n is the unit outer normal to �D . We assume
the wave number k ∈ R is a constant. We study an adaptive perfectly matched layer
(APML) technique to deal with the Sommerfeld radiation condition (1.3c) in which
the PML parameters such as the thickness of the layer and the fictitious medium prop-
erty are determined through sharp a posteriori error estimates. The APML technique
combined with AFEM provides a complete numerical strategy for solving the scat-
tering problem in the framework of finite element which has the nice property that
the total computational costs are insensitive to the thickness of the PML absorbing
layers. The quasi-optimality of underlying FEM meshes is also observed.

Things become much more complicated when applying AFEM to solve time-
dependent partial differential equations. One important question is if one should use
the adaptive method of lines (AML) in which variable timestep sizes (but constant
at each time step) and variable space meshes at different time steps are assumed,
or one should consider the space-time adaptive method in which space-time domain
is considered as a whole and AFEM is used without distinguishing the difference
of time and space variables. Our recent studies in [9], [10], [11] reveal that with
sharp a posteriori error analysis and carefully designed adaptive algorithms, the AML
method produces the very desirable quasi-optimal decay of the error with respect to
the computational complexity

|||u− U |||�×(0,T ) ≤ CM−1/3 (1.4)

for a large class of convection-diffusion parabolic problems in two space dimensions
using backward Euler scheme in time and conforming piecewise linear finite elements
in space. Here |||u − U |||�×(0,T ) is the energy norm of the error between the exact
solution u and the discrete solution U , and M is the sum of the number of elements
of the space meshes over all time steps. Thus if one takes the quasi-optimality of the
computational complexity as the criterion to assess the adaptive methods, then the
space-time adaptive method which is less studied in the literature will not have much
advantage over the AML method.

A posteriori error analysis for parabolic problems in the framework of AML has
been studied intensively in the literature. The main tool in deriving a posteriori error
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estimates in [25], [26], [14], [31], [7] is the analysis of linear dual problems of the
corresponding error equations. The derived a posteriori error estimates, however,
depend on the H 2 regularity assumption on the underlying elliptic operator. Without
using this regularity assumption, energy method is used in [34], [9] to derive an a
posteriori error estimate for the total energy error of the approximate solution for linear
heat equations. A lower bound for the local error is also derived for the associated
a posteriori error indicator in [34], [9]. In [9] an adaptive algorithm is constructed
which at each time step, is able to reduce the error indicators (and thus the error) below
any given tolerance within finite number of iteration steps. Moreover, the adaptive
algorithm is quasi-optimal in terms of energy norm. In [10] an quasi-optimal AML
method in terms of the energy norm is constructed for the linear convection-dominated
diffusion problems based on L1 a posteriori error estimates.

In Section 3 we study the AML method for the initial boundary value problems
of nonlinear convection-diffusion equations of the form

∂u

∂t
+ divf (u)−�A(u) = g.

We derive sharp L∞(L1) a posteriori error estimates under the non-degeneracy as-
sumption A′(s) > 0 for any s ∈ R. The problem displays both parabolic and hyper-
bolic behavior in a way that depends on the solution itself. It is discretized implicitly
in time via the method of characteristic and in space via continuous piecewise linear
finite elements. The analysis is based on the Kružkov “doubling of variables” device
and the recently introduced “boundary layer sequence” technique to derive the en-
tropy error inequality on bounded domains. The derived a posteriori error estimate
leads to a quasi-optimal adaptive method in terms of the L∞(L1) norm of the error.

2. The APML technique for scattering problems

In this section we consider the APML technique for the scattering problem
(1.3a)–(1.3c). Since [4] proposed a PML technique for solving the time dependent
Maxwell equations, various constructions of PML absorbing layers have been pro-
posed and studied in the literature [38], [37]. Here we introduce the PML technique
for (1.3a)–(1.3c) following the method in [19].

Let D be contained in the interior of the circle BR = {x ∈ R
2 : |x| < R}. In

the domain R
2\B̄R , the solution u of (1.3a)–(1.3c) can be written under the polar

coordinates as follows:

u(r, θ) =
∑
n∈Z

H
(1)
n (kr)

H
(1)
n (kR)

ûne
inθ , ûn = 1

2π

∫ 2π

0
u(R, θ)e−inθ dθ. (2.1)

where H(1)
n is the Hankel function of the first kind and order n. The series in (2.1)

converges uniformly for r > R [20].
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The basic idea of PML technique is to surround the fixed domain �R = BR\D̄
with a PML layer of thickness ρ−R and choose the fictitious medium property so that
either the wave never reaches its external boundary or the amplitude of the reflected
wave is so small that it does not essentially contaminate the solution in �R .

Let α = 1 + iσ be the model medium property satisfying σ ∈ C(R), σ ≥ 0, and
σ = 0 for r ≤ R. The most widely used model medium property σ in the literature
is the power function, that is,

σ = σ0

(
r − R

ρ − R

)m
, m ≥ 1, σ0 > 0 constant. (2.2)

Denote by r̃ the complex radius defined by

r̃ = r̃(r) =
{
r if r ≤ R,∫ r

0 α(t)dt = rβ(r) if r ≥ R.

Since H(1)
n (z) ∼

√
2
πz
ei(z− π

2 n− π
4 ) as |z| → ∞, [19] obtained the PML equation by

considering the following extension of u in the exterior domain R
2\B̄R:

w(r, θ) =
∑
n∈Z

H
(1)
n (kr̃)

H
(1)
n (kR)

ûne
inθ , ûn = 1

2π

∫ 2π

0
u(R, θ)e−inθ dθ. (2.3)

It is easy to check that w satisfies

∇ · (A∇w)+ αβk2w = 0 in R
2\B̄R,

where A = A(x) is a matrix which satisfies, in polar coordinates,

∇ · (A∇) = 1

r

∂

∂r

(
βr

α

∂

∂r

)
+ α

β

1

r2

∂2

∂θ2 .

The PML problem then becomes

∇ · (A∇û)+ αβk2û = 0 in Bρ\D̄, (2.4a)

∂û

∂n
= −g on �D, û = 0 on �ρ. (2.4b)

It is proved in [22], [21] that the resultant PML solution converges exponentially to
the solution of the original scattering problem as the thickness of the PML layer tends
to infinity. We remark that in practical applications involving PML techniques, one
cannot afford to use a very thick PML layer if uniform finite element meshes are used
because it requires excessive grid points and hence more computer time and more
storage. On the other hand, a thin PML layer requires a rapid variation of the artificial
material property which deteriorates the accuracy if too coarse mesh is used in the
PML layer.
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The APML technique was first proposed in [16] for solving scattering by periodic
structures (the grating problem) which uses a posteriori error estimates to determine
the PML parameters such as the thickness and the medium property σ0 in the (2.2).
For the scattering problem (1.3a)–(1.3c), the main difficulty of the analysis is that in
contrast to the grating problems in which there are only finite number of outgoing
modes, now there are infinite number of outgoing modes expressed in terms of Hankel
functions. We overcome this difficulty by the by exploiting the following uniform
estimate for the Hankel functions H 1

ν , ν ∈ R.

Lemma 2.1. For any ν ∈ R, z ∈ C++ = {z ∈ C : �(z) ≥ 0,�(z) ≥ 0}, and � ∈ R

such that 0 < � ≤ |z|, we have

|H(1)
ν (z)| ≤ e

−�(z)
(

1− �2

|z|2
)1/2

|H(1)
ν (�)|.

The proof of the lemma which depends on the Macdonald formula for the modified
Bessel functions can be found in [12]. Lemma 2.1 allows us to prove the exponentially
decaying property of the PML solution without resorting to the integral equation
technique in [22] or the representation formula in [21]. As a corollary of Lemma 2.1,
we know that the function w in (2.3) satisfies

‖w ‖H 1/2(�ρ)
≤ e

−k�(ρ̃)
(

1− R2

|ρ̃|2
)1/2

‖ u ‖H 1/2(�R)
.

We remark that in [22], [21], it is required that the fictitious absorbing coefficient
must be linear after certain distance away from the boundary where the PML layer
is placed. We also remark that since (2.5) is valid for all real order ν, the results of
[12] can be extended directly to study three dimensional Helmholtz-type scattering
problems.

Let Mh be a regular triangulation of Bρ\D̄ and uh be the finite element solution
of the PML problem (2.4a)–(2.4b). Let Bh denote the set of all sides that do not lie
on �D and �hρ . For any K ∈ Mh, we introduce the residual

Rh := ∇ · (A∇uh|K)+ αβk2uh|K.
For any interior side e ∈ Bh which is the common side of K1 and K2 ∈ Mh, we
define the jump residual across e:

Je := (A∇uh|K1 − A∇uh|K2) · νe,
using the convention that the unit normal vector νe to e points from K2 to K1. If
e = �D ∩ ∂K for some element K ∈ Mh, then we define the jump residual

Je := 2(∇uh|K · n + g)

For any K ∈ Mh, denote by η
K

the local error estimator which is defined by

η
K

= max
x∈K̃

ω(x) ·
(
‖hKRh‖2

L2(K)
+ 1

2

∑
e⊂∂K

he‖ Je ‖2
L2(e)

)1/2
,
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where K̃ is the union of all elements having nonempty intersection with K , and

ω(x) =
⎧⎨
⎩

1 if x ∈ B̄R\D̄,
|α0α|e−k�(r̃)

(
1− r2

|r̃|2
)1/2

if x ∈ B̄ρ\BR.
Theorem 2.2. There exists a constant C depending only on the minimum angle of the
mesh Mh such that the following a posterior error estimate is valid:

‖ u− uh ‖H 1(�R)
≤ C�(kR)1/2(1 + kR)

( ∑
K∈Mh

η2
K

)1/2

+ C(1 + kR)2|α0|2e−k�(ρ̃)
(

1− R2

|ρ̃|2
)1/2

‖ uh ‖H 1/2(�R)
.

Here �(kR) = max

(
1,

|H(1)
0

′
(kR)|

|H(1)
0 (kR)|

)
.

From Theorem 2.2 we know that the a posteriori error estimate consists of two
parts: the PML error and the finite element discretization error. An adaptive algorithm
is developed in [12] which uses the a posteriori error estimate to determine the PML
parameters. We first choose ρ and σ0 such that the exponentially decaying factor

ω̂ = e
−k�(ρ̃)(1− R2

|ρ̃|2 )
1/2

≤ 10−8,

which makes the PML error negligible compared with the finite element discretization
errors. Once the PML region and the medium property are fixed, we use the standard
finite element adaptive strategy to modify the mesh according to the a posteriori error
estimate. The extensive numerical experiments reported in [12] show the competitive
behavior of the proposed adaptive method. In particular, the quasi-optimality of
meshes is observed and the adaptive algorithm is robust with respect to the choice of
the thickness of PML layer: the far fields of the scattering solutions are insensitive to
the choices of the PML parameters.

3. The AML method for nonlinear convection diffusion problems

Let � is a bounded domain in R
d (d = 1, 2, 3) with Lipschitz boundary and T > 0.

In this section we consider the following nonlinear convection-diffusion equation:

∂u

∂t
+ divf (u)−�A(u) = g in Q (3.1)

with the initial and boundary conditions

u|t=0 = u0, u|∂�×(0,T ) = 0. (3.2)
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Here u = u(x, t) ∈ R, with (x, t) ∈ Q = � × (0, T ). We assume that the function
f : R → R

d is locally Lipschitz continuous, the functionA : R → R is nondecreasing
and locally Lipschitz continuous, g ∈ L∞(Q) and u0 ∈ L∞(�).

Problems of the type (3.1) model a wide variety of physical phenomena including
porous media flow, flow of glaciers and sedimentation processes, or flow transport
through unsaturated porous media which is governed by the so-called Richards equa-
tion. For the Richards equation, the existence of weak solutions is considered in [1]
and the uniqueness of weak solutions is proved in [33] based on the Kružkov “doubling
of variables” technique. Entropy solutions for (3.1) are studied in [6], [29].

The discretization of (3.1) is based on combining continuous piecewise linear
finite elements in space with the characteristic finite difference in time. The method
of characteristic originally proposed in [24], [35] is widely used to solve convection-
diffusion problems in finite element community (cf. e.g. [26], [14]). Given Un−1

h as
the finite element approximation of the solution at time tn−1, let τn and V n0 ⊂ H 1

0 (�)

be the time step and the conforming linear finite element space at the nth time step,
then our discrete scheme reads as following: find Unh ∈ V n0 such that〈

Unh − Ūn−1
h

τn
, v

〉
+ 〈∇A(Unh ),∇v〉 = 〈ḡn, v〉 for all v ∈ V n0 , (3.3)

where ḡn = τ−1
n

∫ tn
tn−1 g(x, t)dt , Ūn−1

h (x) = Un−1
h (X̃(tn−1)), and the approximate

characteristic X̃(t) is defined by

dX̃/dt = f ′(Un−1
h (X̃(t))), X̃(tn) = x.

The well-known Kružkov “doubling of variables” technique originally appeared
in [28] plays a decisive role in the error estimation (both a posteriori and a priori) for
numerical schemes solving the Cauchy problems of nonlinear conservation laws (see
e.g. [17], [18], [27] and the reference therein). It is also used recently in [32] for the
implicit vortex centered finite volume discretization of the Cauchy problems of (3.1)
for general non-negativeA′(s) ≥ 0 for all s ∈ R. The common feature of these studies
is that the derived error indicators are of the order

√
h in the region where the solution

is smooth, where h is the local mesh size. We remark that in the region where the
diffusion is dominant, the error indicators developed for the parabolic equations (cf.
e.g. [34], [9]) are of order h. Thus the degeneration of the order of the error indicators
used in [32] may cause over-refinements for the solution of (3.1) in the region where
the diffusion is dominant.

The basic assumption in this paper is that the diffusion is positive

A′(s) > 0, for all s ∈ R.

This assumption includes the Richards equation and the viscosity regularization of de-
generate parabolic equations, for example, the regularized continuous casting problem
which is considered in [14]. The novelty of our analysis with respect to the analysis
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for nonlinear conservation laws in [17], [18], [27] or nonlinear degenerate parabolic
equations in [32] lies in the following aspects. Firstly, only Cauchy problems are
considered in [17], [18], [27], [32]. The difficulty to include boundary condition is
essential. Here we use the recently introduced technique of “boundary layer sequence”
in [29] to overcome the difficulty. The technique of “boundary layer sequence” allows
us to truncate the standard Kružkov test function (see Definition 3.4 below) to obtain
the admissible test function in the entropy error identity. Secondly, the nature of the
estimators are different: our estimators emphasize the diffusion effect of the problem
which requires the assumption A′(s) > 0 for any s ∈ R; the estimates in [32] are
valid for any nonlinear function A such that A′(s) ≥ 0. The nice consequence of
the analysis is that our a posteriori error estimates are able to recover the standard
sharp a posteriori error estimators in the literature derived for parabolic problem with
diffusion coefficients bounded uniformly away from zero.

Now we elaborate the main steps to derive sharp L1 a posteriori error estimate
for the discrete scheme (3.3) based on the Kružkov “doubling of variables” de-
vice. By testing (3.1) with any function ϕ ∈ L2(0, T ;H 1

0 (�)) such that φ( ·, 0) =
φ( ·, T ) = 0, we have∫ T

0
〈∂tu, ϕ〉 dt +

∫
Q

(−f (u)+ ∇A(u)) · ∇ϕ dxdt =
∫
Q

gϕ dxdt. (3.4)

For any ε > 0, let
Hε(z) = sgn(z)min(1, |z|/ε)

be the regularization of the sign function sgn(z). For any k ∈ R, define the entropy
pair (Uε, Fε) by

Uε(z, k) =
∫ z

k

Hε(A(r)− A(k)) dr, Fε(z, k) =
∫ z

k

Hε(A(r)− A(k))f ′(r) dr.

The following result is well known (cf. e.g. [6], [29]) by takingϕ = Hε(A(u)−A(k))φ
in (3.4).

Lemma 3.1. For any φ ∈ L2(0, T ;H 1
0 (�)) such that φ( ·, 0) = φ( ·, T ) = 0, and

any k ∈ R, we have

−
∫
Q

Uε(u, k)∂tφ −
∫
Q

Fε(u, k) · ∇φ +
∫
Q

Hε(A(u)− A(k))∇A(u) · ∇φ

+
∫
Q

H ′
ε(A(u)− A(k))|∇A(u)|2φ

=
∫
Q

gHε(A(u)− A(k))φ.

(3.5)

Let (H 1(�))′ be the dual space of H 1(�), we define the discrete residual R ∈
L2(0, T ; (H 1(�))′) through the following relation, for any ϕ ∈ H 1(�),

〈∂tUh, ϕ〉 − 〈f (Uh),∇ϕ〉 + 〈∇A(Uh),∇ϕ〉 = 〈g, ϕ〉 − 〈R, ϕ〉. (3.6)
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For any k′ ∈ R, by takingϕ = Hε(A(Uh)−A(k′))φ in (3.6), we have the following
result.

Lemma 3.2. For any φ ∈ L2(0, T ;H 1
0 (�)) such that φ( ·, 0) = φ( ·, T ) = 0, and

any k′ ∈ R, we have

−
∫
Q

Uε(Uh, k
′)∂tφ −

∫
Q

Fε(Uh, k
′) · ∇φ

+
∫
Q

Hε(A(Uh)− A(k′))∇A(u) · ∇φ

+
∫
Q

H ′
ε(A(Uh)− A(k′))|∇A(Uh)|2φ

=
∫
Q

gHε(A(Uh)− A(k′))φ −
∫ T

0
〈R, Hε(A(Uh)− A(k′))φ〉.

(3.7)

Now we are going to apply the Kružkov “doubling of variables” technique and
will always write u = u(y, s), Uh = Uh(x, t), unless otherwise stated. By taking
k = Uh(x, t) in (3.5) and k′ = u(y, s) in (3.7), we have the following entropy error
identity.

Lemma 3.3. Let φ = φ(x, t; y, s) be non-negative function such that

(x, t) �→ φ(x, t; y, s) ∈ C∞
c (Q) for every (y, s) ∈ Q,

(y, s) �→ φ(x, t; y, s) ∈ C∞
c (Q) for every (x, t) ∈ Q.

Then we have

−
∫
Q×Q

Uε(u,Uh)(∂tφ + ∂sφ)−
∫
Q×Q

Fε(u,Uh)(∇xφ + ∇yφ)

+
∫
Q×Q

Hε(A(u)− A(Uh))∇yA(u) · (∇xφ + ∇yφ)

+
∫
Q×Q

Hε(A(Uh)− A(u))∇xA(Uh) · (∇xφ + ∇yφ)

+
∫
Q×Q

H ′
ε(A(u)− A(Uh))|∇xA(Uh)− ∇yA(u)|2φ

= −
∫
Q×Q

∂t [Uε(Uh, u)− Uε(u,Uh))]φ

−
∫
Q×Q

∇x[Fε(Uh, u)− Fε(u,Uh))]φ

−
∫
Q(y,s)

∫ T

0
〈R, Hε(A(Uh)− A(u))φ〉 dt.

(3.8)
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The next objective is to remove the restriction that the test functions in the entropy
error identity (3.8) must have vanishing trace. This is achieved by using the technique
of boundary layer sequence introduced in [29]. For any δ > 0, the boundary layer
sequence ζδ is defined as the solution of the elliptic problem

−δ2�ζδ + ζδ = 1 in �, ζδ = 0 on ∂�.

We specify now the choice of the test function φ in the entropy error identity (3.8),
which is similar to that used in [29].

Definition 3.4. Let

φ(x, t, y, s) = ζδ(x)ζη(y)ξ(x, t, y, s)θ(t),

where θ ∈ C∞
c (0, T ) such that θ ≥ 0, and ξ is defined as follows. Let {ϕj }0≤j≤J be

a partition of unity subordinate to open sets B0, B1, . . . , BJ such that �̄ ⊂ ∪Jj=0Bj ,

B0 ⊂⊂ � and ∂� ⊂ ∪Jj=1Bj . Let ϕ̂j ∈ C∞
c (R

d), 0 ≤ ϕ̂j ≤ 1, such that supp(ϕ̂j ) ⊂
Bj and ϕ̂j (x) = 1 on the support of ϕj so that ϕj (x)ϕ̂j (x) = ϕj (x). We use ϕj as a
function of y and ϕ̂j as a function of x, and denote ϕ̂j (x)ϕj (y) = ψj(x, y). Define

ξ(x, t, y, s) =
J∑
j=0

ωl(t − s)ωm(x
′ − y′)ωn(xd − yd)ψj (x, y),

where ωl, ωn are sequences of symmetric mollifiers in R, ωm is a sequence of sym-
metric mollifier in R

d−1, and for j = 1, 2, . . . , J , x = (x′, xd), y = (y′, yd) are
local coordinates induced by ψj(x, y) in Bj , that is, Bj ∩ ∂� = {x ∈ Bj : xd =
ρj (x

′)}, B ∩ � = {x ∈ Bj : xd < ρj (x
′)} for some Lipschitz continuous function

ρj : R
d−1 → R.

By taking limit δ, η → 0 in the entropy error identity (3.8), we obtain the following
entropy error inequality.

Theorem 3.5. Let θ and ξ be defined in Definition 3.4. Then we have the following
entropy error inequality:

−
∫
Q×Q

Uε(u,Uh)ξθt −
∫
Q×Q

Kε(u,Uh) · (∇xξ + ∇yξ)θ

+
∫
Q×Q

H ′
ε(A(u)− A(Uh))|∇xA(Uh)− ∇yA(u)|2ξθ

≤ −
∫
Q×Q

∂t [Uε(Uh, u)− Uε(u,Uh))]ξθ (3.9)

−
∫
Q×Q

∇x[Fε(u,Uh)− Fε(u,Uh))]ξθ
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−
∫
Q(y,s)

∫
�(x,t)

(
Fε(u,Uh)−Hε(A(u)− A(Uh))∇yA(u)

)
· νxξθ

−
∫
Q(x,t)

∫
�(y,s)

(
Fε(u,Uh)−Hε(A(Uh)− A(u))∇xA(Uh)

)
· νyξθ

−
∫
Q(y,s)

∫ T

0
〈R, Hε(A(Uh)− A(u))ξθ〉 dt,

where Kε(u,Uh) = Fε(u,Uh) − Hε(A(u) − A(Uh))(∇yA(u) − ∇xA(Uh)), � =
∂�× (0, T ), and �(x,t) or �(y,s) are the domain of integration of � with respect to
(x, t) or (y, s) respectively.

For any ε > 0 and z ∈ R, define

ν(ε, z) = min{A′(s) : |A(s)− A(z)| ≤ ε}.

Assume A′ � A−1 is Lipschitz, then we have the following elementary estimate
which extends the result in [18, Corollary 6.4]:

|∂z[Uε(z, k)− Uε(k, z)]| ≤ ε

ν(ε, z)
K1,

|∂z[Fε(z, k)− Fε(k, z)]| ≤ ε

ν(ε, z)
K2,

(3.10)

where k, z ∈ R, K1 = L(A′ �A−1), K2 = K1‖ f ′ ‖L∞(R)+ L(f ′) with L(A′ �A−1)

and L(f ′) being the Lipschitz constant of A′ � A−1 and f ′ respectively.
To complete the Kružkov “doubling of variables” technique, we let first l, m → ∞

then n → ∞ in the entropy error inequality (3.9). The first two terms on the right-
hand side of (3.9) can be treated by using (3.10) and the third and fourth terms can be
shown to tend to zero. Thus we have

−
∫
Q

Uε(u,Uh)θt +
∫
Q

H ′
ε(A(u)− A(Uh))|∇(A(Uh)− A(u))|2θ

≤ Kε

∫
Q

1

ν(ε, Uh)
(|∂tUh| + |∇xUh|)θ −

∫ T

0
〈R, Hε(A(Uh)− A(u))θ〉 dt.

where K = max(K1,K2).
To proceed, we introduce the interior residual

Rn := ḡn − Unh − Ūn−1
h

τn
+�A(Unh ) on any K ∈ Mn,

where we recall that ḡn = τ−1
n

∫ tn
tn−1 g(x, t) dt .



Adaptive finite element methods 1175

Theorem 3.6. Let ε0 = ∑3
i=1 Ei , where E1, E2, E3 are the error indicators defined

below. For any m ≥ 1, let Qm = �× (0, tm), and define

�m = max

(
1,

∫
Qm

1

ν(ε0, Uh)
(|∂tUh| + |∇Uh|) +

∫
�

1

ν(ε0, U
m
h )

)
, (3.11)

where for any z ∈ R, ν(ε0, z) = min{A′(s) : |A(s)−A(z)| ≤ ε0}. Then there exists a
constant C depending only on the minimum angles of the meshes Mn, n = 1, . . . , m,
such that the following a posteriori error estimate is valid:

‖ um − Umh ‖L1(�) ≤ E0 + E4 + E5 + C�
1/2
m

( 3∑
i=1

Ei
)
,

where the error indicators Ei , i = 0, . . . , 5, are defined by

E0 = ‖ u0 − U0
h ‖L1(�) initial error

E1 =
( m∑
n=1

τn|||h1/2
n [[∇A(Unh )]]|||2L2(�)

)1/2
jump residual

E2 =
( m∑
n=1

τn‖hnRn ‖2
L2(�)

)1/2
interior residual

E3 =
( m∑
n=1

τn‖ ∇(A(Unh )− A(Un−1
h )) ‖2

L2(�)

)1/2
time residual

E4 =
m∑
n=1

∫ tn

tn−1

∥∥∥∥∥U
n
h − Ūn−1

h

τn
− (∂tUh + divf (Uh))

∥∥∥∥∥
L1(�)

dt
characteristic

and coarsening

E5 =
m∑
n=1

∫ tn

tn−1
‖ g − ḡn ‖L1(�) dt source.

In the case of strong diffusion A′(s) ≥ β > 0 for any s ∈ R and A′ is uniformly
Lipschitz continuous, then�n is bounded byβ−1‖Uh ‖BV (Qn) which is expected to be
bounded in practical computations. The a posteriori error estimator in Theorem 3.6
then recovers the standard a posteriori error estimator derived in the literature for
parabolic problems [34], [9]. In particular, the space error indicators En1 , E

n
2 , which

control the adaptation of finite element meshes at each time step, are sharp in the sense
that a local lower bound for the error can be established by extending the argument
in [9, Theorem 2.2] for linear parabolic equations.

We also remark that the method of the a posteriori error analysis here is different
from those for nonlinear conservation laws in [17], [18], [27] or nonlinear degenerate
parabolic equations in [32]. Recall that there are several parameters introduced in the
analysis:
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• The regularizing parameter ε in Hε(z).

• The boundary layer sequence parameters δ and η, and the mollifier parameters
l, m and n.

The analysis for Cauchy problems in [17], [18], [27] is based on letting ε → 0 and
taking finite mollifier parameters l, m, n. The analysis in [32] takes both finite ε and
finite mollifier parameters l, m, n. Note that there are no boundary layer sequence
parameters δ, η for the analysis for Cauchy problems. The analysis in this paper is
based on letting δ, η → 0 and l, m, n → ∞ but taking a finite ε. We are not able
to use the same technique as that in [17], [18], [27], [32] by choosing finite mollifier
parameters l, m, n to treat the problem with boundary conditions.

Based on the a posteriori error estimate in Theorem 3.6, an adaptive algorithm
is proposed and implemented in [11]. In particular, the numerical experiments in
[11] indicate that the total estimated error is roughly proportional to M−1/3, i.e.
η ≈ CM−1/3 for some constant C > 0. This implies the quasi-optimal decay of the
error

‖ u− Uh ‖L∞(0,T ;L1(�)) +
∫
Q

H ′
ε(A(u)− A(Uh))|∇(A(Uh)− A(u))|2 ≤ CM−1/3

is valid asymptotically. Here M is the sum of the number of elements of the space
meshes over all time steps.

Figure 3.1 shows the meshes and the surface plots of the solutions at time t =
0.251278 and t = 0.500878 for the Burger’s equation with small viscosity

∂u

∂t
+ u∂xu− ε�u = 0 in Q,

where � = (0, 1)2, T = 1.0, ε = 10−3, and the initial condition and boundary
condition

u(x, y, t)|∂� = u0(x, y) = 0.5 sin(πx)+ sin(2πx).

The adaptive algorithm is based on the a posteriori error estimate in Theorem 3.6 and
is described in [11]. We observe from Figure 3.1 that the method captures the internal
and boundary layers of the solution.

Acknowledgment. The author would like to thank Shibin Dai, Guanghua Ji, Feng
Jia, Xuezhe Liu, Ricardo H. Nochetto, Alfred Schmidt, and Haijun Wu for the joint
work through the years.
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Figure 3.1. The meshes (top) and the surface plots (bottom) of the solutions t = 0.400317 (left)
and t = 1.0 (right) with 35286 and 5020 nodes.
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Error estimates for anisotropic finite elements
and applications

Ricardo G. Durán∗

Abstract. The finite element method is one of the most frequently used techniques to approximate
the solution of partial differential equations. It consists in approximating the unknown solution
by functions which are polynomials on each element of a given partition of the domain, made
of triangles or quadrilaterals (or their generalizations to higher dimensions).

A fundamental problem is to estimate the error between the exact solution u and its com-
putable finite element approximation. In many situations this error can be bounded in terms
of the best approximation of u by functions in the finite element space of piecewise polyno-
mial functions. A natural way to estimate this best approximation is by means of the Lagrange
interpolation or other similar procedures.

Many works have considered the problem of interpolation error estimates. The classical
error analysis for interpolations is based on the so-called regularity assumption, which excludes
elements with different sizes in each direction (called anisotropic). The goal of this paper is to
present a different approach which has been developed by many authors and can be applied to
obtain error estimates for several interpolations under more general hypotheses.

An important case in which anisotropic elements arise naturally is in the approximation of
convection-diffusion problems which present boundary layers. We present some applications to
these problems.

Finally we consider the finite element approximation of the Stokes equations and present
some results for non-conforming methods.

Mathematics Subject Classification (2000). Primary 65N30; Secondary 65N15.

Keywords. Finite elements, Mixed methods, anisotropic elements, Stokes equations, convection-
diffusion.

1. Introduction

The finite element method in its different variants is one of the most frequently used
techniques to approximate the solution of partial differential equations. The general
idea is to use weak or variational formulations in an infinite dimensional space and to
replace that space by a finite dimensional one made of piecewise polynomial functions.
In this way, the original differential equation is transformed into an algebraic problem
which can be solved by computational methods. Although the main idea goes back
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to the works of Galerkin and Ritz in the early twentieth-century (or even to previous
works, see for example [9] for a discussion of the history of these ideas), the finite
element method became more popular since the middle of the twentieth century mainly
because of its application by engineers to structural mechanics. On the other hand,
the general mathematical analysis started only around forty years ago.

The theory of finite elements can be divided into a priori and a posteriori error
analysis. The main goals of the a priori analysis are to prove convergence of the
methods, to know the order of convergence (in terms of parameters associated with
the finite dimensional problem, such as degree of approximation, mesh-size, size of the
discrete problem, geometry of the elements, etc.) and the dependence of the error on
properties of the unknown exact solution (such as its smoothness, which in many cases
is already known from the theory of partial differential equations). Instead, the goals
of the a posteriori error analysis are to obtain more quantitative information on the
error and to develop self-adaptive methods to improve the approximation iteratively.

In this paper we consider several problems related to a priori error estimates. We
will deal mainly with the error analysis for flat or anisotropic elements, which arise
naturally in several applications.

Let us begin by recalling the basic ideas of weak formulations of differential
equations and finite element approximations. A general abstract formulation for
linear problems is given by

B(u, v) = F(v) for all v ∈ V , (1.1)

where u ∈ V is the solution to be found, V is a Hilbert space, F is a continuous linear
form and B is a continuous bilinear form, i.e., there exists a constantM > 0 such that

|B(u, v)| ≤ M‖u‖‖v‖
where ‖ · ‖ is the norm in the Hilbert space V .

To approximate the solution, we want to introduce a finite dimensional space
Vh ⊂ V . The usual way to do this is to introduce a partition Th of the domain�where
we want to solve the differential equation usually made of triangular or quadrilateral
elements (or their generalizations in 3D). The parameter h is usually related to the
mesh size. Then the space Vh consists of functions which restricted to each element
of the partition are polynomials.

The approximate solution of our problem is uh ∈ Vh that satisfies

B(uh, v) = F(v) for all v ∈ Vh.

Assume that the form B is coercive, namely, that there exists a constant α > 0
such that

B(v, v) ≥ α‖v‖2 for all v ∈ V . (1.2)

Then the classical error analysis is based on Cea’s lemma (see [14]), which states that

‖u− uh‖ ≤ M

α
‖u− v‖ for all v ∈ Vh. (1.3)
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Notice that (1.2) also guarantees existence and uniqueness of solution in V as well
as in Vh, thanks to the well-known Lax–Milgram theorem.

If this condition does not hold, but the form B satisfies the so-called inf-sup
conditions, that is, there exists β > 0 such that

inf
u∈Vh

sup
v∈Vh

B(u, v)

‖u‖‖v‖ ≥ β, (1.4)

inf
v∈Vh

sup
u∈Vh

B(u, v)

‖u‖‖v‖ ≥ β, (1.5)

then we also have

‖u− uh‖ ≤ M

β
‖u− v‖ for all v ∈ Vh. (1.6)

If the above inf-sup conditions hold in V , we also have uniqueness and existence
of solution. However, this is not sufficient to obtain (1.6), as the inf-sup conditions
are not inherited by subspaces. This is the main difference between error analysis of
coercive and non-coercive forms which satisfy (1.4) and (1.5).

The classical example of a form B which satisfies the inf-sup conditions but is
not coercive, is the form associated to the Stokes equations of fluid dynamics (see for
example [13], [20]).

In view of (1.3) and (1.6), in order to obtain an estimate for ‖u− uh‖ it is enough
to bound ‖u− v‖ for a function v ∈ Vh. Therefore this is one of the most important
problems in the theory of finite elements. Usually, the function v is taken to be a
Lagrange interpolation of u. However, in some cases it is more convenient to use
different approximations.

In many problems it is convenient to use spaces Vh which are not contained in V .
These methods are called non-conforming and in this case the right-hand sides of (1.3)
and (1.6) are modified by adding the so-called “consistency terms”. One of the best-
known methods of this type is that of Crouzeix–Raviart, which is closely related to
the mixed finite element methods of Raviart–Thomas (see [8], [23]).

The goal of this paper is to present general ideas to obtain error estimates for differ-
ent interpolations valid under very general hypotheses on the elements, in particular,
allowing meshes with flat or anisotropic elements. We consider Lagrange and other
kind of interpolations arising in mixed finite element methods and give some appli-
cations to the approximation of convection-diffusion equations for which anisotropic
elements are needed due to the presence of boundary layers.

Finally we consider the finite element approximation of the Stokes equations and
recall some results for non-conforming methods.
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2. Notation and some basic inequalities

The classical finite element analysis for triangular elements requires the so-called
regularity assumption, i.e.,

hT

ρT
≤ C (2.1)

where hT and ρT are the outer and inner diameter, respectively (see Figure 1). In
other words, the constants in the error estimates depend on C (see for example [11],
[14]).

ρT

hT

Figure 1

The same hypothesis is also needed for the analysis of mixed and non-conforming
methods (see [15] and [24]).

For standard Lagrange interpolation on conforming elements, since the works of
Babuska–Azis [10] and Jamet [21] it is well known that the regularity assumption can
be relaxed. For example, in the case of triangles it can be replaced by the weaker max-
imum angle condition (i.e. angles bounded away from π ). For rectangular elements,
optimal error estimates can be obtained for arbitrary rectangles (while the regular-
ity assumption requires that the edge sizes be comparable). In the case of general
quadrilaterals, the situation is more complicated and several conditions, weaker than
regularity, have been introduced to prove the error estimates (see, for example, [3]).

The standard method to prove error estimates is to obtain them first in a reference
element and then to make a change of variables (see [14]). A different approach
is to work directly in a given element and to use Poincaré type inequalities. The
main idea is that the interpolation error usually has some vanishing averages (on the
element, or edges, or faces, depending of the kind of interpolation considered). In
this approach, the reference element is sometimes used to obtain the Poincaré type
inequalities but, since one is bounding an L2-norm, the constants appearing in the
estimates are independent of the aspect ratio of the element.

We will use the following notation. By H 1(�) we mean the usual Sobolev space
of L2 functions with distributional first derivatives in L2 and byH 1

0 (�) the subspace
of H 1(�) of functions vanishing on the boundary.

Similarly, Wk,p(�), for 1 ≤ p ≤ ∞, indicates the Sobolev space of Lp(�)
functions with distributional derivatives of order k in Lp(�). When p = 2 we set
Hk(�) = Wk,2(�).
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Here � ⊂ R
n, n = 2, 3, is a bounded domain. For a general triangle T , hT

is its diameter, p0 is a vertex (arbitrary unless otherwise specified), v1, v2 (with
‖vi‖ = 1) are the directions of the edges �1, �2 sharing p0 (see Figure 2), and νi is
the exterior unit normal to the side �i (with obvious generalizations to 3D). We also
use the standard notation Pk for polynomials of total degree less than or equal to k,
and Qk for polynomials of degree less than or equal to k in each variable. We call T̂
the reference triangle with vertices at (0, 0), (1, 0) and (0, 1), and F : T̂ → T the
affine transformation F(x̂) = Bx̂ + p0 with Bei = livi , where ei are the canonical
vectors.

v1

θ

p0

v2

Figure 2

The following two results are the classical Poincaré inequality and a generalization
of it (first given in [10]) written in a convenient way for our purposes.

Lemma 2.1. Let T be a triangle (resp. tetrahedron) and let f ∈ H 1(T ) be a function
with vanishing average on T . Then there exists a constant C independent of T and
of f such that

‖f ‖L2(T ) ≤ C

n∑
j=1

|�j |
∥∥∥∥ ∂f
∂vj

∥∥∥∥
L2(T )

. (2.2)

Proof. It follows from the Poincaré inequality on T̂ and making the change of vari-
ables F . �

Lemma 2.2. Let T be a triangle (resp. tetrahedron) and � be any of its edges (resp.
faces). Let f ∈ H 1(T ) be a function with vanishing average on �. Then there exists
a constant C independent of T such that

‖f ‖L2(T ) ≤ C

n∑
j=1

|�j |
∥∥∥∥ ∂f
∂vj

∥∥∥∥
L2(T )

. (2.3)

Proof. It is enough to prove that, on the reference element T̂ ,

‖f ‖
L2(T̂ )

≤ C‖∇f ‖
L2(T̂ )

. (2.4)

Then, for a general triangle, the result follows by making the change of variables F .
The estimate (2.4) can be proved by a standard compactness argument (as was

done in [10]). A different proof can be given by a using (2.2) and a trace theorem.
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Indeed, if f
�̂

and f
T̂

denote the averages on �̂ and T̂ , respectively, and if we assume
that f

�̂
= 0 we have

‖f ‖
L2(T̂ )

= ‖f − f
�̂
‖
L2(T̂ )

≤ ‖f − f
T̂
‖
L2(T̂ )

+ ‖f
T̂

− f
�̂
‖
L2(T̂ )

.

But

f
T̂

− f
�̂

= 1

|�̂|
∫
�̂

(f
T̂

− f ),

and therefore an application of a standard trace theorem gives

‖f
T̂

− f
�̂
‖
L2(T̂ )

≤ C{‖f − f
T̂
‖
L2(T̂ )

+ ‖∇f ‖
L2(T̂ )

}
with a constant C which depends only on the reference element. Hence (2.4) follows
from (2.2). �

3. Error estimates for Lagrange interpolation

3.1. The two-dimensional case. To introduce the general idea we present first two
simple classical cases: the Lagrange interpolation for lowest degree finite elements in
triangles or rectangles. The argument is essentially that given in [10] for triangles. In
the case of rectangles, an extra step is required due to the presence of a non-vanishing
second derivative of the interpolating function.

Given a triangle T we denote with I1u ∈ P1 the Lagrange interpolation of u, i.e.,
the affine function which equals u on the vertices of T . D2u denotes the sum of the
absolute values of second derivatives of u.

Theorem 3.1. There exists a constant C such that, if θ is the maximum angle of T ,

‖∇(u− I1u)‖L2(T ) ≤ C

sin θ
hT ‖D2u‖L2(T ).

Proof. Observe that, for i = 1, 2, ∇(u− I1u) · vi , has vanishing average on one side
of T . Therefore, applying Lemma 2.2 and using that the second derivatives of I1u

vanish, we obtain

‖∇(u− I1u) · vi‖L2(T ) ≤ C

{
|�1|

∥∥∥∥∂∇u · vi

∂v1

∥∥∥∥
L2(T )

+ |�2|
∥∥∥∥∂∇u · vi

∂v2

∥∥∥∥
L2(T )

}
.

Then, if we choose p0 as the vertex corresponding to the maximum angle of T , we
have

|∇(u− I1u)| ≤ C

sin θ
{|∇(u− I1u) · v1| + |∇(u− I1u) · v2|},

and hence the theorem is proved. �
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We consider now the case of rectangles. We use the same notation, I1u, for the
interpolation which now belongs to Q1. The proof for this case is analogous to the

previous one, with the only difference that ∂
2I1u
∂x∂y

does not vanish.
Let R be a rectangle and let �1, �2 be two adjacent sides. Clearly, the result of

Lemma 2.2 holds for this case also.

Theorem 3.2. There exists a constant C, independent of the relation between |�1|
and |�1|, such that

∥∥∥∥ ∂
∂x
(u− I1u)

∥∥∥∥
L2(R)

≤ C

{
|�1|

∥∥∥∥∂2u

∂x2

∥∥∥∥
L2(R)

+ |�2|
∥∥∥∥ ∂2u

∂x∂y

∥∥∥∥
L2(R)

}
(3.1)

and ∥∥∥∥ ∂
∂y
(u− I1u)

∥∥∥∥
L2(R)

≤ C

{
|�1|

∥∥∥∥ ∂2u

∂x∂y

∥∥∥∥
L2(R)

+ |�2|
∥∥∥∥∂2u

∂y2

∥∥∥∥
L2(R)

}
. (3.2)

Proof. Proceeding as in the case of triangles, we have

∥∥∥∥ ∂
∂x
(u− I1u)

∥∥∥∥
L2(R)

≤ C

{
|�1|

∥∥∥∥∂2(u− I1u)

∂x2

∥∥∥∥
L2(R)

+ |�2|
∥∥∥∥∂2(u− I1u)

∂x∂y

∥∥∥∥
L2(R)

}
.

(3.3)
But, ∂

2I1u

∂x2 = 0 and an elementary computation shows that

∫
R

∂2I1u

∂x∂y
=
∫
R

∂2u

∂x∂y
,

i.e., ∂
2I1u
∂x∂y

is the average of ∂2u
∂x∂y

on R. Then

∥∥∥∥∂2I1u

∂x∂y

∥∥∥∥
L2(R)

≤
∥∥∥∥ ∂2u

∂x∂y

∥∥∥∥
L2(R)

and therefore (3.1) holds. Obviously, the proof of (3.2) is analogous. �

Remark 3.3. If the function u ∈ H 3(R), then the last term on the right-hand side
of (3.3) is of higher order. Indeed, that term is the difference between ∂2u

∂x∂y
and its

average. Therefore we have the estimate

∥∥∥∥ ∂
∂x
(u− I1u)

∥∥∥∥
L2(R)

≤ C|�1|
∥∥∥∥∂2u

∂x2

∥∥∥∥
L2(R)

+ higher order terms.

3.2. The three-dimensional case. Many results on finite elements can be extended
almost straightforward from 2D to 3D. However, this is not the case of error estimates
for anisotropic elements. Indeed, counterexamples for an estimate analogous to (3.1)
in the 3D case have been given in [6] and [26]. They show that the constant in the
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estimate blows-up when a rectangular reference tetrahedron (or cube) is compressed
in one direction.

Many papers have been published considering the 3D case. For example, in the
case of tetrahedra, Krízek [22] introduced a natural generalization of the maximum
angle condition: if the angles between faces and the angles in the faces are bounded
away from π , he obtained error estimates for smooth functions, namely, u ∈ W 2,∞.
In [16] the results of Krízek were extended to functions inW 2,p with 2 < p < ∞ (and,
moreover, to functions in an intermediate Orlicz space betweenH 2 andW 2,p, p > 2).
Therefore, although the estimate fails for functions inH 2, it is valid for functions only
slightly more regular. Let us mention that the reason why the arguments applied in
2D cannot be generalized, is that the estimate given in Lemma 2.2 is not true in 3D
if � is an edge instead of a face (note that the interpolation error for the Lagrange
interpolation has vanishing integral on edges).

On the other hand, many papers have considered error estimates for different
interpolations (see for example [1], [5], [16], [17]), namely, different variants of
average interpolators. This kind of interpolations have been introduced to approximate
non-smooth functions (for which the Lagrange interpolation is not even defined).
However, they have as well better approximation properties on anisotropic elements
for functions in H 2. Indeed, using average interpolations, the 2D results can be
generalized to 3D. Observe that, in view of (1.3) and (1.6), error estimates for an
average interpolation will give bounds for finite element approximations.

4. Applications to convection-diffusion equations

A very important application in which anisotropic elements are needed is the approx-
imation of convection-diffusion problems in which boundary layers arise.

Consider for example the model problem

−ε�u+ b · ∇u+ cu = f in �,

u = 0 on ∂�,
(4.1)

where � = (0, 1)2 and ε > 0 is a small parameter.
It is well known that the numerical approximation of this equation requires some

special method in order to obtain good results when the problem is convection dom-
inated, due to the presence of boundary or interior layers. In the case of boundary
layers, one possibility is to use appropriate refined meshes near the boundary; this
methodology gives rise to anisotropic elements. Using estimates (3.1) and (3.2) it
is possible to obtain quasi-optimal order convergence (with respect to the number of
nodes) in the ε-norm defined by

‖v‖2
ε = ‖v‖2

L2(�)
+ ε‖∇v‖2

L2(�)

for the standard Q1 approximation on appropriate graded meshes.
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This problem can be written in the general form (1.1) with V = H 1
0 (�),

B(u, v) =
∫
�

(ε∇u∇v + b · ∇u v + c uv) dx

and

F(v) =
∫
�

f v dx.

Assuming that there exists a constant μ independent of ε such that

c − div b

2
≥ μ > 0, (4.2)

the bilinear form B is coercive in the ε-norm uniformly in ε (see [25]), i.e., the
constant α in (1.2) is independent of ε. However, the continuity of B is not uniform
in ε and this is one of the reasons why it is not possible to apply directly the general
result (1.3) to obtain error estimates valid uniformly in ε. Therefore, a special analysis
is required and this was the object of [18]. It was proved in that paper that

‖u− uh‖ε ≤ C
log2(1/ε)√

N
,

whereN is the number of nodes and h > 0 is a parameter associated with the meshes.
Observe that this order of convergence is quasi-optimal in the sense that, up to the
logarithm factor, it is the same order that one obtains for a smooth solution of a
problem with ε = O(1) using uniform meshes.

Assuming that the coefficient b is such that the boundary layers are close to x = 0
and y = 0, the meshes Th are such that the grading in each direction is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ξ0 = 0,

ξi = ihε for 1 ≤ i < 1
h

+ 1,

ξi+1 = ξi + hξi for 1
h

+ 1 ≤ i ≤ M − 2,

ξM = 1,

(4.3)

where M is such that ξM−1 < 1 and ξM−1 + hξM−1 ≥ 1. We assume that the last
interval (ξM−1, 1) is not too small in comparison with the previous one (ξM−2, ξM−1)

(if this is not the case, we just eliminate the node ξM−1).
Figure 3 shows the approximate solution of (4.1) for

ε = 10−6, b = (1 − 2ε)(−1,−1), c = 2(1 − ε)

and

f (x, y) = −
[
x −

(
1 − e− x

ε

1 − e− 1
ε

)
+ y −

(
1 − e−

y
ε

1 − e− 1
ε

)]
ex+y.
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Observe that no oscillations arise although we are using the standard Q1 finite
element method.

The graded meshes are an alternative to the well-known Shishkin meshes which
have been widely analyzed for convection-diffusion problems (see for example [25]).

From the error analysis given in [18] one can see that a graded mesh designed for
a value of ε works well also for larger values of ε. This is not the case for Shishkin
meshes. Table 1 shows the values of the ε-norm of the error for different values of ε,
solving the problem with the mesh corresponding to ε = 10−6, using graded meshes
and Shishkin meshes.

Table 1

ε Error

10−6 0.040687

10−5 0.033103

10−4 0.028635

10−3 0.024859

10−2 0.02247

10−1 0.027278

ε Error

10−6 0.0404236

10−5 0.249139

10−4 0.623650

10−3 0.718135

10−2 0.384051

10−1 0.0331733

Graded meshes, N = 10404. Shishkin meshes, N = 10609.

To see the different structures, we show in Figure 4 a Shishkin mesh (on the right)
and one of our graded meshes (on the left) having the same number of nodes. For
the sake of clarity, we show only the part of the meshes corresponding to (0, 1/2)×
(0, 1/2) and ε = 10− 3

2 .
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5. Error estimates for Raviart–Thomas interpolation

5.1. The two dimensional case. The Raviart–Thomas spaces were introduced in
[24] to approximate vector fields u ∈ H(div, �) where

H(div, �) = {u ∈ L2(�) : div u ∈ L2}.
For any integer k ≥ 0, the space RT k on a triangle T is defined by

RT k(T ) = P 2
k (T )⊕ (x, y)Pk(T ).

CallingPk theL2 orthogonal projection on Pk(T ), it is known (see [24]) that there
exists an operator RTk : H 1(T )2 → RTk(T ) satisfying the following commutative
diagram property:

H 1(T )2
div ��

RTk

��

L2(T )

Pk

��
RTk(T ) div

�� Pk(T ) �� 0.

(5.1)

For the case of anisotropic elements, only the lowest degree case RT 0 has been
considered. Error estimates for this case have been obtained in [2].

Below we will show how the arguments can be generalized to obtain error estimates
for the case of RT 1. Higher order approximations can be treated similarly although
this extension is not straightforward.

Let us first recall the results for RT 0. Again, the results follow by the generalized
Poincaré inequality given in Lemma 2.2 as we show in the next theorem.
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Theorem 5.1. There exists a constant C such that, if θ is the maximum angle of T ,

‖u − RT0u‖L2(T ) ≤ C

sin θ

2∑
k=1

|�k|
(∥∥∥∥ ∂u∂vk

∥∥∥∥
L2(T )

+ ‖ div u‖L2(T )

)
.

Proof. Since (u − RT0u) · νi has zero mean value on �i , it follows from Lemma 2.2
that

‖(u − RT0u) · νi‖L2(T ) ≤ C

2∑
k=1

|�k|
∥∥∥∥∂(u − RT0u) · νi

∂vk

∥∥∥∥
L2(T )

. (5.2)

But it is easy to check that

∂(RT0u · νi)
∂vk

= 1

2
(divRT0u) vk · νi.

On the other hand, using the commutative diagram property (5.1), we have

‖ divRT0u‖L2(T ) ≤ ‖ div u‖L2(T )

and so it follows from (5.2) that

‖(u − RT0u) · νi‖L2(T ) ≤ C

2∑
k=1

|�k|
(∥∥∥∥ ∂u∂vk

∥∥∥∥
L2(T )

+ ‖ div u‖L2(T )|νi · vk|
)
. (5.3)

Up to now the constant C is independent of T . If we want to bound ‖u −
RT0u‖L2(T ), it is natural to expect that the constant will depend on the geometry
of the element.

In view of (5.3) it would be enough to control u−RT u in terms of its components
in the directions of the normals to the edges. For a fixed triangle the estimate

|u − RT0u| ≤ C{|(u − RT0u) · ν1| + |(u − RT0u) · ν2|}
holds. Moreover, for a family of triangles, the constant C will not degenerate if the
angle between ν1 and ν2 does not go to 0 or π or, equivalently, if the angle between the
corresponding edges does not go to 0 or π . Therefore the constant will be uniformly
bounded for a family of elements with maximum angle bounded away from π . More
precisely, we have

‖u − RT0u‖L2(T ) ≤ C

sin θ

2∑
i=1

‖(u − RT0u) · νi‖L2(T ) (5.4)

where θ is the maximum angle of T . Indeed, if N is the matrix which has ν1 and ν2
as its rows, then

‖u − RT0u‖L2(T ) ≤ ‖N−1‖
2∑
i=1

‖(u − RT0u) · νi‖L2(T )
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where ‖ · ‖ denotes the matrix norm associated with the euclidean norm. But since
the νi are unit vectors it follows that ‖N−1‖ ≤ C

| detN | and | detN | = sin θ1, where θ1
is the angle between ν1 and ν2. If the vertex p0 is the one corresponding to the
maximum angle θ1 = π − θ , then (5.4) holds and the theorem is proved. �

Similar arguments can be applied for the analysis of higher order elements. How-
ever the extension is not straightforward. In what follows we consider the case of
RT 1. This case requires the following generalization of the Poincaré inequality.

Lemma 5.2. Let T be a triangle and � one of its sides. If f ∈ H 2(T ) satisfies∫
�

fp = 0 for all p ∈ P1(�) and
∫
T

f = 0,

then
‖f ‖L2(T ) ≤ Ch2

T ‖D2f ‖L2(T )

with a constant C independent of the shape of the triangle.

Proof. Observing that, if f ∈ P1 satisfies the three hypotheses of the lemma then
f = 0, it follows by standard compactness arguments that

‖f ‖
L2(T̂ )

≤ C‖D2f ‖
L2(T̂ )

.

Then an affine change of variables concludes the proof. �

To obtain the error estimate for theRT1 interpolation we will need to have a bound
for the gradient of the P1 projection. This is the goal of the next lemma.

Lemma 5.3. If f ∈ H 1(T ) we have

‖∇P1f ‖L2(T ) ≤ C‖∇f ‖L2(T )

with a constant C depending only on the maximum angle of T .

Proof. We will prove that for the triangle with vertices at (0, 0), (h, 0) and (0, 1) we
have

‖∇P1f ‖L2(T ) ≤ 6‖∇f ‖L2(T ).

Then the general result follows by an affine change of variables.
LetMi , i = 1, 2, 3 be the mid-side points of T . Since the quadrature rule obtained

by interpolating at these points is exact for quadratic polynomials, it is easy to see
that the functions

φ1 =
(

6

h

)1/2

(1−2y), φ2 =
(

6

h

)1/2(
2y+ 2x

h
−1

)
and φ3 =

(
6

h

)1/2(
1− 2x

h

)

form an orthonormal basis of P1(T ). Then

P1f =
3∑
i=1

ciφi
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with ci = ∫
T
f φi . Therefore,

∂P1f

∂x
= 2

√
6

h
3
2

∫
T

f (φ2 − φ3) = 24

h2

∫
T

f (x, y)
(
y + 2x

h
− 1

)
dxdy.

Now observe that, for any y ∈ (0, 1),∫ h(1−y)

0

(
y + 2x

h
− 1

)
dx = 0

and so, denoting f (y) = 1
h(1−y)

∫ h(1−y)
0 f (x, y) dx, we obtain

∂P1f

∂x
= 24

h2

∫ 1

0

∫ h(1−y)

0
(f (x, y)− f (y))

(
y + 2x

h
− 1

)
dxdy.

But using the one dimensional Poincaré inequality we have∫ h(1−y)

0
|f (x, y)− f (y))| dx ≤ h

2

∫ h(1−y)

0

∣∣∣∣∂f
∂x
(x, y)

∣∣∣∣ dx
and, since

∣∣y + 2x
h

− 1
∣∣ ≤ 1, it follows that

∣∣∣∣∂P1f

∂x

∣∣∣∣ ≤ 12

h

∫ 1

0

∫ h(1−y)

0

∣∣∣∣∂f
∂x
(x, y)

∣∣∣∣ dxdy.
Therefore ∣∣∣∣∂P1f

∂x

∣∣∣∣ ≤ 12

h

∥∥∥∥∂f
∂x

∥∥∥∥
L1(T )

≤ 12

h
|T | 1

2

∥∥∥∥∂f
∂x

∥∥∥∥
L2(T )

and consequently ∥∥∥∥∂P1f

∂x

∥∥∥∥
L2(T )

≤ 6
∥∥∥∥∂f
∂x

∥∥∥∥
L2(T )

.

Clearly, the same arguments can be applied to bound the derivative with respect to y.
�

Theorem 5.4. There exists a constant C depending only on the maximum angle of T
such that

‖u − RT1u‖L2(T ) ≤ Ch2
T ‖D2u‖L2(T ).

Proof. From the definition of RT1u we know that, for i = 1, 2, 3, (u − RT1u) · νi
satisfies the hypotheses of Lemma 5.2 and then

‖(u − RT1u) · νi‖L2(T ) ≤ Ch2
T ‖D2(u − RT1u)‖L2(T ).

So, in order to estimate the component of u − RT1u in the direction νi , we need to
bound the second derivatives of RT1u in terms of D2u.
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But an easy computation shows that, for any v ∈ RT 1(T ),

∂2v

∂x2 = 2

3

(
∂(div v)

∂x
, 0
)
,

∂2v

∂y2 = 2

3

(
0 ,
∂(div v)

∂y

)

and
∂2v

∂x∂y
= 1

3

(
∂(div v)

∂y
,
∂(div v)

∂x

)
.

Therefore we have

‖(u − RT1u) · νi‖L2(T ) ≤ Ch2
T

{‖D2u‖L2(T ) + ‖∇(div RT1u)‖L2(T )

}
. (5.5)

Now from (5.1) we know that

∇(divRT1u) = ∇(P1 div u),

hence applying Lemma 5.3 yields

‖∇(divRT1u)‖L2(T ) ≤ C‖∇(div u)‖L2(T )

and using this inequality in (5.5) we obtain the estimates for the normal components
of (u−RT1u). Then, to conclude the proof of the theorem, we proceed as in the case
of RT0. �

5.2. The three-dimensional case. As in the case of the Lagrange interpolation,
the 3D case presents some important differences with the 2D one. We recall that the
definition of RT k can be extended straightforwardly to the 3D case. Indeed, for T a
tetrahedron we have

RT k(T ) = P 3
k (T )⊕ (x, y, z)Pk(T ).

The maximum angle condition can be generalized in different ways. The first one,
introduced in [2], is the regular vertex property. We say that a tetrahedron satisfies
this property with a constant c > 0 if it has a vertex p0 such that | detM| ≥ c > 0,
where M is the matrix which has vi , i = 1, 2, 3 as rows (where we are using the
obvious generalization of the notation of the 2D case).

Under this hypothesis, Theorem 5.1 can be generalized almost straightforwardly.
Indeed, the basic result given in Lemma 2.2 is valid now for functions with vanishing
average on a face of T , and using this result we can prove, arguing as in the 2D case,
that

‖(u − RT0u) · νi‖L2(T ) ≤ C

3∑
k=1

|�k|
(∥∥∥∥ ∂u∂vk

∥∥∥∥
L2(T )

+ ‖ div u‖L2(T )|νi · vk|
)
.

As a consequence we obtain the following estimate.
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Theorem 5.5. Let T be a tetrahedron satisfying the regular vertex property with a
constant c > 0. Then there exists a constant C depending only on c such that

‖u − RT0u‖L2(T ) ≤ C

3∑
k=1

|�k|
(∥∥∥∥ ∂u∂vk

∥∥∥∥
L2(T )

+ ‖ div u‖L2(T )

)
. (5.6)

The other “natural” generalization of the 2D maximum angle condition is the
condition introduced by Krízek [22]. We say that a family of tetrahedra satisfies the
maximum angle condition with a constant ψ < π if the angles inside the faces and
the angles between faces are bounded above by ψ .

It is easy to see that in the 2D case the regular vertex property is equivalent to
the maximum angle condition. However, the situation is different in the 3D case.
In fact, the family in Figure 5, with arbitrary lengths h1, h2, h3, satisfies uniformly
the maximum angle condition but not the regular vertex property (take for example
h1 = h3 = h2, and h2 = h). On the other hand, the regular vertex property implies
the maximum angle condition (see [2]). A natural question is whether or not error

h3

h2

h1

Figure 5

estimates for the RT0 interpolation hold under the maximum angle condition. The
answer is positive. In [2] the following result was proved.

Theorem 5.6. If T is a tetrahedron satisfying the maximum angle condition with a
constant ψ . Then there exists a constant C depending only on ψ such that

‖u − RT0u‖L2(T ) ≤ ChT ‖Du‖L2(T ). (5.7)

Again the basic tool to obtain this estimate is the generalization to 3D of Lemma 2.2.
Indeed, consider the face mean average interpolator introduced in [15], namely,
� : H 1(T ) → P1(T ) given by ∫

S

�w =
∫
S

w

for any face S of T .
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Lemma 5.7. The following error estimates hold with a constant C independent of T :

‖w −�w‖L2(T ) ≤ C

3∑
j=1

|�j |
∥∥∥∥ ∂w
∂vj

∥∥∥∥
L2(T )

(5.8)

∥∥∥∥∂�w
∂ξ

∥∥∥∥
L2(T )

≤
∥∥∥∥∂w
∂ξ

∥∥∥∥
L2(T )

(5.9)

∥∥∥∥∂(w −�w)

∂ξ

∥∥∥∥
L2(T )

≤ C

3∑
j=1

|�j |
∥∥∥∥ ∂2w

∂vj ∂ξ

∥∥∥∥
L2(T )

(5.10)

where ∂
∂ξ

is a derivative in any direction.

Proof. Since w −�w has vanishing mean value on the faces of T , it follows from
Lemma 2.2 that

‖w −�w‖L2(T ) ≤ C

3∑
j=1

|�j |
∥∥∥∥∂(w −�w)

∂vj

∥∥∥∥
L2(T )

. (5.11)

Now, it follows from the definition of � that∫
T

∂�w

∂ξ
=
∫
T

∂w

∂ξ

or, in other words, the constant ∂�w
∂ξ

is the average on T of ∂w
∂ξ

and so (5.9) holds and

(5.10) follows from Lemma 2.1. Finally, (5.8) is a consequence of (5.11) and (5.9).
�

Now it is not difficult to check that, for any u ∈ H 1(T )3,

RT0�u = RT0u

where � is the vector version of �. Consequently,

‖u − RT0u‖L2(T ) ≤ ‖u −�u‖L2(T ) + ‖�u − RT0�u‖L2(T )

and therefore, in view of (5.8), to prove (5.7) it is enough to prove the error estimate
for u ∈ P1(K)

3. In this way the problem is reduced to a finite dimensional one and
the error estimate (5.7) can be proved under the maximum angle condition (see [2]
for details).

6. The Stokes equations

The Stokes equations are given by

−�u + ∇p = f in �,

div u = 0 in �,

u = 0 on ∂�,
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where u is the velocity and p the pressure of a fluid contained in �.
This problem can be written in the form (1.1) with V = H 1

0 (�)
n ×L2

0(�) where

L2
0(�) = {

f ∈ L2(�) : ∫
�
f = 0

}
,

B((u, p), (v, q)) =
n∑

i,j=1

∫
�

∂ui

∂xj

∂vi

∂xj
−
∫
�

p div v −
∫
�

q div u

and

F(v, q) =
∫
�

f v.

Then to obtain a finite element approximation we need to use a space Wh for the
velocity and a space Qh for the pressure. Note that since in this case the form B is
symmetric, the two conditions (1.4) and (1.5) are exactly the same. From the classical
theory for mixed finite elements of Brezzi [12] we know that to obtain (1.4) for the
space Vh = Wh ×Qh it is enough to prove that there exists γ > 0, independent of h,
such that

inf
q∈Qh

sup
v∈Wh

∫
�
q div v

‖p‖L2‖v‖H 1
0

≥ γ. (6.1)

Equivalently, for any f ∈ Qh, there exists a solution u ∈ Wh of∫
�

div u · q =
∫
�

f q for all q ∈ Qh, (6.2)

‖u‖H 1
0

≤ C‖f ‖L2 (6.3)

with C depending only on the domain �.
A lot of work has been done to prove this inf-sup condition for different choices

of spaces Wh and Qh. We refer for example to the books [13], [20]. However, most
proofs require the regularity assumption (2.1) on the elements although it is not known
whether it is essential or not.

One of the main tools to prove (6.1) is the so-called Fortin operator introduced
in [19], which in the case of the Stokes equations is an operator � : H 1

0 (�)
n → Wh

such that ∫
�

q div(v −�v) = 0 for all q ∈ Qh

and
‖�v‖H 1

0
≤ C‖v‖H 1

0
(6.4)

with a constant C independent of h.
Consider for example the non-conforming method of Crouzeix–Raviart, namely,

Wh are the (P1)
n functions in each element which are also continuous at the midpoints

of the edges or faces of the partition, andQh are piecewise constant functions. Error
estimates for anisotropic elements for this method have been proved in [2], [7].
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The Fortin operator for this case is the edge (or face) mean average interpolator�
defined in the previous section. In view of (5.9), estimate (6.4) holds with a constant
independent of the geometry of the elements which can be taken to be one. However,
this is a non-conforming method (because Wh 
⊂ H 1

0 (�)
2) and therefore, to obtain

error estimates, some consistency terms have to be bounded. This can be done by
using theRT0 interpolation analyzed in the previous section. In this way it is possible
to obtain optimal error estimates for this method under the maximum angle condition
(see [2]).
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Linear subdivision schemes for the refinement of geometric
objects
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Abstract. Subdivision schemes are efficient computational methods for the design, representa-
tion and approximation of surfaces of arbitrary topology in R

3. Subdivision schemes generate
curves/surfaces from discrete data by repeated refinements. This paper reviews some of the
theory of linear stationary subdivision schemes and their applications in geometric modelling.
The first part is concerned with “classical” schemes refining control points. The second part
reviews linear subdivision schemes refining other objects, such as vectors of Hermite-type data,
compact sets in R

n and nets of curves in R
3. Examples of various schemes are presented.
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1. Introduction

Subdivision schemes in geometric applications are efficient tools for the generation
of curves/surfaces from discrete data, by repeated refinements.

The first subdivision schemes where devised by de Rahm [54] for the generation
of functions with a first derivative everywhere and a second derivative nowhere.

In geometric modelling the first schemes were proposed for easy and quick ren-
dering of B-spline curves. A B-spline curve has the form

C(t) =
∑
i

PiBm(t − i) (1)

with {Pi} points in R
d (d = 2 or 3) termed control points, andBm aB-spline of degree

mwith integer knots, namelyBm|[i,i+1] is a polynomial of degreem,Bm ∈ Cm−1(R),
suppBm = [0,m+1]. Equation (1) is a parametric representation of aB-spline curve.
By using the refinement equation satisfied by a B-spline,

Bm(x) =
m+1∑
i=0

a
[m]
i Bm(2x − i), a

[m]
i = 2−m

(
m+ 1

i

)
, i = 0, . . . , m+ 1. (2)
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C(t) in (1) has the parametric representations

C(t) =
∑
i

P 0
i Bm(t − i) =

∑
i

P 1
i Bm(2t − i) = · · ·

=
∑
i

P ki Bm(2
kt − i) = · · · ,

(3)

where
P �+1
i =

∑
j

a
[m]
i−2jP

�
j , � = 0, 1, 2, . . . , (4)

with the convention a[m]
i = 0, i /∈ {0, 1, . . . , m+ 1}.

As is demonstrated in §2.3, the differences {P ki −P ki−1} tend to zero as k increases,
and since Bm ≥ 0 and

∑
i Bm(t − i) ≡ 1 [6], the polygonal line through the control

points {P ki } is close to C(t) for k large enough, and can be easily rendered.
The relation (4) encompasses the refinement rule for B-spline curves. The first

scheme of this type was devised by Chaikin [10] for quadraticB-spline curves, and the
schemes for general B-spline curves were investigated in [14]. All other subdivision
schemes can be regarded as a generalization of the spline case.

original iteration #1

iteration #2 iteration #3

Figure 1. Refinements of a polygon with Chaikin scheme.

In this paper we first review the “classical” subdivision schemes for the refinement
of control points. The schemes for the generation of curves are direct generalizations
of (4), in the sense that the coefficients, defined in (2), are replaced by other sets of
coefficients. The “classical” schemes, and in particular those generating surfaces, are
used extensively in Computer Graphics. In §2 we discuss the construction of such
schemes, their approximation properties, tools for the analysis of their convergence
and smoothness, and their application to the generation of surfaces from general nets
of points in R

3. Examples of important schemes are presented.
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Subdivision schemes for the refinement of objects other than control points are
reviewed in §3. These schemes include subdivision schemes refining vectors, in
particular, vectors consisting of values of a function and its consecutive derivatives,
schemes refining compact sets in R

n and a scheme refining nets of curves.
All the schemes reviewed in this paper are linear. Recently, various non-linear

schemes were devised and analyzed (see, e.g., [26] and references therein). It seems
that this is one of the future directions in the study of subdivision schemes. Appli-
cations of “classical” schemes to the numerical solution of special types of PDEs is
another direction. (See, e.g., [11]).

New “classical” schemes are still being devised for particular applications. For
example, adaptive refinements can be accomplished straightforwardly by refining
according to topological rules different from the “classical” ones, therefore, corre-
sponding linear schemes had to be devised (see, e.g. [48] and [59]).

2. Stationary linear schemes for the refinement of control points

A subdivision scheme Sa for the refinement of control points is defined by a finite set
of coefficients called mask a = {ai ∈ R : i ∈ σ(a) ⊂ Z

s}. Here σ(a) denotes the
finite support of the mask, s = 1 corresponds to curves and s = 2 to surfaces. The
refinement rule is

P k+1
α =

∑
β∈Z

s

aα−2βP
k
β , α ∈ Z

s . (5)

Remark. In most of the paper we consider schemes defined on Z
s , although, in

geometric applications the schemes operate on finite sets of data. Due to the finite
support of the mask, our considerations apply directly to closed curves/surfaces, and
also to “open” ones, except in a finite zone near the boundary.

In the case s = 1, a subdivision scheme is termed uniformly convergent (or
convergent for geometric applications) if the sequence {P k(t)} of polygonal lines
through the control points at refinement levels k = 0, 1, 2, . . . (with parametric
representation as the piecewise linear interpolants to the data {(i2−k, P ki ) : i ∈ Z},
k = 0, 1, 2, . . . ), converges uniformly in bounded intervals. In the case s = 2, we
require the uniform convergence of the sequence of piecewise bi-linear interpolants
to the data {(α2−k, P kα ) : α ∈ Z

2} on bounded squares [9], [33], [24].
The convergence of a scheme Sa implies the existence of a basic-limit-function φa ,

being the limit obtained from the initial data, f 0
i = 0 everywhere on Z

s exceptf 0
0 = 1.

It follows from the linearity and uniformity of (5) that the limit obtained from any
set of initial control points P 0 = {P 0

α ∈ R
d : α ∈ Z

s}, S∞
a P 0, can be written in

terms of integer translates of φa , as

S∞
a P 0(x) =

∑
α∈Z

s

P 0
αφa(x − α), x ∈ R

s . (6)



1204 Nira Dyn

For s = 1 and d = 2 or d = 3, (6) is a parametric representation of a curve in R
d ,

while for s = 2 and d = 3, (6) is a parametric representation of a surface in R
3.

Also, by the linearity, uniformity and stationarity of the refinement (5), φa satisfies
the refinement equation (two-scale relation)

φa(x) =
∑
α∈Zs

aαφa(2x − α), (7)

analogous to the refinement equation (2) for B-splines.
It follows from (5) or from (7) that supp(φa) is contained in the convex hull of σ(a)

[9], as is the case for the B-spline schemes.
The choice of the mask in the design of good schemes is partly heuristic and

partly aims at obtaining specific properties of the scheme as convergence, smoothness,
locality, interpolation, shape preservation, and approximation order.

For the case s = 1, the topology of Z is sufficient to describe an ordered set
of control points for curve design. For the case s = 2, the topology of Z

2, where
the point (i, j) is connected to the four points (i ± 1, j), (i, j ± 1), is sufficient to
describe a set of control points in R

3, connected each to four neighboring points
and constituting a quad-mesh. The above connectivity of Z

2, with the additional
connections of the point (i, j) to the points (i + 1, j + 1), (i − 1, j − 1), forms
the three-direction mesh which is sufficient to describe a regular triangulation (each
vertex is connected to six neighboring vertices). These two types of topologies of Z

2,
are also relevant to general topologies of control points, since they are generated by
most of the topological refinement rules. This is explained in §2.4.

2.1. The main construction methods of schemes. There are two main approaches
to the construction of subdivision schemes. The first approach is by repeated averag-
ing. In case s = 1, repeated averaging leads to B-spline schemes.

In this approach, the refinement rule (5) consists of several simple steps. The first
is the trivial refinement

P k+1,0
α = P k[ α

2

], α ∈ Z
s (8)

with
[
α
2

]
the biggest integer smaller than or equal to α

2 for α ∈ Z, and
([
α1
2

]
,
[
α2
2

])
for α = (α1, α2) ∈ Z

2.
The trivial refinement is followed by a fixed number m of repeated averaging

P k+1,j
α = P

k+1,j−1
α + P

k+1,j−1
α−ej

2
, α ∈ Z

s, j = 1, . . . , m,

where {e1, . . . , em} are non-zero vectors in Z
s with components in {0, 1}.

The case s = 1 corresponds to the B-spline scheme of degree m, while in case
s = 2 one gets the tensor-product B-spline schemes for the choice e1 = · · · = er =
(1, 0), er+1 = · · · = em = (0, 1), 1 ≤ r < m, and the three-direction box-spline
schemes [7] for the choice e1 = · · · = er = (1, 0), er+1 = · · · = eρ = (0, 1),
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eρ+1 = · · · = em = (1, 1), 1 ≤ r < ρ < m. One can get other box-spline schemes
for more general choices of e1, . . . , em [7].

The second construction of subdivision schemes is based on a local approxima-
tion operator A, approximating on [0, 1]s . A is defined in terms of samples of the
approximated function in a set of points A ⊂ Z

s ,

(Af )(x) =
∑
α∈A

f (α)wα(x), x ∈ [0, 1]s . (9)

For geometrical applications, the set A contains the setEs of extreme points of [0, 1]s ,
and is symmetric relative to [0, 1]s . The operatorA has to be scale and shift invariant,
so that (9) can be used in any refinement level and at any location. This leads to the
choice of a polynomial approximation operator A.

The commonly derived refinement rule from (9) is

P k+1
2α+γ =

∑
β∈A

P kα+βwβ
(γ

2

)
, γ ∈ Es. (10)

Another possibility is

P k+1
2α+γ =

∑
β∈A

P kα+βwβ
(
g + γ

2

)
, γ ∈ Es, g = {1/4}s . (11)

In case s = 1, with Af the interpolation polynomial based on the symmetric set
of points relative to [0, 1], −N + 1, . . . , 0, 1, . . . , N , the resulting family of schemes
obtained by (10) for N = 1, 2, . . . consists of the Dubuc–Deslaurier schemes [22]

P k+1
2i = P ki , P k+1

2i+1 =
N∑

�=−N+1

w�

(
1

2

)
P ki+�, wi(x) =

N∏
j=−N+1
j �=i

x − j

i − j
(12)

The schemes in (12) are interpolatory, since the set of control points after refinement
contains the control points before refinement. These schemes are convergent, and
the limit curves interpolate the initial control points [22]. Interpolatory schemes in
general are discussed in [34].

Recently this construction was extended to non-interpolatory schemes [30], by
using (11) instead of (10) with wi(x) defined in (12).

The refinement rules are

P k+1
2i =

N∑
�=−N+1

w�

(
1

4

)
P ki+�, P k+1

2i+1 =
N∑

�=−N+1

w�

(
3

4

)
P ki+�.

It is checked in [30] that, for N ≤ 10, the schemes are convergent with limit curves
of higher smoothness than the limit curves of the corresponding Dubuc–Deslaurier
schemes. Yet, there is no proof that this holds in general.



1206 Nira Dyn

In fact, (11) can be further extended to

P k+1
2α+γ =

∑
β∈A

P kα+βwβ
(
g + (1 − 2μ)γ

)
, γ ∈ Es, g = {μ}s

with 0 < μ < 1
2 .

This refinement was studied in [33], [40], [4], for s = 1 andA a linear interpolation
operator at the points x = 0, x = 1. For μ = 1

4 , this is the Chaikin scheme for
generating quadratic B-spline curves [10]. For μ �= 1

4 it is a general corner cutting
scheme.

2.2. Approximation order of subdivision schemes. A convergent subdivision
scheme S, constructed by the second approach of §2.1 with refinement rule (10),
has the property of reproduction of polynomials.

Let the operatorAmap the setf |A to a unique interpolation polynomial of total de-
gree not exceedingm, interpolating the data {(x, f (x)) : x ∈ A}. In the following, we
denote by	m(Rs) the space of all s-variate polynomials of degree up tom. It is easy
to verify that for f ∈ 	m(Rs) and f 0 = {f 0

α = f (αh) : α ∈ Z
s}, h ∈ R+, the refine-

ment (10) generates data on f , namely f k = Skf 0 = {f kα = f (2−kαh) : α ∈ Z
s},

and therefore S∞f 0 = f , and the subdivision scheme reproduces polynomials in
	m(R

s).
In case of the refinement rule (11), arguments as in [30] lead to (S∞f 0)(x) =

f (x + 2hg), with g as in (11). This property of the scheme S is termed reproduction
with a fixed shift of polynomials in 	m(Rs).

The reproduction of polynomials in 	m(Rs) (with or without a shift), the repre-
sentation of S∞f 0 in terms of the compactly supported basic limit function φ of S,

S∞f 0(x) =
∑
α∈Z

s

f 0
α φ(x − α), (13)

and classical quasi-interpolation arguments [5], lead to the error estimate

sup
x∈


∣∣(S∞f 0)(x)− f (x)
∣∣ ≤ Chm+1. (14)

In (14) f 0 = {f 0
α = f (αh) : α ∈ Z

s} for the refinement rule (10), while, for the
refinement rule (11), f 0 = {f 0

α = f (αh − 2gh) : α ∈ Z
s}, where f is a smooth

enough function,
 is a bounded domain in R
s , and the constant C may depend on S,

f ,
 but not on h. A subdivision scheme satisfying (14) is said to have approximation
order m+ 1.

Subdivision schemes constructed by repeated averaging reproduce constant func-
tions and hence have approximation order 1. If the repeated averaging is done in a
symmetric way relative to [0, 1]s , then the resulting scheme reproduces also linear
polynomials, and the scheme has approximation order 2. For example, this property
is shared by all the symmetric B-spline schemes of odd degrees. The mask of the
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scheme generatingB-spline curves, based on the symmetricB-spline of degree 2�+1
is

ã
[2�+1]
i = 1

22�+1

(
2�+ 2

�+ 1 + i

)
, i = −�− 1, . . . , 0, . . . , �+ 1.

The repeated averaging for such a symmetric mask takes the symmetric form

P
k+1,0
2i = P ki , P

k+1,0
2i+1 = 1

2
(P ki + P ki+1), i ∈ Z,

P
k+1,j
i = 1

4

(
P
k+1,j−1
i−1 + 2P k+1,j−1

i + P
k+1,j−1
i+1

)
, i ∈ Z, j = 1, . . . , �,

P k+1
i = P

k+1,�
i , i ∈ Z.

2.3. Convergence and smoothness analysis. Given the coefficients of the mask of
a scheme, one would like to be able to determine if the scheme is convergent, and
what is the smoothness of the resulting basic limit function (which is the generic
smoothness of the limits generated by the scheme in view of (13)). Such analysis
tools are essential for the design of new schemes.

We present one method for convergence analysis of the two cases s = 1, 2. The
method for smoothness analysis in case s = 1 is simpler and is given in full. Its
extension to s = 2 is omitted, but some special cases are discussed. There are
other methods for convergence and smoothness analysis, see, e.g., [18], [19], [20],
[42], [45].

An important tool in the analysis of convergence, presented here, is the symbol of
a scheme Sa with the mask a = {aα : α ∈ σ(a)},

a(z) =
∑
α∈σ(a)

aαz
α. (15)

A first step towards the convergence analysis is the derivation of the necessary condi-
tion for uniform convergence,∑

β∈Z
s

aα−2β = 1, α ∈ Es, (16)

derived easily from the refinement rule

f k+1
α =

∑
β∈Z

s

aα−2βf
k
β , α ∈ Z

s .

with f k = {f kα ∈ R : α ∈ Z
s}. The necessary condition (16) implies that we have to

consider symbols satisfying

a(1) = 2, a(−1) = 0 if s = 1, (17)

or
a(1, 1) = 4, a(−1, 1) = a(1,−1) = a(−1,−1) = 0 if s = 2. (18)
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In case s = 1, condition (17) is equivalent to

a(z) = (1 + z)q(z) with q(1) = 1. (19)

The scheme with symbol q(z), Sq , satisfies Sq� = �Sa (see, e.g. [24]), where � is
the difference operator

�f = {
(�f )i = fi − fi−1 : i ∈ Z

}
. (20)

A necessary and sufficient condition for the convergence of Sa is the contractivity of
the scheme Sq , namely Sa is convergent if and only if S∞

q f 0 = 0 for any f 0 [33].
The contractivity of Sq is equivalent to the existence of a positive integer L, such that
‖SLq ‖∞ < 1. This condition can be checked for a given L by algebraic operations on
the symbol q(z) (see, e.g., [24], [25]).

For practical geometrical reasons, only small values of L have to be considered,
since a small value ofL guarantees “visual convergence” of {F k(t)} to S∞

a P 0, already
for small k, as the distances between consecutive control points contract to zero fast.
A good scheme corresponds toL = 1 as theB-spline schemes, or toL = 2 as many of
the schemes constructed by the second method in §2.1 (see the following examples).

For s = 2, the necessary condition (18) guarantees the existence of two decom-
positions of the form

(1 − zi)a(z) = qi1(z)(1 − z2
1)+ qi2(z)(1 − z2

2), i = 1, 2, (21)

where z = (z1, z2). The above two decompositions extend to s = 2 the factorization
(19) written as (1 − z)a(z) = (1 − z2)q(z). The decompositions (21) guarantee the
existence of a matrix subdivision scheme SQ, with a 2 × 2 matrix symbol Q(z) =
{qij (z)}2

i,j=1, satisfying SQ(�1,�2)
T = (�1,�2)

T Sa . Here (�1,�2)
T is the vector

difference operator, extending (20) to s = 2,

(�1,�2)
T f = {

((�1,�2)
T f )α = (fα − fα−(1,0), fα − fα−(0,1))T : α ∈ Z

2}.
A sufficient condition for the convergence of Sa is the contractivity of SQ, which can
be checked by algebraic operations on the symbol Q(z) [9], [24], [44].

Since many of the schemes have symmetries relative to Z
2, their symbols are

factorizable and have the form a(z) = (1 + z1)(1 + z2)q(z). As a simple extension
of the case s = 1, we get that Sa is convergent if the two schemes with symbols
(1 + z1)q(z), (1 + z2)q(z) are contractive. If a(z) is symmetric in the sense that
q(z1, z2) = q(z2, z1), then it is sufficient to check the contractivity of (1 + z1)q(z)

(see, e.g., [25]).
The smoothness analysis in the case s = 1, relies on the result that if the symbol

of a scheme has a factorization

a(z) =
(

1 + z

2

)ν
b(z), (22)
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such that the scheme Sb is convergent, then Sa is convergent and its limit functions
are related to those Sb by

Dν(S∞
a f 0) = S∞

b �
νf 0, (23)

withD the differentiation operator [33], [24]. Thus, each factor (1+z)/2 multiplying
a symbol of a convergent scheme adds one order of smoothness. This factor is termed
a smoothing factor.

The relation between (22) and (23) is a particular instance of the “algebra of
symbols” [35]. If a(z), b(z) are two symbols of converging schemes, then Sc with
the symbol c(z) = 1

2s a(z)b(z) is convergent, and

φc = φa ∗ φb. (24)

Example (B-spline schemes). The smoothness of the limit functions generated by
the m-th degree B-spline scheme, having the symbol a[m](z) = 2

(1+z
2

)m+1, can be

concluded easily. The factor b(z) = (1+z)
2

2
corresponds to Sb generating a piecewise

linear interpolant to the initial data {(i, f 0
i )}, which is continuous, and the factors(1+z

2

)m−1 add smoothness, so that S∞
a[m]f

0 ∈ Cm−1. Note that a[m](z) consists of
smoothing factors only. In fact the B-spline schemes are optimal, in the sense that for
a given support size of the mask, the limit functions generated by the corresponding
B-spline scheme is of maximal smoothness.

Example (the four-point scheme). Here we present the most general univariate
interpolatory scheme which is based on four points [31], and describe briefly its
convergence and smoothness analysis.

The refinement rule is

f k+1
2i = f ki , f k+1

2i+1 = −w(f ki−1 + f ki+2)+ ( 1
2 + w

)
(f ki + f ki+1),

with w a parameter controlling the shape of the limit curves. The symbol of the
scheme is

aw(z) = 1
2z (z+ 1)2

[
1 − 2wz−2(1 − z)2(z2 + 1)

]
. (25)

Note that for w = 0, a0(z) is the symbol of the two-point scheme generating the
polygonal line through the initial control points, and that for w = 1/16 it coincides
with the symbol of the Dubuc–Deslauriers scheme based on four points (reproducing
cubic polynomials).

The range of w for which Saw is convergent is the range for which Sbw with
symbol bw(z) = aw(z)/(1 + z) is contractive. The condition ‖Sbw‖∞ < 1 holds
in the range −3/8 < w < (−1 + √

13)/8, while the condition ‖S2
bw

‖∞ < 1 holds

in the range −1/4 < w < (−1 + √
17)/8. Thus Saw is convergent in the range

−3/8 < w < (−1 + √
17)/8. To find a range of w where Saw generates C1 limits,
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the contractivity of Scw with cw(z) = 2aw(z)/(1 + z)2 has to be investigated. It is
easy to check that ‖Scw‖∞ ≥ 1, but that ‖S2

cw
‖∞ < 1 for 0 < w < (

√
5 − 1)/8.

The limit of Saw is not C2 even for w = 1/16, although for w = 1/16 the symbol
is divisible by (1 + z)3 (see, e.g., [31]). It is shown in [20] by other methods, that the
basic limit function for w = 1/16, restricted to its support, has a second derivative
only at the non-dyadic points.

For the case s = 2, the idea of smoothing factors generalizes straightforwardly.
Two smoothing factors in two linearly independent directions in Z

2 are sufficient for
increasing the smoothness. A smoothing factor in direction (u, v) ∈ Z

2 is 1
2 (1+zu1zv2).

Specializing to the coordinate directions in Z
2, (1, 0) and (0, 1), we get for a symbol

a(z) = (1 + z1)
m(1 + z2)

mb(z), such that Sb is convergent, that

∂i,j S
∞
a f

0 = S∞
ai,j
�i1�

j
2f

0, i, j = 0, . . . , m, (25)

with

ai,j (z) = 2i+j a(z)
(1 + z1)i(1 + z2)j

, i, j = 0, . . . , m, (26)

and with ∂ij the (i + j)-th partial derivative of orders i, j in directions (1, 0) and
(0, 1) respectively.

For a symbol with the symmetry of the three direction mesh

a(z) = (1 + z1)
m(1 + z2)

m(1 + z1z2)
mb(z), (27)

such that Sb is convergent, we get

∂i,j,�S
∞
a f

0 = S∞
ai,j,�

�i1�
j
2(�1 +�2)

�f 0, i, j, � = 0, . . . , m, (28)

with

ai,j,�(z) = 2i+j+�a(z)
(1 + z1)i(1 + z2)j (1 + z1z2)�

, i, j, � = 0, . . . , m, (29)

and with ∂i,j,� the (i + j + �)-th partial derivative of orders i, j, � in directions
(1, 0), (0, 1), (1, 1) respectively.

In particular Sa with the symbol a(z) = (1+z1)
2(1+z2)

2b(z) generatesC1 limit
functions if the three schemes with the symbols

2(1 + z1)(1 + z2)b(z), 2(1 + z1)
2b(z), 2(1 + z2)

2b(z),

are contractive. Similarly for a(z) = (1 + z1)(1 + z2)(1 + z1z2)b(z), φa ∈ C1 if two
of the three schemes with the symbols 2(1 + z1)b(z), 2(1 + z2)b(z), 2(1 + z1z2)b(z)

are contractive.
The conditions for smoothness given above are only sufficient. Yet, in the case

s = 1, there is a large class of convergent schemes for which the factorization in (22)
is necessary for generating Cν limit functions [39]. The schemes in this class are
L∞-stable, namely, satisfy

‖S∞
a f 0‖ ≥ C‖f 0‖∞, f 0 ∈ �∞(Z), (31)
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with constant C dependent on Sa but not on f 0. All relevant schemes for geometric
applications are L∞-stable, as the interpolatory schemes and the B-spline schemes.

This is not the case for s = 2. The symbol of a convergent L∞-stable scheme,
generating smooth limit functions is not necessarily factorizable. Yet, many of the
schemes in use have factorizable symbols.

2.4. Subdivision schemes generating surfaces. Schemes generating surfaces op-
erate on control nets, and map a control net to a refined one.

A control net N(V,E, F ), consists of a set V of points in R
3, termed vertices,

with two sets of topological relations between them E and F , called edges and faces
respectively (see, e.g., [49]). An edge denotes a pair of vertices. A face is a cyclic list
of vertices where every pair of consecutive vertices constitutes an edge. The valency
of a vertex is the number of edges that share it, the valency of a face is the number of
vertices that belong to it. In Figure 2 we present a schematic net. We consider here

face
edge

vertex

Figure 2. A schematic net.

only closed nets, namely nets in which each edge is shared by two faces.

2.4.1. Topological refinement of nets. There are several topological rules for re-
fining a net N(V,E, F ). The most common one defines the new set of vertices,
as

V ′ = {
u(v) : v ∈ V } ∪ {

u(e) : e ∈ E} ∪ {
u(f ) : f ∈ F} = V ′

V ∪ V ′
E ∪ V ′

F . (32)

Here V ′
V denotes all the new vertices, called v-vertices, corresponding to the vertices

in V (in an interpolatory scheme V ′
V = V ); E′

V denotes all the new vertices, called e-
vertices, corresponding to the edges in E, and V ′

F denotes all the new vertices, called
f -vertices, corresponding to the faces in F . The rule for determining the location
in R

3 of u(v), u(e) and u(f ) is the refinement rule of the subdivision scheme. For
example, a new vertex u(e) is a certain linear combination of the vertices in V ,
weighted according to the topological relation between each v ∈ V and e.
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The topological relations E′, F ′ in the refined netN ′(V ′, E′, F ′) are independent
of the subdivision scheme, but depend only on E and F ,

E′ = {
(u(e), u(f )) : e ∈ f ∈ F} ∪ {

(u(e), u(v)) : v ∈ e ∈ E} = E′
F ∪ E′

E (33)

and
F ′ = {

(u(v), u(e), u(f ), u(̃e)) : v = e ∩ ẽ ∈ f ∈ F }. (34)

Thus after one refinement step all faces have valency four and similarly all the vertices
in the set V ′

E . The valency of a vertex in V ′
F is the same as that of the “parent” face,

and the valency of a vertex in V ′
V is the same as that of the “parent” vertex. From this

observation we conclude that the nets obtained after two or more refinements have the
topology of a quad-mesh (of Z

2), except for a finite number of vertices with valency
different from four (each equals the valency of an “ancestor” face or vertex in the
initial net). The vertices with valency different from four are termed irregular (extra-
ordinary) and a special local analysis of convergence and smoothness is required
there [55]. Over the net, except in the vicinity of the irregular vertices, the analysis
relative to Z

2 is applicable.
For a net N(V,E, F ) with all faces of valency three, the topological refinement

which is commonly used is such that the new vertices consist of v-vertices and e-
vertices only, with the topological refinement

E′ = E′
E ∪ E′

V , F ′ = F ′
V ∪ F ′

F . (35)

In (35), E′
E is defined as in (33), and E′

V = {(u(e), u(̃e)) : e ∩ ẽ ∈ V }. The
new faces are of two types, F ′

V = {(u(v), u(e), u(̃e)) : v ∈ e ∩ ẽ ∈ V }, and
F ′
F = {(u(e1), u(e2), u(e3)) : e1, e2, e3 ∈ f ∈ F }. This refinement is presented in a

schematic way in Figure 3. As can be observed from Figure 3, every face is replaced

N N ′
vv

v

e

ee

Figure 3. Schematic triangular topological refinement.

by four faces, one determined by the face itself, and three in F ′
V , each consisting of

three new vertices, one corresponding to one vertex of the face and two to the two
edges of the face sharing that vertex.

Note that a face with valency three can be realized in R
3 as a planar triangle, and

thereforeN(V,E, F ), with all faces of valency three, can be realized as a triangulation
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of the set V . According to the topological refinement (35), the e-vertices have valency
six, while a v-vertex has the same valency as that of its “parent” vertex inV . Thus, after
two or more topological refinements, most of the vertices in the triangulations have
valency six. Only a finite set of irregular (extra-ordinary) vertices have valencies
different from six, “inherited” from those in the initial triangulation. Also, each
irregular vertex is connected by edges only to regular vertices (of valency six).

Thus for a triangulation refined as above, the analysis of convergence and smooth-
ness relative to the three-direction mesh applies, except in the vicinity of a finite
number of isolated points, where a special local analysis is required [55].

While the analysis on regular meshes can handle any order of smoothness, the
analysis at irregular vertices is limited to C1 smoothness (see, [52], [46], and refer-
ences therein). This limitation is the main reason why subdivision schemes are used
mainly in computer graphics. In many industrial applications the designed surfaces
have to be C2 everywhere.

2.4.2. Some popular schemes. The first schemes devised for general nets were
the bivariate tensor-product B-spline schemes of low degree, with special rules near
irregular vertices [8], [23]. A bivariate tensor-product scheme of a univariate scheme
with symbol a(z), is a scheme with the symbol a(z1, z2) = a(z1)a(z2).

The most commonly used scheme of that type for the topological refinement (32)–
(34) is the Catmull–Clark scheme, which is an extension of the tensor-product cubic
B-spline scheme [8]. The weights, up to normalization, of this scheme are given in
Figure 4. The points designated by o are the new f -vertices, and the weight of a vertex

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

wk

Figure 4. Weights for Catmull–Clark scheme: f -vertex (left), e-vertex (middle) and v-vertex
(right).

of valency k, in the rule for its “son”, iswk = k(k−2), k = 3, 4, . . . . Note thatw4 = 8,
which is the weight in the tensor-produce cubic B-spline scheme. This scheme is
easy to implement as can be inferred from Figure 4. Different choices of wk were
considered in [2], [3] to improve the limit curvature at irregular vertices. Applications
of the Catmull–Clark scheme are numerous. Here we refer to two important papers
[21], [41].

In [47], the tensor-product four-point scheme is extended to an interpolatory
scheme for general nets with the topological refinement (32)–(34).
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For triangulations, the box-spline-based scheme of Loop [50] is very popular.
Loop scheme is an extension of a box-spline scheme with the symbol

a(z1, z2) = 1

16
(1 + z1)

2(1 + z2)
2(1 + z1z2)

2,

generatingC2 piecewise quartic box-spline surfaces on the three-direction mesh. The
support of the mask of Loop scheme is small, and the refinement rule involves only
neighboring vertices. In Figure 5 the weights for defining a new e-vertex and a new

1

1
1

1

11

1

3
3

wk

Figure 5. Weights for Loop scheme: e-vertex (left) and v-vertex (right).

v-vertex are given up to normalization. The weight wk of a vertex of valency k,
involved in the rule for its “son”, is

wk = 64k

40 − (
3 + 2 cos 2π

k

) , k = 3, 4, . . . (36)

Figure 6 depicts an initial triangulation of a head, and the triangulations after two
refinements with Catmull–Clark scheme and with Loop scheme.

An interpolatory scheme for general closed triangulations with a shape parameter
is the butterfly scheme [32]. The weights defining a new e-vertex are depicted in the
left figure of Figure 7. Since the scheme is interpolatory, the new v-vertices coincide
with the old vertices. The scheme generatesC1 surfaces if all vertices have valencies at
least four and at most eight, depending on the value ofw [44], [57]. Modified weights
for e-vertices, corresponding to edges having an irregular vertex of any valency above
three are derived in [61] for w = 1/16. These weights are depicted in the right figure
of Figure 7. The values {sj } are given by a formula depending on the valency k of the
irregular vertex,

sj = 1

k

(
1

4
+ cos

2πj

k
+ 1

2
cos

4πj

k

)
, j = 0, 1, . . . , k − 1, k > 3. (37)

With the modified weights, the generated surfaces areC1 for any valency greater than
three, and are better looking in the vicinity of irregular vertices of valency between
four and eight.
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Figure 6. Head. Initial control net (left), after two refinements: with Catmull–Clark scheme
(middle) and with Loop scheme (right).
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w
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_

_

_
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Figure 7. Weights for e-vertex: butterfly scheme (left), modified butterfly scheme (right).

3. Linear extensions

In this section, we review several extensions of stationary linear schemes for the
refinement of points to stationary linear schemes which refine other objects.

3.1. Matrix subdivision schemes. Matrix schemes are defined by matrix masks
and refine sequences of vectors. Although, in the geometric setting, the schemes
of §2 refine sequences of control points in R

2 or in R
3, the schemes operate on each

component of the vectors in the same way, such that the refinement of one component
is independent of the other components. This property is very important in geometric
applications, since the subdivision schemes commute with affine transformations (the
schemes are affine invariant). The schemes presented here are not affine invariant,
and their main application is in multiwavelets constructions [12], [58] and in the
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analysis of multivariate subdivision schemes for control points as indicated in §2.3
(see, e.g., [24]).

A finite set of matrices of order d × d, A = {Aα : α ∈ σ(A) ⊂ Z
s}, defines a

matrix subdivision scheme SA with a refinement rule

(SAv)α =
∑
β∈Z

s

Aα−2βvβ, v = {vα ∈ R
d : α ∈ Z

s}. (1)

Given initial “control vectors” v0 = {v0
α ∈ R

d : α ∈ Z
s}, the matrix subdivision

scheme SA generates a sequence of control vectors by

vk+1 = SAvk, k = 1, 2, . . . . (2)

The notion of uniform convergence from §2 can be extended to this case, by con-
sidering the convergence of each of the d components of the vectors. The convergence
analysis has a linear algebra component to it, in addition to the analysis component.
By considering the matrices

Bγ =
∑
β∈Z

s

Aγ−2β, γ ∈ Es, (3)

one can easily conclude a necessary condition for convergence. This condition is the
analogue of condition (2.16), stating that for any initial sequence of control vectors v0,
and any x ∈ R

s ,

(S∞
A v0)(x) ∈ span{u ∈ R

d : Bγ u = u for all γ ∈ Es}. (4)

In the extreme case of schemes with Bγ = I , γ ∈ Es , the space in (4) is R
d ,

and no condition of linear-algebra type is imposed. Such are the schemes used in the
analysis of convergence and smoothness of multivariate schemes for points. Schemes
for which the space in (4) is R

d , are very similar to schemes with a scalar mask [17].
In the other extreme case, the space in (4) is one dimensional with vectors of equal
components, implying that the limit vector function S∞

A v0, has equal components. An
example of this type of schemes is provided by matrix subdivision schemes generating
multiple knot B-spline curves (see, e.g., [53]). This latter extreme case is the most
relevant to the construction of multiwavelets.

In [13] and in [38], univariate (s = 1) matrix schemes with the space (4) of
dimension m, 1 ≤ m ≤ d, are studied. An appropriate change of basis, depending
on the structure of the space (4), facilitates the extension of the factorization of scalar
symbols to a certain factorization of matrix symbols. This factorization is sufficient for
convergence and smoothness analysis of matrix schemes, and is also necessary under
an extension of the notion of L∞-stability (see §2.3) to the matrix case. Multivariate
matrix schemes with the space (4) of general dimension are considered in [56].

In the next section we discuss a special type of matrix subdivision schemes, which
is relevant to curve design from locations and normals, and to the generation of
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functions from the point values of the functions and their derivatives. The use of
analogous schemes for the generation of surfaces from locations and normals is not
straightforward, and leads to non-linear schemes.

3.2. Hermite subdivision schemes. The first Hermite schemes to be studied were
univariate and interpolatory [51]. Interpolatory Hermite subdivision schemes are
matrix schemes, such that the components of the vectors are regarded as the value of
a function and its consecutive derivatives up to a certain order at the points of 2−k

Z
s .

Non-interpolatory Hermite subdivision schemes were introduced later [43].

3.2.1. Univariate interpolatory Hermite schemes. The most common construc-
tion of interpolatory Hermite subdivision schemes is similar to the second construc-
tion method presented in §2.1. The approximation operator A is an extension of the
one in (2.9). For interpolatory schemes, it is a polynomial interpolation operator of
the form

(Af )(x) =
∑
α∈A

d−1∑
i=0

wα,i(x)f
(i)(α), (5)

satisfying Di(Af )(α) = f (i)(α), α ∈ A, i = 0, 1, . . . , d − 1.
The refinement is similar to (2.10), namely

vk+1
2α = vkα,

(
vk+1

2α+1

)
j

=
∑
β∈A

d−1∑
i=0

Djwβ,i(1/2)(v
k
α+β)i, 0 ≤ j ≤ d − 1. (6)

In (6), (v)i denotes the i-th component of the vector v. The refinement (6) can be
written in terms of a matrix mask as,

vk+1
α =

∑
β∈Z

s

A
(k)
α−2βv

k
β, α ∈ Z

s, (7)

where the matrices with even indices are

A
(k)
2α = δα,0Id×d, α ∈ Z, (8)

with δα,0 = 0 for α �= 0, and δ0,0 = 1. The matrices with odd indices depend on the
refinement level k, and have the form

A
(k)
2α+1 = �d(2

k)A
(0)
2α+1�d(2

−k), α ∈ Z, (9)

with �d(h) = diag(1, h, h2, . . . , hd−1) and

A
(0)
1−2α =

{
Diwα,j

(
1

2

)}d−1

i,j,=0
, α ∈ A. (10)
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The powers of 2 in (9) are due to the fact that derivatives of polynomials are not scale
invariant. More precisely if q(x) = p(hx), with p a polynomial, then (Djq)(hx0) =
hj (Djp)(x0).

An interpolatory Hermite scheme is termed uniformly convergent if there is a limit
vector function F of the form F = (Djf, 0 ≤ j ≤ d − 1)T , with f ∈ Cd−1(R),
satisfying for any closed interval [a, b],

lim
k→∞ sup

α∈2k[a,b]∩Z

∥∥F(2−kα)− vkα

∥∥ = 0,

with ‖ · ‖ any norm in R
d .

Example (a two-point Hermite interpolatory scheme). The scheme is given by
the non-zero matrices of its mask:

A0 = I2×2, A
(k)
1 =

( 1
2 ν2−k

−μ2k 1−μ
2

)
, A

(k)
−1 =

( 1
2 −ν2−k
μ2k 1−μ

2

)
.

This scheme with ν = 1/8 and μ = 3/2 generates the C1 piecewise Hermite cubic
interpolant to the data {v0

i = (f (i), f ′(i))T : i ∈ Z}, while for ν = 0, μ = 1, it
generates the piecewise linear interpolant to the given function’s values at the integers,
which is onlyC0. By the analysis to be reviewed, it can be shown that for 0 < ν < 1/4,
μ = 4ν + 1, the limit functions generated by the scheme are C1. (See, e.g. [36].)

One method for the convergence analysis of such schemes is based on deriving
an equivalent stationary matrix scheme, refining vectors of (d − 1)-th order divided
differences, obtained from the original control vectors. The limit of such a scheme, if
it exists, necessarily consists of equal components, which are the derivative of order
d − 1 of the smooth function f [37].

More precisely, the divided difference vector ukn at level k is defined for each n ∈ Z

by
(ukn)j = [τj+1, τj+2, . . . , τj+d ]f, j = 0, . . . , d − 1,

with τ1 = · · · = τd−1 = (n − 1)2−k , τd = τd+1 = · · · = τ2d−1 = n2−k . Here we
use the definition of divided differences, allowing repeated points for functions with
enough derivatives (see, e.g., [6, Chapter 1]). In our setting all integer points have
multiplicity d. The vector ukn can be derived from the vectors vkn−1 and vkn.

The symbol D(z) of the matrix scheme refining the control vectors uk = {ukn :
n ∈ Z} can be obtained recursively from the symbol D[0](z) = ∑

α A
(0)
α z

α , by alge-
braic manipulations, involving multiplication by certain matrix Laurent polynomials
and their inverses.

It is proved in [37] that the matrix symbol D(z) is a matrix Laurent polynomial
if the scheme (7) reproduces polynomials of degree ≤ d − 2, and that necessarily
a scheme of the form (7), which generates Cd−1 functions, reproduces polynomials
of degree ≤ d − 1. In (5), the degree of the interpolation polynomial is d|A| − 1,
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so the scheme (7), with the mask (8),(9),(10), reproduces polynomials of degree at
least 2d − 1, as A contains at least the points 0, 1. These arguments lead to the
conclusion that the Hermite subdivision scheme SA, refining the control vectors vk

can be transformed into the matrix subdivision scheme SD for the control vectors uk .
To determine the convergence of the scheme SD , which is equivalent to the conver-

gence of the original Hermite subdivision scheme SA to Cd−1 functions, we observe
that the component (ukn)j , in case of convergence, approximates f (d−1)(2−kn) for
j = 1, . . . , d . Thus as in the case of control points, a necessary condition for conver-
gence is the contractivity of the scheme which refines the differences (ukn)j −(ukn)j−1,
j = 2, . . . , d, (ukn)1 − (ukn−1)d , n ∈ Z. Indeed, such a scheme exists, and its symbol
is a matrix Laurent polynomial when (7) reproduces polynomials of degree ≤ d − 1
[37], guaranteeing that the contractivity of this scheme can be checked by algebraic
manipulations.

The analysis of higher order smoothness is along the same lines.

3.3. B-spline subdivision schemes for compact sets. In the last years, the univari-
ateB-spline schemes were extended to operate on data consisting of compact sets [27],
[28]. The motivation for the study of such schemes is the problem of approximating
a 3D object from a discrete set of its 2D parallel cross-sections, and the problem of
approximating a 2D shape from a discrete set of its 1D parallel cross-sections. In
both problems, either the 3D object or the 2D shape is regarded as a univariate set-
valued function, with its parallel cross-sections as images. The B-spline subdivision
schemes are adapted to this setting, so that the limit set-valued function generated by
the subdivision from samples of a continuous set-valued function, approximates it.

For initial data F 0 = {F 0
i ⊂ R

n : i ∈ Z} consisting of convex compact sets, aver-
ages of numbers in the execution of a scheme, can be replaced by Minkowski averages
of sets. A Minkowski average of sets B1, . . . , B� ⊂ R

n with weights λ1, . . . , λ� ∈ R,∑�
i=1 λi = 1, is the set

�∑
M

i=1

λiBi =
{ �∑
i=1

λibi : bi ∈ Bi
}
.

Thus the m-th degree B-spline subdivision scheme (1.4) can be adapted to convex
compact sets by the refinement rule

Fk+1
i =

∑
M

j

a
[m]
i−2jF

k
j , i ∈ Z, (11)

with a[m] = {a[m]
i , i = 0, . . . , m + 1} given in (1.2). Since the coefficients of the

mask are positive, the sets F k , k ≥ 1, generated by the subdivision scheme SM,a[m]
with the refinement rule (11) are compact and convex [27]. By the associativity and
distributivity of the Minkowski average of convex sets with positive weights, it can
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be deduced straightforwardly that the limit generated by SM,a[m] from F 0, when F 0

consists of convex compact sets, is

(S∞
M,a[m]F

0)(t) =
∑

M
i∈Z

F 0
i Bm(t − i). (12)

In (12) the convergence is in the Hausdorff metric, defined for two setsA,B in R
n, by

haus(A,B) = max
{

sup
a∈A

inf
b∈B ‖a − b‖, sup

b∈B
inf
a∈A ‖a − b‖}

with ‖ · ‖ the Euclidean norm in R
n.

The subdivision scheme SM,a[m] has approximation properties. It is shown in [27]
that for a set-valued function G with convex compact images, which is Lipschitz
continuous, namely satisfies haus(G(t),G(t + �)) = O(�t), and for initial data
F 0
h = {G(ih) : i ∈ Z}

haus
(
(S∞
M,a[m]F

0
h)(t),G(t)

) = O(h). (13)

The subdivision SM,a[m] fails to approximation set-valued functions with general com-
pact images. As is shown in [29], for initial data F 0 consisting of general compact
sets,

S∞
M,a[m]F

0 =
∑
i∈Z

〈F 0
i 〉Bm( · − i)

with 〈F 0
i 〉 the convex hull of F 0

i . Thus S∞
M,a[m]F

0 is convex even when the initial sets
are non-convex, and it cannot approximate set-valued functions with general compact
sets as images.

There is another adaptation of the B-spline subdivision schemes to compact
sets [28], which yields approximation also in case of set-valued functions with general
compact sets as images. This adaptation is obtained by using the first construction
in §2.1 for s = 1, and by replacing the average of two numbers by the metric average
of two compact sets, introduced in [1],

A⊕t B = {
ta + (1 − t)b : (a, b) ∈ 	(A,B)}

with

	(A0, A1) = {
(a0, a1) : ai ∈ Ai, i = 0, 1,

‖a0 − a1‖ = min
a∈Aj

‖ai − a‖, j = 1 − i, for i = 0 or 1
}
.

The refinement rule of the resulting scheme SMA,m is achieved by them+1 steps,

F
k+1,0
2i = Fki , F

k+1,0
2i+1 = Fki , i ∈ Z,

F
k+1,j
i = F

k+1,j−1
i ⊕ 1

2
F
k+1,j−1
i−1 , i ∈ Z, j = 1, . . . , m

Fk+1
i = F

k+1,m
i , i ∈ Z

(14)
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The refinement rule (14) is denoted formally by F k+1 = SMA,mF k .
Two important properties of the metric average, which are central to its application

in B-spline subdivision schemes are

A⊕t A = A, haus(A⊕t B,A⊕s B) = |s − t | haus(A,B), (15)

for (s, t) ∈ [0, 1].
Let the sequence {Hk} consist of the “piecewise linear” set valued functions,

interpolating {F k = SkMA,mF 0},
Hk(t) = Fki ⊕λ(t) F

k
i+1, 2−ki ≤ t < 2−k(i + 1), i ∈ Z, k = 0, 1, 2, . . . , (16)

with λ(t) = i+ 1 − 2kt . It is proved in [28], with the aid of the metric property of the
metric average (the second equality in (15)) and the completeness of the metric space
of compact sets with the Hausdorff metric, that the sequence {Hk(t)} converges to a
limit set-valued function denoted by S∞

MA,mF 0.
Moreover, forG a Lipschitz continuous set valued function with general compact

sets as images, the limit generated by the scheme SMA,m starting from F 0
h = {G(ih) :

i ∈ Z} approximates G with “error” given by

haus
(
(S∞
MA,mF 0

h)(t),G(t)
) = O(h), t ∈ R. (17)

3.4. A blending-based subdivision scheme for nets of curves. The quadratic B-
spline scheme (Chaikin algorithm) was extended to the refinement of nets of curves
in [15]. A net of curves with parameter d > 0 consists of two families of continuous
curves{

φi(s) : 0 ≤ i ≤ n, s ∈ [0,md]}, {
ψj(t) : 0 ≤ j ≤ m, t ∈ [0, nd]}

satisfying the compatibility condition

φi(jd) = ψj(id), i = 0, . . . , n, j = 0, . . . , m.

Such a net is denoted by N (d, {φi}ni=0, {ψj }mj=0). The blending-based Chaikin-

type scheme refines a net of curves, N0 = N (d, {φ0
i }ni=0, {ψ0

j }mj=0) into a net of

curves N1 = N
(
d
2 , {φ1

i }2n−1
i=0 , {ψ1

j }2m−1
j=0

)
. A repeated application of such refine-

ments generates a sequence of nets
{
Nk = N

(
d
2k
, {φki }nki=0, {ψkj }mkj=0

) : k ∈ Z+
}
, with

nk = 2k(n−1)+1,mk = 2k(m−1)+1, which converges uniformly to a continuous
surface [15].

The construction of the refinement rule is analogous to the second method in §2.1.
The approximation operator A maps a net of curves N (d, {φi}ni=0, {ψj }mj=0) into the
piecewise Coons patch surface, interpolating the curves of the net,

C(N )(s, t) = C(φi, φi+1, ψj , ψj+1; d)(s − jd, t − id),

(s, t) ∈ [jd, jd + d] × [id, id + d], i = 0, . . . , n− 1, j = 0, . . . , m− 1,
(18)
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with C(φi, φi+1, ψj , ψj+1; d) a Coons patch [16].
Four continuous curves φ0, φ1, ψ0, ψ1 defined on [0, h] and satisfying φi(jh) =

ψj(ih), i, j = 0, 1, define a Coons patch on [0, h]2. For (s, t) ∈ [0, h]2 the Coons
patch is given by

C(φ0, φ1, ψ0, ψ1;h)(s, t)
=

[(
1 − t

h

)
φ0(s)+ t

h
φ1(s)

]
+

[(
1 − s

h

)
ψ0(t)+ s

h
ψ1(t)

]
(19)

−
[(

1− s
h

) ((
1− t

h

)
φ0(0)+ t

h
φ1(0)

)
+ s
h

((
1− t

h

)
φ0(h)+ t

h
φ1(h)

)]
.

The Coons patch is blending between two surfaces. One is interpolating linearly
between corresponding points of φ0, φ1 and the other between the corresponding
points of ψ0, ψ1. (These two surfaces are the two first terms on the right-hand side
of (19)). It is easy to verify that C(φ0, φ1, ψ0, ψ1;h) coincides with the four curves
on the boundary of [0, h]2, namely that

C(φ0, φ1, ψ0, ψ1;h)(jh, t) = ψj(t), j = 0, 1,

C(φ0, φ1, ψ0, ψ1;h)(s, ih) = φi(s), i = 0, 1.

Regarding the Coons patch of four curves as the analogue of a linear segment
between two points, the Chaikin scheme for the refinement of control points is “ex-
tended” to nets of curves, by sampling each of the Coons patches of C(Nk) at 1/4
and 3/4 of the corresponding parameters values. Thus the refinement rule analogous
to (2.11) is

φk+1
2i (s) = C(Nk)

(
s,

(
i + 1

4

)
d

2k

)
, φk+1

2i+1 = C(Nk)

(
s,

(
i + 3

4

)
d

2k

)
,

i = 0, . . . , nk − 1, (20)

ψk+1
2j (t) = C(Nk)

((
j + 1

4

)
d

2k
, t

)
, ψk+1

2j+1 = C(Nk)

((
j + 3

4

)
d

2k
, t

)
,

j = 0, . . . , mk − 1. (21)

This refinement rule generates a refined net of curves after a simple reparametrization.
This is written formally as Nk+1 = SBCNk .

The proof of convergence of the scheme SBC is not an extension of the analysis
of §2.3, but is based on the proximity of SBC to a new subdivision scheme Sa for
points, which is proved to be convergent by the analysis of §2.3.

Convergence proofs by proximity to linear stationary schemes for points are em-
ployed, e.g., in [35] for the analysis of linear non-stationary schemes, and in [60] for
the analysis of a certain class of non-linear schemes.

Another important ingredient in the convergence proof is a property of a net
of curves, which is preserved during the refinements with SBC . A net of curves
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N (d, {φi}ni=0, {ψj }mj=0) is said to have the M-property if the second divided dif-
ferences of all curves of the net at three points restricted to intervals of the form[
�d,

(
�+ 1

2

)
d
]
, � ∈ (1/2)Z in the domain of definition of the curves, are all bounded

by a constant M .
The sequence {C(Nk) : k ∈ Z+} of continuous surfaces is shown to be a Cauchy

sequence for N0 with the M-property, by comparison of one refinement of SBC with
one refinement of Sa . The scheme Sa is constructed to be in proximity to SBC in the
sense that ∥∥E(SBCNk)− Sa(E(Nk))

∥∥ ≤ 3

2
M

(
d

2k+1

)2

, (22)

with E(Nk) = {
C(Nk)

(
i d2 , j

d
2

)
, 0 ≤ i ≤ 2mk, 0 ≤ j ≤ 2nk

}
, and with M the

constant in theM-property satisfied by all the nets {Nk : k ∈ Z+} which are generated
by SBC .

Although the limit of the Cauchy sequence {C(Nk) : k ∈ Z+} is only C0, it is
conjectured in [15] that SBC generates C1 surfaces from initial curves which are C1.
This conjecture is based on simulations.

Acknowledgement. The author wishes to thank David Levin and Adi Levin for
helping with the figures and the references.
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Abstract. Wave propagation algorithms are a class of high-resolution finite volume methods for
solving hyperbolic partial differential equations arising in diverse applications. The development
and use of the clawpack software implementing these methods serves as a case study for a
more general discussion of mathematical aspects of software development and the need for
more reproducibility in computational research. Sample applications discussed include medical
applications of shock waves and geophysical fluid dynamics modeling volcanoes and tsunamis.
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1. Introduction

I will ultimately describe a class of numerical methods for solving hyperbolic partial
differential equations, software that implements these methods, and some scientific
applications. However, for the broad audience that I am honored to address in these
proceedings, I would like to first make some more general comments on the topic of
software development and its relation to mathematics, and on computational science
and reproducible research.

I begin with a quote from a 1995 paper by J. B. Buckheit and D. L. Donoho [13]
about wavelet analysis and a software package they developed to aid in studying and
applying their methods:

An article about computational science in a scientific publication is not the
scholarship itself, it is merely advertising of the scholarship. The actual schol-
arship is the complete software development environment and the complete
set of instructions which generated the figures.
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They present this as a slogan to distill the insights of Jon Claerbout, an exploration
geophysicist who has been a pioneer in this direction since the early 90s (e.g., [59]),
and they give many compelling examples to illustrate its truth. I first ran across this
quote on the webpage [11] of the book [12], which provides complete codes in several
languages for the solutions to each of the 100-digit challenge problems proposed by
Trefethen [63]. (This is set of ten computational problems, each easy to state and
with a single number as the answer. The challenge was to compute at least 10 digits
of each number.) In spite of some progress in the direction of reproducible research,
many of the complaints of Buckheit and Donoho still ring true today, as discussed
further in the recent paper by Donoho and Huo [24].

Much of my work over the past 10 years has been devoted to trying to make it easier
for myself, my students, and other researchers to perform computational scholarship
in the field of numerical methods for hyperbolic PDEs, and also I hope in a variety
of applications areas in science and engineering where these methods are used. This
work has resulted in the clawpack software [40]. This software is apparently being
fairly widely used, both in teaching and research. More than 5 000 people have
registered to download the code, mentioning all sorts of interesting problems they
plan to tackle with it. However, I am not convinced that it is being used to the extent
possible in advancing scholarship of the type described above. One goal of this paper
is to encourage researchers (myself included) to work harder towards this end, in my
field and more generally in computational science.

I will make a distinction between software and computer programs. In my notation,
software means a package of computer tools that are designed to be applied with
some generality to a class of problems that may arise in many different applications.
A computer program is a code that solves one particular problem. A program may be
written entirely from scratch or it may employ one or more software packages as tools.
This is an important distinction to make since one has different goals in developing
software than in writing a specific computer program. Software is intended to be used
by others and to be as general as practically possible. A program is written to solve a
problem and often the author does not intend for it to be seen or used by anyone else.

Pure mathematicians search for abstract structures that transcend particular ex-
amples and that often unify disparate fields. They produce theorems that apply as
generally as possible and that can be used as solid and dependable building blocks
for future work. In addition to developing new algorithms, some computational
mathematicians also produce theorems, rigorous results guaranteeing that a particular
algorithm converges or bounds on the magnitude of the error, for example. Such
theorems give us the confidence to apply the algorithm to real world problems.

Other computational mathematicians focus on the development of software that
implements an algorithm in a dependable manner. This is perhaps an under-appre-
ciated art in the mathematical world, compared to proving theorems, but I believe
it is an analogous mathematical activity in many ways. In both cases the goal is to
distill the essence of a set of particular examples into a general result, something that
applies as broadly as possible while giving an interesting and nontrivial result that



Wave propagation software, computational science, and reproducible research 1229

can be built upon and used as a “subroutine” in future work. In both cases the result
is an encapsulation of a set of knowledge that has well defined inputs and outputs and
is believed to be proved correct, and that applies in many situations.

The process of developing a novel algorithm and writing software to implement it
is also in some ways similar to the process involved in proving a theorem. One needs
some mathematical insight to get started, but then working through many technical
details is typically required to make everything fit together in a manner that produces
the desired result. This part is not very glamorous but is a crucial part of the scholar-
ship. Often frustrations arise when one little detail does not work out quite the way
one hoped. Sometimes algorithms, like partially completed proofs, must be shelved
for years until someone else makes a breakthrough in a related area that suddenly
makes everything come together.

And everything does have to fit together just right; having a nice idea that seems
like it should work is not enough. Glossing over the details is not allowed, and is
particularly hard to pull off in a computer program. While it may be possible to slip
things by the referees in the description of an algorithm in a paper (as also sometimes
happens in a shoddy proof), computers will not parse the command “and then a miracle
occurs”. We are forced to be explicit in every step.

Of course even once a program does work, in the sense of compiling without
errors and producing results that seem reasonable, we are faced with the thorny issue
of “proving” that it is in fact correct. In computer science there is a whole field de-
voted to developing methodologies for formally proving the correctness of computer
programs. In computational science the programs are often so complex and the prob-
lem it is designed to solve so ill-defined that formal correctness proofs are generally
impossible. Instead the buzzwords are Verification and Validation (V&V for short).
These can be summarized by the following mnemonic:

Verification: Are we solving the problem right?
Validation: Are we solving the right problem?

For a physical experiment modeled by partial differential equations, for example, we
must verify that the computer program solves the PDEs accurately. A computational
scientist must also validate the code by comparing it against experiments to ensure
that the PDEs discretized are actually a sufficient model of reality for the situation
being modeled. The Euler equations of gas dynamics are sufficient in some situations,
but completely inadequate in other cases where viscosity plays a significant role.

Researchers in numerical analysis and scientific computing (as defined in the next
section) are generally most concerned with verification, while scientists, engineers,
and applied mathematicians focusing on mathematical modeling must also be con-
cerned with validation. Even the relatively simple task of verifying that a code solves
the given equations properly can be a real challenge, however, and is often as much
an art as a science. A good test problem that captures the essence of some potential
difficulty while having a solution that can be checked is often hard to come by, and
developing test suites for different classes of algorithms is valuable scholarship in
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itself. Numerous papers have been written on the subject of how best to test computer
programs or software for scientific computing; see [17], [29], [33], [38], [53], or [56]
for just a few approaches.

Elegance is valued in algorithm and software design as it is in other mathematical
endeavors. Often the first attempt at an algorithm is not very clean; it is a brute force
approach that gets the job done. Later work is often devoted to cleaning things up,
perhaps in fundamental ways that greatly reduce the computational complexity, but
also often in more subtle ways that simply make it more “elegant”, a hard to define
property that we recognize when we see.

Perhaps I am straying too far from the topic of reproducible scientific computing,
but to make progress in this direction I think it is important to recognize software
development as a valid and challenging mathematical activity. It takes a slightly
different type of mathematician to develop the necessary intuition and skills to excel
at this than is required to prove theorems, just as doing algebra vs. analysis takes
different mindsets and these are rarely done equally well by the same mathematician.
But no one doubts that algebraists and analysts are both mathematicians, even if
they cannot get beyond the first page of each others’ papers. Knuth [35] did an
interesting study on the connections between algorithmic and mathematical thinking,
a topic that he also touched on in an earlier paper [34] on “computer science and
its relation to mathematics”. This paper was written in 1974, at a time when many
computer science departments were just being established, often by mathematicians.
It makes interesting reading today, along with similar papers of the same vintage, such
as [9], [25]. Software development is a logical conclusion of algorithmic thinking,
and the development of software for mathematical algorithms naturally belongs in a
mathematics department.

The reason I care about this topic is not for my own mathematical ego. I have been
lucky to be at an institution where my work in this direction has been encouraged,
or at least tolerated. It may have helped that I did not put much effort into software
development until well after I was tenured.1 The main value of the tenure system is that
established people do not need to worry what our colleagues think of our activities or
how they choose to label them. But the future depends on bright young people. I think
computational science affords a wonderful opportunity to get students involved in a
host of mathematical challenges, and making significant progress on these requires
computational mathematicians with solid training in a broad range of mathematical

1However, many of my attitudes towards software development were shaped by my experiences as a graduate
student in the Computer Science Department at Stanford, where students in the numerical analysis group were
responsible for maintaining the library of numerical routines [10] available to physicists at the Stanford Linear
Accelerator Center (SLAC) and acting as consultants, activities that were encouraged by Gene Golub and Joe
Oliger. There I had the pleasure of working directly with an outstanding set of fellow students, most of whom
have gone on to make software contributions of their own, including Marsha Berger, Petter Bjorstad, Dan Boley,
Tony Chan, Bill Coughran, Bill Gropp, Eric Grosse, Mike Heath, Frank Luk, Stephen Nash, Michael Overton,
and Lloyd Trefethen. Many of us were also shaped by Cleve Moler’s course on numerical linear algebra, where
he tried out his new matlab program on us as a front end to the linpack and eispack routines that were already
setting the standard for mathematical software [23], [27], [61]. I think the Computer Science students were more
impressed with matlab and much more influenced by this experience than Cleve takes credit for in [48].
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tools and the ability to apply mathematical abstraction to common problems arising
in multiple fields. While there are many talented computational scientists working on
specific challenging problems in virtually every science and engineering department,
a computational mathematician, centered in a mathematics (or applied mathematics)
department, has the best chance of appreciating the common mathematical structure
of the problems and producing algorithms and software that are broadly applicable.
Doing so not only avoids a lot of wasted effort by scientists whose time is better spent
on the peculiarities of their specialty, it also leads to the introduction of techniques
into fields where they might not otherwise be invented and the discovery of new
connections between existing algorithms and applications.

I once heard Jim Glimm remark that “applied mathematicians are the honey bees
of the mathematical world, whose job is to cross-pollinate applications.” In addition
to providing a service to those in other disciplines, the process of collecting nectar can
result in some sweet rewards back in our own hive. This is equally true in algorithm
and software development as it is in more classical and theoretical aspects of applied
mathematics.

But young mathematicians will feel free to pursue such activities, and to also do the
less rewarding but crucial aspects of the scholarship such as documenting their codes
and making them presentable to the rest of the world, only if it is accepted as valid
mathematical scholarship. If it is seen as non-mathematics, it will only be a waste of
time that is best avoided by anyone seeking tenure in a mathematics department.

Applied mathematics in general is becoming much more acceptable in mathemat-
ics departments than it once was, at least in the United States. However, I doubt that
the careful development of software or computer programs, or the work required to
turn research codes into publishable scholarship, has the same level of acceptance.

2. Numerical analysis, scientific computing, and computational
science & engineering

One can argue at length about the meaning of the terms in this section title. To me,
“numerical analysis” has a double meaning: the analysis and solution of real-world
problems using numerical methods, and the invention and analysis of the methods
themselves using the techniques of mathematics.

When used in the latter sense, numerical analysis belongs firmly in a mathematics
(or applied mathematics) department. As just one example, analyzing the stability and
convergence properties of finite difference or finite element methods is no less difficult
(often more difficult) than analyzing the underlying differential equations, and relies
on similar tools of analysis. Specialists in this type of numerical analysis may or may
not do much computing themselves, and may be far removed from computational
science.

Numerical analysis in the sense of using numerical methods to solve problems, or
developing software for general use, is often called “scientific computing” or “com-
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putational science & engineering” these days. One can make a further distinction
between these two terms: Scientific computing is often used to refer to the devel-
opment of computational tools useful in science and engineering. This is the main
thrust of the SIAM Journal on Scientific Computing, for example, which contains
few theorems relative to the more theoretical SIAM Journal on Numerical Analysis,
but still focuses on mathematical and algorithmic developments. Computational sci-
ence & engineering refers more specifically to the use of computational tools to do
real science or engineering in some other field, as a complement to experimental or
theoretical science and engineering.

Not everyone would agree with my definitions of these terms. In particular, it can
be argued that “computational science” refers to the science of doing computation
and “computational engineering” to the implementation of this science in the form
of software development, but for my purposes I will lump these two activities under
“scientific computing”. It is important to be aware of this lack of consistency in
nomenclature since, for example, many recently developed academic programs in
Computational Science & Engineering stress aspects of scientific computing as well.

I have been arguing that “scientific computing”, in the sense just described, is a
branch of mathematics (as well as being a branch of other disciplines, such as com-
puter science), and that other mathematicians should be more aware of the intellectual
challenges and demands of this field, including the need to document and distribute
code. Not only are the activities of many practitioners of scientific computing essen-
tially mathematical, but they (and their students) benefit greatly from frequent contact
with more theoretical numerical analysts and mathematicians working in related ar-
eas. Other mathematicians may also benefit from having computational experts in the
department, particularly as more fields of pure mathematics develop computational
sides and realize the benefits of experimental mathematics – there is even a journal
(see expmath.org) now devoted to this approach.

3. Reproducible research

Within the world of science, computation is now rightly seen as a third vertex of a
triangle complementing experiment and theory. However, as it is now often practiced,
one can make a good case that computing is the last refuge of the scientific scoundrel.
Of course not all computational scientists are scoundrels, any more than all patriots
are, but those inclined to be sloppy in their work currently find themselves too much at
home in the computational sciences. Buckheit and Donoho [13] refer to the situation
in the field of wavelets as “a scandal”. The same can be said of many other fields, and
I include some of my own work in the category of scandalous.

Where else in science can one get away with publishing observations that are
claimed to prove a theory or illustrate the success of a technique without having to
give a careful description of the methods used, in sufficient detail that others can
attempt to repeat the experiment? In other branches of science it is not only expected
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that publications contain such details, it is also standard practice for other labs to
attempt to repeat important experiments soon after they are published. Even though
this may not lead to significant new publications, it is viewed as a valuable piece of
scholarship and a necessary aspect of the scientific method.

Scientific and mathematical journals are filled with pretty pictures these days of
computational experiments that the reader has no hope of repeating. Even brilliant
and well intentioned computational scientists often do a poor job of presenting their
work in a reproducible manner. The methods are often very vaguely defined, and even
if they are carefully defined they would normally have to be implemented from scratch
by the reader in order to test them. Most modern algorithms are so complicated that
there is little hope of doing this properly. Many computer codes have evolved over
time to the point where even the person running them and publishing the results knows
little about some of the choices made in the implementation. And such poor records
are typically kept of exactly what version of the code was used and the parameter
values chosen that even the author of a paper often finds it impossible to reproduce
the published results at a later time.

The idea of “reproducible research” in scientific computing is to archive and make
publicly available all of the codes used to create the figures or tables in a paper in such
a way that the reader can download the codes and run them to reproduce the results.
The program can then be examined to see exactly what has been done.

The development of very high level programming languages has made it easier to
share codes and generate reproducible research. Historically, many papers and text
books contained pseudo-code, a high level description of an algorithm that is intended
to clearly explain how it works, but that would not run directly on a computer. These
days many algorithms can be written in languages such as matlab in a way that is
both easy for the reader to comprehend and also executable, with all details intact. For
example, we make heavy use of this in the recent paper [15]. We present various grid
mappings that define logically rectangular grids in smooth domains without corners,
such as those shown later in Figure 1, and all of the matlab codes needed to describe
the various mappings are short enough to fit naturally in the paper. The associated
webpage contains the longer clawpack codes used to solve various hyperbolic test
problems on these grids.

Trefethen’s book on spectral methods [62] is a good example of a textbook along
these lines, in which each figure is generated by a 1-page matlab program. These
are all included in the book and nicely complement the mathematical description the
methods discussed. Trefethen makes a plea for more attention to short and elegant
computer programs in his recent essay [64].

However, for larger scale computer programs used in scientific publications, there
are many possible objections to making them available in the form required to re-
produce the research. I will discuss two of these, perhaps the primary stumbling
blocks.

One natural objection is that it is a lot of work to clean up a code to the point
where someone else can even use it, let alone read it. It certainly is, but it is often well
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worth doing, not only in the interest of good science but also for the personal reason
of being able to figure out later what you did and perhaps build on it.

Those of us in academia should get in the habit of teaching good programming,
documentation, and record keeping practices to our students, and then demand it of
them. We owe it to them to teach this set of computational science skills, ones that I
hope will be increasingly necessary in academic research environments and that are
also highly valued in industrial and government labs. It will also improve the chances
that we will be able to build on the work they have done once they graduate, and that
future students will be able to make use of it rather than starting from scratch as is too
often the case today.

While ideally all published programs would be nicely structured and easily read-
able with ample comments, as a first step it would be valuable simply to provide and
archive the working code that produced the results in a paper. Even this takes more
effort than one might think. It is important to begin expecting this as a natural part
of the process so that people will feel less like they have to make a choice between
finishing off one project properly or going on to another where they can more rapidly
produce additional publications. The current system strongly encourages the latter.

As Buckheit and Donoho [13] point out, the scientific method and style of present-
ing experiments in publications that is currently taken for granted in the experimental
sciences was unheard of before the mid-1800s. Now it is a required aspect of re-
spectable research and experimentalists are expected to spend a fair amount of time
keeping careful lab books, fully documenting each experiment, and writing their pa-
pers to include the details needed to repeat the experiments. A paradigm shift of the
same nature may be needed in the computational sciences.

Requiring it of our students may be a good place to start, provided we recognize
how much time and effort it takes. Perhaps we should be more willing to accept an
elegant and well documented computer program as a substantial part of a thesis, for
example.

A second objection to publishing computer code is that a working program for
solving a scientific or engineering problem is a valuable piece of intellectual property
and there is no way to control its use by others once it is made publicly available. Of
course if the research goal is to develop general software then it is desirable to have
as many people using it as possible. However, for a scientist or mathematician who
is primarily interested in studying some specific class of problems and has developed
a computer program as a tool for that purpose, there is little incentive to give this
tool away free to other researchers. This is particularly true if the program has
taken years to develop and provides a competitive edge that could potentially lead
to several additional publications in the future. By making the program globally
available once the first publication appears, other researchers can potentially skip
years of work and start applying the program to other problems immediately. In this
sense providing a program is fundamentally different than carefully describing the
materials and techniques of an experiment; it is more like inviting every scientist in
the world to come use your carefully constructed lab apparatus free of charge.
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This argument undoubtedly has considerable merit in some situations, but on the
whole I think it is overblown. It is notoriously difficult to take someone else’s code
and apply it to a slightly different problem. This is true even when people are trying
to collaborate and willing to provide hands-on assistance with the code (though of
course this type of collaboration does frequently occur). It is often true even when the
author of the code claims it is general software that is easy to adapt to new problems.
It is particularly true if the code is obscurely written with few comments and the
author is not willing to help out, as would probably be true of many of the research
codes people feel the strongest attachment to.

Moreover, my own experience in computational science is that virtually every
computational experiment leads to more questions than answers. There is such a
wealth of interesting phenomena that can be explored computationally these days
that any worthwhile code can probably lead to more publications than its author
can possibly produce. If other researchers are able to take the code and apply it
in some direction that would not otherwise be pursued, that should be seen as a
positive development, both for science and for its original author, provided of course
that s/he gets some credit in the process. This is particularly true for computational
mathematicians, whose goals are often the development of a new algorithm rather
than the solution of specific scientific problems. Even for those not interested in
software development per se, anything we can do to make it easier for others to use
the methods we invent should be viewed as beneficial to our own careers.

Perhaps what is needed is some sort of recognized patent process for scientific
codes, so that programs could be made available for inspection and independent
execution to verify results, but with the understanding that they cannot be modified
and used in new publications without the express permission of the author for some
period of years. Permission could be granted in return for co-authorship, for example.
In fact such a system already works quite well informally, and greater emphasis on
reproducible research would make it function even better. It would be quite easy to
determine when people are violating this code of ethics if everyone were expected to
“publish” their code along with any paper. If the code is an unauthorized modification
of someone else’s, this would be hard to hide.

4. Wave propagation algorithms and clawpack

As a case study in software development, and its relation to mathematics, scientific
computing, and reproducible research, I will briefly review some of the history behind
my own work on clawpack (Conservation LAWs PACKage), software for solving
hyperbolic systems of partial differential equations.

This software development project began in 1994. I had just taught a graduate
course on numerical methods for conservation laws and had distributed some sample
computer programs to the students as a starting point for a class project. In the fall
I went on sabbatical and decided to spend a few weeks cleaning up the program and
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redesigning it as a software package, in large part because I was also planning to spend
much of the year revising my lecture notes [42] from a course I taught at ETH-Zürich
in 1989 into a longer book, and I wanted to complement the text with programs the
students could easily use.

I seriously misjudged the effort involved – I spent most of that year and consid-
erable time since developing software, which grew into something much more that I
originally intended. The book [44] took several more years of work and iterations of
teaching the course and did not appear until 2002.

Virtually all of the figures in this book are reproducible, in the sense that the
programs that generated them can each be downloaded from a website and easily
run by the student. Most figure captions contain a link to the corresponding web-
site, in the form [claw/book/chap23/advection/polar], for example, from the caption
of Figure 23.3, which is easily translated into the appropriate web address. (Start at
http://www.amath.washington.edu/~claw/book.html to browse through all these web-
pages). Each webpage contains the computer code and many also contain additional
material not in the book, for example movies of the solution evolving in time.

All of these examples are based on the clawpack software. This software is
described briefly in the book and more completely in the User Guide [41] available
on the web. Once the basic software is installed, the problem-specific code for each
example in the book is quite small and easy to comprehend and modify. The reader is
encouraged to experiment with the programs and observe how changes in parameters
or methods affect the results. These programs, along with others on the clawpack
website [40], can also form the basis for developing programs to solve similar prob-
lems.

This software implements a class of methods I call “wave propagation algorithms”
for solving linear or nonlinear hyperbolic problems. Hyperbolic partial differential
equations are a broad class of equations that typically model wave propagation or ad-
vective transport phenomena. The classic example is the second-order wave equation
ptt = c2pxx for linear acoustics, modeling the propagation of pressure disturbances
in a medium with sound speed c. The clawpack software, however, is set up to
solve a different form of hyperbolic equations: systems that involve only first order
derivatives in space and time.

In the linear case, a first-order system of PDEs (in one space dimension and
time) has the form qt + Aqx = 0, where q(x, t) is a vector of some m conserved
quantities, A is an m × m matrix, and subscripts denote partial derivatives. In the
nonlinear case, a system of m conservation laws takes the form qt + f (q)x = 0,
where f (q) is the flux function (in the linear case, f (q) = Aq). This system is called
hyperbolic if the flux Jacobian matrix f ′(q) is diagonalizable with real eigenvalues.
The system of Euler equations for inviscid compressible gas dynamics has this form,
for example, where mass, momentum, and energy are the conserved quantities. The
full nonlinear equations can develop shock wave solutions in which these quantities
are discontinuous, one of the primary challenges in numerical modeling. Linearizing
this system gives the linear acoustics equations in the form of a first-order system of
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equations for pressure and velocity. Cross differentiating this system allows one to
eliminate velocity and obtain the single second-order wave equation for p mentioned
above, but the first-order formulation allows the modeling of a much broader range
of phenomena.

First-order hyperbolic systems arise naturally in a multitude of applications, in-
cluding for example elastodynamics (linear and nonlinear), electromagnetic wave
propagation (including nonlinear optics), shallow water equations (important in ocean-
ography and atmospheric modeling), and magnetohydrodynamic and relativistic flow
problems in astrophysics.

The wave-propagation algorithms are based on two key ideas: Riemann solvers
and limiters. The Riemann problem consists of the hyperbolic equation under study
with special initial conditions at some time t̄ : piecewise constant data with left state
q� and right state qr and a jump discontinuity in each conserved quantity at a single
point in space, say x̄. The solution to this Riemann problem for t > t̄ is a similarity
solution, a function of (x− x̄)/(t − t̄ ) alone that consists of a set of waves propagating
at constant speeds away from the initial discontinuity. The definition of hyperbolicity
guarantees this, and the eigenvalues of the flux Jacobian are related to the wave speeds.
In the linear case the eigenvalues of the matrix A are exactly the wave speeds. In the
nonlinear case the eigenvalues vary with q. The Riemann solution may then contain
shock waves and rarefaction waves, but even in the nonlinear case this special problem
has a similarity solution with constant wave speeds.

In 1959, Sergei Godunov [30] proposed a numerical method for solving general
shock wave problems in gas dynamics by using the Riemann problem as a building
block. If the physical domain is decomposed into a finite number of grid cells and
the solution approximated by a piecewise constant function that is constant in each
grid cell, then at the start of a time step the initial data consists of a set of Riemann
problems, one at each cell interface. By solving each of these Riemann problems the
solution can be evolved forward in time by a small increment. The resulting solution
is averaged over each grid cell to obtain a new piecewise constant approximation to the
solution at the end of the time step. This procedure is repeated in the next time step.
This idea of basing the numerical method on Riemann solutions turned out to be a
key idea in extending the “method of characteristics” from linear hyperbolic systems
to important nonlinear shock propagation problems. This also leads naturally to a
software framework: the particular hyperbolic equation being solved is determined
by providing a Riemann Solver. This is a subroutine that, given any two states q�

and qr , returns the wave speeds of the resulting waves in the similarity solution, along
with the corresponding waves themselves (i.e., the jump in q across each wave). The
updating formulas for the cell averages based on these waves are very simple and
independent of the particular system being solved.

Godunov’s method turned out to be very robust and capable of solving problems
involving strong shocks where other methods failed. However, it is only first-order
accurate on smooth solutions to the PDEs. This means that the error goes to zero
only as the first power of the discretization steps �x and �t . Moreover, although
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complicated solutions involving strong shocks and their interactions could be robustly
approximated without the code crashing, the resulting approximations of shock waves
are typically smeared out. The process of averaging the solution over grid cells
each time step introduces a large amount of “numerical dissipation” or “numerical
viscosity”.

During the 1970s and 1980s, a tremendous amount of effort was devoted to devel-
oping more accurate versions of Godunov’s method that better approximated smooth
solutions and also captured shock waves more sharply. These methods often go by the
general name of “high-resolution shock capturing methods”. A wide variety of meth-
ods of this type have been proposed and effectively used. Many of these, including the
wave-propagation algorithms of clawpack, have the relatively modest goal of achiev-
ing something close to second-order accuracy on smooth solutions coupled with sharp
resolution of discontinuities. Other approaches have been used that can achieve much
better accuracy in certain situations, though for general nonlinear problems involving
complicated shock structures, particularly in more than one dimension, it seems hard
to improve very much beyond what is obtained using second-order methods.

One standard second-order method for a linear hyperbolic system is the Lax–
Wendroff method, first proposed in 1960, which is based on approximating the first
few terms of a Taylor series expansion of the solution at time t +�t about the solution
at time t . This method does not work at all well for problems with discontinuities,
however, as it is highly dispersive and nonphysical oscillations arise that destroy all
accuracy. In the nonlinear case these oscillations around shock waves can also lead
to nonlinear instabilities.

The key feature in many high-resolution methods is to apply a limiter function in
some manner to suppress these oscillations. In the wave-propagation algorithms this is
done in the following way. The Lax–Wendroff method can be rewritten as Godunov’s
method plus a correction term that again can be expressed solely in terms of the waves
and wave speeds in the Riemann solutions arising at each cell interface. Where the
solution is smooth, adding in these correction terms improves the accuracy. Where
the solution is not smooth, for example near a shock, the Taylor series expansion is not
valid and these “correction terms”, which approximate higher derivatives in the Taylor
expansions, do more harm than good. We can determine how smooth the solution
is by comparing the magnitude of a wave with the magnitude of the corresponding
wave at the neighboring cell interfaces. If these differ greatly then the solution is not
behaving smoothly and the correction terms should be “limited” in some manner.

Many variants of this idea have been used. In some cases it is the Lax–Wendroff
expression for the flux at the interface between cells that is limited (in so-called
“flux limiter” methods). Another approach is to view the Lax–Wendroff method as a
generalization of Godunov’s method in which a piecewise linear function in each grid
cell is defined and the values at the edges of each cell then used to define Riemann
problems. In this case the slope chosen in each cell is based on the averages in nearby
cells, with some “slope limiter” applied in regions where it appears the solution is
not behaving smoothly. For the special case of a scalar conservation law, a very
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nice mathematical theory was developed to guide the choice of limiter functions.
The true solution to a scalar problem has its total variation non-increasing over time.
By requiring that a numerical method be “total variation diminishing” (TVD) it was
possible to derive methods that were essentially second order accurate, or higher, but
that could be proved to not introduce spurious oscillations.

The 1980s were an exciting time in this field, as robust high-resolution methods
were developed for a variety of challenging applications and as computers became
powerful enough that extensions of these methods and the related mathematical theory
to more than one space dimension became possible and necessary.

I played a modest role in some of these developments, but I think my main con-
tribution has been in providing a formulation of these methods that lends itself well
to software that is very broadly applicable, and in leading the effort to write this soft-
ware. The wave-propagation formulation that I favor has the advantage that once the
Riemann problem has been solved, the limiters and high-resolution correction terms
are applied in a general manner that is independent of the equation being solved.
Moreover a framework for doing this in two dimensions was proposed in [43] that
retains this modularity, separating the process of solving a one-dimensional Riemann
problem at each cell interface, along with a related “transverse Riemann problem” in
the orthogonal direction, from the process of propagating these waves and correction
terms with appropriate limiters. While it had long been recognized that the methods
being developed were in principle broadly applicable to all hyperbolic problems, for
systems of equations most methods were developed or at least presented in a form that
was specific to one particular problem (often the Euler equations of gas dynamics) and
a certain amount of work was required to translate them to other problems. Computer
programs that I was aware of were all problem-specific, and generally not publicly
available.

My original motivation for developing this framework was not software develop-
ment, but rather the need to teach graduate students, and the desire to write a book
that explained how to apply these powerful high-resolution methods to a variety of
problems. I had students coming from the Mathematics and Applied Mathematics
departments, many of whom knew little about fluid dynamics, and students from sev-
eral science and engineering departments who had specific interests in very diverse
directions.

My subsequent motivation for software development was partly educational, but
also partly because I wanted to better publicize the wave-propagation framework I
had developed and make it easier for others to use methods in this form. I recognized
that these methods, while quite general, were also sufficiently complicated that few
would bother to implement them from my descriptions in journal articles. For this
research to have any impact beyond a few publications it seemed necessary to provide
more than pseudo-code descriptions of the algorithms.



1240 Randall J. LeVeque

5. clawpack as an environment for developing and testing methods

I have provided a few basic sample programs within the clawpack package itself,
and some additional test problems in a directory tree labeled applications available
at the website. Complete programs also exist for each of the figures in my book.
These each consist of a tarred Unix directory containing a small set of subroutines
to be used together with the main software. These subroutines specify the specific
problem, including the Riemann solver and the initial and boundary conditions. Many
standard boundary conditions are already available in the default boundary condition
routine, and a variety of Riemann solvers are also provided for many different systems
of equations. As a result it is often very easy to adapt one of these examples to a new
problem, particularly for some of the standard test problems that often appear in
publications.

Although the development of the clawpack software was originally motivated by
the desire to make a set of existing methods more broadly accessible, the availability
of this software has also encouraged me to pursue new algorithmic advances that I
otherwise might not have. I hope that the software will also prove useful to others
as a programming environment for developing and testing new algorithms, and for
comparing different methods on the same problems. Since the source code is available
and the basic clawpack routines are reasonably simple and well documented, it
should be easy for users to modify them and try out new ideas. I encourage such use,
and I certainly use it this way myself.

As one example, there are many approaches to developing the “approximate Rie-
mann solvers” that are typically used for nonlinear problems. It often is not cost
effective, and may not even be possible, to solve the Riemann problem exactly at ev-
ery cell interface each time step. Different versions of the Riemann solver can easily
be swapped in and tested on a set of problems. See Figures 15.5 and 15.6 in [44] and
the associated programs for an example of this sort of comparison. The clawpack
software also comes with a set of standard limiter functions, and an input parameter
specifies which one will be used. The subroutine where these are implemented can
be easily modified to test out new approaches.

More extensive modifications could be made to the software as well, for example
by replacing the wave-propagation algorithms currently implemented by a different
approach. If a new method is formulated so that it depends on a Riemann solver and
boundary conditions that are specified in the form already used in clawpack, then it
should be easy to test out the new method on all the test problems and applications
already developed for clawpack. This would facilitate comparison of a new method
with existing methods.

Careful direct comparisons of different methods on the same test problems are
too seldom performed in this field, as in many computational fields. One reason for
this is the difficulty of implementing other peoples’ methods, so the typical paper
contains only results obtained with the authors’ method. Sometimes (not always) the
method has been tested on standard test problems and the results can be compared with
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others in the literature, with some work on the reader’s part, and assuming the reader
is content with comparisons in the “eyeball norm” since many papers only contain
contour plots of the computed solution and no quantitative results. Of course there
are many exceptions to this, including some papers devoted to careful comparisons
of different methods (e.g., [31], [46]), but these papers are still a minority. I hope that
clawpack might facilitate this process more in the future, and that new algorithms of
this same general type might be provided in a clawpack implementation that allows
direct use and comparison by others.

6. clawpack extensions and infrastructure

This software effort began about 10 years ago, as recounted above, and has continued
in unexpected ways as the software grew beyond my initial intentions in several
directions. While originally I viewed it primarily as an educational tool, it was based
on my own research codes and I realized that it could perhaps be valuable for other
researchers as well, perhaps even as a tool for solving real problems and not just
academic test problems. To make it more useful as a general tool required several
enhancements.

I originally wrote subroutines for solving systems in one and two space dimensions,
but started collaborating with Jan Olav Langseth that same year on the development
of three-dimensional generalizations [37]. He took my course as a visiting graduate
student from the University of Oslo and went on to write a thesis partly on this
topic [36], and wrote the three-dimensional subroutines in clawpack.

I had also been collaborating with Marsha Berger on research related to using cut-
cell Cartesian grids to solve the Euler equations in non-rectangular geometries (e.g.,
[5], [6]) and was familiar with her implementation of adaptive mesh refinement on
rectangular grids, using an approach pioneered in her work with Joe Oliger and Phil
Colella [4], [8], [7]. While still on sabbatical, in 1995 we started working together to
modify her adaptive mesh refinement (AMR) code and make it more generally appli-
cable to any hyperbolic system that can be solved in clawpack. In this approach the
rectangular grid is refined by introducing finer grids on rectangular patches. Several
levels of refinement are allowed, by an arbitrary refinement factor at each level. The
program automatically refines and de-refines as the computation proceeds, based on a
standard default or user-specified error criterion, and so fine grids are used only where
they are needed. This approach is particularly valuable for problems involving shock
waves propagating in three space dimensions. To capture the shock waves as sharp
discontinuities, even with high-resolution methods, requires a fairly fine grid around
the shock, much finer than is needed in regions where the solution is smooth. Without
AMR many three-dimensional problems would be impractical to solve except on the
largest supercomputers.

This amrclaw software is now a standard part of clawpack, and was extended
from two to three space dimensions with programming help from Dave McQueen and
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Donna Calhoun. The goal of the amrclaw code is primarily to facilitate research and
practical problem solving, rather than to teach adaptive refinement techniques. The
core library consists of about 9 000 lines of Fortran 77 code that is quite convoluted
and not structured or fully documented in a way that others can easily understand.
This stems in large part from its history as a merging together of two different codes,
with different notation and conventions that have largely been preserved and worked
around, and with many new features added over the years as afterthoughts that were
not originally designed for. It may not be particularly elegant, but it has proved
valuable in solving practical problems and by now has been tested to the point where
it is fairly robust and reliable. All of the source code is available for others to inspect
and modify, at their own peril perhaps.

The clawpack framework can also be used with other AMR packages. Sorin
Mitran is developing bearclaw [47], a Fortran 90 version with similar capabilities
to amrclaw but designed with these capabilities in mind from the beginning. This
code is still being developed and has not been tested as extensively as amrclaw, but
it has been successfully used in astrophysical applications [51], [52]. Ralf Deiterding
has developed a general purpose adaptive refinement code amroc [18], [19] in C++
that also allows the use of the clawpack solvers with adaptive refinement. This is a
primary computational tool in the Virtual Shock Physics Test Facility at the Caltech
ASC Center for Simulation of Dynamic Response of Materials [1]. Recently Donna
Calhoun has written a chombo-claw interface [14] between the clawpack solvers
and the C++ chombo software package developed by Colella’s group at Lawrence
Berkeley Lab [16]. These newer packages have various advantages over the amrclaw
software in clawpack. They are written in more advanced languages that are more
suitable for the data structures and dynamic memory allocation needed inAMR codes.
They also have more capabilities such as parallel implementations, the ability to
handle implicit methods, and/or coupling with elliptic solvers as required in some
applications.

