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Braids and differential equations

Robert Ghrist™*

Abstract. Forcing theorems based on topological features of invariant sets have played a fun-
damental role in dynamics and differential equations. This talk focuses on the recent work of
Vandervorst, Van den Berg, and the author using braids to construct a forcing theory for scalar
parabolic PDEs, second-order Lagrangian ODEs, and one-dimensional lattice dynamics.

Mathematics Subject Classification (2000). Primary 37B30, 35K90; Secondary 34C25, 37160,
57M25.

Keywords. Braids, Conley index, dynamical systems, parabolic PDEs, second order La-
grangian.

This talk covers a particular type of forcing theory for parabolic dynamics which uses
the topology of braids in an index theory.

1. Topological forcing theorems

Throughout the last century of work in dynamical systems, forcing theorems have
played a substantial role in establishing coarse minimal conditions for complicated
dynamics. Forcing theorems in dynamics tend to take the following form: given
a dynamical system of a specified class, the existence of some invariant set of one
topological type implies the existence of invariant sets of other topological types. This
forcing is often encoded by some sort of ordering on topological types of invariant
sets.

1.1. Examples. Three canonical examples of forcing theorems frame our work.

Example 1 (Morse Theory [43]). The class of systems is that of nondegenerate gra-
dient flows on an oriented manifold M. The invariant sets of interest are the fixed
points, and the topological type associated to a fixed point is its Morse index — the
dimension of its unstable manifold. A suitable chain complex generated by fixed
points and graded by the Morse index yields a homology which is isomorphic to that

*Research supported by the National Science Foundation, PECASE DMS-0337713. The author wishes to
thank Rob Vandervorst, without whom the work described here would not exist.
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2 Robert Ghrist

of M, allowing one to deduce the existence and indices of additional critical points
based on partial knowledge of the invariant sets and the homology of M.

Morse theory has blossomed into a powerful array of topological and dynamical
theories. One significant extension is the theory of Conley [14] which associates to an
‘isolated’ invariant set of a finite dimensional dynamical system an index — the Conley
index — which, like the Morse index, can be used to force the existence of certain
invariant sets. Instead of being a number (the dimension of the unstable manifold),
the Conley index is a homotopy class of spaces (roughly speaking, the homotopy type
of the unstable set). See [44] and the references therein for a sampling of applications
to differential equations.

Following on the heels of Conley’s index theory is the extension of Floer to infinite-
dimensional gradient-like dynamics. This, in turn, has led to an explosion of results
in topology and geometry. The recent flurry of activity in contact homology and
symplectic field theory [18] is a descendent of these foundational ideas.

Example 2 (The Poincaré—Birkhoff Theorem [5]). This theorem applies to orientation
and area preserving homeomorphisms of the annulus whose boundaries are twisted
in opposite directions. As with Morse theory, the forcing is in terms of a lower bound
(two) on the number of fixed points. The Poincaré—Birkhoff Theorem is the first of
many dynamical theorems to exploit the particular features of symplectic manifolds
and maps which preserve this symplectic structure. The marriage of this type of
theorem with the Morse-type forcing results is the Arnold Conjecture, for which
Floer theory was first and most strikingly used.

There is a very powerful extension of the Poincaré-Birkhoff Theorem due to
Franks [25] (Gambaudo and LeCalvez [39, App.] proved a slightly different version
independently at about the same time). Franks’ theorem states that if an area and
orientation preserving diffeomorphism of the annulus has at least one periodic point,
then it has infinitely many periodic orbits. See [26] for this and related results.
Franks’ Theorem is an excellent example of how a forcing theorem in dynamics often
provides a sharp threshold for complicated dynamics: one simple invariant set implies
the existence of infinitely many others. This principle finds its clearest exponent in
the theorem of Sharkovsky.

Example 3 (Sharkovsky’s Theorem [48]). For continuous maps of the compact inter-
val to the reals, this theorem gives a total ordering <1 on the periods of periodic orbits.
The theorem states that if a map has an orbit of minimal period P then it has periodic
orbits of minimal period Q for all P <« Q. That the minimal element of <1 is three
has led to the popular coinage “period three implies chaos.”

The Sharkovsky theorem is remarkable in that there are no assumptions on the
systems beyond dimension and continuity. Yet, the topological datum assigned to a
periodic orbit is merely the period and nothing more sophisticated. In general, the
resolution with which a forcing theorem can act depends on two factors: (1) how nar-
rowly one constrains the class of dynamical systems; and (2) what type of topological
data one assigns to the invariant sets.
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1.2. Overview. This paper motivates and describes a forcing theory developed by
R. Vandervorst in collaboration with J.-B. Van den Berg and the author. In this context,
the class of dynamics is, roughly speaking, scalar parabolic lattice dynamics. The
topological data which drives the forcing theory is a relative Conley index for invariant
sets based on the theory of braids.

The resulting forcing theory shares features with all three of the above examples.
The index we construct — the homotopy braid index — is a Conley—Morse index and
leads to Morse-type inequalities. The discrete version of the forcing theory is similar
in spirit to LeCalvez’ work on twist maps for annuli [38], [39], which itselfis an elegant
descendent of the Poincaré-Birkhoff Theorem. As with the Sharkovsky Theorem, we
obtain a (partial) order on invariant sets. This leads to very simple conditions on
invariant sets which force an infinite collection of additional invariant sets.

1.3. Braids and braid types. The use of braids in forcing theorems is not without
precedent. There are various types of topological forcing in dimensions two and three
related to braids. In the two-dimensional discrete case, one considers the isotopy class
of a map relative to some periodic orbit(s): these are related to braids.

One definition of a topological braid on n strands is a loop with basepoint in
the configuration space of n distinct unlabeled points in the disc D?. One usually
visualizes a braid as an embedding of n intervals u = {u®(z)}] into D? x [0, 1] such
that each slice D? x {r} is a set of n points and the initial and final configurations
the same: u(0) = u(1). See Figure 1 [left]. Given a braid u, its braid class {u} is
the equivalence class of braids isotopic to u, that is, homotopic to u through braids,
fixing the endpoints.

Figure 1. A braid on five strands, illustrated as a collection of embedded arcs in D? x [0, 1]
[left]. A typical generator of the braid group has all strands ‘straight’ with a pair of incident
strands crossing [right].

There is an obvious algebraic structure on n-strand braid classes by passing to
the fundamental group B,, of the configuration space, the group operation being con-
catenation of the braids in D? x [0, 1]. The standard presentation for B, hasn — 1
generators, where the i™ generator consists of n parallel strands (the identity braid)
except that the i th strand crosses over the (i 4 1) strand as in Figure 3 [right]. See [6]
for more details on the topology and algebra of braids.
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There is a wonderful analogue of the Sharkovsky Theorem for forcing periodic
orbits in surface homeomorphisms. In this setting, the period is not a sufficiently
fine datum — one must use what Boyland [7] coined the braid type of a periodic
orbit. Consider, for the sake of simplicity, an orientation preserving homeomorphism
f: D?> — D? of the closed disc with a periodic orbit P of period n. The braid type
BT(P) is, roughly speaking, the isotopy class of f relative to P. Using the relationship
between braid groups and mapping class groups [6], it is possible to formally identify
BT(P) with a conjugacy class in the braid group B, modulo its center. This is best
seen by suspending the disc map to a flow on D? x S!. When embedded in R3, the
periodic orbit is a braid. The choice of how many meridional twists to employ in the
embedding is the genesis of modding out by the center of B,,.

Boyland defined the following forcing order on braid types: one says that y < §
if and only if for any homeomorphism f: D?> — D? with y a braid type for some
periodic orbit of f, then B8 must also be a braid type for some (perhaps distinct)
periodic orbit of f as well. Boyland showed that this is a partial order on braid
types [8], which, though weaker than the total order of the Sharkovsky theory, is
nevertheless efficacious in forcing complicated dynamics.

Boyland’s theory, when generalized to surfaces, entwines with the Nielsen—
Thurston theory for surface homeomorphisms. This combination of braid types to-
gether with Nielsen—Thurston theory has matured to yield numerous strong results,
not only in the dynamics of horseshoe and Hénon maps [11], [13], but also in problems
of fluid mixing [9], [33].

1.4. Knots andlinks. Inthe case of flowsin dimension three, embedding and isotopy
data is likewise crucial. Since each periodic orbit is an embedded loop, it is a knot,
and the set of periodic orbits forms a (perhaps infinite) /ink. The relationship between
the link of periodic orbits and the dynamics of the flow is very subtle.

A forcing theory for flows in not straightforward. Roughly speaking, the coun-
terexamples to the Seifert Conjecture constructed by K. Kuperberg [37] imply that
there cannot be a forcing theorem for general smooth nonsingular 3-d flows — one
can always insert a Kuperberg plug and destroy any isolated periodic orbit. At one
extreme, Kuperberg’s work implies that there exist smooth nonsingular flows on §3
without any periodic orbits whatsoever. At the other extreme, it is possible to have a
smooth, nonsingular, structurally stable flow on $3 which displays all possible knots
and links as periodic orbits [29]. These phenomena do not bode well for a forcing
theory based on knots and links.

However, upon restriction to the correct subclass of flows, it is often possible to
retain some vestige of forcing based on knot and link types. One principle which
persists is that simple dynamics implicate simple types of knots. For example, in
the class of nonsingular Morse—-Smale flows on S>, only certain knot types and link
types can appear, a complete classification being given by Wada [54]. This result has a
nearly dual counterpart in the class of integrable Hamiltonian dynamics on an invariant
3-sphere, as shown by Fomenko and Nguyen [24] and explained best by Casasayas et
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al. [12]. Other instantiations of this principle appear in smooth, integrable fluid flows
on Riemannian 3-spheres [20] and in gradient fields on $3 kinematically constrained
by a plane field distribution [19].

A complementary principle also holds, that complex dynamics implicate complex
knot types in a flow on a 3-sphere. The best example of this type of result is the
theorem of Franks and Williams [27], which states that any C? flow with positive
topological entropy has a link of periodic orbits which has an infinite number of
distinct knot types represented. Other results on knotting and linking for suspensions
of Smale horseshoes have been proved by Holmes and Williams [35] and used to force
bifurcations in Hénon maps. These results all employ the relationship between knots,
links, and closed braids — conjugacy classes of braids in the braid group which are
visualized by identifying the left and right endpoints of a braid.

1.5. Toward higher dimensions. Forcing theorems based on knots, links, or braids
in higher dimensional dynamics seem hopeless at first: these objects fall apart in
dimension higher than three. One possibility is to try to work with embedding data
associated to higher-dimensional invariant sets, say spheres or tori, which can be
knotted and linked in the appropriate codimension. At present, there is some initial
work on braiding of 2-d invariant tori in 4-d flows [50] which may lead to a forcing
theory. There is a great deal now known about the peculiar constraints of embedding
spheres and tori in symplectic manifolds, but as yet without much in the way of
dynamical implications.

We now turn to a braid-theoretic forcing theory for certain types of PDEs, where
the stationary equation allows us to import three-dimensional embedding constraints
into an infinite-dimensional dynamical system.

2. Braids for parabolic dynamics

Our motivation for using braids to force dynamics comes from a very simple obser-
vation about parabolic partial differential equations.

2.1. Motivation: parabolic PDEs. Consider the scalar parabolic PDE

Ur = Uxx + f(xa u, ux)’ (1)

where f satisfies one’s favorite technical assumptions to guarantee no finite-time
blowups of solutions. For simplicity, we assume periodic boundary conditions (x €
[0, 1]/0 ~ 1). We view Equation (1) as an evolution equation on the curve u( -, t).
As t increases, the graph of u evolves in the (x, ) plane. Thus, the PDE induces a
flow on a certain infinite-dimensional space of curves. It is a result of Fiedler and
Mallet-Paret [21] that a type of Poincaré—Bendixson Theorem holds for these types
of equations: the only bounded invariant sets are stationary solutions, time-periodic
solutions, and connecting orbits.
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We augment the types of solutions under consideration as follows. First, we allow
multiple graphs to evolve by the product flow. Thatis, if u' = u'(r): [0, 1] — R and
u? = u%(r): [0, 1] — R are solutions to Equation (1), then we consider the union
u = (u', u?) as a solution to the product flow. These two strands evolve together,
independently, as a pair of graphs on the (x, u) plane. In general, we can consider an
n-tuple u = (uk)’ll of strands which evolve under the dynamics.

Second, we allow for strands of multiple spatial period. That is, we allow for
a collection u = (uk)’l2 of strands of the form u*: [0, 1] — R with the endpoints
equivalent as sets: {uk(O)}’f = {ur(1)}. Even though the endpoints do not match
strandwise, the union of the endpoints of the strands do match, and thus the entire
collection evolves under the PDE so as to respect the spatial periodicity. One can think
of such a collection of strands as a single-strand curve on the n-fold cover [0, n] /0 ~ n
of the spatial variable x.

Itis a well-known fact (going back to Sturm, but revived and extended considerably
by Matano [41], Brunovsky and Fiedler [10], Angenent [1], and others) that there is a
comparison principle for Equation (1). Specifically, let u!(r) and u?(¢) be solutions
to Equation (1). Then the number of intersections of the graphs of u L(#) and u2 (1) is
a weak Lyapunov function for the dynamics: it is non-increasing in ¢. Furthermore,
at those particular times ¢ for which the graphs of u!(¢) and u?(¢) are tangent, the
number of intersections decreases strictly in ¢, even in the case where the tangencies
are of arbitrarily high order [1]. These facts are all at heart an application of classical
maximum principle arguments which have a topological interpretation: parabolic
dynamics separates tangencies monotonically.

This monotonicity is easily seen. Assume that u' and u? are solutions to Equa-
tion (1) which have a simple tangency where ul(x, 1) = u?(x, t). Then the evolution
of the difference between u! and u? is given by

2

%(ul(x,t)—uZ(x,t)) = %(ul(x,t)—uz(x,t)). 2)

Since the nonlinear terms cancel, the evolution is governed purely on the basis of the
curvature of the graphs.

Using this comparison principle (also known as lap number or zero crossing
techniques), numerous authors have analyzed the dynamics of Equation (1) in varying
degrees of generality. We note in particular the paper of Fiedler and Mallet-Paret [21],
in which the comparison principle is used to show that the dynamics of Equation (1)
is often Morse—Smale, and also the paper of Fiedler and Rocha [22], in which the
global attractor for the dynamics is roughly classified.

2.2, Idea: dynamics on spaces of braids. A typical collection of strands is illus-
trated in Figure 2 [left], in which one notices a resemblance to the planar projection
of a braid. By lifting this collection of strands in the (x, u) plane to the 1-jet exten-
sion of the strands in (x, u, uy) space, we obtain a Legendrian braid tangent to the
contact structure {dy — zdx = 0}. Such a braid is closed, due to the periodicity of
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the strands. Being Legendrian, the braid is positive — in the standard generators for
the braid group, only positive powers of generators are permitted.

There is a globalization of the comparison principle using braids. For a motivating
example, consider again a pair of evolving curves ul (¢) and u2(¢) in the (x, u) plane.
If we lift these curves to the three-dimensional (x, u, u,) space, we no longer have
intersecting curves, unless ¢ is such that the planar graphs of u! and u? intersect
tangentially. The graphs of u' and u? in the (x, u, u,) space are instead a closed
braid on two strands. What was the intersection number of their projections is now
the linking number of the pair of strands.

We see therefore that the comparison principle takes on a linking number interpre-
tation (a fact utilized in a discrete setting by LeCalvez [38]). After lifting solutions ul
and u? to the (x, u, u,) space, the comparison principle says that the linking number
is a nonincreasing function of time which decreases strictly at those times at which
the curves are tangent. This two-strand example is merely motivation for adopting a
braid-theoretic perspective on multiple strands, as in Figure 2.

AN il
u u /(\\ jv

X Uy X

Figure 2. Curves in the (x, u) plane lift to a braid in (x, u, uy).

The key observation is that the comparison principle passes from a local statement
(“linking number decreases at a tangency”) to a global statement (“algebraic length in
the braid group decreases at a tangency”). A related globalization of the comparison
principle for geodesic flows on Riemannian surfaces appears in the recent work of
Angenent [2].

2.3. Goal: forcing. Our goal is to produce a forcing theory for the dynamics of
Equation (1) and more general parabolic systems. For simplicity, we focus on forcing
stationary solutions, though periodic and connecting orbits are likewise accessible.
Say that one has found a skeleton of stationary strands {v', v?, ..., v} for a particular
representative of Equation (1). How many and which types of other stationary curves
are forced to be present? Since the skeleton of known fixed curves v = {v! yL, lifts
to a braid, the problem is naturally couched in braid-theoretic terms: given a braid v
fixed by a particular uniform parabolic PDE, which other classes of braids u are forced
to exist as stationary curves?
The spirit of our forcing theory is as follows:
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1. Given a braid of stationary solutions v, construct the configuration space of all
n-strand braids u which have v as a sub-braid.

2. Use the braid-theoretic comparison principle to give a Morse-type decompose
of this configuration space into dynamically isolated braid classes.

3. Define the homotopy braid index — a Conley index for relative braid classes
which depends only on the topology of the braids, and not on the analytical
details of the dynamics.

4. Prove Morse-type inequalities for forcing stationary and/or time-periodic so-
lutions.

To execute this requires a significant generalization to spatially discretized sys-
tems, which in turn generalizes the results far beyond parabolic PDEs.

3. Spaces of braids for parabolic dynamics

3.1. Braids, topological and discrete. The motivation of §2.1 leads one to consider
spaces of braids obtained from curves in the (x, #) plane. Consider the space of all
such n-strand braids u which are both closed and positive. For the sake of intuition,
one should think of these topological braids as smooth braids lifted from the 1-jet
extension of graphs in the plane. In reality, one completes this space to include non-
smooth braids as well. These configuration spaces of braids are infinite dimensional.
By projecting to finite dimensional approximations, we avoid a great deal of analytic
and topological difficulties. We briefly outline the “finite dimensional” braid theory
needed.

The class of discretized braids are best visualized as piecewise-linear braid di-
agrams, as in Figure 3 [left]. A discretized braid, u, on n strands of period p, is
determined by np anchor points: u = {uf‘}?:ol’ ;’ Superscripts ¢ = 1, ..., n refer
to strand numbers, and subscripts i = 0, ..., p refer to spatial discretizations. One
connects the anchor point ;' to uj | and uj’_; via straight lines. Since “height” is
determined by slope, all crossings in the braid diagram are of the same sign (as in
Figure 3 [left] but not in Figure 1 [left]). Since we employ periodic boundary con-
ditions on the x variable, all of the braids are closed: left and right hand endpoints
of strands are abstractly identified and the endpoints are free to move. This neces-
sitates a periodicity convention for the subscript. For a single-strand component u®,
we have that uj’_ p = uj for all i. For multi-strand components, one cycles between
the strands according to the permutation of strands. Denote by Dy the space of all
n-strand period p discretized braids: Oy is homeomorphic to R"”.

