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Abstract

In this article we survey recent progress on quasi-isometric rigidity of poly-
cyclic groups. These results are contributions to Gromov’s program for classify-
ing finitely generated groups up to quasi-isometry [Gr2]. The results discussed
here rely on a new technique for studying quasi-isometries of finitely generated
groups, which we refer to as coarse differentiation.

We include a discussion of other applications of coarse differentiation to
problems in geometric group theory and a comparison of coarse differentiation
to other related techniques in nearby areas of mathematics.
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1. Introduction, Conjectures, and Results

For any group Γ generated by a subset S one has the associated Cayley graph,
CΓ(S). This is the graph with vertex set Γ and edges connecting any pair of
elements which differ by right multiplication by a generator. There is a natural
Γ action on CΓ(S) by left translation. By giving every edge length one, the
Cayley graph can be made into a (geodesic) metric space. The distance on Γ
viewed as the vertices of the Cayley graph is the word metric, defined via the
norm:

‖γ‖ = inf{length of a word in the generators S representing γ in Γ.}
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Different sets of generators give rise to different metrics and Cayley graphs
for a group but one wants these to be equivalent. The natural notion of equiv-
alence in this category is quasi-isometry:

Definition 1.1. Let (X, dX) and (Y, dY ) be metric spaces. Given real numbers
K≥1 and C≥0,a map f : X→Y is called a (K,C)-quasi-isometry if

1. 1
K dX(x1, x2) − C≤dY (f(x1), f(x2))≤KdX(x1, x2) + C for all x1 and x2

in X, and,

2. the C neighborhood of f(X) is all of Y .

If Γ is a finitely generated group, Γ is canonically quasi-isometric to any
finite index subgroup Γ′ in Γ and to any quotient Γ′′ = Γ/F for any finite
normal subgroup F . The equivalence relation generated by these (trivial) quasi-
isometries is called weak commensurability. A group is said to virtually have a
property if some weakly commensurable group does.

In his ICM address in 1983, Gromov proposed a broad program for studying
finitely generated groups as geometric objects, [Gr2]. Though there are many
aspects to this program (see [Gr3] for a discussion), the principal question is
the classification of finitely generated groups up to quasi-isometry. By construc-
tion, any finitely generated group Γ is quasi-isometric to any space on which Γ
acts properly discontinuously and cocompactly by isometries. For example, the
fundamental group of a compact manifold is quasi-isometric to the universal
cover of the manifold (this is called the Milnor–Svarc lemma). In particular,
any two cocompact lattices in the same Lie group G are quasi-isometric. One
important aspect of Gromov’s program is that it allows one to generalize many
invariants, techniques, and questions from the study of lattices to all finitely
generated groups.

A major direction in the Gromov program is determining which algebraic
properties of groups are quasi-isometry invariants. As consequence of Gromov’s
theorem on groups of polynomial growth, one has that the property of having a
finite index subgroup that is nilpotent is invariant under quasi-isometries [Gr1].
It is then an obvious question whether larger classes of groups might have this
property. Erschler showed in [D] that this is not the case for solvable groups. I.e.
there are groups quasi-isometric to solvable groups which are not even virtually
solvable. However, the following conjecture is plausible and we will spend much
of this article discussing progress towards it.

Conjecture 1.2. Let Γ be a polycyclic group, then any group Γ′ quasi-isometric
to Γ is virtually polycyclic.

Remarks:

1. Conjecture 1.2 can be rephrased as being about lattices in connected, sim-
ply connected solvable Lie groups. In particular, by a theorem of Mostow,
any polycyclic group is virtually a lattice in a connected, simply connected
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solvable Lie group, and conversely any lattice in a solvable Lie group is
virtually polycyclic [Mo2]. As solvable Lie groups have only cocompact
lattices, the conjectures is equivalent to saying that any group quasi-
isometric to lattice in a simply connected solvable Lie group is virtually
a lattice in a simply connected, solvable Lie group.

2. Some classes of solvable groups which are not polycyclic are known to be
quasi-isometrically rigid. See particularly the work of Farb and Mosher on
the solvable Baumslag–Solitar groups [FM1, FM2] as well as later work
of Farb–Mosher, Mosher–Sageev–Whyte and Wortman [FM3, MSW, W].
The methods used in all of these works depend essentially on topological
arguments based on the explicit structure of singularities of the spaces
studied and cannot apply to polycyclic groups.

3. Shalom has obtained some evidence for the conjecture by cohomological
methods [Sh]. For example, Shalom shows that any group quasi-isometric
to a polycyclic group has a finite index subgroup with infinite abelianiza-
tion. Some of his results have been further refined by Sauer [Sa].

We discuss results that establish Conjecture 1.2 in many cases. We believe
our techniques provide a method to attack the conjecture. This is work in
progress, joint with Irine Peng.

From an algebraic point of view, solvable groups are generally easier to study
than semisimple ones, as the algebraic structure is more easily manipulated. In
the present context it is extremely difficult to see that any algebraic structure
is preserved and so we are forced to work geometrically. For nilpotent groups
the only geometric fact needed is polynomial volume growth. For semisimple
groups, the key fact for all approaches is nonpositive curvature. The geometry
of solvable groups is quite difficult to manage, since it involves a mixture of
positive and negative curvature as well as exponential volume growth.

The simplest non-trivial example for Conjecture 1.2 is the 3-dimensional
solvable Lie group Sol. This example has received a great deal of attention.
The group Sol ∼= RnR

2 with R acting on R
2 via the diagonal matrix with

entries ez/2 and e−z/2. As matrices, Sol can be written as :

Sol =











ez/2 x 0
0 1 0
0 y e−z/2





∣

∣

∣

∣

∣

∣

(x, y, z) ∈ R
3







The metric e−zdx2 + ezdy2 + dz2 is a left invariant metric on Sol. Any group
of the form ZnTZ

2 for T ∈ SL(2,Z) with |tr(T )| > 2 is a cocompact lattice in
Sol.

The following theorem by Eskin, Fisher and Whyte proves a conjecture of
Farb and Mosher [EFW0, EFW1, EFW2, FM4]:

Theorem 1.3. Let Γ be a finitely generated group quasi-isometric to Sol. Then
Γ is virtually a lattice in Sol.
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Peng’s thesis contains a far reaching generalization of this result [Pe1, Pe2].
In addition to generalizing the methods introduced in [EFW0, EFW1, EFW2],
Peng’s thesis makes use of generalizations of some results of Farb and Mosher
by Dymarz and Dymarz–Peng [FM1, Dy, DP]. We require some vocabulary
to formulate Peng’s results. We call a solvable Lie group abelian by abelian
if it is of the form R

k
n R

n. Such a group is defined by a linear represenation
ρ : Rk → GL(Rn). Note that the image ρ(Rk) is an abelian subgroup of GL(Rn)
and as such it’s elements admit a common Jordan form. The Jordan form
gives rise to a collection of functionals, called weights, on R

k. Each weight ω
corresponds to a subspace W of Rn that is common generalized eigenspace for
the R

k action and ω(v) for v in R
k is the norm of the generalized eigenvalue

for the action of v on W . We call an abelian by abelian solvable group non-
degenerate if ρ is faithful and no weight w has w(Rk) contained in {±1}. Recall
that a Lie group is unimodular if it has a bi-invariant Haar measure. For a
group of the form R

k
n R

n, unimodularity is equivalent to ρ taking values in
SL(Rn).

Theorem 1.4. Let G = R
k
n R

n be a non-degenerate abelian by abelian uni-
modular, solvable Lie group. Then any group Γ quasi-isometric to G is virtually
a lattice in a solvable Lie group G′ = R

k
nR

n which is also abelian by abelian,
non-degenerate and unimodular.

Remark: One can in fact say more about the relation between G and G′, but
we will not pursue this here.

Both of the theorems stated above are proved using a new technique, which
we call coarse differentiation. Even though quasi-isometries have no local struc-
ture and conventional derivatives do not make sense, we essentially construct a
“coarse derivative” that models the large scale behavior of the quasi-isometry.
Coarse differentiation is quite similar to a number of notions that arise in vari-
ous forms of differentiation theory. However, this construction is quite different
from the more conventional method of passing to the asymptotic cone and then
applying a differentiation theorem to either the full asymptotic cone or some
subspace of it, see §4.5 for more discussion.

2. Quasi-isometries are Height Respecting

A typical step in the study of quasi-isometric rigidity of groups is the identifi-
cation of all quasi-isometries of some space X quasi-isometric to the group, see
§4.6 for a brief explanation. For us, the space X is always a solvable Lie group.
To pursue Conjecture 1.2, the goal is to show that all self quasi-isometries of
the solvable Lie group G permutes the cosets of a certain subgroup.

For Sol the group whose cosets we show are preserved is exactly the kernel
of the homomorphism h : Sol → R which we call the height function. There is
a foliation of Sol by level sets of the height function which is also the foliation
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by cosets of the normal R2. We will call a quasi-isometry of any of these spaces
height respecting if it permutes the height level sets to within bounded distance
(In [FM4], the term used is horizontal respecting). In our coordinates for Sol,
the height function is h(x, y, z) = z.

Theorem 2.1. Any (K,C)-quasi-isometry ϕ of Sol is within bounded distance
of a height respecting quasi-isometry ϕ̂. Furthermore, this distance can be taken
uniform in (K,C) and therefore, in particular, ϕ̂ is a (K ′, C ′)-quasi-isometry
where K ′, C ′ depend only on K and C.

Remark: In fact, Theorem 2.1 can be used to identify the quasi-isometries of
Sol completely. Possibly after composing with the map (x, y, z)→(y, x,−z), any
height respecting quasi-isometry (and in particular, any isometry) is at bounded
distance from a quasi-isometry of the form (x, y, z)→(f(x), g(y), z) where f and
g are bilipschitz functions. Given a metric space X, one defines QI(X) to be the
group of quasi-isometries of X modulo the subgroup of those at finite distance
from the identity. The previous statement can then be taken to mean that
QI(Sol) = Bilip(R)2nZ/2Z. This explicit description was conjectured by Farb
and Mosher.

If we take a group of the form R
k
nR

n as in Theorem 1.4, we can write
coordinates (z, ~x) where z is the coordinate in R

k and ~x is the coordinate in
R

n. Here h(z, ~x) = z and level sets of h are R
n cosets. We can again call a

quasi-isometry height respecting if it permutes level sets of h. The following is
the main result of [Pe1, Pe2].

Theorem 2.2. Let X = R
k
nR

n be as in Theorem 1.4. Then any (K,C)-
quasi-isometry ϕ of Rk

nR
n is within a bounded distance of a height respecting

quasi-isometry ϕ̂. Furthermore, the bound is uniform in K and C.

Remark: There is an explicit description of QI(Rk
nR

n) in this context as
well, but it is somewhat involved so we omit it.

We now describe a conjecture that is a key step in our approach to Conjec-
ture 1.2. We note here that this conjecture does not suffice to prove that one,
but that one requires in addition generalizations of the results in [Dy, DP].

We begin by reviewing some structure theory of simply connected solvable
Lie groups. Most of the basics are contained in work of Auslander [A1, A2]. Let
G be a solvable Lie group. Then G is part of a short exact sequence:

1 → N → G → H̄ → 1

where N and H̄ are nilpotent. In general this exact sequence does not split but
there is a nilpotent group H, called a Cartan subgroup, that is minimal among
all groups mapping onto H̄. The group N is the maximal normal nilpotent
subgroup of G, also known as it’s nilradical. We are particularly interested in
a subgroup exp(G) of N , defined independently by Guivarch and Osin, called
the exponential radical of G [Gu, Os]. This can be taken to be the subgroup
of G generated by all exponentially distorted elements in G. ( Guivarch calls it



1190 Alex Eskin and David Fisher

the unstable subgroup, the terminology exponential radical is due to Osin.) We
believe that the following conjecture is a key step for proving Conjecture 1.2.

Conjecture 2.3. Given a unimodular solvable Lie group G, then any self quasi-
isometry of G is at bounded distance from one which preserves the foliation by
cosets of exp(G).

We remark here that the assumption that G be unimodular is necessary.
To see this consider the group SL(2,R). This group is quasi-isometric to the
affine group of the line, which is a two dimensional solvable Lie group of the
form Aff(R) = R n R. It is easy to see that the normal R, i.e. the group of
translations, is the exponential radical of Aff(R). However, Aff(R) is quasi-
isometric to SL(2,R)/O(2) = H

2 and the group of quasi-isometries of H2 is
known to be the group of quasi-symmetric maps of S1 = ∂H2. The foliation by
cosets of R identifies naturally with the horocyclic foliation corresponding to
the fixed point for Aff(R) < SL(2,R) on S1 and it is easy to see that the cosets
of this foliation are not permuted by all quasi-symmetric maps.

3. Geometry of Sol

In this subsection we describe the geometry of Sol and related spaces in more
detail, with emphasis on the geometric facts used in our proofs.

The upper half plane model of the hyperbolic plane H
2 is the set {(x, ξ) |

ξ > 0} with the length element ds2 = 1
ξ2 (dx

2 + dξ2). If we make the change of

variable z = log ξ, we get R2 with the length element ds2 = dz2+ e−zdx2. This
is the log model of the hyperbolic plane H

2.
The length element of Sol is:

ds2 = dz2 + e−zdx2 + ezdy2.

Thus planes parallel to the xz plane are hyperbolic planes in the log model.
Planes parallel to the yz plane are upside-down hyperbolic planes in the log
model. All of these copies ofH2 are isometrically embedded and totally geodesic.

We will refer to lines parallel to the x-axis as x-horocycles, and to lines
parallel to the y-axis as y-horocycles. This terminology is justified by the fact
that each (x or y)-horocycle is indeed a horocycle in the hyperbolic plane which
contains it.

We now turn to a discussion of geodesics and quasi-geodesics in Sol. Any
geodesic in an H

2 leaf in Sol is a geodesic. There is a special class of geodesics,
which we call vertical geodesics. These are the geodesics which are of the form
γ(t) = (x0, y0, t) or γ(t) = (x0, y0,−t). We call the vertical geodesic upward
oriented in the first case, and downward oriented in the second case. In both
cases, this is a unit speed parametrization. Each vertical geodesic is a geodesic
in two hyperbolic planes, the plane y = y0 and the plane x = x0.
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Certain quasi-geodesics in Sol are easy to describe. Given two points
(x0, y0, t0) and (x1, y1, t1), there is a geodesic γ1 in the hyperbolic plane y = y0
that joins (x0, y0, t0) to (x1, y0, t1) and a geodesic γ2 in the plane x = x1

that joins (x1, y0, t1) to a (x1, y1, t1). It is easy to check that the concate-
nation of γ1 and γ2 is a quasi-geodesic. In first matching the x coordinates
and then matching the y coordinates, we made a choice. It is possible to con-
struct a quasi-geodesic by first matching the y coordinates and then the x
coordinates. This immediately shows that any pair of points not contained
in a hyperbolic plane in Sol can be joined by two distinct quasi-geodesics
which are not close together. This is an aspect of positive curvature. One way
to prove that the objects just constructed are quasi-geodesics is to note the
following: The pair of projections π1, π2 : Sol→H

2 onto the xt and yt co-
ordinate planes can be combined into a quasi-isometric embedding π1×π2 :
Sol→H

2×H
2.

We state here the simplest version of a key geometric fact used at various
steps in the proof.

Lemma 3.1 (Quadrilaterals). Suppose p1, p2, q1, q2 ∈ Sol and γij : [0, `ij ] →
Sol are vertical geodesic segments parametrized by arclength. Suppose C > 0.
Assume that for i = 1, 2, j = 1, 2,

d(pi, γij(0)) ≤ C and d(qi, γij(`ij)) ≤ C,

so that γij connects the C-neighborhood of pi to the C-neighborhood of qj. Fur-
ther assume that for i = 1, 2 and all t, d(γi1(t), γi2(t))≥(1/10)t − C (so that
for each i, the two segments leaving the neighborhood of pi diverge right away)
and for j = 1, 2 and all t, d(γ1j(l1j − t), γ2j(l2j − t))≥(1/10)t− C. Then there
exists C1 depending only on C such that exactly one of the following holds:

(a) All four γij are upward oriented, p2 is within C1 of the y-horocycle passing
through p1 and q2 is within C1 of the x-horocycle passing through φ(q1).

(b) All four γij are downward oriented, p2 is within C1 of the x-horocycle
passing through p1 and q2 is within C1 of the y-horocycle passing through
q1.

We think of p1, p2, q1 and q2 as defining a quadrilateral. The content of the
lemma is that any quadrilateral has its four “corners” in pairs that lie essen-
tially along horocycles. In particular, if we take a quadrilateral with geodesic
segments γij and with h(p1) = h(p2) and h(q1) = h(q2) and map it forward
under a (K,C)-quasi-isometry φ, and if we would somehow know that φ sends
each of the four γij close to a vertical geodesic, then Lemma 3.1 would im-
ply that φ sends the pi (resp. qi) to a pair of points at roughly the same
height.

We now define certain useful subsets of Sol. Let B(L,~0) = [−eL, eL] ×
[−eL, eL]× [−L,L]. Then |B(L,~0)| ≈ Le2L and Area(∂B(L,~0)) ≈ e2L, so B(L)



1192 Alex Eskin and David Fisher

is a Fölner set. We call B(L,~0) a box of size L centered at the identity. We
define the box of size L centered at a point p by B(L, p) = TpB(L,~0) where Tp

is left translation by p. Since left translation is an isometry, B(L, p) is also a
Fölner set. We frequently omit the center of a box in our notation and write
B(L).

Approximating a box by a graph. Notice that the top of B(L), meaning
the set [−eL, eL] × [−eL, eL] × {L}, is not at all square - the sides of this
rectangle are horocyclic segments of lengths 2e2L and 2 - in other words it is
just a small metric neighborhood of a horocycle. Similarly, the bottom is also
essentially a horocycle but in the transverse direction. Further, we can connect
the 1-neighborhood of any point of the top horocycle to the 1-neighborhood of
any point of the bottom horocycle by a vertical geodesic segment, and these
segments essentially sweep out the box B(L). Thus a box contains an extremely
large number of quadrilaterals. If we discretize the top and bottom horocycle,
we can think of this process as giving a description of a graph which we call
GL. This graph is essentially a complete bipartite graph with 4e2L vertices.
Throughout the proof of our results on Sol, this highly connected graph plays
a key role.

4. On Proofs

In this section, we give some of the key ideas in the proofs. In the first two
subsections we indicate the key new ideas behind our proof of Theorem 2.1.
The first contains quantative estimates on the behavior of quasi-geodesics. The
second subsection averages this behavior over families of quasi-geodesics. In §4.3
we sketch the proof of Theorem 2.1. Subsection 4.4 briefly discusses the ideas
needed to adapt the proof of Theorem 2.1 to prove the other results in Section
2 and indicates obstructions and progress in the general case of Conjecture
2.3. Before continuing with discussion of proofs, we include a discussion of how
to axiomatize the methods of §4.1 and §4.2 into a general method of coarse
differentiation in §4.5. In subsection §4.6, we discuss deducing results in §1
from results in §2.

4.1. Behavior of quasi-geodesics. We begin by discussing some
quantative estimates on the behavior of quasi-geodesic segments in Sol.
Throughout the discussion we assume α : [0, r] → Sol is a (K,C)-quasi-geodesic
segment for a fixed choice of (K,C), i.e. α is a quasi-isometric embedding of
[0, r] into Sol. A quasi-isometric embedding is a map that satisfies point (1) in
Definition 1.1 but not point (2).

Definition 4.1 (ε-monotone). A quasigeodesic segment α : [0, r] → Sol is ε-
monotone if for all t1, t2 ∈ [0, r] with h(α(t1)) = h(α(t2)) we have |t1−t2| < εr.
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Figure 1. A quasigeodesic segment which is not ε-monotone.

The following fact about ε-monotone geodesics is an easy exercise in hyper-
bolic geometry:

Lemma 4.2 (ε-monotone is close to vertical). If α : [0, r] → Sol is ε-monotone,
then there exists a vertical geodesic segment λ such that d(α, λ) = O(εr).

Remark: The distance d(α, λ) is the Hausdorff distance between the sets and
does not depend on parametrizations.

Lemma 4.3 (Subdivision). Suppose α : [0, r] → Sol is a quasi-geodesic segment
which is not ε-monotone. Suppose n � 1 (depending on ε, K, C). Then

n−1
∑

j=0

∣

∣

∣
h(α( (j+1)r

n ))− h(α( jrn ))
∣

∣

∣
≥ |h(α(0))− h(α(r))|+

εr

8K2
.

Outline of Proof. If n is sufficiently large, the total variation of the height
increases after the subdivision by a term proportional to ε. See Figure 2.

Figure 2. Proof of Lemma 4.3

Choosing Scales: Choose 1 � r0 � r1 � · · · � rM . In particular, C � r0
and rm+1/rm > n.

Lemma 4.4. Suppose L � rM , and suppose α : [0, L] → Sol is a quasi-
geodesic segment. For each m ∈ [1,M ], subdivide [0, L] into L/rm segments of
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length rm. Let δm(α) denote the fraction of these segments whose images are
not ε-monotone. Then,

M
∑

m=1

δm(α) ≤
16K3

ε
.

Proof. By applying Lemma 4.3 to each non-ε-monotone segment on the scale
rM , we get

L/rM−1
∑

j=1

|h(α(jrM−1))− h(α((j − 1)rM−1))| ≥

≥

L/rM
∑

j=1

|h(α(jrM ))− h(α((j − 1)rM ))|+ δM (α)
εL

8K2
.

Doing this again, we get after M iterations,

L/r0
∑

j=1

|h(α(jr0))− h(α((j − 1)r0))| ≥

≥

L/rM
∑

j=1

|h(α(jrM ))− h(α((j − 1)rM ))|+
εL

8K2

M
∑

m=1

δm(α).

But the left-hand-side is bounded from above by the length and so bounded
above by 2KL.

4.2. Averaging. In this subsection we apply the estimates from above
to images of geodesics under a quasi-isometry of Sol. The idea is to average
the previous estimates over families of quasi-geodesics. This results in a coarse
analogue of Rademacher’s theorem, which says that a bilipschitz map of Rn is
differentiable almost everywhere, see below for discussion.

Setup and Notation.

• Suppose φ : Sol → Sol is a (K,C) quasi-isometry. Without loss of gener-
ality, we may assume that φ is continuous.

• Let γ : [−L,L] → Sol be a vertical geodesic segment parametrized by
arclength where L � C.

• Let γ = φ ◦ γ. Then γ : [−L,L] → Sol is a quasi-geodesic segment.

It follows from Lemma 4.4, that for every θ > 0 and every geodesic segment
γ, assuming that M is sufficiently large, there exists m ∈ [1,M ] such that



Quasi-isometric Rigidity of Solvable Groups 1195

Figure 3. The box B(L).

δm(γ) < θ. The difficulty is that m may depend on γ. For Sol, this is overcome
as follows:

Recall that B(L) = [−eL, eL]× [−eL, eL]× [−L,L]. Then |B(L)| ≈ Le2L and
Area(∂B(L)) ≈ e2L, so B(L) is a Fölner set. Average the result of Lemma 4.4
over YL, the set of vertical geodesics in B(L) and let |YL| denote the mea-
sure/cardinality of YL. Changing order, we get:

M
∑

m=1





1

|YL|

∑

γ∈YL

δm(γ)



 ≤
32K3

ε
.

Thus, given any θ > 0, (by choosing M sufficiently large) we can make sure
that there exists 1 ≤ m ≤ M such that

1

|YL|

∑

γ∈YL

δm(γ) < θ. (1)

Conclusion. On the scale R ≡ rm, at least 1−θ fraction of all vertical geodesic
segments in B(L) have nearly vertical images under φ. See Figure 3.

The difficulty is that, at this point, it may be possible that some of the
(upward oriented) vertical segments in B(L) may have images which are going
up, and some may have images which are going down.

We think of the process we have just described as a form of “coarse differ-
entiation”. For further discussion of this process and a more general variant on
the discussion in the last two subsections, see subsection 4.5.

4.3. The scheme of the proof of Theorem 2.1. Roughly speak-
ing, the proof proceeds in the following steps:

Step 1. For all θ > 0 there exists L0 such that for any box B(L) where L ≥ L0,
there exists 0 � r � R � L0 such that for the tiling:

B(L) =

N
⊔

i=1

Bi(R)
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there exists I ⊂ {1, . . . , N} with |I| ≥ (1 − θ)N and for each i ∈ I there

exists a height-respecting map φ̂i : Bi(R) → Sol and a subset Ui ⊂ Bi(R) with
|Ui| ≥ (1− θ)|Bi(R)| such that

d(φ|Ui
, φ̂i) = O(r).

Roughly, Step 1 asserts that every sufficiently large box can be tiled into
small boxes, in such a way that for most of the small boxes Bi(R), the restriction
of φ to Bi(R) agrees, on most of the measure of Bi(R), with a height-respecting

map φ̂i : Bi(R) → Sol. There is no assertion in Step 1 that the height-respecting

maps φ̂i on different small boxes match up to define a height-respecting map
on most of the measure on B(L); the main difficulty is that some of the φ̂i may

send the “up” direction to the “down” direction, while other φ̂i may preserve
the up direction.

Step 1 follows from a version of (1) and some geometric arguments using
Lemma 3.1. The point is that any ε-monotone quasi-geodesic is close to a ver-
tical geodesic by Lemma 4.2. By the averaging argument in subsection 4.2, we
find a scale R at which most segments have ε-monotone image under φ. More
averaging implies that on most boxes Bi(R) most geodesic segments joining
the top of the box to the bottom of the box have ε-monotone images. We then
apply Lemma 3.1 to the images of these geodesics and use this to show that
the map is roughly height preserving on each Bi(R). This step also uses the
geometric description of Bi(R) given in the last paragraph of §3, i.e. the fact
that a box is coarsely a complete bipartite graph GR on nets in the “top” and
“bottom” of the box.

Step 2. For all θ > 0 there exists L0 such that for any box B(L) where L ≥ L0,
∃ subset U ⊂ B(L) with |U | ≥ (1 − θ)|B(L)| and a height-respecting map

φ̂ : B(L) → Sol such that

d(φ|U , φ̂) = O(l),

where l � L0.

This is the essentially the assertion that the different maps φ̂i from Step 1
are all oriented in the same way, and can thus be replaced by one standard map
φ̂ : B(L) → Sol.

Step 2 is the most technical part of the proof. The problem here derives
from exponential volume growth. In Euclidean space, given a set of almost full
measure U in a box, every point in the box is close to a point in U . This is
not true in Sol because of exponential volume growth. Another manifestation
of this difficulty is that Sol does not have a Vitali covering lemma. The proof
involves using refinements of Lemma 3.1 and further averaging on the image
of φ.

Step 3. The map φ is O(L0) from a standard map φ̂.
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This follows from Step 2 and some geometric arguments using variants of
Lemma 3.1. The large constant, O(L0), arises because we pass to very large
scales to ignore the sets of small measure that arise in Steps 1 and 2.

4.4. Remarks on the proof of Theorem 1.4 and the general
case. Peng’s proof of Theorem 1.4 proceeds roughly using the same strategy
as the proof of Theorem 1.3. The main difference is that instead of vertical
geodesics one has “vertical flats” (which are the orbits of Rk acting on R

k
nR

n).
These flats are equipped with a foliation by hyperplanes which are parallel to the
kernels of the weights on R

k defined by the map ρ : Rk → R
n. Peng shows that

the quasi-isometry roughly preserves the vertical flats, and also the restriction
of the map to a flat preserves the foliation by hyperplanes. In particular a
geodesic in a vertical flat which is transverse to the root hyperplanes maps
roughly to another such object. This allows Peng to show that the map roughly
preserves subsets of the space whose geometry is quite similar to Sol geometry.
This fact then allows her to use the geometry of the graphs GL described at
the end of §3 in her arguments.

The case G = R n N where N is a nilpotent group and N is equal to the
exponential radical of G can already present considerable extra difficulties. In
this case we can split the Lie algebra n of N into an expanding subspace n+ and
a contracting subspace n−. In the case where [n+, n−] = 0, the geometry of G is
quite similar to the geometry of Sol and the proof that the N coset foliation is
preserved can be carried out in a very similar fashion. However if [n+, n−] 6= 0,
the geometry is quite different and the the quadrilateral lemma (Lemma 3.1)
fails to be true. This is closely related to the fact the the graphs GL, which are
the RnN analogues of the graph given the same name at the end of §3, are no
longer complete bipartite. One can make progress in this direction by replacing
Lemma 3.1 by a sort of averaged version, but this requires the detailed study
of the graphs GL, including proving a uniform spectral gap as the size of the
box L tends to infinity. This is done in [FP].

Once the R n N case is complete, the proof in split polycyclic case G =
R

k
nN would presumably involve incorporating the ideas of [Pe1], [Pe2]. Even

the split case where G = N1 nN2 with N2 = exp(G) will be quite similar with
vertical flats replaced by vertical copies of N1. For the general polycyclic group
G, the exact sequence 1 → exp(G) → G → G/ exp(G) → 1 may not split, and
“vertical flats” are no longer defined. However, there is a geometric splitting
of the exact sequence which defines a foliation of G by sets diffeomorphic to
G/ exp(G) where the maps sending leaves into the space G/ exp(G) → G pre-
serves distances up to a logarithmic error and thus the methods described here
are still relevant. This geometric splitting is used by de Cornulier in his work
on the asymptotic geometry of solvable Lie groups [dC1, dC2].

4.5. Remarks on coarse differentiation. If a map is differentiable,
then it is locally at sub-linear error from a map which takes lines to lines. This
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is roughly the conclusion of the argument above for the vertical geodesics in
Sol, at least on an appropriately chosen large scale and off of a set of small
measure. The ideas employed here can be extended to general metric spaces,
by replacing the notion of ε-monotone with a more general notion of ε-efficient
which we will describe below. The ideas in our proof are not so different from the
proof(s) of Rademacher’s theorem that a bilipschitz map of Rn is differentiable
almost everywhere. In fact, our method applied to quasi-isometries of Rn gives
roughly the same information as the application of Rademacher’s theorem to
the induced bilipschitz map on the asymptotic cone of R

n (which is again
R

n). In this context the presence of sets of small measure can be eliminated
by a covering lemma argument. In the context of solvable groups, passage to
the asymptotic cone is complicated by the exponential volume growth. The
asymptotic cone for these groups is not locally compact, which makes it difficult
to find useful notions of sets of zero or small measure there.