Other extensions of clawpack have also been developed, such as the clawman
software [2] that solves hyperbolic systems on curved two-dimensional manifolds.
This has been used to solve geophysical flow problems on the sphere and relativistic
flow problems in curved space-time near a black hole [3], [54], [55].

The original software was designed for purely Cartesian grids in rectangular re-
gions of space. Some practical problems have this form, but most are posed in more
complicated physical domains, e.g., for flows around or through a physical object.
There are many approaches to handling complex geometries. The cut-cell Cartesian
grid approach has already been mentioned above. At the other extreme lie unstruc-
tured grids, typically composed of triangular cells in two dimensions or tetrahedra in
three dimensions. These can conform to very general boundaries, but grid generation
then becomes a challenging problem in itself, and implementations must deal with
special data structures to keep track of what cells are adjacent to one another.

For fairly simple domains, a good compromise is often possible in which the
grid is logically rectangular in computational space, but is mapped to a nonrectagular
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physical domain. In two dimensions, this means that each grid cell is a quadrilateral
and simple (i, j) indexing can be used to denote the cells, with neighboring cells
having indices (i ± 1, j ± 1). In three dimensions the grid cells are hexahedral but
still logically rectangular. It is quite easy to apply clawpack in such situations (as
described in Chapter 23 of [44]), with a standard set of additional subroutines used
to specify the mapping function. One nice feature of this approach is that the AMR
routines work perfectly well on mapped grids – the patches of refinement are still
rectangular in computational space. The wave-propagation algorithms turn out to
work quite robustly on quadrilateral grids, even if the grid is nonorthogonal and far
from smooth. Rather than incorporating the grid mapping directly into the differential
equations as “metric terms” that involve derivatives of the mapping function, in the
wave-propagation approach one solves one-dimensional Riemann problems orthog-
onal to each grid interface and transverse Riemann problems based on the adjacent
cell interfaces.

Figure 1 shows two grids from some recent work with Calhoun [15] on the use of
logically rectangular grids for solving problems in domains with smooth boundaries.
The figure on the left shows a quadrilateral grid for a circle, while that on the right
is a logically rectangular grid on the sphere. Each grid is simply a rectangle in
computational space. Of course polar coordinates also give a logically rectangular
grid in a circle, but grid lines coalesce at the center where cells have much smaller
area than those near the perimeter. This presents a problem when using explicit

Figure 1. Quadrilateral grids on the circle and the sphere. In each case the computational
domain is a rectangular grid. The matlab code that generates these grids is available on the
webpage [39].

methods for hyperbolic problems: the disparity in cell sizes leads to an undesirable
restriction on the time step. The grids in Figure 1 are far from smooth or orthogonal;
in fact the images of the two orthogonal cell edges at each corner of the rectangular
computational domain are nearly collinear in the physical domain. But the cell areas
are nearly uniform, differing by at most a factor of 2. Standard finite difference
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methods would presumably not work well on these grids, but applying clawpack
yields very nice results, as demonstrated in [15].

Writing new methods in “clawpack form” makes it possible to take advantage of
the infrastructure developed for this software, for example to apply the method on a
general quadrilateral grid. It may also be possible to apply adaptive mesh refinement
quite easily with the new method by taking advantage of one of the AMR wrappers
described above. Since implementing AMR effectively is far from trivial, and often
has little to do with the particular numerical method used on each grid patch, making
use of existing implementations could be worthwhile even if it takes a bit of work to
formulate the method in an appropriate form. Extensive graphics routines in matlab
have been written to plot the results computed by clawpack. These routines (written
mostly by Calhoun and myself) deal with adaptive mesh refinement data in two or three
space dimensions. This is a not easily done directly with most graphics packages, and
again this infrastructure may be useful to developers of new methods. (In fact these
graphics routines can take AMR data produced by any program, not just clawpack,
provided it is stored in the appropriate form.)

One current research project, with graduate student David Ketcheson, is to imple-
ment higher order numerical methods in clawpack, specifically the weighted essen-
tially non-oscillatory (WENO) methods that are based on higher order interpolation
in space coupled with Runge–Kutta time stepping (e.g., [31], [60]). Doing so requires
reformulating these methods slightly, and in particular we are developing a version
that works for linear hyperbolic systems that are not in conservation form. Systems
of this form arise in many applications, such as the propagation in heterogeneous
media of acoustic, elastic, or electromagnetic waves. In many linear applications the
solution is smooth but highly oscillatory, and in this case higher-order methods may
be beneficial.

7. Applications in computational science

In addition to continuing to work on algorithm development, in the past few years
I have become more directly involved in applications of computational science, driven
in part by the existence of this software as a starting point. Problems that can be
solved easily with the existing software have little interest to me; as a mathematician
I consider them solved, though there may be plenty of interesting science to be done
by judicious use of the software as a tool. This is best done, however, by scientists
who are experts in a particular domain.

A practical problem where clawpack fails to perform well, or where some sub-
stantial work is required to apply it, is much more interesting to me. Although the
methods implemented in clawpack work well on many classical hyperbolic prob-
lems, there are a wealth of more challenging problems that are yet to be solved, and
I hope that clawpack might form the basis for approaching some of these problems
without the need to rewrite much of the basic infrastructure.
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In the remainder of this section I will briefly describe a few topics that are currently
occupying me and my students. More details on these and other problems, along with
movies, papers, and sometimes computer code, can be found by clicking on the
“Research interests” link from my webpage.

Shock wave therapy and lithotripsy. Focused shock waves are used in several
medical procedures. Extracorporeal shock wave lithotripsy (ESWL) is a standard
clinical procedure for pulverizing kidney stones noninvasively. There are several
different lithotripter designs. In one model, a spark plug immersed in water generates
a cavitating bubble that launches a spherical shock wave. This wave reflects from an
ellipsoidal shaped reflector and refocuses at the distal focus of the ellipsoid, where the
kidney stone is centered. The shock wave pulse has a jump in pressure of roughly 50
MPa (500 atmospheres) over a few nanoseconds, followed by a more slowly decaying
decrease in pressure passing below atmospheric pressure before relaxing to ambient.
This tensile portion of the wave is particularly important in kidney stone comminution
since stones are composed of brittle material that does not withstand tensile stress well.
Typically thousands of pulses are applied clinically (at a rate of 1 to 4 per second).
The breakup process is not well understood and better understanding might allow
clinical treatment with fewer pulses and less damage to the surrounding kidney.

Together with Kirsten Fagnan and Brian MacConaghy, two graduate students in
Applied Mathematics, I have recently been collaborating with researchers at the Ap-
plied Physics Laboratory and the medical school at the University ofWashington to de-
velop a computational model of nonlinear elastic wave propagation in heterogeneous
media that can be used to aid in the study of this process. Preliminary computations
have been performed using linear elasticity in two-dimensional axisymmetric config-
urations in which a cylindrical test stone is aligned with the axis of the lithotripter
ellipsoid. We are currently extending these computations to an appropriate nonlin-
ear elasticity model, and also to three dimensional calculations for non-axisymmetric
configurations.

We also hope to perform simulations useful in the study of extracorporeal shock
wave therapy (ESWT), a relatively new application of lithotripter shock waves to
treat medical conditions other than kidney stones, in which the goal is to stimulate
tissue or bone without destroying it. For example, several recent clinical studies have
shown that treating nonunions (broken bones that fail to heal) with ESWT can lead to
rapid healing of the bone [26], [57], perhaps because it stimulates the growth of new
vascular structure in regions where there is insufficient blood flow. Conditions such
as tennis elbow, plantar fasciitis, and tendinitis have also been successfully treated
with ESWL; see for example [32], [58].

In ESWL applications the shock wave is often focusing in a region where there is
a complicated mix of bones and tissue. The interfaces between these materials cause
significant reflection of wave energy. It is often crucial to insure that the shocks do not
accidentally refocus in undesirable locations, such as nearby organs or nerves, which
could potentially cause extensive collateral damage. Ideally one would like to be able



1246 Randall J. LeVeque

to use MRI data from a patient to set material parameters and run 3d simulations of the
shock wave propagation in order to adjust the angle of the beam to achieve maximal
impact in the desired region with minimal focusing elsewhere. Our current work is a
first step in this direction.

Volcanic flows. My recent student Marica Pelanti developed a dusty gas model in
which the Euler equations for atmospheric gas are coupled to another set of conser-
vation laws for the mass, momentum, and energy of a dispersed dust phase [49], [50].
The two sets of equations are coupled together by source terms modeling viscous drag
and heat transfer between the phases. The dust is assumed pressureless and requires
special Riemann solvers, based on [45]. This model has been used to study the jets
arising from high-velocity volcanic eruptions.

The speed of sound in a dusty gas is considerably less than the sound speed in the
atmosphere. As a result, volcanic jets can easily be supersonic relative to the dusty
gas sound speed, leading to interesting shock wave structures within an eruption
column. Pelanti explored this for 2D axi-symmetric jets for both flat topography and
for topography where the jet expands through an idealized conical crater. Similar
work has been performed by Augusto Neri and Tomaso Esposti Ongaro in the Earth
Sciences Department at the University of Pisa and we are now collaborating with
them on some comparisons of our results.

We have also interacted extensively with researchers at the USGS Cascade Vol-
cano Observatory (CVO) near Mount St. Helens (MSH), who study many aspects of
volcanic flows and are charged with hazard assessment for MSH. After a long quies-
cent period, MSH became quite active again in October, 2004, and we worked with
these researchers to try to produce a full three-dimensional model of pyroclastic flows
over the topography of MSH in order to predict the possible impact of an eruption of
various magnitudes. Extension of the dusty gas model to the full three-dimensional
topography of MSH is underway, although it turns out there are many numerical and
modeling issues still to be tackled.

Considerable data is available from the 1980 eruption that can be used to validate
a code. In particular, there is a set of photographs and maps that show the direction
in which trees were blown down when the initial pyroclastic blast from the eruption
passed over the surrounding ridges. The blown-down trees created a snapshot of the
velocity vectors in the leading edge of the flow. These exhibit complex flow patterns,
such as recirculation zones on the lee side of ridges where the trees were blown
down in the direction pointing towards MSH instead of away. We hope to eventually
compare computed velocities from our simulations with these observations.

Richard Iverson and Roger Denlinger at CVO have also done extensive work on
modeling debris flows, such as those that arise when water from melting glaciers on
a volcano mixes with trees, boulders, and other debris, creating highly damaging and
life-threatening flows [20], [21]. Their numerical work is based on equations similar to
the shallow water equations but enhanced with more physics within the flow. They use
Riemann solver techniques based in part on the wave-propagation framework, with the
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additional solution of an elasticity problem within each Riemann solver to compute
the local stress tensor within the debris. They encounter difficulties at the edge of the
flow similar to the dry-cell problems that arise in tsunami modeling (discussed below)
and we have collaborated with them on solving these problems. Denlinger has also
recently modeled the great Missoula floods using similar techniques [22].

Tsunami modeling. David George and I have been developing a version of amrclaw
capable of modeling tsunamis, including both their global propagation over large ex-
panses of ocean and the inundation and run-up around small scale features at the level
of individual beaches or harbors. We solve the shallow water equations on rectangu-
lar grids, in which each grid cell has an elevation value for the earth surface (which
is called topography if it is above sea level, or bathymetry when underwater). The
components of q are the fluid depth h and momenta hu and hv. Grid cells above sea
level are dry (h = 0) and cells can become wet or dry dynamically as waves move
along the shore. This approach avoids the need to model the shoreline as a separate
interface, but developing a robust code based on this approach requires a Riemann
solver that can deal well with both wet and dry states. The bathymetry comes in as a
source term in the conservation laws. Away from shore the bathymetry is varying on
a scale of several kilometers (the Indian Ocean is about 4 km deep, for example)
whereas a tsunami propagating over the ocean is a few meters high at most. This
difference in scales leads to difficulties that I will not describe here, and requires the
use of some sort of “well-balanced” scheme in which the source term is incorporated
into the Riemann solver. Though of small magnitude in the ocean, a tsunami may
have a wavelength of more than 100 km and so the shallow water equations are an
appropriate model. The propagation velocity is

√
gh, where g is the gravitational con-

stant, and as they approach shore h decreases and the wave magnitude increases as the
wavelength shortens, the same phenomenon observed in breaking waves on a beach.
But in a tsunami the entire water column is set in motion by an uplifting of the ocean
floor, whereas in wind-driven surface waves only the water very near the surface is
moving. The enormous energy tsunamis carry gives them great destructive potential.

Adaptive mesh refinement is essential for this problem. We wish to propagate
waves over the ocean, where grid cells several kilometers on a side can be used, and
simultaneously predict the run-up around local features, where cell sizes of a few me-
ters are desirable. Developing a well-balanced dry-state Riemann solver that works
well in the context of AMR proved to be quite challenging and many difficulties ap-
peared at the boundaries between grids at different levels. These could only be solved
by some substantial reworking of the amrclaw code. The result is a special-purpose
program that incorporates these algorithmic modifications and can now be applied to
many tsunami scenarios. It is currently being tested by comparing predictions with
measurements made at various places around the Indian Ocean in the wake of the 26
December 2004 Sumatra earthquake.

For this application we are working very closely with tsunami scientists. Our
involvement in tsunami modeling arose out of a joint NSF grant with Harry Yeh in
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civil engineering at Oregon State University and Joe Hamack at Penn State, who were
doing wave tank experiments and related mathematical modeling that they wished
to complement with numerical simulations. Since the Sumatra event, our focus has
shifted to the larger scale, and the contacts we had already established in the tsunami
modeling community proved invaluable. Many Tsunami Survey Teams traveled to
the Indian Ocean and surveyed different parts of the coastline, measuring the run-up
and inundation observed. Yeh was on a team that mapped the region near Chennai
(Madras), India, and our initial validation work is focused on comparing predictions
with his observations in this area. Unfortunately fine-scale bathymetry data is hard
to come by and we have resorted to digitizing navigational charts to obtain some of
the necessary data.

Figure 2 shows part of a simulation of the Indian Ocean tsunami, as described
further in the caption. See the webpage [39] for color versions and movies, along
with the computer program.

The program we have developed is a research code for this particular problem, but
we intend to further improve it and ultimately make it available to the community.
There is far more data available than we can compare against ourselves and we hope
that other researchers will be able to use it for some of this work and publish the
results. If our code does not work well or does not agree well with observations
in some cases then we may need to revisit it, or perhaps others will make further
improvements to it.

We hope that this code may ultimately be useful as a real-time tsunami prediction
tool, and we are working with Vasily Titov and other scientists of the NOAA National
Tsunami Hazard Mitigation Program in Seattle to compare our code with theirs and
see how we can best complement their efforts (some of which are described in a recent
Scientific American article [28]).

8. Conclusions

I have made a case that many aspects of scientific computing and software development
should be viewed as inherently mathematical, and that mathematicians can play a very
important role in computational science. I have also encouraged researchers in this
area to produce reproducible research, in particular by making computer programs,
not just software, available to others. I have presented some of my own research
activities as a case study, though I do not claim it is the best example to follow.

I do hope, however, that the software we have produced will find wider use as one
tool in this direction, both as a development environment for testing new methods
and as a building block for solving problems in science and engineering. My hope is
that others who develop methods or applications using this package will make their
full code available on the web, particularly if it has been used to compute results that
appear in publications.
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(a) Time 01:06:45 (525 seconds) (b) Time 02:10:55 (4375 seconds)

(c) Time 02:43:00 (6300 seconds) (d) Time 3:15:05 (8225 seconds)

Figure 2. Propagation of the 26 December 2004 tsunami across the Indian Ocean. Units on the
axes are longitude and latitude. The top two frames show the Bay of Bengal at two early times.
A coarse grid is used where nothing is yet happening and the grid cells are shown on this “Level 1
grid”, which has a mesh width of one degree (approximately 111 km). The rectangular region
where no grid lines are shown is a Level 2 grid with mesh width 8 times smaller, about 14 km.
Red represents water elevation above sea level, dark blue is below the undisturbed surface (see
the webpage [39] for color versions of these images). Figure (c) shows a zoomed view of the
southern tip of India and Sri Lanka at a later time. The original Level 1 grid is still visible along
the left-most edge, but the rest of the region shown has been refined by a Level 2 grid. Part of
Sri Lanka has been refined by Level 3 grids. The grid lines on Level 3 are not shown; the mesh
width on this level is about 1.7 km, a factor of 8 finer than Level 2. Figure (d) shows a later time,
as the wave diffracts around Sri Lanka, moving slowly through the shallow water in this coastal
region. The calculation shown here was run on a single-processor 3.2 GHz PC under Linux and
took about 40 minutes of wall time for the computation shown here. Movies of this simulation
can be viewed on the webpage [39], which also contains pointers to finer grid calculations and
more recent work on this problem.
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Even for results that are not published, it would be valuable to have more examples
and test problems available on-line than what is provided on the clawpack web pages.
Please let me know with a brief email if you have created such a page, or published a
paper where clawpack was successfully used.

I am also always interested to hear about problems that arise with the software or
suggestions for improvements, though as an academic researcher with a small group
of graduate students I cannot promise to provide as much technical support as I would
like to.

The website [39] contains the codes used to generate the two figures in this paper,
two very different examples of what can be provided in conjunction with a publication.
The programs for Figure 1 are each less than a page of matlab, while the program for
Figure 2 is about 13,000 lines of Fortran and also requires a large set of bathymetry
and earthquake source data. The webpages also contain movies that illustrate the
figures much better than the static versions shown in this paper, and links to other
related work.
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Reduced basis method for the rapid and reliable solution of
partial differential equations

Yvon Maday∗

Abstract. Numerical approximation of the solution of partial differential equations plays an
important role in many areas such as engineering, mechanics, physics, chemistry, biology – for
computer-aided design-analysis, computer-aided decision-making or simply better understand-
ing. The fidelity of the simulations with respect to reality is achieved through the combined
efforts to derive: (i) better models, (ii) faster numerical algorithm, (iii) more accurate discretiza-
tion methods and (iv) improved large scale computing resources. In many situations, including
optimization and control, the same model, depending on a parameter that is changing, has to be
simulated over and over, multiplying by a large factor (up to 100 or 1000) the solution procedure
cost of one single simulation. The reduced basis method allows to define a surrogate solution
procedure, that, thanks to the complementary design of fidelity certificates on outputs, allows to
speed up the computations by two to three orders of magnitude while maintaining a sufficient
accuracy. We present here the basics of this approach for linear and non linear elliptic and
parabolic PDE’s.

Mathematics Subject Classification (2000). 65D05, 65M60, 65N15, 65N30, 65N35.

Keywords. Reduced-basis, a posteriori error estimation, output bounds, offline-online proce-
dures, Galerkin approximation, parametrized partial differential equations.

1. Introduction

Let us consider a class of problems depending on a parameter μ ∈ D set in the form:
find u ≡ u(μ) ∈ X such that F (u;μ) = 0 (we do not specify much at this point
what D is, it could be a subset of R, or R

p, or even a subset of functions). Such
problems arise in many situations such as e.g. optimization, control or parameter-
identification problems, response surface or sensibility analysis. In case F is written
through partial differential equations, the problem may be stationary or time dependent
but in all these cases, a solution u(μ) has to be evaluated or computed for many
instances ofμ ∈ D . Even well optimized, the favorite discretization method of yours
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more complete papers that treat in depth the features presented here. Due to this, no figures nor tables synthesizing
numerical results are provided.
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will lead to very heavy computations in order to approximate all these solutions and
decision may not be taken appropriately due to too large computer time for reliable
simulations.

The approach discussed in this paper will not aim at presenting an alternative to
your favorite discretization, more the contrary. The idea is that, in many cases, your
discretization will help in constructing a surrogate method that will allow to mimic it
or at least to do the spadework on the evaluation of the optimal or control solution. The
complexity of the equations resulting from this approach will be very low, enabling
very fast solution algorithms. No miracle though, the method is based on a learning
strategy concept, and, for a new problem, the preliminary off-line preparation is much
time consuming. It is only after this learning step that the full speed of the method can
be appreciated on-line, paying off the cost of the off-line preparation step. During the
first step, we evaluate accurately, based on your preferred solver, a few solutions to
F (u;μ) = 0; actually, any discretization method is good enough here. In the second
step, that is involved on request and on-line, the discretization method that has been
used earlier is somehow forgotten and a new discretization approach is constructed
based on a new ad-hoc basis set (named “reduced basis”) built out from the previous
computations. In many cases the method proves very efficient and – even though the
complete understanding of the reasons why it is working so well are not mastered – an
a posteriori error theory allows to provide fidelity certificates on outputs computed
from the reduced-basis-discretized solution. This method is valid in case the set
S(D) = {u(μ), μ ∈ D} has a simple (hidden) structure, the solution u(μ) has to be
regular enough in μ. We provide some explanations on the rational of the reduced
basis approximation in Section 2 and present the method in the elliptic case. In
Section 3 we give more rigorous explanation on the rapid convergence of the method
on a particular case. This is complemented in Section 4 by an analysis of a posteriori
tools that provide fidelity certificate for outputs computed from the reduced basis
approximation. Section 5 tells more about the track to follow to be convinced that the
method will “work” on the particular problem of yours. The efficient implementation
of the reduced basis method needs some care, we present in Section 6 some of the
required tools. Finally we end this paper by providing in Section 7 some of the new
directions we are currently working on.

2. Basics and rational of the reduced basis approach

The reduced basis method consists in approximating the solution u(μ) of a parameter
dependent problem F (u;μ) = 0 by a linear combination of appropriate, preliminary
computed, solutions u(μi) for well chosen parametersμi , i = 1, . . . , N . The rational
of this approach, stands in the fact that the set S(D) = {u(μ) of all solutions when
μ ∈ D} behaves well. In order to apprehend in which sense the good behavior of
S(D) should be understood, it is helpful to introduce the notion of n-width following
Kolmogorov [8] (see also [14]).
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Definition 2.1. Let X be a normed linear space, A be a subset of X and Xn be a
generic n-dimensional subspace of X. The deviation of A from Xn is

E(A;Xn) = sup
x∈A

inf
y∈Xn

‖x − y‖X.

The Kolmogorov n-width of A in X is given by

dn(A,X) = inf{E(A;Xn) : Xn an n-dimensional subspace of X}
= inf

Xn
sup
x∈A

inf
y∈Xn

‖x − y‖X. (1)

The n-width of A thus measures the extent to which A may be approximated by
an n-dimensional subspace of X. There are many reasons why this n-width may
go rapidly to zero as n goes to infinity. In our case, where A = S(D), we can
refer to regularity of the solutions u(μ) with respect to the parameter μ, or even
to analyticity. Indeed, an upper bound for the asymptotic rate at which the conver-
gence to zero is achieved is provided by this example from Kolmogorov stating that
dn(B̃

(r)
2 ;L2) = O(n−r ) where B̃(r)2 is the unit ball in the Sobolev space of all 2π -

periodic real valued, (r−1)-times differentiable functions whose (r−1)st derivative is
absolutely continuous and whose rth derivative belongs to L2. Actually, exponential
convergence is achieved when analyticity exists in the parameter dependency. The
knowledge of the rate of convergence is not sufficient: of theoretical interest is the
determination of the (or at least one) optimal finite dimensional spaceXn that realizes
the infimum in dn, provided it exists. For practical reasons, we want to restrict our-
selves to finite dimensional spaces that are spanned by elements of S(D). This might
increase the n-width in general Banach space, but of course it does not in Hilbert
space as it follows easily from the decomposition of X into XA ⊕ X⊥

A , where XA
denotes the vectorial space spanned by A. We thus have

dn(A,XA) = dn(A,X). (2)

We derive from this equality that the quantity

inf
{

supu∈S(D) infy∈Xn ‖x − y‖X : Xn = Span{u(μ1), . . . , u(μn), μi ∈ D}} (3)

converges to zero (almost at the same speed as dn(S(D);X) provided very little
regularity exists in the parameter dependency of the solution u(μ), and an exponential
convergence is achieved in many cases since analyticity in the parameter is quite
frequent.

This is at the basics of the reduced basis method. Indeed we are led to choose
properly a sequence of parameters μ1, . . . , μn, . . . ∈ D , then define the vectorial
spaceXN = Span{u(μ1), . . . , u(μN)} and look for an approximation of u(μ) inXN .

Let us consider for example an elliptic problem: Find u(μ) ∈ X such that

a(u(μ), v;μ) = f (v) for all v ∈ X. (4)



1258 Yvon Maday

Here X is some Hilbert space, and a is a continuous and elliptic, bilinear form in
its two first arguments, regular in the parameter dependance and f is some given
continuous linear form. We assume for the sake of simplicity that the ellipticity is
uniform with respect to μ ∈ D : there exists α > 0 such that

a(u, u;μ) ≥ α‖u‖2
X for all μ ∈ D, u ∈ X,

and that the continuity of a is uniform with respect to μ ∈ D as well: there exists
γ > 0 such that

|a(u, v;μ)| ≤ γ ‖u‖X‖v‖X for all μ ∈ D, u, v ∈ X.
It is classical to state that, under the previous hypothesis, problem (4) has a unique

solution for any μ ∈ D . The Galerkin method is a standard way to approximate
the solution to (4) provided that a finite dimensional subspace XN on X is given. It
consists in: Find uN(μ) ∈ XN such that

a(uN(μ), vN ;μ) = f (vN) for all vN ∈ XN, (5)

which similarly has a unique solution uN(μ). Cea’s lemma then states that

‖u(μ)− uN(μ)‖X ≤
(

1 + γ

α

)
inf

vN∈XN
‖u(μ)− vN‖X. (6)

The best choice for the basis element u(μ1), . . . , u(μN) of XN would be those that
realize the infimum in (3), i.e. the ones that realize the maximum of the volume
VN(u(μ1), . . . , u(μN)) of the parallelepiped determined by the vectors u(μ1), . . . ,

u(μN). Unfortunately, this is not a constructive method and we generally refer to a
greedy algorithm such as the following one:

μ1 = arg sup
μ∈D

‖u(μ)‖X,

μi+1 = arg sup
μ∈D

‖u(μ)− Piu(μ)‖X,
(7)

where Pi is the orthogonal projection ontoXi = Span{u(μ1), . . . , u(μi)} or a variant
of it that is explained at the end of Section 4. The convergence proof for the related
algorithm is somehow more complex and presented in a quite general settings in [1].

3. An example of a priori analysis

The previous notion ofn-width is quite convenient because it is rather general, in spirit,
and provides a tool to reflect the rapid convergence of the reduced basis method but it
is not much constructive nor qualitatively informative. We are thus going to consider
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a particular example where the parametrized “bilinear” form a : X×X× D → R is
defined as follows

a(w, v;μ) ≡ a0(w, v)+ μa1(w, v); (8)

here the bilinear forms a0 : X × X → R and a1 : X × X → R are continuous,
symmetric and positive semi-definite, D ≡ [0, μmax], and we assume that a0 is
coercive. It follows from our assumptions that there exists a real positive constant γ1
such that

0 ≤ a1(v, v)

a0(v, v)
≤ γ1 for all v ∈ X. (9)

For the hypotheses stated above, it is readily demonstrated that the problem (4) satisfies
uniformly the Lax–Milgram hypothesis.

Many situations may be modeled by this rather simple problem statement (4), (8).
It can be the conduction in thin plates and μ represents the convective heat transfer
coefficient, it can also be a variable-property heat transfer, then 1 + μ is the ratio of
thermal conductivities in domains.

The analysis that we did in [12] involves the eigenproblem: Find (ϕ ∈ X, λ ∈ R),
satisfying a1(ϕ, v) = λ a0(ϕ, v) for all v ∈ X. Indeed the solution u(μ) to problem
(4) can be expressed as

u(·, μ) =
∫

f (ϕ) ϕ(·; λ)
1 + μλ

dλ. (10)

The dependency in μ is thus explicitly expressed and we can propose to approximate
u(μ) by a linear combination of well chosen u(μi). This can be done through in-
terpolation at the μi by polynomials. It is interesting to notice at this point that we
have a large choice in the variable in which the polynomial can be expressed. Indeed
since we are interested through this interpolation process to evaluate the best fit, a
polynomial inμmay not be the best choice but rather a polynomial in 1

μ
, eμ or else; in

[12] we have considered a polynomial approximation in the variable τ = ln(μ+δ−1),
where δ is some positive real number. The analysis then involves the interpolation
operator at equidistant points (in the variable τ ) for which we were able to get an
upper bound used, in turn, to qualify the best fit result

Lemma 3.1. There exists a constant C > 0 and a positive integer Ncrit such that for
N ≥ Ncrit

inf
wN∈XN

‖u(μ)− wN‖X ≤ C exp

{ −N
Ncrit

}
for all μ ∈ D,

where Ncrit ≡ c∗e ln(γ μmax + 1).

This analysis of [12] leads to at least three remarks:

Remark 3.2. a) The analysis of the best fit done here suggests to use sample pointsμi
that are equidistant when transformed in the τ variable. We performed some numerical
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tests to check whether this sampling gives indeed better results than more conventional
ones (of course you should avoid equidistant in the original μ variable, but we tried
e.g. Chebyshev points) and this was actually the case. Unfortunately, in more general
situations and especially in higher parameter dimensions, we have no clue of a direct
constructive best sampling method.

b) For a given samplingμi , one can propose an interpolation procedure to approx-
imate u(μ) which is more simple than referring to a Galerkin approach. Indeed, an
approximation

u(μ) �
N∑
i=1

αi(μ)u(μi),

can be proposed by using coefficients that are the Lagrange interpolation basis in the
chosen variable (above it was τ = ln(μ + δ−1), i.e. the mapping τ �→ αi(μ(τ)) is
a polynomial of degree ≤ N and αi(μj ) = δij ). The problem is that the expression
of αi(μ) depends on the best choice of variable which is unknown and within a set
that is quite infinite providing a range of results that are quite different. Since for a
given general problem we have no clue of the best interpolation system, the Galerkin
approach makes sense, indeed.

c) In opposition, the Galerkin approach does not require any preliminary analysis
on guessing the way the solution depends upon the parameter. Its superiority over
interpolation process comes from the fact stated in Cea’s lemma that the approximation
that is obtained, up to some multiplicative constant, gives the optimal best fit, even if
we do not know the rate at which the convergence is going.

Finally, as is often the case, we should indicate that the a priori analysis helps to
have confidence in developing the method but, at the end of a given computation, a
computable a posteriori estimator should be designed in order to qualify the approx-
imation. This is even more true with such new surrogate approximation in order to
replace the expertise a user may have in his preferred method, e.g. his intuition on the
choice of the discretization parameter to get acceptable discrete solutions. This is the
purpose of the next section.

4. An example of a posteriori analysis

Most of the time, the complete knowledge of the solution of the problem (4) is not
required. What is required, is outputs computed from the solution s = s(u), where s
is some continuous functional defined over X. In order to have a hand over this
output, the reduced basis method consists first in computing uN ∈ XN solution of
the Galerkin approximation (5), then propose sN = s(uN) as an approximation of s.
Assuming Lipschitz condition (ex. linear case) over s, it follows that

|s − sN | ≤ c‖u− uN‖X. (11)
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Thus any information over the error in the energy norm will allow to get verification
(provided you are able to evaluate c). Actually it is well known that the convergence
of sN towards s most often goes faster. This is standard but we go back over it since
this will prove useful in the sequel. Let us assume we are in the linear output case
where s ≡ 	 is a linear continuous mapping over X. It is then standard to introduce
the adjoint state, solution of the following problem: find ψ ∈ X such that

a(v, ψ;μ) = −	(v) for all v ∈ X. (12)

The error in the output is then (remember that, for any φN ∈ XN , a(u, φN ;μ) =
a(uN, φN ;μ) = (f, φN))

sN − s = 	(uN)− 	(u)

= a(u,ψ;μ)− a(uN,ψ;μ)
= a(u,ψ − φN ;μ)− a(uN,ψ − φN ;μ) (for all φN ∈ XN) (13)

= a(u− uN,ψ − φN ;μ) (for all φN ∈ XN)
≤ c‖u− uN‖X‖ψ − φN‖X (for all φN ∈ XN),

so that the best fit of ψ in XN can be chosen in order to improve the first error bound
(11) that was proposed for |s − sN |.

For instance if ψN is the solution of the Galerkin approximation to ψ in XN , we
get

|s − sN | ≤ c‖u− uN‖X‖ψ − ψN‖X. (14)

Actually, the approximation of ψ in XN may not be very accurate since XN is well
suited for approximating the elements u(μ) and – except in the case where 	 = f

named the compliant case – a separate reduced space X̃N should be built which
provides an associated approximation ψ̃N . Then an improved approximation for 	(u)
is given by 	imp = 	(uN)− a(uN, ψ̃N)+ f (ψ̃N) since (14) holds with ‖ψ − ψ̃N‖X
for which a better convergence rate is generally observed.

Even improved, this result is still a priori business and it does not allow to qualify
the approximation for a given computation. In order to get a posteriori information,
between 	(u) and 	(uN) (or 	imp), we have to get a hand on the residuals in the
approximations of the primal and dual problems. We introduce for any v ∈ X,

Rpr(v;μ) = a(uN, v;μ)− 〈f, v〉, Rdu(v;μ) = −a(v, ψ̃N ;μ)− 	(v). (15)

We then compute the reconstructed errors associated with the previous residuals.
These are the solutions of the following problems:

2α
∫

∇ ê pr(du)∇v = Rpr(du)(v;μ) for all v. (16)

We then have
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Theorem 4.1. Let s− = 	imp − α
∫ [∇(ê pr + ê du)]2 then s− ≤ s. In addition, there

exists two constants 0 < c ≤ C such that

c|s − sN | ≤ s − s− ≤ C|s − sN |.
Proof. Let us denote by eN the difference between the exact solution and the approx-
imated one eN = u− uN . From (16), we observe that

2α
∫

∇ êpr∇eN = −a(eN, eN ;μ)

and

2α
∫

∇ êdu∇eN = −a(eN, ψ̃N ;μ)− 	(eN) = f (ψ̃N)− a(uN, ψ̃N)− 	(eN).

Taking this into account allows to write

	imp − α

∫
∇(êpr + êdu)2 = 	(uN)− a(uN, ψ̃N)+ f (ψ̃N)− α

∫
∇(êpr + êdu)2

= 	(u)− α

∫
∇(eN + êpr + êdu)2 − a(eN, eN ;μ)+ α

∫
[∇eN ]2, (17)

and the proof follows from the uniform ellipticity of a( . , . ;μ). �

Despite the fact that we have avoided to speak about any discretization so far, The-
orem 4.1 is already informative in the sense that in order to obtain s−, the problem (16)
to be solved, is parameter independent and simpler than the original one, provided
that we have a good evaluation of the ellipticity constant. In Section 6 we shall
explain how to transform these constructions in a method that can be implemented.
Before this we should explain how the previous estimator may help in designing a
good choice for the elements of the reduced basis, providing a third alternative to the
greedy algorithm presented in (7). Currently indeed, we have two alternative, either a
random approach (that generally works not so badly) or select out of a large number
of pre-computed solution {ui}i , the best sample from a SVD approach by reducing
the matrix of scalar products (ui, uj ). The former lacks of fiability, the latter is a
quite expensive approach and is mostly considered in a pre analysis framework as is
explained in the next section. In order to reduce the cost of the off-line stage we can
propose a greedy algorithm that combines the reduced approximation and the error
evaluation:

• Take a first parameter (randomly).

• Use a (1-dimensional) reduced basis approach over a set of parameter values
(chosen randomly) and select, as a second parameter, the one for which the
associated predicted error s+ − s− is the largest.

This gives now a 2-dimensional reduced basis method.
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• Use this (2-dimensional) reduced basis approach over the same set of param-
eters and select, as a third parameter, the one for which the associated error is
the largest.

This gives a 3-dimensional reduced basis method . . .

• and proceed . . .

Note that we then only compute accurately the solutions corresponding to the
parameters that are selected this way.

The a posteriori approach that has been presented above relies on the uniform
ellipticity of the bilinear form and the knowledge of the ellipticity constant. For
more general problems, where only, nonuniform inf-sup conditions are valid (e.g. the
noncoercive Helmholtz acoustics problem which becomes singular as we approach
resonance) smarter definitions should be considered. We refer to [18] for improved
methods in this direction.

5. Some pragmatic considerations

Now that some basics on the reduced basis method have been presented, it is interesting
to understand if the problem you have in mind is actually eligible to this type of
approximation. We are thus going to propose some pragmatic arguments that may
help in the preliminary verification. First of all, let us note that we have illustrated
the discretization on linear elliptic problems, of course this is just for the sake of
simplicity, non linear problem [11], [19], [20] so as time dependent problems [7],
[17] can be solved by these methods. Second, many things can be considered as a
valid parameter: this can be the size of some simple geometric domain on which the
solution is searched [16] , but it can be the shape itself [13] (the parameter in the
former case is a multireal entity while in the latter it is a functional), the parameter
can also be the time [7], [17] , or the position of some given singularities [2].

For all these choices, a fair regularity in the parameter is expected and wished
so that the n-width goes fast to zero. An important remark has to be done here
in order the size of the reduced basis be the smallest possible. Indeed, it may be
smart to preprocess the precomputed solutions in order they look more similar. An
example is given in [2] where quantum problem are considered; the solutions to these
problems present some singularities at the position of the nuclei. If the position of
the nuclei is the parameter we consider, it is useful to transform each solution in
a reference configuration where the singularities/nuclei are at a unique place; the
solutions are then much more comparable. Another example is given by the solution
of the incompressible Stokes and Navier–Stokes problem where the shape of the
computational domain is the parameter; in order to be able to compare them properly,
they have to be mapped on a unique (reference) domain. This is generally done through
a simple change of variable. In case of the velocity, it is a vector field that is divergence
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free and a “standard” change of variable will (generally) not preserve this feature. The
Piola transform (that actually corresponds to the classical change of variable over the
potential function) allows to have the velocity fields transformed over the reference
domain while preserving the divergence free condition as is demonstrated in [9].
These preprocessing steps allow to diminish the n-width of S(D) and it pays to be
smart!

In order to sustain the intuition on the potential of the reduced basis concept, a
classical way is to use a SVD approach. Let us assume that we have a bunch of
solutions ui = u(μi), snapshots of the space S(D) of solutions to our problem. Out
of these, the correlation matrix (ui, uj ) which is symmetric can be reduced to its
eigen-form, with positive eigenvectors that, ranked in decreasing order, go to zero.
The high speed of convergence towards zero of the eigenvalues ranked in decreasing
order will sustain the intuition that the reduced basis method will work. Indeed, the
n-width is directly related to the size of the eigenvalues larger than the n+ 1th. The
idea is that if the number of eigenvectors associated with the largest eigenvalues is
small, then the method is viable. In order to sustain this, you can also consider,
momentarily, the spaceXN spanned by the eigenvectors associated with theN largest
eigenvalues and analyze the norm of the difference between the snapshots in S(D)
and their best fit in XN . Note that we do not claim that this is a cheap constructive
method: this procedure consists in a pre-analysis of the potential of the reduced basis
method to approximate the problem you consider. If the norm of the error goes to
zero sufficiently fast, you know that a Galerkin approach will provide the same order
of convergence and the method is worth trying. We insist on the fact that this pre-
analysis is not mandatory, it is only to help in understanding what you should expect,
“at best” from the reduced basis approximation. In particular the greedy approach
presented in Section 4 has to be preferred to the SVD approach that we discussed
above for the determination of the elements that are to be incorporated in the reduced
basis space, if you do not want to spend too much time during the off-line stage. Note
also that the greedy approach provides solutions, that, when their number becomes
large, become more and more linearly dependent (actually this is one of the aspects
of the low n-width) and thus, for stability purposes it is important, through a Gram–
Schmidt process, to extract, from these solutions, orthonormal elements that will be
the actual elements of the reduced basis: these will be named (ζi)i . This does not
change the potential approximation properties of the reduced basis but improves, to
a large extent, the stability of the implementation.

Finally, the preselection may be quite generous in the sense that you may be inter-
ested to select more thanN basis functions,N being an evaluation of the dimension of
the reduced basis for most problems. The reason for this comes from the conclusion
of the a posteriori analysis that may tell you to increase the size of the reduced basis,
suggesting you to work with N + 2 (say) instead of N basis functions. This again is
a feature of exponentially rapid convergence that lead to a large difference between
the accuracy provided by XN and XN+2 (say). It is time now to give some details on
the implementation of the method.
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6. Implementation issues

We start by emphasizing that any reduced basis method necessarily involves the
implementation of a more “classical” approximation method. Indeed – except for
very particular and uninteresting problems – the knowledge of the solutions, that we
named ui , is impossible without referring to a discretization method (e.g. of finite
element, spectral type, etc.). This is also the case for the ζ that are coming out from
some shaping of the basis, e.g. Gram–Schmidt, as explained earlier. This is the rea-
son why reduced basis methods should not be considered as competitor to standard
approximation methods but only as surrogate approaches.

This implies, though, some difficulties since the elements of the reduced basis are
only known through a preliminary computation basis, which, if we want the solutionui
to be well approximated, has to be very large. Knowing this, the rule of the game
for the efficient implementation of any reduced basis method is to strictly prohibit
any online reference to the extended basis. We allow offline precomputations of the
solutions (that involves the extended basis) and some offline cross contribution of
these solutions (based on their expression with respect to the extended basis) but this
is forbidden online. Following [16], we explain in the next subsection how this can
be done.

6.1. Black box approach. The solution procedure involves the evaluation of the
elements of the stiffness matrix a(ζi, ζj ;μ), 1 ≤ i, j ≤ N that depends on the
current parameter μ. This computation involves some derivatives and the evaluation
of integrals, that have to be performed and this may be very lengthy. It should be
stated here that the implementation of the reduced type method has to be much faster
than the solution procedure that was used to compute the reduced basis, much means
many order of magnitude. The O(dimXN)

2 entrees of the stiffness matrix have thus
to be evaluated through some smart way.

Let us begin by the easy case that is named affine parametric dependance where
the entries a(ζi, ζj ;μ) appear to read

a(ζi, ζj ;μ) =
∑
p

gp(μ)ap(ζn, ζm), (18)

where the bilinear forms ap are parameter independent. Many simple problems where
the parameter are local constitutive coefficients or local zooming isotropic or non
isotropic factors, enter in this framework. The expensive computation of the ap,n,m =
ap(ζn, ζm) can be done offline, once the reduced basis is constructed; these ap,n,m
are stored and, for each new problem, the evaluation of the stiffness matrix is done,
online, in P × N2 operations, and solved in O(dimX3

N) operations. These figures
are coherent with the rapid evaluation of the reduced basis method.

6.2. A posteriori implementation. Under the same affine dependance hypothesis
on a, it is easy to explain how the a posteriori analysis can be implemented, re-
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sulting in a fast on-line solution procedure, provided some off-line computations
are made. First of all the computation of ψ̃N can be implemented in the space
X̃N = Span{ξ1, . . . , ξN)} exactly as above for the computation of uN . Taking into
account (18), together with the expressions obtained from the inversion of problem (5)
and (12): uN = ∑N

i=1 αiζi and ψ̃N = ∑N
i=1 α̃iξi , we can write

Rpr(v, μ) =
∑
p

∑
i

gp(μ)αiap(ζi, v)− (f, v),

and

Rdu(v, μ) = −
∑
p

∑
j

gp(μ)α̃j ap(v, ξj )− 	(v),

hence by solving numerically, off-line, each of the problems

2α
∫

∇epr,p,i∇v = ap(ζi, v), (19)

2α
∫

∇epr,0∇v = (f, v), (20)

2α
∫

∇edu,p,j∇v = ap(v, ξj ), (21)

2α
∫

∇edu,0∇v = 	(v) (22)

allows to write the numerical solutions of (16) as a linear combination of the ele-
ments previously computed (e.g. ê pr = ∑

p

∑
i gp(μ)αie

pr,p,i − epr,0) in O(PN)
operations.

6.3. Magic points. The hypothesis of affine parametric dependency is rather re-
strictive, and has to be generalized. In case of quadratic or cubic dependency, this is
quite straightforward but even for linear problems such as the Laplace problem, when
e.g. geometry is the parameter, this is rarely the case and another approach has to be
designed. In order to get a better understanding of the method, let us first indicate
that, when the geometry is the parameter, the solutions have to be mapped over a
reference domain �̂. Let us assume that we want to compute d(ζi, ζj ;�) where

d(u, v;�) =
∫
�

uv dA =
∫
�̂

uvJ� dÂ,

where J� is a Jacobian of the transformation that maps �̂ onto�. There is no reason
in the general case that J� will be affine so that the previous approach will not work.
It is nevertheless likely that there exists a sequence of well chosen transformations
�∗

1, . . . , �
∗
M, . . . , such that J� may be well approximated by an expansion J� �
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∑M
j=1 βjJ�∗

j
. An approximation of d(ζi, ζj ;�) will then be given by

d(ζi, ζj ;�) �
M∑
j=1

βj

∫
�̂

ζ̂i ζ̂j J�∗
j
dÂ, (23)

and again, the contributions
∫
�̂
ζ̂i ζ̂j J�∗

j
dÂ will be pre-computed offline. We do not

elaborate here on how the �∗
j are selected, and refer to [9], what we want to address

is the evaluation of the coefficients βj = βj (�) in the approximation of J� above.
The idea is to use an interpolation procedure as is explained in [6]. Let x1 be the
point where |J�∗

1
| achieves its maximum value. Assuming then that x1, . . . , xn have

been defined, and are such that the n× n matrix with entries J�∗
k
(x	), 1 ≤ k, 	 ≤ n

is invertible, we define xn+1 as being the point where rn+1 = |J�∗
n+1

− ∑n
k=1 γkJ�∗

k
|

achieves it maximum value, here the scalar γk are defined so that rn+1 vanishes at any
(x	) for 	 = 1, . . . , n. The definition of the points xk is possible as long the �j are
chosen such that the J�∗

k
are linearly independent (see [6]). The βj are then evaluated

also through the interpolation process

J�(x	) =
M∑
k=1

βkJ�∗
k
(x	) for all 1 ≤ 	 ≤ M. (24)

We have not much theory confirming the very good results that we obtain (which
makes us call these interpolation point “magic”). An indicator that allows to be quite
confident in the interpolation process is the fact that the Lebesgue constant attached
to the previously built points is, in all example we have encountered, is rather limited.

Note that the same interpolation approach allows to compute the reconstructed
errors with a compatible complexity as in the previous subsection.

The same magic point method has to be used also for the implementation of the
reduced basis method for nonlinear problems. Actually, denoting by zi = NL(ui) the
nonlinear expression involved in the problem, provided that the setZM = Span{zi, 1 ≤
i ≤ M} has a small width, the interpolation process presented above allows both to
determine a good interpolation set and a good associated interpolation nodes, we refer
to [6] for more details on the implementation and to numerical results.

7. Some extensions

7.1. Eigenvalue problems. We end this paper by noticing that the reduced basis
method can actually be found, at least in spirit, in many other approximations. There
are indeed many numerical approaches that, in order to tackle a complex problem,
use the knowledge of the solution of similar but simpler problems to facilitate the
approximation. In this direction, the modal synthesis method provides a method to
solve approximately eigenvalue problems on large structures based on the knowledge
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of the eigenvalues and eigenfunctions of the same problem on substructures. We refer
e.g. to [4], [5] for more details on a high order implementation of these approaches.

Similarly, again, one of the approaches for the resolution of Hartree–Fock problem
in quantum chemistry is the L.C.A.O. method that consists in approximating the wave
function of a molecule by linear combination of atomic orbitals that are nothing but
solutions to the same problem on an atom, instead of a molecule. The atomic orbitals
are indeed the approximations of Hydrogenoid functions (the contracted Gaussians
have to be seen this way) that are the solutions of the electronic problem of one
electron around a nucleus. This similarity is the guideline for the extension that is
proposed in [3], [2].

At this level, it is also interesting to note that the reduced basis method, for an
eigenvalue problem as the one encountered in the two previous cases, may be very ap-
propriate since it can be proven that, letting ui denote the set of all firstP eigenvectors
of an eigenvalue problem depending on a parameter μ, ui ≡ (e1(μi), . . . , e

p(μi)),
then the approximation of this complete set of eigenvectors can be done with the same
linear combination. More precisely it is possible to get an accurate approximation
method based on

u(μ) �
P∑
i=1

αiui, ej (μ) �
P∑
i=1

αie
j (μi) for all j

instead of

ej (μ) �
P∑
i=1

α
j
i e
j (μi).

Again we refer to [2] for more details on this.

7.2. The reduced element method. In the reduced basis element method introduced
in [13], we consider the geometry of the computational domain to be the generic
parameter. The domain is decomposed into smaller blocks, all of them can be viewed
as the deformation of a few reference shapes. Associated with each reference shape
are previously computed solutions (typically computed over different deformations
of the reference shapes). The precomputed solutions are mapped from the reference
shapes to the different blocks of the decomposed domain, and the solution on each
block is found as a linear combination of the mapped precomputed solutions. The
solutions on the different blocks are glued together using Lagrange multipliers.

To be more precise, we assume that the domain � where the computation should
be performed can be written as the non-overlapping union of subdomains �k:

� =
K⋃
k=1

�
k
, �k ∩�	 = ∅ for k �= 	. (25)

Next, we assume that each subdomain �k is the deformation of the “reference” do-
main �̂ through a regular enough, and one to one, mapping. In an off-line stage,
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this reference geometry has been “filled up” with reference reduced basis solutions
û1, û2, . . . , ûN to the problem that is under evaluation. Hence, together with this
geometric decomposition, a functional decomposition is proposed since every �k;
this allows us to define the finite dimensional space

YN = {
v ∈ L2(�), v|�k = ∑N

i=1 α
k
i F

−1
k [ûi]

}
, (26)

which is a set of uncoupled, element by element, discrete functions, where Fk allows to
transform functions defined over �̂ into functions defined over �k . This is generally
not yet adequate for the approximation of the problem of interest since some glue

at the interfaces γk,	 between two adjacent domains �
k ∩ �	 has to be added to the

elements of YN , the glue depending on the type of equations we are interested to solve
(it will be relaxed C0-continuity condition for a Laplace operator, or more generally
relaxed C1-continuity condition for a fourth-order operator.

At this stage it should be noticed that, modulo an increase of complexity in the
notations, there may exist not only one reference domain �̂ filled with its reduced
basis functions but a few numbers so that the user can have more flexibilities in the
design of the final global shape by assembling deformed basic shapes like a plumber
would do for a central heating installation.

The reduced basis element method is then defined as a Galerkin approximation over
the spaceXN being defined from YN by imposing these relaxed continuity constraints.
We refer to [9], [10] for more details on the implementation for hierarchical fluid flow
systems that can be decomposed into a series of pipes and bifurcations.
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Finite element algorithms for transport-diffusion problems:
stability, adaptivity, tractability

Endre Süli

Abstract. Partial differential equations with nonnegative characteristic form arise in numer-
ous mathematical models of physical phenomena: stochastic analysis, in particular, is a fertile
source of equations of this kind. We survey recent developments concerning the finite element
approximation of these equations, focusing on three relevant aspects: (a) stability and stabilisa-
tion; (b) hp-adaptive algorithms driven by residual-based a posteriori error bounds, capable of
automatic variation of the granularity h of the finite element partition and of the local polyno-
mial degree p; (c) complexity-reduction for high-dimensional transport-diffusion problems by
stabilised sparse finite element methods.

Mathematics Subject Classification (2000). Primary 65N30; Secondary 65N12, 65N15.

Keywords. Transport-dominated diffusion problems, Fokker–Planck equations, finite element
methods, stability, a-posteriori error analysis, adaptivity, sparse finite elements.

1. Introduction

Let � be a bounded and simply-connected open set in R
d , d ≥ 2, with Lipschitz

continuous boundary ∂�. On �, we consider the partial differential equation

Lu := −∇ · (a∇u)+ ∇ · (bu)+ cu = f, (1)

where f ∈ L2(�) and c ∈ L∞(�) are real-valued functions, b = {bi}di=1 is a vector

function whose entries bi are Lipschitz continuous real-valued functions on �. We
shall, further, assume that a = {aij }di,j=1 is a symmetric matrix whose entries aij

are bounded, Lipschitz continuous real-valued functions defined on �, and that the
matrix a is positive semidefinite, almost everywhere on �, i.e.,

α(ξ) := ξ�a(x)ξ ≥ 0 for all ξ ∈ R
d and a.e. x ∈ �. (2)

Under hypothesis (2), the equation (1) is referred to as a partial differential equation
with nonnegative characteristic form. Equations of this kind frequently arise as math-
ematical models in physics and chemistry [40] (e.g. in the kinetic theory of polymers
[7], [44], [49] and coagulation-fragmentation problems [43]). They also appear in
molecular biology [21], population genetics (e.g. in mathematical models of random
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genetic drift) and in mathematical finance. Important special cases of these equations
include the following: (a) when the diffusion matrix a = a� is positive definite, (1)
is an elliptic partial differential equation; (b) when a ≡ 0 and the transport direction
b �= 0, the partial differential equation (1) is a first-order hyperbolic equation; (c)
when b = (0, . . . , 0, 1)� ∈ R

d and

a =
(
α 0
0 0

)

where α is a (d − 1)× (d − 1) symmetric positive definite matrix, (1) is a parabolic
partial differential equation, with time-like direction b. The family of partial differ-
ential equations with nonnegative characteristic form also includes a range of other
linear second-order partial differential equations, such as degenerate elliptic and ultra-
parabolic equations. Furthermore, by a result of Hörmander [35] (cf. Theorem 11.1.10
on p. 67), second-order hypoelliptic operators with constant coefficients have non-
negative characteristic form, after possible multiplication by −1.

For classical types of partial differential equations, such as those under (a), (b)
and (c) above, rich families of reliable, stable and accurate numerical techniques
have been developed. Yet, there have only been isolated attempts to date to explore
computational aspects of the class of partial differential equations with nonnegative
characteristic form as a whole (cf. [30] and [33]). In particular, only a limited amount
of research has been devoted to the construction and mathematical analysis of adaptive
finite element algorithms for these equations; similarly, there has been very little work
on the finite element approximation of high-dimensional partial differential equations
with nonnegative characteristic form (cf. [57]).

The aim of this paper is to present a brief survey of some recent results in these
directions. In Section 2, we state the weak formulation of a boundary-value problem
for equation (1). In Sections 3 and 4, we give an overview of stabilised continuous
and discontinuous finite element approximations to these equations; we shall also
address the question of residual-based a posteriori error estimation for hp-version
discontinuous Galerkin approximations of these equations, as well as the construction
of sparse stabilised finite element methods for high-dimensional partial differential
equations with nonnegative characteristic form (Section 5).

2. Boundary conditions and weak formulation

For the sake of simplicity of presentation, we shall assume that � is a bounded
open polytope in R

d and we denote by � the union of its (d − 1)-dimensional open
faces; clearly, � ⊂ ∂� with strict inclusion. The equation (2) will be supplemented
by boundary conditions. For this purpose, let ν(x) = {νi(x)}di=1 denote the unit
outward normal vector to � at x ∈ �. On introducing the Fichera function (cf. [48])



Finite element algorithms for transport-diffusion problems 1273

x ∈ � 
→ β(x) := (b · ν)(x) ∈ R, we define the following subsets of �:

�0 = {x ∈ � : α(ν(x)) > 0},
�− = {x ∈ �\�0 : β(x) < 0}, �+ = {x ∈ �\�0 : β(x) ≥ 0}.

The set �0 is the elliptic part of �, while �− ∪ �+ represents the hyperbolic part
of �. The sets �− and �+ will be referred to as the hyperbolic inflow and outflow
boundary, respectively. Clearly, � = �0 ∪ �− ∪ �+. If �0 �= ∅ and has positive
(d−1)-dimensional Hausdorff measure Hd−1(�0), we shall further decompose it into
disjoint subsets �D and �N whose union is �0, with Hd−1(�D) > 0. We supplement
the partial differential equation (1) with the boundary conditions

u = gD on �D ∪ �−, ν · (a∇u) = gN on �N, (3)

and adopt the (physically reasonable) hypothesis that β(x) ≥ 0 for a.e. x ∈ �N,
whenever �N is nonempty. In addition, we assume that the following (standard)
positivity hypothesis holds: there exists a positive constant ĉ0 such that

c(x)+ 1
2 ∇ · b(x) ≥ ĉ2

0 a.e. x ∈ �, (4)

and define c0 = (c+ 1
2 ∇ · b)1/2 on �. Now, consider the following boundary-value

problem, corresponding to gD = 0 and gN = 0: find u such that

Lu ≡ −∇ · (a∇u)+ ∇ · (bu)+ cu = f in �, (5)

u = 0 on �D ∪ �−, (6)

ν · (a∇u) = 0 on �N. (7)

Function spaces and weak formulation. The classical Sobolev space on� of integer
order m, m ≥ 0, will be denoted by Wm

q (�) for q ∈ [1,∞]; in the case q = 2 we
write Hm(�) for Wm

2 (�); W0
q(�) is simply Lq(�). Wm

p (�) is equipped with the
Sobolev norm ‖ · ‖Wm

q (�)
and seminorm | · |Wm

q (�)
. For the sake of simplicity, we

shall write ‖ · ‖ instead of ‖ · ‖L2(�), and ‖ · ‖κ will denote ‖ · ‖L2(κ) for an open subset
κ of �. We let V = {v ∈ H1(�) : γ0,∂�(v)|�D = 0} where γ0,∂�(v) signifies the
trace of v on ∂�, and define the inner product ( · , · )H by

(w, v)H := (a∇w,∇v)+ (w, v)+ 〈w, v〉�N∪�−∪�+ .

Here ( ·, · ) denotes the L2 inner product over � and 〈w, v〉S = ∫
S

|β|wv ds, with β
denoting the Fichera function b · ν, as before, and S ⊂ �. We denote by H the
closure of the space V in the norm ‖ · ‖H defined by ‖w‖H := (w,w)

1/2
H . Clearly, H

is a Hilbert space. For w ∈ H and v ∈ V, we now consider the bilinear form
B( ·, · ) : H × V → R defined by

B(w, v) := (a∇w,∇v)− (w,∇ · (bv))+ (cw, v)+ 〈w, v〉�N∪�+,
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and for v ∈ V we introduce the linear functional L : V → R by L(v) := (f, v).
Note, in particular, that by (4),

B(v, v) = (a∇v,∇v)+ ‖c0v‖2 + 1
2 〈v, v〉�N∪�−∪�+ ≥ K0‖v‖2

H for all v ∈ V,

where K0 = min
(
ĉ2

0,
1
2

)
> 0. We shall say that u ∈ H is a weak solution to the

boundary-value problem (5), (6) if

B(u, v) = L(v) for all v ∈ V. (8)

We note that the boundary conditions u|�− = 0 on the inflow part�− of the hyperbolic
boundary � \ �0 = �− ∪ �+ and the boundary condition ν · (a∇u) = 0 on the
Neumann part �N of the elliptic boundary �0 are imposed weakly, through (8), while
the boundary condition u|�D = 0 on the Dirichlet part, �D, of �0 is imposed strongly,
through the choice of the function space H . The existence of a unique weak solution
is guaranteed by the following theorem (cf. also Theorem 1.4.1 on p. 29 of [48] and
[57] for a similar result in the special case of�N = ∅; for�N �= ∅ the proof is identical
to that in [57]).

Theorem 2.1. Suppose that c0(x) ≥ ĉ0 > 0 for all x ∈ �. Then, for each f ∈ L2(�),
there is a unique u in a Hilbert subspace Ĥ of H such that (8) holds.

Next, we shall consider the discretisation of the problem (8), first by a stabilised
Galerkin method based on continuous piecewise polynomials, and then using discon-
tinuous piecewise polynomials.

3. Continuous piecewise polynomial approximation: the streamline-
diffusion method

As in the previous section, we suppose that � is a bounded open polytope in R
d ,

d ≥ 2. Let Th = {κ} be an admissible subdivision of� into open element domains κ
which is subordinate to the decomposition of � into the subsets �D, �N, �− and �+;
here h is a piecewise constant mesh function with h(x) = hκ = diam(κ) when x is
in element κ ∈ Th. We shall assume that each κ ∈ Th is the image, under a bijective
affine map Fκ , of a fixed master element κ̂ , where κ̂ is either an open unit simplex
or an axiparallel open unit hypercube in R

d . We shall also suppose that the family of
partitions {Th}h>0 is

(a) regular (namely, the closures of any two elements in the subdivision are either
disjoint or share a common face of dimension ≤ d − 1); and

(b) shape-regular (namely, there exists a positive constant c1, independent of h,
such that c1h

d
κ ≤ meas(κ) for all κ ∈ ⋃h Th).
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For p ≥ 1, we denote by Pp(κ̂) the set of polynomials of degree at most p on κ̂
when κ̂ is an open unit simplex; when κ̂ is an axiparallel open unit hypercube, we let
Qp(κ̂) denote the set of all tensor-product polynomials of degree at most p in each
coordinate direction. We define the finite element space

Hh,p = {v ∈ H ∩ C(�) : v|κ ∈ Rp(κ) for all κ ∈ Th},
where Rp(κ) = {w ∈ L1(κ) : w � Fκ ∈ Rp(κ̂)} and Rp is either Pp or Qp.

Next, we formulate the streamline-diffusion finite element approximation of (8).
The method was originally introduced by Hughes and Brooks [36] in 1979 for ellip-
tic transport-dominated diffusion equations. Its analysis was pursued by a number
of authors (see [38], [39], [54], for example). The definition of the method stems
from the empirical observation that standard Galerkin finite element approximations
to transport-dominated diffusion problems exhibit nonphysical numerical oscillations
which occur predominantly in the direction of subcharacteristic curves (i.e. the char-
acteristic curves of the underlying hyperbolic problem); the standard Galerkin method
is therefore supplemented with numerical diffusion/dissipation in the direction of the
subcharacteristics through the inclusion of a streamline-diffusion stabilisation term.
For a survey of recent perspectives on stabilised and multiscale finite element methods
for partial differential equations, including transport-dominated diffusion problems,
we refer to the survey paper of Brezzi and Marini [14]; see also [13], [15]. Here, we
follow the exposition in [33] and consider the bilinear form Bδ( · , · ) defined by

Bδ(w, v) = (a∇w,∇v)− (w,∇ · (bv))+ (cw, v)

+ 〈w, v〉�N∪�+ +
∑
κ∈Th

(L̂w, δκ b · ∇v)κ

and the linear functional �δ(v) = ∑
κ(f, v+δκ b·∇v)κ , where, on element κ ∈ Th, we

define L̂ by L̂w = −∇ · (Pκ(a∇w))+b ·∇w+ cw,w ∈ H1(κ), and Pκ signifies the
orthogonal projection in [L2(κ)]d onto [Rp(κ)]d . In these definitions (·, ·)κ denotes
the L2 inner product over κ and the nonnegative piecewise constant function δ, called
the streamline-diffusion stabilisation parameter, is defined by δ|κ = δκ for κ ∈ Th,
where δκ is a nonnegative constant on element κ . The precise choice of δ will be
discussed below.

Now, the streamline-diffusion finite element method is defined as follows: find
uSD ∈ Hh,p such that

Bδ(uSD, v) = �δ(v) for all v ∈ Hh,p. (9)

Here, we shall focus on the stability and error analysis of this method. A key property
is the following: from (8) and (9) we deduce that if u ∈ H ∩ H2(�) then

Bδ((u− uSD), v) =
∑
κ∈Th

(∇ · (a∇u− Pκ(a∇u)), δκb · ∇v)κ for all v ∈ Hh,p. (10)
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In particular, if a is a constant matrix, then the projection operator Pκ can be replaced
by the identity operator. In this case the right-hand side in (10) is zero and this identity
is then referred to as the Galerkin orthogonality property of the streamline-diffusion
finite element method (9).

Next we show the stability of the method (9) and state an optimal order a priori error
bound. The bound will be expressed in terms of the so-called streamline-diffusion
norm ‖| · ‖|SD defined by

‖|v‖|2SD = ‖∇v‖2
a + ĉ2

0‖v‖2 + ‖v‖2
�N∪�−∪�+ + ‖√δ b · ∇v‖2,

where ‖∇v‖2
a = (a∇v,∇v). The analysis requires the following results; cf. [33].

Lemma 3.1 (Inverse inequality). There exists a positive constant Cinv = Cinv(c1),
independent of a, hκ and p such that

‖∇ · (Pκ(a∇v))‖L2(κ) ≤ Cinv
p2

hκ
‖a∇v‖L2(κ) for all v ∈ Hh,p, κ ∈ Th.

Lemma 3.2. Suppose that M is a real d × d symmetric positive semidefinite matrix
and let | · | denote the Euclidean norm on R

d ; then |Mξ |2 ≤ ρ(M)(Mξ, ξ) for all
ξ ∈ R

d , where ρ(M) = max1≤i≤d λi is the spectral radius ofM and λi , i = 1, . . . , d ,
are the (real, nonnegative) eigenvalues of M .

Now we are ready to discuss the coercivity of the bilinear form Bδ( · , · ) over
Hh,p × Hh,p. To this end we define T ′

h = {κ ∈ Th : ‖b‖L∞(κ) �= 0}.
Proposition 3.3. Suppose that the streamline-diffusion parameter δκ on element κ is
selected, with the convention 1/0 = ∞, so that

0 ≤ δκ ≤ 1
2 min

(
h2
κ

(Cinv)
2 ‖ρ(a)‖L∞(κ) p

4
,

ĉ2
0

‖c‖2
L∞(κ)

)
for all κ ∈ T ′

h . (11)

Then, the bilinear form Bδ( · , · ) is coercive on Hh,p × Hh,p, i.e.

Bδ(v, v) ≥ 1
2‖|v‖|2SD for all v ∈ Hh,p.

Proof. Integrating by parts gives

Bδ(v, v) ≥ (a∇v,∇v)+
∫
�

c2
0v

2 dx + 1
2‖v‖2

�N∪�−∪�+ + ‖√δ b · ∇v‖2

−
∑
κ∈T ′

h

δκ (‖∇ · (Pκ(a∇v))‖κ + ‖cv‖κ) ‖b · ∇v‖κ , (12)

for v ∈ Hh,p. Now, using Lemma 3.1 and Lemma 3.2 with M = a and ξ = ∇v,

‖∇ · (Pκ(a∇v))‖κ + ‖cv‖κ ≤ Cinv
p2

hκ
‖ρ(a)‖1/2

L∞(κ)‖∇v‖a,κ + ‖c‖L∞(κ)‖v‖κ ,
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with the notation ‖∇v‖a,κ = (a∇v,∇v)1/2κ . Thus, for any real number γ > 0,∑
κ∈T ′

h

δκ (‖∇ · (Pκ(a∇v))‖κ + ‖cv‖κ) ‖b · ∇v‖κ ≤ γ
∑
κ∈T ′

h

δκ‖b · ∇v‖2
κ

+ 1

2γ

∑
κ∈T ′

h

δκ‖c‖2
L∞(κ)‖v‖2

κ + 1

2γ

∑
κ∈T ′

h

δκ (Cinv)
2 ‖ρ(a)‖L∞(κ)

p4

h2
κ

‖∇v‖2
a,κ .

Choosing γ = 1/2, we deduce from (12) and the definition of c0 that

Bδ(v, v) ≥ ‖∇v‖2
a + ĉ

2
0‖v‖2 + 1

2‖v‖2
�N∪�−∪�+ + 1

2‖√δ b · ∇v‖2

−
∑
κ∈T ′

h

δκ‖c‖2
L∞(κ)‖v‖2

κ −
∑
κ∈T ′

h

δκ (Cinv)
2 ‖ρ(a)‖L∞(κ)

p4

h2
κ

‖∇v‖2
a,κ .

Selecting the streamline-diffusion parameter as in (11), the result follows. �

Corollary 3.4 (Stability). Under the hypotheses of Proposition 3.3,

‖|uSD‖|2SD ≤ 4ĉ−2
0 ‖f ‖2 + 4

∑
κ∈T ′

h

δκ‖f ‖2
κ .

In particular, if f = 0 then uSD = 0; since Hh,p is a finite-dimensional linear
space, it follows that (9) has a unique solution uSD ∈ Hh,p for any f ∈ L2(�). The
next result concerns the accuracy of the method (9).

Theorem 3.5. Let the streamline-diffusion parameter δκ be chosen so that

0 < δκ ≤ 1

2
min

(
h2
κ

(Cinv)
2 ‖ρ(a)‖L∞(κ) p

4
,

ĉ2
0

‖c‖2
L∞(κ)

)
for all κ ∈ T ′

h,

with the convention 1/0 = ∞. Then, assuming that u ∈ H ∩ Hk(�) ∩ C(�), with a
positive integer k and a ∈ [Wk−1∞ (κ)]d×d , κ ∈ Th, the following error bound holds:

‖|u− uSD‖|SD ≤ C
( ∑
κ∈Th

h2τ−1
κ

p2k−1Mκ(a, b, c, hκ, p)‖u‖2
Hk(κ)

)1/2
,

where τ = min(p + 1, k), C is a positive constant which depends only on c1 and k,
Mκ(a, b, c, hκ, p) = Aκ(p/hκ)+ Bκ + Cκ(hκ/p), with

Aκ =
⎧⎨
⎩‖a‖L∞(κ) +

‖a‖2
L∞(κ)

+‖a‖2
Wk−1∞ (κ)

‖ρ(a)‖L∞(κ)
, when ‖ρ(a)‖L∞(κ) �= 0,

0, otherwise,

Bκ =
{

‖b‖L∞(κ)(1 +Dκ +D−1
κ ), when ‖b‖L∞(κ) �= 0,

0, otherwise,

Cκ = 1 + c0 + c−2
0 ‖c − ∇ · b‖2

L∞(κ), Dκ = δκ‖b‖L∞(κ)p/hκ .
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Theorem 3.5 is an extension of classical a priori error bounds for the streamline-
diffusion discretisation of a first-order hyperbolic problem and a second-order elliptic
transport-diffusion problem with a isotropic and constant; see, for example, [37], [54]
(h-version) and [29] (hp-version), and [33] for a proof in the case of �N = ∅.

4. Discontinuous piecewise polynomial approximation: the discontin-
uous Galerkin method

Discontinuous Galerkin finite element methods (DGFEMs, for short) date back to the
early 1970s; they were simultaneously proposed by Reed & Hill [52] in 1973 for the
numerical solution of the neutron transport equation and by Nitsche [45] in 1971 as a
nonstandard scheme for the approximation of second-order elliptic equations. Since
the early 1970s there has been extensive work on the development of these methods
for a wide range of applications; for an excellent historical survey of DGFEMs up
until 2000 we refer to the paper of Cockburn, Karniadakis and Shu in the volume [19].

One of the key advantages of the DGFEM in comparison with standard Galerkin
finite element methods based on continuous piecewise polynomials, such as the
streamline-diffusion finite method discussed in the previous section, is their high
degree of locality: the computational stencil of the DGFEM remains very compact
even as the degree of the approximating polynomial is increased. Hence, high-order
adaptive hp- and spectral element approximations may be handled in a particularly
flexible and simple manner. Indeed, hp-adaptive DGFEMs offer tremendous gains
in terms of computational efficiency in comparison with standard mesh refinement
algorithms which only incorporate local h-refinement with a given (fixed) polyno-
mial degree. For discussions concerning various hp-refinement strategies see [1],
[8], [32], [34], [53], [58]. A further attractive property of the discontinuous Galerkin
finite element method for a transport-dominated diffusion problem is that, unlike its
counterpart based on continuous piecewise polynomials, the method is stable even in
the absence of streamline-diffusion stabilisation.

In this section, we survey a priori and a posteriori error bounds for discontinuous
Galerkin finite element approximations of second-order partial differential equations
with nonnegative characteristic form. We shall then show how the a posteriori error
bound can be used to drive an hp-adaptive finite element algorithm. The presentation
in this section is based on the paper [25].

We consider shape-regular meshes Th = {κ} that partition the domain� into open
element domains κ , with possible hanging nodes. We shall suppose that the mesh is
1-irregular in the sense that there is at most one hanging node per (d−1)-dimensional
element-face, e.g. the barycenter of the face. We denote by h the piecewise constant
mesh function with h(x) ≡ hκ = diam(κ) when x is in element κ . Let each κ ∈ Th
be a smooth bijective image of a fixed master element κ̂ , that is, κ = Fκ(κ̂) for
all κ ∈ Th, where κ̂ is either the open unit simplex κ̂S = {x̂ = (x̂1, . . . , x̂d) ∈
R
d : 0 < x1 + · · · + xd < 1, xi > 0, i = 1, . . . , d}, or the open hypercube
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κ̂C = (−1, 1)d in R
d . On κ̂ we define spaces of polynomials of degree p ≥ 1 as

follows: Qp = span{x̂α : 0 ≤ αi ≤ p, 1 ≤ i ≤ d}, Pp = span{x̂α : 0 ≤ |α| ≤ p}.
To each κ ∈ Th we assign an integer pκ ≥ 1; collecting the pκ and Fκ in the vectors
p = {pκ : κ ∈ Th} and F = {Fκ : κ ∈ Th}, respectively, we introduce the finite
element space

Sp(�,Th,F ) = {u ∈ L2(�) : u|κ � Fκ ∈ Qpκ if F−1
κ (κ) = κ̂C

and u|κ � Fκ ∈ Ppκ if F−1
κ (κ) = κ̂S; κ ∈ Th} .

We assign to Th the broken Sobolev space of composite order s = {sκ : κ ∈ Th}
defined by Hs(�,Th) = {u ∈ L2(�) : u|κ ∈ Hsκ (κ) for all κ ∈ Th}, equipped with
the broken Sobolev norm

‖u‖s,Th =
( ∑
κ∈Th

‖u‖2
Hsκ (κ)

)1/2
.

When sκ = s for all κ ∈ Th, we write Hs(�,Th) and ‖u‖s,Th .
An interior face of Th is defined as the (non-empty) (d−1)-dimensional interior of

∂κi ∩ ∂κj , where κi and κj are two adjacent elements of Th, not necessarily matching.
A boundary face of Th is defined as the (non-empty) (d − 1)-dimensional interior of
∂κ ∩ �, where κ is a boundary element of Th. We denote by �int the union of all
interior faces of Th. Given a face e ⊂ �int, shared by the two elements κi and κj , where
the indices i and j satisfy i > j , we write νe to denote the (numbering-dependent)
unit normal vector which points from κi to κj ; on boundary faces we put νe = ν.
Further, for v ∈ H1(�,Th) we define the jump of v across e and the mean value of v
on e, respectively, by [v] = v|∂κi∩e − v|∂κj∩e and 〈v〉 = 1

2 (v|∂κi∩e + v|∂κj∩e). On
a boundary face e ⊂ ∂κ , we set [v] = v|∂κ∩e and 〈v〉 = v|∂κ∩e. Finally, given a
function v ∈ H1(�,Th) and an element κ ∈ Th, we denote by v+

κ (respectively, v−
κ )

the interior (respectively, exterior) trace of v defined on ∂κ (respectively, ∂κ\�). Since
below it will always be clear from the context which element κ in the subdivision Th
the quantities v+

κ and v−
κ correspond to, for the sake of notational simplicity we shall

suppress the letter κ in the subscript and write, respectively, v+ and v− instead. Given
that κ is an element in the subdivision Th, we denote by ∂κ the union of (d − 1)-
dimensional open faces of κ . Let x ∈ ∂κ and suppose that νκ(x) denotes the unit
outward normal vector to ∂κ at x. With these conventions, we define the inflow
and outflow parts of ∂κ , respectively, by ∂−κ = {x ∈ ∂κ : b(x) · νκ(x) < 0},
∂+κ = {x ∈ ∂κ : b(x) · νκ(x) ≥ 0}.

For simplicity of presentation, we suppose that each entry of the matrix a is
piecewise continuous on Th and belongs to S0(�,Th,F ). With minor changes only,
our results can easily be extended to the case when each entry of

√
a belongs to

Sq(�,Th,F ), where the composite polynomial degree vector q has nonnegative
entries; for more general a, see [23]. In the following, we write a = |√a |22, where
| · |2 denotes the matrix norm subordinate to the l2-vector norm on R

d and aκ = a|κ ; by
aκ̃ we denote the arithmetic mean of the values aκ ′ over those elements κ ′ (including κ
itself) that share a (d − 1)-dimensional face with κ .
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The hp-DGFEM approximation of (1), (3) is defined as follows: find uDG in
Sp(�,Th,F ) such that

BDG(uDG, v) = �DG(v) for all v ∈ Sp(�,Th,F ). (13)

Here, the bilinear form BDG( · , · ) is defined by

BDG(w, v) = Ba(w, v)+ Bb(w, v)+ θBe(v,w)− Be(w, v)+ Bσ (w, v) ,

where

Ba(w, v) =
∑
κ∈Th

∫
κ

a∇w · ∇v dx,

Bb(w, v) =
∑
κ∈Th

{
−
∫
κ

(w b · ∇v − cwv) dx +
∫
∂+κ
(b · νκ)w+v+ ds

+
∫
∂−κ\�

(b · νκ)w−v+ ds

}
,

Be(w, v) =
∫
�int∪�D

〈(a∇w) · νe〉[v] ds,

Bσ (w, v) =
∫
�int∪�D

σ [w][v] ds,

and the linear functional �DG( · ) is given by

�DG(v) =
∑
κ∈Th

{∫
κ

f v dx −
∫
∂−κ∩(�D∪�−)

(b · νκ) gD v
+ ds

+
∫
∂κ∩�D

θ gD((a∇v+) · νκ) ds +
∫
∂κ∩�N

gNv
+ ds

+
∫
∂κ∩�D

σgDv
+ ds

}
.

Here, σ is defined by

σ |e = Cσ
〈ap2〉
〈h〉 for e ⊂ �int ∪ �D, (14)

where Cσ is a positive constant, called the discontinuity-penalisation parameter;
cf. [30]. We shall adopt the convention that edges e ⊂ �int ∪ �D with σ |e = 0
are omitted from the integrals appearing in the definition of Bσ (w, v) and �DG(v),
although we shall not highlight this explicitly in our notation; the same convention is
adopted in the case of integrals where the integrand contains the factor 1/σ . Thus,
in particular, the definition of the DG-norm, cf. (15) below, is meaningful even if σ |e
happens to be equal to zero on certain edges e ⊂ �int ∪�D, given that such edges are
understood to be excluded from the region of integration.
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Selecting the parameter θ = 1 gives rise to the so-called Nonsymmetric Inte-
rior Penalty (NIP) method, while setting θ = −1 yields the Symmetric Interior
Penalty (SIP) scheme; in the following we write SIP/NIP to denote the symmet-
ric/nonsymmetric versions of the interior penalty method.

While a symmetric discretisation of a symmetric differential operator seems quite
natural, the NIP scheme is often preferred, especially for transport-dominated prob-
lems where the underlying discretisation matrix is nonsymmetric anyway, as it is
stable for any choice of the parameter Cσ > 0; see, for example, [2], [30], [51], and
Theorem 4.1 below. On the other hand, the SIP scheme is only stable whenCσ > 0 is
chosen sufficiently large. In terms of accuracy, both schemes converge at the optimal
rate when the error is measured in terms of the DG-norm (cf. (15) below), but the lack
of adjoint consistency (see, [2]) of the NIP method leads to suboptimal convergence of
the error when measured in terms of the L2 norm. In this case, the SIP scheme is still
optimally convergent, while the NIP method is suboptimal by a full order; however,
numerical experiments indicate that in practice the L2 norm of the error arising from
the NIP scheme converges to zero at the optimal rate when the polynomial degree p is
odd, cf. [30]. Thereby, in practice the loss of optimality of the NIP scheme when the
error is measured in terms of the L2 norm only arises for evenp. However, we showed
in [25] that, for p ≥ 2, the lack of adjoint consistency of the NIP scheme leads to an
even more dramatic deterioration of its convergence rate when the error is measured
in terms of a certain (linear) target functional J ( · ), such as J : v 
→ ∫

�
v(x)ψ(x) dx,

for example, where ψ is a given weight-function: for fixed p the error measured in
terms of J ( · ) behaves like O(h2p) when the SIP scheme is employed, while for the
NIP scheme, in general we only have the rate of convergence O(hp) as h tends to zero.
For related work on a posteriori error estimation for DGFEMs with interior penalty,
see e.g. Becker et al. [9], [10] and Rivière & Wheeler [53]. For further perspectives
on the construction and postprocessing of DGFEMs, see [12], [18].

Before embarking on the analysis of the discontinuous Galerkin method (13), we
define the DG-norm ‖| · ‖|DG by

‖|w‖|2DG =
∑
κ∈Th

(
‖∇w‖2

a,κ+ ‖c0w‖2
κ+

1

2
‖w+‖2

∂−κ∩(�D∪�−)

+ 1

2
‖w+‖2

∂+κ∩� + 1

2
‖w+ − w−‖2

∂−κ\�
)

+
∫
�int∪�D

σ [w]2 ds +
∫
�int∪�D

1

σ
〈(a ∇w) · νe〉2 ds,

(15)

where ‖∇w‖2
a,κ = (a∇w,∇w)κ , ‖ · ‖τ , τ ⊂ ∂κ , denotes the (semi)norm induced by

the (semi)inner-product (v,w)τ = ∫
τ
|b · νκ |vw ds, and c0 is as defined in (4). The

above definition of ‖| · ‖|DG represents a slight modification of the norm considered
in [30]; for a > 0, b ≡ 0, (15) corresponds to the norm proposed by Baumann et
al. [8], [47] and Baker et al. [5], cf. [51]. With this notation, we state the following
coercivity result for the bilinear form BDG( · , · ) over Sp(�,Th,F )×Sp(�,Th,F ).
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Theorem 4.1. With σ defined as in (14), there exists a positive constant C, which
depends only on the dimension d and the shape-regularity of Th, such that

BDG(v, v) ≥ C‖|v‖|2DG for all v ∈ Sp(�,Th,F ),

provided that the constantCσ arising in the definition of the discontinuity penalisation
parameter σ is chosen so that Cσ > 0 arbitrary when θ = 1, and Cσ ≥ C′

σ with C′
σ

sufficiently large when θ �= 1.

This result is an extension of the coercivity result derived by Prudhomme et al.
[51] with b ≡ 0; see also [30] for the proof in the case when θ = 1. For the case of
a ≡ 0, the connection of stabilisation to upwinding has been discussed in [16]. In
particular, Theorem 4.1 implies that (13) has a unique solution for any f ∈ L2(�), any
gD ∈ L2(�D) and any gN ∈ L2(�N). Theorem 4.1 also indicates that while the NIP
scheme is coercive over Sp(�,Th,F )×Sp(�,Th,F ) for any choice of the constant
Cσ > 0 arising in the definition of the discontinuity-penalisation parameter σ , the
SIP scheme (corresponding to θ = −1) is only coercive if Cσ is chosen sufficiently
large; see [25] for details about the minimum size of Cσ .

Henceforth, we shall assume that the solution u to the boundary value problem (1),
(3) is sufficiently smooth: namely, u ∈ H2(�,Th) and that u and (a∇u) · νe are
continuous across each face e ⊂ ∂κ\� that intersects the subdomain of ellipticity,
�a = {x ∈ � : ζ�a(x)ζ > 0 for all ζ ∈ R

d}. If this smoothness requirement is
violated, the discretisation method has to be modified accordingly, cf. [30]. We note
that under these assumptions, the following Galerkin orthogonality property holds:

BDG(u− uDG, v) = 0 for all v ∈ Sp(�,Th,F ). (16)

We shall assume that b ∈ [W1∞(�)]d is such that

b · ∇Thv ∈ Sp(�,T ,F ) for all v ∈ Sp(�,T ,F ). (17)

Let us denote by�p the orthogonal projector in L2(�)onto the finite element space
Sp(�,T ,F ). We remark that this choice of projector is essential in the following
a priori error analysis, in order to ensure that (u − �pu, b · ∇Thv) = 0 for all v in
Sp(�,T ,F ). If, on the other hand, the scheme (13) is supplemented by streamline-
diffusion stabilisation, then alternative choices of �p may be employed (see [29],
[59], for example); in that case, hypothesis (17) is redundant. We now decompose
the global error u− uDG as

u− uDG = (u−�pu)+ (�pu− uDG) ≡ η + ξ. (18)

Lemma 4.2. Assume that (4) and (17) hold and let β1|κ = ‖c/c2
0‖L∞(κ); then there

exists a positive constant C that depends only on d and the shape-regularity of Th
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such that the functions ξ and η defined by (18) satisfy the following inequality

‖|ξ‖|2DG ≤ C
{ ∑
κ∈Th

(‖√a ∇η‖2
κ + β2

1‖c0η‖2
κ + ‖η+‖2

∂+κ∩� + ‖η−‖2
∂−κ\�

)

+
∫
�int∪�D

1

σ
〈(a∇η) · νe〉2 ds +

∫
�int∪�D

σ [η]2 ds
}
.

The proof is given in [25]. We also need the following result concerning the
approximation properties of the projector �p; for simplicity, we restrict ourselves
to 1-irregular, shape-regular meshes consisting of affine equivalent d-parallelepiped
elements (cf. [4], [30], and also [24] for similar results in augmented Sobolev spaces).

Lemma 4.3. Suppose that κ ∈ Th is a d-parallelepiped of diameter hκ and that
u|κ ∈ Hkκ (κ), kκ ≥ 0, for κ ∈ Th. Then, the following approximation results hold:

‖u−�pu‖L2(κ) ≤ C
h
sκ
κ

p
kκ
κ

‖u‖Hkκ (κ), ‖u−�pu‖L2(∂κ) ≤ C
h
sκ−1/2
κ

p
kκ−1/2
κ

‖u‖Hkκ (κ),

|u−�pu|H1(κ) ≤ C
h
sκ−1
κ

p
kκ−3/2
κ

‖u‖Hkκ (κ), |u−�pu|H1(∂κ) ≤ C
h
sκ−3/2
κ

p
kκ−5/2
κ

‖u‖Hkκ (κ),

where 1 ≤ sκ ≤ min(pκ + 1, kκ) and C is a constant independent of u, hκ and pκ ,
but dependent on the dimension d and the shape-regularity of Th.

For the rest of this section, we assume that the polynomial degree vector p, with
pκ ≥ 1, κ ∈ Th, has bounded local variation; i.e., there exists a constant ρ ≥ 1 such
that, for any pair of elements κ and κ ′ which share a (d − 1)-dimensional face,

ρ−1 ≤ pκ/pκ ′ ≤ ρ. (19)

On noting that η = u−�pu and combining Lemmas 4.2 and 4.3, we deduce that

‖|ξ‖|2DG ≤ C
∑
κ∈Th

(
α
h

2(sκ−1)
κ

p
2(kκ−3/2)
κ

+ β2
h

2sκ
κ

p
2kκ
κ

+ γ
h

2(sκ−1/2)
κ

p
2(kκ−1/2)
κ

)
‖u‖2

Hkκ (κ),

whereα|κ = aκ̃ , β2|κ = (β1|κ)2 ‖c0‖2
L∞(κ), (β1|κ = ‖c/(c0)

2‖L∞(κ), cf. Lemma 4.2),
γ |κ = ‖b‖L∞(κ) and C is a positive constant that depends only on d, the parameter ρ
in (19) and the shape-regularity of Th. The DG-norm ‖|η‖|DG of η = u −�pu can
be estimated directly using Lemma 4.3 to show that a bound analogous to that on
‖|ξ‖|DG above holds. Hence, a bound on the discretisation error u− uDG = ξ + η in
the DG-norm ‖| · ‖|DG is obtained via the triangle inequality (see [30] for details).

Very often in practice the objective of the computation is not the approximation of
the analytical solution u in a given norm, but controlling the error in an output/target-
functional J ( · ) of the solution. Relevant examples of output functionals include the
lift and drag coefficients of a body immersed into a viscous fluid, the local mean value
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of the field, or its flux through the outflow boundary of the computational domain.
Here we give a brief survey of a posteriori and a priori error bounds for general
linear target functionals J ( · ) of the solution; for related work, we refer to [11], [26],
[28], [31], [32], [34], [42], [58], [59], for example, and to the recent monograph of
Bangerth & Rannacher [6]. We shall confine ourselves to Type I (dual-weighted) a
posteriori bounds; the computationally simpler, but cruder, Type II error bounds will
not be discussed here (see Giles & Süli [22]).

Type I a posteriori error analysis. We proceed as in [34], [58] and begin by consid-
ering the following dual or adjoint problem: find z ∈ H2(�,Th) such that

BDG(w, z) = J (w) for all w ∈ H2(�,Th). (20)

Let us assume that (20) possesses a unique solution. Clearly, the validity of this
assumption depends, inter alia, on the choice of the linear functional under consider-
ation. We shall return to this issue below; see also [25], [28], [34].

For a given linear functional J ( · ) the a posteriori error bound will be expressed in
terms of the finite element residualRint defined on κ ∈ Th byRint|κ = (f −LuDG)|κ ,
which measures the extent to which uDG fails to satisfy the differential equation on the
union of the elements κ in the mesh Th; thus we refer to Rint as the internal residual.
Also, since uDG only satisfies the boundary conditions approximately, the differences
gD − uDG and gN − (a∇uDG) · ν are not necessarily zero on �D ∪ �− and �N,
respectively; thus we define the boundary residuals RD and RN by RD|∂κ∩(�D∪�−)=
(gD − u+

DG)|∂κ∩(�D∪�−) and RN|∂κ∩�N = (gN − (a∇u+
DG) · ν)|∂κ∩�N , respectively.

By using the divergence theorem, the Galerkin orthogonality property (16) may be
rewritten as follows:

0 = BDG(u− uDG, v) = �DG(v)− BDG(uDG, v)

=
∑
κ∈Th

{∫
κ

Rintv dx −
∫
∂−κ∩�

(b · νκ) RDv
+ ds

+
∫
∂−κ\�

(b · νκ) [uDG]v+ ds +
∫
∂κ∩�D

θ RD((a∇v+) · νκ) ds

+
∫
∂κ∩�D

σRDv
+ ds +

∫
∂κ∩�N

RNv
+ ds

−
∫
∂κ\�

(
θ

2
[uDG](a∇v+) · νκ + 1

2
[(a∇uDG) · νκ ]v+

)
ds

−
∫
∂κ\�

σ [uDG]v+ ds

}

(21)

for all v ∈ Sp(�,Th,F ). The starting point is the following result from [25].

Theorem 4.4. Let u and uDG denote the solutions of (1), (3) and (13), respectively,
and suppose that the dual solution z is defined by (20). Then, the following error
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representation formula holds:

J (u)− J (uDG) = E�(uDG, h, p, z− zh,p) ≡
∑
κ∈Th

ηκ, (22)

where

ηκ =
∫
κ

Rint(z− zh,p) dx −
∫
∂−κ∩�

(b · νκ) RD(z− zh,p)
+ ds

+
∫
∂−κ\�

(b · νκ) [uDG](z− zh,p)
+ ds

+
∫
∂κ∩�D

θ RD((a∇(z− zh,p)
+) · νκ) ds (23)

+
∫
∂κ∩�D

σRD(z− zh,p)
+ ds +

∫
∂κ∩�N

RN(z− zh,p)
+ ds

−
∫
∂κ\�

{
θ

2
[uDG](a∇(z− zh,p)

+) · νκ + 1

2
[(a∇uDG) · νκ ](z− zh,p)

+
}

ds

−
∫
∂κ\�

σ [uDG](z− zh,p)
+ ds

for all zh,p ∈ Sp(�,Th,F ).

Proof. On choosing w = u− uDG in (20) and recalling the linearity of J ( · ) and the
Galerkin orthogonality property (21), we deduce that

J (u)− J (uDG) = J (u− uDG) = BDG(u− uDG, z)

= BDG(u− uDG, z− zh,p),
(24)

and hence (22), with ηκ defined by (23), using the definitions of the residuals. �

Corollary 4.5. Under the assumptions of Theorem 4.4, and with ηκ defined as in
(23), the following Type I a posteriori error bound holds:

|J (u)− J (uDG)| ≤ E|�|(uDG, h, p, z− zh,p) ≡
∑
κ∈Th

|ηκ | . (25)

As discussed in [6], [11], [26], [58], the local weighting terms involving the differ-
ence between the dual solution z and its projection/interpolant zh,p onto Sp(�,Th,F )
appearing in the Type I bound (25) contain useful information concerning the global
transport of the error. Therefore, we shall retain the weighting terms involving the
(unknown) dual solution z in our bound and approximate them numerically, — instead
of eliminating z, as one would in the derivation of a structurally simpler, but cruder,
Type II a posteriori bound. However, before proceeding any further, we need to con-
sider more carefully the dual problem defined by (20). Let us suppose, for example,
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that the aim of the computation is to approximate the (weighted) mean value of the
solution u; i.e., J ( · ) ≡ Mψ( · ), where Mψ(w) = ∫

�
wψ dx and ψ ∈ L2(�). When

θ = −1, performing integration by parts, we find that the corresponding dual solution
z = zSIP is the solution of the following mesh-dependent problem: find z such that

L∗z ≡ −∇ · (a∇z)− b · ∇z+ cz = ψ in �,

z = 0 on �D ∪ �+,
(b · ν)z+ (a∇z) · ν = 0 on �N.

Thus, for θ = −1 the dual problem is well-posed for this choice of target functional.
We remark that, since in this case the dual problem formed by transposing the ar-
guments in the bilinear form BDG( · , · ) = BSIP

DG ( · , · ) involves the formal adjoint
of the partial differential operator L, BSIP

DG ( · , · ) is said to be adjoint consistent, cf.
Arnold et al. [2]; in particular, when θ = −1 and the primal and dual solutions are
sufficiently smooth, the error in the functional will be seen to exhibit an optimal order
of convergence. As we shall explain below by means of a priori error analysis, the
situation is dramatically different when θ �= −1: then, the bilinear form BDG( · , · )
is not adjoint consistent; this, in turn, leads to degradation of the convergence rate of
the error in the computed functional J ( · ) as the finite element space Sp(�,Th,F )
is enriched (by reducing h or by increasing the polynomial degree vector p). Once
again, we refer to [25] for technical details.

A priori error bounds. We continue to use the superscripts SIP and NIP to distinguish
between the two methods and write BSIP

DG( · , · ) ≡ BDG( · , · ) when θ = −1 and
BNIP

DG( · , · ) ≡ BDG( · , · ) when θ = 1. The corresponding numerical solutions uSIP

DG
and uNIP

DG satisfy the following problems: find uSIP

DG in Sp(�,Th,F ) such that

BSIP

DG(u
SIP

DG, v) = �DG(v) for all v ∈ Sp(�,Th,F );
and find uNIP

DG in Sp(�,Th,F ) such that

BNIP

DG(u
NIP

DG, v) = �DG(v) for all v ∈ Sp(�,Th,F ),

respectively. The starting point for the a priori error analysis is the identity (24) in
the proof of Theorem 4.4. Again, using the above notation, we see that

J (u)− J (uSIP

DG) = BSIP

DG(u− uSIP

DG, z
SIP − zh,p)

when the SIP scheme is employed, while for the NIP scheme, we have

J (u)− J (uNIP

DG) = BNIP

DG(u− uNIP

DG, z
NIP − zh,p)

for all zh,p in Sp(�,Th,F ). Here, zSIP and zNIP are the analytical solutions to the
following dual problems: find zSIP ∈ H2(�,Th) such that

BSIP

DG(w, z
SIP) = J (w) for all w ∈ H2(�,Th);
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and find zNIP ∈ H2(�,Th) such that

BNIP

DG(w, z
NIP) = J (w) for all w ∈ H2(�,Th).

Hence, for all zh,p ∈ Sp(�,Th,F ),

J (u)− J (uDG) = BDG(u− uDG, z
SIP − zh,p)− (1 + θ)Be(z

SIP, u− uNIP

DG), (26)

whereuDG is eitheruSIP
DG oruNIP

DG , depending on whether θ = −1 or θ = 1, respectively.
In particular, the second term on the right-hand side of (26) is absent for the SIP
scheme, i.e. when θ = −1, but it is present when the NIP scheme is employed, i.e.,
when θ = 1. Since this second term is of lower order than the first term in (26), it will
lead to suboptimal rates of convergence as the finite element space Sp(�,Th,F ) is
enriched in the case of θ �= −1.

Theorem 4.6. Let � ⊂ R
d be a bounded polyhedral domain, Th = {κ} a shape-

regular subdivision of � into d-parallelepipeds and p a polynomial degree vector
of bounded local variation. Let (4) and (17) hold, let the entries of a be piecewise
constant on Th, and u|κ ∈ Hkκ (κ), kκ ≥ 2, for κ ∈ Th, zSIP|κ ∈ Hlκ (κ), lκ ≥ 2, for
κ ∈ Th; then, the solution uDG ∈ Sp(�,Th,F ) of (13) satisfies the error bound

|J (u)− J (uDG)|2 ≤ C

{ ∑
κ∈Th

(
α
h

2(sκ−1)
κ

p
2(kκ−3/2)
κ

+ β3
h

2sκ
κ

p
2kκ
κ

+ γ
h

2(sκ−1/2)
κ

p
2(kκ−1/2)
κ

)
‖u‖2

Hkκ (κ)

}

×
{ ∑
κ∈Th

(
α
h

2(tκ−1)
κ

p
2(lκ−3/2)
κ

+ β4
h

2tκ
κ

p
2lκ
κ

+ γ
h

2(tκ−1/2)
κ

p
2(lκ−1)
κ

)
‖zSIP‖2

Hlκ (κ) + (1 + θ) ‖zSIP‖2
2,Th

}

for 1 ≤ sκ ≤ min(pκ + 1, kκ), 1 ≤ tκ ≤ min(pκ + 1, lκ ), pκ ≥ 1, κ ∈ Th,
where α|κ = aκ̃ , β3|κ = (1 + (β1|κ)2)‖c0‖2

L∞(κ), (β1|κ = ‖c(x)/(c0(x))
2‖L∞(κ)),

β4|κ = ‖(c+∇ · b)/c0‖2
L∞(κ), γ |κ = ‖b‖L∞(κ) and C is a constant depending on the

dimension d, the parameter ρ from (19) and the shape-regularity of Th.

If we assume uniform orders pκ = p, sκ = s, tκ = t , kκ = k, lκ = l, where s, t ,
k and l are positive integers, and h = maxκ∈Th hκ , then, in the diffusion-dominated
case (viz. b ≈ 0), Theorem 4.6, with θ = −1 implies that for the SIP scheme

|J (u)− J (uDG)| ≤ C (hs+t−2/pk+l−2) p ‖u‖Hk(�)‖zSIP‖Hl (�), (27)

where 1 ≤ s ≤ min(p + 1, k) and 1 ≤ t ≤ min(p + 1, l). This error bound is
optimal with respect to h and suboptimal in p by a full order. We note, however, that
‘order-doubling’ of the rate of convergence in |J (u) − J (uDG)| observed when the
SIP scheme is employed, as expressed by (27), is lost when the NIP method is used.
In the hyperbolic case (a ≡ 0), the bound in Theorem 4.6 becomes

|J (u)− J (uDG)| ≤ C (hs+t−1/pk+l−1) p1/2 ‖u‖Hk(�)‖zSIP‖Hl (�).
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This error bound is optimal in h and suboptimal in p by p1/2 (cf. also [34]).

Adaptive algorithm. In the light of Theorem 4.6, we now confine ourselves to the
SIP scheme (θ = −1). For a user-defined tolerance TOL, we consider the problem of
designing an hp-finite element space Sp(�,Th,F ) such that the inequality |J (u)−
J (uDG)| ≤ TOL holds, subject to the constraint that the number of degrees of freedom
in Sp(�,Th,F ) is minimized. Following [34], we use the a posteriori error bound
(25) with z replaced by a discontinuous Galerkin approximation ẑ computed on the
same mesh Th as for the primal solution uDG, but with a higher degree polynomial,
i.e., ẑ ∈ Sp̂(�,Th,F ) , p̂ = p + pinc; in our experiments we set pinc = 1, cf. [26],
[32], [58]. Thereby, in practice we enforce the stopping criterion

Ê|�| ≡ E|�|(uDG, h, p, ẑ− zh,p) ≤ TOL . (28)

If (28) is not satisfied, then the elements are marked for refinement/derefinement
according to the size of the (approximate) error indicators |η̂κ |; these are defined
analogously to |ηκ | in (23) with z replaced by ẑ. In our experiments we use the fixed
fraction mesh refinement algorithm, with refinement and derefinement fractions set
to 20% and 10%, respectively.

Once an element κ ∈ Th has been flagged for refinement or derefinement, a
decision must be made whether the local mesh size hκ or the local degree pκ of
the approximating polynomial should be altered. The choice to perform either h-
refinement/derefinement or p-refinement/derefinement is based on the local smooth-
ness of the primal and dual solutions u and z, respectively; cf. [32], [34]. Let us
first consider the case when an element has been flagged for refinement. If u or z
are locally smooth, then p-refinement will be more effective than h-refinement, since
the error will be expected to decay quickly within the current element κ as pκ is
increased. On the other hand, if both u and z have low regularity within the element
κ , then h-refinement will be performed. To ensure that the desired level of accuracy
is achieved efficiently, in [34] an automatic procedure was developed for deciding
when to h- or p-refine, based on the smoothness-estimation strategy proposed by
Ainsworth & Senior [1]. For a review of various hp-adaptive strategies as well as
descriptions of new algorithms based on Sobolev index estimation via local Legendre
expansions, we refer to [31], [32]. If an element has been flagged for derefinement,
then the strategy implemented here is to coarsen the mesh in low-error-regions where
either the primal or dual solutions u and z, respectively, are smooth and decrease the
degree of the approximating polynomial in low-error-regions when both u and z are
insufficiently regular, cf. [34].

Numerical experiments. We explore the performance of the hp-adaptive strategy
outlined above for the symmetric version of the interior penalty method, applied to a
mixed hyperbolic-elliptic problem with discontinuous boundary data (cf. [25]). We
let a = ε(x)I , where ε = 1

2δ(1 − tanh((r − 1/4)(r + 1/4)/γ )), r2 = (x − 1/2)2 +
(y − 1/2)2 and δ ≥ 0 and γ > 0 are constants. Let b = (2y2 − 4x + 1, 1 + y),
c = −∇ · b and f = 0. With δ > 0 and 0 < γ � 1, the diffusion parameter ε
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is approximately equal to δ in the circular region defined by r < 1/4, where the
underlying partial differential equation is uniformly elliptic. In this example, we set
δ = 0.05 and γ = 0.01; a cross-section of ε along 0 ≤ x ≤ 1, y = 1/2 is shown in
Figure 1. As the value of r is increased beyond 1/4, the function ε rapidly decreases
through a layer of width O(γ ); for example, when r > 0.336 we have ε < 10−15,
so from the computational point of view ε is zero to within rounding error; in this

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Point of
interest

(a) (b)

Figure 1. (a) Profile of ε along y = 0.5, 0 ≤ x ≤ 1; (b) DGFEM approximation to the primal
problem on a 129 × 129 mesh with piecewise bilinear elements (p = 1); from [25].

region, the partial differential equation undergoes a change of type becoming, in
effect, hyperbolic. Thus we shall refer to the part of � with r > 1/4 + O(γ ) as the
hyperbolic region, while the set of points in� with r ≤ 1/4 will be called the elliptic
region; of course, strictly speaking, the partial differential equation is elliptic in the
whole of �. The characteristics associated with the hyperbolic part of the operator
enter the computational domain� from three sides of �, namely through the vertical
edges placed along x = 0 and x = 1 and the horizontal edge along y = 0; the
characteristics exit� through the horizontal edge along y = 1. On the union of these
three faces we prescribe the following boundary condition:

u(x, y) =

⎧⎪⎨
⎪⎩

1 for x = 0 , 0 < y ≤ 1,

sin2(πx) for 0 ≤ x ≤ 1 , y = 0,

e−50y4
for x = 1 , 0 < y ≤ 1.

Figure 1 shows the numerical approximation to (1) using the SIP method on a uniform
129 × 129 uniform square mesh with p = 1. Let us suppose that the objective of the
computation is to calculate the value of the analytical solution u at a certain point of
interest, x = (0.43, 0.9), i.e., J (u) = u(0.43, 0.9); cf. Figure 1. The true value of
the functional is given by J (u) = 0.704611313375.
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In Table 1 we show the performance of our adaptive finite element algorithm using
hp-refinement. Clearly, the computed Type I a posteriori error bound (25) is very
sharp in the sense that it overestimates the true error in the computed functional by a
factor of about 1–8 only, and by a factor of only 3.34 on average on the meshes that
arise in the course of our adaptive hp-refinement.

Table 1. History of the adaptive hp-refinement. The effectivity index is defined as the ratio of
the a posteriori error bound

∑
κ |η̂κ | and the error |J (u)− J (uDG)|; from [25].

Nodes Elements
Degrees of

freedom
|J (u)− J (uDG)| ∑

κ |η̂κ |
Effectivity

index

81 64 576 1.924e-02 3.330e-02 1.73

99 76 740 1.056e-02 1.085e-02 1.03

162 130 1451 1.006e-02 2.290e-02 2.28

241 193 2483 7.400e-04 2.385e-03 3.22

302 244 3776 3.760e-05 2.754e-04 7.32

323 262 4777 1.270e-05 1.026e-04 8.08

396 325 6916 9.896e-06 2.245e-05 2.27

487 403 9941 1.224e-06 6.466e-06 5.28

577 481 13528 4.656e-07 1.163e-06 2.50

713 601 19855 2.449e-07 2.582e-07 1.05

960 820 31019 1.574e-08 3.202e-08 2.03

1313 1132 47406 6.531e-10 2.154e-09 3.30

Figure 2 shows |J (u) − J (uDG)|, using both h- and hp-refinement, against the
square-root of the number of degrees of freedom on a linear-log scale. After the
initial transient, the error in the computed functional using hp-refinement is seen
to become (on average) a straight line, which indicates exponential convergence of
J (uDG) to J (u); this occurs since zSIP is a real analytic function in the regions of
the computational domain where u is not smooth and vice versa. Figure 2 also
demonstrates the superiority of the adaptive hp-refinement strategy over the standard
adaptive h-refinement algorithm when TOL � 10−3.

On the final mesh the error betweenJ (u) andJ (uDG) usinghp-refinement is over 4
orders of magnitude smaller than the corresponding quantity when h-refinement is
used alone.
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Figure 2. Comparison between h- and hp-adaptive mesh refinement; from [25].

Figure 3 depicts the primal mesh after 11 adaptive mesh refinement steps. We
display the h-mesh alone, as well as the corresponding distribution of the polynomial
degree on this mesh and the percentage of elements with that degree. We see that some
h-refinement of the primal mesh has taken place in the region of the computational
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Figure 3. h- and hp-meshes after 11 refinements, with 1313 nodes, 1132 elements and 47406
degrees of freedom: here, |J (u)− J (uDG)| = 6.531 × 10−10; from [25].

domain upstream of the point of interest, as well as in the circular region where the
underlying partial differential equation changes type. Once theh-mesh has adequately
captured the structure of the primal and dual solutions, the hp-adaptive algorithm
performsp-refinement elsewhere in the domain of dependence of the point of interest.



1292 Endre Süli

5. High-dimensional transport-diffusion problems

We conclude by giving some pointers to recent results on stabilised sparse finite ele-
ment methods for high-dimensional partial differential equations (1) with nonnegative
characteristic form (cf. [57]). Such high-dimensional equations arise from a number
of important applications in physics, chemistry, biology and finance. The origins of
sparse tensor-product constructions and hyperbolic cross spaces can be traced back
to Babenko [3] and Smolyak [56]; we refer to the papers of Temlyakov [61], DeVore,
Konyagin & Temlyakov [20] for the study of high-dimensional approximation prob-
lems, to the works of Wasilkowski & Woźniakowski [62] and Novak & Ritter [46]
for high-dimensional integration problems and associated complexity questions, to
the paper of Zenger [63] for an early contribution to the numerical solution of high-
dimensional elliptic equations, to the articles by von Petersdorff & Schwab [50] and
Hoang & Schwab [27] for the analysis of sparse-grid methods for high-dimensional
elliptic multiscale problems and parabolic equations, respectively, and to the recent
survey article of Bungartz & Griebel [17].

Suppose that� = (0, 1)d ,�N = ∅ and gD = 0 in (3), and that the operator L in (1)
has constant coefficients. In the simplest case, the construction of the finite element
space V̂ L0 ⊂ H begins by taking the tensor product of d copies of a finite element
space of univariate hierarchical continuous piecewise linear functions (p = 1) on a
uniform mesh of size hL = 2−L, L ≥ 1. The resulting tensor-product space V L0
has dimension dim(V L0 ) = O(h−d

L ). Clearly, the use of this space would lead to
exponential growth of computational complexity for fixed hL, as d increases. Thus,
the idea is to reduce the complexity of the computation for large d by sparsifying
the space V L0 ; the resulting sparse finite element space is denoted V̂ L0 and has only
dim(V̂ L0 ) = O(h−1

L | loghL|d−1) degrees of freedom. The relevant result from [57],
stated in the theorem below, is that, with a careful choice of the streamline-diffusion
stabilisation parameter δL and assuming that u ∈ H2(�) ∩ H , where H2(�) =
{v : Dαv ∈ L2(�), |α|∞ ≤ 2} is the space of functions with L2-bounded mixed
second derivatives, one can ensure that this reduction of computational complexity is
achieved at essentially no loss in accuracy in the streamline-diffusion finite element
method compared to the case when the full tensor-product space V L0 is used instead
of the sparse space V̂ L0 .

Theorem 5.1. Let f ∈ L2(�), c > 0 and u ∈ H2(�) ∩ H . Then, the following
bound holds for the error u − uSD between the analytical solution u of (8) and its
sparse finite element approximation uSD ∈ V̂ L0 , with L ≥ 1 and h = hL = 2−L:

‖|u− uSD‖|2SD

≤ C(u)
{
|a|h2

L + h4
L| log2 hL|2(d−1) max

(
|a|
h2
L

,
d|b|

hL| log2 hL|d−1 , c

)}
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with the streamline-diffusion parameter δL defined by the formula

δL := Kδ min

(
h2
L

|a| ,
hL| log2 hL|d−1

d|b| ,
1

c

)
,

with Kδ ∈ R>0 a constant, independent of hL and d, and C(u) = Const.‖u‖2
H2(�)

where Const. is a positive constant independent of the discretisation parameter hL.

We refer to [57] for further technical details, including the proof of this result.

6. Concluding remarks

We surveyed continuous stabilised and discontinuous Galerkin finite element methods
for the numerical solution of second-order partial differential equations with nonneg-
ative characteristic form. We stated a priori and residual-based a posteriori error
bounds, and in the case of the discontinuous Galerkin method we showed how the
a posteriori bound may be used to drive an hp-adaptive finite element algorithm.
We also commented on the use of sparse stabilised finite element methods for high-
dimensional transport-dominated diffusion equations: stochastic analysis and kinetic
theory are particularly fertile sources of Fokker–Planck equations of this kind [41].
The numerical solution of high-dimensional partial differential equations has been an
active area of research in recent years [17], though the bulk of the research has been
confined to self-adjoint elliptic and parabolic equations. As we have briefly indicated,
extensions of these results to the, vastly richer, class of partial differential equations
with nonnegative characteristic form are feasible, and we expect that activities in this
direction will continue to flourish.

Acknowledgments. I am grateful to Franco Brezzi, Bernardo Cockburn, Kathryn
Gillow, Paul Houston, Donatella Marini, Rolf Rannacher and Christoph Schwab for
numerous stimulating discussions on the ideas presented in this paper. The computa-
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Ergodic control of diffusion processes

Vivek S. Borkar∗

Abstract. Results concerning existence and characterization of optimal controls for ergodic
control of nondegenerate diffusion processes are described. Extensions to the general ‘con-
trolled martingale problem’ are indicated, which cover in particular degenerate diffusions and
some infinite dimensional problems. In conclusion, some related problems and open issues are
discussed.
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1. Introduction

Ergodic or ‘long run average’ control of Markov processes considers the minimiza-
tion of a time-averaged cost over admissible controls. This stands apart from the
usual ‘integral’ cost criteria such as finite horizon or infinite horizon discounted cost
criteria because neither the dynamic programming principle nor the usual ‘tightness’
arguments for existence of optima common to these set-ups carry over easily to the
ergodic problem. Thus entirely new proof techniques have to be employed. The sit-
uation gets more complicated for continuous time continuous state space processes,
of which diffusion processes are a prime example, because of the additional techni-
calities involved. This article describes first the reasonably well-understood case of
non-degenerate diffusions, and then the partly resolved case of the more general ‘con-
trolled martingale problem’which covers degenerate diffusions and partially observed
diffusions, among others.

An extended account of this topic will appear in [2].

2. Ergodic control of non-degenerate diffusions

2.1. Preliminaries. Thed-dimensional (d ≥ 1) controlled diffusion processX( · ) =
[X1( · ), . . . , Xd( · )]T is described by the stochastic differential equation

X(t) = X0 +
∫ t

0
m(X(s), u(s)) ds +

∫ t

0
σ(X(s)) dW(s), (1)
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for t ≥ 0. Here:

1. for a compact metric ‘control space’ U , m( ·, · ) = [m1( ·, · ), . . . , md( ·, · )]T :
Rd × U → Rd is continuous and Lipschitz in the first argument uniformly
with respect to the second,

2. σ( · ) = [[σij ( · )]]1≤i,j≤d : Rd → Rd×d is Lipschitz,

3. X0 is an Rd -valued random variable with a prescribed law π0,

4. W( · ) = [W1( · ), . . . , Wd( · )]T is a d-dimensional standard Brownian motion
independent of X0,

5. u( · ) : R+ → U is the ‘control process’ with measurable paths, satisfying the
non-anticipativity condition: for t > s ≥ 0, W(t) − W(s) is independent of
{X0, W(y), u(y), y ≤ s}. (In other words, u( · ) does not anticipate the future
increments of W( · ).)

This class of u( · ) is referred to as admissible controls. It is known that without
loss of generality, one may take these to be adapted to the natural filtration of X( · ),
given by Ft = the completion of

⋂
s>t σ (X(y), y ≤ s). We shall say that it is a

stationary Markov control if in addition u(t) = v(X(t)), t ≥ 0, for a measurable
v : Rd → U . By a standard abuse of terminology, we identify this control with
the map v( · ). We shall say that (1) is non-degenerate if the least eigenvalue of
σ( · )σ T ( · ) is uniformly bounded away from zero, degenerate otherwise. We use the
‘weak solution’ framework, i.e., only the law of the pair (X( · ), u( · )) is prescribed
and ‘uniqueness’ is interpreted as uniqueness in law. For this section, we assume
non-degeneracy. This in particular implies existence of a unique strong solution for
stationary Markov controls.

We shall also need the relaxation of the notion of control process u( · ) above to
that of a relaxed control process. That is, we assume that U = P (U0), the space of
probability measures on U0 with Prohorov topology, where U0 is compact metrizable
(whence so is U ) and mi( ·, · ), 1 ≤ i ≤ d, are of the form

mi(x, u) =
∫

mi(x, y)u(dy), 1 ≤ i ≤ d,

for some mi : Rd × U0 → R that are continuous and Lipschitz in the first argument
uniformly w.r.t. the second. We may write u(t) = u(t, dy) to underscore the fact that
it is a measure-valued process. Likewise for stationary Markov controls, write v( · ) =
v( ·, dy). Then the original notion of U0-valued control u0( · ) (say) corresponds to
u(t, dy) = δu0(t)(dy), the Dirac measure at u0(t), for all t . We call such controls as
precise controls. Precise stationary Markov controls may be defined accordingly.

The objective of ergodic control is to minimize

lim sup
T →∞

1

T

∫ T

0
E[k(X(t), u(t))] dt (2)
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(the average version), or to a.s. minimize

lim sup
T →∞

1

T

∫ T

0
k(X(t), u(t)) dt (3)

(the ‘almost sure’ version). Here k : Rd × U → R is continuous. In view of our
relaxed control framework, we take it to be of the form k(x, u) = ∫

k(x, y)u(dy) for

a continuous k : Rd × U0 → R. This cost criterion is popular in applications where
transients are fast, hence negligible, and one is choosing essentially from among
the attainable ‘steady states’. As mentioned above, we consider the non-degenerate
case first. Most of the results presented in the remainder of this section have been
established for bounded coefficients in the original sources, but the extension to the
Lipschitz coefficients (implying linear growth) is not difficult and appears in [2]. One
usually assumes (and we do) that k is bounded from below.

2.2. Existence results. Let v( · ) be a stationary Markov control such that the cor-
responding X( · ) is positive recurrent and therefore has a unique stationary distri-
bution ηv ∈ P (Rd). Define the corresponding ergodic occupation measure as
μv(dx, dy) = ηv(dx)v(x, dy). Costs (2), (3) will then equal (‘a.s.’ in the latter
case)

∫
kdμv . A key result is:

Theorem 2.1 ([18]). The set G = {μv : v( · ) stationary Markov} is closed convex
in total variation norm topology, with its extreme points corresponding to precise
stationary Markov controls.

We can say much more: define the empirical measures {νt } by:
∫

f dνt = 1

t

∫ t

0

∫
f (X(s), y)u(s, dy) ds, f ∈ Cb(R

d × U0), t > 0.

Let R = Rd ∪ {∞} = the one point compactification of Rd and view νt as a random
variable in P (R × U0) that assigns zero mass to {∞} × U0.

Theorem 2.2 ([16]). As t → ∞, almost surely

νt → {ν : ν(A) = aν′(A ∩ ({∞} × U0)) + (1 − a)ν′′(A ∩ (Rd × U0)) for all A

Borel in R × U0, with a ∈ [0, 1], ν′ ∈ P ({∞} × U0), ν
′′ ∈ G}.

There are two important special cases for which Theorem 2.1 allows us to re-
duce the control problem to the infinite dimensional linear programming problem of
minimizing

∫
kdμ over G and thereby deduce the existence of an optimal precise

stationary Markov control for the ‘a.s.’ version of the ergodic control problem [16]:

1. under a suitable ‘stability condition’(such as a convenient ‘stochastic Liapunov
condition’) that ensures compactness of G and a.s. tightness of {νt }, or,
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2. under a condition that penalizes escape of probability mass to infinity, such as
the ‘near-monotonicity condition’:

lim inf||x||→∞ min
u

k(x, u) > β,

where β = the optimal cost.

The latter condition is often satisfied in practice. The ‘average’ version of the ergodic
cost can be handled similarly, using the average empirical measures {νt } defined via

∫
f dνt = 1

t

∫ t

0
E

[ ∫
f (X(s), y)u(s, dy)

]
ds, f ∈ Cb(R

d × U0), t > 0,

in place of {νt }.

2.3. Dynamic programming. The standard approach to dynamic programming for
ergodic control, inherited from earlier developments in the discrete time and state
problems, is to treat it as a limiting case of the infinite horizon discounted cost problem
as the discount vanishes. Hence we begin with the infinite horizon discounted cost

E

[ ∫ ∞

0
e−αtk(X(t), u(t)) dt

]
,

where α > 0 is the discount factor. Define

Lf (x, u) = 〈∇f (x), m(x, u)〉 + 1

2
tr
(
σ(x)σT (x)∇2f (x)

)

for f ∈ C2(Rd). We may write Luf (x) for Lf (u, x), treating u as a parameter. The
Hamilton–Jacobi–Bellman (HJB) equation for the ‘value function’

V α(x) = inf E

[ ∫ ∞

0
e−αtk(X(t), u(t)) dt |X(0) = x

]

(where the infimum is over all admissible controls) can be arrived at by standard
dynamic programming heuristic and is

min
u

(k(x, u) − αV α(x) + LV α(x, u)) = 0

on the whole space. For k bounded from below, V α is its least solution in C2(Rd).
Define V α = V α − V α(0). Then V α satisfies

min
u

(k(x, u) − αV α(x) − αV α(0) + LV α(x, u)) = 0. (4)

Under suitable technical conditions (such as near-monotonicity or stability conditions
mentioned above) one can show that as α ↓ 0, V α( · ) and αV α(0) converge along
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a subsequence to some V, β in an appropriate Sobolev space and R, respectively.
Letting α ↓ 0 along this subsequence in (4), these are seen to satisfy

min
u

(k(x, u) − β + LV (x, u)) = 0.

This is the HJB equation of ergodic control. One can show uniqueness of β as being the
optimal ergodic cost and of V up to an additive scalar in an appropriate function class
depending on the set of assumptions one is working with. A verification theorem holds,
i.e., the optimal stationary Markov control v( · ) is characterized by the condition

v(x) ∈ Argmin (k(x, ·) + 〈∇V (x), m(x, ·)〉) , a.e.

See [6], [17]. Note that the minimum will be attained in particular at a precise
stationary Markov control, establishing the existence of an optimal precise stationary
Markov control.

One also has the following stochastic representations for the ergodic value func-
tion V (modulo an additive constant):

V (x) = lim
r↓0

(
inf E

[ ∫ τr

0
(k(X(s), u(s)) − β) ds|X(0) = x

])
,

where τr = min{t > 0 : ||X(t)|| = r} for r > 0 [17] and the infimum is over all
admissible controls. Alternatively,

V (x) = inf

(
inf
τ

E

[ ∫ τ

0
(k(X(s), u(s)) − β) ds|X(0) = x

])
,

where the inner infimum is over all bounded stopping times w.r.t. the natural filtration
{Ft } of X( · ), and the outer infimum is over all {Ft }-adapted controls [21].

3. Controlled martingale problems

3.1. Preliminaries. Such explicit results are not as forthcoming in the more general
scenario we discuss next. We shall denote by E the Polish space that will serve as
the state space of the controlled Markov process X( · ), and by U0 the compact metric
‘control’ space. U will denote the space of measurable maps [0, ∞) → U = P (U0)

with the coarsest topology that renders continuous each of the maps

μ( · ) = μ( ·, du) ∈ U �→
∫ T

0
g(t)

∫
U0

h(u)μ(t, du) dt,

for all T > 0, g ∈ L2[0, T ], h ∈ Cb(U0). This is compact metrizable (see, e.g., [9]).
The control process u( · ) can then be viewed as a U-valued random variable.

For {fk}, f ∈ B(E)
def= the space of bounded measurable maps E → R, say that

fk
bp−−→ f (where ‘bp’ stands for ‘bounded pointwise’) if supx,k |fk(x)| < ∞ and
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fk(x) → f (x) for all x. Q ⊂ B(E) is bp-closed if fk ∈ Q for all k and fk
bp−−→ f

together imply f ∈ Q. For Q ⊂ B(E), define bp-closure(Q) = the smallest
bp-closed subset of B(E) containing Q.

Let A be an operator with domain D(A) ⊂ Cb(E) and range R(A) ⊂ Cb(E×U0).
Let ν ∈ P (E).

Definition 3.1. An E × U -valued process (X( · ), π( · ) = π( ·, du)) defined on a
probability space (
, F , P ) is said to be a solution to the relaxed controlled martin-
gale problem for (A, ν) with respect to a filtration {Ft , t ≥ 0} if:

• (X( · ), π( · )) is {Ft }-progressive;

• L(X(0)) = ν;

• for f ∈ D(A),

f (X(t)) −
∫ t

0

∫
U0

Af (X(s), u)π(s, du) ds, t ≥ 0, (5)

is an {Ft }-martingale.

We omit explicit mention of {Ft } or ν when they are apparent from the context.
The operator A is assumed to satisfy the following conditions:

1. (C1) There exists a countable subset {gk} ⊂ D(A) such that

{(g, Ag) : g ∈ D(A)} ⊂ bp-closure({(gk, Agk) : k ≥ 1}).

2. (C2) D(A) is an algebra that separates points in E and contains constant func-
tions. Also, A1 = 0, where 1 is the constant function identically equal to 1.

3. (C3) For each u ∈ U0, let Auf ( · ) = Af ( ·, u). Then there exists an r.c.l.l.
solution to the martingale problem for (Au, δx) for all u ∈ U0, x ∈ E.

For example, the following can be shown to fit this framework:

1. X( · ) as in (1) with or without the non-degeneracy condition.

2. An important instance of the above is the ‘separated control problem’for control
of diffusions with partial observations, which we describe in some detail next.
Append to (1) the ‘observation equation’

Y (t) =
∫ t

0
h(X(s)) ds + W ′(t),

where h : Rd → Rs (s ≥ 1) is a Lipschitz observation map and W ′( · )
is an s-dimensional standard Brownian motion independent of (X0, W( · )),
representing the (integrated) observation noise. The control u( · ) is ideally
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required to be adapted to the natural filtration of Y ( · ), but a standard relaxation
allows for somewhat more general ‘wide sense admissible’ controls. These
require merely that under a locally (in time) absolutely continuous change
of measure that retains (1) but renders Y ( · ) itself an s-dimensional standard
Brownian motion independent of (X0, W( · )), the future increments Y (t +·)−
Y (t) should be independent of {X0, W( · ), u(s), Y (s), s ≤ t} for all t > 0. The
correct state variable for this problem (to be precise, one choice thereof) turns
out to be the P (Rd)-valued process {μt } of regular conditional laws of X(t)

given {Y (s), u(s), s ≤ t} for t ≥ 0. This evolves according to the equations of
nonlinear filtering:

μt(f ) = μ0(f ) +
∫ t

0
μs(Lu(s)f ) ds +

∫ t

0
〈μs(f h) − μs(f )μs(h), dŶ (s)〉

(6)
for f ∈ C2

b(Rd), where we follow the notation ν(f ) = ∫
f dν. The products

in the integrand of the stochastic integral in (6) are componentwise, and the
process Ŷ (t) = Y (t)−∫ t

0 μs(h)ds, t ≥ 0, is the so called ‘innovations process’
which is an s-dimensional standard Brownian motion that generates the same
natural filtration as Y ( · ) [1]. The well-posedness of (6) can be established
under additional regularity conditions on h [24]. In terms of {μt }, the ergodic
cost can be rewritten as

lim sup
t→∞

1

t

∫ t

0
E[μs(k( ·, u(s)))] ds.

The P (Rd)-valued controlled Markov process {μt } with this cost functional
can be shown to fit the above framework. This is called the ‘separated control
problem’ because it separates the issues of estimation and control.

3. Certain Hilbert-space valued controlled stochastic evolution equations can also
be shown to fit the above framework [7].

3.2. The control problem. Let k : E × U0 → [0, ∞] be a continuous running cost
function. The ergodic control problem is to minimize the ergodic cost

lim sup
t→∞

1

t

∫ t

0
E

[∫
U0

k(X(s), u)π(s, du))

]
ds. (7)

We assume that the set of laws of (X( · ), π( · )) for which this is finite is nonempty.
For a stationary (X( · ), π( · )), define the associated ergodic occupation measure

ϕ ∈ P (E × U0) by:∫
f (x, u)ϕ(dxdu) = E

[ ∫
U0

f (X(t), u)π(t, du)

]
.

Note that (7) then becomes
∫

kdϕ. Let G denote the set of all ergodic occupation
measures. From [7], we then have (see [27], [33], [34] for related results):
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Theorem 3.2. G is closed convex and is characterized as

G =
{
μ ∈ P (E × U0) :

∫
Af dμ = 0 for all f ∈ D(A)

}
.

In particular, for each μ ∈ G, there exists a stationary pair (X( · ), π( · )) whose
marginal at each time is μ. Furthermore, π( · ) may be taken to be stationary Markov.

This can be made a starting point for existence results in specific cases. For exam-
ple, for degenerate diffusions and the separated control problem for partially observed
diffusions, somewhat stronger variants of the ‘stability’ and ‘near-monotonicity’ con-
ditions described earlier suffice for the existence of an optimal stationary pair
(X( · ), π( · )). By considering the ergodic decomposition thereof, ‘stationary’ here
may be improved to ‘ergodic’ [7]. Also, in view of the above theorem, the control
therein may be taken to be stationary Markov.

This, however, does not imply that the process X( · ) itself is time-homogeneous
Markov, or even Markov. To establish the existence of an optimal Markov solution,
we assume the following:

For a fixed initial law ν of X0, the attainable laws of (X( · ), π( · )) form a tight
set

M(ν) ⊂ P (D([0, ∞); E) × U).

Simple sufficient conditions for this can be given in specific cases mentioned
above. An immediate consequence of this is that M(ν) is in fact a compact convex
set. Consider the equivalence relation on M(ν) that equates two laws when the
corresponding one dimensional marginals agree for a.e. t . The set of equivalence
classes, called the ‘marginal classes’, then forms a convex compact set in the quotient
topology.

Theorem 3.3. Every representative of an extremal marginal class corresponds to a
Markov process.

This is proved for degenerate diffusions in [10] and for the separated control prob-
lem in [20], but the same arguments carry over to the general case. This can be
combined with the above to deduce the existence of an optimal pair (X( · ), π( · ))
such that π( · ) is stationary Markov and X( · ) Markov, though not necessarily time-
homogeneous Markov [7]. Also, (X( · ), π( · )) need not be stationary. Our experience
with the non-degenerate case, however, suggests the existence of a stationary ergodic
time-homogeneous Markov solution that is optimal. Under additional technical con-
ditions, such a result has been proved in [8] by stretching the ‘vanishing discount’
argument, but there is scope for improvement.

As for dynamic programming, scattered results are available in specific cases. The
degenerate problem has been approached in the viscosity solution framework [3],
[4], [5]. For the separated control problem under partial observations, a martingale
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dynamic programming principle has been derived [12], [13]. Dualizing the linear
programme above yields the following dual linear programme that can be interpreted
as ‘dynamic programming inequalities’ [7]:

Maximize z ∈ R subject to Lf (x, u) + k(x, u) ≥ z, for all x ∈ E, u ∈ U0,
f ∈ D(L).

4. Some related problems and open issues

1. ‘Ergodic control with constraints’ seeks to minimize one ergodic cost functional
while imposing bounds on one or more additional ergodic cost functionals. In the
linear programming formulation alluded to above, this amounts to a few additional
constraints. Existence of optimal precise stationary Markov controls has been proved
in the non-degenerate case under suitable stability or near-monotonicity hypotheses
[11], [18]. A Lagrange multiplier formulation can be used to aggregate the costs into
a single cost.

2. We did not include control in the diffusion matrix σ( · ). The reason for this
is that, for stationary Markov controls u( · ) = v(X( · )), one is in general obliged
to consider at best measurable v( · ). For a merely measurable diffusion matrix,
even in the non-degenerate case only the existence of a weak solution is available,
the uniqueness may not hold [26] (except in one and two dimensions – see [35],
pp. 192–194). It may, however, be possible to work with ‘the set of all weak solutions’
in place of ‘the’ solution, but this is not very appealing unless one has a good selection
criterion that prescribes a unique choice from among the many.

3. Singularly perturbed ergodic control concerns ergodic control of diffusions
wherein some components move on a much faster time scale, characterized by a
perturbation parameter ε > 0. One can show that as ε ↓ 0, the slower components
satisfy an ‘averaged’dynamics wherein the coefficients in their dynamics are averaged
over the stationary distribution of the fast components when the latter is derived by
‘freezing’ the slower components to constant values. The ergodic control problem
for this limiting case is then a valid approximation for the original problem for small
ε > 0. See [15] for a precise statement and proofs.

4. We have not considered several related problems with a similar flavor, such as
ergodic control of reflected [14] or switching diffusions [23], [30], ergodic impulse
control [32], singular ergodic control [31], and stochastic differential games with
ergodic payoffs [19]. The latter in particular are also of interest in risk-sensitive
control problems on infinite time horizon, which effectively get converted to two
person zero sum stochastic differential games with ergodic payoffs after the celebrated
‘log-transform’ of the value function [22].

5. We have also not addressed the computational issues here. Two major strands
therein are Markov chain approximations [28] and approximations of the infinite
dimensional linear programmes [25].
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Convex optimization of graph Laplacian eigenvalues

Stephen Boyd ∗

Abstract. We consider the problem of choosing the edge weights of an undirected graph so as
to maximize or minimize some function of the eigenvalues of the associated Laplacian matrix,
subject to some constraints on the weights, such as nonnegativity, or a given total value. In
many interesting cases this problem is convex, i.e., it involves minimizing a convex function
(or maximizing a concave function) over a convex set. This allows us to give simple necessary
and sufficient optimality conditions, derive interesting dual problems, find analytical solutions
in some cases, and efficiently compute numerical solutions in all cases.

In this overview we briefly describe some more specific cases of this general problem, which
have been addressed in a series of recent papers.

• Fastest mixing Markov chain. Find edge transition probabilities that give the fastest
mixing (symmetric, discrete-time) Markov chain on the graph.

• Fastest mixing Markov process. Find the edge transition rates that give the fastest mixing
(symmetric, continuous-time) Markov process on the graph.

• Absolute algebraic connectivity. Find edge weights that maximize the algebraic connec-
tivity of the graph (i.e., the smallest positive eigenvalue of its Laplacian matrix). The
optimal value is called the absolute algebraic connectivity by Fiedler.

• Minimum total effective resistance. Find edge weights that minimize the total effective
resistance of the graph. This is same as minimizing the average commute time from any
node to any other, in the associated Markov chain.

• Fastest linear averaging. Find weights in a distributed averaging network that yield
fastest convergence.

• Least steady-state mean-square deviation. Find weights in a distributed averaging net-
work, driven by random noise, that minimizes the steady-state mean-square deviation of
the node values.
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1. Introduction

Let G = (V ,E) be an undirected graph with n = |V | nodes and m = |E| edges,
with weights w1, . . . , wm ∈ R on the edges. Suppose edge l connects vertices (or
nodes) i and j . We define al ∈ R

n as (al)i = 1, (al)j = −1, with other entries 0.
The weighted Laplacian (matrix) is the n× n matrix defined as

L =
m∑
l=1

wlala
T
l = A diag(w)AT ,

where diag(w) ∈ R
m×m is the diagonal matrix formed from w = (w1, . . . , wm) ∈

R
m, and A ∈ R

n×m is the incidence matrix of the graph, A = [a1 · · · am].
We assume that the weights are such that L is positive semidefinite, which we

write as L � 0. This is always the case when the weights are nonnegative. Since
L1 = 0, where 1 is the vector with all components one, L has smallest eigenvalue 0,
corresponding to the eigenvector 1. We denote the eigenvalues of the Laplacian
matrix L as

0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

Let φ be a symmetric closed convex function defined on a convex subset of R
n−1.

Then
ψ(w) = φ(λ2, . . . , λn) (1)

is a convex function ofw [2, §5.2]. Thus, a symmetric convex function of the positive
Laplacian eigenvalues yields a convex function of the edge weights. As a simple
example, consider φ(u1, . . . , un−1) = ∑n−1

i=1 ui , i.e., the sum. In this case we have

ψ(w) =
n∑
i=2

λi =
n∑
i=1

λi = TrL = 21T w,

twice the sum of the edge weights, which is linear and therefore also convex. As
another example, the function φ(u1, . . . , un−1) = maxn−1

i=1 ui (which is convex and
symmetric) yields the functionψ(w) = λn, the largest eigenvalue (or spectral radius)
of the Laplacian matrix (and a convex function of the edge weights).

We consider optimization problems with the general form

minimize ψ(w)

subject to w ∈ W ,
(2)

where W is a closed convex set, and the optimization variable here is w ∈ R
m. The

problem (2) is to choose edge weights on a graph, subject to some constraints, in
order to minimize a convex function of the positive eigenvalues of the associated
Laplacian matrix. We can also handle the case of maximizing a concave function φ
of the positive Laplacian eigenvalues, by minimizing −ψ over w ∈ W .
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The problem (2) is a convex optimization problem. Roughly speaking, this means
that the analysis of the problem is fairly straightforward, and that the problem is easily
solved numerically; see, e.g., [6]. In the cases we will consider, the problem (2) can
be formulated even more specifically as a semidefinite program (SDP), which has the
form

minimize cT x

subject to
∑n
i=1 xiAi � B.

(3)

Here x ∈ R
n is the variable, and the problem data are c ∈ R

n and the symmetric ma-
tricesA1, . . . , An, B ∈ R

k×k . The inequality symbol � between symmetric matrices
refers to inequality with respect to the cone of positive semidefinite matrices. The
constraint

∑n
i=1 xiAi � B is called a linear matrix inequality (LMI). The SDP (3)

can be thought of as a generalization of a linear program (LP),

minimize cT x

subject to
∑n
i=1 xiai ≤ b,

where here, a1, . . . , an, b are vectors, and the inequality symbol between vectors
means componentwise. Many results for LPs have analogs for SDPs; moreover, in
the last 15 years or so, effective algorithms for numerically solving SDPs have been
developed, and are now widely used in many application areas.

2. Fastest mixing Markov chain

In this section we briefly describe the problem of finding the fastest mixing symmetric
Markov chain on a given graph. Many more details (and additional references) can
be found in [4, 5].

We consider a symmetric Markov chain on the graph G, with transition matrix
P ∈ R

n×n, where Pij = Pji is the probability of a transition from vertex i to vertex j .
Since P is symmetric, the uniform distribution πunif = (1/n)1T is an equilibrium
distribution. The rate of convergence of the distribution π(t) to uniform is governed
by μ(P ), the second largest eigenvalue magnitude (SLEM) of P , with smaller μ(P )
meaning faster asymptotic convergence. To find the fastest mixing symmetric Markov
chain on the graph, we must choose the transition matrixP to minimizeμ(P ), subject
to the following conditions:

P = PT , P 1 = 1, Pij ≥ 0, i, j = 1, . . . , n, Pij = 0 for (i, j) �∈ E.
The first three conditions state that P is a symmetric stochastic matrix; the last states
that transitions can only occur over the graph edges.

Identifying the graph edge weights with edge transition probabilities, we find
that P can be expressed as P = I − L. The conditions above are equivalent to the
conditions

w ≥ 0, diag(L) ≤ 1
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imposed on the edge weight vector w. (Here diag(L) is the vector consisting of
the diagonal entries of L, and both inequalities above are vector inequalities, i.e.,
componentwise.)

The eigenvalues of P are 1 − λ1, . . . , 1 − λn. Since 1 − λ1 = 1, and |1 − λi | ≤ 1
(since P is stochastic), its SLEM is given by

μ(P ) = max{|1 − λ2|, . . . , |1 − λn|} = max{1 − λ2, λn − 1}. (4)

This has the general form (1), with φ(u1, . . . , un−1) = maxn−1
i=1 |1−ui |. In particular,

the SLEM μ(P ) is a convex function of the edge transition probabilities. Thus, the
fastest mixing symmetric Markov chain problem can be expressed as our general
problem (2), with W = {w | w ≥ 0, diag(L) ≤ 1}, a polyhedron.

The semidefinite programming formulation of the problem is

minimize γ

subject to −γ I � I − L− (1/n)11T � γ I, w ≥ 0, diag(L) ≤ 1,

with variables w ∈ R
m and γ ∈ R.

Since the fastest mixing symmetric Markov chain problem is convex, indeed,
equivalent to an SDP, it can be solved effectively. Generic methods can be used
for problems with only a few thousand edges; far larger problems, with millions of
edges, can be solved using subgradient optimization techniques, exploiting Lanczos
methods to efficiently compute a few extreme eigenvalues and eigenvectors of I −
L− (1/n)11T ; see [5].

The optimal transition probabilities can be quite interesting; for example, a graph
can have many edges with optimal transition probability zero. This means (roughly)
that those edges are not needed to achieve fastest mixing on the given graph. We also
note that the optimal transition probabilities can yield a mixing rate that is unboundedly
better than some simple standard schemes for assigning transition probabilities for fast
mixing, such as the maximum-degree method, or the Metropolis–Hastings method [5].

Standard methods can be used to construct various dual problems for the fastest
mixing symmetric Markov chain problem. One such dual is

maximize 1T z
subject to Y1 = 0, Y = YT , ‖Y‖∗ ≤ 1

(zi + zj )/2 ≤ Yij , (i, j) ∈ E,
(5)

with variables z ∈ R
n and Y ∈ R

n×n. Here ‖Y‖∗ = ∑n
i=1 |λi(Y )|, the sum of the

singular values of Y , which is the dual norm of the spectral norm. This dual problem
is convex, since the objective, which is maximized, is linear, hence concave, and the
constraints are all convex. We have the following:

• Weak duality. If Y , z are feasible for the dual problem (5), then we have
1T z ≤ μ�, where μ� is the optimal value of the fastest mixing symmetric
Markov chain problem.



Convex optimization of graph Laplacian eigenvalues 1315

• Strong duality. There exist Y �, z� that are optimal for the dual problem, and
satisfy 1T z� = μ�. This means that the optimal values of the primal and dual
problems are the same, and that the dual problem yields a sharp lower bound
on the optimal SLEM.

Both of these conclusions follow from general results for convex optimization
problems (see, e.g., [10, 1, 6]). We can conclude strong duality using (a refined form
of) Slater’s condition (see, e.g., [1, §3.3] and [6, §5.2]), since the constraints are all
linear equalities and inequalities.

3. Fastest mixing Markov process

Here we briefly describe the problem of finding the fastest mixing continuous-time
symmetric Markov process on a given graph [11].

Consider a continuous-time Markov process on the graph G, with transition rate
(or intensity) wl across edge l. The probability density π(t) ∈ R

1×n at time t ≥ 0
is given by π(t) = π(0)e−tL. It follows that the asymptotic rate of convergence to
the uniform distribution is governed by λ2, the smallest positive eigenvalue of the
Laplacian matrix. The deviation from uniform distribution decays, in the worst case,
as e−λ2t . We can express λ2 as

λ2 = min{λ2, . . . , λn},
which has the standard form (1), with φ(u1, . . . , un−1) = minn−1

i=1 ui . Since the
minimum function is concave, we see that λ2 is a concave function of the edge
weights w. It is evidently homogeneous in w, so to get a sensible problem we must
normalize the weights in some way, for example, as 1T w = 1.

To find the transition rates that give fastest convergence (among weights that sum
to one), we pose the problem

maximize λ2

subject to w ≥ 0, 1T w = 1,

with variable w ∈ R
m. This is a convex optimization problem, which can be formu-

lated as the SDP

maximize γ

subject to γ I � L+ β11T , w ≥ 0, 1T w = 1,

with variables γ, β ∈ R, w ∈ R
m.

The same problem, allocating a fixed total edge weight across the graph edges
so as to maximize the smallest positive Laplacian eigenvalue, arises in other areas.
For example, λ2 arises in graph theory, and is called the algebraic connectivity of the
graph. Fiedler refers to the maximum value of λ2 that can be obtained by allocating
a fixed total weight to the edges of a graph, as its absolute algebraic connectivity [7].
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The dual of the fastest mixing Markov process problem can be given a very inter-
esting interpretation. It is equivalent to the following problem. We are given some
distances d1, . . . , dm on the graph edges. The goal is find a configuration of points
x1, . . . , xn ∈ R

n that satisfy ‖xi − xj‖2 ≤ dl , whenever edge l connects vertices i
and j , and in addition maximizes the total variance, given by

∑
i �=j ‖xi − xj‖2. This

problem was recently formulated in the machine learning literature as a method for
identifying low dimensional structure in data; see, e.g., [12].

4. Minimum total effective resistance

Here we describe the problem of choosing the edge weights to minimize the total
effective resistance of a graph, subject to some given total weight [8]. We consider
the graph as an electrical circuit or network, with the edge weight representing the
conductance (inverse of resistance) of the associated electrical branch. We define Rij
as the resistance in the network seen between nodes i and j . The total effective
resistance is defined as R = ∑

i<j Rij .
The total effective resistance comes up in several applications beyond circuit the-

ory. For example, it is proportional to the average commute time, over all pairs of
vertices, in the random walk on the graph defined by the weights wl [8]. (The prob-
ability of a transition from vertex i to vertex j is wl , the associated edge weight,
divided by the total weight of all edges adjacent to vertex i.)

It can be shown that

R = 1

n

n∑
i=2

1/λi,

i.e., it is proportional to the sum of the inverses of the positive Laplacian eigenvalues.
This follows our general form (1), with φ(u1, . . . , un−1) = ∑n−1

i=1 1/ui , with domain
R
n−1++ . (R++ is the set of positive reals.) In particular, the total effective resistance

is a convex function of the weight vector w. Minimizing total effective resistance,
subject to w ≥ 0 and 1T w = 1, is thus a convex optimization problem.

The problem can be formulated as the SDP

minimize nTr Y
subject to 1T w = 1, w ≥ 0,[

L+ (1/n)11T I

I Y

]
� 0,

with variables w ∈ R
m and the (slack) matrix Y = YT ∈ R

n×n (see [8]).
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5. Fast averaging

Here we describe the problem of choosing edge weights that give fastest averaging,
using a classical linear iteration [13]. The nodes start with value x(0) ∈ R

n, and at
each iteration we update the node values as x(t + 1) = (I − L)x(t). The goal is to
choose the edge weights so that xi(t) converges, as rapidly as possible, to the average
value, i.e., x(t) → (1/n)11T x(0).

This iteration can be given a very simple interpretation. At each step, we replace
each node value with a weighted average of its previous value and its neighbors’
previous values. The weights used to form the average are taken from the graph edge
weights, with the self-weight chosen so that the sum of the adjacent edge weights,
plus the self-weight, equals one. The weights used to carry out this local averaging
sum to one at each node, but can be negative.

When the weights are symmetric (which we assume here), the convergence rate of
this averaging process is determined by the SLEM of I −L, i.e., (4), exactly as in the
Markov chain problem. The difference here is that the weights can be negative; in the
Markov chain, of course, the weights (transition probabilities) must be nonnegative.
The optimal weights can be found by solving the unconstrained problem

minimize maxni=2 |1 − λi |,
which evidently is a convex optimization problem. It can be posed as the SDP

minimize γ

subject to −γ I � L− (1/n)11T � γ I,

with variables γ ∈ R,w ∈ R
m. Without loss of generality, we can assume thatL � 0.

The problem is the same as the fastest mixing symmetric Markov chain problem, but
without the nonnegativity requirement onw. It often happens that some of the optimal
weights are negative [13].

6. Minimum RMS consensus error

Here we describe a variation on the fastest linear averaging problem described above,
in which an additive random noise perturbs the node values [15]. The iteration is
x(t + 1) = (I − L)x(t) + v(t), where v(t) ∈ R

n are uncorrelated zero mean unit
variance random variables, i.e.,

E v(t) = 0, E v(t)v(t)T = I, E v(t)v(s)T = 0, t �= s.

This iteration arises in noisy averaging, distributed data fusion, and load balancing
applications; see the references in [15].
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We can measure the effectiveness of the averaging iteration at countering the
effects of the additive noises by the steady-state mean-square deviation, defined as

δss = lim
t→∞ E

(
1

n

∑
i<j

(xi(t)− xj (t))
2
)
.

The steady-state mean-square deviation can be expressed as

δss =
n∑
i=2

1

λi(2 − λi)
,

provided 0 < λi < 2 for i = 2, . . . , n, and is infinite otherwise. (The condition 0 <
λi < 2 for i = 2, . . . , n is the same as max{1−λ2, λn−1} < 1, which is the condition
that the linear iteration for averaging, without the additive noise, converges.) Once
again, this has the standard form (1), with φ(u1, . . . , un−1) = ∑n−1

i=1 1/(ui(2 − ui)),
with domain (0, 2)n−1. In particular, we see that δss is a convex function of the
edge weights. To find the weights that yield the smallest steady-state mean-square
deviation, we simply minimize the convex function δss over w ∈ R

m.

7. Methods

All the problems described above can be effectively solved numerically, by a variety
of standard methods for convex optimization, including interior-point methods for
modest sized problems (with a few thousand weights) and subgradient-based methods
for larger problems. We can exploit structure in the problems (such as sparsity of the
underlying graph) to increase the efficiency of these methods.

We can also exploit symmetry in solving the problems. Two edges are symmet-
ric if there exists an automorphism of the graph that maps one edge to the other.
Whenever two edges are symmetric, we can assume without loss of generality that
the corresponding edge weights are equal. (This follows from a basic result in convex
optimization: there is always a solution that is invariant under the group of permu-
tations that leave the objective function and constraint set fixed.) If the symmetry
group of the graph is large, this can considerably reduce the size of the optimization
problem that needs to be solved. As an extreme example, consider an edge-transitive
graph, i.e., one in which any two edges are symmetric. For such a graph, we can
assume that all edge weights are equal, i.e., there is only one common edge weight
to be determined. This reduces the problem to one with at most one scalar variable
(the common edge weight); if there is an equality constraint, such as 1T w = 1, we
conclude that an optimal solution is given by uniform edge weights,w = (1/m)1 [3].
This idea is used in [9] to reduce some specific weight optimization problems to ones
with a handful of variables, which can be solved analytically.
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Controllability of evolution equations of fluid dynamics

Oleg Yu. Emanouilov (Imanuvilov)

Abstract. In this paper we will discuss recent developments in controllability of evolution
equations of fluid mechanics. The control is assumed to be distributed either on a part of the
boundary or locally distributed in some subdomain. We will present some ideas of proof of main
theorems. Special attention will be paid to the technique based on Carleman estimates.
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1. Introduction

This paper is concerned with the problem of exact controllability of partial differential
equations with control concentrated either on the part of the boundary or locally
distributed inside of the boundary in some subdomain. The typical statement of
general controllability problem, which we are going to discuss in this paper, can be
formulated as follows: let a function y(t, x), which describes the state of a system,
satisfy a semilinear partial differential equation

∂ty + A(x,D)y + F(x, y,∇y) = χωu in (0, T )×�, (1.1)

B(x,D)y = 0 on (0, T )× ∂�, y(0, · ) = y0, (1.2)

where A(x,D) is a linear operator, F is a nonlinear term, B(x,D) is a boundary
operator, χω is the characteristic function of the domain ω ⊂ � where the control
function u(t, x) is supported.

The initial conditions, the function y0(x) and another function y1(x) called target
function, are given. Let us choose some time momentT . Then the exact controllability
problem may be formulated as follows: Find the control u and the state function y
such that

y(T , · ) = y1. (1.3)

The solvability properties of the controllability problem (1.1)–(1.3) are completely
different from the properties of the initial boundary value problem (1.1)–(1.2) with
fixed u. For initial value problems with a reasonable choice of boundary conditions
and for smooth initial conditions we usually expect the uniqueness of the solution.
Moreover, if a priori estimates are obtained, this solution typically may be extended
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globally in time. On the other hand, for most boundary/locally distributed controlla-
bility problems of equations of mathematical physics, solutions are not unique and a
priori estimates typically are absent. In case of control of linear equations these diffi-
culties do not produce a huge problem, since the controllability problem typically can
be reduced to an observability problem which can be formulated as follows. Suppose
two Banach spaces X and Y are given. For the solution of the adjoint linear equation

−∂tz+ A∗(x,D)z = 0 in (0, T )×�, (1.4)

B∗(x,D)z = 0 on (0, T )× ∂� (1.5)

one needs to obtain the a priori estimate

‖z‖X ≤ C‖χωz‖Y . (1.6)

The initial conditions at t = T for problem (1.4), (1.5) are not assumed to be
known. This creates the main difficulty in proving estimate (1.6). There are several
methods to deal with such observability problems:

1. The method based on the theorem on propagation of singularities (see Bardos–
Lebeau–Rauch [2]);

2. Multipliers method (see [31], [28], [27], [29], [39]);
3. Carleman estimates (see [21], [22], [25], [26], [37], [38]).
The first two methods are effective for the wave and Schrödinger equations. As

for the equations of parabolic type and the generalized Stokes system, the Carleman
type estimates with the singular weight functions appears to be more effective method
compared to methods 1 and 2.

2. Controllability of parabolic equations and the Burgers equation

In a bounded domain � ∈ R
N with ∂� ∈ C2 we consider the semilinear parabolic

equation
G(y) = ∂ty −�y + f (t, x, y) = χωu+ g (2.7)

with given initial condition and zero Dirichlet boundary conditions

y|(0,T )×∂� = 0, y(0, · ) = y0. (2.8)

Here ω is an arbitrary but fixed subdomain, χω is the characteristic function of the
domain ω and u(t, x) is the control locally distributed in ω. Suppose that the target
function y1(x) is given and some moment of time T is fixed. We are looking for
control u such that

y(T , · ) = y1. (2.9)

Since the solution y(t, x) of the heat equation with zero right-hand side is analytic
as a function of x for any positive t , we cannot solve in general problem (2.7)–(2.9)
for an arbitrary smooth target function y1.
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Let us assume that

f ∈ C1([0, T ] × �̄× R
1), f (t, x, 0) = 0 for all (t, x) ∈ (0, T )×�, (2.10)

and that the function f (t, x, y) satisfies the Lipschitz condition

|f (t, x, ζ1)− f (t, x, ζ2)| ≤ K|ζ1 − ζ2| for all (t, x) ∈ (0, T )×�, ζ1, ζ2 × R
1,

(2.11)
where the constant K is independent of t , x, ζ .