For topological braids, a singular braid is one for which one or more strands
intersect. For braids which are lifts of graphs, the only possible intersection is that
which occurs when two strands are tangent in the projection. For a discretized braid u,
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Figure 3. A discretized braid in i)g with three components (note: left and right hand sides are
identified) [left]; Two types of singular discretized braids: a simple tangency, and a high-order
contact [right].

the singular braids are defined to be those braids at which anchor points on two different
strands coincide in a topologically non-transverse fashion with respect to immediate
neighbors. Denote by X the singular braids,

E={u:u = u:s for some i and o # B, and (uj_; — ”;371)(”;‘11 — uﬂl) > 0}.
3)
The set X is a discriminant that carves i); into components: these are the discretized
braid classes, denoted [u]. Within X, there is a subspace of collapsed braids, ¥~ C
%, consisting of those braids for which distinct components of the braid (or a single
component with multiple period) collapse to yield a braid on fewer strands. More
specifically,

Efz{ueZ:uf‘:uf}forallieZandsomea;é,B}, 4

under the convention of subscript periodicity mod p as regulated by the braid.

3.2. Parabolic dynamics on braids. A parabolic PDE of the form in Equation (1)
gives rise to a flow on the space of topological braids. There is likewise a broad class
of flows on spaces of discretized braids which are best described as parabolic. These
come from nearest-neighbor lattice dynamics.

Discretizing Equation (1) in the standard way would yield a family of nearest
neighbor equations of the form j—tui = fi(uj—1, u;, uj4+1) in which uniform parabol-
icity would manifest itself in terms of the derivatives of f; with respect to the first and
third variables. Instead of explicitly discretizing the PDE itself, we use the broadest
possible category of nearest neighbor equations for which a comparison principle
holds: these are related to the monotone systems of, e.g., [49], [34], [21] and others.

A parabolic relation of period p is a sequence of maps R = {R;: R — R}, such
that 9; R; > 0 and d3R; > O for every i. These include discretizations of uniform
parabolic PDE’s, as well as a variety of other discrete systems [40], [42], including
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monotone twist maps [38]. The small amount of degeneracy permitted (33R; = 0)
does not prevent the manifestation of a comparison principle. Given a discretized
braid # = {u{'} and a parabolic relation R, one evolves the braid according to the
equation

d
E(u?) = RiWi_y, ui', uiyy). (&)

Any parabolic relation R therefore induces a flow on £,,. Fixed points of this flow
correspond to stationary braids u satisfying R;(uf) = 0 for all i and . It will be
useful at certain points to work with parabolic relations which induce a gradient flow
on Dy;. One calls R exact if there exist generating functions S; such that

Ri(ui—1, uj, uip1) = 0Si—1(wi—1, u;) + 018 (i, uit1), (6)

for all i. In the exact case, the flow of Equation (5) is given by the gradient of ) _; S;.
All parabolic relations, exact or non-exact, possess a discrete braid-theoretic com-
parison principle.

Lemma 4 (Comparison principle for braids [32]). Let R be any parabolic relation
and u € ¥ — X~ any non-collapsed singular braid. Then the flowline u(t) of R
passing through u = u(0) leaves a neighborhood of X in forward and backward time
so as to strictly decrease the algebraic length of u(t) in the braid group as t increases
through zero.

Lemma 4 implies that the flow of parabolic dynamics is gradient-like on the (non-
collapsed portions of) boundaries of braid classes. This suggests a Morse-theoretic
approach. For example, if the flow points in to a given braid class everywhere along
the boundary, then the braid class should serve as a ‘sink’ for the dynamics and thus
be assigned a Morse index of zero. At least some invariant set would have to lie
within this braid class, even if the dynamics is not gradient everywhere. For more
complicated behaviors on the boundary of a braid class, Conley’s version of Morse
theory is the appropriate tool, with the notion of a Morse index generalizing to the
Conley index, a homotopy class of spaces.

4. The homotopy braid index

One significant problem with this idea is the prevalence of collapsed braids, which
are invariant under the flow and foil the straightforward application of Morse theory.
Clearly, any braid class [u] borders the set of collapsed braids £~ somewhere. One
need simply collapse all the strands together as an extreme degeneracy.

4.1. Relative braids. We are therefore naturally confronted with the need for a
forcing theory. Given that a particular parabolic relation possesses a stationary braid v,
does it force some other braid u to also be stationary with respect to the dynamics?
This necessitates understanding how the strands of u braid relative to those of v.
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Given a discrete braid v € 3331, consider the set of nonsingular braids
n . n+m __ sn+m
{uei)p.quei)p =) 1,

the path components of which define the relative braid classes [u REL v]. Not only are
tangencies between strands of u illegal, so are tangencies with the strands of v. In this
setting, the braid v is called the skeleton. Elements within [ REL v] are equivalent
as discrete braids fixing all strands of v.

In this context, it is possible to define a Conley index for certain discrete relative
braid classes. To do so, it must be shown that the braid classes [# REL v] are isolated
in the sense that no flowlines within [# REL v] are tangent to the boundary of this
set. It follows from Lemma 4 that [u REL v] is isolated for the flow of Equation (5)
assuming that the braid class avoids the collapsed braids ¥ ~. We therefore declare
a braid class [u REL v] to be proper if no free strands of u can “collapse” onto v or
onto each other: see Figure 4. Furthermore, to ensure compactness, it is convenient
to assume that the braid class [# REL v] is bounded — free strands cannot wander off
to £oo.

o/o\o/o\o/o\oo\w
o

D ST PR
oO Oooc/\ 00\)

o0 _— \\/\o

Figure 4. A bounded but improper braid class [left]. A proper, but unbounded braid class. Solid
strands form the skeleton; dashed strands are free [right].

4.2. The index: discrete version. The homotopy braid index of a proper, bounded,
discrete relative braid class [u REL v] is defined as follows. Choose any parabolic
relation R which fixes v (such an R exists). Define & to be the exit set: those braids
on the boundary of the braid class [# REL v] along which evolution under the flow
of R exits the braid class. The homotopy braid index is defined to be the pointed
homotopy class

h([u ReL v]) = ([u REL 0]/E, {€}). (7)

This is simply the Conley index of the closure of [# REL v] in £}, under the flow of R.
Lemma 4, combined with the basic stability properties of the Conley index yields the
following:
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Lemma 5. The index h([u REL v]) is well-defined and independent of the choice of R
(so long as it is parabolic and fixes v) as well as the choice of v within its braid
class [v].

Thanks to the comparison principle for braids, the computation of the index A
does not require a choice of R. One can identify the exit set & purely on the basis
of which singular braids will decrease algebraic length under parabolic evolution.
This is the basis for an algorithm to compute the homological index H,(h[u REL v])
numerically [17].

Example 6. Consider the proper period-2 braid illustrated in Figure 5 [left]. There is
exactly one free strand with two anchor points (via periodicity). The anchor point in
the middle, u1, is free to move vertically between the fixed points on the skeleton. At
the endpoints, one has a singular braid in ¥ which is on the exit set. The end anchor
point, ug (= uz) can freely move vertically in between the two fixed points on the
skeleton. The singular boundaries are not on the exit set since pushing ug across the
skeleton increases the number of crossings.

o g0
o d
| |

+¢¢1§

444

uo

Figure 5. The braid of Example 6 [left] and the associated configuration space with parabolic
flow [middle]. Collapsing out the exit set leads to a space [right] which has the homotopy type
of a circle.

Since the points #p and u; can be moved independently, the braid class is the
product of two intervals. The exit set consists of those points on the boundary for
which u; is a boundary point. Thus, the homotopy braid index is S!, as seen in
Figure 5 [right].

Example 7. Consider the proper relative braid presented in Figure 6 [left]. Since
there is one free strand of period three, the configuration space is determined by the
vector of positions (uq, 11, uz) of the anchor points. This example differs greatly
from the previous example. For instance, the point ug (as represented in the figure)
may pass through the nearest strand of the skeleton above and below without changing
the braid class. The points u# and u# may not pass through any strands of the skeleton
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without changing the braid class unless ug has already passed through. In this case,
either u1 or uy (depending on whether the upper or lower strand is crossed) becomes
free.

The skeleton induces a cubical partition of R3 by planes of singular braids. The
relative braid class is the collection of cubes in R? illustrated in Figure 6 [right]: it is
homeomorphic to D? x S!. In this case, the exit set is the entire boundary and the
quotient space is homotopic to the wedge-sum S2 Vv §3, the space defined by abstractly
gluing a point of S to a point of S°.

Figure 6. The braid of Example 7 and the associated relative braid class.

Example 8. The braid pair of Figure 7 [right] has index & ~ §* v S§° (as computed in
[32, Lem. 50]); the pair on the left has trivial index, even though the linking numbers
and periods of all strands are identical. This exemplifies the extra information carried
by the braiding data.

\ \ A
o——g——o——g——o——o——o o A3t SN LN LN gt )
\ \ O\ \ \ \ oY \ O\ \ \ \ o
o
y v \ v \

Figure 7. Discretized braid pairs with trivial [left] and nontrivial [right] homotopy index.

4.3. The index: topological version. As defined, the homotopy braid index 4 is a
function of discretized braid classes. For topological braids, one could hope that any
discretization yields the same discrete index. It does, modulo two technicalities.
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The first is simple. Given a topological relative braid pair u# REL v and a dis-
cretization period p, consider the discrete braid pair whose anchor points are defined
in the obvious way using x; = i/p as the spatial discretization points. Only for p
sufficiently large will this discrete braid pair be isotopic as a topological braid to the
pair u REL v. Thus, one must choose p so that the correct braid class is obtained by
discretization.

The second technicality is more subtle. Even if the discretized braid is topolog-
ically isotopic to the original, it is possible to “fracture” the homotopy type of the
topological braid class via discretization. Consider the discrete braids of Figure 8:
these braid pairs are equivalent as topological closed braids, but not as discrete closed
braids. There is simply not enough freedom to maneuver.

Q (0]

o O o
O O e Qe Qe =0 O= . O O 'e)
o o (o]
O O=— O O O=— 'e)
(@) (0]

Figure 8. An example of two discretized braids which are of the same topological braid class
but define disjoint discretized braid classes in i)i REL V.

To overcome this difficulty, we define a modification of the homotopy braid index
as follows. Given a fixed period p and a discrete proper relative braid class f =
[u REL v] € JDI’,‘, let 8(B) denote the set of all braid classes in JD;,' REL v which are
isotopic as topological braids to a representative of 8. Define the index H to be

HpB) = \/ h. ®)
Bi€s(B)

This is a wedge sum of the indices of all discrete period- p representatives of the given
topological braid class. The wedge sum is well-defined since each h is a pointed
homotopy class.

This index H is an invariant of topological braid classes. Consider the following
stabilization operator, E: D, — D, |, which appends a trivial period-1 braid to

. . p+l’
the end of a discrete braid:
u%, 1=0,...,p,
Eun)¢ =" P ©)
u,, i=p+ 1.

The most important result about the index is the following invariance theorem:



Braids and differential equations 15

Theorem 9 (Stabilization [32]). For u REL v any bounded proper discretized braid
pair, the topological homotopy braid index is invariant under the extension operator:

H (Eu ReL Ev) = H (u REL v). (10)

The proof of this theorem involves, surprisingly enough, a dynamical argument,
utilizing a singular perturbation of a particular parabolic relation adapted to E. This
is a very convenient way to prove homotopy equivalence, given the robustness of the
Conley index with respect to singular perturbations [15]. This theorem allows for a
proof of topological invariance.

Theorem 10 (Invariance [32]). Given u REL v € i); REL v and i REL D € [Dg REL
which are topologically isotopic as bounded proper braid pairs, then

H (u REL v) = H(u REL ). (11)

The key ingredients in this proof are the Stabilization Theorem combined with a
braid-theoretic argument that the moduli space of discretized braids converges to that
of topological braids under sufficiently many applications of E — the length of the
braid in the word metric suffices.

5. Forcing theorems: parabolic lattice dynamics

The dynamical consequences of the index are forcing results. A simple example:
given any parabolic relation &2 which has as stationary solutions the skeleton of
Figure 7 [right], then, since adding the dashed strand from that figure yields a nontrivial
braid index, there must be some invariant set for &2 within this braid class. At this
point, one uses Morse theory ideas: if R is exact, then there must be a stationary
solution of the form of the grey strand. If the flow is not a gradient flow, then finer
information can still detect stationary solutions.

More specifically, let & be the homotopy braid index of a proper bounded discrete
braid class [u REL v]. Let P;(h) denote the Poincaré polynomial of the index — the
polynomial in Z[t] whose coefficients are the Betti numbers of the homology of the
index, Hy(h; R). The following results are consequences of degenerate Morse theory
(cf. [16]).

Theorem 11 ([32]). Given a parabolic relation R which fixes v and h = h([u REL v]),
the following hold:

1. The number of stationary braids in this braid class is bounded below by the
Euler characteristic x (h) = P_1(h).

2. If R is exact, then the number of stationary braids in this braid class is bounded
below by the number of nonzero monomials of Py (h).
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Stronger results are available if it is known that the parabolic relation is nonde-
generate. By iterating the process of adding free strands and computing a nontrivial
index, one can go quite far. The following forcing theorem (for exact R) is very
general, requiring only that the parabolic relation is exact (yielding a gradient flow)
and dissipative, meaning that R; — —oo as |u;| — +oo.

Theorem 12 ([32]). Let R be a parabolic relation which is both exact and dissipative.
If R fixes a discretized braid v which is not a trivial braid class, then there exist an
infinite number of distinct braid classes which arise as stationary solutions of R.

This theorem is very much in the spirit of “period-three implies chaos.” The
dissipative boundary condition at infinity can be replaced with a coercive condition
(infinity is attracting) or with mixtures thereof with only minor adjustments to the
theorem statements [32].

6. Forcing theorems: second-order Lagrangians

This forcing theory gives an elegant approach to a class of fourth-order equations
arising from a Lagrangian. Consider a second order Lagrangian, L(u, uy, Uxy), such
as is found in the Swift—-Hohenberg equation:

I/t4

Yo (12)
2 4

1 1
L= 5(%)2 — (uy)* +

Assume the standard convexity assumption that 83“L > 6 > 0. The Euler-
Lagrange equations yield a fourth-order ODE. The objective is to find bounded func-
tionsu: R — R which are stationary for the action integral J[u] = f L(u,uy,uyy)dx.
Due to the translation invariance x — x + c, the solutions of the Euler—Lagrange
equation satisfy the energy constraint

oL d 0L aL
( — ——)ux+—uxx — L(u,uy,uyy) = E = constant, (13)
oy  dx Juyy Ol

where E is the energy of a solution. To find bounded solutions for given values of E,
we employ the variational principle §,, 7 fOT (L(u, uy,ury)+E)dx = 0, which forces
solutions to have energy E.

The Lagrangian problem can be reformulated as a two degree-of-freedom Hamil-
tonian system. In that context, bounded periodic solutions are closed characteristics
of the corresponding energy manifold M3 C R*. Unlike the case of first-order La-
grangian systems, the energy hypersurface is not of contact type in general [4], and is
never compact. The recent stunning results in contact homology [18] are inapplicable.

6.1. The twist condition. The homotopy braid index provides a very effective means
of forcing periodic orbits. By restricting to systems which satisfy a mild variational
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hypothesis, one can employ a “broken geodesics” construction which yields a re-
stricted form of parabolic relation.

Closed characteristics at a fixed energy level E are concatenations of monotone
laps between alternating minima and maxima (; ); <z, which form a periodic sequence
with even period. The problem of finding closed characteristics can, in most cases, be
formulated as a finite dimensional variational problem on the extrema (u; ), as realized
by Vandervorst, in his definition of the twist condition. The twist condition is a weaker
version of the hypothesis that assumes that the monotone laps between extrema are
unique and is valid for large classes of Lagrangians L, including Equation (12). The
following result of [52] is the motivation and basis for the applications of the homotopy
braid index to second-order Lagrangians.

Lemma 13. Extremal points {u;} for bounded solutions of second order Lagrangian
twist systems are solutions of an exact parabolic relation with the constraints that
1) (—D'u; < (—1)'ujy1; and (ii) the relation blows up along any sequence satisfying
Ui =Ujy].

6.2. A general result. It is necessary to retool the homotopy braid index to the
setting of Lemma 13 and show that the index properties with respect to this restricted
class of parabolic relations are invariant. Upon so doing, one extracts very general
forcing theorems, a simple example of which is the following:

Theorem 14 ([32]). Let L(u, uy, uyy) be a Lagrangian which is dissipative (infinity
is repelling) and twist. Then, at any regular energy level, the existence of a single
periodic orbit which traces out a self-intersecting curve in the (u, uy) plane implies
the existence of infinitely many other periodic orbits at this energy level.

Additional results give lower bounds on the multiplicity of solutions in a given
braid class based on the Poincaré polynomial and apply to singular energy levels, as
well as to non-dissipative systems [32].

7. Forcing theorems: parabolic PDEs

The homotopy braid index, being inspired by parabolic PDEs, is efficacious in this
context also, thanks to Theorem 10. By performing a spatial discretization of the
dynamics of Equation (1), it is possible to reduce the dynamics of the PDE to those
of a parabolic relation on a finite-dimensional space of discretized braids.

On account of the robustness of the homotopy index with respect to the dynamics,
there is very little one needs to assume about the nonlinearity in Equation (1). The
first, crucial, hypothesis is a growth condition on the u, term of f. For simplicity,
let us call Equation (1) subgquadratic if there exist constants C > 0 and 0 < y < 2,
such that | f(x, u,v)| < C(1 + |v|”), uniformly in both x € S and on compact
intervals in u. This is necessary for regularity and control of derivatives of solution
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curves, cf. [3]. This condition is sharp: one can find examples of f with quadratic
growth in u, for which solutions have singularities in u,. Since our topological data
are drawn from graphs of u, the bounds on # imply bounds on u, and u,.

A second gradient hypothesis will sometimes be assumed. One says Equation (1)
is exact if

d
uxx + f(-x’ u, ux) = Cl(.x,u, ux)l:d auxL - auL]’ (14)
X

for a strictly positive and bounded function a = a(x, u, u,) and some Lagrangian L
satisfying a(x, u, uy) - 83XL(x, u,uy) =1.

In this case, one has a gradient system whose stationary solutions are critical
points of the action f L(x, u, uy)dx over loops of integer period in x. This condition
holds for a wide variety of systems. In general, systems with Neumann or Dirichlet
boundary conditions admit a gradient-like structure which precludes the existence
of nonstationary time-periodic solutions. It was shown by Zelenyak [55] that this
gradient-like condition holds for many nonlinear boundary conditions which are a
mixture of Dirichlet and Neumann.

7.1. Stationary solutions. Assume for the following theorems that {# REL v} is a
topological braid class which is both bounded and proper. Assume further that v is
stationary for Equation (1). We state our existence and multiplicity results in terms of
the Poincaré polynomial P, (H) of the topological (as opposed to the discrete) braid
index H = H{u REL v}, computed via a discretization of the topological braid.