We now formulate somewhat loosely a more general form of the “differenti-
ation theorem” given in subsections 4.1 and 4.2. Throughout this subsection Y
will be a general metric space, though it may be most useful to think of Y as a
complete, geodesic metric space. First we generalize the notion of ε-monotone.

Definition 4.5. A quasigeodesic segment α : [0, L] → Y is ε-efficient on the
scale r if

L/r
∑

j=1

d(α(jr), α((j − 1)r)) ≤ (1 + ε)d(α(L), α(0)).

The fact is that a quasi-geodesic, unless it is a (1+ε) quasi-geodesic, fails to
be ε-efficient at some scale some fraction of the time. The observation embedded
in subsection 4.1 is that this cannot happen everywhere on all scales and in fact
cannot happen too often on too many scales.

Figure 4. The definition of ε-efficient.

With this definition, the following variant on Lemma 4.3 becomes a tautol-
ogy.

Lemma 4.6 (Subdivision II). Given ε > 0, there exist r � C and n � 1
(depending on K,C and ε) such that any (K,C)-quasi-geodesic segment α :
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[0, r] → X which is not ε-efficient on scale r
n we have:

n−1
∑

j=0

d
(

α
(

(j+1)r
n

)

, α
(

jr
n

)

)

≥ d(α(0), α(r)) +
εr

2K
.

We now state a variant of Lemma 4.4 whose proof is verbatim the proof of
that lemma.

Choosing Scales: Choose 1 � r0 � r1 � · · · � rM . In particular, C � r0
and rm+1/rm > n.

Lemma 4.7. Suppose L � rM , and suppose α : [0, L] → X is a quasi-geodesic
segment. For each m ∈ [1,M ], subdivide [0, L] into L/rm segments of length rm.
Let δm(α) denote the fraction of these segments whose images are not ε-efficient
on scale rm−1. Then,

M
∑

m=1

δm(α) ≤
4K2

ε
.

Let X be a geodesic metric space. Coarse differentiation amounts to the
following easy lemma.

Lemma 4.8 (Coarse Differentiation). Let φ : X→Y be a (K,C)-quasi-
isometry. For all θ > 0 there exists L0 � 1 such that for any L > L0

and any family F of geodesics of length L in X, there exist scales r,R with
C � r � R � L0 such that if we divide each geodesic in F into subsegments
of length R, then at least (1 − θ) fraction of these subsegments have images
which are ε-efficient at scale r.

This lemma and its variants seem likely to be useful in other settings. In fact,
the lemma holds only assuming that φ is coarsely lipschitz. A map φ : X→Y
is a (K,C) coarsely lipschitz if dY (φ(x1), φ(x2))≤KdX(x1, x2) + C. We now
describe the relation to taking derivatives and also to the process of taking a
“derivative at infinity” of a quasi-isometry by passing to asymptotic cones.

We first discuss the case of maps Rn→R
n. Suppose φ : Rn→R

n is a quasi-
isometry. Suppose one chooses a net N on the unit circle and takes F to be
the set of all lines of length L in a large box, whose direction vector is in N .
Lemma 4.8 applied to F then states that most of these lines, on the appropri-
ate scale, map under φ close to straight lines, which implies that the map φ
(in a suitable box) can be approximated by an affine map. Thus, in this con-
text, Lemma 4.8 is indeed analogous to differentiation (or producing points of
differentiability).

An alternative approach for analyzing quasi-isometries φ : R
n→R

n is to
pass to the asymptotic cone to obtain a bilipschitz map φ̃ : Rn→R

n and then
apply Rademacher’s theorem to φ̃. If one attempts to pull the information this
yields back to φ one gets statements that are similar to those one would obtain
directly using Lemma 4.8. This is not surprising, since averaging arguments like
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those used in the proof of Lemma 4.8 are implicit in the proofs of Rademacher’s
theorem.

Passing to the asymptotic cone has obvious advantages because it allows one
to replace a (K,C) quasi-isometry from X to Y with a (K, 0)-quasi-isometry
(i.e. a bilipschitz map) from the asymptotic cone of X to the asymptotic cone
of Y . One can then try to use analytic techniques to study the bilipshitz maps.
However, a major difficulty which occurs is that the asymptotic cones are typi-
cally not locally compact and notions of measure and averaging on such spaces
are not clear. This difficulty arises as soon as one has exponential volume
growth. In particular it is not clear if there is a useful version of Rademacher’s
theorem for the asymptotic cones of the spaces which we consider in this paper.

The main advantage of Lemma 4.8 compared to the asymptotic cone ap-
proach is that the averaging is done on the (typically locally compact) space X,
i.e. the domain of the quasi-isometry φ. In other words, we construct a “coarse
derivative” without first passing to a limit to get rid of the additive constant.
In particular, the information we obtain about Sol and other solvable groups
by coarse differentiation is not easily extracted by passage to the asymptotic
cone.

We remark again that Lemma 4.8 applies to any quasi-isometric embedding
(or any uniform embedding) between any two metric spaces X and Y . However
its usefulness clearly depends on the situation.

The coarse differentiation approach is closely related to results proved the
method of the “iterated midpoint” which is well-known in the theory of Banach
spaces, see e.g. [B],[BL], [JLS], [M], [Pr], [BJLPS]. Some results of some of those
papers also have a similar flavor, resulting in points where a map between
Banach spaces is ε-Frechet differentiable, i.e. that the map is sublinear distance
from an affine map at some scale. The main difference in proofs is that in our
setting it is possible to average the inequality as described in §4.2 to obtain
some control on a set of large (but not full) measure.

4.6. Deduction of rigidity results. In our setting, the deduction of
rigidity results from the classification of quasi-isometries follows a fairly stan-
dard outline that is similar to one used for semisimple groups as well as for
certain solvable groups in [FM2, FM3, MSW]. As this is standard, we will
say relatively little about it. Some of these ideas go back to Mostow’s original
proof of Mostow rigidity [Mo1, Mo3] and have been developed further by many
authors.

Given a group Γ any element of γ in Γ acts on Γ by isometries by left
multiplication Lγ . If X is a metric space and φ : Γ→X is a quasi-isometry, we
can conjugate each Lγ to a self quasi-isometry φ◦Lγ◦φ

−1 of X. This induces a
homomorphism of Φ : Γ → QI(X). Here QI(X) is the group of quasi-isometries
of X modulo the subgroup of quasi-isometries a bounded distance from the
identity. The approach we follow is to use Φ to define an action of Γ on a
“boundary at infinity” of the spaceX. All theorems are then proven by studying
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the dynamics of this “action at infinity.” We are ignoring many important
technical points here, such as why Φ has finite kernel and why QI(X) acts on
either X or the boundary at infinity of X.

The deduction of Theorem 1.3 from Theorem 2.1 was known to Farb and
Mosher [FM2, FM4]. The action at infinity is studied using a variant of a the-
orem of Hinkannen due to Farb and Mosher [H, FM2, FM4]. In the context of
Theorem 1.4, we deduce the result from Theorem 2.2 using results from the dis-
sertation of Tullia Dymarz and a further paper by Dymarz and Peng [Dy, DP].
These are variants and extensions of the results of Tukia in [Tu]. As remarked
above, a proof of Conjecture 1.2 from Conjecture 2.3 will require a further
generalization of these results. This generalization is already a significant and
difficult problem.

5. Further Consequences

In this section we discuss some other results that are consequence either of our
methods or of our results.

5.1. Geometry of Diestel–Leader graphs. In addition our meth-
ods yield quasi-isometric rigidity results for a variety of solvable groups which
are not polycyclic, in particular the so-called lamplighter groups. These are the
wreath products ZoF where F is a finite group. The name lamplighter comes
from the description ZoF = FZ

o Z where the Z action is by a shift. The sub-
group FZ is thought of as the states of a line of lamps, each of which has |F |
states. The “lamplighter” moves along this line of lamps (the Z action) and can
change the state of the lamp at her current position. The Cayley graphs for the
generating sets F ∪ {±1} depend only on |F |, not the structure of F . Further-
more, ZoF1 and ZoF2 are quasi-isometric whenever there is a d so that |F1| = ds

and |F2| = dt for some s, t in Z. The problem of classifying these groups up
to quasi-isometry, and in particular, the question of whether the 2 and 3 state
lamplighter groups are quasi-isometric, were well known open problems in the
field, see [dlH].

Theorem 5.1. The lamplighter groups ZoF and ZoF ′ are quasi-isometric if
and only if there exist positive integers d, s, r such that |F | = ds and |F ′| = dr.

For a rigidity theorem for lamplighter groups, see Theorem 5.2 below.
To state Theorem 5.2 as well as some other results, we need to describe a

class of graphs. These are the Diestel–Leader graphs, DL(m,n), which can be
defined as follows: let T1 and T2 be regular trees of valence m + 1 and n + 1.
Choose orientations on the edges of T1 and T2 so each vertex has n (resp.
m) edges pointing away from it. This is equivalent to choosing ends on these
trees. We can view these orientations at defining height functions f1 and f2
on the trees (the Busemann functions for the chosen ends). If one places the
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point at infinity determining f1 at the top of the page and the point at infinity
determining f2 at the bottom of the page, then the trees can be drawn as:

a’

z

b’

c

b

au’

t

u

v

w

Figure 5. The trees for DL(3, 2). Figure borrowed from [PPS].

The graph DL(m,n) is the subset of the product T1×T2 defined by f1+f2 = 0.
The analogy with the geometry of Sol is clear from section 3. For n = m
the Diestel–Leader graphs arise as Cayley graphs of lamplighter groups ZoF
for |F | = n. This observation was apparently first made by R.Moeller and
P.Neumann [MN] and is described explicitly, from two slightly different points
of view, in [Wo2] and [W]. We prove the following:

Theorem 5.2. Let Γ be a finitely generated group quasi-isometric to the lamp-
lighter group ZoF . Then there exists positive integers d, s, r such that ds = |F |r

and an isometric, proper, cocompact action of a finite index subgroup of Γ on
the Diestel–Leader graph DL(d, d).

Remark: The theorem can be reinterpreted as saying that any group quasi-
isometric to DL(|F |, |F |) is virtually a cocompact lattice in the isometry group
Isom(DL(d, d) of DL(d, d) where d is as above.

Recently, the second author, de Cornulier and Kashyp have proven some
detailed results concerning the algebraic structure of cocompact lattices in
Isom(DL(d, d)). We state here one corollary of that work.

Theorem 5.3. Let Γ < Isom(DL(d, d)) be a cocompact lattice. Then Γ admits
a transitive, proper action on DL(dn, dn) for some positive n.

The paper [dCFK] also contains many examples of lattices in Isom(DL(d, d))
which are not weakly commensurable to lamplighters.

In [SW, Wo1], Soardi and Woess ask whether every homogeneous graph
is quasi-isometric to a finitely generated group. The graph DL(m,n) is easily
seen to be homogeneous (i.e. it has a transitive isometry group). For m 6= n its
isometry group is not unimodular, and hence has no lattices. Thus there are no
obvious groups quasi-isometric to DL(m,n) in this case. In fact, we have:

Theorem 5.4. There is no finitely generated group quasi-isometric to the graph
DL(m,n) for m 6= n.

This theorem was conjectured by Diestel and Leader in [DL], where the
Diestel–Leader graphs were introduced for this purpose. Note that Theorem 5.4
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can be reinterpreted as the statement that for m 6= n, there is no finitely
generated group quasi-isometric to the isometry group of DL(m,n).

Recall that DL(m,n) is defined as the subset of Tm+1×Tn+1 where fm(x)+
fn(y) = 0 where fm and fn are Busemann functions on Tm and Tn respectively.
Here we simply set h((x, y)) = fm(x) = −fn(y) which makes sense exactly on
DL(m,n)⊂Tm+1×Tn+1. The reader can verify that the level sets of the height
function are orbits for a subgroup of Isom(DL(m,n)).

Theorem 5.5. Any (K,C)-quasi-isometry ϕ of DL(m,n) is within bounded
distance from a height respecting quasi-isometry ϕ̂. Furthermore, the bound is
uniform in K and C.

Remark: We can reformulate Theorem 5.5 in terms similar to those of Theo-
rem 2.1. Here the group Bilip(R) × Bilip(R) will be replaced by Bilip(Xm) ×
Bilip(Xn) for Xm (resp. Xn) the complement of a point in the (visual) bound-
ary of Tm+1 (resp. Tn+1). These can easily be seen to be the m-adic and n-adic
rationals, respectively.

Note that when m = n, this theorem is used to prove Theorem 5.2 and
when m 6=n it is used to prove Theorem 5.4. The proofs in these two cases
are somewhat different, the proof in the case m = n being almost identical
to the proof of Theorem 2.1. In the other case, the argument is complicated
by the absence of metric Fölner sets, but simplifications also occur since there
is no element in the isometry group that “flips” height. There is an analogue
of the above results for the case of the solvable Lie groups which appears in
Theorem 5.9.

Another recent dramatic development that uses Theorem 5.5 is the following
result of Dymarz [Dy2].

Theorem 5.6. Consider the two lamplighter groups F k o Z and F o Z where
|F | = m and F k is the direct product of k copies of F . Then there does not
exist a bijective quasi-isometry between F k o Z and F o Z if k is not a product
of prime factors appearing in m.

The main point of the theorem is that these two groups are quasi-isometric but
not bijectively quasi-isometric. A result of Whyte says that any pair of non-
amenable groups are quasi-isometric if and only if they are bijectively quasi-
isometric [Wh]. Dymarz’s result proves that this is no longer true for amenable
groups and answers a question that had been open for over ten years.

5.2. Low dimensional topology and geometry. We now state
a theorem that is a well-known consequence of Theorem 1.3, Thurston’s Ge-
ometrization Conjecture and results in [CC, Gr1, KaL1, KaL2, PW, S1, Ri].
We state it assuming that the Geometrization Conjecture is known.

Theorem 5.7. Let M be a compact three manifold without boundary and Γ
a finitely generated group. If Γ is quasi-isometric to the universal cover of M ,
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then Γ is virtually the fundamental group of M ′, also a compact three manifold
without boundary.

For more discussion of this theorem and significant progress towards clas-
sifying three manifold groups up to quasi-isometry, see work of Behrstock and
Neumann [BN1, BN2].

The existence of transitive graphs not quasi-isometric to Cayley graphs as
given by Theorem 5.4 gives rise to interesting surfaces with exotic properties.
The surfaces are obtained simply by replacing edges in the graphs by tubes and
vertices by spheres to which one attaches the tubes. This construction is used
by Bonafert, Canary, Souto and Taylor to construct uniformly quasiconformally
homogeneous Riemann surfaces which are not quasiconformal deformations of
regular covers of closed orbifolds [BCST].

5.3. Lie groups not quasi-isometric to discrete groups. The
following is a basic question:

Question 5.8. Given a Lie group G, is there a finitely generated group quasi-
isometric to G?

It is clear that the answer is yes whenever G has a cocompact lattice. How-
ever, many solvable locally compact groups, and in particular, many solvable
Lie groups do not have any lattices. The simplest examples are groups which are
not unimodular. However, it is possible for Question 5.8 to have an affirmative
answer even if G is not unimodular. For instance, the non-unimodular group

solvable group

{(

a b
0 a−1

)∣

∣

∣

∣

a > 0, b ∈ R

}

acts simply transitively by isome-

tries on the hyperbolic plane, and thus is quasi-isometric to the fundamental
group of any closed surface of genus at least 2. Thus the answer to Question 5.8
can be subtle. Our methods give:

Theorem 5.9. Let G = RnR
2 be a solvable Lie group where the R action on

R
2 is defined by z·(x, y) = (eazx, e−bzy) for a, b > 0, a 6= b. Then there is no

finitely generated group Γ quasi-isometric to G.

If a > 0 and b < 0, then G admits a left invariant metric of negative curva-
ture. The fact that there is no finitely generated group quasi-isometric to G in
this case is a result of Kleiner [K], see also [Pa2]. Kleiner’s result has recently
been generalized by Shanmugalingam and Xie [SX]. It is possible to generalize
the theorem above further using our techniques and the results in [Dy, DP].
Nilpotent Lie groups not quasi-isometric to any finitely generated group where
constructed in [ET].

5.4. Distortion of embeddings and multi-commodity flow
problems. The technique of coarse differentiation has also been applied by
Lee and Raghavendra to a problem arising from theoretical computer science
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[LR]. Their work is motivated by the multi-commodity version of min cut- max
flow. This problem is known to be related to problems concerning distortion of
embeddings into L1 spaces. They use coarse differentiation to obtain bounds
on the distortion of L1 embeddings for a certain family of graphs.
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We survey a number of results about the rational Cherednik algebra’s represen-
tation theory and its connection to symplectic singularities and their resolutions.
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1. Introduction

This paper explores some rational Cherednik algebra representation theory
and its interaction with constructions in algebraic geometry with a symplectic
flavour. Although the rational Cherednik algebras were constructed as degener-
ations of Cherednik’s double affine Hecke algebra and so have many links with
the theory as developed there, see [18], it turns out that a connection with the
theory of symplectic resolutions, and particularly Hilbert schemes, has played
a particularly important role too. Such a connection was already foreseen at
the birth of the algebras, and over the last decade the subject has developed
significantly in this direction. There have been constructions of symplectic reso-
lutions via moduli spaces of representations and also localisation theorems from
the categories of representations to sheaves on quantisations of the resolutions.
Since symplectic resolutions turn up remarkably often in representation theory
this in turn has led to the study of the geometry and algebra of such resolutions
in general. Here the Cherednik algebras are key examples helping to form the
subject. The goal of this brief survey is to present a little of this.

We completely omit lots of interesting aspects of Cherednik algebras, in-
cluding realisations as Hecke algebras for double loop groups, as equivariant
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K-groups of affine flag manifolds, as Hall algebras of elliptic curves and via the
equivariant K-theory of the Hilbert scheme. There are, however, a number of
surveys on rational Cherednik algebras where many more details can be found,
[30], [25], [62], [42], [71], [28].

The structure of the article is as follows. We begin in Section 2 by defining
rational Cherednik algebras. In the third section we discuss symplectic singular-
ities, representation theory at t = 0, and the existence of symplectic resolutions
of orbit singularities. In Section 4 we explain the KZ functor, induction and
restriction functors, and results on supports of representations. In the final sec-
tion we present a number of different approaches to localisation of the rational
Cherednik algebras of type A to the Hilbert scheme of points on the plane.

2. Definitions

Rational Cherednik algebras are defined for any finite complex reflection
group W .

Definition 1. A complex reflection group W is a group acting on a finite
dimensional complex vector space h that is generated by complex reflections:
non-trivial elements that fix a complex hyperplane in h pointwise. We say W
is irreducible if h is an irreducible representation of W .

Such groups, which include the finite Coxeter groups, play a major role in
Lie theory and invariant theory, as well as appearing in many other fields. The
irreducible complex reflection groups were classified in [65]: one infinite family
appears, labelled G(d, e, n) where d, e, n are positive integers such that e divides
d (the Coxeter groups of type An−1, Bn and Dn are G(1, 1, n), G(2, 1, n) and
G(2, 2, n) respectively); there are 34 exceptional cases.

Given a complex reflection group W , let S denote its set of complex reflec-
tions, and for s ∈ S let αs ∈ h∗ have kernel the hyperplane fixed by s. We set

k = C[t, cs : s ∈ S, cs = cs′ if s and s′ are conjugate in W ].

Definition 2 (Etingof-Ginzburg, [27]). The rational Cherednik algebra Hk(W )
is the k-subalgebra of Endk(k[h]) generated by the following operators:

• the action of w ∈ W

• multiplication by each p ∈ h∗ ⊂ k[h]

• for each y ∈ h, Ty := t∂y +
∑

s∈S
csαs(y)α

−1
s (s − 1), where ∂y is the

k-linear derivative on k[h] in the direction of y.

The operators Ty are called Dunkl operators (these were introduced by
Dunkl for Coxeter groups [22]; for complex reflection groups see [24]). Re-
markably, the Dunkl operators commute with one another – the subalgebra
of Hk(W ) they generate is isomorphic to k[h∗]. This is part of the following
“PBW theorem”.
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Theorem 2.1 ([27]). There is a k-module isomorphism

Hk(W )
∼
−→ k[h]⊗k k[W ]⊗k k[h∗]

where each tensorand is a subalgebra of Hk(W ).

Specialisation k −→ C to parameters t ∈ C and c ∈ C[S]adW leads to the
rational Cherednik algebra Ht,c(W ), a C-algebra. The PBW theorem says that
the Ht,c(W ) are deformations of H0,0(W ) ∼= C[h× h∗]oW , the coordinate ring
of the quotient stack [(h× h∗)/W ].

Definition 3. Let e = |W |−1
∑

w∈W w ∈ CW , the trivial idempotent. The
spherical Cherednik algebra Uk(W ) is the k-algebra eHk(W )e.

Specialisation this time leads to the family of C-algebras Ut,c(W ). These
are deformations of U0,0(W ) = e(C[h×h∗]oW )e ∼= C[h×h∗]W , the coordinate
ring of the orbit space (h× h∗)/W .

If λ ∈ C∗ then Ht,c(W ) ∼= Hλt,λc(W ) and Ut,c(W ) ∼= Uλt,λc(W ) so we can
assume that either t = 0 or t = 1. There is now a dichotomy: U0,c(W ) is
commutative, but U1,c(W ) has a trivial centre; similarly, H0,c(W ) is a finite
module over its centre, but the centre of H1,c(W ) is trivial. See [27] and [16].

Remarks 1. If W = Z2, the cyclic group of order 2, then U1,c(W ) ∼=
U(sl2)/(Ω−λ(c)) where Ω is the Casimir and λ(c) a weight depending quadrat-
ically on c. More generally, for W = Zd = G(d, 1, 1) the spherical algebras were
studied in the context of generalisations of the above Lie theoretic quotient and
also as (commutative and noncommutative) deformations of the kleinian singu-
larity of type Ad−1. For these W the algebras Ht,c(W ) were then introduced by
Crawley-Boevey and Holland in [19] where they also studied the other kleinian
singularities.

3. Resolutions and Deformations

The varieties (h×h∗)/W appearing above have symplectic singularities, a class
of examples with rich algebraic, geometric and representation theoretic prop-
erties.

Definition 4. (Beauville, [1]) Let X be a normal affine variety over C that
admits a symplectic 2-form ω on its smooth locus sm(X). We say that X has

symplectic singularities if for any resolution of singularities π : X̃ → X the 2-
form induced on π−1(sm(X)) extends to a regular 2-form on X̃. If, in addition,
there is a contracting C∗-action on X with unique fixed point and such that
λ · ω = λnω for some positive integer n and for all λ ∈ C∗, then we say that X
has contracting symplectic singularities.

The paper [1] shows that (h×h∗)/W has contracting symplectic singularities:
its smooth locus is the set of orbits of cardinality |W | and the symplectic form
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on them is inherited from the natural W -equivariant symplectic form on h×h∗;
dilation on the vector space h × h∗ produces the C∗-action. There are many
other examples of contracting symplectic singularities in representation theory:
N (g), the nullcone of reductive Lie algebra g; the normalisation of the closure
of a nilpotent orbit in N (g); Slodowy’s transverse slices to nilpotent orbits in
N (g); hypertoric varieties; affine Nakajima quiver varieties.

A systematic study of symplectic singularities in [48] shows they have a
canonical stratification by finitely many symplectic leaves.

Definition 5. Suppose X has symplectic singularities. A resolution π : X̃ −→
X is called a symplectic resolution if the extension of the 2-form to X̃ is non-
degenerate.

We have that π : X̃ −→ X is a symplectic resolution if and only if it is a
crepant resolution, see [33]. Thus, since the canonical bundle of X̃ is obviously

trivial in this case, the bounded derived category of coherent sheaves on X̃
is of significant interest in algebraic geometry, see [49] for important results
in this direction. Moreover, the Springer resolution π : T ∗(G/B) −→ N (g),
resolutions of kleinian singularities, and many Nakajima quiver varieties are
symplectic resolutions, so the notion pervades geometric representation theory.

If X has symplectic singularities then ω defines a Poisson bracket on OX . A
Poisson deformation of X is simultaneously a deformation of the variety X and
its bracket. There is a satisfying theory of such Poisson deformations: building
on work of Ginzburg-Kaledin, [38], and using the minimal model programme,
Namikawa proved

Theorem 3.1 ([59]). Let X have contracting symplectic singularities. The fol-
lowing are equivalent:

1. X has a smooth Poisson deformation,

2. X has a symplectic projective resolution.

The Grothendieck-Springer resolution illustrates this theorem:

T ∗(G/B)
� _

��

π // N (g)
� _

��

// 0
_

��

G×B b // g δ // g//G

Here T ∗(G/B) is a symplectic resolution of N (g), whilst the generic fibre of
δ is G/T , a Poisson smoothing of N (g). This also illustrates that the resolu-
tion deforms as well, a general fact for symplectic resolutions of contracting
symplectic singularities.

The Grothendieck-Springer resolution is the source of a lot of remarkable
representation theory; it is hoped that there is an equally rich picture around
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other symplectic singularities. Rational Cherednik algebras have proved very
useful in understanding this: they are related to (h×h∗)/W in the way that the
enveloping algebra of g is related to N (g), but there are several new phenomena
which lead to many interesting and sometimes surprising developments.

Recall that the spherical algebra U0,c(W ) is commutative for all choices of
c. In fact U0,c(W ) ∼= Z(H0,c(W )), the centre of H0,c(W ), [27]. Let Xc(W ) =
Spec(U0,c). These varieties are Poisson deformations of X0(W ) = (h × h∗)/W ,
the Poisson structure on U0,c(W ) being inherited from the commutator on
the flat family C[t] −→ Ut,c(W ): {F |t=0, G|t=0} = (t−1[F,G])|t=0 for F,G ∈
Ut,c(W ). Thus the rational Cherednik algebras provide a family of Poisson
deformations over C[S]adW as well as a coherent sheaf Rc(W ) on Xc(W ),
corresponding to the U0,c(W )-module eH0,c(W ), whose endomorphism ring is
H0,c(W ).

If L is an irreducible representation of H0,c(W ), then Z(H0,c(W )) acts by
scalars on it, and we have a surjective map

χc : Irrep(H0,c(W )) −→ Xc(W ).

This is finite-to-one and from general principles of noncommutative algebra, we
can use χ to study the singularities of Xc(W ).

The prototype of such a principle is the theorem that the “Azumaya lo-
cus equals the smooth locus”. Since H0,c(W ) is a finite module over its centre,
there is an upper bound on the complex dimension of an irreducible H0,c(W )-
representation; the Azumaya locus is by definition the set of maximal dimen-
sional irreducible representations. It transpires that χ is one-to-one precisely
on this locus, and that its image is the smooth locus of Xc(W ), [27]. Over this
locus, Rc(W ) is actually a vector bundle of rank |W |, the maximal dimension
of an irreducible, and we then deduce that over this locus H0,c(W ) is a matrix
ring over Osm(Xc(W )).

Each Xc(W ) has symplectic singularities and so is stratified by finitely
many symplectic leaves. Thanks to [16] the irreducible representation theory of
H0,c(W ) is constant along each leaf; elegant work of Losev, [53], and of Bellamy,
[5], reduces the problem of studying a general leaf to a leaf of dimension 0, i.e.
a point.

Remarks 2. There are general theorems on algebras that are finite modules
over their centres that imply the Azumaya result mentioned here, [51], [15],
[67]. Common to all these results is that the Azumaya locus should be relatively
large (e.g. of codimension two) in the spectrum of the centre. Symplectic-like
structures usually ensure this, since symplectic leaves are always even dimen-
sional. One sees this in many Lie theoretic examples: the result holds for en-
veloping algebras of reductive Lie algebras in positive characteristic because of
the symplectic structure on coadjoint orbits; it fails for affine Hecke algebras
because there is no non-degenerate enough Poisson structure on their centre.
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Similarly, passing from an arbitrary leaf to a point by considering transverse
slices is a normal tactic. For instance, Premet’s work on Lie algebras in positive
characteristic, [61], shows that along each coadjoint orbit the representation
theory is equivalent to that of the associated finite W -algebra, which is at-
tached to the transverse slice of the orbit, and in which the orbit shrinks to a
point.

There is an embedding of R := C[h]W ⊗ C[h∗]W into U0,c(W ), and hence
a (finite) morphism Υc : Xc(W ) → h/W × h∗/W . If a point x ∈ Xc is a
symplectic leaf, then it must belong to the fibre Υ−1

c (0). By studying this fibre
and applying Theorem 3.1 one can prove the following.

Theorem 3.2 ([39], [38], [3]). For some (and hence for generic) c ∈ C[S]adW

the variety Xc(W ) is smooth if and only if W = G(d, 1, n) or W = G4. It
follows that (h× h∗)/W admits a symplectic projective resolution if and only if
W is one of these groups.

For W = G(d, 1, n) we obtain a symplectic resolution as follows, [72]. Let

Y = C2/Zd be the kleinian singularity of type Ad−1 and let Ỹ be its minimal
resolution. Then

π : Hilbn(Ỹ ) → Symn(Ỹ ) → Symn(Y ) = (h× h∗)/W (1)

is a symplectic projective resolution. This is a quiver variety; variation of GIT
gives several other resolutions.

The group W = G4 is an exceptional complex reflection group in the list of
[65]. Two symplectic resolutions of (h× h∗)/W , a four dimensional variety, are
given in [52]. It remains to see whether these can be adequately described by
some quiver variety construction.

The reduction of Losev and Bellamy shows that it is crucial to understand
Υ−1

c (0) and the corresponding representations of H0,c(W ). The points in Υ−1
c (0)

are equivalent to blocks in the restricted rational Cherednik algebra H0,c(W )⊗R

C. The irreducible representations of this algebra are labelled by the irreducible
representations of W . It follows that the fibres of χc above Υ−1

c (0) induce a
partition of Irrep(W ) which depends crucially on the parameter c ∈ C[S]adW .
It is conjectured, [44] and [54], that this partition essentially agrees with the
decomposition of the cyclotomic Hecke algebra of W (specialised according to
the choice of c) into blocks – these are called Rouquier families. Furthermore
the dimension of the scheme theoretic fibre of Υ−1

c (0) at this point should be
the dimension of the corresponding Hecke algebra block. The first claim of
this conjecture is confirmed for W = G(d, e, n), [44] and [4], and the second
claim holds whenever the given point of Υ−1

c (0) is smooth in Xc(W ). There is,
however, no conceptual understanding of why this should be so; in particular in
the Weyl group case, this suggests a link between the singularities of the spaces
Xc(W ) and Kazhdan-Lusztig theory.
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4. Representations and Hecke Algebras

The algebra H1,c(W ) is sensitive to the choice of parameter c ∈ C[S]adW : for
most choices H1,c(W ) is simple; for infinitely many values of c, however, there
are finite dimensional representations, and hence two-sided ideals of finite codi-
mension. Thus we need a robust category of representations to study. Motivated
by Theorem 2.1 we have the following definition, [24].