We have

Theorem 2.1 ([22]). Let y1 ≡ 0 and conditions (2.10), (2.11) hold true. Suppose that

there exists δ > 0 such that e
1

(T−t)1+δ g ∈ L2((0, T )×�). Then for any y0 ∈ 	
W 1

2(�),

there exists a solution (y, u) ∈ W
1,2
2 ((0, T ) × �) × L2((0, T ) × ω) to problem

(2.7)–(2.9).

Here W 1,2((0, T )×�) = {y(t, x) | ∂ty, ∂βx y ∈ L2((0, T )×�) for all |β| ≤ 2}.
Thanks to assumption (2.11) by standard methods of functional analysis the proof

of Theorem 2.1 may be reduced to the question of solvability of the controllability
problem for the linear parabolic equation

∂tv −�v + c(t, x)v = χωũ+ g̃ in (0, T )×�,

v|(0,T )×∂� = 0, v(0, · ) = v0, v(T , · ) = 0,
(2.12)

where c ∈ L∞((0, T ) × �). The solvability of problem (2.12) is equivalent to
obtaining the observability estimate for the adjoint parabolic equation:

−∂tz−�z+ c(t, x)z = q in [0, T ] ×�, (2.13)

z|(0,T )×∂� = 0. (2.14)

The observability estimate for (2.13)–(2.14) can be proved using the technique
of Carleman estimates. First we need to introduce some weight functions. Let ψ ∈
C2(�) be such that

ψ(x) > 0 for all x ∈ �, ψ |∂� = 0, |∇ψ(x)| > 0 for all x ∈ � \ ω0, (2.15)

where ω0 ⊂⊂ ω is some open set. Using the function ψ we construct three more
functions: ϕ(t, x) = eλψ(x)/(t (T − t)), α(t, x) = (eλψ − e

2λ||ψ ||C(�))/(t (T − t)),
and η(t, x) = (eλψ − e

2λ||ψ ||C(�))/(�(t)(T − t)) where � ∈ C∞[0, T ], �(t) > 0 for
any t ∈ [0, T ] and �(t) = t for t ∈ [3T

4 , T
]
.

The following holds:

Lemma 2.1 ([22]). There exists a number λ̂ > 0 such that for an arbitrary λ ≥ λ̂

there exists s0(λ) such that for each s ≥ s0(λ) solutions to problem (2.13)–(2.14)
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satisfy the following inequality:

∫
(0,T )×�

(
1

sϕ

(∣∣∣∣∂z∂t
∣∣∣∣
2

+ |�z|2
)

+ sϕ|∇z|2 + s3ϕ3z2
)
e2sαdx dt

≤ C

( ∫
(0,T )×�

|q|2e2sαdxdt +
∫

[0,T ]×ω
s3ϕ3z2e2sαdxdt

)
,

(2.16)

where the constant C is independent of s.

This estimate, combined with the standard energy estimate for equation (2.13),
implies that for any v0 ∈ 	

W 1
2(�) and e−s0ηg̃ ∈ L2((0, T )×�) there exists a solution

to problem (2.12): a pair (y, u) ∈ W 1,2((0, T ) × �) × L2((0, T ) × ω) such that

e−s0ηũ ∈ L2((0, T )×�), e−s0ηv/(T − t)
3
2 ∈ L2((0, T )×�).

A different approach, still based on Carleman estimates, was proposed by G. Le-
beau and L. Robbiano in [30] for linear parabolic equations with time independent
coefficients. In [8], [11], [35] solutions for the controllability problem of the linear
heat equation were constructed directly by solving a moment problem. In [36] the
solution to the controllability problem for the heat equation was obtained from a
solution of the corresponding problem for the wave equation. In [34] another method
was proposed, essentially based on the solvability of the Cauchy problem for the one
dimensional heat equation. Later this method was applied to the semilinear parabolic
equation in [33]. The approximate controllability for equation (2.7) was proved in [9].

Next we consider the problem of exact controllability of equation (2.7) with bound-
ary control. Let �0 be an arbitrary subdomain of ∂�. Suppose that the control u is
distributed over �0:

G(y) = g, y|(0,T )×�0 = u, y|(0,T )×∂�\�0 = 0, y(0, · ) = y0, y(T , · ) = y1.

(2.17)
We have

Theorem 2.2 ([22]). Let y1 ≡ 0 and conditions (2.10), (2.11) hold true. Suppose

that there exists δ > 0 such that e
1

(T−t)1+δ g ∈ L2((0, T ) × �). Then for any y0 ∈
	
W 1

2(�) there exists a solution (y, u) ∈ W
1,2
2 ((0, T ) × �) × L2(0, T ;H 1

2 (�0)) to
problem (2.17).

Theorem 2.2 will easily follow from Theorem 2.1 if we enlarge the domain � up
to �̃ in such a way that

ω ⊂ �̃, ω = �̃ \�, ∂ω ∪ ∂� ⊂ �0.

Then we consider problem (2.7)–(2.9) in �̃ with the control locally distributed in ω.
Since the existence of the solution y is guaranteed by Theorem 2.1 we consider the
restriction of y on � and put u = y|�0 .

Next we consider the situation when the target function is not zero. In order to
solve the controllability problem we need some conditions on the functions y1 and g.
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Condition 2.1. There exists a constant τ > 0 and a function ũ ∈ L2((0, T ) × ω)

such that the boundary value problem

G(ỹ) = χωũ+ g in [T − τ, T ] ×�, ỹ|[T−τ,T ]×∂� = 0, ỹ(T , · ) = y1

has a solution ỹ ∈ W 1,2((0, T )×�).

We have

Theorem 2.3 ([22]). Let y0 ∈ 	
W 1

2(�) and g ∈ L2((0, T )×�). Suppose that (2.10),
(2.11) hold true. Let the functions y1 and g satisfy Condition 2.1. Then there exists
a solution (y, u) ∈ W 1,2((0, T )×�)× L2((0, T )× ω) of problem (2.7)–(2.9).

Theorem 2.3 provides necessary and sufficient conditions for solvability of prob-
lem (2.7)–(2.9).

A similar result holds true for the situation when the control is locally distributed
over the boundary.

Condition 2.2. There exists a constant τ > 0 and a function ũ ∈ L2((0, T ) × ω)

such that the boundary value problem

G(ỹ) = g in [T − τ, T ] ×�,

ỹ|[T−τ,T ]×�0 = ũ, ỹ|[T−τ,T ]×∂�\�0 = 0, ỹ(T , · ) = y1

has a solution ỹ ∈ W 1,2((0, T )×�).

The following holds:

Theorem 2.4 ([22]). Let y0 ∈ 	
W 1

2(�) and g ∈ L2((0, T )×�). Suppose that (2.10),
(2.11) hold true. Let the functions y1 and g satisfy Condition 2.2. Then there exists

a solution (y, u) ∈ W 1,2((0, T )×�)× L2(0, T ;H 1
2 (∂�)) of problem (2.17).

In case when the nonlinear term of the parabolic equation is superlinear the situa-
tion is different. For example, there exists y0 ∈ C∞(�̄) and a time moment T̂ which
depends on � only, such that any solution for the initial value problem

∂ty −�y + y2 = 0 in �, y(0, · ) = y0, y|(0,T )×∂� = u

will blow up at some time τ(u) < T̂ . Hence we even cannot prevent a blowup by the
boundary control. The similar question for the nonlinearity f (t, x, y) = −y3 is open.
If the nonlinear term has the form f (t, x, y) = y3 for any y0 ∈ W 1

2 (�)∩L6(�) and
sufficiently regular u (which satisfies the compatibility condition) a solution to the
initial value problem

∂ty −�y + y3 = 0 in �, y(0, · ) = y0, y|(0,T )×∂� = u

exists and satisfies the a priori estimate

d

dt

∫
�

ρ7(x)y2(t, x)dx + 1

8

∫
�

ρ7(x)y4(t, x)dx ≤ C,
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where ρ ∈ C2(�̄) is an arbitrary function such that ρ(x) > 0 for each x ∈ �,
ρ|∂� = 0, |∇ρ|∂� �= 0 and the constant C depends on ρ only. This estimate
immediately implies that for some open set of target functions y1(x) in L2(�) there
is no solution to problem (2.17).

Let us consider the Burgers equation

∂ty − ∂2
xy + ∂xy

2 = χωu(t, x), (t, x) ∈ [0, T ] × [0, L], (2.18)

with zero Dirichlet boundary conditions and the initial condition

y(t, 0) = y(t, L) = 0, y(0, · ) = y0. (2.19)

Here ω ⊂ [0, L] is an arbitrary but fixed open set. We are looking for a control u
such that

y(T , · ) = y1 (2.20)

The following holds:

Theorem 2.5 ([16]). Let y1 ∈ 	
W 1

2(0, L) be a steady-state solution to the Burgers
equation and y0 ∈ 	

W 1
2(0, L). Then there exists a time moment T (y1) such that the

controllability problem (2.18)–(2.20) has a solution (y, u) ∈ W 1,2((0, T )×[0, L])×
L2((0, T )× [0, L]).

Suppose that ω satisfies the following condition:

there exists b > 0 such that ω ⊂ (b, L). (2.21)

We have

Lemma 2.2 ([16]). Let y(t, x) be a solution to problem (2.18), (2.19). Denote
y+(t, x) = max(y(t, x), 0). Then for arbitrary N > 5 the following estimate holds
true:

d

dt

∫ b

0
(b − x)Ny4+(t, x)dx < γ (N)bN−5. (2.22)

Here γ (N) > 0 is a constant depending on N only.

The immediate consequence of (2.22) is the existence of an open set of target
functions which is unreachable by means of the locally distributed control satisfying
(2.21) or by means of the boundary control concentrated at x = L.

If condition (2.21) fails, we of course do not have the a priori estimate (2.22). In
terms of the boundary control this situation corresponds to the case when the control
is located at both endpoints of the segment [0, L]. By Hopf’s transformation this
problem might be reduced to the controllability problem of the one-dimensional heat
equation with control located at both endpoints of the segment [0, L] but with one
additional constraint: control functions are nonnegative. Then from results of [1]
it follows that for some initial condition y0 the set of all reachable functions is not
dense in L2(0, L). Later we will see that the controllability properties of the Burgers
equation and the Navier–Stokes system are completely different.
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3. Local controllability of the Navier–Stokes system

In [32] J.-L. Lions conjectured that the Navier–Stokes system with boundary or lo-
cally distributed control is globally approximately controllable. This paper inspired
intensive research in the area. In this section we discuss the local controllability
results for the Navier–Stokes system and the Boussinesq system.

Let us consider the Navier–Stokes system defined on the bounded domain� ⊂ R
N

(N = 2, 3) with boundary ∂� ∈ C2

∂ty(t, x)−�y(t, x)+ (y,∇) y + ∇p = f + χωu in �, div y = 0, (3.23)

y|(0,T )×∂� = 0, y(0, · ) = y0, (3.24)

where y(t, x) = (y1(t, x), . . . , yN(t, x)) is the velocity of fluid,p is the pressure. The
density of external forces f (t, x) = (f1(t, x), . . . , fN(t, x)) and the initial velocity
y0 are given, u(t, x) is a control distributed in some arbitrary but fixed subdomain ω
of the domain �.

Let (ŷ(t, x), p̂(t, x)) be a solution of the Navier–Stokes equations with the right-
hand side f exactly the same as in (3.23):

∂t ŷ −�ŷ + (ŷ,∇)ŷ + ∇p̂ = f in (0, T )×�, div ŷ = 0, ŷ|(0,T )×∂� = 0
(3.25)

close enough to the initial condition y0 at the moment t = 0

‖y0 − ŷ(0, · )‖V ≤ ε, (the parameter ε is sufficiently small) (3.26)

where V = {y(x) = (y1, . . . , yN) ∈ (W 1
2 (�))

N : div y = 0 in �, y|∂� = 0}.
We are looking for a control u such that, for a given T > 0, the following equality

holds
y(T , · ) = ŷ(T , · ). (3.27)

In order to formulate our results, we introduce the following functional spaces:

H = {y(x) = (y1, . . . , yN) ∈ (L2(�))N : div y = 0, in �, (y, �n)|∂� = 0},
V 1,2((0, T )×�) = {y(t, x) ∈ (W 1,2

2 ((0, T )×�))N : div y = 0 in �, y|∂� = 0},
where �n = �n(x) = (n1(x), . . . , nN(x)) is the outward unit normal to ∂�.

Suppose that the function ŷ has the following regularity properties:

ŷ ∈ L∞((0, T )×�),

∂t ŷ ∈ L2(0, T ;Lσ (�)), σ > 6/5 for N = 3, σ > 1 for N = 2.
(3.28)

The following result in particular gives us a positive answer to the question of the
possibility of stabilization of the flow near an unstable steady state solution by means
of locally distributed control.
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Theorem 3.1 ([12]). Let y0 ∈ V, f ∈ L2(0, T ;H) and suppose that the pair (ŷ, p̂)
solves (3.25) and satisfies condition (3.28). Then for sufficiently small ε > 0 there
exists a solution (y, p, u) ∈ V 1,2((0, T ) × �) × L2(0, T ;W 1

2 (�)) × (L2((0, T ) ×
ω)))N to problem (3.23), (3.24), (3.26), (3.27).

This result first has been proved in [15] for the control distributed over the whole
boundary ∂�. In [21] the case of control distributed over an arbitrary small subdo-
main ω, but with some assumptions on the geometry of � was considered. Finally,
in [23], these assumptions on � were removed under the regularity condition on the
function ŷ which is stronger then (3.28).

Since the existence theorem 3.1 is local, in order to prove this existence result
one first proves the solvability of the controllability problem for the Navier–Stokes
equation linearized at trajectory ŷ:⎧⎪⎪⎨
⎪⎪⎩
∂t ỹ −�ỹ + (ŷ,∇)ỹ + (y,∇)ŷ + ∇p̃ = f + χωũ, div ỹ = 0 in (0, T )×�,

ỹ = 0 on (0, T )× ∂�,

ỹ(0, · ) = y0, ỹ(T , · ) = 0 in �.
(3.29)

After the solvability of (3.29) is established in appropriate functional spaces the
conclusion of the Theorem 3.1 follows from the standard implicit function theorem.

The typical way to solve (3.29) is to reduce it to the observability problem for the
operator adjoint to the operator of the linearization of the Navier–Stokes system at
trajectory ŷ. More precisely, let the function z ∈ L2(0, T ;H) satisfy the equations

−∂tz−�z−Dzŷ = ∇π + g in (0, T )×�, (3.30)

div z = 0, z|(0,T )×∂� = 0, (3.31)

where the function Dz = ∇z+ ∇zt .
Denote α(t, x) = e

λψ(x)+8‖ψ‖L∞(�)−e10λ‖ψ‖L∞(�)

(t (T−t))4 , α∗(t) = minx∈� α(t, x), α̂(t) =
maxx∈� α(t, x), ϕ̂(t, x) = e

8λ‖ψ‖L∞(�)

(t (T−t))4 , ϕ(t, x) = e
8λ‖ψ‖L∞(�)+ψ(x)
(t (T−t))4 . The function ψ is

introduced in (2.15). For the system (3.30)–(3.31), we have the following observabil-
ity estimate:

Theorem 3.2 ([12]). There exist three positive constants ŝ, λ̂, C depending on� and
ω such that for every z0 ∈ H , g ∈ L2((0, T ) × �) the corresponding solution to
(3.30), (3.31) verifies:∫

(0,T )×�

(
1

sϕ

(∣∣∣∣∂z∂t
∣∣∣∣
2

+
n∑

i,j=1

∣∣∣∣ ∂2z

∂xi∂xj

∣∣∣∣
2)

+ sλ2ϕ|∇z|2 + s3λ4ϕ3|z|2
)
e2sαdxdt

≤ C(1 + T 2)

(
s

15
2 λ20

∫
(0,T )×�

|g|2ϕ̂ 15
2 e4sα̂−2sα∗

dxdt (3.32)

+
∫
(0,T )×ω

s16λ40ϕ̂16|z|2e8sα̂−6sα∗
dxdt

)
for all s ≥ s0,
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for all λ ≥ λ̂(1 + ‖ŷ‖2
L∞((0,T )×�) + ‖∂t ŷ‖2

L2(0,T ;Lσ (�)) + e
λ̂T ‖ŷ‖2

L∞((0,T )×�)) and

s ≥ ŝ(T 4 + T 8).

The strategy of the proof of (3.32) is as follows. First we apply the Carleman
estimate (2.16) to equations (3.31). Next we need to eliminate the norm of the function
∇π on the right-hand side. In order to do that we observe that the pressure π for each
t ∈ [0, T ] satisfies the Laplace equation

−�π = div(Dzŷ)+ div g in �. (3.33)

Since the velocity field z satisfies the zero Dirichlet boundary conditions, there are
no explicit boundary conditions for the pressure π . Therefore to equation (3.33) we
apply the Carleman estimates for elliptic equations obtained in [24] with weights
which minimize the contribution of the boundary terms. Finally we eliminate the
norms of the functions π |∂� and χωπ using some a priori estimates for the initial
value problems for the Stokes system and the heat equation.

In many controllability problems in addition to be locally distributed in a sub-
domain, the control u is required to satisfy some additional constraints. Below we
discuss the situation when in problems (3.23), (3.24), (3.27) the control satisfies the
following constraint: one of the components of the vector function u(t, x) is identi-
cally equal zero on (0, T )×�. Suppose that ω satisfies the following condition:

there exists x0 ∈ ∂�, δ̃ > 0 such that ω ∩ ∂� ⊃ B(x0; δ̃) ∩ ∂�. (3.34)

(B(x0; δ̃) is the ball centered at x0 of radius δ̃.)
Let E = H for N = 2 and E = H ∩ L4(�) for N = 3. Assume that the initial

condition y0 is close to ŷ(0, · ) in the norm of the space E:

‖y0 − ŷ(0, · )‖E ≤ ε. (3.35)

We have

Theorem 3.3. Assume that ω satisfies (3.34). Let y0 ∈ E, f ≡ 0 and suppose that
the pair (ŷ, p̂) solves (3.25) and satisfies condition (3.28). Then for sufficiently small
ε > 0 there exists a solution (y, p, u) to problem (3.23), (3.24), (3.35), (3.27) with
control u ∈ (L2((0, T )× ω))N having one component identically zero.

In the case of locally distributed control with zero component uk for the corre-
sponding observability problem, associated with (3.30),(3.31) we do not have any
information on the k-th component of the function z in (0, T )× ω. This means that
the function zk should not appear in the right-hand side of the inequality (3.32). This
difficulty can be overcome if we recall that z is divergence free function and therefore
its k-th component satisfies the equation ∂xkzk = ∑N

j=1,j �=k ∂xj zj . From this ordinary
differential equation, thanks to zero Dirichlet boundary conditions and assumption
(3.34), in some subdomain of ω we can estimate zk by the remaining components of
the function z and then apply (3.32).
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Next we consider the similar controllability problem of the Boussinesq system.
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ty −�y + (y,∇)y + ∇p = χωu+ θ eN, div y = 0 in (0, T )×�,

∂tθ −�θ + (y,∇θ) = χωh in (0, T )×�,

y = 0, θ = 0 on (0, T )× ∂�,

y(0, · ) = y0, θ(0, · ) = θ0 in �.
(3.36)

In the domain (0, T ) × ω we control both the density of external forces u and the
density of external heat sources h.

Let (ŷ, p̂, θ̂ ) be a sufficiently regular solution to the Boussinesq system:

∂t ŷ −�ŷ + (ŷ,∇)ŷ + ∇p̂ = θ̂ eN , div ŷ = 0 in (0, T )×�, (3.37)

∂t θ̂ −�θ̂ + (ŷ,∇ θ̂ ) = 0 in (0, T )×�, (3.38)

ŷ = 0, θ̂ = 0 on (0, T )× ∂�, (3.39)

ŷ(0, · ) = ŷ0, θ̂ (0, · ) = θ̂0 in �. (3.40)

Assume that ŷ satisfies (3.28) and the temperature θ̂ has the following regularity

θ̂ ∈ L∞((0, T )×�),

∂t θ̂ ∈ L2(0, T ;Lσ (�)), σ > 1 if N = 2, σ > 6/5 if N = 3.
(3.41)

In addition to condition (3.34) we assume that

there exists k < N, such that nk(x
0) �= 0. (3.42)

Our goal is to prove that for some ε > 0 , whenever (y0, θ0) ∈ E × L2(�) and

‖(y0, θ0)− (ŷ0, θ̂0)‖E×L2(�) ≤ ε, (3.43)

we can find L2 controls u and h with uk ≡ uN ≡ 0 such that

y(T , · ) = ŷ(T , · ) and θ(T , · ) = θ̂ (T , · ) in �. (3.44)

We note that for dimensionN = 2 we are trying to control both the velocity field and
the temperature by choosing the density of external heat sources in the subdomain ω.
The following holds:

Theorem 3.4. Assume thatω satisfies (3.34) and (3.42). Let y0 ∈ E, θ0 ∈ L2(�) and
suppose that the pair (ŷ, θ̂, p̂) solves (3.37)–(3.40) and satisfies conditions (3.28),
(3.41). Then for sufficiently small ε > 0 there exists a solution (y, θ, p, u, h) to
problem (3.36), (3.43), (3.44) such that (u, h) ∈ (L2((0, T ) × �))N+1 and uk ≡
uN ≡ 0. In particular, if N = 2, we have local exact controllability with controls
u ≡ 0 and h ∈ L2((0, T )× ω).
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4. Global controllability of the Navier–Stokes and the Boussinesq
system

In this section we will discuss the global controllability of the Boussinesq and the
Navier–Stokes systems. We start with the controllability problem for the Boussinesq
system with periodic boundary conditions:

∂ty−�y+ (y,∇)y+∇p = f + θeN +χωu in K = �Nj=1[0, 2π ], div y = 0,
(4.45)

∂tθ −�θ + (y,∇θ) = g + χωh in K, (4.46)

y(t, . . . xi + 2π, . . . ) = y(t, x), θ(t, . . . xi + 2π, . . . ) = θ(t, x)

for all i ∈ {1, . . . , N}, (4.47)

y(0, · ) = y0, θ(0, · ) = θ0, y(T , · ) = ŷ(T , · ), θ(T , · ) = θ̂ (T , · ). (4.48)

Here θ̂ , ŷ is some solution to the Boussinesq system with the same right-hand side:

∂t ŷ −�ŷ + (ŷ,∇)ŷ + ∇p̂ = f + θ̂ eN in (0, T )×K, div ŷ = 0, (4.49)

∂t θ̂ −�θ̂ + (ŷ,∇ θ̂ ) = g in (0, T )×K, (4.50)

ŷ(t, . . . xi + 2π, . . . ) = ŷ(t, x), θ̂ (t, . . . xi + 2π, . . . ) = θ̂ (t, x)

for all i ∈ {1, . . . , N}. (4.51)

A very essential role in controllability problems for the Navier–Stokes system and the
Boussinesq system is played by the type of boundary conditions.

For the case of periodic boundary conditions the situation is understood much
better than for the case of Dirichlet boundary conditions. One reason for this striking
difference is that for the periodic case we can construct explicitly a set of nonzero
solutions of the Boussinesq system

∂t ỹ−�ỹ+(ỹ,∇)ỹ = ∇p̃+ θ̃ eN +χωũ in K, div ỹ = 0, ỹ(0, · ) = ỹ(T , · ) = 0,
(4.52)

ỹ(t, . . . xi + 2π, . . . ) = ỹ(t, x), θ̃ (t, . . . xi + 2π, . . . ) = θ̃ (t, x)

for all i ∈ {1, . . . , N}, (4.53)

∂t θ̃ −�θ̃ + (ỹ,∇ θ̃ ) = 0 in K, θ̃(0, · ) = θ̃ (T , · ) = 0 (4.54)

in the form

ỹ(t, x) = m(t, x), θ̃(t, x) ≡ 0,

m(t, . . . , xi + 2π, . . . ) = m(t, x) for all i ∈ {1, . . . , N}, (4.55)

wherem(t, x) = ∇γ (t, x) and�γ (t, · ) = 0 inK \ω for all t ∈ [0, T ] and γ (0, · ) =
γ (T , · ) = 0. (Obviously for the Dirichlet boundary conditions the function γ ≡ 0
is the only possible choice!) Note that for any Ñ the functions (Ñ ỹ, Ñ θ̃, Ñ p̃) also
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solve (4.52)–(4.54) with some ũ
Ñ

. If we are looking for a solution of the problem
(4.45), (4.46), (4.47), (4.48) in the form (y, θ) = (Y+Ñm̃, θ) then in new equations
for (Y, θ) the large parameter Ñ will appear. Therefore the next logical step in finding
(Y, θ) is to solve a controllability problem associated to the transport equation. In
order to do that we need to make a special choice of the vector fieldm. The following
holds:

Lemma 4.1 ([17]). There exists a vector fieldm(t, x) = (m1(t, x), . . . , mN(t, x)) ∈
C∞([0, T ] ×K) such that

divm = 0 in [0, T ]×K, m(t, x) = ∇γ (t, x) and �γ = 0 in [0, T ]× (K \ω),
for arbitrary k ∈ N

m(0, x) ≡ m(T , x) ≡ 0,
∂km(t, x)

∂tk
|t=0 = ∂km(t, x)

∂tk
|t=T = 0,

and the relation
{(t, x(t, x0), t ∈ (0, T )} ∩ [0, T ] × ω �= ∅

is valid for every x0 ∈ K , where x(t, x0) is solution to the Cauchy problem

d

dt
x(t, x0) = m(t, x(t, x0)), x(t, x0)|t=0 = x0.

Moreover, x(T , x0) = x0 for each x ∈ K . Furthermore there exist a finite cover
{Oj j = 1, . . . , J } ofK by open sets Oj and a number δ̂ > 0 such that for each j all
the curves x(t, x0), x0 ∈ Oj lie in ω for some time interval δ̂.

In case we choose the vector fieldm as in Lemma 4.1 the following controllability
problem may be solved for all regular initial data y0, θ0:

∂t r + (m,∇)r + (r,∇)m− ∇q1 = χωū, div r = 0,

∂t z+ (m,∇z) = χωh̄,

r(t, . . . , xi + 2π, . . . ) = r(t, x), z(t, . . . , xi + 2π, . . . ) = z(t, x), i ∈ {1, . . . , N},
r(0, · ) = y0, z(0, · ) = z0, r(T , · ) = ŷ(εT , · ), z(T , · ) = θ̂ (εT , · ).

Finally one can construct an approximation for the solution to problem (4.45)–(4.48)
in the form

y(t, x) = 1

ε
m

( t
ε
, x

)
+ r

( t
ε
, x

)
+ yε, θ(t, x) = z

( t
ε
, x

)
+ θε, (4.56)

u(t, x) = 1

ε
ū
( t
ε
, x

)
− χω�

1

ε
m

( t
ε
, x

)
, h = 1

ε
h̄
( t
ε
, x

)
. (4.57)

Here the terms yε, θε are small provided that ε > 0 is small. Of course, we do not
have the exact equality y(εT , · ) = ŷ(εT , · ) but the difference y(εT , · ) − ŷ(εT , · )
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can be made arbitrarily small.( This proves Lions global controllability conjecture for
the Boussinesq and the Navier–Stokes system with control distributed on the whole
boundary.) Then the local controllability result similar to Theorem 3.4 could be
applied in order to switch to the trajectory (ŷ, θ̂ ).

The idea to construct a solution to the controllability problem in the form (4.56),
(4.57) was proposed by J. M. Coron in [3], [4] for the two dimensional Navier–Stokes
system and Euler equation. In particular, Coron proved that if the control acts on
an arbitrary open subset of the boundary which meets any connected component of
this boundary, then the 2-D Euler equations are exactly controllable. Later the proof
was extended to 3-D Euler equation by Glass [18], [19]. In [6], Coron constructed
explicitly the feedback laws which globally asymptotically stabilize the fluid flow
described by the Euler equation. The global exact controllability of the Navier–Stokes
system on a manifold without boundary was studied in [7].

In order to formulate controllability results for the Boussinesq system rigorously
we introduce the functional spaces

V 0(K) = {y(x) ∈ (L2(K))N : div y = 0, y(t, . . . xi + 2π, . . . ) = y(t, x)

for all i ∈ {1, . . . , N}},
V 1(K) = {y ∈ V 0(K) ∩ (W 1

2 (K))
N },

V 1,2 = {y(t, x) ∈ (W 1,2
2 ((0, T )×K))N : div y = 0, y(t, . . . xi+2π, . . . ) = y(t, x)}.

We have the following result:

Theorem 4.1 ([17]). Let y0 ∈ V 1(K), θ0 ∈ W 1
2 (K), f ∈ L2(0, T ;V 0(K)), g ∈

L2((0, T ) × K) and suppose that for some β ∈ (0, 1) the function (ŷ, θ̂, p̂) ∈
C1(0, T ;V 0(K) ∩ (C2,β(K))N) × C1(0, T ;C2,β(K)) × L2(0, T ;W 1

2 (K)) is a
given solution of the Boussinesq system (4.49)–(4.51). Then there exists a solution
(y, θ, p, u, h) ∈ V 1,2×W 1,2((0, T )×K)×L2(0, T ;W 1

2 (K))×(L2((0, T )×ω))N+1

to problem (4.45), (4.46), (4.47), (4.48).

Now we consider the problem of global controllability for the 2-D Navier–Stokes
system with zero Dirichlet boundary conditions and control distributed over a part of
the boundary. We need to introduce a “large parameter” in this problem but the analog
of (4.55) for a general domain is hard to find. Therefore below we consider the Navier–
Stokes system in the special domain � = {(x1, x2) : x1 ∈ (0, 1), x2 ∈ (0, 1)}. Let
us consider the following controllability problem:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂ty −�y + (y,∇)y = ∇p + f, div y = 0 (t, x) ∈ (0, T )×�,

y(t, 0, x2) = 0 (t, x2) ∈ (0, T )× (0, 1),

y(0, · ) = y0, y(T , · ) = 0 x = (x1, x2) ∈ �.
(4.58)

The initial condition y0 satisfies

div y0 = 0, x ∈ �, and y0(0, x2) = 0, x2 ∈ (0, 1). (4.59)
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Observe that in system (4.58) we did not fix traces of y on ({1} × (0, 1)) ∪ ((0, 1)×
{0, 1}). They can be chosen arbitrarily and considered as a boundary control.

Next we construct an analog of the vector field m. Let the function U(t, x) have
the form U(t, x) = (0, z(t, x1)) where z = z(t, x1) solves the following problem
associated to a linear heat equation:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂tz− ∂2
x1x1

z = c(t) (t, x1) ∈ (0, T )× (0, 2),

z(t, 0) = 0, z(t, 1) = w(t) t ∈ (0, T ),
z(0, x1) = 0 x1 ∈ (0, 2).

(4.60)

Here c(t) is a constant for each t such that

c(0) �= 0, w(t) ∈ C∞[0, T ], w(0) = 0, w′(0) = c(0), w′′(0) = c′(0).

Using this function, we construct U(t, x) = (0, z(t, x1)) and q = x2c(t) for
t ∈ (0, T ), x ∈ K̃ = [0, 1] × [0, 2], which for an arbitrary Ñ ∈ R

1 solves⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂t (ÑU)−�ÑU + (ÑU,∇)(ÑU) = ∇(Ñq),
div(ÑU) = 0 (t, x) ∈ (0, T )× K̃,

ÑU(t, 0, x2) = 0 (t, x2) ∈ (0, T )× R
1,

ÑU(0, x) = 0 x ∈ K̃.

(4.61)

We have

Theorem 4.2 ([20]). Let f ∈ L2((0, T ) × �) and let y0 ∈ W 1
2 (�) satisfy (4.59).

Then there exists a sequence of functions fε such that

fε → f in Lp0(0, T ;V ′), p0 ∈ (1, 8/7),

and there exists at least one solution to the controllability problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tyε −�yε + (yε,∇)yε + ∇pε = fε, div yε = 0 (t, x) ∈ (0, T )×�,

yε(t, 0, x2) = 0 (t, x2) ∈ (0, T )× (0, 1),

yε(0, x) = y0, yε(T , x) = 0 x ∈ �.
(4.62)

The sequence of the functions yε can be constructed in the following way: First
let us choose a sufficiently small number δ = δ(ε) > 0 such that

‖f ‖Lp0 (T−3δ,T ;V ′) ≤ ε/10.

• On the interval between t = 0 and t = T − 3δ, we do not exert any control. So
in this interval our function yε is given by the solution to the Navier–Stokes system
with homogeneous Dirichlet boundary conditions.
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• Next, on the interval [T −3δ, T −2δ], we consider a function ỹ0,ε ∈ V ∩C∞
0 (�)

close to y(T − 3δ, x) in V . In particular,

‖ỹ0,ε − y(T − 3δ, · )‖V ≤ δ3.

On the interval [T − 3δ, T − 2δ] we set

yε(t, x) = (t − T + 3δ)

δ
ỹ0,ε(x)− (t − T + 2δ)

δ
y(T − 3δ, x),

(t, x) ∈ [T − 3δ, T − 2δ] ×�.

• As the next step, on the segment [T − 2δ, T − 2δ + 2/Ñ ], we look for the
solution uε in the form

yε(t, x) = Ñ2Ũ (t, x)+ y(t, x)− Ṽ (t, x), pε(t, x) = r̃(t, x),

where Ũ (t, x) = U(t − T + 2δ, x), y(t, x) = ỹ(t − T + 2δ, x), Ṽ (t, x) = θ(t −
T + 2δ)V (t − T + 2δ, x), r̃(t, x) = θ(t)r(t − T + 2δ, x).

The function ỹ solves the following controllability problem for the transport equa-
tion: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂t ỹ + Ñ2(U,∇)ỹ + Ñ2(ỹ,∇)U = 0 (t, x) ∈ (0, T )× K̃,

ỹ(t, 0, x2) = 0 (t, x2) ∈ (0, T )× R
1,

ỹ(0, x) = ỹ0,ε, ỹ(1/Ñ, x) = 0 x ∈ K̃.
(4.63)

The function Ṽ is a correction term, which ensure that the vector field yε is divergence
free:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tV −�V = ∇r, divV = div ỹ (t, x) ∈ (0, T )× K̃,

V (t, 0, x2) = V (t, 1, x2) = 0 (t, x2) ∈ (0, T )× R
1,

V (t, x1, x2) = V (t, x1, x2 + 2) (t, x1, x2) ∈ (0, T )× (0, 2)× R
1,

V (0, x) = 0 x ∈ K̃.

(4.64)

There exists a positive constant C > 0 independent of Ñ such that

‖V ‖
C([0,2/Ñ ];L2(K̃))

+ ‖Vx2‖C([0,2/Ñ ];L2(K̃))
≤ C

Ñ
1
8

. (4.65)

This estimate is the consequence of the global version of sharp regularity result for the
pressure obtained in [10]. Finally θ = θ(t) ∈ C2([0, 2/Ñ ]) is an arbitrary function
such that

θ(t) = 1, t ∈ [0, 1/Ñ], and θ(t) = 0 in a neighborhood of 2/Ñ.
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Let yε = 0 for (t, x) ∈ (T − 2δ, T − 2δ+ 2/Ñ)×�. We set fε = ∂tyε −�yε +
(yε,∇)yε for all (t, x) ∈ [T − 2δ, T − 2δ + 2/Ñ] ×�.

A short computation and (4.65) imply

‖f̃ε‖Lp0 (T−2δ,T−2δ+2/Ñ;V ′) ≤ CÑ7/8−1/p0 .

Thanks to our choice of p0, this constant tends to zero as Ñ → +∞.
• Finally, on the interval [T − 2δ+ 1/Ñ, T ], we take fε ≡ 0 and we try to find a

boundary control which drives the associated solution of (4.62) which starts at time
t = T − 2δ + 2/Ñ from the initial condition Ñ2U(2/Ñ, x) to zero at time t = T .

Observe that we have yε(T − 2δ + 2/Ñ, x) = Ñ2U(2/Ñ, x) since θ(2/Ñ) = 0.
By Theorem 2.1 for any z0 ∈ L2(0, 1), there exists a boundary control ρ = ρ(t) ∈

L2(0, 2/Ñ − 2δ) such that the solution of
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tz− ∂2
x1x1

z = 0 (t, x1) ∈ (0, T )× (0, 1),

z(t, 0) = 0, z(t, 1) = ρ(t) t ∈ (0, T ),
z(0, x1) = z0 x1 ∈ (0, 1).

satisfies
z(2δ − 2/Ñ, x1) = 0, x1 ∈ (0, 1).

Then it suffices to take

yε(t, x) = (0, z(t − T + 2δ − 2/Ñ, x1)), (t, x) ∈ (T − 2δ + 2/Ñ, T )×�,

with z the solution of the previous null controllability problem with initial condition

z0(x1) = z(2/Ñ, x1) x1 ∈ (0, 1).

The construction of the function yε is finished.

References

[1] Belishev, M. I., On approximating properties of Solutions of the heat equation. In Control
theory of partial differential equations, Lect. Notes Pure Appl. Math. 242, Chapman &
Hall/CRC, Boca Raton, FL, 2005, 43–50.

[2] Bardos, C., Lebeau, G., Rauch, J., Sharp sufficient conditions for the observation, control,
and stabilization of wave from boundaries. SIAM J. Control Optim. 30 (1992), 1024–1065.

[3] Coron, J.-M., On the controllability of the 2-D incompressible Navier-Stokes equations
with the Navier-Slip boundary conditions. ESAIM Contrôle Optim. Calc. Var. 1 (1996),
35–75.

[4] Coron, J.-M., On the controllability of 2-D incompressible perfect fluids. J. Math. Pures
Appl. 75 (1996), 155–188.



Controllability of evolution equations of fluid dynamics 1337

[5] Coron, J.-M., Contrôlabilité exacte frontière de l’équation d’Euler des fluids parfaits in-
compresibles bidimensionnesls. C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 271–276.

[6] Coron, J.-M., On null assymtotic stabilization of the 2-D Euler equation of incompressible
fluids on simply connected domains. SIAM J. Control Optim. 37 (1999), 1874–1896.

[7] Coron, J.-M., Fursikov, A. V., Global exact controllability of the 2-D Navier-Stokes equa-
tions on manifold without boundary. Russian J. Math. Phys. 4 (1996), 1–20.

[8] Egorov, Y. V., Some problems in the theory of optimal control. Ž. Vyčisl. Mat. i Mat. Fiz.
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Port-Hamiltonian systems: an introductory survey

Arjan van der Schaft

Abstract. The theory of port-Hamiltonian systems provides a framework for the geometric
description of network models of physical systems. It turns out that port-based network models
of physical systems immediately lend themselves to a Hamiltonian description. While the usual
geometric approach to Hamiltonian systems is based on the canonical symplectic structure of the
phase space or on a Poisson structure that is obtained by (symmetry) reduction of the phase space,
in the case of a port-Hamiltonian system the geometric structure derives from the interconnection
of its sub-systems. This motivates to consider Dirac structures instead of Poisson structures, since
this notion enables one to define Hamiltonian systems with algebraic constraints. As a result, any
power-conserving interconnection of port-Hamiltonian systems again defines a port-Hamiltonian
system.

The port-Hamiltonian description offers a systematic framework for analysis, control and
simulation of complex physical systems, for lumped-parameter as well as for distributed-para-
meter models.

Mathematics Subject Classification (2000). Primary 93A30,70H05,70H45,70Q05, 70G45,
93B29, 37J60; Secondary 93C10, 93C15, 93C20, 37K05.

Keywords. Interconnection, Dirac structures, constrained systems, Hamiltonian DAEs, stabi-
lization, boundary control, conservation laws.

1. Introduction

Historically, the Hamiltonian approach has its roots in analytical mechanics and starts
from the principle of least action, and proceeds, via the Euler-Lagrange equations
and the Legendre transform, towards the Hamiltonian equations of motion. On the
other hand, the network approach stems from electrical engineering, and constitutes a
cornerstone of mathematical systems theory. While most of the analysis of physical
systems has been performed within the Lagrangian and Hamiltonian framework, the
network point of view is prevailing in modelling and simulation of (complex) physical
engineering systems.

The framework of port-Hamiltonian systems combines both points of view, by as-
sociating with the interconnection structure of the network model a geometric struc-
ture given by a (pseudo-) Poisson structure, or more generally a Dirac structure.
The Hamiltonian dynamics is then defined with respect to this Dirac structure and the
Hamiltonian given by the total stored energy. Furthermore, port-Hamiltonian systems
are open dynamical systems, which interact with their environment through ports. Re-
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sistive effects are included by terminating some of these ports on energy-dissipating
elements.

Dirac structures encompass the geometric structures which are classically being
used in the geometrization of mechanics (that is, Poisson structures and pre-symplectic
structures), and allow to describe the geometric structure of dynamical systems with
algebraic constraints. Furthermore, Dirac structures allow to extend the Hamiltonian
description of distributed-parameter systems to include variable boundary conditions,
leading to distributed-parameter port-Hamiltonian systems with boundary ports.

Acknowledgements. This survey is based on joint work with several co-authors. In
particular I thank Bernhard Maschke and Romeo Ortega for fruitful collaborations.

2. Finite-dimensional port-Hamiltonian systems

In this section we recapitulate the basics of finite-dimensional port-Hamiltonian sys-
tems. For more details we refer e.g. to [19], [17], [20], [33], [34], [30], [36], [12], [5].

2.1. From classical Hamiltonian equations to port-Hamiltonian systems. The
standard Hamiltonian equations for a mechanical system are given as

q̇ = ∂H

∂p
(q, p),

ṗ = −∂H

∂q
(q, p) + F

(1)

where the Hamiltonian H(q, p) is the total energy of the system, q = (q1, . . . , qk)
T

are generalized configuration coordinates for the mechanical system with k degrees of
freedom, p = (p1, . . . , pk)

T is the vector of generalized momenta, and the input F is
the vector of external generalized forces. The state space of (1) with local coordinates
(q, p) is called the phase space.

One immediately derives the following energy balance:

d

dt
H = ∂T H

∂q
(q, p)q̇ + ∂T H

∂p
(q, p)ṗ = ∂T H

∂p
(q, p)F = q̇T F, (2)

expressing that the increase in energy of the system is equal to the supplied work
(conservation of energy). This motivates to define the output of the system as e = q̇

(the vector of generalized velocities).
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System (1) is more generally given in the following form

q̇ = ∂H

∂p
(q, p), (q, p) = (q1, . . . , qk, p1, . . . , pk),

ṗ = −∂H

∂q
(q, p) + B(q)f, f ∈ R

m, (3)

e = BT (q)
∂H

∂p
(q, p) (= BT (q)q̇), e ∈ R

m,

with B(q)f denoting the generalized forces resulting from the input f ∈ R
m. In case

m < k we speak of an underactuated system. Similarly to (2) we obtain the energy
balance

dH

dt
(q(t), p(t)) = eT (t)f (t). (4)

A further generalization is to consider systems which are described in local coordinates
as

ẋ = J (x)
∂H

∂x
(x) + g(x)f, x ∈ X, f ∈ R

m,

e = gT (x)
∂H

∂x
(x), e ∈ R

m,

(5)

where J (x) is an n × n matrix with entries depending smoothly on x, which is
assumed to be skew-symmetric, that is J (x) = −J T (x), and x = (x1, . . . , xn) are
local coordinates for an n-dimensional state space manifold X (not necessarily even-
dimensional as above). Because of skew-symmetry of J we easily recover the energy-
balance dH

dt
(x(t)) = eT (t)f (t). We call (5) a port-Hamiltonian system with structure

matrix J (x), input matrix g(x), and Hamiltonian H ([17], [19], [18]).

Remark 2.1. In many examples the structure matrix J will additionally satisfy an
integrability condition (the Jacobi-identity) allowing us to find by Darboux’s theorem
“canonical coordinates”. In this case J is the structure matrix of a Poisson structure
on X.

Example 2.2. An important class of systems that naturally can be written as port-
Hamiltonian systems, is constituted by mechanical systems with kinematic con-
straints [22]. Consider a mechanical system locally described by k configuration
variables q = (q1, . . . , qk). Suppose that there are constraints on the generalized
velocities q̇, described as

AT (q)q̇ = 0, (6)

with A(q) an r × k matrix of rank r everywhere. The constraints (6) are called
holonomic if it is possible to find new configuration coordinates q̄ = (q̄1, . . . , q̄k) such
that the constraints are equivalently expressed as ˙̄qk−r+1 = ˙̄qn−r+2 = · · · = ˙̄qk = 0,

in which case the kinematic constraints integrate to the geometric constraints

q̄k−r+1 = ck−r+1, . . . , q̄k = ck (7)
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for certain constants ck−r+1, . . . , ck determined by the initial conditions. Then the
system reduces to an unconstrained system in the remaining configuration coordinates
(q̄1, . . . , q̄k−r ). If it is not possible to integrate the kinematic constraints as above, then
the constraints are called nonholonomic. The equations of motion for the mechanical
system with constraints (6) are given by the constrained Hamiltonian equations

q̇ = ∂H

∂p
(q, p),

ṗ = −∂H

∂q
(q, p) + A(q)λ + B(q)f,

e = BT (q)
∂H

∂p
(q, p),

0 = AT (q)
∂H

∂p
(q, p).

(8)

The constrained state space is therefore given as the following subset of the phase
space:

Xc =
{
(q, p) | AT (q)

∂H

∂p
(q, p) = 0

}
. (9)

One way of proceeding is to eliminate the constraint forces, and to reduce the equations
of motion to the constrained state space, leading (see [32] for details) to a port-
Hamiltonian system (5). The structure matrix of this reduced port-Hamiltonian system
satisfies the Jacobi identity if and only if the constraints (6) are holonomic [32]. An
alternative way of approaching the system (8) is to formalize it directly as an implicit
port-Hamiltonian system (with respect to a Dirac structure), as will be the topic of
Section 2.3.

2.2. From port-based network modelling to port-Hamiltonian systems. In this
subsection we take a different point of view by emphasizing how port-Hamiltonian
systems directly arise from port-based network models of physical systems.

Q

C

ϕ1 ϕ2

V

L1 L2

Figure 1. Controlled LC-circuit.
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In network models of complex physical systems the overall system is regarded
as the interconnection of energy-storing elements via basic interconnection (balance)
laws such as Newton’s third law or Kirchhoff’s laws, as well as power-conserving ele-
ments like transformers, kinematic pairs and ideal constraints, together with energy-
dissipating elements [3], [14], [13]. The basic point of departure for the theory of
port-Hamiltonian systems is to formalize the basic interconnection laws together with
the power-conserving elements by a geometric structure, and to define the Hamiltonian
as the total energy stored in the system. This is already illustrated by the following
simple example.

Example 2.3 (LCTG circuits). Consider a controlled LC-circuit (see Figure 1) con-
sisting of two inductors with magnetic energies H1(ϕ1), H2(ϕ2) (ϕ1 and ϕ2 being
the magnetic flux linkages), and a capacitor with electric energy H3(Q) (Q being
the charge). If the elements are linear then H1(ϕ1) = 1

2L1
ϕ2

1 , H2(ϕ2) = 1
2L2

ϕ2
2 and

H3(Q) = 1
2C

Q2. Furthermore let V = u denote a voltage source. Using Kirchhoff’s
laws one obtains the dynamical equations

⎡
⎣Q̇

ϕ̇1
ϕ̇2

⎤
⎦ =

⎡
⎣ 0 1 −1

−1 0 0
1 0 0

⎤
⎦

︸ ︷︷ ︸
J

⎡
⎢⎢⎣

∂H
∂Q

∂H
∂ϕ1
∂H
∂ϕ2

⎤
⎥⎥⎦+

⎡
⎣0

1
0

⎤
⎦ u,

y = ∂H

∂ϕ1
(= current through voltage source)

(10)

with H(Q, ϕ1, ϕ2) := H1(ϕ1) + H2(ϕ2) + H3(Q) the total energy. Clearly (by
Tellegen’s theorem) the matrix J is skew-symmetric.

In this way every LC-circuit with independent elements can be modelled as a port-
Hamiltonian system. Similarly any LCTG-circuit with independent elements can be
modelled as a port-Hamiltonian system, with J now being determined by Kirchhoff’s
laws and the constitutive relations of the transformers T and gyrators G.

2.3. Dirac structures and implicit port-Hamiltonian systems. From a general
modeling point of view physical systems are, at least in first instance, often described
as DAE’s, that is, a mixed set of differential and algebraic equations. This stems
from the fact that in network modeling the system under consideration is regarded as
obtained from interconnecting simpler sub-systems. These interconnections usually
give rise to algebraic constraints between the state space variables of the sub-systems;
thus leading to implicit systems. Therefore it is important to extend the framework
of port-Hamiltonian systems to the context of implicit systems; that is, systems with
algebraic constraints.

2.3.1. Dirac structures. In order to give the definition of an implicit port-Hamil-
tonian system we introduce the notion of a Dirac structure, formalizing the concept of
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a power-conserving interconnection, and generalizing the notion of a structure matrix
J (x) as encountered before.

Let F be an �-dimensional linear space, and denote its dual (the space of linear
functions on F ) by F ∗. The product space F × F ∗ is considered to be the space of
power variables, with power defined by

P = 〈f ∗|f 〉, (f, f ∗) ∈ F × F ∗, (11)

where 〈f ∗|f 〉 denotes the duality product. Often we call F the space of flows f , and
F ∗ the space of efforts e, with the power of an element (f, e) ∈ F × F ∗ denoted as
〈e|f 〉.
Example 2.4. Let F be the space of generalized velocities, and F ∗ be the space of
generalized forces, then 〈e|f 〉 is mechanical power. Similarly, let F be the space of
currents, and F ∗ be the space of voltages, then 〈e|f 〉 is electrical power.

There exists on F × F ∗ the canonically defined symmetric bilinear form

〈(f1, e1), (f2, e2)〉F ×F ∗ := 〈e1|f2〉 + 〈e2|f1〉 (12)

for fi ∈ F , ei ∈ F ∗, i = 1, 2.

Definition 2.5 ([6], [8], [7]). A constant Dirac structure on F is a linear subspace
D ⊂ F × F ∗ such that

D = D⊥ (13)

where ⊥ denotes the orthogonal complement with respect to the bilinear form
〈 , 〉F ×F ∗ .

It immediately follows that the dimension of any Dirac structure D on an �-dimen-
sional linear space is equal to �. Furthermore, let (f, e) ∈ D = D⊥. Then by (12)

0 = 〈(f, e), (f, e)〉F ×F ∗ = 2〈e | f 〉. (14)

Thus for all (f, e) ∈ D we obtain 〈e | f 〉 = 0. Hence a Dirac structure D on F
defines a power-conserving relation between the power variables (f, e) ∈ F × F ∗,
which moreover has maximal dimension.

Remark 2.6. For many systems, especially those with 3-D mechanical components,
the Dirac structure is actually modulated by the energy or geometric variables. Fur-
thermore, the state space X is a manifold and the flows fS = −ẋ corresponding to
energy-storage are elements of the tangent space TxX at the state x ∈ X, while the
efforts eS are elements of the co-tangent space T ∗

x X.
Modulated Dirac structures often arise as a result of kinematic constraints. In

many cases, these constraints will be configuration dependent, causing the Dirac
structure to be modulated by the configuration variables, cf. Section 2.2.
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In general, a port-Hamiltonian system can be represented as in Figure 2. The port
variables entering the Dirac structure D have been split in different parts. First, there
are two internal ports. One, denoted by S, is corresponding to energy-storage and
the other one, denoted by R, is corresponding to internal energy-dissipation (resistive
elements). Second, two external ports are distinguished. The external port denoted
by C is the port that is accessible for controller action. Also the presence of sources
may be included in this port. Finally, the external port denoted by � is the interaction
port, defining the interaction of the system with (the rest of) its environment.

S

R

C

�

D

Figure 2. Port-Hamiltonian system.

2.3.2. Energy storage port. The port variables associated with the internal storage
port will be denoted by (fS, eS). They are interconnected to the energy storage of the
system which is defined by a finite-dimensional state space manifold X with coordi-
nates x, together with a Hamiltonian function H : X → R denoting the energy. The
flow variables of the energy storage are given by the rate ẋ of the energy variables x.
Furthermore, the effort variables of the energy storage are given by the co-energy
variables ∂H

∂x
(x), resulting in the energy balance

d

dt
H =

〈
∂H

∂x
(x)

∣∣ ẋ〉 = ∂T H

∂x
(x)ẋ. (15)

(Here we adopt the convention that ∂H
∂x

(x) denotes the column vector of partial deriva-
tives of H .)

The interconnection of the energy storing elements to the storage port of the Dirac
structure is accomplished by setting

fS = −ẋ,

eS = ∂H

∂x
(x).

(16)
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Hence the energy balance (15) can be also written as

d

dt
H = ∂T H

∂x
(x)ẋ = −eT

S fS. (17)

2.3.3. Resistive port. The second internal port corresponds to internal energy dissi-
pation (due to friction, resistance, etc.), and its port variables are denoted by (fR, eR).
These port variables are terminated on a static resistive relation R. In general, a static
resistive relation will be of the form

R(fR, eR) = 0, (18)

with the property that for all (fR, eR) satisfying (18)

〈eR | fR〉 ≤ 0. (19)

In many cases we may restrict ourselves to linear resistive relations. This means that
the resistive port variables (fR, eR) satisfy linear relations of the form

Rf fR + ReeR = 0. (20)

The inequality (19) corresponds to the square matrices Rf and Re satisfying the
properties of symmetry and semi-positive definiteness

Rf RT
e = ReR

T
f ≥ 0, (21)

together with the dimensionality condition rank[Rf |Re] = dim fR.

Without the presence of additional external ports, the Dirac structure of the port-
Hamiltonian system satisfies the power-balance eT

S fS + eT
RfR = 0 which leads to

d

dt
H = −eT

S fS = eT
RfR ≤ 0. (22)

An important special case of resistive relations between fR and eR occurs when the
resistive relations can be expressed as an input-output mapping fR = −F(eR), where
the resistive characteristic F : R

mr → R
mr satisfies

eT
RF (eR) ≥ 0, eR ∈ R

mr . (23)

For linear resistive elements this specializes to fR = −R̃eR , for some positive semi-
definite symmetric matric R̃ = R̃T ≥ 0.

2.3.4. External ports. Now, let us consider in more detail the external ports to
the system. We distinguish between two types of external ports. One is the control
port C, with port variables (fC, eC), which are the port variables which are accessible
for controller action. Other type of external port is the interaction port � , which
denotes the interaction of the port-Hamiltonian system with its environment. The
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port variables corresponding to the interaction port are denoted by (fI , eI ). By taking
both the external ports into account the power-balance extends to

eT
S fS + eT

RfR + eT
CfC + eT

I fI = 0 (24)

whereby (22) extends to

d

dt
H = eT

RfR + eT
CfC + eT

I fI . (25)

2.3.5. Port-Hamiltonian dynamics. The port-Hamiltonian system with state space
X, Hamiltonian H corresponding to the energy storage port S, resistive port R,
control port C, interconnection port � , and total Dirac structure D will be succinctly
denoted by � = (X, H, R, C, � , D). The dynamics of the port-Hamiltonian system
is specified by considering the constraints on the various port variables imposed by
the Dirac structure, that is

(fS, eS, fR, eR, fC, eC, fI , eI ) ∈ D,

and to substitute in these relations the equalities fS = −ẋ, eS = ∂H
∂x

(x). This leads
to the implicitly defined dynamics(

− ẋ(t),
∂H

∂x
(x(t)), fR(t), eR(t), fC, (t), eC(t), fI (t), eI (t)

)
∈ D (26)

with fR(t), eR(t) satisfying for all t the resistive relation (18):

R(fR, eR) = 0. (27)

In many cases of interest the dynamics (26) will constrain the allowed states x, de-
pending on the values of the external port variables (fC, eC) and (fI , eI ). Thus in an
equational representation port-Hamiltonian systems generally will consist of a mixed
set of differential and algebraic equations (DAEs).

Example 2.7 (General LC- circuits). Consider an LC-circuit with general network
topology. Kirchhoff’s current and voltage laws take the general form

AL
T IL + AC

T IC + AP
T IP = 0,

VL = ALλ, VC = ACλ, VP = AP λ

for some matrices AL, AC , AS . Here IL, IC , IP denote the currents, respectively
through the inductors, capacitors and external ports. Likewise, VL, VC , VP denote
the voltages over the inductors, capacitors and external ports. Kirchhoff’s current and
voltage laws define a Dirac structure between the flows and efforts:

f = (IC, VL, IP ) = (−Q̇, −φ̇, IP ),

e = (VC, IL, VP ) =
(

∂H

∂Q
,
∂H

∂φ
, VP

)
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with Hamiltonian H(φ, Q) the total energy. This leads the to port-Hamiltonian system
in implicit form

−φ̇ = ALλ,

∂H

∂Q
= ACλ,

VP = AP λ,

0 = AL
T ∂H

∂φ
− AC

T Q̇ + AP
T IP .

Example 2.8 (Electro-mechanical system). Consider the dynamics of an iron ball in
the magnetic field of a controlled inductor: The port-Hamiltonian description of this

g

R

V

I

φ

m

q

Figure 3. Magnetically levitated ball.

system (with q the height of the ball, p the vertical momentum, and ϕ the magnetic
flux of the inductor) is given as

⎡
⎣q̇

ṗ

ϕ̇

⎤
⎦ =

⎡
⎣ 0 1 0

−1 0 0
0 0 − 1

R

⎤
⎦
⎡
⎢⎢⎣

∂H
∂q

∂H
∂p

∂H
∂ϕ

⎤
⎥⎥⎦+

⎡
⎣0

0
1

⎤
⎦V,

I = ∂H

∂ϕ
.

(28)

This is a typical example of a system where the coupling between two different
physical domains (mechanical and magnetic) takes place via the Hamiltonian

H(q, p, ϕ) = mgq + p2

2m
+ ϕ2

2k1(1 − q
k2

)
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where the last term depends both on a magnetic variable (in this case ϕ) and a me-
chanical variable (in this case the height q).

2.4. Input-state-output port-Hamiltonian systems. An important special case of
port-Hamiltonian systems is the class of input-state-output port-Hamiltonian systems,
where there are no algebraic constraints on the state space variables, and the flow and
effort variables of the resistive, control and interaction port are split into conjugated
input–output pairs. Input–state–output port-Hamiltonian systems without interaction
port are of the form

ẋ = [J (x) − R(x)]∂H

∂x
(x) + g(x)u,

y = gT (x)
∂H

∂x
(x)

(29)

where u, y are the input–output pairs corresponding to the control port C. Here the
matrix J (x) is skew-symmetric, while the matrix R(x) = RT (x) ≥ 0 specifies the
resistive structure, and is given as R(x) = gT

R(x)R̃gR(x) for some linear resistive
relation fR = −R̃eR, R̃ = R̃T ≥ 0, with gR representing the input matrix corre-
sponding to the resistive port. The underlying Dirac structure of the system is then
given by the graph of the skew-symmetric linear map⎛

⎝−J (x) −gR(x) −g(x)

gT
R(x) 0 0

gT (x) 0 0

⎞
⎠ . (30)

3. Control by interconnection of port-Hamiltonian systems

The basic property of port-Hamiltonian systems is that the power-conserving inter-
connection of any number of port-Hamiltonian systems is again a port-Hamiltonian
system.

To be explicit, consider two port-Hamiltonian systems �A and �B with Dirac
structures DA and DB and Hamiltonians HA and HB , defined on state spaces XA, re-
spectively XB . For convenience, split the ports of the Dirac structures DA and DB into
the internal energy storage ports and all remaining external ports whose port-variables
are denoted respectively by fA, eA and fB , eB . Now, consider any interconnection
Dirac structure DI involving the port-variables fA, eA, fB, eB possibly together with
additional port-variables fI , eI . Then the interconnection of the systems �A and �B

via DI is again a port-Hamiltonian system with respect to the composed Dirac struc-
ture DA � DI � DB , involving as port-variables the internal storage port-variables of
DA and DB together with the additional port-variables FI , eI . For details we refer
to [5], [34], [30].
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Furthermore, the state space of the interconnected port-Hamiltonian system is the
product of the two state spaces XA × XB , while its Hamiltonian is simply the sum
HA + HB of the two Hamiltonians.

This basic statement naturally extends to the interconnection of any number of
port-Hamiltonian systems via an interconnection Dirac structure.

Control by port-interconnection is based on designing a controller system which
is interconnected to the control port with port-variables (fC, eC). In principle this
implies that we only consider collocated control, where the controller will only use
the information about the plant port-Hamiltonian system that is contained in the con-
jugated pairs (fC, eC) of port variables of the control port, without using additional in-
formation about the plant (e.g. corresponding to observation on other parts of the plant
system). In the second place, we will restrict attention to controller systems which
are themselves also port-Hamiltonian systems. There are two main reasons for this.
One is that by doing so the closed-loop system is again a port-Hamiltonian system,
allowing to easily ensure some desired properties. Furthermore, it will turn out that
the port-Hamiltonian framework suggests useful ways to construct port-Hamiltonian
controller systems. Second reason is that port-Hamiltonian controller systems al-
low in principle for a physical system realization (thus linking to passive control and
systems design) and physical interpretation of the controller action.

Since we do not know the environment (or only have very limited information about
it), but on the other hand, the system will interact with this unknown environment, the
task of the controller is often two-fold: 1) to achieve a desired control goal (e.g. set-
point regulation or tracking) if the interaction with the environment is marginal or can
be compensated, 2) to make sure that the controlled system has a desired interaction
behavior with its environment. It is fair to say that up to now the development of the
theory of control of port-Hamiltonian systems has mostly concentrated on the second
aspect (which at the same time, is often underdeveloped in other control theories).

Most successful approaches to deal with the second aspect of the control goal are
those based on the concept of “passivity”, such as dissipativity theory [38], impedance
control [13] and Intrinsically Passive Control (IPC) [36]. In fact, the port-Hamiltonian
control theory can be regarded as an enhancement to the theory of passivity, making
a much closer link with complex physical systems modeling at one hand and with the
theory of dynamical systems (in particular, Hamiltonian dynamics) at the other hand.

As said above, we will throughout consider controller systems which are again
port-Hamiltonian systems. We will use the same symbols as above for the internal and
external ports and port-variables of the controller port-Hamiltonian system, with an
added overbar¯or a superscript c in order to distinguish it from the plant system. (The
interaction port of the controller system may be thought of as an extra possibility for
additional controller action (outer-loop control).) In order to further distinguish the
plant system and the controller we denote the state space of the plant system by Xp

with coordinates xp, the Dirac structure by Dp and its Hamiltonian by Hp, while we
will denote the state space manifold of the controller system byXc with coordinatesxc,
its Dirac structure by Dc and its Hamiltonian by Hc : Xc → R. The interconnection
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of the plant port-Hamiltonian system with the controller port-Hamiltonian system is
obtained by equalizing the port variables at the control port by

fC = −f̄C,

eC = ēC

(31)

where f̄C , ēC denote the control port variables of the controller system. Here, the
minus sign is inserted to have a uniform notion of direction of power flow. Clearly,
this ’synchronizing’ interconnection is power-conserving, that is eT

CfC + ēT
Cf̄C = 0.

Remark 3.1. A sometimes useful alternative is the gyrating power-conserving inter-
connection

fC = −ēC,

eC = f̄C.
(32)

In fact, the standard feedback interconnection can be regarded to be of this type.

For both interconnection constraints it directly follows from the theory of com-
position of Dirac structures that the interconnected (closed-loop) system is again a
port-Hamiltonian system with Dirac structure determined by the Dirac structures of
the plant PH system and the controller PH system.

The resulting interconnected PH system has state space Xp × Xc, Hamiltonian
Hp + Hc, resistive ports (fR, eR, f̄R, ēR) and interaction ports (fI , eI , f̄I , ēI ), satis-
fying the power-balance

d

dt
(Hp + Hc) = eT

RfR + ēT
Rf̄R + eT

I fI + ēT
I f̄I ≤ eT

I fI + ēT
I f̄I (33)

since both eT
RfR ≤ 0 and ēT

Rf̄R ≤ 0. Hence we immediately recover the state
space formulation of the passivity theorem, see e.g. [31], if Hp and Hc are both non-
negative, implying that the plant and the controller system are passive (with respect
to their controller and interaction ports and storage functions Hp and Hc), then also
the closed -loop system is passive (with respect to the interaction ports and storage
function Hp + Hc.)

Furthermore, due to the Hamiltonian structure, we can go beyond the passivity
theorem, and we can derive conditions which ensure that we can passify and/or sta-
bilize plant port-Hamiltonian systems for which the Hamiltonian Hp does not have a
minimum at the desired equilibrium.

3.1. Stabilization by Casimir generation. What does the power-balance (33)mean
for the stability properties of the closed-loop system, and how can we design the
controller port-Hamiltonian system in such a way that the closed-loop system has
desired stability properties? Let us first consider the stability of an arbitrary port-
Hamiltonian system � = (X, H, R, C, � , D) without control or interaction ports,
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that is, an autonomous port-Hamiltonian system � = (X, H, R, D). Clearly, the
power-balance (33) reduces to

d

dt
H = eT

RfR ≤ 0. (34)

Hence we immediately infer by standard Lyapunov theory that if x∗ is a minimum
of the Hamiltonian H then it will be a stable equilibrium of the autonomous port-
Hamiltonian system � = (X, H, R, D), which is actually asymptotically stable if
the dissipation term eT

RfR is negative definite outside x∗, or alternatively if some sort
of detectability condition is satisfied, guaranteeing asymptotic stability by the use of
LaSalle’s Invariance principle (see for details e.g. [31]).

However, what can we say if x∗ is not a minimum of H , and thus we cannot
directly use H as a Lyapunov function?

A well-known method in Hamiltonian systems, sometimes called the Energy-
Casimir method, is to use in the Lyapunov analysis next to the Hamiltonian other
conserved quantities (dynamical invariants) which may be present in the system.
Indeed, if we may find other conserved quantities then candidate Lyapunov functions
can be sought within the class of combinations of the Hamiltonian H and those
conserved quantities. In particular, if we can find a conserved quantity C : X → R

such that V := H + C has a minimum at the desired equilibrium x∗ then we can still
infer stability or asymptotic stability by replacing (34) by

d

dt
V = eT

RfR ≤ 0 (35)

and thus using V as a Lyapunov function.
For the application of the Energy-Casimir method one may distinguish between

two main cases. First situation occurs if the desired equilibrium x∗ is not a stationary
point of H , and one looks for a conserved quantity C such that H +C has a minimum
at x∗. This for example happens in the case that the desired set-point x∗ is not an equi-
librium of the uncontrolled system, but only a controlled equilibrium of the system.
Second situation occurs when x∗ is a stationary point of H , but not a minimum.

Functions that are conserved quantities of the system for every Hamiltonian are
called Casimir functions or simply Casimirs. Casimirs are completely characterized
by the Dirac structure of the port-Hamiltonian system. Indeed, a function C : X → R

is a Casimir function of the autonomous port-Hamiltonian system (without energy
dissipation) � = (X, H, D) if and only if the gradient vector e = ∂T C

∂x
satisfies

eT fS = 0 for all fS for which there exists eS such that (fS, eS) ∈ D . (36)

Indeed, (36) is equivalent to

d

dt
C = ∂T C

∂x
(x(t))ẋ(t) = ∂T C

∂x
(x(t))fS = eT fS = 0 (37)
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for every port-Hamiltonian system (X, H, D) with the same Dirac structure D . By
the generalized skew-symmetry of the Dirac structure (36) is equivalent to the re-
quirement that e = ∂T C

∂x
satisfies

(0, e) ∈ D .

Similarly, we define a Casimir function for a port-Hamiltonian system with dissipation
� = (X, H, R, D) to be any function C : X → R satisfying

(0, e, 0, 0) ∈ D . (38)

Indeed, this will imply that

d

dt
C = ∂T C

∂x
(x(t))ẋ(t) = ∂T C

∂x
(x(t))fp = eT fp = 0 (39)

for every port-Hamiltonian system (X, H, R, D) with the same Dirac structure D .
(In fact by definiteness of the resistive structures the satisfaction of (39) for a particular
resistive structure R implies the satisfaction for all resistive structures R.)

Now let us come back to the design of a controller port-Hamiltonian system such
that the closed-loop system has desired stability properties. Suppose we want to stabi-
lize the plant port-Hamiltonian system (Xp, Hp, R, C, Dp) around a desired equilib-
rium x∗

p . We know that for every controller port-Hamiltonian system the closed-loop
system satisfies

d

dt
(Hp + Hc) = eT

RfR + ēT
Rf̄R ≤ 0. (40)

What if x∗ is not a minimum for Hp? A possible strategy is to generate Casimir func-
tionsC(xp, xc) for the closed-loop system by choosing the controller port-Hamiltonian
system in an appropriate way. Thereby we generate candidate Lyapunov functions
for the closed-loop system of the form

V (xp, xc) := Hp(xp) + Hc(xc) + C(xp, xc)

where the controller Hamiltonian function Hc : Xc → R still has to be designed. The
goal is thus to construct a function V as above in such a way that V has a minimum
at (x∗

p, x∗
c ) where x∗

c still remains to be chosen. This strategy thus is based on finding
all the achievable closed-loop Casimirs. Furthermore, since the closed-loop Casimirs
are based on the closed-loop Dirac structures, this reduces to finding all the achievable
closed-loop Dirac structures D � D̄ .

Another way to interpret the generation of Casimirs for the closed-loop system is to
look at the level sets of the Casimirs as invariant submanifolds of the combined plant
and controller state space Xp × Xc. Restricted to every such invariant submanifold
(part of) the controller state can be expressed as a function of the plant state, whence
the closed-loop Hamiltonian restricted to such an invariant manifold can be seen as a
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shaped version of the plant Hamiltonian. To be explicit (see e.g. [31], [24], [25] for
details) suppose that we have found Casimirs of the form

xci − Fi(xp), i = 1, . . . , np

where np is the dimension of the controller state space, then on every invariant man-
ifold xci − Fi(xp) = αi , i = 1, . . . , np, where α = (α1, . . . , αnp) is a vector of
constants depending on the initial plant and controller state, the closed-loop Hamil-
tonian can be written as

Hs(xp) := Hp(xp) + Hc(F (xp) + α),

where, as before, the controller Hamiltonian Hc still can be assigned. This can be
regarded as shaping the original plant Hamiltonian Hp to a new Hamiltonian Hs .

3.2. Port Control. In broad terms, the Port Control problem is to design, given
the plant port-Hamiltonian system, a controller port-Hamiltonian system such that
the behavior at the interaction port of the plant port-Hamiltonian system is a desired
one, or close to a desired one. This means that by adding the controller system we
seek to shape the external behavior at the interaction port of the plant system. If the
desired external behavior at this interaction port is given in input–output form as a
desired (dynamic) impedance, then this amounts to the Impedance Control problem
as introduced and studied by Hogan and co-workers [13]; see also [36] for subsequent
developments.

The Port Control problem, as stated in this generality, immediately leads to two
fundamental questions: 1). Given the plant PH system, and the controller PH system
to be arbitrarily designed, what are the achievable behaviors of the closed-loop system
at the interaction port of the plant? 2). If the desired behavior at the interaction port
of the plant is not achievable, then what is the closest achievable behavior? Of course,
the second question leaves much room for interpretation, since there is no obvious
interpretation of what we mean by ’closest behavior’. Also the first question in its full
generality is not easy to answer, and we shall only address an important subproblem.

An obvious observation is that the desired behavior, in order to be achievable,
needs to be the port behavior of a PH system. This leads already to the problem of
characterizing those external behaviors which are port behaviors of port-Hamiltonian
systems. Secondly, the Port Control problem can be split into a number of subprob-
lems. Indeed, we know that the closed-loop system arising from interconnection of
the plant PH system with the controller PH system is specified by a Hamiltonian
which is just the sum of the plant Hamiltonian and the controller Hamiltonian, and
a resistive structure which is the “product” of the resistive structure of the plant and
of the controller system, together with a Dirac structure which is the composition of
the plant Dirac structure and the controller Dirac structure. Therefore an important
subproblem is again to characterize the achievable closed-loop Dirac structures. On
the other hand, a fundamental problem in addressing the Port Control problem in
general theoretical terms is the lack of a systematic way to specify ’desired behavior’.
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The problem of Port Control is to determine the controller system in such a way
that the port behavior in the port variables fI , eI is a desired one. In this particular
(simple and linear) example the desired behavior can be quantified e.g. in terms of a
desired stiffness and damping of the closed-loop system, which is easily expressed
in terms of the closed-loop transfer function from fI to eI . Of course, on top of
the requirements on the closed-loop transfer function we would also require internal
stability of the closed-loop system. For an appealing example of port control of
port-Hamiltonian systems within a context of hydraulic systems we refer to [15].

3.3. Energy Control. Consider two port-Hamiltonian systems �i (without internal
dissipation) in input–state–output form

ẋi = Ji(xi)
∂Hi

∂xi

+ gi(xi)ui,

yi = gT
i (xi)

∂Hi

∂xi

, i = 1, 2,

(41)

both satisfying the power-balance d
dt

Hi = yT
i ui . Suppose now that we want to

transfer the energy from the port-Hamiltonian system �1 to the port-Hamiltonian
system �2, while keeping the total energy H1 + H2 constant. This can be done by
using the following output feedback[

u1
u2

]
=
[

0 −y1y
T
2

y2y
T
1 0

] [
y1
y2

]
. (42)

Since the matrix in (42) is skew-symmetric it immediately follows that the closed-loop
system composed of systems �1 and �2 linked by the power-conserving feedback is
energy-preserving, that is d

dt
(H1 + H2) = 0. However, if we consider the individual

energies then we notice that

d

dt
H1 = −yT

1 y1y
T
2 y2 = −‖y1‖2‖y2‖2 ≤ 0 (43)

implying that H1 is decreasing as long as ‖y1‖ and ‖y2‖ are different from 0. Con-
versely, as expected since the total energy is constant,

d

dt
H2 = yT

2 y2y
T
1 y1 = ‖y2‖2‖y1‖2 ≥ 0 (44)

implying that H2 is increasing at the same rate. In particular, if H1 has a minimum at
the zero equilibrium, and �1 is zero-state observable, then all the energy H1 of �1 will
be transferred to �2, provided that ‖y2‖ is not identically zero (which again can be
guaranteed by assuming that H2 has a minimum at the zero equilibrium, and that �2
is zero-state observable).

If there is internal energy dissipation, then this energy transfer mechanism still
works. However, the fact that H2 grows or not will depend on the balance between the
energy delivered by �1 to �2 and the internal loss of energy in �2 due to dissipation.
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We conclude that this particular scheme of power-conserving energy transfer is
accomplished by a skew-symmetric output feedback, which is modulated by the
values of the output vectors of both systems. Of course this raises, among others, the
question of the efficiency of the proposed energy-transfer scheme, and the need for
a systematic quest of similar power-conserving energy-transfer schemes. We refer
to [9] for a similar but different energy-transfer scheme directly motivated by the
structure of the example (control of a snakeboard).

3.4. Achievable closed-loop Dirac structures. In all the control problems discussed
above the basic question comes up what are the achievable closed-loop Dirac structures
based on a given plant Dirac structure and a controller Dirac structure, which still is
to be determined.

Theorem 3.2 ([5]). Given any plant Dirac structure Dp, a certain interconnected
D = Dp � Dc can be achieved by a proper choice of the controller Dirac structure
Dc if and only if the following two equivalent conditions are satisfied:

D0
p ⊂ D0,

Dπ ⊂ Dπ
p

where

D0
p := {f1, e1) | (f1, e1, 0, 0) ∈ Dp},

Dπ
p := {(f1, e1) | there exists (f P

2 , eP
2 ) with (f1, e1, f

P
2 , eP

2 ) ∈ Dp},
D0 := {(f1, e1) | (f1, e1, 0, 0) ∈ D},
Dπ := {(f1, e1) | there exists (f3, e3) with (f1, e1, f3, e3) ∈ D}.

An important application of the above theorem concerns the characterization of
Casimir functions which can be achieved by interconnecting a given plant port-
Hamiltonian system with a controller port-Hamiltonian system.

4. Distributed-parameter port-Hamiltonian systems

The treatment of infinite-dimensional Hamiltonian systems in the literature is mostly
confined to systems with boundary conditions such that the energy exchange through
the boundary is zero. On the other hand, in many applications the interaction with
the environment (e.g. actuation or measurement) will actually take place through
the boundary of the system. In [35] a framework has been developed to repre-
sent classes of physical distributed-parameter systems with boundary energy flow as
infinite-dimensional port-Hamiltonian systems. It turns out that in order to allow the
inclusion of boundary variables in distributed-parameter systems the concept of (an
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infinite-dimensional) Dirac structure provides again the right type of generalization
with respect to the existing framework [23] using Poisson structures.

As we will discuss in the next three examples, the port-Hamiltonian formulation
of distributed-parameter systems is closely related to the general framework for de-
scribing basic distributed-parameter systems as systems of conservation laws, see e.g.
[11], [37].

Example 4.1 (Inviscid Burger’s equation). The viscous Burger’s equation is a scalar
parabolic equation defined on a one-dimensional spatial domain (interval) Z =
[a, b] ⊂ R, with the state variable α(t, z) ∈ R, z ∈ Z, t ∈ I , where I is an in-
terval of R, satisfying the partial differential equation

∂α

∂t
+ α

∂α

∂z
− ν

∂2α

∂z2 = 0. (45)

The inviscid (ν = 0) Burger’s equations may be alternatively expressed as

∂α

∂t
+ ∂

∂z
β = 0 (46)

where the state variable α(t, z) is called the conserved quantity and the function
β := α2

2 the flux variable. Eq. (46) is called a conservation law, since by integration
one obtains the balance equation

d

dt

∫ b

a

α dz = β(a) − β(b). (47)

Furthermore, according to the framework of Irreversible Thermodynamics [27], one
may express the flux β as a function of the generating force which is the variational
derivative of some functional H(α) of the state variable. The variational derivative
δH
δα

of a functional H(α) is uniquely defined by the requirement

H(α + εη) = H(α) + ε

∫ b

a

δH

δα
η dz + O(ε2) (48)

for any ε ∈ R and any smooth function η(z, t) such that α + εη satisfies the same
boundary conditions as α [23]. For the inviscid Burger’s equation one has β = δH

δα
,

where

H(α) =
∫ b

a

α3

6
dz. (49)

Hence the inviscid Burger’s equation may be also expressed as

∂α

∂t
= − ∂

∂z

δH

δα
. (50)

This defines an infinite-dimensional Hamiltonian system in the sense of [23] with
respect to the skew-symmetric operator ∂

∂z
that is defined on the functions with support

contained in the interior of the interval Z.
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From this formulation one derives that the Hamiltonian H(α) is another conserved
quantity. Indeed, by integration by parts

d

dt
H =

∫ b

a

δH

δα
· − ∂

∂z

δH

δα
dz = 1

2

(
β2(a) − β2(b)

)
. (51)

We note that the right-hand side is a function of the flux variables evaluated at the
boundary of the spatial domain Z.

The second example consists of a system of two conservations laws, corresponding
to the case of two physical domains in interaction.

Example 4.2 (The p-system, cf. [11], [37]). The p-system is a model for e.g. a
one-dimensional gas dynamics. Again, the spatial variable z belongs to an interval
Z ⊂ R, while the dependent variables are the specific volume v(t, z) ∈ R

+, the
velocity u(t, z) and the pressure functional p(v) (which for instance in the case of
an ideal gas with constant entropy is given by p(v) = Av−γ where γ ≥ 1). The
p-system is then defined by the following system of partial differential equations

∂v

∂t
− ∂u

∂z
= 0,

∂u

∂t
+ ∂ p(v)

∂z
= 0

(52)

representing respectively conservation of mass and of momentum. By defining the
state vector as α(t, z) = (v, u)T , and the vector-valued flux β(t, z) = (−u, p(v))T

the p-system is rewritten as
∂α

∂t
+ ∂

∂z
β = 0. (53)

Again, according to the framework of Irreversible Thermodynamics, the flux vec-
tor may be written as function of the variational derivatives of some functional. In-
deed, consider the energy functional H(α) = ∫ b

a
H(v, u)dz where the energy density

H(v, u) is given as the sum of the internal energy and the kinetic energy densities

H(v, u) = U(v) + u2

2
(54)

with −U(v) a primitive function of the pressure. (Note that for simplicity the mass
density has been set equal to 1, and hence no difference is made between the velocity
and the momentum.) The flux vector β may be expressed in terms of the variational
derivatives of H as

β =
(

0 −1
−1 0

)( δH
δv

δH
δu

)
. (55)

The anti-diagonal matrix represents the canonical coupling between two physical do-
mains: the kinetic and the potential (internal) domain. Thus the variational derivative
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of the total energy with respect to the state variable of one domain generates the flux
variable for the other domain. Combining eqns. (53) and (55), the p-system may thus
be written as the Hamiltonian system(

∂α1
∂t

∂α2
∂t

)
=
(

0 − ∂
∂z

− ∂
∂z

0

)(
δH
δα1
δH
δα2

)
. (56)

Using again integration by parts, one may derive the following energy balance equa-
tion:

d

dt
H = β1(a)β2(a) − β1(b)β2(b). (57)

Notice again that the right-hand side of this power-balance equation is a quadratic
function of the fluxes at the boundary of the spatial domain.

The last example is the vibrating string. It is again a system of two conservation
laws representing the canonical interdomain coupling between the kinetic energy and
the elastic potential energy. However in this example the classical choice of the
state variables leads to express the total energy as a function of some of the spatial
derivatives of the state variables.

Example 4.3 (Vibrating string). Consider an elastic string subject to traction forces at
its ends, with spatial variable z ∈ Z = [a, b] ⊂ R. Denote by u(t, z) the displacement
of the string and the velocity by v(t, z) = ∂u

∂t
. Using the vector of state variables

x(t, z) = (u, v)T , the dynamics of the vibrating string is described by the system of
partial differential equations

∂x

∂t
=
(

v
1
μ

∂
∂z

(
T ∂u

∂z

)) (58)

where the first equation is simply the definition of the velocity and the second one is
Newton’s second law. Here T denotes the elasticity modulus, and μ the mass density.
The total energy is H(x) = U(u) + K(v), where the elastic potential energy U is a
function of the strain ∂u

∂z
(t, z)

U(u) =
∫ b

a

1

2
T

(
∂u

∂z

)2

dz (59)

and the kinetic energy K depends on the velocity v(t, z) = ∂u
∂t

as

K(v) =
∫ b

a

1

2
μv(t, z)2 dz. (60)

Thus the total system (58) may be expressed as

∂x

∂t
=
(

0 1
μ

− 1
μ

0

)(
δH
δu

δH
δv

)
(61)
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where δH
δu

= δU
δu

= − ∂
∂z

(
T ∂u

∂z

)
is the elastic force and δH

δv
= δK

δv
= μv is the

momentum.
In this formulation, the system is not anymore expressed as a system of conserva-

tion laws since the time-derivative of the state variables is a function of the variational
derivatives of the energy directly, and not the spatial derivative of a function of the
variational derivatives as before. Instead of being a simplification, this reveals a draw-
back for the case of non-zero energy flow through the boundary of the spatial domain.
Indeed, in this case the variational derivative has to be completed by a boundary
term since the Hamiltonian functional depends on the spatial derivatives of the state.
For example, in the computation of the variational derivative of the elastic potential
energy U one obtains by integration by parts that U(u + εη) − U(u) equals

−ε

∫ b

a

∂

∂z

(
T

∂u

∂z

)
η dz + ε

[
η

(
T

∂u

∂z

)]b

a

+ O(ε2) (62)

and the second term in this expression constitutes an extra boundary term.
Alternatively we now formulate the vibrating string as a system of two conservation

laws. Take as alternative vector of state variables α(t, z) = (ε, p)T , where ε denotes
the strain α1 = ε = ∂u

∂z
and p denotes the momentum α2 = p = μv. Recall that in

these variables the total energy is written as

H0 =
∫ b

a

1

2

(
T α2

1 + 1

μ
α2

2

)
dz (63)

and directly depends on the state variables and not on their spatial derivatives. Fur-
thermore, one defines the flux variables to be the stress β1 = δH0

δα1
= T α1 and the

velocity β2 = δH0
δα1

= α2
μ

. In matrix notation, the flux vector β is thus expressed as a

function of the variational derivatives δH0
δα

by

β =
(

0 −1
−1 0

)
δH0

δα
. (64)

Hence the vibrating string may be alternatively expressed by the system of two con-
servation laws

∂α

∂t
=
(

0 ∂
∂z

∂
∂z

0

)
δH0

δα
(65)

satisfying the power balance equation (57).

4.1. Systems of two conservation laws in interaction. Let us now consider the
general class of distributed-parameter systems consisting of two conservation laws
with the canonical coupling as in the above examples of the p-system and the vibrating
string. Let the spatial domain Z ⊂ R

n be an n-dimensional smooth manifold with
smooth (n−1)-dimensional boundary ∂Z. Denote by �k(Z) the vector space of (dif-
ferential) k-forms on Z (respectively by �k(∂Z) the vector space of k-forms on ∂Z).
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Denote furthermore by � = ⊕
k≥0 �k(Z) the algebra of differential forms over Z

and recall that it is endowed with an exterior product ∧ and an exterior derivation d.

Definition 4.4. A system of conservation laws is defined by a set of conserved quan-
tities αi ∈ �ki (Z), i ∈ {1, . . . , N} where N ∈ N, ki ∈ N, defining the state space
X = ⊗

i=1,...,N �ki (Z), and satisfying a set of conservation laws

∂αi

∂t
+ dβi = gi (66)

where βi ∈ �ki−1 (Z) denote the set of fluxes and gi ∈ �ki (Z) denote the set
of distributed interaction forms. In general, the fluxes βi are defined by so-called
closure equations

βi = J (αi, z) , i = 1, . . . , N (67)

leading to a closed form for the dynamics of the conserved quantities αi. The integral
form of the conservation laws yields the following balance equations

d

dt

∫
S

αi +
∫

∂S

βi =
∫

S

gi (68)

for any surface S ⊂ Z of dimension equal to the degree of αi .

Remark 4.5. A common case is that Z = R
3 and that the conserved quantities are

3-forms, that is, the balance equation is evaluated on volumes of the 3-dimensional
space. In this case () takes in vector calculus notation the familiar form

∂αi

∂t
(z, t) + divzβi = gi, i = 1, . . . , n. (69)

However, systems of conservation laws may correspond to differential forms of any
degree. Maxwell’s equations are an example where the conserved quantities are
differential forms of degree 2.

In the sequel, as in our examples sofar, we consider a particular class of sys-
tems of conservation laws where the closure equations are such that fluxes are linear
functions of the variational derivatives of the Hamiltonian functional. First recall the
general definition of the variational derivative of a functional H(α) with respect to
the differential form α ∈ �p(Z) (generalizing the definition given before).

Definition 4.6. Consider a density function H : �p(Z) × Z → �n(Z) where p ∈
{1, . . . , n}, and denote by H := ∫

Z
H ∈ R the associated functional. Then the

uniquely defined differential form δH
δα

∈ �n−p(Z) which satisfies for all �α ∈ �p(Z)

and ε ∈ R

H(α + ε�α) =
∫

Z

H (α) + ε

∫
Z

[
δH

δα
∧ �α

]
+ O

(
ε2)

is called the variational derivative of H with respect to α ∈ �p(Z).
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Definition 4.7. Systems of two conservation laws with canonical interdomain cou-
pling are systems involving a pair of conserved quantities αp ∈ �p(Z) and αq ∈
�q(Z), differential forms on the n-dimensional spatial domain Z of degree p and q re-
spectively, satisfying p+q = n+1 (’complementarity of degrees’). The closure equa-
tions generated by a Hamiltonian density function H : �p(Z)×�q(Z)×Z → �n(Z)

resulting in the Hamiltonian H := ∫
Z

H ∈ R are given by(
βp

βq

)
= ε

(
0 (−1)r

1 0

)( δH
δαp

δH
δαq

)
(70)

where r = pq+1, ε ∈ {−1, +1}, depending on the sign convention of the considered
physical domain.

Define the vector of flow variables to be the time-variation of the state, and the
effort variables to be the variational derivatives(

fp

fq

)
=
(

∂αp

∂t

∂αq

∂t

)
,

(
ep

eq

)
=
(

δH
δαp

δH
δαq

)
. (71)

Their product equals again the time-variation of the Hamiltonian

dH

dt
=
∫

Z

(ep ∧ fp + eq ∧ fq). (72)

Using the conservation laws (4.5) for gi = 0, the closure relations (70) and the
properties of the exterior derivative d and Stokes’ theorem, one obtains

dH

dt
=
∫

Z

εβq ∧ (−dβp) + (−1)rβp ∧ ε(−dβq)

= −ε

∫
Z

βq ∧ dβp + (−1)qβq ∧ dβp = −ε

∫
∂Z

βq ∧ βp.

(73)

Finally, as before we define the power-conjugated pair of flow and effort variables
on the boundary as the restriction of the flux variables to the boundary ∂Z of the
domain Z: (

f∂

e∂

)
=
(

βq |∂Z

βp|∂Z

)
. (74)

On the total space of power-conjugated variables, that is, the differential forms (fp, ep)

and (fq, eq) on the domain Z and the differential forms (f∂, e∂) defined on the bound-
ary ∂Z, one defines an interconnection structure by Eqn. (74) together with(

fq

fp

)
= ε

(
0 (−1)r d

d 0

)(
eq

ep

)
. (75)

This interconnection can be formalized as a special type of Dirac structure, called
Stokes–Dirac structure, leading to the definition of distributed-parameter port-Hamil-
tonian systems [35].
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5. Concluding remarks

We have surveyed some of the recently developed theory of port-Hamiltonian systems;
for further applications towards modeling, analysis, simulation and control we refer
to the literature cited below.

From the geometric point of view many questions regarding port-Hamiltonian
systems are waiting to be investigated. A theory of symmetry and reduction of port-
Hamiltonian systems has been explored in [29], [1], while some questions concern-
ing integrability of Dirac structures have been studied in [7]. A main question for
distributed-parameter port-Hamiltonian systems concerns the relation with variational
calculus.
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Passive linear discrete time-invariant systems

Olof J. Staffans∗

Abstract. We begin by discussing linear discrete time-invariant i/s/o (input/state/output) systems
that satisfy certain ‘energy’ inequalities. These inequalities involve a quadratic storage function
in the state space induced by a positive self-adjoint operatorH that may be unbounded and have
an unbounded inverse, and also a quadratic supply rate in the combined i/o (input/output) space.
The three most commonly studied classes of supply rates are called scattering, impedance, and
transmission. Although these three classes resemble each other, we show that there are still
significant differences. We then present a new class of s/s (state/signal) systems which have a
Hilbert state space and a Kreı̆n signal space. The state space is used to store relevant information
about the past evolution of the system, and the signal space is used to describe interactions
with the surrounding world. A s/s system resembles an i/s/o system apart from the fact that
inputs and outputs are not separated from each other. By decomposing the signal space into
a direct sum of an input space and an output space one gets a standard i/s/o system, provided
the decomposition is admissible, and different i/o decompositions lead to different i/o supply
rates (for example of scattering, impedance, or transmission type). In the case of non-admissible
decompositions we obtain right and left affine representations, both of the s/s system itself, and
of the corresponding transfer function. In particular, in the case of a passive system we obtain
right and left coprime representations of the generalized transfer functions corresponding to
nonadmissible decompositions of the signal space, and we end up with transfer functions which
are, e.g., generalized Potapov or Nevanlinna class functions.

Mathematics Subject Classification (2000). 93A05, 47A48, 47A67, 47B50.

Keywords. Passive, storage function, supply rate, scattering, impedance, transmission, in-
put/state/output, state/signal, Schur function, Carathéodory function, Nevanlinna function, Pota-
pov function, behavior.

1. H -passive discrete time i/s/o systems

The evolution of a linear discrete time-invariant i/s/o (input/state/output) system
�i/s/o with a Hilbert input space U, a Hilbert state space X, and a Hilbert output
space Y is described by the system of equations

x(n+ 1) = Ax(n)+ Bu(n),

y(n) = Cx(n)+Du(n), n ∈ Z
+ = {0, 1, 2, . . .},

x(0) = x0,

(1.1)

∗This article is based on recent joint work with Prof. Damir Arov [AS05], [AS06a], [AS06b], [AS06c].
Thank you, Dima, for everything that I have learned from you!

Proceedings of the International Congress
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© 2006 European Mathematical Society
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where the initial statex0 ∈ Xmay be chosen arbitrarily andA : X → X,B : U → X,
C : X → Y, and D : U → Y are bounded linear operators. Equivalently,[

x(n+ 1)
y(n)

]
=

[
A B

C D

] [
x(n)

u(n)

]
, n ∈ Z

+, x(0) = x0, (1.2)

where
[
A B
C D

] ∈ B
([

X
U

] ;
[

X
Y

])
.1 We call u = {u(n)}∞n=0 the input sequence,

x = {x(n)}∞n=0 the state trajectory, and y = {y(n)}∞n=0 the output sequence, and
we refer to the triple (u, x, y) as a trajectory of �i/s/o. The operators appearing in
(1.1) and (1.2) are usually called as follows: A is the main operator, B is the control
operator, C is the observation operator, and D is the feedthrough operator. The
transfer function or characteristic function D of this system is given by2

D(z) = zC(1X − zA)−1B +D, z ∈ �(A),
where�(A) is the set of points z ∈ C for which 1X − zA has a bounded inverse, plus
the point at infinity if A has a bounded inverse. Note that D is analytic on�(A), and
that D = D(0). We shall denote the above system by �i/s/o = ([

A B
C D

] ; U,X,Y
)
.

Since all the systems in this paper will be linear and time-invariant and have a discrete
time variable we shall in the sequel omit the words “linear discrete time-invariant”
and refer to a system of the above type by simply calling it an i/s/o system.

The i/s/o system �i/s/o is controllable if the sets of all states x(n), n ≥ 1, which
appear in some trajectory (u, x, y) of�i/s/o with x0 = 0 (i.e., an externally generated
trajectory) is dense in X. The system �i/s/o is observable if there do not exist any
nontrivial trajectories (u, x, y)where both u and y are identically zero. Finally,�i/s/o
is minimal if �i/s/o is both controllable and observable.

In this work we shall primarily be concerned with i/s/o systems which are passive
or even conservative. To define these notions we first introduce the notions of a storage
function EH which represents the (internal) energy of the state, and a supply rate j
which describes the interchange of energy between the system and its surroundings.
In the classical case the storage (or Lyapunov) function EH is bounded, and it is
given by EH(x) = 〈x,Hx〉X, where H is a bounded positive self-adjoint operator
on X (positivity of H means that 〈x,Hx〉X > 0 for all x 	= 0). However, we shall
also consider unbounded storage functions induced by some (possibly unbounded)
positive self-adjoint operator H on X. In this case we let

√
H be the positive self-

adjoint square root of H , and define the storage function EH by

EH(x) = ‖√Hx‖2
X, x ∈ D(

√
H). (1.3)

Clearly, this is equivalent to the earlier definition of EH ifH is bounded. The supply
rate j will always be a bounded (indefinite) self-adjoint quadratic form on Y ⊕ U,

1Here
[
X
U

]
is the cartesian product of X and U, and B(U; Y) is the set of bounded linear operators from U

to Y.
21X is the identity operator in X.
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i.e., it can be written in the form

j (u, y) =
〈[
y

u

]
, J

[
y

u

]〉
Y⊕U

, (1.4)

where J =
[
J11 J12
J21 J22

]
is a bounded self-adjoint operator in Y ⊕ U. For simplicity we

throughout require J to have a bounded inverse. Often J is taken to be a signature
operator (both self-adjoint and unitary), so that J = J ∗ = J−1. In the sequel
we shall always use one and the same supply rate j for a given system �i/s/o and
include this supply rate in the notation of the system, thus denoting the system by
�i/s/o = ([

A B
C D

] ; U,X,Y; j) whenever the supply rate is important.

Definition 1.1. The i/s/o system �i/s/o = ([
A B
C D

] ; U,X,Y; j) is forward H -pas-

sive, where H is a positive self-adjoint operator in X, if x(n) ∈ D(
√
H) and

‖√Hx(n+ 1)‖2
X − ‖√Hx(n)‖2

X ≤ j (u(n), y(n)), n ∈ Z
+, (1.5)

for every trajectory (u, x, y) of �i/s/o with x0 ∈ D(
√
H). If the above inequality

holds as an equality then �i/s/o is forward H -conservative.

It is not difficult to see that �i/s/o is forward H -passive if and only if3 H > 0
is a solution of the (forward) generalized i/s/o KYP (Kalman–Yakubovich–Popov)
inequality4

‖√H(Ax + Bu)‖2
X − ‖√Hx‖2

X ≤ j (u, Cx +Du), x ∈ D(
√
H), u ∈ U, (1.6)

and that �i/s/o is forward H -conservative if and only if H > 0 is a solution of the
corresponding equality. This inequality is named after Kalman [Kal63], Yakubovich
[Yak62], and Popov [Pop61] (who at that time restricted themselves to the finite-
dimensional case). There is a rich literature on the finite-dimensional version of
the KYP inequality and the corresponding equality; see, e.g., [PAJ91], [IW93] and
[LR95], and the references mentioned there. In the seventies the classical results on the
KYP inequalities were extended to infinite-dimensional systems by V. A.Yakubovich
and his students and collaborators (see [Yak74], [Yak75], and [LY76] and the refer-
ences listed there). There is now also a rich literature on this infinite-dimensional
case; see, e.g., the discussion in [Pan99] and the references cited there. However,
until recently it was assumed throughout that either H itself is bounded or H−1 is
bounded. The first study of this inequality which permits both H and H−1 to be
unbounded was done by Arov, Kaashoek and Pik in [AKP05].

Above we have defined forward H -passivity and forward H -conservativity. The
corresponding backward notions are defined by means of the adjoint i/s/o system

3The notation H > 0 means that H is a (possibly unbounded) self-adjoint operator satisfying 〈x,Hx〉X > 0
for all nonzero x ∈ D(H).

4In particular, in order for the first term in this inequality to be well-defined we require A to map D(
√
H)

into itself and B to map U into D(
√
H).
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�∗
i/s/o = ([

A∗ C∗
B∗ D∗

] ; Y,X,U; j∗
)

whose trajectories (y∗, x∗, u∗) satisfy the system
of equations

x∗(n+ 1) = A∗x∗(n)+ C∗y∗(n),
u∗(n) = B∗x∗(n)+D∗y∗(n), n ∈ Z

+,
x∗(0) = x∗0.

(1.7)

Note that this system has the same state space X, but the input and output have been
interchanged, so that Y is the input space and U is the output space. The appropriate
storage function and supply rates for the adjoint system�∗

i/s/o differ from those of the

primal system�i/s/o: H is replaced byH−1, and the primal supply rate j is replaced
by the dual supply rate

j∗(y∗, u∗) =
〈[
u∗
y∗

]
, J∗

[
u∗
y∗

]〉
U⊕Y

, (1.8)

where

J∗ =
[

0 −1U

1Y 0

]
J−1

[
0 −1Y

1U 0

]
. (1.9)

Definition 1.2. Let �i/s/o = ([
A B
C D

] ; U,X,Y; j) be an i/s/o system, and let H be
a positive self-adjoint operator in X.

(i) �i/s/o is backward H -passive if the adjoint system �∗
i/s/o is forward H−1-

passive.

(ii) �i/s/o is backwardH -conservative if the adjoint system�∗
i/s/o is forwardH−1-

conservative.

(iii) �i/s/o is H -passive if it is both forward and backward H -passive.

(iv) �i/s/o is H -conservative if it is both forward and backward H -conservative.

(v) By passive or conservative (with or without the attributes “forward” or “back-
ward”) we mean 1X-passive or 1X-conservative, respectively.

The generalized KYP inequality for the adjoint i/s/o system �∗
i/s/o with storage

function EH−1 is given by5

‖H−1/2(A∗x∗ + C∗y∗)‖2
X − ‖H−1/2x∗‖2

X ≤ j∗(y∗, B∗x∗ +D∗y∗),
x∗ ∈ (√

H
)
, y∗ ∈ Y.

(1.10)

Thus, �i/s/o is backward H -passive if and only if H is a solution of (1.10), and
�i/s/o is backwardH -conservative if and only ifH is a solution of the corresponding
equality.

5In particular, in order for the first term in this inequality to be well-defined we require A∗ to map R(
√
H)

into itself and C∗ to map Y into R(
√
H).
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2. Scattering, impedance and transmission supply rates

The three most common supply rates are the following:

(i) The scattering supply rate jsca(u, y) = −〈y, y〉Y + 〈u, u〉U with signature

operator Jsca =
[ −1Y 0

0 1U

]
. The signature operator of the dual supply rate is

Jsca∗ =
[ −1U 0

0 1Y

]
.

(ii) The impedance supply rate jimp(u, y) = 2�〈y,�u〉U with signature operator
Jimp = [

0 �
�∗ 0

]
, where� is a unitary operator U → Y. The signature operator

of the dual supply rate is Jimp∗ = [
0 �∗
� 0

]
.

(iii) The transmission supply rate jtra(u, y) = −〈y, JYy〉Y + 〈u, JUu〉U with sig-

nature operator Jtra =
[ −JY 0

0 JU

]
, where JY and JU are signature operators

in Y and U, respectively. The signature operator of the dual supply rate is

Jtra∗ =
[ −JU 0

0 JY

]
.

In the sequel when we talk about scattering H -passive or impedance H -conser-
vative, etc., we mean that the supply rate is of the corresponding type. It turns out
that although Definition 1.1 and 1.2 can be applied to all three types of supply rates,
these three cases still differ significantly from each other.

2.1. Scattering supply rate. In the case of scattering supply rate forward H -pas-
sivity is equivalent to backward H -passivity, hence to passivity. This is easy to see
in the case where H = 1X: the system �i/s/o = ([

A B
C D

] ; U,X,Y; jsca
)

is forward
passive if and only if the operator

[
A B
C D

]
is a contraction, which is true if and only

if its adjoint
[
A∗ C∗
B∗ D∗

]
is a contraction, which is true if and only if the adjoint system

�∗
i/s/o = ([

A∗ C∗
B∗ D∗

] ; U,X,Y; jsca∗
)

is forward passive. The case whereH is bounded
and has a bounded inverse is almost as easy, and the general case is proved in [AKP05,
Proposition 4.6].

The existence of an operator H > 0 such that �i/s/o is scattering H -passive is
related to the properties of the transfer function�i/s/o. To formulate this result we first
recall some definitions. The Schur class S(U,Y; D) is the unit ball inH∞(U,Y,D),
i.e., each function in S(U,Y; D) is an analytic function on the open unit disk D =
{z ∈ C | |z| < 1} whose values are contractions in B(U,Y). The restricted Schur
class S(U,Y;�), where � ⊂ D, contains all functions θ which are restrictions to �
of some function in S(U,Y; D). In other words, θ ∈ S(U,Y;�) if the (Nevanlinna–
Pick) extension (or interpolation) problem with the (possibly infinite) set of data points
(z, θ(z)), z ∈ �, has a solution in S(U,Y; D). It is known that this problem has a
solution if and only if the kernel

Kθ
sca(z, ζ ) = 1Y − θ(z)θ(ζ )∗

1 − zζ
, z, ζ ∈ �,
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is nonnegative definite on �×�, or equivalently, if and only if the kernel

Kθ∗
sca(z, ζ ) = 1U − θ(ζ )∗θ(z)

1 − ζz
, z, ζ ∈ �,

is nonnegative definite on�×� (see [RR82]). We shall here be interested in the case
where � is an open subset of D, which implies that the solution of this Nevanlinna–
Pick extension problem is unique (if it exists).

Theorem 2.1. Let�i/s/o = ([
A B
C D

] ; U,X,Y; jsca
)

be an i/s/o system with scattering
supply rate and transfer function D, and let �0(A) be the connected component of
�(A) ∩ D which contains the origin.

(i) If �i/s/o is forward H -passive for some H > 0, then �i/s/o is H -passive and
D|�0(A) ∈ S(U,Y;�0(A)).

(ii) Conversely, if �i/s/o is minimal and D|�0(A) ∈ S(U,Y;�0(A)), then �i/s/o
is H -passive for some H > 0.

In statement (ii) it is actually possible to choose the operator H to satisfy an
additional minimality requirement. We shall return to this question in Theorem 3.5.

2.2. Impedance supply rate. Also in the case of impedance supply rate forward
H -passivity is equivalent to backward H -passivity, hence to passivity. This is well
known in the case where H = 1X (see, e.g., [Aro79a]). One way to prove this is to
reduce the impedance case to the scattering case by means of the following simple
transformation.

Suppose that �i/s/o = ([
A B
C D

] ; U,X,Y; jimp
)

is a forward impedance H -pas-
sive system with signature operator Jimp = [

0 �
�∗ 0

]
. Let (u, x, y) be a trajectory

of �i/s/o. We define a new input u× by u× = 1√
2
(u + �∗y) and a new output

y× by y× = 1√
2
(�u − y), after which we solve (1.2) for x and y× in terms of x0

and u×. It turns out that for this to be possible we need � + D to have a bounded
inverse. However, this is always the case, since (1.6) (with x = 0) implies that
�∗D + D∗� ≥ 0. A direct computation shows that (y×, x, u×) is a trajectory of

another system�×
i/s/o =

([
A× B×
C× D×

]
; U,X,Y

)
, called the external Cayley transform

of �i/s/o, whose coefficients are given by

A× = A− B(� +D)−1C, B× = √
2B(� +D)−1�,

C× = −√
2�(� +D)−1C, D× = (� −D)(� +D)−1�.

(2.1)

The transfer functions of the two systems are connected by

D×(z) = (� − D(z))(� + D(z))−1�, z ∈ �(A) ∩�(A×). (2.2)
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The external Cayley transform is its own inverse in the sense that�+D× = 2�(�+
D)−1� always has a bounded inverse, and if we apply the external Cayley transform
to the system �×

i/s/o, then we recover the original system �i/s/o.
The main reason for defining the external Cayley transform in the way that we

did above is that it ‘preserves the energy exchange’ in the sense that jimp(u, y) =
jsca(y

×, u×). This immediately implies that �×
i/s/o is forward scattering H -passive

whenever �i/s/o is forward impedance H -passive.6 According to the discussion in
Section 2.1, forward scatteringH -passivity of�×

i/s/o is equivalent to backward scatter-

ing H -passivity of �×
i/s/o, and this in turn is equivalent to the backward (impedance)

H -passivity of �i/s/o. Thus, we get the desired conclusion, namely that forward
impedance H -passivity implies backward impedance H -passivity, hence impedance
H -passivity.

The same argument can be used to convert all the results mentioned in Section 2.1
into an impedance setting. For simplicity we below take Y = U and � = 1U (this
amounts to replacing the output sequence y with values in Y by the new output se-
quence �∗y with values in U)). The Carathéodory class C(U; D) (also called the
Carathéodory–Nevanlinna class, or Nevanlinna class, or Weyl class, or Titchmarsh–
Weyl class, etc.) consists of all analytic B(U)-valued functionsψ on D with nonneg-
ative ‘real part’, i.e., ψ(z) + ψ(z)∗ ≥ 0 for all z ∈ D. The restricted Carathéodory
class C(U;�), where � ⊂ D, contains all functions θ which are restrictions to �
of some function in C(U; D). In other words, θ ∈ C(U;�) if the extension prob-
lem with the set of data points (z, θ(z)), z ∈ �, has a solution in C(U;�). This is
equivalent to the requirement that the kernel

K
ψ
imp(z, ζ ) = ψ(z)+ ψ(ζ )∗

1 − zζ
, z, ζ ∈ �,

is nonnegative definite on�×� (this can be proved by reducing the impedance case
to the scattering case as explained above).

Theorem 2.2. Let �i/s/o = ([
A B
C D

] ; U,X,U; jimp
)

be an i/s/o system with impe-

dance supply rate, signature operator Jimp =
[

0 1U
1U 0

]
, and transfer function D. Let

�0(A) be the connected component of �(A) ∩ D which contains the origin.

(i) If �i/s/o is forward H -passive for some H > 0, then �i/s/o is H -passive and
D|�0(A) ∈ C(U,Y;�0(A)).

(ii) Conversely, if �i/s/o is minimal and D|�0(A) ∈ C(U,Y;�0(A)), then �i/s/o
is H -passive for some H > 0.

This theorem follows from Theorem 2.1 as explained above.

6It is also true that�×
i/s/o is forward impedanceH -passive if�i/s/o is forward scatteringH -passive, provided

(� +D) has a bounded inverse so that �×
i/s/o exists.
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Above we have reduced the impedance passive case to the scattering passive case.
Historically the development went in the opposite direction: the impedance version
is older than the scattering version. It is related to Neumark’s dilation theorem for
positive operator-valued measures (see [Bro71, Appendix 1]). In many classical and
also in some recent works (especially those where the functions are defined on a half-
plane instead of the unit disk) the impedance version is used as ‘reference system’
from which scattering and other results are derived (see, e.g., [Bro78]). Thus, one
easily arrives at the (in my opinion incorrect) conclusion that it does not really matter
which one of the two classes is used as the basic corner stone on which the theory is
built. However, there is a significant difference between the two classes: the external
Cayley transformation that converts one of the classes into the other is well-defined
for every impedanceH -passive system, but not for every scatteringH -passive system.
In other words, the external Cayley transform maps the class of impedanceH -passive
systems into but not onto the class of scatteringH -passive systems (even if we restrict
the input and output dimensions of the scattering system to be the same).

What happens if we try to apply the external Cayley transform to a scattering
H -passive system for which this transform is not defined (i.e.,�+D is not invertible)?
In this case the formal transfer function of the resulting system may take its values in
the space of closed unbounded operators in U, and it may even be multi-valued. To be
able to study this class of ‘generalized Carathéodory functions’ we need some other
more general type of linear systems than the i/s/o systems we have considered so far.
This was one of the motivations for the introduction of the notion of a state/signal
system in [AS05], to be discussed in Section 3.

2.3. Transmission supply rate. In the case of transmission supply rate forward
H -passivity is no longer equivalent to backward H -passivity. For simplicity, let us
takeH to be the identity. Arguing in the same way as in the scattering case we find that
�i/s/o = ([

A B
C D

] ; U,X,Y; jtra
)

is forward (transmission) passive if and only if the
operator

[
A B
C D

]
is a contraction7 between two Kreı̆n spaces, namely from the space[

X
U

]
with the signature operator

[
1X 0
0 JU

]
to the space

[
X
Y

]
with the signature opera-

tor
[

1X 0
0 JY

]
. In the same way we find that �i/s/o is backward (transmission) passive

if
[
A B
C D

]∗ is a contraction from the space
[

X
Y

]
with the signature operator

[
1X 0
0 JY

]
to the space

[
X
U

]
with the signature operator

[
1X 0
0 JU

]
. However, in a Kreı̆n space

setting the contractivity of an operator does not imply that the adjoint of this operator
is contractive, and hence forward transmission passivity does not imply backward
transmission passivity without any further restrictions on the system. One neces-
sary condition for the system �i/s/o to be both forward and backward (transmission)
H -passive is that the dimensions of the negative eigenspaces of JU and JY are the

7An operator A ∈ B(U; Y), where U and Y are Kreı̆n spaces, is a contraction if [Au,Au]Y ≤ [u, u]U for
all u ∈ U.
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same. If these dimensions are the same and finite, then it is true that forward H -
passivity is equivalent to backward H -passivity, hence to passivity. To prove these
statements one can use the following transformation that maps the transmission supply
rate into a scattering supply rate.

Suppose that �i/s/o = ([
A B
C D

] ; U,X,Y; jtra
)

is a forward transmission H -

passive system with signature operator Jtra =
[
JY 0
0 JY

]
. We begin by splitting the

output space Y into the orthogonal direct sum Y = −Y− [�] Y+, where Y− is the
negative and Y+ is the positive eigenspace of JY. In the same way we split the input
space U into U = −U− [�] U+, and we split the operator

[
A B
C D

]
accordingly into

[
A B

C D

]
=

⎡
⎢⎣
A B1 B1

C1 D11 D12
C2 D21 D22

⎤
⎥⎦ .

Let (u, x, y) be a trajectory of�i/s/o, and split y and u into y = [ y−
y+

]
and u = [ u−

u+
]
,

so that y− is a sequence in Y−, etc. We define a new input u� by u� = [ y−
u+

]
and

a new output y� by y� = [ u−
y+

]
, so that u� is a sequence in U� = Y− ⊕ U+ and

y� is a sequence in Y� = U− ⊕ Y+. We then solve (1.2) for x and y� in terms of
x0 and u�. It turns out that for this to be possible we need D11 to have a bounded
inverse. The forward H -passivity of �i/s/o implies that D11 is injective and has a
closed range, but it need not be surjective. However, let us suppose that D11 has a
bounded inverse. Then a direct computation shows that (u�, x, y�) is a trajectory of

another system ��

i/s/o =
([

A� B�

C� D�

] ; U�,X,Y�

)
, called the Potapov–Ginzburg

(or chain scattering) transform of �i/s/o, whose coefficients are given by

[
A� B�

C� D�

]
=

⎡
⎢⎣
A B1 B2

0 1Y− 0
C2 D21 D22

⎤
⎥⎦

⎡
⎢⎣

1X 0 0

C1 D11 D12
0 0 1U+

⎤
⎥⎦

−1

=
⎡
⎢⎣

1X −B1 0

0 −D11 0
0 −D21 1Y+

⎤
⎥⎦

−1 ⎡
⎢⎣
A 0 B2

C1 −1U− D12
C2 0 D22

⎤
⎥⎦ .

(2.3)

The transfer functions of the two systems are connected by[
D�

11(z) D�

12(z)

D�

21(z) D�

22(z)

]
=

[
(D11(z))

−1 −(D11(z))
−1D12(z)

D21(z)(D11(z))
−1 D22(z)− D21(z)(D11(z))

−1D12(z)

]
,

z ∈ �(A) ∩�(
A�

)
. (2.4)

The Potapov–Ginzburg transform is its own inverse in the sense that D�

11 = D−1
11

always has a bounded inverse, and if we apply the Potapov–Ginzburg transform to
the system ��

i/s/o, then we recover the original system �i/s/o.
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The Potapov–Ginzburg transform has been designed to ‘preserve the energy ex-
change’ in the sense that jtra(u, y) = jsca(u

�, y�). This immediately implies that
��

i/s/o is forward scattering H -passive whenever �i/s/o is forward transmission H -
passive, provided that D11 is invertible so that the transform is defined. As in the
impedance case we conclude that the forward transmission H -passive system �i/s/o
is also backwardH -passive, i.e.,H -passive, ifD11 has a bounded inverse (whereD11
is the part of the feedthrough operator D that maps the negative part of the input
space U into the negative part of the output space Y). The converse is also true: if
�i/s/o is (transmission) H -passive, then D11 has a bounded inverse. Thus, a forward
transmission H -passive system �i/s/o is H -passive if and only if D11 has a bounded
inverse, or equivalently, if and only if the Potapov–Ginzburg transform of �i/s/o is
defined.

The analogue of Theorems 2.1 and 2.2 is more complicated to formulate than in
the scattering and impedance cases. In particular, it is not immediately clear how to
define the appropriate class of transfer functions. Above we first defined the Schur
class S(U,Y; D) and the Carathéodory class C(U; D) in the full unit disk, and then
restricted these classes of functions to some subset � ⊂ D. Here it is easier to
proceed in the opposite direction, and to directly define the restricted Potapov class
P (U,Y;�) for some � ⊂ D. We now interpret U and Y as Kreı̆n spaces, i.e., we
replace the original Hilbert space inner products in Y and U by the Kreı̆n space inner
products

[y, y′]Y = 〈y, JYy
′〉Y, [u, u′]U = 〈u, JUu

′〉U.
In the sequel we compute all adjoints with respect to these Kreı̆n space inner products,
and we also interpret positivity with respect to these inner products (so that, e.g., an
operator D is nonnegative definite in U if [u,Du]U ≥ 0 for all u ∈ U). A function
ϕ : � → B(U; Y) belongs to P (U,Y;�) if both the kernels

K
ϕ
tra(z, ζ ) = 1Y − ϕ(z)ϕ(ζ )∗

1 − zζ
, z, ζ ∈ �,

K
ϕ∗
tra (z, ζ ) = 1U − ϕ∗(ζ )ϕ(z)

1 − ζz
, z, ζ ∈ �,

(2.5)

are nonnegative definite on �×�.

Theorem 2.3. Let�i/s/o = ([
A B
C D

] ; U,X,Y; jtra
)

be an i/s/o system with transmis-

sion supply rate, signature operator Jtra =
[
JY 0
0 JU

]
, and transfer function D. Let

�0(A) be the connected component of �(A) ∩ D which contains the origin.

(i) If �i/s/o is H -passive for some H > 0, then D|�0(A) ∈ P (U,Y;�0(A)).

(ii) Conversely, if �i/s/o is minimal and D|�0(A) ∈ P (U,Y;�0(A)), then �i/s/o
is H -passive for some H > 0.



Passive linear discrete time-invariant systems 1377

This theorem follows from Theorem 2.1 via the Potapov–Ginzburg transforma-
tion. Note that (2.5) with z = ζ = 0 implies that both D and D∗ are Kreı̆n space
contractions, so thatD11 is invertible and the Potapov–Ginzburg transform is defined.

From what we have said so far it seems to follow that the transmission case is not
that different from the scattering and impedances cases. However, this impression is
not correct. One significant difference is that the Potapov–Ginzburg transformation is
not always defined for a forward transmission H -passive i/s/o system. Another even
more serious problem is that a function in the Potapov class may have singularities
inside the unit disk D, which means that in the definition of the (full) Potapov class
P (U,Y; D) we must take into account that the function in this class need not be
defined everywhere on D. If the negative dimensions of U and Y are the same and
finite, then this is not a serious problem, because in this case it is possible to define
the Potapov class P (U,Y; D) to be the set of all meromorphic functions on D whose
values in B(U; Y) are contractive with respect to the Kreı̆n space inner products in U
and Y at all points where the functions are defined. However, in the general case the
set of singularities of a function in P (U,Y; D)may be uncountable, and the domain
of definition of a function in P (U,Y; D) need not even be connected. For this reason
we prefer to define P (U,Y; D) in a different way. We say that a function ϕ belongs to
the (full) Potapov class P (U,Y; D) if it belongs to P (U,Y;�)where the domain�
is maximal in the sense that the function ϕ does not have an extension to any larger
domain �′ ⊂ D with the property that the two kernels in (2.5) are still nonnegative
on �′ × �′. The existence of such a maximal domain is proved in [AS06b]. This
maximal domain need not be connected, but it is still true that if we start from an open
set� ⊂ D, then the values of ϕ on� define the extension of ϕ to its maximal domain
uniquely. Moreover, as shown in [AS06b], if ϕ ∈ P (U,Y; D), then ϕ does not have
an analytic extension to any boundary point of its domain contained in the open unit
disk D.

Taking a closer look at Theorem 2.3 we observe that it puts one artificial restriction
on the transfer function D, namely that the domain of definition must contain the
origin. Not every function in the Potapov class is defined at the origin, so the class of
transfer functions covered by Theorem 2.3 is not the full Potapov class. In addition it
is possible to extend the Potapov class so that the values of the functions in this class
may be unbounded, even multivalued, operators (as in the impedance case) by taking
the formal Potapov transforms of functions in S(U,Y,D). Thus, we again see the
need of a more general class of systems than the i/s/o class that we have discussed up
to now.

3. State/signal systems

It is possible to develop a linear systems theory where the differences between the
three different types of supply rates, namely scattering, impedance, and transmission,
more or less disappear. Both the basic transforms that we have presented above,
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namely the external Cayley transform which is used to pass from an impedance H -
passive system to a scatteringH -passive system and back, and the Potapov–Ginzburg
transform that is used to pass from a transmission H -passive system to a scattering
H -passive system and back, can be regarded as simple ‘changes of coordinates in

the signal space W =
[

Y
U

]
’. The main idea is not to distinguish between the input

sequence u and the output sequence y, but to simply regard these as components of
the general ‘signal sequence’w = [

y
u

]
.

We start by combining the input space U and the output space Y into one signal

space W =
[

Y
U

]
. This signal space has a natural Kreı̆n space8 inner product obtained

from the supply rate j in (1.4), namely[[
y

u

]
,

[
y′
u′

]]
W

=
〈[
y

u

]
, J

[
y′
u′

]〉
Y⊕U

.

If we combine the input sequenceu and the output sequence y into one signal sequence
w = [

y
u

]
, then the basic i/s/o relation (1.1) can be rewritten in the form

⎡
⎣x(n+ 1)

x(n)

w(n)

⎤
⎦ ∈ V, n ∈ Z

+ = {0, 1, 2, . . .}, x(0) = x0, (3.1)

where V is the subspace of K :=
[

X
X
W

]
given by

V =
{[

z
x
w

]
∈

[
X
X
W

] ∣∣∣ z = Ax + Bu,

y = Cx +Du,
w = [

y
u

]
, x ∈ X, u ∈ U

}
. (3.2)

It is not difficult to show that the subspace V obtained in this way has the following
four properties:

(i) V is closed in K.

(ii) For every x ∈ X there is some
[
z
w

] ∈ [
X
W

]
such that

[
z
x
w

]
∈ V .

(iii) If
[
z
0
0

]
∈ V , then z = 0.

(iv) The set
{[

x
w

] ∈ [
X
W

] ∣∣ [
z
x
w

]
∈ V for some z ∈ X

}
is closed in

[
X
W

]
.

Definition 3.1. A triple � = (V ; X,W), where the (internal) state space X is a
Hilbert space and the (external) signal space W is a Kreı̆n space and V is a subspace

8Both [BS05] and [AS06a] contain short sections on the geometry of a Kreı̆n space. For more detailed
treatments we refer the reader to one of the books [ADRdS97], [AI89] and [Bog74].
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of the product space K :=
[

X
X
W

]
is called a s/s (state/signal) node if it has properties

(i)–(iv) listed above. We interpret K as a Kreı̆n space with the inner product[[
z
x
w

]
,

[
z′
x′
w′

]]
K

= −〈z, z′〉X + 〈x, x′〉X + [w,w′]W ,
[
z
x
w

]
,

[
z′
x′
w′

]
∈ K, (3.3)

and we call K the node space and V the generating subspace.

By a trajectory of � we mean a pair of sequences (x,w) satisfying (3.1). We
call x the state component and w the signal component of this trajectory. By the s/s
system � we mean the s/s node � together with all its trajectories.

The conditions (i)–(iv) above have natural interpretations in terms of the trajec-
tories of �: for each x0 ∈ X condition (ii) gives forward existence of at least one
trajectory (x,w) of� with x(0) = x0. Condition (iii) implies that a trajectory (x,w)
is determined uniquely by x0 and w, and conditions (i) and (iv) imply that the signal
part x depends continuously in XZ

+
on x0 ∈ X and w ∈ WZ

+
.

A s/s system � is controllable if the set of all states x(n), n ≥ 1, which appear in
some trajectory (x,w) of� with x(0) = 0 (i.e., an externally generated trajectory) is
dense in X. The system� is observable if there do not exist any nontrivial trajectories
(x,w) where the signal component w is identically zero. Finally, � is minimal if �
is both controllable and observable.

Above we explained how to interpret an i/s/o system �i/s/o as a s/s system. Con-
versely, from every s/s system� it is possible to create not only one, but infinitely many
i/s/o systems. The representation (3.2) is characterized by the fact that it is a graph
representation of V over

[
X
U

]
where U is one of the two components in a direct sum

decomposition of W = Y � U (not necessarily orthogonal) of W . Indeed, splitting
w into w = [

y
u

]
and reordering the components we find that (3.2) is equivalent to

V =
{[

z
y
x
u

]
∈

[
X
Y
X
U

] ∣∣∣∣
[
z

y

]
=

[
A B

C D

] [
x

u

]
,

[
x

u

]
∈

[
X
U

]}
. (3.4)

As shown in [AS05], the generating subspace of every s/s system � has at least one
(hence infinitely many) graph representation of this type. A direct sum decomposition
W = Y � U of W is called an admissible i/o (input/output) decomposition of W
for �, or simply an admissible decomposition, if it leads to a graph representation of
the generating subspace of � described above. From each such graph representation
of V we get an i/s/o system�i/s/o = ([

A B
C D

] ; U,X,Y
)

of �, which we call an i/s/o
representation of �.

The above definitions are taken from [AS05], [AS06a], and [AS06b]. It turns out
that a very large part of the proof of the H -passivity theory covered in Section 2 can
be carried out directly in the s/s setting, rather than applying the same arguments
separately with the scattering, impedance, and transmission supply rates. This leads
to both a simplification and to a unification of the whole theory. Below we present the
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most basic parts of the H -passive s/s theory, and refer the reader to [AS05]–[AS06c]
for details.

Let � = (V ; X,W) be a s/s node. The adjoint �∗ = (V∗; X,W∗) of � (intro-
duced in [AS06a, Section 4]) is another s/s node, with the same state space X as �,
and with the signal space W∗ = −W .9 The generating subspace V∗ of�∗ is given by

V∗ =
{[

x∗
z∗
w∗

] ∣∣∣ [
z∗
x∗
w∗

]
∈ V [⊥]},

where V [⊥] is the orthogonal companion to V with respect to the Kreı̆n space inner
product of K.10 The adjoint system �∗ is determined by the property that

−〈x(n+1), x∗(0)〉X+〈x(0), x∗(n+1)〉X+
n∑
k=0

[w(k),w∗(n−k)]W = 0, n ∈ Z
+,

for all trajectories (x,w) of �.
The following definition is the s/s version of Definitions 1.1 and 1.2.

Definition 3.2. Let H be a positive self-adjoint operator in the Hilbert space X. A
s/s system � is

(i) forward H -passive if x(n) ∈ D(
√
H) and

‖√Hx(n+ 1)‖2
X − ‖√Hx(n)‖2

X ≤ [w(n),w(n)]W , n ∈ Z
+,

for every trajectory (x,w) of � with x(0) ∈ D(
√
H),

(ii) forward H -conservative if the above inequality holds as an equality,

(iii) backward H -passive or H -conservative if �∗ is forward H−1-passive or
H−1-conservative, respectively,

(iv) H -passive or H -conservative if it is both forward and backward H -passive or
H -conservative, respectively,

(v) passive or conservative if it is 1X-passive or 1X-conservative.

To formulate a s/s version of Theorems 2.1, 2.2 and 2.3 we need a s/s analogue of
the transfer function of an i/s/o system. Such an analogue is most easily obtained in the
time domain (as opposed to the frequency domain), and it amounts to the introduction
of a behavior11 on the signal space W . By this we mean a closed right-shift invariant
subspace of the Fréchet space WZ

+
. Thus, in particular, the set W of all sequencesw

9Algebraically −W is the same space as W , but the inner product in −W is obtained from the one in W by
multiplication by the constant factor −1.

10Thus, V [⊥] = {k∗ ∈ K | [k, k∗]K = 0 for all k ∈ V }. Note that V∗ differs from V [⊥] only by the order of
the first two components.

11Our behaviors are what Polderman and Willems call linear time-invariant mainfest behaviors in [PW98,
Definitions 1.3.4, 1.4.1, and 1.4.2]. We refer the reader to this book for further details on behaviors induced by
systems with a finite-dimensional state space and for an account of the extensive literature on this subject.
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that are the signal parts of externally generated trajectories of a given s/s system � is
a behavior. We call this the behavior induced by�, and refer to� as a s/s realization
of W, or, in the case where � is minimal, as a minimal s/s realization of W. A
behavior is realizable if it has a s/s realization.

Two s/s systems �1 and �2 with the same signal space are externally equiv-
alent if they induce the same behavior. This property is related to the notion of
pseudo-similarity. Two s/s systems � = (V ; X,W) and �1 = (V1; X1,W) are
called pseudo-similar if there exists an injective densely defined closed linear opera-
tor R : X → X1 with dense range such that the following conditions hold:

If (x( ·), w( ·)) is a trajectory of� on Z
+ withx(0) ∈ D(R), thenx(n) ∈ D(R)

for all n ∈ Z
+ and (Rx( ·), w( ·)) is a trajectory of �1 on Z

+, and con-
versely, if (x1( ·), w( ·)) is a trajectory of �1 on Z

+ with x1(0) ∈ R(R), then
x1(n) ∈ R(R) for all n ∈ Z

+ and (R−1x1( ·), w( ·)) is a trajectory of� on Z
+.

In particular, if �1 and �2 are pseudo-similar, then they are externally equivalent.
Conversely, if �1 and �2 are minimal and externally equivalent, then they are neces-
sarily pseudo-similar. Moreover, a realizable behavior W on the signal space W has a
minimal s/s realization, which is determined uniquely by W up to pseudo-similarity.
(See [AS05, Section 7] for details.)

The adjoint of the behavior W on W is a behavior W∗ on W∗ defined as the set
of sequences w∗ satisfying

n∑
k=0

[w(k),w∗(n− k)]W = 0, n ∈ Z
+,

for all w ∈ W. If W is induced by �, then W∗ is (realizable and) induced by �∗,
and the adjoint of W∗ is the original behavior W.

The following definition is a s/s analogue of our earlier definitions of the Schur,
Carathéodory, and Potapov classes of transfer functions.

Definition 3.3. A behavior W on W is

(i) forward passive if
n∑
k=0

[w(k),w(k)]W ≥ 0, w ∈ W, n ∈ Z
+,

(ii) backward passive if W∗ is forward passive,

(iii) passive if it is realizable12 and both forward and backward passive.

It is not difficult to see that a s/s system � = (V ; X,W) is forward H -passive if
and only if H > 0 is a solution of the generalized s/s KYP (Kalman–Yakubovich–

12We do not know if the realizability assumption is redundant or not.
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Popov) inequality13

‖√Hz‖2
X − ‖√Hx‖2

X ≤ [w,w]W ,
[
z
x
w

]
∈ V, x ∈ D(

√
H), (3.5)

and that it is forward H -conservative if and only if the above inequality holds as an
equality.

The following proposition is a s/s version of parts (i) of Theorems 2.1, 2.2, and
2.3.

Proposition 3.4. Let W be the behavior induced by a s/s system �.

(i) If � is forward H -passive for some H > 0, then W is forward passive.

(ii) If � is backward H -passive for some H > 0, then W is backward passive.

(iii) If � is forward H1-passive for some H1 > 0 and backward H2-passive for
some H2 > 0, then � is both H1-passive and H2-passive, and W is passive.

The following theorem generalizes parts (ii) of Theorems 2.1, 2.2, and 2.3.

Theorem 3.5. Let W be a passive behavior on W . Then

(i) W has a minimal passive s/s realization.

(ii) Every H -passive realization � of W is pseudo-similar to a passive realiza-
tion �H with pseudo-similarity operator

√
H . The system �H is determined

uniquely by � and H .

(iii) Every minimal realization of W isH -passive for someH > 0, and it is possible
to choose H in such a way that the system �H in (ii) is minimal.

Assertion (ii) can be interpreted in the following way: we can always convert
an H -passive s/s system into a passive one by simply replacing the original norm
‖·‖X in the state space by the new norm ‖x‖H = ‖√Hx‖X, which is finite for all
x ∈ D(

√
H), and then completing D(

√
H) with respect to this new norm.

We shall end this section with a result that says that a suitable subclass of all
operators H > 0 for which a s/s system � is H -passive can be partially ordered.
Here we use the following partial ordering of nonnegative self-adjoint operators on
X: if H1 and H2 are two nonnegative self-adjoint operators on the Hilbert space X,
then we write H1 � H2 whenever D(H

1/2
2 ) ⊂ D(H

1/2
1 ) and ‖H 1/2

1 x‖ ≤ ‖H 1/2
2 x‖

for all x ∈ D(H
1/2
2 ). For bounded nonnegative operators H1 and H2 with D(H2) =

D(H1) = X this ordering coincides with the standard ordering of bounded self-
adjoint operators.

For each s/s system � we denote the set of operators H > 0 for which � is
H -passive by M� , and we let Mmin

� be the set of H ∈ M� for which the system �H
in assertion (ii) of Theorem 3.5 is minimal.

13In particular, in order for the first term in this inequality to be well-defined we require z ∈ D(
√
H)whenever[

z
x
w

]
∈ V and x ∈ D(

√
H).
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Theorem 3.6. Let � be a minimal s/s system with a passive behavior. Then Mmin
�

contains a minimal element H� and a maximal element H•, i.e., H� � H � H• for
every H ∈ Mmin

� .

The two extremal storage functionsEH� andEH• correspond to Willems’[Wil72a],
[Wil72b] available storage and required supply, respectively (there presented in an
i/s/o setting). In the terminology of Arov [Aro79b], [Aro95], [Aro99] (likewise in an
i/s/o setting), �H� is the optimal and �H• is the ∗-optimal realization of W.

4. Scattering, impedance and transmission representations of
s/s systems

The results presented in Section 2 can be recovered from those in Section 3, together
with a number of additional results. This is done by studying different i/s/o represen-
tations of a s/s system. Depending on the admissible i/o decomposition of the signal
space W into an input space U and an output space Y we get different supply rates
(inherited from the Kreı̆n space inner product in W ).

Let � = (V ; X,W) be a s/s system, and decompose W into the direct sum of an
input space U and an output space Y. Furthermore, suppose that this decomposition
is admissible, so that it gives rise to an i/s/o representation�i/s/o of�. In the case of a
fundamental decomposition W = −Y [�]U, where Y and U are Hilbert spaces (i.e.,
−Y is an anti-Hilbert space) and −Y and U are orthogonal in W , the inner product
in W is given by [[

y

u

]
,

[
y′
u′

]]
W

= −〈y, y′〉Y + 〈u, u′〉U,

which leads to a scattering supply rate for the i/s/o representation �i/s/o. In this
case we call �i/s/o an admissible scattering representation of �. In the case of a
(nonorthogonal) Lagrangian decomposition, where both Y and U are Lagrangian14

subspaces of W we get an impedance supply rate and an admissible impedance repre-
sentation of �. Finally, if W = −Y [�] U is an arbitrary orthogonal decomposition
of W (not necessarily fundamental), then we get a transmission supply rate and an
admissible transmission representation of �. Thus, in the s/s setting the external
Cayley transform and the Potapov–Ginzburg transform that we presented in Sec-
tion 2 are simply two different ways at looking at the same s/s system, via different i/o
decompositions of the signal space W into an input space U and an output space Y.

The following proposition is related to the discussions at the beginning of Sec-
tions 2.1 and 2.2.

Proposition 4.1. Let � = (V ; X,W) be a forward H -passive s/s system for some
H > 0. Then the following claims hold.

14A subspace of a Kreı̆n space is Lagrangian if it coincides with its own orthogonal companion.
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(i) � isH -passive if and only if� has an admissible scattering representation, in
which case every fundamental decomposition of W is admissible.

(ii) If � has an admissible impedance representation, then � is H -passive.

The converse of (ii) is not true: there do exist passive s/s systems which do not
have any admissible impedance representation, even if we require the positive and
negative dimensions of W to be the same. EveryH -passive s/s system does have some
admissible transmission representations (for example, every scattering representation
can be interpreted as a transmission representation), but in general there also exist
orthogonal decompositions of the signal space that are not admissible.

One way to prove many of the results listed above is to pass to some particular i/s/o
representation�i/s/o of the s/s system�, to prove the corresponding result for�i/s/o,
and to reinterpret the result for the s/s system �. In many cases the most convenient
choice is to use a scattering representation, corresponding to some admissible funda-
mental decomposition of the signal space. We recall from Proposition 4.1 that if �
is H -passive for some H > 0, then every fundamental decomposition is admissible.
However, this is not the only possible choice. If W = Y�U is an arbitrary admissible
i/o decomposition for �, then � is forward or backward H -passive if and only if the
corresponding i/s/o system �i/s/o is forward or backward H -passive with respect to
the supply rate on Y�U inherited from the inner product [ ·, ·]W . Thus, in the family
of i/s/o systems �i/s/o = ([

A B
C D

] ; U,X,Y
)

that we get from � by varying the i/o
decomposition W = Y � U the coefficients

[
A B
C D

]
vary, and so do the supply rates

j (u, y), but the set of solutions of the generalized KYP inequalities (1.6) and (1.10)
stay the same.

Up to now we have only considered admissible i/o decompositions of the signal
space W of a s/s system �. As we commented earlier, not every Lagrangian or
orthogonal decomposition need be admissible for�, even if� isH -passive for some
H > 0. However, it is still possible to study also these non-admissible decompositions
by replacing the i/s/o representations by left or right affine representations of�. These
are defined for arbitrary decompositions W = Y � U (not only for the admissible
ones). By a right affine i/s/o representation of � we mean an i/s/o system15

�ri/s/o =
([

A′ B ′
C′

Y D′
Y

C′
U D′

U

]
; L,X,

[
Y
U

])

with the following two properties: 1) D′ =
[
D′

Y

D′
U

]
has a bounded left-inverse, and

2)
(
x,

[
y
u

])
is a trajectory of � if and only if

(

, x,

[
y
u

])
is a trajectory of �ri/s/o for

some sequence 
 with values in L. By a left affine i/s/o representation of � we mean

15Here the new input space L is an auxiliary Hilbert space called the driving variable space.
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an i/s/o system16

�li/s/o =
([

A′′ B ′′
Y B ′′

U

C′′ D′′
Y D′′

U

]
;
[

Y
U

]
,X,K

)

with the following two properties: 1)D′′ = [
D′′

Y D′′
U

]
has a bounded right-inverse,

and 2)
(
x,

[
y
u

])
is a trajectory of � if and only if

([
y
u

]
, x, 0

)
is a trajectory of �li/s/o

(i.e., the output is identically zero in K). The transfer functions of these systems
are called the right, respectively left, affine transfer functions of � corresponding to
the i/o decomposition W = Y � U. Note, in particular, that the right and left affine

transfer functions are now decomposed into D′ =
[

D′
Y

D′
U

]
and D′′ = [

D′′
Y D′′

U

]
,

respectively.
Let

�(�ri/s/o) = {z ∈ �A′ | D′
U(z) has a bounded inverse},

�(�li/s/o) = {z ∈ �A′′ | D′′
Y(z) has a bounded inverse},

and let
�r(�; U,Y) be the union of the above sets �(�ri/s/o),

�l(�; U,Y) be the union of the above sets �(�li/s/o).

We can now define the notions of right and left generalized transfer functions of �
with input space U and output space Y on the sets �r(�; U,Y) and �l(�; U,Y),
respectively, by the formulas

Dr (z) = D′
Y(z)D

′
U(z)

−1, (4.1)

Dl(z) = −D′′
Y(z)

−1D′′
U(z), (4.2)

respectively.

Theorem 4.2. The right-hand side of (4.1) does not depend on the choice of �ri/s/o
as long as �(�ri/s/o) � z, and the right-hand side of (4.2) does not depend on the

choice of �li/s/o as long as �(�li/s/o) � z.
Theorem 4.3. The right and left generalized transfer functions defined by (4.1) and
(4.2), respectively, coincide on

�(�; U,Y) = �r(�; U,Y) ∩�l(�; U,Y)

(whenever this set is nonempty). If the i/o decomposition W = Y � U is admissible,
and if A is the main operator of the corresponding i/s/o representation of �, then

�r(�; U,Y) = �l(�; U,Y) = �A,

and the left and right generalized transfer functions coincide with the ordinary transfer
function corresponding to the decomposition W = Y � U

16Here the new output space K is an auxiliary Hilbert space called the error variable space.
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In the case where the s/s system� isH -passive for someH > 0 we can say more.
In this case it is possible to choose the different affine representations of � in such a
way that the right and left transfer functions are defined in the whole unit disk D and
belong toH∞, and they will even be right and left coprime inH∞, respectively. In this
way we obtain right and left coprime transmission representations of�, and in the case
that the positive and negative dimensions of the signal space W are the same we also
obtain right and left coprime impedance representations. The corresponding right and
left coprime affine transfer functions will be generalized Potapov and Carathéodory
class functions, respectively.

5. Further extensions

The results of Sections 3 and 4 are taken primarily from [AS05], [AS06a]–[AS06c].
At present they do not yet make up a complete theory that would be ready to replace
the classical i/s/o theory. However, the following additional discrete part ingredients
of the s/s theory are presently under active development:

• The study of the interconnection of two s/s systems (this is the s/s analogue of
feedback).

• Lossless behaviors and bi-lossless extensions of passive behaviors (including
the s/s analogue of Darlington synthesis).

• Additional representations of generalized Carathéodory and Potapov class func-
tions.

• External and internal symmetry of s/s systems (including reciprocal systems).

• Further studies of the stability properties of passive s/s systems.

• Conditions for ordinary similarity (as opposed to pseudo-similarity) of minimal
passive realizations.

An even larger project is still in its infancy, namely the extension of the s/s theory
to continuous time systems. Some preliminary results in this direction have been
obtained in [BS05] and [MS06a], [MS06b].
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Control and numerical approximation of the wave and heat
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Abstract. In recent years important progress have been done in the context of numerical approx-
imation of controllability problems for PDEs. It is by now well known that, often, numerical
approximation schemes that are stable for solving initial-boundary value problems, develop in-
stabilities when applied to controllability problems. This is due to the presence of spurious high
frequency numerical solutions that the control mechanisms are not able to control uniformly as
the mesh-size tends to zero. However, the theory is far from being complete. In this article we
present some new results in this framework for the wave and the heat equations, which also raise
a number of open questions and future directions of research. We first prove that a two-grid
method, introduced by R. Glowinski, that is by now well-known to guarantee convergence for
the 1 − d wave equation, also converges in the semilinear setting for globally Lipschitz non-
linearities. This result provides a further evidence of the robustness of the two-grid method.
We then show that boundary controls for finite-difference space semi-discretizations of the heat
equation converge when applied all along the boundary of the domain, a fact that does not hold
for wave-like equations. This confirms that the strong irreversibility of the heat equation en-
hances the control properties of its numerical approximation schemes. This result fails when the
control is restricted to some subsets of the boundary because of the lack of unique continuation
of some high frequency eigenvectors of the underlying discrete eigenvalue problem.

Mathematics Subject Classification (2000). Primary 93B05; Secondary 35A35, 35K05,
35L05.

Keywords. Partial differential equations, finite-difference approximation schemes, controlla-
bility, wave equation, heat equation, two-grid method.

1. Introduction

In recent years important progresses have been done in the context of numerical
approximation of controllability problems for PDEs. It is by now well known that,
often, numerical approximation schemes that are stable for solving an initial-boundary
value problem, develop instabilities when applied to controllability problems. This
is due to the presence of spurious high frequency numerical solutions that the control
mechanisms are not able to control uniformly as the mesh-size tends to zero.
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To cure these instabilities a number of methods have been introduced in the liter-
ature. We refer to [30] for a recent survey article on the topic.

In this context and in an effort to build a general theory, there are two prototypical
equations that need to be understood first of all: the wave equation and the heat
equation.

In the framework of the linear wave equation, R. Glowinski [6] introduced a two-
grid control mechanism that allows filtering the high frequency numerical spurious
solutions and guarantee the convergence of controls. There are clear numerical evi-
dences of the convergence of the method whose proof has been successfully carried
out in [17] in the 1 − d case by using discrete multipliers. More recently the same
result has been proved, with a better estimate on the minimal control time, in [16] by
using Ingham type inequalities. Other methods have also been developed for avoiding
these instabilities to occur: Tychonoff regularization, Fourier filtering, mixed finite
elements,…(see [30]). But most of the existing theory is devoted to linear problems.
The first part of this article is devoted to show how the convergence result of the two-
grid algorithm can be extended to semilinear systems too, with globally Lipschitz
nonlinearities. This result adds one more evidence of the robustness and efficiency of
the two-grid algorithm for the control of wave problems.

The high frequency spurious numerical solutions for the wave equation are due to
the existence of wave-packets that travel with a vanishing group velocity (see [21],
[30]). This can be understood by analyzing the symbol of the operator and the dy-
namics of the Hamiltonian system generating the bicharacteristic rays. However, one
expects that the heat equation, because of its intrinsic time-irreversibility and strong
damping should escape to those pathologies and that most common numerical approx-
imation schemes should be controllable, uniformly with respect to the mesh-size. This
holds indeed in the 1 − d setting (see [14]). But, surprisingly enough, this property
may fail to hold in 2 − d even for the simplest finite-difference semi-discretization
scheme for the heat equation in the square. This is due to the fact that there are some
high-frequency numerical solutions that do not fulfill the classical property of unique
continuation of the continuous heat equation. Thus, at the control level, the numerical
approximation schemes may generate some solutions which are insensitive to the ac-
tion of controls. Strictly speaking this happens when the control acts on some (small
enough) subsets of the boundary where the equation holds. However, this fact clearly
indicates a major difference in the control theoretical behavior of the continuous and
the semi-discrete heat equation since the first one is controllable from any open and
non-empty subset of the boundary while the second one is not. Characterizing com-
pletely the subsets of the boundary for which these pathologies arise is probably a
difficult problem. In this article we prove that convergence occurs when the controls
act everywhere on the boundary of the domain. This confirms that heat equations
are better behaved than wave ones. Indeed, for the wave equation, even if controls
act everywhere on the boundary of the domain, the uniform controllability property
for numerical approximation schemes may fail because of the existence of spurious
numerical solutions that are trapped in the interior of the mesh without reaching the
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boundary in an uniform time. Our positive result for the heat equation shows that
this kind of spurious solutions are ruled out due to the strong dissipativity of the heat
equation and its numerical approximation schemes but, so far, only when the control
is distributed everywhere on the boundary.

The lack of unique continuation for semi-discrete heat equations is due to the fact
that the property fails to hold for the spectrum of the discrete Laplacian. Indeed, for
the Dirichlet spectrum of the continuous Laplacian, unique continuation holds in the
sense that, when the normal derivative of an eigenfunction vanishes in a subset of the
boundary, the eigenfunction vanishes everywhere. This property fails to hold for the
eigenvectors of the discrete Laplacian. The main method to prove unique continuation
properties in the continuous framework are the so-called Carleman inequalities. But
the discrete analogue is still to be developed. An alternate natural way of addressing
this issue, in the spirit of the classical theory of numerical analysis, would consist
in viewing the solutions of the discrete problem as a perturbation of those of the
continuous one and applying the continuous Carleman inequalities. This approach
has been successfully applied in [31] to elliptic equations with irregular coefficients in
the principal part. Developing this program in the context of discrete elliptic equations
is an interesting open problem.

The two topics we address in this article also raise a number of interesting open
problems and future directions of research that we mention briefly. Some of them,
in our opinion, are deep and will require important research efforts. The interest of
these problems goes much beyond Control Theory since they mainly concern the way
classical numerical analysis and the existing theory of partial differential equations
have to be melt to address subtle qualitative aspects of numerical solutions. We hope
that this article will serve to stimulate research in this area.

2. Controllability of the two-grid approximation scheme for the 1 − d

semilinear wave equation

One of the main drawbacks of the existing theory to analyze the controllability of
numerical approximation schemes for PDE is that it often relies on Fourier analysis.
This makes it of little use for nonlinear problems. However there is by now an
extensive literature on the controllability of semilinear PDE and, in particular, of wave
and heat equations. Therefore, it is natural to develop numerical methods allowing to
address these nonlinear models and to build convergent numerical schemes for their
control.

In this section we consider the 1 − d semilinear wave equation with boundary
control: ⎧⎪⎨⎪⎩

ytt − yxx + f (y) = 0, x ∈ (0, 1), 0 < t < T,

y(0, t) = 0, y(1, t) = v(t), 0 < t < T,

y(x, 0) = y0(x), yt (x, 0) = y1(x), x ∈ (0, 1).

(2.1)
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Here the control v = v(t) enters into the system through the extreme x = 1 of the
boundary.

This semilinear wave equation is known to be controllable under sharp growth
conditions on the nonlinearity. Namely, if

|f ′(s)| ≤ C log2(1 + |s|) for all s ∈ R (2.2)

for some C > 0, system (2.1) is exactly controllable in any time T > 2. This means
that for all (y0, y1) ∈ L2(0, 1)×H−1(0, 1) and (z0, z1) ∈ L2(0, 1)×H−1(0, 1)
there exists a control v ∈ L2(0, T ) such that the solution y of (2.1) satisfies

y(x, T ) = z0(x), yt (x, T ) = z1(x) in (0, 1). (2.3)

This result was proved in [26] for C > 0 sufficiently small in (2.2) and, without
restrictions on the size of the constant C, in [1].

This growth condition is sharp since blow-up phenomena may occur for nonlin-
earities growing faster at infinity and, due to the finite speed of propagation, boundary
controls are unable to avoid blow-up to occur. In that case controllability fails.

The most common method to derive the exact controllability property of semilinear
equations is based on the following ingredients:

• a fixed point argument;

• sharp estimates on the dependence of controls for the underlying linear equation
perturbed by a potential.

We refer to [25] where this method was introduced in the context of the wave equation
(see also [22] for further developments, and [23] for an updated survey on this problem)
and to [4] where the same technique was applied to semilinear heat equations.

Knowing that the semilinear wave equation (2.1) is controllable under the growth
condition (2.2) it is natural to analyze whether the controls can be obtained as limits
of controls of numerical approximation schemes. As we have explained in the in-
troduction this issue is delicate even for linear problems, and it is necessarily more
complex for nonlinear ones.

Among the possible remedies to the lack of convergence of the standard conserva-
tive schemes the two-grid method introduced in [6] seems to be the one that is better
adapted to semilinear problems. In this section we confirm this assertion by proving
its convergence in this nonlinear setting for globally Lipschitz nonlinearities.

The two-grid scheme is, roughly, as follows.
Given an integer N ∈ N we introduce the partition {xj = jh}j=0,..., N+1 of the

interval (0, 1) with h = 1/(N + 1) so that x0 = 0 and xN+1 = 1.
We then consider the conservative finite-difference semi-discretization of the semi-

linear wave equation (2.1) as follows:⎧⎪⎨⎪⎩
y′′
j + 2yj−yj+1−yj−1

h2 + f (yj ) = 0, j = 1, . . . , N, 0 < t < T,

y0(t) = 0, yN+1(t) = v(t), 0 < t < T,

yj (0) = y0
j , y

′
j (0) = y1

j , j = 0, . . . , N + 1.

(2.4)
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The scheme is conservative in the sense that, in the absence of control (i.e. for v ≡ 0)
the energy of solutions is conserved. The same property holds for the continuous
version (2.1). In that case the energy is given by

E(t) = 1

2

∫ 1

0

[
y2
t (x, t)+ y2

x(x, t)
]
dx +

∫ 1

0
F(y(x, t)) dx,

where F is a primitive of f , i.e. F(z) = ∫ z
0 f (s)ds. In the semi-discrete case the

corresponding energy is

Eh(t) = h

2

N∑
j=0

[
|y′
j |2 +

∣∣∣∣yj+1 − yj

h

∣∣∣∣ 2
]

+ h

N∑
j=0

F(yj ).

The goal of this section is to analyze the controllability of (2.4) and whether,
as h → 0, the controls of (2.4) converge to those of (2.1). The controls being, in
general, non unique, one has to be precise when discussing their convergence. Here,
in the linear context, we shall always refer to the controls of minimal L2(0, T )-norm
which are given by the so called Hilbert Uniqueness Method (HUM) ([13]). As we
mentioned above, in the nonlinear case, the controls we shall deal with are obtained
by fixed point methods on the basis of the HUM controls for the linearized problems.

But, even in the linear case, to guarantee convergence as h → 0, the final control
requirement has to be relaxed, or the numerical scheme modified.

In [29] it was proved that, if the exact controllability condition is relaxed to
the approximate controllability one (in which the state is required to reach an ε-
neighborhood of the target), then convergence occurs in the linear framework. But it
is convenient to deal with other relaxation criteria that do not introduce extra param-
eters since the controls may depend on them in a very sensitive way.

The two-grid method is a very natural way of introducing such relaxation. It is
based on the idea of relaxing the final condition to avoid the divergence of controls due
to the need of controlling high frequency spurious oscillations. To be more precise,
the semi-discrete analogue of the exact controllability final condition (2.3) is

yj (T ) = z0
j , y

′
j (T ) = z1

j , j = 0, . . . , N + 1. (2.5)

But, as it is by now well-known (see [30]), under the final requirement (2.5), controls
diverge as h → 0 even for the linear wave equation.