Theorem 15 ([31]). Let Equation (1) be subquadratic with v a stationary braid, and
H = H ({u REL v}).

1. There exists a stationary solution in this braid class if the Euler characteristic
of the index, x (H) = P_1(H), is nonvanishing.

2. If Equation (1) is furthermore exact, then there exists a stationary solution in
this braid class if P,(H) # 0.

Additional results are available concerning multiplicity of solutions, alternate
boundary conditions, and non-uniformly parabolic equations: see [31]. A version
of Theorem 12 on infinite numbers of braids being forced by a single nontrivial sta-
tionary braid persists in this context. The result is simplest to state if the PDE is
dissipative; that is, u f(x, u, 0) — —o0 as |u| — +oo uniformly in x € S'. This is
a fairly benign restriction.

Theorem 16 ([31]). Let Equation (1) be subquadratic, exact, and dissipative. If v
is a nontrivially braided stationary skeleton, then there are infinitely many braid
classes represented as stationary solutions. Moreover, the number of single-free-
strand braid classes is bounded from below by [1/2] — 1, where ¢ is the maximal
number of intersections between two strands of v.
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7.2. Examples. The following family of spatially inhomogeneous Allen—Cahn equa-
tions was studied by Nakashima [45], [46]:

eu; = ugy + g)u(l — u?), (15)

where g: S' — (0, 1) is not a constant. This equation has stationary solutions
u = 0, =1 and is exact with Lagrangian

1 1
L= zszui - Zg(x)uz(Z - uz).

+1

J A
0 il

8 -1

Figure 9. Givenafunctiong: S' — (0, 1) and & small, there exists a skeleton of stationary curves
for Equation (15) which forms a nontrivial braid. This forces infinitely many other stationary
braids.

Accordingto [45], forany N > 0, thereexistsaney > Osothatforall0 < ¢ < ey,
there exist at least two stationary solutions which intersect © = 0 exactly N times.
(The cited works impose Neumann boundary conditions: it is a simple generalization
to periodic boundary conditions.) Via Theorem 16 we have that for any such g and
any small ¢, this equation admits an infinite collection of stationary periodic curves;
furthermore, there is a lower bound of N on the number of 1-periodic solutions.

As a second explicit example, consider the equation

OSX L@ -1, (16)

U = Uyy — —SIN2X Uy + 3
8 cosx—{—%

with x € §' = R/27Z. This gives an exact system with Lagrangian

2 12
L:e—%com(%ui— > w - D ) (17)
cosx—i-ﬁ

and weight a(x, u, uy) = ¢ 16 005 2% (cf. Equation (14)).

One checks easily that there are stationary solutions +1 and :i:% (\/5 cosx + 1),
as in Figure 10 [left]. These curves comprise a skeleton v which can be discretized to
yield the skeleton of Example 6. This skeleton forces a stationary solution of the braid
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s SN
/ N o\\O/\i

Figure 10. This collection of stationary solutions for Equation (16) [left] discretizes to the braid
skeleton of Example 6.

+1

class indicated in Figure 5 [left]: of course, this is detecting the obvious stationary
solution u = 0. Note, however, that since H ~ S!, this solution is unstable.

What is more interesting is the fact that one can take periodic extensions of the
skeleton and add free strands in a manner which makes the relative braid spatially
non-periodic. Let v" be the n-fold periodic extension of v on [0,n]/0 ~ n and
consider a single free strand that weaves through v" as in Figure 11. The homotopy
index of such a braid is a sphere whose dimension is a function of the linking number
of the free strand with the skeletal strands. The appropriate Morse inequalities imply
that for each n > 0 there exist at least 3" — 2 distinct stationary solutions. This
information can be used to prove that the time-27 map of the stationary equation has
positive entropy, see e.g. [47], [53].

AR
KL KRN

Figure 11. Taking a lift of the spatial domain allows one to weave free strands through the lifted
skeleton. These project to multiply-periodic solutions downstairs. The braid pictured has index
H ~ .

7.3. Time-periodic solutions. A fundamental class of time-periodic solutions to
Equation (1) are the so-called rotating waves. For an equation which is autonomous
in x, one makes the rotating wave hypothesis that u(t, x) = U(x — ct), where c is
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the unknown wave speed. Stationary solutions for the resulting equation on U (§)
yield rotating waves. In [3] it was proved that time-periodic solutions are necessarily
rotating waves for an equation autonomous in x. However, in the non-autonomous
case, the rotating wave assumption is highly restrictive.

The homotopy braid index presents a very general technique for finding time-
periodic solutions without the rotating wave hypothesis.

Theorem 17 ([31]). Let {u REL v} be a bounded proper topological braid class with
u a single-component braid, v an arbitrary stationary braid, and P;(H) # 0. If
the braid class is not stationary for Equation (1) — the equation does not contain
stationary braids in this braid class — then there exists a time-periodic solution in this
braid class.

It was shown in [3] that a singularly perturbed van der Pol equation,
U = ety +u(l — 8%u®) + uu?, (18)

possesses an arbitrarily large number of rotating waves for ¢ « 1 sufficiently small
and fixed 0 < §. The homotopy braid index methods extend these results dramatically.

Theorem 18 ([31]). Consider the equation
U = Uyy +ub) +uxc(x, u, uy), (19)

where c has sub-linear growth in u, at infinity. Moreover, b and c satisfy the following
hypotheses:

1. b(0) > 0, and b has at least one positive and one negative root;
2. ¢(x,0,0) =0, and ¢ > 0 on {uu, # 0}.

Then this equation possesses time-periodic solutions spanning an infinite collection
of braid classes.

All of the periodic solutions implied are dynamically unstable. In the most general
case (those systems with x-dependence), the periodic solutions are not rigid rotating
waves and thus would seem to be very difficult to detect.

8. What does this index mean?

The most important fact about the homotopy braid index H is that it is an invariant
of topological braid pairs. Though it is not realistic to think that this is of interest
in knot theory as a means of distinguishing braid pairs, the homotopy braid index
nevertheless entwines both topological and dynamical content.

Thinking in terms of braid classes gives finer information than relying merely on
intersection numbers. With the braid-theoretic approach, various analytic conditions
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on a PDE or lattice system (dispersive, coercive, etc.) can be ‘modeled’ by an auxiliary
braid when computing the index. Likewise, spatial boundary conditions (Neumann,
Dirichlet, periodic, etc.) can be viewed as restrictions on braids (fixed, closed, etc.).
Any such restrictions which yield topologically equivalent braids have the same dy-
namical implications with respect to forcing. One may replace complicated analytic
constraints with braids.

The precise topological content to the homotopy braid index is not transparent. A
few steps toward unmasking the meaning of the index are as follows.

8.1. Duality. One special feature of working with discretized braids in a fixed period
is a natural duality made possible by the fact that the index pair used to compute the
homotopy braid index can be chosen to be a manifold pair.

The duality operator on discretized braids of even period is the map D: D5 b =

;Dgp given by

Du)? = (—1)'u?. (20)

Clearly D induces a map on relative braid diagrams by defining D(u# REL v) to
be Du REL Dv. The topological action of D is to insert a half-twist at each spatial
segment of the braid. This has the effect of linking unlinked strands, and, since D is
an involution, linked strands are unlinked by I, as in Figure 12.

C\ O D
.8/(\
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Figure 12. The topological action of D.

For the two duality theorems to follow, we assume that all braids considered have
even periods and that all of the braid classes and their duals are proper, so that the
homotopy index is well-defined. In this case, the duality map DD respects braid classes:
if [u] = [u'] then [D(u)] = [D(u')]. Bounded braid classes are taken to bounded
braid classes by D.

The effect of D on the index pair is to reverse the direction of the parabolic flow.
This is the key to proving the following:
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Theorem 19 (Duality [32]"). For [u REL v] having period 2p and n free strands,
H,(H(D(u REL v)); R) = Hppp—q (H (u REL v); R). 2D

This duality operator is very useful in computing the homology of the braid index:
see the computations in [32].

8.2. Twists. The duality operator yields a result on the behavior of the index under
appending a full twist.

Theorem 20 (Shift [32]). Appending a full twist to a braid shifts the homology of the
index up by dimension equal to twice the number of free strands.

We include a sketch of the proof (a more careful version of which would deal with
some boundedness issues). Assume that [ REL v] is a braid of period 2 p with n free
strands. A period two full-twist braid can be realized as the dual of the trivial braid
of period two. Thus, the effect of adding a full twist to a braid can be realized by the
operator DEED. By combining Theorems 9 and 19, we obtain:

H,(H (DEED[u REL v])) = Hpppy2n—g (H(DEE[u REL v]))
= Hoppton—q(H (D[u REL v])) (22)
= Hy_2,(H ([u REL v])).

A homotopy version of Equation (22) should be achievable by following a similar
procedure as in the proof of Theorem 9. We suspect one obtains an iterated suspension
of the homotopy index, as opposed to a shift in homology.

9. Toward arbitrary braids

Given the motivation from PDEs and the comparison principle, the types of braids
considered in this paper are positive braids. One naturally wonders whether an exten-
sion to arbitrary braids — those with mixed crossing types —is possible. Unfortunately,
passing to discretized braids is no longer simple, as anchor points alone cannot capture
crossing information for arbitrary braids.

One way to define a formal index for general braid pairs is to use Garside’s Theorem
[6], slightly modified. Garside’s Theorem states that any braid can be placed into a
unique normal form of a positive braid times a (minimal) number of negative half-
twists. Clearly, one can define a modified Garside normal form that gives a unique
decomposition into a positive braid and a (minimal) number of negative full twists.
By applying Theorem 20, one can define a homological braid index (with negative
grading permitted) by shifting the braid index of the positive normal form down by

IThe theorem in the reference has a slight error in the statement. There, it was implicitly assumed that the
braid has one free strand. The present statement is correct for arbitrary numbers of strands.
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the appropriate amount. A homotopy theoretic version could be defined in terms of
spectra via suspensions. This, then, yields a formal index for arbitrary (proper) braid
pairs.

The real question is what dynamical meaning this generalized index entails. The
passage from positive braids to arbitrary braids is akin to the passage from a La-
grangian to a Hamiltonian settings, and such an extended index appears to be a rel-
ative Floer homology for (multiply) periodic solutions to time-periodic Hamiltonian
systems.
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Newton interpolation polynomials, discretization method,
and certain prevalent properties in dynamical systems

Anton Gorodetski, Brian Hunt* and Vadim Kaloshin®

Abstract. We describe a general method of studying prevalent properties of diffeomorphisms of
a compact manifold M, where by prevalent we mean true for Lebesgue almost every parameter
¢ in a generic finite-parameter family { f;} of diffeomorphisms on M.

Usually a dynamical property & can be formulated in terms of properties 5, of trajectories
of finite length n. Let $ be such a dynamical property that can be expressed in terms of
only periodic trajectories. The first idea of the method is to discretize M and split the set of
all possible periodic trajectories of length n for the entire family { f;} into a finite number of
approximating periodic pseudotrajectories. Then for each such pseudotrajectory, we estimate
the measure of parameters for which it fails #,. This bounds the total parameter measure for
which £, fails by a finite sum over the periodic pseudotrajectories of length n. Application of
Newton interpolation polynomials to estimate the measure of parameters that fail 5, for a given
periodic pseudotrajectory of length n is the second idea.

We outline application of these ideas to two quite different problems:

e Growth of number of periodic points for prevalent diffeomorphisms (Kaloshin—Hunt).
e Palis’ conjecture on finititude of number of “localized” sinks for prevalent surface diffeomor-
phisms (Gorodetski—Kaloshin).

Mathematics Subject Classification (2000). 37C05, 37C50, 37D25, 37C29.

Keywords. Discretization method, Newton interpolation polynomials, prevalence, pseudotra-
jectory, growth of number of periodic points, Newhouse phenomenon.

1. Introduction

A classical problem in dynamics, geometry, and topology is the description of generic
behavior. Given a set of objects what are the properties of a generic element of the
set? This question applies to diffeomorphisms, Riemannian metrics, linear operators,
and vector fields, just to give several examples. The traditional approach is based
on the category theorem of Baire. A countable intersection of open, dense sets is
called a residual, or topologically generic, set. The Baire category theorem says that
topologically generic sets of a complete metric space (or, more generally, Baire space)
are dense. The book of Oxtoby [O] provides a rich variety of topologically generic
mathematical objects. However, in many different areas of mathematics examples
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of “wild behavior” of topologically generic objects have been detected (see [HSY],
[Ka2], [OY], [Si] and references there). In this paper we are concerned with generic
properties in dynamics, particularly those that are not generic topologically but are
generic in a measure-theoretic sense.

In the 1960s two main theories in dynamical systems were developed, one of which
was designed for conservative systems and called KAM for Kolmogorov—Arnold—
Moser and the other was constructed for general dynamical systems (nonconservative,
dissipative) and called hyperbolic.

Kolmogorov [Ko], in his plenary talk of ICM 1954, pointed out that a different
notion of genericity may be appropriate: “In order to obtain negative results concern-
ing insignificant or exceptional character of some phenomenon we shall apply the
following, somewhat haphazard, technique: if in a class K of functions f (x) one can
introduce a finite number of functionals

Fl(f)s FZ(f)’v Fr(f),

which in some sense can naturally be considered as taking “arbitrary” values in general

Fi(f)=C1, Fr2(f) =Ca, ..., F:(f) =C;

from some domain of the r-dimensional space of points C = (Cy, ..., C;), then any
phenomenon that takes place only if C belongs to a set of zero r-dimensional measure
will be regarded exceptional and subject to “neglect”.”

A somewhat similar way to define a measure-theoretic genericity, often called
prevalence, is the following: We call a property P prevalent if for a generic' finite-
parameter family { fc}ccp for Lebesgue almost every parameter ¢ the corresponding
fe satisfies P. If complement of a property is prevalent such a property is called shy.
We shall discuss prevalence further in Section 9.

There are many examples when topological genericity and measure-theoretic
genericity do not coincide. We just mention a few of them (see [HSY], [Ka2], [OY]
for many more).

e Diophantine numbers form a set of full measure on the line R, but are topolog-
ically negligible (that is the complement of the set is topologically generic).

e For a topologically generic, even open dense, set of circle maps preserving
orientation there is a finite number of attracting and repelling periodic orbits. All other
orbits accumulate to these orbits both forward or backward in time. However, as the
famous example of Arnold, called Arnold tongues, shows in the family fy .: 0 +—
0 + a + e£sinf that the smaller ¢ is, the smaller is the measure of « values such
that f, . has this property. Moreover, the main result of KAM theory says that for
consevative systems close to integrable most, in a measure-theoretic sense, motions
are quasiperiodic.

e In general dynamical systems a dream of the 1960s was to prove that a generic
dynamical system is structurally stable. However, this dream evaporated by the end of

Twe give a rigorous definition in Section 9.
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that decade. One of the beautiful counterexamples is due to Newhouse [N1], [N2]. He
shows that there is an open set in the space of diffemorphisms of a compact manifold
such that a generic diffeomorphism in this open set has infinitely many coexisting sinks
(attracting periodic orbits). Below we show in some weak sense this phenomenon is
shy (see Section 7). This phenomenon is closely related to Palis’ program [Pa] which
is discussed next.

Let Diff” (M) be the space of C" diffeomorphisms of a smooth compact manifold
M with the uniform C”-topology, where dim M > 2, and let f € Diff"(M). The
main focus of the present paper is the space of general (nonconservative) diffeomor-
phisms Dift” (M). The authors believe that the method presented here also applies to
conservative systems.

While examples such as Newhouse’s show that on open subsets of Diff” (M),
“wild” phenomena that are not structurally stable can be topologically generic, a
measure-theoretic point of view may be more appropriate to describe the dynamical
behavior that would typically be observed by a scientist. In the influential paper J.
Palis [Pa] proposed a new global view of generic dynamics based on measure theory.
He stated the following conjectures on finititude of attractors and their metric stability:

(I) Denseness of finititude of attractors — there is C" (r > 1) dense set D of
diffeomorphisms in Dift” (M) such that each element of D has finitely many attractors,
the union of whose basins of attraction has full measure;

(IT) Existence of physical (SRB) mesure — each attractor of an element of D
supports a physical measure that represents the limiting distribution for Lebesgue
almost every initial condition in its basin;

(IIT) Metric stability of basins of attraction — for each element in D and each of its
attractors, for almost all small C" perturbations in generic k-parameter families of
diffeomorphisms in Dift" (M), k € N, there are finitely many attractors whose union
of basins is nearly equal in the sense of Lebesgue measure to the basin of the initial
attractor; such perturbed attractors support a physical measure.

Such results have been established for certain examples of dynamical systems.
Lyubich [Ly] for the quadratic family of 1-dimensional maps and Avila—Lyubich—de
Melo [ALM] for a generic family of analytic unimodal 1-dimensional maps showed
that for almost all parameters the attractors are either periodic sinks or carry an ab-
solutely continuous invariant measure. For the 1-dimensional Schrodinger cocycles
Avila—Krikorian [AK] showed that for all analytic or C* potentials and almost all
rotation numbers the corresponding cocycle is either non-uniformly hyperbolic or
reducible.

In this paper we discuss two important topologically negligible dynamical prop-
erties that are in fact prevalent. One property is (stretched) exponential growth of
the number of periodic points and the other is finiteness of number of coexisting
“localized” sinks for surface diffeomorphisms.

We hope that the method, outlined in this article, brings a better understanding
of prevalent properties of Diff” (M) in the direction of Palis’ conjectures and other
important dynamical properties.
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2. Elementary events and a sample result

Here we expose ideas in a general setting. Consider a family of diffeomorphisms
{fe}eep C Diff" (M) of a compact manifold with a probability measure u supported
on the set of parameters B. To avoid distracting details we postpone specification of
u and B.

Let us fix a certain property & of periodic points of period n. In both cases that
we will consider, & is some form of quantitative hyperbolicity. We split the problem
into two parts.

e Estimate the measure of the set

w(By) < n, B, ={e € B: f; has aperiodic orbit that does not satisfy &} C B.

e Derive some dynamically interesting properties from this estimate.

The second part essentially depends on the problem. As for the first part, ap-
plication of the discretization method and Newton interpolation polynomials give a
uniform approach to get a required estimate. First, we discuss the problem of growth
of the number of periodic points (see Theorem 2.1 below).

For y > 0 we say that x = f"(x) is (n, y)-hyperbolic if all eigenvalues of the
linearization df” (x) are at least y-away from the unit circle’>. For y > 0 this is
a weak analog of Kupka—Smale property. Fix some ¢ > 0 and a decaying to zero
sequence of positive numbers cI" = {cy; }nez, -

We say that the map f; satisfies the inductive hypothesis of order n with constants
cl', denoted f. € IH(n,cI'), if for all k < n all periodic orbits of period k are
(k, cyx)-hyperbolic. Consider a sequence of “bad” sets in the parameter space

By(clNY={eeB: feelHn—1,cl'), but f, ¢ IH(n, cl')}. (1)

In other words, B, (cI") is the set of “bad” parameter values ¢ € B for which all
periodic points with period strictly less than n are sufficiently hyperbolic, but there is
a periodic point of period n that is not (n, ¢y, )-hyperbolic.