Definition 6. Oc(W ) is the full subcategory of finitely generated H1,c(W )-
modules that are locally nilpotent for the action of h ⊂ C[h∗] ⊂ H1,c(W ).

This an analogue of the BGG category O for semisimple Lie algebras. There
are related versions of Oc(W ) where h acts by non-zero eigenvalues, but [10]
shows that such categories are equivalent to Oc(W

′) for some subgroup W ′ of
W .

There is an isomorphism H1,0(W ) ∼= D(h) oW , the ring of W -equivariant
differential operators on h. Hence O0(W ) corresponds to W -equivariant holo-
nomic D(h)-modules whose support equals h, in other words to finite rank W -
equivariant vector bundles on h with trivial connection. This category is equiv-
alent to the category of finite dimensional C[W ]-modules: V ∈ C[W ] -mod 7→
∆0(V ) := H1,0(W )⊗C[h]oW V ∼= C[h]⊗ V .

In general, we can define standard modules ∆c(V ) ∈ Oc(W ), but they may
no longer be the only objects in the category. If V ∈ Irrep(W ) then ∆c(V )
does, however, have a unique irreducible quotient, Lc(V ), and Oc(W ) becomes
a highest weight category with these standard and irreducible objects. It is an
important open problem to determine the composition multiplicities [∆c(V ) :
Lc(V

′)] for V, V ′ ∈ Irrep(W ).
Definition 2 shows that H1,c(W )[α−1

s : s ∈ S] ∼= D(hreg) oW where hreg =
{z ∈ h : αs(z) 6= 0 for all s ∈ S}, the subset of h on which W acts freely.
Hence, on restricting to hreg, we may pass from Oc(W ) to a category of W -
equivariant bundles on hreg with flat connections, which in turn corresponds
to some category of representations of the fundamental group π1(hreg /W ), a
generalised Artin braid group. These representations satisfy certain Hecke-type
relations.

Theorem 4.1 ([37]). There is an exact and essentially surjective functor

KZc : Oc(W ) −→ Hq(W ) -mod

where Hq(W ) denotes the (topological) Hecke algebra of W at parameter q =
exp(2πic) (see [14] for a definition).

This functor has many good properties. In particular it generally restricts
to an equivalence on Oc(W )∆, the subcategory of objects that have a filtration
by standard objects. Remarkably, in [63], Rouquier shows that the data of such
a functor on a highest weight category together with a compatible partial order
on its simple objects determines the highest weight category up to equivalence.
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For W = Sn, there is a Schur functor Sq(n) -mod −→ Hq(Sn) -mod from
the q-Schur algebra, Sq(n), which has analogous properties to KZc, see for
instance [21]. Thus Rouquier’s result above implies that there is an equivalence
of categories between Oc(Sn) and Sq(n) -mod which sends standard modules to
Weyl modules (or dual Weyl modules if c is a negative number). In particular,
since the decomposition numbers are known for the q-Schur algebra, [69], we
can describe the composition multiplicities [∆c(V ) : Lc(V

′)] in this case in

terms of parabolic Kazhdan-Lusztig polynomials of type Â.
For W = G(d, 1, n) and for c ∈ C[S]adW in a certain cone, one can show

similarly that Oc(W ) is Morita equivalent to a cyclotomic q-Schur algebra. A
conjecture of Yvonne, [73], describes [∆c(V ) : Lc(V

′)] in terms of a canonical
basis of a level d Fock space, introduced in [68]. This conjecture is generalised
to more general c ∈ C[S]adW in [63].

Remarks 3. There is another approach to the decomposition numbers of
Oc(Sn) by Suzuki, [66]. Using conformal coinvariants, he constructs a func-
tor from the Kazhdan-Lusztig category of modules for the affine Lie algebra of
type Â at negative level to Oc(Sn). This produces an appropriate equivalence
which again yields the above decomposition numbers. This functor is gener-
alised to the G(d, 1, n) case in [70] using conformal coinvariants twisted by a
cyclic group action, but the corresponding decomposition numbers do not yet
follow.

KZc is not generally a category equivalence since the passage from h to hreg
kills any object of Oc(W ) supported on h \ hreg, the union of reflecting hy-
perplanes of reflections in W . The support of an irreducible object is always a
W -orbit of an intersection of reflecting hyperplanes, [35], so has, up to conju-
gacy, a parabolic subgroupW ′ attached to it by taking the stabiliser of a generic
point in the intersection of these hyperplanes. Despite there usually being no
non-trivial homomorphism from H1,c(W

′) to H1,c(W ), Bezrukavnikov-Etingof
have proved the following theorem by completing the rational Cherednik alge-
bras at a point in the intersection of the relevant hyperplanes.

Theorem 4.2 ([10]). Let x ∈ h with stabiliser Wx. There are induction and
restriction functors

Oc(W )

Resx --
Oc(Wx)

Indx

ll

Up to isomorphism, these functors are independent of the choice of x ∈ hWx

reg :=
{z ∈ h : Wz = Wx}.

The isomorphism of functors is not canonical, and so the functor Resx has
monodromy on hWx

reg . If x ∈ hreg so that Wx = 1, the monodromy of the functor
Resx : Oc(W ) −→ Oc(Wx) = C -mod recovers KZc. These functors are crucial
to understanding Oc(W ) and restriction to non-generic points preserves infor-



Rational Cherednik Algebras 1217

mation killed by KZc. In [64], Shan has refined these functors to produce a
crystal structure on the irreducible objects in Oc(G(d, 1, n))-modules (where n
varies); this crystal is isomorphic to the one attached to the canonical basis of
the level d Fock space above.

In studying induction and restriction it is important to know the support of
representations. Etingof uses the Macdonald-Mehta integral for Weyl groups in
[26] to give a beautiful description of the support of Lc(triv), generalising the
work of [70] which describes when Lc(triv) is finite dimensional, i.e. is supported
at 0 ∈ h. In the case c is a positive constant function, his result states that
x ∈ h is in the support of Lc(triv) if and only if PW /PWx

(e2πic) 6= 0, where
PW (q) =

∑
w∈W q`(w) is the Poincaré polynomial of W .

The induction and restriction functors help to determine the set of aspherical
values of W , [10].

Definition 7. The parameter c ∈ C[S]adW is an aspherical value of W if
eLc(V ) = 0 for some V ∈ Irrep(W ); such an Lc(V ) is called an aspherical
representation. We let Σ(W ) denote the set of aspherical values of W .

It can be shown that c /∈ Σ(W ) if and only if the functor H1,c(W ) -mod −→
U1,c(W ) -mod,M 7→ eM is an equivalence. Thus for c /∈ Σ(W ), U1,c(W ) inherits
many favourable properties from H1,c(W ).

Using the restriction functors, one can show that Σ(W ) is the union of the
Σ(W ′) for proper parabolic subgroups W ′ < W and of the set of finite di-
mensional aspherical representations of H1,c(W ). For W = Sn, this observation
allows an inductive determination of the aspherical values, [10]. Remarkably,
Bezrukavnikov and Etingof note that the number of aspherical representations
matches phenomena in the (C∗)2-equivariant small quantum cohomology of
Hilbn(C2). Namely, multiplication in the quantum cohomology ring can be en-
coded by the so-called quantum differential equation which defines a flat con-
nection on C for the trivial bundle associated with H∗(Hilbn(C2),C), and this
connection has regular singularities at q = − exp(2πic) for c ∈ Σ(Sn), [60].
Furthermore, the rank of the residue of the connection at each of these points
equals the number of aspherical representations! For W = G(d, 1, n), the set
Σ(W ) has been calculated by Dunkl and Griffeth, [23]; the quantum differential

equation for Hilbn(Ỹ ) of (1) has been described by Maulik and Oblomkov, [55].
A matching of data is again expected.

These surprising coincidences are part of a large programme involving sev-
eral people which aims to study the quantum cohomology, and particularly the
quantum differential equation, of symplectic resolutions of contracting sym-
plectic singularities, [13]. Amongst other things, intriguing connections with
geometric representation theory and with derived categories of symplectic res-
olutions are predicted, and representations of rational Cherednik algebras have
an important role.
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5. Reduction and Localisation

The spherical subalgebras U1,c(W ) share many properties with the quotients
of enveloping algebras of reductive Lie algebras Uλ(g) at a central character
λ. They are filtered with associated graded ring being the coordinate ring of a
contracting symplectic singularity: (h× h∗)/W in the Cherednik case; N (g) in
the Lie case. This already produces a lot of structure including noetherianity,
the Auslander-Gorenstein property, and a bound on the number of finite dimen-
sional irreducible representations, [29]. Furthermore, it is only at very special
values of the parameter where global dimension is infinite: at the aspherical
values in the Cherednik case; at values such as −ρ in the Lie case.

In the Lie case, a direct connection between Uλ(g) and the Springer resolu-
tion π : T ∗(G/B) −→ N (g) is made by the localisation theorem of Beilinson-
Bernstein, [2]: this produces an equivalence between Uλ(g)-modules and twisted
DG/B-modules. Combined with the Riemann-Hilbert correspondence, this re-
lates BGG category O(g) with perverse sheaves on G/B, and hence with
Kazhdan-Lusztig theory for the Hecke algebra of the Weyl group of g.

We would like to produce an analogue of this for U1,c(W ) whenever there is a

symplectic resolution π : X̃ −→ (h×h∗)/W . This has been carried out for W =

Sn with X̃ = Hilbn(C2), first in [45] algebraically, then in [34] and [50] using
differential operators, then microlocal differential operators. (See [11] for similar
results in positive characteristic.) Although these contructions are at their heart
similar, and all have admitted various generalisations, the approaches in [34] and
[50] connect directly to the mainstream of geometric representation theory. An
interesting point is that, unlike T ∗(G/B), Hilbn(C2) is not the cotangent bundle
of a variety. This leads to a new point of view on localisation theorems which
should be applicable to any symplectic resolution of a contracting symplectic
singularity.

The first approach to quantising the Hilbert scheme follows Haiman’s work
on the n! theorem, [47]. Here Hilbn(C2) is constructed as the blow-up of
Symn(C2) along the big diagonal, that is at the ideal (C[h × h∗]sign)2 where
C[h× h∗]sign denotes the polynomials that transform according to the sign rep-
resentation under the Sn action. Thus CohHilbn(C2) is equivalent to a category
of graded modules for the associated Rees ring. The first part of the following
theorem asserts that there is a noncommutative version of this category.

Theorem 5.1 ([45]). Assume that c ≮ 0. There exists a category Xc of coherent
sheaves on a noncommutative variety such that

1. Xc is a deformation of CohHilbn(C2),

2. There is an equivalence U1,c(Sn) -mod
∼
−→ Xc.

The category Xc is a category of graded modules over an algebra which
deforms the above Rees ring, replacing C[h×h∗]Sn with U1,c(Sn) and C[h×h∗]sign
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with eH1,c(Sn)e− where e− ∈ C[Sn] is the idempotent corresponding to the sign
representation. By an important result of Heckman-Opdam, see [9], eH1,c(Sn)e−
is a (U1,c(Sn),U1,c+1(Sn))-bimodule and one can show it induces an equivalence

U1,c(Sn) -mod
∼
−→ U1,c+1(Sn) -mod whenever c and c + 1 are not aspherical

values. Thus the glueing data in the category Xc produces Morita equivalences,
giving the second claim.

The advantage of this construction is that one can apply Haiman’s work
directly. This leads in [46] to the calculation of the characteristic cycle of any
object from Oc(Sn), i.e. the support cycles in Hilbn(C2) of the degeneration
of the corresponding objects in Xc; one can also show that the image in Xc

of the U1,c(Sn)-module eH1,c(Sn) is a deformation of the Procesi bundle P on
Hilbn(C2). In fact, since c is not aspherical eH1,c(Sn) induces an equivalence
between U1,c(Sn) -mod and H1,c(Sn) -mod and is thus a projective U1,c(Sn)-
module carrying the regular representation of Sn. These properties are analo-
gous to crucial properties of P: it is an enduring hope that the representation
theory of H1,c(Sn) may be used to give a new proof of the n! theorem.

Remarks 4. A similar algebraic analysis is carried out for kleinian singu-
larities, [12] and [57], and for Cherednik algebras with W = G(d, 1, n), [41],
but in this general case the geometry of the associated varieties generalising
Hilbn(C2) is not yet completely understood. There is also a localisation theo-
rem for Harish-Chandra bimodules of finite W -algebras in this spirit, [36].

Hilbn(C2) can be realised as a quiver variety, [58]. Let V be an n-dimensional
vector space, and let GL(V ) act naturally on Y = End(V )× V . Set X = T ∗Y
and let µX : X → gl(V )∗ be the moment map. Nakajima proved that the
hamiltonian reduction µ−1

X (0)//GL(V ) is isomorphic to Symn(C2), and that
there is an open set Xs ⊂ X of “stable” representations on which GL(V ) acts
freely such that µ−1

X (0)s/GL(V ) is isomorphic to Hilbn(C2) where µ−1
X (0)s :=

µ−1
X (0) ∩Xs.
Differentiating the action of GL(V ) on Y produces a homomorphism τX :

U(gl(V )) −→ D(Y ), a noncommutative analogue of µX . If ν : gl(V ) −→ C is a
character, let Iν be the left ideal of U(gl(V )) generated by A+ν(A) for all A ∈
gl(V ) and let (DY , GL(V ))ν -mod denote the category of GL(V )-equivariant
DY -modules whose derived action of gl(V ) equals the action defined through
τX + ν.

Theorem 5.2 ([34]). Given a character ν : gl(V ) −→ C, there is a parameter
cν ∈ C such that

1. (D(Y )/D(Y )τX(Iν))
GL(V ) ∼= U1,cν (Sn).

2. There is a functor H : (DY , GL(V ))ν -mod −→ U1,cν (Sn) -mod defined by
H(M) = MGL(V ) which is exact and essentially surjective.

The first part of this theorem quantises the quiver theoretic description of
Symn(C2); the second part allows one to study U1,c(Sn)-modules viaD-modules
on Y .



1220 Iain G. Gordon

To realise the Hilbert scheme instead, we must pass to the stable locus Xs.
But DY -modules are local on the base Y rather than on X = T ∗Y , and Xs is an
open set defined onX. Thus we are led to a microlocal point of view, considering
sheaves of algebras on X rather than on Y . There is a standard quantisation
of the symplectic manifold T ∗Cn via the Moyal product, producing a sheaf of
C[[h]]-algebras. Denote by W(T ∗Cn) the sheaf we get from this by inverting h.
It is a sheaf of C((h))-algebras.

Definition 8 ([50]). A quantised differential operator algebra on a smooth
symplectic variety X is a sheaf of C((h))-algebras, WX , such that for each x ∈ X
there is a neighbourhood U of x and a symplectic morphism φ : U −→ T ∗Cn

such that WX |U ∼= φ∗W(T ∗Cn).

Going back to our specific case let U = Xs, a symplectic manifold with
a proper and free symplectic GL(V )-action and orbit map p : µ−1

X (0)s −→
µ−1
X (0)s/GL(V ) ∼= Hilbn(C2). There is a noncommutative moment map: τU :

gl(V ) −→ WU . Kashiwara and Rouquier, [50], show that

WHilb,ν := p∗EndW(WU/WUτU (Iν))
GL(V )

is a quantised differential operator algebra on Hilbn(C2) and that there is an
equivalence of categories

(WXs , GL(V ))ν -mod −→ WHilb,ν -mod

for appropriate categories of W-modules.
The categories above are C((h))-linear and thus cannot be D(Y )-modules

or U1,c(Sn)-modules. To remedy this, extend the good C∗-actions that arise
from the contracting action on Symn(C2) to the quantised differential operator
algebras by letting h be an eigenvector of appropriate weight. Then categories of
C∗-equivariantW-modules are equivalent, under taking fixed points, to C-linear
categories: for instance (W(T ∗Cn),C∗) -mod

∼
→ D(Cn) -mod for appropriate

C∗-actions. This produces an equivalence

(WXs , GL(V )× C∗)ν -mod −→ (WHilb,ν ,C
∗) -mod,

the quantisation of the quiver theoretic description of Hilbn(C2). Kashiwara and
Rouquier then prove the following elegant Beilinson-Bernstein style theorem.

Theorem 5.3 ([50]). For a character ν : gl(V ) −→ C such that cν ≥ 0, the
global sections functor induces an equivalence

(WHilb,ν ,C
∗) -mod −→ U1,cν (Sn) -mod .

With the approaches of [34] and of [50] one can begin a D-module or mi-
crolocal study of the representation theory of U1,c(Sn) or H1,c(Sn). This has
been carried out (in a slightly different context) in [31] and [32]. Recently,
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McGerty, [56], gives a new construction for W = Sn of the KZ-functor, new
versions of induction and restriction functors, and recovers the characteristic
cycle computations of objects in Oc(Sn), all via microlocal fundamental groups
and classical D-module theory from geometric representation theory.

Remarks 5. The above analysis should apply to other symplectic resolutions of
contracting symplectic singularities that are realised by hamiltonian reduction.
For finiteW -algebras see [20] and for hypertoric varieties see [6] and the works of
Braden, Licata, Proudfoot and Webster. For general quiver varieties one of the
most intriguing aspects is to discover the algebras appearing as global sections,
replacing the spherical Cherednik algebras in the Hilbert scheme case. It is still
challenging to find the correct tools and concepts to unlock the properties of
the categories of W-modules.

Remarks 6. Back in the world of rational Cherednik algebras, it seems that
the case W = G(d, 1, n) will be understood via D-modules or microlocalisation.
But, with the exception of G4, all other complex reflection groups have no
corresponding symplectic resolution; how to study these examples geometrically
is unclear at the moment. That these cases have wider significance is clear from
applications to integrable systems, D-module theory and the representation
theory of complex reflection groups, see e.g. [8] and [7], and applications to
algebraic combinatorics, see e.g. [40] and [43].
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Dedicated to the memory of my beloved mother

1. Introduction

Let G be a semisimple connected complex algebraic group with Lie algebra
g. The irreducible finite-dimensional representations of G are parametrized by
the set Λ+ of dominant characters of T , where T is a maximal torus of G.
For λ ∈ Λ+, let V (λ) be the corresponding (finite-dimensional) irreducible
representation of G. By the complete reducibility theorem, for any λ, µ ∈ Λ+,
we can decompose

V (λ)⊗ V (µ) =
⊕

ν∈Λ+

mν
λ,µV (ν), (1)

where mν
λ,µ (called the Littlewood-Richardson coefficients) denotes the multi-

plicity of V (ν) in the tensor product V (λ) ⊗ V (µ). We say that V (ν) occurs
in V (λ) ⊗ V (µ) (or V (ν) is a component of V (λ) ⊗ V (µ)) if mν

λ,µ > 0. The
numbers mν

λ,µ are also called the tensor product multiplicities.
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From the orthogonality relations, (1) is equivalent to the decomposition

chV (λ) · chV (µ) =
∑

ν∈Λ+

mν
λ,µ chV (ν). (2)

One of the major goals of the ‘tensor product problem’ is to determine
(all) the components of V (λ) ⊗ V (µ). Of course, a more refined problem is to
determine the components together with their multiplicities. In general, even
the first problem is very hard.

We will also discuss a weaker ‘saturated tensor product problem.’ We say
that V (ν) is a saturated component of V (λ) ⊗ V (µ) if V (Nν) occurs in the
tensor product V (Nλ)⊗ V (Nµ) for some integer N ≥ 1.

The aim of this note is to give an overview of some of our results on the
tensor product decomposition obtained individually or jointly with others over
the last more than twenty years. We give enough details of many of the proofs
to make this note more accessible.

We begin by setting the notation in Section 2 to be used through the paper.
We recall some fairly well known basic facts (including some results of Kostant
and Steinberg) about the tensor product decomposition in Section 3.

In Section 4, we recall the existence of ‘root components’ in the tensor
product, conjectured by Wahl (and proved in [K3]). Roughly, the result asserts
that for any λ, µ ∈ Λ+ and any positive root β such that λ + µ − β ∈ Λ+,
V (λ+ µ− β) is a component of V (λ)⊗ V (µ) (cf. Theorem (4.1)). This result
has a geometric counterpart in the surjectivity of the Wahl map for the flag
varieties G/P (cf. Theorem (4.2)).

In Section 5, we study a solution of the Parthasarathy-Ranga Rao-
Varadarajan-Kostant (for short PRVK) conjecture asserting that for λ, µ ∈ Λ+

and any w ∈ W , the irreducible G-module V (λ+ wµ) occurs in the G-
submodule U(g) · (vλ ⊗ vwµ) of V (λ)⊗ V (µ) with multiplicity exactly 1, where
W is the Weyl group of G, λ+ wµ denotes the unique element in Λ+ in the
W -orbit of λ + wµ and vλ is a nonzero weight vector of V (λ) of weight λ (cf.
Theorem (5.13) and also its refinement Theorem (5.15)). We have outlined its
more or less a complete proof except the proof of a crucial cohomology vanishing
result for Bott-Samelson-Demazure-Hansen varieties (see Theorem (5.2)).

Section 6: This section is based on the work [BK1] due to Belkale-Kumar.
Since the existence of a component V (ν) in V (λ) ⊗ V (µ) is equivalent to the
nonvanishing of the G-invariant space [V (λ)⊗V (µ)⊗V (ν∗)]G, the tensor prod-
uct problem can be restated (replacing ν by ν∗) in a more symmetrical form
of determining when [V (λ) ⊗ V (µ) ⊗ V (ν)]G 6= 0. We generalize this problem
from s = 3 to any s ≥ 1 and define the tensor product semigroup:

Γ̄s(G) := {(λ1, . . . , λs) ∈ (Λ+)s : [V (λ1)⊗ · · · ⊗ V (λs)]
G 6= 0}.

Similarly, define the saturated tensor product semigroup:

Γs(G) := {(λ1, . . . , λs) ∈ (Λ+)s : [V (Nλ1)⊗· · ·⊗V (Nλs)]
G 6= 0 for someN > 0}.
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By virtue of the convexity result in symplectic geometry, there exists a (unique)
convex polyhedral cone Γs(G)R ⊂ (Λ+

R
)s such that Γs(G) = Γs(G)R∩Λs, where

Λ+
R

is the dominant chamber in ΛR := Λ⊗Z R. The main result of this section
(cf. Theorem (6.3)) determines a system of inequalities describing the cone
Γs(G)R explicitly in terms of a certain deformed product in the cohomology of
the flag varieties G/P for maximal parabolic subgroups P . Moreover, as proved
by Ressayre (cf. Theorem (6.4)), this system of inequalities is an irredundant
system. We have outlined a more or less complete proof of Theorem (6.3), which
makes essential use of Geometric Invariant Theory, specifically the Hilbert-
Mumford criterion for semistability and Kempf’s maximally destabilizing one
parameter subgroups associated to unstable points. In addition, the notion of
‘Levi-movability’ plays a fundamental role in the proofs.

In Section 7, which is a joint work with Stembridge, we exploit isogenies
between semisimple groups over algebraically closed fields of finite char. to get
inequalities between the dimensions of invariants in tensor products of repre-
sentations of complex semisimple groups (cf. Theorem (7.2)). As a corollary,
we obtain that Γs(Sp(2`)) = Γs(SO(2`+ 1)) (cf. Corollary (7.5)).

Section 8 describes the ‘saturation problem,’ which provides a comparison
between the semigroups Γs(G) and Γ̄s(G). We recall here the result due to
Knutson-Tao on the saturation for the group SL(n) and the results and con-
jectures of Kapovich-Millson and Belkale-Kumar.

Section 9 is devoted to recalling the classical Littlewood-Richardson theorem
for the tensor product decomposition of irreducible polynomial representations
of GL(n) and its generalization by Littelmann for any G via his LS path model.
In addition, we recall the formula given by Berenstein-Zelevinsky, which deter-
mines the tensor product multiplicities as the number of lattice points in some
convex polytope.

For the tensor product multiplicities, there is an approach by Lusztig [Lu]
via his canonical bases. Similarly, there is an approach by Kashiwara [Ka] via
his crystal bases.

There are some software programs to calculate the tensor product multi-
plicities (e.g., see [LCL], [St1]). Also, for some explicit tensor product decom-
positions for SL(n) see [BCH], [ST2]; for E8 see [MMP], [GP]; and for all the
classical groups, see [Koi] and [L1].

2. Notation

Let G be a semisimple connected complex algebraic group. We choose a Borel
subgroup B and a maximal torus T ⊂ B and let W = WG := NG(T )/T be the
associated Weyl group, where NG(T ) is the normalizer of T in G. Let P ⊇ B be
a (standard) parabolic subgroup of G and let U = UP be its unipotent radical.
Consider the Levi subgroup L = LP of P containing T , so that P is the semi-
direct product of U and L. Then, BL := B ∩ L is a Borel subgroup of L. Let
Λ = Λ(T ) denote the character group of T , i.e., the group of all the algebraic
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group morphisms T → Gm. Clearly, W acts on Λ. We denote the Lie algebras
of G,B, T, P, U, L,BL by the corresponding Gothic characters: g, b, t, p, u, l, bL
respectively. We will often identify an element λ of Λ (via its derivative λ̇) by
an element of t∗. Let R = Rg ⊂ t∗ be the set of roots of g with respect to
the Cartan subalgebra t and let R+ be the set of positive roots (i.e., the set
of roots of b). Similarly, let Rl be the set of roots of l with respect to t and
R+

l be the set of roots of bL. Let ∆ = {α1, . . . , α`} ⊂ R+ be the set of simple
roots, {α∨

1 , . . . , α
∨
` } ⊂ t the corresponding simple coroots and {s1, . . . , s`} ⊂ W

the corresponding simple reflections, where ` is the rank of G. We denote the
corresponding simple root vectors by {e1, . . . , e`}, i.e., ei ∈ gαi

. We denote by
∆(P ) the set of simple roots contained in Rl. For any 1 ≤ j ≤ `, define the
element xj ∈ t by

αi(xj) = δi,j , ∀ 1 ≤ i ≤ `. (3)

Recall that if WP is the Weyl group of P (which is, by definition, the Weyl
Group WL of L), then in each coset of W/WP we have a unique member w of
minimal length. This satisfies (cf. [K4, Exercise 1.3.E]):

wBLw
−1 ⊆ B. (4)

LetWP be the set of the minimal length representatives in the cosets ofW/WP .
For any w ∈ WP , define the Schubert cell:

CP
w := BwP/P ⊂ G/P.

Then, it is a locally closed subvariety of G/P isomorphic with the affine space
A

`(w), `(w) being the length of w (cf. [J, Part II, Chapter 13]). Its closure
is denoted by XP

w , which is an irreducible (projective) subvariety of G/P of
dimension `(w). We denote the point wP ∈ CP

w by ẇ. We abbreviate XB
w by

Xw.
Let µ(XP

w ) denote the fundamental class of XP
w considered as an ele-

ment of the singular homology with integral coefficients H2`(w)(G/P,Z) of
G/P . Then, from the Bruhat decomposition, the elements {µ(XP

w )}w∈WP

form a Z-basis of H∗(G/P,Z). Let {[XP
w ]}w∈WP be the Poincaré dual ba-

sis of the singular cohomology with integral coefficients H∗(G/P,Z). Thus,
[XP

w ] ∈ H2(dimG/P−`(w))(G/P,Z).
An element λ ∈ Λ is called dominant (resp. dominant regular) if λ̇(α∨

i ) ≥ 0
(resp. λ̇(α∨

i ) > 0) for all the simple coroots α∨
i . Let Λ+ (resp. Λ++) denote

the set of all the dominant (resp. dominant regular) characters. The set of
isomorphism classes of irreducible (finite-dimensional) representations of G is
parametrized by Λ+ via the highest weight of an irreducible representation.
For λ ∈ Λ+, we denote by V (λ) the corresponding irreducible representation
(of highest weight λ). The dual representation V (λ)∗ is isomorphic with V (λ∗),
where λ∗ is the weight −woλ; wo being the longest element of W . The µ-weight
space of V (λ) is denoted by V (λ)µ. For λ ∈ Λ+, let P (λ) be the set of weights
of V (λ). The W -orbit of any λ ∈ Λ contains a unique element in Λ+, which we
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denote by λ̄. We also have the shifted action of W on Λ via w∗λ = w(λ+ρ)−ρ,
where ρ is half the sum of positive roots. (Observe that, even though ρ may
not belong to Λ, wρ− ρ does.)

For any λ ∈ Λ, we have a G-equivariant line bundle L(λ) on G/B associated
to the principal B-bundle G → G/B via the one-dimensional B-module λ−1.
(Any λ ∈ Λ extends uniquely to a character of B.) The one-dimensional B-
module λ is also denoted by Cλ.

All the schemes are considered over the base field of complex numbers C.
The varieties are reduced (but not necessarily irreducible) schemes.

3. Some Basic Results

We follow the notation from the last section; in particular, G is a semisimple
connected complex algebraic group. The aim of this section is to recall some
fairly well known basic results on the tensor product decomposition. We begin
with the following.

Lemma (3.1). For λ, µ ∈ Λ+, V (λ + µ) occurs in V = V (λ) ⊗ V (µ) with
multiplicity 1.

The unique submodule V (λ+ µ) is called the Cartan component of V .

Proof. Let vλ ∈ V (λ) (resp. vµ ∈ V (µ)) be a nonzero highest weight vector.
Then, the line Cvλ⊗vµ ⊂ V is clearly stable under the Borel subalgebra. From
this, we easily see that the G-submodule generated by vλ ⊗ vµ is isomorphic
with V (λ+ µ).

The weight space of V corresponding to the weight λ + µ is clearly one-
dimensional. Hence, the multiplicity of V (λ+ µ) in V is at most one.

The following result is due to Kostant [Ko].

Proposition (3.2). For λ, µ ∈ Λ+, any component V (ν) of V = V (λ)⊗ V (µ)
is of the form ν = λ + µ1, for some µ1 ∈ P (µ). Moreover, its multiplicity
mν

λ,µ ≤ dimV (µ)µ1
.