In the two-grid algorithm, the final condition (2.5) is relaxed to

�h
(
Y (T )

) = �h(Z
0), �h

(
Y ′(T )

) = �h(Z
1), (2.6)

where Y (t) and Y ′(t) stand for the vector-valued unknowns

Y (t) = (
y0(t), . . . , yN+1(t)

)
, Y ′(t) = (

y′
0(t), . . . , y

′
N+1(t)

)
.
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We shall also use the notation Yh for Y when passing to the limit to better underline
the dependence on the parameter h. �h is the projection operator so that

�h(G) =
(

1

2

(
g2j+1 + 1

2
g2j + 1

2
g2j+2

))
j=0,..., N+1

2 −1
, (2.7)

with G = (g0, g1, . . . , gN, gN+1). Note that the projection �h(G) is a vector of
dimension (N + 1)/2. Thus, roughly speaking, the relaxed final requirement (2.6)
only guarantees that half of the state of the numerical scheme is controlled. Despite this
fact, the formal limit of (2.6) as h → 0 is still the exact controllability condition (2.3)
on the continuous wave equation.

The main result of this section is as follows:

Theorem 2.1. Assume that the nonlinearity f : R → R is such that

f is globally Lipschitz. (2.8)

Let T0 > 0 be such that the two-grid algorithm for the control of the linear wave
equation converges for all T > T0.

Then, the algorithm converges for the semilinear system (2.1) too for all T > T0.
More precisely, for all (y0, y1) ∈ Hs(0, 1)×Hs−1(0, 1) with s > 0, there exists a
family of controls {vh}h>0 for the semi-discrete system (2.4) such that the solutions
of (2.4) satisfy the relaxed controllability condition (2.6) and

vh(t) → v(t) in L2(0, T ), h → 0 (2.9)

(Yh, Y
′
h) → (y, yt ) in L2(0, T ; L2(0, 1)×H−1(0, 1)) (2.10)

where y is the solution of the semilinear wave equation (2.1) and v is a control such
that the state y satisfies the final requirement (2.3).

Remark 2.2. Several remarks are in order.
• The controllability of the semilinear wave equation (2.1) under the globally

Lipschitz assumption (2.8) on the nonlinearity was proved in [25] in 1 − d and in the
multi-dimensional case. The proof of Theorem 2.1 is based on an adaptation of the
arguments in [25] to the two-grid approximation scheme.

Whether the two-grid algorithm applies under the weaker and sharp growth con-
dition (2.2) is an open problem. The difficulty for doing that is that the two existing
proofs allowing to deal with the semilinear wave equation under the weaker growth
condition (2.2) are based, on a way or another, on the sidewise solvability of the wave
equation, a property that the semi-discrete scheme fails to have.

• Theorem 2.1 holds for a sufficiently large time T0. The requirement on T0 is that,
in the linear case (f ≡ 0), the two-grid algorithm converges for all T > T0. This was
proved to hold for T > 4 in [17]. The proof in [17] is based on the obtention of the
corresponding observability inequality for the solutions of the adjoint semi-discrete
wave equation by multiplier techniques. Later on this result was improved in [16]
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using a variant of the classical Ingham inequality obtaining the sharp minimal control
time T0 = 2

√
2.

Note that the minimal time for controllability of the continuous wave equation (2.1)
is T = 2.1 However this minimal time may not be achieved by the two-grid algo-
rithm as described here since, despite it filters the spurious high frequency numerical
solutions, it is compatible with the existence of wave packets travelling with veloc-
ity smaller than 1, and this excludes the controllability in the minimal time T = 2.
The two-grid algorithm can be further improved to get smaller minimal times by
considering other projection operators �h, obtained by means of the two-grid ap-
proach we shall describe below but with ratio 1/2�, for some � ≥ 2, instead of
the ratio 1/2. This idea has been used successfully in [7] when proving dispersive
estimates for conservative semi-discrete approximation schemes of the Schrödinger
equation. When diminishing the ratio between grids, the filtering that the two-grid al-
gorithm introduces concentrates the solutions of the numerical problem on lower and
lower frequencies for which the velocity of propagation becomes closer and closer
to that of the continuous wave equation. In that way the minimal controllability time
may be made arbitrarily close to that of the wave equation T = 2 by means of the
two-grid approach.

• In the statement of Theorem 2.1 we have chosen initial data for (2.1) in the
space (y0, y1) ∈ Hs(0, 1)×Hs−1(0, 1), but we have not explained how the initial
data for the semi-discrete system (2.4) have to be taken. The simplest way for doing
that is taking as initial data for (2.4) the truncated Fourier series of the continuous
initial data (y0, y1), involving only the first N Fourier modes. One can also define
the discrete initial data by taking averages of the continuous ones on the intervals
[xj − h/2, xj + h/2] around the mesh-points.

• The meaning of the convergence property (2.10) needs also to be made precise.
This may be done by extending the semi-discrete state (Yh(t), Y ′

h(t)) into a continuous
one (yh(x, t), y′

h(x, t)) and then proving convergence (2.10) for the extended one.
This extension may be defined at least in two different ways. Either by extending
the Fourier representation of Yh or rather by using a standard piecewise linear and
continuous extension. We refer to [28] and [19] where these two extensions have been
used in similar limit processes.

• In the statement of Theorem 2.1 the initial data are assumed to be inHs(0, 1)×
H−1+s(0, 1) for some s > 0, which is a slightly stronger regularity assumption than
the one needed for the semilinear wave equation (2.1) to be controllable (L2(0, 1)×
H−1(0, 1)). This is probably a purely technical assumption but it is needed for the
method we develop here to apply. The same difficulty arises in the context of the
continuous semilinear wave equation [25]. This extra regularity condition for the
continuous wave equation was avoided in [1] and [26] but using the very special
property of the 1 − d wave equation of being well-posed in the sidewise sense.

1By minimimal control time we mean that the controllability property holds for all time T which is greater
than 2. Thus, this does not necessarily mean that controllability occurs for time T = 2.
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In the context of the problem of numerical approximation we are working this
difficulty seems hard to avoid even at the level of passing to the limit as h → 0 on the
state equations. Indeed, this requires passing to the limit, in particular, on the nonlinear
terms and this seems hard to achieve in the L2(0, 1) × H−1(0, 1)-setting because
the corresponding states Yh would then be merely bounded in C([0, T ]; L2(0, 1))∩
C1([0, T ]; H−1(0, 1)), which seems to be insufficient to guarantee compactness and
the convergence of the nonlinear term.

Proof of Theorem 2.1. To simplify the presentation we assume that the final target
is the null trivial state z0 ≡ z1 ≡ 0, although the same proof applies in the general
case. We proceed in several steps.

Step 1. Two-grid controllability of the semi-discrete system (2.4). First of all, fol-
lowing the standard fixed point argument ([25]), we prove that, for h > 0 fixed, the
semilinear system (2.4) is controllable. In fact this argument allows proving that (2.4)
is exactly controllable for all T > 0. But, as we mentioned above (see [30]), the
controls fail to be bounded as h → 0. It is precisely to guarantee that the controls
are bounded that we need to relax the final condition to the weaker two-grid one (2.6)
and the time T is needed to be large enough as in the statement of Theorem 2.1.

To simplify the presentation we assume that f ∈ C1(R; R) and f (0) = 0, al-
though the proof can be easily adapted to globally Lipschitz nonlinearities. We then
introduce the continuous function

g(z) =
{
f (z)/z, z �= 0,

f ′(0), z = 0.
(2.11)

Given any semi-discrete function Z = Z(t) ∈ C([0, T ]; R
N+2) we consider the

linearized wave equation⎧⎪⎨⎪⎩
y′′
j + 2yj−yj+1−yj−1

h2 + g(zj )yj = 0, j = 1, . . . , N; 0 < t < T,

y0(t) = y0
j , yN+1(t) = v(t), 0 < t < T,

yj (0) = y′
j (0) = y1

j , j = 0, . . . , N + 1.

(2.12)

We proceed by a classical fixed point argument (see [25]). This requires essentially
proving that:

a) For all Z = Z(t) as above (2.12) is two-grid controllable in the sense of (2.6);

b) The mapping N (Z) = Y has a fixed point.

To be more precise, we shall identify uniquely a control of minimal L2(0, T )-norm v

(which, obviously, depends on Z. Thus, in some cases we shall also denote it as vZ).
In this way the controlled trajectory Y = YZ will also be uniquely determined and
the nonlinear map N well defined. The problem is then reduced to proving that the
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map N has a fixed point. Indeed, ifZ = Y , and, consequently, g(zj )yj = f (yj ) for all
j = 1, . . . , N , then Y is also solution of the semilinear semi-discrete equation (2.1)
and, of course, satisfies the two-grid relaxed final requirement (2.6).

The existence of the fixed point of N is consequence of Schauder’s fixed point
Theorem. The key point to apply it is to show a bound on the two-grid control for
the linearized equation (2.12) which is independent of Z, i.e. the existence of C > 0
such that

‖vZ‖L2(0, T ) ≤ C for all Z ∈ C([0, T ]; R
N+2). (2.13)

Here and in the sequel we denote by vZ the control of the linearized system (2.12) to
underline the fact that the control depends on the potential g(Z) and thus on Z.

To do that we argue as in [17], reducing the problem to the obtention of a suitable
observability inequality for the adjoint system:⎧⎪⎨⎪⎩

ϕ′′
j + 2ϕj−ϕj+1−ϕj−1

h2 + g(zj )ϕj = 0, j = 1, . . . , N, 0 < t < T,

ϕ0 = ϕN+1 = 0, 0 < t < T,

ϕj (T ) = ϕ0
j , ϕ

′
j (T ) = ϕ1

j , j = 1, . . . , N.

(2.14)

For doing that, however, system (2.14) has to be considered only in the class of slowly
oscillating data obtained as extensions to the fine grid (the original one, of size h) of
data defined on a coarse grid of size 2h. In other words, we consider the class of data

Vh =
{
� = (ϕ0, . . . , ϕN+1) : ϕ2j+1 = ϕ2j + ϕ2j+2

2
, j = 0, . . . ,

N − 1

2

}
. (2.15)

Note that any vector in Vh is completely determined by its values on the grid of
mesh-size 2h. Implicitly we are assuming that 1/2h is an integer number so that
(N − 1)/2 = 1/2h− 1 is an integer too.

In [17] and [16] it was proved that for T > T0, where T0 is as in Remark 2.2, the
following observability inequality holds:

E0 ≤ C

∫ T

0

∣∣∣ϕN
h

∣∣∣2 dt, (2.16)

with C > 0 independent of h > 0 and for all solution � = (ϕ0, . . . , ϕN+1) of (2.14)
with data (�0, �1) ∈ Vh × Vh when g ≡ 0. Here E0 stands for the total energy of
solutions at time t = T , which is constant in time when g ≡ 0:

E(t) = h

2

N∑
j=0

[
|ϕ′
j |2 +

∣∣∣ϕj+1 − ϕj

h

∣∣∣ 2
]
. (2.17)

At this point it is important to emphasize that the key ingredient of the proof of
convergence for the two-grid algorithm for the linear wave equation is precisely that
the observability constant C in (2.16) is uniform, independent of h.
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Let us now address the perturbed problem (2.14). We first observe that, because
of the globally Lipschitz assumption on f , the function g is uniformly bounded, i.e.

‖g‖L∞(R) ≤ L, (2.18)

L being the Lipschitz constant of f . Therefore for all Z ∈ C([0, T ]; R
N+2) it

follows that
‖g(Z)‖L∞(0, T ; RN+2) ≤ L. (2.19)

System (2.14) can then be viewed as a family of perturbed semi-discrete wave equa-
tions, the perturbations with respect to the conservative wave equation being a family
of zero order bounded potentials. Then a standard perturbation argument allows
showing that (2.16) holds for system (2.14) too, with, possibly, a larger observability
constant, depending on L, but independent of Z. In fact, arguing by contradiction,
since h > 0 is fixed and we are therefore dealing with finite-dimensional dynami-
cal systems, the problem is reduced to show that the following unique continuation
property holds for all Z:

If ϕN(t) = 0, 0 < t < T, then � ≡ 0. (2.20)

This property is easy to prove by induction. Indeed, using the boundary condition
ϕN+1 ≡ 0 and the fact that ϕN ≡ 0, and writing the equation (2.14) for j = N we
deduce that

ϕN−1

h2 = ϕ′′
N + 2ϕN − ϕN−1

h2 + g(zN)ϕN = 0. (2.21)

This implies that ϕN−1 = 0. Repeating this argument we deduce that � ≡ 0.
Once (2.16) holds for the solutions of (2.14) with initial data in Vh×Vh, uniformly

on Z, system (2.14) turns out to be controllable in the sense of (2.6) with an uniform
bound on the control, independent of Z, i.e.

‖v‖L2(0, T ) ≤ C(h, ‖(Y 0, Y 1)‖, L, T ) for all Z. (2.22)

We emphasize that the bound (2.22), in principle, depends on the time of control T ,
the mesh-size h, the Lipschitz constant L of the nonlinearity f and the norm of the
initial data to be controlled, but is independent of Z.

As a consequence of (2.22) a similar estimate can be obtained for the state Y
solution of (2.12), i.e.

‖Y‖C1([0, T ]; RN+2) ≤ C for all Z. (2.23)

This allows applying the Schauder’s fixed point theorem to the map N , which turns
out also to be compact from L2(0, T ; R

N+2) into itself, thanks to (2.23). In this way
we conclude that, for all h > 0, system (2.4) is controllable in the sense of (2.6).

Step 2. Uniform controllability with respect to h. In the previous step we have proved
the controllability of (2.4) but with estimates on controls and states depending on h.
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In order to pass to the limit as h → 0 we need to get a bound on controls and states
which is independent of h. For doing that we need to assume that T > T0 (so that the
linear unperturbed numerical schemes are uniformly, with respect to h > 0, two-grid
controllable) and that the initial data (y0, y1) belong to Hs(0, 1)×Hs−1(0, 1).

The last requirement is important to get the compactness of the nonlinear term.
Indeed, in that setting the control for the continuous wave equation (2.1) belongs
to Hs(0, T ) rather than L2(0, T ) and the controlled trajectory y then belongs to
C([0, T ]; Hs(0, 1)) ∩ C1([0, T ]; Hs−1(0, 1)). This guarantees the required com-
pactness properties to deal with the nonlinear termf (y) in (2.1). Indeed, when passing
to the limit, the pointwise convergence of the state in (0, 1) × (0, T ) is needed and
this is achieved by means of the extra Hs regularity imposed on the initial data (see
[25]). This is necessary both when treating the continuous equation (2.1) by fixed
point arguments and also when dealing with numerical approximation issues and limit
processes as h → 0.

To analyze the controllability of the systems under consideration in Hs(0, 1) ×
Hs−1(0, 1), we first need to analyze the H−s-version of the observability inequality
(2.16), namely:

E0,−s ≤ Cs

∥∥∥ϕN
h

∥∥∥2

H−s (0, T )
. (2.24)

Inequality (2.24) may be proved for the adjoint system (2.14) in the absence of the
potential induced by the nonlinearity, i.e. for⎧⎪⎨⎪⎩

ψ ′′
j + 2ψj−ψj+1−ψj−1

h2 = 0, j = 1, . . . , N, 0 < t < T,

ψ0 = ψN+1 = 0, 0 < t < T,

ψj (T ) = ψ0
j , ψj (T ) = ψ1

j , j = 1, . . . , N.

(2.25)

More precisely, for 0 < s < 1/2 and T > T0 as in Theorem 2.1, there exists a
constant Cs such that (2.24) holds for all solution ψ of (2.25) with initial data in
Vh × Vh and all h > 0. We emphasize that the constant Cs is independent of h.

In (2.24) E0,−s stands for the H−s version of the energy of system (2.25), which
is constant in time. It can be defined easily by means of the Fourier expansion of
solutions and it is then the discrete analogue of the continuous energy

E0,−s = 1

2

[ ∥∥ψ0
∥∥2
H 1−s (0, 1) + ∥∥ψ1

∥∥2
H−s (0, 1)

]
(2.26)

which is constant in time for the solutions of the unperturbed adjoint wave equation⎧⎪⎨⎪⎩
ψ ′′ − ψxx = 0, 0 < x < 1, 0 < t < T,

ψ(0, t) = ψ(1, t) = 0, 0 < t < T,

ψ(x, T ) = ψ0(x), ψt (x, T ) = ψ1(x), 0 < x < 1.

(2.27)

The inequality (2.24) may be obtained, as (2.16), by the two methods mentioned
above:
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• It can be proved as a consequence of (2.16) directly using interpolation argu-
ments (see, for instance, [25]);

• It can also be obtained by the variant of the Ingham inequality in [16].

Once (2.24) is proved for the unperturbed system (2.25), uniformly on h > 0, we
are in conditions to prove it for the perturbed system (2.14) uniformly on h > 0 and
Z too. To do it we use a classical perturbation and compactness argument (see [25]).

We decompose the solution � of (2.14) as � = � + 	 where � solves the
unperturbed system (2.25) with the same data (�0, �1) as � itself and where the
remainder 	 = (σ0, . . . , σN+1) solves⎧⎪⎨⎪⎩

σ ′′
j + 2σj−σj+1−σj−1

h2 = −g(zj )ϕj , j = 1, . . . , N, 0 < t < T,

σ0 = σN+1 = 0, 0 < t < T,

σj (T ) = σ ′
j (T ) = 0, j = 1, . . . , N.

(2.28)

In view of (2.24), which is valid for �, we deduce that

E0,−s ≤ 2Cs
[ ∥∥∥ϕN

h

∥∥∥2

H−s (0, T )
+
∥∥∥σN
h

∥∥∥2

H−s (0, T )

]
. (2.29)

Using discrete multipliers (see [8]) it follows that∥∥∥σN
h

∥∥∥
L2(0, T )

≤ C‖{g(zj )ϕj }‖L2(0, T ; �2
h)

(2.30)

with a constant C which depends on T but is independent of h.
In (2.30) we use the notation

‖{pj }‖L2(0, T ; �2
h)

=
[
h

∫ T

0

N∑
j=1

p2
j (t) dt

]1/2

(2.31)

which is simply the L2-norm, scaled to the mesh-size h > 0.
Combining (2.30)–(2.31) and using that the nonlinearity g is uniformly bounded

we deduce that

E0,−s ≤ C
[ ∥∥∥ϕN

h

∥∥∥2

H−s (0, T )
+ ‖�‖2

L2(0, T ; �2
h)

]
, (2.32)

for every solution � of (2.14) with data (�0, �1) in Vh × Vh, every h > 0 and Z.
To conclude we can apply a compactness-uniqueness argument whose details may

be found in [28] where it was fully developed in the context of the 2−d semi-discrete
wave equation. It consists simply in showing, by contradiction, that there exists an
uniform constant C > 0 such that

‖�‖L2(0, T ; �2
h)

≤ C

∥∥∥ϕN
h

∥∥∥
H−s (0, T )

(2.33)
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for every solution � of (2.14), every h > 0 and Z. To do it we assume that there
exists a sequence h → 0, potentials of the form g(Zh) and initial data in Vh×Vh for
which (2.33) fails and, consequently,∥∥∥ϕN

h

∥∥∥
H−s (0, T )

→ 0, h → 0 (2.34)

‖�‖L2(0, T ; �2
h)

= 1. (2.35)

Combining (2.32), (2.34) and (2.35), the corresponding sequence of data (�0
h, �

1
h)

turns out to be bounded in H 1−s(0, 1) × H−s(0, 1) (at this point we are implicitly
working with the piecewise linear extension of the data). By the well-posedness
of (2.14) in these spaces the corresponding solutions �h turn out to be bounded
in L∞(0, T ; Hs−1(0, 1)) ∩W 1,∞(0, T ;H−s(0, 1)). Therefore, they are relatively
compact in L2(0, T ; L2(0, 1)). Passing to the limit as h → 0 we obtain a solution ϕ
of an adjoint wave equation of the form⎧⎪⎨⎪⎩

ϕ′′ − ϕxx + a(x, t)ϕ = 0, 0 < x < 1, 0 < t < T,

ϕ(0, t) = ϕ(1, t) = 0, 0 < t < T,

ϕ(x, T ) = ϕ0(x), ϕt (x, 0) = ϕ1(x), 0 < x < 1,

(2.36)

such that
∂xϕ(1, t) = 0, 0 < t < T (2.37)

and
‖ϕ‖L2(0, T ;L2(0, 1)) = 1. (2.38)

This is clearly a contradiction since, in view of the unique continuation property of the
solutions of the wave equation (2.36), (2.37) implies thatϕ ≡ 0, which is incompatible
with (2.38). This is true because T > T0 and, in particular T > 2.

In this argument the bounded limit potential a = a(x, t) in (2.36) arises as weak-∗
limit of the discrete ones g (Zh), (of its piecewise linear extension to 0 < x < 1, 0 <
t < T , to be more precise). Therefore a also fulfills the bound ‖a‖∞ ≤ L, L being
the Lipschitz constant of f .

For this argument to apply one needs to pass to the limit in the potential perturbation
g (Zh)�h in (2.14). This can be done because of the strong convergence of �h (of
its extension to 0 < x < 1) in L2((0, 1)× (0, T )).

Once (2.24) is known to hold for all h > 0 and all data in Vh × Vh this allows
proving the uniform controllability of (2.4) in the spacesHs(0, 1)×H−1+s(0, 1), in
the two-grid sense (2.6). This can be done applying the fixed point argument in Step 1.
More precisely, it follows that there exists a family of controls vh ∈ Hs(0, T ), with
an uniform bound

‖vh‖Hs(0, T ) ≤ C
∥∥(Y 0

h , Y
1
h

)∥∥
Hs(0,1)×Hs−1(0,1) (2.39)

such that the solutions Yh of (2.4) satisfy (2.6).
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Step 3. Two-grid observability �⇒ Two-grid controllability. For the sake of com-
pleteness, let us show how the two-grid control of (2.12) can be obtained as a con-
sequence of the observability inequality (2.24) for the solutions of the adjoint wave
equation (2.14) with initial data in the class Vh × Vh in (2.15) of slowly oscillating
data.

We introduce the functional

Jh
(
�0, �1) = 1

2

∥∥∥ϕN
h

∥∥∥2

H−s (0, T )
+ h

N∑
j=1

[
y0
j ϕ

′
j (0)− y1

j ϕj (0)
]
, (2.40)

which is continuous and convex. Moreover, in view of (2.24), the functional Jh : Vh×
Vh → R is uniformly coercive. Let us denote by (�0, ∗

h , �
1, ∗
h ) the minimizer of Jh

over Vh × Vh. Then, 〈
DJh

(
�

0, ∗
h , �

1, ∗
h

)
,
(
�0, �1)〉 = 0 (2.41)

for all (�0, �1) ∈ Vh × Vh. This implies that

(ϕ∗
N

h
,
ϕN

h

)
H−s (0, T )

+ h

N∑
j=1

[
y0
j ϕ

′
j (0)− y1

j ϕj (0)
] = 0 (2.42)

where �∗
h stands for the solution of (2.14) with the minimizer (�0, ∗

h , �
1, ∗
h ) as data

and � the solution with data (�0, �1).
We now choose the control

vh = Is
ϕ∗
N

h
, (2.43)

where Is : H−s(0, T ) → Hs(0, T ) is the canonical duality isomorphism.
Equation (2.42) then reads∫ T

0
vh
ϕN

h
dt + h

N∑
j=0

[
y0
j ϕ

′
j (0)− y1

j ϕj (0)
] = 0. (2.44)

On the other hand, using (2.43) as control in (2.12), multiplying by � the solution
of the adjoint system (2.14), adding on j = 1, . . . , N and integrating by parts with
respect to t ∈ (0, T ), we deduce that∫ T

0
v
ϕN

h
dt+h

N∑
j=1

[
y0
j ϕ

′
j (0)−y1

j ϕj (0)
]−h N∑

j=1

[
yj (T )ϕ

1
j −y′

j (T )ϕ
0
j

] = 0. (2.45)

Combining (2.44)–(2.45) we deduce that the solution Yh of (2.12) satisfies

h

N∑
j=1

[
yj (T )ϕ

1
j − y′

j (T )ϕ
0
j

] = 0 for all (ϕ0, ϕ1) ∈ Vh × Vh. (2.46)
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This means that both Yh(T ) and Y ′
h(T ) are perpendicular to Vh. This is equivalent to

the two-grid control requirement (2.6) with z0 ≡ z1 ≡ 0.
In view of this construction and using the observability inequality (2.24), which is

uniform with respect to h > 0 and Z, we can obtain uniform bounds on the controls.
Indeed, by (2.43) we have

‖vh‖Hs(0, T ) =
∥∥∥ϕ∗

N

h

∥∥∥
H−s (0, T )

. (2.47)

On the other hand, the minimizer (�0, ∗
h , �

1, ∗
h ) is such that

J
(
�

0, ∗
h , �

1, ∗
h

) ≤ 0 (2.48)

and this implies

1

2
‖ϕ

∗
N

h
‖2
H−s (0, T ) ≤

∣∣∣h N∑
j=1

[
y0
j ϕ

∗′
j (0)− y1

j ϕ
∗
j (0)

]∣∣∣
≤ ‖(Y 0, Y 1)‖Hs(0,1)×Hs−1(0,1)

√
E∗

0,−s (2.49)

where E∗
0,−s denotes the E0,−s energy of the minimizer (�0, ∗

h , �
1, ∗
h ).

Combining (2.48), (2.49) and the observability inequality (2.24) we deduce that

‖vh‖Hs(0, T ) ≤ 2
√
Cs‖(Y 0, Y 1)‖Hs(0,1)×Hs−1(0,1), (2.50)

where Cs is the same constant as in (2.24). In particular, the bound (2.50) on the
control is independent of h > 0 and Z.

Step 4. Passing to the limit. Using the uniform bound (2.39) it is easy to pass to the
limit and get the null-controllability of the semilinear wave equation (2.1).

Indeed, as a consequence of (2.39) and by the well-posedness of (2.4) we de-
duce that the controlled state Yh is uniformly bounded in L∞(0, T ;Hs(0, 1)) ∩
W 1,∞(0, T ; Hs−1(0, 1)).

By extracting subsequences we have

vh ⇀ v weakly in Hs(0, T ) (2.51)

Yh ⇀ y weakly in L2(0, T ; Hs(0, 1)) ∩H 1(0, T ; Hs−1(0, 1)). (2.52)

Consequently, in particular,

vh → v strongly in L2(0, T ) (2.53)

Yh → y strongly in L2((0, 1)× (0, T )). (2.54)

These convergences suffice to pass to the limit in (2.4) and to get (2.1). The strong
convergence (2.54) is particularly relevant when doing that since it allows passing to
the limit in the nonlinearity.
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Here the convergence of the states Yh may be understood in the sense that its
extensions to functions defined for all 0 < x < 1 converge.

One can also check that the limit state y = y(x, t) satisfies the final exact con-
trollability requirement (2.3) as a consequence of the two-grid relaxed version (2.6)
that the semi-discrete state Yh satisfies. This can be done either by transposition or
by compactness.

This concludes the sketch of the proof of Theorem 2.1.

Remark 2.3. Several remarks are in order:

• The proof we have given can be adapted to other equations and schemes. In
particular it applies to the two-grid finite element approximation of (2.1).

• In [2] a mixed finite-element discretization scheme has been introduced for
which the uniform controllability property holds without requiring any filtering
or two-grid adaptation. The arguments we have developed here can also be
adapted to prove convergence of that method in the semilinear case under the
globally Lipschitz assumption on the nonlinearity f .

• In [12] it was proved that the standard finite-difference semi-discretization for
the exact controllability of the following beam equation converges without
filtering or two-grid adaptation:

ytt + yxxxx = 0.

The method of proof of Theorem 2.1 allows showing that the same is true in
the semilinear context too.

• The proof of convergence of the two-grid control algorithm is still to be devel-
oped for numerical approximations of the wave equation in the multi-dimen-
sional case. But, in view of the proof of Theorem 2.1, which can be easily
adapted to the multi-dimensional framework, we can say that, if convergence
is proved in the linear case, the same will hold in the semilinear one too, for
globally Lipschitz nonlinearities.

• For the semilinear wave equation (2.1) the local null-controllability can be
proved in wider classes of nonlinearities satisfying f ′(0) = 0. Here by local
null-controllability we refer to the property that sufficiently small initial data
can be driven to the null state, i.e. to the existence of δ > 0 such that the
control driving the solution to the final equilibrium {0, 0} exists for all initial
data {y0, y1} such that

‖y0‖L2(0, 1) + ‖y1‖H−1(0, 1) ≤ δ.

It can be proved as a consequence of the controllability of the linear wave
equation applying the inverse function theorem around the null state. In or-
der to guarantee the well-posedness of the semilinear wave equation (2.1) in
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L2(0, 1) × H−1(0, 1) one also needs to impose a growth condition on the
nonlinearity of the form

|f ′(s)| ≤ C|s| for all s ∈ R.

But this allows proving local controllability for quadratic nonlinearities, for
instance (see [24]).

The method of proof of Theorem 2.1 can be used to prove the convergence of
the two-grid method in that context of local controllability too.

• In [24] it was also observed that for nonlinearities with the good sign property,
for instance, for

f (s) = |s|p−1s for all s ∈ R

with 1 < p ≤ 2, every initial datum may be driven to zero for a sufficiently
large time. For doing that one first uses the exponential decay of solutions with
boundary feedback ([9]) to later apply the local controllability property when
the solution becomes small enough.

To adapt that result to the framework of the two-grid scheme one could need a
uniform (with respect to h) stabilization result for the numerical schemes with
boundary feedback. However it is well known that, due to the lack of uniform
boundary observability as h → 0, the uniform stabilization property fails. In
[19] and [20] (see also [18]) the uniform (with respect to h) exponential de-
cay property was proved but by adding a viscous damping term distributed all
along the mesh. In view of the efficiency of the two-grid approach at the level
of controllability, one would expect the uniform (with respect to h > 0) ex-
ponential decay property to hold for initial data in the space Vh × Vh without
the extra viscous damping term. But this property does not seem to happen.
Indeed, when trying to obtain the uniform exponential decay from the uniform
observability inequality a technical difficulty appears since the space Vh × Vh
is not invariant under the flow of the semi-discrete wave equation. Thus, the ob-
servability inequality we have obtained in the time interval [0, T ] with T > T0
can not be extended for all t ≥ 0, a fact that would be needed for proving the
exponential decay. But in fact, the situation is much worse and the uniform
exponential decay fails to hold since, despite of the fact that the two-grid initial
data have a distribution of energy so that most of it is concentrated on the low
frequencies, as time evolves, this partition of energy is lost because, precisely,
high frequency components are weakly dissipated. The apparently purely tech-
nical difficulty for proving the uniform decay turns out to be in fact the reason
for the lack of uniform decay.

• Recently it has also been proved that 1 − d semilinear wave equations are
controllable in the sense that two different equilibria can be connected by a
controlled trajectory provided they belong to the same connected component of
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the set of stationary solutions (see [3]). This holds without any sign restriction
on the nonlinearity and therefore without excluding blow-up phenomena to
occur. Proving the convergence of the two-grid algorithm in what concerns
that result is an open problem too.

• The main drawback of the arguments we have used in the proof of Theorem 2.1
is that they do not provide any explicit estimate on the cost of controlling the
system with respect to the Lipschitz constant L of the nonlinearity. This is
due to the use of compactness-uniqueness arguments in the obtention of the
uniform (with respect to h) observability estimates (2.24) in the class of initial
data Vh × Vh. Therefore we may not recover by this method the property
of controllability of the semilinear wave equation under the sharp superlinear
growth condition (2.2).

• The existence of the convergent controls of the semi-discrete semilinear system
has been proved by means of a fixed point method. This adds extra technical
difficulties for its efficient computation. The most common tool to deal with
such problem, for h fixed and after a suitable time discretization, is the Newton
method with variable step. It is applicable in the present situation since the
nonlinear map N under consideration is differentiable when the nonlinearity f
in the equation is C1. In each iteration of the Newton method, one is lead to
solve a linearized control problem. But this one is solvable by means of a stan-
dard conjugate gradient algorithm ([6]) because of the uniform observability
properties that are guaranteed to hold, as we have seen, due to the two-grid
relaxation we have introduced. A complete numerical study of these issues is
yet to be developed.

• The limit control v we have obtained can be proved to be a fixed point of
the nonlinear map N that corresponds to the controllability of the semilinear
continuous wave equation, based on the HUM controls of minimal L2(0, T )-
norm for the linearized wave equations. Thus, the controls we are dealing with
both, for the continuous and the semi-discrete equation, belong to the same
category.

3. Boundary control of the finite-difference space semi-discretizations
of the heat equation

3.1. Problem formulation. This section is devoted to analyze the null controllability
of the space semi-discretizations, by means of finite differences, of the heat equation
in multi-dimensional domains. To simplify the presentation we focus on the 2 − d

case although the same results, with similar proofs, apply in any dimension d ≥ 2.
The heat equation in bounded domains is known to be null-controllable from any

open, non-empty subset of the domain or its boundary [5]. Thus, it is natural to
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analyze whether the control is the limit of the controls of the semi-discrete systems
as the mesh-size tends to zero. But this turns out not to be the case even for the heat
equation in the square when the control is applied on a strict subset of one of the
segments constituting its boundary (see [30]).

In this section we prove a positive counterpart of that result. More precisely, we
prove that convergence holds when the control acts on a whole side of the boundary.
The proof uses the Fourier series development of solutions, which allows reducing
the problem to a one-parameter family of controllable 1 − d heat equations. As a
consequence of that result we can prove convergence for general domains when the
control is applied on the whole boundary. For that it is sufficient to extend the initial
data in the original domain to data in a square containing it and then obtaining the
controls on the boundary of the original domain as restrictions to the boundary of the
states defined in the extended square.

The same results hold in any space dimension.
To be more precise, let� be the square� = (0, π)× (0, π) of R

2. Let �0 be one
side of its boundary, say �0 = {(x1, 0) : 0 < x1 < π}.

Consider the heat equation with control on �0:⎧⎪⎪⎪⎨⎪⎪⎪⎩
yt −�y = 0 in �× (0, T ),

y = 0 on [∂� \ �0] × (0, T ),

y = v on �0 × (0, T ),

y(x, 0) = y0(x) in �.

(3.1)

Here y = y(x, t), with x = (x1, x2), is the state and v = v(x1, t) is the control.
System (3.1) is well-known to be null-controllable in any timeT > 0 (see Fursikov

and Imanuvilov [5] and Lebeau and Robbiano [11]). More precisely, the following
holds: For any T > 0 and any y0 ∈ L2(�) there exists v ∈ L2(�0 × (0, T )) such
that the solution y = y(x, t) of (3.1) satisfies

y(x, T ) ≡ 0. (3.2)

Moreover, there exists a constantC > 0 depending on T but independent of the initial
datum y0 such that

‖v‖L2(�0×(0,T )) ≤ C‖y0‖L2(�) for all y0 ∈ L2(�). (3.3)

In fact the same result holds in a general smooth bounded domain � and with
controls in any open non-empty subset �0 of its boundary.

In the present setting, this result is equivalent to an observability inequality for the
adjoint heat equation: ⎧⎪⎨⎪⎩

ϕt +�ϕ = 0 in �× (0, T ),

ϕ = 0 on ∂�× (0, T ),

ϕ(x, T ) = ϕ0(x) in �.

(3.4)
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More precisely, it is equivalent to the existence of a positive constant C > 0 such that

‖ϕ(0)‖2
L2(�)

≤ C

∫ T

0

∫
�0

∣∣∣∣∂ϕ∂n
∣∣∣∣2 dσdt for all ϕ0 ∈ L2(�). (3.5)

Here and in the sequel by n we denote the unit exterior normal vector field and by
∂ · /∂n the normal derivative. In this case, over �0, ∂ · /∂n = −∂ · /∂x2 .

Let us now consider the finite-difference space semi-discretizations of (3.1) and
(3.4).

Given N ∈ N we set h = π/(N + 1) and we consider the mesh

xi,j = (ih, jh), i, j = 0, . . . , N + 1. (3.6)

We now introduce the finite-difference semi-discretizations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y′
j,k + 1

h2 (4yj,k−yj+1,k−yj−1,k−yj,k+1 −yj,k−1) = 0, (j, k) ∈ �h, 0 < t < T,

yj,k = 0, (j, k) ∈ [∂� \ �0]h, 0 < t < T,

yj,0 = vj , j = 0, . . . , N + 1, 0 < t < T,
(3.7)

yj,k(0) = y0
j,k, (j, k) ∈ �h,

and⎧⎪⎨⎪⎩
ϕ′
j,k− 1

h2 (4ϕj,k−ϕj+1,k−ϕj−1,k−ϕj,k+1 −ϕj,k−1) = 0, (j, k) ∈ �h, 0 < t < T,

ϕj,k = 0, (j, k) ∈ [∂�]h, 0 < t < T,

ϕj,k(T ) = ϕ0
j,k, (j, k) ∈ �h. (3.8)

To simplify the notations, we have denoted by�h (resp. ∂�h) the set of interior (resp.
boundary) nodes, and by [∂�\�0]h the set of indices (j, k) so that the corresponding
nodes belong to ∂� \ �0. Here and in the sequel yj,k = yj,k(t) (resp. ϕj,k = ϕj,k(t))
stands for an approximation of the solution y of (3.1) (resp. ϕ of (3.4)) at the mesh-
points xi,j . On the other hand, vj denotes the control that acts on the semi-discrete
system (3.7) through the subset [�0]h of the boundary. Note that the control does
not depend of the index k since the subset of the boundary [�0]h where the control is
being applied corresponds to k = 0.

In order to simplify the notation we introduce the vector unknowns and control

Yh = (yj,k)0≤j,k≤N+1, �h = (φj,k)0≤j,k≤N+1, Vh = (vj )1≤j≤N, (3.9)

that we shall often denote simply by Y , � and V .
Accordingly, systems (3.7) and (3.8) read as follows:{

Y ′
h + AhYh = BhVh,

Yh(0) = Y 0
h ,

(3.10)
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�′
h − Ah�h = 0,

�h(T ) = �0
h.

(3.11)

We denote byAh the usual positive-definite symmetric matrix associated with the five-
point finite-different scheme we have employed in the discretization of the Laplacian
so that

(AhW)j,k = 1

h2 (4wj,k − wj+1,k − wj−1,k − wj,k+1 − wj,k−1), (3.12)

for the inner nodes. In (3.11) the homogenous boundary conditions have been inte-
grated by assuming simply that their values in the expression (3.12) have been replaced
by the zero one. On the other hand the linear operator Bh in (3.10) is such that the
action of the control vj enters on those nodes which are neighbors to those of [�0]h,
i.e. for k = 1, so that [BhV ]j,k = 0 whenever 2 ≤ k ≤ N but [BhV ]j,1 = −vj/h2.

The null-controllability problem for system (3.10) reads as follows: Given Y 0 ∈
R
N+2×N+2 to find V ∈ L2(0, T ; R

N) such that the solution Y of (3.10) satisfies

Y (T ) = 0. (3.13)

On the other hand, the problem of observability for system (3.11) consists in
proving the existence of C > 0 such that

‖�(0)‖2
h ≤ Ch

∫ T

0

N∑
j=1

∣∣∣φj,1
h

∣∣∣2dt (3.14)

for every solution � of (3.11).
In (3.14) ‖ · ‖h stands for the scaled Euclidean norm

‖�‖h =
[
h2

N+1∑
j,k=0

|φj,k|2
]1/2

(3.15)

and the right hand side term of inequality (3.14) represents the discrete version of the
L2-norm of the normal derivative in (3.5).

A similar problem can be formulated in general bounded smooth domains �. In
that case, obviously, the domain � needs to be approximated by domains �h whose
boundaries are constituted by mesh-points. We first address the case of the square
domain by Fourier series to later derive some consequences for general domains.

All this section is devoted to the problem of null control. Obviously the situation is
different if the final requirement is relaxed to an approximate controllability condition.
In that context, as a consequence of the null controllability of the limit heat equation
and the convergence of the numerical algorithm it can be proved that the state Yh at
time t = T can be driven to a final state of norm εh such that εh → 0 ash → 0. But, as
mentioned above, this property fails in general in the framework of null controllability.
At this point the work in [10] is also worth mentioning. There it was proved that, in
the context of analytic semigroups, one can also get uniform bounds on the number
of iterations needed for computing controls using conjugate gradient algorithms.
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3.2. The square domain. The goal of this subsection is to prove that, as h → 0,
the controls Vh of (3.10) are uniformly bounded and converge in L2(�0 × (0, T )) to
the control of (3.1). All along this section we deal with controls of minimal L2-norm,
the so-called HUM controls.

In order to make this convergence result more precise it is convenient to take the
following facts into account:

• To state and analyze the convergence of the discrete states Yh it is convenient to
extend them to continuous functions yh(x, t) with respect to the space variable
x = (x1, x2). This can be done, as in the previous section, in two different ways
either by considering a piecewise linear and continuous extension or extending
the discrete Fourier expansion of solutions by keeping exactly the same analytic
expression. The control Vh has to be extended as well to a function depending
on the continuous variable 0 < x1 < π . This can be done in the same two
ways.

• To state the convergence of controls as h → 0 the initial data Y 0
h in (3.10) have

to be chosen in connection with the initial data y0 of the PDE (3.1). This may
be done in several ways. When y0 is continuous, Y 0

h can be taken to be the
restriction of y0 to the mesh-points. Otherwise, one can take average values
over cells, or simply truncate the Fourier expansion of the continuous initial
datum y0 by taking the first N ×N terms.

This being made precise, the following result holds:

Theorem 3.1. Let T > 0 be any positive control time. Let y0 ∈ L2(�) and Y 0
h be as

above. Then, the null controls Vh for the semi-discrete problem (3.10) are uniformly
bounded, with respect to h and converge in L2(�0 × (0, T )) towards the null control
of the heat equation (3.1). The semi-discrete controlled states Yh also converge to the
controlled state y of the heat equation in L2(0, T ;H−1(�)) satisfying the null final
condition (3.2).

Remark 3.2. The result is sharp in what concerns the support �0 of the control.
Indeed, as pointed out in [30] this result fails when [�0]h is replaced by the set of
indices [�∗

0 ]h in which the first node corresponding to the index j = 1 is removed.
In that case the observability inequality (3.14) fails because of the existence of a non-
trivial solution (3.11) such that� vanishes on [�∗

0 ]h. This is so in fact because of the
existence of a non-trivial eigenvector of the discrete Laplacian Ah with eigenvalue
λh = 4/h2, taking alternating values ±1 along the diagonal and vanishing out of it.

The main elements of the proof of this result are the following. The key point is
precisely proving that the observability inequality (3.14) is uniform with respect to the
mesh-size h > 0. Once this is done standard variational methods allow proving that
the controls are uniformly bounded and then passing to the limit as h → 0. We refer
to [27] where the same issue was addressed for the heat equation in thin cylindrical
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domains by similar tools and to [14] where the limit process was described in detail
in the context of the finite-difference semi-discrete approximation of the 1 − d heat
equation.

The method of proof of the uniform estimate (3.14) depends heavily on the Fourier
decomposition of solutions. To develop it we need some basic facts about the Fourier
decomposition of the discrete Laplacian.

The eigenvalue problem associated with the semi-discrete system (3.11) is as
follows:{

1
h2

[
4wj,k − wj+1,k − wj−1,k − wj,k+1 − wj,k−1

] = λwj,k, (j, k) ∈ �h,
wj,k = 0, (j, k) ∈ [∂�]h.

(3.16)
Its spectrum may be computed explicitly:

λ�,m(h) = 4

h2

[
sin2

(
�h

2

)
+ sin2

(
mh

2

)]
(3.17)

W�,m(h) = w�,m(x)
∣∣
x=(jh,kh),j,k=0,··· ,N+1 (3.18)

for �,m = 1, . . . , N , where w�,m(x) are the eigenfunctions of the continuous Lapla-
cian:

w�,m(x) = 2

π
sin(�x1) sin(mx2).

In particular, in view of (3.18) the eigenvectors of the discrete system (3.16) are simply
the restrictions of the eigenfunctions of the continuous Laplacian to the mesh points.
Of course, this is a very particular fact that is not true for general domains �.

It is also easy to check that

λ�,m(h) → λ�,m = �2 +m2 as h → 0 (3.19)

for all �,m ≥ 1, where λ�,m stand for the eigenvalues of the continuous Laplacian.
This confirms that the 5-point finite-difference scheme provides a convergent numer-
ical scheme.

The eigenvectors {W�,m}�,m=1,...,N constitute an orthonormal basis of R
N×N with

respect to the scalar product

〈f, f̃ 〉h =
[
h2

N∑
j,k=1

fj,kf̃j,k

]1/2
, (3.20)

associated with the norm (3.15).
The solution of the semi-discrete adjoint system (3.11) can also be easily developed

in this basis:

�h(t) =
N∑

�,m=1

a�,me−λ�,m(h)(T−t)W�,m (3.21)
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where {a�,m} are the Fourier coefficients of the datum at time t = T :

�0
h =

N∑
�,m=1

a�,mW�,m, a�,m = 〈�0
h, W

�,m〉h. (3.22)

Solutions may also be rewritten in the form

�h(t) =
N∑
�=1

ψm(t)⊗ σm, (3.23)

where

σm =
(√

2√
π

sin(mkh)

)
k=0,...,N+1

,

so thatW�,m = σ�⊗σm, and each vector-valued functionψm(t) = (ψmj (t))j=0,...,N+1
is a solution of the 1 − d semi-discrete problem:⎧⎪⎨⎪⎩

ψ ′
j − [

2ψj − ψj+1 − ψj−1
]
/h2 + μmψj = 0, j = 1, . . . , N, 0 < t < T,

ψ0 = ψN+1 = 0, 0 < t < T,

ψj (T ) = ψ0
j , j = 1, . . . , N,

(3.24)
where μm = 4

h2 sin2
(
mh
2

)
.

The observability inequality (3.14) is equivalent to proving the 1 − d analogue
for (3.24), uniformly with respect to the index m ≥ 1, i.e.

‖ψ(0)‖2
h ≤ C

∫ T

0

∣∣∣∣ψ1

h

∣∣∣∣ 2

dt, (3.25)

for allψ0,ψ being the solution of (3.24), with a constantC > 0 which is independent
of m.

The proof of this 1 − d uniform estimate can be developed easily following the
arguments in [14]. In fact that inequality is an immediate consequence of the explicit
form of the spectrum together with a technical result on series of real exponentials
that we recall for the sake of completeness. Consider the class L(ξ,M) constituted
by increasing sequences of positive real numbers {νj }j≥1 such that

νj+1 − νj ≥ ξ > 0 for all j ≥ 1, (3.26)∑
k≥M(δ)

1

νk
≤ δ for all δ > 0. (3.27)

Here ξ is any positive number andM : (0,∞) → N is a function such thatM(δ) → ∞
as δ → 0. Obviously, different values of ξ and M determine different classes of
sequences L(ξ,M). The following holds (see [14]):
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Proposition 3.3. Given a class of sequences L(ξ,M) and T > 0, there exists a
positive constant C > 0 such that∫ T

0

∣∣∣ ∞∑
k=1

ake
−νkt

∣∣∣2dt ≥ C[∑
k≥1 1/νk

] ∑
k≥1

|ak|2e−2νkT

νk
, (3.28)

for all {νk}k≥1 ∈ L(ξ,M) and all bounded sequence {ak}k≥1.

Note that the sequences of eigenvalues of problems (3.24) belong to the same class
L(ξ,M) for all h > 0 and m ≥ 1. Thus, the constant C in (3.28) is uniform and,
consequently, (3.24) holds, with an observability constant independent of h > 0 and
m ≥ 1 as well.

Remark 3.4. The same result holds for the case in which the control acts as a right
hand side external force applied on a band, i.e. on a set of the form ω = {(x1, x2) :
0 < x1 < γ, 0 < x2 < π} with 0 < γ < π . The corresponding continuous model
reads ⎧⎪⎨⎪⎩

yt −�y = f 1ω in �× (0, T ),

y = 0 on ∂�× (0, T ),

y(x, 0) = y0(x) in �,

(3.29)

where f = f (x1, x2, t) is the control and 1ω is the characteristic function of the set
ω where the control is applied.

The corresponding observability inequality is

‖ϕ(0)‖2
L2(�)

≤ C

∫ T

0

∫
ω

ϕ2 dxdt for all ϕ0 ∈ L2(�). (3.30)

The problems can be formulated similarly for the semi-discrete scheme we have
considered.

The observability inequality (3.30) and the corresponding semi-discrete versions
hold uniformly with respect to the mesh-size parameter h > 0. Consequently the
heat equation (3.29) and the corresponding semi-discretizations are uniformly (with
respect to h > 0) null controllable. Convergence of controls and states holds as well.

In this case the most natural functional setting is the following one. The initial
data y0 belongs to L2(�), the control f lies in L2(ω× (0, T )) and the solutions then
belong to C([0, T ];L2(�)) ∩ L2(0, T ;H 1

0 (�)). Convergences hold in these classes
as well.

3.3. General domains. The methods of proof of the previous section, based on
Fourier series expansions, do not apply to general domains. In fact, even in the
context of the continuous heat equation, the existing proofs of null controllability
require obtaining the observability estimates by Carleman inequalities (see [5] and
[11]). So far the discrete or semi-discrete version of these Carleman inequalities
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and its possible applications to observability estimates for numerical approximation
schemes for the heat equation is a completely open subject of research.

However, in view of the results of the previous section, and using a classical
argument, based on extending the control domain and then getting the controls as
restrictions to the original boundary of the controlled states, one can derive similar
results for general domains but provided the controls are supported everywhere on
the boundary of the domain. The problem of determining sharp conditions on the
subsets of the boundary so that the semi-discrete systems are uniformly controllable
is completely open. As we have mentioned above, even in the simplest geometry of
the square domain of the previous subsection, the result fails to hold without some
restrictions on the support of the control that are not needed for the continuous heat
equation.

The following holds:

Theorem 3.5. For all bounded smooth domain �, all time T > 0 and all initial
data y0 ∈ L2(�), there exists a uniformly bounded sequence of discrete controls
Vh ∈ L2(∂�h× (0, T )) ensuring the null controllability of the finite-difference semi-
discrete approximation in �h. These controls can be chosen so that the solutions Yh
converge weakly in L2(0, T ;H 1(�)) to the solution y of the heat equation satisfying
the null final condition (3.2).

Proof. Let us briefly explain how this classical extension-restriction method can be
implemented in this framework.

Without loss of generality we can assume that� is contained in the square domain
�̃ = (0, π)× (0, π). We discretize the square as in the previous sections, and define
the approximating domains �h as those that, having their boundary constituted by
mesh-points, better approximate the domain�. For the sake of simplicity we assume
that�h contains�. We also consider a band-like control subdomainω in the square �̃
so that the results of the previous sections apply and �h ∩ ω = ∅ for all h > 0.

Given initial data y0 ∈ L2(�) for the continuous heat equation we define approxi-
mating discrete data Y 0

h in�h in a standard way, for instance, by simply taking on each
mesh-point the average ofy0 on the neighboring square of sides of sizeh. This data can
be easily extended by zero to discrete data Ỹ 0

h defined in the whole mesh of the square.
In view of the results of the previous section (Remark 3.4 ) this generates controls Fh
with support in ω, which are uniformly bounded in L2(ω × (0, T )) and converging,
as h → 0, to the control of the heat equation (3.29) in the square �̃. This yields
also uniformly bounded states Ỹh in the space C([0, T ];L2(�̃))∩L2(0, T ;H 1

0 (�̃)).
Obviously, here, as in previous sections, these bounds hold in fact for the piecewise
linear continuous extensions of the discrete solutions.

More precisely, the corresponding solutions Ỹh converge to the solution y of the
heat equation in the space L2(0, T ;H 1

0 (�̃)). We can then restrict these solutions to
the domains�h and obtain the solutions Yh of the semi-discrete system in�h, which,
by construction, satisfy the final null condition (3.13) and converge to the solution
of the heat equation. These solutions satisfy non-homogeneous boundary conditions.
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We read their trace as the boundary controlsVh in ∂�h (resp. ∂�) for the semi-discrete
(resp. continuous) heat equations. These controls are bounded in L2(∂�h × (0, T ))
because they are traces of solutions of bounded energy in L2(0, T ;H 1

0 (�̃)). Their
weak convergence can also be proved. However, at this point one has to be careful
since the controls are defined on boundaries ∂�h that depend on h. A possible
way of stating that convergence rigorously is considering smooth test functions θ(x)
defined everywhere in the square and ensuring that

∫
∂�h

Vhθdσ tends to
∫
∂�
vθdσ ,

as h → 0 for all smooth test functions θ . This convergence property of controls holds
as well. �

Remark 3.6. The method of proof we have presented based on the extension of
the domains and using the previously proved results on the square has two main
drawbacks:

• The first one is that the control is required to be supported everywhere on the
boundary of the domain. We emphasize however that, despite the fact that
no geometric restrictions are needed for the continuous heat equation, in the
sense that null controllability holds from an arbitrarily small open subset of
the boundary, that is not the case for the semi-discrete one. Thus, the class of
subsets of the boundary for which passing to limit on the null-controllability
property is possible is still to be clarified, and the result above showing that the
whole boundary always suffices is the first positive one in this direction.

• The second one is that it is based on the results obtained in the square by
Fourier series techniques. As we have mentioned above, the main tool to deal
with continuous heat equations are the Carleman inequalities. As far as we
know there is no discrete counterpart of those inequalities and this would be
essential to deal with more general heat equations with variable coefficients, or
semilinear perturbations. The methods described in Section 2 showing the two-
grid controllability of the semilinear wave equation by compactness-uniqueness
arguments do not apply for heat-like equations because of their very strong time-
irreversibility. Thus, the Carleman approach seems to be the most promising
one. However, the fact that observability fails for the semi-discrete system
for some observation subdomains indicates that the problem is complex in the
sense that the discrete version of the continuous Carleman inequality does not
hold. This is a widely open subject of research.

Remark 3.7. Similar results hold for a semi-discrete regular finite-element approxi-
mation of the heat equation, as long as solutions can be developed in Fourier series,
allowing to reduce the problem in the square to a one-parameter family of 1−d prob-
lems, and then apply the extension-restriction method to address general domains.
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Multiscale modeling for epitaxial growth

Russel E. Caflisch∗

Abstract. Epitaxy is the growth of a thin film on a substrate in which the crystal properties of the
film are inherited from those of the substrate. Because of the wide range of relevant length and
time scales, multiscale mathematical models have been developed to describe epitaxial growth.
This presentation describes atomistic, island dynamics and continuum models. Island dynamics
models are multiscale models that use continuum coarse-graining in the lateral direction, but
retain atomistic discreteness in the growth direction. Establishing connections between the vari-
ous length and time scales in these models is a principal goal of mathematical materials science.
Progress towards this goal is described here, including the derivation of surface diffusion, line
tension and continuum equations from atomistic, kinetic models.
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Keywords. Epitaxial growth, island dynamics, step edge, step stiffness, Gibbs–Thomson,
adatom diffusion, line tension, surface diffusion, renormalization group, kinetic Monte Carlo.

1. Introduction

Epitaxy is the growth of a thin film on a substrate in which the crystal properties
of the film are inherited from those of the substrate. Since an epitaxial film can (at
least in principle) grow as a single crystal without grain boundaries or other defects,
this method produces crystals of the highest quality. In spite of its ideal properties,
epitaxial growth is still challenging to mathematically model and numerically simulate
because of the wide range of length and time scales that it encompasses, from the
atomistic scale of Ångstroms and picoseconds to the continuum scale of microns and
seconds.

The geometry of an epitaxial surface consists of step edges and island boundaries,
across which the height of the surface increases by one crystal layer, and adatoms
which are weakly bound to the surface. Epitaxial growth involves deposition, diffusion
and attachment of adatoms on the surface. Deposition is from an external source,
such as a molecular beam. Figure 1 provides a schematic illustration of the processes
involved in epitaxial growth.

The models that are most often used to describe epitaxial growth include the
following: A typical Kinetic Monte Carlo (KMC) method simulates the dynamics of
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Basic processes in epitaxial growth

(d) attachment
(e) detachment
(f) edge diffusion

(a) deposition
(b) diffusion
(c) nucleation

(g) diffusion down step
(h) nucleation on top of islands
(i)  dimer diffusion

Figure 1. Schematic view of the processes involved in epitaxial growth.

the epitaxial surface through the hopping of adatoms along the surface. The hopping
rate has the Arrhenius form e−E/kT in which E is the energy barrier for going from
the initial to the final position of the hopping atom. Island dynamics describe the
surface through continuum scaling in the lateral directions but atomistic discreteness
in the growth direction. Continuum equations approximate the surface using a smooth
height function z = h(x, y, t), obtained by coarse graining in all directions. Two other
models are used to describe epitaxial growth on a limited time range. Molecular
dynamics (MD) consists of Newton’s equations for the motion of atoms on an energy
landscape. Because the time scale for MD is femtoseconds (10−15 seconds), this
can only be applied to very short time periods. Rate equations describe the surface
through a set of bulk variables without spatial dependence. With some exceptions
[5], [16], these have been used only for submonolayer growth.

The initial theories for epitaxial growth, such as [3], relied on an assumption that
the system is close to equilibrium. In many epitaxial systems, however, the system
is far from equilibrium so that a kinetic description is required. The emphasis in this
article will be on KMC, island dynamics and continuum models for epitaxial systems
that are far from equilibrium. A principal goal of mathematical materials science
is to analyze the connections between these models. The results presented below,
from the work of Margetis [18], Caflisch & Li [7], Margetis & Caflisch [19], Chua
et al. [10], and Haselwandter & Vvedensky [14], [15] are for surface diffusion and
step stiffness derived from atomistic kinetic models of epitaxy, and general continuum
equations from a simplified model. These results are among the first of their kind; e.g.,
the formula for step stiffness comes from the first derivation of the Gibbs–Thomson
formula from an atomistic, kinetic model rather than from a thermodynamic driving
force. The results are far from complete. Other effects, such as the nonlinear terms
in the continuum equations, have not been derived for a full model of epitaxy. In
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addition, the derivations presented here are based on formal asymptotics, rather than
rigorous mathematical analysis. Nevertheless, these results are a significant step
toward a more complete theory and can serve as a starting point for more rigorous
analysis.

For simplicity in the presentation, the lattice constant a will be taken to be a = 1,
except in a few places where it is useful as a placeholder. Also, all transition rates
(with units 1/time) are expressed in terms of equivalent diffusion constants (with units
length2/time); i.e., a rate r is replaced by a diffusion coefficient D = a2r .

2. Mathematical models for epitaxial growth

In this section, various models for epitaxial growth are described, including atomistic
KMC, island dynamics and continuum models, as well as a kinetic model for the
structure of a step edge (or island boundary) that is used with island dynamics.

2.1. Atomistic Models. The simplest KMC model is a simple cubic pair-bond solid-
on-solid (SOS) model [28], [29]. In this model, there is a stack of atoms, without
vacancies, above each site on a two-dimensional lattice. New atoms are randomly
deposited at a deposition rate F . Any surface atom (i.e., the top atom in the stack
of atoms at a lattice point) is allowed to move to its nearest neighbor site at a rate
r = D/a2 in which a is the lattice constant and D is a diffusion coefficient. In the
simplest case, D is determined by

D = D0 exp{−(ES + nEN)/kBT }. (1)

In this equation, D0 is a constant prefactor of size 1013a2s−1, kB is the Boltzmann
constant, T is the surface temperature, ES and EN represent the surface and nearest
neighbor bond energies, and n is the number of in-plane nearest neighbors. The
terrace diffusion coefficient DT for adatoms on a flat terrace and the edge diffusion
coefficient DE for adatoms along a step edge (with a single in-plane neighbor) are

DT = D0 exp{−ES/kBT }, (2)

DE = D0 exp{−(ES + EN)/kBT }. (3)

Validity of this KMC model for epitaxial growth has been demonstrated by comparison
to RHEED measurements from molecular beam epitaxy (MBE) experiments [11].
More complicated models for the diffusion coefficient, subject to the condition of
detailed balance, are also used.

2.2. Island dynamics models. Burton, Cabrera and Frank [3] developed the first
detailed theoretical description for epitaxial growth. This BCF model is an “island
dynamics” model, since it describes an epitaxial surface by the location and evolution
of the island boundaries and step edges. It employs a mixture of coarse graining and
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atomistic discreteness, since island boundaries are represented as smooth curves that
signify an atomistic change in crystal height.

Adatom diffusion on the epitaxial surface is described by a diffusion equation of
the form

∂tρ − DT ∇2ρ = F − 2(dNnuc/dt) (4)

in which F is the deposition flux rate and the last term represents loss of adatoms due
to nucleation. Desorption from the epitaxial surface has been neglected.

The net flux to the step edge from upper and lower terraces is denoted as f+ =
f+(y, t) and f− = f−(y, t), respectively, in which

vρ+ + DT n · ∇ρ+ = −f+, (5)

vρ− + DT n · ∇ρ− = f−. (6)

The total flux is
f = f+ + f−. (7)

Different island dynamics models are distinguished by having different formulas
for the diffusive boundary conditions and normal velocity.

1. The island dynamics model with irreversible aggregation:

ρ = 0,

v = f. (8)

2. The BCF boundary conditions:

ρ = ρ∗,
v = f, (9)

in which ρ∗ is the equilibrium adatom density at a step.

3. The island dynamics model with step-edge kinetics:

f+ = (DT ρ+ − DEφ) cos θ,

f− = (DT ρ− − DEφ) cos θ, (10)

v = k w cos θ,

in which φ and k are the densities of edge-atoms and kinks, and w is the kink
velocity, defined in Section 2.3.

4. The island dynamics model with line tension and surface diffusion:

f+ = Dd+(ρ+ − ρ∗) − μ+κ,

f− = Dd−(ρ− − ρ∗) − μ−κ, (11)

v = DT n · [∇ρ] + βρ∗yy + (μ/DE)κss,
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in which κ is curvature and κss is its second derivative along the length of a
step edge, ρ∗ is a reference adatom density, Dd± are the attachment/detachment
rates, and μ± = (Dd±ρ∗/kBT )γ̃ in which γ̃ is the step stiffness. This is further
discussed in Section 4.

For the case of irreversible aggregation, a dimer (consisting of two atoms) is the
smallest stable island, and the nucleation rate is

dNnuc

dt
= Dσ1〈ρ2〉, (12)

where 〈 · 〉 denotes the spatial average of ρ(x, t)2 and

σ1 = 4π

ln[(1/α)〈ρ〉D/F ] (13)

is the adatom capture number. The parameter α reflects the island shape, and α � 1
for compact islands. Expression (12) for the nucleation rate implies that the time of
a nucleation event is chosen deterministically. The choice of the location of the new
island is determined by probabilistic choice with spatial density proportional to the
nucleation rate ρ2. This probabilistic choice constitutes an atomistic fluctuation that
is retained in the island dynamics model [24].

Snapshots of the results from a typical island dynamics simulation are shown
in Figure 2. Shown is the island geometry after coverage of 0.25 layers (left) and

Figure 2. Island geometry for island dynamics with irreversible aggregation after deposition of
0.25 layers (left) and 10.25 layers (right).

coverage of 10.25 layers (right). These simulations are for irreversible aggregation
with boundary conditions from Eq. (8). Numerical simulation of the island dynamics
is performed using a level set method for thin film growth, as described in [4], [8].
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Validation of the island dynamics/level set method has been performed by careful
comparison to the results of the atomistic KMC models. Various generalizations
and additional physics results are described in [22], [23]. Related work on level set
methods for epitaxial growth are found in [9], [25], [26].

The principal dimensionless parameters for epitaxial growth are the ratios of flux
and diffusive coefficients, which we refer to as “Péclet numbers” by analogy with
fluid mechanics. Let f̄ be a characteristic size for the flux to an edge. Let PT be the
terrace Péclet number and PE be the edge Péclet number, defined as

PT = F/DT , (14)

PE = f/DE, (15)

in which DE is the edge diffusion constant. Typical values for P −1
T = DT /F are in

the range of 104 to 108.

2.3. The kinetic edge model. The kinetic edge model of island dynamics was de-
veloped in [6]. It involves a statistical description of the crystalline structure of a
step edge, including the edge-atom density φ and the kink density k. Edge-atoms
are atoms with a single in-plane neighbor along the step; kinks are atoms with two
in-plane neighbors. Kinks are of two types – right-facing kinks and left-facing kinks –
the densities of which are denoted by kr and k�. Figure 3 provides a schematic picture


+

ρ
k�

kr

φ


−

ρ

Figure 3. The geometry of step edge, showing adatoms with density ρ on the upper and lower
terraces 
+ and 
−, edge-atoms with density φ, and right and left facing kinks with density kr

and k�.

of the kink density model for a step edge. Related models have been derived by
Balykov et al. [1], Balykov & Voigt [2] and Filimonov & Hervieu [13].
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The kinetic edge model consists of a diffusion equation for the edge-atom density
φ and a convection equation for the kink density k

∂tφ − DE∂2
s φ = f+ + f− − f0, (16)

∂tk + ∂s(w(kr − k�)) = 2(g − h). (17)

In Eq. (16), f± are the net fluxes to the edge from terraces as defined in Eq. (5) and
Eq. (6), and f0 is the net loss term due to the attachment of edge-atoms to kinks. In
Eq. (17), w is the kink velocity, and g and h represent, respectively, the creation and
annihilation of left-right kink pairs. Note that left-facing kinks and right-facing kinks
move in opposite directions with velocity w and −w, respectively. The total kink
density and the relation between the kink density and the normal angle [3] are

kr + k� = k, (18)

kr − k� = tan θ. (19)

The quantities f+, f−, f0, w, g, h, and v are determined by the following consti-
tutive relations (in simplified form):

f+ = (DT ρ+ − DEφ) cos θ, (20)

f− = (DT ρ− − DEφ) cos θ, (21)

f0 = v (φκ + 1) , (22)

w = l1DEφ + DT (l2ρ+ + l3ρ−) = l123DEφ + (l2f+ + l3f−)/ cos θ, (23)

g = φ (m1DEφ + DT (m2ρ+ + m3ρ−))

= φ(m123DEφ + (m2f+ + m3f−)/ cos θ),
(24)

h = krk� (n1DEφ + DT (n2ρ+ + n3ρ−))

= krk�(n123DEφ + (n2f+ + n3f−)/ cos θ),
(25)

Xt = v = wk cos θ, (26)

where DT is the (diffusion) hopping rate of an adatom on a terrace, DE is the (diffu-
sion) hopping rate of an edge-atom along or off an edge, and all li , mi, ni (i = 1, 2, 3)

are nonnegative numbers. The geometric parameters li , mi, ni count the number of
paths from one state to another, cf. [6] for details. Here, these parameters are gener-
alized to allow a factor relating the macroscopic density ρ or φ to the local density of
adatoms or edge atoms at a specific site. For convenience, we have used the notation

qij = qi + qj and qijk = qi + qj + qk

for q = l, m, or n. For simplicity in this presentation, the constitutive laws (20)–(25)
have been simplified by omission of terms that are insignificant for the kinetic steady
state solutions of relevance to step-flow growth and by specialization to the case of θ

near 0. The terms omitted from (20)–(25) include terms that are important for detailed
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balance, so that they are required for determination of the equilibrium solution for
this model. In the more complete analysis of [6], [7], [19], all of the neglected terms
are included.

There are several significant solutions for the kinetic step edge model Eq. (16)–
Eq. (26). First, there is an equilibrium solution that was originally determined in [3]
(note that some terms that have been omitted from the presentation here are significant
for the equilibrium). Second there is a kinetic (i.e., nonequilibrium) steady state
solution, for which the presentation includes all of the significant terms. Suppose that
the kink density and edge Peclet number are small (i.e., ak � 1 and PE � 1) and
that the step is symmetric (i.e., ρ+ = ρ−), then the adatom, edge-adatom and kink
densities of the kinetic steady state are approximately

ρ = (DE/DT )a−1ϕ, (27)

ϕ = (16a/3)k2, (28)

k =
(

16

15
PE

) 1
3

a−1. (29)

The exponent 1/3 in (29) is related to the critical size for formation of a left-right kink
pair. If the critical size were j (i.e., if j + 1 edge-adatoms were required to form a
stable kink pair) then the exponent would be j/(j + 2).

Figure 4 shows a comparison of this steady state solution (solid line) and com-
putational results from KMC (squares, circles and triangles) for kink density k. The
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Figure 4. Kink density k, normalized by L1/3, vs. edge diffusion coefficient DE for kinetic
steady state, for various values of terrace width L. Parameter values are flux F = 1 and
adatom diffusion DT = 1012. Results are shown from the kinetic theory (solid line) and KMC
computations with L = 25 (squares), L = 50 (�), and L = 100 (	). These are compared to
the corresponding equilibrium values for L = 25 (dash-dotted line), L = 50 (dashed line), and
L = 100 (dotted line), showing that the steady state and equilibrium differ both qualitatively
and quantitatively.
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BCF equilibrium values for k are also plotted (lower three lines) for comparison. In
this figure, F = 1 and DT = 1012, while DE varies between 104 and 107. The
computations are for a periodic step train with straight steps at angle θ = 0 and
with distance L = 25, 50, and 100 between the steps. The figure shows excellent
agreement between the predictions of the present theory and the results of the KMC
simulation, with differences that are less than one standard deviation of the KMC
results. The results are significantly different from equilibrium both in size and in
dependence on DE .

2.4. Continuum models. Continuum models of epitaxial growth employ coarse
graining in all directions. In most cases, they describe the epitaxial surface through a
smooth height function z = h(x, y, t). The general equation of this type, as discussed
by Haselwandter and Vvedensky [14], [15], is

ht = ν2∇2h − ν4∇4h + λ13∇(∇h)3 + λ22∇2(∇h)2 + ξ (30)

in which the ν2 term comes from a height-dependence in the energy, the ν4 term
is surface diffusion, the λ terms are nonlinearities, and ξ is a stochastic noise term.
This equation generalizes previous models, including the Edwards–Wilkinson (EW)
equation with ν4 = λ13 = λ22 = 0, the Mullins–Herring (MH) equation with ν2 =
λ13 = λ22 = 0, and the Villain–Lai–Das Sarma (VLDS) equation with ν2 = λ13 = 0.
The relations between these models are further discussed in Section 5, through a
renormalization group analysis applied to the Edwards–Wilkinson and Wolf–Villain
models for epitaxial growth.

Derivation of these continuum equations has been mostly through symmetry ar-
guments, thermodynamic driving force or by heuristics. The results reported in Sec-
tions 3 and 5 are among the first derivation of these equations from kinetic, atomistic
models. Alternative modeling approaches have included additional dependent vari-
ables, not just the interface height. For example, Lo & Kohn [17] included adatom
density in addition to height. Margetis et al. [20] derive similar results starting from an
island dynamics model with a kinetic step edge description, as in Section 2.2 and 2.3.

3. Surface diffusion

As first derived by Mullins [21], the surface diffusion equation

ht = −ν4∇4h (31)

describes the evolution of a surface through diffusion of the material that comprises the
surface. Margetis [18] has given an atomistic, kinetic derivation of surface diffusion
for epitaxial growth, and he found the surprising result that surface diffusion is not
isotropic. While his derivation is based on detailed asymptotics starting from an island
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dynamics model, the presentation here will be phenomenological but faithful to the
spirit of Margetis’s derivation.

Consider an epitaxial surface that consists of a series of steps that are nearly par-
allel. The terrace width � between steps is approximately � = a/|∇h| in which a is
the lattice constant. Assume that the steps are slowly varying but widely spaced, so
that a � � � λ in which λ is the length scale for the variation in the steps away
from straight. Also, assume that edge diffusion coefficient DE and the edge attach-
ment/detachment rate Dd are much smaller than the terrace diffusion coefficient DT .

The analysis is based on the following fundamental property of diffusion: Con-
sider a composite consisting of strips of two material with diffusion coefficients D1
and D2 and with strip widths a1 and a2. The effective diffusion coefficient D∗ for the
composite is the arithmetic average if the diffusion is in the direction along the strips
(i.e., a parallel configuration) and it is the harmonic average if the diffusion is in the
direction perpendicular to the strips (i.e., a series configuration); i.e.,

D∗ =
{

(a1D1 + a2D2)/(a1 + a2) parallel configuration,

((a1D
−1
1 + a2D

−1
2 )/(a1 + a2))

−1 series configuration.
(32)

Define a tangential variable s along the steps and a normal variable n perpendicular
to the steps. In the tangential direction, adatoms diffuse at the terrace diffusion rate
of DT on the terraces between steps and at the edge diffusion rate DE along the steps.
Since the terraces and steps are in parallel in the tangential direction, the corresponding
diffusion coefficient

Dss = (aDE + �DT )/(a + �) ≈ DT . (33)

Diffusion of adatoms normal the steps is also at rate DT , but it is interrupted by
attachment and detachment from the steps at rate Dd . Since the terraces and steps
are in a series configuration in the normal direction n, the diffusion coefficient in this
direction is

Dnn = ((2aD−1
d + �D−1

T )/(a + �))−1 ≈ DT (1 + m|∇h|)−1 (34)

in which
m = 2DT /Dd. (35)

The factor of 2 in the last two formulas is due to the details of the attachment/detach-
ment model used in [18].

Now follow the derivation of diffusion from the thermodynamic driving force (but
note that Margetis used a perturbation expansion based on the kinetic equations rather
than this near-equilibrium argument). The evolution of the height h is given in terms
of the mobility tensor M , current j and chemical potential μ as

ht = −∇ · j

= ∇ · (M∇μ) (36)
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since j = −M∇μ and μ = δE/δh = −g1∇ · (∇h/|∇h|) − g3∇h · (|∇h|∇h). By
the argument above, M is the matrix

M = DT ρ∗
KBT

(
1 0
0 (1 + m|∇h|)−1

)
(37)

in the n, s coordinates.

4. Step stiffness

In [7], Caflisch and Li considered the zero limit of the edge Peclet PE number for
the kinetic edge model from Section 2.3 for a step that is a slight perturbation of a
straight step with θ = 0, i.e., parallel to a crystallographic direction. They used a very
specific form for the wavelength and amplitude of the perturbation and their scaling
with PE , and they assumed that the solution was close to the kinetic steady state
Eq. (29) for θ = 0. They derived the boundary conditions Eq. (11) for the evolution
of a step, including the Gibbs–Thomson form of the step stiffness and a term due to
edge diffusion of the adatoms that attach to the step.

More recently, Margetis and Caflisch [19] performed a more general analysis for
a step with variable θ . Under the assumption that PE � 1 and that the solution is
close to the kinetic steady state, they identified several regimes for the behavior of the
solution and the step stiffness coefficient. Since the complete results are complicated,
we present the results in an abbreviated form and refer to [19] for a detailed expression.

First, suppose that the curvature κ of the step satisfies

|κ| < O(PE) � 1. (38)

Then the step edge kinetics allow for two regimes for the step stiffness γ̃ :

γ̃ =
{

(kBT /DT ρ∗)θ−1 for P
1/3
E � θ � 1,

(kBT /DT ρ∗)γ̃0 for 0 < θ � P
1/3
E .

(39)

The results for step stiffness imply results for the line tension γ , since γ̃ = γ +γθθ

then to leading order

γ ≈
{

(kTB/DT ρ∗)θ log θ for P
1/3
E � θ � 1,

c0 for 0 < θ � P
1/3
E .

(40)

in which c0 is an undetermined constant. In the outer solution, γθ is nearly infinite
for θ small, which predicts a flat facet corresponding to θ = 0. The inner solution
provides some curvature to this facet, however. These results are consistent with the
recent results of Stasevich et al. [27] for the step stiffness in an Ising model.
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5. Coarse graining

In a remarkable series of papers [10], [14], [15], Chua et al. and Haselwandter &
Vvedensky performed coarse-graining, followed by a renormalization group analysis,
for the Edwards–Wilkinson [12] and Wolf–Villain [30] models of epitaxial growth.
In the Wolf–Villain model, particles are randomly deposited on the surface at rate F .
Instead of diffusing along the surface, however, each deposited particle makes a
single hop to the nearest neighbor site that has the largest number of neighbors (i.e.,
the highest coordination), or stays where it landed if that hop does not increase the
number of neighbors. In two-dimensions (i.e., a one dimensional surface), a particle
hops to a position that is no higher than its original position, while in three-dimensions,
some particles may increase their coordination by hopping to a higher position.

For a general lattice model, Haselwandter and Vvedensky first write the stochastic
evolution in terms of a Chapman–Kolmogorov transition probability Tt (H2|H1) for
transition between height configuration H1 to H2 in time t

Tt+t ′(H3|H1) =
∑
H2

Tt ′(H3|H2)Tt (H2|H1). (41)

This can be converted to a Master equation

P(H, t) =
∑

r

[W((H − r; r)P (H − r, t) − W(H ; r)P (H, t)] (42)

in which P(H, t) is the probability for height configuration H at time t , W(H ; r) is
the transition rate between H and H + r , and r is the array of jump lengths between
configurations. They then apply a Kramers–Moyal–van Kampen expansion with
“largeness” parameter 
, with the lattice size and time between depositions being
proportional to 
−1. In the limit 
 → ∞, this expansion yields a lattice Langevin
equation

∂hij /∂t = K
(1)
ij + ηij (43)

in which K
(1)
ij are the first moment of the transition rates and ηij are Gaussian noises

with mean zero and covariances given by the second moment of the transition rates.
After performing a smoothing and a cutoff Taylor expansion and specializing to
the Wolf–Villain (or Edwards–Wilkinson) model, the Langevin equation becomes
Eq. (30).

Finally they perform a renormalization group (RG) analysis of equation Eq. (30).
In the RG “flow”, length and time are scaled at an exponential rate in the flow variable�.
This analysis shows that the RG fixed points consist of the EW, MH and VLDS
equations, as well as three previously unrecognized fixed points. The significance of
this result is that as the solution of Eq. (30) evolves, it will linger near the fixed points,
so that the solution will approximate a solution of each of these equations. The most
important of the equations corresponding to these new fixed points, is their “FP1”.
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Although it is complicated in general, in the two dimensional case it has the form

ht = −|ν2|∇2h − |ν4|∇4h − |λ13|∇(∇h)3 + λ22∇2(∇h)2 + ξ (44)

which should be compared to Eq. (30). In two-dimensions this equation corresponds to
a stable fixed point, but the corresponding equation in three dimensions corresponds
to an unstable fixed point for the RG flow. This coarse graining and RG analysis
provides both a derivation of these equations, starting from the EW or WV model, as
well as an indication of the regimes of their validity.
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Compressive sampling

Emmanuel J. Candès∗

Abstract. Conventional wisdom and common practice in acquisition and reconstruction of
images from frequency data follow the basic principle of the Nyquist density sampling theory.
This principle states that to reconstruct an image, the number of Fourier samples we need to
acquire must match the desired resolution of the image, i.e. the number of pixels in the image.
This paper surveys an emerging theory which goes by the name of “compressive sampling” or
“compressed sensing,” and which says that this conventional wisdom is inaccurate. Perhaps
surprisingly, it is possible to reconstruct images or signals of scientific interest accurately and
sometimes even exactly from a number of samples which is far smaller than the desired resolution
of the image/signal, e.g. the number of pixels in the image.

It is believed that compressive sampling has far reaching implications. For example, it
suggests the possibility of new data acquisition protocols that translate analog information into
digital form with fewer sensors than what was considered necessary. This new sampling theory
may come to underlie procedures for sampling and compressing data simultaneously.

In this short survey, we provide some of the key mathematical insights underlying this new
theory, and explain some of the interactions between compressive sampling and other fields such
as statistics, information theory, coding theory, and theoretical computer science.

Mathematics Subject Classification (2000). Primary 00A69, 41-02, 68P30; Secondary 62C65.

Keywords. Compressive sampling, sparsity, uniform uncertainty principle, underdertermined
systems of linear equations, �1-minimization, linear programming, signal recovery, error cor-
rection.

1. Introduction

One of the central tenets of signal processing is the Nyquist/Shannon sampling theory:
the number of samples needed to reconstruct a signal without error is dictated by its
bandwidth – the length of the shortest interval which contains the support of the
spectrum of the signal under study. In the last two years or so, an alternative theory
of “compressive sampling” has emerged which shows that super-resolved signals and
images can be reconstructed from far fewer data/measurements than what is usually
considered necessary. The purpose of this paper is to survey and provide some of
the key mathematical insights underlying this new theory. An enchanting aspect of
compressive sampling it that it has significant interactions and bearings on some fields
in the applied sciences and engineering such as statistics, information theory, coding
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theory, theoretical computer science, and others as well. We will try to explain these
connections via a few selected examples.

From a general viewpoint, sparsity and, more generally, compressibility has played
and continues to play a fundamental role in many fields of science. Sparsity leads to
efficient estimations; for example, the quality of estimation by thresholding or shrink-
age algorithms depends on the sparsity of the signal we wish to estimate. Sparsity
leads to efficient compression; for example, the precision of a transform coder depends
on the sparsity of the signal we wish to encode [24]. Sparsity leads to dimensionality
reduction and efficient modeling. The novelty here is that sparsity has bearings on
the data acquisition process itself, and leads to efficient data acquisition protocols.

In fact, compressive sampling suggests ways to economically translate analog data
into already compressed digital form [20], [7]. The key word here is “economically.”
Everybody knows that because typical signals have some structure, they can be com-
pressed efficiently without much perceptual loss. For instance, modern transform
coders such as JPEG2000 exploit the fact that many signals have a sparse represen-
tation in a fixed basis, meaning that one can store or transmit only a small number of
adaptively chosen transform coefficients rather than all the signal samples. The way
this typically works is that one acquires the full signal, computes the complete set of
transform coefficients, encode the largest coefficients and discard all the others. This
process of massive data acquisition followed by compression is extremely wasteful
(one can think about a digital camera which has millions of imaging sensors, the
pixels, but eventually encodes the picture on a few hundred kilobytes). This raises a
fundamental question: because most signals are compressible, why spend so much ef-
fort acquiring all the data when we know that most of it will be discarded? Wouldn’t
it be possible to acquire the data in already compressed form so that one does not
need to throw away anything? “Compressive sampling” also known as “compressed
sensing” [20] shows that this is indeed possible.

This paper is by no means an exhaustive survey of the literature on compressive
sampling. Rather this is merely an account of the author’s own work and thinking
in this area which also includes a fairly large number of references to other people’s
work and occasionally discusses connections with these works. We have done our
best to organize the ideas into a logical progression starting with the early papers
which launched this subject. Before we begin, we would like to invite the interested
reader to also check the article [17] by Ronald DeVore – also in these proceedings –
for a complementary survey of the field (Section 5).

2. Undersampled measurements

Consider the general problem of reconstructing a vector x ∈ R
N from linear mea-

surements y about x of the form

yk = 〈x, ϕk〉, k = 1, . . . , K, or y = �x. (2.1)
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That is, we acquire information about the unknown signal by sensing x against K
vectors ϕk ∈ R

N . We are interested in the “underdetermined” case K � N , where
we have many fewer measurements than unknown signal values. Problems of this
type arise in a countless number of applications. In radiology and biomedical imaging
for instance, one is typically able to collect far fewer measurements about an image
of interest than the number of unknown pixels. In wideband radio frequency signal
analysis, one may only be able to acquire a signal at a rate which is far lower than the
Nyquist rate because of current limitations inAnalog-to-Digital Converter technology.
Finally, gene expression studies also provide examples of this kind. Here, one would
like to infer the gene expression level of thousands of genes – that is, the dimensionN
of the vector x is in the thousands – from a low number of observations, typically in
the tens.

At first glance, solving the underdertermined system of equations appears hopeless,
as it is easy to make up examples for which it clearly cannot be done. But suppose
now that the signal x is compressible, meaning that it essentially depends on a number
of degrees of freedom which is smaller than N . For instance, suppose our signal is
sparse in the sense that it can be written either exactly or accurately as a superposition
of a small number of vectors in some fixed basis. Then this premise radically changes
the problem, making the search for solutions feasible. In fact, accurate and sometimes
exact recovery is possible by solving a simple convex optimization problem.

2.1. A nonlinear sampling theorem. It might be best to consider a concrete example
first. Suppose here that one collects an incomplete set of frequency samples of a
discrete signal x of length N . (To ease the exposition, we consider a model problem
in one dimension. The theory extends easily to higher dimensions. For instance, we
could be equally interested in the reconstruction of 2- or 3-dimensional objects from
undersampled Fourier data.) The goal is to reconstruct the full signal f given onlyK
samples in the Fourier domain

yk = 1√
N

N−1∑
t=0

xt e
−i2πωkt/N , (2.2)

where the ‘visible’frequenciesωk are a subset� (of sizeK) of the set of all frequencies
{0, . . . , N−1}. Sensing an object by measuring selected frequency coefficients is the
principle underlying Magnetic Resonance Imaging, and is common in many fields of
science, including Astrophysics. In the language of the general problem (2.1), the
sensing matrix � is obtained by sampling K rows of the N by N discrete Fourier
transform matrix.

We will say that a vector x isS-sparse if its support {i : xi �= 0} is of cardinality less
or equal toS. Then Candès, Romberg and Tao [6] showed that one could almost always
recover the signal x exactly by solving the convex program1 (‖x̃‖�1 := ∑N

i=1 |x̃i |)
(P1) min

x̃∈RN
‖x̃‖�1 subject to �x̃ = y. (2.3)

1(P1) can even be recast as a linear program [3], [15].
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Theorem 2.1 ([6]). Assume that x is S-sparse and that we are given K Fourier
coefficients with frequencies selected uniformly at random. Suppose that the number
of observations obeys

K ≥ C · S · logN. (2.4)

Then minimizing �1 reconstructs x exactly with overwhelming probability. In details,
if the constant C is of the form 22(δ + 1) in (2.4), then the probability of success
exceeds 1 −O(N−δ).

The first conclusion is that one suffers no information loss by measuring just about
any set of K frequency coefficients. The second is that the signal x can be exactly
recovered by minimizing a convex functional which does not assume any knowledge
about the number of nonzero coordinates of x, their locations, and their amplitudes
which we assume are all completely unknown a priori.

While this seems to be a great feat, one could still ask whether this is optimal,
or whether one could do with even fewer samples. The answer is that in general,
we cannot reconstruct S-sparse signals with fewer samples. There are examples
for which the minimum number of samples needed for exact reconstruction by any
method, no matter how intractable, must be about S logN . Hence, the theorem is
tight and �1-minimization succeeds nearly as soon as there is any hope to succeed by
any algorithm.

The reader is certainly familiar with the Nyquist/Shannon sampling theory and one
can reformulate our result to establish simple connections. By reversing the roles of
time and frequency in the above example, we can recast Theorem 1 as a new nonlinear
sampling theorem. Suppose that a signal x has support � in the frequency domain
with B = |�|. If � is a connected set, we can think of B as the bandwidth of x. If
in addition the set� is known, then the classical Nyquist/Shannon sampling theorem
states that x can be reconstructed perfectly fromB equally spaced samples in the time
domain2. The reconstruction is simply a linear interpolation with a “sinc” kernel.

Now suppose that the set �, still of size B, is unknown and not necessarily con-
nected. In this situation, the Nyquist/Shannon theory is unhelpful – we can only
assume that the connected frequency support is the entire domain suggesting that
all N time-domain samples are needed for exact reconstruction. However, Theo-
rem 2.1 asserts that far fewer samples are necessary. Solving (P1) will recover x
perfectly from about B logN time samples. What is more, these samples do not have
to be carefully chosen; almost any sample set of this size will work. Thus we have a
nonlinear analog (described as such since the reconstruction procedure (P1) is non-
linear) to Nyquist/Shannon: we can reconstruct a signal with arbitrary and unknown
frequency support of size B from about B logN arbitrarily chosen samples in the
time domain.

Finally, we would like to emphasize that our Fourier sampling theorem is only
a special instance of much more general statements. As a matter of fact, the results

2For the sake of convenience, we make the assumption that the bandwidth B divides the signal length N
evenly.
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extend to a variety of other setups and higher dimensions. For instance, [6] shows
how one can reconstruct a piecewise constant (one or two-dimensional) object from
incomplete frequency samples provided that the number of jumps (discontinuities)
obeys the condition above by minimizing other convex functionals such as the total
variation.

2.2. Background. Now for some background. In the mid-eighties, Santosa and
Symes [44] had suggested the minimization of �1-norms to recover sparse spike trains,
see also [25], [22] for early results. In the last four years or so, a series of papers [26],
[27], [28], [29], [33], [30] explained why �1 could recover sparse signals in some
special setups. We note though that the results in this body of work are very different
than the sampling theorem we just introduced. Finally, we would like to point out
important connections with the literature of theoretical computer science. Inspired
by [37], Gilbert and her colleagues have shown that one could recover an S-sparse
signal with probability exceeding 1−δ from S ·poly(logN, log δ) frequency samples
placed on special equispaced grids [32]. The algorithms they use are not based on
optimization but rather on ideas from the theory of computer science such as isolation,
and group testing. Other points of connection include situations in which the set of
spikes are spread out in a somewhat even manner in the time domain [22], [51].

2.3. Undersampling structured signals. The previous example showed that the
structural content of the signal allows a drastic “undersampling” of the Fourier trans-
form while still retaining enough information for exact recovery. In other words, if one
wanted to sense a sparse object by taking as few measurements as possible, then one
would be well-advised to measure randomly selected frequency coefficients. In truth,
this observation triggered a massive literature. To what extent can we recover a com-
pressible signal from just a few measurements. What are good sensing mechanisms?
Does all this extend to object that are perhaps not sparse but well-approximated by
sparse signals? In the remainder of this paper, we will provide some answers to these
fundamental questions.

3. The Mathematics of compressive sampling

3.1. Sparsity and incoherence. In all what follows, we will adopt an abstract and
general point of view when discussing the recovery of a vector x ∈ R

N . In practical
instances, the vector x may be the coefficients of a signal f ∈ R

N in an orthonormal
basis 	

f (t) =
N∑
i=1

xiψi(t), t = 1, . . . , N. (3.1)

For example, we might choose to expand the signal as a superposition of spikes (the
canonical basis of R

N ), sinusoids, B-splines, wavelets [36], and so on. As a side
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note, it is not important to restrict attention to orthogonal expansions as the theory
and practice of compressive sampling accommodates other types of expansions. For
example, xmight be the coefficients of a digital image in a tight-frame of curvelets [5].
To keep on using convenient matrix notations, one can write the decomposition (3.1) as
x = 	f where	 is theN byN matrix with the waveformsψi as rows or equivalently,
f = 	∗x.

We will say that a signal f is sparse in the 	-domain if the coefficient sequence
is supported on a small set and compressible if the sequence is concentrated near a
small set. Suppose we have available undersampled data about f of the same form
as before

y = �f.

Expressed in a different way, we collect partial information about x via y = �′xwhere
�′ = �	∗. In this setup, one would recover f by finding – among all coefficient
sequences consistent with the data – the decomposition with minimum �1-norm

min ‖x̃‖�1 such that �′x̃ = y.

Of course, this is the same problem as (2.3), which justifies our abstract and general
treatment.

With this in mind, the key concept underlying the theory of compressive sampling
is a kind of uncertainty relation, which we explain next.

3.2. Recovery of sparse signals. In [7], Candès and Tao introduced the notion of
uniform uncertainty principle (UUP) which they refined in [8]. The UUP essentially
states that theK ×N sensing matrix� obeys a “restricted isometry hypothesis.” Let
�T , T ⊂ {1, . . . , N} be the K × |T | submatrix obtained by extracting the columns
of � corresponding to the indices in T ; then [8] defines the S-restricted isometry
constant δS of � which is the smallest quantity such that

(1 − δS) ‖c‖2
�2

≤ ‖�T c‖2
�2

≤ (1 + δS) ‖c‖2
�2

(3.2)

for all subsets T with |T | ≤ S and coefficient sequences (cj )j∈T . This property es-
sentially requires that every set of columns with cardinality less than S approximately
behaves like an orthonormal system.

An important result is that if the columns of the sensing matrix� are approximately
orthogonal, then the exact recovery phenomenon occurs.

Theorem 3.1 ([8]). Assume that x is S-sparse and suppose that δ2S + δ3S < 1 or,
better, δ2S + θS,2S < 1. Then the solution x� to (2.3) is exact, i.e., x� = x.

In short, if the UUP holds at about the levelS, the minimum �1-norm reconstruction
is provably exact. The first thing one should notice when comparing this result with
the Fourier sampling theorem is that it is deterministic in the sense that it does not
involve any probabilities. It is also universal in that all sufficiently sparse vectors
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are exactly reconstructed from �x. In Section 3.4, we shall give concrete examples
of sensing matrices obeying the exact reconstruction property for large values of the
sparsity level, e.g. for S = O(K/ log(N/K)).

Before we do so, however, we would like to comment on the slightly better version
δ2S + θS,2S < 1, which is established in [10]. The number θS,S′ for S + S′ ≤ N is
called the S, S′-restricted orthogonality constants and is the smallest quantity such
that

|〈�T c,�T ′c′〉| ≤ θS,S′ · ‖c‖�2 ‖c′‖�2 (3.3)

holds for all disjoint sets T , T ′ ⊆ {1, . . . , N} of cardinality |T | ≤ S and |T ′| ≤ S′.
Thus θS,S′ is the cosine of the smallest angle between the two subspaces spanned
by the columns in T and T ′. Small values of restricted orthogonality constants
indicate that disjoint subsets of covariates span nearly orthogonal subspaces. The
condition δ2S + θS,2S < 1 is better than δ2S + δ3S < 1 since it is not hard to see that
δS+S′ − δS′ ≤ θS,S′ ≤ δS+S′ for S′ ≥ S [8, Lemma 1.1].

Finally, now that we have introduced all the quantities needed to state our recovery
theorem, we would like to elaborate on the condition δ2S + θS,2S < 1. Suppose
that δ2S = 1 which may indicate that there is a matrix �T1∪T2 with 2S columns
(|T1| = S, |T2| = S) that is rank-deficient. If this is the case, then there is a pair
(x1, x2) of nonvanishing vectors with x1 supported on T1 and x2 supported on T2
obeying

�(x1 − x2) = 0 ⇐⇒ �x1 = �x2.

In other words, we have two very distinctS-sparse vectors which are indistinguishable.
This is why any method whatsoever needs δ2S < 1. For, otherwise, the model is not
identifiable to use a terminology borrowed from the statistics literature. With this in
mind, one can see that the condition δ2S + θS,2S < 1 is only slightly stronger than
this identifiability condition.

3.3. Recovery of compressible signals. In general, signals of practical interest may
not be supported in space or in a transform domain on a set of relatively small size.
Instead, they may only be concentrated near a sparse set. For example, a commonly
discussed model in mathematical image or signal processing assumes that the coef-
ficients of elements taken from a signal class decay rapidly, typically like a power
law. Smooth signals, piecewise signals, images with bounded variations or bounded
Besov norms are all of this type [24].

A natural question is how well one can recover a signal that is just nearly sparse.
For an arbitrary vector x in R

N , denote by xS its best S-sparse approximation; that
is, xS is the approximation obtained by keeping the S largest entries of x and setting
the others to zero. It turns out that if the sensing matrix obeys the uniform uncertainty
principle at level S, then the recovery error is not much worse than ‖x − xS‖�2 .
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Theorem 3.2 ([9]). Assume that x is S-sparse and suppose that δ3S + δ4S < 2. Then
the solution x� to (2.3) obeys

‖x∗ − x‖�2 ≤ C · ‖x − xS‖�1√
S

. (3.4)

For reasonable values of δ4S , the constant in (3.4) is well behaved; e.g. C ≤ 8.77 for
δ4S = 1/5. Suppose further that δS + 2θS,S + θ2S,S < 1, we also have

‖x∗ − x‖�1 ≤ C ‖x − xS‖�1, (3.5)

for some positive constant C. Again, the constant in (3.5) is well behaved.

Roughly speaking, the theorem says that minimizing �1 recovers the S-largest
entries of anN-dimensional unknown vector x fromK measurements only. As a side
remark, the �2-stability result (3.4) appears explicitly in [9] while the ‘�1 instance
optimality’ (3.5) is implicit in [7] although it is not stated explicitely. For example, it
follows from Lemma 2.1 – whose hypothesis holds because of Lemma 2.2. in [8] –
in that paper. Indeed, let T be the set where x takes on its S-largest values. Then
Lemma 2.1 in [7] gives ‖x∗ ·1T c‖�1 ≤ 4‖x−xS‖�1 and, therefore, ‖(x∗−x)·1T c‖�1 ≤
5‖x − xS‖�1 . We conclude by observing that on T we have

‖(x∗ − x) · 1T ‖�1 ≤ √
S ‖(x∗ − x) · 1T ‖�2 ≤ C ‖x − xS‖�1,

where the last inequality follows from (3.4). For information, a more direct argument
yields better constants.

To appreciate the content of Theorem 3.2, suppose that x belongs to a weak-�p
ball of radius R. This says that if we rearrange the entries of x in decreasing order of
magnitude |x|(1) ≥ |x|(2) ≥ · · · ≥ |x|(N), the ith largest entry obeys

|x|(i) ≤ R · i−1/p, 1 ≤ i ≤ N. (3.6)

More prosaically, the coefficient sequence decays like a power-law and the parame-
ter p controls the speed of the decay: the smaller p, the faster the decay. Classical
calculations then show that the best S-term approximation of an object x ∈ w�p(R)
obeys

‖x − xS‖�2 ≤ C2 · R · S1/2−1/p (3.7)

in the �2 norm (for some positive constant C2), and

‖x − xS‖�1 ≤ C1 · R · S1−1/p

in the �1-norm. For generic elements obeying (3.6), there are no fundamentally better
estimates available. Hence, Theorem 3.2 shows that with K measurements only, we
can achieve an approximation error which is as good as that one would obtain by
knowing everything about the signal and selecting its S-largest entries.
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3.4. Random matrices. Presumably all of this would be interesting if one could
design a sensing matrix which would allow us to recover as many entries of x as
possible with as few asK measurements. In the language of Theorem 3.1, we would
like the condition δ2S + θS,2S < 1 to hold for large values of S, ideally of the order
of K . This poses a design problem. How should one design a matrix � – that is to
say, a collection ofN vectors inK dimensions – so that any subset of columns of size
about S be about orthogonal? And for what values of S is this possible?

While it might be difficult to exhibit a matrix which provably obeys the UUP
for very large values of S, we know that trivial randomized constructions will do
so with overwhelming probability. We give an example. Sample N vectors on the
unit sphere of R

K independently and uniformly at random. Then the condition of
Theorems 3.1 and 3.2 hold for S = O(K/ log(N/K))with probability 1−πN where
πN = O(e−γN) for some γ > 0. The reason why this holds may be explained by
some sort of “blessing of high-dimensionality.” Because the high-dimensional sphere
is mostly empty, it is possible to pack many vectors while maintaining approximate
orthogonality.

• Gaussian measurements. Here we assume that the entries of theK byN sensing
matrix � are independently sampled from the normal distribution with mean
zero and variance 1/K . Then if

S ≤ C ·K/ log(N/K), (3.8)

S obeys the condition of Theorems 3.1 and 3.2 with probability 1 −O(e−γN)
for some γ > 0. The proof uses known concentration results about the singular
values of Gaussian matrices [16], [45].

• Binary measurements. Suppose that the entries of theK byN sensing matrix�
are independently sampled from the symmetric Bernoulli distributionP(�ki =
±1/

√
K) = 1/2. Then it is conjectured that the conditions of Theorems 3.1

and 3.2 are satisfied with probability 1 −O(e−γN) for some γ > 0 provided
that S obeys (3.8). The proof of this fact would probably follow from new
concentration results about the smallest singular value of a subgaussian matrix
[38]. Note that the exact reconstruction property for S-sparse signals and (3.7)
with S obeying (3.8) are known to hold for binary measurements [7].

• Fourier measurements. Suppose now that� is a partial Fourier matrix obtained
by selecting K rows uniformly at random as before, and renormalizing the
columns so that they are unit-normed. Then Candès and Tao [7] showed that
Theorem 3.1 holds with overwhelming probability if S ≤ C · K/(logN)6.
Recently, Rudelson and Vershynin [43] improved this result and established
S ≤ C ·K/(logN)4. This result is nontrivial and use sophisticated techniques
from geometric functional analysis and probability in Banach spaces. It is
conjectured that S ≤ C ·K/ logN holds.
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• Incoherent measurements. Suppose now that� is obtained by selectingK rows
uniformly at random from anN byN orthonormal matrixU and renormalizing
the columns so that they are unit-normed. As before, we could think of U as
the matrix�	∗ which maps the object from the	 to the�-domain. Then the
arguments used in [7], [43] to prove that the UUP holds for incomplete Fourier
matrices extend to this more general situation. In particular, Theorem 3.1 holds
with overwhelming probability provided that

S ≤ C · 1

μ2 · K

(logN)4
, (3.9)

where μ := √
N maxi,j |Ui,j | (observe that for the Fourier matrix, μ = 1

which gives the result in the special case of the Fourier ensemble above). With
U = �	∗,

μ := √
N max

i,j
|〈ϕi, ψj 〉| (3.10)

which is referred to as the mutual coherence between the measurement basis
� and the sparsity basis 	 [27], [28]. The greater the incoherence of the
measurement/sparsity pair (�,	), the smaller the number of measurements
needed.

In short, one can establish the UUP for a few interesting random ensembles and we
expect that in the future, many more results of this type will become available.

3.5. Optimality. Before concluding this section, it is interesting to specialize our
recovery theorems to selected measurement ensembles now that we have established
the UUP for concrete values of S. Consider the Gaussian measurement ensemble in
which the entries of � are i.i.d. N(0, 1/K). Our results say that one can recover any
S-sparse vector from a random projection of dimension about O(S · log(N/S)), see
also [18]. Next, suppose that x is taken from a weak-�p ball of radius R for some
0 < p < 1, or from the �1-ball of radius R for p = 1. Then we have shown that for
all x ∈ w�p(R)

‖x� − x‖�2 ≤ C · R · (K/ log(N/K))−r , r = 1/p − 1/2, (3.11)

which has also been proven in [20]. An important question is whether this is op-
timal. In other words, can we find a possibly adaptive set of measurements and a
reconstruction algorithm that would yield a better bound than (3.11)? By adaptive,
we mean that one could use a sequential measurement procedure where at each stage,
one would have the option to decide which linear functional to use next based on the
data collected up to that stage.

It proves to be the case that one cannot improve on (3.11), and we have thus
identified the optimal performance. Fix a class of object F and let EK(F ) be the
best reconstruction error from K linear measurements

EK(F ) = inf sup
f∈F

‖f −D(y)‖�2, y = �f, (3.12)
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where the infimum is taken over all set of K linear functionals and all reconstruction
algorithms D. Then it turns out EK(F ) nearly equals the Gelfand numbers of a
class F defined as

dK(F ) = inf
V

{ sup
f∈F

‖PV f ‖ : codim(V ) < K}, (3.13)

where PV is the orthonormal projection on the subspace V . Gelfand numbers play an
important role in approximation theory, see [40] for more information. If F = −F
and F = F +F ≤ cF F , then dK(F ) ≤ EK(F ) ≤ cF dK(F ). Note that cF = 21/p

in the case where F is a weak-�p ball. The thing is that we know the approximate
values of the Gelfand numbers for many classes of interest. Suppose for example
that F is the �1-ball of radius R. A seminal result of Kashin [35] and improved by
Garnaev and Gluskin [31] shows that for this ball, the Gelfand numbers obey

C1 · R ·
√

log(N/K)+ 1

K
≤ dk(F ) ≤ C2 · R ·

√
log(N/K)+ 1

K
, (3.14)

whereC1,C2 are universal constants. Gelfand numbers are also approximately known
for weak-�p balls as well; the only difference is that ((log(N/K)+1)/K)r substitutes
((log(N/K) + 1)/K)1/2. Hence, Kashin, Garnaev and Gluskin assert that with K
measurements, the minimal reconstruction error (3.12) one can hope for is bounded
below by a constant times (K/ log(N/K))−r . Kashin’s arguments [35] also used
probabilistic functionals which establish the existence of recovery procedures for
which the reconstruction error is bounded above by the right-hand side of (3.14).
Similar types of recovery have also been known to be possible in the literature of
theoretical computer science, at least in principle, for certain types of random mea-
surements [1].

In this sense, our results – specialized to Gaussian measurements – are optimal
for weak-�p norms. The novelty is that the information about the object can be
retrieved from random coefficients by minimizing a simple linear program (2.3), and
that the decoding algorithm adapts automatically to the weak-�p signal class, without
knowledge thereof. Minimizing the �1-norm is adaptive and nearly gives the best
possible reconstruction error simultaneously over a wide range of sparse classes of
signals; no information about p and the radius R are required.

4. Robust compressive sampling

In any realistic application, we cannot expect to measure�x without any error, and we
now turn our attention to the robustness of compressive sampling vis a vis measure-
ment errors. This is a very important issue because any real-world sensor is subject
to at least a small amount of noise. And one thus immediately understands that to
be widely applicable, the methodology needs to be stable. Small perturbations in the
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observed data should induce small perturbations in the reconstruction. Fortunately,
the recovery procedures may be adapted to be surprisingly stable and robust vis a vis
arbitrary perturbations.

Suppose our observations are inaccurate and consider the model

y = �x + e, (4.1)

where e is a stochastic or deterministic error term with bounded energy ‖e‖�2 ≤ ε.
Because we have inaccurate measurements, we now use a noise-aware variant of (2.3)
which relaxes the data fidelity term. We propose a reconstruction program of the form

(P2) min ‖x̃‖�1 such that ‖�x̃ − y‖�2 ≤ ε. (4.2)

The difference with (P1) is that we only ask the reconstruction be consistent with
the data in the sense that y − �x� be within the noise level. The program (P2) has
a unique solution, is again convex, and is a special instance of a second order cone
program (SOCP) [4].

Theorem 4.1 ([9]). Suppose that x is an arbitrary vector in R
N . Under the hypothesis

of Theorem 3.2, the solution x� to (P2) obeys

‖x� − x‖�2 ≤ C1,S · ε + C2,S · ‖x0 − x0,S‖�1√
S

. (4.3)

For reasonable values of δ4S the constants in (4.3) are well behaved, see [9].

We would like to offer two comments. The first is that the reconstruction error
is finite. This quiet observation is noteworthy because we recall that the matrix � is
rectangular with many more columns than rows – thus having a fraction of vanishing
singular values. Having said that, the mere fact that the severely ill-posed matrix
inversion keeps the perturbation from “blowing up” may seem a little unexpected.
Next and upon closer inspection, one sees that the reconstruction error is the sum of
two terms: the first is simply proportional to the size of the measurement error while
the second is the approximation error one would obtain in the noiseless case. In other
words, the performance of the reconstruction degrades gracefully as the measurement
noise increases. This brings us to our second point. In fact, it is not difficult to see
that no recovery method can perform fundamentally better for arbitrary perturbations
of size ε [9]. For related results for Gaussian sensing matrices, see [19].

5. Connections with statistical estimation

In the remainder of this paper, we shall briefly explore some connections with other
fields, and we begin with statistics. Suppose now that the measurement errors in (4.1)
are stochastic. More explicitly, suppose that the model is of the form

y = �x + z, (5.1)
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where z1, . . . , zk are i.i.d. with mean zero and variance σ 2. In this section, we
will assume that the zk’s are Gaussian although nothing in our arguments heavily
relies upon this assumption. The problem is again to recover x from y which is a
central problem in statistics since this is just the classical multivariate linear regression
problem. Because the practical environment has changed dramatically over the last
two decades or so, applications have emerged in which the number of observations is
small compared to the dimension of the object we wish to estimate – here, K ≤ N .
This new paradigm sometimes referred to as “high-dimensional data” is currently
receiving much attention and, clearly, the emerging theory of compressive sampling
might prove very relevant.

The results from the previous sections are directly applicable. Suppose that x
is S-sparse to simplify our exposition. Because ‖z‖2

�2
is distributed as a chi-squared

with K degrees of freedom, the reconstruction (4.2) would obey

‖x∗ − x‖2
�2

≤ C ·Kσ 2 (5.2)

with high probability. While this may seem acceptable to the nonspecialist, modern
results in the literature suggest that one might be able to get a better accuracy. In
particular, one would like an adaptive error bound which depends upon the complexity
of the true unknown parameter vector x ∈ R

N . For example, if x only has S significant
coefficients, we would desire an error bound of size about Sσ 2; the less complex the
estimand, the smaller the squared-error loss. This poses an important question: can
we design an estimator whose accuracy depends upon the information content of the
object we wish to recover?

5.1. Ideal model selection. To get a sense of what is possible, consider regressing
the data y onto an arbitrary subset T by the method of least squares. Define x̂[T ] to
be the least squares estimate whose restriction to the set T is given by

x̂T [T ] = (�TT �T )
−1�TT y, (5.3)

and which vanishes outside T . Above, x̂T [T ] is the restriction of x̂[T ] to T and
similarly for xT . Since x̂[T ] vanishes outside T , we have

E‖x − x̂[T ]‖2 = ‖xT − x̂T [T ]‖2 +
∑
i /∈T

|xi |2,

Consider the first term. We have

xT − x̂T [T ] = (�TT �T )
−1�TT (s + z),

where s = �T cxT c . It follows that

E‖xT − x̂T [T ]‖2 = ‖(�TT �T )−1�TT s‖2 + σ 2 Tr((�TT �T )
−1).
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However, since all the eigenvalues of�TT�T belong to the interval [1−δ|T |, 1+δ|T |],
we have

E‖xT − x̂T [T ]‖2 ≥ 1

1 + δ|T |
· |T | · σ 2.

For each set T with |T | ≤ S and δS < 1, we then have

E‖x − x̂[T ]‖2 ≥
∑
i∈T cc

x2
i + 1

2
|T | · σ 2.

We now search for an ideal estimator which selects that estimator x̂[T ∗] from the
family (x̂[T ])T⊂{1,...,N} with minimal Mean-Squared Error (MSE):

x̂[T ∗] = argminT⊂{1,...,N} E‖x − x̂[T ]‖2.

This estimator is ideal because we would of course not know which estimator x̂T is
best; that is, to achieve the ideal MSE, one would need an oracle that would tell us
which model T to choose.

We will consider this ideal estimator nevertheless and take its MSE as a benchmark.
The ideal MSE is bounded below by

E‖x − x̂[T ∗]‖2 ≥ 1

2
min
T
(‖x − x̂[T ]‖2 + |T | · σ 2)

= 1

2

∑
i

min(x2
i , σ

2). (5.4)

Letting xS be the best S-sparse approximation to x, another way to express the right-
hand side (5.4) is in term of the classical trade-off between the approximation error
and the number of terms being estimated times the noise level

E‖x − x̂T ∗‖2 ≥ 1

2
inf
S≥0

(‖x − xS‖2 + Sσ 2) .
Our question is of course whether there is a computationally efficient estimator which
can mimic the ideal MSE.

5.2. The Dantzig selector. Assume for simplicity that the columns of � are nor-
malized (there are straightforward variations to handle the general case). Then the
Dantzig selector estimates x by solving the convex program

(DS) min
x̃∈RN

‖x̃‖�1 subject to sup
1≤i≤N

|(�T r)i | ≤ λ · σ (5.5)

for some λ > 0, and where r is the vector of residuals

r = y −�x̃. (5.6)
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The solution to this optimization problem is the minimum �1-vector which is consistent
with the observations. The constraints impose that the residual vector is within the
noise level and does not correlate too well with the columns of �. For information,
there exist related, yet different proposals in the literature, and most notably the lasso
introduced by [47], see also [15]. Again, the program (DS) is convex and can be
recast as a linear program (LP).

The main result in this line of research is that the Dantzig selector is not only
computationally tractable, it is also accurate.

Theorem 5.1 ([10]). Set λ := (1 + t−1)
√

2 logp in (5.5) and suppose that x is
S-sparse with δ2S + θS,2S < 1 − t . Then with very large probability, the Dantzig
selector x̂ solution to (5.5) obeys

‖x̂ − x‖2 ≤ O(logp) ·
(
σ 2 +

∑
i

min(x2
i , σ

2)
)
. (5.7)

Our result says that the Dantzig selector achieves a loss within a logarithmic factor
of the ideal mean squared error one would achieve with an oracle which would supply
perfect information about which coordinates are nonzero, and which were above the
noise level. To be complete, it is possible to obtain similar bounds on the MSE.

There are extensions of this result to signals which are not sparse but compressible,
e.g. for signals which belong to weak-�p balls. What is interesting here is that in
some instances, even though the number of measurements is much smaller than the
dimension of the parameter vector x, the Dantzig selector recovers the minimax rate
that one would get if we were able to measure all the coordinates of x directly via
ỹ = x + σz where z is i.i.d. N(0, 1).

6. Connections with error correction

Compressive sampling also interacts with the agenda of coding theory. Imagine we
wish to transmit a vector x of length M to a remote receiver reliably. A frequently
discussed approach consists in encoding the information x with an N by M coding
matrix C with N > M . Assume that gross errors occur upon transmission and that
a fraction of the entries of Cx are corrupted in a completely arbitrary fashion. We
do not know which entries are affected nor do we know how they are affected. Is
it possible to recover the information x exactly from the corrupted N-dimensional
vector y?

To decode, [8] proposes solving the minimum �1-approximation problem

(D1) min
x̃∈RM

‖y − Cx̃‖�1, (6.1)

which can also be obviously recast as an LP. The result is that ifC is carefully chosen,
then (6.1) will correctly retrieve the information x with no error provided that the
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fraction ρ of errors is not too large, ρ ≤ ρ∗. This phenomenon holds for all x’s and
all corruption patterns.

To see why this phenomenon occurs, consider a matrix B which annihilates the
N ×M coding matrix C on the left, i.e. such that BC = 0; B is called a parity-check
matrix and is any (N −M) × N matrix whose kernel is the range of C in R

N . The
transmitted information is of the form y = Cx + e, where e is a sparse vector of
possibly gross errors, and apply B on both sides of this equation. This gives

ỹ = B(Cx + e) = Be (6.2)

since BC = 0. Therefore, the decoding problem is reduced to that of recovering
the error vector e from the observations Be. Once e is known, Cx is known and,
therefore, x is also known since we may just assume that C has full rank.

Now the reader knows that we could solve the underdetermined system (6.2) by
�1-minimization. He also knows that if the UUP holds, the recovery is exact. Now
(D1) and (P1) are equivalent programs. Indeed, it follows from the decomposition
x̃ = x + h that

(D1) ⇐⇒ min
h∈RM

‖e − Ch‖�1 .

Now the constraintBd = Bemeans that d = e−Ah for some h ∈ R
M and, therefore,

min ‖d‖�1, Bd = Be ⇐⇒ min
h∈Rn

‖d‖�1, d = e − Ah

⇐⇒ min
h∈Rn

‖e − Ah‖�1,

which proves the claim.
Hence, if one uses a random coding matrix which is a popular choice, we have the

following result, see also [42]:

Theorem 6.1 ([8]). Suppose the coding matrix C has i.i.d. N(0, 1) entries. Then
with probability exceeding 1 − O(e−γM) for some γ > 0, (D1) exactly decodes all
x ∈ R

M provided that the fraction ρ of arbitrary errors obeys ρ ≤ ρ∗(M,N).

In conclusion, one can correct a constant fraction of errors with arbitrary magni-
tudes by solving a convenient LP. In [8], the authors reported on numerical results
showing that in practice (D1) works extremely well and recovers the vector x exactly
provided that the fraction of the corrupted entries be less than about 17% in the case
where N = 2M and less than about 34% in the case where N = 4M .

7. Further topics

Our intention in this short survey was merely to introduce the new compressive sam-
pling concepts. We presented an approach based on the notion of uncertainty principle
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which gives a powerful and unified treatment of some of the main results underly-
ing this theory. As we have seen, the UUP gives conditions for exact, approximate,
and stable recoveries which are almost necessary. Another advantage that one can
hardly neglect is that this makes the exposition fairly simple. Having said that, the
early papers on compressive sampling – e.g. [6], [7], [20] – have spurred a large
and fascinating literature in which other approaches and ideas have been proposed.
Rudelson and Vershynin have used tools from modern Banach space theory to de-
rive powerful results for Gaussian ensembles [42], [14], [43]. In this area, Pajor and
his colleagues have established the existence of abstract reconstruction procedures
from subgaussian measurements (including random binary sensing matrices) with
powerful reconstruction properties. In a different direction, Donoho and Tanner have
leveraged results from polytope geometry to obtain very precise estimates about the
minimal number of Gaussian measurements needed to reconstruct S-sparse signals
[21], [23], see also [43]. Tropp and Gilbert reported results about the performance of
greedy methods for compressive sampling [49]. Haupt and Nowak have quantified the
performance of combinatorial optimization procedures for estimating a signal from
undersampled random projections in noisy environments [34]. Finally, Rauhut has
worked out variations on the Fourier sampling theorem in which a sparse continuous-
time trigonometric polynomials is randomly sampled in time [41]. Because of space
limitations, we are unfortunately unable to do complete justice to this rapidly growing
literature.

We would like to emphasize that there are many aspects of compressive sampling
that we have not touched. For example, we have not discussed the practical perfor-
mance of this new theory. In fact, numerical experiments have shown that compressive
sampling behaves extremely well in practice. For example, it has been shown that
from 3S−4S nonadaptive measurements, one can reconstruct an approximation of an
image in a fixed basis which is more precise than that one would get by measuring all
the coefficients of the object in that basis and selecting the S largest [13], [50]. Fur-
ther, numerical simulations with noisy data show that compressive sampling is very
stable and performs well in noisy environments. In practice, the constants appearing
in Theorems 4.1 and 5.1 are very small, see [9] and [10] for empirical results.

We would like to close this article by returning to the main theme of this paper,
which is that compressive sampling invites to rethink sensing mechanisms. Because if
one were to collect a comparably small number of general linear measurements rather
than the usual pixels, one could in principle reconstruct an image with essentially the
same resolution as that one would obtain by measuring all the pixels. Therefore, if
one could design incoherent sensors (i.e. measuring incoherent linear functionals),
the payoff could be extremely large. Several teams have already reported progress
in this direction. For example, a team led by Baraniuk and Kelly have proposed a
new camera architecture that employs a digital micromirror array to perform optical
calculations of linear projections of an image onto pseudorandom binary patterns
[46], [52]. Compressive sampling may also address challenges in the processing
of wideband radio frequency signals since high-speed analog-to-digital convertor
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technology indicates that current capabilities fall well short of needs, and that hardware
implementations of high precision Shannon-based conversion seem out of sight for
decades to come. Finally, compressive sampling has already found applications in
wireless sensor networks [2]. Here, compressive sampling allows of energy efficient
estimation of sensor data with comparably few sensor nodes. The power of these
estimation schemes is that they require no prior information about the sensed data.
All these applications are novel and exciting. Others might just be around the corner.

References

[1] Alon, N., Matias, Y., Szegedy, B., The space complexity of approximating the frequency
moments. J. Comput. System Sci. 58 (1999), 137–147.

[2] Bajwa, W. U., Haupt, J., Sayeed, A. M., Nowak, R., Compressive wireless sensing. In Proc.
5th Intl. Conf. on Information Processing in Sensor Networks (IPSN ’06), Nashville, TN,
2006, 134–142.

[3] Bloomfield, P., Steiger, W., Least Absolute Deviations: Theory, Applications, and Algo-
rithms. Progr. Probab. Statist. 6, Birkhäuser, Boston, MA, 1983.

[4] Boyd, S.,Vandenberghe, L., Convex Optimization. Cambridge University Press, Cambridge
2004.

[5] Candès, E. J., Donoho, D. L. New tight frames of curvelets and optimal Representations
of objects with piecewise C2 singularities. Comm. Pure Appl. Math. 57 (2004), 219–266.

[6] Candès, E. J., Romberg, J., Tao, T., Robust uncertainty principles: exact signal reconstruc-
tion from highly incomplete frequency information. IEEE Trans. Inform. Theory 52 (2006),
489–509.

[7] Candès, E. J., Tao, T., Near-optimal signal recovery from random projections and universal
encoding strategies. IEEE Trans. Inform. Theory, 2004, submitted.

[8] Candès, E. J., Tao, T., Decoding by linear programming. IEEE Trans. Inform. Theory 51
(2005), 4203–4215.

[9] Candès, E. J., Romberg, J., Tao, T., Signal recovery from incomplete and inaccurate mea-
surements. Comm. Pure Appl. Math. 59 (8) (2005), 1207–1223.

[10] Candès, E. J., Tao, T., The Dantzig selector: statistical estimation when p is much larger
than n. Ann. Statist., to appear.

[11] Candès, E. J., Romberg, J., The role of sparsity and incoherence for exactly reconstructing
a signal from limited measurements. Technical Report, California Institute of Technology,
2004.

[12] Candès, E. J., Romberg, J., Quantitative robust uncertainty principles and optimally sparse
decompositions. Found. Comput. Math. 6 (2) (2006), 227–254.

[13] Candès, E. J., Romberg, J., Practical signal recovery from random projections. In SPIE
International Symposium on Electronic Imaging: Computational Imaging III, San Jose,
California, January 2005.

[14] Candès, E. J., Rudelson, M., Vershynin, R. and Tao, T. Error correction via linear program-
ming. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS) (2005), IEEE Comput. Soc. Press, LosAlamitos, CA,295–308.



Compressive sampling 1451

[15] Chen, S. S., Donoho, D. L., Saunders, M. A, Atomic decomposition by basis pursuit. SIAM
J. Sci. Comput. 20 (1999), 33–61.

[16] Davidson, K. R., Szarek, S. J., Local operator theory, random matrices and Banach spaces.
In Handbook of the geometry of Banach spaces (ed. by W. B. Johnson, J. Lindenstrauss),
Vol. I, North-Holland, Amsterdam 2001, 317–366; Corrigendum, Vol. 2, 2003, 1819–1820.

[17] DeVore, R. A., Optimal computation. In Proceedings of the International Congress of
Mathematicians (Madrid, 2006), Volume I, EMS Publishing House, Zürich 2006/2007.

[18] Donoho, D. L., For most large underdetermined systems of linear equations the minimal
�1-norm solution is also the sparsest Solution. Comm. Pure Appl. Math. 59 (2006), 797–829.

[19] Donoho, D. L., For most large underdetermined systems of equations, the minimal �1-norm
near-solution approximates the sparsest near-solution. Comm. Pure Appl. Math. 59 (2006),
907–934.

[20] Donoho, D. L., Compressed sensing. Technical Report, Stanford University, 2004.

[21] Donoho, D. L., Neighborly polytopes and sparse solutions of underdetermined linear equa-
tions. Technical Report, Stanford University, 2005.

[22] Donoho, D. L., Logan, B. F., Signal recovery and the large sieve, SIAM J. Appl. Math. 52
(1992), 577–591.

[23] Donoho, D. L., Tanner, J., Neighborliness of randomly projected simplices in high dimen-
sions. Proc. Natl. Acad. Sci. USA 102 (2005), 9452–9457.

[24] Donoho, D. L., Vetterli, M., DeVore, R. A., Daubechies, I., Data compression and harmonic
analysis. IEEE Trans. Inform. Theory 44 (1998), 2435–2476.

[25] Donoho, D. L., Stark, P. B., Uncertainty principles and signal recovery. SIAM J. Appl.
Math. 49 (1989), 906–931.

[26] Donoho, D. L., Huo, X., Uncertainty principles and ideal atomic decomposition. IEEE
Trans. Inform. Theory 47 (2001), 2845–2862.

[27] Donoho, D. L., Elad, M., Optimally sparse representation in general (nonorthogonal) dic-
tionaries via �1 minimization. Proc. Natl. Acad. Sci. USA 100 (2003), 2197–2202.

[28] Elad, M., Bruckstein, A. M., A generalized uncertainty principle and sparse representation
in pairs of R

N bases. IEEE Trans. Inform. Theory 48 (2002), 2558–2567.

[29] Feuer, A., Nemirovski, A., On sparse representation in pairs of bases. IEEE Trans. Inform.
Theory 49 (2003), 1579–1581.

[30] Fuchs, J. J., On sparse representations in arbitrary redundant bases. IEEE Trans. Inform.
Theory 50 (2004), 1341–1344.

[31] Garnaev, A., Gluskin, E., The widths of a Euclidean ball. Dokl. Akad. Nauk. USSR 277
(1984), 1048–1052; English transl. Soviet Math. Dokl. 30 (1984), 200–204.

[32] Gilbert, A. C., Muthukrishnan, S., Strauss, M., Improved time bounds for near-optimal
sparse Fourier representation. In Proceedings of SPIE 5914 (Wavelets XI), ed. by M. Pa-
padakis, A. F. Laine, M. A. Unser, 2005.

[33] Gribonval, R., Nielsen, M., Sparse representations in unions of bases. IEEE Trans. Inform.
Theory 49 (2003), 3320–3325.

[34] Haupt, J., Nowak, R., Signal reconstruction from noisy random projections. IEEE Trans.
Inform. Theory, submitted.



1452 Emmanuel J. Candès

[35] Kashin, B., The widths of certain finite dimensional sets and classes of smooth functions,
Izvestia 41 (1977), 334–351.

[36] Mallat, S., A Wavelet Tour of Signal Processing. Academic Press, San Diego, CA, 1998.

[37] Mansour, Y., Randomized interpolation and approximation of sparse polynomials. SIAM
J. Comput. 24 (1995), 357–368.

[38] Litvak, A. E., Pajor, A., Rudelson, M., Tomczak-Jaegermann, N., Smallest singular value
of random matrices and geometry of random polytopes. Manuscript, 2004.

[39] Mendelson, S., Pajor, A., Tomczak-Jaegermann, N., Reconstruction and subgaussian pro-
cesses. C. R. Math. Acad. Sci. Paris 340 (2005), 885–888.

[40] Pinkus, A., N-Widths in Approximation Theory. Ergeb. Math. Grenzgeb. (3) 7, Springer-
Verlag, Berlin 1985.

[41] Rauhut, H., Random sampling of sparse trigonometric polynomials. Preprint, 2005.

[42] Rudelson, M., Vershynin, R., Geometric approach to error-correcting codes and recon-
struction of signals. Internat. Math. Res. Notices 2005 (64) (2005), 4019–4041.

[43] Rudelson, M., Vershynin, R., Sparse reconstruction by convex relaxation: Fourier and
Gaussian measurements. Preprint, 2006.

[44] Santosa, F., Symes, W. W., Linear inversion of band-limited reflection seismograms. SIAM
J. Sci. Statist. Comput. 7 (1986), 1307–1330.

[45] Szarek, S. J., Condition numbers of random matrices. J. Complexity 7 (1991), 131–149.

[46] Takhar, D., Laska, J. N., Wakin, M., Duarte, M. F., Baron, D., Sarvotham, S., Kelly, K. F.,
Baraniuk, R. G., A new compressive imaging camera architecture using optical-domain
compression. IS&T/SPIE Computational Imaging IV, San Jose, January 2006.

[47] Tibshirani, R., Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B
58 (1996), 267–288.

[48] Tropp, J. A., Just relax: convex programming methods for identifying sparse signals in
noise. IEEE Trans. Inform. Theory 52 (2006), 1030–1051.

[49] Tropp, J. A., Gilbert, A. C., Signal recovery from partial information via orthogonal match-
ing pursuit. Preprint, University of Michigan, 2005.

[50] Tsaig,Y., Donoho, D. L., Extensions of compressed sensing. Technical report, Department
of Statistics, Stanford University, 2004.

[51] Vetterli, M., Marziliano, P., Blu, T., Sampling signals with finite rate of innovation. IEEE
Trans. Signal Process. 50 (2002), 1417–1428.

[52] Wakin, M., Laska, J. N., Duarte, M. F., Baron, D., Sarvotham, S., Takhar, D., Kelly, K.
F., Baraniuk, R. G., Compressive imaging for video representation and coding. Picture
Coding Symposium, special session on Next Generation Video Representation, Beijing,
April 2006.

Applied and Computational Mathematics, California Institute of Technology, Pasadena,
CA 91125, U.S.A.
E-mail: emmanuel@acm.caltech.edu



Total variation based image denoising and restoration

Vicent Caselles∗

Abstract. This paper is devoted to the total variation (TV) based approach to image denoising
and restoration. The restored image minimizes total variation in the class of images which satisfy
the contraints given by the image acquisition model. We compute some explicit solutions of
the denoising model which explain some of the features observed in numerical experiments.
We also comment on some alternatives recently proposed by Y. Meyer which lead to u + v

image decompositions. Finally we propose a total variation approach to image restoration, i.e.,
deconvolution and denoising, in which the image acquisition model is incorporated as a set of
local constraints.
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1. Introduction

We assume that the image acquisition system may be modelled by the following image
formation model

z = h ∗ u + n, (1)

where u : R
2 → R denotes the ideal undistorted image, h : R

2 → R is a blurring
kernel, z is the observed image which is represented as a function z : R

2 → R, and n

is an additive Gaussian white noise with zero mean and standard deviation σ .
Let us denote by � the interval (0, N ]2. As in most of works, in order to simplify

this problem, we shall assume that the functions h and u are periodic of period N

in each direction. That amounts to neglecting some boundary effects. Therefore,
we shall assume that h, u are functions defined in � and, to fix ideas, we assume
that h, u ∈ L2(�). Our problem is to recover as much as possible of u, from our
knowledge of the blurring kernel h, the statistics of the noise n, and the observed
image z.

The problem of recovering u from z is ill-posed due to the ill-conditioning of
the operator Hu = h ∗ u. Several methods have been proposed to recover u. Most
of them can be classified as regularization methods which may take into account
statistical properties (Wiener filters), information theoretic properties ([19]), a priori
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geometric models ([30]) or the functional analytic behavior of the image given in
terms of its wavelet coefficients ([20]).

The typical strategy to solve this ill-conditioning is regularization. Probably one
of the first examples of regularization method [31] consists in choosing between all
possible solutions of (1) the one which minimized the Sobolev (semi) norm of u∫

�

|Du|2 dx. (2)

Usually, the only information we know about the noise is statistical and limited to
an estimate of its mean and its variance. In that case, the model equation (1) is
incorporated as a set of constraints for (2): a first constraint corresponding to the
assumption that the noise has zero mean, and a second one translating the fact that σ

is an upper bound of the standard deviation of n.
This formulation was an important step, but the results were not satisfactory,

mainly due to the unability of the previous functional to resolve discontinuities (edges)
and oscillatory textured patterns. The smoothness required by the Dirichlet integral (2)
is too restrictive and information corresponding to high frequencies of z is attenuated
by it. Indeed, functions in W 1,2(�) (i.e., functions u ∈ L2(�) such that Du ∈ L2(�))
cannot have discontinuities along rectifiable curves. These observations motivated
the introduction of total variation in image restoration problems by L. Rudin, S. Osher
and E. Fatemi in their work [30]. The a priori hypothesis is that functions of bounded
variation (the BV model) ([5]) are a reasonable functional model for many problems in
image processing, in particular, for restoration problems ([30]). Typically, functions
of bounded variation have discontinuities along rectifiable curves, being continuous
in some sense (in the measure theoretic sense) away from discontinuities. The discon-
tinuities could be identified with edges. The ability of total variation regularization
to recover edges is one of the main features which advocates for the use of this model
but its ability to describe textures is less clear, even if some textures can be recovered,
up to a certain scale of oscillation.

On the basis of the BV model, Rudin–Osher–Fatemi [30] proposed to solve the
following constrained minimization problem

Minimize
∫

�

|Du|

subject to
∫

�

|h ∗ u(x) − z(x)|2 dx ≤ σ 2|�|.
(3)

Notice that the image acquisition model (1) is only incorporated through a global
constraint. Notice also that, assuming that h ∗ 1 = 1 (energy preservation), the
constraint that

∫
�

h ∗ u dx = ∫
�

z(x) is automatically satisfied by its minima [17]. In
practice, the above problem is solved via the following unconstrained minimization
problem

Minimize
∫

�

|Du| + λ

2

∫
�

|h ∗ u − z|2 dx (4)
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where the parameter λ is positive. Recall that we may interpret λ−1 as a penalization
parameter which controls the trade-off between the goodness of fit of the constraint and
the smoothness term given by the total variation. In this formulation, a methodology
is required for a correct choice of λ. The connections between (3) and (4) were studied
by A. Chambolle and P. L. Lions in [17] where they proved that both problems are
equivalent for some positive value of the Lagrange multiplier λ.

A particular and important case contained in the above formulation is the denoising
problem which corresponds to the case where h = δ, so that equation (1) is written as
z = u+n where n is an additive Gaussian white noise of zero mean and variance σ 2.
In this case, the unconstrained variational formulation (5) with h = δ is

Minimize
∫

�

|Du| + λ

2

∫
�

|u − z|2 dx, (5)

and it has been the object of much theoretical and numerical research (see [7] for
a survey). Even if this model represented a theoretical and practical progress in
the denoising problem due to the introduction of BV functions as image models,
the experimental analysis readily showed its main drawbacks. Between them, let us
mention the staircasing effect (when denoising a smooth ramp plus noise, the staircase
is an admissible result), the pixelization of the image at smooth regions and the loose
of fine textured regions, to mention some of them. This can be summarized with the
simple observation that the residuals z − u, where u represents the solution of (5), do
not look like noise. The theoretical analysis of the behavior of solutions of (5) has
been the objects of several works [3], [12], [13], [27], [26] and will be developed in
Section 2 by exhibiting explicit solutions for specially constructed functions z.

In spite of this, a second life in the interest of total variation based regularization
was initiated after the proposal of u + v models by Y. Meyer in [26]. The solution u

of (5) permits to obtain a decomposition of the data z as a sum of two components
u+v where v is supposed to contain the noise and textured parts of the image z, while
u contains the geometric sketch of the image z. As Meyer observed, the L2 norm of
the residual v := z − u in (5) is not the right one to obtain a decomposition of z in
terms of geometry plus texture and he proposed to measure the size of the textured
part v in terms of a dual BV norm showing that some models of texture have a small
dual BV norm: this will be the object of Section 3.

The restoration problem (which corresponds to the case of nontrivial kernel h) has
also been the object of much interest due to its applications in many contexts, like
satellite, astronomical or video images, to mention a few of them. In Section 4 we
shall discuss a total variation based approach to the restoration model in which the
image acquisition model is incorporated as a set of local constraints. Indeed, when
incorporating (1) as a constraint in (3) we loose the local character of (1) and the
restored image does not look satisfactory in textured and smooth regions at the same
time. Thus, we propose to incorporate (1) by ensuring that the residuals z−h ∗ u have a
variance bounded by σ 2 in a sufficiently large region around each pixel (the sampling
process is incorporated in the model), the size of the region has to be sufficient in
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order to estimate the variance of the noise. This gives a constrained formulation of the
problem with as many Lagrange multipliers as pixels, and a solution is computed using
Uzawa’s method. Finally, in Section 5 we display some experiments on restoration
of satellite images which illustrate the results that can be obtained with this method.

2. Explicit solutions of TV based denoising

The constrained formulation of the total variation denoising is given by (3) with h = δ.
Its unconstrained formulation is given by (5) where λ > 0 is a penalization parameter.
Both problems are equivalent for a certain value of λ [17]. Our purpose in this section
is to exhibit some qualitative features of total variation denoising by constructing
explicit solutions of (5). Those features are well known at the experimental level, and
the results give a theoretical justification of these observations. Our solutions will
exhibit the possibility to resolve discontinuities, but also the loss of contrast, and the
regularization of corners (thus, the image is loosing structure). The staircasing effect
was explained in [27].

The construction of explicit solutions of (5) is related to the computation of solu-
tions of the eigenvalue problem for the 1-Laplacian operator.

−div

(
Du

|Du|
)

= u. (6)

We denote by BV(RN) the space of functions of bounded variation in R
N . For

definitions concerning bounded variation functions we refer to [5]. The solution of (6)
is understood in the following sense ([6], [7], [13]).

Definition 2.1. We say that a function u ∈ L2(RN) ∩ BV(RN) is a solution of (6)
in R

N if there exits a vector field ξ ∈ L∞(RN ; R
N) with ‖ξ‖∞ ≤ 1, such that

(ξ, Du) = |Du| and

−div ξ = u in D ′(RN).

If the vector field ξ ∈ L∞(RN ; R
N) is such that div ξ ∈ L2(RN) and u ∈ BV(RN),

the expression (ξ, Du) is a distribution defined by the formula

〈(ξ, Dw), ϕ〉 := −
∫

RN

w ϕ div ξ dx −
∫

RN

w ξ · ∇ϕ dx for all ϕ ∈ C∞
0 (RN).

Then (ξ, Du) is a Radon measure in R
N which coincides with ξ · ∇u when u ∈

L2(RN) ∩ W 1,1(RN) [11].
The following result is taken from [13] and it explains how can we derive from

solutions of (6) data z for which the solution of (5) is explicit.

Proposition 2.2. Let ui ∈BV(RN) be such that inf(|ui |, |uj |)=0, i, j ∈{1, . . . , m},
i 
= j . Assume that ui and

∑m
i=1 ui are solutions of the eigenvalue problem (6),
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i ∈ {1, . . . , m}. Let bi ∈ R, i = 1, . . . , m, z := ∑m
i=1 biui , and λ > 0. Then the

solution u of the variational problem (5) is u := ∑m
i=1 sign(bi)(|bi | − λ−1)+ui .

Assume that m = 1 and u is a solution of (6). If 0 < λ−1 ≤ b, then u := au

with a = b − λ−1 is a solution of (5) for the datum z = bu. Indeed, u satisfies the
Euler–Lagrange equation of (5) which characterizes its unique solution:

z = bu = au + λ−1u = au − λ−1div

(
Du

|Du|
)

= u − λ−1div

(
Du

|Du|
)

.

If λ−1 > b, then u = 0 is the solution of (5). Indeed, in this case ‖λz‖BV∗ ≤ 1 (the
dual norm in BV(RN)∗) and there is a vector field ξ ∈ L∞(RN ; R

N) with ‖ξ‖∞ ≤ 1,
such that −div ξ = λz. Thus, u = 0 satisfies the Euler–Lagrange equation of (5).
The proof when b ≤ 0 is similar and we skip the details. This solution exhibits a loss
of contrast of size min(λ−1, |b|) when the datum is z = bu.

Our next theorem gives a family of solutions of (6) and is taken from [12] (see
also [4]).

Theorem 2.3. Let C1, . . . , Cm be bounded convex subsets of R
2 which are disjoint.

Let bi > 0, i = 1, . . . , m, k ∈ {1, . . . , m}. Then v := − ∑k
i=1 biχCi

+∑m
i=k+1 biχCi

is a solution of (6) if and only if the following conditions holds.

(i) The sets Ci , i = 1, . . . , m, are of class C1,1.

(ii) bi = P(Ci)|Ci | for any i ∈ {1, . . . , m}.
(iii) The following inequalities hold:

ess sup
p∈∂Ci

κCi
(p) ≤ P(Ci)

|Ci | for all i = 1, . . . , m.

(iv) If E1 is a solution of the variational problem

min
{
P(E) :

m⋃
j=k+1

Cj ⊆ E ⊆ R
2 \

k⋃
i=1

Ci

}
,

then we have

P(E1) =
m∑

j=k+1

P(Cj ).

If E2 is a solution of the variational problem

min
{
P(E) :

k⋃
i=1

Ci ⊆ E ⊆ R
2 \

m⋃
j=k+1

Cj

}
,

then we have

P(E2) =
k∑

i=1

P(Ci).
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Moreover, if k = m, then we do not need to assume that the Ci are convex and we can
replace condition (i) by the following one:

(i′) The sets Ci , i = 1, . . . , m, are convex and of class C1,1.

This result was essentially proved in [12] (though we only stated the result in its
second assertion). Its extension to R

N was proved in [4] (replacing the curvature of
the boundaries by the sum of principal curvatures) under the assumption that the sets
Ci are convex and of class C1,1. Let us point out the following corollary for connected
sets.

Corollary 2.4. Let C ⊂ R
2 be a bounded set of finite perimeter, and assume that C

is connected. The function v := λχC is a solution of (6) if and only if the following
three conditions hold.

(i) λ = λC := P(C)
|C| .

(ii) C is convex and ∂C is of class C1,1.

(iii) The following inequality holds:

ess sup
p∈∂C

κ∂C(p) ≤ P(C)

|C| .

A convex set C ⊆ R
2 such that u := λCχC is a solution of (6) is called calibrable.

The above result gives a characterization of calibrable sets in R
2 and was proved in

[24], [12]. For convex sets in R
N of class C1,1 the above result is true if we replace

the curvature of the boundary by the sum of the principal curvatures [4].

Example 1. Let C ⊂ R
2 be the set of Figure 1. It is easy to check that C satisfies the

r L

Figure 1. A bean-shaped set is calibrable.

assumptions of Corollary 2.4, since C is a convex set with C1,1 boundary and there
holds

ess sup
p∈∂C

κ∂C(p) = 1

r
<

2πr + 2L

πr2 + 2rL
= P(C)

|C| . (7)

Moreover, since the inequality in (7) is always strict, any convex set C′ of class C1,1

close enough to C in the C1,1-norm is also calibrable.
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Example 2. Let � ⊂ R
2 be the union of two disjoint balls B1 and B2 of radius r ,

whose centers are at distance L (see Figure 2). Then k = 0 and m = 2 in Theorem 2.3
and condition (iv) in it reads as

L ≥ πr.

Under this condition the set � is calibrable. The condition L ≥ πr is nothing else
than P(co(B1 ∪ B2)) ≥ P(B1) + P(B2) (co denotes the convex envelope) and in
this case the solution of the denoising problem with z = χB1∪B2

coincides with the

r

L

Figure 2. Two balls as initial datum for the denoising problem.

addition of the solutions obtained with χB1
and χB2

. In case that P(co(B1 ∪ B2)) <

P (B1)+P(B2) there is interaction of the two sets and the solution is not the addition
of solutions corresponding to the data χB1

and χB2
.

These solutions exhibit two features of (5): that discontinuities may be preserved
and the loss of contrast.

We could expand the above family of solutions by classifying all possible solutions
of (6). Along this line, we extended the above results in two directions: in [13] we
looked for solutions of (6) which are built up as sums of linear combinations of
characteristic functions of convex sets of class C1,1 (not disjoint, in general), and we
considered in [3], [4] the case of general convex sets.

Let us illustrate the results in [13] with a simple case.

Proposition 2.5. Let K0, K1 be two bounded open convex sets of R
2 with boundary

of class C1,1 such that K1 ⊆ K0. Let F := K0 \ K1. Let

J := P(K0) − P(K1)

|F | > 0.

If

ess sup
∂K0

κ∂K0
≤ J, ess inf

x∈∂K1
κ∂K1(x) ≥ J, ess sup

x∈∂K1

κ∂K1(x) ≤ λK1

then v = λK1χK1 + JχK0\K1 is a solution of (6).
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The works [3], [4] describe the denoising of the characteristic function of any con-
vex set of R

2 and R
N , respectively, and the results in them illustrate the regularization

of corners. Even if the more general case of linear combinations of convex sets in R
2

and R
N is considered, we illustrate the results in [3], [4] with a simple case.

Theorem 2.6. Assume that C is a bounded convex set in R
2. Then there is a calibrable

set CR ⊆ C such that ∂C \ ∂CR is formed by arcs of circle of radius R such that
1
R

= P(CR)
|CR | and for each x ∈ C \CR it passes a unique arc of circle of radius r(x) and

those circles fiber C \ CR . Let r(x) = R for x ∈ CR . Then u(x) = (
1 − λ−1

r(x)

)+
χC

is the solution of (6) for the data z = χC .

3. Image decomposition models

In his work [26], Y. Meyer interpreted the denoising model as a u+ v decomposition.
Assume that � is a bounded connected domain in R

2 with Lipschitz boundary. If
z ∈ L2(�) and u is the solution of (5), then its Euler–Lagrange equation can be
written as

u + v = z where v = −1

λ
div

(
Du

|Du|
)

.

This type of decompositions is called a u + v decomposition and u is supposed
to be a geometric sketch of the image [26]. As we have shown in the previous
section, model (5) does not attain its objective of separating an image into its u + v

decomposition. This conclusion was also derived in [26] through complementary
arguments. For instance, if z = χω where ω is a bounded domain with a C∞
boundary, then z is not preserved by the Rudin–Osher–Fatemi (ROF) model (contrary
to what it should be expected). The v component contains the noise but also part
of the image structure and, in particular, part of the texture (depending on the value
of λ). On the other hand if z(x) = χA(x) + p(mx)χB(x) where A and B are two
bounded domains with smooth boundary, m ≥ 1, and p(x), x = (x1, x2), is a smooth
2π -periodic function of the two variables x1, x2, then the ROF model does not give
u(x) = χA(x), v(x) = p(mx)χB(x) [26] (this will be explained after Theorem 3.1).
Then to improve the ROF model Meyer proposed a different decomposition [26],
which is based in the following variational model

inf
u∈BV(�),v∈G(�),z=u+v

∫
�

|Du| dx + λ‖v‖G,

where λ > 0 and G(�) denotes the Banach space of distributions f in � that may be
written

f = div ξ

where ξ ∈ L∞(�; R
2). The norm in G is defined by

‖f ‖G := inf{‖ξ‖∞ : ξ ∈ L∞(�; R
2), f = div ξ}
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where ‖ξ‖∞ := ess supx∈� |ξ(x)|. G(�) is exactly W−1,∞(�), the dual space of
W

1,1
0 (�). The justification for the introduction of the space G comes from the next

result [26].

Theorem 3.1. Let fn be a sequence of functions inL2(�) with the following properties

(i) There exists a compact set K ⊂ � such that the support of fn is contained in
K for each n,

(ii) There exists q > 2 and C > 0 such that ‖fn‖q ≤ C,

(iii) The sequence fn converges to 0 in a distributional sense.

Then ‖fn‖G converges to 0 as n → ∞.

In other words, oscillating textures have a small norm in G(�). Now, if z(x) =
χA(x) + p(mx)χB(x) is as in the first paragraph of this section, then v cannot
be p(mx)χB(x) for large m [26]. Otherwise we would have p(mx)χB(x) =
− 1

λ
div

(
Du
|Du|

)
and therefore ‖p(mx)χB(x)‖G = 1

λ
. But we know from Theorem 3.1

that the G-norm of p(mx)χB(x) is small for large values m (indeed the G-norm of
p(mx)χB(x) is an O(m−1) [26]).

Theorem 3.1 and other results [26], [25] were the starting point of extensive
numerical work on u+ v decompositions [32], [28], [10], [9] to explore and compare
the relative ability of the G based model versus the ROF model. Meyer’s model was
first implemented by Vese–Osher in [32]. A different approach was proposed in [10],
[9] where the decomposition is computed by minimizing a convex functional which
depends on the two variable u and v, alternatively in each variable. Each minimization
is based on the projection algorithm introduced in [16]. The problem to solve is:

inf
(u,v)∈BV(�)×μBG

∫
�

|Du| + λ

2

∫
�

|z − u − v|2 dx, (8)

where BG := {v ∈ G : ‖v‖G ≤ 1}. We refer to [10] for its precise connection with
Meyer’s model. Let us mention that other dual Sobolev norms, indeed H−1, have
been explored in [28].

Figure 3 displays the comparison between ROF and model (8) for a simple figure.
These images are courtesy of J. F. Aujol and A. Chambolle and have been obtained
with the numerical methods developed by the authors in [9], [10]. Figures 3.a and 3.b
display the original reference image and the noisy image with an additive Gaussian
white noise with σ = 35. Figures 3.c and 3.d display the u and v components obtained
with the ROF model with λ chosen so that ‖v‖ = σ . For better visualization, the v

component will be always displayed as v + 128. Figures 3.e and 3.f display the u

and v components obtained with model (8) with λ = 10 and μ = 55 (for more details
on the choice of parameters, see [9], [10]). In this case, for well chosen values of the
parameter, the results are quite comparable. But let us point out that model (8) is able



1462 Vicent Caselles

Figure 3. Comparison of ROF and model (8). From left to right and top to bottom: a) Original
reference image. b) Noisy image with σ = 35. c) and d) Result of the ROF model: u and v

component (with λ chosen so that ‖v‖ = σ ). For a better visualization, the v component will be
displayed as v + 128. e) and f) Result of model (8): u and v component (λ = 10, μ = 55). g)
and h) Result of the ROF model: u and v component (in this case σ = 40.8). i) and j) Result of
model (8): u and v component (in this case σ = 40.8 and μ = 200). These images are courtesy
of J. F. Aujol and A. Chambolle. See the text for more details.
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to separate the horizontal bands from the square for large values of the parameter μ

while this does not seem to be possible with the ROF model. This is displayed in
the next figures. Figures 3.g and 3.h display the u and v components obtained with
the ROF model (the noise corresponds to a value of σ = 40.8) with λ chosen so that
‖v‖ = σ . Figures 3.i and 3.j display the u and v components obtained with model (8)
with μ = 200. In any case, the choice of the parameters is open to further analysis
and it the separation of the image in two components is related to the different scales
present in the image.

4. Image restoration

To approach the problem of image restoration from a numerical point of view we
shall assume that the image formation model incorporates the sampling process in a
regular grid

z(i, j) = h ∗ u(i, j) + n(i, j), (i, j) ∈ {1, . . . , N}2 (9)

where u : R
2 → R denotes the ideal undistorted image, h : R

2 → R is a blur-
ring kernel, z is the observed sampled image which is represented as a function
z : {1, . . . , N}2 → R, and n(i, j) is, as usual, a white Gaussian noise with zero mean
and standard deviation σ .

Let us denote by �N the interval (0, N ]2. As we said in the introduction, in order to
simplify this problem, we assume that the functions h and u are periodic of period N

in each direction. That amounts to neglecting some boundary effects. Therefore,
we assume that h, u are functions defined in �N . To fix ideas, we assume that
h, u ∈ L2(�N), so thath ∗ u is a continuous function in�N (which may be extended to
a continuous periodic function in R

2) and the samplesh ∗ u(i, j), (i, j) ∈ {1, . . . , N}2,
have sense.

Our next purpose is to introduce a restoration model with local constraints and to
explain the numerical approach to solve it. For that, let us introduce some notation.
We denote by X the Euclidean space R

N×N . Then the image u ∈ X is the vector u =
(u(i, j))Ni,j=1, and the vector field ξ is the map ξ : {1, . . . , N} × {1, . . . , N} → R

2.
If u ∈ X, the discrete gradient is a vector in Y = X × X given by

∇+,+u := (∇+
x u, ∇+

y u),

where

∇+
x u(i, j) =

{
u(i + 1, j) − u(i, j) if i < N,

0 if i = N,

∇+
y u(i, j) =

{
u(i, j + 1) − u(i, j) if j < N,

0 if j = N,
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for i, j ∈ {1, . . . , N}. We denote ∇+,+u = (∇+
x u, ∇+

y u). Other choices of the
gradient are possible, this one will be convenient for the developments below.

Let us define the discrete functional

J
β
d (u) =

∑
1≤i,j≤N

√
β2 + |∇+,+u(i, j)|2, β ≥ 0.

For any function w ∈ L2(�N), its Fourier coefficients are

ŵ l
N

,
j
N

=
∫

�N

w(x, y)e−2πi
(lx+jy)

N for (l, j) ∈ Z
2.

Our plan is to compute a band limited approximation to the solution of the restoration
problem for (9). For that we define

B := {
u ∈ L2(�N) : û is supported in {− 1

2 + 1
N

, . . . , 1
2

}}
.

We notice that B is a finite dimensional vector space of dimension N2 which can be
identified with X. Both J (u) = ∫

�N
|Du| and J 0

d (u) are norms on the quotient space
B/R, hence they are equivalent. With a slight abuse of notation we shall indistinctly
write u ∈ B or u ∈ X.

We shall assume that the convolution kernel h ∈ L2(�N) is such that û is supported
in

{ − 1
2 + 1

N
, . . . , 1

2

}
and ĥ(0, 0) = 1.

In the discrete framework, the ROF model for restoration is

Minimizeu∈X J
β
d (u) (10)

subject to
N∑

i,j=1

|h ∗ u(i, j) − z(i, j)|2 ≤ σ 2N2. (11)

Notice again that the image acquisition model (1) is only incorporated through a global
constraint. In practice, the above problem is solved via the following unconstrained
formulation

min
u∈X

max
λ≥0

J
β
d (u) + λ

2

[ 1

N2

N∑
i,j=1

|h ∗ u(i, j) − z(i, j)|2 − σ 2
]

(12)

where λ ≥ 0 is a Lagrange multiplier. The appropriate value of λ can be computed
using Uzawa’s algorithm [15], [2] so that the constraint (11) is satisfied. Recall that
if we interpret λ−1 as a penalization parameter which controls the importance of
the regularization term, and we set this parameter to be small, then homogeneous
zones are well denoised while highly textured regions will loose a great part of its
structure. On the contrary, if λ−1 is set to be small, texture will be kept but noise
will remain in homogeneous regions. On the other hand, as the authors of [15], [2]
observed, if we use the constrained formulation (10)-(11) or, equivalently (12), then
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the Lagrange multiplier does not produce satisfactory results since we do not keep
textures and denoise flat regions simultaneously, and they proposed to incorporate the
image acquisition model as a set of local constraints.