Our goal is to find an upper bound

p{Bu(cl)} < pin(cT) @)

for the measure of the set of “bad” parameter values. Then the sum over n of (2)
gives an upper bound u{ U, Bn (CF)} < Y ,~1 4n(cT") on the set of all parameters
¢ for which f; has a periodic point of some period » that is not (n, cy;,)-hyperbolic.
If the sum converges and ), .| un(cI') = u(c) — 0as ¢ — 0, then for p-almost
every ¢ there is ¢ > 0 such that for every n every periodic point of period n is
(n, cyy)-hyperbolic.

This statement (almost) implies that all periodic points of period n are at least &
cyn-apart and, therefore, the number of periodic points is bounded by & (cy,,)~49mM

2In [KH1] we use a stronger property of hyperbolicity of periodic points (see Section 2 of that paper).
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(see [KH1], Proposition 1.1.6). Thus, the key to prove a statement that a certain
property is prevalent, i.e. holds for almost every parameter value, is an estimate of
the probability (2) of a “bad” event. One could replace the property of hyperbolicity
of periodic points by another property and still the key is to get an estimate of the
probability to fail a certain dynamical property.

Our goal is to outline the proof of the following result:

Theorem 2.1 ([KH1], [Ka3], [Ka4]). For a prevalent set of diffeomorphisms f €
Diff" (M), with 1 < r < oo, and for all § > 0 there exists C = C(8) such that

P, (f) :=#{isolatedx € M : f"(x) = x} < exp(Cn'*?).

Density of diffeomorphisms with this property is the classical result of Artin—
Mazur [AM] (see also [Ka2] for a simple proof). In [Kal], using [GST], it is shown
that diffeomorphisms having an arbitrary ahead given growth along a subsequence
are topologically generic.

In Section 7 we briefly describe application of the method of the paper to Newhouse
phenomenon from [GK].

3. Strategy to estimate probability of a ‘“bad” event: discretization
method

The goal of this section is to outline how one can get estimate (2). Usually we do
not know where is a “bad” trajectory, which fails 4, and what are the dynamics in
its neighborhood. So our analysis will be implicit. More exactly, we shall consider
all possible trajectories in the family { f: }.cp and the worst case scenario for each of
them.

In order to fail the inductive hypothesis of order n with constants cI", a diffeo-
morphism f; should have a periodic, but not (n, cy,)-hyperbolic point x = f/(x).
There is a continuum of possible n-tuples {xi}o<k<, such that for some ¢ € B we
have f(xr) = Xk41 (modn) and xo is not (n, cy,)-hyperbolic. Instead of looking at
the continuum of n-tuples, we discretize this space and consider only those n-tuples
{xx}o<k<n that lie on a particular grid, denoted I}, , and replace trajectories by ;-
pseudotrajectories. If we choose the grid spacing y,, small enough, then every (almost)
periodic point of period n that is not sufficiently hyperbolic will have a corresponding
v»-pseudotrajectory of length-n on the grid that also has small hyperbolicity. In this
way we reduce the problem of bounding the measure of a set of “bad” parameters
corresponding to a particular length-n y,-pseudotrajectory on the chosen grid.

Thus, the basic requirement for the grid size 7, is that every real periodic trajec-
tory {x; = fgk (x0)}o<k<n of length n can be approximated by a j,-pseudotrajectory
{Xr}o<k<n so that if xp is periodic but not (n, cy,)-hyperbolic, then the n-tuple
{Xr}o<k<n is not (n, cy,/2)-hyperbolic (see [KH1], sect. 3.2 and [GK], sect. 8 for
various definitions).
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We call an n-tuple {xk}z;(l) cl )g‘n a yn-pseudotrajectory associated to some ¢ (or
to the map f.)ifforeachk =0,...,n—1wehave dist(fe(xr—1), Xx) < yYn and we
call it a y,,-pseudotrajectory associated to B (or the family { f: }c<p) if it is associated
to some ¢ € B.

The naive idea of estimate (2) consists of two steps:

Step 1. Estimate the number of different y,,-pseudotrajectories #, () associated to B;
Step 2. For an n-tuple {x;}o<k<n—1 C I )’;n estimate the measure

nle € B : {xx}o<k<n—1 is a y,-pseudotrajectory associated to &

3
which is 9, -periodic but not (n, ¢y, /2)-hyperbolic} < wu,(cyn, Yn)- ©)

Then the product of two numbers #,,(y,,) and w, (cyn, V) that are obtained in Steps 1
and 2 gives the required estimate. In fact, this simpleminded scheme requires modi-
fications discussed at the end of the next section (see (10-13)).

We start with the second step. For simplicity we shall discuss 1-dimensional
maps (see [KH1], sect. 3). In [KHI1], sect. 4.2 we discuss difficulties arising to
extend this method to multidimensional maps. See also [GK], sect. 10 (resp. [Ka4],
sect. 7-8), where 2-dimensional (resp. N-dimensional) case is considered. To treat
the multidimensional case one use very similar ideas, however, technical difficulties
arising due to multidimensionality are fairly involved. Now we show how to estimate
probability (3) within a particular polynomial family and then show how to do Step 1
and incorporate the method into the global framework.

4. Newton interpolation polynomials and an estimate of probability of
a p,-periodic but not (n, cy, /2)-hyperbolic y,-pseudotrajectory of
length n

Let M be an interval [-1, 1] and /;;, C [—1, 1] be a y,-grid. Fix an n-tuple of points
{xk}z;(l) C I;,. Consider the following 2n-parameter family of maps:

2n—1 k—1

fu) = F)+ Y ur [T = %) mod m)-

k=0  j=0

This family is nothing but the Newton interpolation polynomials associated to the
2n—1

n-tuple {xk}z;(l). Denote ¢, (x) = Y ;0 ur ;:(1) (X — Xj (mod n))- Notice that
du(x0) = uo,
Gu(x1) = ug + u1(x1 — xo),
Gu(x2) = ug + u1(x2 — x0) + uz(x2 — xp)(x2 — x1),
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Qu(xp—1) =uo +u1(xp—1 —x0) +...
+up—1(xp—1 —x0) ... (Xp—1 — Xp—2), 4
m—1 &k

ad
¢, (x0) = a( ]; ”kjl:([)(x — Xj(mod n)))|x:x0,

2n—1 k

¢1/4 (xn—l) = %( Z Uk l_[(x — Xj(mod n)))|x:x,,_1'

k=0  j=0

These formulas are very useful for dynamics. For a given map f and an initial
point xo, the image f, (xo) = f(x0) + ¢, (x0) of xg depends only on ug. Furthermore
the image can be set to any desired point by choosing u( appropriately — we say then
that it depends only and nontrivially on ug. If xo, x1, and uq are fixed, the image
fu(x1) of x1 depends only on u1, and as long as xg # x1 it depends nontrivially on u;.
More generally for 0 < k < n — 1, if distinct points {x; };?:0 and coefficients {u; };‘;é
are fixed, then the image f; (xx) of x; depends only and nontrivially on u.

Suppose now that an n-tuple of pairwise distinct points {x; };’;& and Newton coef-

;‘;& are fixed. Then derivative f, (xo) at xo depends only and nontrivially

onuy. Likewise for 0 < k < n — 1, if distinct points {x; };’;01 and Newton coefficients
{u j } ji(lf -
Up+k-

As Figure 1 illustrates, these considerations show that for any map f and any
desired trajectory of distinct points with any given derivatives along it, one can choose
Newton coefficients {uk},%g)l and explicitly construct a map f, = f + ¢, with
such a trajectory. While the parametrization depends on the n-tuple, the family is
equivalent by a change of parameter coordinates (see Section 5) to the family {f:}.
of perturbations by degree 2n — 1 polynomials, given by (14).

Using these properties of Newton interpolation polynomials we can easily estimate
probability (3). Let us split this compound dynamic event into simple ones and use
the above properties:

ficients {u;}

are fixed, then the derivative f, (xx) at x; depends only and nontrivially on

L. | fe(x0) — x1] < Vs
2. | fe(x1) — x2] < Vs

- 5
n. | fe(xn—1) — x0l < Vs )

n—1

ntl | TTIReI =1 = e,
j=0
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X0 X1 Xk Xk

1

u (Xk) l

ug Ug
Ju(x0) ? 1 Ju i) ? T
7 (x 7 (x
° | k |
Un Un+k

Figure 1. Newton coefficients and their action.

First, we find probabilities of these events with respect to u-parameters (see [KH1],
sect. 3.3 for more details). It turns out that the map relating e-parameters and u-
parameters is one-to-one, linear, and volume-preserving (see Section 5).

Notice that in (4) and Figure 1, the image f; (xo) of xg is independent of uy for all
k > 0. Therefore, the position of f, (xg) depends only on ug. For the 1-dimensional
Lebesgue measure of the u(’s we have

Leb {ug : |fu(xo) — x1] = |f(x0) +uo — x1] < ¥} < 2¥n.

Fix ug. Similarly, the position of f;,(x1) depends only on u; (see (4) and Figure 1).
Thus, we have

5 2y,
Leb{uy : | fu(x1) — x2| = | f(x1) + uo + u1(x1 — x0) — x2| < ¥} < rnxol'
Inductively fork = 2,...,n — 1, fix ug, ..., ur—1. Then the position of f, (xx)

depends only on uy. Moreover, fork =2, ...,n — 2 we have

k m—1
Lebfug | fub) = sl = | £ G0 + 3w [T o = x) = x0| = 7
m=0 j=0
27
[15= I — x;1
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and for k = n — 1 we have
29,
n—2 :
[Ti= |xn—1 _xj|

In particular, the parameter u,,_; is responsible for (n, y,)-periodicity of the n-tuple
{xr}o<k<n. This formula estimates the “measure of periodicity”.

(6)

Leb{unfl D fuCen—1) — xol < )711} =

Choose uy, ..., u,—1 so that the n-tuple {xk}Z;é is a (n, y,)-periodic ¥, -pseudo-
trajectory. Notice that parameters uy,, u,+1, - . ., U2,—1 do not change the ¥, -pseudo-
trajectory {xk}z;(l). Fix now parameters uy, . . ., u2,—2 and vary only u2,_1. Then for

any C!-smooth map g: I — I, consider the 1-parameter family

n—2

Buz,y (X) = g(x) + (x — x, 1) [ [ — x>
j=0

Since the corresponding monomial (x —x,_1) ]_[;’;g (x —x; )2 has zeroes of the second
order at all points xi, except the last one x,,_1, we have

n—1 n—2 n—2
[T @) = (8/'Cn0) + wzamt [T b =) [T ). @
Jj=0 j=0 j=0

To get the final estimate, we use the fact that we are interested only in maps from the
family { f,,},. Suppose | f;) (x,—1)| is uniformly bounded by some M. For condition
(n + 1) of (5) to hold, ]_[;’;é fu’(xj)| must lie in [1 — ¢y, /2, 1 + ¢y, /2]. If this
occurs for any us,_1, then | ]—[;’;g fb:(xj)| > (1 — ¢y, /2)/ M, for all uy,_1, because
this product does not depend on u»,_1. Using (7) and the fact that 1 — ¢y, /2 > 1/2,
we get

2
c;” } <M, o @®)

) .
7:0 [xXp—1 — xj|2

n—1
Leb fuzr: | [T 1A00x01 = 1] =
j=0
This formula estimates the “measure of hyperbolicity”.
We can combine all these estimates and get
Leb"+l{(u0, ey Up—1,U2n—1) : fyu satisfies conditions (5) and || fullc1 < M1}
2Micyy ri—[l 2V )]

- H}“;é |Xn—1 — xj|2 met 1170 [m — x|

This completes Step 2, but leaves many open questions which we shall discuss while
treating Step 1. The estimate of Step 1 then breaks down as follows:

# of initial # of 7,-pseudotrajectories

#,(vn) ~ 1
n(¥n) points in /5, . per initial point (10)
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And up to an exponential function of n, the estimate of Step 2 breaks down like:

periodicity (6) hyperbolicity (8)

Measure of Measure of

Wn (CVns Vn) =

# of 7,-pseudotrajectories

per initial point

(Roughly speaking, the terms in the numerator represent respectively the measure of
parameters for which a given initial point will be (n, ,)-periodic and the measure
of parameters for which a given n-tuple is (n, cy;,)-hyperbolic; they correspond to
estimates (6) and (8) in the next section.) Thus after cancellation, the estimate of the
measure of “bad” set B, (cI") associated to almost periodic, not sufficiently hyperbolic
trajectories becomes:

Measure of bad - # of initial « Measure of y Measure of (an
parameters ~ | points of I}, periodicity (6) hyperbolicity (8)
Consider only pseudotrajectories having ]_[7;3 [xXp—1 — xj| > (cym)'* and sup-

pose y, = M{"cy,. Then up to exponential function of n the first term on the right
hand side of (11) is of order (cyn)_l. The second term has an upper bound of order
(cyn)3/ 4. and the third term is at most of order (cy,,)l/ 2 so that the product on the
right-hand side of (11) is of order at most (cy,)'/# (up to an exponential function in
n). If cy, is exponentially small with a large exponent in n, then w, (cyy, y,) is at
most exponentially small. This discussion motivates the following

Definition 4.1. A trajectory xo, ..., x,—1 of length n of a diffeomorphism f €
Diff" (BY), where x; = fk (xp), is called (n, y)-simple if

n—2
[Tl — el = v
k=0

A point xg is called (n, y)-simple if its trajectory {xx = f* (XO)}Z;é of length n is
(n, y)-simple. Otherwise a point (resp. a trajectory) is called non-(n, y)-simple.

If atrajectory is simple, then perturbation of this trajectory by Newton interpolation
polynomials is effective. The product of distances is a quantitative characteristic of
recurrent properties of a trajectory. If it is small enough, then there are close returns
of it to xq before time 7.

Even though most of properties of periodic orbits do not depend on a starting point,
it turns out that for the above product, even asymptotically, it does matter where to
choose the starting point. A good example to look at is periodic trajectories in a
neighborhood of a planar homoclinic tangency (see [KH1], sect. 2.4 for more). It
motivates the following
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Definition 4.2. A point x is called essentially (n, y)-simple if for some nonnegative
Jj < n, the point f/(x) is (n, y)-simple. Otherwise a point is called essentially
non-(n, y)-simple.

In (11) we consider only (n, ¢y, )-simple pseudotrajectories. To study nonsimple
pseudotrajectories we look for their simple almost periodic parts. More exactly, for
each non-(n, cyy,)-simple pseudotrajectory we find such a close return, say xi, that
{x; };’;& is almost equal ton / k copies of {x; }4]/:(1) and {x; }j:(l) is (k, cyx)-simple. Dueto

closeness, sufficient hyperbolicity of {x; }j.‘;é implies sufficient hyperbolicity {x; }}:& .

Then investigation of the measure of nonhyperbolicity of nonsimple pseudotrajectory
reduces to the measure of nonhyperbolicity of its simple almost periodic parts. Thus
to obtain w, (cyy, ¥») from (3) we arrive at the following scheme:

Measure of bad parameters
. L . . = (12)
associated to periodic nonhyperbolic orbits
Measure of bad parameters Measure of bad parameters
associated to simple periodic (I) |4 | associated to nonsimple periodic (II)
nonhyperbolic orbits nonhyperbolic orbits
Measure of bad parameters associated to < (13)
nonsimple periodic nonhyperbolic orbits | —
Partition of nonsimple periodic Measure of bad parameters
orbits into simple & associated to short non-simple
almost periodic parts (II.A) almost periodic nonhyperbolic orbits (II.B)

As a matter of fact (13) requires additional comments, since the left hand side is a
number, while the right hand side is not. To estimate the number from the left hand
side we do two step procedure described in the right hand side. First, we do a certain
partition (II.A) and then estimate a different number (I.B), which turn out to be an
upper bound for the left hand side.

This diagram summarizes the problems we face in the proof.

e Part (I): how to estimate the measure of parameter values (11) associated with
simple periodic nonhyperbolic orbits;

e Part (II.A): how to partition a nonsimple periodic orbit into almost periodic parts
so that hyperbolicity of an almost periodic part implies hyperbolicity of the whole
orbit;

The part (IL.B) (how to estimate the measure associated with (11) simple periodic
nonhyperbolic shorter orbits) can be treated in the same way as part (I), even though
the actual details are usually quite involved (see [KH1], sect. 3.5-3.6).
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5. How to collect all simple (almost) periodic pseudotrajectories: the
Distortion and Collection Lemmas

In this section for the model family we show how one can justify heuristic estimates
(10 — 11). The model family is the family of perturbations of a C> map f: [ —
I, I =[—1, 1] such that f(I) strictly belongs to /

2n—1

fel) = f)+ ) eexts &= (o, e2-1). (14)

k=0
This is a 2n-parameter family. Assume that parameters belong to a brick, called the
brick of standard thickness with width t (see [KH1], sect. 3.1 in the 1-dimensional
case, [KHI1], sect. 4.3, [Ka4], sect. 8.3 in the N-dimensional case, [GK], sect. 2.3 and
11.2 for modified definitions in the 2-dimensional case applicable to the problem of
finiteness of localized sinks)

_ T
HBY,, (1) = {{8;(}%":01 : forall0 <k < 2n, |g < F}

For small enough 7 the map f.: I — [ is well defined foralle € H Bith (7). Since
we are interested in the measure O or 1 events, one could chop a brick of another
shape into smaller bricks of standard thickness and use the same proof. Suppose

SUPge st (o) I fellcr < M for some M.

<2n

Define the Lebesgue product probability measure, denoted by /’Ls<th,r’ on the

Hilbert brick of parameters H B¥, () by normalizing the 1-dimensional Lebesgue

measure along each component to the 1-dimensional Lebesgue probability measure

m! k—1
st st st
lu“m,r = (2,[) Lebl’ /’L<k,r =><m:O lu“m,f‘
By definition of “S<tzn . we have that g, ..., €2, are independent uniformly dis-

tributed random variables.

How to get from this family to a “generic finite-parameter family” is a tedious two
step procedure based on Fubini theorem. The first step, from finite-parameter poly-
nomial families to families of analytic perturbations, is discussed in [KH1], sect. 2.3,
see also [GK], sect. 3.2. The second step, from analytic perturbations to prevalent
finite-parameter families, is discussed in [KH1] Appendix C.