Proof. Clearly, the multiplicity mν
λ,µ is equal to the dimension of

Homg

(
V (ν), V (λ)⊗ V (µ)

)
' Homb

(
Cν , V (λ)⊗ V (µ)

)

' Homb

(
Cν ⊗ V (λ)∗, V (µ)

)
.

But, V (λ)∗ is generated, as a b-module, by its lowest weight vector v−λ of weight
−λ. Hence, any homomorphism φ ∈ Homb(Cν ⊗ V (λ)∗, V (µ)) is completely
determined by φ(Cν ⊗ v−λ), which must be a weight vector of weight −λ+ ν ∈
P (µ).
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We have the following general result due to Steinberg [S].

Theorem (3.3). For λ, µ, ν ∈ Λ+, the multiplicity mν
λ,µ =∑

w∈W ε(w)n(w∗ν)−λ(µ), where nλ′(µ) is the dimension of the λ′-weight
space in V (µ).

Proof. Define the Z-linear operator D : R(T ) → R(T ) by D(eγ) =∑
w∈W ε(w)ew∗γ

∑
w∈W ε(w)ew∗0 , where R(T ) is the representation ring of the torus T . Then,

D is linear over the invariant subring R(T )W (under the standard action of
W : v · eγ = evγ). Moreover, D(ev∗γ) = ε(v)D(eγ), for any v ∈ W . In particu-
lar, D(eγ) = 0 if γ + ρ is not regular (equivalently, if γ has nontrivial isotropy
under the shifted action of W ). For any γ ∈ Λ such that γ + ρ is regular, let
wγ ∈ W be the unique element such that wγ ∗ γ ∈ Λ+.

By the Weyl character formula, for any λ ∈ Λ+, chV (λ) = D(eλ), where
chV (λ) denotes the character of V (λ). Thus,

ch(V (λ)⊗ V (µ)) = chV (λ) · chV (µ)

= D(eλ · chV (µ)), since chV (µ) ∈ R(T )W

=
∑

γ

nγ(µ)D(eλ · eγ)

=
∑

γ:λ+γ+ρ
is regular

ε(wλ+γ)nγ(µ)D
(
ewλ+γ∗ (λ+γ)

)

=
∑

ν∈Λ+

(
∑

w∈W

ε(w)n(w∗ν)−λ(µ)

)
D(eν), since ε(w) = ε(w−1).

Thus, from the equivalence of (1) and (2) in Section 1, the theorem follows.

Corollary (3.4). For λ, µ ∈ Λ+, if λ + µ′ is nearly dominant (i.e., (λ +
µ′)(α∨

i ) ≥ −1 for all the simple coroots α∨
i ) for all µ′ in P (µ), then the multi-

plicity of V (ν) in V (λ)⊗ V (µ):

mν
λ,µ = nν−λ(µ).

Of course, by Proposition (3.2), V (ν) occurs in V (λ) ⊗ V (µ) only if ν =
λ+ µ′ for some µ′ ∈ P (µ).

Proof. By the above theorem,

mν
λ,µ =

∑

w∈W

ε(w)n(w∗ν)−λ(µ).

For w 6= 1, we claim that n(w∗ν)−λ(µ) = 0. Equivalently, (w ∗ν)−λ /∈ P (µ).
Since any weight in λ + P (µ) is nearly dominant (by assumption) and ν is
dominant, we have w ∗ ν /∈ λ+ P (µ) for any w 6= 1.
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As a corollary of the above corollary, we get the following (cf. [Kas], [K2,
Proposition 1.5]).

Corollary (3.5). For λ, µ ∈ Λ+ such that V (µ) is minuscule (i.e., P (µ) is a
single W -orbit), we have the decomposition

V (λ)⊗ V (µ) '
⊕

w̄∈W/Wµ:

λ+wµ∈Λ+

V (λ+ wµ), (∗)

each occuring with multiplicity 1, where Wµ := {w ∈ W : wµ = µ} is the
isotropy group of µ. Moreover, the number of irreducible components in V (λ)⊗
V (µ) is equal to the cardinality #Wλ\W/Wµ.

Proof. By [Bo, Exercise 24, p. 226], λ+µ′ is nearly dominant for any µ′ ∈ P (µ).
Thus, by the above corollary, the decomposition (∗) follows. For the second part,
define

f : (W/Wµ)
+ → Wλ\W/Wµ, f(wWµ) = WλwWµ,

where (W/Wµ)
+ := {w̄ ∈ W/Wµ : λ + wµ ∈ Λ+}. It is easy to see that f

is injective, and, for any w of minimal element in its double coset WλwWµ,
wWµ ∈ (W/Wµ)

+.

As another corollary of Theorem (3.3), we get the following.

Corollary (3.6). For λ, µ, ν ∈ Λ+,

mν
λ,µ =

∑

v,w∈W

ε(v) ε(w)P
(
v(µ+ ρ)− w(ν + ρ) + λ

)
,

where P is the Kostant’s partition function.

Proof. Use Kostant’s formula for any dominant character µ and any integral
character λ′:

nλ′(µ) =
∑

v∈W

ε(v)P((v ∗ µ)− λ′).

The following result is due to Kostant [Ko, Lemma 4.1].

Theorem (3.7). For any λ, µ, ν ∈ Λ+, the multiplicity

mν
λ,µ = dim

{
v ∈ V (µ)ν−λ : e

λ(α∨
i )+1

i v = 0, for all simple roots αi

}
.

Proof. Of course, by the proof of Proposition (3.2),

mν
λ,µ = dimHomg(V (ν), V (λ)⊗ V (µ))

= dimHomb(Cν ⊗ V (λ)∗, V (µ)).
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Let v−λ ∈ V (λ)∗ be a nonzero lowest weight vector. Then, by a result due to
Harish-Chandra,

φ : U(n) −→ V (λ)∗, X 7→ X · v−λ,

is surjective with kernel

kerφ =
∑

1≤i≤`

U(n) · e
λ(α∨

i )+1
i ,

where n is the nil-radical of b. (This also follows immediately from the BGG
resolution.) This proves the theorem.

The following corollary follows immediately from the above theorem and
SL(2)-representation theory.

Corollary (3.8). For any λ, µ ∈ Λ+ and w ∈ W such that λ+wµ is dominant,

we have mλ+wµ
λ,µ = 1.

Lemma (3.9). For any λ, µ, ν, λ′, µ′, ν′ ∈ Λ+ such that mν′

λ′,µ′ ≥ 1, we have

mν+ν′

λ+λ′,µ+µ′ ≥ mν
λ,µ.

Proof. We have

Homg

(
V (ν), V (λ)⊗ V (µ)

)
' Homg

(
V (λ)∗ ⊗ V (µ)∗ ⊗ V (ν∗)∗,C

)

'
[
V (λ)∗ ⊗ V (µ)∗ ⊗ V (ν∗)∗

]g

' H0
(
(G/B)3,L(λ� µ� ν∗)

)G
,

where the last isomorphism follows from the Borel-Weil theorem:
H0(G/B,L(λ)) ' V (λ)∗ (for any λ ∈ Λ+), and L(λ � µ � ν∗) denotes the
external tensor product line bundle L(λ) � L(µ) � L(ν∗) on (G/B)3. Take a

nonzero σo ∈ H0
(
(G/B)3,L(λ′

� µ′
� ν′∗)

)G
. Then, the map

H0
(
(G/B)3,L(λ�µ�ν∗)

)G
−→ H0

(
(G/B)3,L

(
(λ+λ′)�(µ+µ′)�(ν∗+ν′∗)

))G
,

σ 7→ σ · σo, is clearly injective.

4. Root Components in the Tensor Product

In this section, we assume that G is a semisimple simply-connected complex
algebraic group and follow the notation from Section 2. The aim of this section
is to state the existence of certain tensor product components coming from
the positive roots, conjectured by Wahl [W]. Specifically, we have the following
result due to Kumar [K3], a proof of which can be found in loc. cit. The proof
is purely representation theoretic (based on Theorem (3.7)) and unfortunately
requires some case by case analysis. For any λ ∈ Λ, define Sλ = {1 ≤ i ≤ ` :
λ(α∨

i ) = 0}. Also, for any β ∈ R+, define Fβ = {1 ≤ i ≤ ` : β−αi /∈ R+∪{0}}.
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Theorem (4.1). Take any λ, µ ∈ Λ+ and β ∈ R+ satisfying:

(P1) λ+ µ− β ∈ Λ+, and

(P2) Sλ ∪ Sµ ⊂ Fβ.

Then, V (λ+ µ− β) is a component of V (λ)⊗ V (µ).

Observe that if G2 does not occur as a component of g, then the conditions
(P1)− (P2) are automatically satisfied for any λ, µ ∈ Λ++.

Let X be a smooth projective variety with line bundles L1 and L2 on X.
Consider the Wahl map defined by him (which he called the Gaussian map)
ΦL1,L2

: H0(X×X, ID ⊗ (L1�L2)) → H0(X,Ω1
X ⊗L1⊗L2), which is induced

from the projection ID → ID/I2
D by identifying the OX×X/ID ' OD-module

ID/I2
D (supported in D) with the sheaf of 1-forms Ω1

X on D ' X (cf. [W]),
where ID is the ideal sheaf of the diagonal D.

The following Theorem is a geometric counterpart of Theorem (4.1). It
was conjectured by Wahl and proved by him for X = SL(n)/B and also for any
minuscule G/P (cf. [W]). Kumar proved it for any G/P (cf. [K3]) by using The-
orem (4.1). In fact, he showed that Theorems (4.1) and (4.2) are ‘essentially’
equivalent. Theorem (4.2) is proved in an arbitrary char. for Grassmannians
by Mehta-Parameswaran [MP]; for orthogonal and symplectic Grassmannians
in odd char. by Lakshmibai-Raghavan-Sankaran [LRS]; and for minuscule G/P
in any char. by Brown-Lakshmibai [BL].

Theorem (4.2). The Wahl map ΦL1,L2
is surjective for any flag variety X =

G/P (where G is any semisimple simply-connected group and P ⊂ G a parabolic
subgroup) and any ample homogeneous line bundles L1 and L2 on X.

Equivalently, Hp(G/P ×G/P, I2
D ⊗ (L1 � L2)) = 0, for all p > 0.

5. Proof of Parthasarathy-Ranga

Rao-Varadarajan-Kostant Conjecture

In this section, we assume that G is a semisimple simply-connected complex
algebraic group and follow the notation from Section 2. We begin with the
following result due to Parthasarathy-Ranga Rao-Varadarajan [PRV, Corollary
1 to Theorem 2.1].

Theorem (5.1). For any λ, µ ∈ Λ+, the irreducible module V (λ+ woµ) occurs
with multiplicity one in the tensor product V (λ)⊗V (µ), where wo is the longest
element of W .

Proof. Denote ν = λ+ woµ. We clearly have

Homg(V (λ)⊗ V (µ), V (ν)) ' Homb(Cλ ⊗ V (µ), V (ν)).
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Moreover, as in the proof of Theorem (3.7), the map φ : U(n) → V (µ), X 7→
X · vwoµ, is surjective with kernel

kerφ =
∑

1≤i≤`

U(n)e
−(woµ)(α

∨
i )+1

i , (5)

where vwoµ is a nonzero lowest weight vector of V (µ). Since the weight space
V (ν)λ+woµ is one-dimensional, dimHomb(Cλ ⊗ V (µ), V (ν)) ≤ 1. Moreover, by
(5), the map vλ⊗vwoµ 7→ vλ+woµ extends to a b-module map Cλ⊗V (µ) → V (ν)

iff e
−(woµ)(α

∨
i )+1

i vλ+woµ = 0 for all 1 ≤ i ≤ `. But the latter holds, as can be
easily seen from the representation theory of SL2.

Now, we prove a vast generalization of the above theorem.
For any B-variety X, we denote by X̃ the G-variety G×

B
X, i.e., it is the

total space of the fiber bundle with fiber X, associated to the principal B-
bundle G → G/B. For any B-varieties X,Y and a B-morphism φ : X → Y ,

there is a canonical G-morphism φ̃ : X̃ → Ỹ .
For any sequence (not necessarily reduced) w = (si1 , . . . , sin) of simple

reflections, let Zw be the Bott-Samelson-Demazure-Hansen (for short BSDH)
variety defined as the quotient Zw = Pi1 × · · · ×Pin/B

n under the right action
of Bn on Pi1 × · · · × Pin via:

(p1, . . . , pn)(b1, . . . , bn) = (p1b1, b
−1
1 p2b2, . . . , b

−1
n−1pnbn),

for pj ∈ Pij , bj ∈ B, where Pij is the standard minimal parabolic with
∆(Pij ) = {αij}. We denote the Bn-orbit of (p1, . . . , pn) by [p1, . . . , pn].
Then, Zw is a smooth B-variety (in fact a Pi1 -variety) under the left mul-
tiplication on the first factor. For any 1 ≤ j ≤ n, consider the subse-
quence w(j) := (si1 , . . . , ŝij , . . . , sin). Then, we have a B-equivariant embeding
Zw(j) ↪→ Zw, [p1, . . . , p̂j , . . . , pn] 7→ [p1, . . . , pj−1, 1, pj+1, . . . , pn]. Thus, we have

the G-varieties Z̃w and Z̃w(j) and a canonical inclusion Z̃w(j) ↪→ Z̃w. Of course,

Z̃w (and Z̃w(j)) is smooth. For any w ∈ W , we also have the G-variety X̃w,
where Xw is the Schubert variety as in Section 2. Moreover, for any v ≤ w, we
have a canonical inclusion X̃v ↪→ X̃w, induced from the inclusion Xv ↪→ Xw.
Further, there are G-morphisms (G acting on G/B ×G/B diagonally):

θ̃w : Z̃w → G/B ×G/B and d̃w : X̃w → G/B ×G/B,

defined by
θ̃w[g, z] = (gB, gθw(z)), for g ∈ G, z ∈ Zw, and

d̃w[g, x] = (gB, gx), for g ∈ G, x ∈ Xw,

where the map θw : Zw → G/B is defined by [p1, . . . , pn] 7→ p1 . . . pnB. Clearly,

the map θ̃w (resp. d̃w) is well defined, i.e., it descends to Z̃w (resp. X̃w). It

can be easily seen that the map d̃w is a closed immersion and its image is



1236 Shrawan Kumar

the closure of the G-orbit of the point (e, ẇ) in G/B × G/B, where ẇ is the
point wB ∈ G/B. The sequence w = (si1 , . . . , sin) is said to be reduced if
m(w) := si1 . . . sin is a reduced decomposition.

For any λ, µ ∈ Λ, we denote by L(λ�µ) the line bundle on G/B×G/B which
is the external tensor product of the line bundles L(λ) and L(µ) respectively.
We further denote by Lw(λ � µ) (resp. Lw(λ � µ)) the pull-back of L(λ � µ)

by the map θ̃w (resp. d̃w). The following cohomology vanishing result (rather
its Corollary (5.4)) is crucial to the proof of the PRVK conjecture.

Theorem (5.2). Let w = (si1 , . . . , sin) be any sequence of simple reflections
and let 1 ≤ j ≤ k ≤ n be such that the subsequence (sij , . . . , sik) is reduced.
Then, for any λ, µ ∈ Λ+, we have:

Hp
(
Z̃w,Lw(λ� µ)⊗OZ̃w

[
− ∪k

q=j Z̃w(q)

])
= 0, for all p > 0.

The proof of this theorem is identical to the proof of the analogous result
for Zw given in [K4, Theorem 8.1.8] if we observe the following simple:

Lemma (5.3). For any sequence w = (si1 , . . . , sin) (not necessarily reduced),

the canonical bundle KZ̃w

of Z̃w is isomorphic with

Lw((−ρ)� (−ρ))⊗OZ̃w

[
−∂Z̃w], where ∂Z̃w := ∪n

q=1 Z̃w(q).

Applying Theorem (5.2) to the cohomology exact sequence, corresponding
to the sheaf sequence:

0 → OZ̃w
[−Z̃w(j)] → OZ̃w

→ OZ̃w(j)
→ 0

tensored with the locally free sheaf Lw(λ� µ), we get the following:

Corollary (5.4). Let w = (si1 , . . . , sin) be any sequence. Then, for any 1 ≤

j ≤ n and any λ, µ ∈ Λ+, the canonical restriction map H0
(
Z̃w,Lw(λ�µ)

)
→

H0
(
Z̃w(j),Lw(j)(λ� µ)

)
is surjective.

In the case when w is a reduced sequence, the image of the map θ̃w : Z̃w →
G/B×G/B is precisely equal to d̃w(X̃w), where w = m(w). By slight abuse of

notation, we denote the map θ̃w, considered as a map Z̃w → X̃w, again by θ̃w.
Then, θ̃w is a birational surjective morphism. As a consequence of the above
corollary, we get the following:

Corollary (5.5). For any v ≤ w ∈ W , and λ, µ ∈ Λ+, the canonical restriction

map H0
(
X̃w,Lw(λ� µ)

)
→ H0

(
X̃v,Lv(λ� µ)

)
is surjective.

Proof. Take a reduced sequence w such that m(w) = w. Then, we can find a
reduced subsequence v such that m(v) = v (cf. [K4, Lemma 1.3.16]). Since any

Schubert variety Xw is normal (cf. [BrK, Theorem 3.2.2]), then so is X̃w. Hence,
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by the projection formula [H, Exercise 5.1, Chap. II] and the Zariski’s main
theorem [H, Corollary 11.4 and its proof, Chap. III] applied to the projective

birational morphism θ̃w, we get the isomorphism

θ̃∗w : H0
(
X̃w,Lw(λ� µ)

)
' H0

(
Z̃w,Lw(λ� µ)

)
.

Now, the corollary follows by successively applying the last corollary.

Remark (5.6). Even though we do not need, we also get (from Theorem (5.2))

that for any locally free sheaf L on X̃w, one has:

Hp(X̃w,L) ' Hp(Z̃w, θ̃
∗
w(L)), for all p ≥ 0,

and Hp
(
X̃w,Lw(λ � µ)

)
= 0 for all p > 0 and any λ, µ ∈ Λ+. These cohomo-

logical results hold even in an arbitrary char. via Frobenius splitting methods
(cf. [BrK, Theorems 3.1.2 and 3.3.4]).

The following result is a special case of a theorem of Bott [Bot, Theorem I],
who proved the result for an arbitrary Hp(G/B,M) in terms of the Lie algebra
cohomology (cf. [K4, Exercise 8.3.E.4] for the statement and the idea of a short
proof).

Theorem (5.7). For any finite-dimensional algebraic B-module M , there is a
G-module isomorphism:

H0(G/B,M) '
⊕

θ∈Λ+

V (θ)∗ ⊗ [V (θ)⊗M ]b,

where we put the trivial G-module structure on the b-invariants and M denotes
the locally free sheaf on G/B associated to the B-module M .

Proof. By the Peter-Weyl theorem and Tannaka-Krein duality (cf. [BD, Chap.
III]), the affine coordinate ring C[G] (as a G×G-module) is given by:

C[G] '
⊕

θ∈Λ+

V (θ)∗ ⊗ V (θ),

where G × G acts on C[G] via
(
(g, h).f

)
(x) = f(g−1xh) and G × G acts on

V (θ)∗ ⊗ V (θ) factorwise. From this, the theorem follows easily.

As a consequence of the above theorem, we derive the following:

Theorem (5.8). For any w ∈ W,λ ∈ Λ and µ ∈ Λ+, H0
(
X̃w,Lw(λ � µ)

)
is

canonically G-module isomorphic with
⊕

θ∈Λ+

V (θ)∗ ⊗Homb(Cλ ⊗ Vw(µ), V (θ)),

where we put the trivial G-module structure on Homb(Cλ ⊗ Vw(µ), V (θ)) and
Vw(µ) ⊂ V (µ) is the Demazure submodule, which is, by definition, the U(b)-
span of the extremal weight vector vwµ of weight wµ in V (µ).
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Proof. By the definition of the direct image sheaf π∗, corresponding to the
canonical fibration π = πw : X̃w → G/B, we get that H0

(
X̃w,Lw(λ � µ)

)
'

H0
(
G/B, π∗Lw(λ�µ)

)
. Since the line bundle Lw(λ�µ) on the G-space X̃w is a

G-equivariant line bundle and the map π isG-equivariant, the direct image sheaf
π∗Lw(λ� µ) is a locally free sheaf on G/B associated to the B-module Mw :=
C−λ ⊗H0(Xw,Lw(µ)), where Lw(µ) := L(µ)|Xw

. This gives the following:

H0
(
X̃w,Lw(λ� µ)

)
' H0(G/B,Mw), (6)

where Mw is the locally free sheaf on G/B associated to the B-module Mw.
Now, by Theorem (5.7), we get by the isomorphism (6):

H0
(
X̃w,Lw(λ� µ)

)
'
⊕

θ∈Λ+

V (θ)∗ ⊗
[
V (θ)⊗Mw

]b
(7)

'
⊕

θ∈Λ+

V (θ)∗ ⊗Homb(M
∗
w, V (θ)). (8)

Now, the theorem follows from the isomorphism:

H0(Xw,Lw(µ))
∗ ' Vw(µ), forµ ∈ Λ+,

which of course is a consequence of the Demazure character formula (cf., e.g.,
[K4, Corollary 8.1.26]).

We recall the following result due to Joseph [Jo, §3.5], which is a general-
ization of Harish-Chandra’s theorem used in the proof of Theorem (3.7).

Theorem (5.9). For any w ∈ W and µ ∈ Λ+, the map U(n) → Vw(µ),
defined by X 7→ X.vwµ, has kernel precisely equal to the left U(n)-ideal∑

α∈R+ U(n)Xkα+1
α , where Xα is any nonzero root vector in the root space

gα and kα is defined as follows:

kα = kµα(w) = 0, if (wµ)(α∨) ≥ 0 (9)

= −(wµ)(α∨), otherwise. (10)

Corollary (5.10). For any w ∈ W and λ, µ ∈ Λ+, Homb(Cλ ⊗
Vw(µ), V (λ+ wµ)) is one-dimensional (over C).

Proof. Since Vw(µ) is a U(n)-cyclic module generated by the element vwµ of
weight wµ, Cλ is of weight λ, and the λ + wµ weight space in V (λ+ wµ) is
one-dimensional, we clearly have

dimHomb(Cλ ⊗ Vw(µ), V (λ+ wµ)) ≤ 1.

By the above theorem, the map vλ ⊗ vwµ 7→ vλ+wµ clearly extends uniquely to
a b-module map, where vλ+wµ is some fixed nonzero vector of weight λ + wµ
in V (λ+ wµ).
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For any λ, µ ∈ Λ+, by the Borel-Weil theorem, there is a G-module (in fact
a G×G-module) isomorphism ξ :

(
V (λ)⊗V (µ)

)∗
' H0(G/B×G/B,L(λ�µ)).

On composition with the canonical restriction mapH0(G/B×G/B,L(λ�µ)) →

H0(X̃w,Lw(λ� µ)), we get a G-module map

ξw :
(
V (λ)⊗ V (µ)

)∗
→ H0(X̃w,Lw(λ� µ)).

Since C̃w = G×
B
Cw sits as a (Zariski) open subset of X̃w (where Cw = CB

w is

the Bruhat cell as in Section 2), the following lemma is trivial to prove.

Lemma (5.11). ker ξw = {f ∈
(
V (λ) ⊗ V (µ)

)∗
: f|U(g)(vλ⊗vwµ) = 0}, where

U(g)(vλ ⊗ vwµ) denotes the U(g)-span of the vector vλ ⊗ vwµ in V (λ)⊗ V (µ).

By Corollary (5.5) (applied to w = wo and v = w), the map ξw is surjective
and hence dualizing the above lemma, we get the following crucial:

Proposition (5.12). For any w ∈ W and λ, µ ∈ Λ+,

H0(X̃w,Lw(λ� µ))∗ ' U(g)(vλ ⊗ vwµ) ↪→ V (λ)⊗ V (µ).

Now combining Theorem (5.8) with Corollary (5.10) and Proposition
(5.12), we get the following most important result of this section. In the nineteen
sixties, Parthasarathy-Ranga Rao-Varadarajan (for short PRV) conjectured
(unpublished) the ‘In particular’ part of the following theorem (and proved
it for w = wo; cf. Theorem 5.1). Then, Kostant (in the mid eighties) came up
with a more precise form of their conjecture (known as the PRVK conjecture),
which is the first part of the following theorem. It was proved by Kumar [K1]
(using only char. 0 methods) and was extended by Mathieu [M1] to an arbitrary
char. The proof given here follows that of Kumar. Subsequently, other proofs of
the original PRV conjecture appeared. Lusztig’s results on the intersection ho-
mology of generalized Schubert varieties associated to affine Kac-Moody groups
give a proof of the PRV conjecture; Rajeswari [Ra] gave a proof for classical G
using Standard Monomial Theory; Littelmann [L2] gave a proof using his LS
path models.

Theorem (5.13). For any finite-dimensional semisimple Lie algebra g, any
λ, µ ∈ Λ+, and w ∈ W , the irreducible g-module V (λ+ wµ) (with extremal
weight λ + wµ) occurs with multiplicity exactly one inside the g-submodule
U(g)(vλ ⊗ vwµ) of V (λ)⊗ V (µ).

In particular, the g-module V (λ+ wµ) occurs with multiplicity at least one
in V (λ)⊗ V (µ).

Remark (5.14). (a) As proved in [K1, Proposition 2.13], V (λ+ wµ) occurs
‘for the first time’ in U(g)(vλ ⊗ vwµ) if λ and µ are both regular. Precisely, for
λ, µ ∈ Λ++, the g-module V (λ+ wµ) does not occur in U(g)(vλ⊗ vvµ), for any
v < w.
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(b) Following recent works of Dimitrov-Roth and Ressayre (cf. [DR1], [DR2],
[R3]), one obtains the following: Let λ, µ, ν ∈ Λ+ be such that there exists
w ∈ W with ν = λ+ wµ. Then, the following are equivalent:

(i) For all k ≥ 1, V (kν) appears in V (kλ)⊗ V (kµ) with multiplicity 1.
(ii) there exist w1, w2, w3 ∈ W such that `(w3) = `(w1) + `(w2), w3 ∗ ν =

w1 ∗ λ+ w2 ∗ µ and the canonical product map

H`(w1)
(
G/B,L(w1 ∗λ)

)
⊗H`(w2)

(
G/B,L(w2 ∗µ)

)
−→ H`(w3)

(
G/B,L(w3 ∗ν)

)

is nonzero.

The following is a refinement of Theorem (5.13) proved by Kumar [K2,
Theorem 1.2] (which was conjectured by D.N. Verma).

Theorem (5.15). Fix λ, µ ∈ Λ+ and consider the map η : Wλ\W/Wµ → Λ+,
defined by η(WλvWµ) = λ+ vµ, for any v ∈ W , where Wλ is the stabilizer
of λ in W . Then, for any w ∈ W , the irreducible g-module V (λ+ wµ) occurs
in V (λ)⊗ V (µ) with multiplicity at least equal to #η−1(η(WλwWµ)), where #
denotes the order.

In particular, the number of irreducible components of V (λ)⊗V (µ) (counted
with multiplicities) is at least as much as the order of the double coset space
Wλ\W/Wµ. (Of course, Wλ = Wµ = {e}, if we assume λ and µ to be both
regular.)

Proof. Fix a w ∈ W and let {Wλw1Wµ, . . . ,WλwnWµ} be the distinct double
cosets such that η(WλwiWµ) = λ+ wµ, for all 1 ≤ i ≤ n, and such that each wi

is of minimal length in its double coset. By [BrK, Remark 3.1.3], the restriction
map

H0
(
G/B ×G/B,L(λ� µ)

)
→ H0(Y,L(λ� µ)|Y

)

is surjective, where Y :=
⋃n

i=1 X̃wi
is the closed subvariety (equipped with

the reduced subscheme structure) of G/B × G/B. For 1 ≤ j ≤ n, define

Yj =
⋃j

i=1 X̃wi
. Now, the theorem follows from the following proposition due to

Kumar [K2, Proposition 2.5] together with [BrK, Exercise 3.3.E.3]. (This propo-
sition is obtained by considering the ideal sheaf of Yj in Yj+1 and induction
on j.)

Proposition (5.16). For any 1 ≤ j ≤ n, the irreducible g-module V (λ+ wµ)
occurs in H0

(
Yj ,L(λ� µ)|Yj

)∗
with multiplicity exactly equal to j.

6. Determination of the Saturated Tensor Cone

This section is based on the work [BK1] due to Belkale-Kumar. We follow
the notation and assumptions from Secton 2; in particular, G is a semisimple
connected complex algebraic group.

For any λ, µ, ν ∈ Λ+,

HomG

(
V (ν), V (λ)⊗ V (µ)

)
' [V (λ)⊗ V (µ)⊗ V (ν∗)]G,



Tensor Product Decomposition 1241

and hence the tensor product problem of determining the components V (ν)
in the tensor product V (λ) ⊗ V (µ) can be restated (replacing ν by ν∗) in a
more symmetrical form of determining when [V (λ) ⊗ V (µ) ⊗ V (ν)]G 6= 0. We
generalize this problem from s = 3 to any s ≥ 1 and define the tensor product
semigroup:

Γ̄s(G) := {(λ1, . . . , λs) ∈ (Λ+)s : [λ1, . . . , λs]
G 6= 0},

where [λ1, . . . , λs]
G denotes the dimension of the space of G-invariants [V (λ1)⊗

· · ·⊗V (λs)]
G. By Lemma (3.9), it is indeed a semigroup. Some general results on

Γ̄3(G) are obtained in the paper [KM1] by Kapovich-Millson. The determination
of Γ̄s(G) in general is very hard, so we look at the weaker ‘saturated tensor
product problem’ and define the saturated tensor product semigroup:

Γs(G) := {(λ1, . . . , λs) ∈ (Λ+)s : [Nλ1, . . . , Nλs]
G 6= 0 for someN > 0}.

Let Λ+
R

:= {λ ∈ Λ ⊗Z R : λ(α∨
i ) ≥ 0 for all the simple corootsα∨

i }. By virtue
of the convexity result in symplectic geometry, there exists a (unique) convex
polyhedral cone Γs(G)R ⊂ (Λ+

R
)s such that

Γs(G) = Γs(G)R ∩ Λs.

The aim of this section is to find the inequalities describing the cone Γs(G)R
explicitly. Observe that the cone Γs(G)R depends only upon the Lie algebra g

of G.
The following deformation of the cohomology product in H∗(G/P ) is due

to Belkale-Kumar [BK1, §6]. This deformed product is crucially used in the
determination of Γs(G).