Following [2], we propose to replace the constraint (11) by

G ∗(h ∗ u − z)(i, j) ≤ σ 2, for all (i, j) ∈ {1, . . . , N}, (13)

where G is a discrete convolution kernel such that G(i, j) > 0 for all (i, j) ∈
{1, . . . , N}. The effective support of G must permit the statistical estimation of
the variance of the noise with (13) (see [2]). Then we shall minimize the functional
J

β
d (u) on X submitted to the family of constraints (13) (plus eventually the constraint∑N

i,j=1 h ∗ u(i, j) = ∑N
i,j=1 z(i, j)). Thus, we propose to solve the optimization

problem:

min
u∈B

J
β
d (u)

subject to G ∗(h ∗ u − z)2(i, j) ≤ σ 2 for all (i, j).

(14)

This problem is well-posed, i.e., there exists a solution and is unique if β > 0 and
infc∈R G ∗(z− c)2 > σ 2. In case that β = 0 and infc∈R G ∗(z− c)2 > σ 2, then h ∗ u

is unique. Moreover, it can be solved with a gradient descent approach and Uzawa’s
method [2].

To guarantee that the assumptions of Uzawa’s method hold we shall use a gradient
descent strategy. For that, let v ∈ X and γ > 0. At each step we have to solve a
problem like

min
u∈B

γ |u − v|2X + J
β
d (u)

subject to G ∗(h ∗ u − z)2(i, j) ≤ σ 2 for all (i, j).

(15)

We solve (15) using the unconstrained formulation

min
u∈X

max
λ≥0

Lγ (u, {λ}; v),

where λ = (λ(i, j))Ni,j=1 and

Lγ (u, {λ}; v) = γ |u − v|2X + J
β
d (u) +

N∑
i,j=1

λ(i, j)(G ∗(h ∗ u − z)2(i, j) − σ 2).

Algorithm: TV based restoration algorithm with local constraints

1. Set u0 = 0 or, better, u0 = z. Set n = 0.

2. Use Uzawa’s algorithm to solve the problem

min
u∈X

max
λ≥0

Lγ (u, {λ}; un), (16)

that is:
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(a) Choose any set of values λ0(i, j) ≥ 0, (i, j) ∈ {1, . . . , N}2, and un
0 = un.

Iterate from p = 0 until convergence of λp the following steps:

(b) With the values of λp solve the problem

min
u

Lγ (u, {λp}; un)

starting with the initial condition un
p. Let un

p+1 be the solution obtained.

(c) Update λ in the following way:

λp+1(i, j) = max(λp(i, j) + ρ(G ∗(h ∗ un
p − z)2(i, j) − σ 2), 0)

for all (i, j).

Let un+1 be the solution of (16). Stop when convergence of un.

We notice that, since γ > 0, Uzawa’s algorithm converges if z ∈ h ∗ B. Moreover,
if u0 satisfies the constraints, then un tends to a solution u of (14) as n → ∞ [2].

Finally, to solve problem (16) in Step 2.(b) of the algorithm we use either the
extension of Chambolle’s algorithm [16] to the restoration case given in [1] if we use
β = 0, or the Bermúdez–Moreno algorithm [14] adapted to solve (16) when β > 0
as given in [2]. Being differentiable at when ∇+,+u = 0, this second possibility
produces slightly smoother solutions in smooth non textured areas. We shall not enter
on the comparison of both possibilities here and we shall use β = 0. For more details,
we refer to [1], [2].

Let us mention the work [23] where the authors introduce a spatially varying
fidelity term which controls the amount of denoising in any region of the image in
order to preserve textures and small details. The philosophy is the same as ours but
the value of λ(i, j) is chosen in a different way.

5. Some restoration experiments

To simulate our data we use the modulation transfer function corresponding to
SPOT 5 HRG satellite with Hipermode sampling (see [29] for more details):

ĥ(η1, η2) = e−4πβ1|η1|e−4πα

√
η2

1+η2
2 sinc(2η1) sinc(2η2) sinc(η1), (17)

where η1, η2 ∈ [−1/2, 1/2], sinc(η1) = sin(πη1)/(πη2), α = 0.58, and β1 = 0.14.
Then we filter the reference image given in Figure 4.a with the filter (17) and we
add some Gaussian white noise of zero mean and standard deviation σ (in our case
σ = 1, which is a realistic assumption for the case of satellite images [29]) to obtain
the image displayed in Figure 4.b.

Figure 5.a displays the restoration of the image in Figure 4.b obtained using the
algorithm of last section with β = 0. We have used a Gaussian function G of standard
deviation σ = 6. The mean value of the constraint is mean((G∗(Ku−z))2) = 1.0933
and RMSE = 7.9862. Figure 5.b displays the function λ(i, j) obtained.
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Figure 4. Reference image and a filtered and noised image. a) Top: reference image. b) Bottom:
the data. This image has been generated applying the MTF given in (17) to the top image and
adding a Gaussian white noise of zero mean and standard deviation σ = 1.
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Figure 6 displays some details of the results that are obtained using a single global
constraint (11) and show its main drawbacks. Figure 6.a corresponds to the result
obtained with the Lagrange multiplier λ = 10 (thus, the constraint (11) is satisfied).
The result is not satisfactory because it is difficult to denoise smooth regions and keep
the textures at the same time. Figure 6.b shows that most textures are lost when using
a small value of λ (λ = 2) and Figure 6.c shows that some noise is present if we use
a larger value of λ (λ = 1000). This result is to be compared with the same detail of
Figure 5.a which is displayed in Figure 6.d.

The modulation transfer function for satellite images. We describe here a simple
model for the Modulation Transfer Function of a general satellite. More details can
be found in [29] where specific examples of MTF for different acquisition systems
are shown. The MTF used in our experiments (17) corresponds to a particular case
of the general model described below [29].

Recall that the MTF, that we denote by ĥ, is the Fourier transform of the impulse
response of the system. Let (η1, η2) ∈ [−1/2, 1/2] denote the coordinates in the
frequency domain. There are different parts in the acquisition system that contribute
to the global transfer function:

Sensors. Every sensor has a sensitive region where all the photons that arrive are inte-
grated. This region can be approximated by a unit square [−c/2, c/2]2 where c is the
distance between consecutive sensors. Its impulse response is then the convolution of
two pulses, one in each spatial direction. The corresponding transfer function also in-
cludes the effect of the conductivity (diffusion of information) between neighbouring
sensors, which is modeled by an exponential decay factor, thus:

ĥS(η1, η2) = sinc(η1c) sinc(η2c)e
−2πβ1c|η1|e−2πβ2c|η2|,

where sinc(η1) = sin(πη1)/(πη1) and β1, β2 > 0.

Optical system. It is considered as an isotropic low-pass filter

ĥO(η1, η2) = e
−2παc

√
η2

1+η2
2 , α > 0.

Motion. Each sensor counts the number of photons that arrive to its sensitive region
during a certain time of acquisition. During the sampling time the system moves a
distance τ and so does the sensor; this produces a motion blur effect in the motion
direction (d1, d2):

ĥM(η1, η2) = sinc(〈(η1, η2), (d1, d2)〉τ).

Finally, the global MTF is the product of each of these intermediate transfer
functions modeling the different aspects of the satellite:

ĥ(η1, η2) = ĥSĥOĥM.
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Figure 5. Restored image with local Lagrange multipliers. a) Top: the restored image corre-
sponding to the data given in Figure 4.b. The restoration has been obtained using the algorithm
of last section We have used a Gaussian function G of standard deviation σ = 6. b) Bottom: the
function λ(i, j) obtained.
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Figure 6. A detail of the restored images with global and local constraints. Top: a), b) and c)
display a detail of the results that are obtained using a single global constraint (11) and show
its main drawbacks. Figure a) corresponds to the result obtained with the value of λ such that
the constraint (11) is satisfied, in our case λ = 10. Figure b) shows that most textures are lost
when using a small value of λ (λ = 2)and Figure c) shows that some noise is present if we use a
larger value of λ (λ = 1000). Bottom: d) displays the same detail of Figure 5.a which has been
obtained using restoration with local constraints.
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A wavelet based sparse grid method for the electronic
Schrödinger equation

Michael Griebel and Jan Hamaekers∗

Abstract. We present a direct discretization of the electronic Schrödinger equation. It is based on
one-dimensional Meyer wavelets from which we build an anisotropic multiresolution analysis
for general particle spaces by a tensor product construction. We restrict these spaces to the
case of antisymmetric functions. To obtain finite-dimensional subspaces we first discuss semi-
discretization with respect to the scale parameter by means of sparse grids which relies on mixed
regularity and decay properties of the electronic wave functions. We then propose different
techniques for a discretization with respect to the position parameter. Furthermore we present
the results of our numerical experiments using this new generalized sparse grid methods for
Schrödinger’s equation.
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1. Introduction

In this article we consider the electronic Schrödinger equation (first without spin for
reasons of simplicity)

H�(x1, . . . , xN) = E�(x1, . . . , xN) (1)

with the Hamilton operator

H = T + V where T = −1

2

N∑
p=1

�p

and

V = −
N∑
p=1

Nnuc∑
q=1

Zq

|xp − Rq |2 +
N∑
p=1

N∑
q>p

1

|xp − xq |2 . (2)
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Here, with d = 3, xp := (x1,p, . . . , xd,p) ∈ R
d denotes the position of the p-th

electron, p = 1 . . . , N , and Rq ∈ R
d denotes the fixed position of the q-th nucleus,

q = 1, . . . , Nnuc. The operator �p is the Laplacian acting on the xp-component
of�, i.e.�p = ∑d

i=1 ∂
2/∂(xi,p)

2, Zq is the charge of the q-th nucleus and the norm
| . |2 denotes the usual Euclidean distance in R

d . The solution � describes the wave
function associated to the eigenvalue E.

This eigenvalue problem results from the Born–Oppenheimer approximation [51]
to the general Schrödinger equation for a system of electrons and nuclei which takes
the different masses of electrons and nuclei into account. It is one of the core prob-
lems of computational chemistry. Its successful treatment would allow to predict the
properties of arbitrary atomic systems and molecules [22]. However, except for very
simple cases, there is no analytical solution for (1) available. Also a direct numerical
approach is impossible since � is a d · N -dimensional function. Any discretization
on e.g. uniform grids with O(K) points in each direction would involve O(Kd·N)
degrees of freedoms which are impossible to store for d = 3, N > 1. Here, we
encounter the curse of dimensionality [8]. Therefore, most approaches resort to an
approximation of (1) only. Examples are the classical Hartree–Fock method and its
successive refinements like configuration interaction and coupled clusters. Alterna-
tive methods are based on density functional theory which result in the Kohn–Sham
equations or the reduced density matrix (RDM) [50] and the r12 approach [23] which
lead to improved accuracy and open the way to new applications. A survey of these
methods can be found in [3], [10], [46]. A major problem with these techniques is that,
albeit quite successful in practice, they nevertheless only provide approximations. A
systematical improvement is usually not available such that convergence of the model
to Schrödinger’s equation is achieved.

Instead, we intend to directly discretize the Schrödinger equation without re-
sorting to any model approximation. To this end, we propose a new variant of the
so-called sparse grid approach. The sparse grid method is a discretization technique
for higher-dimensional problems which promises to circumvent the above-mentioned
curse of dimensionality provided that certain smoothness prerequisites are fulfilled.
Various sparse grid discretization methods have already been developed in the con-
text of integration problems [27], [28], integral equations [24], [32] and elliptic partial
differential equations, see [12] and the references cited therein for an overview. In
Fourier space, such methods are also known under the name hyperbolic cross approx-
imation [5], [21], [61]. A first heuristic approach to apply this methodology to the
electronic Schrödinger equation was presented in [26]. The sparse grid idea was also
used in the fast evaluation of Slater determinants in [33]. RecentlyYserentant showed
in [67] that the smoothness prerequisite necessary for sparse grids is indeed valid for
the solution of the electronic Schrödinger equation. To be more precise, he showed
that an antisymmetric solution of the electronic Schrödinger equation with d = 3
possesses H1,1

mix- or H
1/2,1
mix -regularity for the fully antisymmetric and the partially

symmetric case, respectively. This motivated the application of a generalized sparse
grid approach in Fourier space to the electronic Schrödinger equation as presented
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in [30]. There, sparse grids for general particle problems as well as antisymmetric
sparse grids have been developed and were applied to (1) in the periodic setting.
Basically, estimates of the type

‖� −�M‖H1 ≤ C(N, d) ·M−1/d · ‖�‖
H1,1

mix

could be achieved where M denotes the number of Fourier modes used in the dis-
cretization. Here, the norm ‖.‖

H1,1
mix

involves bounded mixed first derivatives. Thus

the order of the method with respect to M is asymptotically independent of the di-
mension of the problem, i.e. the number N of electrons. But, the constants and the
H1,1

mix-norm of the solution nevertheless depend on the number of electrons. While
the dependency of the order constant might be analysed along the lines of [29], the
problem remains that the smoothness term ‖�‖

H1,1
mix

grows exponentially with the

number of electrons. This could be seen from the results of the numerical experi-
ments in [30] and was one reason why in the periodic Fourier setting problems with
higher numbers of electrons could not be treated. It was also observed in [69] where
a certain scaling was introduced into the definitions of the norms which compensates
for this growth factor. In [68], [70] it was suggested to scale the decomposition of
the hyperbolic cross into subspaces accordingly and to further approximate each of
the subspace contributions by some individually properly truncated Fourier series to
cope with this problem.

In this article, we present a modified sparse grid/hyperbolic cross discretization
for the electronic Schrödinger equation which implements this approach. It uses one-
dimensional Meyer wavelets as basic building blocks in a tensor product construction
to obtain a L2-orthogonal multiscale basis for the many-electron space. Then a
truncation of the associated series expansion results in sparse grids. Here, for the level
index we truncate according to the idea of hyperbolic crosses whereas we truncate
for the position index according to various patterns which take to some extent the
decay of the scaling function coefficients for x → ∞ into account. Note that since
we work in an infinite domain this resembles a truncation to a compact domain in
which we then consider a local wavelet basis. Here, domain truncation error and scale
resolution error should be balanced. Antisymmetry of the resulting discrete wavelet
basis is achieved by a restriction of the active indices.

The remainder of this article is organized as follows: In Section 2 we present the
Meyer wavelet family on R and discuss its properties. In Section 3 we introduce a
multiresolution analysis for many particle spaces build by a tensor product construc-
tion from the one-dimensional Meyer wavelets and introduce various Sobolev norms.
Then we discuss semi-discretization with respect to the scale parameter by means of
generalized sparse grids and present a resulting error estimate in Section 4. Section 5
deals with antisymmetric generalized sparse grids. In Section 6 we invoke results on
the mixed regularity of electronic wave functions and we discuss rescaling of norms
and sparse grid spaces to obtain error bounds which involve the L2-norm of the solu-
tion instead of the mixed Sobolev norm. Then, in Section 7 we comment on the setup
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of the system matrix and on the solution procedure for the discrete eigenvalue problem
on general sparse grids and we propose different techniques for the discretization with
respect to the position parameter. Furthermore we present the results of our numerical
experiments. Finally we give some concluding remarks in Section 8.

2. Orthogonal multilevel bases and the Meyer wavelet family on R

We intend to use for the discretization of (1) a L2-orthogonal basis system.1 This
is an important prerequisite from the practical point of view, since it allows to apply
the well-known Slater–Condon rules. They reduce the R

d·N - and R
2·d·N -dimensional

integrals necessary in the Galerkin discretization of the one- and two electron part
of the potential function of (1) to short sums of d-dimensional and 2d-dimensional
integrals, respectively. Otherwise, due to the structure of the Slater determinants
necessary to obtain antisymmetry, these sums would contain exponentially many
terms with respect to the number N of electrons present in the system.

Let us recall the definition of a multiresolution analysis on R, see also [52]. We
consider an infinite sequence

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·
of nested spaces Vl with

⋂
l∈Z

Vl = 0 and
⋃
l∈Z

Vl = L2(R). It holds f (x) ∈ Vl ⇔
f (2x) ∈ Vl+1 and f (x) ∈ V0 ⇔ f (x− j) ∈ V0, where j ∈ Z. Furthermore, there is
a so-called scaling function (or father wavelet) φ ∈ V0, such that {φ(x− j) : j ∈ Z}
forms an orthonormal basis for V0. Then

{φl,j (x) = 2
l
2φ(2lx − j) : j ∈ Z}

forms an orthonormal basis of Vl and we can represent any u(x) ∈ Vl as u(x) =∑∞
j=−∞ vl,jφl,j (x) with coefficients vl,j := ∫

R
φ∗
l,j (x)u(x)dx. With the definition

Wl ⊥ Vl, Vl ⊕Wl = Vl+1 (3)

we obtain an associated sequence of detail spacesWl with associated mother wavelet
ϕ ∈ W0, such that {ϕ(x − j) : j ∈ Z} forms an orthonormal basis for W0. Thus

{ϕl,j (x) = 2
l
2ϕ(2lx − j) : j ∈ Z}

gives an orthonormal basis for Wl and {ϕl,j : l, j ∈ Z} is an orthonormal basis of
L2(R). Then, we can represent any u(x) in L2(R) as

u(x) =
∞∑

l=−∞

∞∑
j=−∞

ul,jϕl,j (x) (4)

1Note that a bi-orthogonal system would also work here.
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with the coefficients ul,j := ∫
R
ϕ∗
l,j (x)u(x)dx.

In the following we focus on the Meyer wavelet family for the choice of φ
and ϕ. There, with the definition of the Fourier transform F [f ](ω) = f̂ (ω) =

1√
2π

∫∞
−∞ f (x)e−iωx dx we set as father and mother wavelet in Fourier space

φ̂(ω) = 1√
2π

⎧⎪⎨
⎪⎩

1 for |ω| ≤ 2
3π,

cos(π2 ν(
3

2π |ω| − 1)) for 2π
3 < |ω| ≤ 4π

3 ,

0 otherwise,

(5)

ϕ̂(ω) = 1√
2π
e−i

ω
2

⎧⎪⎨
⎪⎩

sin(π2 ν(
3

2π |ω| − 1)) for 2
3π ≤ |ω| ≤ 4

3π,

cos(π2 ν(
3

4π |ω| − 1)) for 4π
3 < |ω| ≤ 8π

3 ,

0 otherwise,

(6)

where ν : R → R ∈ Cr is a parameter function still do be fixed, which has the
properties ν(x) = 0 for x ≤ 0, ν(x) = 1 for x > 1 and ν(x) + ν(1 − x) = 1. By
dilation and translation we obtain

F [φl,j ](ω) = φ̂l,j (ω) = 2− l
2 e−i2−l jωφ̂(2−lω),

F [ϕl,j ](ω) = ϕ̂l,j (ω) = 2− l
2 e−i2−l jωϕ̂(2−lω)

where the φ̂l,j and ϕ̂l,j denote the dilates and translates of (5) and (6), respectively.
This wavelet family can be derived from a partition of unity

∑
l χ̂l(ω) = 1 for all

ω ∈ R in Fourier space, where

χ̂l(ω) =
{

2πφ̂∗
0,0(ω)φ̂0,0(ω) for l = 0,

2lπϕ̂∗
l−1,0(ω)ϕ̂l−1,0(ω) for l > 0,

(7)

see [4] for details. The function ν basically describes the decay from one to zero of
one partition function χ̂l in the overlap with its neighbor. The smoothness of the χ̂l
is thus directly determined by the smoothness of ν. The mother wavelets ϕ̂l,j and
the father wavelets φ̂l,j in Fourier space inherit the smoothness of the χ̂l’s via the
relation (7).

There are various choices for ν with different smoothness properties in the litera-
ture, see [4], [45], [53], [54]. Examples are the Shannon wavelet and the raised cosine
wavelet [63], i.e. (6) with

ν(x) = ν0(x) :=
{

0 for x ≤ 1
2 ,

1 otherwise
and ν(x) = ν1(x)

⎧⎪⎨
⎪⎩

0 for x ≤ 0,

x for 0 ≤ x ≤ 1,

1 otherwise

(8)
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or, on the other hand,

ν(x) = ν∞(x) :=

⎧⎪⎨
⎪⎩

0 for x ≤ 0
ν̃(x)

ν̃(1−x)+ν̃(x) for 0 < x ≤ 1

1 otherwise

where ν̃(x) =
{

0 for x ≤ 0

e−
1
xα otherwise

(9)
with α = 1, 2 [62], respectively. Other types of Meyer wavelets with different
smoothness properties can be found in [19], [34], [40], [65]. The resulting mother
wavelet functions in real space and Fourier space are given in Figure 1. Note the
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Figure 1. Top: (6) with ν0 from (8) in Fourier space (left) and real space (right). Middle: (6)
with ν1 from (8) in Fourier space (left) and real space (right). Bottom: (6) with ν∞ from (9) in
Fourier space (left) and real space (right).

two symmetric areas of support and the associated two bands with non-zero values of
the wavelets in Fourier space which resemble the line of construction due to Wilson,



A wavelet based sparse grid method for the electronic Schrödinger equation 1479

Malvar, Coifman and Meyer [17], [20], [39], [49], [64] to circumvent the Balian–Low
theorem2 [7], [48]. In real space, these wavelets areC∞-functions with global support,
in Fourier space, they are piecewise continuous, piecewise continuous differentiable
andC∞, respectively, and have compact support. Furthermore they possess infinitely
many vanishing moments. Finally their envelope in real space decays with |x| → ∞
as |x|−1 for ν0, as |x|−2 for ν1 and faster than any polynomial (subexponentially)
for ν∞, respectively. To our knowledge, only for the Meyer wavelets with (8) there
are analytical formulae in both real and Fourier space available. Certain integrals in
a Galerkin discretization of (1) can then be given analytically. For the other types of
Meyer wavelets analytical formulae only exist in Fourier space and thus numerical
integration is necessary in a Galerkin discretization of (1).

For a discretization of (4) with respect to the level-scale l we can restrict the doubly
infinite sum to an interval, i.e. l ∈ [L1, L2]. However to obtain the space VL2 we
have to complement the sum of detail spaces Wl , l ∈ [L1, L2] by the space VL1 , i.e.
we have

VL2 = VL1 ⊕
L2⊕
l=L1

Wl.

with the associated representation

u(x) =
∞∑

j=−∞
vL1,j φL1,j (x)+

L2∑
L1

∞∑
j=−∞

ul,jϕl,j (x).

Note that for the case of R, beside the choice of a finest scale L2, we here also have a
choice of the coarsest scaleL1. This is in contrast to the case of a finite domain where
the coarsest scale is usually determined by the size of the domain and is denoted as
level zero.

Additionally we can scale our spaces and decompositions by a parameter c > 0,
c ∈ R. For example, we can set

V cl = span{φc,l,j (x) = c
1
2 2

l
2φ(c2lx − j) : j ∈ Z}.

For c = 2k , k ∈ Z, the obvious identity V cl = V 1
l+k holds. Then we obtain the scaled

decomposition

V cL2
= V cL1

⊕
L2⊕
l=L1

Wc
l

with the scaled detail spaces Wc
l = span{ϕc,l,j (x) = c

1
2 2

l
2ϕ(c2lx − j) : j ∈ Z}.

For c = 2k , k ∈ Z, the identity Wc
l = W 1

l+k holds.

2The Balian–Low theorem basically states that the family of functions gm,n(x) = e2πimxg(x−n),m, n ∈ Z,
which are related to the windowed Fourier transform, cannot be an orthonormal basis of L2(R), if the two
integrals

∫
R
x2|g(x)|2dx and

∫
R
k2|ĝ(k)|2dk are both finite. Thus there exists no orthonormal family for a

Gaussian window function g(x) = π−1/4e−x2/2 which is both sufficiently regular and well localized.



1480 Michael Griebel and Jan Hamaekers

With the choice c = 2−L1 we can get rid of the parameter L1 and may write our
wavelet decomposition as

V cL = V c0 ⊕
L⊕
l=0

Wc
l , (10)

i.e. we can denote the associated coarsest space with level zero and the finest detail
space with level L (which now expresses the rescaled parameter L2). To simplify
notation we will skip the scaling index c in the following.

We also introduce with

ψl,j :=
{
φcl,j for l = 0,

ϕcl−1,j for l ≥ 1
(11)

for c = 2−L1 a unique notation for both the father wavelets on the coarsest scale and
the mother wavelets of the detail spaces. Bear however in mind that in the following
the function ψl,j with l = 0 denotes a father wavelet, i.e. a scaling function only,
whereas it denotes for l ≥ 1 a true wavelet on scale l − 1.

Let us finally consider the wavelet representation of the function e−σ |x−x0| which is
the one-dimensional analogon of the ground state wavefunction of hydrogen centered
in x0 = 0. For two types of Meyer wavelets, i.e. with ν0 from (8) and ν∞ from (9)
with α = 2, Figure 2 gives the isolines to the values 10−3 and 10−4 for both the
absolute value of the coefficients vl,j of the representation with respect to the scaling
functions and the absolute value of the coefficients ul,j of the representation with
respect to the wavelet functions.

Here we see the following: For the Meyer wavelet with ν∞ from (9) where α = 2,
the isolines to different values (only 10−3 and 10−4 are shown) are nearly parallel for
both the wavelet coefficients ul,j and the scaling coefficients vl,j . For levels larger
than −2 the isolines of the wavelet coefficients are even straight lines. Furthermore,
on sufficiently coarse levels, the isoline for the wavelet coefficients and the scaling
coefficients practically coincide. This is an effect of theC∞-property of the underlying
mother wavelet. For the Meyer wavelet with ν0 from (8), i.e. for wavelets which are
not C∞ in both real space and Fourier space, these two observations do not hold.

If we compare the isolines of the wavelet coefficients ul,j for the Meyer wavelet
with ν∞ from (9) where α = 2 and that of the Meyer wavelet with ν0 from (8) we
observe that the level on which the bottom kink occurs is exactly the same. However
the size of the largest diameter (here roughly on level −2) is substantially bigger for
the Shannon wavelet. Note the different scaling of the x-axis of the diagrams on the
left and right side.

We furthermore observe for the isolines of the scaling coefficients an exponential
behavior, i.e. from level l to level l + 1 the associated value for j nearly doubles in a
sufficient distance away from point x = 0. With respect to the wavelet coefficients,
however, we see that the support shrinks super-exponentially towards the bottom kink
with raising level.
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Figure 2. Isolines to the values 10−3 and 10−4 of the absolute value of the coefficients vl,j and
ul,j for the Meyer wavelets with ν0 from (8) (left) and ν∞ from (9) with α = 2 (right), no scaling
(top) and scaling with 2l (bottom).

The relation (3) relates the spacesVl ,Wl andVl+1 and allows to switch between the
scaling coefficients and the wavelet coefficients on level l to the scaling coefficients
on level l + 1 and vice versa. This enables us to choose an optimal coarsest level
for a prescribed accuracy and we also can read off the pattern of indices (l, j) which
result in a best M-term approximation with respect to the L2- and H1-norm for that
prescribed accuracy, respectively. For the Meyer wavelet with ν∞ from (9) where
α = 2, the optimal choice of the coarsest levelL1 on which we use scaling functions is
just the level where, for a prescribed accuracy, the two absolute values of the wavelet
coefficients on one level possess their largest distance, i.e. the associated isoline of
the wavelet coefficients shows the largest diameter (here roughly on level −2). The
selection of a crossing isoline then corresponds to the fixation of a boundary error
by truncation of the further decaying scaling function coefficients on that level which
resembles a restriction of R to just a finite domain. From this base a downward
pointing triangle then gives the area of indices to be taken into account into the finite
sum of best approximation with respect to that error. We observe that the use of the
wavelets with ν0 from (8) would result in a substantially larger area of indices and
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thus number of coefficients to be taken into account to obtain the same error level.
There, the form of the area is no longer a simple triangle but shows a “butterfly”-like
shape where the base of the pattern is substantially larger.

3. MRA and Sobolev spaces for particle spaces

In the following we introduce a multiresolution analysis based on Meyer wavelets for
particle spaces on (Rd)N and discuss various Sobolev spaces on it.

First, let us set up a basis for the one-particle space H s(Rd) ⊂ L2(Rd). Here,
we use the d-dimensional product of the one-dimensional system {ψl,j (x), l ∈ N0,

j ∈ Z}. We then define the d-dimensional multi-indices l = (l1, l2, . . . , ld) ∈ N
d
0

and j = (j1, j2, . . . , jd) ∈ Z
d , the coordinate vector x = (x1, . . . , xd) ∈ R

d and the
associated d-dimensional basis functions

ψl,j (x) :=
d∏
i=1

ψli,ji (xi). (12)

Note that due to (11) this product may involve both father and mother wavelets de-
pending on the values of the components of the level index l. We furthermore denote
|l|2 = (∑d

i=1 l
2
i

)1/2 and |l|∞ = max1≤i≤d |li |. Let us now define isotropic Sobolev
spaces in d dimensions with help of the wavelet series expansion, i.e. we classify
functions via the decay of their wavelet coefficients. To this end, we set

λ(l) := |2l|2 = |(2l1, . . . , 2ld )|2 (13)

and define

H s(Rd) = {
u(x) = ∑

l∈N
d
0 ,

j∈Zd

ul,jψl,i(x) :

‖u‖2
H s (Rd )

= ∑
l∈N

d
0 ,

j∈Zd

λ(l)2s · |ul,j |2 ≤ c2 < ∞}
,

(14)

where ul,j = ∫
Rd
ψ∗

l,j (x)u(x)d �x and c is a constant which depends on d.
Based on the given one-particle basis (12) we now define a basis for many-particle

spaces on R
d·N . We then have the d ·N-dimensional coordinates �x := (x1, . . . , xN)

where xi ∈ R
d . To this end, we first employ a tensor product construction and define

the multi-indices �l = (l1, ..., lN) ∈ N
d·N
0 and the associated multivariate wavelets

ψ�l,�j (�x) :=
N∏
p=1

ψlp,jp
(xp) =

( N⊗
p=1

ψlp,jp

)
(x1, . . . , xN). (15)

Note again that this product may involve both father and mother wavelets depending
on the values of the components of the level index �l. The wavelets ψ�l,�j span the
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subspaces W�l,�j := span{ψ�l,�j } whose union forms3 the space

V =
⊕

�l∈N
dN
0�j∈ZdN

W�l,�j . (16)

We then can uniquely represent any function u from V as

u(�x) =
∑

�l∈N
dN
0�j∈ZdN

u�l,�j ψ�l,�j (�x) (17)

with coefficients u�l,�j = ∫
RdN

ψ∗
�l,�j (�x)u(�x)d �x.

Now, starting from the one-particle space H s(Rd) we build Sobolev spaces for
many particles. Obviously there are many possibilities to generalize the concept of
Sobolev spaces [1] from the one-particle case to higher dimensions. Two simple pos-
sibilities are the additive or multiplicative combination i.e. an arithmetic or geometric
averaging of the scales for the different particles. We use the following definition that
combines both possibilities. We denote

λmix(�l) :=
N∏
p=1

λ(lp) and λiso(�l) :=
N∑
p=1

λ(lp). (18)

Now, for −∞ < t, r < ∞, set

H t,r
mix((R

d)N)

= {
u(�x) = ∑

�l∈N
dN
0�j∈ZdN

u�l,�jψ�l,�j (�x) : (19)

‖u‖2
H t,r

mix((R
d )N )

= ∑
�l∈N

dN
0
λmix(�l)2t · λiso(�l)2r · ∑�j∈ZdN

|u�l,�j |2 ≤ c2 < ∞}
with a constant c which depends on d and N .

The standard isotropic Sobolev spaces [1] as well as the Sobolev spaces of domi-
nating mixed smoothness [58], both generalized to the N-particle case, are included
here. They can be written as the special cases

H s((Rd)N) = H0,s
mix((R

d)N) and H t
mix((R

d)N) = H t,0
mix((R

d)N),

respectively. Hence, the parameter r from (19) governs the isotropic smoothness,
whereas t governs the mixed smoothness. Thus, the spaces H t,r

mix give us a quite
flexible framework for the study of problems in Sobolev spaces. Note that the relations
H t

mix ⊂ H t ⊂ H
t/N
mix for t ≥ 0 and H

t/N
mix ⊂ H t ⊂ H t

mix for t ≤ 0 hold. See [58]
and [36] for more information on the spaces H t

mix.

3Except for the completion with respect to a chosen Sobolev norm, V is just the associated Sobolev space.
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4. Semidiscrete general sparse grid spaces

We now consider truncation of the series expansion (17) with respect to the level
parameter �l but keep the part of the full series expansion with respect to the position
parameter �j . To this end, we introduce, besides the parameter L (after proper scaling
with c) which indicates the truncation of the scale with respect to the one-particle
space, an additional parameter T ∈ (−∞, 1] which regulates the truncation pattern
for the interaction between particles. We define the generalized sparse grid space

VL,T :=
⊕

�l∈�L,T
W�l where W�l = span{ψ�l,�j , �j ∈ Z

dN } (20)

with associated generalized hyperbolic cross with respect to the scale-parameter �l

�L,T := {�l ∈ N
d·N
0 : λmix(�l) · λiso(�l)−T ≤ (2L)1−T }. (21)

The parameter T allows us to switch from the full grid case T = −∞ to the con-
ventional sparse grid case T = 0, compare [12], [31], [42], and also allows to create
with T ∈ (0, 1] subspaces of the hyperbolic cross/conventional sparse grid space.
Obviously, the inclusions VL,T1 ⊂ VL,T2 for T1 ≤ T2 hold. Figure 3 displays the
index sets for various choices of T for the case d = 1, N = 2 and L = 128.
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Figure 3. �128,T for T = 0.5, 0,−2,−10 (from left to right), d = 1, N = 2; the conventional
sparse grid/hyperbolic cross corresponds to T = 0. For T = −∞ we get a completely black
square.

We then can uniquely represent any function u from VK,T as

u(�x) =
∑

�l∈�L,T ,�j∈Zd·N
u�l,�j ψ�l,�j (�x).

Such a projection into VK,T introduces an error. Here we have the following error
estimate:

Lemma 1. Let s < r + t, t ≥ 0, u ∈ H t,r
mix((R

d)N). Let ũL,T be the best approxi-
mation in VL,T with respect to the H s-norm and let uL,T be the interpolant of u in
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VL,T , i.e. uL,T = ∑
�l∈�L,T

∑
�j∈ZdN

u�l,�jψ�l,�j (�x). Then, there holds

inf
VL,T

‖u− v‖H s = ‖u− ũL,T ‖H s ≤ ‖u− uL,T ‖H s

≤
⎧⎨
⎩
O((2L)s−r−t+(T t−s+r)

N−1
N−T ) · ‖u‖H t,r

mix
for T ≥ s−r

t
,

O((2L)s−r−t ) · ‖u‖H t,r
mix

for T ≤ s−r
t
.

(22)

For a proof, compare the arguments in [31], [42], [43], [30]. This type of estimate
was already given for the case of a dyadically refined wavelet basis with d = 1 for
the periodic case on a finite domain in [31], [42], [43]. It is a generalization of the
energy-norm based sparse grid approach of [11], [12], [29] where the case s = 1,
t = 2, r = 0 was considered using a hierarchical piecewise linear basis.

Let us discuss some cases. For the standard Sobolev space H0,r
mix (i.e. t = 0,

r = 2) and the spaces VL,T with T ≥ −∞ the resulting order is dependent of T
and dependent on the number of particlesN . In particular the order even deteriorates
with larger T . For the standard Sobolev spaces of bounded mixed derivatives H t,0

mix
(i.e. t = 2, r = 0) and the spaces VL,T with T > s

2 the resulting order is dependent
of T and dependent on the number of particles N whereas for T ≤ s

2 the resulting
order is independent of T and N . If we restrict the class of functions for example
to H1,1

mix (i.e. t = 1, r = 1) and measure the error in the H1-norm (i.e. s = 1) the
approximation order is dependent on N for all T > 0 and independent on N and T
for all T ≤ 0. Note that in all cases the constants in the O-notation depend on N
and d.

5. Antisymmetric semidiscrete general sparse grid spaces

Let us now come back to the Schrödinger equation (1). Note that in general an
electronic wave function depends in addition to the positions xi of the electrons also
on their associated spin coordinatesσi ∈ {− 1

2 ,
1
2

}
. Thus electronic wave functions are

defined as � : (Rd)N × { − 1
2 ,

1
2

}N → R : (�x, �σ) → �(�x, �σ) with spin coordinates
�σ = (σ1, . . . , σN). Furthermore, physically relevant eigenfunctions � obey the
following two assumptions: First, elementary particles are indistinguishable from
each other (fundamental principle of quantum mechanics). Second, no two electrons
may occupy the same quantum state simultaneously (Pauli exclusion principle). Thus,
we consider only wave functions which are antisymmetric with respect to an arbitrary
simultaneous permutation P ∈ SN , of the electron positions and spin variables, i.e.
which fulfil

�(P �x, P �σ) = (−1)|P |�(P �x, P �σ).
Here SN is the symmetric group. The permutation P is a mapping P : {1, . . . , N} →
{1, . . . , N} which translates to a permutation of the corresponding numbering of
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electrons and thus to a permutation of indices, i.e. we have P(x1, . . . , xN)
T :=

(xP(1), . . . , xP(N))
T and P(σ1, . . . , σN)

T := (σP (1), . . . , σP (N))
T . In particular, the

symmetric group is of size |SN | = N ! and the expression (−1)|P | is equal to the
determinant det P of the associated permutation matrix.

Now, to a given spin vector �σ ∈ { − 1
2 ,

1
2

}N we define the associated spatial
component of the full wave function � by ��σ : (Rd)N → R : �x → �(�x, �σ). Then,
since there are 2N possible different spin distributions �σ , the full Schrödinger equation,
i.e. the eigenvalue problem H� = E�, decouples into 2N eigenvalue problems for
the 2N associated spatial components ��σ . Here, the spatial part ��σ to a given �σ
obeys the condition

��σ (P �x) = (−1)|P |��σ (P �x) for all P ∈ S�σ := {P ∈ SN : P �σ = �σ }. (23)

In particular, the minimal eigenvalue of all eigenvalue problems for the spatial com-
ponents is equal to the minimal eigenvalue of the full eigenvalue problem. Moreover,
the eigenfunctions of the full system can be composed by the eigenfunctions of the
eigenvalue problems for the spatial parts.

Although there are 2N possible different spin distributions �σ , the bilinear form
〈�(P ·)|H |�(P ·)〉 is invariant under all permutations P ∈ SN of the position coordi-
nates �x. Thus it is sufficient to consider the eigenvalue problems which are associated
to the spin vectors �σ (N,S) = (σ

(N,S)
1 , . . . , σ

(N,S)
N ) where the first S electrons possess

spin − 1
2 and the remaining N − S electrons possess spin 1

2 , i.e.

σ
(N,S)
j =

⎧⎨
⎩

− 1
2 for j ≤ S,

1
2 for j > S.

In particular, it is enough to solve only the �N/2� eigenvalue problems which cor-
respond to the spin vectors �σ (N,S) with S ≤ N/2. For further details see [66].
Therefore, we consider in the following without loss of generality only spin distribu-
tions �σ (N,S) = (σ

(N,S)
1 , . . . , σ

(N,S)
N ). We set S(N,S) := S�σ (N,S) . Note that there holds

|S(N,S)| = S!(N − S)!.
Now we define spaces of antisymmetric functions and their semi-discrete sparse

grid counterparts. The functions of the N-particle space V from (16) which obey
the anti-symmetry condition (23) for a given �σ (N,S) form a linear subspace VA(N,S)

of V . We define the projection into this subspace, i.e. the antisymmetrization operator
A(N,S) : V → VA(N,S)

by

A(N,S)u(�x) := 1

S!(N − S)!
∑

P∈SN,S

(−1)|P |u(P �x). (24)
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For any basis function ψ�l,�j of our general N -particle space V we then have

A(N,S)ψ �l,j �x) = A(N,S)
(( S⊗

p=1

ψlp,jp

)
(x1, . . . , xS)

( N⊗
p=S+1

ψlp,jp

)
(xS+1, . . . xN)

)

=
(
A(S,S)

S⊗
p=1

ψlp,jp
(x1, . . . , xS)

)(
A(N−S,N−S)

N⊗
p=S+1

ψlp,jp
(�xS+1, . . . , xN)

)

=
( 1

S!
S∧
p=1

ψlp,jp

(
x1, . . . , xS

))( 1

(N − S)!
N∧

p=S+1

ψlp,jp

(
xS+1, . . . , xN

))

= 1

S!(N − S)!
∑

P∈SN,S

(−1)|P |ψ�l,�j (P �x) = 1

S!(N − S)!
∑

P∈SN,S

(−1)|P |ψ
P�l,P �j (�x).

In other words, the classical product

ψ�l,�j (�x) :=
N∏
p=1

ψlp,jp
(xp) =

( N⊗
p=1

ψlp,jp

)
(x1, . . . , xN)

gets replaced by the product of two outer products

1

S!
S∧
p=1

ψlp,jp (x1, . . . , xS) and
1

(N − S)!
N∧

p=S+1

ψlp,jp (xS+1, . . . , xN)

that correspond to the two sets of coordinates and one-particle bases which are asso-
ciated to the two spin values − 1

2 and 1
2 . The outer product involves just the so-called

slater determinant [55], i.e.

N∧
p=1

ψlp,jp (x1, . . . , xN) =

∣∣∣∣∣∣∣
ψl1,j1

(x1) . . . ψl1,j1
(xN)

...
. . .

...

ψlN ,jN
(x1) . . . ψlN ,jN

(xN)

∣∣∣∣∣∣∣ .
Note here again that due to (11) both father wavelet functions and mother wavelet
functions may be involved in the respective products.

The sequence
{
A(N,S)ψ�l,�j

}
�l∈N

dN
0 ,�j∈ZdN

only forms a generating system of the

antisymmetric subspace VA(N,S)
and no basis since many functions A(N,S)ψ�l,�j are

identical (up to the sign). But we can gain a basis for the antisymmetric subspace
VA(N,S)

if we restrict the sequence
{
A(N,S)ψ�l,�j

}
�l∈N

dN
0 ,�j∈ZdN

properly. This can be

done in many different ways. A possible orthonormal basis B(N,S) for VA(N,S)
is

given with help of

�
(N,S)

�l,�j (�x) := 1√
S!(N − S)! ·

S∧
p=1

ψlp,jp (x1, . . . , xS) ·
N∧

p=S+1

ψlp,jp (xS+1, . . . , xN)

(25)
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as follows:

B(N,S) := {
�
(N,S)

�l,�j : �l ∈ N
d·N
0 , �j ∈ Z

d·N, (l1, j1) < · · · <(lS, jS)
and (lS+1, jS+1) < · · · <(lN, jN)

} (26)

where for the index pair

Ip := (lp, jp) = (lp,(1), . . . , lp,(d), jp,(1), . . . , jp,(d))

the relation < is defined as

Ip < I q ⇐⇒ there exists α ∈ {1, . . . , 2d} such that Ip,(α) < I q,(α)

and Ip,(β) ≤ I q,(β) for all β ∈ {1, . . . , α − 1}.
With

�A(N,S) = { (�l, �j) : �l ∈ N
d·N
0 , �j ∈ Z

d·N,
(l1, j1) < · · · < (lS, jS) and (lS+1, jS+1) < · · · < (lN, jN)

}
we then can define the antisymmetric subspace VA(N,S)

of V as

VA(N,S) =
⊕

(�l,�j)∈�A(N,S)

W�l,�j (27)

where we denote from now onW�l,�j = span{�(N,S)�l,�j (�x)}. Any function u fromVA(N,S)

can then uniquely be represented as

u(�x) =
∑

(�l,�j)∈�A(N,S)

u�l,�j �
(N,S)

�l,�j (�x)

with coefficients u�l,�j = ∫
IdN

�
(N,S)∗
�l�j (�x)u(�x)d �x.

Now we are in the position to consider semidiscrete subspaces of VA(N,S)
. To this

end, in analogy to (20) we define the generalized semidiscrete antisymmetric sparse
grid spaces

VA(N,S)

L,T :=
⊕

(�l,�j)∈�A(N,S)
K,T

W�l,�j

with associated antisymmetric generalized sets

�A(N,S)

L,T := {(�l, �j) : �l ∈ N
d·N
0 , �j ∈ Z

d·N, λmix(�l) · λiso(�l)−T ≤ (2L)1−T ,
(l1, j1) < · · · < (lS, jS) and (lS+1, jS+1) < · · · < (lN, jN)}.

Obviously, the inclusions VA(N,S)

K,T1
⊂ VA(N,S)

K,T2
for T1 ≤ T2 hold. Note that for the

associated error the same type of estimate as in Lemma 1 holds. The number of �l-
subbands however, i.e. the number of subsets of indices from�A(N,S)

L,T with the same �l,
is reduced by the factor S!(N − S)!.
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6. Regularity and decay properties of the solution

So far we introduced various semidiscrete sparse grid spaces for particle problems
and carried these techniques over to the case of antisymmetric wave functions. Here,
the order of the error estimate depended on the degree s of the Sobolev-norm in
which we measure the approximation error and the degrees t and r of anisotropic and
isotropic smoothness, respectively, which was assumed to hold for the continuous
wave function.

We now return to the electronic Schrödinger problem (1) and invoke our general
theory for this special case. To this end, let us recall a major result from [67]. There,
Yserentant showed with the help of Fourier transforms that an antisymmetric solution
of the electronic Schrödinger equation with d = 3 possesses H1,1

mix-regularity in the

case S = 0 or S = N and at least H
1/2,1
mix -regularity otherwise. The main argument

to derive this fact is a Hardy type inequality, see [67] for details.
Let us first consider the case of a full antisymmetric solution, i.e. the case S = 0

or S = N , and the resulting approximation rate in more detail. If we measure the
approximation error in the H1-norm, we obtain from Lemma 1 with s = 1 and

t = r = 1 the approximation order O((2L)−1+T · N−1
N−T ) for T ≥ 0 and O(2−L) for

T ≤ 0. In particular, for the choice T = 0 we have a rate of O(2−L). Also note that
the constant in the estimate still depends on N and d.

In an analog way we can argue for the partial antisymmetric case where we have
for an arbitrary chosen 1 ≤ S ≤ N at least H

1/2,1
mix -regularity of the associated wave

function. If we measure the approximation error in the H1-norm, we obtain from
Lemma 1 with s = 1 and t = 1/2, r = 1 (H1/2,1

mix -regularity) the approximation order

O((2L/2)−1+T · N−1
N−T ) for T ≥ 0 andO(2−L/2) for T ≤ 0. In particular, for the choice

T = 0 we have a rate of O(2−L/2).
Note however that the order constant depends on N and d. Moreover, also the

H1,1
mix- andH

1/2,1
mix -terms may grow exponentially with the numberN of electrons. This

is a serious problem for any further discretization in �j -space since to compensate for
this exponential growth, the parameter L has to be chosen dependent on N . Such a
behavior could be seen in the case of a finite domain with periodic boundary conditions
with Fourier bases from the results of the numerical experiments in [30] and was one
reason why problems with higher numbers of electrons could not be treated.

In [69], a rescaling of the mixed Sobolev norm is suggested. To this end, a scaled
analog of the H1,r

mix-norm, r ∈ {0, 1}, albeit in Fourier space notation (one �k-scale
in Fourier space only instead of the �l- and �j -scales in wavelet space) is introduced,
compare also [30], via

‖�‖
H1,r

mix
=
∫

RdN

(∏
p∈I

(
1 +

∣∣∣kp
R

∣∣∣2))( N∑
p=1

∣∣∣kp
R

∣∣∣2)r |�̂(�k)|2d�k (28)

where I denotes the subset of indices of electrons with the same spin, �̂(�k) is the
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Fourier transform of � and �k ∈ Z
dN are the coordinates in Fourier space with

single-particle-components kp ∈ R
d . Here the scaling parameter R relates to the

intrinsic length scale of the atom or molecule under consideration. It must hold
R ≤ C

√
N max(N,Z)withZ = ∑

q Zq the totals charge of the nuclei, see also [56],

[69]. For an electronically neutral system Z = N and thus R ≤ CN3/2. Compared
to our definitions λmix and λiso of (18) we see the following difference: Besides that
(28) involves integration instead of summation, (28) deals with the non-octavized
case whereas we used the octavized version which involves powers of two. This is
one reason why in the product

∏
p∈I (1 + |kp/R|2) the factor one must be present.

Otherwise the casekp = 0 is not dealt properly with. But this also opens the possibility
to treat the coordinates with values zero differently in the scaling, since the scaling
with 1/R in the product acts only on the coordinates with non-zero values.

Furthermore, with I+ and I− the sets of indices p of electrons for which the spin
attains the values −1/2 and 1/2, respectively, and a parameter K (non-octavized
case), the subdomain

HY
R,K :=

{
(k1, . . . kN) ∈ (R3)N : ∏p∈I+

(
1 +

∣∣∣kp
R

∣∣∣2
2

)
+ ∏

p∈I−
(

1 +
∣∣∣kp
R

∣∣∣2
2

)
≤ K2

}
(29)

in Fourier space describes a cartesian product of two scaled hyperbolic crosses. In
the extreme cases S = 0 or S = N it degenerates to just one hyperbolic cross. Then,
with the projection

(PR,K�)(x) =
(

1√
2π

)3N ∫
χ̂R,K(�k)�̂(�k)ei�k·�xd�k,

where χ̂R,K is the characteristic function of the domain HY
R,K , the following er-

ror estimate is shown in [69]: For all eigenfunctions with negative eigenvalues and
s = 0, 1 there holds

‖� − PR,K�‖s ≤ 2
√
e

K
Rs‖�‖0. (30)

The restriction to eigenfunctions of the Schrödinger–Hamiltonian whose associated
eigenvalues are strictly smaller than zero is not a severe issue since such an assumption
holds for bounded states, i.e. any system with localized electrons, compare also [25],
[38], [59].

This surprising result shows that, with proper scaling in the norms and the associ-
ated choice of a scaled hyperbolic cross, it is possible to get rid of the ‖�‖

H1,r
mix

-terms

on the right hand side of sparse grid estimates of the type (22). Note that these terms
may grow exponentially with N whereas ‖�‖0 = 1. To derive semidiscrete approx-
imation spaces which, e.g. after scaling, overcome this problem is an important step
towards any efficient discretization for problems with higher numbers of electronsN .
Note however that e.g. already for the most simple case S = 0 or S = N where in
(29) only one cross is involved due to I− = { } or I+ = { }, the subdomain HY

R,K

is no longer a conventional hyperbolic cross in Fourier space. Now, depending of
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the different dimensions, the “rays” of the cross are chopped off due to the rescaling
with R. This gets more transparent if we use the relation

N∏
p=1

(1 + |kp|22) =
N∑
p=0

∑
a⊂{1,...,N}

|a|=p

∏
j∈α

|kj |22

and rewrite (29) e.g. in the case S = 0 or S = N as

HY
R,K = {�k : K−2(∑N

p=0
∑

a⊂{1,...,N}
|a|=p

R−2p∏
j∈α |kj |22

) ≤ 1
}
. (31)

If we now define for K0,K1, . . . , KN ∈ N

HK0,K1,...,KN := {�k : (∑N
p=0

∑
a⊂{1,...,N}

|a|=p
K−2
p

∏
j∈α |kj |22

) ≤ 1
}

(32)

we have
HR0K,R1K,...,RNK = HY

R,K

and see more clearly how the scaling with R acts individually on the different di-
mensional subsets of the Fourier coordinates. In Figure 4 we give in logarithmic and
absolute representation the boundaries of the domains HY

1,K , HY
R,K and HY

1,RNK
for

R = 8, K = 28. Here we can observe how the scaled variant HY
R,K is just embedded

between the two non-scaled domainsHY
1,K andHY

1,RNK
. While the boundary ofHY

R,K

matches in “diagonal” direction that of the huge regular sparse gridHY
1,RNK

this is no
longer the case for the other directions.
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Figure 4. Sets of level indices for HY
1,K , HY

R,K , HY
1,RNK

in the case d = 1, R = 8, K = 28 for
N = 2 and N = 3.

This dimensional scaling is closely related to well-known decay properties of the
solution of Schrödinger’s equation which we now recall from the literature. In the
seminal work of Agmon [2] the L2-decay of the eigenfunctions of the electronic
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Schrödinger–Hamiltonian of an atom with one nucleus fixed in the origin of the
coordinate system is studied in detail and a characterization of the type∫

RN ·d
|�(�x)|2e2(1−ε)ρ(�x)d �x ≤ c < ∞

for any ε > 0 is given for eigenfunctions � with associated eigenvalue μ below the
so-called essential spectrum ofH . In other words,� decays in the L2-sense roughly
like e−ρ(�x). Here, ρ(�x) is the geodesic distance from �x to the origin in the Riemannian
metric

d�s2 = (�I (�x) − μ)

N∑
i=1

2|dxi |22.

To this end, if I denotes any proper subset of {1, . . . N}, let HI denote the restriction
of the full Hamiltonian H to the subsystem involving only the electrons associated
to I and�I = inf σ(HI ),�I = 0 if I is empty. For any �x ∈ R

N ·d/{0}, I (�x) denotes
the subset of integers i ∈ {1, . . . , N} for which xi = 0. Note that ρ is not isotropic
but takes at each point �x the amount of electrons with position 0, i.e. the number of
electron-nucleus cusps into account.

The result (30) gives some hope that it might indeed be possible to find after
additional discretization (in �j -space) an overall discretization which is cost effective
and results in an error which does not grow exponentially with the amount of electrons.

The idea is now to decompose the scaled hyperbolic cross HY
R,K in Fourier space

and to approximate the corresponding parts of the associated projection PR,K�̂(�k)
properly. To this end, let us assume that we consider a non-periodic, isolated system.
It then can be shown that any eigenfunction � with negative eigenvalue below the
essential spectrum of the Schrödinger operator H decays exponentially in the L2-
sense with |�x| → ∞. The same holds for its first derivative [37]. A consequence
is that the Fourier transform �̂ is infinitely often differentiable as a function in �k.
Let us now decompose HY

R,K into finitely many subdomains HY

R,K,�l and let us split

�̂R,K(�k) := χ̂R,K(�k)�̂(�k) accordingly into �̂
R,K,�l(�k), i.e.

�̂R,K(�k) =
∑

�l
χ̂�l�̂R,K(�k) =

∑
�l
�̂
R,K,�l(�k)

by means of a C∞-partition of unity
∑

�l χ̂�l = 1 on HY
R,K , i.e. each χ̂�l(�k) ∈ C∞ as

a function in �k. Then the functions �̂
R,K,�l(�k) inherit the C∞-smoothness property

and thus can each be well and efficiently approximated by e.g. a properly truncated
Fourier series expansion. Note that the detailed choice of partition of unity is not
yet specified and there are many possibilities. In the following we will use, e.g. after
proper scaling, cf. (10) and (11), the partition

χ̂�l(�k) =
N∏
p=1

d∏
i=1

χ̂lp,(i) (kp,(i))
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where

χ̂l(k) :=
{
χ̂( k

c
) for l = 0,

χ̂( k
c2l
)− χ̂( k

c2l−1 ) for l > 0,

with

χ̂(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 for |k| ≤ 2π
3 ,

cos

(
π
2

e
− 4π2

(3k+2π)2

e
− 4π2

(4π+3k)2 +e−
4π2

(3x+2π)2

)2

for 2π
3 ≤ |k| ≤ 4π

3 ,

0 for |k| ≥ 4π
3 .

This choice results in just a representation with respect to the Meyer wavelet series
with ν∞, i.e. (9) with α = 2, compare also (7). The Fourier series expansion of each
�̂
R,K,�l(�k) then introduces just the �j -scale, while the �k-scale of the Fourier space

relates to the �l-scale of the Meyer wavelets. All we now need is a good decomposition
of HY

R,K into subdomains, a choice of smooth χ̂�l’s and a proper truncation of the

Fourier series expansion of each of the �̂
R,K,�l’s. This corresponds to a truncation of

the Meyer wavelet expansion of� in R
d·N with respect to both the �l- and the �j -scale.

Presently, however, it is not completely clear what choice of decomposition and what
kind of truncation of the expansion within each subband �l is most favourable with
respect to both the resulting numberM of degrees of freedom and the corresponding
accuracy of approximation for varying number N of electrons. Anyway, with the
choice K = 2L the set of indices in �l, �j -wavelet space which is associated to (29)
reads

�A(N,S)

HY

R,2L
:=

{
(�l, �j) ∈ �A(N,S) :

∏S
i=1

(
1 +

∣∣∣ λ̃(li )R
∣∣∣2
2

)
+ ∏N

i=S+1

(
1 +

∣∣∣ λ̃(li )R
∣∣∣2
2

)
≤ 22L

}
,

where for l ∈ N
d
0 we define

λ̃(l) := min
k∈supp(χ̂l)

{|k|2}.

Note that this involves a kind of octavization due to the size of the support of the χ̂l .
For example, we obtain for the Shannon wavelet λ̃(l) = |(λ̃ν0(l1), . . . , λ̃ν0(ld))|2
with

λ̃ν0(l) =
{

0 for l = 0,

cπ2l−1 otherwise.



1494 Michael Griebel and Jan Hamaekers

7. Numerical experiments

We now consider the assembly of the discrete system matrix which is associated
to a generalized antisymmetric sparse grid space VA(N,S)

� with corresponding finite-

dimensional set �A(N,S)

� ⊂ �A(N,S)
and basis functions {�(N,S)�l,�j : (�l, �j) ∈ �A(N,S)

� }
with {�(N,S)�l,�j } from (25) in a Galerkin discretization of (1). To this end, we fixN > 0

and 0 ≤ S ≤ N and omit for reasons of simplicity the indicesS andN in the following.
To each pair of indices (�l, �j), (�l′, �j ′), each from�A(N,S)

� , and associated functions

�
(N,S)

�l,�j , �(N,S)�l′,�j ′ we obtain one entry in the stiffness matrix, i.e.

A
(�l,�j),(�l′,�j ′) := 〈�(N,S)�l,�j |H |�(N,S)�l′,�j ′ 〉 =

∫
�
(N,S)∗
�l,�j (�x)H�(N,S)�l′,�j ′ (�x) d�x. (33)

Since we use L2-orthogonal one-dimensional Meyer wavelets as basic building blocks
in our construction, also the one-particle basis functions are L2-orthogonal and we
furthermore have L2-orthogonality of the antisymmetric many-particle basis func-
tions�(N,S)�l,�j (x). We then can take advantage of the well-known Slater–Condon rules

[18], [55], [60]. Consequently, quite a few entries of the system matrix are zero and
the remaining non-zero entries can be put together from the values of certain d- and
2d-dimensional integrals. These integrals can be written in terms of the Fourier trans-
formation of the Meyer wavelets. In case of the kinetic energy operator we obtain for
lα, lβ ∈ N

d
0 and jα, jβ ∈ Z

d

〈ψlα,jα
| − 1

2
�|ψlβ ,jβ

〉 = 1

2

∫
Rd

∇ψ∗
lα,jα

(x) · ∇ψlβ ,jβ
(x)dx

= 1

2

d∑
μ=1

∫
R

k2
μψ̂

∗
lα,(μ),jα,(μ)

(kμ)ψ̂lβ,(μ),jβ,(μ)
(kμ) dkμ

d∏
ν �=μ

δlα,(ν),lβ,(ν)δjα,(ν),jβ,(ν)

and for the integrals related to the d-dimensional Coulomb operator v(x) = 1/|x|2
we can write

〈ψlα,jα
|v|ψlβ ,jβ

〉 =
∫

Rd

ψ∗
lα,jα

(x)v(x)ψlβ ,jβ
(x)dx

=
∫

Rd

v̂(k)(ψ̂lα,jα
∗ ψ̂lβ ,jβ

)(k) dk.

For lα, lβ, lα′, lβ ′ ∈ N
d
0 and jα, jβ, jα′, jβ ′ ∈ Z

d we obtain the integrals related to
the electron-electron operator v(x − y) = 1/|x − y|2 in the form∫

Rd

∫
Rd

ψ∗
lα,jα

(x)ψ∗
l′α,jα′ (y)v(x − y)ψlβ ,jβ

(x)ψlβ′ ,jβ′ (y)dx dy

= (2π)
d
2

∫
Rd

v̂(k)(ψ̂lα,jα
∗ ψ̂lβ ,jβ

)(k)(ψ̂lα′ ,jα′ ∗ ψ̂lβ′ ,jβ′ )(k) dk.
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Here, f ∗ g denotes the Fourier convolution, namely (2π)− d
2
∫

Rd
f (x − y)g(y) dy.

Note that, in the case of the Meyer wavelet tensor-product basis, the d-dimensional
Fourier convolution can be written in terms of the one-dimensional Fourier convolu-
tion

(ψ̂lα,jα
∗ ψ̂lβ ,jβ

)(k) =
d∏
μ=1

(ψ̂lα,(μ),jα,(μ)
∗ ψ̂lβ,(μ),jβ,(μ)

)(kμ).

Thus the d-dimensional and 2d-dimensional integrals in real space which are associ-
ated to the Coulomb operator and the electron-electron operator can be written in form
of d-dimensional integrals of terms involving one-dimensional convolution integrals.

For the solution of the resulting discrete eigenvalue problem we invoke a paral-
lelized conventional Lanczos method taken from the software package SLEPc [35]
which is based on the parallel software package PETSc [6]. Note that here also
other solution approaches are possible with improved complexities, like multigrid-
type methods [13], [15], [44], [47] which however still need to be carried over to the
setting of our generalized antisymmetric sparse grids.

Note that an estimate for the accuracy of an eigenfunction relates to an analogous
estimate for the eigenvalue by means of the relation |E −Eapp| ≤ 4 · ‖� −�app‖2

L2

where E and � denote the exact minimal eigenvalue and associated eigenfunction
of H , respectively, and Eapp and �app denote finite-dimensional Galerkin approxi-
mations in arbitrary subspaces, see also [66].

Then, with Lemma 1, we would obtain for the case d = 3 with s = 0 and, for
example, r = 1, t = 1 and S = 0 the estimate

∣∣E − EA(N,0)

L,T

∣∣ ≤ 4 · ∥∥� −�A(N,0)

L,T

∥∥2
L2 ≤ O((2L)2·(−2+(T+1) N−1

N−T )) · ∥∥�A(N,0)∥∥2
H1,1

mix

and we see that the eigenvalues are in general much better approximated than the
eigenfunctions. For example, for T = 0, this would result in a (squared) rate of the
order −4 + 2(N − 1)/N which is about −4 for small numbers of N but gets −2 for
N → ∞.

Let us now describe our heuristic approach for a finite-dimensional subspace
choice in wavelet space which hopefully gives us efficient a-priori patterns �A(N,S)

�

and associated subspaces VA(N,S)

� . We use a model function of the Hylleraas-type
[16], [41], [57]4

h(�x) =
N∏
p=1

(
e−αp|xp|2

N∏
q>p

e−βp,q |xp−xq |2
)

(34)

which reflects the decay properties, the nucleus cusp and the electron-electron cusps
of an atom in real space with nucleus fixed in the origin as guidance to a-priori
derive a pattern of active wavelet indices in space and scale similar to the simple

4Note that we omitted here any prefactors for reasons of simplicity.
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one-dimensional example of Figure 2. The localization peak of a Meyer wavelet ψl,j
in real space (e.g. after proper scaling with some c analogously to (10)) is given by

θ(l, j) = ι(l, j)2−l where ι(l, j) =
{
j for l = 0,

1 + 2j otherwise,

which leads in the multidimensional case to

θl,j = (θ(l1, j1), . . . , θ(ld , jd)) ∈ R
d

θ�l,�j = (θ(l1, j1), . . . , θ(lN, jN)) ∈ (Rd)N

We now are in the position to describe different discretizations with respect to both
the �l-scale and the �j -scale. We focus with respect to the �j -scale on three cases: First,
we restrict the whole real space to a finite domain and take the associated wavelets
on all incorporated levels into account. Note that in this case the number of wavelets
grows from level to level by a factor of 2. Second, we use on each level the same
prescribed fixed number of wavelets. And third we let the number of wavelets decay
from level to level by a certain factor which results in a multivariate analog to the
triangular subspace of Figure 2 (right). With respect to the �l-scale we rely in all cases
on the regular sparse grid with T = 0. These three different discretization approaches
are illustrated in the Figures 5–8 for d = 1, N = 1 and d = 1, N = 2, respectively.
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Figure 5. From left to right: Index sets�A(N,S)

�full(L,J,R)
,�A(N,S)

��rec (L,J,R)
and�A(N,S)

��tri (L,J,R)
with d = 1,

N = 1, L = 8, J = 4, R = 1 and α1 = 1.

−4 −2 0 2 4

0

1

2

3

4

5

6

7
x

l

−4 −2 0 2 4

0

1

2

3

4

5

6

7
x

l

−4 −2 0 2 4

0

1

2

3

4

5

6

7
x

l

Figure 6. From left to right: Localization peaks of basis functions in real space corresponding
to index sets �A(N,S)

�full(L,J,R)
, �A(N,S)

��rec (L,J,R)
and �A(N,S)

��tri (L,J,R)
with d = 1, N = 1, L = 8, J = 4,

R = 1 and α1 = 1.
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Figure 7. From left to right: Localization peaks of basis functions in real space corresponding to
the index sets �A(N,S)

�full(L,J,R)
, �A(N,S)

��rec (L,J,R)
and �A(N,S)

��tri (L,J,R)
with d = 2, N = 1, L = 8, J = 4,

R = 1 and α1 = 1.
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Figure 8. From left to right: Localization peaks of basis functions in real space corresponding to
the index sets �A(N,S)

�full(L,J,R)
, �A(N,S)

��rec (L,J,R)
and �A(N,S)

��tri (L,J,R)
with d = 1, N = 2, L = 8, J = 4,

R = 1, S = 1 and α1 = α2 = β1,2 = 1
2 .

To this end, we define with the parameter J ∈ N+ the pattern for the finite domain
with full wavelet resolution, i.e. the full space (with respect to �j -scale after a finite
domain is fixed), as

�A(N,S)

�full(L,J,R)
:=

{
(�l, �j) ∈ �A(N,S)

HY

R,2L
: h(θ(�l, �j)) > e−J

}
=
{
(�l, �j) ∈ �A(N,S)

HY

R,2L
: ∑N

p=1

(
αp|θ(lp, jp)|2

+ ∑N
q>p βp,q |θ(lp, jp)− θ(lq, jq)|2

)
< J

}

with prescribed αp, βp,q . Note here the equivalence of the sum to ln(h(θ(�l, �j))).
To describe the other two cases we set with a general function � which still has

to be fixed

�A(N,S)

��(L,J,R)
:=

{
(�l, �j) ∈ �A(N,S)

�full(L,J,R)
:∑N

p=1

(
αp

∣∣� (
lp, jp

)∣∣
2
+ ∑N

q>p βp,q
∣∣� (

θ−1
(
θ
(
lp, jp

) − θ
(
lq, jq

)))∣∣
2

)
< J

}
.
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Note that θ−1 denotes the inverse mapping to θ . It holds

θ−1 (θ (l, j)− θ
(
l′, j ′)) =

{
ι̃−1(l, ι(l, j)− ι(l′, j ′)2l−l′) for l ≥ l′,
ι̃−1(l′, ι(l, j)2l′−l − ι(l′, j ′)) for l′ ≥ l

where ι̃(l, j) = (l, ι(l, j)). We now define the rectangular index set�A(N,S)

�rec(L,J,R) via

the following choice of �: For l ∈ N
d
0 and j ∈ Z

d we set

�rec(l, j) := (�rec(l1, j1), . . . , �rec(ld , jd))

and for l ∈ N0 and j ∈ Z we set

�rec(l, j) :=
{

|j |, for l = 0,

| 1
2 + j | otherwise.

Finally we define the triangle space �A(N,S)

�tri(L,J,R)
with help of

�tri(l, j) := (�tri(l1, j1), . . . , �tri(ld , jd))

where for l ∈ N0 and j ∈ Z we set

�tri(l, j) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|j |
1− l

Lmax+1
for l = 0,

| 1
2 +j |

1− l
Lmax+1

for 0 < l ≤ Lmax,

∞ otherwise

with Lmax as the maximum level for the respective triangle.
Let us now discuss the results of our first, very preliminary numerical experiments

with these new sparse grid methods for Schrödinger’s equation. To this end, we restrict
ourselves for complexity reasons to the case of one-dimensional particles only. The
general three-dimensional case will be the subject of a forthcoming paper. We use in
the following in (1) the potential

V = −
N∑
p=1

Nnuc∑
q=1

Zqv(xp − Rq)+
N∑
p=1

N∑
q>p

v(xp − xq) (35)

with

v(r) =
{
D − |r|2 for |r|2 ≤ D,

0 otherwise

which is truncated at radius D and shifted by D. Note that lim|r|2→∞ v(r) = 0. Up
to truncation and the shift with D, |r|2 is just the one-dimensional analogue to the
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Coulomb potential. The Fourier transform reads

v̂(k) =
⎧⎨
⎩

√
2√
π

1
|k|22
(1 − cos(D|k|2)) for |k|2 �= 0,

D2√
2π

otherwise.

Note that v̂ is continuous.
We study for varying numbersN of particles the behavior of the discrete energyE,

i.e. the smallest eigenvalue of the associated system matrix A, as L and J increase.
Here, we use the generalized antisymmetric sparse grids �A(N,S)

�full(L,J,R)
, �A(N,S)

��rec (L,J,R)

and �A(N,S)

��tri (L,J,R)
and focus on the two cases S = 0 or S = �N/2�. We employ the

Meyer wavelets with (9) where ν∞, α = 2, and the Shannon wavelet with ν0 from (8).
Tables 1 and 2 give the obtained results. Here, M denotes the number of degrees of
freedom and #A denotes the number of the non-zero matrix entries. Furthermore,�E
denotes the difference of the obtained values of E and ε denotes the quotient of the
values of�E for two successive rows in the table. Thus, ε indicates the convergence
rate of the discretization error.

Table 1. d = 1, N = 1, c = 1, R = 1, α1 = 1, Lmax = L, D = 8.

�A(N,S)

�full(L,J,R)
ν∞ ν0

J L M #A E �E ε E �E ε

2 1 5 25 −7.187310 −7.186261
4 1 9 81 −7.189322 2.01e−03 −7.188615 2.35e−03
8 1 17 289 −7.189334 1.14e−05 175.1 −7.188674 5.92e−05 39.7

16 1 33 1089 −7.189335 1.08e−06 10.6 −7.188683 9.25e−06 6.4
32 1 65 4225 −7.189335 4.60e−07 2.3 −7.188684 1.29e−06 7.1
64 1 129 16641 −7.189335 1.36e−09 336.4 −7.188685 1.73e−07 7.4
16 1 33 1089 −7.189335 −7.188683
16 2 65 4225 −7.191345 2.00e−03 −7.190920 2.23e−03
16 3 129 16641 −7.191376 3.19e−05 62.9 −7.190958 3.80e−05 58.7
16 4 257 66049 −7.190959 1.00e−06 37.6
16 5 513 263169 −7.190959 3.04e−08 33.1

�A(N,S)

��rec (L,J,R)
ν∞ ν0

J L M #A E �E ε E �E ε

16 1 33 1089 −7.189335 −7.188683
16 2 65 4225 −7.191345 2.00e−03 −7.190920 2.23e−03
16 3 97 9409 −7.191376 3.19e−05 62.9 −7.190956 3.61e−05 61.8
16 4 129 16641 −7.191377 8.37e−07 38.0 −7.190957 9.52e−07 37.9
16 5 161 25921 −7.191377 2.51e−08 33.3 −7.190957 2.85e−08 33.3
16 6 193 37249 −7.191377 7.53e−10 33.4 −7.190957 8.84e−10 32.2

�A(N,S)

��tri (L,J,R)
ν∞ ν0

J L M #A E �E ε E �E ε

16 1 33 1089 −7.189335 −7.189335
16 2 55 3025 −7.191314 1.97e−03 −7.190747 1.41e−03
16 3 73 5329 −7.191357 4.25e−05 46.5 −7.190825 7.80e−05 18.0
16 4 91 8281 −7.191366 9.28e−06 4.5 −7.190865 4.04e−05 1.9
16 5 107 11449 −7.191366 2.13e−07 43.4 −7.190866 5.42e−07 74.5
16 6 125 15625 −7.191371 5.07e−06 0.042 −7.190900 3.39e−05 0.016
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In Table 1, with just one particle, i.e. N = 1, we see that the minimal eigenvalues
for the Shannon wavelet are slightly, i.e. by 10−3 − 10−2, worse than the minimal
eigenvalues for the Meyer wavelet with ν∞. Furthermore, from the first part of the
table where we fix L = 1 and vary J and alternatively fix J = 16 and vary L it gets
clear that it necessary to increase both J and L to obtain convergence. While just an
increase of J with fixed L = 1 does not improve the result at all (with D fixed), the
increase of L for a fixed J at least gives a convergence to the solution on a bounded
domain whose size is associated to the respective value of D and J . In the second
part of the table we compare the behavior for �A(N,S)

�full(L,J,R)
and �A(N,S)

��rec (L,J,R)
for the

wavelets with ν∞ and ν0. While we see relatively stable monotone rates of around 33
and better in case of�A(N,S)

�full(L,J,R)
, the convergence behavior for�A(N,S)

��rec (L,J,R)
is more

erratic. Nevertheless, when we compare the achieved results for the same amount
of matrix entries #A we see not much difference. For example, with ν∞, we get for
J = 16, L = 6 with 125 degrees of freedom and 15625 matrix entries a value of
−7.191371 for �A(N,S)

��rec (L,J,R)
whereas we get for �A(N,S)

�full(L,J,R)
with J = 16, L = 4

with about the same degrees of freedom and matrix entries nearly the same value
−7.191377.

Let us now consider the results for N > 1 given in Table 2. Here we restricted
ourself to the sparse grid �A(N,S)

��tri (L,J,R)
due to complexity reasons. We see that the

computed minimal eigenvalues in the case S = N
2 are higher than that in the case

S = 0, as to be expected. Furthermore, our results suggest convergence for rising L.

If we compare the cases R = 1 and R = 2
3
2 for N = 2, we see that both the number

of degrees of freedom and the minimal eigenvalues are for R = 1 approximately the

same as for R = 2
3
2 on the next coarser level. An analogous observation holds in the

case N = 4.

Note furthermore that the sparse grid effect acts only on the fully antisymmetric
subspaces of the total space. This is the reason for the quite large number of degrees
of freedom for the case N = 4, S = 2.

Note finally that our present simple numerical quadrature procedure is relatively
expensive. To achieve results for higher numbers of particles with sufficiently largeL
and J , the numerical integration scheme has to be improved. Moreover, to deal in
the future with the case of three-dimensional particles using the classical potential (2)
and the Meyer wavelets with ν∞, an efficient and accurate numerical quadrature still
has to be derived.5

5Such a numerical quadrature scheme must be able to cope with oscillatory functions and also must resolve
the singularity in the Coulomb operator.
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Table 2. d = 1, c = 1, D = 8, �A(N,S)

��tri (L,J,R)
, ν0.

Z = 2, N = 2, S = 1, R = 1, α1 = α2 = β1,2 = 1
2

J L M #A E �E ε

8 4 1037 1029529 −28.818529
8 5 1401 1788305 −28.819933 1.40e−03
8 6 1623 2324081 −28.819954 2.07e−05 67.55
8 7 1943 3240369 −28.819963 8.81e−06 2.35

Z = 2, N = 2, S = 1, R = 2
3
2 , α1 = α2 = β1,2 = 1

2
J L M #A E �E ε

8 3 1067 1092649 −28.818529
8 4 1425 1856129 −28.819933 1.40e−03
8 5 1637 2369721 −28.819954 2.07e−05 67.55
8 6 1957 3829849 −28.819963 8.81e−06 2.35

Z = 2, N = 2, S = 0, R = 1, α1 = α2 = β1,2 = 1
2

J L M #A E �E ε

8 4 383 138589 −27.134075
8 5 501 234965 −27.134725 6.49e−04
8 6 614 341696 −27.134725 3.98e−07 1630.99
8 7 731 470569 −27.134725 3.77e−07 1.05

Z = 2, N = 2, S = 0, R = 2
3
2 , α1 = α2 = β1,2 = 1

2
J L M #A E �E ε

8 3 475 215125 −27.134075
8 4 622 353684 −27.134725 6.49e−04
8 5 714 455420 −27.134725 3.98e−07 1631.10
8 6 852 624244 −27.134725 3.77e−07 1.05

Z = 4, N = 4, S = 2, R = 1, αp = βp,q = 1
4

J L M #A E �E ε

8 4 24514 17003256 −106.755154
8 5 39104 32716440 −106.756364 1.20e−03

Z = 4, N = 4, S = 2, R = 8, αp = βp,q = 1
4

J L M #A E �E ε

8 1 31592 22864800 −106.755154

Z = 4, N = 4, S = 0, R = 1, αp = βp,q = 1
4

J L M #A E �E ε

8 4 1903 313963 −102.659381
8 5 2842 647688 −102.659503 1.22e−04
8 6 4039 1063101 −102.660489 9.86e−04 0.12

Z = 4, N = 4, S = 0, R = 8, αp = βp,q = 1
4

J L M #A E �E ε

8 1 3527 761851 −102.659381
8 2 6029 1558219 −102.659503 1.22e−04
8 3 8098 2343162 −102.660489 9.85e−04 0.12

8. Concluding remarks

In this article we proposed to use Meyer’s wavelets in a sparse grid approach for a
direct discretization of the electronic Schrödinger equation. The sparse grid construc-
tions promises to break the curse of dimensionality to some extent and may allow a
numerical treatment of the Schrödinger equation without resorting to any model ap-
proximation. We discussed the Meyer wavelet family and their properties and built on
them an anisotropic multiresolution analysis for general particle spaces. Furthermore
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we studied a semidiscretization with respect to the level and introduced generalized
semidiscrete sparse grid spaces. We then restricted these spaces to the case of anti-
symmetric functions with additional spin. Using regularity and decay properties of
the eigenfunctions of the Schrödinger operator we discussed rescaled semidiscrete
sparse grid spaces due to Yserentant. They allow to get rid of the terms that involve
the H1,1

mix- and H
1/2,1
mix -norm of the eigenfunction which may grow exponentially with

the number of electrons present in the system. Thus a direct estimation of the approx-
imation error can be achieved that only involves the L2-norm of the eigenfunction.
We also showed that a Fourier series approximation of a splitting of the eigenfunctions
living on a scaled hyperbolic cross in Fourier space essentially just results in Meyer
wavelets. Therefore, we directly tried to discretize Schrödinger’s equation in properly
chosen wavelet subspaces.

We only presented preliminary numerical results with one-dimensional particles
and a shifted and truncated potential. For the Meyer wavelets with ν∞ and for the
classical, not truncated Coulomb potential, substantially improved quadrature routines
have to be developed in the future to achieved reasonable run times for the set up of
the stiffness matrix. Furthermore, the interplay and the optimal choice of the coarsest
scale, i.e. of c, the scaling parameter R, the domain truncation parameter J , the scale
truncation parameter L and the parameters Lmax, αp, βp,q is not clear at all and needs
further investigation. Finally more experiments are necessary with other types of
sparse grid subspaces beyond the ones derived from the Hylleraas-type function (34)
to complete our search for an accurate and cost effective approximation scheme for
higher numbers N of electrons. Probably not the best strategy for subspace selection
was yet used and substantially improved schemes can be found in the future. This
may be done along the lines of bestM-term approximation which, from a theoretical
point of view, would however involve a new, not yet existing Besov regularity theory
for high-dimensional spaces in an anisotropic setting. Or, from a practical point of
view, this would involve new adaptive sparse grid schemes using tensor product Meyer
wavelets which need proper error estimators and refinement strategies for both the
boundary truncation error and, balanced with it, the scale truncation error.

The sparse grid approach is based on a tensor product construction which al-
lows to treat the nucleus–electron cusps properly which are aligned to the particle-
coordinate axes of the system but which does not fit to the “diagonal” directions of
the electron–electron cusps. Here, proper a-priori refinement or general adaptivity
must be used which however involves for d = 3 at least the quite costly resolution
of three-dimensional manifolds in six-dimensional space which limits the approach.
To this end, new features have to brought into the approximation like for example
wavelets which allow additionally for multivariate rotations in the spirit of curvelets
[14]. Also an approach in the spirit of wave-ray multigrid methods [9] may be envi-
sioned. Alternatively an embedding in still higher-dimensional formulations which
allows to express the electron-electron pairs as new coordinate directions might be
explored. This, however, is future work.
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Mathematical and numerical analysis for molecular
simulation: accomplishments and challenges

Claude Le Bris

Abstract. Molecular simulation is explored from the mathematical viewpoint. The field com-
prises computational chemistry and molecular dynamics. A variety of mathematical and numeri-
cal questions raised is reviewed. Placing the models and the techniques employed for simulation
on a firm mathematical ground is a difficult task, which has begun decades ago. The time is right
for assessing the field, and the issues and challenges ahead.
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Keywords. Computational chemistry, molecular simulation, molecular dynamics, Schrödinger
equations, Hartree–Fock theory, Thomas–Fermi theory, Density Functional Theory, nonlinear
eigenvalue problems, spectral theory, spectral methods, elliptic partial differential equations, op-
timization, reduced basis methods, sparse grids, Hamiltonian dynamics, symplectic methods, ge-
ometric integration, stochastic differential equations, Markov chains, Monte-Carlo techniques.

1. Introduction

Molecular simulation is an increasingly important field of scientific computing. It
comprises computational chemistry, focused on the calculations of electronic struc-
tures and the related properties, and molecular dynamics, devoted to the simulation
of molecular evolutions, evaluations of ensemble averages and thermodynamic quan-
tities. Examples of reference treatises are [68], [70] and [1], [39], respectively. We
also refer to [14, Chapter 1] for a mathematically-oriented introductory text.

1.1. Ubiquity of molecular simulation. The field has several intimate connections
with many other fields. Indeed, molecular simulation is above all important because
many macroscopic properties of matter originate from phenomena at the microscopic
scale. Instances are: electrical conductivities, colors, chemical reactivities, mechan-
ical behaviour, aging. Accurate calculations on representative microscopic systems
allow for the evaluation of such properties. Additionally, even the macroscopic phe-
nomena that proceed from bulk effects, and which thus necessitate the consideration
of large size microscopic systems, may now be studied by advanced techniques in
molecular simulation. Recent record calculations simulate the dynamics of billions
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of atoms over a microsecond. Molecular biology, chemistry and physics are thus
inseparable today from molecular simulation. An easy observation sheds some light
on this. Roughly one publication out of ten in chemistry journals presents some nu-
merical simulations performed on theoretical models. This is an impressive ratio for
a field so much experimentally oriented.

Computations are first seen as complements to experiments. For instance, all the
information about the electronic properties is contained in the wave function; the
latter cannot be measured but it can be computed. Computations are also seen as an
alternative to experiment. It is possible to simulate molecular systems that have not
been synthesized yet, or phenomena inaccessible to experiments (huge temperature or
pressure, time scales smaller than the femtosecond, evolutions on decades or more).
Additionally, computations can serve for the laser control of molecular systems ([6]),
and other emerging fields of high energy physics.

Other, apparently distant, fields also make an extensive use of molecular simula-
tion. Rheology of complex fluids and more generally materials science were once
focused at the macroscopic scale and based on purely macroscopic descriptions. They
used to be far from molecular concerns. However, the accuracy needed in the quanti-
tative evaluation of many properties (think e.g. of constitutive laws or slip boundary
conditions) requires models to be more and more precise, involving the finest possible
scales in the simulation. This eventually includes the molecular scale.

The last application field that we shall mention, besides the fields using the macro-
scopic impact of molecular simulation, regards the emerging field of nanotechnology.
Nanosystems are indeed accessible today to a direct molecular simulation.

Overall, major technological challenges for the years to come may, or more prop-
erly stated must, be addressed by molecular simulation techniques. Examples are the
detailed simulation of protein folding, and the description of the long time radiation
damage of materials in nuclear power plants. To appreciate this ubiquity of molecular
simulation, it is sufficient to consider the enormous proportion of computational time
devoted to molecular simulation in the largest centers of computational resources
worldwide.

1.2. Relation to mathematics. On the other hand, the interface of molecular sim-
ulation with mathematics is not yet comparable to the practical importance of the
field.

Molecular simulation, and more precisely computational quantum chemistry, were
born in the 1950s for molecular systems consisting of a few electrons. Contemporary
methods and techniques now allow for the simulation of molecules of hundreds of
electrons, modelled by very precise quantum models, up to samples of billions of
particles modelled by molecular dynamics. This is an enormous success. The cal-
culations are often surprisingly accurate, but also sometimes desperately inaccurate.
Experts in chemistry have constantly improved the models and the methods. They
have turned the field into an almighty tool. However, in many respects, molecular
simulation is still an art. It relies upon a delicate mix of physical intuition, prag-
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matic cleverness, and practical know-how. Mathematics has already provided with
significant contributions to the theoretical understanding. Also, its companion fields,
numerical analysis and scientific computing, have definitely improved the efficiency
of the techniques. Yet, they all need to irrigate more molecular simulation. To state
it otherwise, there is an enormous gap between the sophistication of the models and
the success of the numerical approaches used in practice and, on the other hand, the
state of the art of their rigorous understanding.

We are witnessing an evolution that is due to two different reasons.
First, the mathematical knowledge on the models is rather satisfactory. Efforts

were initiated as early as the 1970s by pioneers such as E. H. Lieb, B. Simon,
W. Thirring, Ch. Feffermann, focusing on fundamental theoretical issues. Questions
were addressed about the well-posedness of the models, and the relation between the
various models, in various asymptotic regimes. Researchers such as R. Benguria,
J. P. Solovej, V. Bach, G. Friesecke, to only name a few, continued the effort over
the years. Those were later joined by contributors following the impulsion given
by P-L. Lions: M. J. Esteban, I. Catto, E. Séré, X. Blanc, M. Lewin, and the au-
thor. A number of researchers, experts in analysis, spectral theory, partial differential
equations, evolution equations, now become involved in the field. The enclosed bib-
liography cites several of them.

Second, and as a natural follow-up to mathematical analysis, numerical analysis
has indeed come into the picture. The numerical analysis of computational chemistry
methods was a completely unexplored subject until the mid 1990s. Boosted by the
state of the mathematical analysis, it is now a quickly developing topic. The work
in this field was pioneered by E. Cancès. Researchers such as Y. Maday, M. Griebel,
W. Hackbush, Ch. Lubich, W. E, well known for their contributions in various other
fields of the engineering sciences, now get involved, along with their collaborators
(G. Turinici, …) in electronic structure calculations or in molecular dynamics.

It is therefore a good time for assessing the field, and the issues and challenges
ahead. Doing so might help to boost the research in the area.

The present contribution rapidly reviews some commonly used models and their
mathematical nature, indicating the progress achieved over the last decades in their
mathematical understanding. Questions of numerical analysis are also addressed.
Important unsolved issues are emphasized. Owing to the evident space limitation,
this review is not meant to be exhaustive: see [54], [55] for more comprehensive
reviews, and [56] for a recent collection of various contributions. This is rather an
invitation for mathematicians to get involved in the endeavour of placing the field on
a firm mathematical ground.
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2. Mathematical overview of the models of computational chemistry

2.1. The Schrödinger equation. For most applications of molecular simulation,
the matter is described by an assembly of nuclei, which are point particles treated
classically, equipped with electrons, which are light particles modelled by quantum
mechanics. For systems of limited size, called molecular systems, there areM nuclei,
of charge zk , located at xk , andN electrons of unit charge. The finest models are called
ab initio models since they only involve universal constants and no experimentally
determined parameters. Assuming the molecular system nonrelativistic, placing it at
zero temperature, and, for clarity of exposition, omitting the spin variable, the state
of the electrons is modelled by the N-body Hamiltonian

Hx1,...,xM
e = −

N∑
i=1

1

2
�xi −

N∑
i=1

M∑
k=1

zk

|xi − xk| +
∑

1≤i<j≤N

1

|xi − xj | , (1)

where the terms respectively model the kinetic energy, the attraction between nuclei
and electrons, the repulsion between electrons. Notice that the positions xk of the
nuclei are parameters of this operator. The electronic ground-state is by definition
the minimizer of the energy:

W(x1, x2, . . . , xM) = inf
{〈ψ,Hx1,...,xM

e ψ〉, ψ ∈ WN

} +
∑

1≤k<l≤M

zk zl

|xk − xl| . (2)

The variational space reads

WN =
{
ψ ∈

N∧
i=1

L2(R3) :
∫

R3N
|ψ |2 = 1,

∫
R3N

|∇ψ |2 < +∞
}

(3)

where the wedge product denotes the antisymmetrized tensor product (owing to
the Pauli exclusion principle). The Euler–Lagrange equation of (2) is the (time-
independent) Schrödinger equation

Hx1,...,xM
e ψ = E ψ (4)

where the energy E, lowest possible eigenvalue of Hx1,...,xM
e on WN is called the

ground-state energy. The resolution of (2) (or one approximation of it, which we will
detail below) is at the core of any computational chemistry calculation, prior to any
calculation related to excited states, energies, linear response, etc. We therefore focus
on this problem here.

Analogously, a time-dependent version of the problem exists: then the time-
dependent Schrödinger equation

i
∂

∂t
ψ = Hx1,...,xM

e ψ (5)
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is to be solved. The treatment of the electronic problem is usually the inner loop
of the simulation, the outer loop consisting of the treatment of the nuclei. In the
static setting, this consists in solving the molecular mechanics problem (also termed
geometry optimization): finding the configuration of nuclei that minimizes the overall
energy, i.e. the minimizer of

inf
(x1,x2,...,xM)∈R3M

W(x1, x2, . . . , xM). (6)

The time-dependent setting requires solving the equations of molecular dynamics, i.e.
the Newton equations of motion for the nuclei:

mk
d2

dt2
xk = −∇xkW(x1, x2, . . . , xM). (7)

2.2. Standard approximations. Problem (2) is well explored mathematically: [37],
[49]. In addition to their own interest, theoretical studies of (2) provide with useful
practical information on the quantities (wavefunction and energy) to be evaluated in
practice (see [48] and other works by the same authors). The practical bottleneck of
quantum chemistry calculations is however that state-of-the-art numerical techniques
only allow for (2) to be solved for ridiculously small numbers of electrons. Indeed,
the dimension of the tensor product

∧N
i=1 L

2(R3) makes the problem untractable
by usual techniques of scientific computing for the practically relevant numbers of
electrons, say a few tens to thousands. The practice of computational chemistry
is thus to approximate (2). The purpose of such approximations is to reduce the
computational complexity of the problem, whilst providing the accuracy required
by chemistry. The energy of molecular systems must indeed be determined within
an incredibly demanding degree of accuracy (often termed the chemical accuracy).
Energies such as (2) are typically 103 to 106 as large as the energy of an hydrogen
bond. As the interest lies in the difference of energy between two systems, in order
to determine which is the more stable one, the difficulty is challenging. Surprisingly,
clever approximations do succeed in this task. We now review them. For more
details on the analysis, implementation and efficiency of all the numerical techniques
mentioned below, see [53].

In chemistry, approximations of (2) are schematically sorted into two categories.
Wavefunctions methods are used preferably by chemists, on small systems, when

accuracy is the primary goal, and computational time is a secondary issue. The focus
is on the interaction between electrons. The prototypical example is the Hartree–
Fock model. The latter is the best known model in the mathematical community.
The bottom line for deriving the Hartree–Fock model is a variational approxima-
tion of the set (3) by the subspace of wavefunctions ψ that read as determinants
(antisymmetrized products) of wavefunctions of one electron. More precisely, the
Hartree–Fock problem reads

inf

{
EHF({φi}) : φi ∈ H 1(R3),

∫
R3
φiφ

∗
j = δij , 1 ≤ i, j ≤ N

}
(8)
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with

EHF({φi}) = 1

2

N∑
i=1

∫
R3

|∇φi(x)|2 dx +
∫

R3
ρ(x) V (x) dx

+ 1

2

∫∫
(R3)2

ρ(x) ρ(y)

|x − y| dx dy − 1

2

∫∫
(R3)2

|τ(x, y)|2
|x − y| dx dy,

(9)

with V = − ∑M
k=1

zk
|·−xk | , τ(x, y) = ∑N

i=1 φi(x) φi(y)
∗ and ρ(x) = τ(x, x) =∑N

i=1 |φi(x)|2, where the star denotes the complex conjugate. Post–Hartree–Fock
methods consist in enlarging the variational space by considering linear combina-
tions of determinants: Configuration Interaction (CI) methods, Multiconfiguration
Self Consistent Field (MCSCF) methods. Nonvariational correction methods, mostly
based on linear perturbation theory, are also employed: Möller–Plesset, Coupled
Cluster.

On the other hand, Density Functional Theory based methods are used preferably
for larger systems (and beyond for materials science), when computational time mat-
ters and wavefunctions methods are too expensive. They consist in rephrasing the
problem (2) in terms of the electronic density

ρ(x) = N

∫
R3(N−1)

|ψ(x, x2, x3, . . . , xN)|2 dx2 dx3 . . . dxN .

Formally, a minimization problem of the type

inf

{
E(ρ);

∫
R3
ρ(x) dx = N

}
(10)

is obtained. The idea has a rigorous theoretical grounding, but making it tractable
in practice requires some approximation procedure. The energy E(ρ), which is a

reformulation of 〈ψ,Hx1,...,xM
e ψ〉, is not explicit. Adequately adjusting the param-

eters (and even the terms) of the approximate energy functional E(ρ) is an issue,
sometimes controversial. Ancestors of DFT-based methods are Thomas–Fermi type
theories, very well investigated mathematically (see [60], [63], [74] for reviews). The
latter currently see a revival through orbital-free methods, which precisely consist in
discretizing ρ itself as the primary unknown. They therefore allow for the treatment
of larger systems, notably for materials science applications.

The general trend is that DFT-based models are increasingly popular. A commonly
used setting is the Kohn–Sham Local Density Approximation (KS-LDA) setting that
explicitly reads as the minimization problem

inf

{
EKS-LDA({φi}) : φi ∈ H 1(R3),

∫
R3
φi(x)φ

∗
j (x) dx = δij , 1 ≤ i, j ≤ N

}

(11)
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with

EKS-LDA({φi}) = 1

2

N∑
i=1

∫
R3

|∇φi(x)|2 dx +
∫

R3
ρ(x) V (x) dx

+ 1

2

∫∫
R3×R3

ρ(x) ρ(y)

|x − y| dx dy −
∫

R3
F(ρ(x)) dx,

(12)

where F is a nonlinear function determined on chemical basis.
Reducing the complexity of (2) comes at a price: nonlinearity. Whereas the op-

timality equation (4) is a linear eigenvalue problem (in a high dimensional space),
the equation to be solved for most of the approximations of (2) is a nonlinear eigen-
value problem (in a space of lower dimension, though). This is easily seen on the
expressions (9) and (12). However they are derived and irrespective of their chemical
meaning, the wavefunctions methods and DFT-based methods both lead to a nonlinear
eigenvalue problem:

−�φj + W(φ1, . . . , φN)φj = λjφj , j = 1, . . . , N, (13)

where the λj are the Lagrange multipliers of the constraints. Equations (13) are
often called Self-Consistent Field (SCF) equations to emphasize the nonlinear feature,
encoded in the operator W .

There are many questions of mathematical interest. The existence of a minimizer
(under appropriate physically relevant conditions) for several models related to HF
and DFT-type approximations is now established. Very important contributions in this
direction are [62], [61], [8], [65], [66], [73], [40], [59]. For most models of practical
interest, the existence of a minimizer is known. In contrast, nothing is known on the
uniqueness. A major reason for this is that almost all models of practical interest are
nonconvex. The relation of these approximated models with the original model (2)
has also been investigated, e.g. in [4], [38] for some physically relevant asymptotic
regimes.

Mathematically, all problems arising in electronic structure theory are nonlinear
minimization problems with possible lacks of compactness at infinity (most of them
are posed on the whole space R

N , and are subject to a constraint, see (8) and (11)).
The Euler–Lagrange equation is a system of nonlinear elliptic partial differential
equations such as (13). The ellipticity basically comes from the Laplacian opera-
tor, modelling the kinetic energy in (1). At one stage or another, spectral theory
comes into the picture. More precisely, the spectral theory of Schrödinger operators
−� + V often plays a key role. All this concerns the search for the ground state in
the nonrelativistic setting, at zero temperature. When relativistic effects have to be
accounted for, the Laplacian operator is replaced by the Dirac operator (unbounded
from below), and the theoretical setting drastically changes. Important mathematical
contributions on the relativistic setting are [36], [34], [35]. They have given birth to
more efficient computational techniques. On the other hand, temperature effects may
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also be accounted for, through the introduction of a statistics, see [64] for one of the
rare mathematical studies. Like for temperature effects, the theory of excited states
is not in a satisfactory state. Attempts to place the latter notion on a sound ground are
[59], [23].

In the numerical practice, the problem is discretized using Galerkin techniques,
and more precisely spectral methods. The basis functions used for discretization are
typically gaussian approximations of the eigenfunctions of a hydrogen-like operator
(M = N = 1 in (1)), or plane waves. The latter is very well adapted to solid state
calculations. The former is incredibly efficient for calculations of molecular systems.
A remarkable accuracy is reached with a limited number of basis functions. One
reason why hydrogen-like basis functions outperform all other basis sets is that they
are problem-dependent basis functions, which very well reproduce the exponential
decrease at infinity and the cusp of wavefunctions at the point nuclei. More general
purpose basis sets, such as finite elements, have difficulties in doing so, unless ex-
pensive mesh refinement techniques are employed. Finite-difference methods also
exist, termed in this context real-space methods, but they are used for very specific
applications, related to solid-state calculations.

After discretization, the equations are solved using nonlinear optimization tech-
niques. Surprisingly, the problem is not addressed as a minimization problem, but in
the form of the optimality equations (13). The latter is the only possible approach,
considering the number of local minima, and despite the fact there is no theoretical
basis for this. It reveals as an efficient approach, mostly because computations often
benefit from prior calculations for adequately preconditioning the solution procedure.
The algorithms in use for solving (13) are known as SCF-algorithms. Formally, they
are elaborate variants of fixed-point iterations such as

−�φn+1
j + W(φn1 , . . . , φ

n
N)φ

n+1
j = λn+1

j φn+1
j , j = 1, . . . , N. (14)

Their numerical analysis, initiated in [3], was performed only recently, see [18], [19]
and [54] for a review. A rigorous mathematical insight into SCF-algorithms has led
to definite improvements of their efficiency [52]. Alternative techniques may also
be used. An original approach, based on a posteriori error estimators and related to
Newton-type algorithms, is introduced in [69].

Notice that each inner loop of the nonlinear procedure involves a linear eigenvalue
problem. This restricts the range of tractable systems (say typically that systems with
a few hundreds of electrons can be standardly treated on a workstation). Ad hoc tech-
niques may however be employed to broaden the spectrum of tractable systems. The
latter are known as linear scaling techniques, for they significantly reduce the com-
plexity of the diagonalization step, which in principle scales cubically with respect to
the size of the system, see [12], [41], [42]. The bottom line for such a reduction is that
the eigenelements are not explicitly needed: only the projector on the space spanned
by the first N eigenvectors is needed for the computation of all quantities of practical
interest. The problem is thus rephrased so that an explicit diagonalization is avoided.
Correspondingly, advanced techniques such as Fast Multipole techniques [51], are
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used for assembling the huge matrices to be manipulated. Using a combination of
such techniques, larger systems, consisting of thousands of electrons, may be treated
on a workstation. The approach however still waits for a rigorous mathematical
analysis.

The above description of the numerical approach concerns isolated molecular
systems. Specific models are employed for the simulation of the liquid phase, and of
the solid (crystalline) phase, respectively. In the former case, a commonly used setting
is the continuum model: the molecule is placed in a cavity, surrounded by a dielectric
medium modelling the solvent. Consequently, the Coulomb interaction potential
appearing in V (see (9) and (12)) is replaced by the Green function of electrostatics
set on the cavity. Integral equation methods are utilized for the numerical resolution:
[20], [21]. On the other hand, the modelling of the crystal phase corresponds to a
periodic setting [2]: loosely speaking, the functions ψj are indexed by a vector, i.e.
for each k, ψkj (x) is the j -th eigenvector periodic in x up to a phase factor e−ik.x .
In practice, the set of vectors k is discretized, and the corresponding equations (13),
now indexed by k, are solved. For the practical discretization and resolution of the
equations, dedicated techniques are employed: see [53], [30]. Several theoretical
issues regarding the rigorous derivation of the models for the crystalline phase have
already been considered: see [62], [24], and other works by the same authors. Seminal
contributions by L. Van Hove, F. Dyson, A. Lenard, D. Ruelle, E. Lieb, J. Lebowitz,
B. Simon, Ch. Fefferman predated those. The bottom line is to justify the models of
the solid phase proving they are the limits of models for molecular systems, as the
system size grows. More generally, this is part of an enormous body of literature in
mathematical physics addressing questions related to thermodynamic limits.

2.3. Emerging approaches. Wavefunctions methods and DFT-based methods are
dominant computational methods. Apart from the main stream, there are three promis-
ing tracks followed either by chemists or mathematicians, that need to be advertised.
They consist in addressing the problem (2) in its original form, without any approxi-
mation, in principle.

The first approach ([28]), actually almost as old as theoretical chemistry itself, is
based on a rephrasing of the minimization problem in terms of the marginals

γ (x1, x2, x
′
1, x

′
2)

=
∫

R3(N−2)
ψ(x1, x2, x3, . . . , xN)ψ

∗(x′
1, x

′
2, x3, . . . , xN) dx3 . . . dxN,

called second-order reduced density matrices. This is possible because the opera-
tor (1) only involves the positions xi and xj of two electrons simultaneously.

The second approach (called diffusion Monte-Carlo in the specific context of
chemistry) consists in determining the minimizer to problem (2) by solving the ficti-
tious evolution equation

∂ψ

∂t
+Heψ = 0,
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using the Feynmann–Kac representation formula. Considering the long time limit
provides with a strategy to evaluate (2), see [67], [22].

The third approach, advocated by some mathematicians ([44], [43]), consists in
recognizing (4) as a high-dimensional partial differential equation and applying the
techniques of sparse tensor products. The technique relies upon a theoretical frame-
work set in this context in [78] (see also other works by the same author).

For all these three approaches, enormous theoretical and practical difficulties are
still unsolved. For the first approach, the theoretical challenge is to determine the
variational space for γ corresponding to the variational space (3) forψ . This is where
approximations are again introduced. The story is not closed. Current techniques
rely upon semi-definite programming or Augmented Lagrangian methods to solve
the associated discretized problem. Somehow related to this, the difficulty for the
last two approaches lies in the fermionic nature of the electrons: the wavefunction
is constrained to be antisymmetric. In addition, the problem also requires appropri-
ate techniques such as high-dimensional integration techniques, mainly based upon
Monte-Carlo, or Quasi Monte-Carlo, techniques.

These three approaches are not in position today to compete with the other more
classical ones, which have benefited over the past years from constant efforts shared
by a huge community. They are however instances of approaches that may be turning
points and may change the landscape of computational chemistry in the years to come.

All the above describes approaches to determine the electronic structure. As men-
tioned in the Introduction, this is most often the inner part of a calculation. The
outer part concerns the nuclei, parameters of the inner calculation so far. In the static
setting, the problem is usually to determine their optimal position, i.e. the most sta-
ble conformation. This is the molecular mechanics problem (6). In biology, such a
problem is crucial. It is the well-known question of determining the 3-dimensional
structure of the molecule (protein,…) under study. Techniques of discrete optimiza-
tion, combinatorial optimization, in particular using stochastics-based algorithms,
are employed. Notice that the mathematical question of the existence of such a most
stable configuration is mostly open for all models of interest, in spite of outstanding
contributions on academic models [25].

3. Dynamical problems and problems at larger scales

Regarding time-dependent problems, the evolution of the nuclei is again often consid-
ered classical. The Newton equations of motion (7) are solved. This is the extremely
popular field of molecular dynamics. It is called ab initio when W in the right-hand
side of (7) is calculated on-the-fly from quantum mechanical models for the electronic
structure (see [76] for a review), and classical when W has a parameterized analytic
form, fitted on previous calculations or experiments. Parameterized potentials re-
portedly work well in biological applications, but experience some difficulties for
materials science applications.
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For the explicit evaluation of W , a very common assumption in chemistry is
adiabaticity (see [45], [46], [75] and other works by the same authors for mathematical
discussions). When adiabaticity is assumed, W ideally takes the form (2) and is
computed using the static models and the techniques of Section 2.

In some cases such as collisions that involve electronic excited states with inter-
secting energy surfaces, the adiabatic approximation is not valid. Then equations
(7) are coupled with the explicit time evolution of the electronic structure, simulated
by (5), or one of its approximation (analogous to those of Section 2, adapted to the
dynamics setting): see [17], [26], [50] for related mathematical studies.

A peculiarity to be borne in mind, which has a huge impact on the mathematical
analysis, is that (7) is not only solved in order to determine the precise evolution of the
system. Often, based on the ergodicity assumption, (7) serves as a tool for sampling
the configuration space of the system in the microcanonical ensemble. Averages
on this space are indeed related to quantities of macroscopic interest. Examples
include the determination of the temperature, or the pressure, of a liquid system, or
the determination of some mechanical properties such as the Young modulus of a
crystalline solid.

Numerous challenging issues in numerical analysis arise from molecular dynam-
ics. First, system (7) contains several, disproportionate, timescales. Think e.g. of
bond lengths or angles oscillating either rapidly (i.e. at the femtosecond (10−15 s)
scale) or slowly (hundreds of femtoseconds). Adequate techniques must be employed:
multi-timestep techniques, homogenization, damping of rapid degrees of freedom, in-
tegration of differential algebraic equations. Second, the integration of (7) over long
times raises specific questions: geometric integration, backward error analysis, in-
tegration of Hamiltonian, symplectic, reversible systems, etc. For related questions,
reference treatises or reviews in the numerical analysis literature are e.g. [11], [58],
[47], [71, 13]. See also [72], [31] in the molecular dynamics community. Third,
the longest timescales that may be reached using an explicit Hamiltonian dynamics
are not sufficient to cover the practical needs. Say the limit is, in good cases, the
microsecond and, more generally, the nanosecond. A major reason for this is that
the evolution of the system basically consists of long period of oscillations around
metastable sets (basins of energy), separated by rapid hoppings between these states
(simulation of infrequent events). Techniques for reaching extremely long simula-
tion times or for efficiently sampling the phase space are mandatory to complement
standard molecular dynamics: stochastic differential equations, Markov chains, path
integrals, etc. In addition, other ensembles than the microcanonical ensemble may
be sampled by adequate deterministic modifications of Hamiltonian dynamics (ther-
mostated equations of motion) or by stochastic equations (Langevin dynamics). See
[27], [29], [33], [32], [77] and many other references by these authors and others,
for examples of techniques. The above shows that molecular dynamics problems
have a twofold multiscale nature: even on small time frames, they involve degrees
of freedom with drastically different characteristic times, and in addition to this, the
integration must be carried over extremely long times. This is a significant difficulty.
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In spite of this, molecular dynamics simulation, along with acceleration techniques, is
an extremely successful field and provides with impressively good quantitative results
on some macroscopic quantities. Standard calculations on workstations simulate 108

atoms over the nanosecond, record calculations largely outperform this. Here again,
some practical and theoretical pitfalls remain and the mathematical understanding of
the methods is to be improved. In a nutshell, one could say that it is not thoroughly
understood why molecular dynamics techniques perform so well, i.e. why averages
calculated from erroneous or approximate trajectories are so close to the actual values
of macroscopic quantities.

The connection between the microscopic scale and the macroscopic scale is a
broad subject. Calculations of ensemble averages using molecular dynamics and
related techniques is one instance of it. Other questions concern the relation of
molecular simulation with continuum mechanics. An example of a theoretical work
in this direction is [9]. See also [10] for a review and references on the numerous
practical applications, in particular applications related to computational materials
science where strategies coupling molecular simulation techniques and continuum
mechanics techniques are rapidly developping.

4. Trends

As briefly overviewed above, molecular simulation is an extremely rich application
field of mathematics. Only a tiny part of the models and methods used in practice
have been explored mathematically to date. There is much room for improvement
in the mathematical understanding, the numerical analysis, the design of advanced
techniques, to further enhance the field.

Some theoretical challenges concern the uniqueness of the ground state, the defi-
nition of excited states, the foundations of models at finite temperature, etc.

On the numerical side, current efforts in the mathematical community are directed
towards the development of novel methods: sparse grids techniques, domain decom-
position methods [7], stochastic methods for electronic structure calculations [22],
methods for the determination of excited states [23], reduced basis methods [15],
[16], parallel-in-time methods [5], stochastic methods for the computation of free
energies [57], etc.
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Evolutionary dynamics of cooperation

Martin A. Nowak

Abstract. Cooperation means a donor pays a cost, c, for a recipient to get a benefit b. In
evolutionary biology, cost and benefit are measured in terms of fitness. While mutation and
selection represent the main ‘forces’ of evolutionary dynamics, cooperation is a fundamental
principle that is required for every level of biological organization. Individual cells rely on
cooperation among their components. Multi-cellular organisms exist because of cooperation
among their cells. Social insects are masters of cooperation. Most aspects of human society
are based on mechanisms that promote cooperation. Whenever evolution constructs something
entirely new (such as multi-cellularity or human language), cooperation is needed. Evolutionary
construction is based on cooperation. I will present five basic principles for the evolution of
cooperation, which arise in the theories of kin selection, direct reciprocity, indirect reciprocity,
graph selection and group selection.
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1. Kin selection

In a pub conversation, J. B. S. Haldane, one of the founding fathers of a mathematical
approach to biology, once remarked: ‘I will jump into the river to save two brothers
or eight cousins.’ This insight was precisely formulated by William Hamilton many
years later. He wrote a PhD thesis on this topic, submitted a long paper to the Journal
of Theoretical Biology, disappeared into the Brazilian jungle and was world famous
when he returned a few years later (Hamilton 1964a, b). The theory was termed ‘kin
selection’ by John Maynard Smith (1964). The crucial equation is the following.
Cooperation among relatives can be favored by natural selection if the coefficient of
genetic relatedness, r , between the donor and the recipient exceeds the cost to benefit
ratio of the altruistic act

r > c/b. (1)

Kin selection theory has been tested in numerous experimental studies. Many coop-
erative acts among animals occur between close kin (Frank 1998, Hamilton 1998).
The exact relationship between kin selection and other mechanisms such as group
selection and spatial reciprocity, however, remains unclear. A recent study even sug-
gests that much of cooperation in social insects is due to group selection rather than
kin selection (Wilson & Hölldobler 2005).
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2. Direct reciprocity

In 1971, Robert Trivers published a landmark paper entitled ‘The evolution of recip-
rocal altruism’ (Trivers 1971). Trivers analyzed the question of how natural selection
could lead to cooperation between unrelated individuals. He discusses three biological
examples: cleaning symbiosis in fish, warning calls in birds and human interactions.
Trivers cites Luce & Raiffa (1957) and Rapoport & Chammah (1965) for the Pris-
oner’s Dilemma, which is a game where two players have the option to cooperate or
to defect. If both cooperate they receive the ‘reward’, R. If both defect they receive
the ‘punishment’, P . If one cooperates and the other defects, then the cooperator
receives the ‘sucker’s payoff’, S, while the defector receives the ‘temptation’, T . The
PD is defined by the ranking T > R > P > S.

Would you cooperate or defect? Assuming the other person will cooperate it is
better to defect, because T > R. Assuming the other person will defect it is also
better to defect, because P > S. Hence, no matter what the other person will do it is
best to defect. If both players analyze the game in this ‘rational’ way then they will
end up defecting. The dilemma is that they both could have received a higher payoff
if they had chosen to cooperate. But cooperation is ‘irrational’.

We can also imagine a population of cooperators and defectors and assume that the
payoff for each player is determined by many random interactions with others. Let x

denote the frequency of cooperators and 1−x the frequency of defectors. The expected
payoff for a cooperator is fC = Rx + S(1 − x). The expected payoff for a defector
is fD = T x + P(1 − x). Therefore, for any x, defectors have a higher payoff than
cooperators. In evolutionary game theory, payoff is interpreted as fitness. Successful
strategies reproduce faster and outcompete less successful ones. Reproduction can
be cultural or genetic. In the non- repeated PD, in a well mixed population, defectors
will outcompete cooperators. Natural selection favors defectors.

Cooperation becomes an option if the game is repeated. Suppose there are m

rounds. Let us compare two strategies, ‘always defect’ (ALLD), and GRIM, which
cooperates on the first move, then cooperates as long as the opponent cooperates,
but permanently switches to defection if the opponent defects once. The expected
payoff for GRIM versus GRIM is nR. The expected payoff for ALLD versus GRIM
is T + (m − 1)P . If nR > T + (m − 1)P then ALLD cannot spread in a GRIM
population when rare. This is an argument of evolutionary stability. Interestingly,
Trivers (1971) quotes ‘Hamilton (pers. commun.)’ for this idea.

A small problem of the above analysis is that given a known number of rounds it is
best to defect in the last round and by backwards induction it is also best to defect in
the penultimate round and so on. Therefore, it is more natural to consider a repeated
game with a probability w of having another round. In this case, the expected number
of rounds is 1/(1 − w), and GRIM is stable against invasion by ALLD provided
w > (T − R)/(T − P).

We can also formulate the PD as follows. The cooperator helps at a cost, c, and
the other individual receives a benefit b. Defectors do not help. Therefore we have
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T = b, R = b − c, P = 0 and S = −c. The family of games that is described by
the parameters b and c is a subset of all possible Prisoner’s Dilemma games as long
as b > c. For the repeated PD, we find that ALLD cannot invade GRIM if

w > c/b. (2)

The probability of having another round must exceed the cost to benefit ratio of the
altruistic act (Axelrod & Hamilton 1981, Axelrod 1984).

Thus, the repeated PD allows cooperation, but the question arises – what is a good
strategy for playing this game? This question was posed by the political scientist,
Robert Axelrod. In 1979, he decided to conduct a tournament of computer programs
playing the repeated PD. He received 14 entries, from which the surprise winner was
tit-for-tat (TFT), the simplest of all strategies that were submitted. TFT cooperates
in the first move, and then does whatever the opponent did in the previous round.
TFT cooperates if you cooperate, TFT defects if you defect. It was submitted by the
game theorist Anatol Rapoport (who is also the co-author of the book Rapoport &
Chammah,1965). Axelrod analyzed the events of the tournament, published a detailed
account and invited people to submit strategies for a second championship. This time
he received 63 entries. John Maynard Smith submitted ‘tit-for-two-tats’, a variant of
TFT which defects only after the opponent has defected twice in a row. Only one
person, Rapoport, submitted TFT, and it won again. At this time, TFT was considered
to be the undisputed world champion in the heroic world of the repeated PD.

But one weakness became apparent very soon (Molander 1985, May 1987). TFT
cannot correct mistakes. The tournaments were conducted without strategic noise. In
the real world, ‘trembling hands’ and ‘fuzzy minds’ cause erroneous moves. If two
TFT players interact with each other, a single mistake leads to a long sequence of
alternating defection and cooperation. In the long run two TFT players get the same
low payoff as two players who flip coins for every move in order to decide whether
to cooperate or to defect. Errors destroy TFT.

In 1989, we began to conduct ‘evolutionary tournaments’ (Nowak & Sigmund
1992). Instead of inviting experts to submit programs, we asked mutation and selection
to explore (some portion of) the strategy space of the repeated PD in the presence of
noise. The initial random ensemble of strategies was quickly dominated by ALLD.
If the opposition is nonsensical, it is best to defect. A large portion of the population
began to adopt the ALLD strategy and everything seemed lost. But after some time,
a small cluster of players adopted a strategy very close to TFT. If this cluster is
sufficiently large, then it can increase in abundance, and the entire population swings
from ALLD to TFT. Reciprocity (and therefore cooperation) has emerged. We can
show that TFT is the best catalyst for the emergence of cooperation. But TFT’s
moment of glory was brief and fleeting. In all cases, TFT was rapidly replaced
by another strategy. On close inspection, this strategy turned out to be ‘generous-
tit-for-tat’ (GTFT) which always cooperates if the opponent has cooperated on the
previous move, but sometimes (probabilistically) even cooperates when the opponent
has defected. Natural selection had discovered ‘forgiveness’.
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After many generations, however, GTFT is undermined by unconditional coop-
erators, ALLC. In a society, where everybody is nice (using GTFT), there is almost
no need to remember how to retaliate against a defection. A biological trait which
is not used is likely to be lost by random drift. Birds that escape to islands without
predators lose the ability to fly. Similarly, a GTFT population is softened and turns
into an ALLC population.

Once most people playALLC, there is an open invitation forALLD to seize power.
This is precisely what happens. The evolutionary dynamics run in cycles: fromALLD
to TFT to GTFT to ALLC and back to ALLD. These oscillations of cooperative and
defecting societies are a fundamental part of all our observations regarding the evolu-
tion of cooperation. Most models of cooperation show such oscillations. Cooperation
is never a final state of evolutionary dynamics. Instead it is always lost to defection
after some time and has to be re-established. These oscillations are also reminiscent
of alternating episodes of war and peace in human history (Figure 1).

Tit-for-tat                 Generous Tit-for-tat

Always defect               Always cooperate

Win-stay, lose-shift

Figure 1. Evolutionary cycles of cooperation and defection. A small cluster of tit-for-tat (TFT)
players or even a lineage starting from a single TFT player in a finite population can invade
‘always defect’ (ALLD). In fact, TFT is the most efficient catalyst for the first emergence of
cooperation in an ALLD population. But in a world of ‘fuzzy minds’ and ‘trembling hands’,
TFT is soon replaced by generous-tit-for-tat (GTFT), which can re-establish cooperation after
occasional mistakes. If everybody uses GTFT, then ‘always cooperate’ (ALLC) is a neutral
variant. Random drift leads toALLC.AnALLC population invites invasion byALLD. ButALLC
is also dominated by ‘win-stay, lose-shift’ (WSLS), which leads to more stable cooperation than
tit-for-tat-like strategies.

A subsequent set of simulations, exploring a larger strategy space, led to a surprise
(Nowak & Sigmund 1993). The fundamental oscillations were interrupted by another
strategy which seems to be able to hold its ground for a very long period of time.
Most surprisingly, this strategy is based on the extremely simple principle of win-
stay, lose-shift (WSLS). If my payoff is R or T then I will continue with the same
move next round. If I have cooperated then I will cooperate again, if I have defected
then I will defect again. If my payoff is only S or P then I will switch to the other
move next round. If I have cooperated then I will defect, if I have defected then I
will cooperate (Figure 2). If two WSLS strategists play each other, they cooperate
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Win-stay

C (3) …. C D (5) …. D

C                          

Lose-shift

C (0) …. D D (1) …. C (probabilistic)

D                          D

C

Figure 2. ‘Win-stay, lose-shift’ (WSLS) embodies a very simple principle. If you do well then
continue with what you are doing. If you are not doing well, then try something else. Here
we consider the Prisoner’s Dilemma (PD) payoff values R = 3, T = 5, P = 1 and S = 0.
If both players cooperate, you receive 3 points, and you continue to cooperate. If you defect
against a cooperator, you receive 5 points, and you continue to defect. But if you cooperate with
a defector, you receive 0 points, and therefore you will switch from cooperation to defection.
If, on the other hand, you defect against a defector, you receive 1 point, and you will switch to
cooperation. Your aspiration level is 3 points. If you get at least 3 points then you consider it a
‘win’ and you will ‘stay’ with your current choice. If you get less than 3 points, you consider it a
‘loss’ and you will ‘shift’ to another move. If R > (T + P)/2 (or b/c > 2) then WSLS is stable
against invasion by ALLD. If this inequality does not hold, then our evolutionary simulations
lead to a stochastic variant of WSLS, which cooperates after a DD move only with a certain
probability. This stochastic variant of WSLS is then stable against invasion by ALLD.

most of the time. If a defection occurs accidentally, then in the next move both
will defect. Hereafter both will cooperate again. WSLS is a simple deterministic
machine to correct stochastic noise. While TFT cannot correct mistakes, both GTFT
and WSLS can correct mistakes. But WSLS has an additional ace in its hand. When
WSLS plays ALLC it will discover after some time that ALLC does not retaliate.
After an accidental defection, WSLS will switch to permanent defection. Therefore,
a population of WSLS players does not drift to ALLC. Cooperation based on WSLS
is more stable than cooperation based on tit-for-tat-like strategies. The repeated PD
is mostly known as a story of tit-for-tat, but win-stay, lose-shift is a superior strategy
in an evolutionary scenario with errors, mutation and many generations (Fudenberg
& Maskin 1990, Nowak & Sigmund 1993).

Incidentally, WSLS is stable against invasion by ALLD if b/c > 2. If instead
1 < b/c < 2 then a stochastic variant of WSLS dominates the scene; this strategy
cooperates after a mutual defection only with a certain probability. Of course, all
strategies of direct reciprocity, such as TFT, GTFT or WSLS can only lead to the
evolution of cooperation if the fundamental inequality (2) is fulfilled.
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3. Indirect reciprocity

While direct reciprocity embodies the idea ‘You scratch my back and I scratch yours’,
indirect reciprocity suggests ‘You scratch my back and I scratch someone else’s’.
Why should this work? Presumably I will not get scratched if it becomes known that
I scratch nobody. Indirect reciprocity, in this view, is based on reputation (Nowak &
Sigmund 1998a, b, 2005). But why should you care about what I do to a third person?

The main reason why economists and social scientists are interested in indirect
reciprocity is because one-shot interactions between anonymous partners in a global
market become increasingly common and tend to replace the traditional long-lasting
associations and long-term interactions between relatives, neighbors, or members of
the same village. A substantial part of our life is spent in the ‘company of strangers’,
and many transactions are no longer face-to-face. The growth of e-auctions and other
forms of e-commerce is based, to a considerable degree, on reputation and trust.
The potential to exploit such trust raises what economists call moral hazards. How
effective is reputation, especially if information is only partial?

Evolutionary biologists, on the other hand, are interested in the emergence of
human societies, which constitutes the last (up to now) of the major transitions in
evolution. In contrast to other eusocial species, such as bees, ants or termites, hu-
mans display a high degree of cooperation between non-relatives (Fehr & Fischbacher
2003). A considerable part of human cooperation is based on moralistic emotions,
such as anger directed towards cheaters or the ‘warm inner glow’ felt after perform-
ing an altruistic action. Intriguingly, humans not only feel strongly about interac-
tions which involve them directly, they also judge actions between third parties as
evidenced by the contents of gossip. There are numerous experimental studies of
indirect reciprocity based on reputation (Wedekind & Milinski 2000, Milinski et al.
2002, Wedekind & Braithwaite 2002, Seinen & Schramm 2006).

A simple model of indirect reciprocity (Nowak & Sigmund 1998a, b) assumes
that, within a well-mixed population, individuals meet randomly, one in the role of
the potential donor, the other as the potential recipient. Each individual experiences
several rounds of this interaction in each role, but never with the same partner twice. A
player can follow either an unconditional strategy, such as always cooperate or always
defect, or a conditional strategy, which discriminates among the potential recipients
according to their past interactions. In a simple example, a discriminating donor
helps a recipient if her score exceeds a certain threshold. A player’s score is 0 at birth,
increases whenever that player helps and decreases whenever the player withholds
help. Individual-based simulations and direct calculations show that cooperation
based on indirect reciprocity can evolve provided the probability, p, of knowing the
social score of another person exceeds the cost-to-benefit ratio of the altruistic act,

p > c/b. (3)

The role of genetic relatedness that is crucial for kin selection is replaced by social
acquaintanceship. In a fluid population, where most interactions are anonymous and
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people have no possibility of monitoring the social score of others, indirect reciprocity
has no chance. But in a socially viscous population, where people know one another’s
reputation, cooperation by indirect reciprocity can thrive (Nowak & Sigmund 1998a).

In a world of binary moral judgments (Nowak & Sigmund 1998b, Leimar & Ham-
merstein 2001, Panchanathan & Boyd 2003, Fishman 2003, Brandt & Sigmund 2004,
2005), there are four ways of assessing donors in terms of ‘first-order assessment’:
always consider them as good, always consider them as bad, consider them as good
if they refuse to give, or consider them as good if they give. Only this last option
makes sense. Second-order assessment also depends on the score of the receiver;
for example, it can be deemed good to refuse help to a bad person. There are 16
second-order rules. Third-order assessment also depends on the score of the donor;
for example, a good person refusing to help a bad person may remain good, but a bad
person refusing to help a bad person remains bad. There are 256 third-order assess-
ment rules. We display three of them in Figure 3. Using the Scoring assessment rule,

C     G       G      G       G

D     B       B      B        B

C     G       G      G       G

D     B       G      B        B

C     G       B      G       B

D     B       G      B       B

Scoring

Standing

Judging

Reputation of donor and recipient

A
ct

io
n 

of
 d

on
or

Reputation of donor
after the action 

GG    GB   BG    BB   

Three assessment rules

Figure 3. Assessment rules specify how an observer judges an interaction between a potential
donor and a recipient. Here we show three examples of assessment rules in a world of binary
reputation, good (G) and bad (B). For ‘Scoring’, cooperation (C) earns a good reputation and
defection (D) earns a bad reputation. ‘Standing’ is very similar to Scoring, the only difference
is that a ‘good’ donor can defect against a ‘bad’ recipient without losing his ‘good’ reputation.
Note that Scoring is associated with costly punishment (Fehr & Gaechter 2002, Sigmund et al.
2001), whereas for Standing punishment of ‘bad’ recipients is cost-free. For ‘Judging’ it is ‘bad’
to help a ‘bad’ recipient.

cooperation, C, always leads to a good reputation, G, whereas defection, D, always
leads to a bad reputation, B. Standing (Sugden 1986) is like Scoring, but it is not bad
if a good donor defects against a bad recipient . With Judging, in addition, it is bad
to cooperate with a bad recipient.

An action rule for indirect reciprocity prescribes giving or not giving, depending
on the scores of both donor and recipient. For example, you may decide to help if the
recipient’s score is good or your own score is bad. Such an action might increase your
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own score and therefore increase the chance of receiving help in the future. There
are 16 action rules.

If we view a strategy as the combination of an action rule and an assessment rule,
we obtain 4096 strategies. In a remarkable calculation, Ohtsuki & Iwasa (2004, 2005)
analyzed all 4096 strategies and proved that only eight of them are evolutionarily
stable under certain conditions and lead to cooperation (Figure 4). Both Standing

GG    GB    BG    BB

C     G       *      G        *

D     B       G      B       *

C       D      C     C/D

Assessment

Action

Ohtsuki & Iwasa’s ‘Leading eight’

If a ‘good’ donor meets a ‘bad’ recipient,

the donor must defect, and this action does 

Not reduce his reputation.

The three *s can be set G or B. 

If a column in the assessment module is

then the action must be C otherwise D. 

G

B

Figure 4. Ohtsuki & Iwasa (2004, 2005) analyzed the combination of 28 = 256 assessment
modules with 24 = 16 action modules. This is a total of 4096 strategies. They found that 8 of
these strategies can be evolutionarily stable and lead to cooperation, provided that everybody
agrees on each other’s reputation. (In general, uncertainty and incomplete information might
lead to private lists of the reputation of others.) The three asterisks in the assessment module
indicate a free choice between G and B. There are therefore 23 = 8 different assessment rules
which make up the ‘leading eight’. The action module is built as follows: if the column in the
assessment module is G and B, then the corresponding action is C, otherwise the action is D. Note
that Standing and Judging are members of the leading eight, but neither Scoring nor Shunning
is included.

and Judging belong to the leading eight, but not Scoring. We expect, however, that
Scoring has a similar role in indirect reciprocity to that of tit-for-tat in direct reciprocity.
Neither strategy is evolutionarily stable, but their ability to catalyze cooperation in
adverse situations and their simplicity constitute their strength. In extended versions of
indirect reciprocity in which donors can sometimes deceive others about the reputation
of the recipient, Scoring is the ‘foolproof’ concept of ‘I believe what I see’. Scoring
judges the action and ignores the stories. There is also experimental evidence that in
certain situations humans follow scoring rather than standing (Milinski et al. 2001).

In human evolution, there must have been a tendency to move from the simple
cooperation promoted by kin or group selection to the strategic subtleties of direct
and indirect reciprocity. Direct reciprocity requires precise recognition of individual
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people, a memory of the various interactions one had with them in the past, and
enough brain power to conduct multiple repeated games simultaneously. Indirect
reciprocity, in addition, requires the individual to monitor interactions among other
people, possibly judge the intentions that occur in such interactions, and keep up with
the ever changing social network of the group. Reputation of players may not only
be determined by their own actions, but also by their associations with others.

We expect that indirect reciprocity has coevolved with human language. On one
hand, it is helpful to have names for other people and to receive information about how
a person is perceived by others. On the other hand, a complex language is especially
necessary if there are intricate social interactions. The possibilities for games of
manipulation, deceit, cooperation and defection are limitless. It is likely that indirect
reciprocity has provided the very selective scenario that led to cerebral expansion in
human evolution.

4. Graph selection (or network reciprocity)

Game theory was invented by von Neumann and Morgenstern (1944) as a mathe-
matical approach to understanding the strategic and economic decisions of humans.
Hamilton (1967), Trivers (1971) and Maynard Smith & Price (1973) brought game
theory to biology. Instead of analyzing the interaction between two rational players,
evolutionary game theory explores the dynamics of a population of players under the
influence of natural selection (Maynard Smith 1982). In the classical setting of the
replicator equation, the population size is infinite and interactions are equally likely
between any two individuals (Taylor & Jonker 1978, Hofbauer et al. 1979, Zeeman
1980). Each individual obtains an average payoff which is interpreted as biological
fitness: strategies reproduce according to their payoff. Successful strategies spread
and eliminate less successful ones. The payoff depends on the frequency of strategies
in the population. Hence, natural selection is frequency dependent. The replicator
equation is deeply connected to the concept of an evolutionarily stable strategy (ESS)
or Nash equilibrium. In the framework of the replicator equation, an ESS cannot
be invaded by any mutant strategy (Hofbauer & Sigmund 1998). For recent books
on game theory and evolutionary game theory we refer to Fudenberg & Tirole 1991,
Binmore 1994, Weibull 1995, Samuelson 1997, Fudenberg & Levine 1998, Hofbauer
& Sigmund 1998, Gintis 2000, Cressman 2003. Recent reviews of evolutionary game
dynamics are Hofbauer & Sigmund (2003) and Nowak & Sigmund (2004).

The traditional model of evolutionary game dynamics assumes that populations
are well-mixed, which means that interactions between any two players are equally
likely. More realistically, however, the interactions between individuals are governed
by spatial effects or social networks. Let us therefore assume that the individuals of
a population occupy the vertices of a graph (Nakamaru et al. 1997, 1998, Skyrms &
Pemantle 2000, Abramson & Kuperman 2001, Ebel & Bornholdt 2002, Lieberman
et al. 2005, Nakamaru & Iwasa 2005, Santos et al. 2005, Santos & Pacheco 2005).
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The edges of the graph determine who interacts with whom (Figure 5). Consider a
population of N individuals consisting of cooperators and defectors. A cooperator

CC

C

C

C

D
D D

D

D

2b-5c
2b-2c

2b-3c

b b

b

Figure 5. Games on graphs. The members of a population occupy the vertices of a graph (or
social network). The edges denote who interacts with whom. Here we consider the specific
example of cooperators, C, competing with defectors, D. A cooperator pays a cost, c, for every
link. Each neighbor of a cooperator receives a benefit, b. The payoffs of some individuals are
indicated in the figure. The fitness of each individual is a constant, denoting the ‘baseline fitness’,
plus the payoff of the game. For evolutionary dynamics, we assume that in each round a random
player is chosen to die, and the neighbors compete for the empty site in a mode proportional to
their fitness. A simple rule emerges: if b/c > k then selection favors cooperators over defectors.
Here k is the average number of neighbors per individual.

helps all individuals to whom it is connected. If a cooperator is connected to k other
individuals and i of those are cooperators, then its payoff is bi − ck. A defector does
not provide any help, and therefore has no costs, but it can receive the benefit from
neighboring cooperators. If a defector is connected to k other individuals and j of
those are cooperators, then its payoff is bj . Evolutionary dynamics are described by
an extremely simple stochastic process: at each time step, a random individual adopts
the strategy of one of its neighbors proportional to their fitness.

We note that stochastic evolutionary game dynamics in finite populations is sen-
sitive to the intensity of selection. In general, the reproductive success (fitness) of an
individual is given by a constant, denoting the baseline fitness, plus the payoff that
arises from the game under consideration. Strong selection means that the payoff is
large compared to the baseline fitness; weak selection means the payoff is small com-
pared to the baseline fitness. It turns out that many interesting results can be proven
for weak selection, which is an observation also well known in population genetics.

The traditional, well-mixed population of evolutionary game theory is represented
by the complete graph, where all vertices are connected, which means that all individ-
uals interact equally often. In this special situation, cooperators are always opposed
by natural selection. This is the fundamental intuition of classical evolutionary game
theory. But what happens on other graphs?

We need to calculate the probability, ρC , that a single cooperator, starting in a
random position, turns the whole population from defectors into cooperators. If
selection neither favors nor opposes cooperation, then this probability is 1/N , which
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is the fixation probability of a neutral mutant. If the fixation probability ρC is greater
than 1/N , then selection favors the emergence of cooperation. Similarly, we can
calculate the fixation probability of defectors, ρD .

A surprisingly simple rule determines whether selection on graphs favors cooper-
ation. If

b/c > k, (4)

then cooperators have a fixation probability greater than 1/N and defectors have a
fixation probability less than 1/N . Thus, for graph selection to favor cooperation, the
benefit-to-cost ratio of the altruistic act must exceed the average degree, k, which is
given by the average number of links per individual . This relationship can be shown
with the method of pair-approximation for regular graphs, where all individuals have
exactly the same number of neighbors (Ohtsuki et al. 2006). Regular graphs include
cycles, all kinds of spatial lattices and random regular graphs. Moreover, computer
simulations suggest that the rule b/c > k also holds for non-regular graphs such as
random graphs and scale free networks. The rule holds in the limit of weak selection
and k � N . For the complete graph, k = N , we always have ρD > 1/N > ρC .

The basic idea is that natural selection on graphs (in structured populations) can
favor unconditional cooperation without any need of strategic complexity, reputation
or kin selection.

Games on graphs grew out of the earlier tradition of spatial evolutionary game
theory (Nowak & May 1992, Herz 1994, Killingback & Doebeli 1996, Mitteldorf
& Wilson 2000, Hauert et al. 2002, Le Galliard et al 2003, Hauert & Doebeli 2004,
Szabo & Vukov 2004) and investigations of spatial models in ecology (Durrett &
Levin 1994a, b, Hassell et al. 1994, Tilman & Kareiva 1997, Neuhauser 2001) and
spatial models in population genetics (Wright 1931, Fisher & Ford 1950, Maruyama
1970, Slatkin 1981, Barton 1993, Pulliam 1988, Whitlock 2003).

5. Group selection

The enthusiastic approach of early group selectionists to explain the evolution of co-
operation entirely from this one perspective (Wynne-Edwards 1962) has met with vig-
orous criticism (Williams 1966) and has led to a denial of group selection for decades.
Only an embattled minority of scientists defended the approach (Eshel 1972, Wilson
1975, Matessi & Jayakar 1976, Wade 1976, Uyenoyama & Feldman 1980, Slatkin
1981, Leigh 1983, Szathmary&Demeter 1987). Nowadays, however, it seems clear
that group selection acts as a powerful mechanism for the promotion of coopera-
tion (Sober & Wilson 1998, Keller 1999, Michod 1999, Swenson et al. 2000, Kerr
& Godfrey-Smith 2002, Paulsson 2002, Boyd & Richerson 2002, Bowles & Gintis
2004, Traulsen et al. 2005). We only have to make sure that its basic requirements are
fulfilled in a particular situation (Maynard Smith 1976). We would like to illustrate
exactly what these requirements are through the use of a simple model (Traulsen &
Nowak 2006).
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Imagine a population of individuals subdivided into groups. For simplicity, we as-
sume the number of groups is constant and given by m. Each group contains between
one and n individuals. The total population size can fluctuate between the bounds m

and nm. Again, there are two types of individuals, cooperators and defectors. Indi-
viduals interact with others in their group and thereby receive a payoff. At each time
step a random individual from the entire population is chosen proportional to payoff
in order to reproduce. The offspring is added to the same group. If the group size is
less than or equal to n nothing else happens. If the group size, however, exceeds n

then with probability q the group splits into two. In this case, a random group is elim-
inated (in order to maintain a constant number of groups). With probability 1−q, the
group does not divide, but instead a random individual from that group is eliminated
(Figure 6). This minimalist model of multi-level selection has some interesting fea-

C C
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D
D

D

D

C D

C C
C

Figure 6. A simple model of group selection. A population consists of m groups of maximum
size n. Individuals interact with others in their group in the context of an evolutionary game. Here
we consider the game between cooperators, C, and defectors, D. For reproduction, individuals
are chosen from the entire population with a probability proportional to their payoff. The
offspring is added to the same group. If a group reaches the maximum size, n, then it either
splits in two or a random individual from that group is eliminated. If a group splits, then a
random group dies, in order to keep the total population size constant. This meta-population
structure leads to the emergence of two levels of selection, although only individuals reproduce.

tures. Note that the evolutionary dynamics are entirely driven by individual fitness.
Only individuals are assigned payoff values. Only individuals reproduce. Groups can
stay together or split (divide) when reaching a certain size. Groups that contain fitter
individuals reach the critical size faster and therefore split more often. This concept
leads to selection among groups, even though only individuals reproduce. The higher
level selection emerges from lower level reproduction. Remarkably, the two levels of
selection can oppose each other.

As before, we can compute the fixation probabilities, ρC and ρD , of cooperators
and defectors in order to check whether selection favors one or the other. If we add a
single cooperator to a population of defectors, then this cooperator must first take over
a group. Subsequently the group of cooperators must take over the entire population.
The first step is opposed by selection, the second step is favored by selection. Hence,
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we need to find out if the overall fixation probability is greater to or less than what
we would obtain for a neutral mutant. An analytic calculation is possible in the limit
q � 1 where individuals reproduce much more rapidly than groups divide. In this
case, most of the groups are at their maximum size and hence the total population size
is almost constant and given by N = nm. We find that selection favors cooperators
and opposes defectors, ρC > 1/N > ρD , if

b

c
> 1 + n

m − 2
. (5a)

This result holds for weak selection. Smaller group sizes and larger numbers of
competing groups favor cooperation. We also notice that the number of groups, m,
must exceed two. There is an intuitive reason for this threshold. Consider the case
of m = 2 groups with n = 2 individuals. In a mixed group, the cooperator has
payoff −c and the defector has payoff b. In a homogeneous group, two cooperators
have payoff b − c, while two defectors have payoff 0. Thus the disadvantage for
cooperators in mixed groups cannot be compensated for by the advantage they have
in homogeneous groups. Interestingly, however, for larger splitting probabilities, q,
we find that cooperators can be favored even for m = 2 groups. The reason is the
following: for very small q, the initial cooperator must reach fixation in a mixed
group; but for larger q, a homogeneous cooperator group can also emerge if a mixed
group splits giving rise to a daughter group that has only cooperators. Thus, larger
splitting probabilities make it easier for cooperation to emerge.

Let us also consider the effect of migration between groups. The average number
of migrants accepted by a group during its life-time is denoted by z. We find that
selection favors cooperation provided

b

c
> 1 + z + n

m
. (5b)

In order, to derive this condition we have assumed weak selection and q � 1, as
before, but also that both the numbers of groups, m, and the maximum group size, n,
are much large than one.

Group selection (or multi-level selection) is a powerful mechanism for the evolu-
tion of cooperation if there are a large number of relatively small groups and migration
between groups is not too frequent.

6. Conclusion

I have presented five simple (Equations 1–5) rules that determine whether particular
mechanisms can promote the evolution of cooperation. In all five theories, b is the
benefit for the recipient and c the cost for the donor of an altruistic act. The comparison
of the five rules enables us to understand the crucial quantities that are responsible
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for the natural selection of cooperation by the various mechanisms that have been
proposed.

1. Kin selection leads to cooperation if b/c > 1/r , where r is the coefficient of
genetic relatedness between donor and recipient (Hamilton 1964a).

2. Direct reciprocity leads to cooperation if b/c > 1/w, where w is the probability
of playing another round in the repeated Prisoner’s Dilemma (Axelrod & Hamilton
1981).

3. Indirect reciprocity leads to cooperation if b/c > 1/q, where q is the probability
to know the reputation of a recipient (Nowak & Sigmund 1998a).

4. Graph selection (or ‘network reciprocity’) leads to cooperation if b/c > k,
where k is the degree of the graph, that is the average number of neighbors (Ohtsuki
et al. 2006).

5. Group selection leads to cooperation if b/c > 1 + z + n/m, where z is the
number of migrants accepted by a group during its life-time, n is the group size and
m is the number of groups (Traulsen & Nowak 2006).
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Fractional Brownian motion: stochastic calculus
and applications

David Nualart

Abstract. Fractional Brownian motion (fBm) is a centered self-similar Gaussian process with
stationary increments, which depends on a parameter H ∈ (0, 1) called the Hurst index. In this
note we will survey some facts about the stochastic calculus with respect to fBm using a path-
wise approach and the techniques of the Malliavin calculus. Some applications in turbulence
and finance will be discussed.
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1. Introduction

A real-valued stochastic process X = {Xt, t ≥ 0} is a family of random variables

Xt : � → R

defined on a probability space (�,F , P ). The process X is called Gaussian if
for all 0 ≤ t1 < t2 < · · · < tn the probability distribution of the random vector
(Xt1, . . . , Xtn) on R

n is normal or Gaussian. From the properties of the normal
distribution it follows that the probability distribution of a Gaussian process is entirely
determined by the mean function E(Xt ) and the covariance function

Cov(Xt ,Xs) = E((Xt − E(Xt ))(Xs − E(Xs))),

where E denotes the mathematical expectation or integral with respect to the proba-
bility measure P .

One of the most important stochastic processes used in a variety of applications is
the Brownian motion orWiener processW = {Wt, t ≥ 0}, which is a Gaussian process
with zero mean and covariance function min(s, t). The process W has independent
increments and its formal derivative dWt

dt
is used as input noise in dynamical systems,

giving rise to stochastic differential equations. The stochastic calculus with respect
to the Brownian motion, developed from the works of Itô in the forties, permits to
formulate and solve stochastic differential equations.
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Motivated from some applications in hydrology, telecommunications, queueing
theory and mathematical finance, there has been a recent interest in input noises with-
out independent increments and possessing long-range dependence and self-similarity
properties. Long-range dependence in a stationary time series occurs when the co-
variances tend to zero like a power function and so slowly that their sums diverge. The
self-similarity property means invariance in distribution under a suitable change of
scale. One of the simplest stochastic processes which is Gaussian, self-similar and it
has stationary increments is fractional Brownian motion, which is a generalization of
the classical Brownian motion. As we shall see later, the fractional Brownian motion
possesses long-range dependence when its Hurst parameter is larger than 1/2.

In this note we survey some properties of the fractional Brownian motion, and de-
scribe different methods to construct a stochastic calculus with respect to this process.
We will also discuss some applications in mathematical finance and in turbulence.

2. Fractional Brownian motion

A Gaussian process BH = {BHt , t ≥ 0} is called fractional Brownian motion (fBm)
of Hurst parameter H ∈ (0, 1) if it has mean zero and the covariance function

E(BHt B
H
s ) = RH(t, s) = 1

2

(
s2H + t2H − |t − s|2H )

. (2.1)

This process was introduced by Kolmogorov [25] and studied by Mandelbrot and
Van Ness in [30], where a stochastic integral representation in terms of a standard
Brownian motion was established. The parameter H is called Hurst index from the
statistical analysis, developed by the climatologist Hurst [24], of the yearly water
run-offs of Nile river.

The fractional Brownian motion has the following properties.

1. Self-similarity: For any constant a > 0, the processes {a−HBHat , t ≥ 0} and
{BHt , t ≥ 0} have the same probability distribution. This property is an imme-
diate consequence of the fact that the covariance function (2.1) is homogeneous
of order 2H , and it can be considered as a “fractal property” in probability.

2. Stationary increments: From (2.1) it follows that the increment of the process
in an interval [s, t] has a normal distribution with zero mean and variance

E
(
(BHt − BHs )

2) = |t − s|2H . (2.2)

Hence, for any integer k ≥ 1 we have

E
(
(BHt − BHs )

2k) = (2k)!
k!2k |t − s|2Hk. (2.3)
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Choosing k such that 2Hk > 1, Kolmogorov’s continuity criterion and (2.3) imply
that there exists a version of the fBm with continuous trajectories. Moreover, using
Garsia–Rodemich–Rumsey lemma [19], we can deduce the following modulus of
continuity for the trajectories of fBm: For all ε > 0 and T > 0, there exists a
nonnegative random variable Gε,T such that E(|Gε,T |p) < ∞ for all p ≥ 1, and,
almost surely, ∣∣BHt − BHs

∣∣ ≤ Gε,T |t − s|H−ε,

for all s, t ∈ [0, T ]. In other words, the parameter H controls the regularity of the
trajectories, which are Hölder continuous of order H − ε, for any ε > 0.

For H = 1/2, the covariance can be written as R1/2(t, s) = min(s, t), and the
process B1/2 is an ordinary Brownian motion. In this case the increments of the
process in disjoint intervals are independent. However, for H �= 1/2, the increments
are not independent.

SetXn = BHn −BHn−1, n ≥ 1. Then {Xn, n ≥ 1} is a Gaussian stationary sequence
with unit variance and covariance function

ρH (n) = 1

2

(
(n+ 1)2H + (n− 1)2H − 2n2H )

≈ H(2H − 1)n2H−2 → 0,

as n tends to infinity. Therefore, if H > 1
2 , ρH (n) > 0 for n large enough and∑∞

n=1 ρH (n) = ∞. We say that the sequence {Xn, n ≥ 1} has long-range depen-
dence. Moreover, this sequence presents an aggregation behavior which can be used
to describe cluster phenomena. For H < 1

2 , ρH (n) < 0 for n large enough and∑∞
n=1 |ρH (n)| < ∞. In this case, {Xn, n ≥ 1} can be used to model sequences with

intermittency.

2.1. Construction of the fBm. In order to show the existence of the fBm we should
check that the symmetric function RH(t, s) defined in (2.1) is nonnegative definite,
that is,

n∑
i,j=1

aiajRH (ti, tj ) ≥ 0 (2.4)

for any sequence of real numbers ai , i = 1, . . . , n and for any sequence ti ≥ 0.
Property (2.4) follows from the integral representation

BHt = 1

C1(H)

∫
R

[
((t − s)+)H− 1

2 − ((−s)+)H− 1
2
]
dWs, (2.5)

where {W(A),A Borel subset of R} is a Brownian measure on R and

C1(H) =
( ∫ ∞

0

(
(1 + s)H− 1

2 − sH− 1
2
)2
ds + 1

2H

) 1
2

,
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obtained by Mandelbrot and Van Ness in [30]. The stochastic integral (2.5) is well

defined, because the function ft (s) = ((t − s)+)H− 1
2 − ((−s)+)H− 1

2 , s ∈ R, t ≥ 0
satisfies

∫
R
ft (s)

2ds < ∞. On the other hand, the right-hand side of (2.5) defines a
zero mean Gaussian process such that

E
(
(BHt )

2) = t2H

and

E
(
(BHt − BHs )

2) = (t − s)2H ,

which implies that BH is an fBm with Hurst parameter H .

2.2. p-variation of the fBm. Suppose that X = {Xt, t ≥ 0} is a stochastic process
with continuous trajectories. Fixp > 0. We define thep-variation ofX on an interval
[0, T ] as the following limit in probability:

lim
n→∞

n∑
j=1

∣∣XjT
n

−X(j−1)T
n

∣∣p.
If the p-variation exists and it is nonzero a.s., then for any q > p the q-variation is
zero and for any q < p the q-variation is infinite. For example, the 2-variation (or
quadratic variation) of the Brownian motion is equal to the length of the interval T .

Rogers has proved in [40] that the fBmBH has finite 1/H -variation equals to cpT ,
where cp = E(|BH1 |p). In fact, the self-similarity property implies that the sequence

n∑
j=1

∣∣BHjT
n

− BH(j−1)T
n

∣∣1/H

has the same distribution as

T

n

n∑
j=1

∣∣BHj − BHj−1

∣∣1/H
,

and by the Ergodic Theorem this converges inL1(�) and almost surely to E(|BH1 |p)T .
As a consequence, the fBm with Hurst parameterH �= 1/2 is not a semimartingale.

Semimartingales are the natural class of processes for which a stochastic calculus can
be developed, and they can be expressed as the sum of a bounded variation process
and a local martingale which has finite quadratic variation. The fBm cannot be a
semimartingale except in the case H = 1/2 because if H < 1/2, the quadratic
variation is infinite, and ifH > 1/2 the quadratic variation is zero and the 1-variation
is infinite.



Fractional Brownian motion: stochastic calculus and applications 1545

Let us mention the following surprising result proved by Cheridito in [8]. Suppose
that {BHt , t ≥ 0} is an fBm with Hurst parameter H ∈ (0, 1), and {Wt, t ≥ 0} is an
ordinary Brownian motion. Assume they are independent and set

Mt = BHt +Wt.

Then {Mt, t ≥ 0} is not a semimartingale if H ∈ (
0, 1

2

) ∪ ( 1
2 ,

3
4

]
, and it is a semi-

martingale, equivalent in law to a Brownian motion on any finite time interval [0, T ],
if H ∈ (3

4 , 1
)
.

The 1/H -variation of Wick stochastic integrals with respect to the fractional Brow-
nian motion with parameter H > 1/2 has been computed by Guerra and Nualart
in [20].

3. Stochastic calculus with respect to the fBm

The aim of the stochastic calculus is to define stochastic integrals of the form∫ T

0
ut dB

H
t , (3.1)

where u = {ut , t ∈ [0, T ]} is some stochastic process. If u is a deterministic function
there is a general procedure to define the stochastic integral of u with respect to a
Gaussian process using the convergence in L2(�). We will first review this general
approach in the particular case of the fBm.

3.1. Integration of deterministic processes. Consider an fBm BH = {BHt , t ≥ 0}
with Hurst parameter H ∈ (0, 1). Fix a time interval [0, T ] and denote by E the set
of step functions on [0, T ]. The integral of a step function of the form

ϕt =
m∑
j=1

aj1(tj−1,tj ](t)

is defined in a natural way by

∫ T

0
ϕt dB

H
t =

m∑
j=1

aj (B
H
tj

− BHtj−1
).

We would like to extend this integral to a more general class of functions, using the
convergence in L2(�). To do this we introduce the Hilbert space H defined as the
closure of E with respect to the scalar product

〈1[0,t], 1[0,s]〉H = RH(t, s).
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Then the mapping ϕ −→ ∫ T
0 ϕt dB

H
t can be extended to a linear isometry between H

and the Gaussian subspaceHT (BH ) ofL2(�,F , P ) spanned by the random variables
{BHt , t ∈ [0, T ]}. We will denote this isometry by ϕ −→ BH(ϕ).

We would like to interpret BH(ϕ) as the stochastic integral of ϕ ∈ HT (BH ) with
respect to BH and to write BH(ϕ) = ∫ T

0 ϕtdB
H
t . However, we do not know whether

the elements of H can be considered as real-valued functions. This turns out to be
true forH < 1

2 , but is false whenH > 1
2 (see Pipiras and Taqqu [38], [39]). We state

without proof the following results about the space H .