Consider an ordered n-tuple of points X, = {xk}z;(l) € I". One can define an
linear map °C}X,, : ]Rg” — Rﬁ” given implicitly by the following formulas

2n—1 2n—1 k—1
D e =) we [ G = Xjmoa my)- (15)
k=0 k=0 =0

where DC}(n (€0y -« E2n—1) = (ug, ..., uzy—1). In [KHI], sect. 2.2 we give an ex-

plicit definition of this map using so-called divided differences, and call it Newton
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map. It provides relation between e-coordinates and u-coordinates. It turns out that
QC}YH is volume-preserving and Msizn’r-preserving ([KH1] Lemma .2.2.2). Therefore,
estimate (9) in u-space and e-space are the same.

‘We now estimate the distortion of the Newton map QC}(n as amap from the standard

basis {8/(}%';_01 in the space of polynomials of degree < 2n to the Newton basis

{uk}i’; 6] . It helps to have in mind the following picture characterizing the distortion
of the Newton map.

€n—1 Uzn—1

£0 °CXn . 0]

Figure 2. Distortion by the Newton map.

The Distortion Lemma ([KH1], sect 3.4). Let X, = {x; }}:& € I" be an ordered
n-tuple of points in the interval I = [—1, 1] and DC}(": ]Rg” — Rg” be the New-
ton map, defined implicitly by (15). Then the image of the brick of standard thick-
ness H Bitzn (t) with width T > 0 is contained in the brick of standard thickness
HB%, (3t) with width 3t:

<2n

Ly (HBY,, (1)) C HBY,,(31) C R,

<2n <2n

In other words, independently of the choice of an n-tuple {x; };’;& e 1" for any

0 < m < 2n, the coefficient u,, has at most the range of values |u,| < 377, in the
image GC}(" (HB%, (1)).

<2n

The proof is simple, provided the Newton map is explicitly defined (see [KH1],
sect. 2.2).

In the N-dimensional case the statement of the necessary Distortion Lemma is
somewhat involved. Even to define the N-dimesional Newton map one has to in-
corporate many multiindices (see [KH1], sect. 4.2-4.3, [Ka4], sect. 8.2—-8.3) For the
statement and the proof of a modified Distortion Lemma applicable to the problem of
finiteness of localized sinks see [GK], sect. 11.4.

For a given n-tuple X, = {x; };’;& € 1", the parallelepiped

P, x, (1) = Ly (HBY,, (1)) C R}

<2n
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is the set of parameters (ug, . . . , 42,—1) that correspond to parameters (g, . . ., 24—1) €
HB%, (v). In other words, these are the Newton parameters allowed by the family
(14) for the n-tuple X,,. Since £1 is volume-preserving it follows that (1:)

has the same volume as H Bitzn (1:), but the Distortion Lemma tells us in addltlon that

the projection of P%, x,, (7) onto any coordinate axis is at most a factor of 3 longer

than the projection of H Bith (7).

Let X,, = {x; }}71:_01 be the m-tuple of first m points of the n-tuple X,,. We now
consider which Newton parameters are allowed by the family (14) when X, is fixed
but x,, ..., x,—1 are arbitrary. Since we will only be using the definitions below for
discretized n-tuples X,, € [ )’72,7’ we consider only the (finite number of) possibilities
Xms -+ Xp—1 C Ij,. Let

”Z’zﬁgm ‘R - R"  and ”benflm ‘R 5 Ry,
be the natural projections onto the space R/} of polynomials of degree m and the space
R,,, of homogeneous polynomials of degree m respectively. Denote the unions over

all xp, ..., xp—1 € I, of the images of J °St X, x., (t) under the respective projections
u,X, u,X,
7T<2n,§m and n<2n,m by
u,X,

st _ m
‘7)<2n <m, X, (T) - Uxm ..... xXn—1€lyp, 7T<2n <m (*/ <2n,Xn (T)) C Ru s
u X

P <2n m, X, (‘L’) = Uxm,...,xn_lell;, <2n m(J <2n,X, (t)) C Rum'

For each m < n, the set P3 <2n <m.X,, (7) is a polyhedron and "ith’m X, (r) is a
segment of length at most 67/ m! by the Distortion Lemma. Both depend only on the
m-tuple X, and width . The set szn <m.x,, (T) consists of all Newton parameters

{u; ) im0 € R} that are allowed by the famlly (14) for the m-tuple X,
For each m < n, we introduce the family of diffeomorphisms

m s—1

Futmy X, () = FO) 4+ D us [ = x)), (16)

s=0 j=0

where u(m) = (ug, ..., uUy) € P SZn <m.X,, (t). For each possible contlnuatlon X,

of X,,, the family fu(m) x,, includes the subfamily of f, x, (withu € J (r))
corresponding to U1 = Upym42 = -+ = uzy—1 = 0. However, the actlon of fu,X,,
on xo, ..., X, doesn’t depend on w41, ..., Uzy—1, so for these points the family
Sfum), x,, 1s representative of the entire family f,, x,. This motivates the definition

Lvn
<2):z <m, -c(f X0s -+ o5 Xm—1, xmvxm-i-l)
{u(m) €d 2n,<m, X, (v) C R
|fu(m),Xm(xj—l) —xjl <ppforj=1,....m+1}.



Newton interpolation polynomials and discretization method 41

The set T<1’27;"’ <m.( f3X0, .-y Xm—1, Xm, Xm+1) represents the set of Newton param-
eters u(m) = (uo, R um) allowed by the family (14) for which xg, ..., x4+1 1S a
Yn-pseudotrajectory of f,m),x, (and hence of f, x, for all valid extensions # and
X, of u(m) and X,,).

In the following lemma, we collect all possible y,-pseudotrajectories and estimates
of “bad” measure corresponding to those 7, -pseudotrajectories. The idea of the proof
of this lemma is the following. Let m be some number 0 < m < n. Suppose
an (m + 1)-tuple xo, ..., x, C I, is fixed and we are interested in the number of
possible continuations x,, 1 € I so that xq, ..., X, is associated to the family
(14). Consider the family (16), where uo, . . ., u, 1 are fixed. By Distortion Lemma

37 . . . .
we have |u,,| < —. Rewrite this family, applied to x,,, as
m!

m—1 s—1 m—1
Futm X Com) = [ @) + > s [ [ = x7) + 1um [ [ Gom = %)
s=0  j=0 j=0
Since all uy’s except u,, are fixed, the range of x,,41 associated to the family (14) is
bounded by 37 ]_[}71:_01 (Xm — xj)/m!.

-1
37 ]_[;":0 [Xm — x;|
< J= @7

Km+1 - m!

Figure 3. Collection of pseudotrajectories.

The Collection Lemma. With the notations above, for all xo € I the measure of
the “bad” parameters satisfies

p,i[z,” {8 . there is a y,-periodic y,-pseudotrajectory from I]';'n starting at xo,

an

—D! 2n-1!
which is not (n, Mf”cy,,)-hyperbolic} < 62"M;m+1 (=Dt @n = DY 4y, ynl/4.
T

T
For the modified Collection Lemma for the N-dimensional case see [Ka4], sect. 9.3,
and for the problem of finiteness of localized sinks in the 2-dimensional case see [GK],
sect. 11.6, respectively.

Corollary 5.1. With the notations above the measure of the “bad” parameters satisfies
/Li’zn’, { & . there is a y,-periodic y,-pseudotrajectory from I f’”,

- D! 2n—-1)!
which is not (n, M?"cyn)—hyperbolic} <2. 62"M;erl (=Dt @n= DY cl/4 y1/4.
T

n
T
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Since there are 2/y,-grid points of I;; C [—1, 1], this corollary follows directly
from the Collection Lemma. Suppose that y,,-discretization is fine enough to be able
to approximate “real” trajectories by y,-pseudotrajectories well enough (see [KH1],
Proposition 3.1.2, its proof, and (3.17) in the 1-dimensional case, [Ka4], sect. 9 in
the N-dimensional case, and [GK], sect. 8 for the problem of finiteness of localized
sinks). Then up to the error term 6" M f”“ this proves (11).

Proof of the Collection Lemma. We prove by backward induction on m that for
X0, ..., Xy C I);n,
u? <2n . {there is a ,-periodic y,-pseudotrajectory from I . startlng

with xg, ..., x,, which is not (n, M;" cy,)-hyperbolic} (18)
D! 2n — 1)'
T T

1/4

2 a1 (0= D! t 1.7 . 1/4 =~
<6 " mM " Ms<m,t{T<2nn,§m—1.r(f’ RUIEEE ’xm)} ¢ / Yn¥n

resulting when m = 0 in (17).
Consider the case m = n — 1. Fix an (n, ¢y, /2)-simple n-tuple X,, = {x; }7 é €
1 );‘n. Using formulas (6) and (8), we get

oy Aun—1 1| fux, (n—1) — xo| < V)
(n—1)! Vn 3 24 — 1! VA 1A
n—2 — Vn J/n
T Hm:o [Xp—1 — X | T

and
I [ ‘Hl(fux,l)(xj —1| < MPen)

2n — 1)! 4M;" ey, - 21203 (20 — 1) RV
T nm_:ZO |xXn—1 — xm|2 B T e

The Fubini Theorem, preservation of generalized volume by the Newton map (see
[KH1], Lemma 2.2.2), and the definition of the product measure ,u<2n . imply that

Mitz,u {there is a y,-periodic y,-pseudotrajectory from I}';’n starting

with xg, ..., x,—1 which is not (n, M%"cy,,)—hyperbolic}

t Ly t . ~
<niia [T<2n <n—2.:(f3 %0, ., xnfl)] X Un_1.1 {un—1: ’fu,X,, (xp—1) — Xo‘ <}

2n—2 n—1

x H (P2, (O X 18z | TT1Cx) 6l = 1] = Mieya |
s=n j=0

D! 2n — 1!
T T

(n — 1,7 - 1/4
211/43}1 1M4”Jrl /'LS<[n—l,t{T<2):l,§n_2.l—(f; X0y e v xn—l)} Cl/4 Yn Vn/ .
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The last inequality follows from the Distortion Lemma, which says that for each
s=n,n+1,...,2n -2

Ms r{oith ,8,Xp (T)} =< 3

Since 2!1/437=1 —« 6"+ this yields the required estimate (18) form =n — 1.
Suppose now that (18) is true for m 4 1 and we want to prove it for m. Denote by

Gi;ﬁ,m,f(f’ u(m — 1); xo, ..., xm) C I, the set of points x,,41 of the y,-grid I,
such that the (m + 2)-tuple xo, ..., Xp+1 1S @ Pp- pseudotrajectory associated to some
extension u(m) € (’;tz” “m.X,, (r) of u(m—1). In other words, <]2/;; m, (s u(m=1);
X0, ..., Xm) is the set “of all possible continuations of the y,-pseudotrajectory
Xo, - - . , X using all possible Newton parameters u,, allowed by the family (14).
Now if xg, ..., x;; is a y,-pseudotrajectory associated to u(m) = (ug, ..., Um),
then at most one value of x,, 1 € I, are within y;, of f,m), x,, (Xxm). Thus for fixed

uim—1) = (uo, ..., um-1) € P, ., x, (1), each value of u,, € ?ith,m,X,, ()

corresponds to at most one point in G<2n m. L foulm —1); x0, ..., xp). It follows
that

t ly
Z 'u“sfm,‘f{ <2}:<m -[(f xO’---a-xm—H)}

X1 €GEY  (fuu(m—1):x0. )
st 1,}7 .
=2 /’L {°(P<2n m, X, (T)} I‘Lfm—l,t{T<2nn,§m—l,r(f’ X0, -1 xm)}

The Distortion Lemma then implies that

t ly
Z Msim‘r{ <2nn<m r(f xo,"'vxm-l-l)}

>
Xm+1EG;;,?Wm,,(fvu(m*I);xo ----- Xm)
1,y
= 6 M<m 1, r{T<2n <m-—1, ‘L'(f X0, - - "xm)}‘

Inductive application of this formula completes the proof of the Collection Lemma.O

This completes an outline of treatment of part (I) of (12) for the 1-dimensional
case. To carry out part (I) of (12) in the N-dimensional case (N > 1) we use the
same ideas, but have to overcome additional difficulties. We discuss them in details
in [KH1], sect. 4.1 (detailed discussion of the 2-dimensional case can be found in
[GK], sect. 10-11 and of the N-dimensional case in [Ka4], sect. 8-9) and just briefly
mention them here.

e (Nonuniqueness) It turns out that there are many ways to write Newton interpo-
lation polynomial in N variables.

e (Dynamically essential coordinates) Among many N -dimensional Newton
monomials we need to choose those effective for perturbation (see [KH1] (4.6—4.7),
[GK], sect. 10.1, and [Ka4], sect. 8.2).
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o (The multidimensional Distortion Lemma) The 1-dimensional Distortion Lemma
leads to an exponential factor 6> coming from dimension of the space of polynomials
of degree < 2n in 1-variable. The space of polynomials of degree < 2n in N-variables
is ~ (2n)N. This forces us to find a better multidimensional Distortion Lemma (see
[KHI1], sect. 4.3, [Ka4], sect. 8.3, and [GK], sect. 11.4).

To treat part (II.A) of (13) we need to analyze nonsimple (recurrent) periodic tra-
jectories of period n knowing that all periodic trajectories of period < n are sufficiently
hyperbolic (see (I) of (12)).

6. Partition of nonsimple periodic trajectories into simple almost
periodic parts

Analysis of nonsimple periodic trajectories of multidimensional diffeomorphisms,
performed in [KH1] and [Ka4], occupies sect. 2.4 and 3.5 in [KH1] and section 5 in
[Ka4]. The goal for each nonsimple periodic trajectory {x; = f/ (xo)};';é of period n

find a close return, say xi, so that {x; }7;5 nearly repeats {x; }f;é exactly n/k times

and {x; }jf;é is simple. This, in particular, means that hyperbolicity of {x; }j:é and
{x; };’;& are closely related. Here we just summarize the strategy to obtain such a
partition. This is exactly the step where we cannot handle a sequence of {cy,}n>1
that decay slower than a stretched exponential exp(—nH‘s) (6 > 0). In other words,
if y, decays not too fast, say exponentially, we are unable to find a close return with
the above properties (see [KH1], Appendix D for further discussion).

The following definitions are the key elements of the mechanism to find a close
return. They quantitatively characterize close returns.

Definition 6.1. Let g be a diffeomorphism and let D be large and positive. A point
Xo (resp. a trajectory xq, ..., Xp—1 = 8" 1 (xp) of length n) has a weak (D, n)-gap at
a point x; = g¥(xo) if

xr—xol < D™" min |xg — x;|.
Xk — xol < O<j§k71|0 Jjl

and there is no m < k such that xo has a weak (D, n)-gap at x,,, = g" (xp)-

This definition characterizes a close return at xp. For the proof we need a modifi-
cation of this definition (see [KH1], Definition 3.5.3). See the Shift Theorem [KH1],
sect. 3.5 and [Ka4], sect. 5 for all the details. Recall that {cy,},>1 is the sequence
tracking hyperbolicity of periodic trajectories of period n introduced in the beginning
of Section 2.

Definition 6.2. Let g be a C2-smooth diffeomorphism. Let also ¢ > 0 and k < n be
positive integers. We say that a point xg has a (k, n, ¢)-leading saddle if |xo — xj| <
n1 (cyk)z. Also if xq is (n, y,)-periodic, we say that xo has no (n, ¢)-leading saddles
if for all k < n we have that x¢ has no (k, n, ¢)-leading saddles.
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Now start with a diffeomophism f satisfying the inductive hypothesis of order
n — 1 with constants cI, i.e. for any k& < n all periodic trajectories of period k are
(k, cyr)-hyperbolic. In particular, it means that all periodic trajectories of period

k < n are either sinks, or sources, or saddles.

All almost periodic
trajectories

With a leading No close No leading
saddle return saddle
/
Sufficiently Simpl With a
. imple
hyperbolic P close return

Figure 4. Various types of almost periodic periodic trajectories.

e The definition of a leading saddle is designed in such a way that if xo has a
(k, n, ¢)-leading saddle, then there is a periodic point x* = f k(x*) close to xg (see
[Ka4], Lemma 5.2.3). If xg, xo, ... all stay close to x*, then xg = f"(xg) inherits
hyperbolicity of x* (see [Ka4], Lemma 5.2.1).

e Suppose xgo has a (k, n, ¢)-leading saddle, but for some p < n/k the corre-
sponding x, leaves a small neighborhood of x*. Then one can show that x; has no
(n, ¢)-leading saddles (see [Ka4], Lemma 5.2.4).

e Suppose Xo = xpi has no (n, ¢)-leading saddles. It turns out that X( can have
at most dim M weak (D, n)-gaps at some X, ..., Xk, s < dim M. The reason is
that each weak (D, n)-gap Xy, after the first one at k; implies that the linearization
df*1 (%) has an almost eigenvalue that is a kj/ki-root of unity, and the same is true
for kg1 = n (see [Ka4], Theorem 5.1.4).

e Suppose Xo has no (n, c)-leading saddles and has s < dim M weak (D, n)-
gaps. Then we can show that it is (n, ¢y, )-simple (see [Ka4], Theorem 5.3.1 and its
extension necessary for the proof: Theorem 5.4.1).

This scheme is summarized in the diagram (see Figure 4).

7. Finititude of number of localized coexisting sinks

In this section we give a short exposition of a result from [GK] concerning the New-
house phenomenon of infinitely many sinks. The primary goal of [GK] is to analyze
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trajectories localized in a neighborhood of a fixed HT. A sink is the simplest attractor.
We now introduce notions of an unfolding of a homoclinic tangency and localized
trajectories of finite complexity associated to that homoclinic tangency.

Consider a 1-parameter family of perturbations {f:}ce;, I = [—€0, 0] of a
2-dimensional diffeomorphism f = fy € Dift" (M) with homoclinic tangency,
where g¢ is small (see Figure 5). Roughly speaking, ¢ parameterizes oriented distance
of the top tip of the unstable manifold to the stable manifold. Such a family is called
an unfolding of an HT.

q=1(0,1)

L e
W (po) %]

Po lg=0.1

W(po)

Figure 5. Homoclinic tangency.

Robinson [R], adapting Newhouse’s ideas [N1], [N2], showed that for such an
unfolding there is a sequence of open intervals converging to zero such that for a
generic parameter from those intervals the corresponding diffeomorphism f; has
infinitely many coexisting sinks.

Assume that f has a fixed saddle point pg = f(po) and that the eigenvalues A,
w of the linearization Df(pg), 0 < A < 1 < u, belong to the open dense set
of pairs of eigenvalues for which Sternberg’s linearization theorem holds. Then
in a small neighborhood V of py there is a C” smooth normal coordinate system
(x,y) € V. R?suchthat f(x, y) = (Ax, uy). Suppose g is the point of homoclinic
tangency of W*(po) and W¥(po) away from V, and let § = f~!(g) be its preimage.

Extend the coordinate neighborhood 1% by iterating forward and backward until
first it contains § and f(g), respectively. Decreasing V if necessary we can assume
that there are no overlaps. Denote such a neighborhood by V and call it a nor-
mal neighborhood. By deﬁmtlon V does not contain ¢ (see Figure 6). Consider
a nelghborhood U (resp. UcU ) of g (resp g) such that f(U) N U = @ (resp.
f~ 1(U) N0 = @), f(U) D U, and f(U) NV = . By rescaling coordinate axis
one could set g to have coordinates (1,0) and g to have (0,1). Set’ V = VU U. In
what follows we fix a neighborhood V once and for all.