Definition (6.1). Let P be any standard parabolic subgroup of G. Write the
standard cup product in H∗(G/P,Z) in the {[XP

w ]} basis as follows:

[
XP

u

]
·
[
XP

v

]
=

∑

w∈WP

cwu,v
[
XP

w

]
. (11)

Introduce the indeterminates τi for each αi ∈ ∆ \∆(P ) and define a deformed
cup product � as follows:

[
XP

u

]
�
[
XP

v

]
=

∑

w∈WP




∏

αi∈∆\∆(P )

τ
(w−1ρ−u−1ρ−v−1ρ−ρ)(xi)
i


 cwu,v

[
XP

w

]
,

where ρ is the (usual) half sum of positive roots of g and xi is defined in
Section 2.

By (subsequent) Corollary (6.17), whenever cwu,v is nonzero, the exponent
of τi in the above is a nonnegative integer. Moreover, it is easy to see that the
product � is associative and clearly commutative. This product should not be
confused with the small quantum cohomology of G/P .
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The cohomology algebra of G/P obtained by setting each τi = 0 in
(H∗(G/P,Z)⊗Z[τi],�) is denoted by (H∗(G/P,Z),�0). Thus, as a Z-module,
it is the same as the singular cohomology H∗(G/P,Z) and under the product
�0 it is associative (and commutative). Moreover, it continues to satisfy the
Poincaré duality (cf. [BK1, Lemma 16(d)]).

The cohomology algebra H∗(G/P ) under the product �0 is intimately con-
nected with the Lie algebra cohomology of the nil-radical u of the parabolic
subalgebra p (cf. [BK1, Theorem 43]).

We recall the following lemma from [BK1, Lemma 19].

Lemma (6.2). Let P be a cominuscule maximal standard parabolic subgroup of
G (i.e., the simple root αP ∈ ∆ \∆(P ) appears with coefficient 1 in the highest
root of R+). Then, the product � coincides with the cup product in H∗(G/P ).

Given a standard maximal parabolic subgroup P , let ωP denote the cor-
responding fundamental weight, i.e., ωP (α

∨
i ) = 1, if αi ∈ ∆ \ ∆(P ) and 0

otherwise.

The following theorem due to Belkale-Kumar [BK1, Theorem 22] determines
the semigroup Γs(G) ‘most efficiently’. For G = SL(n), every maximal parabolic
subgroup P is cominuscule and hence, by the above lemma, the deformed prod-
uct �0 in H∗(G/P ) coincides with the standard cup product. In this case, the
following theorem was obtained by Klyachko [Kly] with a refinement by Belkale
[B1]. If we replace the product �0 in (b) of the following theorem by the stan-
dard cup product, then the equivalence of (a) and (b) for general G was proved
by Kapovich-Leeb-Millson [KLM] following an analogous slightly weaker result
proved by Berenstein-Sjamaar [BS]. It may be mentioned that replacing the
product �0 in (b) by the standard cup product, we get, in general, ‘far more’
inequalities for simple groups other than SLn. For example, for G of type B3

(or C3), the standard cup product gives rise to 135 inequalities, whereas the
product �0 gives only 102 inequalities (cf. [KuLM]).

Theorem (6.3). Let (λ1, . . . , λs) ∈ (Λ+)s. Then, the following are equivalent:

(a) (λ1, . . . , λs) ∈ Γs(G).

(b) For every standard maximal parabolic subgroup P in G and every choice
of s-tuples (w1, . . . , ws) ∈ (WP )s such that

[XP
w1

]�0 · · · �0 [X
P
ws

] = [XP
e ] ∈

(
H∗(G/P,Z),�0

)
,

the following inequality holds:

s∑

j=1

λj(wjxiP ) ≤ 0, (IP(w1,...,ws)
)

where αiP is the (unique) simple root in ∆ \∆(P ).
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The following result is due to Ressayre [R1]. In the case G = SL(n), it was
earlier proved by Knutson-Tao-Woodward [KTW].

Theorem (6.4). The set of inequalities provided by the (b)-part of Theorem
(6.3) is an irredundant system of inequalities describing the cone Γs(G)R inside
(Λ+

R
)s, i.e., the hyperplanes given by the equality in IP(w1,...,ws)

are precisely those

facets of the cone Γs(G)R which intersect the interior of (Λ+
R
)s.

As a preparation towards the proof of Theorem (6.3), we first recall the
following transversality theorem due to Kleiman (cf. [BK1, Proposition 3]).

Theorem (6.5). Let a connected algebraic group G act transitively on a
smooth variety X and let X1, . . . , Xs be irreducible locally closed subvari-
eties of X. Then, there exists a nonempty open subset U ⊆ Gs such that for
(g1, . . . , gs) ∈ U , the intersection

⋂s
j=1 gjXj is proper (possibly empty) and

dense in
⋂s

j=1 gjX̄j.
Moreover, if Xj are smooth varieties, we can find such a U with the addi-

tional property that for (g1, . . . , gs) ∈ U ,
⋂s

j=1 gjXj is transverse at each point
of intersection.

We need the shifted Bruhat cell:

ΦP
w := w−1BwP ⊂ G/P.

Let TP = T (G/P )ė be the tangent space of G/P at ė ∈ G/P . It carries a
canonical action of P . For w ∈ WP , define TP

w to be the tangent space of ΦP
w at

ė. We shall abbreviate TP and TP
w by T and Tw respectively when the reference

to P is clear. By (4), BL stabilizes ΦP
w keeping ė fixed. Thus,

BLTw ⊂ Tw. (12)

The following result follows easily from the above transversality theorem and
[F1, Proposition 7.1 and §12.2] by observing that gΦP

w passes through ė ⇔
gΦP

w = pΦP
w for some p ∈ P .

Proposition (6.6). Take any (w1, . . . , ws) ∈ (WP )s such that

s∑

j=1

codimΦP
wj

≤ dimG/P. (13)

Then, the following three conditions are equivalent:

(a) [XP
w1

] · . . . · [XP
ws

] 6= 0 ∈ H∗(G/P ).

(b) For generic (p1, . . . , ps) ∈ P s, the intersection p1Φ
P
w1

∩ · · · ∩ psΦ
P
ws

is
transverse at ė.
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(c) For generic (p1, . . . , ps) ∈ P s,

dim(p1Tw1
∩ · · · ∩ psTws

) = dimG/P −

s∑

j=1

codimΦP
wj

.

The set of s-tuples in (b) as well as (c) is an open subset of P s.

The definition of the deformed product �0 was arrived at from the following
crucial concept.

Definition (6.7). Let w1, . . . , ws ∈ WP be such that

s∑

j=1

codimΦP
wj

= dimG/P. (14)

We then call the s-tuple (w1, . . . , ws) Levi-movable for short L-movable if, for
generic (l1, . . . , ls) ∈ Ls, the intersection l1Φw1

∩ · · · ∩ lsΦws
is transverse at ė.

By Proposition (6.6), if (w1, . . . , ws) is L-movable, then [XP
w1

] · . . . · [XP
ws

] =
d[XP

e ] in H∗(G/P ), for some nonzero d.

A Review of Geometric Invariant Theory. We need to consider the Geo-
metric Invariant Theory (GIT) in a nontraditional setting, where a nonreductive
group acts on a nonprojective variety. First we recall the following definition
due to Mumford.

Definition (6.8). Let S be any (not necessarily reductive) algebraic group
acting on a (not necessarily projective) variety X and let L be an S-equivariant
line bundle on X. Let O(S) be the set of all one parameter subgroups (for short
OPS) in S. Take any x ∈ X and δ ∈ O(S) such that the limit limt→0 δ(t)x
exists in X (i.e., the morphism δx : Gm → X given by t 7→ δ(t)x extends to a

morphism δ̃x : A1 → X). Then, following Mumford, define a number µL(x, δ)

as follows: Let xo ∈ X be the point δ̃x(0). Since xo is Gm-invariant via δ, the
fiber of L over xo is a Gm-module; in particular, is given by a character of Gm.
This integer is defined as µL(x, δ).

We record the following standard properties of µL(x, δ) (cf. [MFK, Chap. 2,
§1]):

Proposition (6.9). For any x ∈ X and δ ∈ O(S) such that limt→0 δ(t)x exists
in X, we have the following (for any S-equivariant line bundles L,L1,L2):

(a) µL1⊗L2(x, δ) = µL1(x, δ) + µL2(x, δ).

(b) If there exists σ ∈ H0(X,L)S such that σ(x) 6= 0, then µL(x, δ) ≥ 0.

(c) If µL(x, δ) = 0, then any element of H0(X,L)S which does not vanish at
x does not vanish at limt→0 δ(t)x as well.
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(d) For any S-variety X
′ together with an S-equivariant morphism f : X′ → X

and any x′ ∈ X
′ such that limt→0 δ(t)x

′ exists in X
′, we have µf∗

L(x′, δ) =
µL(f(x′), δ).

(e) (Hilbert-Mumford criterion) Assume that X is projective, S is connected
and reductive and L is ample. Then, x ∈ X is semistable (with respect to
L) if and only if µL(x, δ) ≥ 0, for all δ ∈ O(S).

For an OPS δ ∈ O(S), let δ̇ ∈ s be its derivative at 1. Also, define the
associated parabolic subgroup P (δ) of S by

P (δ) :=
{
g ∈ S : lim

t→0
δ(t)gδ(t)−1 exists inS

}
.

Definition (6.10). (Maximally destabilizing one parameter subgroups) We
recall the definition of Kempf’s OPS attached to an unstable point, which is
in some sense ‘most destabilizing’ OPS. Let X be a projective variety with the
action of a connected reductive group S and let L be a S-linearized ample line
bundle on X. Introduce the set M(S) of fractional OPS in S. This is the set
consisting of the ordered pairs (δ, a), where δ ∈ O(S) and a ∈ Z>0, modulo the
equivalence relation (δ, a) ' (γ, b) if δb = γa. The equivalence class of (δ, a) is
denoted by [δ, a]. An OPS δ of S can be thought of as the element [δ, 1] ∈ M(S).
The group S acts on M(S) via conjugation: g · [δ, a] = [gδg−1, a]. Choose a S-
invariant norm q : M(S) → R+. We can extend the definition of µL(x, δ) to any

element δ̂ = [δ, a] ∈ M(S) and x ∈ X by setting µL(x, δ̂) = µL(x,δ)
a . We note the

following elementary property: If δ̂ ∈ M(S) and p ∈ P (δ) then

µL(x, δ̂) = µL(x, pδ̂p−1). (15)

For any unstable (i.e., nonsemistable) point x ∈ X, define

q∗(x) = inf
δ̂∈M(S)

{q(δ̂) | µL(x, δ̂) ≤ −1},

and the optimal class

Λ(x) = {δ̂ ∈ M(S) | µL(x, δ̂) ≤ −1, q(δ̂) = q∗(x)}.

Any δ̂ ∈ Λ(x) is called Kempf’s OPS associated to x.
By a theorem of Kempf (cf. [Ki, Lemma 12.13]), Λ(x) is nonempty and the

parabolic P (δ̂) := P (δ) (for δ̂ = [δ, a]) does not depend upon the choice of

δ̂ ∈ Λ(x). The parabolic P (δ̂) for δ̂ ∈ Λ(x) will be denoted by P (x) and called
the Kempf’s parabolic associated to the unstable point x.

We recall the following theorem due to Ramanan-Ramanathan [RR, Propo-
sition 1.9].
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Theorem (6.11). For any unstable point x ∈ X and δ̂ = [δ, a] ∈ Λ(x), let

xo = lim
t→0

δ(t) · x ∈ X.

Then, xo is unstable and δ̂ ∈ Λ(xo).

Now, we return to the setting of Section 2. Let P be any standard parabolic
subgroup of G acting on P/BL via the left multiplication. We call δ ∈ O(P )
P -admissible if, for all x ∈ P/BL, limt→0 δ(t) · x exists in P/BL.

Observe that, BL being the semidirect product of its commutator [BL, BL]
and T , any λ ∈ Λ extends uniquely to a character of BL. Thus, for any λ ∈ Λ,
we have a P -equivariant line bundle LP (λ) on P/BL associated to the principal
BL-bundle P → P/BL via the one-dimensional BL-module λ−1. The following
lemma is easy to establish (cf. [BK1, Lemma 14]). It is a generalization of the
corresponding result in [BS, Section 4.2].

Lemma (6.12). Let δ ∈ O(T ) be such that δ̇ ∈ t+ := {x ∈ t : αi(x) ∈
R+ ∀ the simple rootsαi}. Then, δ is P -admissible and, moreover, for any λ ∈
Λ and x = ulBL ∈ P/BL (for u ∈ U, l ∈ L), we have the following formula:

µLP (λ)(x, δ) = −λ(wδ̇),

where w ∈ WP is the unique element such that l−1 ∈ BLwBL.

Definition (6.13). Let w ∈ WP . Since Tw is a BL-module (by (12)), we have
the P -equivariant vector bundle Tw := P ×

BL

Tw on P/BL. In particular, we

have the P -equivariant vector bundle T := P ×
BL

T and Tw is canonically a

P -equivariant subbundle of T . Take the top exterior powers det(T /Tw) and
det(Tw), which are P -equivariant line bundles on P/BL. Observe that, since T
is a P -module, the P -equivariant vector bundle T is P -equivariantly isomorphic
with the product bundle P/BL × T under the map ξ : P/BL × T → T taking
(pBL, v) 7→ [p, p−1v], for p ∈ P and v ∈ T ; where P acts on P/BL×T diagonally.
We will often identify T with the product bundle P/BL × T under ξ.

For w ∈ WP , define the character χw ∈ Λ by

χw =
∑

β∈(R+\R+
l
)∩w−1R+

β .

Then, from [K4, 1.3.22.3] and (4),

χw = ρ− 2ρL + w−1ρ, (16)

where ρ (resp. ρL) is half the sum of roots in R+ (resp. in R+
l ).
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The following lemma is easy to establish.

Lemma (6.14). For w ∈ WP , as P -equivariant line bundles on P/BL, we
have: det(T /Tw) = LP (χw).

Let Ts be the P -equivariant product bundle (P/BL)
s×T → (P/BL)

s under
the diagonal action of P on (P/BL)

s×T . Then, Ts is canonically P -equivariantly
isomorphic with the pull-back bundle π∗

j (T ), for any 1 ≤ j ≤ s, where πj :
(P/BL)

s → P/BL is the projection onto the j-th factor. For any w1, . . . , ws ∈
WP , we have a P -equivariant map of vector bundles on (P/BL)

s:

Θ = Θ(w1,...,ws) : Ts → ⊕s
j=1π

∗
j (T /Twj

) (17)

obtained as the direct sum of the projections Ts → π∗
j (T /Twj

) under the identi-

fication Ts ' π∗
j (T ). Now, assume that w1, . . . , ws ∈ WP satisfies the condition

(14). In this case, we have the same rank bundles on the two sides of the map
(17). Let θ be the bundle map obtained from Θ by taking the top exterior
power:

θ = det(Θ) : det
(
Ts
)
→ det

(
T /Tw1

)
� · · ·� det

(
T /Tws

)
. (18)

Clearly, θ is P -equivariant and hence one can view θ as a P -invariant element
in

H0

(
(P/BL)

s, det(Ts)
∗ ⊗

(
det
(
T /Tw1

)� · · ·� det
(
T /Tws

))
)
.

= H0
(
(P/BL)

s,LP (χw1
− χ1)� LP (χw2

)� · · ·� LP (χws
)
)
. (19)

The following lemma follows easily from Proposition (6.6).

Lemma (6.15). Let (w1, . . . , ws) be an s-tuple of elements of WP satisfying
the condition (14). Then, we have the following:

1. The section θ is nonzero if and only if [XP
w1

] · . . . · [XP
ws

] 6= 0 ∈ H∗(G/P ).

2. The s-tuple (w1, . . . , ws) is L-movable if and only if the section θ restricted
to (L/BL)

s is not identically 0.

Proposition (6.16). Assume that (w1, . . . , ws) ∈ (WP )s satisfies condition
(14). Then, the following are equivalent.

(a) (w1, . . . , ws) is L-movable.
(b) [XP

w1
] · . . . · [XP

ws
] = d[XP

e ] in H∗(G/P ), for some nonzero d, and for
each αi ∈ ∆ \∆(P ), we have






s∑

j=1

χwj


− χ1


 (xi) = 0.
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Proof. (a)⇒(b): Let (w1, . . . , ws) ∈ (WP )s be L-movable. Consider the restric-

tion θ̂ of the P -invariant section θ to (L/BL)
s. Then, θ̂ is non-vanishing by the

above lemma. But, for

H0
(
(L/BL)

s, (LP (χw1
− χ1)� LP (χw2

)� · · ·� LP (χws
))|(L/BL)s

)L

to be nonzero, the center of L should act trivially (under the diagonal action)
on LP (χw1

− χ1)�LP (χw2
)� · · ·�LP (χws

) restricted to (L/BL)
s. This gives∑s

j=1 χwj
(h) = χ1(h), for all h in the Lie algebra zL of the center of L; in

particular, for h = xi with αi ∈ ∆ \∆(P ).
(b)⇒(a): By the above lemma, θ(p̄1, . . . , p̄s) 6= 0, for some p̄j ∈ P/BL.

Consider the central OPS of L: δ(t) :=
∏

αi∈∆\∆(P ) t
xi . For any x = ulBL ∈

P/BL, with u ∈ U and l ∈ L,

lim
t→0

δ(t)x = lim
t→0

δ(t)uδ(t)−1(δ(t)l)BL.

But, since β(δ̇) > 0, for all β ∈ R+ \ R+
l , we get limt→0 δ(t)uδ(t)

−1 = 1.
Moreover, since δ(t) is central in L, δ(t)lBL equals lBL. Thus, limt→0 δ(t)x
exists and lies in L/BL.

Now, let L be the P -equivariant line bundle LP (χw1
−χ1)�LP (χw2

)� · · ·�
LP (χws

) on X := (P/BL)
s, and p̄ := (p̄1, . . . , p̄s) ∈ X. Then, by Lemma (6.12)

(since δ is central in L), we get

µL(p̄, δ) = −
∑

αi∈∆\∆(P )








s∑

j=1

χwj


− χ1


 (xi)




= 0, by assumption.

Therefore, using Proposition (6.9)(c) for S = P , θ does not vanish at
limt→0 δ(t)p̄. But, from the above, this limit exists as an element of (L/BL)

s.
Hence, (w1, . . . , ws) is L-movable by Lemma (6.15).

Corollary (6.17). For any u, v, w ∈ WP such that cwu,v 6= 0 (cf. equation
(11)), we have

(χw − χu − χv)(xi) ≥ 0, for each αi ∈ ∆ \∆(P ). (20)

Proof. By the assumption of the corollary, [XP
u ] · [XP

v ] · [XP
wowwP

o
] = d[XP

e ],

for some nonzero d (in fact d = cwu,v), where wP
◦ is the longest element of WP .

Thus, by taking (w1, w2, w3) = (u, v, woww
P
o ) in Lemma (6.15), the section θ

is nonzero. Now, apply Proposition (6.9)(b) for the OPS δ(t) = txi and Lemma
(6.12) (together with the identity (16)) to get the corollary.

Proof of Theorem (6.3): Let L denote the G-linearized line bundle L(λ1)�
· · ·� L(λs) on (G/B)s and let P1, . . . , Ps be the standard parabolic subgroups
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such that L descends as an ample line bundle (still denoted by) L on X :=
G/P1×· · ·×G/Ps. We call a point x ∈ (G/B)s semistable (with respect to, not
necessarily ample, L) if its image in X under the canonical map π : (G/B)s → X

is semistable. Since the map π induces an isomorphism of G-modules:

H0(X,LN ) ' H0((G/B)s,LN ), ∀N > 0, (21)

the condition (a) of Theorem (6.3) is equivalent to the following condition:

(c) The set of semistable points of (G/B)s with respect to L is nonempty.

Proof of the implication (c) ⇒ (b) of Theorem (6.3): Let x = (ḡ1, . . . , ḡs) ∈
(G/B)s be a semistable point, where ḡj = gjB. Since the set of semistable points
is clearly open, we can choose a generic enough x such that the intersection
∩ gjBwjP itself is nonempty (cf. Theorem (6.5)). (By assumption, ∩ gjBwjP
is nonempty for any gj .) Pick f ∈ ∩ gjBwjP . Translating x by f−1, we assume
that f = 1. Consider the central OPS δ = txiP in L. Thus, applying Lemma
(6.12) for P = G, the required inequality IP(w1,...,ws)

is the same as µL(x, δ) ≥ 0;

but this follows from Proposition (6.9), since x is semistable by assumption.
To prove the implication (b) ⇒ (a) in Theorem (6.3), we need to re-

call the following result due to Kapovich-Leeb-Millson [KLM]. (For a self-
contained algebro-geometric proof of this result, see [BK1, §7.4].) Suppose that
x = (ḡ1, . . . , ḡs) ∈ (G/B)s is an unstable point and P (x) the Kempf’s parabolic

associated to π(x). Let δ̂ = [δ, a] be a Kempf’s OPS associated to π(x). Ex-
press δ(t) = fγ(t)f−1, where γ̇ ∈ t+. Then, P (γ) is a standard parabolic.
Let P be a maximal parabolic containing P (γ). Define wj ∈ W/WP (γ) by
fP (γ) ∈ gjBwjP (γ) for j = 1, . . . , s.

Theorem (6.18). (i) The intersection
⋂s

j=1 gjBwjP ⊂ G/P is the single-
ton {fP}.

(ii) For the simple root αiP ∈ ∆ \∆(P ),
∑s

j=1 λj(wjxiP ) > 0.

Now, we come to the proof of the implication (b) ⇒ (a) in Theorem (6.3).
Assume, if possible, that (a) (equivalently (c) as above) is false, i.e., the set
of semistable points of (G/B)s is empty. Thus, any point x = (ḡ1, . . . , ḡs) ∈
(G/B)s is unstable. Choose a generic x so that for each standard parabolic

P̃ in G and any (z1, . . . , zs) ∈ W s, the intersection g1Bz1P̃ ∩ · · · ∩ gsBzsP̃

is transverse (possibly empty) and dense in g1Bz1P̃ ∩ · · · ∩ gsBzsP̃ . Let δ̂ =
[δ, a], P, γ, f, wj be as above associated to x. It follows from Theorem (6.18)
that

⋂s
j=1 gjBwjP ⊂ G/P is the single point fP and, since x is generic, we get

[XP
w1

] · . . . · [XP
ws

] = [XP
e ] ∈ H∗(G/P,Z). (22)

We now claim that the s-tuple (w1, . . . , ws) ∈ (W/WP )
s is L-movable.

Write gj = fpjw
−1
j bj , for some pj ∈ P (γ) and bj ∈ B. Hence,

δ(t)ḡj = fγ(t)pjw
−1
j B = fγ(t)pjγ

−1(t)w−1
j B ∈ G/B.
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Define, lj = limt→0 γ(t)pjγ
−1(t). Then, lj ∈ L(γ), where L(γ) is the Levi

subgroup of P (γ) containing T . Therefore,

lim
t→0

δ(t)x = (fl1w
−1
1 B, . . . , f lsw

−1
s B).

By Theorem (6.11), δ̂ ∈ Λ(limt→0 δ(t)x). We further note that fP (γ) ∈
∩j(fljw

−1
j )BwjP (γ).

Applying Theorem (6.18) to the unstable point xo = limt→0 δ(t)x yields: fP
is the only point in the intersection

⋂s
j=1 fljw

−1
j BwjP , i.e., translating by f , we

get: ė = eP is the only point in the intersection Ω :=
⋂s

j=1 ljw
−1
j BwjP. Thus,

dimΩ = 0. By (22), the expected dimension of Ω is 0 as well. If this intersection
Ω were not transverse at ė, then by [F1, Remark 8.2], the local multiplicity at
ė would be > 1, each w−1

j BwjP being smooth. Further, G/P being a homoge-

neous space, any other component of the intersection
⋂
ljw

−1
j BwjP contributes

nonnegatively to the intersection product [XP
w1

] · . . . · [XP
ws

] (cf. [F1, §12.2]).

Thus, from (22), we get that the intersection
⋂
ljw

−1
j BwjP is transverse at

ė ∈ G/P , proving that (w1, . . . , ws) is L-movable. Thus, by Proposition (6.16)
and the identities (16), (22), we get [XP

w1
] �0 . . . �0 [X

P
ws

] = [XP
e ]. Now, part

(ii) of Theorem (6.18) contradicts the inequality IP(w1,...,ws)
. Thus, the set of

semistable points of (G/B)s is nonempty, proving condition (a) of Theorem
(6.3).

Remark (6.19). (1) The cone Γs(G)R coincides with the eigencone under the
identification of t+ with Λ+

R
induced from the Killing form (cf. [Sj, Theorem

7.6]). The eigencone for G = SL(n) has extensively been studied since the
initial work of H. Weyl in 1912. For a detailed survey on the subject, we refer
to Fulton’s article [F2].

(2) The cone Γ3(G)R is quite explicitly determined for any semisimple G of
rank 2 in [KLM, §7], any simple G of rank 3 in [KuLM] and for G = Spin(8) in
[KKM]. It has 50, 102, 102, 306 facets for G of type A3, B3, C3, D4 respectively.

(3) The ‘explicit’ determination of Γs(G) via Theorem (6.3) hinges upon
understanding the product �0 in H∗(G/P ) in the Schubert basis, for all the
maximal parabolic subgroups P . Clearly, the product �0 is easier to understand
than the usual cup product (which is the subject matter of Schubert Calculus)
since, in general, ‘many more’ terms in the product �0 in the Schubert basis
drop out. For the lack of space, we do not recall various results about the
product �0, instead we refer to the papers [BK1, §§9,10], [BK2, §§8,9], [KKM,
§4], [PS], [Ri1], [Ri2], [ReR], [R3].

7. Special Isogenies and Tensor Product

Multiplicities

This section is based on the work [KS] due to Kumar-Stembridge. It exploits
certain ‘exceptional’ isogenies between semisimple algebraic groups over alge-
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braically closed fields of char. p > 0 to derive relations between tensor product
multiplicities of Spin2`+1 and Sp2` and also between two different sets of mul-
tiplicities of F4 (and also that of G2).

Let G = G(k) and G′ = G′(k) be connected, semisimple algebraic groups
over an algebraically closed field k of char. p > 0, and let f : G → G′ be an
isogeny (i.e., a surjective algebraic group homomorphism with a finite kernel).
Fix a Borel subgroup B of G and T ⊂ B a maximal torus, and let B′ = f(B)
and T ′ = f(T ) be the corresponding groups in G′. Then, T ′ (resp. B′) is a
maximal torus (resp. a Borel subgroup) of G′.

The map f induces a homomorphism f∗ : Λ(T ′) → Λ(T ), which extends to
an isomorphism f∗

R
: Λ(T ′)R

∼
−→ Λ(T )R, where Λ(T )R := Λ(T )⊗ZR. Moreover,

f∗ takes Λ(T ′)+ to Λ(T )+.
Letting R = R(G,T ) denote the root system of G with respect to T and

similarly R′ = R(G′, T ′), we recall the following from [C, Exposé n◦ 18, Defi-
nition 1].

Definition (7.1). An isomorphism φ : Λ(T ′)R → Λ(T )R is called special
if φ(Λ(T ′)) ⊂ Λ(T ), and there exist integers d(α) ≥ 0 such that R′ ={
pd(α)φ−1(α) : α ∈ R

}
.

For any isogeny f as above, the induced map f∗
R
is a special isomorphism.

Conversely, for any special isomorphism φ : Λ(T ′)R → Λ(T )R, there exists an
isogeny f : G → G′ with f∗

R
= φ (cf. [C, Exposé n◦ 23, §3, Théorème 1]).

In the following, an important result due to Donkin, asserting the existence
of good filtrations for tensor products of the space of global sections of homoge-
neous line bundles, has been used. (It should be noted that Donkin proved this
result for almost all the cases barring a few exceptions involving small primes
[D]; the result was subsequently proved uniformly by Mathieu for all primes
[M2].) This allows replacing the following inequality (23) with a cohomological
statement that is independent of the char. of the field (including the char. 0
case), thereby enabling us to deduce the inequality directly from the existence
of an isogeny in char. p.

Theorem (7.2). If f : G → G′ is an isogeny of connected semisimple alge-
braic groups over an algebraically closed field k of char. p > 0, then for all
λ′
1, . . . , λ

′
n ∈ Λ(T ′)+,

[λ′
1, . . . , λ

′
n]

G′(C) ≤ [f∗(λ′
1), . . . , f

∗(λ′
n)]

G(C), (23)

where G(C) is the connected semisimple complex algebraic group with the same
root datum as that of G(k) and similarly for G′(C).

Proof. The map f clearly induces a surjective morphism (of varieties) f̄ : Xn →
X ′

n, where Xn := (G/B)×n. Consider the dominant line bundle L(λ′
1) � · · · �

L(λ′
n) on X ′

n. Then, the pull-back line bundle on Xn is the homogeneous line
bundle L(λ1)� · · ·�L(λn), where λi := f∗(λ′

i). Thus, we get an injective map

f̄∗ : H0
(
X ′

n,L(λ
′
1)� · · ·� L(λ′

n)
)
↪→ H0

(
Xn,L(λ1)� · · ·� L(λn)

)
.
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Since the map f̄ is f -equivariant under the diagonal action of G on Xn and G′

on X ′
n, the injection f̄∗ induces an injection (still denoted by)

f̄∗ : H0
(
X ′

n,L(λ
′
1)� · · ·� L(λ′

n)
)G′

↪→ H0
(
Xn,L(λ1)� · · ·� L(λn)

)G
. (24)

We have of course

H0
(
Xn,L(λ1)� · · ·� L(λn)

)
∼= H0

(
G/B,L(λ1)

)
⊗ · · · ⊗H0

(
G/B,L(λn)

)
.