3.1.1. Case H > 1
2 . In this case the second partial derivative of the covariance

function

∂2RH

∂t∂s
= αH |t − s|2H−2,

where αH = H(2H − 1), is integrable, and we can write

RH(t, s) = αH

∫ t

0

∫ s

0
|r − u|2H−2 dudr. (3.2)

Formula (3.2) implies that the scalar product in the Hilbert space H can be written as

〈ϕ,ψ〉H = αH

∫ T

0

∫ T

0
|r − u|2H−2ϕrψu dudr (3.3)

for any pair of step functions ϕ and ψ in E .
As a consequence, we can exhibit a linear space of functions contained in H in the

following way. Let |H | be the Banach space of measurable functions ϕ : [0, T ] → R

such that

‖ϕ‖2|H | = αH

∫ T

0

∫ T

0
|r − u|2H−2|ϕr ||ϕu| dudr < ∞.

It has been shown in [39] that the space |H | equipped with the inner product 〈·, ·〉H
is not complete and it is isometric to a subspace of H . The following estimate has
been proved in [31] using Hölder and Hardy–Littlewood inequalities.

Lemma 3.1. Let H > 1
2 and ϕ ∈ L 1

H ([0, T ]). Then

‖ϕ‖|H | ≤ bH‖ϕ‖
L

1
H ([0,T ]), (3.4)

for some constant bH .

Thus we have the embeddings

L2([0, T ]) ⊂ L
1
H ([0, T ]) ⊂ |H | ⊂ H ,
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and Wiener-type integral
∫ T

0 ϕtdBt can be defined for functions ϕ in the Banach
space |H |. Notice that we can integrate more functions that in the case of the Brownian
motion, and the isometry property of the Itô stochastic integral is replaced here by the
formula

E

(( ∫ T

0
ϕt dB

H
t

)2)
= αH

∫ T

0

∫ T

0
|r − u|2H−2ϕrϕu dudr = ‖ϕ‖2

H .

3.1.2. Case H < 1
2 . In this case, one can show that H = I

1
2 −H
T− (L2([0, T ]))

(see [14] and Proposition 6 of [2]), where I
1
2 −H
T− is the right-sided fractional integral

operator defined by

I
H− 1

2
T− ϕ(t) = 1

	
(
H − 1

2

) ∫ T

t

(s − t)H− 3
2ϕs ds.

This means that H is a space of functions. Moreover the norm of the Hilbert space
H can be computed as follows:

‖ϕ‖2
H = c2

H

∫ T

0
s1−2H (

D
1
2 −H
T− (uH− 1

2ϕu)
)2
(s) ds, (3.5)

where cH is a constant depending onH andD
1
2 −H
T− is the right-sided fractional deriva-

tive operator. The operator D
1
2 −H
T− is the inverse of I

H− 1
2

T− , and it has the following
integral expression:

D
1
2 −H
T− ϕ(t) = 1

	
(
H + 1

2

)(
ϕt

(T − t)
1
2 −H +

(
1

2
−H

) ∫ T

t

ϕt − ϕs

(s − t)
3
2 −H ds

)
. (3.6)

The following embeddings hold:

Cγ ([0, T ]) ⊂ H ⊂ L1/H ([0, T ])
for any γ > H− 1

2 . The first inclusion is a direct consequence of formula (3.6), and the
second one follows from Hardy–Littlewood inequality. Roughly speaking, in this case
the fractional Brownian motion is more irregular than the classical Brownian motion,
and some Hölder continuity is required for a function to be integrable. Moreover the
computation of the variance of an integral using formula (3.5) is more involved.

3.2. Integration of random processes. Different approaches have been used in the
literature in order to define stochastic integrals with respect to the fBm. Lin [26]
and Dai and Heyde [13] have defined a stochastic integral

∫ T
0 utdB

H
t as limit in L2

of Riemann sums in the case H > 1
2 . The techniques of Malliavin calculus have

been used to develop the stochastic calculus for the fBm starting from the pioneering
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work of Decreusefond and Üstünel [14]. We refer to the works of Carmona and
Coutin in [7], Alòs, Mazet and Nualart [1], [2], Alòs and Nualart [3], and the recent
monograph by Hu [21], among others. We will first describe a path-wise approach
based on Young integrals.

3.2.1. Path-wise approach. We can define
∫ T

0 ut dB
H
t using path-wise Riemann–

Stieltjes integrals taking into account the results of Young in [43]. In fact, Young
proved that the Riemann–Stieltjes integral

∫ T
0 ft dgt exists, provided that

f, g : [0, T ] → R are Hölder continuous functions of orders α and β with α+β > 1.
Therefore, if u = {ut , t ∈ [0, T ]} is a stochastic process with γ -Hölder continuous
trajectories, where γ > 1−H , then the Riemann–Stieltjes integral

∫ T
0 ut dB

H
t exists

path-wise. That is for any elementω ∈ �, the integral
∫ T

0 ut (ω) dB
H
t (ω) exists as the

point-wise limit of Riemann sums. In particular, ifH > 1/2, the path-wise Riemann–
Stieltjes integral

∫ T
0 F(BHt ) dB

H
t exists ifF is a continuously differentiable function.

Moreover the following change of variables formula holds:


(BHt ) = 
(0)+
∫ t

0
F(BHs ) dB

H
s (3.7)

if 
′ = F .
In the case 1

4 < H < 1
2 , there is a path-wise approach to the stochastic integrals

of the form ∫ T

0
F(BHt ) dB

H
t

using the theory of rough paths analysis introduced by Lyons in [27] (see also [28]).
This theory has allowed Coutin and Qian [12] to show the existence of a solution and to
prove the convergence of the Wong–Zakai approximations for stochastic differential
equations driven by an fBm with Hurst parameter H ∈ ( 1

4 ,
1
2

)
.

Nevertheless, unlike the case of the Itô stochastic integral with respect to the
Brownian motion, the path-wise integral

∫ T
0 F(BHt ) dB

H
t does not have zero mean

and there is no easy formula for its variance. We are going to explain how the
techniques of Malliavin calculus allow us to compute the mean and the variance of
this integral.

3.3. Malliavin calculus for the fBm. Let BH = {BHt , t ≥ 0} be an fBm with
Hurst parameter H ∈ (0, 1). The process BH is Gaussian and we can develop the
corresponding stochastic calculus of variations or Malliavin calculus. The Malli-
avin calculus is an infinite dimensional differential calculus introduced by Malliavin
in [29] to provide a probabilistic proof of Hörmander hypoellipticity theorem. The
basic operators of Malliavin calculus are the derivative operatorD and its adjoint the
divergence operator δ. We refer to Nualart [32] and [33] for a detailed account of the
Malliavin calculus and its application in the framework of the fBm.
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Fix a time interval [0, T ]. Let S be the set of elementary random variables of the
form

F = f (BH (ϕ1), . . . , B
H (ϕn)), (3.8)

where n ≥ 1, f ∈ C∞
p (R

n) (f and all its partial derivatives have polynomial growth
order), and ϕi ∈ H .

The derivative operator D of an elementary random variable F of the form (3.8)
is defined as the H-valued random variable

DF =
n∑
i=1

∂f

∂xi
(BH (ϕ1), . . . , B

H (ϕn))ϕi.

The following integration-by-parts formula holds.

Lemma 3.2. Let F be an elementary random variable of the form (3.8). Then, for
any ϕ ∈ H we have

E(〈DF, ϕ〉H ) = E(FBH (ϕ)). (3.9)

Proof. First notice that we can normalize Eq. (3.9) and assume that the norm of ϕ is
one. There exist orthonormal elements of H , e1, . . . , en, such that ϕ = e1 and F is
an elementary random variable of the form

F = f (BH (e1), . . . , B
H (en)),

wheref is inC∞
p (R

n). Letφ(x) denote the density of the standard normal distribution
on R

n, that is,

φ(x) = (2π)−
n
2 exp

(
− 1

2

n∑
i=1

x2
i

)
.

Then we have

E(〈DF, ϕ〉H ) =
∫

Rn

∂f

∂x1
(x)φ(x) dx

=
∫

Rn

f (x)φ(x)x1 dx

= E(FBH (e1)) = E(FBH (ϕ)),

which completes the proof of the lemma. �

As a consequence, if F and G are elementary random variables and h ∈ H , then
we have

E(G〈DF, h〉H ) = E(−F 〈DG,h〉H + FGBH(h)). (3.10)
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Formula (3.10) implies that the derivative operator D is a closable operator from
Lp(�) into Lp(�; H), for any p ≥ 1. We denote by he Sobolev space D

1,p is the
closure of S with respect to the norm

‖F‖1,p = [E(|F |p)+ E(‖DF‖pH )]1/p.

One can interpret D
1,p as an infinite-dimensional weighted Sobolev space.

The divergence operator δ is the adjoint of the derivative operator. That is, we
say that a random variable u in L2(�; H) belongs to the domain of the divergence
operator, denoted by Dom δ, if

|E(〈DF, u〉H )| ≤ cu‖F‖L2(�)

for any F ∈ S. In this case δ(u) is defined by the duality relationship

E(F δ(u)) = E(〈DF, u〉H ), (3.11)

for any F ∈ D
1,2.

For example, consider an elementary H-valued random variable of the form u =∑m
k=1 Fkϕk , where Fk ∈ D

1,2 and ϕk ∈ H . Then, u belongs to the domain of the
divergence and from (3.10) we deduce

δ(u) =
m∑
k=1

[FkBH (ϕk)− 〈DFk, ϕk〉H ]. (3.12)

The expression FkBH (ϕk) − 〈DFk, ϕk〉H is called the Wick product of the random
variables Fk and BH(ϕk) and it is denoted by

Fk � BH(ϕk) = FkB
H (ϕk)− 〈DFk, ϕk〉H . (3.13)

With this notation (3.12) can be written as

δ(u) =
m∑
k=1

Fk � BH(ϕk).

We will make use of the notation

δ(u) =
∫ T

0
ut � dBHt ,

when u is a stochastic process in the domain of the divergence operator.
Here are some basic formulas of the Malliavin calculus which hold for any ele-

mentary random variables F and u.

E(δ(u)2) = E(‖u‖2
H )+ E(〈Du, (Du)∗〉H⊗H ), (3.14)

δ(Fu) = Fδ(u)− 〈DF, u〉H , (3.15)

〈D(δ(u)), h〉H = 〈u, h〉H + δ(〈Du, h〉H ), (3.16)
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where (Du)∗ is the adjoint ofDu in the Hilbert space H ⊗H . Equation (3.14) holds
for any u in the Sobolev space D

1,2(H) of H-valued random variables and it implies
that D

1,2(H) ⊂ Dom δ . Equation (3.15) holds if F ∈ D
1,2, u belongs to the domain

of δ and Fu and Fδ(u)+ 〈DF, u〉H are square integrable. Finally, the commutation
relation (3.16) holds for any h ∈ H and u ∈ D

1,2(H) such that δ(u) ∈ D
1,2:

In case of an ordinary Brownian motion, the adapted processes in L2([0, T ]×�)
belong to the domain of the divergence operator, and on this class of processes the
divergence operator coincides with the Itô stochastic integral (see Nualart and Par-
doux [34]). Actually, the divergence operator coincides with an extension of Itô’s
stochastic integral introduced by Skorohod in [42]. This is a consequence of formula
(3.13), because if ϕk = 1[ak,bk] and Fk is a random variable measurable with respect

to the σ -field generated by {B1/2
t , t ≤ ak}, then 〈DFk, 1[ak,bk]〉L2([0,T ]) = 0, and the

Wick product of Fk and B1/2
bk

− B
1/2
ak is equal to the ordinary product. Notice here

that the random variables Fk and B1/2
bk

− B
1/2
ak are independent.

3.4. Wick integrals with respect to the fBm. A natural question in this framework
is to ask in which sense the divergence operator with respect to a fractional Brown-
ian motion B can be interpreted as a stochastic integral. The following proposition
provides an answer to this question.

Proposition 3.3. Fix a time interval [0, T ]. Let F be a function of class C1 such
which satisfies, together with F ′, the growth condition

|F(x)| ≤ ceλx
2
, (3.17)

where c and λ are positive constants such that λ < 1
4T 2H . Suppose thatH > 1

2 . Then,

F(BHt ) belongs to the domain of the divergence operator and∫ T

0
F(BHt )� dBHt =

∫ T

0
F(BHt ) dB

H
t −H

∫ T

0
F ′(BHt )t2H−1 dt, (3.18)

where
∫ T

0 F(BHt ) dB
H
t is the path-wise Riemann–Stieltjes integral.

Remarks. 1. Formula (3.18) leads to the following equation for the expectation of a
path-wise integral:

E

( ∫ T

0
F(BHt ) dB

H
t

)
= H

∫ T

0
E(F ′(BHt ))t2H−1 dt.

2. Suppose that F is a function of class C2 such that F , F ′ and F ′′ satisfy the
growth condition (3.17). Then, (3.18) and (3.7) yield

F(BHT ) = F(0)+
∫ T

0
F ′(BHt )� dBHt +H

∫ T

0
F ′′(BHt )t2H−1 dt, (3.19)

which can be considered as an Itô formula for the Wick integral.
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Proof of Proposition 3.3. Set ti = iT
n

. Then formula (3.13) yields

n∑
i=1

F(BHti−1
)� (BHti − BHti−1

) =
n∑
i=1

F(BHti−1
)(BHti − BHti−1

)

−
n∑
i=1

〈D(F(BHti−1
)), 1[ti−1,ti ]〉H .

We have, using the chain rule and DBHti−1
= 1[0,ti−1],

〈D(F(BHti−1
)), 1[ti−1,ti ]〉H = F ′(BHti−1

)〈1[0,ti−1], 1[ti−1,ti ]〉H
= F ′(BHti−1

)(RH (ti−1, ti)− RH(ti−1, ti−1))

= 1

2
F ′(BHti−1

)((ti)
2H − (ti−1)

2H − (ti − ti−1)
2H ).

Then it suffices to take the limit as n tends to infinity. The convergences are almost
surely and in L2(�). �

As an application of Proposition 3.3 we will derive the following estimate for the
variance of the path-wise stochastic integral of a trigonometric function.

Proposition 3.4. Let BH be a d-dimensional fractional Brownian motion with Hurst
parameter H > 1/2. Then for any ξ ∈ R

d we have

E

(∥∥∥∥
∫ T

0
ei〈ξ,BHt 〉 dBHt

∥∥∥∥2

C

)
≤ C(1 ∧ |ξ | 1

H
−2), (3.20)

where ‖z‖C = ∑d
i=1 z

izi and C is a constant depending on T , d and H .

Proof. From (3.18) we get∫ T

0
ei〈ξ,BHt 〉 dBHt =

∫ T

0
ei〈ξ,BHt 〉 � dBHt +H

∫ T

0
iξei〈ξ,BHt 〉t2H−1 dt. (3.21)

We denote by πξ (x) = x − ξ

|ξ |2 〈ξ, x〉 the projection operator on the orthogonal sub-
space of ξ . Clearly∫ T

0
ei〈ξ,BHt 〉 dBHt = πξ

( ∫ T

0
ei〈ξ,BHt 〉 dBHt

)
+ iξ

|ξ |2 (e
i〈ξ,BHT 〉 − 1), (3.22)

and, as a consequence, it suffices to show the estimate (3.20) for the first summand in
the right-hand side of (3.22). From (3.21) it follows that

Z := πξ

( ∫ T

0
ei〈ξ,BHt 〉 dBHt

)
= πξ

( ∫ T

0
ei〈ξ,BHt 〉 � dBHt

)
.
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Then we need to compute the expectation of the square norm of the C
3-valued ran-

dom variable Z. This is done using the duality relationship (3.11) and the commuta-
tion formula (3.16). The composition of the projection operator πξ and the derivative

operator D vanishes on a random variable of the form ei〈ξ,BHt 〉. Hence, only the
first term in the commutation formula (3.16) applied to ut = ei〈ξ,BHt 〉 will contribute
to E(‖Z‖2

C
) and we obtain

E(‖Z‖2
C
) =

d∑
j=1

E(ZjZj )

=
d∑
j=1

(
1 − (ξ j )2

|ξ |2
)

E
(〈
e−i〈ξ,BH· 〉, e−i〈ξ,BH· 〉〉

H

)

= (d − 1)αH

∫ T

0

∫ T

0
E
(
ei〈ξ,BHs −BHr 〉)|s − r|2H−2 dsdr

= (d − 1)αH

∫ T

0

∫ T

0
e−

|s−r|2H
2 |ξ |2 |s − r|2H−2 dsdr,

which leads to the desired estimate. �

Proposition 3.3 also holds for H ∈ (1
4 ,

1
2

]
if we replace the path-wise integral

in the right-hand side of (3.18) by the Stratonovich integral defined as the limit in
probability of symmetric sums∫ T

0
F(BHt ) dB

H
t = lim

n→∞

n∑
i=1

1

2

[
F

(
BH(i−1)T

n

) + F(BHiT
n

)
](
BHiT

n

− BH(i−1)T
n

)
.

For H = 1/2 the Wick integral appearing in Equation (3.18) is the classical Itô
integral and it is the limit of forward Wick or ordinary Riemann sums:

∫ T

0
F

(
B

1/2
t

)
� dB

1/2
t = lim

n→∞

n∑
i=1

F
(
B

1/2
(i−1)T
n

)
�

(
B

1/2
iT
n

− B
1/2
(i−1)T
n

)

= lim
n→∞

n∑
i=1

F
(
B

1/2
(i−1)T
n

)(
B

1/2
iT
n

− B
1/2
(i−1)T
n

)
.

Nevertheless, for H < 1/2 the forward Riemann sums do not converge in general.
For example, in the simplest case F(x) = x, we have, with the notation ti = iT

n

E

( n∑
i=1

(BHti−1
(BHti − BHti−1

))
)

= 1

2

n∑
i=1

[
t2Hi − t2Hi−1 − (ti − ti−1)

2H ]

= 1

2
T 2H (1 − n1−2H ) → −∞,

as n tends to infinity.
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The convergence of the forward Wick Riemann sums to the forward Wick integral
in the case H ∈ (1

4 ,
1
2

)
has been recently established in [36] and [5]. More precisely,

the following theorem has been proved in [36].

Theorem 3.5. Suppose H ∈ (1
4 ,

1
2

)
and let F be a function of class C7 such that F

together with its derivatives satisfy the growth condition (3.17). Then, the forward
Wick integral

∫ T

0
F(BHt )� dBHt = lim

n→∞

n∑
i=1

F
(
BH(i−1)T

n

)
�

(
BHiT

n

− BH(i−1)T
n

)
exists and the Wick–Itô formula (3.19) holds.

More generally, we can replace the fractional Brownian motionBH by an arbitrary
Gaussian process {Xt, t ≥ 0} with zero mean and continuous covariance function
R(s, t) = E(XsXt). Suppose that the variance function Vt = E(X2

t ) has bounded
variation on any finite interval and the following conditions hold for any T > 0:

lim
n→∞

n∑
i,j=1

(
E
((
XiT

n
−X(i−1)T

n

)(
XjT

n
−X(j−1)T

n

)))2 → 0, (3.23)

lim
n→∞

n∑
i=1

sup
0≤t≤T

(
E
((
XiT

n
−X(i−1)T

n

)
Xt

))2 → 0. (3.24)

Then it is proved in [36] that the forward Wick integral
∫ T

0 F(Xt)� dXt exists and
the following version of the Wick–Itô formula holds:

F(XT ) = F(X0)+
∫ T

0
F ′(Xt )� dXt + 1

2

∫ T

0
F ′′(Xt ) dVt .

4. Application of fBm in turbulence

The observations of three-dimensional turbulent fluids indicate that the vorticity field
of the fluid is concentrated along thin structures called vortex filaments. In his book
Chorin [10] suggests probabilistic descriptions of vortex filaments by trajectories of
self-avoiding walks on a lattice. Flandoli [17] introduced a model of vortex filaments
based on a three-dimensional Brownian motion. A basic problem in these models is
the computation of the kynetic energy of a given configuration.

Denote by u(x) the velocity field of the fluid at point x ∈ R
3, and let ξ = curlu

be the associated vorticity field. The kynetic energy of the field will be

H = 1

2

∫
R3

|u(x)|2dx = 1

8π

∫
R3

∫
R3

ξ(x) · ξ(y)
|x − y| dxdy. (4.1)
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We will assume that the vorticity field is concentrated along a thin tube centered
in a curve γ = {γt , 0 ≤ t ≤ T }. Moreover, we will choose a random model
and consider this curve as the trajectory of a three-dimensional fractional Brownian
motion BH = {BHt , 0 ≤ t ≤ T } with Hurst parameterH . That is, the components of
the process BH are independent fractional Brownian motions. This modelization is
justified by the fact that the trajectories of the fractional Brownian motion are Hölder
continuous of any order H ∈ (0, 1). For technical reasons we are going to consider
only the case H > 1

2 .
Then the vorticity field can be formally expressed as

ξ(x) = 	

∫
R3

( ∫ T

0
δ(x − y − BHs )

·
BHs ds

)
ρ (dy), (4.2)

where 	 is a parameter called the circuitation, and ρ is a probability measure on R
3

with compact support.
Substituting (4.2) into (4.1) we derive the following formal expression for the

kinetic energy:

H =
∫

R3

∫
R3

Hxyρ(dx)ρ(dy), (4.3)

where the so-called interaction energy Hxy is given by the double integral

Hxy = 	2

8π

3∑
i=1

∫ T

0

∫ T

0

1

|x + BHt − y − BHs | dB
H,i
s dB

H,i
t . (4.4)

We are interested in the following problems: Is H a well defined random variable?
Does it have moments of all orders and even exponential moments?

In order to give a rigorous meaning to the double integral (4.4) we introduce the
regularization of the function | · |−1:

σn = | · |−1 ∗ p1/n, (4.5)

where p1/n is the Gaussian kernel with variance 1
n

. Then the smoothed interaction
energy

H
n
xy = 	2

8π

3∑
i=1

∫ T

0

( ∫ T

0
σn(x + BHt − y − BHs ) dB

H,i
s

)
dB

H,i
t (4.6)

is well defined, where the integrals are path-wise Riemann–Stieltjes integrals. Set

H
n =

∫
R3

∫
R3

H
n
xyρ(dx)ρ(dy). (4.7)

The following result has been proved in [35].
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Theorem 4.1. Suppose that the measure ρ satisfies∫
R3

∫
R3

|x − y|1− 1
H ρ(dx)ρ(dy) < ∞. (4.8)

Let H
n
xy be the smoothed interaction energy defined by (4.5). Then H

n defined in (4.7)
converges, for all k ≥ 1, inLk(�) to a random variable H ≥ 0 that we call the energy
associated with the vorticity field (4.2).

If H = 1
2 , the fBm BH is a classical three-dimensional Brownian motion. In

this case condition (4.8) would be
∫

R3

∫
R3 |x − y|−1ρ(dx)ρ(dy) < ∞, which is

the assumption made by Flandoli [17] and Flandoli and Gubinelli [18]. In this last
paper, using Fourier approach and Itô’s stochastic calculus, the authors show that
E(e−βH) < ∞ for sufficiently small negative β.

The proof of Theorem 4.1 is based on the stochastic calculus with respect to fBm
and the application of Fourier transform. Using Fourier transform we can write

1

|z| =
∫

R3
(2π)3

e−i〈ξ,z〉

|ξ |2 dξ

and

σn(x) =
∫

R3
|ξ |−2ei〈ξ,x〉−|ξ |2/2n dξ. (4.9)

Substituting (4.9) into in (4.6), we obtain the following formula for the smoothed
interaction energy:

H
n
xy = 	2

8π

3∑
j=1

∫ T

0

∫ T

0

( ∫
R3
ei〈ξ,x+Bt−y−Bs〉 e

−|ξ |2/2n

|ξ |2
)
dB

H,j
s dB

H,j
t

= 	2

8π

∫
R3

|ξ |−2ei〈ξ,x−y〉−|ξ |2/2n‖Yξ‖2
C
dξ, (4.10)

where

Yξ =
∫ T

0
ei〈ξ,BHt 〉 dBHt .

Integrating with respect to ρ yields

H
n = 	2

8π

∫
R3

‖Yξ‖2
C
|ξ |−2|ρ̂(ξ)|2e−|ξ |2/2ndξ ≥ 0. (4.11)

From Fourier analysis and condition (4.8) we know that∫
R3

∫
R3

|x − y|1− 1
H ρ(dx)ρ(dy) = CH

∫
R3

|ρ̂(ξ)|2|ξ | 1
H

−4dξ < ∞. (4.12)
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Then, taking into account (4.12) and (4.11), in order to show the convergence inLk(�)
of H

n to a random variable H ≥ 0 it suffices to check that

E(‖Yξ‖2k
C
) ≤ Ck

(
1 ∧ |ξ |k( 1

H
−2)). (4.13)

For k = 2 this has been proved in Proposition 3.4. The general case k ≥ 2 follows
by similar arguments making use of the local nondeterminism property of fBm (see
Berman [4]):

Var
( ∑

i

(BHti − BHsi )
)

≥ kH
∑
i

(ti − si)
2H .

5. Application to financial mathematics

Fractional Brownian motion has been used to describe the behavior to prices of assets
and volatilities in stock markets. The long-range dependence self-similarity prop-
erties make this process a suitable model to describe these quantities. We refer to
Shiryaev [41] for a general description of the applications of fractional Brownian mo-
tion to model financial quantities. We will briefly present in this section two different
uses of fBm in mathematical finance.

5.1. Fractional Black and Scholes model. It has been proposed by several authors
to replace the classical Black and Scholes model which has no memory and is based on
the geometric Brownian motion by the so-called fractional Black and Scholes model.
In this model the market stock price of the risky asset is given by

St = S0 exp

(
μt + σBHt − σ 2

2
t2H

)
, (5.1)

where BH is an fBm with Hurst parameterH , μ is the mean rate of return and σ > 0
is the volatility. The price of the non-risky assets at time t is ert , where r is the interest
rate.

Consider an investor who starts with some initial endowment V0 ≥ 0 and invests
in the assets described above. Let αt be the number of non-risky assets and let βt the
number of stocks owned by the investor at time t . The couple (αt , βt ), t ∈ [0, T ] is
called a portfolio and we assume that αt and βt are stochastic processes. Then the
investor’s wealth or value of the portfolio at time t is

Vt = αte
rt + βtSt .

We say that the portfolio is self-financing if

Vt = V0 + r

∫ t

0
αse

rsds +
∫ t

0
βsdSs. (5.2)
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This means that there is no fresh investment and there is no consumption. We see here
that the self-financing condition requires the definition of a stochastic integral with
respect to the fBm, and there are two possibilities: path-wise integrals and Wick-type
integrals.

The use of path-wise integrals leads to the existence of arbitrage opportunities,
which is one of the main drawbacks of the model (5.1). Different authors have
proved the existence of arbitrages for the fractional Black and Scholes model (see
Rogers [40], Shiryaev [41], and Cheridito [9]). By definition, an arbitrage is a self-
financing portfolio which satisfies V0 = 0, VT ≥ 0 and P(VT > 0) > 0.

In the case H > 1
2 , one can construct an arbitrage in the following simple way.

Suppose, to simplify, that μ = r = 0. Consider the self-financing portfolio defined
by

βt = St − S0,

αt =
∫ t

0
βsdSs − βtSt .

This portfolio satisfies V0 = 0 and Vt = (St − S0)
2 > 0 for all t > 0, and hence it is

an arbitrage.
In the classical Black and Scholes model (caseH = 1

2 ), there exists an equivalent
probability measure Q under which μ = r and the discounted price process S̃t =
e−rtSt is a martingale. Then, the discounted value of a self-financing adapted portfolio
satisfying EQ

( ∫ T
0 β2

s S̃
2
s ds

)
< ∞ is a martingale on the time interval [0, T ] given by

the Itô stochastic integral

Ṽt = V0 +
∫ t

0
βsdS̃s .

As a consequence,Vt = e−r(T−t)
EQ(VT |Ft ), and the price of an European option with

payoff G at the maturity time T is given by e−r(T−t)
EQ(G|Ft ). The probability Q

is called the martingale measure. In the case H �= 1
2 , there exist an equivalent

probability Q under which μ = r and St = S0 exp(σBHt − σ 2

2 t
2H ) has constant

expectation. However, e−rtSt is not a martingale under Q.
The existence of arbitrages can be avoided using forward Wick integrals to define

the self-financing property (5.2). In fact, using the Wick–Itô formula in (5.1) yields

dSt = μStdt + σSt � dBHt ,

and then the self-financing condition (5.2) could be written as

Vt = V0 +
∫ t

0
(rαse

rs + μβsSs)ds + σ

∫ t

0
βsSs � dBHs .

Applying the stochastic calculus with respect to the Wick integral, Hu and Øksendal
in [22], and Elliott and Hoek in [16] have derived the following formula for the value
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of the call option with payoff (ST −K)+ at time t ∈ [0, T ]:
C(t, St ) = St
(y+)−Ke−r(T−t)
(y−), (5.3)

where

y± =
(

ln
St

K
+ r(T − t)± σ 2(T 2H − t2H )

2

)/
σ
√
T 2H − t2H . (5.4)

In [6] Björk and Hult argue that the definition of a self-financing portfolio using the
Wick product is quite restrictive and in [37] Nualart and Taqqu explain the fact that in
formula (5.4) only the increment of the variance of the process in the interval [t, T ]
appears, and extend this formula to price models driven by a general Gaussian process.

5.2. Stochastic volatility models. It has been observed that in the classical Black
and Scholes model the implied volatilityσ imp

t,T obtained from formula (5.3) for different
options written on the same asset is not constant and heavily depends on the time t ,
the time to maturity T − t and the strike price St . The U -shaped pattern of implied
volatilites across different strike prices is called “smile”, and it is believed that this
and other features as the volatility clustering can be explained by stochastic volatility
models. Hull and White have proposed in [23] an option pricing model in which the
volatility of the asset price is of the form exp(Yt ), where Yt is an Ornstein–Uhlenbeck
process.

Consider the following stochastic volatility model based on the fractional Ornstein–
Uhlenbeck process. The price of the asset St is given by

dSt = μStdt + σtStdWt ,

where σt = f (Yt ) and Yt is a fractional Ornstein–Uhlenbeck process:

dYt = α(m− Yt )dt + βtdB
H
t .

The process Wt is an ordinary Brownian motion and BHt is a fractional Brownian
motion with Hurst parameter H > 1

2 , independent of W . Examples of functions f
are f (x) = ex and f (x) = |x|.

Comte and Renault studied in [11] this type of stochastic volatility model which
introduces long memory and mean reverting in the Hull and White setting. The
long-memory property allows this model to capture the well-documented evidence of
persistence of the stochastic feature of Black and Scholes implied volatilities, when
time to maturity increases.

Hu has proved in [21] the following properties of this model.

1) The market is incomplete and martingale measures are not unique.

2) Set γt = (r − μ)/σt and

dQ

dP
= exp

( ∫ T

0
γt dWt − 1

2

∫ T

0
|γt |2 dt

)
.

Then Q is the minimal martingale measure associated with P .
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3) The risk minimizing-hedging price at time t = 0 of an European call option
with payoff (ST −K)+ is given by

C0 = e−rTEQ[(ST −K)+]. (5.5)

As a consequence of (5.5), if Gt denotes the filtration generated by fBm, we obtain

C0 = e−rTEQ[EQ((ST −K)+|GT )]
= e−rTEQ[CBS(σ )].

Here σ =
√∫ T

0 σ 2
s ds and CBS(σ ) is the Black and Scholes price function given by

CBS = S0
(y+)−Ke−rT 
(y−),

where

y± = ln S0
K

+ (r ± σ 2

2 )T

σ
√
T

.
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Atomistic and continuum models for phase change
dynamics

Anders Szepessy

Abstract. The dynamics of dendritic growth of a crystal in an undercooled melt is determined by
macroscopic diffusion-convection of heat and capillary forces acting on length scales compared to
the nanometer width of the solid-liquid interface. Its modeling is useful for instance in processing
techniques based on casting. The phase field method is widely used to study evolution of such
microstructures of phase transformations on a continuum level; it couples the energy equation
to a phenomenological Allen–Cahn/Ginzburg–Landau equation modeling the dynamics of an
order parameter determining the solid and liquid phases, including also stochastic fluctuations
to obtain the qualitative correct result of dendritic side branching. This lecture presents some
ideas to derive stochastic phase field models from atomistic formulations by coarse-graining
molecular dynamics and kinetic Monte Carlo methods.

Mathematics Subject Classification (2000). 82C31, 65C30.

Keywords. Phase transformation, phase-field, coarse-grained, molecular dynamics, Brownian
dynamics, Langevin equation, Smoluchowski equation, kinetic Monte Carlo.

1. Introduction to phase-field models

The phase field model for modeling a liquid solid phase transformation is an Allen–
Cahn/Ginzburg–Landau equation coupled to the energy equation

∂tφ = div(k1∇φ) − k0(f
′(φ) + g′(φ)k4T ) + noise,

∂t (cvT + k2g(φ)) = div(k3∇T )
(1.1)

with a double-well potential f having local minima at ±1, smoothed step function g,
temperature T and specific heat cv , cf. [3]. The phase field variable φ : R

d ×[0, ∞) →
[−1, 1] interprets the solid and liquid phases as the domains {x ∈ R

d : φ(x) > 0} and
{x ∈ R

d : φ(x) < 0} respectively. To have such an implicit definition of the phases,
as in the level set method, is a computational advantage compared to a sharp interface
model, where the necessary direct tracking of the interface introduce computational
drawbacks. This phenomenological phase-field model, with free energy potentials
motived by thermodynamics, has therefore become a popular and effective compu-
tational method to solve problems with complicated microstructures of dendrite and
eutectic growth, cf. [1], [3]. The phase-field model has mathematical wellposedness
and convergence to sharp interface results [34].

Proceedings of the International Congress
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© 2006 European Mathematical Society
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Assuming that the reaction term in the Allen–Cahn equation takes a given form,
e.g. a standard choice is

f (φ) := (1 − φ2)2,

g(φ) := 15
16

(1
5φ5 − 2

3φ3 + φ
) + 1

2 ,

then the parameters k0, k1, k2, k3, k4 in the phase-field model can be determined
from atomistic molecular simulations [19]; an alternative in [1] uses a steeper step
function g to easy derive consistency with sharp interface models. The evolution of
the phase interface depends on the orientation of the solid crystal; this is modeled by
an anisotropic matrix k1. Added noise to system (1.1) is also important, e.g. to obtain
sidebranching dendrites [22] explained in Section 5.4.

Phase changes can be modeled on an atomistic level by molecular dynamics or
kinetic Monte Carlo methods. This lecture first presents some ideas and questions
to derive a stochastic phase field model by coarse-graining molecular dynamics, to
determine the reaction term (i.e. f and g) and the noise. This is made in three steps
in Sections 2 to 4: to give a precise quantitative atomistic definition of the phase-field
variable, to introduce an atomistic molecular dynamics model based on Brownian
dynamics, and to derive the dynamics for the coarse-grained phase-field. Section 5
derives stochastic hydrodynamical limits of solutions to an Ising model with long
range interaction, i.e. coarse-graining a kinetic Monte Carlo method following [24].
Section 5.4 presents a simple kinetic Monte Carlo method for dendrite dynamics.

2. Quantitative atomistic definition of the phase-field variable

The aim is to give a unique definition of the phase-field variable, so that it can be de-
termined precisely from atomistic simulations. The usual interpretation is to measure
interatomic distances and use structure functions (or similar methods) to measure
where the phase is solid and where it is liquid, which then implicitly defines the
phase-field variable [3]. Here we instead use the energy equation for a quantitative
and explicit definition of the phase-field variable. The macroscopic energy equation
with a phase transformation and heat conduction is

∂t (cvT + m) = div(k∇T ) (2.1)

where m corresponds to the latent heat release. In (1.1) the latent heat determines the
parameter k2, since φ is defined to jump from 1 to −1 in the phase transformation.
We will instead use this latent heat to directly define the phase field function, and not
only the parameter k2. The total energy, cvT + m, can be defined from molecular
dynamics of N particles with position Xi , velocity vi and mass μ in a potential V ,
see [20], [18],

cvT + m =
N∑

i=1

μ
|vi |2

2
+ V (X1, . . . , XN). (2.2)
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Assume that the potential can be defined from pair interactions

V (X) = 1

2

N∑
i=1

∑
j �=i

�(Xi − Xj), (2.3)

where � : R
3 → R is a molecular dynamics pair potential, e.g. a Lennard–Jones

potential

�(x) = z1

( σ

|x|
)12 − z2

( σ

|x|
)6

.

In the macroscopic setting the jump of m in a phase change is called the latent heat,
which depends on the thermodynamic variables kept constant: with constant N , T and
volume it is called the internal energy and with constant pressure instead of volume
it is called enthalpy. The kinetic energy

∑
i μ|vi |2/2 is related to the temperature.

It is therefore natural to let the phase field variable be determined by the potential
energy V (X). In a pointwise setting the potential energy can be represented by the
distribution

1

2

N∑
i=1

∑
j �=i

�(Xi − Xj)δ(x − Xi)

where δ is the point mass at the origin [20]. We seek an averaged variant and we
will study a microscopic phase change model where the interface is almost planar in
the microscopic scale with normal in the x1 direction. Therefore we take a smooth
average and define the phase-field variable by

m(X, x) := 1

2

N∑
i=1

∑
j �=i

�(Xi − Xj)

︸ ︷︷ ︸
mi(X)

η(x − Xi) (2.4)

where η : R
3 → (0, ∞) is a smooth approximation of the point (delta) mass, with

scale εi > 0 in the xi direction,

η(x) :=
3∏

i=1

e−|xi |2/(2ε2
i )

(2πε2
i )

1/2
. (2.5)

Smooth averages have been used in molecular dynamics for fluid dynamics, cf. [18]
and for the vortex blob method and the smoothed particle hydrodynamics approxi-
mation of moving particles in fluid dynamics, cf. [29], [2]. Sections 3–4 present a
molecular dynamics model for the potential energy (2.4) and Section 5.4 formulates
a kinetic Monte Carlo model.

Question 2.1. How accurate is it to say that the (macroscopic) latent heat is equal to
a jump in V ?
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3. An atomistic Brownian dynamics model

The standard method to simulate molecular dynamics is to write Newton’s laws for
the particles, cf. [10], [32]. We will instead use Brownian dynamics with the Ito
differential equations

dXt
i = −∂Xi

V (Xt)dt + √
2γ dWt

i (3.1)

where Wi are independent Brownian motions and the notation Xt
i := Xi(t) is the

position of the i’th particle at time t . This equation, called the Smoluchowski equation,
is the zero relaxation time limit (i.e. τ → 0+) of Langevin’s equation ( cf. [25], [30],
[32], [21])

dX̂s
i = pi/μds

dps
i = −∂Xi

V (X̂s)ds − ps
i

τ
ds +

√
2γμ

τ
dŴ s

i ,
(3.2)

in the faster time scale s = μt/τ , where μ is the mass and Ŵi are independent Brow-
nian motions. The zero relaxation time limit is explained more in Remark 3.2. The
simplified Brownian dynamics has the same invariant measure with density propor-
tional to e−V (X)/γ as in Monte-Carlo molecular dynamics simulations of equilibrium
problems with γ = kBT , where T is the absolute temperature and kB is the Boltz-
mann constant. In this sense, the parameter γ /kB in the Brownian dynamics is the
local temperature T . In contrast to the standard Monte-Carlo method, the model (3.1)
includes the time variable. Our microscopic model of a phase change is then the Brow-
nian dynamics model (3.1) for the phase-field (latent heat) variable m in (2.4) coupled
to the macroscopic energy equation (2.1). The Brownian dynamics uses γ := kBT ,
where the temperature varies on the macroscopic scale, due to the energy equation, so
that T is almost constant on the microscopic scale of a molecular dynamics simulation
and makes its Gibbs equilibrium density proportional to e−V (X)/(kBT (x)) reasonable.

We have two reasons to use Brownian dynamics instead of standard deterministic
Newton dynamics (τ = ∞ in (3.2)): the most important reason is to have a formu-
lation that separates the noise and the mean drift, which is a much harder issue in
deterministic many particle dynamics, in fact so far the only derivation of the Euler
equations of conservation laws from particle dynamics use a weak noise perturbation
of a Hamiltonian system in [31]; and the second reason is to try to simulate molecular
dynamics longer time.

Question 3.1. Is Brownian dynamics a reasonable alternative to standard molecular
dynamics here?

Remark 3.2 (Smoluchowski limit of the Langevin equation). The Smoluchowski high
friction limit of the Langevin equation has been computed with different methods us-
ing strong [30] and weak convergence [25]. Strong convergence has the drawback to
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yield error estimates of order eKtτ , due to a Gronwall estimate and Lipschitz bound K

of the forces; in contrast, error estimates of probabilities using weak convergence can
show good accuracy for long time. The proof that the Langevin solution X̂μt/τ con-
verges weakly (i.e. in law) to the Smoluchowski solution Xt as τ → 0+ in [25], [28]
uses a Chapman–Enskog expansion of the Kolmogorov backward equation, for the
Langevin dynamics in the diffusion time scale t , combined with a general conver-
gence result for such diffusion processes in [26]. Dissipative particle dynamics [15]
has dissipation-fluctuation perturbations of a Hamiltonian system where the momen-
tum is conserved, in contrast to the analogous Langevin dynamics. The work [25]
also shows that a Smoluchowski type limit seems more subtly for dissipative particle
dynamics.

4. Coarse-grained phase-field dynamics

We want to determine a mean drift function a(m) and a diffusion function b(m) so
that the coarse-grained approximation mt , solving the coarse-grained equation

dmt = a(mt)dt +
M∑

k=1

bk(m
t)dW̃ t

k,

is an optimal approximation to the phase field m(Xt, · ) defined in (2.4), where Xt

solves the Brownian dynamics (3.1). Here W̃k, k = 1, . . . , M are all independent
Brownian motions, also independent of all Wi . For this purpose we seek to minimize
the error of the expected value at any time T

E[g(m(XT , · ))] − E[g(mT )]
for any given function g with the same initial value m0 = m(X0, · ). Here the expected
value of a stochastic variable w, with set of outcomes � and probability measure P ,
is defined by

E[w] :=
∫

�

w dP.

The first idea, in Section 4.1, is that Ito’s formula and the Brownian dynamics (3.1)
determine functions α and β, depending on the microscopic state X, so that

dm(Xt , · ) = α(Xt)dt +
N∑

j=1

βj (X
t)dWt

j . (4.1)

The next step, in Section 4.2, is to estimate the error, using the Kolmogorov
equations for m and (4.1) similar to [35], [24], which leads to

E[g(m(XT , · ))−g(mT )] = E

[ ∫ T

0
〈u′, α−a〉+〈u′′,

N∑
j=1

βj ⊗βj −
M∑

k=1

bk⊗bk〉 dt

]
,
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where 〈u′, · 〉 is the L2(R) scalar product corresponding to the variable x with u′,
which is the Gateaux derivative (i.e. functional derivative) of the functional
E[g(mT ) | mt = n] with respect to n; and similarly 〈u′′, · 〉 is the L2(R × R) scalar
product with the second Gateaux derivative u′′ of the functional E[g(mT ) | mt = n]
with respect to n. The notation bk ⊗ bk(x, x′) := bk(x)bk(x

′) is the tensor product.
The final step, in Section 4.3, is to use molecular dynamics simulations for a planar

two phase problem and take averages in cross sections parallel to the interface, where
u′, u′′, a,

∑
k bk ⊗ bk are constant, to evaluate approximations to the functions a and∑

k bk ⊗ bk by

a = 1

T
E

[ ∫ T

0
α dt

]
,

∑
k

bk ⊗ bk = 1

T
E

[ ∫ T

0

N∑
j=1

βj ⊗ βj dt

]
.

4.1. The Ito formula for the phase-field. The Ito formula (cf. [13]) implies

dm(Xt , x) =
N∑

j=1

(−∂Xj
m ∂Xj

V + γ ∂XjXj
m)

︸ ︷︷ ︸
α(Xt )

dt +
N∑

j=1

√
2γ ∂Xj

m︸ ︷︷ ︸
βj (Xt )

dWj . (4.2)

The definition in (2.4),

m(Xt, x) =
∑

i

mi(X)η(x − Xt
i ),

yields
∂Xj

m =
∑

i

∂Xj
miη(x − Xi) + mj∂Xj

η(x − Xj).

In (4.2) we will use (2.5) to evaluate the last derivative as

∂Xj
η(x − Xj) = −∂xη(x − Xj) in dt terms,

∂Xj
η(x − Xj) = −η(x − Xj)

(
(x − Xj)1

ε2
1

,
(x − Xj)2

ε2
2

,
(x − Xj)3

ε2
3

)
in dWj terms,

in order to avoid spatial derivatives on the diffusion coefficient, while including them
in the drift. Since

mi = 1

2

∑
k �=i

�(Xi − Xk)

and

V (X) = 1

2

∑
i

∑
j �=i

�(Xi − Xj)
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there holds

∂Xj
mi = 1

2

∑
k �=i

�′(Xi − Xk)δij − 1

2
�′(Xi − Xj)(1 − δij ),

∂Xj
V (X) =

∑
k �=j

�′(Xj − Xk),

where

δij :=
{

1 i = j,

0 i �= j

is the Kronecker symbol. The second derivatives are

∂XjXj
m =

∑
i

∂XjXj
miη(x − Xi) − 2∂Xj

mj∂xη(x − Xj) + mj∂xxη(x − Xj),

with

∂XjXj
mi = 1

2

∑
k �=i

�′′(Xi − Xk)δij + 1

2
�′′(Xi − Xj)(1 − δij )

and all terms in (4.2) are now expressed in terms of �, its gradient �′ and Hessian
�′′. We note that the drift, α, has the form

∂x

( N∑
i=1

n2i (X
t )η(x − Xt

i )
)

+
N∑

i=1

n1i (X
t )η(x − Xt

i )

of conservative and non conservative reaction terms. Similarly the diffusion, βj , takes
the form

N∑
i=1

n3i (X
t )η(x − Xt

i )(x − Xt
i ).

4.2. The error representation. The conditioned expected value

u(n, t) := E[g(mT ) | mt = n] (4.3)

satisfies the Kolmogorov equation (cf. [35], [24])

∂tu + 〈u′, a〉 +
〈
u′′,

M∑
k=1

bk ⊗ bk

〉
= 0

u( ·, T ) = g

(4.4)

Let mt := m(Xt, · ). The final condition in (4.4) and the definition (4.3) show that

E[g(m(XT , · )) − g(mT )] = E[u(mT , T )] − u(m0, 0) = E

[ ∫ T

0
du(mt , t)

]
.
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Use the Ito formula and (4.2) to evaluate du(mt , t) and Kolmogorov’s equation (4.4)
to replace ∂tu in this right hand side to obtain the error representation

E[g(m(XT , · )) − g(mT )]

= E

[ ∫ T

0
〈u′, α〉 + 〈u′′,

N∑
j=1

βj ⊗ βj 〉 + ∂tu dt

]

= E

[ ∫ T

0
〈u′, α − a〉 + 〈u′′,

N∑
j=1

βj ⊗ βj −
M∑

k=1

bk ⊗ bk〉 dt

]
.

4.3. Computation of averages in cross sections. The optimal choice of the func-
tion a is to minimize E

[ ∫ T
0 〈u′, α − a〉 dt

]
, which seems hard to determine exactly

since u′(m(Xt , · ), t) depends on Xt . However, the function u′(m(Xt , · ), t) depends
only mildly on the coarse-grained m(Xt, · ) and not directly on Xt . Therefore a rea-
sonable approximation of this optimum is to think of an expansion of u′ in α − a and
determine a by the leading order condition E

[ ∫ T
0 α − a dt

] = 0, which means that
the drift a(x) := a(m( ·, x)) is

a(x) = 1

T
E

[ ∫ T

0
α(x) dt

]
,

and similarly for the diffusion matrix

d(x, x′) = 1

T
E

[ ∫ T

0

N∑
j=1

βj (x) ⊗ βj (x
′) dt

]
.

We expect the spatial averages of the microscopic variables to vary on a much smaller
scale in the x1 direction normal to the phase front than in its orthogonal directions.
Consequently we use an average function η in (2.4) with higher resolution in the x1
direction, so that 0 < ε1 � ε2 = ε3. In a microscopic simulation the molecular
dynamics (3.1) has a small spatial volume, so that ε2 is much larger than the size of
the simulation box. Consequently we may first think of α and β depending only on
the x1 coordinate.

In practice, the drift a and diffusion d can only be determined for a discrete set of
points

{(x1(1), x2(1), x3(1)), . . . , (x1(M/3), x2(M/3)), x3(M/3))} =: XM

and XM × XM , respectively, related to the scales εi . The diffusion coefficient b,
as a function of x, can then be obtained from Choleski factorization of the M × M

matrix d
M∑

k=1

bk(x)bk(x
′) = d(x, x′).
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We expect that x1 �→ T −1E
[ ∫ T

0 mt dt
]

is monotone, for fixed (x2, x3), so that its
inverse function, denoted by m−1, is well defined. Then the coarse-grained drift and
the diffusion can be obtained as function of m by

a(m) := a(m−1(m)),

and similarly for bj .

Question 4.1. Will the computed a and b be reasonable?

Question 4.2. Can the phase-field method be coupled to the molecular dynamics
method for improved localized resolution?

Question 4.3. Note that the approximation error E[g(m(XT , · ))−g(mT )] becomes
proportional to the variances

E

[ ∫ T

0
〈α − a, α − a〉 dt

]
,

E

[ ∫ T

0

〈 N∑
j=1

βj ⊗ βj −
M∑

k=1

bk ⊗ bk,

N∑
j=1

βj ⊗ βj −
M∑

k=1

bk ⊗ bk

〉
dt

]
.

The first variations ∂u′(m(Xt , · ), t)/∂α and ∂u′′(m(Xt , · ), t)/∂βj determine the fac-
tors of proportionality. Can this be used to adaptively determine the resolution scale ε?

Remark 4.4. If we integrate the noise term over all x1, i.e. take ε1 very large, and
let g(m) = m2, then the error E[g(m(XT , · )) − g(mT )] we are studying is the usual
fluctuation of energy E[V 2 −E[V ]2] (proportional to the specific heat [21]), provided
we set m = E[V ].

5. An atomistic kinetic Monte Carlo method

Kinetic Monte Carlo methods can also be used to simulate solid-liquid phase changes
on an atomistic level, cf. [14]. Here the reaction states and rates are given a priori,
which makes it possible to simulate crystal growth on larger time scales than in
molecular dynamics. The reaction rates and states can in principle be determined
from a molecular dynamics simulations on smaller systems, cf. [37]; however often
several reactions are involved making this a demanding modeling task. This section
is a short version of [24] and derives stochastic hydrodynamical limits of the Ising
model with long range interaction, which is the simplest model of this kind of an
stochastic interacting particle system on a square lattice with two possible states in
each lattice point, cf. [21].

Define a periodic lattice L := γZd ∩[0, 1]d , with neighboring sites on distance γ ,
and consider spin configurations σ : L × [0, T ] → {−1, 1} defined on this lattice.
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Introduce a stochastic spin system where the spin σt (x), at site x ∈ L and time t , will
flip to −σt (x) with the rate c(x, σt ( · ))dt , in the time interval (t, t +dt), independent
of possible flips at other sites, cf. [27]. Let σx denote the configuration of spins after
a flip at x of state σ , i.e.

σx(y) =
{

σ(y) y �= x,

−σ(x) y = x,

the probability density P(σ, t) of finding the spin system in configuration σ ∈
{−1, 1}L at time t then solves the master equation

dP (σ, t)

dt
=

∑
x∈L

(c(x, σ x)P (σx, t) − c(x, σ )P (σ, t)), (5.1)

where the gain term
∑

x c(x, σ x)P (σx, t) is the probability of jumping to state σ at
time t and the loss term

∑
x c(x, σ )P (σ, t) is the probability to leave state σ . Similar

master equations are used for microscopic models of chemical reactions and phase
transformations, cf. [36], [14], where lattice sites are occupied by different species
of particles. For instance with two species the state space could be {0, 1} × {0, 1}
instead of {−1, 1} for the classical spin model above.

We want a spin system that has statistical mechanics relevance, which can achieved
e.g. by choosing the rate function c as follows. Consider the Hamiltonian

H(σ) = −1

2

∑
x∈L

∑
y �=x

J (x − y)σ (x)σ (y) −
∑
x∈L

h(x)σ (x)

J = γ dJ0, J0(x) = 0 for |x| ≥ 1,

where the long range interaction potential, J0 ∈ C2(Rd), is compactly supported and
the function h ∈ C2(Rd) is a given external field. Define the Glauber Markov process
on {−1, 1}L with generator

d

dt
E[f (σt )|σ ] = Lf (σ) =

∑
x∈L

c(x, σ )(f (σ x) − f (σ)) (5.2)

for f : {−1, 1}L → R and the flip rate

c(x, σ ) = e−βU(x)σ (x)

e−βU(x) + eβU(x)
= 1

2

(
1 − σ(x) tanh(βU(x))

)
,

U(x) = h(x) +
∑
y �=x

J (x − y)σ (y) =: h(x) + J ∗ σ(x) − J (0)σ (x),
(5.3)

where β > 0 is the inverse temperature. This flip rate has built in invariance of the
Gibbs density, e−βH(σ)/

∑
σ e−βH(σ), since it satisfies the detailed balance

c(x, σ )e−βH(σ) = c(x, σ x)e−βH(σx),
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which implies that this Gibbs density is a time independent (invariant) solution to
(5.1). Having this invariant Gibbs measure implies that the model has statistical
mechanics relevance, see [12], [4], [5], [6], [11]. For example in a neighborhood of
x ∈ L, where h and J ∗ (1, . . . , 1) are positive, the construction of the flip rate c

makes the system favor phases with spins mostly equal to 1 as compared to phases
with spins mostly equal to −1.

We will study localized projection averages of σ on scale ε. In particular we will
find approximations to expected values of such averages. The error analysis uses
consistency with the backward equation

∂t ũ + Lũ = 0 for t < T , ũ( · , T ) = g

corresponding to the master equation (5.1) for expected values

ũ(ξ, t) := E[g(σT )| σt = ξ ].

5.1. A coarse-grained kinetic Monte Carlo method. Define the coarse periodic
lattice L := qγZd ∩ [0, 1]d with neighboring sites on distance qγ =: ε, where q is
an even positive integer and qd is the number of fine sites projected to a coarse site:
the lattice points y ∈ L define the coarse cells

Cy = {x ∈ L : −qγ /2 ≤ xi − yi < qγ/2},

of qd neighboring points in the fine lattice and the averaging operator

Aε(z, x) =
{

1/qd if x and z are in the same coarse cell Cy,

0 if x and z are in different coarse cells.

We will study the behavior of the localized projection averages

X(z) :=
∑
x∈L

Aε(z, x)σ (x), (5.4)

for z ∈ L. The coarse-grained average X can be interpreted as a function on the
coarse lattice since the restriction of X to each coarse cell Cz is constant, i.e. X =∑

x∈C· σ(x)/qd .
The work [23] derives a coarse-grained kinetic Monte Carlo equation approxi-

mating the average X. The next section shows as in [24] that the average spin, X,
can be approximated by the solution, X : L × [0, T ] × � → R, to the Ito stochastic
differential equation

dXt(x) = a(Xt)(x)dt + b(Xt)(x)dWx, X0 = X0, (5.5)
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with the drift, a : R
L̄ → R

L̄, and diffusion, b : R
L̄ → R

L̄, coefficients given by

a(X) = −X + tanh(β(J ∗ X + h − J (0)X)),

b(X)(x) =
(γ

ε

)d/2 √|1 − X tanh(β(J ∗ X + h − J (0)X))(x)| η(X(x)),

η(r) =
{

1 for x ∈ [−1, 1],
0 for x ∈ (−∞, −r̂) ∪ (r̂, ∞),

r̂ := min(1 + e−2β(2|J |
�1+‖h‖L∞ ), 3/2)

(5.6)

and aWiener process W : L×[0, T ]×� → R on a probability space (�, P, {Ft }Tt=0),
with the set of outcomes �, probability measure P and sigma algebra Ft of events up
to time t . Here Wx are independent one dimensional standard Brownian motions for
x ∈ L, so that formally

E[dWx
t ] = 0,

E[dWx
s dW

y
t ] = 0 for s �= t,

E[dWx
t dW

y
t ] = 0 for x �= y, and

E[dWx
t dWx

t ] = dt.

The C∞ cut-off function η : R → [0, 1], with compact support, is introduced to
handle the complication that |X(x)| may be larger than 1, although |X(x)| is not, so
that 1 −X tanh(β(J ∗X +h− J (0)X))(x) may be close to zero causing large values
on derivatives of √|1 − X tanh(β(J ∗ X + h − J (0)X))(x)| ,
note that we have |X(x)| ≤ 1 and consequently the cut-off η improves the approx-
imation by switching off the noise before 1 − X tanh(β(J ∗ X + h − J (0)X))(x)

becomes zero making b a C∞ function.
The approximation uses that the high dimensional value functionu : R

L̄×[0, T ] →
R defined by

u(ξ, t) = E[g(XT )|Xt = ξ ]
solves a corresponding Kolmogorov backward equation, where the drift and diffusion
coefficients in (5.6) are chosen to minimize the error E[g(XT )] − E[g(XT )]. To
define the Kolmogorov backward equation introduce the weighted scalar products

w · v :=
∑
y∈L

wyvyε
d for w, v ∈ �2(L),

w · v :=
∑

x,y∈L

wxyvxyε
2d for w, v ∈ �2(L

2
),

w · v :=
∑

x,y,z∈L

wxyzvxyzε
3d for w, v ∈ �2(L

3
).
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Then u satisfies the Kolmogorov backward equation

∂tu + a · u′ + D · u′′ = 0 for t < T ,

u( ·, T ) = g,

where

Dxy =
{

(1 − X tanh(β(J ∗ X + h))(x))η2(X(x)) y = x,

0 y �= x,

and u′(ξ, t) = ∂ξu(ξ, t) and u′′(ξ, t) are the first and second order Gateaux derivatives

of u in �2(L) and �2(L
2
), respectively.

5.2. Stochastic hydrodynamical limit of the particle system. The main result in
[24] is

Theorem 5.1. The average spin, X, can be approximated by the solution, X, to the
Ito stochastic differential equation (5.5) with error

E[g(XT )] − E[g(XT )] = O
(
T ε + T (γ /ε)2d

)
(5.7)

provided that the Gateaux derivatives u′(Xt , t), u′′(Xt , t) and u′′′(Xt , t) on the path X

are bounded in the weighted norms �1(Li ) up to time T .

Note that a = 0 gives O(1) error, while b = 0 gives O((γ /ε)d) error so that b

defined by (5.6) is justified for γ � ε � γ 2d/(2d+1), with T fixed.
The stochastic differential equation (5.5) has C∞ coefficients, where perturbations

of solutions may grove exponentially in time. The work [24] verifies that mean square
estimates of X and its variations up to order three give bounds on the weighted �1-norm
of the derivatives of u that depend exponentially on time, i.e. eCT .

Proof of the theorem. The definitions of u, the generator (5.2) and the average (5.4)
imply

E[g(XT )] − E[g(XT )] = E[u(XT , T )] − E[u(X0, 0)]
= E

[ ∫ T

0
du(Xt , t)

]

=
∫ T

0
E[Lu + ∂tu] dt =

∫ T

0
E

[
E[Lu − a · u′ − D · u′′|Xt ]

]
dt

=
∫ T

0
E

[
E

[ ∑
x∈L

c(x, σ )
(
u(X(σx)) − u(X(σ))

) − a · u′ − D · u′′|Xt

]]
dt

=
∫ T

0
E

[
E

[ ∑
x∈L

c(x, σ )
(
u(X(σ) − 2Aε(x, · )σ (x)) − u(X(σ))

)
− a · u′ − D · u′′|Xt

]]
dt.

(5.8)
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The first step to estimate this error is to write the differences in u in terms of its
Gateaux derivatives by Taylor expansion, for some s ∈ [0, 1],

u(X(σ) − 2Aε(x, · )σ (x)) − u(X(σ))

= −2u′(X) · Aε(x, · )σ (x)

+ 2u′′(X) · Aε(x, · )Aε(x, · )σ 2(x)

− 4

3
u′′′(X − 2sAε(x, · )σ (x)) · Aε(x, · )Aε(x, · )Aε(x, · )σ 3(x),

(5.9)

so that the error representation (5.8) becomes

E[g(XT )] − E[g(XT )]
=

∫ T

0
E

[
E

[ ∑
x∈L

(
u′(X) · (−2c(x, σ )Aε(x, · )σ (x) − a) (5.10)

+ u′′(X) · (2c(x, σ )Aε(x, · )Aε(x, · )σ 2(x) − D)

− 4

3
u′′′(X − 2sAε(x, · )σ (x)) · c(x, σ )Aε(x, · )Aε(x, · )Aε(x, · )σ 3(x)

) | Xt

]]
dt.

The next step is to determine the optimal a and b which minimize the error (5.10).
For this purpose we shall in the flipping rate approximate the coupling J ∗ σ and
J (0)σ = O(γ d) with J ∗ X and J (0)X, using the long range O(1) interaction
distance of J . The definition of the average (5.4) implies

J ∗ X =
∑

z,y∈L

J ( · − y)Aε(y, z)σ (z)

and consequently the coupling has the uniform error estimate

‖J ∗ σ − J ∗X‖�∞ ≤
∥∥∥J ( · − z)−

∑
y∈L

J ( · − y)Aε(y, z)

∥∥∥
�1

‖σ‖�∞ = O(ε). (5.11)

This error estimate, the flip rate (5.3) and J (0) = O(γ d) imply

−
∑
x∈L

2c(x, σ )Aε(x, · )σ (x)

= −X + Aε · tanh(β(J ∗ σ + h − J (0)σ ))

= −X + tanh(β(J ∗ X + h − J (0)X)) + O(ε + γ d),

(5.12)

and ∑
x∈L

2c(x, σ )Aε(x, · )Aε(x, · )σ 2(x)

=
(γ

ε

)d [
1 − X tanh(β(J ∗ X + h − J (0)X))

]
+ O

(
(γ /ε)2d + ε + γ 2d

)
.

(5.13)
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We have ∥∥∥ ∑
x

Aε(x, · )Aε(x, · )
∥∥∥

�∞ = (γ /ε)d,

∥∥∥ ∑
x

Aε(x − · )Aε(x − · )Aε(x − · )
∥∥∥

�∞ = (γ /ε)2d,
(5.14)

which together with the expansions (5.10), (5.12) and (5.13) proves the theorem. �

We also have

Lemma 5.2. Suppose that the Gateaux derivatives u′(Xt , t) and u′′(Xt , t) on the
path X are bounded in the weighted norms �1(Li ) up to time T and that the initial
spin σ0 has expected value m, where σ0(x)−mx are i.i.d. with bounded variance and
second order difference quotients |d2m/dx2| = O(1). Then the deterministic mean

field solution, X̂ : R
L̄ × [0, T ] → R,

dX̂/dt = −X̂ + tanh(β(J ∗ X̂ + h − J (0)X̂)), X̂0 = E[X0],
depends on ε only through the initial data and satisfies

E[g(XT )] − E[g(X̂T )] = O(ε + (γ /ε)d)

provided the drift a is defined by (5.6).

Proof. Think of X̂ as an X with b = 0 and apply the corresponding expansion (5.8),
(5.9) and (5.14). Then it remains to verify that the initial data satisfy

E[u(X0, 0) − u(X̂0, 0)] = O
(
(γ /ε)d

)
,

but this is a direct consequence of the central limit theorem and the initial σ0 −E[σ0]
being i.i.d. with bounded variance. �

5.3. Alternative invariant measure diffusion for mean exit times. Not all expected
values E[g(XT )] can be approximated using the stochastic differential equation (5.5)
with Einstein diffusion, due to the required bounds on the derivatives of u; such an
example is to determine the expected first exit time τ(Y ) = inf{t : Yt �∈ A} from a
neighborhood A of an equilibrium point y′ ∈ A, where a(y′) = 0 and Y0 ∈ A. Then
the expected exit time is exponentially large, i.e.

limγ /ε→0+
(γ

ε

)d log E[τ(X)] and limγ /ε→0+
(γ

ε

)d log E[τ(X)]
are both strictly positive.

(5.15)

These expected values are related to transition rates k and E[τ ] = 1/k in simple cases,
see [17], [9]. Hanggi et al. [16] have proposed a remedy by approximating the master
equation by a different stochastic differential equation with the same asymptotic drift
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but a modified diffusion, to leading order, chosen so that the SDE invariant density
Z−1e−U/(γ /ε)d is asymptotically the same as for the master equation. One perspective
on the two different SDEs with Einstein diffusion or invariant measure diffusion is
that the two limits, coarse-graining and time tending to infinity, do not commute.
Because of (5.15) the theory of large deviations for rare events is relevant for exit
times, cf. [9].

Let γ1 := γ /ε. Consider an SDE

dXt(x) = (a(Xt ) + γ d
1 c(Xt))(x)dt + γ

d/2
1 b̃(Xt )(x)dWx

t ,

with the generator

Lf = (a + γ d
1 c) · f ′ + γ d

1 D̃ · f ′′, Dij = b̃i b̃j δij ;
the idea in [16] is to find c and D so that the corresponding SDE asymptotically has the
same invariant density e−U/γ d

1 /Z as the master equation. Hanggi et al. [16] determine
the diagonal diffusion matrix D̃ and the small contribution to the drift γ d

1 c by

D̃ii = −ai/U ′
i ,

ci = −∂xi
D̃ii;

(5.16)

note that since a and U have the same zeros, the constructed function D̃ii is positive
in general. The equation (5.16) can be obtained by the WKB expansion

0 � L∗e−U/γ d
1 = (

γ −d
1 (aiU

′
i + D̃iiU

′
iU

′
i )

+ γ 0
1 (∂iai + 2U ′

i ∂iD̃ii + U ′′
iiD̃ii + ciU

′
i )

+ γ d
1 (∂ic − ∂iiD̃ii)

)
e−U/γ d

1

together with the two leading order conditions that the terms of order γ −d
1 and γ 0

1
vanish; here L∗ is the Chapman–Enskog operator adjoint to L. Consequently the
choice (5.16) will in general generate an SDE with an invariant density e−Ũ/γ d

1 /Z,
where |Ũ − U | = O(γ 2d

1 ).
Let us indicate why good approximation of the invariant measure implies that

also the expected values, E[τ ], for exit problems related to rare events with large
deviations, are accurately computed: the work [9] shows that

lim
γ1→0+ γ d

1 log E[τ(X)] = inf
y∈∂A

U(y) − U(y′), (5.17)

for one stable attracting equilibrium point y′ ∈ A. The work [24] shows that the exit
time (5.17) with SDE’s and invariant measure diffusion is asymptotically the same as
for the master equation for the 1D Curie–Weiss model:

lim
γ1→0+ γ d

1

(
log E[τ(X)] − log E[τ(X)]) = 0 , (5.18)
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where E[τ(X)] and E[τ(X)] denote the mean exit time for the Hanggi SDE and
the Curie–Weiss master equation, respectively. The Curie–Weiss model is a simple
adsorption/desorption Ising model with constant interaction potential, cf. Section 5.4.
The technique to establish this asymptotic agreement is to use logarithmic (Hopf–
Cole) transformations of the two mean exit times, as functions of the initial location,
which transforms the corresponding two linear Kolmogorov backward equations to
two nonlinear Hamilton–Jacobi equations, cf. [8]. The two processes give rise to two
different asymptotic Hamilton–Jacobi equations, however the key observation is that
they have the same viscosity solution since they are both convex and have the same
set of zeros.

5.4. Dendrites with Einstein diffusion. We see by Theorem 5.1 and Lemma 5.2
that the mean field differential equation solution is also an accurate approximation
to the spin dynamics, provided the derivatives of the value function are bounded;
this indicates that the stochastic differential equation (5.5) then only offers a small
quantitative improvement. However, if the derivatives of the value function are large
the mean field solution may give a qualitatively wrong answer, with O(1) error as
γ /ε → 0+, while the stochastic differential equation still yields an asymptotically
correct limit; such an example is dendrite formation in phase transformations, cf. [22],
[19], [3], [14].

Let us try to motivate why the noise in Theorem 5.1 seems applicable to dendrite
formation. Dendrite dynamics can be formulated by the phase field method with
an Allen–Cahn/Ginzburg–Landau equation coupled to a diffusion equation for the
energy, as in (1.1), and by master equations coupled to the energy equation, cf. [14].
Mean field equations related to such a phase field system have been derived from a
spin system coupled to a diffusion equation, see [7].

A master equation variant of the molecular dynamics model in Sections 2–4 is to
let the coarse-grained potential energy be defined by

m(σ, z) :=
∑
x

( ∑
y �=x

1

2
J (x − y)σ (y) − h

)
σ(x)Aε(x, z),

where A is the average in (5.4), and replace the Glauber dynamics with Arrhenius
dynamics. That is, the microscopic dynamics is given by independent spins σ(x) ∈
{0, 1}, for each lattice point x ∈ L, flipping with adsorption rate

ca(x) = d0
(
1 − σ(x)

)
from states 0 to 1, and with desorption rate

cd(x) = d0σ(x) exp
(

− 1

kBT

( ∑
y �=x

J (x − y)σ (y) − h
))

from states 1 to 0, where h is a surface binding energy or an external field and d0 is a
given rate, cf. [23]. Arrhenius dynamics also satisfies detailed balance with the same
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Gibbs density
e

( ∑
x

∑
y �=x J (x−y)σ (x)σ (y)/2−∑

x hσ(x)
)
/(kBT )

as for Glauber dynamics. The dynamics for the potential energy variable can then be
coupled to the energy equation (2.1)

∂t (cvT + m) = div(k∇T )

by letting the temperature T vary on the coarse-grained scale.
The dendrite grows with a positive non vanishing speed. Without noise in the

model there is no side branching, while the side branching is present with added noise
to the phase field model, cf. [3], or to the mean field model derived in [14]. This
noise induced side branching is explained by the high sensitivity with respect to small
perturbations at the dendrite tip, cf. [22]. Therefore the derivatives of an appropriate
value function are large. Here the value function, u, could for instance measure the
total dendrite surface at a fixed time. The inconsistent approximation of the mean
field solution could by Lemma 5.2 be explained by having

(γ /ε)d‖u′′‖�1 = O(1). (5.19)

The smallest scale in the problem is the dendrite tip radius ρ; with a bounded value
function its derivatives could then be

‖u′‖�1 = O(1/ρ),

‖u′′‖�1 = O(1/ρ2),

‖u′′′‖�1 = O(1/ρ3).

Consequently (5.19) yields (γ /ε)d/2 = ρ, so that the noise error for the stochastic
differential equation with the Einstein diffusion of Theorem 5.1 would be bounded
by (γ /ε)2d‖u′′′‖�1 = O((γ /ε)d/2), which tends to zero as γ /ε → 0+. Therefore,
this adsorption/desorption kinetic Monte Carlo model with long range interaction
generates an approximating stochastic differential equation, which could be applicable
also to coupling with the energy equation if the derivation remains valid with slowly
varying temperature. An essential and maybe more difficult question is to find accurate
kinetic Monte Carlo methods for real systems with dendrite dynamics, e.g. using ideas
from the molecular dynamics coarse-graining in Sections 2–4.
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Competitions and mathematics education

Petar S. Kenderov∗

Abstract. Mathematics competitions, together with the people and organizations engaged with
them, form an immense and vibrant global network today. This network has many roles. Compe-
titions help identify students with higher abilities in mathematics. They motivate these students
to develop their talents and to seek professional realization in science. Competitions have pos-
itive impact on education and on educational institutions. Last but not least, a significant part
of the classical mathematical heritage known as “Elementary Mathematics” is preserved, kept
alive and developed through the network of competitions and competition-related activities.
Nevertheless, competitions need to evolve in order to meet the demands of the new century.

These and many other items are outlined and discussed in the paper.

Mathematics Subject Classification (2000). Primary 97U40; Secondary 97C60.
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1. Introduction

Competition is essential and intrinsic to life. Every day, living things in nature and
economic subjects in society compete for resources, for better living conditions, and
for higher efficiency. The desire to compete in overcoming a challenge is deeply
rooted in human nature and has been employed for centuries to help people sharpen
their skills and improve their performance in various activities.

Competitions, however hotly debated, praised, or condemned, remain central and
inherent in education. Both the traditional marking (grading) of students in school
and the more innovative measuring of their basic scholastic abilities (implemented
by methods such as PISA, TIMSS, or SAT) inevitably create, directly or indirectly,
competition among students, among teachers, among schools, and even among whole
countries. Heated debates aside, few would deny the positive influence such compe-
titions bring to the process of teaching and learning, and to the overall performance
of the educational system.

The interaction between competition and education is more complex, however. It
is not only that competitions enhance education. Education itself can be viewed as

∗The author is grateful to the Institute of Mathematics and Informatics, Bulgarian Academy of Sciences,
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mathematics, informatics, and mathematical linguistics. Special thanks to E. Belogay, participant in IMO 1979,
for carefully reading and editing the early drafts of this paper.
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preparation of individuals (or groups of individuals, even whole nations) for future
competitions.

In what follows, we give a brief history of contemporary math competitions and
present the state of the art in this area. Then we outline how competitions help identify,
motivate, and develop higher-ability and talented students. Next we focus on the
impact of competitions on education, on educational institutions and on mathematics
as a science. Finally, we pose challenges and identify venues for improvement.

2. Brief history of mathematics competitions

It is difficult to trace precisely the origins of mathematics competitions for school
students; after all, in-class testing (which often resembles small-scale competitions)
has accompanied the school system from its very beginning. In fact, the archetype
of some competitions can be found outside school, in the society. Newspapers and
recreational journals frequently offer prizes for solving crosswords, puzzles, and prob-
lems of a deeper mathematical nature. This practice is widely used today by many
mathematical journals that publish problems and give awards to school students who
provide good solutions.

V. Berinde [2] reports that a primary school math competition with 70 partici-
pants was held in Bucharest, Romania, as early as 1885. There were eleven prizes
awarded to 2 girls and 9 boys. It cannot be excluded that other competitions were held
elsewhere before or after that date too. Nevertheless, the 1894 Eötvös competition
in Hungary is widely credited as the forerunner of contemporary mathematics (and
physics) competitions for secondary school students. The competitors were given
four hours to solve three problems individually (no interaction with other students or
teachers was allowed). The problems in the Eötvös competition were specially de-
signed to challenge and check creativity and mathematical thinking, not just acquired
technical skills; the students were often asked to prove a statement.

As an illustration, here are the three problems given in the very first Eötvös com-
petition in 1894 (the entire collection of problems and their solutions is maintained
by John Scholes at www.kalva.demon.co.uk/eotvos.html):

P1. Show that {(m, n) : 17 divides 2m + 3n} = {(m, n) : 17 divides 9m + 5n}.
P2. Given a circle C, and two points A, B inside it, construct a right-angled triangle

PQR with vertices on C and hypotenuse QR such that A lies on the side PQ

and B lies on the side PR. For which A, B is this not possible?

P3. A triangle has sides length a, a + d, a + 2d and area S. Find its sides and
angles in terms of d and S. Give numerical answers for d = 1, S = 6.

The Eötvös competition model still dominates the competition scene.
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The year 1894 is notable also for the birth of the famous mathematics journal
KöMaL (an acronym of the Hungarian name of the journal, which translates to High
School Mathematics and Physics Journal). Founded by Dániel Arany, a high school
teacher in Györ, Hungary, the journal was essential to the preparation of students and
teachers for competitions (about one third of each issue was devoted to problems and
problem solving and readers were asked to send solutions). As noted by G. Berzsenyi
in the preface of [3], about 120–150 problems were published in KöMaL each year;
about 2500–3000 solutions were received. The best solutions and the names of their
authors were published in following issues. This type of year-round competition
helped many young people discover and develop their mathematical abilities; many
of them later became world-famous scientists. (For more information, see the journal
web site, komal.elte.hu.)

About the same time, similar development occurred in Hungary’s neighbor, Ro-
mania. The first issue of the monthly Gazeta Matematicǎ, an important journal for
Romanian mathematics, was published in September 1895. The journal organized a
competition for school students, which improved in format over the years and eventu-
ally gave birth to The National Mathematical Olympiad in Romania. For legal reasons,
the journal was transformed to Society Gazeta Matematicǎ in August 1909. The fol-
lowing year, the Romanian Parliament approved the legal status of the new society
and this is considered to be the birthday of the Romanian Mathematical Society [2].

What happened in Hungary and Romania in the late 1800’s was not something
isolated and special to these two countries only; most likely, it reflected a much
broader trend. Indeed, international collaboration and solidarity were rising steadily
and many national math societies were founded around the same time. The Olympic
Games were revived in 1896. The First International Congress of Mathematicians took
place in Zürich in 1897. Within several decades, other countries started to organize
mathematics competitions. In 1934, a Mathematical Olympiad was organized in
Leningrad, USSR (now St. Petersburg, Russia).

3. Mathematics competitions today

Today the world of mathematics competitions encompasses millions of students,
teachers, research mathematicians, educational authorities, and parents, who orga-
nize and take part in hundreds of competitions and competition-like events with na-
tional, regional, and international importance every year. Even greater is the number
of books, journals, and other printed and electronic resources that help students and
their mentors prepare for the various types of competitions.

3.1. International Mathematical Olympiad (IMO). Of course, the most important
and most prestigious math competition is the International Mathematical Olympiad
(IMO) – an annual competition for high school students. Directly or indirectly, all
other competition activities in mathematics and sciences are related to the IMO.
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The idea to organize an international mathematics competition crystallized during
the Fourth Congress of Romanian Mathematicians in 1956. Paul Jainta [4] points out
that “IMO, the pinnacle of competitions among individuals, was the brainchild of Ro-
mania’s Tiberiu Roman, an educator of monumental vision.” The first IMO took place
in Romania (1959) with participants from seven countries: Bulgaria, Czechoslovakia,
German Democratic Republic, Hungary, Poland, Romania, and the Soviet Union
(USSR). The second IMO (1960) was organized by Romania as well, but since then
it is hosted by a different country every year (except 1980, when no IMO was held).
Over the years, the participation grew dramatically: the 2005 IMO in Mexico gathered
513 competitors from 93 countries!

Strict formalized rules govern every aspect of the IMO, such as participation, prob-
lem selection, assessment of solutions, and distribution of medals (for a description
of the IMO, browse erdos.fciencias.unam.mx).

Each country sends a team of up to eight (four in 1982; since 1983, six) high-school
students, chaperoned by a team leader and a deputy team leader. The competition
itself is held on two consecutive days; each day, the students have four and a half hours
to solve three problems. Each year, just before the competition, the six problems are
selected by an international jury formed by the national team leaders and represen-
tatives of the host country. Even though confined to secondary school mathematics,
the problems are rather difficult and solving them requires a significant degree of
inventive ingenuity and creativity. Each problem is worth seven points, so the perfect
score is 42 points.

Formally, like the Olympic Games, the IMO is a competition for individuals;
participants are ranked according to their score and (multiple) individual medals are
awarded. Nevertheless, again as in the Olympic Games, the medals and points ob-
tained by the participants from each country are totaled and the countries are unoffi-
cially ranked, providing grounds for comparison between countries.

The two days of heavy problem-solving are followed by a social program for all
the participants. Students get to know each other, discuss alternative solutions to the
competition problems, and make plans for their future, while the team leaders share
their experiences and best practices in creating new problems and preparing their
students for the competition.

With its high standards, the IMO prompts the participating countries to constantly
improve their educational systems and their methods for selecting and preparing the
students. This yielded a great variety of competitions and mathematical enrichment
activities around the world which resists any classification. There are “Inclusive”
(open for all) competitions which are intended for students of average abilities, while
“exclusive” (by invitation only) events target talented students (a prime example of
the second type is the IMO and the national olympiad rounds beyond the first). There
are “Multiple-choice” competitions where each problem is supplied with several an-
swers, from which the competitor has to find (or guess, as no justification is required)
the correct one. In contrast, “classical style” competitions (like the IMO) require the
students to present arguments (proofs) in written form. In “correspondence” com-
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petitions, such as those organized by KöMaL and Gazeta Matematicǎ, the students
do not necessarily meet each other, while in “presence” competitions (which form
the majority of math competitions) the participants are gathered together, which is
believed to provide “equal rights" to all students. There are even mixed-style compe-
titions, with a presence-style first stage and correspondence-style subsequent stages.
(We will present some newer styles in more detail later.)

Another indication of the importance of the IMO is the fact that other sciences,
such as physics, chemistry, and biology, soon followed suit and started international
olympiads of their own. Bulgaria organized the first international olympiads in infor-
matics/computer science (1989) and in mathematical linguistics (2003).

3.2. Mathematics competition networks. Like any event with positive social im-
pact, each math competition creates and maintains its network of dedicated people.
Numerous math competition journals complement these networks, connecting edito-
rial staff, authors, and readers. Good examples in this direction are Kvant (Russia),
Crux Mathematicorum (Canada), Mathematics Magazine and Mathematical Spec-
trum (UK). The math competition networks range in size from regional to international
networks that are associated with large and famous competitions, such as the IMO,
Le Kangourou Sans Frontiéres [www.mathkang.org], the Australian Mathematics
Competition [www.amt.canberra.edu.au], the International Mathematics Tournament
of Towns [www.amt.canberra.edu.au/imtot.html], the Ibero-American Mathematics
Olympiad [www.campus-oei.org/oim/], and theAsian-Pacific Mathematics Olympiad
[www.cms.math.ca/Competitions/APMO/] – the list is far too short to enumerate all
networks that deserve to be mentioned.

The different competition networks are not isolated, as many people naturally be-
long to more than one network. A different and more formal tie is provided by the
World Federation of National Mathematics Competitions (WFNMC). The WFNMC
was founded in 1984, during the Fifth International Congress of Mathematical Edu-
cation (ICME5) in Adelaide, Australia. Since then it has a “reserved slot" in the pro-
grams of every ICME. Every second year after ICME the WFNMC organizes its own
Conference. It has an award, named after Paul Erdös, which is given to people with
outstanding contributions to mathematics competitions. The Federation publishes
also its journal Mathematics Competitions [www.amt.canberra.edu.au/wfnmc.html]
which is another powerful tool for networking people engaged with competitions.
In 1994 the WFNMC became an Affiliated Study Group of the International Com-
mission on Mathematical Instruction (ICMI), which, in turn, is a commission of the
International Mathematical Union [1]. In this way the competitions networks are
incorporated into the global mathematical community.

Taken together, these networks form a large global network in the field of math-
ematics competitions and, more generally, in the classical area known under the
(somewhat misleading) name Elementary Mathematics. Like in any other area of
science, this network operates and lives through its journals, conferences, and work-
shops, but the periodical regularity of its math competitions adds to its strength and



1588 Petar S. Kenderov

vitality since the people meet more often. In addition, this global network facilitates
the dissemination of best practices in curriculum development and in the work with
talented youngsters. New problem solving techniques, new classes of problems, and
new ideas about organizing competitions spread quickly around the world. We should
not forget also that, through this global network, the Elementary Mathematics (which
constitutes an important part of our mathematical heritage) is preserved, kept alive
and further developed.

4. Why are the competitions needed?

Here is a short and incomplete list of reasons on which we expand later on:

1. higher abilities and talent are identified, motivated and developed;

2. what happens before and after the competition is good for education;

3. talented students are steered to careers in science;

4. competitions raise the reputation of an educational institution.

4.1. Finding higher abilities and talent. The educational systems in most coun-
tries target mainly students of average mathematical abilities (who form the majority
in schools). Additional care is often provided for lower-ability students, so that they
could cover the educational standards. The standard curriculum and syllabus require-
ments pose no significant challenge however to students with higher abilities. They
do not feel the need to work hard and, as a result, their mathematical abilities and
talent remain undiscovered and undeveloped.

This is a pity, of course, since these higher-ability youngsters are a very impor-
tant resource for the development of society, provided they are properly educated,
motivated, and supported. Unlike other natural resources, such as mineral deposits,
which remain preserved for the future generations, if undiscovered and unused, the
talent of a young person is lost forever, if it is not identified, cultivated, and employed
properly. Competitions and other enrichment activities are obvious remedies for this
shortcoming, as they allow students to exhibit their abilities and talent. Moreover,
competitions motivate the participants to work hard while preparing for them and, as
a result, further develop their abilities and talent.

4.2. Before and after competitions. Some opponents to competitions complain that
there is no apparent direct connection between the competitions and the mathematics
as taught in the classroom. This, in our mind, is a rather narrow approach to the issue.
Classroom is only one of the many homes of the educational process. One should take
into account the integral impact of competitions and competition-related activities on
education. What frequently escapes public attention, which often focuses on a rather
small group of happy winners, is the fact that the other, “non-winner” participants,
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also gain a lot. While preparing for the competition, and trying to solve the problems
during the competition itself, all participants increase their knowledge significantly.
Taking into account that in some competitions hundreds of thousands of students are
taking part, the integral impact on the learning of mathematics becomes significant
for the overall development of the contemporary society. From this point of view the
contribution of the International Competition “European Kangaroo" with more than
3 millions of participants is difficult to overestimate.

We should not neglect also what happens in the corridors of the school (or outside
the school) after the competition is over. The students are sharing their experiences
(successes, failures, new ideas generated, etc.). This has a tremendous educational
effect which however is not always given proper attention. The competitions and
mathematics enrichment activities can be viewed as events that provide impetus for
subsequent discussions among the students (as well as among their friends, parents,
etc.). From the viewpoint of acquiring new mathematical knowledge (facts and tech-
niques) these after competition discussions might be as important as the preparation
for and the competition itself. Many of us owe a significant part of our knowledge to
just such “corridor mathematics". From this point of view the social program after
IMO gains additional importance. All this could (and should) have some practical
implications for the ways the competitions and other enrichment activities are planned
and organized. One should deliberately incorporate possibilities (the more the better)
for “after event" discussions, reflections and interactions. There is an unexhausted
potential for introduction and sharing new practices in this area.

Finally, while preparing their students for competitions the teachers gain experi-
ence how to teach mathematical topics that are currently not in the curriculum. This
may become important at later stages, if some of these topics become a part of the
school program.

4.3. Steering talented students to careers in science. The health and longevity of
any social sector depends on how many talented young people are attracted to it. The
role of math competitions in identifying talented young people and in attracting them
to science should be obvious. Indeed, the fact that a significant number of successful
participants in math competitions later become famous scientists was recognized
rather early. On 17 July 1929, John von Neumann, who was born in Hungary and was
influenced by math competitions, wrote in his letter from Berlin to Professor Lipót
Fejér in Budapest ([5]):

Dear highly honored Professor,

I had the opportunity several times to speak to Leo Szilard about the student
competitions of the Eötvös Mathematical and Physical Society, also about the
fact that the winners of these competitions, so to say, overlap with the set of
mathematicians and physicists who later became well-respected world-figures.
Taking the general bad reputations of examinations world-wide into account
it is to be considered as a great achievement if the selection works with a 50
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percent probability of hitting the talent. Szilard is very interested in whether
this procedure can be applied in the German context and this has been the
subject of much discussion between us. However, since we would like above
all to learn what the reliable statistical details are, we are approaching you with
the following request. We would like:

1. to have a list of names of the winners and runners-ups of the student com-
petitions,

2. to see marked on the list those who were adopted on a scientific basis and
those adopted for other work,

3. to know your opinion about the extent to which the prizewinner and the
talented are the same people and, for example, what proportion of the former
would be worthy of financial support from the State in order to make their
studies possible.

Very often the future professional realization of a young person is often predeter-
mined by the “first success.” The first area where positive results are achieved often
becomes the preferred area in which a person invests time and efforts, which in turn
brings more success, stronger motivation, and higher professionalism. Math compe-
titions provide such opportunity for early success and thus help attract good young
minds to mathematical and scientific careers. In this way competitions contribute to
the development and progress of mathematics and other sciences.

4.4. Raising the reputation of an educational institution. The academic reputa-
tion of a university depends primarily on the merit of the intellectual achievements
of its academic staff. “The higher the reputation of the professors, the higher the
reputation of the university” is the essence of this widely accepted belief. What is
often overlooked, though, is that the level of the students also has a significant impact
on the outcome of the educational process and, in the long run, on the reputation of
the institution. While higher-ability students still have the chance of becoming good
professionals if trained by ordinary professors, even outstanding professors can fail
to produce high-level specialists from mediocre and unmotivated students.

Teachers know well that a few good students in class not only motivate the other
students and make them work harder, but also place higher demands on the prepa-
ration of the teachers themselves. This two-way challenge influences positively the
educational process and improves, directly or indirectly, the reputation of the entire
educational institution.

It is no wonder that many universities try hard to attract good students. One of the
best ways to achieve this is to organize competitions for secondary school students and
to offer incentives, such as stipends or entrance exam waivers, to the winners. Such
policies usually yield the expected results, as a special type of relationship develops
between organizers and the winners during the preparation for the competition, the
competition itself, and the post-competition period, which encourages the winners to
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consider seriously (sometimes as the first option) enrolling in the university where
the competition (and/or the preparation for it) takes place.

In addition to the obvious advantages, enrolling competition winners has a delayed
“value-added” effect to the reputation of a university. After graduation, math com-
petition winners, as people with good problem-solving skills, are more likely to get
rapid professional recognition, because they are likely to find solutions to difficult and
complex real-life problems easier and faster than others. Once their success is noticed
and registered by the working environment, the recognition of the problem-solvers’
alma mater increases immediately and almost automatically.

As a success story, consider the University of Waterloo, Canada, and the breathtak-
ing rise of its reputation during the seventies and eighties of the last century. Alongside
other plausible explanations, such as good management and excellent academic staff,
its success can also be attributed to the fact that the University of Waterloo was the
host of the Canadian Mathematics Competition [www.cemc.uwaterloo.ca], which
attracted a good portion of the best young minds in Canada.

The William Lowell Putnam Competition, widely known as the “Putnam Exam”
and administered by the Mathematical Association of America, is the flagship of
annual competitions for university students in North America. While enrolled at
the University of Waterloo, the former winners in school competitions performed
consistently well in the Putnam Exam, securing a prominent presence of Waterloo
in the top five teams in North America. This also was contributing to the reputation
of the institution. It is no wonder that, within less than 20 years, the University of
Waterloo became one of the leading centers for mathematics and computer sciences
in the world.

There is another success story related to the University of Waterloo and the Cana-
dian Mathematics Competition, which shows how a new implementation of an inspir-
ing idea at a new place can yield fantastic results.

The Australian mathematician Peter O’Halloran (1931–1994) spent a part of his
1972–73 sabbatical leave from the Canberra College of Advanced Education (now
University of Canberra) at the University of Waterloo. There he gained, as Peter
Taylor (Executive Director of the Australian Mathematics Trust) recalls ([6]),

... the idea of a broadly based mathematics competition for high school stu-
dents. On his return he often enthused to his colleagues about the potential
value of such a competition in Australia. In 1976, while President of the Can-
berra Mathematical Association, he established a committee to run a mathe-
matics competition in Canberra. This was so successful that the competition
became national by 1978 as the Australian Mathematics Competition, spon-
sored by the Bank of New South Wales (now Westpac Banking Corporation).
It is now well known that this competition has grown to over 500,000 entries
annually, and is probably the biggest mass-participation event in the country.

The success of Peter O’Halloran was encouraging for others. André Deledicq
started in 1991 the Kangaroo Competition in France (the name reveals the Australian
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influence). The Kangaroo Competition is now truly international (albeit with focus
on Europe), enjoying more than 3 million participants each year.

It is an appropriate place here to pay tribute to Peter O’Halloran, who had the
vision for the future of mathematics competitions and knew the strategies how to
achieve the goals. He understood the role of international collaboration in this field
and was the major force behind the inception of WFNMC and its association with
ICMI as an Affiliated Study Group.

5. Competitions and science

Before we go any further, we need to consider a natural question:

Why are math competitions so good in revealing higher mathematical abilities
and inclination to doing research?

The simplest and obvious answer seems to be:

Because both higher abilities and inclination to doing research are necessary
to be successful in a math competition.

Necessary, but not sufficient. To be successful in a competition, a student often needs
not only a good mind, but a very quick one. Most competitions are limited in time to
just 3–4 hours, imposing a significant stress on the nervous system of their participants.
Not only do students have to solve the problems correctly, they have to do so quickly
and in the presence of their direct competitors. Yet, there are many highly creative
students, who do not perform well under pressure. Such “slow thinkers” often come
up with new and valuable ideas a mere day (or even just five minutes) after the end
of the competition, yet receive no reward or incentive.

Traditional competitions disadvantage such students, even though some of them
are highly creative and could become good inventors or scientists. Indeed, what
matters in science is rarely the speed of solving difficult problems posed by other
people. More often, what matters is the ability to formulate questions and pose
problems, to generate, evaluate, and reject conjectures, to come up with new and non-
standard ideas. All these activities require ample thinking time, access to information
resources in libraries or the Internet, communication with peers and experts working
on similar problems, none of which are allowed in traditional competitions.

Obviously, other types of competitions are needed to identify, encourage, and
develop such special “slower” minds. The competitions should reflect the true nature
of research, containing a research-like phase, along with an opportunity to present
results to peers – precisely as it is in real science.

As a matter of fact, such competitions, designed to identify students with an
inclination to scientific (not only mathematical) research, already exist. Below we
present three of them.
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5.1. Germany/Switzerland. Jugend Forscht (Youth Quests) celebrated its 40-th an-
niversary in 2005. It is a German annual competition for students under the age of
21, who work, alone or in teams, on projects of their own. The projects are presented
at special sessions, where the winners are awarded [www.jugend-forscht.de].

Switzerland has a similar competition, which is organized by the Schweizer Jugend
Forscht (SwissYouth Quests) foundation, established in 1970. The competition, which
covers all scientific directions, including social sciences and humanities, has existed
since 1967 [www.sjf.ch].

A Google search for the phrase “Jugend Forscht” produced 25 000 hits in 2002;
the same search produced half a million hits in 2005! This 20-fold increase speaks
for itself, especially since only German language area is included.

5.2. USA. Many such programs exist in the USA.As a matter of fact, Jugend Forscht
was originally shaped after the many “Science Fairs” in USA. We mention only
one such program here, because it emphasizes mathematics and because it was used
as a model for similar programs in other countries. The Virginia-based Center for
Excellence in Education (CEE) was founded by Admiral H. G. Rickover in 1983. It
has the following goals [www.cee.org]:

The Center for Excellence in Education nurtures careers of excellence and
leadership in science and technology for academically talented high school
and college students. CEE is as well dedicated to encouraging international
understanding among future leaders of the world. CEE’s programs challenge
students and assist them on a long-term basis to become creators, inventors,
scientists and leaders of the 21st century.

The major CEE event, sponsored jointly with the Massachusetts Institute of Tech-
nology, is the Research Science Institute (RSI) [www.cee.org/rsi/]:

Each summer approximately 75 high school students gather for six of the most
stimulating weeks of their young lives. Selected from the United States and
other nations, these students participate in a rigorous academic program which
emphasizes advanced theory and research in mathematics, the sciences, and
engineering.

Students attend college-level classes taught by distinguished professors. Na-
tionally recognized teachers conduct classes designed to sharpen research
skills. In addition, students complete hands-on research with top mentors
at corporations, universities, and research organizations.

Only outstanding, carefully selected students are admitted to the program. RSI
starts with a series of professional lectures in mathematics, biology, physics, and
chemistry. The students are paired with experienced scientists and mentors, who in-
troduce them to interesting research topics and share with them the joy and excitement
of exploring new territories. The RSI days are filled with research, evening lectures,
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ultimate Frisbee, sport events, etc. At the end of the program, the students present
their own research, both in written and oral form, and awards are given to the best
performers.

The RSI is an international program: almost a third of its students come from
other countries. It provides a unique environment for talented students from different
parts of the world to meet, live and work together for a relatively long period of time
(six weeks seems to be optimal – it is neither too long to become boring nor too
short to put unbearable stress). Again, one should not neglect the importance of the
networking and friendships fostered by the RSI program for the future development of
the participants. The fact that they know each other will make their future collaboration
more fruitful. Year after year, the Bulgarian participants in RSI emphasize the social
character of the event and the unique atmosphere created during the RSI.

5.3. Bulgaria. Before the 1989 political changes, Bulgaria had a venue for talented
young people, very similar to the above-mentioned Jugend Forscht and RSI. It was
called Movement for Technical and Scientific Creativity of the Youth (abbreviated in
Bulgarian to TNTM). Students worked on individual scientific projects and presented
their work on special sessions, where winners were awarded. Like almost everything
else related with the youth, the TNTM movement was under the umbrella of theYoung
Communists’ League (Komsomol). After the democratization of the Bulgarian soci-
ety, the Communist League disappeared, along with everything related to it, including
TNTM.

A decade later it became absolutely clear that actions were needed to revive those
activities at the level of contemporary challenges and requirements. The RSI model
was adapted to the conditions in Bulgaria and, as one of the “Year of Mathematics”
initiatives, the new High School Students’ Institute of Mathematics and Informatics
(HSSIMI ) was founded in 2000.

Throughout one academic year, the involved high school students (grade 8–12)
work on freely chosen topics (projects) in mathematics and/or informatics (computer
science). They work individually or in teams and are supervised by a teacher, a
university student, a relative, or just any specialist in the field, willing to help. In
fact, some recent HSSIMI projects were successfully supervised by former HSSMI
participants, who are now university students.

Warmly accepted by the mathematical community in Bulgaria, the HSSIMI or-
ganizes three major events: two competition-like sessions and a Research Summer
School. The sessions are held at the stand-alone Students Conference for High School
students in January and at the School Section of the Annual Spring Conference of
the Union of Bulgarian Mathematicians(UBM) in April. The latter section is actually
the most visited section at the Spring Conference of UBM, attended by university
professors, researchers, teachers, parents, and school peers.

To participate in the HSSIMI sessions, students submit a written paper with the
results of their work. Specialists referee the papers, assess the projects, and sug-
gest improvements. Students present their research at the sessions and winners are
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awarded. As special award, two of the winners are sent to USA in order to participate
in RSI.

The authors of the best projects are invited to a three-week Research Summer
School. During the first two weeks, eminent specialists from universities, research
institutes, and software companies give lectures and practical courses in mathematics
and informatics. As in similar programs, the main goal of this preliminary training is
to expand the students’knowledge in topics of their interest and to offer new problems
for possible projects. During the third week, students hold a High School Students
Workshop, where they briefly present their ideas for new projects.

For the short period of its existence, the HSSIMI became a valuable addition to
the established (and rather densely populated) system of traditional competitions in
Bulgaria. As was planned and expected, the HSSIMI attracted students who were not
regulars in the traditional competitions.

Similar initiatives can be found in other countries. There are positive signs of
networking between them as well. Good examples in this direction are the Tournament
of Towns Summer Conference and the annual International Mathematics Projects
Competition (IMPC) in Kazakhstan. Reflecting more closely the nature and spirit of
research process, these kinds of activities also attract excellent minds to mathematics
and definitely deserve better recognition and support by the professional mathematical
communities around the world.

6. What to do next?

In addition to enhancing the traditional math competitions and developing the non-
traditional initiatives discussed above, there are other venues for future improve-
ments, such as implementing the current science trends into competitions, targeting
other audiences, and supporting and developing the human resources standing behind
competitions and other related activities.

6.1. Algorithms in mathematics. The nature of mathematical research has changed
significantly since considerable computing power came to the desk of almost every
researcher and student. Mathematicians today can conduct complicated numerical
experiments, use software for complex algebraic and analytic transformations, find
patterns in huge data sets. Like the experiments in other sciences, this could help
reject some conjecture or formulate a new one. Thus, research in mathematics became
similar to research in the other sciences.

All this is based on mathematical algorithms. Algorithmic thinking is getting
higher importance and successfully complements the “axiomatic” approach and think-
ing in mathematics.

This change should be duly reflected in the creation and selection of competition
problems. Perhaps more problems should be offered at various competitions where
algorithms and their properties are focused in order to cultivate algorithmic thinking.
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Otherwise, we will become witnesses of a “brain-drain” and the best young minds
will be driven to competitions in informatics.

6.2. Teamwork. Working in teams is a well-established trend in modern science.
For centuries, research in mathematics has been a solitary endeavor. Today, we see
more and more teamwork in mathematics and, especially, in its applications. This
reveals yet another similarity between modern mathematics and the other sciences
(where teamwork has traditionally deeper roots). The ability to work in a team is
valuable skill that could and should be cultivated early on.

Mathematics team competitions could contribute a lot in this direction. There are
many such competitions around the world; it only makes sense to make them more
popular.

6.3. Competitions for university students. Even though they are not the focus of
this paper, mathematics competitions for university students, among other virtues,
help attract talented young people to academic careers in mathematics.

Some of these university-level competitions are highly respected and have ex-
isted for many years. The above-mentioned Putnam Exam is more than 65 years old.
The International Mathematics Competition for University Students began in 1994
[www.imc-math.org]. Of course, there are many other such competitions, but their
number is still much smaller than the number of competitions for secondary school
students, providing plenty of opportunities for new initiatives and international col-
laboration in this area.

6.4. Teachers and the competitions. In many countries, year after year, some
schools consistently “produce” more competition winners than other schools. What
is the reason behind this phenomenon? Why are some schools more successful than
others?

The reasons may be numerous and fairly different in nature. Very often, however,
the prominent success of a particular school can be attributed to the dedicated efforts
of a single teacher or a small group of teachers. For these excellent teachers, teaching
is a vocation, a mission, and not just means to make both ends meet. Such special
teachers are real assets for the school and for the whole country. They possess both
the necessary scientific ability and the extraordinary personality needed to identify
and motivate for hard work the future winners in competitions.

Such teachers need special care, though. Their higher scientific ability is acquired
very slowly, at the expense of great personal efforts. It is no secret that the success
of these teachers depends very strongly on their working environment and on the
appreciation by their colleagues and administration. Very often however the actual
working conditions in the schools do not support the work and the development of
these dedicated teachers.

There is a lot that can (and have to) be done in order to improve the situation.
For instance, the materials available to the teachers should not include problems and
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solutions only, but also provide didactic instructions for the teachers how to use these
materials in their work with higher ability students and what type of reactions and
difficulties to expect on the side of students. For this to happen a special research is
needed, conducted with the help of professional math educators.

Many organizations which are involved with competitions are also organizing
seminars and workshops for teachers. There is a valuable experience in many countries
in the work with such teachers. The positive results and the problems could be
discussed and evaluated with the aim of disseminating the good practices. Teachers are
the major human resource for the development of competitions and related activities.

Another problem is that often competition-like activities are not “at home” (and
therefore not appreciated) both in Mathematics Departments (because “they concern
Elementary Mathematics”) and in Mathematics Education Departments (because they
are “too mathematical and refer to the relatively small group of talented students”). It
is time for both communities (research mathematicians and mathematics educators) to
understand their joint interest in supporting competitions and competitions – related
activities.

7. Summary

Competitions have influenced positively mathematics education and its institutions in
different ways for more than a century.

Engaging millions of students and educators, math competitions have a distin-
guished way to identify, motivate, and develop young talent, steering it to careers in
science.

Mathematics competitions have matured and formed an immense and vibrant
global network which contributes significantly to the preservation and the maintenance
of mathematical heritage.

The flagship IMO not only serves as the “golden standard” for numerous other
competitions in mathematics and the sciences (especially with its often-overlooked
social program), but it also provides a constant stimulus for improvement of school
systems around the world.

Traditional competitions are complemented by more inclusive and less known
events that emulate more closely real research and engage even broader student au-
dience.

Nevertheless, stronger consolidation and collaboration of teachers, schools, uni-
versities, and educational authorities is needed in order to meet the challenges of the
new century.
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tional Mathematics and Science Study: what is at stake
and why K-12 education studies matter

Alan Siegel∗

Abstract. The technical portion of this paper concerns a videotape classroom study of eighth
grade mathematics lessons in Japan, and how methodological design errors led to conclusions
that are refuted by the actual video data. We document these errors, and trace their distillation
into one- and two-sentence education policy recommendations articulated in U.S. government
position papers, implemented in classrooms across the U.S. and imported by countries around
the world. We also present the historical context needed to understand the misrepresentations
cited in support of questionable education policy.
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1. Introduction

The outstanding results for the top-performing countries in the Third International
Mathematics and Science Study (TIMSS) have generated widespread interest in best
teaching practices around the world. In the TIMSS Videotape Classroom Study by
James Stigler et al. [31], the teaching styles in Germany, Japan, and the U.S. were
compared in an effort to discover what makes some programs so successful. The
conclusions from this comparison are striking and have been widely cited, but often
in a highly trivialized and even inaccurate manner. Moreover, this particular study,
as we will show, is marred by design errors that raise serious doubt about some of its
most influential conclusions. Indeed, it is these very findings that have been cited and
accidentally distorted in support of the latest reform programs and education policies –
both in the U.S. and elsewhere.

For example, it is widely acknowledged (cf. [31, p. 134]) that Japanese lessons
often use very challenging problems as motivational focal points for the content being
taught. According to the Glenn Commission1 Report [10, p. 16],

∗The author is grateful to the ICM, NSF and AMS for their support of this presentation. Disclaimer: although
the assessments and statements in this paper have been made in good faith by the author, they should not necessarily
be viewed as representative of or endorsed by the ICM, NSF or AMS.

1The commission’s proper name is the National Commission on Mathematics and Science Teaching for the
21st Century. It was chaired by former U.S. Senator and astronaut John Glenn. The year-long Commission was
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“In Japan, . . . closely supervised, collaborative work among students is the
norm. Teachers begin by presenting students with a mathematics problem
employing principles they have not yet learned. They then work alone or in
small groups to devise a solution. After a few minutes, students are called
on to present their answers; the whole class works through the problems and
solutions, uncovering the related mathematical concepts and reasoning.”

We revisit the TIMSSVideotape Classroom Study to resolve the one crucial classroom
question that both the Glenn Commission and the TIMSS Classroom Study group
failed to address:

How can Japanese eighth graders, with just a few minutes of thought, solve
difficult problems employing principles they have not yet learned?

We will see that the technique required to solve the challenge problem of the
day will have already been taught, and that the lesson begins with a review of the
fundamental method needed to solve the problem. Students begin working on these
problems individually – not in groups. Sometimes group-work is allowed for second
efforts on a given assignment, but only after individual seat-work. These lessons
include student-presented solutions, but the presentations are closely supervised by
the teacher, and the time allocated for this activity is limited so that students will be
able to work on a second challenge exercise of the same type, and the teacher will have
enough time to show how to apply a fundamental technique as many as ten times – all
in a single lesson. Stigler’s videotapes reveal master teaching of substantial content
hidden within a warm and inviting teaching style. Students do indeed participate, but
in moderation, and subject to the vigilant oversight of instructors who ensure that no
one wanders off course.

It is also worth noting that the Videotape Classroom Study identified some of the
significant differences between the current reform positions and Japanese teaching
practices. For example, it pointed out that students did not use calculators in the
Japanese classes, and that Japanese teaching has a far higher concentration of proofs
and derivations than both reform and traditional programs in the U.S. The Video-
tape Study also found that Japanese teachers spend more time lecturing than even
traditional U.S. teachers.

These distinctions not withstanding, the notion that Japanese teaching might be
implementing U.S. reforms is given far greater emphasis in a major Government
report, which flatly declares:

“Japanese teachers widely practice what the U.S. mathematics reform rec-
ommends, while U.S. teachers do so infrequently [25, p. 9].”

mandated to develop a strategy to raise the quality of mathematics and science teaching in all of the nation’s
classrooms. Unfortunately, the cited quote was, quite possibly, the most substantive paragraph in their report to
the nation. The preliminary Glenn Commission report cited Stigler and his TIMSS Videotape Classroom Study
as the source of this finding, although the final version omitted the specific citation.
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This report on best teaching practices worldwide makes no mention of any differences
between the U.S. reforms and Japanese teaching styles. Evidently, its perspective (see
also [25, pp. 40–43]) differs from that of its source of primary information, which is
the more cautiously worded TIMSS Videotape Study [31]. Moreover, the differences
identified in the Videotape Study – which concern direct instruction, calculators, and
teacher-managed demonstrations – are all matters of contention in the U.S. debate
over classroom reform.

Finally, we note that studies of individual classroom lessons – no matter how
comprehensive – are necessarily incomplete. They cannot detect how coherent a
curriculum might be day-by-day, much less over the course of years, and are ill-
equipped to assess the completeness of a given math curriculum.

2. Background

The need for sound – and indeed first-rate – K-12 mathematics programs is well
understood. In the U.S., many reform programs have been implemented over the
last fifty years, but the evidence shows that on balance, we have made very modest
progress toward this goal of world-class math education.

The majority of our past reform efforts can be characterized as a tug of war between
traditional and student-centric education movements. Just one of these programs
was sufficiently different to deserve special mention: the so-called New Math that
originated in the 1950s, and which was widely implemented in the ’60s. This reform
was pioneered by mathematicians, and was the only program ever to attempt to teach
elementary mathematics from an informal set-theoretic perspective. It failed, in part,
because its implementations did not provide safeguards to ensure that mainstream
American students – and teachers – could handle the material, which is an error
that the current reformers have been very careful to avoid. Finally, the program has
historical importance because its failure led to a fairly sharp separation between those
concerned with K-12 math education and those interested in mathematics research
and college teaching.

In the mid-1980s, a new version of student-centric learning and teaching began
taking hold in the mathematics education community, and it is fair to say that these
ideas have swept theAmerican schools of education, and are likewise well represented
by advocates in many other parts of the world.

In 1989, these ideas were codified into teaching policy when “educators . . . care-
fully articulated a new vision of mathematics learning and curriculum in the National
Council of Teachers of Mathematics’ (NCTM’s) Curriculum and Evaluation Stan-
dards for School Mathematics [6].” The 1989 Curriculum Standards [20], together
with the follow-up 1991 Teaching Standards [21] and the 1995 Assessment Standards
[22] called for a redirection of focus from what to teach grade by grade to new ideas
about how to teach and how to assess student progress. And with the publication of
these documents, the NCTM completed its transformation from an organization that
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began in the 1920s with ties to the Mathematical Association of America, and that
had been led by content-oriented math teachers who endorsed the revolutionary New
Math of the ’60s, to an organization led by professors of mathematics education who
endorsed a new type of revolutionary math program2 in the ’90s.

Loosely put, the theoretical core of this new vision of education is called construc-
tivism. Like most complex social theories, constructivism is founded on a few main
principles, has many interpretations and derived consequences, and a bewildering
variety of implementations. A thumbnail (and necessarily incomplete) sketch of the
main principles of constructivism is as follows.

The philosophical basis of constructivism is that everyone learns differently, and
that we learn best by integrating new knowledge into our own core understandings
and thought processes. Therefore, education is most effective when it engages the
learner to become the main agent in the learning process. That is, learning should be
engaging in every sense of the word. Since we learn by discovering and by doing,
learning is a quintessentially social process wherein through mutual interaction, we
organize, communicate, share, and thereby develop deepened understanding. More-
over, content should be based on real-world problems to reach each learner’s core
knowledge base, and to maximize the purposefulness of each lesson.

As stated, these objectives have merit – especially for teaching younger learners.
Indeed, the author believes that the debate over abstract constructivism misses the
point. However, the teaching reforms advocated by the NCTM include, in addition
to abstract principles, very applied recommendations that have significant impact on
curricula, pedagogy and the opportunity for students to learn mathematics.

Thus, the real questions concern the content and training provided by the reform
program implementations, as well as the consequences of the derivative theories of
learning and testing that are put forward as logical consequences of constructivist
principles. And it is this debate about what kinds of education programs work that
defines the context for the TIMSS Videotape Classroom Study and the classification
of Japanese pedagogy.

The impact of reform principles on classroom structure and course content. The
applied education theories advanced by contemporary reformers must be sketched out
if the various assertions about Japanese teaching and the latest reform recommenda-
tions are to make sense.

The principle of discovery-based learning aims to have the students themselves
discover mathematical principles and techniques. According to Cobb et al. [5, p. 28],

2The NCTM reform program was also endorsed by the federal department of Education and Human Resources,
which provided funds to create reform-compliant textbooks, to support their use, and to support studies designed
to prove that the new programs were effective. To date, more than $75 million has been allocated to produce these
new mathematics textbooks, and about $1 billion has been spent on programs to foster their use. The Educational
Systemic Reform programs, for example, ran for nine years with an annual budget of about $100 million, and
related programs for K-12 math and science education received comparable funding. More about the history of
these programs can be found in [32].
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“It is possible for students to construct for themselves the mathematical
practices that, historically, took several thousand years to evolve.”

In the 1999 Yearbook of the National Council of Teachers of Mathematics, the
article “Teaching Fractions: Fostering Children’s Own Reasoning” by Kamii and
Warrington [15] advises:

“1. Do not tell children how to compute by using numerical algorithms. . . .

2. Do not tell children that an answer is right or wrong. . . .

3. Encourage children to use their own reasoning instead of providing them
with ready-made representations or ‘embodiments.’

4. Ask children to estimate solutions to problems first because estimation is
an effective way to build strong number sense.”

To be fair to the authors, it should be pointed out that they provide alternatives to
prohibitions 1, and 2. For example, they recommend that the issue of correctness be
resolved by the entire class through cooperative discussion.

These discovery-based policies are often implemented via the workshop model of
teaching where students are seated in clusters of four desks facing each other with
no central lecture place in the classroom. This organization is designed to foster
collaborative learning and to reinforce the teacher’s role as a “guide on the side” as
opposed to the “sage on the stage.” In some programs, the purpose of the teacher
is to introduce the exercise of the day. The students then work in groups of four to
discover what they can about the problem. In the next phase, the students present their
findings to the class, and an active discussion typically ensues. The teacher might
have a role that is confined to being a moderator to maintain order in the discussions.
Likewise, some of the programs feature unsupervised group-work with the teacher
serving mainly as a passive observer.

In the higher grades, the U.S. discovery-based programs feature markedly di-
minished content depth, and the project-based texts exhibit poor coherence in their
management of topics and offering of reinforcement exercises. To date, some reform
programs simply omit material that does not fit within this model. Moreover, this
style of teaching, absent sufficient guidance from the teacher, is typically very time
consuming, and the slow pace cannot help but limit the curriculum.

For example, on page 315 of a tenth grade reform geometry textbook [37], exer-
cise 24 asks the student to draw an equilateral, an isosceles, and a scalene triangle,
and to draw the medians and observe the outcome in each case. The assignment also
asks the students to measure the lengths of the medians and the distance from the
vertices of each triangle to its centroid. The problem finishes by asking, “What do
you conclude?” No proofs are offered or requested, and for good reason. The study
of similar triangles begins in Chapter 13 on page 737, where the final two chapters of
the book present content that is less observation-based.

In 2001, I was invited to observe some of these workshop model classes at a
magnet high school in lower Manhattan. In one of the ninth grade classes, the lesson
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problem of the day was (in mathematical terms) to determine the equation of a line
through the origin that does not intersect any additional points on the integer Cartesian
lattice in R

2. The students began the exercise working unsupervised in groups of four.
Then the class convened as a whole to discuss their findings with the teacher serving as
moderator. The tenth (or so) student to speak observed that if the line were to intersect
another lattice point, then it would have a rational slope. The teacher then called on
another student, and this key observation was soon lost. The discussion devolved into
an unsuccessful effort to understand the difference between rational numbers with
finite decimal representations and those with repeating decimal expansions, and the
math period ended with no solution to either question.

In a televised eleventh grade lesson [24] from a reform textbook series [7], students
seated in groups of four were given the following problem. The teacher displayed
boards of different lengths, widths, and thicknesses suspended between pairs of bricks.
A karate expert, he explained, can deliver the tremendous energy necessary to break
a strong board. For the first part of the lesson, the students were asked to determine
a formula for the energy necessary to break a board as a function of its length and
thickness. The students discussed the question with great enthusiasm. There was no
evidence of any physical modeling, and it was not clear if the class knew Hooke’s
law or not. In the second portion of the lesson, a representative from each group
presented the group’s thoughts to the class. The first to speak was able to intuit that
a longer thinner board would be easier to break, but nevertheless went on to opine
that the formula for the energy E, as a function of the length L and thickness T ,
should be E = L + T . Another group thought that the formula should be E = kLT ,
where k is a constant that depends on the physical properties of the wood. In the
next portion of the lesson, students were given strands of dried spaghetti to form a
bridge between two tables, pennies to use as weights, and a paper cup plus paper clip to
suspend on the strand(s) of spaghetti. They then conducted tests with different lengths
and strand counts to see how many pennies were necessary to break the spaghetti –
thus measuring the breaking force, which was misrepresented as energy. The use of
multiple strands served to emulate different thicknesses (albeit incorrectly). Data was
gathered for 1 to 5 strands, and distances of 2 to 5 inches. Then the students used
their graphing calculators under the supervision of the teacher to determine the best
fit for the data, which was E = 10T

L
, where E is measured in pennies, T in spaghetti

strands, and L in inches.
The TV program closed by noting that with the introduction of this new cur-

riculum, grades were higher, and more students were electing to take three and four
years of math classes. Of course, the stacking of spaghetti strands to model thicker
pasta constitutes a fundamental conceptual error. It is no accident that plywood is
manufactured with bonded layers, and as straightforward mathematical modeling
shows, strength, in a simple model of deformation, is proportional to the square of
a beam’s thickness. Likewise, the confusion between force and energy ill serves the
students, as does the lesson’s implication that mathematics might be an experimental
science.
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The reforms seeking to maximize engagement include mandates to avoid drill
and – by extension – the kind of practice necessary to instill knowledge transfer to
long-term memory.

In concrete terms, the reform programs do not teach the multiplication table in
elementary school. Ocken reviewed all of the printed materials produced by one of
the elementary school reform programs [33] for grades K-5, and found fewer than
30 problems asking students to multiply two whole numbers, both of which contain
a digit greater than five[23]. This program implements the reduced emphasis on
pencil and paper calculations as recommended in the 1989 NCTM Standards, and, as
recommended, supports student work with calculators even in the earliest grades.

Likewise, the standard place-based rules for multiplication of multidigit integers
are no longer taught as essential material. Opponents of these reforms see the structure
of place-based multiplication as precursor knowledge that helps the learner internalize
the more abstract operations of polynomial arithmetic.

In one textbook series [16], the division of fractions was simply omitted from the
curriculum. And long division is long gone from these programs.

To maximize engagement, reformers recommend that problems and content be sit-
uated, which means that exercises, derivations and even theorems should be presented
in an applied context whenever possible. More generally, abstraction and symbolic
methods are eschewed. Of course, the foregoing comments about abstraction and
symbolic methods are just words. In order to understand them, we again take a few
quick peeks into the reform textbooks to see how these theories and recommendations
are turned into practice. For example, one ninth grade reform book [8] has, scattered
among its 515 pages, only 25 pages that even contain an equal sign. Of these, only
pages 435 and 436 actually concern algebra. The totality of the information about
algebra is on page 436, and is as follows.

“Some such equations are easier to solve than others. Sometimes the partic-
ular numbers involved suggest tricks or shortcuts that make them easy to
solve. In each of the equations below, the letter x stands for an unknown
number. Use any method you like to find the number x stands for, but write
down exactly how you do it. Be sure to check your answers and write down
in detail how you find them.

x

5
= 7

x

6
= 72

24

x

8
= 11

4

x

7
= 5

3
x + 1

3
= 4

6

5

13
= 19

x

2

x
= 6

9

x
= x

16
”

The preference for encouraging ad hoc “tricks” and “shortcuts” instead of teaching
systematic methods is evident. Indeed, the text does not present any methods for
solving these problems. The passage also illustrates how the these new programs
encourage students to write expository explanations and avoid teaching students to
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develop and record logical solution strategies based on correct operations, problem
decomposition, and the layered application of systematic methods.

On page 416 of this ninth grade text, problem 3 reads as follows.

b.

c.

a.

d.

3. Consider the following pairs of figures.
In each case, state whether you consider
the shape to be the same or not, and why.

The chapter goes on to explore some of the most elementary properties of similarity,
but the development is probably closer to the level of sixth grade than ninth, and the
overall content of the textbook is far weaker than, say, the standard sixth grade books
used in Singapore [13].

The comparison with the Singapore books is worthy of elaboration. In anAmerican
Educator article [1], the mathematician Ron Aharoni writes about what he learned
using the Singapore math program to teach first grade in Israel. He points out that these
lessons encourage students to describe problems in words, and feature more discussion
than is common in traditional programs. These characteristics are consistent with
some of the constructivist principles. There are, however, fundamental differences
between this teaching style and the applied recommendations and prohibitions that
characterize – and indeed define – the latest reform practices. Aharoni describes
how he actively teaches insights based on his mathematical knowledge – even in first
grade. And he also points out that significant reinforcement is necessary to help first
graders integrate this first grade content into their own thinking. Interestingly, the fifth
and sixth grade Singapore texts [13] exhibit a transition from this verbal/expository
approach of reasoned problem representation to an informal but precise prealgebra.
The books present – with many detailed examples – a kind of pictorial algebra, where a
physical segment might be used to represent an unknown length. The modeling allows
graphical unknowns to be added, subtracted, and multiplied and divided by integers
in physical representations of equations. Students solve many carefully constructed
word problems with this modeling process and its physical representation of variables.
This representation is used to strengthen intuition and understanding as preparation
for variables and algebra. By the sixth grade, the students are using the method to
solve sophisticated word problems that would challenge U.S. high schoolers. No
U.S. reform text presents such a coherent curriculum, and none provides a systematic
increase of content and problem depth chapter-by-chapter and over the course of years
to build deepening layers of understanding on behalf of the learner.

In terms of pedagogy, Aharoni emphasizes the importance of deep content knowl-
edge and a deep understanding of what is being taught as prerequisites for deciding
how to teach a particular topic [1, p. 13]. He says that the understanding of fundamen-
tal mathematical principles can be taught, but this instruction requires active teaching
by a very knowledgeable teacher.
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The current reform programs, by way of contrast, aim to teach less, not more. In
a ninth grade reform algebra text, for example, students receive enough training to
solve for x in the equation y = 3x + 2, but there is just one equation in the book that
uses variable coefficients. This one exception, which is on page 748 reads [9]:

“Show how to derive the quadratic formula by applying completing the square
to the general quadratic equation, ax2 + bx + c = 0.”

This question requires a tremendous leap in skill given the text’s limited use of equa-
tions with variable coefficients. Moreover, the presentation on completing the square
is so weak that it is inconceivable how any but the most exceptional student could
learn enough to solve this problem. The totality of the exposition reads:

“Here’s an example of how to use completing the square to solve the quadratic
equation x2 + 6x − 2 = 5.

Since − 2 doesn’t make x2 + 6x a perfect square, it is in the way. Move it
to the other side: x2 + 6x = 7.

Add 9 to both sides to make the left side a perfect square: x2 +6x+9 = 16.

Write the left side as a perfect square: (x + 3)2 = 16.”

There is no attempt to teach a systematic approach for completing the square, or to
explain how the magical 9 was selected for use in this particular case.

The avoidance of abstraction and symbolic coefficients, and the recommendations
against teaching systematic methods have undermined the quality of the textbook.
This instance of teaching by one explicit example cannot instill wide-spread under-
standing. And the inclusion of the exercise to derive the quadratic formula (which is
just about the last problem in a very long book) would appear to be based less on it
being an appropriate exercise than on the need to include the topic in the curriculum.3

Ralston recommends the outright abandonment of pencil and paper calculations
in favor of mental arithmetic supplemented by calculators [26]. Non-reformers dis-
agree, and suggest that proficiency in arithmetic is not taught for its own sake but
rather to strengthen the learner’s core knowledge and intuition as a prerequisite for
understanding fractions. Arithmetic fluency is even more important for a mastery of
and fluency in algebra, where the rules of arithmetic are revisited at an abstract level
with the introduction of variables and exponents. Many teachers report that those who
lack a grounding in the concrete operations of arithmetic experience great difficulty
with algebra and its manipulation of symbols. Other non-reformers argue that the
written record of pencil and paper problem solving documents a student’s approach
to a problem, which can be reviewed by the student and the teacher for conceptual
errors as well as computational mistakes. Non-reformers also argue that it is the use
of the written record that allows learners to combine fundamental steps into more

3It is also fair to say that some of the most project-based reform texts are designed around sequences of
typically unrelated projects, which result in a disorganized and incomplete curriculum with very few review and
reinforcement exercises (cf. [33], [8], [7], [9]).
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complex solutions that are too detailed to retain as mental calculations. In addition,
it is argued that the written representations of algebra bring a precision of expression,
of computation and of modeling that surpasses the written word in accuracy, clarity,
and simplicity.

The purpose of this inside review of American mathematics education was to
identify the controversies arising from the latest reforms in concrete (i.e. situated)
– as opposed to abstract – terms. It is time to explain why Japanese pedagogy has
become a topic of worldwide interest, and to investigate how well it aligns with the
latest reform principles.

The Third International Mathematics and Science Study. TIMSS is an enormous
umbrella project that seeks to measure academic achievement around the world, and
which includes many subsidiary studies that analyze a host of related issues in an
effort to determine how best to improve math and science education. TIMSS began
in 1994–95 with the testing of 400,000 students worldwide at grades four, eight, and
twelve. It has grown into a quadrennial program that conducted additional testings
and data acquisitions in 1999 and 2003, and has already begun to lay the groundwork
for the next round in 2007. The program now includes nearly fifty countries, and the
studies cover a large number of independent projects with publications in the many
thousands of pages.

Although there have been some fluctuations in the TIMSS rankings over the last
decade, and the participating countries have varied to some degree over time, the
overall results have been much more consistent than not. This fact is probably a
testament to the meticulous effort to maintain balanced student samples from the
participating countries, and the care that is exercised in the testing protocols and data
analyses. The project also deserves very high marks for adhering to a wonderfully high
standard of scholarship. The research projects produce not only reports of findings
but also detailed documentation of the data acquisition and analysis procedures and
indeed every aspect of project methodology. When feasible, these studies even publish
enough raw data for independent researchers to review every step of the research effort
for independent assessment.

Despite the wealth of information provided by the TIMSS publications, it is fair
to say that two specific TIMSS findings have captured the majority of the headlines,
and have had the greatest influence on classroom practice and education policy.

The most eye-opening results come from the achievement scores of students
around the world. For example, in the little multicultural, multilingual, top-performing
country of Singapore, some 46% of the eighth graders scored in the top 10% of the
world. And 75% of their students placed among the top 25% of all eighth graders
worldwide. Just 1% of their students placed among the bottom 25% of all eighth
graders around the world. This is a stunning achievement. Singapore has indeed
shown what it really means to have an education system where no child is left behind.

Moreover, these performance results have held up with remarkable consistency in
each of the TIMSS testing rounds. Just a notch down from Singapore, the next group
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of top performers have been Korea, Hong Kong, Chinese Taipei (formerly known as
Taiwan) and Japan (mostly in this order) with Flemish Belgium trailing somewhat
behind, but consistently next in line.

The U.S. scores are also worth mentioning. Roughly put, American fourth graders
and eighth graders scored somewhat above the international average. But at the twelfth
grade, the U.S. scored at the bottom of the industrialized world, and only significantly
out-performed two countries: South Africa and Cyprus. No other country fell so far
so fast. There was also a more sophisticated twelfth grade test that was reserved for
twelfth graders in advanced math programs in the participating countries. On that
test, the U.S. was next-to-last; even Cyprus performed significantly better.

For completeness, it should be noted that the twelfth grade testing has not been
repeated since 1995 and the U.S. plummet just described. This is unfortunate because
the lack of follow-up testing forces us to infer whether the American mathematics
programs have recovered from the results documented in 1995. Moreover, the real
purpose of a K-8 program is to prepare students for subsequent study as opposed to an
eighth grade TIMSS test. So our understanding of mathematics education around the
world would be greatly enhanced by a schedule of testing that includes grade twelve
as well as grades four and eight.4

In view of the absence of follow-up twelfth grade testing, one could speculate that
the American TIMSS scores might show that the newest programs are beginning to
make a difference. After all, the latest math reforms are often introduced at the earlier
grades first, and then extended by one grade level per year. Could it be that U.S. high
school students are performing better now because more of them are participating in
reform math programs? The answer seems to be a clear no. A variety of studies5

have documented very little progress in high school math achievement over the last
decade. To date, the NAEP scores, for example, have been most notable for their lack
of improvement.

In short, TIMSS testing shows that the US, and indeed most of the world have
K-12 mathematics programs that are nowhere near the quality of the best programs
worldwide. These results constitute a compelling argument for continued testing on
an international scale. Simply stated, TIMSS is one of our best mechanisms for iden-
tifying unforeseen weaknesses in national programs, and for discovering exemplary
programs that can be investigated in an effort to improve domestic teaching.

The other finding that has generated enormous impact can be traced to “TIMSS
Videotape Classroom Study: Methods and Findings from an Exploratory Research
Project on Eighth-Grade Mathematics Instruction in Germany, Japan, and the United
States” [31]. For convenience, we condense the TIMSS Videotape Classroom Study’s
name to TVCS.

4For countries such as Singapore, which do not have a twelfth grade, the testing might well be given at the
completion of the secondary education system.

5See, for example, Too Little Too Late: American High Schools in an International Context by William H.
Schmidt. In Brookings Education Policy papers 2003 (ed. by Diane Ravitch), pp. 253–277.
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The Videotape Classroom Study documentation. During 1994–95, the TVCS
team recorded 231 eighth-grade mathematics lessons in Germany, Japan and the U.S.
The TVCS project report by Stigler et al. [31] contains an extensive analysis of these
tapes and a description of the data acquisition and analysis methodologies. Stigler and
James Hiebert subsequently conducted a joint study of Japanese training in pedagogy,
which has strong cultural traditions that are surprisingly different from the programs
of teacher development in the U.S. [30]. In 1999, Hiebert and Stigler began a second
TIMSS videotape classroom study [11] that covered a broader selection of higher
performing countries.

These videotape study projects produced a variety of supporting documentation
[34], [35], [36], [14], [12], but the follow-up study did not record a new series of
Japanese lessons and instead relied on the earlier tapings. We cover the main findings
from the second study and the differences in its methodology and conclusions (which
may well have resulted from criticisms of the earlier project), but will focus primarily
on the 1995 TVCS, which remains the far more influential of the two publications.

The 1995 project produced a publicly available videotape [34] that begins with
Stigler presenting an overview of the Japanese lessons that is very similar to the de-
scription already quoted from the Glenn Commission Report. It then shows carefully
selected representative excerpts of the geometry and algebra lessons recorded in Ger-
many, Japan, and the U.S. The German and American lesson samples were produced
in addition to the original 231 recordings, which are not in the public domain due to
confidentiality agreements. The Japanese excerpts were selected from the original 50
tapings recorded in Japan, and disclosure permissions were obtained after the fact.

The TIMSS videotape kit includes a guide to the excerpts [36] and a CD ROM
[35] is available with the same excerpts, but without Stigler’s introduction.

3. What the Japanese video excerpts show

Geometry. The tape shows the Japanese geometry lesson beginning with the teacher
asking what was studied the previous day. After working to extract a somewhat

Figure 1

meaningful answer from the class, he him-
self gives a summary: Any two trian-
gles with a common base (such as AB

in Figure 1) and with opposing vertices
on a line parallel to the base (such as the
line through D, C and P ) have the same
area because the lengths of their bases are
equal, and their altitudes are equal. The
teacher states this principle and uses his
computer graphics system to demonstrate
its potential application by moving vertex
P along the line CD. The demonstration
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shows how to deform triangle ABP in a way that preserves its area. Next, he explains
that this principle or method is to be the “foundation [36, p. 136]” for the forthcoming
problem, which he then presents. It is the following.

Eda and Azusa each own a piece of land that lies between the same pair of lines.
Their common boundary is formed by a bent line segment as shown.

Eda
Azusa

Figure 2

The problem is to change the bent line
into a straight line segment that still di-
vides the region into two pieces, each with
the same area as before.

Despite the previous review, the prob-
lem is still going to be a challenge for
eighth graders, and it is fair to infer that
the teacher understands this very well. In
geometry, one of the most difficult chal-
lenges in a construction or proof is deter-
mining where to put the auxiliary lines. These lines are needed to construct the angles,
parallel lines, triangle(s), etc. that must be present before a geometry theorem or prin-
ciple can be applied to solve the problem. For the exercise in Figure 2, the key step
is to draw two crucial auxiliary lines. One defines the base of a triangle that must be
transformed in a way that preserves its area. The other is parallel to this base, and
runs through its opposing vertex.

So what should a master instructor do? The answer is on the tape.
After explaining the problem, the teacher asks the students to estimate where the

solution line should go, and playfully places his pointer in various positions that begin
in obviously incorrect locations and progress toward more plausible replacements for
the bent line. Now here is the point. With the exception of two positions held for
about one second (which come shortly after the frame shown in Figure 4), none of
his trial placements approximate either of the two answers that are the only solutions
any student will find.

Figure 3 Figure 4



1612 Alan Siegel

Rather, they are all suggestive of the orientation for the auxiliary lines that must
be drawn before the basic method can be applied. He is giving subtle hints, and
calling the students’ attention to the very geometric features that must be noticed if
the problem is to be solved. It is surely no accident that the teacher pauses with his
pointer placed in two particular locations far longer than anywhere else. One of the
locations is shown in Figure 4. The other is parallel to this placement, but located at
the opposing vertex, which forms the bend in the boundary between Eda and Azusa.

Only after this telling warm-up – the heads-up review of the solution technique
necessary to get the answer, and the casual discussion loaded with visual cues about
what must be done – are the children allowed to tackle the problem.

But this is not the end of the lesson, and the students only get an announced and
enforced three minutes to work individually in search of a solution.

As the children work, the teacher circulates among the students and gives hints,
typically in the form of leading questions such as: “Would you make this the base?
[The question is] that somewhere there are parallel lines, okay [36, p. 140]?”

He then allocates an additional 3 minutes where those who have figured out the
solution discuss it with the other teacher. Weaker students are allowed to work in
groups or to use previously prepared hint cards. The excerpt does not show what hap-
pens next. The TIMSS documentation [36] reports that students prepare explanations
on the board (9 minutes).

Then a student presents his solution. The construction is clearly correct, and he
starts out with a correct explanation. But when the time comes to demonstrate the
solution, he gets lost and cannot see how to apply the area preserving transformation
that solves the problem. The teacher then tells him to use “the red triangle” as the
target destination.

Figure 5

The advice turns out to be insufficient, and the teacher
steps in to redraw the triangle that solves the problem,
and calls the student’s attention to it with the words,
“over here, over here.” The student seems to understand
and begins the explanation afresh. But he soon winds up
saying, “Well I don’t know what I am saying, but . . . ” He
then regains his confidence, and the presentation comes
to an end without additional explanation.
A number of students say that they do not understand.

Then another student explains her answer, but the presentation is omitted from
the tape. According to the Moderator’s Guide [36, pp. 139–41], these two student
presentations take altogether less than three minutes. Next, the teacher explains how
to solve the problem. There are two equivalent answers that correspond to moving
the middle vertex in Figure 1 to the left or right. Both directions solve the problem,
and he shows this.

For completeness, we also show the two ways that the triangle transformation
technique can be used to solve the problem. In order to make the connection between
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the review material and the challenge problem absolutely clear, the problem and
its two answers have been rotated to present the same perspective as the triangle
transformations in Figure 1, which began the day’s lesson.

Evidently, no one devised an alternative solution method.
E

da

A
zu

sa

Figure 6

E
da

A
zu

sa

Figure 7

In his discussion of the solution, the teacher points out [36, p. 141] that this line
straightening technique eliminates one of the two corners at the base of the triangle
in Figures 6 and 7. This observation exposes a subtlety in that the corner that is
eliminated is not the apex of the triangle, which is the point being moved to straighten
out the line.

Figure 8

The lesson then continues with the teacher posing a
new problem that can be solved with the same technique.
This time the figure is a quadrilateral, and the exercise
is to transform it into a triangle with the same area. At
this point, the basic solution method should be within
a student’s reach, although the problem still requires a
sound understanding of the basic method. There is also
added difficulty due to the need to recognize that two
consecutive sides of the quadrilateral should be viewed
as representing the bent line of Figure 2, and that the
other two sides should be extended as auxiliary lines to recast this new problem

Figure 9

into a version of the Eda–Azusa exercise. The basic line
straightening method can be applied so that any one of the four
vertices can serve as the point where the line bends, and this
designated vertex can be shifted in either of two directions to
merge one of its two connecting sides with one of the auxiliary
lines. The students again work individually for three minutes,
and then are allowed to work in groups, use hint cards or ask
the teacher.

The TIMSS documentation indicates that this joint phase
lasts for 20 minutes, and includes student presentations of their

answers. There are apparently eight such presentations, which were selected to illus-
trate all eight ways the basic method can be applied: there are four vertices that can
each be moved two ways. Then the teacher analyzes these eight ways in greater depth,
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and explains how they all use the same idea. All students remain seated during this
portion of the lesson, and he controls the discussion very carefully and does almost all
of the speaking. For homework, the teacher asks the students to transform a five-sided
polygon6 into a triangle with the same area.

An analysis of the teaching and its content. This lesson is nothing less than a mas-
terpiece of teaching, and the management of classroom time is remarkable. Although
many students did not solve the first problem of the day, the assignment certainly
succeeded in engaging the attention of everyone. The second problem was no give-
away, but it gave students the chance to walk in the teacher’s footsteps by applying the
same ideas to turn a quadrilateral into a triangle. The teacher-led study of all possible
solutions masked direct instruction and reinforcement practice in an interesting and
enlightening problem space.

Evidently, no student ever developed a new mathematical method or principle that
differed from the technique introduced at the beginning of the lesson. Altogether,
the teacher showed how to apply the method 10 times. Yet the lesson is an excellent
example of how to teach problem solving, because each successive problem required
a complete understanding of the basic proof technique.

The homework assignment is yet another application of the same method, and
gives everyone a chance to revisit the lesson of the day once more. It also hints at the
use of induction.

It is also worth pointing out that this geometry lesson, which is a specific appli-
cation of measure preserving transformations, has additional uses. It appears, for
example, in Euclid’s proof of the Pythagorean Theorem (cf. Book I Prop 47 of Eu-
clid’s Elements).7 More advanced exercises of this type appear on national middle
school mathematics competitions in China and regional high school entrance exami-
nations in Japan. And it is not much of a stretch to suggest that measure preserving
transformations lie at the heart of those mysterious changes of variables in the study
of integration.

All in all, the lesson is a wonderful example of the importance of a deep under-
standing of fundamental mathematics.

Algebra. The Japanese algebra lesson begins with student-presented answers for
each of the previous day’s six homework problems [36, p. 114]. These activities,
along with the accompanying classroom discussion are omitted from the excerpts.

Then the teacher presents a more challenging problem that uses the same basic
calculation method that the students have been studying, but needs one common-sense
extension. The problem is this.

6The problem probably should be restricted to convex figures; otherwise it includes irregular cases that are
difficult to formalize. On the other hand, this concern is just a minor technicality that has no effect on the
pedagogical value of the problem.

7In fact, the technique is central to Euclid’s development of area in general, which is based on transforming
any polygon into a square with the same area. And the natural extension of this problem became a question for
the ages: how to square the circle.
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There are two kinds of cakes for sale. They must be bought in integer multiples;
you cannot buy a fraction of a cake. The most delicious cake costs 230 yen, and a
less tasty one is available for 200 yen. You wish to purchase 10 cakes but only have
2,100 yen. The problem is to buy 10 cakes and have as many of the expensive cakes
as possible while spending no more than 2,100 yen.

The reproduction of the six homework exercises as shown in the TIMSS Mod-
erator’s Guide [36, p. 114] confirms that the class was already experienced with the
technical mechanics necessary to solve problems with inequalities. Evidently, prior
lessons had also covered word problems and the translation of word problems into
equations and inequalities. Indeed, the teacher introduces the problem with the re-
marks, “Today will be the final part of the sentence problems [36, p. 159].” Thus, it is
fair to infer that the only difference between the cake problem and the material they
had just reviewed is the requirement that the solution use whole numbers of cakes.

After making sure that the students understand the problem, he asks them to devise
a way to solve it. They get an announced and enforced three minutes.

Next, the teacher solicits solution approaches from the students. A student volun-
teers that she tried all possibilities. Her approach was to try 10 cheap cakes, then 9
cheap ones and 1 expensive one, etc., until she had the best answer. However, she was
unable to finish in the three minutes that the teacher allocated for the problem. The
teacher emphasizes the point, and it will soon become clear that part of the lesson is
to show that this unstructured approach is unsound.

He then briefly discusses another way to solve the problem. The approach, which
is quite inventive, uses a notion of marginal cost. If we buy 10 of the most expensive
cakes, we exceed our budget by 200 yen. Trading in an expensive cake for a cheaper
cake gives a net savings of 30 yen. Evidently, seven cakes have to be traded in, which
shows that the answer is three expensive cakes and seven cheaper ones. As the teacher
expected [36, p. 164], no student solved the problem this way.

Then he calls on another student, who explains how she set up the problem as
an inequality, solved it as an equality, and then rounded the number of expensive
cakes down to the nearest lesser integer. As she explains the equation, he writes it on
the board. Only a few students understand the explanation, and he asks for another
explanation of the same process. In subsequent activities that are only summarized
on the tape and in the Moderator’s Guide, the teacher then passes out a worksheet and
works through a detailed analysis of the solution for the class.

After the detailed presentation, another problem of the same type was assigned,
but with larger numbers. The teacher’s words are telling:

“If you count one by one, you will be in an incredibly terrible situation. In the
same way that we just did the cake situation, set up an inequality equation
by yourself and find out . . . [the answer]. Because finding the answers one
by one is hard, I wonder if you see the numerous good points of setting up
inequality equations . . . ”
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The students worked on the problem individually. After 11 minutes, the teacher went
over the problem with the class. The class ended with the teacher summarizing the
solution technique that constituted the lesson of the day.

The video excerpts contain no group-based problem solving in this algebra lesson,
and the Moderator’s Guide confirms that none of the class time included problem
solving in groups.

An analysis of the teaching and its content. Students never developed new solu-
tion methods. In the algebra class, the students were given the opportunity to learn
first-hand why ad hoc trial-and-error approaches (which are encouraged by some of
the latest reform recommendations) do not work. Although the tape does not explicitly
show how many students were able to solve the original cake problem in the allotted
time, the student responses suggest that no more than five could have possibly suc-
ceeded. But the three minutes of struggle might well have served to make the lesson
more purposeful.

From a mathematical perspective, the cake problem was designed to require a deep
understanding of inequality problems and their solutions. Mathematicians would say
that when we solve a problem, we find all of the answers. If the cake problem had
allowed fractional purchases, and had simply required that altogether any mix of ten
cakes be purchased for at most 2100 yen, then the algebraic formulation would read,

230x + 200(10 − x) ≤ 2100,

where x is the number of expensive cakes purchased, and 10 − x is the number of the
inexpensive ones. The problem would also require that x be non-negative, since you
cannot buy negative quantities of cake. A little manipulation gives:

0 ≤ x ≤ 10

3
.

Now, the point is that every x in this interval is a solution to the simplified problem,
and every solution to the problem is in this interval. So if we want a special answer,
the interval

[
0, 10

3

]
is the place to look. If we want the largest x, it is 10

3 . If we want
the largest integer x, it is 3. And if we wanted the largest even integer, for example,
we would look nowhere else but into

[
0, 10

3

]
to conclude that this answer is x = 2.

Incidentally, a complete answer must also observe that the number of inexpensive
items must be non-negative.

This problem variant is more than a matter of common sense; it exposes students
to a deep understanding of solutions to inequalities and the implications of real world
constraints. Moreover, the problem illustrates the idea of decomposing a complex
exercise into a more basic problem whose solution can then be adapted to achieve the
original objective.

Evidently, the video excerpts feature challenge problems that cover fundamental
principles, techniques, and methods of systematic thought that lie at the heart of
mathematics and problem solving. As such, they ought to provide experiences that
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build a powerful foundation of intuition and understanding for more advanced material
yet to come. As a derivative benefit, these problems are so rich they can be readily
transformed into follow-up exercises for use as reinforcement problems in class and
as homework.

Both lesson excerpts exemplify a multi-round teaching and reinforcement peda-
gogy that begins with review of the fundamental (and systematic) principle that is the
key to solving the challenge problem. The review is followed by two or three rounds
(when homework is counted) that feature equivalent problems, often with additional
educational content. Between each round, the teacher guides the students through
the solution process to open the eyes of each learner to the basic idea, and to give
the students yet another chance to apply the technique by themselves and to integrate
the material into their own understanding – all in an engaging style without rote or
tedium.

4. What can be deduced about Japanese teaching?

Many publications claim that the Japanese lessons teach students to invent solutions,
develop methods and discover new principles. For example, this view is expressed in
the Glenn Commission report [10, p. 4], and is clearly stated in TVCS as well: “[In
Japan, the] problem . . . comes first [and] . . . the student has . . . to invent his or her
own solutions [31, p. vi].” In fact, TVCS reports that the 50 Japanese lessons averaged
1.7 student-presented alternative solution methods per class [31, Figure 22, p. 55]. Yet
the excerpts exhibit no signs of such activity. They contain just one student-devised
solution alternative, and it failed to produce an answer.

These differences are fundamental, and they should be reconciled. Part of the
problem is that students are unlikely to devise their own solutions when the time
is limited, the problems are so difficult that hints are needed, and the exercises are
(clearly) designed to teach the value and use of specific techniques. Students would
presumably have a better chance of finding alternative solution methods for less chal-
lenging exercises. And they would have an even better chance with problems that can
be solved by a variety of methods that have already been taught. Examples might
include geometry problems where different basic theorems can be used, and studies
of auxiliary lines where the exercises are designed so that different auxiliary lines
build different structures that have already been studied. TVCS illustrates alternative
solution methods with the U.S. assignment to solve x2 +43x −43 = 0 by completing
the square and by applying the quadratic formula [31, p. 97]. Of course, this problem
directed students to use different methods they already knew. The example contains
no hint of any discovery.

So the question remains: where are the alternative solution methods, and when do
they demonstrate signs of student-discovery?

The answers are in TVCS. It presents the actual examples that were used to train
the data analysts who counted the “Student Generated Alternative Solution Methods”



1618 Alan Siegel

(SGSM1, SGSM2, . . . ) in each lesson. The training lessons, it turns out, were the
Japanese excerpts that we have just analyzed. The two student presentations for the
Eda–Azusa problem are coded as SGSM1 and SGSM2 [31, p. 26–27]. Similarly,
the second problem, where each of four vertices could be moved in two directions,
has the codings SGSM1–SGSM8. Altogether, this lesson is counted as having 10
student-generated alternative solution methods, even though it contains no student-
discovered methods whatsoever. And the failed try-all-possibilities approach in
the Japanese algebra excerpt is counted as yet another student-discovered solution
method. (See also “Teacher and Students Presenting Alternative Solution Methods
[36, pp. 161–163].”)

TVCS also contains a partial explanation for the source of these judgments. It
reports that the data coding and interpretation procedures were developed by four doc-
toral students – none of whom were in mathematics programs [31, p. 24]. Moreover,
TVCS states that the project’s supporting mathematicians only saw coder-generated
lesson tables, and were denied access to the actual tapes [31, p. 31]. It is reasonable
to infer, therefore, that they did not participate in the design of these coding practices.
As for the question of invention, TVCS explains: “When seat-work is followed by
students sharing alternative solution methods, this generally indicates that students
were to invent their own solutions to the problem [31, p. 100].” Altogether, there ap-
pears to have been a sequence of misinterpretations that counted student presentations
as alternative solution methods, which became student-generated, and then invented
and which ultimately evolved into invented discoveries that might even depend on
new principles the students had not yet learned ([31], [25], [10]).

On the other hand, the contributions by the Japanese teachers received much less
generous recognition. Yet in the defining examples of student discovery, the teachers –
not the students – manage the ideas and lead the education process.

Additional statistics from the TIMSS projects. It is worth reiterating that in the
sample Japanese lessons, students began working individually – and not in groups –
on each of the four representative exercises. Similarly, the Stigler–Hiebert analysis
[30, p. 79] states that “Students rarely work in small groups to solve problems until
they have worked first by themselves.” TVCS contains no comparable statement, and
even implies otherwise: “[After the problem is posed, the Japanese] students are then
asked to work on the problem . . . sometimes individually and sometimes in groups
[31, p. 134].” However, not one of the 86 figures and bar charts documents instances
where problems began with students working in groups. Chart 41 [31, p. 78] indicates
that of the seat-work time spent on problem solving, 67.2% of the time comprised
individual effort and 32.8% of the time was spent in group-work.

Another TIMSS study addressed this issue in the statistics it gathered for a care-
fully balanced sampling of 3750 or so eighth graders from each participating coun-
try. One of its questionnaires asked teachers about their classroom organization and
whether most of their lessons included students working in small groups, individu-
ally, as a class, etc. The results, which were weighted by the number of students
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in each responding teacher’s class, are reproduced below for the U.S. and Japan [3,
pp. 154–155].

An "r" indicates teacher response data available for 70−84% of students.

r r r r r

Percent of Students Whose Teachers Report Using Each Organizational Approach "Most or Every Lesson"

without Assistance
   Small Groups
 Work in Pairs or

Japan

United States

Work Together as
Work Individually
 with Assistance

Work Together as

Responding to One
     Another

    Students
    a Class with   a Class with

Teacher Teaching
 the Whole Class   from Teacher

without Assistance
 Work Individually

  from Teacher

Small Groups with
 Work in Pairs or

 Assistance from
     Teacher    from Teacher

Country

26 12

7 115

19

27

50

78

49

22

22
r

Figure 10

The table shows that Japanese lessons do not have significant numbers of small-group
activities. In fact, American classes evidently contain about 4 times as many such
lessons. Of course, it should be noted that the data is based on questionnaires and
depends, therefore, on the judgment of each respondent. The meaning of “most or
every lesson” might have cultural biases, as might the definitions of “small groups”
and “teacher assistance.” Still, these TIMSS statistics support the notion that the
Japanese style of teaching is substantially different from many of the U.S. reform
practices.

Placing Japanese teaching in the context of U.S. reform. The video excerpts show
Japanese lessons with a far richer content than the corresponding offerings from the
U.S. and Germany. TVCS reports that the eighth-grade lessons recorded in Japan,
Germany, and the U.S. covered material at the respective grade levels 9.1, 8.7, and
7.4 by international standards [31, p. 44]. We suspect that the interactive nature of the
teaching style, the coherent, concept-based exercises with disguised reinforcement
problems, the motivated direct instruction, and the deep understanding of the teachers
all contribute to the quality of the Japanese curriculum.

Additional analysis shows that 53% of the Japanese lessons used proof-based
reasoning, whereas the comparable statistic for the US lessons – which included
both traditional and reform programs – stood at zero [31, p. vii]. And comparisons
evaluating the development of concepts – including their depth and applicability –
and the overall coherence of the material likewise judged the Japanese programs to
be vastly superior [30, p. 59]. By all evidence, the use of proof-based reasoning as
reported in Japan is not at all representative of the reform programs in the U.S., and
the use of such remarkably challenging problems is beyond the scope of anyAmerican
program past or present.

When comparing U.S. reform practices and Japanese teaching methods, TVCS
offers somewhat guarded conclusions that are sometimes difficult to interpret:

“Japanese teachers, in certain respects, come closer to implementing the
spirit of current ideas advanced by U.S. reformers than do U.S. teachers.
For example, Japanese lessons include high-level mathematics, a clear
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focus on thinking and problem solving, and an emphasis on students de-
riving alternative solution methods and explaining their thinking. In other
respects, though, Japanese lessons do not follow such reform guidelines.
They include more lecturing and demonstration than even the more tradi-
tional U.S. lessons [a practice frowned upon by reformers], and [contrary
to specific recommendations made in the NCTM Professional Standards
for Teaching Mathematics] 8we never observed calculators being used in a
Japanese classroom [31, p. vii].”

Subsequent elaboration on the similarities between U.S. reform and Japanese peda-
gogy recapitulates these ideas in the context of various reform goals, but again offers
no statistical evidence to compare with the data accumulated from the analysis of
Japanese teaching practices [31, pp. 122–124]. Consequently, it is difficult – absent
additional context – to compare these reform notions in terms of mathematical coher-
ence, depth, international grade level, or the preparation of students for more advanced
studies and challenging problems. And no matter what “the spirit of current reform
ideas” may mean, it is clear that Japanese and U.S. reform pedagogies differ in their
management of classroom time, their use of proof-based reasoning, their tradeoffs
between student-discovery and the use of direct instruction, as well as their use of
individual and small group activities.