Definition 7.1. We call an invariant set of points V-localized if it belongs to V. In
particular, any invariant set contained in

Ay =Nyez 1 (V)
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Po
A A

Figure 6. Localization for homoclinic tangency.

is V-localized. A periodic point f"(p) = p, n € N, is called V-localized if it
belongs to Ay and is called (V, s)-localized if its trajectory P = { f¥ (P)}i_, Visits
U exactly s times. Call s = s(J3) the cyclicity of a V-localized periodic orbit.

The zoo of V-localized invariant sets is incredibly rich. Below we just men-
tion the authors favorit animals: Smale’s horseshoe, infinitely many coexisting V-
localized sinks>, strange attractor (Benedicks—Carleson |[BC], Mora—Viana [MV],
Young—Wang [WY)), arbitrarily degenerate periodic points of arbitrary high peri-
ods (Gonchenko—Shilnikov—Turaev |GST1]), uniformly and nonuniformly hyperbolic
horseshoes as maximal invariant sets Ay (Newhouse—Palis [NP], Palis—Takens [PT],
Palis—Yoccoz [PY1], [PY2], Rios [Ri]).

The main result of [GK] is the following

Theorem 7.1. With the above notations, for a generic* 1-parameter family { fi}eer
that unfolds an HT at q there is a sequence of numbers {N}sen such that for almost
every parameter ¢ and any D € N the corresponding f. has only finitely many V-
localized sinks {*B;}jes whose cyclicity is bounded by D or period exceeds N5;, where
sj = s(B;j) > D is cyclicity of a corresponding sink B;. In other words, for almost
every parameter ¢ if there are infinitely many coexisting 'V-localized sinks {*B;}jc,
then all but finitely many have cyclicity sj = s(3;) > D and period < Ny;.

Remark 7.1. For 1-loop periodic sinks a similar result is obtained by Tedeschini-
Lalli-Yorke [LY]. Dynamical properties of periodic and homoclinic orbits of low
cyclicity (s = 1, 2, 3) were studied in [GST1], [GStT]. In particular, Gonchenko—
Shilnikov found the relation between existence of the infinite number of 2-loop sinks
and numerical properties of the invariants of smooth conjugacy [GoS].

3Actually Newhouse [N2] (see also Palis—Takens [PT] for a simplified proof) proved that for a Baire generic
set of diffeomorphisms in a Newhouse domain there are infinitely many coexisting sinks. However one can
construct infinitely many of those as V-localized.

4meaning of “generic” is in the sense of prevalence in the space of 1-parameter families see Section 9 for a
definition.
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Remark 7.2. We can choose Ny = §55°,

Palis—Takens [PT] and Palis—Yoccoz [PY 1], [PY2] investigated generic unfolding
of an HT not only for saddle periodic points but also for horseshoes. They investigated
parameters outside of Newhouse domains. We obtain less sharp properties of the
dynamics, but we treat parameters inside Newhouse domains too.

8. Discussion of the proof of Theorem 7.1

To prove Theorem 7.1 we follow very similar strategy as to prove Theorem 2.1. First
we introduce several notions:

Trajectory type, hyperbolic and parabolic maps. Any ('V, s)-localized periodic
orbit, by definition, visits U exactly s times and spends n1, na, ..., ng consecutive
iteratesin V,n = ny+ns+...+ng+s. Wecall an ordered sequence (n1, . . ., ng) type
of a periodic orbit. For a given periodic orbit denote the points of intersection with
U by py, Py, --., Ps—1 and the corresponding points in U by Po= f""(py), P1 =
fn2(pl)’ HRR) ﬁs—l = fnx(ps—l)‘

Recall that f is linear in V \ U with eigenvalues A < 1 < p, f|v\0(x, y) =
(Ax, py). Call this linear map hyperbolic, denoted L, and f | parabolic, denoted .

We replace hyperbolicity of periodic points from (1) by the cone condition.

Cone condition. To estimate the measure of parameters for which a periodic orbit of
a given type is not a sink and even has exponentially large linearization, we introduce
the following cone condition. Define at every point p € U a cone

Ka(p) ={v=(vy,vy) € T,V=R>: |v,] > p vy}

To show that the periodic point p is hyperbolic it turns out that it suffices to find
0 < o « 1 independent of n such that

ngn(Kan(Po)) - Kom(po)- (19)

To verify this condition directly does not seem possible in general. Our plan is to
verify that for most parameters this cone condition holds after each loop:

DfM ™ (Kan(pi)) € Kan(Pis moas)) foreachi=0,....s—1.  (20)

This condition clearly implies (19), because the image of the first cone Ky, (pg)
belongs to the second cone K,,(p;). The image of the second one belongs to the
third one and so on.

Fix 0 < o « 1. Notice that if all loops are long: n; > 3an, then L" Ky, (p;) is
the cone of width angle < 2u~%". Fix 1 < j < s. To satisfy condition (20) for j
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we need to avoid the intersection of the cone Df; B; (L" Kgn(p ;) and a complement
to Ko,,,(i)j“) (see Figure 7 for p = p;,). Assume that we can perturb Dfaj,j
by composing with rotation and angle of rotation is a parameter. Then we need to
avoid a phenomenon that has “probability” ~ ©~%". Taking the union over all types
Ny, |Ng| = n we get that probability to fail (20) forsome 1 <i < sis~ n*u=%". We
avoid saying explicitly probability in what space, just assume that it is proportional
to angle of rotation, and postpone the exact definition for further discussion.

L"(K(p))

Figure 7. Evolution of cones.

However, it might happen that one of n;’s is significantly smaller than an, e.g.
ng < Inn. In this case, the above argument fails. Indeed, let ny = [Inn], n > 1.
Consider the image of the cone K, (p,_;) after the last loop L"s K, (ps_). Itis the
cone, whose width angle is of order 1. Taking into account possibility that Df; p
rotates a vertical vector by 7 it is certainly not possible to fulfill (20) by a small
perturbation. The natural idea is fo avoid looking at condition (20) after “short”
loops. This leads to combinatorial analysis of type N of trajectories.

Combinatorial analysis of type Vs of s-loop trajectories. Below we do not pay
attention to dynamics of a trajectory of type N, under consideration. We investigate
only properties of the type N itself.

e Short and long loops ([GK], sect. 5.1). We shall divide an s-tuple N; =
(ny, ..., ny) into two groups of long and short n;’s, because they correspond to loops
of a trajectory. After such a division long n;’s should be much longer than short n;’s.
Denote by t (resp. s — t) the number of long (resp. short) loops.

e Generalized loops and essential returns ([GK], sect. 5.2). Since we cannot fulfill
(20) after short loops, we combine all loops into groups, called generalized loops.
Each generalized loop starts with a long loop and is completed by all short loops



50 Anton Gorodetski, Brian Hunt, and Vadim Kaloshin

following afterwards. Therefore, the number of generalized loops equals the number
of long loops. Then we verify (20) not after each loop, but after each generalized
loop. Denote by Py, ..., Pi_1, P = Py C U starting points of generalized loops,
by 130, AU 15t_1, I3t = }50, prestarting points of generalized loops, i.e. f (13,-) =
Py, i =0,...,t — 1, and by Ny, ..., N; their lengths respectively. Then we
modify (20) to

Df N+ (Kon(P)) C Kan(Piy1) foreachi =0,...,1—1. (21)

Now the idea presented above has a chance to work. Indeed, let ; be a long loop
andnjyq, ..., njyj be short ones from the corresponding generalized loop. Consider
the image of the corresponding cone K, (P;) after the generalized loop. Notice that
after the long loop n; the cone L" K, (P;) is the cone of width angle < 21 %" Since
long n; is so much longer than short loops n 41, ..., nj, js respectively the cone

(Df(ﬁj-i-j/) oL"it/' o0 Df(pji1) e L"Hl) o (Df(i’j) o L" Kan(l’j))

has width angle < 3u~%". To satisfy condition (20) for j + j’ we need to avoid an
interval of rotations (i.e. of parameters) of length < 5u~%". This phenomenon still
has “probability” ~ pu=*".

After this combinatorial analysis we face the next difficulty. We cannot perturb
Df (p) and Df (p') independently at nearby points p and p'.

Dynamical analysis of trajectories. Assume for a moment that we are interested
in properties of scattered periodic orbits, that is, such orbits that Py, ..., P,_1 in U
are pairwise well spaced. In particular, it is always the case for 1-loop orbits. In this
case the difficulty of nearby points is removed. Using the discretization method and
the cone condition (21) one can prove that for most parameters all but a finite number
of the periodic orbits are hyperbolic saddles. Moreover, consider for 0 < y’ =
w¥"m & y” = %" parameters for which a periodic not enough hyperbolic y”-
scattered y’-pseudo-orbit of period n exists. In fact, we can show that the measure of
these parameters is small’>. Now we are going to explain how this can be used to treat
all periodic orbits, not necessarily scattered. Consider the 2-loop case for illustration.
If starting points of loops p and p, are far enough from each other, one can perturb
differential of parabolic map at their preimages independently, and above arguments
allow to estimate the measure of “bad" parameters. Otherwise a periodic orbit can be
decomposed into a union of two 1-loop periodic pseudo-orbits, which have nearby
endpoints in U. The cone condition (21) for each of these pseudo-orbits holds for
most parameters, which implies (19).

Another illustration can be given by the case t+ = 1, i.e. we have one loop which
is much longer than all the others. In this case the image of the cone K, (p) after

5The discretization method in this case, compare to the one described in Sections 4-5, requires certain
modifications (see [GK], sect. 9—11).
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the application of differential of the map along the orbit has width angle < 2u=%",
as explained above. Point p,_; = Py = " Ypo) = f~'(py) can not be too
close to points pg, py,..., Ps_». Indeed, the distance between p; and x-axis is
(p;)y ~ w™"+1. Since ny > n; we have ="' <« u~". Therefore the point p( can
not be too close to points py, ..., p,_;,and we can perturb ¢ (p,_;) = ¢ (f ' (py))
independently of ¢ (pg), ..., $(p,_,). This allows to estimate the measure of “bad”
parameters.

O

Py
Py P ~ <>
Py Ps O
1. Properly oriented cycle 2. Identification of vertices and 3. Decomposition into
oriented pseudographs scattered cycles
Py Py
P ~
Ps Q
Py P

Figure 8. Graph surgery.

To consider the general case we represent a periodic orbit as an oriented cyclic
graph. Starting points of generalized loops are vertices of this graph, and vertices
corresponding to subsequent generalized loops are connected by an oriented edge
(see Figure 8, picture 1). It turns out that for some ' <« y” for any pair of points
(P;, Pj) either dist(P;, P;) > y” or dist(P;, Pj) < y’ (see [GK], sect. 7). Therefore
every pair of vertices is either y'-close or y”-far apart (see Figure 8, picture 2). Now
all the vertices can be divided into “clouds” or “clusters”. Let us identify the vertices
in the same cloud of nearby points, as shown on Figure 8, picture 2. The initial
cycle is transformed now into oriented pseudograph (see [GK], Def. 20) with the
same number of ingoing and outgoing edges at each vertex. Such a pseudograph can
be decomposed into the union of oriented cycles (Figure 8, picture 3 and also see
[GK], Lemma 7). Each of cycles from this decomposition represents a y”-scattered
y’-pseudo-orbit. Application of the arguments above to these pseudo-orbits gives
inclusion (21) for most values of parameters and implies the cone condition (19) for
the initial periodic orbit.
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9. Prevalence

Our definition of prevalence for a space Dift" (M) of C" diffeomorphisms on a smooth
manifold M is based on the following definition from [HSY] for a complete metric
linear space V.

Definition 9.1 (Linear prevalence). A Borel set S C V is called shy if there is a
compactly supported Borel probability measure p on V such that (S — v) = 0 for
all v € V. More generally, a subset of V is called shy if it is contained in a shy Borel
set. A subset of V is called prevalent if its complement is shy.

(Shy sets were previously called “Haar null sets” by Christensen [Chr].) Some
important properties of prevalence, proved in [HSY], are:

1. A prevalent set is dense.
2. A countable intersection of prevalent sets is prevalent.

3. Asubset of R™ is prevalent if and only if its complement has Lebesgue measure
Zero.

Properties 2 and 3 above follow from the Fubini—Tonelli theorem, along with the
Tychnoff theorem in the case of Property 2. Property 1 follows from the observation
that a transverse measure p can be localized in the following sense. By compactness
of the support of w, there are arbitrarily small balls with positive measure. Every
translation of P must intersect these balls, or equivalently every translation of one of
these balls must intersect P.

Along these lines, itis useful to think of a transverse measure for a prevalent set P as
a probability space of perturbations, such that at each point v in the space V, choosing
arandom perturbation and adding it to v yields a pointin P with probability one. Often
the perturbations can be chosen from a finite dimensional space of parameters, using
normalized Lebesgue measure on a bounded subset of parameter space. In this case,
we say that P is “finite-dimensionally prevalent”.

In other cases, one needs an infinite number of parameters; for example, a property
about periodic orbits might be finite-dimensionally prevalent for each fixed period, but
higher periods require more parameters. One may be able to choose the parameters
from a “Hilbert brick” HB = J; x J, x ---, where each J; is an interval of real
numbers &, the perturbation corresponding to ¢ = (¢1, €2, ...) is vy + 02 + - -
for some vectors v1, vp, ... € V, and the probability measure on H B is the infinite
product of normalized Lebesgue measure on each interval. We call this measure the
uniform measure on H B. A property is then prevalent if for each v € V, the property
istrue forv+¢ejv; +e2v2+ - - - for almost every ¢ with respect to the uniform measure
on HB.

The notion of prevalence that we use in Diff" (M) is based on this idea of choosing
perturbations from a Hilbert brick. Though we cannot add perturbations in this non-
linear space, by embedding M in a Euclidean space R", we can perturb elements of
Diff" (M) in a natural way by means of additive perturbations in the space C” (T, R")
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of C" functions from T to RY, where T is a neighborhood of the embedded image
of M in RY. The details of this construction are given in Appendix C of [KH1]; here
we provide a brief outline.

For N sufficiently large, we can embed M into RY by the Whitney embedding
theorem; choose an embedding and think of M then as a subset of RY (that is, identify it
with its image). Choose a neighborhood 7" of M sufficiently small that the orthogonal
projection 7 : T — M is well-defined. Extend each diffeomorphism f € Diff" (M)
to a diffeomorphism F on 7', in such a way that F is strongly contracting toward M.
We then consider the family of perturbations

Fe=F+eaFi +eakb+--.

for some functions Fi, F»,... € C"(T,RN) and ¢ in an appropriate Hilbert brick.
For the results presented in this paper, F1, F2, ... are a basis for the polynomials on
RV, but in general they could be any functions that are chosen independently of F.
Next we associate to each F; a diffeomorphism f, € Diff"(M). By Fenichel’s
theorem [Fen], for ¢ sufficiently small, F; has an invariant manifold M, close to M,
such that w, = 7|y, is invertible. (To be precise, Fenichel’s theorem is for flows,
and we apply it by considering the suspension flow associated with f.) Furthermore,
F, is strongly contracting toward M., so that all of its periodic orbits (indeed, all of
its nonwandering points) are on M,. We then let f; = mg o Fyom, 1 Because of this
smooth conjugacy, we can prove many properties of f; by proving them about F.
Given this construction, we make the following definition.

Definition 9.2 (Nonlinear prevalence). A subset P C Diff" (M) is prevalent if for
some functions Fj, F», ... € C"(T,RV) and a sufficiently small Hilbert brick HB
such that the construction above works for every ¢ € H B, we have that for each
f € Diff" (M), the diffeomorphism f. constructed above belongs to P for almost
every ¢ with respect to the uniform measure on H B.

Of course, this definition depends on the choices made in our construction — the
particular embedding of M and the means of extending a diffeomorphism on M to
a neighborhood of its embedded image. We emphasize that the results in this paper
and any results proved by a similar technique are independent of the details of the
construction; the family of polynomial perturbations works regardless of the choices
of embedding and extension. In this sense, we do not construct just a single family of
perturbations for which our results are true with probability one, but rather an entire
class of parametrized families that establish prevalence.
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From combinatorics to ergodic theory and back again

Bryna Kra*

Abstract. Multiple ergodic averages, such as the average of expressions like fi(7"x)
FH(T?x) ... fi(T*¥x), were first studied in the ergodic theoretic proof of Szemerédi’s The-
orem on arithmetic progressions. It turns out that all constraints on such averages (in a sense
that we describe) have an algebraic character, arising from identities in nilpotent groups. We
discuss these averages, several generalizations, and combinatorial implications of the results.
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1. Additive combinatorics and ergodic theory

A classic result of Ramsey Theory was proved by van der Waerden [53] in the 1920s,
who showed that if the integers are partitioned into finitely many subsets, at least one
of the subsets contains arbitrarily long arithmetic progressions. Erdds and Turdn [12]
conjectured that a weaker assumption suffices: if A is a set of integers whose upper
density
d(A) = limsup A N [1, V]|
N—o0 N

is positive, then A contains arbitrarily long arithmetic progressions. Clearly the
conjecture immediately implies van der Waerden’s Theorem.

The first progress on the Erd6s—Turdn conjecture came in 1952, when Roth [45]
used Fourier analysis to establish that a set of integers with positive upper density con-
tains an arithmetic progression of length 3. Further progress was not until 1969, when
Szemerédi [48] showed that the conjecture holds for progressions of length 4. Finally
in 1975, Szemerédi [49] resolved the general case with an intricate combinatorial
proof.

Soon thereafter, Furstenberg [18] used ergodic theory to give a new proof of Sze-
merédi’s Theorem, and this proof marks the birth of the field of ergodic Ramsey
Theory. Since then, ergodic theory has been used to prove new results in combi-
natorics, such as the multidimensional Szemerédi Theorem [22], the density Hales—
Jewett Theorem [24], and the polynomial Szemerédi Theorem [4]; many of these
results have yet to be obtained by other means. (Some of these results are explained
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in Section 4.) Furstenberg’s pioneering work laid out the general strategy for these
problems: translate the combinatorial statement into a problem on the intersection
of sets in a measure preserving system and then study the average associated to this
intersection. The convergence of these multiple ergodic averages is the main focus of
this article. A key result is the convergence of the averages associated to Szemerédi’s
Theorem (see Section 2 for an explanation of the link):

Theorem 1.1 (Host and Kra [36]). Assume that (X, X, i, T) is a measure preserving

system,1 k > 1is an integer, and f1, fa2, ..., fx € L°°(u). Then the limit
| N—1
. 1 n 2n kn
Jim ZO AT f(T2) . fi(TH) (1)
n=

exists in L2 (w).