By [BrK, Corollary 4.2.14], the above module M := H0
(
G/B,L(λ1)

)
⊗ · · · ⊗

H0
(
G/B,L(λn)

)
admits a good filtration. Hence, by [BrK, Theorem 4.2.7, iden-

tity (4.2.1.3) and Proposition 4.2.3(c)], its T -character is

chM =
∑

λ∈Λ(T )+

dim
[
H0
(
G/B,L(λ)

)
⊗M

]G
· ch(Vk(λ)),

where Vk(λ) := H0(G/B,L(λ))∗ is the Weyl module with highest weight λ. Re-
call that, by the Borel-Weil Theorem, H0

(
G(C)/B(C),LC(λ)

)
' V (λ)∗, where

(as earlier) V (λ) is the (complex) irreducible G(C)-module with highest weight
λ and LC(λ) is the homogeneous line bundle on G(C)/B(C) corresponding to
the character λ−1 of B(C). Moreover, as is well-known, chVk(λ) = chV (λ).
(This follows from the vanishing of the cohomology Hi(G/B,L(λ)) for all
i > 0.)

But, clearly, chM = ch(Vk(λ1)
∗) · · · ch(Vk(λn)

∗); in particular, it is in-
dependent of the char. of the field (including char. 0). Moreover, since
{chV (λ)}λ∈Λ(T )+ are Z-linearly independent as elements of the group ring of

Λ(T ), we deduce that dim
[
H0
(
G/B,L(λ)

)
⊗M

]G
is independent of the char.

of the base field for all λ ∈ Λ(T )+. Taking λ = 0, we obtain that dimMG is
independent of the char. Observe next that (24) implies

dim[M ′]G
′

≤ dim[M ]G, (25)

whereM ′ := H0
(
G′/B′,L(λ′

1)
)
⊗ · · · ⊗H0

(
G′/B′,L(λ′

n)
)
.

Thus, (25) implies

dim
[
V (λ′

1)⊗ · · · ⊗ V (λ′
n)
]G′(C)

= dim
[
V (λ′

1)
∗ ⊗ · · · ⊗ V (λ′

n)
∗
]G′(C)

≤ dim
[
V (λ1)

∗ ⊗ · · · ⊗ V (λn)
∗
]G(C)

= dim[V (λ1)⊗ · · · ⊗ V (λn)]
G(C).

Definition (7.3). An isogeny f : G → G′ for a simple G is called special if
d(α) = 0 for some α ∈ R(G,T ), where d(α) is as in Definition (7.1); it is central
if d(α) = 0 for all α ∈ R(G,T ). A complete list of special non-central isogenies
may be found in [BT, §3.3]. In the following, we list the resulting tensor product
inequalities implied by Theorem (7.2).
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Let G be the simply-connected group of type B` (i.e., G = Spin2`+1),
and G′ the simply-connected group of type C` (i.e., G′ = Sp2`). Following

the notation from the appendices of [Bo], we identify Λ(T ) = {
∑`

i=1 aiεi :

ai ± aj ∈ Z ∀i, j} and Λ(T ′) =
⊕`

i=1 Zεi. This provides a canonical inclusion
Λ(T ′) ↪→ Λ(T ), εi 7→ εi, which takes Λ(T ′)+ ↪→ Λ(T )+. Moreover, under this
identification, the image of Λ(T ′) (resp. Λ(T ′)+) is precisely equal to Λ(T̄ )
(resp. Λ(T̄ )+), where T̄ is the maximal torus in SO2`+1.

Theorem (7.2) specializes as follows.

Corollary (7.4). (a) If λ1, . . . , λn are dominant weights for Sp2` (` ≥ 2), then

[λ1, . . . , λn]
Sp2`(C) ≤ [λ1, . . . , λn]

SO2`+1(C).

(b) If λ1, . . . , λn are dominant weights for Spin2`+1 (` ≥ 2), then

[λ1, . . . , λn]
Spin2`+1(C) ≤ [2λ1, . . . , 2λn]

Sp2`(C).

(c) If λ1, . . . , λn are dominant weights for F4, then

[λ1, . . . , λn]
F4(C) ≤ [φ(λ1), . . . , φ(λn)]

F4(C),

where φ(aω1+bω2+cω3+dω4) := dω1+cω2+2bω3+2aω4 (ωi being fundamental
weights).

(d) If λ1, . . . , λn are dominant weights for G2, then

[λ1, . . . , λn]
G2(C) ≤ [φ(λ1), . . . , φ(λn)]

G2(C),

where φ(aω1 + bω2) := 3bω1 + aω2.

Proof. (a) The identity map is a special isomorphism Λ(T ′)R → Λ(T )R giving
rise to an isogeny f : SO2`+1(k) → Sp2`(k), where char. k = 2.

(b) In this case, the map µ 7→ 2µ defines a special isomorphism Λ(T ′)R →
Λ(T )R inducing an isogeny f : Sp2`(k) → Spin2`+1(k), where char. k = 2.

(c) In this case, the simple roots generate Λ(T ). Numbering them
α1, α2, α3, α4 as in [Bo], we have that α1 and α2 are long and α3 and α4 are
short. Then, there is a special isomorphism φ : Λ(T )R → Λ(T )R such that

φ(α1) = 2α4, φ(α2) = 2α3, φ(α3) = α2, φ(α4) = α1.

Let G = G′ be of type F4 and char. k = 2 and apply Theorem (7.2).

(d) Letting α1 and α2 denote the simple roots, with α1 short and α2

long, there is a special isomorphism φ : Λ(T )R → Λ(T )R such that φ(α1) =
α2, φ(α2) = 3α1. Let G = G′ be of type G2 and char. k = 3 and apply
Theorem (7.2).
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As an immediate corollary of the (a) and the (b) parts above, we have the
following:

Corollary (7.5). For any s ≥ 1 and any ` ≥ 2, the saturated tensor semigroup
Γs(Sp2`(C)) = Γs(SO2`+1(C)) under the identification of their Λ(T )+ as above.

Remark (7.6). (a) Any nonspecial isogenies or central isogenies do not yield
any new inequalities.

(b) There is another combinatorial proof of Theorem (7.2) based on Littel-
mann’s Path Model for tensor product multiplicity. More specifically, Kumar-
Stembridge [KS] use a variant of the Path Model (see [St2]) in which the objects
are chains in the Bruhat ordering of various Weyl group orbits, and the inequal-
ity is obtained by comparing chains related by integer renormalizations.

8. Saturation Problem

We continue to follow the notation and assumptions from Secton 2; in par-
ticular, G is a semisimple connected complex algebraic group. In Section 6,
we defined the tensor product semigroup Γ̄s(G) as well as the saturated ten-
sor product semigroup Γs(G) (for any integer s ≥ 1) and determined Γs(G)
by describing its facets. The saturation problem aims at connecting these two
semigroups.

We begin with the following definition. We take s = 3 as this is the most
relevant case to the tensor product decomposition.

Definition (8.1). An integer d ≥ 1 is called a saturation factor for G, if for
any (λ, µ, ν) ∈ Γ3(G) such that λ + µ + ν ∈ Q, (dλ, dµ, dν) ∈ Γ̄3(G), where
Q is the root lattice of G. Of course, if d is a saturation factor then so is its
any multiple. If d = 1 is a saturation factor for G, we say that the saturation
property holds for G.

The saturation theorem of Knutson-Tao [KT], proved by using their ‘hon-
eycomb model’ asserts the following. Other proofs of their result are given by
Derksen-Weyman [DK], Belkale [B2] and Kapovich-Millson [KM2] (cf. Theo-
rem (8.3) below).

Theorem (8.2). The saturation property holds for G = SL(n).

The following general result (though not optimal) on saturation factor is
obtained by Kapovich-Millson [KM2] by using the geometry of geodesics in Eu-
clidean buildings and Littelmann’s path model. A weaker form of the following
theorem was conjectured by Kumar in a private communication to J. Millson
(also see [KT, Conjecture]).

Theorem (8.3). For any connected simple G, d = k2g is a saturated factor,
where kg is the least common multiple of the coefficients of the highest root θ
of the Lie algebra g of G written in terms of the simple roots {α1, . . . , α`}.
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Observe that the value of kg is 1 for g of type A`(` ≥ 1); it is 2 for g of
type B`(` ≥ 2), C`(` ≥ 3), D`(` ≥ 4); and it is 6, 12, 60, 12, 6 for g of type
E6, E7, E8, F4, G2 respectively.

Kapovich-Millson determined Γ̄3(G) explicitly for G = Sp(4) and G2 (cf.
[KM1, Theorems 5.3, 6.1]). In particular, from their description, the following
theorem follows easily.

Theorem (8.4). The saturation property does not hold for either G = Sp(4)
or G2. Moreover, 2 is a saturation factor (and no odd integer d is a saturation
factor) for Sp(4), whereas both of 2, 3 are saturation factors for G2 (and hence
any integer d > 1 is a saturation factor for G2).

It was known earlier that the saturation property fails for G of type B` (cf.
[E]).

Kapovich-Millson [KM1] made the following very interesting conjecture:

Conjecture (8.5). If G is simply-laced, then the saturation property holds for
G.

Apart from G = SL(n), the only other simply-connected, simple, simply-
laced group G for which the above conjecture is known so far is G = Spin(8),
proved by Kapovich-Kumar-Millson [KKM, Theorem 5.3] by explicit calculation
using Theorem (6.3).

Theorem (8.6). The above conjecture is true for G = Spin(8).

Finally, we have the following improvement of Theorem (8.3) for the groups
SO(2`+ 1) and Sp(2`) due to Belkale-Kumar [BK2, Theorems 25 and 26].

Theorem (8.7). For the groups SO(2`+1) and Sp(2`), 2 is a saturation factor.

The proof of the above theorem relies on the following theorem [BK2, The-
orem 23].

Theorem (8.8). Let (λ1, . . . , λs) ∈ Γ̄s(SL(2`)). Then, (λ1
C , . . . , λ

s
C) ∈

Γ̄s(Sp(2`)), where λj
C is the restriction of λj to the maximal torus of Sp(2`).

A similar result is true for Sp(2`) replaced by SO(2`+ 1).

Belkale-Kumar [BK2, Conjecture 29] conjectured the following generaliza-
tion of Theorem (8.8). Let G be a simply-connected, semisimple complex al-
gebraic group and let σ be a diagram automorphism of G with fixed subgroup
Gσ = K.

Conjecture (8.9). Let (λ1, . . . , λs) ∈ Γ̄s(G). Then, (λ1
K , . . . , λs

K) ∈ Γ̄s(K),

where λj
K is the restriction of λj to the maximal torus of K.
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(Observe that, for any dominant character λ for G, λK is dominant for K
with respect to the Borel subgroup BK := Bσ of K.)

We also mention the following ‘rigidity’ result (conjectured by Fulton) due
to Knutson-Tao-Woodward [KTW] proved by combinatorial methods. There
are now geometric proofs of the theorem by Belkale [B3] and Ressayre [R2].

Theorem (8.10). Let G = SL(n) and let λ, µ, ν ∈ Λ+. If [V (λ)⊗V (µ)⊗V (ν)]G

is one-dimensional then so is [V (Nλ)⊗ V (Nµ)⊗ V (Nν)]G, for any N ≥ 1.

The direct generalization of this theorem for other groups is, in general, false.
But, a certain cohomological reinterpretation of the theorem remains true for
any G (cf. a forthcoming paper by Belkale-Kumar-Ressayre).

9. Generalization of Littlewood-Richardson

Formula

We recall the classical Littlewood-Richardson formula for GL(n) (cf., e.g., [Ma,
Chap. 1, §9]). Let T be the standard maximal torus of GL(n) consisting of
invertible diagonal matrices. Then, the irreducible polynomial representations
of GL(n) (i.e., those irreducible representations whose matrix coefficients extend
as a regular function on the whole of M(n)) are parametrized by the partitions
λ : (λ1 ≥ · · · ≥ λn ≥ 0) (λi ∈ Z), where λ is viewed as an element of Λ+ via
the character: diag(t1, . . . , tn) 7→ tλ1

1 . . . tλn
n . Consider the decomposition (1)

in Section 1 for the tensor product of irreducible polynomial representations of
GL(n).

Theorem (9.1). mν
λ,µ 6= 0 only if both of λ, µ ⊂ ν. In this case, mν

λ,µ equals
the number of tableaux T of shape ν − λ and weight µ such that the word
w(T ) = (a1, . . . , aN ) associated to T (reading the symbols in T from right to
left in successive rows starting with the top row) is a lattice permutation, i.e.,
for all 1 ≤ i ≤ m−1, and 1 ≤ r ≤ N,#{j ≤ r : aj = i} ≥ #{j ≤ r : aj = i+1},
where the symbols in T lie in {1, . . . ,m}.

Littelmann generalized the above thorem for all semisimple Lie algebras g

by using his LS path models as below. Let G be the simply-connected complex
algebraic group with Lie algebra g.

Definition (9.2). Let Π be the set of all piecewise-linear, continuous paths
γ : [0, 1] → ΛR := Λ⊗Z R with γ(0) = 0 and γ(1) ∈ Λ, modulo the equivalence
relation γ ≡ γ′ if γ′ is obtained from γ by a piecewise-linear, nondecreasing,
continuous reparametrization. For any simple root αi, there are two operators
eαi

, fαi
: Π t {0} → Π t {0} defined in [L2], [L3]. Let Π+ be the set of those

paths γ ∈ Π such that Im γ ⊂ Λ+
R
. For any γ ∈ Π+, let Pγ be the smallest

subset of Π containing γ such that Pγ t {0} is stable under the operators
{eαi

, fαi
; 1 ≤ i ≤ `}.
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The following theorem due to Littelmann [L2], [L3] generalizes Theorem
(9.1).

Theorem (9.3). For any λ, µ ∈ Λ+, take any path γλ, γµ ∈ Π+ such that
γλ(1) = λ and γµ(1) = µ. Then,

V (λ)⊗ V (µ) =
⊕

γ

V (λ+ γ(1)),

where γ runs over all the paths in Pγµ
such that the cancatenation γλ ∗γ ∈ Π+.

By [L2, §8] (also see [L1]), the above theorem indeed generalizes Theorem
(9.1).

We now come to the tensor product multiplicity formula due to Berenstein-
Zelevinsky [BZ, Theorem 2.3].

Definition (9.4). Let V be a finite-dimensional representation of G and let
λ, µ ∈ P (V ) (the set of weights of V ), and let i = (i1, . . . , ir) be a sequence
with 1 ≤ ij ≤ `. An i-trail from λ to µ in V is a sequence of weights T = (λ0 =
λ, λ1, . . . , λr = µ) in P (V ) such that

(1) for all 1 ≤ j ≤ r, we have λj−1−λj = cj(T )αij , for some cj = cj(T ) ∈ Z+,
and

(2) ec1i1 . . . e
cr
ir

: Vµ → Vλ is a nonzero map, where eij is a nonzero simple root
vector as in Section 2 and Vµ is the weight space of V corresponding to
the weight µ.

Fix a reduced word for the longest element wo = si1 . . . siN and let io =
(i1, . . . , iN ).

Theorem (9.5). For λ, µ, ν ∈ Λ+, the tensor product multiplicity mν
λ,µ equals

the number of N -tuples (d1, . . . , dN ) of nonnegative integers satisfying the fol-
lowing conditions:

(a)
∑N

j=1 djsi1 . . . sij−1
αij = λ+ µ− ν,

(b)
∑

j cj(T )dj ≥ (siλ + µ − ν)(ω∨
i ), for any 1 ≤ i ≤ ` and any io-trail T

from siω
∨
i to woω

∨
i in V (ω∨

i ), and

(c)
∑

j cj(T )dj ≥ (λ + siµ − ν)(ω∨
i ), for any 1 ≤ i ≤ ` and any io-trail T

from ω∨
i to wosiω

∨
i in V (ω∨

i ),

where V (ω∨
i ) is the i-th fundamental representation for the Langlands dual Lie

algebra g∨.
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simples, Ann. of Math. 97 (1973), 499–571.

[Bot] R. Bott, Homogeneous vector bundles, Ann. of Math. 66 (1957), 203–248.
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Abstract

The trace formula is a major tool in the theory of automorphic forms. It was
conceived by Selberg and extensively developed by Arthur. Among other things
it is applicable to the study of spectral asymptotics as well as to (special cases of)
Langlands functoriality conjectures. An important variant invented by Jacquet –
the relative trace formula – is used to study period integrals and invariant
functionals.
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Introduction

The trace formula was introduced by Selberg in his seminal paper [51], and
was mostly studied by him in the context of finite volume quotients of the
hyperbolic plane. Among its early applications are the Weyl law for quotients
by congruence subgroups and the prime geodesic theorem. Later on, it was
conceived by Langlands that the trace formula can be extremely useful to his
functoriality conjectures (spurred on by works of Shimizu, Saito and Shintani
[53, 44, 55]). Up until today, this theme continues to be at the heart of most
attacks (and results) on functoriality. Arthur’s groundbreaking development of
the trace formula from its initial non-invariant form to its final stable form is
much driven by the functoriality conjectures. In particular, a great emphasis
is put on being able to compare trace formulas on different groups, and to
manipulate the terms to be invariant (and then stably invariant). On the other
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hand, in order to extend earlier results of the trace formula to the asymptotic
spectral analysis of locally symmetric spaces, it suffices to work with the trace
formula in its non-invariant form, but it is necessary to study analytically the
various distributions of the trace formula.

In the first part we will describe some recent progress on the structure of the
trace formula and its applications to spectral asymptotics. For the applications
of the trace formula to functoriality and the pioneering work of Ngô on the
Fundamental Lemma we refer to the second part of the beautiful survey [8] and
to Ngô’s article in these proceedings.

In the second part we turn to the relative trace formula, which is a variant
of the trace formula invented by Jacquet. The main motivation comes from the
study of period integrals. We will focus on the case of unitary groups inside the
general linear group of a quadratic extension.

It is a pleasure to thank Hervé Jacquet, Jonathan Rogawski, Peter Sarnak,
Akshay Venkatesh and my coauthors Tobias Finis, Werner Müller and Omer
Offen for fruitful discussions over the years.

1. Arthur’s Trace Formula

We will give a brief description here, freely quoting Arthur’s results. We refer to
[8] and the references cited therein for more details. However, our presentation
will be somewhat different.

1.1. Notation. Let G be a connected reductive group over Q. Fix a maxi-
mal split torus T0 of G. Any parabolic subgroup of G containing T0 and defined
over Q admits a unique Levi part (defined over Q) containing T0. Denote by L
the set of Levi subgroups obtained this way. In particular the centralizer M0 of
T0 in G is the minimal element of L. For any M ∈ L let P(M) (resp. F(M))
be the sets of parabolic subgroups of G defined over Q with Levi part M
(resp. containing M).

For any connected algebraic group L over Q let X∗(L) be the lattice of
characters of L defined over Q (factoring through the Levi part of L) and set
a∗L = X∗(L)⊗R. Let aL be the dual space and define H = HL : L(A) → aL by
〈χ,H(l)〉 = log|χ(l)| for any χ ∈ X∗(L) (extended to a character L(A) → A∗).
Also, let TL be the split part of the center of the Levi part of L and let AL =
TL(R)

0 so that AL ' aL via HL. ForM,L ∈ L withM ⊆ L the restriction map
embeds a∗L in a∗M and we set (aLM )∗ = a∗M/a

∗
L. Fix a suitable maximal compact

K of G(A) and for any P ∈ F(M0) extend the function HP : P (A) → aP to a
right K-invariant function on G(A).

1.2. Regularization. For a general f ∈ C∞
c (G(A)) the kernel

Kf (x, y) =
∑

γ∈G(Q)

∫

AG

f(x−1zγy) dz
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of the integral operator

R(f)ϕ(x) =

∫

G(A)

f(g)ϕ(xg) dg

on L2(AGG(Q)\G(A)) is not integrable over the diagonal. In order to regularize
the trace formula fix P0 ∈ P(M0). Let C+ be the cone in a0 := aP0

spanned by
aG and the coroots of T0 on the unipotent radical of P0. For T in the positive
Weyl chamber a0,+ of a0 let

S≤T = {g ∈ G(A) : T −HP0
(γg) ∈ C+ for all γ ∈ G(Q)}.1

By reduction theory AGG(Q)\S≤T is compact and

∫

AGG(Q)\S≤T

Kf (x, x) dx

approximates a polynomial PT (f) in T of degree dim aG0 with an exponentially
decreasing error term as T → ∞ in any closed subcone of a0,+. Introduce the
equivalence relation ∼ on G(Q) by γ1 ∼ γ2 if they are conjugate in G(Q) and
their semisimple parts are conjugate in G(Q). The polynomial approximation
above is compatible with the decomposition of Kf according to these equiv-
alence classes in the sense that for any ∼-class [γ] there exists a polynomial
PT[γ](f) such that

∑

[γ]

∣∣∣∣∣∣

∫

AGG(Q)\S≤T

∑

δ∈[γ]

f(x−1δx) dx− PT[γ](f)(T )

∣∣∣∣∣∣

is exponentially small in T for T → ∞ as above. In particular, PT (f) =∑
PT[γ](f). The regularized trace J(f) of R(f) is by definition the value of

this polynomial at a suitable point T0 (depending on the choice of K). Setting
J[γ](f) = PT0

[γ] (f) one gets

J(f) =
∑

[γ]

J[γ](f).

1.3. Geometric side. Suppose that [γ] is semisimple. Let Cγ be the
centralizer of γ in G and let C0

γ be its identity component. Let M be the
centralizer of the split part of Z(C0

γ), i.e. the smallest Levi subgroup of G
containing C0

γ . Then γ is elliptic in M and by conjugating γ we may assume

1The exact shape of S≤T is probably not too important. Other families of exhausting
domains for AGG(Q)\G(A), under mild conditions, would do too.
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that M is standard. Then

J[γ](f) =

∫

AMCγ(Q)\G(A)

f(g−1γg) vol(PM (g)) dg

=
vol(AMC

0
γ(Q)\C0

γ(A))

[Cγ(Q) : C0
γ(Q)]

∫

C0
γ(A)\G(A)

f(g−1γg) vol(PM (g)) dg

where PM (g) is the convex hull in aGM of {HP (g) : P ∈ P(M)}. We note that
when the HP (g)’s are distinct, the faces of PM (g) correspond to F(M) – the
face corresponding to Q is the convex hull of {HP (g) : P ⊆ Q}.

In particular, the elliptic contribution is

∑

[γ]∈G(Q) elliptic

∫

AGCγ(Q)\G(A)

f(g−1γg) dg

=
∑

[γ]∈G(Q) elliptic

vol(AGC
0
γ(Q)\C0

γ(A))

[Cγ(Q) : C0
γ(Q)]

∫

C0
γ(A)\G(A)

f(g−1γg) dg.

The contribution from the non-semisimple conjugacy classes is more compli-
cated. Arthur reduces it to the unipotent case and analyzes the ensuing local
distributions [7, 5, 6]. However, his method does not seem to give an effective
way to compute the global coefficients, and some control over them is essential
for certain applications of the trace formula. In the case of GL2 the non-trivial
coefficient is Euler’s γ constant. More generally, in the rank one case, one can
write the coefficients above in terms of the coefficients of the Laurent expan-
sion of zeta functions of prehomogeneous spaces, studied by Sato, Shintani, and
others [26, 48].

Let us describe work in progress with Tobias Finis aiming to explicate this
relation in higher rank. Let o be a geometric unipotent orbit in G defined over Q
and let P =MU be the standard Jacobson-Morozov parabolic associated to o.
Its unipotent radical U is equipped with a descending filtration U≥i associated
to the action of the Jacobson-Morozov torus and U≥2,reg = U≥2∩o is a principal
open set of U≥2. Using Iwasawa decomposition one gets (assuming f is AdK-
invariant, which we may)

jTo (f) :=

∫

AGG(Q)\S≤T

∑

γ∈o(Q)

f(x−1γx) dx

=

∫

AGM(Q)\M(A)

∑

u∈U2,reg(Q)

∫

CU (u)(A)\U(A)

[∫

CU (u)(Q)\CU (u)(A)

1S≤T
(v′vm)dv′

]

f(m−1v−1uvm)δU (m)−1 dv dm

where U2,reg = U≥2,reg/U>2 is the regular part of the prehomogeneous vector
space U2 = U≥2/U>2 with respect to M
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The key point is that we can approximate the integral in brackets indepen-
dently of v by the characteristic function F̃M (m,T ) of the set

{m ∈M(A) : T −HP0
(γm) ∈ C+ for all γ ∈M(Q)}.

Therefore, we can approximate jTo (f) by∫

AGM(Q)\M(A)

F̃M (m,T )
∑

u∈U2,reg(Q)

fU>2(m−1um)δU≤2(m)−1 dm,

where δU≤2 is the modulus function of MU≤2 and we put

fU>2(u) =

∫

U>2(A)

f(uv) dv.

In the simplest cases we can replace the above by the term jTo,main(f) given
by

∫

AGM(Q)\M(A)

τ̂P (T −HM (m))
∑

u∈U2,reg(Q)

fU>2(m−1um)δU≤2(m)−1 dm,

where τ̂P is the characteristic function of the cone spanned by aM0 and the
positive coroots. The subspace aC = HM (Cu(A)) ⊆ aM is independent of u and
the orthogonal complement a⊥C ⊆ a∗M is spanned by the set X of fundamental
characters for the M -action on U2.

In the cases at hand the zeta function

Z(φ, λ) =

∫

aM/aC

e−〈λ,X〉

∫

M(Q)\M(A)1

∑

u∈U2,reg(Q)

φ(e−Xm−1umeX) dm dX

converges for λ ∈ a⊥C,C such that the coordinates µχ of λ − ρM,2 with respect
to X are on the right half-plane [45], and admits meromorphic continuation
for Reµχ > −ε for some ε > 0 with only simple poles along the hyperplanes
µχ = 0.

Let

θP (λ) = vol


aGP /

∑

α∨∈∆∨
P

Zα∨


 ∏

α∨∈∆∨
P

〈λ, α∨〉

where ∆∨
P is the set of simple coroots of P . Applying Mellin inversion, we obtain

for λ0 ∈ a⊥C ∩ (a∗P )+

jTo,main(f) =

∫

λ∈a⊥
C,C

: Reλ=λ0

Z(fU>2 , λ+ ρM,≤2)

θP (λ)
e〈λ,T 〉 dλ.

Assume for simplicity that o is even. Let θ̂X(λ) be the product of the coordinates

of λ ∈ a⊥C,C with respect to X. Writing z(λ) = θ̂X(λ)Z(fU>2 , λ+ ρM,≤2) and

z(λ) =

∫

aM/aC

ψ(x)e〈λ,x〉 dx, λ ∈ a⊥C ,
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we have
∫

λ∈a⊥
C,C

,Reλ=λ0

z(λ)e〈λ,T 〉

θ̂X(λ)θP (λ)
dλ =

∫

aM/aC

ψ(x)v(x+ T ) dx

for the volume function

v(x) = vol({H ∈ aM | τ̂P (x−H) = 1 and 〈χ,H〉 ≥ 0, χ ∈ X}).

For instance, in the case where o is the unipotent orbit of type (m, . . . ,m) in
GLn (in which X = ∆P and Z(λ) is essentially a product of Riemann zeta
functions) we get

PTo (f) = lim
λ→0

1

|W (M)|

∑

w∈W (M)

z(wλ)e〈wλ,T 〉

θP (wλ)

where W (M) = NG(M)/M . In other cases there are additional terms beside
jTo,main coming from proper parabolic subgroups of P containing the iden-

tity component of the centralizer of some u ∈ U≥2,reg(Q). Moreover, the
zeta function has to be regularized in the cases of incomplete type where
Cu(Q)\Cu(A) ∩ P (A)

1 has infinite volume for some u ∈ U≥2,reg(Q).
Before we turn to the spectral side we consider the following situation.

Suppose that P ⊆ Rd is a d-dimensional polytope, i.e. the convex hull of finitely
many points in Rd such that P − P spans Rd. For each face F of P (not
necessarily maximal) fix a point v(F ) ∈ F . For any “flag” f : F0 ⊆ . . . ⊆
Fd = P where Fi is an i-dimensional face of P let ∆(f) be the convex hull of
{v(F0), . . . , v(Fd)}. Let F be the set of flags. Then ∆(f), f ∈ F is a decomposition
of P into simplices with pairwise disjoint interiors. (For instance, if v(P) is the
barycenter of P then we get the barycentric subdivision.) In particular,

volP =
∑

f∈F

vol∆(f). (1)

1.4. The spectral side. The point of departure for the spectral decom-
position of Arthur’s trace formula is Langlands’ description of the decompo-
sition of L2(G(Q)\G(A)) in terms of the discrete spectrum of Levi subgroups
[34]. For any P ∈ P(M) let

A2
P = Ind

G(A)
P (A) L

2
disc(AMM(Q)\M(A)).

On this space there is a family of induced representations IP (λ), λ ∈ a∗P . The
theory of Eisenstein series gives rise to intertwining maps from IP (λ) to the
space of automorphic forms on G(F )\G(A) which furnish the spectral decompo-
sition of L2(G(F )\G(A)). Alongside it provides a family of unitary intertwining
operators

FQ|P (λ) : A
2
P → A2

Q P,Q ∈ P(M), λ ∈ ia∗M
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satisfying IQ(λ) ◦ FQ|P (λ) = FQ|P (λ) ◦ IP (λ) and the functional equations

FR|Q(λ) ◦ FQ|P (λ) = FR|P (λ) λ ∈ ia∗M for any P,Q,R ∈ P(M).

Moreover, as a function of λ, FQ|P (λ) is invariant under translation by the span

of ia∗P,+ ∩ ia∗Q,+ (where a∗P,+ is the closure of the positive Weyl chamber of a∗P ).
Note that in the non-compact case already the fact that Rdisc(f) is of trace

class is by no means obvious, even using Langlands’ description of the discrete
spectrum in terms of residues of Eisenstein series. It was proved by Müller [42].

Fix P ∈ P(M) and L ∈ L containingM . Let k = dim aLM . For any Q ∈ F(L)
choose S(Q) ∈ P(M) which is contained both in Q and in an element of P(L)
(i.e., L is standard with respect to S(Q)). For any chain of parabolic subgroups
f : Q0 ⊆ . . . ⊆ Qk = G such that Q0 ∈ P(L) and Qi−1 is maximal in Qi,
i = 1, . . . , k set

∂fF(λ) = vol((aGL )
∗/Zλ0 + · · ·+ Zλk−1)

−1FP |S(Q0)(λ)

∂λ0
FS(Q0)|S(Q1)(λ) ∂λ1

FS(Q1)|S(Q2)(λ) · · · ∂λk−1
FS(Qk−1)|S(G)(λ)FS(G)|P (λ)

where λi ∈ a∗Qi,+
and ∂λi

denotes the (first-order) directional derivative. This

operator is defined on a dense subspace of A2
P and does not depend on the

choice of the λi’s. A follow up of Müller’s work on the trace class conjecture
[41] yields the convergence of

∫

i(aG
L
)∗
‖∂fF(λ)IP (f, λ)‖1,A2

P
dλ (2)

where ‖·‖1 denotes the trace norm. In fact, fix any compact open subgroup K
of G(Afin) and consider the space F(G(A);K) of right-K-invariant functions
on G(A) such that

‖f ? X‖L1(G(A)) <∞

for all X ∈ U(g). Then (2) is a continuous seminorm on F(G(A);K). An analo-
gous statement for the geometric side holds at least for the elliptic contribution
[21].