For completeness, we note that TVCS makes a distinction between the idealized
goals as prescribed in the NCTM Professional Standards for Teaching Mathematics,
and as embodied in actual classroom practices of some reform programs. In particular,
TVCS discusses two reform-style lessons. One involved students playing a game that
was purported by the teacher as being NCTM compliant, but happens to have very
little mathematics content: “It is clear to us that the features this teacher uses to define
high quality instruction can occur in the absence of deep mathematical engagement
on the part of the students [31, p. 129].” The other lesson was deemed compliant with
the spirit of NCTM reforms. It began with the teacher whirling an airplane around
on a string. The eighth graders then spent the period working in supervised groups
to determine the speed of the plane, and came to realize that the key issues were
the number of revolutions per second, and the circumference of the plane’s circular
trajectory. The problem also required a realization that units conversions would be
needed to state the speed in miles per hour. The problem engaged the class, and
a variant to compute the speed of a bird sitting on the midpoint of the string was
evidently a challenge. The homework for this math class was a writing assignment:
the students were asked to describe the problem, to summarize their group’s approach,
and to write about the role they played in the group’s work [31, p. 127]. TVCS did
not evaluate this lesson or the homework in terms of international grade level or its
coherence within a curriculum.

8The bracketed additions are elaborations from page 123 of TVCS, where the discussion of calculator usage
is reworded and thereby avoids the slight grammatical misconstruction we have caused with the unedited in-place
insertion.
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Other characterizations of Japanese classroom practices. Studies that use human
interaction as a primary source of data must rely on large numbers of interpretations
to transform raw, complex, occasionally ambiguous, and even seemingly inconsistent
behavior into meaningful evidence. Given the complexity of the lessons, it is not
surprising that different interpretations should arise. TVCS – to its credit – documents
an overview of these decision-making procedures, although the actual applications
were far too numerous to publish. Moreover, TVCS actually contains widely diverse
observations, ideas, and conclusions that sometimes get just occasional mention, and
that are necessarily excluded from the Executive Summary. Understandably, this
commentary is also missing – along with any supporting context – from the one-
sentence to one-paragraph condensations in derivative policy papers (cf. [25], [10]).
Perhaps the seventh and eighth words in the opening line of the TVCS Executive
Summary explain this issue as succinctly as possible: “preliminary findings [31,
p. v].” It is now appropriate to explore these larger-picture observations and to place
them within the context of actual lessons.

TVCS even offers some support for our own observations:

“[Japanese] students are given support and direction through the class dis-
cussion of the problem when it is posed (figure 50), through the summary
explanations by the teacher (figure 47) after methods have been presented,
through comments by the teacher that connect the current task with what
students have studied in previous lessons or earlier in the same lesson (fig-
ure 80), and through the availability of a variety of mathematical materials
and tools (figure 53) [31, p. 134].”

Unfortunately, these insights are located far from the referenced figures and the expla-
nations that accompany them. The words are effectively lost among the suggestions
to the contrary that dominate the report. It is also fair to suggest that the wording is too
vague to offer any inkling of how powerful the “support and direction through class
discussion” really was. Similarly, the value of the connections to previous lessons
is left unexplored. This discussion does not even reveal whether these connections
were made before students began working on the challenge problems, or after. For
these questions, the video excerpts provide resounding answers: the students received
masterful instruction.

The Math Content Group analyzed a representative collection of 30 classroom
lesson tables. Their assessments, as sampled in TVCS, agree with our overall ob-
servations, apart from the use of hints, which were mostly omitted from the tables.
These analyses are highly stylized with abstract representations for use in statisti-
cal processing and were, presumably, not intended to be a reference for the actual
teaching.9

9For example, the analysis of the excerpted geometry lesson consists of a directed graph with three nodes,
two links and nine attributes. The first node represents the basic principle (attribute PPD) illustrated in Figure
1. The node’s link has the attributes NR (Necessary Result) and C+ (Increased Complexity). It points to a
node representing the first challenge exercise. The representations were used to get a statistical sense of various
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Another sentence in TVCS begins with teachers helping students, but ends with
students inventing methods.

“The teacher takes an active role in posing problems and helping students
examine the advantages of different solution methods [however, rather than
elaborating on how this takes place, the sentence changes direction with
the words], but the students are expected to struggle with the mathematical
problems and invent their own methods. [31, p. 136].”

This interpretation of student work as inventive discovery appears throughout TVCS.
In its analysis of the excerpted Japanese geometry lesson, TVCS categorizes the
teacher’s review of the basic solution method (shown in Figure 1) as “APPLYING
CONCEPTS IN NEW SITUATION [31, Figure 63, p. 101],” but inexplicably switches
tracks to count the student applications as invented student-generated alternative so-
lution methods. Another such instance reads, “students will struggle because they
have not already acquired a procedure to solve the problem [31, p. 135].” Similarly,
TVCS never explains how teachers participate in the problem solving by teaching
the use of methods and by supplying hints. Its only discussion about hinting is to
acknowledge the offer of previously prepared hint cards [31, pp. 26–30]. And by the
time the Glenn Commission finished its brief encapsulation of student progress, even
the struggle had disappeared along with proper mention of extensive teacher-based
assistance.

5. The matter of pedagogy

Having sequenced through the Japanese lesson excerpts to determine exactly what
took place in the classrooms, we now compare these applied teaching practices with
current reform principles.10 One of the most important differences between these
two approaches to teaching concerns discovery-based learning. As with any idealized
theory, the real issue is how well it works in practice. Discovery-based lessons can
make sense – in moderation – provided suitable safeguards are in place. In particular:

• Judgments must resolve how much time is needed for students to discover the
mathematics, and the necessary tradeoffs among time for guided discovery, time
for additional (or deeper) lessons, and time for practice.

• There must be detection/correction mechanisms for incomplete “discoveries”.
• There must be allowances for the fact that in even the best of circumstances, only

a few students will succeed in discovering non-trivial mathematical principles.
The lesson excerpts reveal a teaching style that is surprising and very different from

the U.S reforms – in theory and practice. In the Japanese classes, the time allotted for
the first round of grappling with problems is remarkably modest. Consequently, the

broad-brush characteristics of the lessons [31, pp. 58–69].
10See [2] for an enlightening albeit jargon heavy exposition on the differences between the theories of learning

advanced by educators and by cognitive psychologists.
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remaining time is sufficient for teacher-assisted student presentations to help identify
conceptual weaknesses, and for direct instruction to present new insights, as well as for
follow-up problems designed to solidify understanding. Due to the time limitations
and the difficulty of the more challenging problems, many students will be learning
via a model of “grappling and telling.” That is, most students will struggle with
a tough problem in class, but not find a solution. They will then learn by being
told how to solve it, and will benefit by contrasting their unsuccessful approaches
against methods that work [27]. There is no question that preliminarily grappling
with a problem is both motivational and educational (cf. [4, p. 11] and [27]). And
discussions to understand why some approaches fail, to understand why a solution
might be incomplete, and to explore alternative problem solving techniques are all
sound investments of class time. However, the use of grappling and telling raises the
implementation question:

Who should do the telling?
In some teaching practices, the theory of discovery-based learning is extended to

include the notion of cooperative learning, which holds that the students should teach
one another because they “understand” each other. In contrast, the TIMSS videotape
and the data in Figure 10 show that Japanese teaching is by no means purely or princi-
pally based on cooperative learning. Although students get to explain their solutions,
the video excerpts show that Japanese teachers are by no means passive participants.
Student explanations frequently need – and get – supervision, and students can be
remarkably incoherent (cf. Figure 5) even when their solutions are absolutely perfect.
When all is said and done, the teachers do the teaching – and the most important
telling – but in an interactive style that is highly engaging and remarkably skillful.

Stigler and Hiebert report that the lessons do not adhere to a fixed organization.
Some lessons feature more direct instruction or extended demonstrations, whereas
others demand that the students memorize basic facts [30, pp.48–51]. Students might
even be asked to memorize a mandate to think logically [30, p. 49].

Aharoni’s article on experimental math programs in Israel deserves mention in
this context. In the late 1970s, Israel developed a unique and nearly unrecognizable
adaptation of the 1960s New Math, which is still in use to this day. The curriculum
has been controversial; Israel had placed first on the original 1964 precursor to the
TIMSS exams, and had fallen to 28th place on TIMSS 1999. Of course, this small
country has experienced demographic shifts and many other sources of instability, so
this drop in rank is by no means proof that the curriculum has failed, but there were
other concerns about the program, and the TIMSS results gave little reason to believe
that all was well.

Israel was just months away from adopting the latest U.S. reform standards when
circumstances led to a reconsideration and the decision to test a program based on
translations of the Singapore textbooks (from English). Aharoni is participating in
this experiment, and writes about his experiences with these textbooks.

He argues that teachers must have a deep knowledge of fundamental mathematics
if they are to instill a sound understanding of elementary arithmetic. His first-grade
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teaching uses deep insights to provide a purposeful understanding of the most basic
arithmetic operations. For example, he guides first-graders through story problems
designed to open their eyes to the many different ways that a single operation – such
as subtraction – can be used in the modeling of problems so that all students will
enter the higher grades with the intuition and core knowledge necessary to master the
translation of word problems into the native language of algebra. Only time will tell
if the program is successful, but if so, his observations would have implications about
best practices and teacher training.

This perspective places high demands on teachers and – by extension – on schools
of education. Currently, most education programs allocate modest resources for
courses on mathematics content, and very few programs are prepared to offer the
kind of deep applied understanding that Aharoni describes. Instead, schools of ed-
ucation typically emphasize courses on developmental psychology, learning theory,
and related topics such as authentic assessment, which is a grading practice based
on portfolios of student work such as a study of how ancient Greek geometry was
used 2000 years ago, or on real-life applications of periodicity – as opposed to ex-
ams. Similarly, very few mathematics departments feature course offerings on deep
knowledge for K-12 instruction. This problem is further compounded by the certainty
that most education majors would not have attended K-12 programs where such deep
understanding would have been taught.

A small, but highly respected and widely cited comparative study by Liping Ma
gives additional insight into this problem. In her study, American and Chinese el-
ementary school teachers were asked to compute 1 3

4 ÷ 1
2 , and to give a physically

meaningful problem where the answer is determined by this computation. In the
U.S., only 43% of those questioned performed the calculation correctly, and just one
of the 23 teachers provided a conceptually correct story problem. In China, all 76
teachers performed the calculation correctly, and 80% came up with correct story
problems [17].

In contrast, Hiebert and Stigler came to very different conclusions about how best
to foster world-class teaching. They began with the TVCS tapes and findings, and
conducted new investigations into Japanese teaching traditions. Their findings are
published in The Teaching Gap: Best Ideas from the World’s Teachers for Improving
Education in the Classroom [30]. According to the authors, “differences” such as
“teaching techniques, . . . and [teaching] basic skills [versus teaching for] conceptual
understanding . . . paled” in comparison to the differences they observed in the culture
of teaching. In their view, the Japanese tradition of life-long reflection on how to teach,
and the culture of teachers sharing these ideas among each other in a continuing process
of professional development was more significant than any of these other issues, which
comprise the entirety of the debate over education reform in the U.S. and elsewhere.
That is, they opined that the Japanese practices of ongoing collaborative- and self-
improvement were even more important than the current state of the Japanese art of
teaching as well as the curriculum differences reported in their book.

However, in a follow-up videotape classroom study of teaching in Australia, the
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Czech Republic, Hong Kong, Japan, the Netherlands, Switzerland, and the United
States, Stigler and Hiebert came to different conclusions [11]. For this study, new
data coding schemes were developed to replace those used in the 1995 TVCS. Two
of the findings are particularly noteworthy. First, the new study does not mention
student-invented or student-discovered solution methods, and instead of reporting an
average of 1.7 student-presented solution alternatives per Japanese lesson, the new
study reports that 17% of the Japanese problems featured presentations of alternative
methods [11, p. 94], and that students had a choice of methods in 31% of the lessons.
Second, the study found no unifying theme to explain why the stronger countries
perform so well. According to the authors:

“A broad conclusion that can be drawn from these results is that no sin-
gle method of teaching eighth-grade mathematics was observed in all the
relatively higher achieving countries participating in this study [12, p. 11].”

“It was tempting for some people who were familiar with the 1995 study to
draw the conclusion that the method of teaching mathematics seen in the
Japanese videotapes was necessary for high achievement [11, p. 119].”

Evidently, this positional retreat (see also [11, p. 1]) must include Stigler, Hiebert,
and the Glenn Commission, among others. And the fact that the follow-up videotape
study did not report student-discovered mathematics suggests that the earlier finding
of student discoveries was inaccurate.

These changes in understanding notwithstanding, the earlier TVCS and the follow-
up The Teaching Gap: Best Ideas from the World’s Teachers for Improving Educa-
tion in the Classroom will almost certainly outlive the more recent Hiebert–Stigler
classroom study. These earlier publications continue to make must-read lists on edu-
cation, and continue to inspire calls for reforms based on their findings. For example,
on November 21, 2005, a New York Times editorial titled “Why the United States
Should Look to Japan for Better Schools” cited the Teaching Gap book, and issued a
call to reconsider

“how teachers are trained and how they teach what they teach” (emphasis added).

Not one word was spent on the importance of what content is taught, and what a
teacher should know in depth [29].

6. Conclusions

Mathematicians often ask what they can do to help preserve the integrity of K-12
math programs. In 1999, a letter protesting the new textbooks was signed by more
than 200 leading American mathematicians and scientists and was published in the
Washington Post. It had some positive results, but failed to stop the latest reforms.
A similar protest in Israel was successful – but just barely. In California, protests
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supported by grassroots parents organizations, mathematicians, scientists, concerned
journalists, and politicians were able to secure a sound revision of the State K-12 math
standards in 1997 – after more than five years of struggle.

In many countries, mathematics societies will probably be most effective by lob-
bying as a group and by seeking a role in the textbook adoptions and in overseeing
the assessment programs. In the U.S., reform curricula have often been introduced in
conjunction with new testing programs designed and even managed by the publishers
of the newly adopted textbooks. This practice eliminates the opportunity to compare
pre- and post-reform student achievement. And publishers seldom provide in-depth
testing on the weakest aspects of their own programs.

It is also worth pointing out that program validation tests should cover an entire
curriculum. Whereas achievement tests should concentrate on the most important
material that can be covered in the allotted time, the testing of education programs
should use sampling to achieve comprehensive coverage at a nominal marginal cost in
the overall testing process. Needless to say, the oversight required for these assessment
programs should be of the highest caliber.

Some tests use closely guarded questions. The secrecy allows the same questions
to be used year after year to maintain consistency in the scoring. For example, one
of the more widely cited validation studies relied mainly on a test that to the best
of my knowledge has had only three of its questions appear in the literature. This
achievement test was devised to align with the new math reforms, but is also reported
to assess basic computational skills. It is given over a period of three days with the
teachers retaining custody of the materials after school. So its questions are not really
secret, and the administrative procedures lack safeguards to protect the integrity of
the assessment program. Sometimes students were even allowed to rework questions
from the previous day. Moreover, the test manufacturer does not require the test to
be given with time limits, which are optional even for the testing of basic skills. The
validation project reported year-by-year improvement of fourth-grade scores with the
new reform program, but this progress was not matched by the scores for the more
securely administered state testing of fifth graders.

In the U.S., the government-mandated No Child Left Behind (NCLB) testing
(with state-determined tests) shows good progress for the majority of our states year
by year, whereas the National Assessment of Educational Progress (NAEP) math
testing shows that the net achievement of our twelfth graders has been unchanged
nationwide for more than a decade. Something does not quite add up. The NAEP
uses a mix of new and secret questions but is designed to be free of the biases that
result from test-specific instruction and cramming. It is given to randomly selected
schools, and the performance results are reported at the state level with additional
results for subcategories based on gender and socio-economic status. Each student
is given a randomly selected subset of test questions, and no performance results are
released for students, schools, school districts, or education programs. Consequently,
there is little incentive to teach to the test. The majority of the California achievement
test questions are released and retired each year, and state law forbids the use of these
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materials in classroom preparation for forthcoming tests. There are programs in place
to detect cheating, but it is not possible to know how effective they are, and students
can always use these questions for practice independently of their school assignments.
In NewYork, there are no such prohibitions, and many NewYork City schools use old
tests routinely in required after-school preparation sessions held during the six weeks
prior to the State and City testing.

But although the NAEP may be our most uncompromised testing program, it is
far from perfect. The test is consensus-based, with an oversight committee that has
limited authority and where only about 10% of its members are mathematicians. The
web-released sample questions suggest that the twelfth grade test is probably at a
sixth grade level, on average. A representative question on fractions might be to
compute two-thirds of 12 marbles. Evidently, the NAEP Governing Board (NAGB)
has not reached a consensus about the benefits of knowing if an American high school
education enables seniors to evaluate, say, 1/6 − 1/9, much less 2 1

9 − 4 1
6 .

To date, just one of the released algebra problems is categorized as solving a
system of equations. This twelfth grade multiple choice question reads:

What number, if placed in each box below, makes both equations true?

4 × = and 3 × = : A) 0 B) 1 C) 2 D) 3 E) 4

A “hard” problem reads:

For what value of x is 812 = 16x? A) 3 B) 4 C) 8 D) 9 E) 12

Only 34% of our high school seniors found the correct answer even though calculators
were available for use on this problem. The NAEP testing also asked students if they
used a calculator for this question, but this data, unfortunately, does not appear to
have been released on the web.

Needless to say, the TIMSS test questions and testing procedures, unlike many
U.S. practices, stand out as a beacon of hope. But we must take care to ensure that all
of the TIMSS analyses are well documented, are open to external review, and are as
accurate as possible. And with so many challenges in the search for sound education
reform, we may all be able to contribute somewhere in this complex of vital activities.

We close with the following summary assessments.
1. The undisciplined appeal to constructivist ideas has produced American pro-

grams that are more a betrayal of true constructivism than an advance of its principles.
The result is an unprecedented reduction in the transmission of mathematical content.

2. The reform books and classroom curricula focus on examples, tricks, and
experiments rather than fundamental mathematical principles, systematic methods,
and deep understanding.

3. The justification for these “reforms” is based on mostly inaccurate interpre-
tations of the best teaching practices in other countries. In particular, paradigmatic
classroom examples from Japan have been misconstrued by researchers to suggest
that students discover mathematical principles. In fact, the teacher conveys these
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principles quite explicitly, albeit engagingly and through examples.
4. As a consequence of these misinterpretations, “exemplary” math lessons in the

U.S. convey little content, take too much time, and can even lead to false “discoveries”
of mathematical principles.

5. A proper understanding of best practices suggests that
i. teachers must be trained to understand, at a deep level, the mathematics they

are teaching
ii. teachers should encourage individual work, but must ensure that important

principles are conveyed in an orderly and cumulative manner.
6. Mathematicians, guided by proven programs such as those in Singapore, should

be involved in determining the principles that are taught, the examples that help convey
them, and the exercises that reinforce the net learning.

7. Mathematicians must play an active role in overseeing the quality of achieve-
ment tests in an effort to determine where our education programs are succeeding and
where they are not.
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Mathematics, the media, and the public

Ian Stewart

Abstract. It is becoming increasingly necessary, and important, for mathematicians to engage
with the general public. Our subject is widely misunderstood, and its vital role in today’s society
goes mostly unobserved. Most people are unaware that any mathematics exists beyond what
they did at school. So our prime objective must be to make people aware that new mathematics is
constantly being invented, and that the applications of mathematics are essential in a technological
world. The mass media can play a significant role in encouraging such understanding, but the
world of the media is very different from the academic world. I describe what it is like to engage
with the media, concentrating on my own experiences of the past 40 years.
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1. Introduction

For most of the 20th Century, mathematicians were free to pursue their subject es-
sentially independently of the rest of human society and culture. In his celebrated
book A Mathematician’s Apology (Hardy [3]) the analyst G. H. Hardy wrote: ‘It is
a melancholy experience for a professional mathematician to find himself writing
about mathematics.’ In Hardy’s view, writing about existing mathematics paled into
insignificance when compared to creating new mathematics. In many ways he was,
and still is, right. But the two activities are not mutually exclusive. Moreover, as the
20th Century has given way to the 21st, it has become increasingly vital for mathemati-
cians to take steps to increase public awareness of their motives, activities, concerns,
and contributions. Such awareness has direct benefits for the mathematical enterprise,
even if that is viewed entirely selfishly: ultimately, the public purse funds our private
obsessions, and will cease to do so unless the guardians of that purse are assured that
the money would not be better spent elsewhere. Public awareness of mathematics
(within the broader context of the ‘public understanding of science’) also benefits the
populace at large, because we live in an increasingly technological world that cannot
function effectively without substantial input from mathematics and mathematicians.

However, the role of mathematics in maintaining society is seldom appreciated –
mostly because it takes place behind the scenes. The computer industry has made sure
that it takes the credit (and sometimes the blame) for anything even vaguely related
to its machines, but we mathematicians have failed completely to make it known
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that without our contributions, such as algorithms (and of course much else that has
nothing to do with us) those machines would be unable to add 1 and 1 and make 10.
So we have a lot of work to do if we want to demonstrate that mathematics is not –
as many imagine – a subject that has been rendered obsolete by the computer, but a
vital part of what makes computers work. And almost everything else. To quote the
preface of my recent book [9]:

No longer do mathematicians believe that they owe the world an apology.
And many are now convinced that writing about mathematics is at least as
valuable as writing mathematics – by which Hardy meant new mathematics,
new research, new theorems. In fact, many of us feel that it is pointless for
mathematicians to invent new theorems unless the public gets to hear of them.
Not the details, of course, but the general nature of the enterprise. In particular,
that new mathematics is constantly being created, and what it is used for.

At the end of the 19th Century, it was not unusual for the leading mathematicians
of the day to engage with the public. Felix Klein and Henri Poincaré both wrote
popular books. David Hilbert gave a radio broadcast on the future of mathematics.
But within a few decades, the attitude typified by Hardy seems to have taken over.
Fortunately, we are now reverting to the attitudes of the late 19th Century. Distaste
for mere vulgarisation gave way to grudging acceptance of its occasional necessity,
and this in turn has given way to active encouragement and approval. Even today,
the role of populariser is not all sweetness and light, but the days when (as happened
to a colleague at another institution) a senior member of the administration would
castigate a member of his academic staff for daring to write a column in a major daily
newspaper are long gone. If anything, we are now more likely to be castigated for
not not writing a column in a major daily newspaper.

Since my first appointment at the University of Warwick in 1969, indeed even
before that, I have been involved in many different forms of mathematical populari-
sation – mainly books, magazines, newspapers, radio, and television. I generally feel
much more comfortable doing popularisation than talking about it – in fact the main
advice I give to people who are interested in becoming a populariser is to get on with
it – so my intention here is to describe what it is like to be engaged in such activities,
with specific reference to my own experiences. I hope that this may prove useful for
others who may wish to play the role of media mathematician, and informative for
those who prefer to watch from the sidelines but would like to understand the nature
of the game better.

2. What is popularisation?

I have given many talks that popularised mathematics, but I once gave a talk about
popularising mathematics, which is not the same thing. One example I mentioned
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was a description of the Galois group of the quintic equation in comic book form [8].
Here a character in the story juggled five turnips (the ‘roots’ of the equation) in a blur,
showing that they were indistinguishable – in short, the Galois group of the general
quintic equation is the symmetric group S5.

A mathematics teacher in the audience objected that this was not popularisation.
Just as Monsieur Jourdain, in Moliere’s The Bourgeois Gentleman, was astonished to
discover that he had been speaking prose all his life, I was astonished to discover that
I had not been speaking popularisation. The teacher then explained that popularising
mathematics meant making it accessible to children and getting them excited about it.

No: that’s education. Not, perhaps, education in the sense currently envisaged
in the UK (and increasingly everywhere else), which is a sterile process in which
boxes are ticked to indicate that the child has temporarily mastered some small item
of knowledge or technique, regardless of context, but education in the sense it used to
mean, which was teaching things to children. Explaining things in a comprehensible
manner, and enthusing children about the topic, are essential features of education at
school level – and, indeed, in adult education too.

It was particularly clear that the teacher’s view of what constituted ‘mathematics’
differed from mine. She was referring to the nuts and bolts of the school syllabus; my
main concern was, and always will be, the frontiers of past of present mathematical
research. The two are about as similar as do-re-mi and Wagner’s Ring Cycle.

There is, of course, common ground. It is possible to popularise school math-
ematics among children without trying to teach it to them. But one of the biggest
misconceptions among otherwise intelligent adults is that the ‘mathematics’ they did
at school is all there is. One of the most important aspects of popularisation is to
make it clear to both children and adults that this presumption is wrong.

By ‘popularisation’ I mean attempts to convey significant ideas from or about
mathematics to intelligent, mostly sympathetic non-specialists, in a manner that avoids
scaring them silly and exploits whatever interests them. I say ‘attempts’ because
success can be elusive. The level of exposition can range from humorous short
puzzles to books on hot research topics.

3. The public

The phrase ‘public understanding of science’ is widely used but seldom clarified.
Which public? What are they supposed to understand? Why don’t they understand it
already?

The schoolteacher mentioned above had a very different idea of what the words
‘public’ and ‘understand’ meant, compared to what I meant. Many scientists consider
the public to be anyone who is not a scientist, and view their alleged lack of under-
standing as a deficiency to be remedied by supplying the required information. Thus
members of the public who are concerned about possible effects of genetically modi-
fied organisms are directed, by such scientists, towards research that demonstrates the
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(alleged) safety of GMOs as food; people concerned about the safety of nuclear power
are directed to statistical analyses of the probability of accidents, and so on. In this
view, the public – whoever they may be – are considered ignorant, and the objective
of the ‘public understanding of science’ is to remedy this deplorable deficiency.

I don’t find this view helpful. Even when correct, it is patronising and self-
defeating. But mostly it is not correct. Often the public, for all their ignorance of
technical details, have a much clearer grasp of overall issues than specialist scientists.
A major problem with GMOs, for instance, is not their safety as food, but potential
damage done to the ecosystem by introducing alien species. You don’t need to know
any genetics to observe that numerous confident pronouncements about GMOs made
by scientific experts have turned out to be wrong, and badly so. Not long ago people
in the UK were assured that genetically modified DNA could not be transferred more
than a few metres by pollen. It quickly transpired that such transfer routinely occurred
over distances of several kilometres. It is not necessary to prove that such transfer is
harmful to notice that the experts did not have a clue what they were talking about, or
that their alleged expertise had led them to wildly inaccurate conclusions. On many
issues of public concern, reassurance by scientists serves only to educate the public in
the limitations of reductionism and the narrow-mindedness of many scientific experts.

Some scientists even seem to think that it is possible to draw up some list of basic
scientific ‘facts’that members of the public should know, and then teach them. So they
should know that the Earth goes round the Sun, that genetic information is encoded in
DNA, that the Earth is 4.5 billion years old, and so on. It would certainly help if most
people were aware of such things, but this attitude encourages the view that the task
of science is to establish ‘the facts’, and that once these are known, that’s all there is
to be said. Or, as a friend of mine’s Head of Department put it many years ago: ‘Our
task as educators is to give the students the facts, and their job is to give them back
to us in the exams.’ Whatever that process might be, it’s not education, and it’s not
public understanding either. Though it does help to train a lot of ‘experts’ who think
that their limited understanding of laboratory genetics qualifies them to pronounce on
the effects of GMOs on the ecology.

My view, for what it’s worth, goes something like this. Let me phrase it in the
context of mathematics, for definiteness: much the same goes for other areas of
science.

All over the globe, every day of the week, mathematicians are carrying out research,
proving new theorems, inventing new definitions, solving problems, posing new ones.
The vast majority of the public have no idea that any of this is happening. They got
excited by the TV programme on Andrew Wiles and Fermat’s Last Theorem, but that
wasn’t because they thought it was the most interesting new idea in mathematics.
They thought it was the only new idea in mathematics. What excited them was not a
new breakthrough on an old problem, but the belief that for the first time in several
centuries a new piece of mathematics had been brought into existence.

So the primary objective, for the public understanding of mathematics, has to be
to make people aware that new mathematics is constantly being created.
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This objective is more important than explaining what that new mathematics con-
sists of, and it is more important than explaining what mathematics actually is. Only
when people recognise that mathematicians are doing something do they start to get
interested in what they are doing. Only when they’ve seen examples of what mathe-
maticians are doing do they start to wonder what mathematics is.

If by ‘the public’ we really do mean the typical, randomly chosen person on the
street, then we have succeeded in improving their understanding of our subject as
soon as they realise that there is more to it than they met at school.

There is a more restricted subset of the public that requires, and should be given,
more. These are the people who are actually interested in mathematics. They are the
core audience for popularisation. For them, it is worth trying to convey more than the
existence of new mathematics. It is possible to try to give a feeling for what it is.

When you watch a football match on television, it is assumed that you enjoy
football and have some general idea of the rules. The commentators do not explain
that the round object is a ‘ball’ and that the aim is to get it into the net; nor do they
point out that you have to choose the right net, and that the total number of ‘goals’
determines who wins. You are expected to know this. On the other hand, you are not
expected to know the latest version of the offside rules. The commentators assume
you are aware of the issue, but have temporarily forgotten the details. By reminding
you of those, they can then engage your attention in a discussion of the issues.

Too often, the media treat science very differently. You want to tell people about
Fermat’s Last Theorem, but first you are obliged (so the producer or editor insists)
to explain what a square and a cube is and who Pythagoras was. If you want to
describe the latest work on polynomial-time algorithms for primality testing, you
have to explain what a prime number is and what a polynomial is. In that case,
the missing information can be sketched quite quickly, but it’s all too easy to find
yourself in a situation where the main point you are trying to address is Galois theory,
but all the programme manages to tackle is the concept of a square root. Better than
nothing. . . but not what you intended, and not what is needed to break the mental link
‘mathematics = school’.

4. Be warned

If you want to promote mathematical awareness among the public by making use
of the mass media, you should be aware that it is not quite like standing in front of
a blackboard or data projection screen and delivering a lecture to undergraduates.
Rather different talents are needed, and in particular you have to be prepared to risk
making a fool of yourself. I have dressed up in a white lab coat to talk about the
probability theory of Friday 13th, presumably because the TV company concerned
thought that was what mathematicians wear – or more likely thought that viewers
thought that was what mathematicians wear. I have had my name up in lights on the
scoreboard at Wembley football stadium, for a programme about crowd modelling
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that should have taken an hour to film and actually took five because the stadium –
which was supposed to be empty – was full of schoolkids on their Easter break, and
was being dismantled around our ears as well.

I have spent a day lugging a stuffed duck-billed platypus round an ancient castle…
a colleague, who often does TV biology, remarked ‘I’ve never done that.’ Pause.
‘Mine was a stuffed echidna.’ (We contemplated forming the Monotreme-Luggers’
Society.) I have sat in the hot sun, visibly becoming more and more sunburned as
the filming progressed, because the topic was Maxwell’s equations and the backdrop
of an array of radio telescopes was deemed essential to the atmosphere. I have
stood in a huge supermarket at peak period to deliver five seconds of wisdom about
the National Lottery to BBC news, live…terrified that the woman who was noisily
changing thousands of coins at a nearby machine would still be doing so when we
went on air. I have spent 16 hours in a muddy quarry filming the end of the world,
and driving a battered VW beetle painted to resemble the world. Appropriately, its
clutch-cable broke ten minutes into the filming, and I had to drive it all over the quarry,
and a local farm, by crashing the gears.

One attempt at a live broadcast for Irish local radio, about alien life forms, failed
because they lost the connection. We did it again the next week. In another attempt
at a live broadcast – I forget what about – I sat in a cramped studio for an hour, and
my slot was then pre-empted by a news flash, so nothing went out at all.

On the other hand, working with the media is occasionally wonderful. My most
memorable moment ever was when we started a televised lecture by bringing a live
tiger into the lecture room. (Warning: do not attempt this at home.) It’s a long story,
but here are the bare bones.

In 1826 Michael Faraday inaugurated a series of lectures on science for young
people at the Royal Institution in London, where he was resident scientist. They have
continued annually ever since, except for four years during World War II, and for
almost 40 years they have been televised. Until recently they were recorded ‘as live’,
meaning that most mistakes were left in, in front of an audience consisting mainly
of schoolchildren. (Three things you should never do in show business: work with
children, work with animals, work without a script. Christmas lecturers have to do
all three simultaneously.) There are a few parents too, but they are placed out of sight
of the cameras.

Twice in the ensuing 180 years the topic has been mathematics. Christopher
Zeeman delivered the first such series in 1978, and I gave the second in 1997. One of
my lectures was on symmetry and pattern-formation. We decided to open the lecture
with Blake’s ‘Tyger’ poem (‘dare frame they fearful symmetry’), which, although
being a cliché, seemed unavoidable.

Which meant, by the very direct logic of television, that we had to have a tiger.
A month-long search yielded a baby puma, but no tiger. We had just about decided

to go with the puma when my colleague Jack Cohen found us a tiger. More accurately,
a six-month old tigress called Nikka. She was wonderful, a real pro – used to the lights
and an audience. She had the requisite stripes (pattern-formation, remember?). For
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Health and Safety reasons she was separated from the audience by a row of upturned
seats, while two burly young men held her on a chain. Apparently Health and Safety
did not extend to presenters (me) so I delivered the relevant material squatting next
to her. It was one of the most amazing experiences of my life, and I’ve never really
been able to match it as a way of starting a lecture.

5. What the media want

When we write research papers on mathematics, the main criteria for publication are
that the paper should be competently written, new, true, and interesting.

The criteria for acceptance of a newspaper article, a magazine article, a radio
interview, or a TV broadcast are somewhat different. The most important difference
is that you have to tell a story. A story has a beginning, an end, and a middle that
joins them. Moreover, it should be clear at all times where the story is and where it
is heading. This does not mean that you have to give away the punch line before you
get to it: it means that the reader or listener must be made aware that a punch line is
on its way. One way to describe the process is to say that the reader or listener needs
to be given a ‘road map’, or at least a few signposts.

My feeling is that in principle even a research paper ought to tell a story, but
mathematicians are not trained in narrative thinking, and readers are generally able
and willing to go over a research paper several times seeking understanding. This
is not the case for a newspaper article or a radio broadcast. Readers or listeners are
busy people, often on their way to or from work, and they expect to be able to follow
the story as it unfolds. A few may read an article twice, or record a radio programme
and listen to it again, but on the whole they will do this because they did understand
it first time, not because they did not.

As an example, suppose you want to write about Andrew Wiles’s proof of Fermat’s
Last Theorem, for the Ghastliegh Grange Gazette. It does not work if you start with
something like ‘Let E be an elliptic curve. . .’ or even something more civilised like
‘The key to proving Fermat’s Last Theorem is Galois cohomology. . .’ Instead, you
need to structure the story around things the reader can readily identify with. The
bare bones of the story might be something along the following lines: ‘Notorious
puzzle that mathematicians have failed to solve for 350 years. . . Very simple to state
but impossible to prove until now. . . After seven years of solitary research, major
breakthrough by Wiles. . . Unexpectedly linked puzzle to a different area of math-
ematics, making breakthrough possible. . . Proof temporarily collapsed after being
announced. . . After desperate last-ditch battle, proof repaired. . . Triumph!’

Notice that this summary of the narrative line does not include a statement of the
theorem (though you would normally work this into the article somewhere) and in fact
it does not even include Fermat (though again some historical background would be a
good idea). It does not mention elliptic curves or Galois cohomology, and it absolutely
does not define them. Your typical reader may well be a lawyer or a greengrocer, and
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these terms will be meaningless to them. If some technical idea is absolutely essential
to your story, then you will have to find some way to make it comprehensible – but
be aware that your readers have no idea what a function is, or a group, or even a
rational number. This does not mean they are ignorant or unintelligent – after all, how
much do you know about conveyancing or vegetables? It means that you are enticing
them to venture into territory that is, for them, very new. They will need a lot of
help. ‘Infinite intelligence but zero knowledge’ is a useful, though perhaps flattering,
description.

Another extraordinarily important aspect of a story, for the media, is timeliness.
The editor or producer will not only ask ‘Why should I publish/broadcast this story?’
They will ask ‘Why should I publish/broadcast this story today?’ (Or ‘this week’
or ‘in the next available issue’ or whatever.) It is not enough for the material to be
important or worthy. There has to be a ‘hook’ upon which the story can be hung.

Typical hooks include:

• Recent announcement of the relevant research.

• Recent publication of the relevant research.

• A significiant anniversary – 100 years since a major historical figure associated
with the work was born, died, or made a key discovery. A genuine professional
science writer will keep a diary of such occasions, and be ready for them as
they come along.

• A timely application (preferably related to stories currently considered news-
worthy – such as cloning, nanotechnology, anything with a gene in it, mobile
phones, computer games, the latest blockbuster movie. . .).

• A current controversy – the media always go for a dust-up, and it seldom matters
if the source of the dispute is totally obscure. Everyone understands a fight.

There are other kinds of hook. With Christmas coming up, the TV programme
Esther once decided to feature the science of Christmas, but much of it was deliberately
spoof science – for example, my contribution was to point out that the aerodynamics
of supersonic flight is very different from subsonic, so that at the hypersonic speeds
employed by Santa Claus, reindeer antlers might be much more aerodynamic than
they look.

They aren’t, of course, but viewers knew it was a joke and subliminally took on
board the message about supersonic flight changing the geometry. And they also got
to see the back-of-the-envelope calculation that estimated Santa’s speed.

One of the more bizarre hooks arose in 2003, when I received a phone call from
the Daily Telegraph, one of the UK’s major newspapers. A reader had written a letter,
recalling a puzzle with 12 balls that he had heard about as a boy. All balls have the
same weight, except for one. He had been told that it was possible to work out which
ball, and whether it was light or heavy, in 3 weighings with a balance but no weights.
Could anyone tell him how?
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The response was remarkable. The newspaper reported [10] that ‘By teatime
yesterday [7 February 2003], The Daily Telegraph had received its biggest mailbag
in living memory and our telephones were still ringing off the hook’. But the editors
had a serious problem: it was unclear to them whether any of the proposed solutions
was correct. Could I supply a definitive answer?

As it happened, Martin Golubitsky was visiting, and he remembered being inspired
by this puzzle as a teenager. In fact, his success in solving it was one of the things
that had made him decide to become a mathematician. We put our heads together and
reconstructed one method for solving the puzzle. The newspaper duly published it,
mainly as a way of ending the flow of letters and phone calls.

There is, by the way, a more elegant solution than the one we devised. The puzzle
has been discussed by O’Beirne [4], who gives a solution originating with ‘Blanche
Descartes’ (a pseudonym for Cedric A. B. Smith), see Descartes [2]. Here the hero of
the narrative, known as ‘F’, is inspired to write the letters

F AM NOT LICKED
on the 12 balls: ‘. . . And now his mother he’ll enjoin:

MA DO LIKE
ME TO FIND
FAKE COIN’

The poetic solution lists a set of weighings (four balls in each pan) whose outcome is
different for all 24 possible choices of the odd ball out and its weight. The problem
with this answer, clever though it may be, is to motivate it. This is why we settled
for the more prosaic ‘decision tree’ of weighings that you will find in the published
article. We felt that readers would be more likely to follow the logic, even if our
method was less elegant.

6. The media

Let’s take quick trip through the main types of media outlet. There are others –
webpages, CD-ROMs, DVDs, blogs, podcasting, whatever.

6.1. Magazines. Popular science magazines have the advantage that their readership
is self-selected for an interest in science. Surveys have shown that mathematics is very
popular among such readers. Each magazine has its own level, and its own criteria
for what will appeal. Scientific American is justly famous for the ‘mathematical
games’ columns originated by the peerless Martin Gardner, which unfortunately no
longer run.

In the UK there are New Scientist and Focus, which regularly feature mathematical
items ranging from primality testing to su doku.

If you are thinking of writing an article for such a magazine, it is always better
to consult the editors as soon as you have a reasonably well formulated plan. They
will be able to advise you on the best approach, and will know whether your topic
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has already been covered by the magazine – a problem that can sink an otherwise
marvellous idea.

Expect the editors and subeditors to rewrite your material, sometimes heavily.
They will generally consult you about the changes, and you can argue your case if
you disagree, but you must be prepared to compromise. Despite this editorial input,
the article will usually go out under your name alone. There is no way round this:
that’s how things are in journalism.

6.2. Newspapers. Few newspapers run regular features on mathematics, bar the odd
puzzle column, but most ‘quality’ newspapers will run articles on something topical
if it appeals to them. Be prepared to write 400 words on the Fields medallists with a
four-hour deadline, though, if you aspire to appearing in the national news.

6.3. Books. Books, of course, occupy the other end of the deadline spectrum, typ-
ically taking a year or so to write and another year to appear in print. They really
deserve an article in their own right, and I won’t say a lot about them here, except
in Section 7 below. Sometimes expediency demands a quicker production schedule.
I once wrote a book in 10 weeks. It was short, mind you: 40,000 words. The quality
presumably did not suffer because it was short-listed for the science book prize.

If you want to write semi-professionally, you will need an agent to negotiate
contracts. At that level, book writing is much like getting a research grant. Instead
of ploughing ahead with the book, you write a proposal and go for a contract with a
specified advance on royalties.

6.4. Radio. Radio is my favourite medium for popularising mathematics. This
is paradoxical, because radio seems to have all of the disadvantages (such as no
pictures) and none of the advantages (such as being able to write things down and
leave them in full view while you discuss them) of other media. However, it has two
huge advantages: attention-span and imagination. Radio listeners (to some types of
programme) are used to following a discussion for 30 minutes or longer, and they are
used to encountering unfamiliar terminology. And radio has the best pictures, because
each viewer constructs a mental image that suits them.

On radio you can say ‘imagine a seven-dimensional analogue of a sphere’, and
they will. It may not be a good image, but they’ll be happy anyway. Say the same
on TV and the producer will insist that you build one in the studio for the viewers to
see. TV removes choice: what you get is what they choose to show you. On radio,
what you see is what you choose to imagine.

6.5. Television. Television is far from ideal as a medium for disseminating science,
and seems to be becoming worse. As evidence: every year the Association of British
Science Writers presents awards for science journalism in seven categories. In 2005
no award was made in the television category, and (Acker [1]) the judges stated:
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To say the quality of entrants was disappointing is an understatement. We
were presented with ‘science’ programmes with virtually no science in them.
Some were appalling in their failure to get across any facts or understand-
ing. Whenever there was the possibility of unpicking a little, highly relevant,
science, or research methodology, the programmes ran away to non-science
territory as fast as possible, missing the whole point of the story as far as we
were concerned.

I still vividly recall a TV science programme which informed viewers that Doppler
radar uses sound waves to observe the speed of air in a tornado. No, it uses electro-
magnetic waves – the word ‘radar’ provides a subtle clue here. Sound waves come
into the tale because that’s where Doppler noticed them.

The reasons why television is far from ideal as a medium for disseminating science
are equally disappointing. It is not the medium as such that is responsible – although it
does discourage attention-spans longer than microseconds. The responsibility largely
rests with the officials who commission television programmes, and the companies
who make them.

Television changed dramatically in the 1980s, especially in the UK. Previously,
most programmes were made ‘in-house’by producers and technicians with established
track records and experience. Within a very short period, nearly all programming was
subcontracted out to small companies (many of them set up by those same producers
and technicians) on a contract-by-contract basis. This saved television companies
the expense of pensions schemes for their employees (since they now had none) and
protected them against their legal responsibilities as employers (ditto). But as time
passed, contracts were increasingly awarded solely on the basis of cost. A new com-
pany would get the commission to make a programme, even if they had no experience
in the area, merely because they were cheaper.

Very quickly, most of the companies that knew how to make good science pro-
grammes were ousted by new kids on the block whose main qualifications were
degrees in media studies and, the decisive factor, cheapness. Any lessons previously
learned about how to present science on television were lost, and had to be re-learned,
over and over again, by a system dedicated to the perpetual reinvention of the wheel.
There is still some good TV science, but nowhere near as much as there ought to be
given the proliferation of satellite and cable channels.

The good news here is that TV is once again wide open as a medium for popular
science, especially now that there are hundreds of channels desperate for content. But
we will have to fight all the old battles again.
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7. Narrative imperative

Sometimes an unexpected opportunity presents itself.
The Science of Discworld and its sequels The Science of Discworld 2: The Globe

and The Science of Discworld 3: Darwin’s Watch (see [5, 6, 7]) were written jointly
with Jack Cohen, a biologist, and Terry Pratchett, one of the UK’s bestselling fantasy
authors. They are superficially in the tradition established in The Physics of Star
Trek, The Science of Jurassic Park, and The Science of Harry Potter, but on closer
analysis they are distinctly different, and the difference is important. The latter three
books all start from a popular television, film, or book series, and use that as a vehicle
for explaining the alleged science that could actually make such things as space
warps, resurrected dinosaurs, or flying broomsticks work. This approach may be an
excellent way to interest non-scientists in Relativity, DNA, or anti-gravity, but it rests
on a fundamental untruth: that today’s science tells us that such fiction could one day
become fact. But typically the true link is rather more tenuous than that between a
hang-glider and an interstellar spaceship.

The Science of Discworld series takes the opposite stance. Instead of exploiting
an existing body of fantasy as a basis for dubious science, it uses genuine science as a
basis for new works of fantasy. In the three Science of Discworld books, we interwove
entirely new fantasy stories with voyages through significant areas of modern science.
We designed both aspects of the books to complement each other. The three authors
worked together to plan the combined structure, choosing scientific topics that would
lend themselves to a fantasy setting, tailoring the fiction to fit the facts, and selecting
the facts for suitability as components of a work of fiction.

If you’ve not encountered Discworld before, here’s a quick introduction. Pratch-
ett’s Discworld series of humorous fantasy novels now comprises 31 novels, three
graphic novels, four maps, 12 plays, two television animations, a cookery book, and
countless spin-offs ranging from ceramics to computer-games. Its fans are numbered
in the millions. Discworld is, as its name suggests, circular in form, and flat (though
decorated with forests and oceans and deserts, hills and mountains dominated by the
vast heights of the central Ramtops, where the gods live in an analogue of Valhalla).
The disc is about 10,000 miles across, supported by four elephants standing on the
back of the great turtle A’Tuin, who swims through space.

Discworld is inhabited by people just like us, and by an assortment of wizards,
witches, elves, trolls, zombies, ghosts, golems and vampires. Much of the action takes
place in the city ofAnkh-Morpork, where the wizards reside within the hallowed walls
of Unseen University. It is a city of medieval proportions and Elizabethan filth.

Discworld was originally conceived as a vehicle for poking fun at sword-and-
sorcery books, such as Robert Howard’s tales of Conan the Barbarian and Fritz
Leiber’s ‘Fafhrd and Gray Mouser’ series set in the environs of Lankhmar, the model
for Ankh-Morpork. But Discworld rapidly transmogrified into a vehicle for poking
fun at everything, from Hollywood to the Phantom of the Opera, from religion to
engineering, from the press to the police – even mathematics.
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Discworld has its own sideways logic, very appealing to mathematicians. It ac-
cepts the premises of fantasy (the Tooth Fairy really does come and take away teeth,
leaving real cash) but asks hard questions (what’s in it for her?). It has no qualms
about world-girdling turtles swimming through hard vacuum, but wonders what hap-
pens when they mate. It acknowledges the Butterfly Effect of Chaos Theory, but
wonders which butterfly has this awesome power, and how to get the blighter.

Discworld is our own planet, reified. Its driving forces are magic and Narrative
Imperative. In magic, things happen because people want them to. In Narrative
Imperative, things happen because the power of story makes them happen. The
eighth son of an eighth son cannot avoid becoming a wizard – even if the midwife
made a mistake and she was actually a girl. And so, in Equal Rites, the misogynist
wizards of Unseen University have to come to terms with a female presence in the
hallowed chambers.

Some time in 1998 Cohen and I became convinced that there ought to be a book
called The Science of Discworld. We broached the possibility to Terry, who pointed
out the fatal flaw in the plan. There is no science in Discworld.

In vain we argued that there is. When Greebo, the hyper-macho cat belonging to
the witch Nanny Ogg is shut in a box, it rapidly emerges that there are three possible
states for a cat in a box: alive, dead, and absolutely bloody furious. This is a profound
comment on quantum superposition: what is the association between an object’s
quantum state (wavefunction) and its macroscopic state (what we observe)? If you
knew the cat’s wavefunction, could you tell whether it was alive or dead? My own
view is that you couldn’t even tell that it was a cat.

Terry gently explained why this approach would be misleading. On Discworld
dragons do not breathe fire because of chemistry and genetics: they breathe fire
because that’s what dragons do.

What saved the idea was a concept breathtaking in its simplicity. ‘Terry: if there’s
no science in Discworld, then you must put some there.’

Thus was born the Roundworld Project, in which the wizards of Unseen University
set out to split the thaum (the fundamental unit of magic) and end up coming within
a whisker of destroying the whole of the universe. As the magical reactor is about
to go critical and explode, taking the universe with it, the computer Hex bleeds off
the excess magic to create a small sphere, a magical containment field within which
magic does not work. This is Roundworld, and it is our own universe. It runs not
on magic, but on rules. It has helium and magnesium, but no narrativium. Things
happen there because the rules say they must, not because someone wants them to.

Oddly, this makes everything in Roundworld harder to understand, not simpler.
If a person wants something built – a house, say – then they get some builders and
up it goes. But if the rules want something built, such as a human being, then the
construction process is much more obscure, involving big molecules and bacterial
blobs and billions of years of nothing much happening; then blink your eye and the
humans have come and gone, leaving only the ruins of the Space Elevator, and you
can’t even be sure they were human.
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The best way to envisage the structure of the Science of Discworld books is to
think of a novelette by Pratchett, set on Discworld, with its usual cast of characters
and its usual narrative constraints, but with Very Big Footnotes by Cohen and Stewart.
The novelette, which comprises the odd-numbered chapters of the book, is fantasy;
the footnotes, comprising the even-numbered chapters, are the scientific commentary,
and are typically between two and three times as long.

This is a beautiful framework for writing about science, because the differences be-
tween magic and science are highly illuminating. Discworld is the perfect framework
for a ‘What if?’ discussion of science – a well-established, self-consistent universe
that can be used to ‘compare and contrast’. We managed to work quite a lot of math-
ematics into the books, too: chaos, complexity, Langton’s Ant, probability, phase
spaces, combinatorics, information theory, infinity, and transfinite numbers. Not to
mention scores of applications from astronomy to zoology.

It was fun, too.
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Introduction

by Michèle Artigue

K-12 mathematics education is obviously a controversial area, so much so that, in
countries like the US, the term Math Wars has been used for describing the kind
of conflicts between communities that has been generated in recent years. We all
regularly hear colleagues complaining that the students they receive have not been
adequately trained and that, every year, the situation becomes worse, or that they are
not pleased with the kind of mathematics education their children receive etc. We all
know that such feelings are not something new, but we cannot deny that in the last
decade they have dramatically increased in intensity in many countries.

Why does such a situation exist? What are the real challenges that K-12 math-
ematics education has to face at the beginning of the XXIst century? What can
mathematicians do in order to enhance or support efficiently the necessary efforts,
evolutions and changes of the whole educational community? These are the crucial
issues that motivate the existence of a panel session on Controversial Issues in K-12
mathematical education at the ICM2006 in Madrid. It is certainly interesting to keep
them in mind even if the panel does not address them all directly.
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For structuring this panel session, we have selected some particularly controversial
issues, and will try to elaborate on these, with the support of the audience. These
issues approach the current problems met by K-12 mathematics education through
three different, but not independent, topics: technology, the place given to the learning
of skills and techniques, and assessment and tests. Everyone will certainly agree that
each of these is today a controversial topic, and that frequently in what we read or
hear, it is advocated that the ways they have been dealt with in recent years or currently
has resulted in some of the difficulties in K-12 mathematics education today.

In what follows, we briefly introduce these three topics and articulate some ques-
tions that we would like to discuss for each of them. We then present the positions on
these questions of the two panelists, ProfessorAnthony Ralston from the State Univer-
sity of NewYork at Buffalo, and Professor Ehud de Shalit from the Hebrew University
in Jerusalem. The article ends with some general comments by the moderator of this
panel session, Professor Michèle Artigue from the University Paris 7.

Topics and questions

Technology. In 1985, the first study launched by ICMI entitled “The influence of
computers and informatics on mathematics and its teaching” was devoted to com-
puters and the ways the learning and the teaching of mathematics as well as this
discipline itself was affected by technology. A second edition of the book issued
from this study was prepared by B. Cornu and A. Ralston and published in 1992 in
the Science and Education Series of UNESCO. As described in its introduction, the
UNESCO book addresses the importance of the changes introduced by technology in
professional mathematical practices and makes suggestions for new curriculum ele-
ments based on these new methods of doing mathematics. It is pointed out that even
if these suggestions are judged by the reader to be stimulating and even persuasive
as well as reasonably grounded, it is nevertheless the case that “such suggestions are
fundamentally speculative at the level of large scale implementation – by which we
mean that converting them into a well-developed and tested curriculum for the typical
teacher and the typical student is still a major challenge.”

Since that time, more and more sophisticated technological tools have continued
to be developed for supporting the learning and teaching of mathematics, and their
use is today encouraged by the K-12 mathematics curriculum in most countries. Nev-
ertheless, in spite of the existence of an increasing amount of positive small-scale
experiments, the real nature of the effect of technology on mathematics education
in the large remains under discussion. The problems raised in the first ICMI study
have not been solved, and the discourse of those who think that the impact of tech-
nology is globally negative and ask for a strict limitation of the use of calculators
and software, and even for their banishment from mathematics education in the early
grades, is opposed by those who consider that it does not make sense today to think
about mathematics learning and teaching without taking into account the existence



Introduction 1647

of technology and without trying to benefit from the real and increasing potential it
offers for mathematics education.

Thus the first set of questions we propose to raise is:
Up to what point should the changes introduced in social and professional math-

ematical practices by technology be reflected in mathematics education?
What does technology have to offer today to K-12 mathematics education and why

does it seem so difficult to have it benefit mathematics education in the large outside
experimental settings?

What could be done in order to improve the current situation?
Is a strict limitation on the use of calculators and software a reasonable solution?

Skill building. Every one of us certainly agrees that mathematical learning, as with
any kind of human apprenticeship, requires skill building and also that it requires much
more than that. In recent decades all over the world, K-12 mathematics curriculum
developers, influenced by constructivist and socio-constructivist epistemologies of
learning, by the results of cognitive research on learning processes, and also by the
observed limitations of students’ achievements in mathematics, have stressed the
necessity of moving some distance from teaching practices seen as too focused on
drill and practice, and of getting a better balance between the technical and conceptual
facets of mathematical learning. K-12 mathematics curricula have given increasing
importance to exploration and work on rich and open problems in order to help
students understand better the reasons for mathematical conceptualizations, and these
conceptualizations themselves. They have also promoted teaching strategies that try
to give more importance to the personal and collective elaborations of students in the
development of classroom mathematical knowledge. Once more, the global effects of
these curricular changes on K-12 mathematics education are a matter of controversy.
Voices have arisen asking for a radical change in the role to be given to the learning and
mastery of algorithms, with the long division algorithm often appearing as emblematic
of the desired changes. In a similar vein, other voices denounce the dangers of what
they see as a new “back to basics” program and the inability to understand that
mathematics teaching has to take into account social and technological evolution, and
the changes in scientific and mathematics culture needed in our societies today.

Thus a second set of questions:
What is the pertinence of the opposition between skill learning and the exploration

of rich problems? Between techniques and concepts?
What is the right balance to be achieved in K-12 mathematics education between

the different facets of mathematical activity?
How can this balance be achieved and what are the respective mathematics re-

sponsibilities to be given to the teachers and the students?

Test and assessment. We are all aware of the influence that the form and the con-
tent of assessment have on any form of education and, thus, on K-12 mathematics
education. We are also aware of the increasing importance given to national and
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international testing, as reflected for instance by the coverage in the media of the
PISA enterprise of the OECD and TIMSS, and the influence that these results are
taking in educational policies. The importance to be given to external assessment
versus internal assessment, to international comparisons and standardized testing, to
the effect of assessment on the mathematics learning of students, and to the effect
of systematic testing on educational systems are all controversial issues, as are the
discussions generated by the “No Child Left Behind” legislation in the US. Thus our
third set of questions:

How can we correctly reflect in assessment what we wish to achieve through
mathematics education?

Is standardized testing ever useful? For what purpose? Under what conditions?
What exactly is tested by international assessments such as PISA or TIMSS? Do

they represent the mathematical culture that we want K-12 mathematics education to
develop? What can we learn from them?

A reform perspective

by Anthony Ralston

Preamble. I believe passionately that the K-12 mathematical curriculum, as it exists
in most countries, needs substantial reform. But, because the notion of “reform
curriculum” means different things to different people, I think I should begin by
delineating the perspective from which I view the reform of mathematics curricula.

First, neither constructivism nor its antithesis plays any role in my beliefs about
reform. Thus, arguments about such things as discovery learning or about whether
rote memorization is a good or a bad thing will play no role in what follows here.

Next, I believe strongly that mathematics should be a demanding subject in all
grades, probably the most demanding that students study in each grade. Thus, any
suggestion that mathematics should be “dumbed down” at any level is anathema to me.

Finally, I believe, as surely all attendees of ICM2006 do, that mathematics is a
dynamic, growing subject with ever-changing opinions on what is more important
or less important mathematical subject matter. But, perhaps in contradistinction to
many ICM attendees, I think this perspective must include not just areas of research
but also the entire K-12 curriculum. Thus, what is important subject matter in K-12
mathematics today may be – I think, is – different from what it was yesterday and no
doubt is different from what it will be tomorrow.

Technology. Mathematicians were slower than almost all scientists and engineers to
make computing technology a part of their everyday working lives1. Nowadays, how-

1Mathematicians’ attitudes about technology as well as about other matters considered in this paper are
discussed in A. Ralston, Research Mathematicians and Mathematics Education: A Critique, Notices Amer. Math.
Soc. 51 (2004), 403–411.
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ever, many research mathematicians use computers routinely for number crunching,
for accessing computer algebra systems, and for using a variety of other computer
software for both professional and non-professional purposes. Still, it appears that,
even as most mathematicians now recognize computer technology as an indispensable
tool for doing mathematics research, they resist the notion that computers should be
widely used in mathematics education on the grounds that what is important in K-12
mathematics education has hardly changed in – dare one say it? – the past century.

The crucial aspect of whether – and, if so, when – computers or calculators should
be used in K-12 mathematics education has resulted in more controversy than any
other aspect of mathematics education. I have written elsewhere about my belief that
pencil-and-paper arithmetic (p-and-p, hereafter) should be abolished from the primary
school curriculum in the sense that no level of proficiency in it should be expected
of students although teachers should be free to use p-and-p examples as they wish.
Since I published a paper to this effect in 19992, I have seen no reason, cogent to
me, to back off from this position3. Of course, you must understand that, keeping in
mind the position stated in the Preamble, I would replace a p-and-p-based curriculum
with a rigorous curriculum emphasizing mental arithmetic while allowing free use
of calculators in all grades. The goal of such a curriculum, as with any arithmetic
curriculum in primary school, would be to achieve the number sense in students that
would enable them to proceed successfully with secondary school mathematics.

I cannot provide any evidence why a mental arithmetic, calculator based cur-
riculum would work because it has not been tried but neither has anyone adduced a
compelling reason why it should not work. Moreover, no one can give good reasons
to continue the classical p-and-p curriculum which has never worked very well and
must now be working more poorly than ever, given that almost all students will rec-
ognize that the classical curriculum tries to teach them a skill without practical value
any longer. In addition, since students will almost universally use calculators outside
the classroom, forbidding them inside the classroom is self-defeating. Only if it can
be argued that a p-and-p-based curriculum is clearly the best way to prepare students
for subsequent study of mathematics, can such a curriculum be justified in the 21st
century. But I don’t believe any compelling argument of this nature can be made; all
such attempts I’ve seen can only be described as feeble.

Learning arithmetic – what the operations are, when to use them, place value etc.
– is crucial for the study of all subsequent mathematics. But not only is p-and-p
calculation not necessary to the goal of learning about arithmetic, it is positively
destructive of that goal.

2A. Ralston, Let’s Abolish Pencil-and-Paper Arithmetic, Journal of Computers in Mathematics and Science
Teaching 18 (1999), 173–194.

3An area of particular controversy is whether the traditional long division algorithm should be taught
at all. My opinion on this can be found in A. Ralston, The Case Against Long Division, http://www.doc.
ic.ac.uk/∼ar9/LDApaper2.html.
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Skill building. Skill building is of value in K-12 math education only insofar as
the skills learned facilitate the doing of mathematics and the subsequent study of
mathematics. It must be recognized that (almost?) none of the skills traditionally
taught in K-12 mathematics have value any longer as skills per se. But, following
the foregoing argument, if p-and-p skills are not to be taught, it is imperative that
learning substantial mental arithmetic skills should be a major goal of primary school
mathematics. These skills should include not just the obvious ones of immediate recall
of the addition and multiplication tables and the ability to do all one-digit arithmetic
mentally but also the ability to do substantial amounts of two-digit arithmetic mentally.

It needs to be emphasized that the development of good mental arithmetic skills
requires good coaching from a teacher about the various algorithms that can be used
to do mental arithmetic and then hard work by the student. Mental arithmetic, say
two-digit by two-digit multiplication, is hard4. Learning to do it well involves much
practice during which the student will decide which algorithm is most congenial to
her/him. Teaching and learning mental arithmetic must be a joint responsibility of
teacher and student.

One advantage of learning to do two-digit arithmetic mentally is that such a skill
requires a good grasp of place value, an important aspect of primary school mathemat-
ics in any case. Another advantage is that automaticity or near automaticity in one-
and two-digit mental arithmetic allows students to be given demanding word prob-
lems. More generally, sound technique in mathematics must always be the forerunner
of good conceptual understanding.

A word about fractions. Primary school is certainly the place where students
should learn about fractions, reciprocals and the conversion of fractions to decimals
and vice versa. But I doubt it is the right place for them to learn fraction arithmetic
except perhaps in some simple cases. When students get to secondary school, they
will need to do arithmetic on algebraic fractions. This would be the best time to teach
the arithmetic of both numeric and algebraic fractions since, in any case, few students
will remember the arithmetic of numeric fractions from when it may have been taught
in primary school.

Test and assessment. The standardized testing culture that has swept over the United
States and is rapidly advancing in the United Kingdom and other countries is perhaps
the most serious threat of all to quality mathematics education throughout the world.
The standardized testing requirements in the U. S. No Child Left Behind (NCLB) leg-
islation will have the almost certain result that NCLB will be that act most destructive
of quality education ever passed by the United States Congress.

The pressure on schools and teachers for students to achieve high grades on stan-

4Is there any reason why learning to perform two-digit by two-digit multiplication mentally should not be a
realizable goal of school mathematics? I don’t think so. Some positive evidence is contained in D. Zhang, Some
Characteristics of Mathematics Education in East Asia – An Overview from China, in Proceedings of the Seventh
Southeast Asian Conference on Mathematics Education (N. D. Tri et al., eds.), Vietnamese Mathematical Society,
Hanoi, 1997.
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dardized tests always leads to a number of evils that have been widely catalogued.
Three of the worst are teaching to the test, emphasis on routine mathematics at the
expense of advanced topics and problem solving, and the inordinate amount of time
taken to prepare for these tests which not only drives important mathematics from the
classroom but also often means decreased attention to science, history and the arts
generally. Moreover, the inevitable result of emphasis on standardized tests is that
scores increase without any concomitant increase in learning5.

I am not opposed to testing students. Quite the contrary. It is by far the best way
for a teacher to assess the learning of her/his students. But in the not quite antedilu-
vian past, the assessment task was left to individual teachers in their classrooms. Why
have things changed so much? The answer in the United States and other countries
appears to be that educational administrators, politicians and even parents no longer
trust classroom teachers to do the assessment job themselves. This is not altogether
wrongheaded. As I and others have argued elsewhere6, the quality of K-12 mathemat-
ics teachers in, at least, American schools has been declining for half a century and,
while there are still many excellent mathematics teachers in American schools, too
many are not competent to teach the mathematics they are supposed to teach7. But,
if this is so, standardized testing will only exacerbate this problem by convincing too
many who might become teachers that there is no scope for imagination or initiative
in school mathematics teaching.

The crucial point is that there is no sign whatever that standardized testing has
ever been effective in increasing student learning. If all standardized testing in all
subjects were abandoned at all levels short of university entrance, this would be an
immediate boon to all education.

I should say a word about TIMSS and PISA. Since both of these are essentially
diagnostic tools given to a sampling of students, they do not suffer from most of the
strictures above. For example, teachers cannot teach to the test because at most a very
few students in each class will take these tests.

A traditional perspective

by Ehud de Shalit

The author of this essay is a mathematician who found himself involved in questions
of mathematical education despite lack of formal background in the discipline. I make

5See A.Ralston, The Next Disaster in American Education. The Sacramento Bee, 1 December 2002 (http://
www/doc.ic.ac.uk/∼ar9/NextDisaster.html).

6See A. Ralston, The Real Scandal in American School Mathematics, Education Week, 27 April 2005 (http://
www/doc.ic.ac.uk/∼ar9/TeacherQual.html) and V.Troen and K.C.Boles, Who’s Teaching Your Children? Why
The Teacher Crisis is Worse Than You Think and What Can Be Done about It, 2003, Yale University Press.

7Indeed, while mathematicians generally choose to argue about something we may be knowledgeable about –
curriculum – a far more serious problem with mathematics education in most countries is the inability to attract
enough high quality people to teach school mathematics.
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no claim to know the literature of science education, and I am surely ignorant of im-
portant studies in the area. I nevertheless dare to participate in the discussion because
I believe that educators and scientists alike should bear the burden of shaping our
children’s education, listening to and learning from each other’s point of view. It
is deplorable that recently, the two communities of math educators and mathemati-
cians have been poised against each other, mostly, but not always, the first being
portrayed as “reformers”, the latter as “traditionalists”8. Emotions have run high, and
the two communities found themselves in conflict, instead of joining forces towards
a common cause.

This being said, I also want to apologize for not having equally strong opinions on
all issues. In fact, I will address two of the points raised by Prof. Artigue (the impact
of technology and skill building), and make only minor remarks on the third (tests
and assessment), which I consider to be a political issue more than a mathematical
or educational one. I hope to make myself clear in due time. Moreover, depending
on the circumstances, these three sample topics, important as they be, need not have
a decisive affect on the success or failure of a given system. External factors such as
class size, discipline, teacher training and resources, which vary considerably from
state to state, are often of greater importance than questions of curriculum and method-
ology. However, unable to influence the first in a direct way, we, mathematicians,
focus on the latter.

My starting point is that mathematics teaching need not necessarily follow the rapid
changes in the usage of the subject in society or technology. Its prime role is to imbed
in our children a basic sense for, and understanding of numbers, symbols9, shapes
and other “mathematical objects”, together with skills in manipulating these objects,
that are needed to develop what is commonly called “mathematical reasoning”. The
objects to be chosen, the time devoted, and what is taught about them, should be
dictated by their prominence in mathematics, and their epistemic and pedagogical
value, and less so by their frequency in daily life. This does not mean, of course, that
examples and applications of the material should not be updated and modernized, but
I do preach respect for the traditional way of teaching, because more than it was based
on old needs, it was based on inherent values that have not changed with time. A
well-trained mathematical mind is a highly flexible system. If brought up correctly,
it will find its way to adjust and analyze mathematical scenarios very different from
the ones that surrounded it initially, while it was being shaped.

As an example, consider the well trodden issue of long-division. I believe that
the standard algorithm should be taught in elementary school, thoroughly explained
and practiced not because of its practical value. Rather, it is important because it
enhances the understanding of the decimal system, of zero as a place-holder, of the
Euclidean algorithm, and is a necessary precursor for polynomial arithmetic. It allows

8Those unaware of the ongoing controversies, can read David Ross’ article Math Wars (www.ios.org/articles/
dross_math-wars.asp) and the references therein.

9A. Arcavi, Symbol sense: informal sense-making in formal mathematics. For the Learning of Mathematics
14 (3) (1994), 24–35.
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the child to review the multiplication table and develop number sense while doing
something else, more advanced, so it makes learning more interesting. Moreover, it is
natural. It therefore agrees with mental arithmetic, and helps us visualize the process
involved in division. For these and for many other reasons, well explained in10 and
not mentioned here for lack of time, long division is a pedagogical gold mine. The
abandoned algorithm for extracting the square root, often cited to justify abolishing
long division as well, is in comparison a pedagogical swamp, was abandoned for this
reason, and not because it became obsolete.

Respect for traditional values in education has another advantage, that new theories
are tested gradually, and radical potentially damaging changes are avoided. An ailing
educational system need not be ailing because its underlying principles or methods
are old-fashioned, and reform in itself is not an automatic cure, even where needed.
More than often, the reason for failure is that good old principles stopped being
implemented correctly, for various sociological reasons on which I do not want to
elaborate here.

The second general remark is that I do not believe in teaching in vacuum, or in
a content-empty environment. Learning must focus on concrete concepts, methods,
algorithms if necessary. Insight and creativity come with variations on a theme, not
where there is no theme. Teaching “how to solve it” is not synonymous with dry
cookbook mathematics. It can be fun and enlightening. Constructivism11 has led
some educators to minimize teacher’s intervention in the learning process. Such an
approach may be tried on a single-time basis, through enrichment activities. But it is
time consuming, with the average teacher may lead to fixation of mistakes, and for
anyone but the brightest students can be very frustrating. We simply cannot expect the
children to come up with the great discoveries of arithmetic and geometry, let alone
calculus, by pure exploration. A fundamental feature that distinguishes human beings
from animals is that we can learn not only from our own experience, but also from
that of our ancestors. To be illustrative, I think of the art of teaching as give-and-take.
The teacher delivers a package of knowledge, bit by bit, each time taking back from
the students their responses, their reflections, their mistakes. On these she or he builds
up, shaping and manipulating the dialogue, until a deep understanding and the desired
proficiency are achieved. To believe that these can spring up spontaneously, just by
setting the stage and giving a slight stimulus, is to assume too much.

Finally, a word about the term conceptual thinking. It is often brought up by
advocators of certain approaches in education to distinguish their goals from those of
others, who – so it is to be understood – lead to lower level thinking. I don’t know of
any kind of thinking that is not conceptual. Abstraction, in language or in mathemat-
ics, making generalizations, or conversely, looking for examples, testing predictions
and searching for the right vocabulary to communicate our mental processes, are all
instances of conceptual thinking, namely thinking in terms of concepts. The contro-

10The role of long division in the K-12 curriculum, by D. Klein and J. Milgram, ftp://math.stanford.edu/pub/
papers/milgram/long-division/longdivsiondone.htm.

11Constructivism is the cognitive theory based on the idea that knowledge is constructed by the learner.
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versy, in my view, is not about whether conceptual thinking is more or less important
than basic skills, but whether acquiring those skills is part of conceptual thinking, as
I want to argue, or not12.

Skill building. Drill and practice. Like a swimmer or a pianist the student of mathe-
matics has to absorb great ideas, but also to practice hard to be able to use them
efficiently. Contrary to the common belief, the primary reason for skill building is
not the need to perform mathematical tasks with great precision and speed, because
in our age these human qualities have been surpassed by machines, and we need not
regret it.

I see three important reasons to promote skill building. The first is that skill build-
ing is essential for forming a sense for numbers, and later on for symbols, functions,
or geometry. Subtle instances of insight and analogy, are woven into a web of images
and associations in one’s mind, and cannot be classified and taught sequentially. They
are only the product of long-term practicing and skill building. The distance between
knowing something in principle and mastering it is very big in mathematics.

The second reason is that our mind functions on several levels simultaneously,
and we are not always aware of the sub-conscious levels that are “running in the
background”, if I may use a metaphor from computer science. To be able to free the
thinking creative part of our mind, to let it form the web of links needed for exploration
and discovery, we must defer to the background more routine tasks, that in the past
occupied the front, but should now be performed semi-automatically.

The last reason in favor of skill building is rarely mentioned, and might seem to you
heretical. Experience has taught me that many children, especially those suffering
from math phobia or learning disabilities, are highly rewarded psychologically by
success in performing a routine algorithm, such as long division, and by acquiring
proficiency in a given task. Such a reward for them is a higher boost than the ability
to understand the theory behind it, or the fun in discovering a method by themselves.
Once they know the “how” they are lead to ask “why”. I would not rule out an
approach that harnesses skill building before understanding, if the teacher feels that
it suits the child better. Needless to say, both aspects should eventually be covered,
and bright children who have mastered the technique and eagerly ask good questions
should not be hindered.

Skill building is often confined – by those promoting “conceptual understanding”
as a substitute – to algorithmic skills, and algorithmic skills are then downgraded to
mere rote. While algorithmic skills are very important, and the algorithmic approach to
arithmetic is something to be cherished, as I made clear in the example of long division,
mathematical skills are by no means only algorithmic. The ability to translate a word
problem into arithmetic, or later on into algebra, is a well-defined skill. Analyzed
closely, it consists of many sub-skills, like distinguishing relevant information from
irrelevant data, choosing the variables cleverly, translating prose into algebra, and

12See Basic skills versus conceptual understanding, a bogus dichotomy in mathematics education, by H. Wu
(http://www.aft.org/pubs-reports/american_educator/fall99/wu.pdf).
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finally the technique of solving, say, a system of linear equations. Geometric skills,
drawing to scale, recognizing hidden parts, decomposing and assembling figures, as
well as computational skills of area and volume, form another category.

Given my earlier criticism of the constructivist approach, it will not come as a
surprise that I believe in standard algorithms. It is true, students who come up with
their own (correct!) algorithms should never be scolded, but eventually standard
algorithms are more efficient, help in the process of automatization of algorithmic
tasks discussed above, and also serve an important purpose of establishing a common
language.

As an example, after a certain amount of preparatory classes meant to clarify
the distributive law, which may include both manipulations of brackets and geometric
representation by rectangles, I would simply teach the standard algorithm for “vertical
multiplication”. I do not see the benefit in letting the students make up their own
algorithms, where inevitably many will multiply units with units, tens with tens etc.
and then add them up. To expect from fourth graders to come up with what was one
of the main achievements of the Hindus and the Arab scholars in the Middle Ages is
unrealistic. However, once the algorithm has been explained, both the how and the
why, and practiced, there are many subtle questions that can be left for discussion
and discovery. Would it always be more economical to apply the algorithm as is,
or perhaps switching the position of the two numbers to be multiplied saves some
operations? How can we estimate in advance the order of magnitude to save us from
potential pitfalls, what double-checks should we make etc. etc.

Anthony Ralston, in his paper “Let’s abolish pencil and paper arithmetic”13 advo-
cates to abolish basic algorithmic skills that were the bread-and-butter of elementary
school arithmetic for centuries. He summarizes his discussion by saying “Since no
one argues any longer that knowledge of PPA (pencil-and-paper arithmetic) is a use-
ful skill in life (or, for that matter, in mathematics), the question is only whether such
’deprivation’ could leave students without the understanding or technique necessary
to study further mathematics.”

Even if we accept the premises, doubtful in my mind, I think he misses the point.
First, any attempt to separate understanding from technique is artificial. Second, it is
the miracle of the subject that the very same principles underlying higher mathematics,
or fashionable topics such as geometry and statistics, often quoted as benefitting from
the time freed by the abolishment of PPA, are manifested in their purest and simplest
form in these basic skills. A person not knowing how to calculate what 3

5 of 4 2
7 kg

of rice are, will not have the technique to analyze the changes in the school budget
of England. Nor will he have developed enough intimacy with numbers to estimate
those changes in advance, or tell instantly, if his calculator-based computations make
sense or not.

As a substitute to PPA, Ralston elevates mental arithmetic to a central position in
his proposed program. To give examples, he expects elementary school students to

13In Journal of Computers in Mathematics and Science Teaching 18 (2) (1999), 173–194.



1656 Panel A Controversial issues in K-12 mathematical education

perform two-digit by two-digit multiplication mentally, and high-school students “to
be able to factor a variety of three term quadratics mentally”. To succeed, he admits,
mental arithmetic should be practiced in calculator-free environment. I wholeheart-
edly agree with the importance of mental mathematics, both for developing number
(and symbol) sense, and for practical purposes, estimation and checks. I do not un-
derstand though the reluctance to allow one to put things on paper. PPA does not
contradict mental arithmetic. It records it, something we shouldn’t be ashamed of,
and without which we cannot communicate or analyze peacefully what we have done.
It also helps in visualizing graphically the steps carried in our mind, and it allows us
to organize little mental steps into a larger procedure, without putting too heavy a
burden on our memory.

The impact of technology. There are two somewhat separate questions here. The
first is to what extent should the curriculum be dictated by the way mathematics is
used in technology, and to what extent should we conform to requests coming from the
changing society, rather than teach basic principles and skills14. I have expressed my
opinion about this question in the opening statement. Contrary to the quotation just
mentioned, I believe that education in the large, ought to enrich the child and teach
him or her basic skills, knowledge, values and understanding that are absolute. If
carried out correctly, they will inevitably produce a knowledgeable, thinking, skilled
and creative citizen. If tailored to the needs of a certain industry or society, rather to
these absolute values, they will produce poor technocrats.

The second question involved in the issue of technology is to what extent do
technological innovations influence the way we teach in class. This concerns mostly
calculators in elementary school, but also the use of graphic calculators in calculus,
Excel sheets in statistics and computers in general.

It would be wrong to ignore the changes in technology, the challenges that they
bring about, and the opportunities which they provide for demonstration and practice.
However, we should clearly define our mathematical goals, phrase them in mathemat-
ical terms and avoid as much as possible slogans, even if we agree with their general
mood. We should distinguish mathematical goals from educational goals. Only then
may we look at issues of technology, and decide whether they help steering math
education the right way, or not. To understand the effect this process of analyzing the
role of technology has, consider the following example.

The child will be able to derive qualitative and quantitative information form
graphs such as a graph displaying the change of temperature with altitude.

I hope everybody agrees with the statement as a basic goal of K-12 mathematical
education. The terms qualitative and quantitative information demand further elab-
oration, but I shall not go into it. Now suppose we have to choose between graphic

14Judah Schwartz, in his essay Intellectually stimulating and socially responsible school curricula – can
technology help us get there? writes: “By far the dominant expectation of education in most societies, at least as
articulated by political leaders and by the print and electronic press, is to prepare people for the world of work.”
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calculators and pencil-and-paper, for a first encounter with graphs as a tool to com-
municate observations and measurements. Have we phrased our goal as The child
will learn to appreciate the use of graphs in natural sciences such as climatology, we
might be inclined to favor graphic calculators. They are attractive, have the fragrance
of modernism, and provide vast opportunities that pencil and paper do not provide.
But are they as good in conveying first principles? Can the child learn from them
where to choose to draw the axes, what scale to use, and how to plot the data? Even
the mere physical act, the hand-eye coordination in handling the ruler, is fundamental
in my eyes to the learning process. Feeding the data into a calculator, then pressing
a button, produces wonderful results, but has its pedagogical drawbacks. This does
not mean I would discard graphic calculators. At a later stage they can be helpful in
adding visual affects that are difficult to achieve without them – zooming in and out,
changing scale, flipping the axes, to name a few. I would simply be careful in my
choices, which tool to apply first in class.

While I can see the benefits of graphic calculators in middle-school in studying
functional dependence, I am much less excited by the use of ordinary calculators in el-
ementary school arithmetic. At this early stage building number sense is the teacher’s
number one task. I still have to hear one good argument in favor of calculators in this
regard. I need no proof for how destructive they can be. Even those opposed to PPA
value mental arithmetic, as means for estimation and double-check. Unfortunately
we have witnessed all around us, at school and at the university, a significant decline
in these skills over the last two decades, that I can only attribute to the introduc-
tion of calculators. Whoever agrees that skill building is an important component
of mathematical understanding, and cannot be separated from conceptual thinking,
must also confess that calculators at an early age are impeding normal mathematical
development.

Those advocating early use of calculators necessarily advocate early emphasis on
decimals at the expense of simple fraction arithmetic. Is it right? From the point of
view of technology, simple fractions are probably obsolete. From the point of view of
their pedagogical value, in understanding basic principles of arithmetic, such as ratio
and proportionality, or unique factorization, and in anticipating similar structures in
algebra, they are indispensable. For all these reasons I would happily ban the use of
calculators in class until a solid understanding of arithmetic has been achieved, and
the associated skills have been built. I am not in a position to judge whether these
happen at the end of fifth, sixth or seventh grade, but the general spirit is clear to me.

Two arguments that are often heard in favor of technology at school are (a) that to
oppose it is a lost battle and (b) that technological skills are so important in society,
that not teaching them early would deprive certain children, especially those coming
from poor families, of future opportunities. To the first argument I have nothing
to say, except that if we adopt it we shouldn’t be here today. As for the second, I
must admit I am very sensitive to the social obligations of educators. Fortunately or
unfortunately, home computers are not anymore the sign of a privileged family, much
as TV is not a sign of progress, and I honestly believe that mastering Excel carries no
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more mathematical value than mastering a microwave manual.
Finally, a comment on a growing trend among educators to write computer-assisted

material or use sophisticated software, such as Dynamic Geometry Software, in con-
junction with the standard curriculum. Some of it is very well made, enriches the
learning environment, and I have no objection to computers per se. But from the little
I have seen in this medium, in terms of cost-benefit analysis, the added value is not big,
so I will never substitute a computer for the informal contact with a talented teacher.
When it comes to political decisions, where to invest the money, my preferences are
clear, at least in the country I come from.

To this one should add that computers are not just a tool to convey the same message
more efficiently. Learning in a computerized environment affects our perception of
the objects of study. Good or bad, this has to be analyzed before a new computer-
dependent program is adopted.

Tests and assessment. Testing is a controversial issue among educators. There is a
whole separate session at ICM2006 devoted to two competing international compar-
ative tests – PISA and TIMSS. It is well known that certain educators detest testing
altogether, while others build their whole curriculum around it. The more I think on
it the more I become convinced that testing is a political issue, namely an issue that
has to be decided by policy makers, based on an ideology, and taking into account
factors that are only remotely related to math education. An excellent example is the
controversy around US government act “No Child Left Behind” from 2002.

Testing takes various shapes. It can be comprehensive or diagnostic. You may
test accumulated knowledge, or you may test the potential of a student. You may
test algorithmic skills, or you may test insight and creativity. (Even though, as I said
above, the former are indispensable for developing the latter, when it comes to testing,
they are quite different.) A math test can be phrased in formal language or in prose.
A test can be confined to one school, to one state, or to a nation. Studies show that the
framework within which a problem is set affects the rate of success, and this effect
changes with gender and origin. I have not mentioned more radical views which claim
that western societies test only “western intelligence”, and blame the relative failure
of certain minorities on the dominant western frame of mind.

Testing can also serve a variety of goals. It may be purely informative, or can
serve to rank, for purpose of admissions or stipends. It can test the students, but it
can also test teachers success, and inform them of potential problems. Testing can be
used for comparing alternative programs, or it may be needed to impose discipline on
students, and on educators.

I regard all these goals as legitimate, and every kind of test welcome, provided
one knows what kind of information to expect form it. A company recruiting civil
engineers will probably test different mathematical skills than a software developer,
and a matriculation exam summarizing the achievements of a student in high school
need not be similar to entrance exams at a university, where a greater emphasis may
be put on the student’s potential and creativity.
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Obviously teaching should center on the subject-matter and not only prepare for
tests, but a change in curriculum often requires frequent testing to make sure the
message gets across. Where there is a good tradition, and little intervention is needed,
testing can be kept at a minimum. Under different circumstances tests may become
a central integral part of the program.

Mathematical education will benefit from an open discussion of the issues raised
here and others. It is important that mathematicians will express their views, paying
respect to educators, and share their convictions with them. It is important to get to the
bottom of examples, and refrain from vague statements. It is important to let changes
happen, with ample time if needed, but refrain from changes that are made for the
sake of reform alone. Changes must be gradual, and objectively followed. Most new
ideas succeed when pushed vigorously with a small group of dedicated teachers, and
with a fat budget. The problem is what happens when a case-study involving a dozen
schools is over, and those ideas are adopted across the board. Do they carry enough
weight to keep the momentum? Are the teachers qualified to spread the gospel?

Concluding remarks

by Michèle Artigue

In this panel session, we focus on only a few of many possible controversial issues:
technology, skill building, test and assessment. For each theme, as the coordinator
of this panel, I articulated a short list of questions and asked the two panelists to
express their positions. As could be expected, these positions are quite different,
as they probably would be on the following fundamental issues: What do we want
to achieve today through elementary and secondary mathematics education? What
mathematics should be taught in order to achieve these goals? And how should we
teach this mathematics? What are the relationships between mathematics education
and the society at large?

K-12 mathematics education does not serve a unique goal. It aims at the trans-
mission from one generation to the next one of a cultural heritage, which is one of the
great achievements of humankind, and at the development of the logical reasoning
competence which is so strongly attached to it. It aims at providing students with effi-
cient means for understanding the world in which they live, and play their proper role
in it. It aims at preparing and making possible the training of future mathematicians
and scientists who will be in charge of the development of mathematics and scientific
knowledge, and of the teachers who will have the responsibility of the transmission
of this knowledge. Such ambitions can be seen as general invariants, but what is
certainly not an invariant is the way we understand each of these components, at a
given moment, in a given context; the way we understand the adequate balance be-
tween these, and last but not least what we consider the most appropriate strategies for
achieving these ambitions. Educational systems try to adapt to this variation mainly
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through curricular changes. The turbulence and controversies we regularly observe
attest to the difficulty of this adaptation, and also the fact that the curricular lever
chosen is not necessarily the best one.

As a mathematician who has worked in the area of mathematics education for
more than 20 years now, I am struck by the simplistic way in which the complex
problems that K-12 mathematics education faces today are often approached; the
existing tendency to give the same value to rough affirmations and anecdotes as
to well founded analysis and discussions; the persistent belief in the existence of
easy and immediate solutions; the brutality of the changes imposed on educational
systems, without considering their real cost, and without developing the necessary
means for understanding observed success and failure. Education in the large seems
a world where opposition and slogans are in front of the stage, hiding shades of
meaning and dialectic visions. Slogans used by those favoring or opposing the use
of technology, opposing positions on the development of concepts and of techniques
are typical examples of these. Even educational research, in its attempts to reach a
larger audience, does not always avoid undue simplifications and oppositions15.

For improving the current situation, we need to overcome such a state, and will try
to do so in the ICM panel associated with this contribution. But in order to solve the
complex and difficult problems that K-12 mathematics education faces today in many
countries, we need to do more than express well-articulated positions on controversial
issues and the rationale for these. We need coherent and long-term programs, taking
into account the specificities of the different contexts and the existing material and
human resources. We need exchanges on our respective situations and experiences for
improving these, being aware that solutions in mathematics education are always local
ones in terms both of space and time, that it is nearly impossible to determine what is
the exact field of validity of a given observed result, the field of extension of a given
regularity. We need the collaboration of all those who are involved in mathematics
education: mathematicians, mathematics educators, teachers and teachers educators,
each of whom can contribute different kinds of expertise. One of the ambitions
of ICMI, through its series of ICMI Studies, is to foster such exchanges among all
those interested in mathematics education and to make clear what is the state of the
international reflection on some selected critical issues, what has been achieved and
what is needed16.

I would like to add to these short comments that curricular choices are certainly
important but that the dynamics of complex systems, such as educational systems,
is not just a matter of curricular choices. The quality of teachers and of teacher ed-
ucation, both pre-service and also in-service, is certainly as important if not more

15See for instance M. Artigue, Learning Mathematics in a CAS environment: The Genesis of a Reflection
About Instrumentation and the Dialectics Between Technical and Conceptual Work, International Journal of
Computers for Mathematics Learning 7 (2002), 245–274.

16Themes for the most recent ICMI studies have been: The teaching and learning of mathematics at university
level, the future of the teaching and learning of algebra, mathematics education in different cultural traditions
– a comparative study of East Asia and the West, applications and modelling in mathematics education, the
professional education and development of future teachers of mathematics.
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important than curricular choices. From this point of view, the fact that mathematics
educational research, which has for a long time focused on students, has in the last
decade paid increasing attention to the teacher and to teacher education, is a promis-
ing evolution. Research tries today to understand the coherence underlying observed
teachers’ practices17 the kind of precise mathematical knowledge the profession re-
quires, how it can be developed, how this mathematical knowledge interacts with
other forms of professional knowledge, and how these complex interactions influence
teachers’ practices and students’ learning. Interesting results begin to be obtained,
which at the same time help us understand better what can be realistic dynamics for
change. The final success of the enterprise requires the collaboration of those with
diverse expertise18.

IUFM of Mathematics, Université Paris VII, France
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State University of New York, Buffalo, U.S.A.
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Institute of Mathematics, Hebrew University, Jerusalem, Israel
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17A. Robert and J. Rogalski, Le système complexe et cohérent des pratiques des enseignants de mathématiques:
une double approche, La revue canadienne des sciences, des mathématiques et des technologies 2.4 (2002),
505–528.

18An example of such a collaboration is given by the Mathematics and Sciences Research Institute in Berkeley
which has created an education advisory board and organizes workshops involving mathematicians, mathematics
educators, teachers, policy makers etc. on critical issues. The themes of the first two were the assessment of
students’ mathematical knowledge and the mathematics knowledge for K-8 teachers.
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Introduction

by Lee Peng Yee

One area of interest in education is comparative studies in educational achievement,
in particular, in mathematics, science and reading. There are two such international
studies involving mathematics, namely, PISA and TIMSS. PISA stands for the Pro-
gramme for International Student Assessment. It is better known in Europe. TIMSS
stands for the Trends in International Mathematics and Science Study. TIMSS was
previously known as the Third International Mathematics and Science Study. Each
study of PISA or TIMSS involves approximately 50 countries and thousands of stu-
dents in each participating country. The studies generated volumes of publication and
numerous related research projects.

The fact that some Asian countries topped the achievement list in TIMSS amazed
many people and drew the attention of the industrial countries. Consequently it
induced the study on these high-performing Asian countries, namely, China, Korea,
Japan, and Singapore. Further a country could do well in TIMSS but not in PISA.
This phenomenon is now known as PISA shock. Hence in addition people are also
interested in the comparison of these two international studies. The impact of PISA
and TIMSS has gone way beyond the mathematics and science community. It even
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influences the policy makers of a country. It is timely that we have a panel discussion
on the topic.

TIMSS. The study was commissioned by IEA, the International Association for the
Evaluation of Educational Achievement. The first round of TIMSS took place in
1995 and the second round in 1999. It was the third round that made TIMSS famous
world wide It collects data on educational achievement from students at the fourth
and eighth grades. It also collects extensive information from students, teachers and
school principals about the teaching and learning of mathematics. The test items are
matched against those in the standards or syllabus. Then the data are analyzed and
the reports published. The next round will take place in 2007. For details, see [1].

PISA. The study was initiated by the OECD countries. OECD stands for Organi-
sation for Economic Co-operation and Development whose member countries were
originally countries from Western Europe but now they are all over the globe. PISA
was conducted every three years in 2000, 2003 and the next one in 2006. The tests
are administered to 15-years-old students. The tests are supposed to assess how well
students are prepared for their full participation in society. Similarly, the data are
analyzed and the reports published. As we can see, PISA differs from TIMSS in
methodology and aims. For details, see [2].

Benchmarking. Both PISA and TIMSS have been used by many countries for bench-
marking. Roughly speaking, TIMSS is grade-based, that is, testing students of Grade
4 and Grade 8, whereas PISA is age-based, that is, testing the 15-years-old students.
The 15-years-old students are those who are near the end of their compulsory educa-
tion. Test items in TIMSS are more content or standards orientated, whereas those in
PISA are more literacy orientated. TIMSS assesses how much students have achieved
in schools. PISA assesses how well students are prepared for the outside world. Of
course, this is an over-simplified view of the differences between the two studies. It
does give a general idea about the two studies.

Panelists. They are Jan de Lange of the Freudenthal Institute, the Netherlands, speak-
ing for PISA, and William Schmidt of Michigan State University, the United States,
speaking for TIMSS. Jan de Lange is Director of the Freudenthal Institute and a full
professor at University of Utrecht, the Netherlands. He was a member of the National
Advisory Board of the Third International Mathematics and Science Study, and is
currently Chair of the Mathematical Functional Expert Group of the OECD-PISA.
William Schmidt is a professor at the College of Education, Michigan State Univer-
sity, and the national research coordinator and executive director of the United States
National Research Center which oversees the United States’ participation in the Third
International Mathematics and Science Study. At the panel discussion, they are to
present what PISA and TIMSS are respectively, and what they are for. Then they will
discuss and possibly answer questions from the audience.
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Issues for discussion. The issues for discussion include at least some or all of the
following questions. The questions are divided into three categories. First, what are
PISA and TIMSS?

• Does PISA or TIMSS really serve the purpose intended?
• Why do we need PISA when we already had TIMSS?
• What are the good points or bad points of PISA and TIMSS?

Secondly, what do they tell us?

• Is it really meaningful to use PISA or TIMSS for benchmarking?
• Some countries did well in TIMSS but not in PISA. Why?
• Both PISA and TIMSS have collected a vast amount of data. Are they useful

for other researchers? What can they do with the data?

The last question above was previously raised at the International Round Table in
Tokyo 2000 [3]. Thirdly, what is the future?

• The learning process of a student is a long-term affair. Perhaps the three-
year cycle or four-year cycle is simply too short to measure the progressive
achievement of a student. Do we need to measure so frequently?

• Will there be PISA or TIMSS 20 years from now?

This short statement serves as an introduction to the panel discussion to be held on
28 August 2006 in Madrid, Spain. Other statements from the panel speakers follow.
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TIMSS as a study of education: why should we care?

by William H. Schmidt

Comparative studies of education often seem to evoke a “so what?” or “who cares?”
reaction. Studies of students’ achievement in different countries may leave one won-
dering what practical importance such differences hold in the real world or work and
commerce. Descriptions that highlight differences in common educational practices
may appear intriguing and stimulate curiosity but may leave one wondering what the
relevance is to what happens (or should happen) at the school down the street.

The value of such studies is almost assumed to be self-evident given, it seems, by
the sort of attention the media frequently affords them. Reports of rankings along with
comparisons of scores with countries x, y, and z reduce the entire endeavor to a sort
of education Olympics or horserace. The value, obviously, lies in the comparisons!
Who is on first? Who is doing it right?

As intriguing and entertaining as some comparisons may be – “Wow! Teachers in
country x never assign homework!” or “Students in country z have to go to school on
Saturday!” – these are practices that must be understood within their particular social,
cultural, and educational contexts. Attempting to copy or transplant the practices of
one country into another will not likely have the desired effect: alien grafts rarely
take without extensive preparation and effort.

Value of international comparative studies. The real value in international studies
lies not in the comparisons themselves, but in the insights we may gain into our
own common practices. International comparisons hold up and frame what’s familiar
against a background of a considerable range of alternatives. This can lead to a
thoughtful reconsideration of our rationale for doing things the way we do – or even
initiate a thoughtful evaluation of something never before considered.

Many people, for example, are familiar with schools. They know what schools are
and what happens in the classrooms inside the schools. Schools are schools; whether
they are urban Paris or rural Montana. We began our involvement with international
education research in the days leading up toTIMSS with a similar assumption about the
nature of schools in various countries. We discovered that school has commonalities
everywhere. What is common wherever schools are found are students, teachers,
and textbooks. How these commonalities interact and work within a larger education
system, however, can vary considerably. We discovered, for example, that in Norway
primary teachers typically stay with the same group of students for the first five or
six years of students’ formal school experience. We also learned that in Switzerland,
‘schools’only exist in large cities. The majority of students and teachers meet together
in rooms located in buildings that are not necessarily dedicated to housing educational
activities. Furthermore, school administrators and other support personnel are only
found in such dedicated facilities which generally house the upper secondary grades
or are located in the cities.
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Clearly there are a number of ways to conduct school. The examples mentioned
here were not selected to suggest that all countries change either the nature of their
school buildings nor the length of time primary teachers typically work with the same
group of students. Some consideration of these issues may be fruitful, but the point
to be made here is that these schooling practices represent options – choices that have
been made about how school gets done. The more we can see the way we do things
as choices, the better position we are in to consider and construct profitable change
or reform.

What we can learn from TIMSS. In the Third International Mathematics and Sci-
ence Study (TIMSS) the focus was not on the structural aspects of school such as the
previously mentioned examples, although these were a part of the study. The focus,
rather, was on the substance of education, the school curriculum, the content that’s at
the center of what teachers and students do in schools.

Previous international studies led us to suspect that the achieved curriculum, what
students demonstrate that they know, varies from one country to another. TIMSS
assessed this aspect of curriculum in the context of an extensive investigation of
the intended curriculum, what systems intend their students to learn, along with the
implemented curriculum, what is taught in the classroom. Measurements of these
curriculum aspects led to one unmistakable conclusion: the mathematics taught and
studied in the schools of one country can differ substantially from what exists in the
schools of another. In short, there are many ways to do mathematics education.

More specifically, this curriculum measurement in TIMSS led to some thought
provoking insights into the U.S. mathematics curriculum. For example, the U.S.
intends teachers and students to study two to three times the number of topics in the
first through eighth grade as is typical in other countries. Consistent with this breadth,
U.S. textbooks are truly first in the world in their size, weight, and scope. Not too
surprisingly, given these intentions and resources, the U.S. teachers tend to spend
some time on every intended topic typically without emphasizing any small number
of topics as is common in other countries. All of this contributes to the “mile wide,
inch deep” nature of the U.S. curriculum.

These insights were possible because TIMSS was designed from the start to ex-
amine the relationship among the various aspects of the curriculum: the intended,
the implemented, and the attained. These insights have also led to several efforts to
thoughtfully revise the U.S. mathematics curriculum.

So, what is the value of international study? Certainly not to obtain bragging
rights for the top spot on some list nor even to identify specific practices that we may
want to copy. The real value stems from obtaining a fresh perspective on the array
of choices embedded in our own approach to education. Thoughtful and principled
insights stimulated by examples from other systems can lead to powerful revision in
our quest to provide a challenging and equitable education for all students.
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PISA: promises, problems and possibilities

by Jan de Lange

PISA versus TIMSS. According to the OECD:

The OECD’s Programme for International Student Assessment (PISA) is a
collaborative effort among the member countries of the OECD to measure how
well young adults, at age 15 and therefore approaching the end of compulsory
schooling, are prepared to meet the challenges of today’s knowledge societies.
The assessment is forward looking, focusing on young people’s ability to use
their knowledge and skills to meet real-life challenges, rather than on the extent
to which they have mastered a specific school curriculum. This orientation
reflects a change in the goals and objectives of curricula themselves, which
are increasingly concerned with what students can do with what they learn at
school, and not merely whether they have learned it. The term ‘literacy’ is
used to encapsulate this broader conception of knowledge and skills.

The first PISA survey was carried out in 2000 in 32 countries, including 28 OECD
member countries. Another 13 countries completed PISA 2000 in 2002, and from
PISA 2003 onwards more than 45 countries will participate ‘representing more than
one third of the world population’. PISA 2000 surveyed reading literacy, mathematical
literacy, and scientific literacy, with the primary focus on reading. In 2003 the main
focus was on mathematical literacy (published in 2004), and in 2006 scientific literacy
will be highlighted.

It will be clear that TIMSS and PISA have a lot of similarities resulting in improper
identification of the two series of studies in the media, which is undesirable and
confusing. But the descriptions of the organizations that are responsible, show that
they both claim similar relevance for the studies. Even for the expert it will be difficult
to relate the following either to TIMSS or to PISA: ‘Countries participating in this
study will have information at regular intervals about how well their students read
and what they know and can do in mathematics and science.’ Both studies do this
and do it, methodologically speaking, in a very similar way (based on Item Response
Theory, IRT). Even the reporting tables in the respective reports look very similar.

If there is a problem that both studies share, it is the design of the measuring
instrument in relation to the validity of the outcomes. Traditionally, validity concerns
associated with tests have centered about test content, meaning how the subject do-
main has been sampled. Typically evidence is collected through expert appraisal of
alignment between the content of the assessment tasks and the curriculum standards
(in case of TIMSS) and ‘subject matter’ assessment framework (PISA). Nowadays,
empirical data are often used before an item is included in a test.

Traditionally validation emphasized consistency with other measures, as well as
the search for indirect indicators that can show this consistency statistically. More
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recently is the recognition that these data should be supplemented with evidence of
the cognitive or substantive aspect of validity. Or as Knowing What Student Knows
(2001) summarized: ‘The trustworthiness of the interpretation of test scores should
rest in part on empirical evidence that the assessment tasks actually tap the intended
cognitive process.’

One method to do this is a protocol analysis in which students are asked to think
aloud as they solve problems; another is an analysis of reasons in which students
are asked to provide rationales for their responses; and a third method is an analysis
of errors in which one draws inferences about processes from incorrect procedures,
concepts, or representations of problems. Although some of these methods are applied
only after the test is administered, there is a trend that large-scale assessments like
TIMSS and PISA use these methods as well. The use of cognitive laboratories to
gauge whether students respond to the items in ways the developers intended has
become a new instrument in the developmental process. The use of double-digit
coding is another sign of interest in the process of problem solving instead of just
judging whether an answer is incorrect or correct. A ‘correct’ or ‘partly correct’ score
given not only to each work of the student, but also to which strategy was used or
where in the process the students ‘lost track’.

Validity. The validity of the test instrument remains a complex issue. It goes without
saying that there is an inherent tension between the traditional choice of item formats,
usually with very restricted time (1–2 minutes per item), and the rather ambitious
definitions of what the instrument is intended to measure. But not only the concern
about ‘errors’ plays an important role in relying so much on multiple-choice, it is also
an economic issue: Many countries participating in these large cooperative studies
are unwilling or unable to fund much more expensive multiple marker studies, even
if such studies have demonstrated their efficacy.

PISA 2003 also had a problem solving component. Many of the items would fit the
mathematics Framework, and given the fact that the instrument for problem solving
(PS) had much more open ‘constructive’ items, a study relating the math items and the
PS items could be very helpful in advancing the discussion on item instruments and
their restrictions in large-scale international studies. According to the PISA report
on problem solving: ‘The items for problem solving give a first glimpse of what
students can do when asked to use their total accumulated knowledge and skills to
solve problems in authentic situations that are not associated with a single part of the
school curriculum.’

One can easily argue that this is always the case in a curriculum: For mathematical
literacy, mathematics as taught at school will not suffice. Students need to read, need
to interpret tables and graphs (seen by many as belonging to reading literacy), and,
indeed, need problem-solving strategies. But seen from the perspective of promising
developments on item formats and item quality, the problem-solving component of
PISA is interesting, at least. And if TIMSS implements their intent to ‘place more
emphasis on questions and tasks that offer better insights into students’ analytical,
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problem-solving, and inquiry skills and capabilities,’ innovation in large-scale assess-
ments could materialize.

PISA versus TIMSS. The main differences between TIMSS and PISA seem to be
the following:

– curricular emphasis for TIMSS versus functional aspect (literacy) for PISA;
– grade-specific structure of TIMSS versus age-specific structure of PISA.

TIMSS uses the curriculum as the major organizational aspect. TheTIMSS curriculum
model has three aspects: the intended curriculum, the implemented curriculum, and
the achieved curriculum. These represent, respectively, the mathematics and science
intended for students to learn, and how the education system should be organized to
facilitate this learning: what is actually taught in the classrooms, who teaches it, and
how is it taught; and finally, what it is that students have learned, and what they think
about those subjects.

International curricular diversity was a serious point of concern to the TIMSS
study. The goal was to develop an international test that would be equally fair to all
participating countries. Therefore subject-matter specialists from all countries were
consulted and asked to contribute to the process of test development. Most countries
participating in TIMSS had an intended mathematics curriculum that matched with
more than 90% of the items. The outliers were the United States and Hungary with
100% matching, and the Netherlands, with 71% matching.

Insiders have discussed the procedure and its validity of this equally unfair anal-
ysis. The question not satisfactorily answered is how the mathematics education
communities in the different countries were involved, and how representative they
were. But if these numbers are accepted, in this context it is worth looking at the
minimal matching result of the Netherlands.

It was expected that students of other countries would outperform Dutch students.
However, contrary to expectations, in 1995 Dutch grade 8 students performed well
on the TIMSS test. Their score was significantly above the international average,
just below the four Asian top-scoring countries. After some additional research it
was concluded that somehow the Dutch students were knowledgeable about the 29%
of test items that were remote from their intended curriculum. In the end it was
concluded that the students had the abilities for transfer of their knowledge and skills
to items that did not match with their intended curriculum. It can be very appropriate
to test students on material they have not been taught, if the test is used to find out
whether the schools are doing their job.

PISA takes this point even further: It is based on a dynamic model of lifelong
learning in which new knowledge and skills necessary for successful adaptation to
a changing world are continuously acquired throughout life. It focuses on young
people’s ability to use their knowledge and skills to meet real-life challenges, rather
than on the extent to which they have mastered a specific school curriculum.

The two different approaches can both be critiqued: What does it mean that the
Netherlands scored so high with the minimal relation with its curriculum? What does
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it mean if PISA will not constrain itself to any national curricula? It is clearly not true
that international studies of student achievement may be unintentionally measuring
little more than the degree of alignment between the test instrument and the curriculum.
What it does measure is still a question open to interpretation.

Another indication that shows how difficult it is to make statements that go beyond
well-intended opinions can be found in the observation ofWestbury in 1992, in relation
to SIMS, when he observed that the lower achievement of the United States is the
result of curricula that are not as well matched to the SIMS test as are the curricula
of Japan. But in TIMSS the match was 100% (see earlier), and still the United States
did not perform very well.

Impact. The Germans produced a national PISA 2000 report of 550 pages, the
international OECD report was 330 pages, and the Dutch report a mere 65 pages.
Most countries had something around 150 pages. It is not the statistics that are
interesting here, but the message from the report and what has been selected to be
included. Even a superficial analysis, which was carried out for this article with the
reports mentioned and the one from the United States, makes significant differences
visible. There is a common myth that numbers do not lie. It is now widely accepted
that data can be gathered, processed, mathematized, and interpreted in a variety of
ways. So a key issue is the question of who influences this process, for what reasons,
and through what means. The studies just mentioned underscore this concern apart
from the fact that even numbers can lie.

Back to the very gründliches German report. Not only did the German PISA
Konsortium do an excellent and thoughtful job, it also made recommendations for
immediate improvement, including ones that directly affect the content. The changes
should include:

– more integration of inner- and outer-mathematical ‘networks’;
– fewer calculations;
– more thinking activities and student mental ‘constructions’;
– more reflection;
– more flexible use of schoolbooks.
These goals can be reached when the recommendations that were formulated after

TIMSS are implemented:
– development of a different math-problems culture: more open-ended, more

‘real-world’;
– a new teaching-and-learning culture, with a more exiting cognitive school en-

vironment;
– more and different professionalization of teachers, emphasizing teamwork.

PISA adds to these recommendations a ‘very different conceptualization’ of mathe-
matical concepts and emphasis of modeling and mathematization, situated in contexts.
And, argued the report, the Germans have definitely not reached the optimum in using
different representations as a tool to build better conceptual understanding.
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Mathematics education is in a state of transition, in part because of the fact that
both TIMSS and PISA were taken seriously. Surprisingly the shock and catastrophe
that struck Germany as some kind of natural disaster, if one had only the popular
media as a resource, has resulted in a government-supported nationwide action-plan
with a very strong content part that will result in a different mathematics education
culture at schools. Of course, the success of these changes will be measured by PISA
2003, 2006, 2009, and so on. At least in part.

The future of PISA. It is very hard to predict the future of PISA. Of course it is a
very successful project if one looks at the number of countries participating: 58 in
2006 and growing. And there are many opportunities to make PISA more successful
from the content point of view. If PISA is able to include longer and more complex
items, as it did with its Problem Solving study in 2003, if technology gets a proper
place (as is intended), if group-work can be included in some way PISA would make
itself much more rewarding for policy makers and practitioners alike.

PISA will also start a study for the 9-year olds, in the near future. In short the
OECD definitely has the intention to continue PISA for the next decade at least. And
if the instrument keeps improving, it seems worth the effort – although OECD has
to be more clear about the fact that PISA measures mathematical literacy, and not
curricular mathematics – and how to deal with this principle in the future.

PISA will have to address the problem of the Horse-race – a very undesirable aspect
that draws a lot of criticism – and rightfully so. Another format of the international
report with portraying country by country would not only be more informative, but
also would give a more valid picture: one number cannot represent the quality of an
educational system.

Validity issues have to be addressed, even if PISA is using state-of-the-art method-
ology. Not only the methodology should be of the highest quality, but also the content
– and improvement should be on the agenda continuously.

And of course: communication between all parties should improve: Math educa-
tors and research mathematicians feel as being watchers of a game they hardly feel
any ownership for. This is undesirable: PISA should not address just policy makers
if it really wants to make a difference: the data of PISA are in the public domain and
any country can analyse these data for its own purpose. This opportunity should not
be lost. The meaning of PISA can be co-defined by its users.
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Abstract. The need for mathematics educators, schoolteachers and mathematicians to work
together to improve K-12 mathematics education continues to be a great concern throughout
the world. The main paper for this panel discussion proposes a paradigm or perspective within
which to organize this working together of the different groups. This is to see mathematics
education as mathematical engineering. From this perspective, the challenge of the mathematics
educator and the schoolteacher is to customize mathematics to students’ needs. The role, in turn,
of the university mathematician is to customize mathematics courses for teachers so that they
in turn may be able to customize the mathematics for the different needs of their students. This
paradigm is then discussed in different contexts, in the United States, Hong Kong, Switzerland,
and the Philippines. The paradigm is seen to be fruitful in these different contexts.
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Introduction and overview

by Ben Nebres, S. J.

The theme of this panel discussion is “How mathematicians contribute to K-12 math-
ematics education.” Three distinguished mathematicians, coming from different con-
texts and different mathematics education traditions, provide challenging and helpful
insights into this theme. Because the contexts in which they write are quite different
(United States, China, Switzerland), it was decided to present the papers separately.
This introductory note is meant to highlight the main proposal and perspective coming
from Prof. Wu’s paper and relate the contributions from the other two panelists to it.
I also add a few comments from the context of a developing country, the Philippines.

First, a brief note on the diversity of contexts. In terms of mathematics achieve-
ment based on international comparative studies such as TIMSS, the United States
ranks in the middle, while Hong Kong and Switzerland rank towards the top. The
Philippines ranks towards the bottom. In terms of educational systems, the U.S. is
quite decentralized with great diversity in terms of curriculum, textbooks, teacher
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training, while Hong Kong schools would have greater commonality in terms of cur-
riculum, textbooks, assessment. Some would say that it may be better to compare not
the performance of all U.S. schools, but to take account of the diversity of systems
and compare blocks of schools (by states or groups of school districts). In terms of
resources, the U.S., Switzerland and Hong Kong have first world resources, while
Philippine schools operate in the context of great scarcity: classes of 80 students in
rooms built for 40, one textbook shared by 5 or 6 pupils and so forth. One can even
look at the differences in mathematics education between Hong Kong and the U.S.
and Switzerland and the Philippines from the point of view of mathematics education
cultures. This is discussed in the recently published “Mathematics Education in Dif-
ferent Cultural Traditions: A Comparative Study of East-Asia and the West”, edited
by Frederick Leung, Klaus Dieter Graf and Frances Lopez-Real, Volume 9 in the New
ICMI Study Series. My own role as a mathematician in helping improve mathematics
education in the Philippine context of poverty of resources is described in a chapter
entitled “Philippine Perspective on the ICMI Comparative Study” in this volume of
the ICMI Study Series.

Despite this diversity of contexts, there is agreement in all the three papers (and in
the Philippine experience as well) on the importance of the role of mathematicians in
K-12 mathematics education and on a particular paradigm or perspective (mathematics
education as mathematical engineering) on how mathematicians can effectively fulfill
this role.

In the main paper for this panel presentation and discussion, Prof. Hung-Hsi Wu
of the University of California Berkeley, proposes a re-conceptualization of math-
ematics education as mathematical engineering: “Thus chemical engineering is the
science of customizing chemistry to solve human problems… . I will put forth the
contention that mathematics education is mathematical engineering, in the sense that
it is the application of basic mathematical principles to meet the needs of teachers and
students.” This is somewhat different from the suggestion of Hyman Bass to look at
mathematics education as a branch of applied mathematics. In engineering, what is
important is the customization of scientific principles to address human needs. Sim-
ilarly, in mathematics education as mathematical engineering, what is crucial is the
customization of mathematical principles to address the needs of teachers and pupils.

From this viewpoint, the challenge is to work out the role of mathematicians in
mathematics education analogous to that of physicists in engineering. Just as the roles
of physicists and engineers in engineering are deeply intertwined, so should the roles
of mathematicians and mathematics educators be in mathematics education. Right
now the two worlds are separate and do not communicate well with each other. Prof.
Wu writes: “… if mathematicians want to participate in serious educational work in
K-12, … the most important thing is the awareness that K-12 mathematics education
is not a subset of mathematics, and that there is quite a bit to learn about the process
of customization that distinguishes K-12 mathematics education from mathematics.”

In my communication with Prof. Wu, we agreed that it is important that the
term “mathematics educator” include both the university mathematics educator as
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researcher and the school mathematics teacher as practitioner. While the university
mathematics education researcher is an expert on teaching and learning theories, the
mathematics master teacher is most knowledgeable about actual teacher, student, and
classroom contexts. Success in improving mathematics education will require good
communication and working together among mathematicians, university mathematics
educators and school mathematics teachers.

To properly customize mathematics in different student contexts, a mathematics
teacher needs: solid mathematical knowledge, clear perception of the setting defined
by students’knowledge, and flexibility of mind to customize this mathematics knowl-
edge for use in this particular setting. In this model of mathematics education as
mathematical engineering, the role of the mathematician is to provide the solid math-
ematical knowledge. This should be done in such a way that the teacher is provided
with different ways of understanding and approaching a mathematics concept so that
he can have a repertoire to draw from in customizing the mathematics for different
student contexts. Prof. Wu gives examples such as in the teaching of fractions or in
providing intervention for students at-risk.

The paper of Prof. Shiu-Yuen Cheng of the Hong Kong University of Science and
Technology picks up from the “mathematics education as mathematical engineering”
framework of Prof. Wu and sets it in the context of mathematics education in Hong
Kong. He notes “the main factors for providing an effective mathematics education
as curriculum design, teacher competence and assessment methods.” He says that
most important is teacher competence and it is to this factor that mathematicians can
contribute the most. They can contribute in the university curriculum for mathemat-
ics teacher programs and in in-service workshops for mathematics teachers. Together
with Prof. Wu (and from my experience as well) he points out that the university
curriculum for mathematics teachers, which is usually a combination of courses for
mathematics majors and education courses, “do not serve the purpose of providing
the necessary understanding to be a competent mathematics teacher.” (Reasons for
this are very well argued in Liping Ma, “Knowing and Teaching Elementary Mathe-
matics.”)

Prof. Cheng points out that the Hong Kong mathematics education context is one
which shows great success as shown by the excellent performance of Hong Kong
students in international comparative studies. “In Hong Kong, Johnny can add! In
fact, Johnny can do fractions and decimals quite well.” There is, however, a downside
to this achievement. Prof. Cheng is concerned that this is at great cost, particularly
in “suffocating students’ creativity and motivation for learning.” He stresses the
important role of mathematicians in communicating effectively to the public and to
decision-makers these important concerns for mathematics education. (This balance
between effective mastery of fundamentals and the need to foster creativity has been
an important recent concern in East Asia and was the theme of the ICMI-East Asian
Regional Conference on Mathematics Education in Shanghai in August 2005.)

Prof. K. Osterwalder of the ETH Zurich writes in the context of the upper years
of the Swiss gymnasium (years 9–12) and the role of mathematicians in universities
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such as ETH Zurich in preparing mathematics teachers for these upper years. He
points out that in Switzerland, students do quite well in international comparative
studies in mathematics. Teachers are well trained. They are required to get a masters
degree at a level where they could equally opt to go into industry as mathematicians.
On the role of mathematicians in K-12 mathematics education, he agrees that the
main contribution of research mathematicians is in the education of mathematics
teachers. He focuses in a special way on the “Specialized Mathematics Courses with
an Educational Focus” taken by mathematics teachers in the university. He provides
various examples of course material, from linear equations and linear algebra to
noting recent research breakthroughs accessible to gymnasium students, where these
course materials “narrow the gap between Gymnasium mathematics and University
mathematics” in the spirit of Felix Klein’s “Elementary Mathematics from a Higher
Viewpoint.”

The paradigm or perspective of “mathematics education as mathematical engineer-
ing” proposed by Prof. Wu is thus seen to be quite fruitful in these different contexts.
They all point to the central role of the mathematics teacher, whose challenge is to
customize the mathematics to the students’needs. The important role of the university
mathematician is then to customize mathematics courses for these teachers in such a
way that they may in turn be able to customize the mathematics needed by students
in different contexts and with different needs.

How mathematicians can contribute to K-12 mathematics education

by Hung-Hsi Wu

“To overcome the isolation of education research, more effective links
must be created between educational faculties and the faculties of univer-
sities. This could allow scholars of education better acquaintance with
new developments in and across the disciplines and other professional
fields of the university, while also encouraging discipline-based scholars
with interests in education to collaborate in the study of education.”

Lagemann [14], p. 241.

I would like to make a general disclaimer at the outset. I think I should only talk
about things I know firsthand, so I will limit my comments to the K-12 mathematics
education in the U.S. rather than take a more global view. Such a restriction is not
necessarily fatal since a friend of mine observed that what takes place in the U.S.
tends also to take place elsewhere a few years later. For example, in France there is
now a Math War that resembles the American Math Wars of the nineties (Education
Week [7]). We live in a global village after all.

Let me begin with a fairy tale. Two villages are separated by a hill, and it was
decided that for ease of contact, they would drill a tunnel. Each village was entrusted
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with the drilling of its own half of the tunnel, but after both had done their work, it
was discovered that the two halves didn’t meet in the middle of the hill. Even though
a connecting tunnel between the two lengths already built could be done at relatively
small expense, the two villages, each in defense of its honor, prefer to continue the
quarrel to this day.

This fairy tale is too close to reality for comfort when the two villages are replaced
by the education and mathematics communities, with the former emphasizing the over-
riding importance of pedagogy and the latter, mathematical content.1 Mathematics
education rests on the twin pillars of mathematics and pedagogy, but the ongoing saga
in mathematics education is mostly a series of episodes pitting one against the other.
There is probably no better proof of the disunity between these communities than
the very title of this article. Indeed, if someone were to write about “How chemists
can contribute to chemical engineering”, that person would be considered a crank for
wasting ink on a non-issue. Chemical engineering is a well-defined discipline, and
chemical engineers are perfectly capable of doing what they are entrusted to do. They
know the chemistry they need for their work, and if there is any doubt, they would
freely consult with their colleagues in chemistry in the spirit of cooperation and col-
legiality. Therefore, the fact that we are going to discuss “How mathematicians can
contribute to K-12 mathematics education” in the setting of the International Congress
speaks volumes about both mathematics education and mathematicians.

In matters of education it is of course natural for the power structure to hold the
reins, just as in matters of engineering they are held by engineers. But while the
chemical engineers are glad to have chemists down the hall, and glad to learn what
they can use in their work, the corresponding relationship has not been the case for
mathematics educators. Since education research is thriving and research funding is
ample, it is not surprising that educators want to protect their intellectual independence
in the university environment. Rumblings about how mathematically unqualified
teachers or deficient curricula are undercutting mathematics learning do surface from
time to time, but we have not witnessed the expected aggressive action agitating for
collaboration with mathematicians. Other troubling issues related to mathematics
content, such as the presence of incorrect assessment items in standardized tests,
likewise fail to arouse genuine concern in the mathematics education community.
To an outsider, the protection of the “education” enclave seems to matter more to
university educators than collaboration with the research mathematics community
that could strengthen K-12 mathematics education. By contrast, if the department
of chemical engineering consistently produces engineers with a defective knowledge
of chemistry, or if accidents occur in its laboratories with regular frequency, would
the chemical engineering faculty not immediately spring to action? This question
prompts the thought that maybe we no longer know what mathematics education is

1In writing about sociological phenomena, especially education, it is understood that all statements are sta-
tistical in nature unless stated to the contrary, and that exceptions are part and parcel to each statement. In fact,
there are striking (though isolated) exceptions in the present context. The reader is asked to be aware of this
caveat for the rest of this article.
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about and it is time for us to take a second look.
One meaning of the word “engineering” is the art or science of customizing sci-

entific theory to meet human needs. Thus chemical engineering is the science of
customizing chemistry to solve human problems, or electrical engineering is the sci-
ence of customizing electromagnetic theory to design all the nice gadgets that we
have come to consider indispensable. I will put forth the contention that mathemat-
ics education is mathematical engineering, in the sense that it is the customization
of basic mathematical principles to meet the needs of teachers and students.2 I will
try to convince you that this is a good model for the understanding of mathematics
education before proceeding to a discussion of how mathematicians can contribute to
K-12 mathematics education. The far-from-surprising conclusion is that, unless math-
ematicians and educators can work as equal partners, K-12 mathematics education
cannot improve.

Regarding the nature of mathematics education, Bass made a similar suggestion
in [5] that it should be considered a branch of applied mathematics.3 What I would
like to emphasize is the aspect of engineering that customizes scientific principles
to the needs of humanity in contrast with the scientific-application aspect of applied
mathematics. Thus, when H. Hertz demonstrated the possibility of broadcasting
and receiving electromagnetic waves, he made a breakthrough in science by making
a scientific application of Maxwell’s theory. But when G. Marconi makes use of
Hertz’s discovery to create a radio, Marconi was making a fundamental contribution
in electrical engineering, because he had taken the extra step of harnessing an abstract
phenomenon to fill a human need.4 In this sense what separates mathematics education
as mathematical engineering from mathematics education as applied mathematics
is the crucial step of customizing the mathematics, rather than simply applying it
in a straightforward manner to the specific needs of the classroom. There is no
better illustration of this idea of customization than the teaching of fractions in upper
elementary and middle schools, as I now explain.

Students’ failure to learn fractions is well-known. School texts usually present a
fraction as parts of a whole, i.e., pieces of a pizza, and this is the most basic conception
of a fraction for most elementary students. However, when fractions are applied to

2After the completion of this article, Skip Fennell brought to my attention the article “Access and Opportunities
to Learn Are Not Accidents: Engineering Mathematical Progress in Your School” by William F. Tate, which
is available at: http://www.serve.org/_downloads/publications/AccessAndOpportunities.pdf. Tate is concerned
with equity and uses “engineering” as a metaphor to emphasize the potential for designing different educational
policies and pedagogical activities to promote learning, but without addressing the mathematics. On the other
hand, the present article explains why mathematics education is the engineering of mathematics.

3Hy Bass lectured on this idea in December of 1996 at MSRI, but [5] seems to be a convenient reference. After
the completion of this article, Zalman Usiskin informed me that in the Proceedings of the U.S.-Japan workshop
on the mathematics education of teachers in 2000 that followed ICME-9 in Japan, he had written that “ ‘Teachers’
mathematics’ is a field of applied mathematics that deserves its own place in the curriculum.” Along this line, let
it be mentioned that the paper of Ferrini-Mundy and Findell [8] made the same assertion and, like Bass, it does
not touch on the engineering aspect of mathematics education. The need for mathematicians and educators to
work on equal footing in mathematics education is likewise not mentioned by these educators.

4The invention was actually due to N. Tesla, but like many things in life, popular preception displaces the
truth. I am indebted to S. Simic for pointing this out to me.
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everyday situations, then it is clear that there is more to fractions than parts-of-a-
whole, e.g., if there are 15 boys and 18 girls in a classroom, then the ratio of boys to
girls is the fraction, which has nothing to do with cutting up a pizza into 18 equal parts
and taking 15. In the primary grades, it is not a serious problem if students’knowledge
of fractions is imprecise and informal, so that a fraction can be simultaneously parts-
of-a-whole, a ratio, a division, and an operator5, and a number. Children at that age
are probably not given to doubts about the improbability of an object having so many
wondrous attributes. At some stage of their mathematical development, however,
they will have to make sense of these different “personalities” of a fraction. It is this
transition from intuitive knowledge to a more formal and abstract kind of mathematical
knowledge that causes the most learning problems. This transition usually takes place
in grades 5–7.

There is by now copious mathematics education research6 on how to facilitate
children’s learning of the fraction concept at this critical juncture in order to optimize
their ability to use fractions efficiently. At present, what most children get from their
classroom instruction on fractions is a fragmented picture of a fraction with all these
different “personalities” lurking around and coming forward seemingly randomly.
What a large part of this research does is to address this fragmentation by emphasizing
the cognitive connections between these “personalities”. It does so by helping children
construct their intuitive knowledge of the different “personalities” of a fraction through
the use of problems, hands-on activities, and contextual presentations.

This is a good first step, and yet, if we think through students’ mathematical needs
beyond grade 7, then we may come to the conclusion that establishing cognitive
connections does not go far enough. What students need is an unambiguous definition
of a fraction which tells them what a fraction really is. They also need to be exposed to
direct, mathematical, connections between this definition and the other “personalities”
of a fraction. They have to learn that mathematics is simple and understandable, in
the sense that if they can hold onto one clear meaning of a fraction and can reason
for themselves, then they can learn all about fractions without ever being surprised
by any of these other “personalities”.

From a mathematician’s perspective, this scenario of having to develop a concept
with multiple interpretations is all too familiar. In college courses, one approaches
rational numbers (both positive and negative fractions) either abstractly as the prime
field of characteristic zero, or as the field of quotients of the integers. The problem is
that neither is suitable for use with fifth graders. This fact is recognized by mathemat-
ics education researchers, as is the fact that from such a precise and abstract definition
of rational numbers, one can prove all the assorted “personalities” of rational numbers.
If I have read the research literature correctly, these researchers despair of ever being
able to offer proofs once they are forced to operate without an abstract definition, and

5For example, the fraction can be regarded as a function (operator) which associates to each quantity three-
quarters of the same quantity.

6Here as elsewhere, I will not supply explicit references because I do not wish to appear to be targeting specific
persons or works in my criticism. I will be making generic comments about several general areas.
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that is why they opt for establishing cognitive, rather than mathematical connections
among the “personalities” of rational numbers. The needs of the classroom would
seem to be in conflict with the mathematics. At this point, engineering enters.

It turns out that, by changing the mathematical landscape entirely and leaving
quotient fields and ordered pairs behind, it is possible to teach fractions as mathe-
matics in elementary school, by finding an alternate mathematical route around these
abstractions that would be suitable for consumption by children in grades 5-7. With-
out going into details, suffice it to say that at least the mathematical difficulties can
be overcome, for example, by identifying fractions with certain points on the number
line (for this systematic development, see, e.g., Jensen [11], or Wu [25]). What is of
interest in this context is that this approach to fractions is specific to the needs of ele-
mentary school and is not likely to be taught, ever, in any other situation. In addition,
the working out of the basic properties of fractions from this viewpoint is not quite
straightforward, and it definitely requires the expertise of a research mathematician.
As to the further pedagogical implementation to render such an approach usable in
grades 5–7, the input of teachers and educators would be absolutely indispensable.7

We therefore get to witness how mathematicians and educators are both needed to
turn a piece of abstract mathematics into usable lessons in the school classroom. This
is customization of abstract theory for a specific human need, and this is engineering
at work.

Through this one example of fractions, we get a glimpse of how the principles
of mathematical engineering govern the design of a curriculum. Less obvious but
of equal importance is the fact that even mathematics education research cannot
be disconnected from the same principles. If, for example, a strong mathematical
presence had been integral to the research on fractions and rational numbers, it would
be very surprising that the research direction would have developed in the direction
it did. Compare the quote by Lagemann at the beginning of this article as well as
Lagemann [14].

An entirely analogous discussion of customization can be given to any aspect of
mathematics education, but we single out the following for further illustrations:

(a) The design of an “Intervention Program” for at-risk students. Up to this point,
the methods devised to help these students are largely a matter of teaching a
watered-down version of each topic at reduced pace; this is poor engineering
from both the theoretical and the practical point of view. In Milgram-Wu [18],
a radically different mathematical engineering design is proposed to deal with
this problem.

(b) The teaching of beginning algebra in middle school. The way symbols are
usually handled in such courses, which necessitates prolix discussions in the
research literature of the subtlety of the equal sign, and the way variable is
introduced as the central concept in school algebra are clear indications that
the algebra we teach students at present has not yet been properly customized

7Some teachers who have worked with me are trying out this approach with their students in San Francisco.
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for the needs of school students. See the Preface and Sections 1 and 2 of Wu
[30], and also Wu [31], for a more detailed account of both the problems and
their proposed solutions.

(c) The writing of mathematics standards at the national or state level. This is
an example of what might be called “practical optimization problems”, which
customize the mathematics to meet diverse, and at times conflicting, needs of
different clientele. Cf. Klein [13].

The concept of mathematics education as mathematical engineering also sheds
some light on Lee Shulman’s concept of pedagogical content knowledge ([20]). There
has been a good deal of interest in precisely describing the kind of knowledge a teacher
should possess in order to be effective in teaching. In the field of mathematics,
at least, this goal has proven to be elusive thus far (but cf. Hill-Rowan-Ball [9]),
but Shulman’s intuitive and appealing formulation of this concept crystallizes the
diverse ideas concerning an essential component of good teaching. From the point
of view of mathematical engineering, one of the primary responsibilities of a teacher
is to customize her mathematical knowledge in accordance with the needs of each
situation for students’ consumption. This particular engineering knowledge is the
essence of pedagogical content knowledge. Although this approach to pedagogical
content knowledge does not add anything new to its conception, it does provide a
framework to understand this knowledge within mathematics, one that is different
from what one normally encounters in educational discussions. It makes explicit at
least three components to effective teaching: a solid mathematical knowledge, a clear
perception of the setting defined by students’ knowledge, and the flexibility of mind
to customize this mathematical knowledge for use in this particular setting without
sacrificing mathematical integrity.

The idea of customizing mathematics “without sacrificing mathematical integrity”
is central to mathematical engineering. In engineering, it is obvious that, in trying to
customize scientific principles to meet the needs of humanity, we cannot contradict
nature regardless of how great the human needs may be. In other words, one respects
the integrity of science and does not attempt anything so foolish as the construction of
anti-gravity or perpetual-motion machines. Likewise, as mathematical engineering,
mathematics education accepts the centrality of mathematics as a given. Again using
the example of teaching fractions, a mathematics educator would know that no matter
how one tries to teach fractions, it must be done in a way that respects the abstract
meaning of a fraction even if the latter is never used explicitly. If, for instance, an
educator catches himself saying that children must adopt new rules for fractions that
often conflict with well-established ideas about whole numbers, then he knows he
is teaching fractions the wrong way because, no matter what efforts one puts into
making fractions intuitive to children, one cannot do violence to the immutable fact
that the rational numbers contain the integers as a sub-ring. The need to teach the
arithmetic of fractions as a natural extension of the arithmetic of whole numbers has
gone unnoticed for far too long, with the result that too many of our students begin to
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harbor the notion that, after the whole numbers, the arithmetic of fractions is a new
beginning. Such bad mathematical engineering in curricular designs is unfortunately
a common occurrence.

The only way to minimize such engineering errors is to have both mathematicians
and educators closely oversee each curricular design. In fact, if we believe in the con-
cept of mathematics education as mathematical engineering, then the two communities
must work together in all phases of mathematics education: Any education project in
mathematics must begin with a sound conception of the mathematics involved, and
there has to be a clear understanding of what the educational goal is before one can
talk about customization. In this process, there is little that is purely mathematical or
purely educational; almost every step is a mixture of both. Mathematics and educa-
tion are completely intertwined in mathematical engineering. Mathematicians cannot
contribute to K-12 mathematics education if they are treated as outsiders.8 They have
to work alongside the educators on equal footing in the planning, implementation,
and evaluation of each project. But this is far from the reality at present.

For at least three decades now, the mathematics and K-12 education communities
in the U.S. have not been on speaking terms in the figurative sense. (Cf. Washington
Post [21].) The harm this communication gap has brought to K-12 mathematics
education can be partially itemized, but before doing that, let me point out three
general consequences of a philosophical nature. The first one is that the isolation
of the education community from mathematicians causes educational discussions to
over-focus on the purely education aspect of mathematics education while seemingly
always leaving the mathematics untouched. The result is the emergence of a subtle
mathematics avoidance syndrome in the education community, and this syndrome
will be seen to weave in and out of the following discussion of the specific harmful
effects of this communication gap. Given the central position of mathematics in
mathematical engineering, it would be noncontroversial to say that this syndrome
should vanish from all discussions in mathematics education as soon as possible.

The fact that many mathematicians teach mathematics and design mathematics
courses throughout their careers seems to escape the attention of many educators.
Here is a huge reservoir of knowledge and experience in mathematical engineering
on tap. The chasm between the two communities in effect denies educators access
to this human resource at a time when educators need all the engineering help they
can get.

The final consequence can best be understood in terms of the Darwinian dictum that
when a system is isolated and allowed to evolve of its own accord, it will inevitably
mutate and deviate from the norm. Thus when school mathematics education is
isolated from mathematicians, so is school mathematics itself, and, sure enough, the
latter evolves into something that in large part no longer bears any resemblance to
mathematics. Correct definitions are not given, or if given, they are not put to use
(Milgram-Wu [18], Wu [23], [27] and [29]). The organic coherence of mathematics is

8This only tells half the story about mathematicians. See the comments near the end of this article.
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no longer to be found (Wu [23]), or when “mathematical connections” are intentionally
emphasized, such “connections” tend to be the trivial and obvious kind. Logical
deduction becomes an afterthought; proofs, once relegated to the secondary school
geometry course, were increasingly diluted until by now almost no proofs at all are
found there, or anywhere else in the schools (Wu [26]). And so on. This development
naturally brings down the quality of many aspects of mathematics education.

The absence of dialog between the two communities has led to many engineering
errors in mathematics education, one of them being the unwelcome presence of math-
ematically incorrect test items in state and other standardized tests (Milgram [16] and
[17]). The same kind of defective items also mar many teachers’ credentialing tests
(Askey [1] and [2]). A more subtle effect of the absence of mathematical input on
assessment is the way test scores are routinely misinterpreted. The low test scores
have been used to highlight students’ dismal mathematical performance, but little
or no thought is given to the possibility that they highlight not necessarily students’
achievement (or lack thereof) but the pervasive damage done by defective curricular
materials, or even the chronic lack of effective teaching. Such a possibility may not
be obvious to anyone outside of mathematics, but to a mathematician, it does not take
any research to confirm the fact that when students are taught incorrect mathematics,
they learn incorrect mathematics. Garbage in, garbage out. If the incorrect mathe-
matics subsequently shows up in students’ test scores, how can we separate the errors
due to the incorrect information students were given, from the errors due to students’
own misconceptions? A more detailed examination of this idea in the narrow area of
school algebra is given in Wu [31]. The need for mathematicians’ participation in all
phases of assessment is all too apparent.

The lack of collaboration between mathematicians and mathematics educators af-
fects professional development as well. The issue of teacher quality is now openly
acknowledged and serious discussions of the problem are beginning to be accepted
in mathematics education (cf. Ma [15], and Conference Board of the Mathematical
Sciences [6]9). As a result of the inadequate mathematics instruction teachers re-
ceive in K-12, their knowledge of mathematics is, by and large, the product of the
mathematics courses they take in college.10 In very crude terms, the number of such
required mathematics courses is too low, and in addition, these courses are taught
either by mathematicians who are not in close consultation with teachers, and are
unaware as to what is needed in the school classroom, or by mathematics educators
who are not professional mathematicians. The former kind of course tends to be
irrelevant to the classroom, and the latter kind tends to be mathematically shallow or
incorrect. It is only natural that teachers coming out of such an environment turn out
to be mathematically ill-prepared.

9Whatever reservations one may have concerning the details of its content, it is the fact that such a volume
could be published under the auspices of a major scientific organization that is important.

10It may be useful to also take note of what may be called “the second order effect” of university instruction:
teachers’ knowledge of mathematics is also conditioned by their own K-12 experiences, but these teachers’
teachers were themselves products of the mathematics courses they took in the university.
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Similar woes persist in in-service professional development, thereby ensuring
that teachers have little access to the mathematical knowledge they need for their
profession. For example, the last decade has witnessed the appearance of case books
consisting of actual records of lessons given by teachers.11 The idea is to invite teach-
ers to analyze these lessons, thereby sharpening their pedagogical sensibilities. In too
many instances, however, blatant mathematical flaws in the cited cases are overlooked
in the editors’ commentaries. This raises the specter of bringing up a generation of
teachers who are proficient in teaching school students incorrect mathematics. In this
instance, it would appear that the need to respect mathematical integrity in mathemat-
ical engineering has been all but forgotten.

The most divisive outcome of the noncommunication between the two communi-
ties in the U.S. is undoubtedly the conflict engendered by the new (reform) curricula
written in the past fifteen years. I take up this discussion last, because it brings us face
to face with some subtle issues about mathematicians’ participation in K-12 math-
ematics education. The prelude to the writing of these curricula is the unchecked
degeneration in the mathematical integrity of the existing textbooks from major pub-
lishers over the period 1970–1990, a fact already alluded to above. This degeneration
triggered the reform spearheaded by NCTM (National Council of Teachers of Math-
ematics [19]). Rightly or wrongly, the new curricula were written under the banner
of the NCTM reform, and the manner in which some of the reform texts were im-
posed on public schools led eventually to the well-known Math Wars (Jackson [10]).
The root of the discontent over these texts is the abundance of outright mathematical
errors12, as well as what research mathematicians perceived to be evidence of a lack
of understanding of the mathematics. An example of the latter was the promotion of
children’s invented algorithms at the expense of the standard computation algorithms
in the elementary mathematics curriculum. Although the promotion was partly an
overreaction to the way the standard algorithms were often inflicted on school chil-
dren with nary a word of explanation, it also reflected a lack of awareness of the
central importance of the mathematical lessons conveyed by the reasoned teaching of
these algorithms.

The “subtle issues” mentioned above stem from the fact that the writing of some of
the new reform curricula actually had the participation of a few mathematicians. The
first thing to note is that the latter are the rare exceptions to the general noncommuni-
cation between the mathematics and education communities. The noncommunication
is real. At the same time, these exceptions seem to point to an apparent contradiction:
How would I reconcile my critical stance toward these reform curricula with the prin-
cipal recommendation of this article, namely, that mathematicians be equal partners
with educators in the mathematics education enterprise? The answer is that there is
no contradiction at all. The participation by mathematicians is, in general terms, a
prerequisite to any hope of success in K-12 mathematics education, but in no way

11Let it be noted explcitly that I am discussing the case books in K-12 mathematics education only.
12These errors tend to be different from the earlier ones to be sure, but errors they are.



How mathematicians can contribute to K-12 mathematics education 1685

does it guarantee success. It is helpful in this context to recall similar discussions
that routinely took place some eight years ago when some mathematicians first went
public with the idea that mathematics teachers must have a solid content knowledge.
The usual rejoinder at the time was that “knowing mathematics is not enough (to be
a good teacher)”. This is a common confusion that mistakes a necessary condition
for a sufficient condition.13 There is no quick fix for something as complex as math-
ematics education. Getting mathematicians to fully participate is only the beginning;
the choice of the mathematicians and the hard work to follow will have a lot to say
about the subsequent success or failure.

It is appropriate at this point to recall what was said at the beginning of the
article about the power structure of mathematics education: thus far, educators get to
make the decisions. Granting this fact, I should amplify a bit on the difficulties of
choosing the right mathematicians for education work. Mathematicians have a range
of background and experiences and, consequently, often have a range of opinions
on matters of education as well. It is important that the range of these opinions be
considered in all aspects of education. Many of the less happy incidents of the recent
past in K-12 mathematics education were the result of choosing mathematicians of
a particular persuasion. In addition, educators must make their own judgement on
which among the mathematicians interested in K-12 are knowledgeable about K-12.
Among the latter, some possess good judgment and leadership qualities while others
don’t. Educators must choose at each step. If there are algorithms for making the
right choices, I don’t happen to know them.

Every mathematician potentially has something to offer in K-12 mathematics edu-
cation: even an occasional glance at textbooks to check for mathematical correctness
can be very valuable. However, if mathematicians want to participate in serious
educational work in K-12, what must they bring to the table? I believe the most
important thing is the awareness that K-12 mathematics education is not a subset of
mathematics, and that there is quite a bit to learn about the process of customiza-
tion that distinguishes K-12 mathematics education from mathematics. In particular,
much (if not most) of the mathematics they teach in the university cannot be brought
straight to the school classroom (Wu [22]; Kilpatrick et al. [12], Chapter 10 and es-
pecially pp. 375–6), but that it must first go through the engineering process to make
it suitable for use in schools. If I may use the example of fractions once again, math-
ematicians interested in making a contribution to K-12 may find it instructive to get
to know the reason that something like “equivalence classes of ordered pairs of inte-
gers” is totally opaque to students around the age of twelve. They would also want to
know the reason that students of that age nonetheless need a definition of a fraction
which is as close to parts-of-a-whole as possible. They should also get to know the
appropriate kind of mathematical reasoning for students in this age group, because
they will ultimately be called upon to safeguard such reasoning in the curriculum and

13And need I point out, there are some who intentionally use this confusion to reject that mathematical content
knowledge is important for teachers, or that getting mathematicians to participate in mathematics education is
critical for its success.
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assessment for these students.
Mathematicians may regard school mathematics as technically primitive (in the

sense of skills), but they must take note of its conceptual sophistication (Jensen [11];
Wu [24], [25] and [30]; cf. also Aharoni [1]). Above all, they must know that school
mathematics is anything but pedagogically trivial: There is absolutely nothing trivial
about putting any material, no matter how simple, into a correct mathematical frame-
work so that it may be profitably consumed by school students. Mathematicians who
want to contribute to K-12 mathematics education have to be constantly on the alert
to ensure that the minimum requirements of their profession – the orderly and logical
progression of ideas, the internal cohesion of the subject, and the clarity and precision
in the presentation of concepts, – are still met in mathematics education writings.
This is no easy task. If mathematicians want to enter K-12 mathematics education as
equal partners with educators, then it is incumbent upon them to uphold their end of
the bargain by acquiring this kind of knowledge about mathematical engineering.

The concept of mathematics-education-as-mathematical-engineering does not sug-
gest the creation of any new tools for the solution of the ongoing educational problems.
What it does is to provide a usable intellectual framework for mathematics education
as a discipline, one that clarifies the relationship between the mathematics and the
education components, as well as the role of mathematicians in mathematics educa-
tion. For example, it would likely lead to a better understanding of why the New
Math became the disaster that it did. Most importantly, this concept lays bare the
urgent need of the mathematical presence in every aspect of K-12 mathematics ed-
ucation, thereby providing a strong argument against the self-destructive policy of
keeping mathematicians as outsiders in mathematics education. The chasm between
mathematicians and educators must be bridged if our children are to be better served.
I am cautiously optimistic14 that there are enough people who want to rebuild this
bridge (cf. Ball et al. [4]), all the more so because the indications are that the NCTM
leadership is also moving in the same direction. I look forward to a future where
mathematics education is the joint effort of mathematicians and educators.
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The role of mathematicians in K-12 education: a personal perspective

by Shiu-Yuen Cheng

This draft was written after I read Prof. H. Wu’s draft on “How mathematicians
can contribute to K-12 mathematics education”. I therefore have the advantage of
adopting the same terms and scope of discussions in writing this draft. For example,
I will be using Prof. Wu’s definition of the word “mathematician” to mean “research
mathematicians”. Also, I am impressed and I agree with Prof. H. Wu’s philosophical
idea of regarding mathematics education as mathematical engineering. I will in the
following outline the roles that mathematicians can play for the enhancement of
K-12 education. Frequently, I will come back to Prof. Wu’s idea of mathematical
engineering so that we can do a good job.

The main factors for providing an effective mathematics education are curriculum
design, teacher competence and assessment methods. Among these three factors, I
think the most important one is teacher competence. I think this is the factor that
mathematicians can contribute the most. The processes of designing the curriculum
and assessment mechanism vary from place to place and are greatly influenced by
the local bureaucratic and political system. In most places, mathematicians do not
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get to play much of a role in the design of curriculum and the assessment mecha-
nism. However, this does not mean that we should fold our hand and watch on the
sideline. We should always engage in these two factors and make our contributions
whenever possible. On the other hand, any curriculum design or assessment method
in mathematics would need or welcome mathematicians’ stamp of approval. Mathe-
maticians will definitely be involved but we have to vigilantly and patiently engage
in the process.

In Hong Kong, the relation between educators and mathematicians is much better
than in the US. However, the educators do not call the shot. Instead, the government
officials set the agenda and play the most influential role. On paper, it does not seem
so because things are supposedly done through committees consisting of teachers,
principals, educators and mathematicians. The government officials serve as secre-
tariats in the committees. As the committee members are all busy people taking time
off from their work to attend the committee meetings, the secretariat then get to draft
all the papers and the agenda. They naturally become most influential. Moreover, as
a consequence of the composition of the committees mathematicians are minority. To
make things worse, they have few allies. The teachers, school principals in the com-
mittee usually assume the mathematicians in the committee have a secret agenda to
tailor the curriculum for attracting students to be mathematics majors. Additionally,
the educators talk the language of education officials. Their inputs are more helpful to
the education officials in filling the reports with popular education jargons. It is then
natural that mathematicians’ views usually do not prevail. Instead, some compromise
can usually be reached if mathematicians engage in the process.

I believe that teacher competence is most important factor as teachers are at the
frontline implementing the curriculum and delivering the mathematics education. No
matter how hard we work, usually the curriculum and assessment mechanism are
far from perfect. A competent teacher can exercise discretions to compensate the
inconsistencies and incompleteness of the curriculum and make them work. On the
other hand, a teacher who has little confidence and competence in subject knowledge
can easily turn a well-designed curriculum or assessment mechanism into disasters. In
the area of teacher competence, mathematicians can contribute in two main areas: the
university curriculum for mathematics teacher program, and courses and workshops
for in-service mathematics teachers. Mathematicians can play major roles in these
two areas and can get more colleagues to participate. However, we usually do not
pay much attention or do not do the right thing. It was pointed out by Prof. H. Wu
and many others that the university curriculums for mathematics majors do not serve
the purpose of providing the necessary understanding to be a competent mathematics
teacher. The main reason is that the curriculum for mathematics majors is designed
with an aim to train research mathematicians. As for courses and workshops for in-
service teachers, we need more colleagues to participate and contribute. The ball is
in our court but so far we have not made the right play.

In Hong Kong, about fifteen to twenty percent of mathematics graduate become
mathematics teachers. This is not a small percentage and is in fact higher than the
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percentage of students going for postgraduate study in mathematics. However, the
curriculum for mathematics major does not offer much help for those who will pursue
the career of a mathematics teacher. Mainly, most mathematicians do not see the
necessity of designing and offering some new courses to provide a profound under-
standing of school mathematics. It is assumed that our courses in abstract algebra,
analysis and geometry will do the job and hence nothing needs to be done. As for
courses and workshops for in-service teachers, the sad thing is that Hong Kong gov-
ernment does not provide much of this kind of opportunity. Mathematicians have to
shoulder this task on a volunteer basis. There are mathematicians willing to contribute
but in order to make it sustainable we need to convince the government and the mathe-
matics community the importance of providing courses and workshops for deepening
teachers’ understanding of the subject knowledge. To do this effectively, we need
to communicate well to the community about the concerns of mathematicians about
mathematics education. In many places, people are alarmed because “Johnny can’t
add”. In Hong Kong, Johnny can add! In fact, Johnny can do fractions and decimals
quite well. In many international studies about the mathematics attainment of school
students, Hong Kong routinely occupies one of the top positions. On paper, we should
congratulate ourselves and should not even attempt to touch the system as things are
not broken. However, anyone in the university or familiar with the situation of the
Hong Kong school system knows that the Hong Kong mathematics education is far
from achieving the goals. We are able to train our students to do arithmetic and some
simple algebra at a tremendous cost. In the process, we suffocate students’ creativity
and motivation for learning. So far we have not been successful in documenting and
communicating our concerns to the Hong Kong public and the government. Mathe-
matics education is then getting little resource from the government as it is doing quite
well comparing to our language education. I believe communicating effectively to
the public about our views for enhancing mathematics education is crucial and should
fall into one of the sub-areas of Prof. Wu’s framework of Mathematics Engineering.
The banner of Mathematics Engineering is useful for setting a clear goal and rallying
support of our fellow mathematicians to contribute to mathematics education.

The role of mathematicians in K-12 mathematics education

by U. Kirchgraber and K. Osterwalder

We begin with a few remarks on the Swiss educational system and on teaching and
learning of mathematics in Switzerland. Then we focus on teacher training in Math-
ematics at the Swiss Federal Institute of Technology (ETH). Finally we sketch an
answer to the question posed to the panel.

In international comparative studies like TIMS and PISA Swiss students have
demonstrated reasonable achievements in Mathematics. Without overestimating such
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results15 one may wonder whether some specific features of the Swiss educational
system might be responsible for this relative success and which measures could serve
a further improvement of the results. As we will see some of the possible explanations
are related to the topic of the panel.

It is well known Switzerland is not rich in natural resources. This is usually claimed
to be one of the major reasons why education is quite highly valued in this country,
with a number of important implications: the vast majority of schools are public,
teachers on all levels are well trained, the profession of teacher is quite respected,
teachers (on all levels) are well paid, schools are well equipped, school buildings are
kept in good shape.

The Swiss educational system leaves considerable freedom to teachers on all levels
and in particular in upper secondary school, to which we will refer to as Gymnasium16

level17. Gymnasium teachers in general and Gymnasium Mathematics teachers in
particular have to follow a certain core curriculum. Yet beyond this guide line they
are fairly free to include additional topics, there are hardly any restrictions concerning
the type of pedagogy adopted, and teachers are even quite free as to the number and
type of tests and examinations they will administer. As to the final examination, in
many schools every single mathematics teacher is free to assign a selection of, say,
4-8 problems of his or her choice and depending on the topics he or she has covered
in class to his or her students on which they will work during 4 hours. Eventually he
or she will correct and grade these works.

ETH offers Gymnasium Teacher Training Programs in the following fields: Biol-
ogy, Chemistry, Earth Sciences, Mathematics, Physics and Sports. In the following
we discuss some features of the Gymnasium Mathematics Teacher Training Program
(GMTTP).

A prerequisite for completing the GMTTP is a Master’s Degree in Mathemat-
ics, though the students are permitted to start with the GMTTP in the third year of
the Bachelor’s program. Average duration time for completing the GMTTP is six
months18, if studied full time.

The fact that Swiss Gymnasium Mathematics teachers must hold a Master’s De-
gree in Mathematics has – we suppose – far reaching professional and psychological
consequences. Having completed a Master’s program has at least two implications
which, we think, are important for a future Mathematics teacher: a) During the first
two years of studies Mathematics students encounter many topics they have seen
before yet dealt with in way that is qualitatively very different from what they had

15Compared to the host of highly sophisticated tools to measure many quantities in the Sciences and in particular
in Physics that have evolved since the time of Gallilei, measuring effectiveness of teaching and learning and similar
variables is probably still in its infancy, yet is a fascinating and challenging enterprise.

16There are some 150 Gymnasia in Switzerland, every year some 15000 students graduate from the Gymnasia,
between 1800 and 2300 enroll at ETH.

17This corresponds to grades 9–12.
18Starting in fall 2006 federal requirements request studies twice as long. ETH’s GMTTP will be extended

accordingly and will be renamed as “Master of Advanced Studies in Secondary and Higher Education in Mathe-
matics”.
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experienced previously. b) In the third year of the Bachelor’s and during the Master’s
program they are exposed to advanced fields, an indispensable experience for gaining
a faithful picture of what Mathematics is about.

Based on four and a half years of studies these teacher students can at least poten-
tially be expected to dispose of a degree of mathematical expertise and mathematical
maturity which is covered by the terms “content knowledge” and/or “deep under-
standing” in the Mathematics Education research literature.

As to some practical implications: Being trained as full fledged mathematician
a Gymnasium Mathematics teacher may leave school after a few years and start a
career in Industry or elsewhere, or vice versa. Therefore requiring a Master’s Degree
as a prerequisite for teacher training has the benefit of not excluding Gymnasium
Mathematics teachers in an early stage of their professional development from the
full scale of professional opportunities offered to mathematicians nowadays.

The GMTTP includes courses in the Educational sciences, in Mathematics Ed-
ucation (Didactics of Mathematics), (a small amount of) guided teaching practice,
and a fourth component, called Specialized Mathematics courses with an Educational
Focus. It is of utmost importance that these components are excellently tuned and
multiply intertwined. Moreover they should be accompanied by plenty of student
activities19.