It turns out that a subsystem can be substituted for the original system without
affecting the convergence or the value of the limit. Furthermore, this subsystem
can be completely described algebraically, with a particular role played by nilpotent
groups and their homogeneous spaces. We describe the structural analysis of measure
preserving systems needed to prove this in Section 3.

This has led us to a greater understanding of other multiple ergodic averages,
including averages with polynomial exponents, prime exponents, and certain averages
of commuting transformations, and some of these results are discussed in Section 4.
In turn, the multiple convergence theorems have lead to deeper connections with
exciting developments in number theory and combinatorics, and we discuss some of
these developments in Sections 4 and 5.

Although the connection between ergodic theory and additive combinatorics is
well established, the depth of this connection is only now beginning to be understood.
Szemerédi’s original proof is combinatorial and Furstenberg’s proof uses ergodic
theory, yet the two proofs have many formal similarities. These features recur in more
recent proofs of Szemerédi’s Theorem, such as those of Gowers [26] and of Tao [50].
In the ergodic setup, with our work in [36] we have a complete understanding of the
underlying structures in measure preserving systems that arise in the ergodic theoretic
proof of Szemerédi’s Theorem. To elucidate the true nature of the link with additive
combinatorics, describing corresponding combinatorial constructions remains a deep
open question.

1By an (invertible) measure preserving (probability) system, we mean a quadruple (X, X, u, T') where X
is a compact metrizable set, X denotes the Borel o-algebra on X, u is a probability measure on (X, X), and
T: X — X is an invertible measurable map with ((A) = /,L(T_l A) for all A € X. Even when not explicitly
stated, the measure is assumed to be a probability measure and the transformation is assumed to be invertible.



From combinatorics to ergodic theory and back again 59
2. Multiple ergodic averages

2.1. Multiple recurrence. We start with the connection between regularity proper-
ties of subsets of integers and recurrence in measure preserving systems:

Correspondence Principle (Furstenberg [18], [20]). Let E be a set of integers with
positive upper density. There exist a measure preserving system (X, X, u, T) and a
subset A C X such that 1(A) = d(E) and

Ad((E+n)NE+n)N---N(E+n)>u(TMANT ™AN---NT"A)
for any integer k > 1 and integers ny, na, ..., ni > 0.

Furstenberg then deduced Szemerédi’s Theorem by showing that any system
(X, X, w, T) is multiply recurrent, meaning that for all A € X with positive measure,
there exists n € N such that

WANTANTAN---NTFA) > 0. )

To produce such n € N using ergodic theoretic methods, it is natural to average
the expression in (2) over n. If one can show that the limit inferior of this average
is positive, the existence of some n € N satisfying (2) follows immediately. Thus
combined with the Correspondence Principle, Szemerédi’s Theorem follows from:

Multiple Recurrence Theorem (Furstenberg [18]). Assume that (X, X, u, T) is a
measure preserving system, A € X has positive measure, and k > 1 is an integer.

Then
| N-1
lim inf — ANT"ANT?AN---NT*A) > 0. 3
iminf - > ju( ) > (3)
n=0
Poincaré Recurrence is implied by the case k = 1: for any set A € X with positive
measure, there exist infinitely many n € N such that u(A N 7" A) > 0. Although it
is easy to prove Poincaré Recurrence directly, we can also view it as a corollary of
the von Neumann Ergodic Theorem, which implies that for a set A € X with positive
measure, the limit

N-1
. 1
lim — ANT'A
N gnoo N Z_;) ,LL( )

exists and is positive. For higher order multiple recurrence (k > 2), this method of
studying the corresponding multiple ergodic average is the only known method for
producing n such that (2) holds.

2.2. Multiple ergodic averages. A natural question arises: is the “lim inf” in (3)
actually a limit? More generally, if (X, X, u, T') is a measure preserving system,
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k > 1is an integer, and f1, f2, ..., fx € L®(u), do the multiple ergodic averages
| N-1
5 2_(:) AT") H(T"x) . fi(THx) @)

converge as N tends to infinity, and in what sense do they converge? Taking each
fi to be the indicator function 14 of a set A, multiplying by 14 and integrating with
respect to w, we obtain the average in (3). For k = 1, the existence of this limit in
LZ(M) is the von Neumann Ergodic Theorem.

A measure preserving transformation 7: X — X induces an operator U7, on
functions in L?(u) defined by Ur f(x) = f(Tx). In a standard abuse of notation,
we denote the operator Ur by T and write T f(x) = f(Tx). In general we assume
that the measure preserving system (X, X, i, T) is ergodic, meaning that the only
sets A € X satisfying T~'A C A have either full or zero measure. Since a general
system can be decomposed into its ergodic components, for most of the theorems we
consider it suffices to assume that the system is ergodic.

When the system is ergodic, for k = 1 the limit of (4) in Lz(u) is the integral
f x J1dp and in particular is constant. However, without some assumption on the
system, for k > 2, the limit in (4) need not be constant. For example, if X is the
circle T = R/Z, T: T — T is the rotation Tx = x + « mod 1 for some o € T,
fi(x) = exp(4mix) and f(x) = exp(—2mix), then Fi(T"x) fo(T?"x) = fz_l(x)
for all n € N. In particular, the double average

N-1
LY AT LT
n=0
converges to a nonconstant function. (More generally, if ¢ ¢ Q and fi, f> € L>=(w),
the double average converges to f f1(x + 1) fa(x + 2¢t) dt, which in general is not
constant.)

The limit behavior of the double average depends on rotational behavior in the
system. To make this more precise, we introduce some terminology. A factor of a
measure preserving system (X, X, u, T) can be defined in one of several equivalent
ways: it is a T-invariant sub-o-algebra Y of X, it is a measure preserving system
(Y, Y, v, S) and ameasurable map 7 : X — Y such that u oV =vand Som(x) =
7 o T'(x) for u-almost all x € X, and it is a T-invariant subspace & of L°°(u). The
equivalence between the first two definitions follows by identifying 7 ! (Y) with a
T -invariant sub-o-algebra of X and noting that any 7'-invariant sub-o -algebra of X
arises in this way. Setting ¥ = L°°(Y), we have that the first definition implies
the third and taking Y to be the o -algebra generated by ¥ -measurable sets, we have
the converse. Depending on the context, we use any of these three characterizations
interchangeably. In a slight abuse of notation, we use the same letter to denote the
transformation in the whole space and in a factor.

If(Y,¥%,v,T)isafactorof (X, X, u,T)and f € L?(w), the conditional expec-
tation E(f | Y) of f with respect to Y is the orthogonal projection of f onto L2(v).
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Let E(f | Y) denote the function on Y defined by E(f |Y) o r = E(f | Y), where
m: X — Y is the natural projection. This expectation is characterized by

/Y E(f | 7)(0)g(y) dv(y) = /X Fg(r () du(x)

forall g € L°(u).

A measure preserving system (X, X, u, T) is said to be weakly mixing if the only
measurable eigenfunctions of the operator on L (1) induced by the transformation T
are constant. An alternate characterization of weakly mixing can be given in terms
of a factor: the measure preserving system (X, X, w, T') is not weakly mixing if and
only if it has a nontrivial factor which is a rotation on a compact abelian group. The
maximal such (group rotation) factor is known as the Kronecker factor. A rotation on
a circle is not weakly mixing.

Taking the rotational behavior into account, the double average % ST f-TH f>
can be understood. The obvious phenomenon is that for p-almost every x, the
triple (x, T"x, T?"x) projects to an arithmetic progression in the Kronecker factor Z.
Furstenberg showed that this restriction is the only restriction, meaning that

N—1 N-1
H% 2 T"fi - T™ f5 — % Xz(:) T"E(f112) T*"E(f2| Z)

L2(1)

tends to 0 as N — oo. Thus to prove convergence of the double average, it suffices to
replace each f;, fori = 1, 2, by its conditional expectation E( f; | Z) on the Kronecker
factor. In particular, this means that one can assume that the system is an ergodic
rotation on a compact abelian group. Then one can easily use Fourier analysis to
show the existence of the limit. (The Kronecker factor is said to be characteristic for
the double average. See Section 3.1 for the general definition.) The double average
is the simplest example of a “nonconventional ergodic average,” where even if the
system is assumed to be ergodic, the limit need not be constant.

Furthermore, if the system is assumed to be weakly mixing, Furstenberg [18]
showed the existence of the limit in (4) for all £k > 1. Moreover, in this case the limit
takes on a particularly simple form: the average converges in L (1) to the product of
the integrals [ fidu [ fadu...[ fedu.

For a general system, the limiting behavior for k > 3 is more complicated and
group rotations do not suffice for describing the long term behavior. For example, if
f(Tx)=XAf(x)forsome |A| =1 and F(Tx) = f(x)F(x), then

nn-—1)
2

F(T"x) = f(x)f(Tx)... FT" ") Fx) =2~ 2 (f(x)"F(x).

Therefore
F)(F(T"x) 2 (F(T* ) (F(1*x) ' = 1.

Projection to the Kronecker factor does not capture the behavior of generalized eigen-
functions, meaning that there is some relation among x, 7" x, T2"x and T3"x that does
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not arise from the Kronecker factor. See Furstenberg [21] for a more intricate exam-
ple, showing that even such generalized eigenfunctions do not suffice in determining
the limiting behavior for k = 3.

Using a new structural analysis for ergodic systems, we describe the algebraic con-
straints on n-tuples x, 7" x, T2y, ..., T%*=Dny and use this to obtain convergence
of the averages in (4). Existence of the limit in L?(p) for k = 1 is the von Neumann
Ergodic Theorem and existence for k = 2 was proven by Furstenberg [18]. Existence
of the limit for k = 3 with the hypothesis of total ergodicity, meaning that 7" and all
its powers are ergodic, was proven by Conze and Lesigne ([9], [10], and [11]); this
is the first place that a natural generalization (playing a major role for higher k) of
the Kronecker factor, a 2-step nilsystem, appears as a factor. In the general case for
k = 3, existence was shown by Furstenberg and Weiss [25] and by Host and Kra [33]
(see also [34]). We proved existence of the limit (1) for all integers kK > 1 in [36]
and this is the statement of Theorem 1.1. More recently, Ziegler [57] has a different
approach for showing the existence of the limit in the general case. The existence of
the pointwise limit is a much more difficult problem and convergence is only known
for k = 2, due to Bourgain [8].

The key role in the analysis used to prove the existence of the limit in (1) is played
by nilpotent groups and their homogeneous spaces. We start with a brief overview of
the ingredients in the proof of Theorem 1.1.

3. Structural analysis

3.1. Characteristic factors. A general strategy for showing the existence of an
average, such as that of (1), is to find a factor such that the limiting behavior is
unchanged when each function is replaced by its conditional expectation on this
factor. More precisely, a factor Y C X is a characteristic factor (or more succinctly,
is characteristic) for the average

N—1
1 ai(n) az(n) ag(n)
- T -T* LT
N > fi f2 Ji
n=0
if the difference between this average and the same average with each function replaced
by its conditional expectation on Y

N-—1
i ay(n) . ax(n) ay (n)
N;Tl E(fi1Y) T2VEL 1Y) ... THDEfi | Y)

converges to 0 in L?(u) as N tends to infinity. For example, when aj(n) = n
and az(n) = 2n, the Kronecker factor is characteristic for the double average. Al-
though the term characteristic factor only appeared explicitly in the literature fairly re-
cently [21], the method is implicit in Furstenberg’s original proof [18] of Szemerédi’s
Theorem.
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If one can find a characteristic factor for a given average, then it suffices to prove
convergence when the characteristic factor is substituted for the original system. Prov-
ing convergence for the factor is then easier when the factor has a sufficiently explicit
and “simple” description.

We follow this general strategy, but with a different point of view. Rather than
manipulating a particular average that we want to understand, we start with an abstract
construction of characteristic factors. The construction (following [36]) is based on
an inductively defined sequence of measures and of seminorms,? which are then used
to define the factors. We now outline this construction.

3.2. Definition of measures and seminorms. Fix aninteger k > 0. We write a point
we {0, 1¥asw=ww:...o withw; € {0, 1}, omitting commas and parentheses,
and let |w| = w1 + wy + - - - + wi. Fixing an ergodic measure preserving system
(X, %, w, T), let XM = x2“ and let TI¥; XK1 — XK pethemap T x T x --- x T,
taken 2% times. Elements of XKl are writtenx = (x,: @ € {0, 1}¥). There is a natural
identification of X**! and X% x XX with a pointx € X*+!] being identified with
(x',x") e XK1 x X% where x/, = x,0 and x" = x,, for each w € {0, 1}*.

By induction, we define a probability measure p[*! on X[¥, that is invariant under
Tk, Set ul% = 1. Assume that u[¥ is defined for some k > 0. Let I denote the
o -algebra of T!"l-invariant subsets of X ¥,

Under the natural identification of X%t with X% x X1 define the measure
preserving (probability) system (XK1 yk+1 TIk+]y to be the relatively indepen-
dent joining of (X k1 M[k], T[k]) with itself over Z'%]; this means that the measure
!k 11 satisfies for all bounded functions F’ and F” on X,

Xk+1] Xk

The measure ¥+ is invariant under 7+!1 and the two natural projections on
X" are each u[¥1. By induction, each of the 2% natural projections of 1¥1 on X is
equal to u. Letting C: C — C denote the conjugacy map z +> z, we have that for a
bounded function f on X, the integral

/ [T ¢“r@e)ante)
X[k

wel0,1}J

is real and nonnegative.

2Although the definition and context are on the surface quite different, these seminorms turn out to be a
generalization of the norms introduced by Gowers [26] in his proof of Szemerédi’s Theorem. To recover the
Gowers norms, consider the space Z/NZ, the transformation x — x + 1 mod N, and the uniform measure
assigning each element of Z/NZ weight 1/N. The Gowers norms were later used by Green and Tao [28] in a
spirit closer to ergodic theory and their use in our work [36]. See [32] and [39] for more on this connection.
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Therefore, for a function f € L*(u) we can define

2] [k] v
|||f|||k=< /x mw]‘[ Cl £ (xp) s (x)> |

€{0,1}k

One can also view this definition as an average over the cube {0, 1}k, A con-
vergence theorem for general averages along cubes is also proved in [36], and the
connection between averages along cubes and along arithmetic progressions is more
fully explained in Host [32].

Using the Ergodic Theorem and the definition of the measures, we have that for

any f € L%(w),

1 2k+1

N—
1B = ( Jim %ZIIf-TTfIIIik) . 5)

To show that the map f — || f||x is a seminorm on L°(u), one derives a ver-
sion of the Cauchy—Schwarz inequality and uses it to show subadditivity. Positivity
immediately follows from Equation (5). (See [36] for details.)

We now return to the original averages along arithmetic progressions and show
that the long term behavior of the average (1) is controlled by the seminorms we have
constructed:

Theorem 3.1 (Host and Kra [36]). Assume that (X, X, u, T) is an ergodic measure
preserving probability system. Letk > 1 be an integer and assume that f1, fa, ..., fr
are functions on X with || f1llco, Il f2llcos - - > | filloo < 1. Then

Jim sup H_ Z T f Ty T min (7113

N—o0

L2(u) 1

n=

The proof relies on a standard method for finding characteristic factors, which is
an iterated use of a variation of the van der Corput Lemma on differences (see for
example [40] or [1]):

van der Corput Lemma. Assume that # is a Hilbert space with inner product ( , )

and norm | - ||, and that &,, n > 0, is a sequence in J with ||&,| < 1 for all n. Then
lim sup H = Z En < hm sup = Z hm sup ‘— §n+h En)l.
N—>oo

In our context, we apply this to the Hilbert space L? (i) of unitary operators that
is naturally associated with the system (X, X, u, T). The seminorms we construct
reflect k successive uses of the van der Corput Lemma, with the number of steps in
the iteration increasing with the complexity of the averages. Theorem 3.1 follows
using induction, the Cauchy—Schwarz Inequality, and the van der Corput Lemma.
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3.3. The factors. We then show that for every integer k > 1, the seminorms define
factors Z;_1. One presentation of these factors is obtained by defining their orthogonal
complements: for k > 1, it can be shown that there exists a T-invariant o -algebra
Zy—1 of X such that for f € L*®(un),

lfllk =0 ifandonlyif E(f|Zx-1)=0.

Therefore a bounded function f is measurable with respect to Zj_; if and only if
f fgdu = 0 for all functions g € L () with || gllxk—1 = 0.

Then Zj_1 is defined to be the factor of X associated to the sub-o-algebra Z;_.
Thus defined, Zj is the trivial factor, Z is the Kronecker factor and more generally, Z
is a compact abelian group extension of Z;_;. Furthermore, the sequence of factors
is increasing

Zo<«— 21«72y« -« X

and if T is weakly mixing, then Zj is the trivial factor for all k. In this terminology,
Theorem 3.1 states that the factor Zj is characteristic for the average (1).

The bulk of the work, and also the most technical portion, is devoted to the descrip-
tion of these factors. The initial idea is natural: we associate to each of these factors
the group of transformations which preserves the natural cubic structure that arises in
the construction. This group is nilpotent. We then conclude that for a sufficiently large
(for our purposes) class of systems, this group is a Lie group and acts transitively on
the space. Therefore, the constructed system is a translation on a nilmanifold. More
precisely, if G is a k-step nilpotent Lie group and I' is a discrete cocompact subgroup,
then the compact space X = G/ T is said to be a k-step nilmanifold. The group G
acts on G/ I' by left translation and the translation by a fixed element @ € G is given
by T,(gl') = (ag)". There exists a unique probability measure mg,r, the Haar
measure, on X that is invariant under the action of G by left translations. Fixing an
element a € G, we call the system G/I" with its associated Borel o-algebra, Haar
measure mg, r, and translation T; a k-step nilsystem. The system (X, X, u, T) is an
inverse limit of a sequence of factors (X,, Xn, tn, T) if X, n € N, is an increasing
sequence of T-invariant o -algebras such that \/, .y X, = X up to a set of measure 0.
If in addition each factor (X, X,, s, T') is isomorphic to a k-step nilsystem for
n € N, the system (X, X, i, T) is an inverse limit of k-step nilsystems.

The structure theorem states:

Theorem 3.2 (Host and Kra [36]). There exists a characteristic factor for the averages
in (1) which is isomorphic to an inverse limit of k-step nilsystems.

An expository outline of the proof is also given in Host [32]. A posteriori, the role
played by the nilpotent structure is not surprising: for a k-step nilsystem (X, X, u, T')
and x € X, the (k + 1)st term T¥x of an arithmetic progression is constrained by the
first k terms x, Tx, T?x, ..., T 1x.

Convergence of the linear (meaning the exponents n, 2n, .. ., kn are linear) multi-
ple ergodic average then follows easily from general properties of nilmanifolds proved
by Lesigne [43] for connected groups and proved in the general case by Leibman [41].