The sum

DP,LF(λ) =
1

k!

∑
∂fF(λ)

over all f as above is independent of the choice of S(Q)’s. For L = M this
expression is analogous to the right-hand side of (1) for the polytope PM (g)
where for the face F corresponding to Q we take v(F ) to be the vertex HS(Q)(g)
of F .

For M ∈ L let W (M) = NM (Q)/M(Q) where NM is the normalizer of M
in G. We can identify W (M) with a subgroup of the Weyl group W (M0). For
any s ∈W (M) letMs be the smallest subgroup in L containingM and s. Thus
aMs

is the fixed points of s on aM . We denote by cs the conjugation operator
cs : A

2
P → A2

sPs−1 .
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Theorem 1.1 ([22]). The spectral side of Arthur’s trace formula is given by

∑

[P ]

1

|W (M)|

∑

s∈W (M)

|det(s− 1|aMs

M )|−1

∫

i(aG
Ms

)∗
tr(DP,Ms

F(λ)FP |sPs−1(λ)csIP (f, λ))A2
P
dλ (3)

where P ∈ F(M0) runs over a set of representatives of associated classes of
parabolic subgroups and M ∈ L is the Levi part of P .

The expression above is an explicit version of Arthur’s spectral expansion
[4]. It is absolutely convergent (with respect to the trace norm) even for f ∈
F(G(A);K).

1.5. The Weyl law. One of Selberg’s early applications of the trace for-
mula for hyperbolic surfaces is showing that Maass forms exist in abundance.
Namely, let ∆ be the Laplacian on the hyperbolic plane H and let Γ be a
congruence subgroup of SL2(R). Denote by NT the counting function for the
number of linearly independent solutions of (∆ + λ)f = 0 in L2(Γ\H) with
λ < 1

4 + T 2. Then

NT =
Area(Γ\H)

4π
T 2 +O(T log T ).

The main point is that for a suitable family of test functions, the main contribu-
tion in the geometric side arises from the identity element, and on the spectral
side from the discrete spectrum. The last point is subtle because it is based on
the explicit computation of the determinant of the scattering matrix in terms
of Dirichlet L-functions and the fact that the latter are entire functions of order
one. It is generally not expected to hold in the non-arithmetic case [40] – see
also [47].

In the case of compact surfaces, or even for a general compact Riemannian
manifold M of dimension d the estimate

NT = cd vol(M)T d +O(T d−1),

where cd is a constant depending only on d, is classical. (Weyl considered a
similar problem in the Euclidean plane.) In fact a general result for elliptic
pseudo-differential operators is by now standard [27].

One may consider higher rank locally symmetric spacesM = Γ\G/K where
Γ is a lattice in a semisimple group G and K is the maximal compact subgroup
of G. The correct upper bound for the cuspidal spectrum was obtained in [18].
In the other direction, when Γ is a congruence subgroup, the correct lower
bound for the cuspidal spectrum was obtained in [39] by a clever application
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of a simple (and new) form of the trace formula.2 It is interesting to point out
however that as of now we do not have in general the correct upper bound for
the discrete spectrum (even in the case of congruence subgroups).

In higher rank there is more than one invariant differential operator and
it makes sense to ask about the joint distribution of eigenvalues. This can be
rephrased representation-theoretically as follows. Let A be the identity com-
ponent of a maximal split torus of G. The spherical representations of G are
parameterized by the W -orbits of quasi-characters of A, where W is the Weyl
group, and the tempered ones correspond to unitary characters. Let m(λ) be
the multiplicity of the spherical representation with parameter λ in L2(Γ\G).
Let µpl be the Plancherel measure on the vector space Â of unitary characters
of A. It is absolutely continuous with respect to the Lebesgue measure, and the
density is given explicitly by the Gindikin-Karpelevic formula [25].

Theorem 1.2 (Duistermaat-Kolk-Varadarajan [19]). Suppose that Γ is uni-
form (i.e., Γ\G is compact) and torsion free. Let Ω ⊆ Â be a bounded W -
invariant domain with piecewise C2-boundary. Then

∑

λ∈W\tΩ

m(λ) =
vol(M)

|W |
µpl(tΩ) +O(td−1) as t→ ∞.

where d = dimG/K. On the other hand,
∑

λ non-unitary:‖λ‖<R

m(λ) = O(Rd−2).

In order to extend this kind of result to the non-compact case (possibly with
an additional power of log t in the error term) one confronts the contribution
of the continuous spectrum. The main issue is the control of the logarithmic
derivatives of the co-rank one intertwining operators. For the general linear
group the latter are fairly well understood. On the geometric side if Γ is suffi-
ciently small the only contribution is from the unipotent conjugacy classes and
one has to show that all but the trivial class are negligible. In fact, Arthur’s
description of the local distributions suffices and it is not necessary to know
anything about the global coefficients. As a result one obtains the analogue of
Theorem 1.2 (with a slightly weaker error term) for G = SLn and Γ contained
in a principal congruence subgroup of level 3 or higher [35]. A variant of this for
other K-types is obtainable along the same lines using a suitable Paley-Weiner
Theorem [12].

It is of import to extend this to estimate the traces of Hecke operators
in certain families. This will have applications to the distribution of low lying
zeros of L-functions. So far this has been carried out in rank one where the trace
formula is known very explicitly [29]. To extend this to higher rank requires a
better understanding of the terms in the trace formula (especially the global
constants).

2Technically only a special case is considered, but this is not essential for the method.
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1.6. Limit multiplicities. In this section I will describe a joint work in
progress with Tobias Finis and Werner Müller. Let Γ1,Γ2, . . . be a decreasing
sequence of lattices of G such that Γn is normal in Γ1 and ∩Γn = 1. Let µn be
the atomic measure on Ĝ defined by the discrete spectrum of L2(Γn\G), that
is µn =

∑
π∈Ĝm(π)δπ where m(π) = dimHomG(π, L

2(Γn\G)). Let µpl be the

Plancherel measure on Ĝ that is

f(1) =

∫

Ĝ

trπ(f) dµpl(π).

By Harish-Chandra the support of µpl is the tempered spectrum Ĝtemp of G.
One expects that in many circumstances the discrete spectrum of L2(Γn\G)
“tends to” the spectrum of L2(G), i.e. that µn

vol(Γn\G) → µpl. More precisely, for

any A ⊆ Ĝtemp with µpl(∂A) = 0 (the boundary in Ĝtemp) we have
µn(A)

vol(Γn\G) →

µpl(A) while µn(A)
vol(Γn\G) → 0 for any bounded A ⊆ Ĝ \ Ĝtemp. We say that the

tower Γn satisfies the property of limit multiplicity in this case.
The limit multiplicity property is known in the case of compact quotients

(also when G is a finite product of groups over local fields) by the work
of DeGeorge-Wallach, Delorme and Sauvageot [13, 14, 16, 49].3 In the non-
compact case, a special case, namely the limit multiplicity for a discrete-series
representation, was proved for congruence subgroups by Rohls-Speh and Savin
[43, 50]. However, the complete statement about limit multiplicities was only
considered in rank one cases up to now [15].

Let us explain how to extend this to congruence subgroups of GLn. We first
go back to the compact case. In that case the trace formula takes the simple
form

trRΓn\G(f) = vol(Γn\G)f(1)

for f ∈ C∞
c (G) and n� 1 (depending on the support of f). In particular,

µn(f̂)

vol(Γn)
→ µpl(f̂)

where f̂(π) = trπ(f). Since {f̂
∣∣
Ĝtemp

: f ∈ C∞
c (G)} comprise a rich space of

functions on Ĝtemp this ultimately implies the convergence of measures on the
tempered spectrum.

In the non-compact case there are additional terms, which come from the
unipotent conjugacy classes on the geometric side and the continuous spectrum
on the spectral side. The main problem is to show that the contribution from
the continuous spectrum is negligible. To that end we use the expression (3), to-
gether with the known analytic properties of Rankin-Selberg L-functions (which

3Technically, a somewhat weaker result is stated in [49] but the stronger result follows
from the method.
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form the global constants of the intertwining operators for GLn) to reduce to
the following local problem. Given a maximal parabolic subgroup P = MU of
G over a p-adic field and a unitary representation σ of M it is known that the
matrix coefficients (FP |P (σ, s)ϕ1, ϕ2) of the intertwining operators are a ratio-

nal functions is q−s with denominator of bounded degree [52]. The problem is
to estimate the degree of the numerator of the matrix coefficients when ϕ1, ϕ2

are K-fixed, in terms of the level K. One can reduce to the case where σ is
supercuspidal. A geometric argument further reduces this question to bound-
ing the support of matrix coefficients of σ in terms of the level of the vectors.
This question, in turn, is naturally answered in terms of representing σ as an
induced representation from a representation on a compact subgroup modulo
the center [11].

2. Periods of Automorphic Forms

A general question in automorphic forms is to study period integrals4

∫

H(F )\H(A)

ϕ(h) dh (4)

where ϕ is an automorphic forms on G(F )\G(A) and H is a closed subgroup
of G defined over F . In general such a period has to be regularized, but it
converges in the cuspidal case.

Such periods appear in many contexts and among other things, provide a
link to cohomology of locally symmetric spaces.

We say that a cuspidal representation π of G(A) is distinguished by H if
there exists a form ϕ in the space of π such that (4) does not vanish. This
notion is of interest if either H is “large” or if π is “small”. A particularly
compelling context is the case where H is the stabilizer of a generic point
of a spherical variety of G. (In general, several forms of H are needed to be
considered simultaneously. Also, a frequent variant of (4) is integrating against
a character of H(A) which is trivial on H(F ).)

Many period integrals show up in the theory of Rankin-Selberg integrals.5

The simplest example is the Hecke integral
∫
F∗\IF

ϕ(( t 0
0 1 )) dt for a cuspidal

representation π on GL2, which by Fourier expansion unfolds to

LS
(
1

2
, π

)∫

F∗
S

Wψ(ϕ)(( t 0
0 1 )) dt (5)

4We will assume that Z(G) is anisotropic for this discussion
5We use this terminology to mean integrals which give rise to L-functions, whether or not

they involve Eisenstein series.
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where for a non-trivial character ψ of F\A we set

Wψ(ϕ)(g) =

∫

F\AF

ϕ(( 1 x0 1 ) g)ψ(x) dx.

Formally, we can think of the right-hand side of (5) as the non-convergent
integral

∫
IF

W(ϕ)(( t 0
0 1 )) dt. The general unfolding, when applicable, formally

expresses (4) as a non-convergent integral
∫

H(A)∩N(A)\H(A)

Pϕ(h) dh

where Pϕ(h) =
∫
N(F )\N(A)

ϕ(nh)χ−1(n) dn for a suitable subgroup N and a

character χ of N(A) trivial on N(F ). (Typically, Pϕ is the Whittaker func-
tional.) This results in an equality of the type

∫

H(F )\H(A)

ϕ(h) dh = LS(s0, π)

∫

(H∩N)(FS)\H(FS)

Pϕ(h) dh (6)

(with an appropriate regularization of the right-hand side if necessary) for a
suitable special value of an L-function, depending on the setup.

It turns out however that such a relation sometimes holds even outside the
context of Rankin-Selberg integrals. For instance, let D be an inner form of
PGL2, T a torus in D and let N = D × T containing T embedded diagonally.
A well-known result of Waldspurger provides an identity of the form (6) for
G = N ×N , π = σ⊗χ⊗ σ̃⊗χ−1, H = T ×T and N diagonally embedded in G
[57]. More generally, a recent conjecture (and several important special cases) of
Ichino-Ikeda extend this formalism (with precise constants) to the Gross-Prasad
setup where O is either an orthogonal or a unitary group, O′ is the stabilizer
in O of an anisotropic vector, N = O×O′ containing O′ diagonally embedded,
G = N × N containing N diagonally embedded, π = π1 ⊗ π2 ⊗ π̃1 ⊗ π̃2, and
H = O′ ×O′ [28].

The formalism above, inasmuch as it can be made rigorous, provides a beau-
tiful local-to-global principle for (4) as well as a common roof for many existing
computations (and conjectures) in the theory of automorphic forms. Alterna-
tively, we can think of this principle as expressing (4) in terms of a different
period with respect to N , which is sometimes more amenable for computation
(or at least provides a different model for the representation).

The period (4) defines an H(A)-invariant functional on π, and hence an
H(Fv)-invariant functional on any local component of π. This leads to the study,
in the local setup, of the space HomH(π,C) of H(F )-invariant functionals on
π where now π is an irreducible representation of G(F ). In particular, when
is it non-zero? and in this case, is it necessarily one-dimensional? It is only
when the answer is positive that we can expect a relation such as (6) to hold
without modification. These questions, which are interesting in their own right,
had been studied by Gelfand, Kazhdan and Bernstein [23, 10]. Recently, there
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has been a tremendous progress on these questions by Aizenbud-Gourevitch
and others, and important longstanding problems were resolved [3, 2]. In turn,
these results were used in the spectacular solution due to Waldspurger of the
local Gross-Prasad conjectures [56].

The harmonic analysis on G/H has received much attention over the years,
especially in the case of symmetric spaces. We refer the reader to [17] and the
references cited therein. We also mention exciting recent work and conjectures
by Sakellaridis-Venkatesh dealing with local and global aspects of periods in
the context of spherical varieties [46].

Next we consider a case where there is no local uniqueness for H-invariant
functionals. Remarkably, the global periods will nevertheless factorize into local
invariant functionals! [31].

2.1. Unitary periods. From now on we consider a quadratic separable
extension E/F with Gal(E/F ) = {1, τ} and the group G = GLn(E) acting on
the space X of non-degenerate hermitian forms of rank n. For any x ∈ X the
stabilizer Gx is a unitary group. In the finite field case G acts transitively on
X and for an irreducible representation π of G, HomGx(π,C) 6= 0 if and only if
πτ ' π, or equivalently π is obtained as a base change in the sense of [54] from
G′ = GLn(F ), and in this case HomGx(π,C) is one-dimensional [24].

Consider the case where F is a local field of characteristic 0. There are
finitely many orbits of G on X. (Exactly two in the non-archimedean case.) Let
ω be the quadratic character of F ∗ corresponding to E under class field theory.
We denote by bc the base change map from the irreducible representations of G′

to those ofG [9]. The map is defined for any cyclic extension and is characterized
(for tempered representations) by certain character identities. The image of bc
is the Galois invariant representations.

We will describe an analogue of these character identities where the char-
acters are replaced by spherical characters which are distributions occurring
in the relative trace formula and satisfying certain invariance properties. On
the G′-side they are left and right equivariant with respect a non-degenerate
character ψ′ on group of upper unitriangular matrices U0(F ). On the G-side
they are right invariant under a unitary group and left (U0(E), ψ)-equivariant
where ψ(u) = ψ′(uuτ ).

The base change is a local counterpart (and consequence) of a global
correspondence and the latter is proved by comparing a trace formula for
G o Gal(E/F ) with the trace formula for G′. In analogy, the new character
identities are also obtained by global means using a comparison of the relative
trace formula. The comparison in this context was introduced by Jacquet. To
describe it let E/F be a quadratic extension of number fields and consider on
the one hand ∫

U0(E)\U0(AE)

KΦ(u)ψ(u) du
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where Φ ∈ S(X(A)), U0 is the group of upper unitriangular matrices, ψ is a
non-degenerate character of U0 and

KΦ(g) =
∑

x∈X(F )

Φ( tgτxg) g ∈ GLn(AE).

It is compared with a Kuznetsov trace formula

∫∫

(U0(F )\U0(A))2
Kf (u1, u2)ψ

′(u−1
1 u2) du1 du2

for appropriate f ∈ S(G′(A)) which matches Φ in the sense that certain orbital
integrals are equal. The geometric comparison, the existence of matching func-
tions, and the relevant fundamental Lemma are worked out in [33, 32, 1]. The
spectral expansion into absolutely convergent terms is carried out in [37]. The
contribution of the continuous spectrum involves certain regularized periods
which are studied in [38].

We will now describe the results of [20] extending previous results of Jacquet.
We return to the local setup and consider for any representation π of G the
space

U(π) = HomG(S(X), π∗) ' EquivG(X,π
∗) ' ⊕x∈X/GHomGx(π,C)

where EquivG denotes the space of G-equivariant maps.

Theorem 2.1. Let π′ be a unitary generic irreducible representation of GLn(F )
with Whittaker functional W ′ and let π = bc(π′). Then there exists απ

′

∈ U(π)
such that ∑

απ
′

(Φ)(v)W(v) =
∑

W ′(π′(f)v′)W ′(v′)

for matching Φ ↔ f where the sums are over orthonormal bases of π and
π′ respectively. Moreover, let απ

′

x , x ∈ X be the corresponding Gx-invariant
functional of π. Then in the p-adic case απ

′

x ≡ 0 if and only if π′ ' π′ ⊗ ω and
Gx is not quasi-split.

In fact, it is possible to define απ
′

∈ U(π) for any irreducible generic rep-
resentation π′ (not necessarily unitary). Note that the split analogue of απ

′

is
the pairing π ⊗ πι → C where ι(g) = tg−1.

In the archimedean case we can write π′ as induced from the quasi-characters
χ1, . . . , χk of R∗ and the essentially square-integrable representations σ1, . . . , σl
of GL2(R) with n = k+2l. For any quasi-character χ of R∗ let mπ′(χ) = #{i :
χi = χ} and define the integer dπ′ = l +

∑
s∈C min(mπ′(|·|s),mπ′(|·|s sgn)) ≤

n/2.

Conjecture 2.2. In the archimedean case απ
′

x 6≡ 0 if and only if dπ′ ≤ rk(Gx)
where rkU(p, q) = min(p, q).
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Consider the tempered representations πk,l, on GLn(R), n = k + l induced
from the character (t1, . . . , tn) 7→ sgn(t1 . . . tl) of the Borel subgroup. They
comprise the fiber under bc of the representation of GLn(C) induced from the
trivial character of the Borel. For any p, q with n = p + q let Ωp,q be the
open subset N0(R)w0Dp,qN0(R) of GLn(R) where Dp,q = {diag(t1, . . . , tn) ∈
T0(R) :

∑n
i=1 sgn ti = p − q} and w0 is the permutation matrix with ones on

the secondary diagonal. Conjecture 2.2 would follow from the following concrete
conjecture.

Conjecture 2.3. The restriction of the distribution f 7→
∑

W(πk,l(f)v
′)W(v′)

to Ωp,q is non-zero if and only if min(k, l) ≤ min(p, q).

The “only if” part of conjectures 2.2 and 2.3 is known. The “if” part is
known in the case of quasi-split unitary group [30].

The global result for unitary periods is the following.

Theorem 2.4. Let x be a hermitian form. A cuspidal representation π of G(A)
is distinguished by Gx if and only if π is the base change of a cuspidal represen-

tation π′ of GLn(A) and α
π′
v
x 6≡ 0 for all inert places v of F . In particular, any

Galois invariant π is distinguished by the quasi-split unitary group. Moreover,
for a suitable normalization of Haar measures we have

∫

Gx(F )\Gx(A)

ϕ(h) dh = 2LS(1, π′ ⊗ π̃′ ⊗ ω)
∏

v∈S

α
π′
v
x (ϕv)

where ϕ = ⊗ϕv is a factorizable vector in π = ⊗πv and S is a sufficiently large
set of places of F .

For an application towards Sarnak’s conjecture on L∞-norm of automorphic
form see [36].

We go back to the local setup and analyze the space U(π) more carefully.
We denote by π1 × π2 the parabolic induction from π1 ⊗ π2. Suppose that F
is p-adic. We first reduce to the case where π is pure, i.e. a subquotient of
σ1 × · · · × σk where the σi’s are unramified twists of a single Galois invariant
supercuspidal representation. More precisely, we have

Theorem 2.5. Let π be an irreducible representation of G. Then

1. U(π) is finite-dimensional.

2. If U(π) 6= 0 then π is Galois invariant.

3. Let σ be an irreducible subquotient of σ1 × · · · × σk where σi are essen-
tially supercuspidal and not Galois invariant. Then U(σ × στ ) is one-
dimensional and U(σ × στ × π) ' U(π).

4. Suppose that π1, π2 are Galois invariant with disjoint supercuspidal sup-
port. Then U(π1 × π2) ' U(π1)⊗ U(π2).
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An irreducible representation π is called imprimitive if it is the Langlands
quotient of δ1×· · ·×δk where δi are essentially square-integrable and δi×δi+1 is
reducible for all i. This is an important class of representations containing the
square-integrable ones and the general Speh representations. Note that every
Galois invariant imprimitive representation is pure.

Theorem 2.6. For any imprimitive π and x ∈ X we have dimHomGx(π,C) ≤
1.

We expect that dimHomGx(π,C) = 1 if π is imprimitive and Galois invari-
ant. This is the case if the kernel of the quotient map δ1 × · · · × δk → π (the
longest intertwining operator) is spanned by the kernels of the rank one inter-
twining operators – a property which is likely to hold in general for imprimitive
representations.

In a special case, we can determine multiplicities completely.

Theorem 2.7. Suppose that π = δ1 × · · · × δk where δ1, . . . , δk are essen-
tially square-integrable, Galois invariant and distinct. Then dimU(π) = 2k =
2dimHomGx(π,C) for all x ∈ X. Moreover, {απ

′

: bc(π′) = π} is a basis for
U(π).

It is also true in general that dimU(π1 × π2) ≥ dimU(π1) dimU(π2). We do
not know whether an equality always holds if π1, π2 are Galois invariant.

In the archimedean case we have

Theorem 2.8 (Aizenbud-Lapid). Let π be the Langlands quotient of χ1×· · ·×

χn, where χ1, . . . χn ∈ Ĉ∗. Suppose that π is distinguished by U(p, q). Then
πτ ' π (i.e. Gal(C/R) stabilizes the multiset {χ1, . . . , χn}) and the number of
Gal(C/R)-orbits of size two does not exceed min(p, q).

We expect that the converse is also true. This is known in the generic case,
i.e., when χ1 × · · · × χn is irreducible.
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[27] Lars Hörmander. The spectral function of an elliptic operator. Acta Math.,
121:193–218, 1968.

[28] Atsushi Ichino and Tamotsu Ikeda. On the periods of automorphic forms on
special orthogonal groups and the Gross-Prasad conjecture. Geom. Funct. Anal.,
19(5):1378–1425, 2010.

[29] Henryk Iwaniec, Wenzhi Luo, and Peter Sarnak. Low lying zeros of families of
L-functions. Inst. Hautes Études Sci. Publ. Math., (91):55–131 (2001), 2000.
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Abstract

A finite W-algebra is an associative algebra constructed from a semisimple Lie
algebra and its nilpotent element. In this survey we review recent developments
in the representation theory of W-algebras. We emphasize various interactions
between W-algebras and universal enveloping algebras.
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1. Introduction

Our base field K is supposed to be algebraically closed and of characteristic
zero.

A finite W-algebra is an associative algebra constructed from a pair (g, e),
where g is a finite dimensional semisimple Lie algebra, and e is a nilpotent
element of g. A W-algebra should be thought as a generalization of the universal
enveloping algebra U(g). The latter can be considered as the W-algebra for the
pair (g, 0).

The study of W-algebras traces back to the celebrated paper [32] of Kostant.
This paper essentially treats the case when the element e is principal (i.e., the
adjoint orbit of e is dense in the nilpotent cone of g). Kostant’s motivation
came basically from the study of Whittaker vectors and of Whittaker models.
[32] was followed by the thesis [42] of Lynch who was a student of Kostant.
In [42] Kostant’s results were (partially) generalized to arbitrary even nilpo-
tent elements. During the 80’s Whittaker models (in the sense different from
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Kostant’s) were also considered in [46],[47], where they were applied to the
study of certain primitive ideals in U(g).

In the 90’s finite W-algebras attracted some attention from mathematical
physicists, see, for example, [6],[56],[59]. One of the main motivations for their
interest was a relationship between finite and affine W-algebras. The latter are
certain vertex algebras modeling the so called W-symmetry from Conformal
field theory.

In [50] Premet gave a general definition of a W-algebra. Premet’s interest
to the subject was motivated by the study of non-restricted representations of
semisimple Lie algebras in positive characteristic. The paper [50] initiated a lot
of work on different, mostly representation theoretic, aspects of W-algebras.

Apart from being of independent interest, finite W-algebras have several
connections to other objects studied in Representation theory. Let us summarize
these connections.

A) It seems that the most straightforward connection is to the universal en-
veloping algebras of semisimple Lie algebras. This connection can be informally
explained as follows. According to the Orbit method, to an infinite dimensional
representation of g one should be able to assign a nilpotent orbit in g∗(∼= g). For
instance, to a “nice” (e.g., irreducible) Harish-Chandra g-bimodule one assigns
a dense orbit in its associated variety. Then there is a hope (that sometimes
converts into proofs) that one can reduce the study of an infinite dimensional
g-module to the study of a finite dimensional module over the W-algebra cor-
responding to the nilpotent orbit in interest. A relationship between the W-
algebras and U(g) is studied, for example, in [10],[26],[37]–[40],[51]–[53],[57].

B) There is a connection between the representation theory of W-algebras
(in characteristic zero) and that of semisimple Lie algebras in positive charac-
teristic. In a sentence, any reduced enveloping algebra turns out to be Morita
equivalent to an appropriate reduced W-algebra. One can relate the repre-
sentation theories of W-algebras in positive and in zero characteristics. This
relationship was successfully used in Premet’s papers, see [49],[50],[52],[53].

C) For classical Lie algebras there is a connection between W-algebras and
(twisted) Yangians. This connection was first discovered in [56] and then studied
further in [7],[8],[12],[13],[55]. Also W-algebras are related to the (cyclotomic
quotients of) degenerate affine Hecke algebras, [14].

D) As we mentioned above, finite W-algebras are related to their affine
counterparts. This relation can be made formal. To any vertex algebra one
can assign an associative algebra called the Zhu algebra. The importance of the
Zhu algebra is that its representation theory controls much of the representation
theory of the initial vertex algebra. A finite W-algebra is closely related to the
Zhu algebra of the corresponding affine W-algebra. For details the reader is
referred to [17].

In the present paper we are mostly interested in A). We also briefly ex-
plain C), while B) remains almost untouched and we do not discuss D) at all.
Therefore we suppress the adjective “finite” while speaking about W-algebras.
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Another review on W-algebras [60] by W. Wang have already appeared. Some
topics not discussed (or discussed very briefly) in our survey can be found
there.

This paper is organized as follows. In Section 2 we discuss topics related to
a definition of a W-algebra via Hamiltonian reduction, which is essentially due
to Premet. In Section 3 we explain the definition of a W-algebra based on the
Deformation quantization, [37]. The next three sections describe connections
between W-algebras and U(g). In Section 4 we discuss category equivalences
between certain categories of modules for W-algebras and for U(g). Section 5
describes a relationship between the sets of two-sided ideals in the two algebras.
This description leads to a (partial) classification of irreducible finite dimen-
sional representations of W-algebras in terms of primitive ideals of U(g). Section
6 deals with one-dimensional modules over W-algebras. Finally in Section 7 we
explain the connection C) above mostly for g of type A.

In the beginning of each section its content is described in more detail.

Acknowledgements. First of all, I would like to thank J. Brundan, V.
Ginzburg, S. Goodwin, A. Kleshchev, and A. Premet for numerous inspiring dis-
cussions on W-algebras. I also thank J. Brundan, V. Ginzburg, and A. Premet
for their remarks on a preliminary version of this text.

Notation and conventions. Throughout the paper G is a connected
reductive group, g is its Lie algebra. We choose a nilpotent element e ∈ g and
pick h, f ∈ g forming an sl2-triple with e, i.e., [h, e] = 2e, [h, f ] = −2f, [e, f ] =
h. Let O denote the G-orbit of e. Also we fix a G-invariant non-degenerate
symmetric form (·, ·) on g. Using this form, we identify g with g∗.

We write U for the universal enveloping algebra U(g) of g. By Z we denote
the center of U . This is a polynomial algebra.

Let us also list some standard notation used below.

Aop the opposite algebra of an algebra A.
AnnA(M) the annihilator of an A-module M .
EndA(M) the algebra of endomorphisms of an A-module M .
End(M) := EndK(M).
grV the associated graded vector space of a filtered vector space V .
H◦ the unit component of an algebraic group H.
K[X] the algebra of regular functions on a variety X.
K[X]∧Y the algebra of functions on the completion of a variety X along

a subvariety Y .
T ∗X the cotangent bundle of a smooth variety X.
V(M) the associated variety of a finitely generated U -module M.
z(h) the center of a Lie algebra h.
zh(f) the centralizer of f in a Lie algebra h.



1284 Ivan Losev

2. W-algebras Via Hamiltonian Reduction

In this section we discuss developments leading to and related to Premet’s def-
inition of a W-algebra given in [50]. The first such development is, of course,
Kostant’s work, [32], where the case of a principal nilpotent element was treated.
We describe (very few of) Kostant’s results in Subsection 2.1. Then in Subsec-
tion 2.2 we mention a generalization of Kostant’s constructions to the case
of an even nilpotent element due to Lynch, [42]. In Subsection 2.3 we provide
Premet’s definition in the form of a quantum Hamiltonian reduction. In Subsec-
tion 2.4 we show that the “quasiclassical limit” of a W-algebra is the algebra
of functions on a Slodowy slice that is a transverse slice to a nilpotent orbit
in g introduced in [58]. In Subsection 2.5 we mention several ramifications of
Premet’s definition and in Subsection 2.6 discuss some properties of W-algebras
that can be proved using this definition.

2.1. Kostant’s results: the case of a principal nilpotent ele-
ment. In this subsection we will explain (some of) Kostant’s results, Section
2 of [32].