Since the late eighties the Educational course at ETH was designed and con-
tinuously updated. The basic concept was to make available both to the Science
and Mathematics Educators as well as to their teacher students research grounded
results from areas such as psychology, the cognitive sciences, etc. Over the years
quite a number of teaching techniques and teaching methods were implemented and
probed since they are known – on the basis of meta analyses20 – to enhance learn-
ing21. Guided Learning programs22 for instance are self-contained study materials
for pupils covering a learning unit of some 3–30 lessons with the following features:
Precisely defined prerequisites, well structured and comprehensibly written explana-
tions, explicitly stated learning goals, adjunct questions and their answers, learning
aids, chapter tests to fulfill the so-called Mastery Learning Principle. According to
Kulik, Kulik and Bangert-Drowns23 the effect size of this type of teach ware is of the
order of 0.5 in Mathematics and of the order of 0.6 in the Sciences. A few examples
of Guided Learning Programs in Mathematics and the Sciences (in German) can be
found on www.educeth.ethz.ch24.

19As research has shown, just attending lectures has little impact on future teaching.
20See for instance Fraser B. J., Walberg H. J., Welch W. W., Hattie J. A., Syntheses of Educational Productivity

Research. International J. of Educational Research 11 (1987), 145–252; Walberg, H. J., Productive Teaching
and Instruction: Assessing the Knowledge Base. University of Illinois at Chicago, School of Education, 1988,
18 p, mimeographed.

21I.e. they have noteworthy effect sizes.
22In German: Leitprogramme.
23Kulik F. S., Kulik J. A., Bangert-Drowns R. L., Effectiveness of Mastery Learning Programs: A Meta-

Analysis. Review of Educational Research 60 (1990), 265–299.
24EducETH, a service of ETH to the Public, is ETH’s educational server providing teaching materials primarily

for upper secondary schools.
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In the Mathematics Education courses the thrust is on domain specific aspects
of the teaching and learning enterprise. Of course, goals, standards, competen-
cies to be achieved are discussed, subject matter analysis with diverse approaches
to selected topics is of central concern and textbooks25 are analyzed. The teacher
students are exposed to Mathematics Education research concepts that prove useful
to explain certain phenomena, for instance Talls’s and Vinner’s distinction between
concept definition and concept image which helps to understand students’ miscon-
ceptions of the notion of function. Topics like the “Expert Blind Spot”-Hypothesis26,
or the influence of teacher’s pedagogical content beliefs on learning outcomes27,
and many others are treated. Videos and their transcriptions are analyzed to pro-
vide insight into the unpredictability and fragility of learning processes, among other
things.

We now turn to the Specialized Mathematics courses with an Educational Focus
already mentioned before. It is by now generally accepted that transfer achievements
quite often do not emerge automatically. F. Weinert, summarizing years of research at
the Max Planck Institut für psychologische Forschung in Munich, explains it roughly
speaking as follows. Knowledge a learner acquires systematically – for instance in
Mathematics courses as they are usually organized – is likely to be structured and
organized in the learners brain in a way not easily retrievable, amenable if the learner
is put in a problem situation in which he/she should apply this body of knowledge.
Thus, knowledge, which is available in principle, remains inert and unused, though it
would be useful and even necessary to handle a certain situation. Weinert’s conclusion:
To build up an intelligent, flexibly applicable knowledge base the learner needs both,
systematic as well as situated learning.

The Specialized Mathematics courses with an Educational Focus take place in the
third year (in Switzerland: the last year) of the Bachelor’s and during the Master’s
program. They are open to all students in the Bsc/Msc Mathematics program, but
are compulsory for candidates in the GMTTP. These courses with an Educational
focus were installed many years ago at ETH (long before there were courses on
Mathematics Education!) and have their origin in lectures given by Felix Klein early
in the 20th century in Göttingen under the title “Elementarmathematik vom höheren
Standpunkt” (elementary mathematics from an advanced point of view) and directed
to future Gymnasium Mathematics teacher.

The Specialized Mathematics courses with an Educational Focus serve several
goals. Very much in the spirit of Klein’s concept they attempt to narrow the gap
between Gymnasium Mathematics and University Mathematics. Take a core topic in
Mathematics, present at all levels: equations. Linear equations are a topic in grade 9,

25After what has been said earlier in this paper it will not come as a big surprise for the reader that Swiss
Gymnasium Mathematics teacher are not obliged to use any particular text books. Many in fact do not use a
textbook at all but use a variety of sources to assemble handouts, etc., for their students.

26See: M. J. Nathan, A. Petrosino: Expert Blind Spot among Pre-service Teachers. Amer. Educ. Res. J. 40
(2003), 905–928.

27See: Staub, F. C. and Stern, E., The Nature of teachers’ Pedagogical Content Beliefs Matters for Students’
Achievement Gains. J. Educational Psychology 93 (2002), 344–355.
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in a course on Linear Algebra in the first year of the Bachelor’s program, as well as
in specialized courses on Numerical Linear Algebra: Relate the various aspects and
draw conclusions for the future teaching of linear equations in grade 928!

Pupils usually encounter nonlinear equations first in connection with the quadratic
equation. Most emphasis is usually put on reducing a general quadratic equation29 to
a “purely quadratic” equation30. It is of course a marvelous discovery that arbitrary
quadratic equations can be reduced to purely quadratic ones. It is a challenging
design task for teacher students to compose a series of assignments that guides pupils
to discover this phenomenon by themselves.

Yet from a more general point of view the question of solving purely quadratic
equations is even more intriguing. One encounters a pattern that is prevalent in (Uni-
versity) Mathematics: Equations are not always solvable. More often than not math-
ematicians have to invent a setting such that the equation becomes solvable: Loosely
speaking – mathematicians make equations solvable! A second such instance comes
up when complex numbers are invented to make all quadratic equations solvable
with the totally unexpected benefit that in this setting all polynomial equations have
solutions.

The Fundamental Theorem of Algebra brings up another very interesting phe-
nomenon: we may be able to prove that an equation has a solution and even that this
solution is unique without being able to compute the solution. If complex numbers are
treated at the Gymnasium31 level an intuitive proof of the Fundamental Theorem of
Algebra can be offered to Gymnasium students. In a Specialized Mathematics course
with an Educational Focus dedicated to equations, teacher students would not only
design a learning unit for pupils around such a heuristic proof, but learn in addition
how such a proof is made rigorous (not an easy task!), topics like Rouché’s Theorem
would have to be discussed and an introduction to the Brouwer and Leray–Schauder
Degree theory with applications to periodic solutions of differential equations would
allow for a glance of the breadth of the field.

Another aspect to which Specialized Mathematics courses with an Educational
Focus can contribute concerns curricular development. School Mathematics curricula
are often blamed for covering material only that was invented centuries ago. Of course,
most subjects that are hot research topics in Mathematics are far too remote and far
too specialized for being accessible at the Gymnasium level. Yet there are marvelous
exceptions: The Diffie-Hellman Key Exchange and RSA Cryptography, invented in

28Maybe you conclude that the 9th grade program on linear equation should contain a modest introduction to
Computerized Tomography, as we did, see the Leitprogramm entitled “Gleichungen” at www.educeth.ethz.ch.
Maybe you conclude that the program, in addition to Gaussian elimination, should include a homeopathic intro-
duction to solving linear equations by iteration (a topic you might touch on again, when you treat Banach fixed
point iteration in one dimension in connection with Kepler’s equation). Maybe you conclude that the question of
what it means that two linear systems of equations are equivalent, and how one obtains equivalent systems from
a given one, deserves to become (a small?) Mathematics Education research project.

29I.e. one including a linear term with respect to the unknown.
30I.e. one in which the linear term is absent.
31Gymnasia have various different profiles in Switzerland. Some concentrate on Mathematics and Physics.

There complex numbers are treated.
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the late seventies, are well suited to give 10th graders an idea of the mathematical
enterprise32.

Euler buckling is probably the earliest example of a bifurcation problem. It was
only during the last two or three decades, however, that bifurcation theory became
a systematically developed branch of analysis. In a Specialized Mathematics course
with an Educational Focus dedicated to an introduction to bifurcation theory as back-
ground it is well possible that teacher students adapt some of the material for Gym-
nasium students, hereby heavily drawing on a classic school subject: the study of the
geometrical properties and graphing of functions defined by simple expressions.

Finally we mention ill-posed inverse problems. This again is a relatively new
field of Applied Mathematics. It is of great theoretical and practical interest, the
way ill-posed inverse problems are treated mathematically is surprising and they lend
themselves outstandingly for treatments on various different levels33.

We expect that Specialized Mathematics courses with an Educational Focus deepen
the teacher students’ mathematical expertise, that they strengthen the link between
University and Gymnasium level Mathematics, that they contribute to develop the
secondary school Mathematics curricula, that they support the prospective teachers to
teach Mathematics at the same time more mathematically and in such a way that their
students can learn to value Mathematics as a human activity and for its significance
in our world.

What is eventually the role of mathematicians in K-12 in our system?
Research mathematician can and do contribute in a number of ways. Via the

Bachelor’s and Master’s program they shape lastingly the knowledge base, the picture
and the skills our teacher students develop. They can substantially contribute to the
Specialized Mathematics courses with an Educational Focus. They can contribute to
the design of substantial teaching units.

In Mathematics Education research highly interesting developments have just be-
gun. We mentioned the paper by Staub and Stern entitled: “The Nature of teachers’
Pedagogical Content Beliefs Matters for Students’Achievement Gains.” Another pa-
per in the same realm is by Hill, Rowan and Ball34. It is entitled: “Effects of teachers’
mathematical knowledge for teaching on student achievement.” These papers pro-
vide results on primary school teachers and primary school pupils. We certainly need
many more results on “what has which impact on student learning” and very much so
in higher grades. In fact, very little seems to be known as to the upper Gymnasium
level.

32Here are some aspects: Fermat’s (little) Theorem on which RSA cryptography is based, though elementary,
is far from being obvious. The way it is proven illustrates the power of mathematical ideas. 350 years after its
discovery it became the key ingredient to affirmatively answer a questions one hardly dares to ask: Is it possible
that two persons, who cannot communicate but publicly, can agree on keys which permit them to exchange
messages which cannot be decoded except by the person who is entitled to read the message?

33See Kirchgraber, U., Kirsch, A., Stoffer, D. : Schlecht gestellte Probleme – oder wenn das Ungenaue genauer
ist. Math. Semesterber. 51 (2004), 175–2005.

34Hill, H. C., Rowan, B., Ball, D. L.: Effects of teachers’ mathematical knowledge for teaching on student
achievement. Amer. Educ. Res. J. 42 (2005), 371–406.
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Earlier we noted that educational measurement techniques are probably still in
their infancy. How can we suitably measure mathematical achievements, teachers’
pedagogical content knowledge, the nature of teachers’ pedagogical content beliefs,
and many more variables of this type? This is certainly a field, where research
mathematician can and should contribute.

Research mathematicians in Switzerland are welcome as members in school
boards, and/or as experts in the final examinations at Gymnasium Schools. Research
mathematicians are welcome to offer lectures to in-service teachers or to participate
in study weeks for Gymnasium students, or to visit schools and give talks.

To summarize: The main contribution of research mathematicians to the second
half of K-12 is to train Mathematics teachers as knowledgeable mathematicians and
to develop with them methods to narrow the gap between “Gymnasium Mathematics”
and University Mathematics. Other possible contributions are manifold, crucial and
indispensable.
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On the origins of Hilbert’s sixth problem: physics and the
empiricist approach to axiomatization

Leo Corry

Abstract. The sixth of Hilbert’s famous 1900 list of twenty-three problems is a programmatic
call for the axiomatization of physical sciences. Contrary to a prevalent view this problem was
naturally rooted at the core of Hilbert’s conception of what axiomatization is all about. The
axiomatic method embodied in his work on geometry at the turn of the twentieth-century orig-
inated in a preoccupation with foundational questions related with empirical science, including
geometry and other physical disciplines at a similar level. From all the problems in the list, the
sixth is the only one that continually engaged his efforts over a very long period, at least between
1894 and 1932.
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1. Introduction

Of the many important and brilliant plenary talks delivered in ICMs ever since the
inception of this institution in 1897 in Zurich, none has so frequently been quoted and,
possibly, none has had the kind of pervasive influence, as the one delivered by David
Hilbert in 1900 at the second ICM in Paris, under the title of “Mathematical Problems”.
Rather than summarizing the state of the art in a central branch of mathematics, Hilbert
attempted to “lift the veil” and peer into the development of mathematics in the century
that was about to begin. He chose to present a list of twenty-three problems that in his
opinion would and should occupy the efforts of mathematicians in the years to come.
This famous list has been an object of mathematical and historical interest ever since.

The sixth problem of the list deals with the axiomatization of physics. It was
suggested to Hilbert by his own recent research on the foundations of geometry. He
proposed “to treat in the same manner, by means of axioms, those physical sciences in
which mathematics plays an important part.” This problem differs from most others
on Hilbert’s list in essential ways, and its inclusion has been the object of noticeable
reaction from mathematicians and historians who have discussed it throughout the
years. Thus, in reports occasionally written about the current state of research on the
twenty-three problems, the special status of the sixth problem is readily visible: not
only has it been difficult to decide to what extent the problem was actually solved (or
not), but one gets the impression that, of all the problems on the list, this one received
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the least attention from mathematicians throughout the century and that relatively
little effort was directed at solving it ([11], [25]).

Many a historical account simply dismissed the sixth problem as a slip on Hilbert’s
side, as a curiosity, and as an artificial addition to what would otherwise appear as
an organically conceived list, naturally connected to his broad range of mathematical
interests (e.g., [26], p. 159). In fact, this is how Hilbert’s interest in physical topics
in general as well as his few, well-known incursions into physical problems have
been traditionally seen. According to this view, these are seen as sporadic incursions
into foreign territory, mainly for the purposes of finding some new applications to
what would otherwise be purely mathematically motivated ideas. This is the case, for
instance, with Hilbert’s solution of the Boltzmann equation in kinetic theory of gases
in 1912. Starting in 1902, most of Hilbert’s mathematical energies had been focused
on research related with the theory of linear integral equations, and his solution of
the Boltzmann equation could thus be seen as no more than an application of the
techniques developed as part of that theory to a particular situation, the physical
background of which would be of no direct interest to Hilbert. An account in this
spirit appears in Stephen G. Brush’s authoritative book on the development of kinetic
theory, according to which:

When Hilbert decided to include a chapter on kinetic theory in his treatise on
integral equations, it does not appear that he had any particular interest in the
physical problems associated with gases. He did not try to make any detailed
calculations of gas properties, and did not discuss the basic issues such as the
nature of irreversibility and the validity of mechanical interpretations which
had exercised the mathematician Ernst Zermelo in his debate with Boltzmann
in 1896–97. A few years later, when Hilbert presented his views on the con-
temporary problems of physics, he did not even mention kinetic theory. We
must therefore conclude that he was simply looking for another possible appli-
cation of his mathematical theories, and when he had succeeded in finding and
characterizing a special class of solutions (later called “normal”) …his interest
in the Boltzmann equation and in kinetic theory was exhausted. ([4], p. 448)

A further important physical context where Hilbert’s appeared prominently con-
cerns the formulation of the gravitational field-equations of the general theory of
relativity (GTR). On November 20, 1915, Hilbert presented to the Royal Scientific
Society in Göttingen his version of the equations, in the framework of what he saw as
an axiomatically formulated foundation for the whole of physics. During that same
month of November, Einstein had been struggling with the final stages of his own
effort to formulate the generally covariant equations that lie at the heart of GTR. He
presented three different versions at the weekly meetings of the Prussian Academy
of Sciences in Berlin, before attaining his final version, on November 25, that is, five
days after Hilbert had presented his own version.
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Einstein had visited Göttingen in the summer of 1915 to lecture on his theory
and on the difficulties currently encountered in his work. Hilbert was then in the
audience and Einstein was greatly impressed by him. Earlier accounts of Hilbert’s
involvement with problems associated with GTR had in general traced it back to this
visit of Einstein or, at the earliest, to the years immediately preceding it. As in the case
of kinetic theory, this contribution of Hilbert was often seen as a more or less furtive
incursion into physics, aimed at illustrating the power and the scope of validity of the
“axiomatic method” and as a test of Hilbert’s mathematical abilities while trying to
“jump onto the bandwagon of success” of Einstein’s theory.

In biographical accounts of Hilbert, his lively interest in physics has never been
overlooked, to be sure, but it mostly has been presented as strictly circumscribed in
time and scope. Thus for instance, in his obituary of Hilbert, Hermann Weyl ([24],
p. 619) asserted that Hilbert’s work comprised five separate, and clearly discernible
main periods: (1) Theory of invariants (1885–1893); (2) Theory of algebraic number
fields (1893–1898); (3) Foundations, (a) of geometry (1898–1902), (b) of mathematics
in general (1922–1930); (4) Integral equations (1902–1912); (5) Physics (1910–1922).
Weyl’s account implies that the passage from any of these fields to the next was always
clear-cut and irreversible, and a cursory examination of Hilbert’s published works may
confirm this impression. But as Weyl himself probably knew better than many, the list
of Hilbert’s publications provides only a partial, rather one-sided perspective of his
intellectual horizons, and this is particularly the case when it comes to his activities
related to physics.

Recent historical research has brought to light a very different picture of Hilbert’s
involvement with physics, and in particular of the real, truly central place of the ideas
embodied in the sixth problem within the general edifice of Hilbert’s scientific out-
look. Hilbert’s involvement with physical issues spanned most of his active scientific
life, and the essence of his mathematical conceptions cannot be understood without
reference to that involvement. More importantly, the famous “axiomatic approach”
that came to be identified with Hilbert’s mathematical achievements and with his per-
vasive influence on twentieth-century mathematics is totally misunderstood if it is not
seen, in the first place, as connected with his physical interests. Under this perspec-
tive, the involvement with kinetic theory and GTR are seen as a natural outgrowth of
the development of Hilbert’s world of ideas, and by no means as sporadic, isolated
incursions into unknown territories. Moreover, contrary to a commonly held view,
the sixth problem is the only one in the entire list of 1900 that refers to an idea that
continually engaged the active attention of Hilbert for a very long period of time, at
least between 1894 and 1932 ([5]).

The key to a balanced understanding of the role of physics within Hilbert’s in-
tellectual horizon is found not so much in his publications, as it is in the complex
academic network of personal interactions and diverse activities that he was continu-
ally part of. Especially worthy of attention is his teaching, first at Königsberg and –
more importantly – after 1895 at Göttingen. At the mathematical institute established
by Felix Klein, Hilbert became the leader of a unique scientific center that brought
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together a gallery of world-class researchers in mathematics and physics. One cannot
exaggerate the significance of the influence exerted by Hilbert’s thought and personal-
ity on all who came out of this institution. More often than not, these lectures were far
from systematic and organized presentations of well-known results and established
theories. Rather, Hilbert often used his lectures as a public stage where he could ex-
plore new ideas and think aloud about the issues that occupied his mind at any point
in time. In a lecture held in commemorating his seventieth birthday, Hilbert vividly
recalled how these lectures provided important occasions for the free exploration of
yet untried ideas. He thus said:

The closest conceivable connection between research and teaching became a
decisive feature of my mathematical activity. The interchange of scientific
ideas, the communication of what one found by himself and the elaboration of
what one had heard, was from my early years at Königsberg a pivotal aspect
of my scientific work. …In my lectures, and above all in the seminars, my
guiding principle was not to present material in a standard and as smooth
as possible way, just to help the student keep clean and ordered notebooks.
Above all, I always tried to illuminate the problems and difficulties and to
offer a bridge leading to currently open questions. It often happened that in
the course of a semester the program of an advanced lecture was completely
changed, because I wanted to discuss issues in which I was currently involved
as a researcher and which had not yet by any means attained their definite
formulation. ([16], p. 79)

The collection of Hilbert’s lecture notes offers an invaluable source of information
for anyone interested in understanding his scientific horizon and contributions.

2. Axiomatics and formalism

A main obstacle in historically understanding the significance of the sixth problem
has been the widespread image of Hilbert as the champion of formalism in modern
mathematics. The traditional association of Hilbert’s name with the term “formal-
ism” has often proved to be misleading, since the term can be understood in two
completely different senses that are sometimes conflated. One sense refers to the
so-called “Hilbert program” that occupied much of Hilbert’s efforts from abut 1920.
Although involving significant philosophical motivations, at the focus of this program
stood a very specific, technical mathematical problem, namely, the attempt to prove the
consistency of arithmetic with strictly finitist arguments. The point of view embodied
in the program was eventually called the “formalist” approach to the foundations of
mathematics, and it gained much resonance when it became a main contender in the
so-called “foundational crisis” in mathematics early in the twentieth century.

Even though Hilbert himself did not use the term “formalism” in this context,
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associating his name with term conceived in this narrow sense seems to be essentially
justified. It is misleading, however, to extend the term “Hilbert program” – and the
concomitant idea of formalism – to refer to Hilbert’s overall conception of the essence
of mathematics. Indeed, a second meaning of the term formalism refers to a general
attitude towards the practice of mathematics and the understanding of the essence of
mathematical knowledge that gained widespread acceptance in the twentieth century,
especially under the aegis of the Bourbaki group. Jean Dieudonné, for instance,
explained what he saw as the essence of Hilbert’s mathematical conceptions in a
well-known text where he referred to the analogy with a game of chess. In the
latter, he said, one does not speak about truths but rather about following correctly a
set of stipulated rules. If we translate this into mathematics we obtain the putative,
“formalist” conception often attributed to Hilbert ([6], p. 551): “mathematics becomes
a game, whose pieces are graphical signs that are distinguished from one another by
their form.”

Understanding the historical roots and development of the sixth problem goes
hand in hand with an understanding of Hilbert’s overall conception of mathematics as
being far removed from Dieudonné’s chess-game metaphor. It also comprises a clear
separation between the “Hilbert program” for the foundations of arithmetic, on the
one hand, and Hilbert’s lifetime research program for mathematics and physics and
its variations throughout the years, on the other hand. In this regard, and even before
one starts to look carefully at Hilbert’s mathematical ideas and practice throughout
his career, it is illustrative to look at a quotation from around 1919 – the time when
Hilbert began to work out the finitist program for the foundations of arithmetic in
collaboration with Paul Bernays – that expounds a view diametrically opposed to that
attributed to him many years later by Dieudonné, and that is rather widespread even
today. Thus Hilbert said:

We are not speaking here of arbitrariness in any sense. Mathematics is not like
a game whose tasks are determined by arbitrarily stipulated rules. Rather, it is
a conceptual system possessing internal necessity that can only be so and by
no means otherwise. ([16], p. 14)

The misleading conflation of the formalist aspect of the “Hilbert program” with
Hilbert’s overall views about mathematics and its relationship with physics is also
closely related with a widespread, retrospective misreading of his early work on the
foundations of geometry in purely formalist terms. However, the centrality attributed
by Hilbert to the axiomatic method in mathematics and in science is strongly connected
with thoroughgoing empiricist conceptions, that continually increased in strength as
he went on to delve into ever new physical disciplines, and that reached a peek in
1915–17, the time of his most intense participation in research associated with GTR.

The axiomatic approach was for Hilbert, above all, a tool for retrospectively inves-
tigating the logical structure of well-established and elaborated scientific theories,
and the possible difficulties encountered in their study, and never the starting point for
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the creation of new fields of enquiry. The role that Hilbert envisaged for the axiomatic
analysis of theories is succinctly summarized in the following quotation taken from
a course on the axiomatic method taught in 1905. Hilbert thus said:

The edifice of science is not raised like a dwelling, in which the foundations
are first firmly laid and only then one proceeds to construct and to enlarge the
rooms. Science prefers to secure as soon as possible comfortable spaces to
wander around and only subsequently, when signs appear here and there that
the loose foundations are not able to sustain the expansion of the rooms, it sets
about supporting and fortifying them. This is not a weakness, but rather the
right and healthy path of development. ([5], p. 127)

3. Roots and early stages

Physics and mathematics were inextricably interconnected in Hilbert’s scientific hori-
zon ever since his early years as a young student in his native city of Königsberg, where
he completed his doctorate in 1885 and continued to teach until 1895. Hilbert’s disser-
tation and all of his early published work dealt with the theory of algebraic invariants.
Subsequently he moved to the theory of algebraic number fields. But his student
notebooks bear witness to a lively interest in, and a systematic study of, an astound-
ing breadth of topics in both mathematics and physics. Particularly illuminating is a
notebook that records his involvement as a student with the Lehrbuch der Experimen-
talphysik by Adolph Wüllner (1870). This was one of many textbooks at the time that
systematically pursued the explicit reduction of all physical phenomena (particularly
the theories of heat and light, magnetism and electricity) to mechanics, an approach
that underlies all of Hilbert’s early involvement with physics, and that he abandoned
in favor of electrodynamical reductionism only after 1912.

In the intimate atmosphere of this small university, the student Hilbert partici-
pated in a weekly seminar organized under the initiative of Ferdinand Lindemann –
who was also Hilbert’s doctoral advisor – that was also attended by his good friends
Adolf Hurwitz and Hermann Minkowski, by the two local physicist, Woldemar Voigt
and Paul Volkmann, and by another fellow student Emil Wiechert, who would also
become Hilbert’s colleague in Göttingen and the world’s leading geophysicist. The
participants discussed recent research in all of branches of mathematics and physics,
with special emphasis on hydrodynamics and electrodynamics, two topics of common
interest for Hilbert and Minkowski throughout their careers. From very early on, fun-
damental methodological questions began to surface as part of Hilbert’s involvement
with both mathematics and physics.

On the mathematical side one may mention the intense research activity associ-
ated with the names of Cayley and Klein in projective geometry, concerning both the
main body of results and the foundations of this discipline; the questions sparked by
the discovery and publication of non-Euclidean geometries, which raised philosoph-
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ical concerns to a larger extent than they elicited actual mathematical research; the
introduction by Riemann of the manifold approach to the analysis of space and its
elaboration by Lie and Helmholtz; the question of the arithmetization of the contin-
uum as analyzed by Dedekind, which had also important foundational consequences
for analysis; the gradual re-elaboration of axiomatic techniques and perspectives as a
main approach to foundational questions in mathematics, especially in the hands of
Grassmann and of the Italian geometers. Hilbert’s intellectual debts to each of these
traditions and to the mathematicians that partook in it – even though more complex
and subtle than may appear on first sight – belong to the directly visible, received
image of Hilbert the geometer.

What is remarkable, and virtually absent from the traditional historiography until
relatively recently, is the extent to which similar parallel developments in physics
played a fundamental role in shaping Hilbert’s views on axiomatization. Very much
like geometry, also physics underwent major changes throughout the nineteenth cen-
tury. These changes affected the contents of the discipline, its methodology, its insti-
tutional setting, and its image in the eyes of its practitioners. They were accompanied
by significant foundational debates that intensified considerably toward the end of the
century, especially among German-speaking physicists. Part of these debates also
translated into specific attempts to elucidate the role of basic laws or principles in
physical theories, parallel in certain respects to that played by axioms in mathemat-
ical theories. As with geometry, foundational questions attracted relatively limited
attention from practitioners of the discipline, but some leading figures were indeed
involved in them.

From about 1850 on, physics became focused on quantification and the search
for universal mathematical laws as its fundamental methodological principles, on
the conservation of energy as a fundamental unifying principle, and very often on
mechanical explanation of all physical phenomena as a preferred research direction.
If explanations based on imponderable “fluids” had dominated so far, mechanical
explanations based on the interaction of particles of ordinary matter now became much
more frequent. In particular, the mechanical theory of ether gave additional impulse
to the concept of “field” that would eventually require a mechanical explanation.
Likewise, the kinetic theory of gases gave additional support to the foundational
role of mechanics as a unifying, explanatory scheme. On the other hand, these very
developments gave rise to many new questions that would eventually challenge the
preferential status of mechanics and lead to the formulation of significant alternatives
to it, especially in the form of the so-called “electromagnetic worldview”, as well as
in the “energicist” and the phenomenological approaches.

Beginning in the middle of the century, several physicists elaborated on the possi-
bility of systematically clarifying foundational issues of this kind in physical theories,
based on the use of “axioms”, “postulates” or “principles”. This was not, to be sure,
a really central trend that engaged the leading physicists in lively discussions. Still,
given the vivid interest on Volkmann in the topic, Hilbert became keenly aware of
many of these developments and discussed them with his colleagues at the seminar.



1704 Leo Corry

Above all, the ideas of Heinrich Hertz and Ludwig Boltzmann on the foundations
of physics strongly influenced him, not only at the methodological level, but also
concerning his strong adherence to the mechanical reductionist point of view.

The lecture notes of courses in geometry taught by Hilbert in Königsberg illumi-
natingly exemplify the confluence of the various points mentioned in the preceding
paragraphs. Central to this is his conception of geometry as a natural science, close in
all respects to mechanics and the other physical disciplines, and opposed to arithmetic
and other mathematical fields of enquiry. This was a traditional separation, adopted
with varying degrees of commitment, among the German mathematicians (especially
in Göttingen) since the time of Gauss. Even geometers like Moritz Pasch, who had
stressed a thoroughly axiomatic approach in their presentations of projective geome-
try [20], would support such an empiricist view of geometry. In the introduction to a
course taught in 1891, for instance, Hilbert expressed his views as follows:

Geometry is the science dealing with the properties of space. It differs essen-
tially from pure mathematical domains such as the theory of numbers, algebra,
or the theory of functions. The results of the latter are obtained through pure
thinking …The situation is completely different in the case of geometry. I can
never penetrate the properties of space by pure reflection, much the same as
I can never recognize the basic laws of mechanics, the law of gravitation or
any other physical law in this way. Space is not a product of my reflections.
Rather, it is given to me through the senses. ([5], p. 84)

The connection between this view and the axiomatic approach as a proper way
to deal with this kind of sciences was strongly supported by the work of Hertz.
Hilbert had announced another course in geometry for 1893, but for lack of students
registered it was postponed until 1894. Precisely at this time, Hertz’s Principles of
Mechanics [13] was posthumous published, and Hilbert got enthusiastic notice of the
book from his friend Minkowski. Minkowski had been in Bonn since 1885 where
he came under the strong influence of Hertz, to the point that the latter became his
main source of scientific inspiration ([15], p. 355). In the now famous introduction
to his book, Hertz described physical theories as “pictures” (Bilder) that we form
for ourselves of natural phenomena, and suggested three criteria to evaluate among
several possible images of one and the same object: permissibility, correctness, and
appropriateness. Permissibility corresponds very roughly to consistency, whereas
correctness and appropriateness are closer to the kind of criteria that will appear later
on in Hilbert’s Grundlagen der Geometrie (GdG – see below).

In the lecture notes of his 1893–94 course, Hilbert referred once again to the
natural character of geometry and explained the possible role of axioms in elucidating
its foundations. As he had time to correct the notes, he now made explicit reference to
Hertz’s characterization of a “correct” scientific image (Bild) or theory. Thus Hilbert
wrote ([5], p. 87):
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Nevertheless the origin [of geometrical knowledge] is in experience. The
axioms are, as Hertz would say, images or symbols in our mind, such that
consequents of the images are again images of the consequences, i.e., what we
can logically deduce from the images is itself valid in nature.

Hilbert also pointed out the need of establishing the independence of the axioms
of geometry, while alluding, once again, to the kind of demand stipulated by Hertz.
Stressing the objective and factual character of geometry, Hilbert wrote:

The problem can be formulated as follows: What are the necessary, sufficient,
and mutually independent conditions that must be postulated for a system of
things, in order that any of their properties correspond to a geometrical fact
and, conversely, in order that a complete description and arrangement of all
the geometrical facts be possible by means of this system of things.

The axioms of geometry and of physical disciplines, Hilbert said, “express ob-
servations of facts of experience, which are so simple that they need no additional
confirmation by physicists in the laboratory.”

The empirical character of geometry has its clear expression in the importance
attributed to Gauss’s measurement of the sum of angles of a triangle formed by three
mountain peaks in Hannover. Hilbert found these measurements convincing enough to
indicate the correctness of Euclidean geometry as a true description of physical space.
Nevertheless, he envisaged the possibility that some future measurement would yield
a different result. This example would arise very frequently in Hilbert’s lectures on
physics in years to come, as an example of how the axiomatic method should be ap-
plied in physics, where new empirical facts are often found by experiment. Faced with
new such findings that seem to contradict an existing theory, the axiomatic analysis
would allow making the necessary modifications on some of the basic assumptions of
the theory, without however having to modify its essential logical structure. Hilbert
stressed that the axiom of parallels is likely to be the one to be modified in geome-
try if new experimental discoveries would necessitate so. Geometry was especially
amenable to a full axiomatic analysis only because of its very advanced stage of
development and elaboration, and not because of any other specific, essential trait
concerning its nature that would set it apart from other disciplines of physics. Thus,
in a course on mechanics taught in 1899, the year of publication of GdG, he said:

Geometry also [like mechanics] emerges from the observation of nature, from
experience. To this extent, it is an experimental science.…But its experimental
foundations are so irrefutably and so generally acknowledged, they have been
confirmed to such a degree, that no further proof of them is deemed necessary.
Moreover, all that is needed is to derive these foundations from a minimal set
of independent axioms and thus to construct the whole edifice of geometry by
purely logical means. In this way [i.e., by means of the axiomatic treatment]
geometry is turned into a pure mathematical science. In mechanics it is also
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the case that all physicists recognize its most basic facts. But the arrangement
of the basic concepts is still subject to changes in perception …and therefore
mechanics cannot yet be described today as a pure mathematical discipline, at
least to the same extent that geometry is. ([5], p. 90. Emphasis in the original)

Thus, at the turn of the century, Hilbert consolidated his view of the axiomatic
method as a correct methodology to be applied, in parallel and with equal importance,
to geometry and to all other physical disciplines. The publication of GdG helped
spread his ideas very quickly and in strong association with geometry alone. But the
idea of applying the same point of view to physics, although made known to the public
only in the 1900 list of problems, was for him natural and evident from the outset. In his
course of 1899, Hilbert devoted considerable effort to discussing the technical details
of, as well as the logical and conceptual interrelations among, the main principles
of analytical mechanics: the energy conservation principle, the principle of virtual
velocities and the D’Alembert principle, the principles of straightest path and of
minimal constraint, and the principles of Hamilton and Jacobi. All of this will appear
prominently in Hilbert’s later own elaboration of the program for the axiomatization
of physics.

4. Grundlagen der Geometrie

Hilbert’s Grundlagen der Geometrie embodied his first published, comprehensive
presentation of an axiomatized mathematical discipline. Based on a course taught in
the winter semester of 1898–99, it appeared in print in June of 1899. The declared
aim of the book was to lay down a “simple” and “complete” system of “mutually
independent” axioms, from which all known theorems of geometry might be deduced.
The axioms were formulated for three systems of undefined objects named “points”,
“lines”, and “planes”, and they establish mutual relations that these objects must
satisfy. The axioms were grouped into five categories: axioms of incidence, of order,
of congruence, of parallels, and of continuity. From a purely logical point of view,
the groups have no real significance in themselves. However, from the geometrical
point of view they are highly significant, for they reflect Hilbert’s actual conception
of the axioms as an expression of spatial intuition: each group expresses a particular
way that these intuitions manifest themselves in our understanding.

Hilbert’s first requirement, that the axioms be independent, is the direct man-
ifestation of the foundational concerns that guided his research. When analyzing
independence, his interest focused mainly on the axioms of congruence, continuity
and of parallels, since this independence would specifically explain how the various
basic theorems of Euclidean and projective geometry are logically interrelated. This
requirement had already appeared – albeit more vaguely formulated – in Hilbert’s
early lectures on geometry, as a direct echo of Hertz’s demand for “appropriateness”
of physical theories (i.e., the demand of “distinctness and simplicity” for the axioms
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of the theory). This time Hilbert also provided the tools to prove systematically the
mutual independence among the individual axioms within the groups and among the
various groups of axioms in the system. However, this was not for Hilbert an exercise
in analyzing abstract relations among systems of axioms and their possible models.
The motivation for enquiring about the mutual independence of the axioms remained,
essentially, a geometrical one. For this reason, Hilbert’s original system of axioms
was not the most economical one from the logical point of view. Indeed, several
mathematicians noticed quite soon that Hilbert’s system of axioms, seen as a single
collection rather than as a collection of five groups, contained a certain degree of
redundancy ([19], [23]). Hilbert’s own aim was to establish the interrelations among
the groups of axioms, embodying the various manifestations of space intuition, rather
than among individual axioms belonging to different groups.

The second one, simplicity is also related to Hertz’s appropriateness. Unlike the
other requirements, it did not become standard as part of the important mathemati-
cal ideas to which GdG eventually led. Through this requirement Hilbert wanted to
express the desideratum that an axiom should contain “no more than a single idea.”
However, he did not provide any formal criterion to decide when an axiom is sim-
ple. Rather this requirement remained implicitly present in GdG, as well as in later
works of Hilbert, as a merely aesthetic guideline that was never transformed into a
mathematically controllable feature.

The idea of a complete axiomatic system became pivotal to logic after 1930 follow-
ing the works of Gödel, and in connection with the finitist program for the foundations
of arithmetic launched by Hilbert and his collaborators around 1920. This is not, how-
ever, what Hilbert had in mind in 1899, when he included a requirement under this
name in the analysis presented in GdG. Rather, he was thinking of a kind of ”prag-
matic” completeness. In fact, what Hilbert was demanding here is that an adequate
axiomatization of a mathematical discipline should allow for an actual derivation of
all the theorems already known in that discipline. This was, Hilbert claimed, what
the totality of his system of axioms did for Euclidean geometry or, if the axiom of
parallels is ignored, for the so-called absolute geometry, namely that which is valid
independently of the latter.

Also the requirement of consistency was to become of paramount importance
thereafter. Still, as part of GdG, Hilbert devoted much less attention to it. For one
thing, he did not even mention this task explicitly in the introduction to the book. For
another, he devoted just two pages to discussing the consistency of his system in the
body of the book. In fact, it is clear that Hilbert did not intend to give a direct proof of
consistency of geometry here, but even an indirect proof of this fact does not explicitly
appear in GdG, since a systematic treatment of the question implied a full discussion
of the structure of the system of real numbers, which was not included. Rather,
Hilbert suggested that it would suffice to show that the specific kind of synthetic
geometry derivable from his axioms could be translated into the standard Cartesian
geometry, if the axes are taken as representing the entire field of real numbers. Only
in the second edition of GdG, published in 1903, Hilbert added an additional axiom,
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the so-called “axiom of completeness” (Vollständigkeitsaxiom), meant to ensure that,
although infinitely many incomplete models satisfy all the other axioms, there is only
one complete model that satisfies this last axiom as well, namely, the usual Cartesian
geometry.

Hilbert’s axiomatic analysis of geometry was not meant to encourage the possibil-
ity of choosing arbitrary combinations of axioms within his system, and of exploring
their consequences. Rather, his analysis was meant to enhance our understanding
of those systems with a more intuitive, purely geometrical significance – Euclidean
geometry, above all – and that made evident the connection of his work with long-
standing concerns of the discipline throughout the nineteenth century [8]. As already
stressed, the definition of systems of abstract axioms and the kind of axiomatic anal-
ysis described above was meant to be carried out always retrospectively, and only for
“concrete”, well-established and elaborated mathematical entities.

The publication of the Grundlagen was followed by many further investigations
into Hilbert’s technical arguments, as well as by more general, methodological and
philosophical discussions. One important such discussion appeared in the correspon-
dence between Hilbert and Gottlob Frege. This interchange has drawn considerable
attention of historians and philosophers, especially for the debate it contains between
Hilbert and Frege concerning the nature of mathematical truth. But this frequently-
emphasized issue is only one side of a more complex picture advanced by Hilbert
in his letters. In particular, it is interesting to notice Hilbert’s explanation to Frege,
concerning the main motivations for undertaking his axiomatic analysis: the latter
had arisen, in the first place, from difficulties Hilbert had encountered when dealing
with physical, rather than mathematical theories. Echoing once again ideas found
in the introduction to Hertz’s textbook, and clearly having in mind the problematic
conceptual situation of the kinetic theory of gases at the turn of the century, Hilbert
stressed the need to analyze carefully the process whereby physicists continually add
new assumptions to existing physical theories, without properly checking whether
or not the former contradict the latter, or consequences of the latter. In a letter of
December 29, 1899, Hilbert wrote to Frege:

After a concept has been fixed completely and unequivocally, it is on my view
completely illicit and illogical to add an axiom – a mistake made very fre-
quently, especially by physicists. By setting up one new axiom after another
in the course of their investigations, without confronting them with the as-
sumptions they made earlier, and without showing that they do not contradict
a fact that follows from the axioms they set up earlier, physicists often allow
sheer nonsense to appear in their investigations. One of the main sources of
mistakes and misunderstandings in modern physical investigations is precisely
the procedure of setting up an axiom, appealing to its truth, and inferring from
this that it is compatible with the defined concepts. One of the main purposes
of my Festschrift was to avoid this mistake. ([9], p. 40)
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In a different passage of the same letter, Hilbert commented on the possibility
of substituting the basic objects of an axiomatically formulated theory by a different
system of objects, provided the latter can be put in a one-to-one, invertible relation
with the former. In this case, the known theorems of the theory are equally valid for
the second system of objects. Concerning physical theories, Hilbert wrote:

All the statements of the theory of electricity are of course valid for any other
system of things which is substituted for the concepts magnetism, electricity,
etc., provided only that the requisite axioms are satisfied. But the circumstance
I mentioned can never be a defect in a theory [footnote: it is rather a tremendous
advantage], and it is in any case unavoidable. However, to my mind, the
application of a theory to the world of appearances always requires a certain
measure of good will and tactfulness: e.g., that we substitute the smallest
possible bodies for points and the longest possible ones, e.g., light-rays, for
lines. At the same time, the further a theory has been developed and the more
finely articulated its structure, the more obvious the kind of application it has
to the world of appearances, and it takes a very large amount of ill will to
want to apply the more subtle propositions of [the theory of surfaces] or of
Maxwell’s theory of electricity to other appearances than the ones for which
they were meant …([9], p. 41)

Hilbert’s letters to Frege help understanding the importance of the link between
physical and mathematical theories on the development of his axiomatic point of
view. The latter clearly did not involve either an empty game with arbitrary systems
of postulates nor a conceptual break with the classical, nineteenth-century entities and
problems of mathematics and empirical science. Rather it sought after an improve-
ment in the mathematician’s understanding of the latter. This motto was to guide
much of Hilbert’s incursions into several domains of physics over the years to come.

5. Physics and the 1900 list of problems

In the introductory section of his Paris talk, Hilbert stressed the important role he
accorded to empirical motivations as a fundamental source of nourishment for what
he described as a “living organism”, in which mathematics and the physical sciences
appear tightly interrelated. The empirical motivations underlying mathematical ideas,
Hilbert said, should by no means be taken as opposed to rigor. On the contrary,
contrasting an “opinion occasionally advocated by eminent men”, Hilbert insisted that
the contemporary quest for rigor in analysis and arithmetic should in fact be extended
to both geometry and the physical sciences. He was alluding here, most probably, to
Kronecker and Weierstrass, and the Berlin purist tendencies that kept geometry and
applications out of their scope of interest. Rigorous methods are often simpler and
easier to understand, Hilbert said, and therefore, a more rigorous treatment would
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only perfect our understanding of these topics, and at the same time would provide
mathematics with ever new and fruitful ideas. In explaining why rigor should not be
sought only within analysis, Hilbert actually implied that this rigor should actually
be pursued in axiomatic terms. He thus wrote:

Such a one-sided interpretation of the requirement of rigor would soon lead
to the ignoring of all concepts arising from geometry, mechanics and physics,
to a stoppage of the flow of new material from the outside world, and finally,
indeed, as a last consequence, to the rejection of the ideas of the continuum
and of irrational numbers. But what an important nerve, vital to mathematical
science, would be cut by rooting out geometry and mathematical physics! On
the contrary I think that wherever mathematical ideas come up, whether from
the side of the theory of knowledge or in geometry, or from the theories of
natural or physical science, the problem arises for mathematics to investigate
the principles underlying these ideas and to establish them upon a simple and
complete system of axioms, so that the exactness of the new ideas and their
applicability to deduction shall be in no respect inferior to those of the old
arithmetical concepts. (Quoted from [12], p. 245)

Using a rhetoric reminiscent of Volkmann’s work, Hilbert described the develop-
ment of mathematical ideas as an ongoing, dialectical interplay between the two poles
of thought and experience. He also added an idea that was of central importance to
Göttingen scientists for many decades, namely, the conception of the “pre-established
harmony” between mathematics and nature ([21]). The importance of investigating
the foundations of mathematics does not appear as an isolated concern, but rather as
an organic part of the manifold growth of the discipline in several directions. Hilbert
thus said:

Indeed, the study of the foundations of a science is always particularly attrac-
tive, and the testing of these foundations will always be among the foremost
problems of the investigator …[But] a thorough understanding of its special
theories is necessary for the successful treatment of the foundations of the
science. Only that architect is in the position to lay a sure foundation for a
structure who knows its purpose thoroughly and in detail. (Quoted from [12],
p. 258)

The first two problems in Hilbert’s list are Cantor’s continuum hypothesis and the
compatibility of the axioms of arithmetic. In formulating the second problem on his
list, Hilbert stated more explicitly than ever before, that among the tasks related to
investigating an axiomatic system, proving its consistency would be the most impor-
tant one. Yet, Hilbert was still confident that this would be a rather straightforward
task, easily achievable “by means of a careful study and suitable modification of the
known methods of reasoning in the theory of irrational numbers.” Clearly Hilbert
meant his remarks in this regard to serve as an argument against Kronecker’s negative
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reactions to unrestricted use of infinite collections in mathematics, and therefore he
explicitly asserted that a consistent system of axioms could prove the existence of
higher Cantorian cardinals and ordinals. Hilbert’s assertion is actually the first pub-
lished mention of the paradoxes of Cantorian set theory, which here were put forward
with no special fanfare ([7], p. 301). He thus established a clear connection between
the two first problems on his list through the axiomatic approach. Still, Hilbert was
evidently unaware of the difficulties involved in realizing this point of view, and, more
generally, he most likely had no precise idea of what an elaborate theory of systems
of axioms would involve. On reading the first draft of the Paris talk, several weeks
earlier, Minkowski understood at once the challenging implications of Hilbert’s view,
and he hastened to write to his friend:

In any case, it is highly original to proclaim as a problem for the future, one
that mathematicians would think they had already completely possessed for a
long time, such as the axioms for arithmetic. What might the many laymen in
the auditorium say? Will their respect for us grow? And you will also have a
though fight on your hands with the philosophers. ([22], p. 129)

Frege’s reaction to the GdG proved Minkowski’s concern to be justified, as his
main criticism referred to the status of axioms as implicit definitions.

The next three problems in the list are directly related with geometry and, although
not explicitly formulated in axiomatic terms, they address the question of finding the
correct relationship between specific assumptions and specific, significant geometri-
cal facts. The fifth problem, for instance, relates to the question of the foundations
of geometry as it had evolved over the last third of the nineteenth century along two
parallel paths. On the one hand, there was the age-old tradition of elementary syn-
thetic geometry, where the question of foundations more naturally arises in axiomatic
terms. On the other hand, there was the tradition associated with the Helmholtz–
Lie problem, that derived directly from the work of Riemann and that had a more
physically-grounded orientation connected with the question of spaces that admit the
free mobility of rigid bodies. Whereas Helmholtz had only assumed continuity as
underlying the motion of rigid bodies, in applying his theory of groups of transfor-
mations to this problem, Lie was also assuming the differentiability of the functions
involved. Hilbert’s work on the foundations of geometry, especially in the context
that led to GdG, had so far been connected with the first of these two traditions, while
devoting much less attention to the second one. Now in his fifth problem, he asked
whether Lie’s conditions, rather than assumed, could actually be deduced from the
group concept together with other geometrical axioms.

As a mathematical problem, the fifth one led to interesting, subsequent develop-
ments. Not long after his talk, in November 18, 1901, Hilbert himself proved that,
in the plane, the answer is positive, and he did so with the help of a then innovative,
essentially topological, approach [14]. That the answer is positive in the general case
was satisfactorily proved only in 1952 ([10], [18]). The inclusion of this problem in
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the 1900 list underscores the actual scope of Hilbert’s views over the question of the
foundations of geometry and over the role of axiomatics. Hilbert suggested here the
pursuit of an intricate kind of conceptual clarification involving assumptions about
motion, differentiability and symmetry, such as they appear intimately interrelated
in the framework of a well-elaborate mathematical theory, namely, that of Lie. This
quest, that also became typical of the spirit of Hilbert’s axiomatic involvement with
physical theories, suggests that his foundational views on geometry were very broad
and open-ended, and did not focus on those aspects related with the synthetic ap-
proach to geometry. In particular, the fifth problem emphasizes the prominent role
that Hilbert assigned to physical considerations in his approach to geometry. In the
long run, this aspect of Hilbert’s view resurfaced at the time of his involvement with
GTR ([5], Ch. 7–8). In its more immediate context, however, it makes the passage
from geometry to the sixth problem appear as a natural one within the list.

Indeed, if the first two problems in the list show how the ideas deployed in GdG led
in one direction towards foundational questions in arithmetic, then the fifth problem
suggests how they also naturally led, in a different direction, to Hilbert’s call for
the axiomatization of physical science in the sixth problem. The problem was thus
formulated as follows:

The investigations on the foundations of geometry suggest the problem: To
treat in the same manner, by means of axioms, those physical sciences in
which mathematics plays an important part; in the first rank are the theory of
probabilities and mechanics. (Quoted in [12], p. 258)

As examples of what he had in mind Hilbert mentioned several existing and
well-known works: the fourth edition of Mach’s Die Mechanik in ihrer Entwick-
lung, Hertz’s Prinzipien, Boltzmann’s 1897 Vorlesungen Über die Principien der
Mechanik, and also Volkmann’s 1900 Einführung in das Studium der theoretischen
Physik. Boltzmann’s work offered a good example of what axiomatization would
offer, as he had indicated, though only schematically, that limiting processes could be
applied, starting from an atomistic model, to obtain the laws of motion of continua.
Hilbert thought it convenient to go in the opposite direction also, i.e., to derive the laws
of motions of rigid bodies by limiting processes, starting from a system of axioms
that describe space as filled with continuous matter in varying conditions. Thus one
could investigate the equivalence of different systems of axioms, an investigation that
Hilbert considered to be of the highest theoretical importance.

This is one of the few places where Hilbert emphasized Boltzmann’s work over
Hertz’s in this regard, and this may give us the clue to the most immediate trigger that
was in the back of Hilbert’s mind when he decided to include this problem in the list.
Indeed, Hilbert had met Boltzmann several months earlier in Munich, where the latter
gave a talk on recent developments in physics. Boltzmann had not only discussed
ideas connected with the task that Hilbert was now calling for, but he also adopted
a rhetoric that seems to have appealed very much to Hilbert. In fact, Boltzmann
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had suggested that one could follow up the recent history of physics with a look at
future developments. Nevertheless, he said, “I will not be so rash as to lift the veil
that conceals the future” ([2], p. 79). Hilbert, on the contrary, opened the lecture
by asking precisely, “who among us would not be glad to lift the veil behind which
the future lies hidden” and the whole trust of his talk implied that he, the optimistic
Hilbert, was helping the mathematical community to do so.

Together with the well-known works on mechanics referred to above, Hilbert also
mentioned a recent work by the Göttingen actuarial mathematician Georg Bohlmann
on the foundations of the calculus of probabilities [1]. The latter was important for
physics, Hilbert said, for its application to the method of mean values and to the kinetic
theory of gases. Hilbert’s inclusion of the theory of probabilities among the main
physical theories whose axiomatization should be pursued has often puzzled readers
of this passage. The notes of a course taught in 1905 on the axiomatic method show that
this was a main point in Hilbert’s views on physics because of the use of probabilities
also in insurance mathematics and in problems of observational error calculation in
astronomy. It is also remarkable that Hilbert did not mention electrodynamics among
the physical disciplines to be axiomatized, even though the second half of the Gauss–
Weber Festschrift, where Hilbert’s GdG was published, contained a parallel essay by
Wiechert on the foundations of electrodynamics. At any rate, Wiechert’s presentation
was by no means axiomatic, in any sense of the term. On the other hand, the topics
addressed by Wiechert would start attracting Hilbert’s attention over the next years,
at least since 1905.

This sixth problem is not really a problem in the strict sense of the word, but
rather a general task for whose complete fulfillment Hilbert set no clear criteria. Thus,
Hilbert’s detailed account in the opening remarks of his talk as to what a meaningful
problem in mathematics is, and his stress on the fact that a solution to a problem
should be attained in a finite number of steps, does not apply in any sense to the sixth
one. On the other hand, the sixth problem has important connections with three other
problems on Hilbert’s list: the nineteenth (“Are all the solutions of the Lagrangian
equations that arise in the context of certain typical variational problems necessarily
analytic?”), the twentieth (dealing with the existence of solutions to partial differential
equations with given boundary conditions), closely related to the nineteenth and at the
same time to Hilbert’s long-standing interest on the Dirichlet Principle, and, finally,
the twenty-third (an appeal to extend and refine the existing methods of variational
calculus). Like the sixth problem, the latter two are general tasks rather than specific
mathematical problems with a clearly identifiable, possible solution. All these three
problems are also strongly connected to physics, though unlike the sixth, they are
also part of mainstream, traditional research concerns in mathematics. In fact, their
connections to Hilbert’s own interests are much more perspicuous and, in this respect,
they do not raise the same kind of historical questions that Hilbert’s interest in the
axiomatization of physics does.

A balanced assessment of the influence of the problems on the development of
mathematics throughout the century must take into account not only the intrinsic
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importance of the problems, but also the privileged institutional role of Göttingen in
the mathematical world with the direct and indirect implications of its special status.
However, if Hilbert wished to influence the course of mathematics over the coming
century with his list, then it is remarkable that his own career was only very partially
shaped by it. Part of the topics covered by the list belonged to his previous domains
of research, while others belonged to domains where he never became active. On
the contrary, domains that he devoted much effort to over the next years, such as
the theory of integral equations, were not contemplated in the list. In spite of the
enormous influence Hilbert had on his students, the list did not become a necessary
point of reference of preferred topics for dissertations. To be sure, some young
mathematicians, both in Göttingen and around the world, did address problems on
the list and sometimes came up with important mathematical achievements that helped
launch their own international careers. But this was far from the only way for talented
young mathematicians to reach prominence in or around Göttingen. But, ironically,
the sixth problem, although seldom counted among the most influential of the list, can
actually be counted among those that received greater attention from Hilbert himself
and from his collaborators and students over the following years.

6. Concluding remarks

For all its differences and similarities with other problems on the list, the important
point that emerges from the above account is that the sixth problem was in no sense
disconnected from the evolution of Hilbert’s early axiomatic conception at its very
core. Nor was it artificially added in 1900 as an afterthought about the possible exten-
sions of an idea successfully applied in 1899 to the case of geometry. Rather, Hilbert’s
ideas concerning the axiomatization of physical science arose simultaneously with his
increasing enthusiasm for the axiomatic method and they fitted naturally into his over-
all view of pure mathematics, geometry and physical science – and the relationship
among them – by that time.

From 1900 on, the idea of axiomatizing physical theories was a main thread that
linked much of Hilbert’s research and teaching. Hilbert taught every semester at
least one course dealing with a physical discipline, and by the end of his career he
had covered most of the important fields that were at the cutting edge of physics,
currently attracting the best research efforts of young and promising minds (see the
appendix to this article). The axiomatic point of view provided a unifying methodol-
ogy from which to approach many of the topics in which Hilbert became interested.
In 1905 he taught a course on the axiomatic method where he presented for the first
time a panoramic view of various physical disciplines from an axiomatic perspective:
mechanics, thermodynamics, probability calculus, kinetic theory, insurance mathe-
matics, electrodynamics, psychophysics. The variety of physical topics pursued only
grew over the years. The extent of the influence of Hilbert’s ideas on physics on con-
temporary research is a more complex question that cannot be discussed here for lack
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of space. Still, it is relevant to quote here an account of Hilbert’s ideas as described
by the physicist on whom Hilbert’s influence became most evident, Max Born. On
the occasion of Hilbert’s sixtieth birthday, at a time when he was deeply involved
together with Bernays in the technical difficulties raised by the finitist program, Born
wrote the following words:

The physicist set outs to explore how things are in nature; experiment and
theory are thus for him only a means to attain an aim. Conscious of the
infinite complexities of the phenomena with which he is confronted in every
experiment, he resists the idea of considering a theory as something definitive.
He therefore abhors the word “Axiom”, which in its usual usage evokes the
idea of definitive truth. The physicist is thus acting in accordance with his
healthy instinct, that dogmatism is the worst enemy of natural science. The
mathematician, on the contrary, has no business with factual phenomena, but
rather with logic interrelations. In Hilbert’s language the axiomatic treatment
of a discipline implies in no sense a definitive formulation of specific axioms
as eternal truths, but rather the following methodological demand: specify
the assumptions at the beginning of your deliberation, stop for a moment
and investigate whether or not these assumptions are partly superfluous or
contradict each other. ([3])

The development of physics from the beginning of the century, and especially
after 1905, brought many surprises that Hilbert could not have envisaged in 1900 or
even when he lectured at Göttingen on the axioms of physics in 1905; yet, Hilbert was
indeed able to accommodate these new developments to the larger picture of physics
afforded by his program for axiomatization. In fact, some of his later contributions to
mathematical physics, particularly his contributions to GTR, came by way of realizing
the vision embodied in this program.

7. Appendix: Hilbert’s Göttingen courses on physics (and related
fields): 1895–1927

For an explanation on the sources used for compiling this list, see [5], p. 450 (WS =
Winter Semester, SS = Summer Semester, HS = Special Autumn [Herbst] Semester).

WS 1895/96 Partial Differential Equations
SS 1896 Ordinary Differential Equations
SS 1898 Mechanics
SS 1899 Variational Calculus
WS 1900/01 Partial Differential Equations
SS 1901 Linear Partial Differential Equations
WS 1901/02 Potential Theory
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SS 1902 Selected Topics in Potential Theory
WS 1902/03 Continuum Mechanics - Part I
SS 1903 Continuum Mechanics - Part II
WS 1903/04 Partial Differential Equations
WS 1904/05 Variational Calculus
SS 1905 Logical Principles of Mathematical Thinking (and of Physics)
SS 1905 Integral Equations
WS 1905/06 Partial Differential Equations
WS 1905/06 Mechanics
SS 1906 Integral Equations
WS 1906/07 Continuum Mechanics
SS 1907 Differential Equations
WS 1909/10 Partial Differential Equations
SS 1910 Selected Chapters in the Theory of Partial Differential Equations
WS 1910/11 Mechanics
SS 1911 Continuum Mechanics
WS 1911/12 Statistical Mechanics
SS 1912 Radiation Theory
SS 1912 Ordinary Differential Equations
SS 1912 Mathematical Foundations of Physics
WS 1912/13 Molecular Theory of Matter
WS 1912/13 Partial Differential Equations
WS 1912/13 Mathematical Foundations of Physics
SS 1913 Foundations of Mathematics (and the axiomatization of Physics)
SS 1913 Electron Theory
WS 1913/14 Electromagnetic Oscillations
WS 1913/14 Analytical Mechanics
WS 1913/14 Exercises in Mechanics (together with H. Weyl)
SS 1914 Statistical Mechanics
SS 1914 Differential Equations
WS 1914/15 Lectures on the Structure of Matter
SS 1915 Structure of Matter (Born’s Theory of Crystals)
WS 1915/16 Differential Equations
SS 1916 Partial Differential Equations
SS 1916 Foundations of Physics I (General Relativity)
WS 1916/17 Foundations of Physics II (General Relativity)
SS 1917 Electron Theory
SS 1918 Ordinary Differential Equations
WS 1918/19 Space and Time
WS 1918/19 Partial Differential and Integral Equations
HS 1919 Nature and Mathematical Knowledge
WS 1920 Mechanics
SS 1920 Higher Mechanics and the New Theory of Gravitation
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WS 1920/21 Mechanics and the New Theory of Gravitation
SS 1921 Einstein’s Gravitation Theory. Basic Principles of the Theory

of Relativity
SS 1921 On Geometry and Physics
SS 1922 Statistical Mechanics
WS 1922/23 Mathematical Foundations of Quantum Theory
WS 1922/23 Knowledge and Mathematical Thought
WS 1922/23 Knowledge and Mathematical Thought
SS 1923 Our Conception of Gravitation and Electricity
WS 1923/24 On the Unity of Science
SS 1924 Mechanics and Relativity Theory
WS 1926/27 Mathematical Methods of Quantum Theory
SS 1930 Mathematical Methods of Modern Physics
WS 1930/31 Nature and Thought
WS 1931/32 Philosophical Foundations of Modern Natural Science
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Method versus calculus in Newton’s criticisms of Descartes
and Leibniz

Niccolò Guicciardini

Abstract. In my talk I will consider Newton’s views on mathematical method. Newton never
wrote extensively about this issue. However, in his polemic writings addressed against Descartes
and Leibniz he expressed the idea that his method was superior to the ones proposed by the French
and the German. Considering these writings can help us in understanding the role attributed to
algebra and calculus in Newton’s mathematical thought.
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1. Newton’s memorandum on his early discoveries

Newton blossomed as a creative mathematician in 1665–1666, the so-called anni
mirabiles, about four years after matriculating at Cambridge.1 A Newtonian mem-
orandum, written about fifty years later, gives an account that has been basically
confirmed by manuscript evidence:

In the beginning of the year 1665 I found the Method of approximating series &
the Rule for reducing any dignity of any Binomial into such a series. The
same year in May I found the method of Tangents of Gregory & Slusius, & in
November had the direct method of fluxions & the next year in January had the
theory of Colours & in May following I had entrance into ye inverse method of
fluxions. And the same year I began to think of gravity extending to ye orb of
the Moon […] All this was in the two plague years of 1665–1666. For in those
days I was in the prime of my age for invention & minded Mathematicks &
Philosophy more than any time since. ([1])

There would be much to say in order to decipher and place into context Newton’s dis-
course. For instance, the task of commenting on the meaning of the term ‘philosophy’
would require space and scholarship not at my disposal [2].

1Readers interested in Newton’s mathematics should read Tom Whiteside’s introductions and commentaries
in [9].
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Figure 1. Newton’s home at Woolsthorpe where – he claimed – he made his early discoveries in
mathematics and natural philosophy when Cambridge University was evacuated because of the
plague during the biennium 1665–1666. As a matter of fact, he did important work in mathematics
during periods in which he returned to the University. Further, his juvenile insights – particularly
those concerning gravitation – had to be elaborated during the next decades. Source: [1], 54.

Let me note three things about the above memorandum. The ‘Method of approxi-
mating series’ is the method of series expansion via long division and root extraction
(as well as other methods which were later subsumed under more general techniques
usually attributed to Puiseux) that allowed Newton to go beyond the limitation of what
he termed ‘common analysis’ – where ‘finite equations’ were deployed – and express
certain curves locally in terms of infinite fractional power series, which Newton called
‘infinite equations’. The ‘Rule for reducing any dignity of any Binomial’ is what we
call the ‘binomial theorem’. Such methods of series expansion were crucial for at-
taining two goals: the calculation of areas of curvilinear surfaces and the rectification
of curves (see Figure 2). Notice that Newton does not talk about a theorem, but rather
about ‘methods’ and a ‘rule’. This last fact is of utmost importance and deserves
our commentary in Sections 2, 3, and 4, before turning in Section 5 to the direct and
inverse methods of fluxions which are the Newtonian equivalent of the Leibnizian
differential and integral calculus.2

2For a recent evaluation of Newton’s early mathematical researches see [3].
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Figure 2. Calculation of areas of hyperbolic and circular surfaces via extraction of root of√
aa + xx = y and

√
aa − xx = y. This technique of series expansion and termwise integration

was basic in Newton’s early mathematical work and was displayed in a tract entitled On the
analysis by means of infinite equations (written in 1669, but printed only in 1711), an extension
of ‘common analysis’ which proceeds via ‘finite equations’ only. Source: [8], vol. 1, 8.
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2. Pappus on the method of analysis and synthesis

Newton belonged to a mathematical community in which the distinction between the-
orems and problems was articulated according to criteria sanctioned by the venerated
Greek tradition. Most notably in the work of the late Hellenistic compiler Pappus en-
titled Mathematical Collection which appeared in 1588 in Latin translation Newton –
who avidly read this dusty work – could find a distinction between ‘theorematic and
problematic analysis’.

In the 7th book of the Collection there was a description of works (mostly lost and
no longer available to early modern mathematicians) which – according to Pappus –
had to do with a heuristic method followed by the ancient geometers. The opening
of the seventh book is often quoted. It is an obscure passage whose decoding was
top in the agenda of early modern European mathematicians, convinced as they were
that here lay hidden the key to the method of discovery of the ancients. Given the
importance this passage had for Newton, it is worth quoting at length:

That which is called the Domain of Analysis, my son Hermodorus, is, taken
as a whole, a special resource that was prepared, after the composition of the
Common Elements, for those who want to acquire a power in geometry that
is capable of solving problems set to them; and it is useful for this alone. It
was written by three men: Euclid the Elementarist, Apollonius of Perge, and
Aristaeus the elder, and its approach is by analysis and synthesis.

Now analysis is the path from what one is seeking, as if it were established, by
way of its consequences, to something that is established by synthesis. That
is to say, in analysis we assume what is sought as if it has been achieved, and
look for the thing from which it follows, and again what come before that,
until by regressing in this way we come upon some one of the things that
are already known, or that occupy the rank of a first principle. We call this
kind of method ‘analysis’, as if to say anapalin lysis (reduction backward).
In synthesis, by reversal, we assume what was obtained last in the analysis to
have been achieved already, and, setting now in natural order, as precedents,
what before were following, and fitting them to each other, we attain the end
of the construction of what was sought.

There are two kinds of analysis: one of them seeks after the truth, and is called
‘theorematic’: while the other tries to find what was demanded, and is called
‘problematic’. In the case of the theorematic kind, we assume what is sought
as a fact and true, then advancing through its consequences, as if they are true
facts according to the hypothesis, to something established, if this thing that
has been established is a truth, then that which was sought will also be true,
and its proof the reverse of the analysis; but if we should meet with something
established to be false, then the thing that was sought too will be false. In
the case of the problematic kind, we assume the proposition as something
we know, then, proceeding through its consequences, as if true, to something
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established, if the established thing is possible and obtainable, which is what
mathematicians call ‘given’, the required thing will also be possible, and again
the proof will be the reverse of the analysis; but should we meet with something
established to be impossible, then the problem too will be impossible. ([4])

Pappus here made a distinction between analysis and synthesis. Analysis (‘res-
olutio’ in Latin) was often conceived of as a method of discovery, or a method of
problem solving, which, working step by step backwards from what is sought as if it
had already been achieved, eventually arrives at what is known. Synthesis (‘compo-
sitio’ or ‘constructio’) goes the other way round: it starts from what is known and,
working through the consequences, arrives at what is sought. On the basis of Pappus’
authority it was often stated that synthesis ‘reverses’ the steps of analysis. It was
synthesis which provided the rigorous proof. Thus the belief – widespread in early
modern Europe – that the ancients had kept the method of analysis hidden and had
published only the rigorous synthesis, either because they considered the former not
wholly demonstrative, or because they wanted to hide the method of discovery.

Another distinction which was of momentous importance for early modern math-
ematicians is that between problems and theorems. A problem asks a construction for
its solution. It starts from certain elements considered as already constructed either by
postulate or by previously established constructions. Such elements are the ‘givens’
(in Latin the ‘data’) of the problem. A problem ends with a ‘Q.E.I.’ or with a ‘Q.E.F.’
(‘quod erat inveniendum’ – ‘what was to be discovered’–, and ‘quod erat faciendum’
– ‘what was to be done’–, respectively). A theorem asks for a deductive proof, a
sequence of propositions each following from the previous one by allowed inference
rules. The starting point of the deductive chain can be either axioms or previously
proved theorems. A theorem ends with ‘Q.E.D.’ (‘quod erat demonstrandum’– ‘what
was to be demonstrated’). According to Pappus, therefore, there are two kinds of
analysis: the former referred to problems, the latter to theorems. But it is clear
from classical sources that the most important, or at least the most practiced kind,
was problematic analysis: and indeed early modern European mathematicians were
mainly concerned with the analysis of geometrical problems.

Another powerful idea that began to circulate in Europe at the end of the sev-
enteenth century was that the analysis of the Greeks was not geometrical but rather
symbolical: i.e. the Greeks were supposed to have had algebra and to have applied it
to geometrical problem solving. The evidence that symbolic algebra was within the
reach of the ancients was provided by a far from philological reading of the work of
Diophantus and of parts of Euclid’s Elements. The approach of Renaissance culture
towards the classics, in sculpture, architecture, music, philosophy, and so on, was
characterized by admiration united to a desire to restore the forgotten conquests of the
ancients. This approach often confined with worship, a conviction of the occurrence
of a decay from a glorious, golden past. The works of Euclid, Apollonius, Archimedes
were considered unsurpassable models by many Renaissance mathematicians. The
question that often emerged was: how could the Greeks have achieved such a wealth
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of results? In the decades following the publication of the Collection the belief in the
existence of a lost, or hidden, ‘Treasure of analysis’ promoted many efforts aimed at
‘restoring’ the ancients’ method of discovery. Not everybody trod in the steps of the
classicists. Typically, many promoters of the new symbolic algebra were proud to
define themselves as innovators, rather than as restorers. It was common, however,
even among creative algebraists such as François Viète, John Wallis and Isaac New-
ton, to relate symbolic algebra to the ancient analysis, to the hidden problem solving
techniques of the ancients.

3. Descartes’ method of problem solving and problem construction

Newton was deeply embedded in the conceptual space defined by Pappus and by
his readers, interpreters and critics. Mainly he referred his views on mathematical
method to Descartes’ Géométrie (1637), an early source of inspiration for him and
soon a target of his fierce criticisms ([5]). From this tradition Newton derived the
idea that a problem, once analyzed (resolved), must be synthesized (composed or
constructed).

How did Descartes define his canon of problem solving and the role of algebra in
the analysis and synthesis of geometrical problems? The historian who has done most
to clarify this issue is Henk Bos. It is to his work that we now turn for advice ([6]).

In book 1 of the Géométrie Descartes explained how one could translate a ge-
ometric problem into an equation. Descartes was able to do so by a revolutionary
departure from tradition. In fact he interpreted algebraic operations as closed opera-
tions on segments. For instance, if a and b represent lengths of segments the product
ab is not conceived by Descartes as representing an area but rather another length.
As he wrote: ‘it must be observed that by a2, b3, and similar expressions, I ordinarily
mean any simple lines’, while before the Géométrie such expressions represented an
area and a volume respectively (see Figure 3).

Descartes’ interpretation of algebraic operations was indeed a gigantic innovation,
but he proceeded wholly in line with Pappus’ method of analysis and synthesis, to
which he explicitly referred. In fact, according to Descartes, one has – following
Pappus’prescriptions– to ‘start by assuming that the problem was solved and consider
a figure incorporating the solution’.3 The segments in the figure are then denoted by
letters, a, b, c, . . . , for segments which are given, x, y, z, . . . , for segments which are
unknown. Geometrical relationships holding between the segments are then translated
into corresponding equations. It is thus that one obtains a system of equations which
symbolically express the assumption that the problem is solved. In fact, here we are at
the very beginning of the analytic process: the unknown segments are treated as if they
were known and manipulated in the equations on a par with the givens of the problem.
The resolution of the equation allows the expression of the unknown x in terms of
given segments. We have thus moved from the assumption that the problem is solved

3[6] on p. 303.
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Figure 3. Descartes’ geometric interpretation of algebraic operations. He writes: ‘For example,
let AB be taken as unity, and let it be required to multiply BD by BC. I have only to join the
points A and C, and draw DE parallel to CA; and then BE is the product of BD and BC’. So,
given a unit segment, the product of two segments is represented by another segment, not by a
surface. The second diagram is the construction of the square root of GH . Given GH and a
unit segment FG, one draws the circle of diameter FG + GH and erects GI , the required root.
Source: [5], 4.
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(the first step of the analysis) to a reduction of the unknown, sought magnitude to
the givens. This is why Descartes, and the other early-modern promoters of algebra,
associated algebra with the method of analysis.

The resolution of the equation is not, however, the solution of the problem. In
fact, the solution of the problem must be a geometrical construction of the sought
magnitude in terms of legitimate geometrical operations performed on the givens
(‘Q.E.F.’!). We now have to move from algebra back to geometry again. Descartes
understood this process from algebra to geometry as follows: the real roots of the
equation (for him if there are no real roots, then the problem admits no solution)
must be geometrically constructed. After Descartes, this process was known as the
‘construction of the equation’. This is where the synthetic, compositive part of the
whole process begins.

Descartes accepted from tradition the idea that such constructions must be per-
formed by intersection of curves. That is to say, the real roots are geometrically
represented by segments, and such segments are to be constructed by intersection of
curves. As a matter of fact, the construction of the equation presented the geometer
with a new problem: not always an easy one. One had to choose two curves, position
and scale them, such that their intersections determine points from which segments –
whose lengths geometrically represent the roots of the equation – can be drawn (see
Figure 4).

Figure 4. Construction of a third-degree equation in Descartes’ Géométrie. The problem of
trisecting angle NOP is resolved (‘resolutio’ is the Latin translation of the Greek ‘analysis’) by
a third-degree equation. Descartes constructs the roots (‘constructio’ or ‘compositio’ translate
‘synthesis’) via intersection of circle and parabola. The segments kg, KG and LF represent two
positive and one negative root. The smaller of the two positive roots kg must be ‘taken as the
length of the required line NQ’. KG is equal to NV , ‘the chord subtended by one-third the arc
NV P ’. Source: [5], 208.

The synthetic part of Descartes’ process of problem-solving gave rise to two ques-
tions: which curves are admissible in the construction of equations? which curves,
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among the admissible, are to be preferred in terms of simplicity? In asking him-
self these questions Descartes was continuing a long debate concerning the role and
classification of curves in the solution of problems. A tradition that, once again,
stems from Pappus, and the interpretations of Pappus given by mathematicians such
as Viète, Ghetaldi, Kepler, and Fermat. His answer was that only ‘geometrical curves’
(we would say ‘algebraic curves’) are admissible in the construction of the roots of
equations and that one has to choose the curves of the lowest possible degree as
these are the simplest. Descartes instead excluded ‘mechanical curves’ (we would
say transcendental curves) as legitimate tools of construction.

Notice that Descartes presented his canon of problem resolution and construction
in aggressively anti-classicist terms. His algebraic method, he claimed, was superior
to the ones followed by the ancients. He gave pride of place to a problem discussed
in Pappus’ Mathematical Collection that – according to Descartes – neither Euclid
nor Apollonius could solve. He proudly showed to the readers of the slim Géométrie
that, by applying algebra to geometry, he could easily achieve a solution not included
in the ponderous Pappusian tomes.4

4. Newton versus Descartes

Newton sharply criticized Descartes’canon of problematic analysis and construction.5

Newton’s point was that geometrical constructions have to be carried on in terms in-
dependent from algebra. Newton elaborated his criticism to Descartes in his Lucasian
Lectures on Algebra which were held before 1684 and which, in somewhat modified
form, appeared in 1707 as Arithmetica Universalis ([8], vol. 2, 3–135). The Arith-
metica Universalis ends with an Appendix devoted to the ‘construction of equations’
which abounds with oft-quoted statements in favour of pure geometry and against the
‘Moderns’ (read Descartes) who have lost the ‘Elegance’ of geometry:

Geometry was invented that we might expeditiously avoid, by drawing Lines,
the Tediousness of Computation. Therefore these two sciences [Geometry
and Arithmetical Computation] ought not be confounded. The Ancients did
so industriously distinguish them from one another, that they never introduced
Arithmetical Terms into Geometry. And the Moderns, by confounding both,
have lost the Simplicity in which all the Elegance of Geometry consists.6

4Briefly said, Pappus problem requires the determination of the locus of points P such that their distances
di (i = 1, 2, 3, 4) from four lines given in position are such that d1d2 = k(d3d4). In the Géométrie Descartes
introduces a system of oblique coordinates, and notices that the distance of a point from a line is given by an
expression of the form ax + by + c. Therefore Pappus 4-lines locus has a second-degree defining equation:
namely it will be a conic section. The algebraic approach immediately allowed Descartes to generalize Pappus
problem for any number of lines.

5Further information on Newton’s criticisms to Descartes can be gained from [7].
6[8], vol. 2, 228.
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Such statements have often puzzled commentators since they occur in a work devoted
to algebra and in which the advantage of algebraic analysis is displayed in a long
section on the resolution of geometrical problems. Why was Newton turning his
back to ‘arithmetic’7 now saying that algebra and geometry should be kept apart?
In order to understand this seemingly paradoxical position we have to briefly recall
that according to Descartes the demarcation between admissible and inadmissible
curves as means of construction was that between geometrical and mechanical curves.
Ultimately, Descartes was forced to make recourse to algebraic criteria of demarcation
and simplicity: in fact, algebraic curves coincided for him with the loci of polynomial
equations, and the degree of the equation allowed him to rank curves in terms of their
simplicity.

As far as demarcation is concerned, in the Arithmetica Universalis Newton main-
tained that it would be wrong to think that a curve can be accepted or rejected in terms
of its defining equation. He wrote:

It is not the Equation, but the Description that makes the Curve to be a Geomet-
rical one. The Circle is a Geometrical Line, not because it may be expressed
by an Equation, but because its Description is a Postulate.8

Further, Descartes’ classification of curves in function of the degree of the equation
– Newton claimed – is not relevant for the geometrician, who will choose curves in
function of the simplicity of their description. Newton, for instance, observed that
the equation of a parabola is simpler than the equation of the circle. However, it is
the circle which is simpler and to be preferred in the construction of problems:

It is not the simplicity of its equation, but the ease of its description, which pri-
marily indicates that a line is to be admitted into the construction of problems.
[…] On the simplicity, indeed, of a construction the algebraic representation
has no bearing. Here the descriptions of curves alone come into the reckoning.9

Newton observed that from this point of view, the conchoid, a fourth degree curve,
is quite simple. Independently of considerations about its equation, its mechanical
description – he claimed – is one of the simplest and most elegant; only the circle is
simpler. Descartes’ algebraic criterion of simplicity is thus deemed alien to the con-
structive, synthetical, stage of problem solving. The weakness of Newton’s position
is that the concepts of simplicity of tracing, or of elegance, to which he continuously
refers are qualitative and subjective. One should be aware that no compelling reason
is given in support of Newton’s evaluations on the simplicity of his preferred con-
structions: his are largely aesthetic criteria. Considering them is however crucial for
our understanding of Newton’s views concerning mathematical method.

7Notice that Newton employed the term ‘universal arithmetic’ for algebra, since it is concerned with the
doctrine of operations, not applied to numbers, but to general symbols.

8[8], vol. 2, 226.
9[9], vol. 5, 425–7.
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As a matter of fact, Newton – this master of algebraic manipulations – in the
mid 1670s developed a deep distaste for symbolism and distanced himself from the
mathematics of the ‘moderns’. He wrote:

The Modern Geometers are too fond of the Speculation of Equations. The
Simplicity of these is of an Analytick Consideration. [in the Appendix to the
Arithmetica Universalis] [w]e treat of Composition, and Laws are not given to
Composition from Analysis. Analysis does lead to Composition: but it is not
true Composition before it is freed from Analysis. If there be never so little
Analysis in Composition, that Composition is not yet real. Composition in it
self is perfect, and far from a Mixture of Analytick Speculations.10

This position, let me restate it, does not exclude the use of algebra in the analysis;
it does, however, rule out algebraic criteria of demarcation and simplicity from the
synthesis. As Newton was to affirm in a manuscript dating from the early 1690s:

if a question be answered […] that question is resolved by the discovery of
the equation and composed by its construction, but it is not solved before the
construction’s enunciation and its complete demonstration is, with the equation
now neglected, composed.11

But, around 1680, Newton moved a step forward in his opposition to the method
proposed in the Géométrie: not only Cartesian synthesis, but also Cartesian analysis
fell under his fierce attack. He developed a deep admiration for the ancient Greek
mathematicians, while he criticized in bitter terms the symbolical analysis pursued
by the moderns. He began to doubt that the analysis of the Greeks was algebraical, he
rather suspected that Euclid and Apollonius possessed a more powerful geometrical
analysis displayed in the three lost books on Porisms attributed to Euclid and described
in Book 7 of the Mathematical Collection. So not only the composition (the synthesis)
had to be freed from algebra, the algebraic calculus had to be avoided also in the
process of resolution (the analysis). His target was often Descartes. For instance in
the late 1670s, commenting on Descartes’ solution of Pappus problem, he stated with
vehemence:

To be sure, their [the Ancients’] method is more elegant by far than the Carte-
sian one. For he [Descartes] achieved the result by an algebraic calculus
which, when transposed into words (following the practice of the Ancients
in their writings), would prove to be so tedious and entangled as to provoke
nausea, nor might it be understood. But they accomplished it by certain simple
propositions, judging that nothing written in a different style was worthy to be
read, and in consequence concealing the analysis by which they found their
constructions.12

10[8], vol. 2, 250.
11[9], vol. 7, 307.
12[9], vol. 4, 277.
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Newton was not alone in his battle against the algebraists. Similar statements can be
found in the polemic works of Thomas Hobbes. But probably the deepest influence
on Newton in this matter was played by his mentor Isaac Barrow. Newton’s quest
for the ancient, non-algebraical, porismatic analysis led him to develop an interest in
projective geometry (see Figure 5).

Figure 5. Newton was interested in using projective transformations as a heuristic analytic tool.
Here we reproduce the diagram for Lemma 22, Book 1, of the Principia. In this Lemma we are
taught how ‘To change figures into other figures of the same class’ (namely, algebraic curves
of the same degree). The figure to be transmuted is the curve HGI . Draw the straight parallel
lines AO and BL cutting any given third line AB in A and B. Then from some point O in the
line AO draw the straight line OD. From the point d erect the ordinate dg (you can choose any
angle between the ‘new ordinate’ dg and the ‘new abscissa’ ad). The new ordinate and abscissa
have to satisfy the following conditions: AD = (AO × AB)/ad and DG = (AO × dg)/ad.
These transformations are exactly those occurring between figures projected from one plane into
another. Now suppose that point G ‘be running through all the points in the first figure [HGI]
with a continual motion; then point g – also with a continual motion – will run through all the
points in the new figure [hgi]’. Source: [11], 162.]

He convinced himself that the ancients had used projective properties of conic
sections in order to achieve their results. Moving along these lines he classified
cubics into five projective classes.13

13From his work on cubics ([8], vol. 2, 137–161) Newton derived two lessons. First, Descartes’ classification
of curves by degree is an algebraic criterion which has little to do with simplicity. Indeed, cubics have rather
complex shapes compared to mechanical (transcendental) curves such as the Archimedean spiral. Second, it is
by making recourse to projective classification that one achieves order and generality.
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5. Newton’s new analysis

Now that we know more about Newton’s views concerning the role of algebraic
symbolism in the method of problem solving, we are in the position to step back
to Newton’s memorandum on his early mathematical discoveries that I quoted in
Section 1. There he mentions the direct and the inverse methods of fluxions. The
direct method allowed the determination of tangents (and curvature) to plane curves.
Newton approached this problem by conceiving curves as generated by the continuous
‘flow’ of a point. He called the geometric magnitudes generated by motion ‘fluents’,
while ‘fluxions’ are the instantaneous rates of flow. In the 1690s he denoted fluxions
with overdots, so that the fluxion of x is ẋ. He deployed a variety of strategies in order
to determine tangents. Some of them are algorithmic, but in many cases Newton made
recourse to kinematic methods. In Newton’s mathematical writings the algorithm is
indeed deeply intertwined with geometrical speculations.

By resolving motion into rectilinear components Newton could determine the
tangent by composition of motions, even in the case of mechanical lines (see Figure 6).
Indeed, the possibility to deal with transcendental curves (as the spiral and the cycloid)
was top in Newton’s agenda. Or one could focus attention on the ‘moment of the arc’
generated in a very short interval of time (Newton termed the infinitesimal increment
acquired in an infinitesimal interval of time a ‘moment’) and establish a proportion
between the moment of the abscissa and the moment of the ordinate and other finite
lines embedded in the figure. When the curve was expressed symbolically via an
equation Newton had ‘rules’which allowed him to calculate the tangent (see Figure 7).
One recognizes here rules which are ‘equivalent’ to those of the differential calculus;
but the reader should be reminded that this equivalence was, and still is, object of
debate.

The inverse method of fluxions was Newton’s masterpiece. It is this method that
allowed him to approach the problem of ‘squaring curves’. By conceiving a surface t as
generated by the flow of the ordinate y which slides at a right angle over the abscissa z,
he understood that the rate of flow of the surface’s area is equal to the ordinate (he
stated ṫ/ż = y/1). This is how the idea of integration as anti-differentiation was born
in Newton’s mind. His approach consisted in applying the direct method to ‘equations
at will [which] define the relationship of t to z’. One thus obtains an equation for ṫ

and ż, and so ‘two equations will be had, the latter of which will define the curve, the
former its area’.14 Following this strategy Newton constructed a ‘Catalogue of curves’
which can be squared by means of ‘finite equations’ (see Figure 8). In Leibnizian
terms, he built the first integral tables in the history of mathematics.

Newton attached much importance to the inverse method. With almost visionary
mathematical understanding of what is truly revolutionary, while still in his early
years, he wrote:

If two Bodys A & B, by their velocitys p & q describe ye lines x & y.

14[9], vol. 3, 197.
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& an Equation bee given expressing ye relation twixt one of ye lines x,
& ye ratio q/p of their motions q & p; To find ye other line y. Could
this ever bee done all problems whatever might bee resolved.15

Figure 6. Newton’s early work (November 1666) on tangents to ‘mechanicall lines’ (i.e. tran-
scendental plane curves). His technique consisted in conceiving curves as generated by motion
and resolving motion into components. Source: [9], vol. 1, 378.

15[9], vol. 1, 403.
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Figure 7. Newton’s algorithm for the direct method of fluxions. In this example he calculates
the relation between fluxions (instantaneous speeds) ẋ and ẏ of fluent quantities (magnitudes
changing continuously in time) x and y related by the equation x3 − ax2 + axy − y3 = 0.
Source: [8], vol. 1, 50.

In this context Newton developed techniques equivalent to integration by parts and
substitution.

Newton labelled the techniques of series expansion, tangent determination and
squaring of curves as the ‘method of series and fluxions’. This was, he proudly
stated, a ‘new analysis’ which extended itself to objects that Descartes had banished
from his ‘common analysis’– such as mechanical curves – thanks to the use of infinite
series:

And whatever common analysis performs by equations made up of a finite
number of terms (whenever it may be possible), this method may always
perform by infinite equations: in consequence, I have never hesitated to
bestow on it also the name of analysis.16

According to Newton, the ‘limits of analysis are enlarged by […] infinite equations:
[…] by their help analysis reaches to all problems’.17

16[9], vol. 2, 241.
17[10]
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Figure 8. The beginning of Newton’s table of curves (an integral table, in Leibnizian terms),
obtained thanks to understanding of what we call the ‘fundamental theorem of calculus’. Here
Newton lists the first four ‘orders’. z is the abscissa, y the ordinate, t the area. In Newton’s
notation ṫ/ż = y/1. Notice that d, e, f, g, h are constants (d is a constant!), η is integer or
fractional, and R stands for

√
e + f zη or

√
e + f zη + gz2η. Source: [8], vol. 1, 105.

6. Newton’s synthetical method

One should recall that the ‘new analysis’ occupied in Newton’s agenda a place which,
according to the Pappusian canon, was subsidiary to the synthesis or construction, and
that the construction had to be carried on in terms independent of algebraic criteria.
For instance, as to the squaring of curves (in Leibnizian terms, integration) he wrote:

After the area of some curve has thus been found, careful considerations
should be given to fabricating a demonstration of the construction which
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as far as permissible has no algebraic calculation, so that the theorem
embellished with it may turn out worthy of public utterance.18

Newton therefore devoted great efforts to providing geometrical demonstrations,
somewhat reminiscent of Archimedean exhaustion techniques, of his ‘analytical’
quadratures. Only such demonstrations were deemed by him ‘worthy of public utter-
ance’.

It is in this context that Newton in the 1670s began reworking his early discoveries
in ‘new analysis’ in terms that he conceived concordant with the constructive geomet-
rical methods of the ancients. He termed this more rigorous approach the ‘synthetical
method of fluxions’ and codified it around 1680 in a treatise entitled Geometria curvi-
linea ([9], vol. 4, 420–521). In this method no infinitesimals, or ‘moments’, occurred
and no algebraic symbols were deployed. Everything was based upon geometric limit
procedures that Newton termed the ‘method of first ratios of nascent quantities and
last ratios of vanishing quantities’. It is this method that was widely deployed in the
Principia (1687) (see Figure 9). It is somewhat astonishing to see one of the most

Figure 9. In Section 1, Book 1 of the Principia Newton lays down his ‘method of first and last
ratios’, a geometric limit procedure that allows him to avoid infinitesimals. In Lemma 2 Newton
shows that a curvilinear area AabcdE can be approached as the limit of inscribed AKbLcMdD

or circumscribed AalbmcndoE rectilinear areas. Each rectilinear surface is composed of a
finite number of rectangles with equal bases AB, BC, CD, etc. The proof is magisterial in
its simplicity. Its structure is still retained in present day calculus textbooks in the definition
of the Riemann integral. It consists in showing that the difference between the areas of the
circumscribed and the inscribed figures tends to zero, as the number of rectangles is ‘increased
in infinitum’. In fact this difference is equal to the area of rectangle ABla which, ‘because its
width AB is diminished in infinitum, becomes less than any given rectangle’. In Newton’s terms
AB is a ‘vanishing quantity’. Source: [11], 74.

18[9], vol. 3, 279.
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creative algebraists of the history of mathematics spend so much time and effort in
reformulating his analytical results in geometric terms, but Newton had compelling
reasons to do so.

First, Newton in his programme of reformation of natural philosophy attributed
an important role to mathematics as a source of certainty. From the early 1670s he
expressed his distaste for the probabilism and hypotheticism that was characteristic of
the natural philosophy19 practiced at the Royal Society by people like Robert Hooke
and Robert Boyle. His recipe was to inject mathematics into natural philosophy. As
he stated:

by the help of philosophical geometers and geometrical philosophers,
instead of the conjectures and probabilities that are being blazoned about
everywhere, we shall finally achieve a science of nature supported by the
highest evidence. ([12])

But if mathematics has to provide certainty to natural philosophy her methods must
be above dispute, and Newton was keenly aware of the fact that the new analysis was
far from being rigorous.

Second, Newton soon developed a deep anti-Cartesianism associated with a con-
viction of the superiority of the ancients over the moderns. From his point of view
Descartes was the champion of an impious mechanistic philosophy which, conceiving
nature as an autonomous mechanism, denied any role to God’s providence. Newton
conceived himself as a restorer of an ancient, forgotten philosophy according to which
nature is always open to the providential intervention of God. Indeed, he thought that,
according to the theory of gravitation – which he was convinced the ancient Hebrews
possessed–, the quantity of motion in the universe was bound to decline if divine inter-
vention had not prevented the ‘corruption of the heavens’. The modern philosophers
were dangerous from a theological point of view and had to be opposed on all grounds.
Therefore, also in mathematics Newton looked with admiration to ancient exemplars
and conceived himself as a restorer of their glory. It goes without saying that the
above reasons led Newton into a condition of strain, since his philosophical values
were at odds with his mathematical practice, which was innovative, symbolical, and
– pace Newton – deeply Cartesian.

Several hitherto unexplained aspects of Newton’s mathematical work are related
to this condition of stress and strain that characterizes his thoughts on mathematical
method. Why did Newton fail to print his method of series and fluxions before the
inception of the priority dispute with Leibniz? Why did he hide his competence
in quadratures when writing the Principia, which are written mostly in geometrical
style? Even though there is no single answer to these vexed questions, I believe that
Newton’s conviction that the analytical symbolical method is only a heuristic tool,

19For Newton the aim of ‘natural philosophy’is to deduce the forces from phenomena established by experiment,
and – once established the forces – to deduce new phenomena from them. Nowadays we would call this enterprise
‘physics’.
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not ‘worthy of public utterance’, can in part explain a policy of publication which was
to have momentous consequences in the polemic with Leibniz.

7. Leibniz’s views

When the war with Leibniz exploded in 1710 Newton had to confront an opponent
who not only advanced mathematical results equivalent to his, but was promoting a
different view concerning mathematics.20

The rhetoric on the novelty of the calculus pervades Leibniz’s writings. Reference
to the ancient mathematicians generally took the rather abused form of a tribute to
Archimedes’ ‘method of exhaustion’. Leibniz in most of his declarations concerning
the calculus wished to highlight the novelty and the revolutionary character of his
algorithm, rather than continuity with ancient exemplars. This approach is quite at
odds with Newton’s ‘classicism’. Furthermore, Leibniz often referred to the heuristic
character of the calculus understood as an algorithm independent from geometrical
interpretation. It is exactly this independence that would render the calculus so effica-
cious in the process of discovery. The calculus, according to Leibniz, should also be
seen as an ars inveniendi (an art of discovery): as such it should be valued by its fruit-
fulness, rather than by its referential content. We can calculate, according to Leibniz,
with symbols devoid of referential content (for instance, with

√−1), provided the
calculus is structured in such a way as to lead to correct results.21

Writing to Christiaan Huygens in September 1691, Leibniz affirmed with pride:

It is true, Sir, as you correctly believe, that what is better and more
useful in my new calculus is that it yields truths by means of a kind of
analysis, and without any effort of the imagination, which often works
as by chance. ([13])

20The circumstances surrounding the controversy between Newton and Leibniz have been analysed in detail
by Rupert Hall [15] and Tom Whiteside [9], vol.8. In broad outlines let me recall a few bare facts. Newton
formulated his method of series and fluxions between 1665 and 1669. Leibniz had worked out the differential
and integral calculus around 1675 and printed it in a series of papers from 1684. It is clear from manuscript
evidence that he arrived at his results independently from Newton. It is only in part in Wallis’ Algebra in 1685
and Works in 1693 and 1699, and in full in an appendix to the Opticks in 1704, however, that Newton printed
his method. In 1710 a British mathematician, John Keill, stated in the Philosophical Transactions of the Royal
Society that Leibniz had plagiarized Newton. After Leibniz’s protest a committee of the Royal Society secretly
guided by its President, Isaac Newton, produced a publication – the so-called Commercium epistolicum (1713)
– in which it was maintained that Newton was the ‘first inventor’ and that ‘[Leibniz’s] Differential Method is
one and the same with [Newton’s] Method of Fluxions’. It was also suggested that Leibniz, after his visits to
London in 1673 and 1676, and after receiving letters from Newton’s friends, and from Newton himself (in fact
Newton addressed two letters to Leibniz in 1676) had gained sufficient information about Newton’s method to
allow him to publish the calculus as his own discovery, after changing the symbols. It is only after the work of
historians such as Fleckenstein, Hofmann, Hall and Whiteside that we have the proof that this accusation was
unjust. Newton and Leibniz arrived at equivalent results independently and following different paths of discovery.

21Complex numbers received a geometric interpretation only around 1800 thanks to Jean Robert Argand, Carl
Friedrich Gauss, and Caspar Wessel.
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Leibniz was thus praising the calculus as a cogitatio caeca and promoted the ‘blind
use of reasoning’ among his disciples. Nobody, according to Leibniz, could follow a
long reasoning without freeing the mind from the ‘effort of imagination’.22

Leibniz conceived of himself as the promoter of new methods of reasoning, rather
than ‘just’a mathematician. The calculus was just one successful example of the power
of algorithmic thinking. The German diplomat was interested in promoting in Europe
the formation of a group of intellectuals who could extend a universal knowledge
achieved thanks to a new algorithm that he termed universal characteristic. He thus
helped to form a school of mathematicians who distinguished themselves by their
ability in handling the differentials and the integrals and by their innovative publication
strategy. Thanks to Leibniz’s recommendation, they colonized chairs of mathematics
all over Europe. The efficacy of this new algorithm was affirmed to be independent
from metaphysical or cosmological questions. The persons who practised it had to
be professional mathematicians, rather than ‘geometrical philosophers’, able to teach
and propagate knowledge of calculus.

A typical Leibnizian attitude emerges in the context of the vexed question of
the existence of infinitesimals. The new calculus was often attacked, since – it was
maintained – it employed symbols devoid of meaning, such as differentials ordered
into a bewildering hierarchy of orders. Newton, as we know, was particularly sensitive
to such criticisms, and tried in his synthetical method to dispense with infinitely small
quantities. Leibniz, on the other hand, repeated many times that for him the question
of the existence of infinitesimals had to be distinguished from that of their usefulness
as algorithmic devices. While he was leaning, for philosophical reasons, towards a
denial of the existence of infinitesimals, he also wanted to stress that this ontological
question was somewhat extraneous to mathematics. A typical statement, written in
the early years of the eighteenth century, is the following:

We have to make an effort in order to keep pure mathematics chaste from
metaphysical controversies. This we will achieve if, without worrying
whether the infinites and infinitely smalls in quantities, numbers and
lines are real, we use infinites and infinitely smalls as an appropriate
expression for abbreviating reasonings. ([14])

Leibniz was thus leaving to his disciples the choice of maintaining, philosophically
speaking, different approaches to the ontological question on the existence of in-
finitesimals. What he wished to defend was their utility as symbols in mathematical
calculation.

8. The war against Leibniz: methodological aspects

When Newton had to confront Leibniz in the squabble over priority he was con-
cerned in building up a forensic and historical document whose purpose was to prove

22[14], 205.
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Figure 10. A portrait of Newton in old age (Source: [1], 831). He proudly opens the Principia at
a page devoted to the attraction of extended bodies. In dealing with this problem Newton made
recourse to his ‘inverse method of fluxions’ (the equivalent of Leibniz’s integral calculus) which
allowed him to ‘square curves’. As a matter of fact, only by making recourse to his tables of
curves (‘integral tables’), see Figure 8, could Newton solve several problems in the Principia.
Such analytic methods were not, however, made explicit to the reader. In the polemic with the
Leibnizians – who claimed that absence of calculus from the Principia was proof positive of
Newton’s ignorance of quadrature techniques prior to 1687 – Newton was forced to maintain,
with some exaggeration, that ‘By the help of this new Analysis Mr Newton found out most of the
Propositions in his Principia Philosophiae. But because the Ancients for making things certain
admitted nothing into Geometry before it was demonstrated synthetically, he demonstrated the
Propositions synthetically that the systeme of the heavens might be founded upon good Geometry.
And this makes it now difficult for unskillful men to see the Analysis by wch those Propositions
were found out.’ ([9], vol. 8, 599). On the issue of Newton’s use of analytic methods in the
Principia see [16].

Leibniz’s plagiarism. But he did not do only this, he also wished to highlight the
superiority of his method over Leibniz’s calculus. The mathematical programme that
Leibniz was promoting with so much success was at odds with Newton’s deeply felt
values.

There is not only mathematics in this story, of course. Leibniz had to be opposed
for a series of reasons that have to do with the Hannoverian succession. The German,
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in fact, who was employed by the Hannover family, wished to move to London as
Royal Historian. The idea of having in England such a towering intellectual who was
defending a philosophical view which contradicted Newton’s voluntarist theology
and who was promoting the unification of the Christian Churches was anathema for
Newton and his supporters.

For our purposes, it is interesting to turn to some passages that Newton penned
in 1715 contained in an anonymous ‘Account’ to a collection of letters, the Commer-
cium epistolicum, that the Royal Society produced in order to demonstrate Leibniz’s
plagiarism.

In the ‘Account’, speaking of himself in the third person, Newton made it clear
that Leibniz had only approached the analytical, heuristic part of the problem-solving
method. He wrote:

Mr. Newton’s Method is also of greater Use and Certainty, being adapted
either to the ready finding out of a Proposition by suchApproximations as
will create no Error in the Conclusion, or to the demonstrating it exactly;
Mr. Leibniz’s is only for finding it out.23

So according to Newton, Leibniz had achieved only the first stage of the Pappusian
method and had not attained the rigorous, constructive demonstration. This, as we
know, had to be carried on in purely geometric terms.

Further, Newton insisted on the fact that the emphasis with which Leibniz praised
the power of his symbolism was excessive. Algorithm is certainly important for
Newton, but it has to be viewed only as a component of the method:

Mr Newton — he wrote – doth not place his Method in Forms of Symbols,
nor confine himself to any particular Sort of Symbols.24

Finally, Newton noticed that in his method of first and last ratios no infinitesimals
occur, everything being performed according to limiting procedures. From Newton’s
point of view the avoidance of infinitesimals and the possibility of interpreting alge-
braic symbols as geometric magnitudes had the double advantage of rendering his
method endowed with referential content and consonant with ancient mathematics:

We have no ideas of infinitely little quantities & therefore Mr New-
ton introduced fluxions into his method that it might proceed by finite
quantities as much as possible. It is more natural & geometrical be-
cause founded on primae quantitatum nascentium rationes [first ratios
of nascent quantities] wch have a being in Geometry, whilst indivisibles
upon which the Differential method is founded have no being either in
Geometry or in nature. […] Nature generates quantities by continual
flux or increase, & the ancient Geometers admitted such a generation of
areas & solids […]. But the summing up of indivisibles to compose an
area or solid was never yet admitted into Geometry.25

23Cited in [15], 296.
24Cited in [15], 294.
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Nature and geometry are the two key concepts: they allow Newton to defend his
method because of its continuity with ancient tradition as well as its ontological
content.

In his polemic writings against Leibniz Newton engineered an attack which was
aimed at proving the German’s plagiarism. One of Newton’s priorities was to assemble
evidence which proved Leibniz guilty, and he did so with means that show his ability
to employ archival sources as well as his prejudice and egotism. However, Newton
also defended positions concerning mathematical method that have deep roots in his
protracted opposition against Descartes and the ‘modern mathematicians’ who, by
confounding geometry and algebra, ‘have lost the Simplicity in which all the Elegance
of Geometry consists’.
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Abstract. In addition to the current state of knowledge about the learning of mathematics and
its aims in today’s society, the main purpose of this paper is discussing ways of improving the
process of learning, and especially, in that regard, the role of e-learning technologies. We chart
the situation of e-learning mathematics as of December, 2005, including distance-learning or
open university courses, and then we consider a number of areas where e-learning is likely
to develop. Finally, we assess the impact of e-learning on the role of the new educators in
mathematics.

Mathematics Subject Classification (2000). Primary: 97-xx, 97Uxx; Secondary: 00-xx.

Keywords. Online material, distance learning, e-learning, metadata.

Presentation

by Sebastià Xambó Descamps

Following a suggestion of the Executive Committee (EC) of ICM2006 that came
forth in the Fall of 2004, this panel has been promoted by the Conference of Spanish
Mathematics’ Deans [1].

After having formally accepted the invitation on December 16, 2004, the CDM Ex-
ecutive Committee discussed possible topics, until “e-Learning Mathematics” (eLM)
was chosen and approved by both the CDM and the EC of ICM2006. Names to be
invited as panelists were also decided, and it is a great satisfaction, and an honour, to
be able to say that all accepted. On behalf of the CDM, my sincerest thanks to all.

If e-learning is learning by means of systems built on current computer and commu-
nications technologies, then the main interest of eLM is on what advantages e-learning
can offer in the case of mathematics.

The main reason for choosing eLM is that the accelerated evolution of the e-Lear-
ning field is having, and will most likely continue to have, a major worldwide impact
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on many aspects of the teaching-learning systems, at all levels, while offering, at the
same time, new opportunities to professional mathematicians and to existing or new
institutions, as for example in life-long learning. It is thus a topic that should greatly
interest not only mathematicians in all walks of life, but also academic and political
authorities everywhere.

This is why we imagined that the panel could aim at describing the situation of
eLM as of 2006, outlining the most likely trends of its evolution in the next few
years, indicating what the strongest impacts (positive or negative) in the mathematics
teaching-learning systems will be, and charting the sorts of opportunities that will
arise.

We are of course aware that such aims can only be attained by the panel in very
broad terms, although this should be enough to bring forward a generally useful
picture. For those wanting to have more detailed views, the references provided by
the panelists should be a valuable resource to continue a journey that by all evidence
has no return. For example, the articles in the recent book [2] will quite likely be
serviceable to a wide range of readers seeking to know more about e-learning in
general.

Let me continue with a few general remarks on learning, teaching and e-learning.
Mathematics, or mathematics knowledge, is a vast universe (let me call it M).

It has many smaller interelated universes, of which we have a dim glimpse in the
standard classifications.

Because of the increasing number of research mathematicians, and the availability
of ever more sophisticated computational and communication tools, M has undergone
an extraordinary growth, and all indications are that this trend will continue in the
coming years. To a large extend this blooming is explained because M is both a
source of deep beauty and the only precision method we have for modelling the
physical universe.

In any case, the number of university students required to take mathematics courses
is globally increasing, but at the same time the number of professional mathematicians
that seek a teaching position is most likely decreasing, as there are, on one side, ever
newer job profiles, and, on the other side, the number of students in mathematics
degrees is decreasing in most countries. Moreover, in the last decade a steady decline
in the mathematical skills of the students beginning higher education has been reported
(see, for example, [3]).

Can eLM help to face this situation in a more positive mood?
The expectations created by e-learning are certainly high, at all levels, and we may

wonder how much of it is going to be true, and up to what point can it help in the case
of mathematics.

The reasons behind the high expectations on e-learning stem from well-known
characteristics of the e-learning systems:

• In principle, access is possible from anywhere and at any time, thus making
possible flexible (even just-for-me) and just-in-time courses of learning.
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• The teacher can also be anywhere and do most of his teaching job at any time
(preparing materials or following-up and coaching his students).

• It allows for synchronous activities of a teacher and a group (at an agreed
time), but again without restriction on the location of the people involved, and,
what is more, with the possibility of addressing a much larger audience than a
conventional class.

• Assessment can be automated to a large extend and final grading can be inte-
grated seamlessly into the institution’s information system.

• The learning materials and experiences can be richer in many ways, and they
can be easily maintained and updated (as compared to preparing, say, a new
edition of a paper book).

• There are also indications that it may induce deeper understanding and stronger
retention.

So the main question is how can we harness all that potential for improving the
quantity and quality of the learning of mathematics. Since there are many levels
that we ought to consider, and many variations in each level, we cannot expect a
universal recipe. And even if we restrict ourselves to a very particular situation, say
remedial mathematics for freshman in engineering schools or mathematical modules
for prospective secondary school teachers, we cannot expect a formula that would
satisfy everybody.

A sensible starting point is just looking at people, groups and institutions that are
leading the way in one direction or another. This is the idea behind the purpose and
composition of this panel. Since it is not feasible, and perhaps not even desirable,
under the circumstances, to have a comprehensive survey of eLM, the best alternative
is having experts in a few areas that have a major bearing on what eLM is and can
be, and on how it is evolving. Before going into their reports, let me briefly introduce
them.

Hyman Bass
Hyman Bass is Roger Lyndon Collegiate Professor of Mathematics and Professor
of Mathematics Education at the University of Michigan. A graduate of Princeton,
Dr. Bass earned his Ph.D. from the University of Chicago under Irving Kaplansky. He
has had visiting appointments at sixteen different universities in ten countries. The
many honors and prizes that Dr. Bass has received include the Cole Prize in algebra.
He is an elected member of the American Academy of Arts and Sciences and the
National Academy of Arts and Sciences, and the Third World Academy of Sciences,
and was elected Fellow of the American Association for the Advancement of Science.
He is former president of the American Mathematical Society and current president
of ICMI. He has been both a Sloan and Guggenheim Fellow. Dr. Bass has published
eighty-six papers in mathematics and seventeen in mathematics education.
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Gilda Bolaños

Dr. Bolaños is a certified teacher and trainer in the didactical techniques of Problem
Based Learning (PBL) and Project Oriented Learning (POL). She is the author of
several certified Blackboard courses. With classroom technologies based on Maple
and Minitab, she has worked extensively on problems and materials for her online
courses.

Ruedi Seiler

Full Professor for Mathematics at the Technische Universität Berlin, Ruedi Seiler’s
main fields of interest are Mathematical Physics, Quantum-Hall Systems, Information
Theory, Data Compression, and E-Math: Teaching, Learning, Research. Member of
the Research Center “Mathematics for Key Technologies” (DFG), and of the Execu-
tive Committee of the International Association of Mathematical Physics (IAMP), his
most recent undertakings, culminating an extensive experience in organizing events
and participating in projects, are MUMIE and MOSES. More specifically, he is lead-
ing, since 2001, the project “Multimedial Mathematical Education for Engineers”,
a project developed in Cooperation between the Berlin University of Technology,
the Munich University of Technology, the Aachen University of Technology and the
University Potsdam (funded by the German Federal Ministry of Education and Re-
search within the programme “New Media in Education”), and, within the program
“Notebook-University” of the German Federal Ministry of Education and Research,
he is co-manager, since 2002, of the TU Berlin project “MOSES – Mobile Service
for Students”.

Mika Seppälä

Dr. Seppälä is Professor of Mathematics at Florida State University and Professor of
Computer Aided Mathematics at the University of Helsinki. He was the Co-ordinator
of the HCM network “Editing and Computing” (1995–1996) which initiated the de-
velopment that lead to the MathML and OpenMath languages allowing the inclusion
of mathematical formulae on the web pages in a meaningful way. He is currently
the Secretary of the OpenMath Society, and the co-ordinator of the eContent Project
“Web Advanced Learning Technologies” (WebALT). The main goal of the WebALT
Project is to use MathML and OpenMath to create tools and content for multilingual
on-line mathematics. Seppälä was the President of the Finnish Mathematical Society
for the period 1992–1996.

Sebastià Xambó Descamps

Full Professor of Information and Coding Theory at the Universitat Politècnica de
Catalunya (UPC, Barcelona, Spain), and former Full Professor of Algebra at the De-
partamento de Algebra of the Universidad Complutense of Madrid (1989–1993), is
serving as Dean of the “Facultat de Matemàtiques i Estadística” of the UPC. Member
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of the EU eContent Project “Web Advanced Learning Technologies”. In the period
1994-2000 led the team that developed the mathematical engine of Wiris ([4], [5]) and
authored the e-book [6]. Cofounder of Maths for More ([7]). Has served as President
of the Societat Catalana de Matemàtiques (1995–2002) and of the Executive Commit-
tee of the 3rd European Congress of Mathematics (Barcelona, 2000), and asVicerector
of Information and Documentation Systems of the UPC (1998–2002). Since the Fall
of 2004 he serves as President of the Spanish Conference of Mathematics’ Deans.
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The instructional potential of digital technologies

by Hyman Bass

Educational uses of technology. Digital technology continues to rapidly transform
all aspects of life and work, even (and perhaps all the more so) in the developing
world. It is designed, and presumed, to bring great benefit and empowerment to its
users, as well as profit to its developers. Yet, as it opens new and even unanticipated
possibilities, it poses as many problems as it solves, some new, and some techno-
versions of classical problems, all of them important and interesting. And technology,
for its novelty and glamorous aspirations, is greedy for our attention, liking to take
center stage in every arena it enters.

Education, and mathematics education in particular, is the context in which this
panel is examining these transformations. I find it helpful here to distinguish three
broad kinds of roles that technology can play in mathematics education. They are of
course not disjoint.
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I. Transmission: Use of technology (web, video conferencing, etc.) to trans-
mit, perhaps interactively, instruction and/or instructional materials that are
conceptually of a traditional genre – lectures, demonstrations, problem sets,
assessments, etc. These are the kinds of uses that fundamentally support dis-
tance learning, for example.

II. Power, speed, and visualization: Use of technology to carry out quickly and
more accurately and completely, mathematical processes of a traditional na-
ture – perform large or complex calculations, solve equations, approximate
integrals, exhibit function graphs, study effects of variation of parameters, pro-
duce vivid and accurate images of geometric figures, etc.

III. New ways to explore the (mathematical and experiential ) universes: Use of
technology to do things we have never previously been able to do. Such ca-
pability affects mathematics itself, not just mathematics education. Examples
include the study of long-term evolution of dynamical systems, and the images
of fractal geometry that emerge there from. (This had an effect on dynamics
comparable with that of the telescope in astronomy and the microscope in biol-
ogy.) Software development gave life to the field of computational complexity,
with its applications to coding and cryptography. Mathematical modeling and
computer simulation supports a virtually empirical study of physical systems
and designs. Dynamic geometry offers unprecedented opportunities to visually
explore and analyze geometric structures, and to produce evocative imagery of
dimensions three and four (using time). Computer algebra systems furnish un-
precedented resources for solving equations. Much of this new technological
power is now within reach of many students, and this raises possibilities of
thereby expanding the horizons of the mathematics curriculum.

At a pragmatic level, technology thus offers resources to address two fundamen-
tal challenges of contemporary education – distance and demographics. Distance
because many learners in need are physically remote from the sources of quality
instruction and materials. Gilda Bolaños offers us an excellent survey of diverse
modes of distance learning formats. Demographics because class sizes, particularly
in introductory level mathematics courses, are too large to afford adequate instructor
attention to individual student learning. (Bounding class sizes is often done at the cost
of using instructors of highly variable quality.) In this case, technology affords vari-
ous interactive formats for student work and assessment. These include the “virtual
laboratories” described by Ruedi Seiler, and the interactive online materials (lectures,
automatically graded homework, etc.) discussed by Mika Seppälä.

But independently of these practical needs, technology also offers possibilities for
improving mathematics instruction itself. And the fundamental questions about the
quality of teaching and learning do not recede when the instruction is mediated by
technology; they only change their form.
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Instruction. By “instruction” I mean the dynamic interaction among teacher, con-
tent, and students. I rely here on the “instructional triangle” that Cohen and Ball use
to depict the set of interactions that they call “instruction” (Cohen and Ball, 1999).

   
    

        

        

       

teacher

students

students content

Viewed in this way, instruction can go wrong in some simple but profound ways,
for its quality depends on the relations among all of these three elements. When
they misconnect, students’ opportunities for learning are impaired. For example, if a
teacher is not able to make the content accessible to students, framing it in ways that
are incomprehensible to them, the chances that they may misunderstand are great.
If students’ interpretations of a task are different from the teacher’s or the textbook
author’s intentions, then their work may be misrouted or take the work in unhelpful
directions.

It may seem slightly strange, in the context of this panel, to propose the above rep-
resentation of instruction. For, if you think about it, most descriptions of instructional
uses of technology appear to reside exclusively on the bottom edge of the instructional
triangle, absent the teacher. A tacit premise of some of this thinking is that somehow,
the technology, with its interactive features, actually substitutes for the teacher, or
renders the teacher obsolete, except perhaps as a manager of the environment. The
viability of this view is a deep and important question, one that I shall not enter here
except to make a couple of observations. One is that, in the most successful models
of distance learning, it was found to be essential to have a tutor or facilitator available
at the remote sites of reception of the materials, to respond to the many questions
and requests that students would have, and that were not adequately responded by
the technology environment. In addition, it was found to be important to have real
time online questioning of the primary source available at certain times. In other
words, prepared and transmitted material alone no more teaches a learner than does
a textbook, unmediated by a teacher. The other comment is that interactive technol-
ogy formats can at best provide well-prepared instructional materials and tasks, and
respond to the student productions and questions that the software developers have an-
ticipated and for which they have programmed responses. There are many domains of
procedural learning and performance where this can be somewhat successful, though
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the software, no more than a skilled teacher, cannot completely predict and prepare for
all of what students may come up with. Moreover this uncertainty is all the greater
once one enters into territory that is less procedural and involves more conceptual
reasoning and problem solving.

In what follows, I identify five persistent problems of mathematics instruction and
discuss ways in which technology can be deployed to address these. How these are
actually used, however, would affect the degree to which they were helpful, so for
each case, I point out its possible pitfalls.

1. Making mathematically accurate and pedagogically skillful diagrams. One
problem faced by mathematics teachers at all levels is how to make clear and accurate
diagrams that make the essential mathematical ideas plain to learners, and how to
do so in ways that are manipulable for mathematical reasoning. Doing this by hand
is often no easy task, whether the sketch is of slices of an ellipsoid in calculus, or
sixteenths of a rectangle in fifth grade. Mathematical accuracy is one dimension of the
challenge; featuring is a second - that is, making the instructionally key features visi-
ble to learners. In addition, instructors must manage these challenges fluently, using
class time effectively. An instructor who can make diagrams accurately and helpfully,
but who must use 10 minutes of class time to do so, loses effectiveness. Diagrams
are also used for a variety of purposes: explorationally, to investigate what happens
if certain elements are allowed to vary, or presentationally, to demonstrate an idea, an
explanation, or a solution. This means, sometimes, the need for dynamics - transla-
tions, rotations, rescaling, variation of parameters. Often diagrams must be made in
ways that map clearly to algebraic or numerical representations. Drawing software,
or other design tools, can help. Important is the capacity to produce carefully-scaled
diagrams, with the capacity for color or shading, and to be able to move elements of a
diagram. Its use must be fast and flexible, helpful both for carefully designed lectures
and for improvisation on the fly, in response to a student’s question. Such software or
tools can provide significant support for the use of diagrams in class, by both students
and instructor. Making such software accessible to students increases their capacity
for individual explorations and preparation for contributions in class. Students can
quickly put their diagrams up for others’inspection, or support a point in class, in ways
that are difficult to do when students go to the board to generate representations by
hand. Using software tools to support the visual dimensions of mathematical work in
instruction can significantly alter a major dimension of instruction and do so in ways
that are mathematically accurate, pedagogically useful, and sensitive to the real-time
challenges of classroom instruction where class periods are finite and time is a critical
resource.

Software tools to support the making of diagrams can create problems, too. For
example, if the tools are rigid or interfere with the purposes for making diagrams,
or cannot be manipulated as desired, the representations may not be as useful as
needed. Another problem may be that the use of such tools inhibits students from
developing personal skills of appraisal and construction. If the tools quickly make
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correct diagrams, students may not develop a critical eye with which to inspect them.
If they never have to make a diagram themselves, they may remain entirely dependent
on the software and not develop independent capacities for drawing.

2. Making records of class work and using them cumulatively across time. A
second pervasive problem of mathematics instruction can be seen in the overflowing
blackboards full of work and the slippery sheets of transparencies filled with nota-
tion and sketches, generated in class, and that vanish into weak memory when class
ends. The record of class work (not just text or prepared materials), whether lecture,
discussion, or exploration, is an important product of instruction. Under ordinary
circumstances, this product vanishes and is thus unavailable for study or future ref-
erence, use, or modification. So acute is this problem that, too often, even during
a single class, such work is erased (in the case of chalkboards) or slid away (as in
transparencies). The work of that single class period is weakened for not being able
to secure its place in evolution of ideas in the course. Moreover it is not available for
students who may have missed a class.

When the work done in class is created or preserved in digital form, an archive of
the mathematical progress of the class can become a resource for ongoing learning. It
can then be easily accessed and transmitted remotely to others. Doing it “live” in class
requires skill and dexterity on the part of the instructor. Making records of classwork
afterwards (i.e., photographing the board with a digital camera) is easier but possibly
less manipulable for subsequent class work. Important, too, is that everyone who
needs to access these records can work on a common platform or that the format will
work reliably across platforms.

3. Alignment between classes and textbook. Instructors, perhaps in response to
student ideas or productions, may choose to depart from the text - in topic treatment
or sequencing, or even topic coverage, and in the design of student activities and tasks.
If the instructor creates these variations and alternative paths in electronic form, then
a new text is created based on the instructor’s design. This affords students access to
the substance and course of the lessons. This gives license to flexible and innovative
instruction, by affording the means to do so without disadvantaging students through
disconnection from a text to be perused and revisited over time.

4. Ease of access to the instructor between classes. In the developed world, it is hard
to imagine university instructors who do not maintain email (and web) connection with
their students. This has made much more fluent and elastic the traditional functions of
“office hours.” Most student questions can be handled expeditiously, in timely fashion
(though asynchronously), by email (perhaps with attachments), thus greatly reducing
the need for face-to-face meetings, with their scheduling difficulties. And, as with
the discussion above, these exchanges can contribute significantly to the record of the
student’s work and progress. When appropriate, an exchange between one student
and the instructor can easily be made available to other students, thus changing an
individual “office hour” into a group discussion. Pitfalls can exist with electronic
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communications, of course. Misunderstanding is frequent when communication is
restricted to text, without gesture, intonation, and the ability to demonstrate or show.

5. The repetitive nature of individual outside-of-class sessions. One feature of
traditional office hours, or help sessions, is that they tend to be repetitive, processing
over and over again the same questions and assistance with each new student or group
of students. When such assistance is administered electronically, and it is seen to be
germane to the interests of the whole class, it is an easy matter to copy the whole
class, or perhaps selected individuals, on such exchanges. This puts to collective
profit the considerable instructional investment made in one student, or group of
students, and everyone gains, not least the instructor. An important consideration here
is sensitivity to privacy issues and confidentiality. In particular, making individual
student communications requires prior consent.

Conclusion. Technology continues to transform all aspects of our lives and work.
It is already difficult to imagine how we once functioned without email and the web.
We are still at the early stages of trying to understand and design the best uses of
technology for mathematics instruction. I have pointed to some promising uses of
technology to address some endemic problems of even traditional instruction. I have
also tried to signal that the fundamental problem of developing quality teaching does
not disappear just because instruction is mediated in technological environments.
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Distance learning today

by Gilda Bolaños Evia

The definition of distance learning has been modified over time, and today we have a
variety of definitions. We will adopt the definition of Greenberg, in [Greenberg98],
where contemporary distance learning is defined as “a planned teaching/learning
experience that uses a wide spectrum of technologies to reach learners at a distance
and is designed to encourage learner interaction and certification of learning”.

In this section we will discuss the effects of some of the technologies used in
distance learning education on mathematics and its effects on student’s knowledge.

Video taped lectures. Since the introduction of videos to instruct students on differ-
ent areas, many studies have been conducted to determine the effectiveness of these
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methods. Some examples are [Beare 89], [Moore 96], [Russell 97], and [Pflieger
61]. On all of these studies the conclusion is that there is no significant difference on
the achievement of students on video classes and regular classes. A three-year study
involving 200,000 students and 800 public schools states:

“... whereas most comparisons showed no significant differences, 119
were significant in favor of TV-taught students, and 44 in favor of con-
ventionally taught students.” [Pflieger 61].

We have to observe that on these studies the quality of the taught material was
the same for video students and traditional students. Due to the lack of availability
of similar studies for Latin America, we asked some professors and authorities that
have been part of the VIBAS (video high school system) about the effectiveness
of the system. In general they think that there is a significant difference in favor of
traditional education, but this difference is not because of the video system, but mainly
because of quality of materials and lack of availability of tutors. Moore and Kearsky
converge to the same opinion in [Moore 96]. They also estimate that the difference
is bigger in mathematics and physics. Coordinators of mathematics departments in
public universities in Guanajuato State, Mexico, have noticed that students coming
from video systems have a higher probability to fail its first math courses. They argue
that their math knowledge is lower compared with regular students.

In the opinion of these authorities video taped lectures will tend to disappear, but
not in the near future, at least for underdeveloped countries, because it is one of the
cheapest forms to deliver distance education. They will be replaced by technologies
as videoconferences.

At some universities video taped lectures are used inside the classroom for very
specific concepts within the syllabus to present an expert opinion. Teachers at the
Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM) highly rec-
ommend this instrument for advanced courses and also to present interesting and
attractive applications on elementary courses.

Video conference. Video conference has been used within higher education for
more than a decade. Video conferencing is highly used for teaching sessions, teachers
training, seminars and research. At many universities video conference is used as a
tool to bring into the class an international experimented and recognized teacher to a
large number of students. From the experience at ITESM, has been determined that
the success of a video conference class depends on such factors as:

a) Quality of sound, images and degree of interaction.

b) Compatibility of the equipment with ingoing and outgoing signal places.

c) Availability and quality of material presented in the video conference.

d) Quick response to students questions.
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e) A tutor on the conference classroom. At ITESM and at the University of
Salle Bajío, coordinators of the video conference programs have found that
for subjects such as mathematics, statistics and classes with “heavy contents”,
the presence of a tutor capable of answering students questions regarding the
content of the conference makes a significant difference to the students learning
and grades.

f) Tutor-student oral communication is very important, because when listening
to the student, the teacher might understand some questions better orally than
using other types of methods like the internet. Especially in the case of math-
ematics and statistics, it is very hard for students to write down some of their
doubts, and this may cause problems, like using the mathematical language im-
properly, or overcoming technological barriers that make an extremely difficult
task to write down a mathematical sign in a computer.

According to the Faculty of Education at The University of Plymouth [Plymouth],
the future of videoconferencing is to incorporate video conference into web based
systems, so teachers and presenters can sit in their own office or in a nearby studio
and present a ‘live’lecture in front of a camera attached to a web server. Using a simple
switching device and several cameras, the presenter can provide remote participants
with graphics, whiteboard, flipchart and other visual aids as well as alternative views
of the local classroom, lecture room, etc.

Online courses. By experience at ITESM, the first step to success for online math-
ematics and statistics courses it is to convince students about the feasibility of the
project. At this institution, full online courses are offered just for graduate students.
It is also very important to have a quick response to student’s questions, so they feel
that “there is someone supporting them on the other side of the line”.

A second step is to make sure that students can manage technology properly and
have all necessary means to remain on line and to send and download information,
documents, graphics, etc.

On a study conducted by Karr, Weck, Sunal and Cook [Karr 2003] at the University
of Alabama to analyze the effectiveness of online learning in a graduate engineering
mathematics course, they divided the class into three groups: Group A (Online course
only), Group B (traditional for the first two thirds of the course and traditional and
online for the final third of the course, Group C (traditional on the first third, online
for the second third and traditional and online for the final third of the course). On
this study they found that:

a) Students perform better on the analytical portion of the course when they had
used the online mode of delivery. According to the teachers and students
feedback this is due to the consistency of online materials and the fact that they
have to “face the problem on their own”

b) Students taking the class by traditional mode perform better on the in-class
portions of examinations. This might have been because of the instructor
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dropping inadvertently little hints about which aspects of the class might be on
the test.

c) The two groups with a traditional mode segment perform better when they have
access to both modes of deliver, traditional and online.

d) There was no significant difference on the overall performance of the groups.

From my personal experience and from some non formal studies conducted on
high school and undergraduate courses it is reasonable to believe that similar results
will be obtained for high school and undergraduate mathematics courses.

Many universities as ITESM consider, even for traditional courses, that online
sections and online materials should be included to make courses more attractive to
students and to enhance the student’s performance, especially in traditionally difficult
courses as mathematics.

Online problems and materials. Online problems are widely used to improve
students learning on mathematics courses. Within the experience of Professor Maritza
Sirvent and me, some advantages of using online problems on web based programs
for mathematics problems are:

a) The bank of problems is large and includes a big variety of questions.

b) The students know immediately if their answer is correct, so they get engaged
and they try the problem as many times as necessary to get the right answer.

c) Some students feel that using the computer helps them in their homework.

d) It is clear that the correctness of the problem is independent of the procedure
used on the resolution. So they try their own ideas to solve the problem and use
techniques as approximations using calculators. After that they study a method
that will work at different situations.

e) Problems solved for students at the same class are similar but not the same so
they can’t copy the homework from a classmate.

f) Student’s attitude toward mathematics problems seems to improve.

A disadvantage of online problems might be that, when entering the answer to a
problem, sometimes the student makes a typing mistake or forgets some parenthesis
and then gets an incorrect answer even if he has solved the problem correctly. Also
students are not forced to write down the complete procedure, so when they are tested
on a traditional writing test, they have no training on that.

WeBWorK is an internet based program to deliver homework to students on in-
ternet. It was designed by the University of Rochester. On a study conducted at
Rutgers University to measure how effective WeBWorK was in improving learning
measured by student’s performance in Calculus [Weibel 2002], they divided students
in two sections: Sections where WeBWorK homework was required weekly and it
counts as part of the final grade, and sections where traditional written homework
was required. Two thirds of calculus students were on WeBWorK sections, and they
found the following:



1756 e-learning mathematics

a) Students in WeBWorK section did slightly better than students on traditional
section. However, within WeBWorK sections, students who did over 80% of
the WeBWorK problems performed dramatically better (by a full letter grade)
than those who did less than half of the WeBWorK problems.

b) First year calculus students were very responsive toWeBWorK and most of them
attempted every problem. They found that there is a 2-letter grade difference
(on the average, from B to D) between students who do well on WeBWorK
and those who do not attempt it. For upper class students taking calculus there
is a 3-letter grade difference (on the average, from B to F) between students
who do well on WeBWorK and those who do not attempt it. These upper class
students are not very responsive to WeBWorK.

c) Students repeating calculus are not responsive to WeBWorK, and there is no
significant difference on grades even for those that perform well on WeBWorK.

Online didactical material helps students to understand some concepts that might
be difficult to them. Some students express that it is easier for them to read online
materials than books, because they are usually more attractive and often interactive.
For them it is the perfect complement for text books.

There is a bright future for online mathematics problems and didactical material.
Each year the number of teachers convinced of the effectiveness of online mathe-
matics problems and didactical material is increasing. Internet-based methods to
deliver homework to students are improving and making it easier for teachers and stu-
dents, saving a considerately amount of time on grading. For instance, projects such
as WebALT [WebALT] aim at using existing technology standards for representing
mathematics on the web and existing linguistic technologies to produce not just online
mathematics problems, but language-independent mathematical didactical material.

Problem based learning (PBL) and project oriented learning (POL). These
learning methodologies have been applied from elementary school to graduate pro-
grams. It is based on the principle that learning occurs not by absorbing information
but by interpreting it. These methodologies are ideal for distance learning, but re-
quire that students work in teams, an arrangement that may be very difficult for some
students that prefer to work individually. With these didactical techniques, learning
is generated by solving a realistic situation that requires learning new concepts and
applying them to solve a problem. At some universities the full curricula is build
around PBL or POL techniques, while at some other universities (as ITESM) these
methodologies are mixed with traditional methods [Bolaños 2003], [Watson 2002].
PBL and POL are excellent tools to introduce students on the more difficult tasks
of the syllabus. The results are excellent, as statistics show that students perform
better with the concepts when introduced by PBL or POL than when introduced on
traditional lectures.

On these methodologies the role of the tutor is very important. The tutor is
responsible for the direction of students and to help in team conflicts. The tutor has to
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address the student’s efforts in the right direction and make suggestions about working
lines. Students communicate online with their teammates and the tutor, also the final
report of all teams is placed online, and so all teams might look at the similarities and
differences with the solutions of the others teams.

These are just some aspects of the big world of distance learning and were choosen
because we consider that they might be applied on very different teaching environ-
ments. Distance learning will continue modifying our teaching practices.
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Virtual labs in mathematics education: concepts and deployment

by Ruedi Seiler1

Background. The work field of engineers, as well as that of scientists and math-
ematicians, is undergoing drastical changes: as numeric software and computer-
algebra-systems are capable of performing intensive and complex arithmetical cal-
culations, other abilities, such as the fast acquisition of new knowledge and new
methodologies, are growing in significance. Thus, learning and teaching methods
that promote life-long, efficient and independent learning have to be conveyed.

The traditional teaching methods employed at universities are of only limited suc-
cess in this respect: Teacher-centered lessons provide the essential basic knowledge,
but it hardly allows for a more active approach to the subject-matter. Classical experi-
ments, in contrast, while targeted at independent knowledge acquisition, soon stumble
across limits imposed by the reality of a university: high and constantly increasing
numbers of participants in a course, limited access to and inadequate equipment. In
addition, the experimental approach to knowledge acquisition in “real laboratories”
is by its very nature limited to certain fields of studies, while more theoretical fields,
such as mathematics and theoretical physics are either completely precluded or only
peripherally touched upon by the existing experimental concepts.

The deployment of new media and technology in class thus represents a turning
point: Virtual Labs are environments based on physical labs in which computer aided
experiments can be designed, created, implemented and evaluated. Experiments are
implemented in the form of computer-based algorithms, representing either real tools
and objects or even theoretical concepts and objects.

Such explorative learning environments can be placed at the disposal of every
student and teacher, independent of time and place. In the framework of the classical
experimental sciences, virtual labs are capable of complementing real laboratories by
allowing the concise elaboration of the actual “phenomenon” and diminishing the in-
fluence of metrological problems. As, however, the handling of the equipment and the
mentioned problems represent a vital part of the acquired competence, real laboratory
experiments should not be set aside completely in the experimental disciplines. In
theoretical subjects, on the other hand, these technologies make abstract phenomena
visually comprehensible.

In this article, we will offer detailed requirements on Virtual Labs and describe
the consequences of the implementation along the lines of a prototypical Virtual Lab
for Statistical Mechanics.

Pedagogical requirements. In the following, we present a list of pedagogical re-
quirements we demand from modern e-learning technology, especially from virtual

1In collaboration with Thomas Richter (TU, Berlin, thor@math.tu-berlin.de) and Sabina Jeschke (TU, Berlin,
sabina@math.tu-berlin.de).
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laboratories. In comparison with most other e-learning environments, though, virtual
labs do not define learning goals by themselves. Rather, they put “learning spaces”
at the disposal of teachers and students.

A laboratory should provide the necessary equipment – or, in the case of virtual
labs, the necessary algorithms – that facilitate the independent development and testing
of problem solving strategies, incorporating typical problems of mathematics, physics
and engineering science in order to prepare the student for his or her professional life.

Laboratories offer students the unique opportunity to control their learning, with-
out outside interference and consequently being able to make an independent decision
about their learning process. We divide the support of self-directed learning into the
following categories:

First of all, (Virtual) Laboratories support explorative learning by allowing their
users to work independently and efficiently with the technical equipment in order to
investigate interconnections independently and to build an intuitive understanding of
the subject. Therefore, it is vital that Virtual Laboratories should allow and encourage
unconventional approaches, options, work flows, etc.

Second, the support of different learning styles is one of the utmost features of the
deployment of multimedia technologies in education, even though the first generation
of e-learning technologies [1] did not yet allow individual approaches to the subject.
Similarly, pre-fabricated experiments might not fit into the previous knowledge of
the user, strictly limited specific environments and learning goals might not fit the
individual interests, failing to motivate the user. Thus, virtual laboratories must enable
the user to setup and control the experiment freely.

Laboratories should ideally be adaptable to different application scenarios. This
includes the deployment of the same basic lab in different courses, stressing different
field-specific foci on the one hand, and the use in different scenarios ranging from
demonstration through practice to examination on the other hand. For that reason,
a virtual laboratory should not be limited to a fixed set of experiments or aimed at
the requirements of one single lecture or one specific audience; for each different tar-
get audience arise different requirements. Typical application scenarios might reach
from simple demonstrational support within lectures, over experiments in the class-
room teaching for training and tutorials up to self-study and deployment in research
applications.

Both research and engineering achievements are increasingly the result of coop-
erations between distributed, separated teams. Thus, team work and team-oriented
projects have to be an integral part of any modern scientific education, and thus must
be actively supported by virtual laboratories as well.

Laboratories must offer appropriate interfaces that will allow the integration of
or linking with standard elements as Maple or Mathematica; experimental set-ups
should include these elements correspondingly, for their use and handling should be
a part of the scope of learning.

Laboratory elements should be detachable from the actual lab through the appli-
cation of open interfaces and thus should be reusable. Such requirements not only
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allow the efficient construction of new laboratories from existing elements, they also
ease the integration of laboratories in more complex experiments requiring additional
support from outside software components.

Consequences for the implementation. The pedagogical requirements on virtual
laboratories pose various demands on the software design which we demonstrate for
the laboratoryVideoEasel developed at the DFG Research Center. The technical focus
of this laboratory is in a first, prototype phase with application to the field of statistical
mechanics and related areas. Statistical problems are here modeled through the use of
cellular automata, which are well-suited to design statistical models, covering many
interesting areas ranging from the Ising model, statistical image denoising, lattice-gas
models to Turing completeness.

In order to be able to support different and varying deployment scenarios while
imposing as few restrictions on the labs themselves, it must be possible to combine
the elements of laboratory equipment flexibly and creatively. This leads to a “strictly
anti-monolithic”, fine-granular software design, its basic structure characterized by
the tripartition into simulation and arithmetic modules implementing the mathematical
modules, an interface layer that serves as link between the equimentments, that allows
the free combination of the software modules into an experiment, and last, graphical
user interfaces allowing to control the experimental setup conveniently.

The experiments in the lab VideoEasel are implemented as small, modular units,
independent of the lab’s actual core, that can be created and loaded on demand.
The elementary units can be separated into two distinct classes, “automata” for the
algorithmic definition of physical phenomena – e.g. the Ising model – and “measuring
tools” to measure certain quantities arising within the experiment – e.g. the Free
Energy. VideoEasel offers basic methods for evaluation of measurements, but does
not provide any numerical tools for more complex analysis or a build-in process
control for more elaborate experiments. Such functions are taken over to specialized
tools by utilizing the software interfaces of the laboratory, which are here realized in
the middle-ware CORBA [2]. Mappings are available to many languages, such as
Java, C and Python, thus facilitating the connection to various other external tools.
Presently, in addition to the native Java-interfaces, there is a Python-connection for
script-control, as well as a C-implementation of a Maple-connection available.

Cooperative learning strategies in virtual laboratories imply in particular that sev-
eral users from different working locations can work simultaneously on a single ex-
periment while being well aware of the actions of their partners. Therefore, the need
of designing the laboratory as a multi-part network application becomes self-evident:
experiments are, for example, run on a server accessible by students.

VideoEasel follows a classical client-server approach where the students control
the simulations run on the server by Java front-ends. In the most simple case – as for
support of a lecture in a auditorium – server and client are run on the same computer;
in cooperative learning settings, the server synchronizes more clients.
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Reading the above arguments concerning the requirements in implementing a
virtual laboratories drafted in the previous paragraph might create the impression of
a “canonical” approach. However, most existing virtual laboratories posses a narrow
technical focus on specific areas and follow a monolithic design.

The second remark concerns tutorials, user guidance and the “usability” of such
laboratories: The afore-mentioned flexible granular structure of the software in-
evitably leads to a more complex user interface and consequently to a higher adaptation
time for the teaching staff as well as the students. Problems arising from the initial
contact with technical problems present a prominent “motivation killer” in e-learning.
In some cases, it is not easy to find the ideal compromises; to overcome this problem,
one should then provide several, separate user interfaces, as for example found in
VideoEasel:

For simple demonstrational applications in lectures, a Java Applet is available that
allows only minimal control of an experiment. For deployment in student groups
and classroom teaching, a simple but efficient Java interface has been developed;
it provides more options to influence the experiment, while keeping the complexity
rather low. Additional menus allow the adjustment of all kinds of parameters within
the experiment. The drawing surface, though, is very similar to the applet and mimics
that of standard software tools.

A more refined and complete interface was created through the Oorange tool-
kit [3] – also developed at the TU Berlin – allowing the purely graphic set-up of an
experiment, as well as the integration and connection to other elements through “Java
Beans” [4]. The server provides templates available for existing experiments, similar
to the ones for the Java interfaces; these templates are transformed client-side into a
Oorange compatible XML-representation. Different from the more basic interfaces,
the user has the option of changing, modifying or completing the experiment at will.
This access to VideoEasel does not have the pretense of being particularly easy to
navigate, as it was conceived primarily for the use in research and not in teaching or
in practice. Therefore, it is acceptable to require the user to go through a reasonable
adaptation phase.

Last but not least, VideoEasel is also completely controlable from within the
computer algebra program Maple for applications whenever the Oorange toolkit is
not able to deliver the mathematical algorithms required for research purposes. This
interface uses, similar to all others, the CORBA technology to exchange data between
the components.

Now, in retrospective, we analyze how the required didactic concepts are imple-
mented within VideoEasel: the field of cellular automata is rich enough to simulate
interesting physical effects, yet straightforward enough to avoid undue obstacles in
easy access. The basic principle of such automata can be learned quickly and allows
for the execution of interesting (and esthetically pleasing) experiments through quite
basic tools. Through the integration of time-proven, well known concepts – drawing
programs and measuring tools – and the choice of an appropriate interface, the user is
encouraged to experiment. Comprehension of the behavior of the effect to be under-
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stood is achieved through practice in the laboratory. Explorative learning is promoted
through the connection of esthetical and academical contents.

The availability of various surfaces allows us to address several user groups with
very different demands on the laboratories and diverse application purposes ranging
from pure demonstration to research applications.

Cooperative deployment scenarios become viable through the two-part set-up as
a client/server network architecture. Thus, acquisition and research between teams
geographically far separated is feasible.

Finally, CORBA-interfaces allow the docking and linking of the core laboratory
with other laboratories, algebra-systems and connectors to demonstrate even more
complex facts and to avoid locking the user in one single laboratory technology.

Future developments. In conclusion, we will discuss some aspects of important
relevance to our original aims, which are improving university education through the
use of virtual laboratories:

Virtual labs, including the presented VideoEasel, are still mostly at a prototype
stage. Thus, practical experience about their deployment in e-learning environments
are still rare. It has to be expected that use and evaluation will result in extensive
adaptations and expansions of the existing concepts, particularly in the field of us-
ability.

To realize the pedagogical goals as presented above, it is necessary to integrate
virtual laboratories into the framework of larger virtual knowledge spaces. VideoEasel
does provide a number of generic interfaces which will have to be specified in more
detail. More experiences with laboratories from other fields of science and engineering
are necessary to define a standardized data-exchange between different laboratories.

Finally, the virtual laboratories are becoming more and more complex to use as
a direct result of the diversity of addressed learning scenarios, the desired intercon-
nectability of different applications and the broad variety of the learning contents.
To counter this effect it might be desirable to extend laboratories by “digital assis-
tants” [5]. New concepts developed in the field of artificial intelligence in recent years
have to be expanded and applied to virtual knowledge spaces and their components.
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Roles for the new mathematics educators

by Mika Seppälä

The future is here. It is just not evenly distributed. We are living interesting
times! The industrial revolution is on its way in education, publishing, and busi-
ness. Ways to conserve knowledge and transfer it from generation to generation are
changing. Libraries are becoming digital and classes virtual. This development opens
extraordinary opportunities to those willing and capable to profit from them. It also
opens possibilities to spectacular failures of which we saw many some years ago.

“Emergent technology is, by its very nature, out of control, and leads to unpre-
dictable outcomes.” This certainly applies to the current development in e-learning,
including e-learning mathematics. “The Future is here. It is just not evenly dis-
tributed.” Both quotes are by William Gibson.

So in order to understand what lies in the future we can simply look at what
our colleagues are doing today. There is no doubt that the information network and
the advanced technology are going to change the way we write, publish and teach
all disciplines, including mathematics, in the future. This will happen because it is
possible, and because proper usage of technology will enhance our current ways to
work.

To understand how educators work in 2016, we simply need to understand which,
of the currently existing ways to use information technology in education, have most
potential. These are likely to emerge as general paradigms and set examples that
many will follow.

Changing the educational system. Not only instruction, but the whole educational
system is changing. New interdisciplinary fields are emerging at a fast pace. Largely
this is due to mathematics becoming more applicable thanks to the various advanced
mathematics systems like Maple, Mathematica or Matlab. It is now possible to use
mathematical modeling in a fundamentally deeper way than before. This is true in
practically all fields, perhaps most notably in biology and medicine.

In the past, applications of mathematics in biology or medicine have been, from the
mathematical point of view, rather simple. Now more complex methods can be used.
This requires expertise in mathematics, computer science, and in the subject matter
to which mathematics is being applied. Hence interdisciplinary study programs have
been created to educate experts capable of developing these new applications.

The new roles of mathematics educators. In the past, and in many cases even
today, the teaching of mathematics has been the responsibility of instructors, and the
learning that of students. At most European universities, basic mathematics courses
are being taught in very large sections. A typical undergraduate calculus class may
have well over 100 students. In some cases these classes have hundreds of students.
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The instruction is lecturing with little or no personal interactive contact between the
students and the professor. Instructors simply cannot follow the day-to-day progress
of their students.

Technology can be very useful here. Using systems like Maple TA or STACK,
it is possible to offer automated private instruction to students and to monitor the
progress of individual students even in large classes. This will empower professors
and enhance traditional contact instruction in a dramatic way.

Instruction, even in the case of large classes, becomes student centered instead of
instructor centered. Professors will take responsibility of their students in a way that
has not been usual in the past. The emerging new role of instructors is very similar to
that of coaches. Athletes have their personal coaches, so will students as well. The
future instructors work like sports coaches today assisting students to achieve goals
they could not achieve on their own. Empowered with advanced learning technologies,
instructors can provide individual assistance to their students in a way that was not
possible earlier. Interactivity can now be provided, using the web, in a way that is
likely to permanently change the way we work.

Educating new educators. The inertia of the academia resists changes and delays
the necessary development. Instructors in general are not ready to change the way
they work. There is also a good reason for the resistance. Moving from traditional
contact instruction to computer aided learning is not easy. The data in the table below
are generally accepted estimates of the efforts needed for various types of teaching.

All these forms of teaching, except lecturing and small group teaching, will require
additional technical support. The large spreads in the first four items reflect the fact
that experienced educators can work much faster than beginning professors. There is
no spread in the table for computer aided learning and interactive video. Here also
experience will eventually help, but for now there are not many instructors having
extensive experience in computer aided learning.

Academic work to produce one hour of student learning ([2])

Lecturing 2–10
Small group teaching 1–10
Videotaped lectures 3–10
Authoring a text 50–100
Computer aided learning 200
Interactive video 300

Using the figures of the above table, the development of a typical one semester
course will amount to over five years of full time work of the author in addition to the
required technical support.

Regardless of the above, some professors are developing content for computer
aided learning. They are driven by the vision of greatly improved education once
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the necessary content is in place and available in the same ways as books are now
available to students and professors.

Metadata. Developing content for computer aided learning is very costly. Further-
more, today the materials developed by professors are mostly being used only by the
authors themselves and their students. Sharing does not happen, not to speak of shared
development of content. To address this problem, the European Commission is cur-
rently investing heavily into projects which enhance existing content with metadata.
This metadata will make content cross border usable, and shared creation of content
a real possibility. The development of metadata is likely to dramatically change the
way we work. It will make the hard work to develop premium on-line content cost
effective and worthwhile.

Best practices. All of the above applies really to all disciplines. Problems related to
the teaching of mathematics or of sciences more generally, focus on the presentation
of mathematical formulae. Almost all mathematics is being written using LATEX today.
Also these proceedings have been prepared by LATEX.

LATEX and TEX generate extremely high quality typesetting of scientific text. These
systems produce content ready for printing and publishing in the traditional way. New
LATEX classes for producing high quality presentations have been created. Practically
all mathematicians are using LATEX.

Intelligent interactivity ([3] and [4]) requires that mathematical formulae are pre-
sented in the on-line materials so that the meaning of the formulae can be automatically
understood. MathML and OpenMath make this possible. To embed mathematical
formulae in a proper way to web content requires the usage of these languages. LATEX
or TEX do not support MathML or OpenMath. In spite of the fact that TEX enthusiasts
are working hard to develop solutions to this problem, the use of MS Word and Pow-
erPoint together with products like MathType often makes the content development
much easier.

Searching the web one can find, for example, a variety of electronic presentations
of calculus or linear algebra courses. Most of these are pdf presentations of printed
materials, and are not designed to be studied from the computer monitor. The new
media, the computer screen, requires a different presentation of the content than what
is used on printed materials. The resolution of a printed page is much higher than
the resolution of the best monitors. Hence printed pages are easier to read than
computer monitors. To overcome this problem, content, for the computer screen,
needs to be presented in a very condensed way. For instruction based on the computer
screen, the presentation of the materials needs to follow the general design principles
implemented, for example, in PowerPoint.

On-line content has many important advantages which greatly overcome the hand-
icap that computer monitors have with respect to printed pages. These advantages
include hyperlinking, live interactive and adaptive content, student performance track-
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ing, and, most recently, multilinguality. The WebALT encoding of mathematical con-
tent uses an extension of OpenMath and is such that the content can be generated
in many languages automatically. Hence the content is truly multilingual, or rather,
language independent. This is a serious advantage in view of the high cost of the
development of on-line content.

A case study: on-line calculus at the University of Helsinki. The lesson learned
from previous experiences at Florida State University was that on-line materials should
use standard tools as much as possible, not require students to install new programs,
and that the illustrations of mathematics should be done so that the required techni-
calities are completely hidden.

With these points in mind, the development of new on-line materials for calculus
was started at the University of Helsinki in the Fall of 2001. These materials con-
sist of a collection of lectures presented by PowerPoint, a collection of PowerPoint
presentations of solved problems, a collection of calculus calculators empowered by
MapleNET, and a repository of problems delivered to students using Maple TA, a sys-
tem for the delivery and automatic grading of homework, quizzes, and examinations.

Students reactions to these new on-line materials have been overwhelmingly pos-
itive. During the Fall of 2004, a basic course in calculus was offered, at the same
time, as a fully on-line course, and as a traditional lecture/problem session course.
Both courses were based on the on-line materials, and had the same exercises and
examinations. For the on-line students, the examinations were the only events that
took place on campus and were proctored.

The results were surprising: the on-line students fared better than the traditional
students in both examinations, and the retention rate was higher among the on-line
students than among the traditional students.

Automatic assessment. Systems providing automatic assessment of homework
problems, quizzes and examinations have been used in lower level mathematics in-
struction at Florida State University with spectacular results for several years. The
failure rates of precalculus courses have gone down by about 50%. This is due to
students being able to practice for examinations at home so that they get immediate
feed-back from the system.

Currently the most advanced automatic assessment systems are MapleTA, STACK,
the forthcoming LeActive Math System and the WebALT System. Common to all
of these is that they offer the possibility to create algorithmic problems which are
programs that generate a different version of a problem every time the program is
invoked. In addition to the others, the WebALT System will also be able to generate
the problem in many languages.

The algorithmic problems really make a difference. Consider, for example, the
method of partial fraction decompositions. Students of calculus will have to learn that.
It is relatively simple to write a program which generates over a million different but
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equally hard problems of partial fraction decompositions. Hence the examination
about partial fraction decompositions can be published to the students before the test!
Students can take the partial fraction decomposition test as many times as they want
at home, get individual feed-back including full solutions. Learning by heart is not
helpful, because regardless how many times they take the same test at home, they are
going to get different questions in the examinations.

Such algorithmic problems were used in instruction at Florida State University in
Spring 2005. Most students reacted very positively, and used the system a lot to their
benefit. Some students solved even hundreds of problems on computing limits, for
example. Starting in Fall 2006, students at Florida State University are required to
have a laptop computer. Then the automatic assessment systems can be used in class,
and examinations can be based on the use of these systems.

Conclusions. The development on-line education in mathematics at the university
level has been very slow. Administrators at national agencies and ministries in various
countries see the great potential that on-line content can bring to education, but largely
this potential has not been realized in mathematics and, more generally, in sciences.

This is partly due to problems that one has in the presentation of scientific content
on the web. The majority of on-line materials present mathematical formulae as
pictures only. This is not a satisfactory solution. One cannot use a picture as a key
word in a database search.

MathML and OpenMath provide solutions to this. Commercial editors, such as
MS Word and PowerPoint together with MathType, provide a convenient way to
produce content in which mathematics is embedded using MathML. Authoring tools
are available, robust and easy to use.

Missing synchronous interactivity has been another problem in on-line instruc-
tion. Together with the introduction of tools like Skype and the various easy-to-use
conferencing systems, this problem has suddenly disappeared. Virtual on-line courses
can provide more personal interaction between instructors and students than a regular
class with hundreds of students attending the same lectures. This development is new,
and we have not yet seen how that will change instruction. The effect is likely to be
impressive, however.

To use the available technology to the maximum places large demands on in-
structors. They have to rethink their roles and convert themselves from lecturers to
coaches. And they have to be able to use technology in a fluent way. Most instructors
resist doing this mainly because the transition requires a lot of work.

The main remaining obstacle in this development is the fact that premium on-line
content is expensive to produce and hard to find. Extensive funding programs, like the
European Commission supported Content Enhancement Projects of eContent Plus,
are likely to make a dramatic difference with respect to these remaining obstacles.

The most important lessons learned were that it is necessary to keep the use of
technology as simple as possible while still providing advanced functionalities. Pretty
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good is good enough. For the student, everything has to work right out of the box.
Technicalities have to be hidden. On-line content satisfying this criteria is going to
have large and permanent value. In 2016 we cannot understand how education without
the information network and its services was possible.
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