66 Bryna Kra
4. Generalizations of multiple convergence

4.1. Polynomial averages. It is natural to ask what configurations, other than arith-
metic progressions, must occur in sets of integers with positive upper density. Sér-
kozy [46] and Furstenberg [19] independently showed that if a subset of integers E
has positive upper density and p: Z — Z is a polynomial with p(0) = 0, then
there exist x,y € E and n € N such that x — y = p(n). Furstenberg’s proof used
ergodic theory. Once again, Furstenberg’s proof used the correspondence principle
and a recurrence result, this time along polynomial times. Bergelson and Leibman
generalized the recurrence result for multiple polynomials:

Theorem 4.1 (Bergelson and Leibman [4]). Assume that (X, X, w, T) is an invertible
measure preserving system, A € X has positive measure, k > 1 is an integer, and
P1s P2, ---» Pk: L — Z are polynomials with p;j(0) =0 for j =1,2,...,n. Then

N—1
liminf + 3" u(ANTPWANTPOAN..AT P L) > 0,
N—oo N
n=0
The result in [4] is actually quite a bit stronger; they prove a multidimensional ver-
sion of this statement (see Section 4.2), meaning that one replaces the j-th occurrence
of T by Tj, for k commuting measure preserving transformations 71, 7>, ..., Ty of
the measure space (X, X, ). A polynomial version of Szemerédi’s Theorem follows
immediately via Furstenberg’s Correspondence Principle.
The polynomial recurrence theorem naturally leads to the corresponding conver-
gence question for multiple polynomial averages:

Theorem 4.2 (Host and Kra [37], Leibman [42]). Assume that (X, X, u, T') is a mea-
sure preserving system, k > 1 is an integer, p1, p2, ..., pr: Z — Z are polynomials,
and f1, f2, ..., fi € L°°(w). Then the limit

N—1
lim — Z Tpl(n)fl . sz(n)f2 o Tpk(n)fk (6)
n=0

exists in Lz(u).

For a weakly mixing system, convergence of (6) was proved by Bergelson [1]. Inan
arbitrary measure preserving system, Furstenberg and Weiss [25] proved convergence
for k = 2 with p1(n) = n and pa(n) = n? and py(n) = n? and pr(n) = n? + n.
Weak convergence was proven in [37], as well as convergence in L2 () in most cases.
The remaining case, along with a generalization for multiparameter polynomials, was
completed in [42].

As with the linear average corresponding to exponents n, 2n, . . ., kn, the behavior
of a general polynomial average is controlled by the seminorms || - ||x. Using an in-
ductive procedure like that of [1], the averages in (6) can be reduced to an average only
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with linear exponents and we obtain a result for a polynomial average analogous to
Theorem 3.1. Using the structure theorem (Theorem 3.2), we have that a characteristic
factor for a polynomial average is once again an inverse limit of nilsystems.

The number of steps needed in the inductive procedure used to reduce the av-
erage (6) to linear terms depends on the choice of polynomials. As might be ex-
pected, more terms and higher degree increases the number of steps needed and so
the complexity of the corresponding the nilsystem rises. However, it turns out that
the linearly dependent family {n, 2n, ..., kn} is in some sense the most difficult. For
a general polynomial family, the minimal characteristic factor Z; (meaning small-
est k) is unknown. Yet for rationally independent polynomials, meaning polynomials
P1, P2, ---, Pk: Z — 7Z with {1, py, p2, ..., px} linearly independent over Q, the
characteristic factor (and therefore the value of the limit) is particularly simple and is
independent of the choice of polynomials. Answering a question of Bergelson posed
in [2], we show:

Theorem 4.3 (Frantzikinakis and Kra [14]). Assume that (X, X, u, T) is a totally
ergodic measure preserving system, k > 1 is an integer, p1, p2, ..., px: Z — Z are
rationally independent polynomials, and f1, f2, ..., fr € L°°(u). Then

N-1
D DECLLVEE LV e SV (PR ST
n=0

converges to 0 in Lz(u) as N — oc.

Our proof uses the machinery of the Structure Theorem, but we ultimately show
that the procyclic factor (an inverse limit of cyclic groups), which is contained in the
Kronecker factor, is characteristic for this average. It would be interesting to prove
the theorem directly, avoiding the use of nilsystems.

4.2. Averages for commuting transformations. Furstenberg and Katznelson gen-
eralized multiple recurrence for commuting transformations:

Theorem 4.4 (Furstenberg and Katznelson [22]). Assume that (X, X, p) is a prob-
ability space, k > 1 is an integer, Ty, T, ..., Tr: X — X are commuting measure
preserving transformations, and A € X has positive measure. Then

N—1
151135% Y WANTTANT AN AT "A) > 0.
n=0
(Other generalizations, including combinations of the commuting and polyno-
mial averages, are contained in [23] and [5].) Furstenberg’s correspondence principle
immediately implies a combinatorial version, the multidimensional version of Sze-
merédi’s Theorem.
Once again, it is natural to ask about convergence of the corresponding commuting
multiple ergodic average:
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Question 4.5. If k > 1isaninteger, T1, T3, ..., Ty : X — X are commuting measure
preserving transformations of a probability space (X, X, w), p1, p2, ..., pk: Z — Z
are polynomials, and f1, f2, ..., fr € L®°(u), does

N—o0

N-1
~ 1 p1(n) p2(n) pr(n)
lim — E T - T LT

N i 1 f 2 f k Sk

exist in LZ(u)?

For two transformations and exponents pj(n) = p2(n) = n, existence of the
limit in L2(x) was shown by Conze and Lesigne [9]. For arbitrary k& > 1, under
the assumptions that 7; is ergodic for j = 1,2, ..., k and that TiTj_1 is ergodic for
i #j,i,j€{l,2,...,k}, existence of the limit with exponents p;(n) = p2(n) =
- = pr(n) =nin LZ(,u) is shown in [15]. However, the general case (even with all
exponents equal to n) remains open and it is easy to construct systems such that the
characteristic factors are not nilsystems.

4.3. Sequences related to prime numbers. Recently, a new chapter in ergodic
Ramsey Theory was opened, with ergodic theoretic techniques adapted for use outside
of the field. A particularly spectacular result in this direction is Green and Tao’s
proof [28] that the prime numbers contain arbitrarily long arithmetic progressions.
The connections between the proof of Green and Tao and ergodic theory are further
explained in the expository articles of Host [32], Kra [39], and Tao [51]. In turn, Green
and Tao’s results make it possible to study convergence for other multiple ergodic
averages, leading us to a greater understanding of patterns in a set of integers with
positive upper density. Green and Tao ([29], [30], [31]) proved a strong uniformity
result on the prime numbers and using this result, we can show that the shifted primes
have multiple recurrence properties. (See also the survey articles of Green [27] and
of Tao [52].) Letting P denote the primes, we show:

Theorem 4.6 (Frantzikinakis, Host, and Kra [13]). Assume that (X, X, u,T) is a
measure preserving system and A € X has positive measure. Then there exists
n € P — 1 such that

WANT"ANT2"A) > 0.

The same statement holds with P — 1 replaced by P 4 1. Thus the shifted primes
P — 1 and P + 1 are sets of 2-recurrence. For single recurrence, this was proven
by Sarkozy [47] and reproved using ergodic methods by Wierdl [54]. (Bourgain [7]
and Wierdl [55] also proved several stronger results on pointwise convergence along
primes.) An immediate corollary of Theorem 4.6 is that a set of integers with positive
upper density contains infinitely many arithmetic progressions of length 3 whose
common difference is of the form p — 1 for some prime p (and similarly of the
form p 4+ 1).
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Roughly speaking, we prove this by comparing the associated double average
along primes with the usual double average, and show that the difference converges
to 0. This relies on the uniformity result on the prime numbers of Green and Tao. It
turns out that the Kronecker factor is characteristic for the associated average. The
added complication is that one must work with Z/NZ as the underlying space instead
of Z.

Using the same methods, we also show the existence of the related double ergodic
average:

Theorem 4.7 (Frantzikinakis, Host, and Kra [13]). Assume that (X, X, u,T) is a
measure preserving system and f1, fr € L (u). Then

1 S T T

lim ———
N=o0 ”P n [O’ N)l neP,n<N

exists in Lz(u).

The same reduction to a uniformity statement about the prime numbers, for both
recurrence and convergence, works for multiple recurrence and convergence of all
lengths. However, the needed uniformity result for prime numbers remains open for
longer progressions.

5. Lower bounds for multiple ergodic averages

5.1. Khintchine Recurrence. As described in Section 2, the first step in Fursten-
berg’s Multiple Recurrence Theorem (Poincaré Recurrence) is an immediate corollary
of the von Neumann Ergodic Theorem. However, using the full description of the
limit, and not only positivity of the limit inferior, one can make a finer statement about
the frequency of recurrence. More precisely, a set E C Z is syndetic® if there exists
M € N such that every interval of length M has nontrivial intersection with the set E.
Khintchine generalized Poincaré Recurrence and showed:

Theorem 5.1 (Khintchine [38]). If (X, X, u, T) is a measure preserving system and
A € X, then for all ¢ > 0, the set

MeZ: n(ANT"A) > u(A)? — ¢}
is syndetic.

As this result follows easily from the von Neumann Ergodic Theorem, one can
ask for the analogous results corresponding to other multiple recurrence theorems:
if (X, X, u, T) is a measure preserving system, A € X, k > 1 is an integer,

3A syndetic set is sometimes known in the literature as relatively dense. A syndetic set in Z is said to have
bounded gaps.
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P1s P2, -+, Pk: Z — 7 are polynomials with p;(0) = 0 for j = 1,2,...,k, and
g > 0, 1s the set

MeZ: n(ANTPWAN...ATHMA) > (A — g (7)

syndetic?

Surprisingly enough, the answer depends on the number k of polynomials and on
the linear dependencies among the polynomials. For rationally independent polyno-
mials, using the fact that a characteristic factor takes on a simple form, we show that
the measure of the intersection in (7) is as large as possible on a syndetic set:

Theorem 5.2 (Frantzikinakis and Kra [16]). Assume that (X, X, i, T) is an invertible
measure preserving system, A € X, k > 1is an integer, and p1, p2, ..., px: Z — 7
are rationally independent polynomials with p;(0) = Ofor j = 1,2, ..., k. Then for
all ¢ > 0, the set

neZ: n(ANTPWANTPMAN ... ATPEMA) > (AT —¢)
{ 2 M

is syndetic.

This sharply contrasts the behavior for a family of linearly dependent polynomials,
such as the linear polynomials corresponding to Szemerédi’s Theorem, where the
behavior depends on the number of linear terms. This dependence is illustrated in the
following two theorems:

Theorem 5.3 (Bergelson, Host, and Kra [3]). Assume that (X, X, u, T') is an ergodic
measure preserving system, A € X, and k > 1 is an integer. Then for all ¢ > 0, the
sets

neZ: W(ANT"ANT?A) > u(A)® — &)
and
neZ: W(ANT'ANTANTA) > n(A)* — ¢}
are syndetic.
While ergodicity is not needed in Khintchine’s Theorem, it is a necessary hy-
pothesis in Theorem 5.3. In [3], we construct a counterexample for the nonergodic
case.

For arithmetic progressions of length > 5, the analogous result does not hold.
Based on a result of Ruzsa contained in the Appendix of [3], we show

Theorem 5.4 (Bergelson, Host, and Kra [3]). There exists an ergodic system
(X, X, u, T) such that for all integers £ > 1 and all ¢ > 0, there exists a set
A = AL, &) € X with positive measure such that

wWANT'ANT"ANTANTYA) < epu(A)

for every integer n # Q.
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The proofs of these theorems are based on a decomposition result for the multi-
correlation sequence

/ F)FT" ) (T x) ... f(T*x)du(x), (8)

where (X, X, u, T) is a measure preserving system, f € L®(u), and k, n > 1 are
integers. We decompose such a sequence into two pieces, one of which is small in
terms of density and the second of which arises from a nilsystem. We need some
terminology to describe this decomposition more precisely. A bounded sequence
{an}nez tends to zero in uniform density if

M+N-1
. 1
lim sup — E la,| = 0.
N—>0o0 prez N iyt

If £k > 1 is an integer, the sequence {x,} is said to be a basic k-step nilsequence if
there exists some k-step nilmanifold X = G/ I, a continuous real valued function ¢
on X,a € G and e € X such that x,, = ¢(a” - e) forall n € N. A k-step nilsequence
is a uniform limit of basic k-step nilsequences. The general decomposition result is:

Theorem 5.5 (Bergelson, Host, and Kra [3]). Assume that (X, X, i, T) is an ergodic
measure preserving system, k > 1 isaninteger, and f € L°°(u). The multicorrelation
sequence (8) is the sum of a sequence tending to zero in uniform density and a k-step
nilsequence.

By subtracting a sequence of integers that tends to 0 in uniform density, the
sequences in Theorem 5.3 have the same behavior as the associated nilsequences (of
lengths 3 and 4), and the problem reduces to studying lower bounds for the associated
nilsequences. The factors constructed in [36] are used to understand the structure
of these nilsequences and a key ingredient comes from the explicit formula for the
average (1) given in Ziegler [56] (an alternate proof is given in [3]).

In [16], we prove a similar multicorrelation result for independent polynomials.
In this case, the nilsequence takes on a simple form, as it is induced by a unipotent
affine transformation.

5.2. Combinatorial Implications. Via a small modification of Furstenberg’s Cor-
respondence Principle, each of these results translates to a combinatorial result. The
upper Banach density d*(E) of a set E C Z is defined by

d*(E) = lim sup %|E AIM, M+ N —1]|.

—+00 M ez

Lete > 0, E C Z have positive upper Banach density, and consider the set

[nez:d*(EN(E+pi(m)N---N(E+ p(n) = d*(E)T —e}. (9
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Fork =2ork =3 and pj(n) = jn for j = 1, 2, 3, this set is syndetic, while for
k > 4 and pj(n) = jn for j = 1,2,...,k, there exists a set of integers E with
positive upper Banach density such that the set in (9) is empty. On the other hand,
in [16] we show that for all integers k > 1, if py, p2, ..., px: Z — Z are rationally
independent polynomials with p;(0) = 0 fori = 1,2, ..., k, then the set in (9) is
always syndetic.

Question 5.6. If ¢ > 0, E C Z has positive upper Banach density, for which poly-
nomials py, p2,..., pr: Z — Z with p;(0) =0fori =1,2,...,k,is the set

[neZ:d*(EN(E+pi(m)N(E+pa(m)N---N(E + pr(n)) = d*(E) — e}
syndetic?

For the polynomials of Theorems 5.2, 5.3, and 5.4 we know the answer and it is
sometimes yes and sometimes no. It is reasonable to conjecture that the answer is yes
for k = 2 and 3, as we know it holds for two extreme cases: 2 (or 3) rationally inde-
pendent polynomials and 2 (or 3) linear polynomials. For higher k, it may be possible
to lift the independence condition of Theorem 5.2 under certain circumstances. The
natural approach to the problem is via the corresponding statement in ergodic theory.
A first step in answering this question is finding a general formula for the multiple
polynomial average (6), generalizing the formula for the linear average (1).

6. Future directions

6.1. Convergence along other sequences. General conditions on sequences of in-
tegers under which one can prove a multiple ergodic theorem are unknown:

Question 6.1. If £ > 1 is an integer and aj(n), ax(n), ..., ax(n) are sequences of
integers with a;(n) — oo asn — oo for j = 1,2, ..., n, when does

| N—

LN pam g pam e pam

1N X_: il N Ji
exist in Lz(u) for all measure preserving systems (X, X, u, T) and f1, f2,..., fr €
L% (w)?

For k = 1, convenient necessary and sufficient conditions are given by the spectral
theorem. However for k > 2, there is no such characterization and the proofs of
multiple convergence for all known sequences (including arithmetic progressions,
polynomials, and the primes) rely in some manner on a use of the van der Corput
Lemma. Finding alternate proofs not relying on the van der Corput Lemma is a
first step in describing choices for the sequences a;(n); a full characterization would
probably require some sort of higher order spectral theorem.
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Another natural question is the convergence of random multiple ergodic averages.
Let (€2, 8B, P) be a probability space and let {Y, },en be a sequence of independent
random variables taking on values 0 and 1. Given w € Q, let £ = E(w) = {n €
N: Y,(w) = 1}. Ordering E by size, we have defined a random sequence {a(n) =
a(n, w)} of natural numbers.

Question 6.2. Assume that k > 1 is an integer and that a(n) is a random sequence of
natural numbers generated by a sequence of independent random variables on some
probability space (2, 8, P). When does

N-1
li L ydQ) fi- 7 2a(n) H... Tka(n) fi
N—oo N
n=0
exist in Lz(u) for all measure preserving systems (X, X, u, T) and f1, fa, ..., fx €

L2 (n)?

For k = 1, Bourgain [6] showed that for a random nonlacunary sequence, meaning
a sequence where P(X,(w) = 1) = p, satisfies lim,_, o np, = oo, which is also
decreasing, one has convergence in L>(;1). For k > 1, convergence for k = 1 is of
course a necessary condition, but it is not know if this is sufficient.

6.2. Connections with additive combinatorics. Since Furstenberg’s proof of Sze-
merédi’s Theorem, there has been a long and fruitful interaction between additive
combinatorics and ergodic theory, with results and techniques passing from one field
to the other. A major challenge remains: understand the mathematics behind the deep
analogies between the two fields. The nilsystems that arise in the structural analysis
of measure preserving systems should have some sort of combinatorial analog:

Question 6.3. What is the combinatorial analog of the Structure Theorem (Theo-
rem 3.2)?

The uniformity norms on Z/NZ (used in Gowers’s [26] proof of Szemerédi’s
Theorem and in Green and Tao’s [28] proof that the primes contain arbitrarily long
progressions) play a role similar to the role that the seminorms described in Section 3
play in proving convergence of the multiple ergodic average along arithmetic pro-
gressions in [36]. A partial answer to this question is given by Green and Tao in [29],
in which they show that generalized quadratic functions control the third uniformity
norm, analogous to the way that 2-step nilsystems control the third seminorm. These
generalized quadratic functions are controlled by 2-step nilsequences, and this gives a
partial understanding of the combinatorial objects. It should be interesting and useful
to obtain a more complete understanding of the precise nature of the link between
these generalized quadratic functions and 2-step nilsequences, with a description in
the finite setting of Z/NZ rather than in Z. For longer progressions, even partial
results are not known.
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It is not clear if one can directly use ergodic theory to prove statements about the
primes, as the primes have zero density and Furstenberg’s Correspondence Principle
only applies for sets of positive upper density. However, even without a version
of the Correspondence Principle that applies to zero density subsets, ergodic theory
and especially its techniques has and will be further used to understand the finer
structure of the primes. In analogy with multiple ergodic averages along polynomial
sequences (and the use of seminorms), one may hope to combine techniques of additive
combinatorics and ergodic theory to show, for example, that for all integers k > 1,
there exist infinitely many pairs (p, n) of integers with p, n > 1 such that p, p + n,
p+n?, ..., p+n* consists only of prime numbers.
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