Suppose the nilpotent element e is principal. Set

g(i) := {ξ ∈ g|[h, ξ] = iξ}, p :=
⊕

i>0

g(i),m :=
⊕

i<0

g(i), χ := (e, ·). (2.1)

Let us describe p,m, e, χ in more conventional terms. Let h ⊂ g be a Cartan
subalgebra of g, ∆ ⊂ h∗ the corresponding root system, and Π a system of
simple roots in ∆. Further, for α ∈ ∆ let eα denote a corresponding weight
vector in g. Finally, let ρ∨ denote half the sum of all positive coroots (=the sum
of all fundamental co-weights). Replacing (e, h, f) with a G-conjugate triple, we
may assume that h = 2ρ∨ and e =

∑
α∈Π eα. So p becomes the positive Borel

subalgebra b ⊂ g, m becomes the negative maximal nilpotent subalgebra n−,
while χ is a non-degenerate character of m.

Define the shift mχ := {ξ − 〈χ, ξ〉, ξ ∈ m} of m. Then, thanks to the PBW
theorem, we get

U = U(p)⊕ Umχ. (2.2)

Using this decomposition, one can define an action of m on U(p). Namely,
identify U(p) with the quotient U/Umχ using (2.2). The adjoint action of m
on U descends to U/Umχ. Using the identification U(p) ∼= U/Umχ, we get an
m-action on U(p).

By definition, a W-algebra U(g, e) is the invariant subalgebra U(p)m. In
other words, U(g, e) is the quantum Hamiltonian reduction

(U/Umχ)
adm := {a+ Umχ : [ξ, a] ∈ Umχ, ∀ξ ∈ m}.

The multiplication on the last space is defined by (a + Umχ)(b + Umχ) =
ab+ Umχ.
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It turns out that U(g, e) is naturally isomorphic to the center Z of U .
Namely, the inclusion Z ↪→ U gives rise to a natural map Z → U/Umχ. Its
image clearly consists of m-invariants. So we get a homomorphism Z → U(g, e).
By Theorem 2.4.1 in [32], this homomorphism is an isomorphism. In particular,
we get an embedding of Z into U(p). This embedding is of importance in the
quantization of Toda systems, see [33].

2.2. Generalization: the case of even e. Recall that e is called
even if all eigenvalues of adh on g are even. Define g(i), p,m, χ by (2.1). It
is clear that p is a parabolic subalgebra of g and m is the nilpotent radical
of the opposite parabolic. In [42] Lynch generalized Kostant’s definition and
introduced an algebra U(g, e) := U(p)m = (U/Umχ)

adm.
There is an embedding U(g, e) ↪→ U(g(0)) sometimes called the generalized

Miura transform. It is obtained by restricting the natural projection U(p) �

U(g(0)) to U(g, e) ⊂ U(p). The restriction is injective by [42], Corollary 2.3.2.

2.3. Definition of U(g, e): the general case. Now let e ∈ g be
an arbitrary (nonzero) nilpotent element. Let the decomposition g =

⊕
i∈Z

g(i)
and the element χ ∈ g∗ be given by (2.1). Following Premet, [50], we still can
define a W-algebra U(g, e) as the quantum Hamiltonian reduction (U/Umχ)

adm

provided we can find a suitable analog of the subalgebra m ⊂ g considered in
the previous subsection.

A subalgebra m we need is constructed as follows. Consider a skew-
symmetric form ωχ on g given by ωχ(ξ, η) = 〈χ, [ξ, η]〉. It follows easily
from the representation theory of sl2 that the restriction of ωχ to the sub-
space g(−1) is non-degenerate. Pick a lagrangian subspace l ⊂ g(−1) and set
m := l ⊕

⊕
i6−2 g(i).

It is clear that m is a subalgebra in g consisting of nilpotent elements. Also
since ωχ vanishes on l, we see that 〈χ, [m,m]〉 = 0. So χ is indeed a character
of m.

We set U(g, e) := (U/Umχ)
adm. The reader should notice that, a priory,

this definition is ambiguous: m and hence U(g, e) depend on the choice of l.
However, we will see in Subsection 2.5 that two W -algebras constructed using
different choices of l are canonically isomorphic.

We finish the subsection with a few historical remarks. Direct analogs of m
and of its shift mχ in the setting of finite Chevalley groups first appeared in
[30]. Then Moeglin used mχ to define “Whittaker models” for primitive ideals of
U(g), [46],[47]. We will describe her results in more detail in Section 6. Later the
subalgebra m played an important role in Premet’s proof of the Kac-Weisfeller
conjecture on the dimension of a non-restricted representation of a semisimple
Lie algebra in positive characteristic, see [49].

2.4. Classical counterpart: the Slodowy slice. The algebra
U(g, e) has an interesting filtration, called the Kazhdan filtration.
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To define it we first introduce a new filtration on U . Recall that the algebra
U has the standard, PBW filtration: the subspace Fst

i U of elements of degree
6 i, by definition, is spanned by all monomials ξ1 . . . ξj , j 6 i, ξ1, . . . , ξj ∈ g.
For j ∈ Z set U(j) := {u ∈ U|[h, u] = ju}. Define the Kazhdan filtration Ki U
on U by Ki U :=

∑
2j+k6i F

st
j U ∩ U(k). We remark that the associated graded

algebra of U with respect to the Kazhdan filtration is still naturally isomorphic
to the symmetric algebra S(g).

Being a subquotient of U , the algebra U(g, e) has a Kazhdan filtration
Ki U(g, e) inherited from U . We remark that K0 U ⊂ K+Umχ so the Kazhdan
filtration on U(g, e) is positive in the sense that K0 U(g, e) = K.

It turns out that the associated graded algebra grU(g, e) of U(g, e) is
naturally isomorphic to the algebra of functions on the Slodowy slice S :=
e+ker ad(f), [58] (in the case when e is principal S appeared in [31]). It follows
from the representation theory of sl2 that S is transverse to O. In the sequel
it will be convenient for us to consider S as an affine subspace in g∗ via the
identification g ∼= g∗. In particular, χ ∈ S.

We need an action of the one-dimensional torus K× on g∗ that stabilizes S
and contracts it to χ. Namely, the sl2-triple (e, h, f) defines a homomorphism
SL2(K) → G. The group K

× is embedded into SL2(K) via t 7→ diag(t, t−1).
Composing these two homomorphisms we get a homomorphism (in fact, an
embedding) γ : K

× → G. For ξ ∈ g(i) we have γ(t).ξ = tiξ. Consider a
K

×-action (called the Kazhdan action) on g∗ given by t · α = t−2γ(t)α. This
action fixes χ. Also it is easy to see that it preserves S. Finally, the repre-
sentation theory of sl2 implies that ker ad(f) ⊂

⊕
i60 g(i). It follows that the

action of K× contracts S to χ: limt→∞ t.s = χ for any s ∈ S. The contraction
property has several very nice corollaries. For example, S intersects an adjoint
orbit O

′ if and only if O ⊂ K×O′ and in this case the intersection S ∩ O
′ is

transversal.
The Kazhdan action gives rise to a (positive) grading on the algebra K[S] of

regular functions on S. The following result was essentially obtained by Premet,
[50], Theorem 4.6 (Kostant and Lynch also proved this in the special cases they
considered).

Theorem 2.1. There is an isomorphism grU(g, e) ∼= K[S] of graded algebras.

As was shown by Gan and Ginzburg, [25], this result is a manifestation of
the “quantization commutes with reduction” principle, see Subsection 2.5 for
details.

2.5. Ramifications. First, let us mention the work of Gan and Ginzburg,
[25], where they gave a ramification of Premet’s definition showing, in particu-
lar, that U(g, e) does not depend on the choice of l ⊂ g(−1).

Namely, let l ⊂ g(−1) be an arbitrary isotropic subspace of g(−1) (e.g.,
{0}). Let l∠ denote the skew-orthogonal complement to l in g(−1). Set ml :=
l ⊕

⊕
i6−2 g(i), n

l := l∠ ⊕
⊕

i6−2 g(i). Then ml ⊂ nl, nl consists of nilpotent
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elements, and 〈χ, [ml, nl]〉 = 0. Let N l be the connected subgroup of G with
Lie algebra nl. Then ml and the character χ : ml → K are stable under the
adjoint action of N l. So N l acts naturally on the quotient U/Uml

χ, where m
l
χ :=

{ξ − 〈χ, ξ〉, ξ ∈ ml}. Let U(g, e)l := (U/Uml
χ)

N l

be the space of invariants. It
is easy to check that it has a natural algebra structure. It also has a Kazhdan
filtration Ki U(g, e)l, compare with the previous subsection.

Now let us remark that for l1 ⊂ l2 we have a natural U -module homomor-
phism U/Uml1

χ → U/Uml2
χ that gives rise to a filtered algebra homomorphism

U(g, e)l1 → U(g, e)l2 . It turns out that the latter is an isomorphism.
Also Gan and Ginzburg gave a very transparent explanation of an isomor-

phism grU(g, e) ∼= K[S]. Namely, consider the restriction map π : g∗ → ml∗.
The affine subspace π−1(χ|ml) ⊂ g∗ is N l-stable. Also it is easy to see that
S ⊂ π−1(χ|ml). So we can consider a morphism N l × S → π−1(χ|ml), (n, s) 7→
ns. According to [25], this is an isomorphism (of algebraic varieties). Therefore

K[S] gets identified with the classical Hamiltonian reduction (S(g)/S(g)ml
χ)

N l

.
Another ramification of the original definition of U(g, e) comes from the

notion of a good grading on g, [20]. A grading g =
⊕

i∈Z
g(i) is said to be good

for e if e ∈ g(2) and ker ad(e) ⊂
⊕

i>0 g(i). For instance, the grading given by
(2.1) is good. For a comprehensive study of good gradings see [20].

Given a good grading on g, one constructs m ⊂ g and defines U(g, e) using
m analogously to the above. The algebra U(g, e) does not depend on the choice
of a good grading. This was first proved in [9].

The definition involving an arbitrary good grading is often useful. For ex-
ample, one can sometimes find an even good grading when e is not even itself
and embed U(g, e) into U(p) for an appropriate parabolic subalgebra p ⊂ g,
compare with Subsection 2.2. This is always the case when g ∼= sln, see [12],
Introduction.

Also it is worth mentioning that there is a related definition of U(g, e) via
the BRST quantization procedure which was used by physicists in the 90-s, see
[6]. The proof that the BRST definition is equivalent to the one given above
was obtained in [16]. See also [60], Section 3.

2.6. Additional properties of U(g, e). We want to make a few
remarks about other properties of U(g, e).

Recall that Z stands for the center of U . Restricting the natural map
Uadm → U(g, e) to Z ⊂ Uadm, we get an algebra homomorphism Z → U(g, e).
By [50], 6.2, this homomorphism is an embedding. It is clear that the image of
Z lies in the center of U(g, e). Further, according to the footnote to Question
5.1 in [51], the image of Z actually coincides with the center of U(g, e) (Premet
attributes the proof to Ginzburg). This generalizes Kostant’s result mentioned
in Subsection 2.1.

Also we remark that there is a natural action of the group Q := ZG(e, h, f)
on U(g, e). Namely, take l = {0} in the Gan and Ginzburg definition. Then
Q stabilizes both ml

χ and N l and so acts on U(g, e)l. Let q stand for the Lie
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algebra of Q. In [51] Premet constructed a Lie algebra embedding q ↪→ U(g, e)
such that the adjoint action of q on U(g, e) coincides with the differential of the
Q-action.

3. W-algebras Via Deformation Quantization

In this section we review the definition of W-algebras from [37]. It is based on
Deformation quantization: a W-algebra is realized as an algebra of G-invariants
in a quantization of a certain affine symplectic G-variety (called an equivari-
ant Slodowy slice). In Subsection 3.1 we briefly explain generalities on star-
products and on Fedosov’s method to construct them. In Subsection 3.2 we
present constructions of equivariant Slodowy slices and of W-algebras. Finally,
in Subsection 3.3 we present a very important basic result on W-algebras, the
decomposition theorem.

3.1. Fedosov quantization. In this subsection X is a smooth affine
variety equipped with a symplectic form ω. Let {·, ·} denote the Poisson bracket

on K[X] induced by ω. Let a reductive group G̃ act on X preserving ω. By ξX
we denote the image of ξ ∈ g̃ under the homomorphism g̃ → Der(K[X]) induced
by the action.

We suppose that the G̃-action is Hamiltonian, that is, admits a moment
map µ : X → g̃∗, i.e., a G̃-equivariant morphism having the following prop-
erty: for Hξ := µ∗(ξ), ξ ∈ g̃, we have {Hξ, ·} = ξX . Finally, we suppose

that X is equipped with a K
×-action that commutes with G̃ and satisfies

t.ω = t2ω, t.Hξ = t2Hξ for all t ∈ K
×, ξ ∈ g̃. We will present examples of

this situation below.
By a star-product on K[X] (or on X) we mean a K-bilinear map ∗ : K[X]×

K[X] → K[X][[~]], (f, g) 7→ f ∗ g :=
∑∞

i=0 Di(f, g)~
2i satisfying the following

axioms:

(a) The associativity axiom: a natural extension of ∗ to a K[[~]]-bilinear
map K[X][[~]] × K[X][[~]] → K[X][[~]] is an associative product, and
1 ∈ K[X] ⊂ K[X][[~]] is a unit for ∗.

(b) The compatibility axiom: D0(f, g) = fg,D1(f, g) − D1(g, f) = {f, g}.
Equivalently, f ∗ g ≡ fg mod ~

2 and [f, g] ≡ ~
2{f, g} mod ~

4.

(c) The locality axiom: Di is a bidifferential operator of order at most i (i.e.,
for any fixed f the map K[X] → K[X] : g 7→ Di(f, g), is a differential
operator of order at most i, and the same for any fixed g).

When we consider K[X][[~]] as an algebra with respect to the star-product, we
call it a quantum algebra.

We remark that the usual definition of a star-product looks like f ∗ g =∑∞
i=0 Di(f, g)~

i and in our definition we have ~
2 instead of ~. The reason for
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this ramification is that our version is better compatible with the Rees algebra
construction. This construction allows to pass from filteredK-algebras to graded
K[~]-algebras.

We will also need ∗ to be compatible with the G̃- and K
×- actions on X.

(d) G̃-invariance: Di : K[X]⊗K[X] → K[X] is G̃-equivariant.

(e) Homogeneity: Di has degree −2i with respect to K
×: i.e., for f, g ∈ K[X]

of degrees j, k the element Di(f, g) has degree k + j − 2i.

Under the conditions (d) and (e), the product G̃×K
× acts on K[X][[~]] by

automorphisms with g.~ = ~, t.~ = t~ for all g ∈ G, t ∈ K
×.

It turns out that a star-product on X satisfying additionally (d) and (e)
always exists. It is provided, for example, by Fedosov’s construction, [21],[22].
Fedosov constructed a star-product on a C∞-manifold starting from a symplec-
tic connection ∇ and a closed K[[~2]]-valued form Ω. By definition, a symplectic
connection is a torsion-free connection on the tangent bundle such that the sym-
plectic form is flat. Fedosov’s construction can be carried over to the algebraic
setting as long as a variety in consideration admits a symplectic connection.
Since X is affine, this is the case, and, moreover, one can, in addition, assume
that a symplectic connection is G̃ × K

×-invariant, see [37], Proposition 2.2.2.
For our purposes, it will be enough to consider the original construction from
[21], where Ω is not used (i.e., equals 0).

The following proposition follows from results of Fedosov, see [38], Theorem
2.1.2 for details.

Proposition 3.1. Let X be as above, and ∇ be a G̃×K
×-invariant symplectic

connection on X. Further, let ∗ be the star-product produced from ∇ by the
Fedosov construction. Then ∗ is G̃-invariant and homogeneous. Moreover, the
map ξ 7→ Hξ is a quantum comoment map for the G̃-action on K[X][[~]], i.e.,
1
~2 [Hξ, f ] = ξXf for all f ∈ K[X][[~]], ξ ∈ g̃.

Also, according to Fedosov, ∗ does not depend on the choice of ∇ up to a
suitably understood isomorphism, see, for example, [37], Proposition 2.2.5, for
details.

Let us consider two standard examples.
The first example is easy. Let V be a vector space equipped with a non-

degenerate form ω ∈
∧2

V ∗. Let G̃ act on V via a homomorphism G̃ → Sp(V ).

Pick a homomorphism β : K× → Sp(V )G̃ and define a K
×-action on V ∗ by

t.α = t−1β(t)α. So we get a symplectic variety X = V ∗ equipped with a

G̃×K
×-action satisfying the assumptions above with the moment map given by

〈µ(v), ξ〉 = 1
2ω(ξv, v). The algebra K[V ∗] has a standard star-product called the

Moyal-Weyl product. Namely, for f, g ∈ K[V ∗] set f ∗ g := m(exp(ω2 ~
2)f ⊗ g).

Here m : K[V ∗] ⊗ K[V ∗] → K[V ∗] stands for the multiplication map, while

ω ∈
∧2

V ∗ is assumed to act on K[V ∗]⊗K[V ∗] via contraction. The quantum
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algebra K[V ∗][~] is naturally identified with the “homogeneous” version A~ of
the Weyl algebra of V , A~ := T (V )[~]/(u⊗ v − v ⊗ u− ~

2ω(u, v), u, v ∈ V ).
Our second example is more involved although is also standard.
Let G be a connected reductive algebraic group. The cotangent bundle X :=

T ∗G of G is equipped with a canonical symplectic form ω. Set G̃ := G×G and
consider the G̃-action on X induced from the two-sided action of G̃ on G.
In more detail, we can identify T ∗G with G × g∗ using the trivialization by
left-invariant forms. Then the “left” action of G on X is given by g.(g1, α) =
(gg1, α), while the “right” action is g.(g1, α) = (g1g

−1, g.α). Finally, let K
×

act on X by t.(g1, α) = (g1, t
−2α). Clearly, ω is G̃-invariant and t.ω = t2ω. A

moment map µ : X → g̃∗ = g∗ ⊕ g∗ is given by (g, α) 7→ (g.α, α).

Pick a G̃×K
×-invariant connection ∇ on X and produce the star-product

∗ from ∇. From the grading considerations, we see that K[X][~] is a subalgebra
in the quantum algebra K[X][[~]].

There is a standard alternative description of K[X][~], see, for example,
Subsection 7.1 of [40]. Consider the algebra D(G) of linear differential operators
on G. Let Fi D(G) be the space of differential operators of order 6 i/2. Consider
the Rees algebra D~(G) :=

⊕∞
i=0 Fi D(G)~i ⊂ D(G)[~] of D(G). Then there is

a G̃×K
×-equivariant isomorphism K[X][~] ∼= D~(G) of K[~]-algebras.

Taking the G-invariants in the algebra K[T ∗G][~] ∼= D~(G) (say for the left
G-action), we get a new (star-)product on K[g∗][~] = K[T ∗G][~]G. But D~(G)G

is nothing else but a homogeneous version U~ of the universal enveloping algebra
U of g, U~ := T (g)[~]/(ξ ⊗ η − η ⊗ ξ − ~

2[ξ, η], ξ, η ∈ g). In the next subsection
we will use a similar recipe to define a W-algebra.

3.2. Equivariant Slodowy slices and W-algebras. A variety we
need in the approach to W-algebras from [37] is as follows. Recall the Slodowy
slice S ⊂ g∗, Subsection 2.4. Set X := G × S ⊂ G × g∗ = T ∗G. The variety
X is called the equivariant Slodowy slice. Clearly, X ⊂ T ∗G is stable with
respect to the left G-action. Also it is stable under the restriction of the right
G-action to Q = ZG(e, h, f). Finally, X is stable under a Kazhdan K

×-action
given by t.(g, α) = (gγ(t)−1, t−2γ(t)α), where γ : K× → G was introduced in
Subsection 2.4. Consider the 2-form ω on X obtained by the restriction of the
natural symplectic form from T ∗G. One can show that ω is non-degenerate. So
X becomes a symplectic variety. It satisfies the assumptions in the beginning
of the previous subsection with G̃ := G×Q, the Kazhdan action of K× and a
moment map X → g∗ ⊕ q∗ restricted from T ∗G.

Pick a G̃ × K
×-invariant symplectic connection ∇ on X and produce a

star-product f ∗ g =
∑∞

i=0 Di(f, g)~
2i, using the Fedosov construction. [37],

Proposition 2.1.5 implies that K[X][~] ⊂ K[X][[~]] is closed with respect to the
star-product. We call the quantum algebra K[X][~] a homogeneous equivariant

W-algebra and denote it by W̃~. A homogeneous W-algebra is, by definition,
W~ := W̃G

~
. Finally, define a W-algebra W as W~/(~−1). So, as a vector space

W is the same as K[S] but the product on W is given by fg :=
∑∞

i=0 Di(f, g).
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The algebra W comes equipped with

• a filtration Fi W induced from the grading on W~.

• an action of Q.

• a homomorphism (in fact an embedding) q ↪→ W of Lie algebras such
that the adjoint action of q on W coincides with the differential of the
Q-action.

• a homomorphism Z → W (induced from the quantum comoment map

g → W̃~).

It turns out that W is isomorphic to U(g, e). More precisely, we have the
following result.

Theorem 3.2 ([37], Corollary 3.3.3). There is a filtration preserving isomor-
phism W → U(g, e).

One can prove, in addition, that this isomorphism isQ-equivariant (although
this is not written down explicitly) and intertwines the homomorphisms Z →
W, U(g, e) (this is proved in [38], the end of Subsection 2.2).

3.3. Decomposition theorem. Let x denote the point (1, χ) ∈ X ⊂
T ∗G = G×g∗. We remark that the orbit Gx is closed (as any orbit in T ∗G) and
also Q × K

×-stable. Consider the formal neighborhoods (T ∗G)∧Gx, X
∧
Gx of Gx

in T ∗G and X and the formal neighborhood (V ∗)∧0 of 0 in V ∗. Being defined
by bidifferential operators, the star-products on K[T ∗G][~],K[X][~],K[V ∗][~]
extend to the corresponding completions K[T ∗G]∧Gx[[~]],K[X]∧Gx[[~]],A

∧
~

:=
K[V ∗]∧0 [[~]].

Taking the G-invariants in K[T ∗G]∧Gx[[~]],K[X]∧Gx[[~]] we get star-products
on the completions U∧

~
:= K[g∗]∧χ ,W

∧
~
:= K[S]∧χ [[~]]. The algebras U∧

~
,W∧

~
,A∧

~

come equipped with natural (complete and separated) topologies. We remark
that the completions U∧

~
,W∧

~
,A∧

~
can be defined completely algebraically, as the

inverse limits of U~,W~,A~ with respect to the powers of appropriate maximal
ideals, see [38], Subsection 2.4 for details.

The following theorem follows from [37], Theorem 3.3.1.

Theorem 3.3. There is a Q × K
×-equivariant isomorphism Φ~ : U∧

~
→

A∧
~
⊗̂K[[~]]W

∧
~

of topological K[[~]]-algebras.

Here ⊗̂ stands for the completed tensor product: we take the usual tensor
product of topological K[[~]]-algebras and then complete it with respect to the
induced topology.

Theorem 3.3 is extremely important in the study of W -algebras. It can be
used to prove Theorem 3.2, to prove the category equivalence theorems 4.1,4.3
in the next section, and also to relate the sets of two-sided ideals of U and of
W, see Section 5.
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4. Category Equivalences

This section is devoted to the description of two category equivalences between
suitable categories of W-modules and of U -modules. In the first subsection we
recall an equivalence proved by Skryabin in [57]. This is an equivalence between
the category of all W-modules and the category of Whittaker U -modules. Then
we discuss some corollaries of Skryabin’s theorem, in particular, a localiza-
tion theorem due to Ginzburg, [26]. Subsection 4.2 deals with a ramification of
Skryabin’s equivalence conjectured in [10] and proved in [39]. This is an equiv-
alence between the category O for a W-algebra and the category of generalized
Whittaker U -modules.

4.1. Whittaker modules and Skryabin’s equivalence. Re-
call that in Subsection 2.3 we have defined the W-algebra W = U(g, e)
as the quantum Hamiltonian reduction (U/Umχ)

adm. In other words, W =
EndU (U/Umχ)

op. In particular, U/Umχ is a U -W-bimodule.
We say that a U -module M is Whittaker if the action of mχ on M is locally

nilpotent. For instance, U/Umχ is easily seen to be Whittaker. Whittaker mod-
ules form a Serre subcategory in the category U -Mod. Denote the category of
Whittaker U -modules by Wh.

The bimodule U/Umχ gives rise to the following functors:

Wh → W-Mod : M 7→ HomU (U/Umχ,M) = Mmχ :=

:= {m ∈ M : ξm = 〈χ, ξ〉m, ∀ξ ∈ m}.

W-Mod → Wh : N 7→ U/Umχ ⊗W N.

We denote the second functor by Sk.
The following important theorem was proved in [57].

Theorem 4.1. The functors above are quasi-inverse equivalences.

Let us mention several important corollaries of this theorem.
The Beilinson-Bernstein localization theorem, [4], is a crucial result in the

representation theory of U . There is an analog of this theorem for W-algebras
due to Ginzburg, [26]. See also [18] for an alternative approach.

Recall the Beilinson-Bernstein theorem. Pick a Cartan subalgebra h ⊂ g.
Let ∆ ⊂ h∗ be the root system, W the Weyl group, and Π ⊂ ∆ be a system of
simple roots. Recall the dot action of W on h∗ given by w · λ = w(λ + ρ) − ρ,
where, as usual, ρ stands for the half of the sum of all positive roots. The center
Z of U gets identified via the Harish-Chandra isomorphism with the invariant
algebra K[h∗]W , the invariants are taken with respect to the dot action.

To any λ ∈ h∗ one assigns a sheaf Dλ of twisted differential operators on the
flag variety B of G, see [4]. The algebra Γ(B,Dλ) of global sections is naturally
identified with the quotient Uλ := U/UIλ, where Iλ denotes the maximal ideal
of W ·λ in Z. So to a Dλ-module M one can assign the Uλ-module Γ(B,M). The
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functor Γ(B, •) has a left adjoint: the localization functor Dλ ⊗Γ(B,Dλ) •. The
Beilinson-Bernstein theorem states that the functor Γ(B, •) is an equivalence
provided λ is regular and dominant, i.e., 〈λ+ ρ, α〉 6∈ Z60 for any α ∈ ∆.

Let us explain some details on Ginzburg’s localization theorem. For more
details the reader is referred to [26].

One can consider the sheaf Dλ as a quantization of the symplectic vari-
ety T ∗B. An analog of T ∗B for W is the Slodowy variety defined as follows.
The action of G on T ∗B is Hamiltonian, the Springer resolution morphism
µ : T ∗B → g∗ is a moment map. Recall the projection π : g∗ � m∗. Then π ◦ µ
is a moment map for the M -action on T ∗B. By definition, the Slodowy variety
S is the Hamiltonian reduction (π ◦ µ)−1(χ|m)/M .

To define an analog of the sheaf Dλ in the W-algebra setting Ginzburg uses
the language of directed algebras (one can also use the language of microlocal
sheaves, see [18]). Once this analog is defined the Beilinson-Bernstein theorem
transfers to the W-algebra setting verbatim. The scheme of the proof is as
follows: one introduces the notion of a Whittaker Dλ-module, shows that the
functors in the Beilinson-Bernstein theorem restrict to equivalences between
the Whittaker subcategories, and then uses the Skryabin theorem.

A related development is as follows. Let L be a finite dimensional g-module,
and M be a Whittaker g-module. Then L⊗M is again a Whittaker g-module.
This allows to define tensor products of finite dimensional g-modules with W-
modules. These tensor products are studied in detail in [27].

4.2. Category O for W-algebras. In the representation theory of U a
crucial role is played by the category O established by Bernstein, I. Gelfand and
S. Gelfand in [5]. There is an analog of the BGG categoryO forW introduced by
Brundan, Goodwin and Kleshchev in [10]. The most important result about this
category is that it is equivalent to a certain category of generalized Whittaker
U -modules, [39]. Our exposition follows [39].

Recall the group Q := ZG(e, h, f) acting on W and an embedding q ↪→ W,
see Subsections 2.6,3.2. Pick a Cartan subalgebra t ⊂ q and set l := zg(t). Then l

is a minimal Levi subalgebra in g containing e. Further, pick an integral (=lying
in the character lattice of the corresponding maximal torus of Q) element θ ∈ t

with zg(θ) = l. A category we are going to consider will depend on θ.
Consider the decomposition W =

⊕
i∈Z

Wi, where Wi := {w ∈ W|[θ, w] =

iw}. Set W>0 :=
⊕

i>0 Wi,W>0 :=
⊕

i>0 Wi,W
+
>0 := W>0 ∩ WW>0. Then

W>0 is a subalgebra in W, while W>0 and W+
>0 are two-sided ideals in W>0.

We say that a W-module N belongs to the category O(θ) (in [39] this

category was denoted by Õt(θ)) if

• N is finitely generated.

• t ⊂ W acts on N by diagonalizable endomorphisms.

• W>0 acts on N by locally nilpotent endomorphisms.
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For example, when e is distinguished (i.e., q = {0}), then O(θ) consists
precisely of all finite dimensional W-modules. In this case the notion of the
category O is pretty useless. The other extreme is the case when e is principal
in l. We will see below that in this case we can say a lot about O(θ).

Let us present an important construction of a module in O(θ). Pick a
W>0/W

+
>0-module N0 with diagonalizable t-action (e.g., irreducible). Define

the Verma module ∆θ(N0) by ∆θ(N0) := W ⊗W>0
N0.

The properties of O(θ) are quite expectable.

Proposition 4.2. 1. If N0 is irreducible, then ∆θ(N0) has a unique irre-
ducible quotient, say Lθ(N0).

2. Any irreducible module in O(θ) is isomorphic to Lθ(N0) for unique N0.

3. Let N ∈ O(θ) be such that all t-eigenspaces in N are finite dimensional.
Then N has finite length.

4. ∆θ(N0) with dimN0 < ∞ satisfies the assumptions of (3).

This is proved in [10], Theorem 4.5, Corollary 4.12 (in [10] a bit different
definition was used, in particular, the assumption in (3) was a part of the
definition, but this does not matter).

The most crucial property of O(θ) is that it is equivalent to a certain cate-
gory of U -modules. To define this category we need some more notation.

Let g =
⊕

i∈Z
gi be the decomposition into the eigenspaces of ad θ. In par-

ticular, l = g0. Form the subalgebra m ⊂ g0 by analogy with m ⊂ g but using
the pair (g0, e) instead of (g, e). We define the W-algebra W0 := U(g0, e). This
notation is different from [39] but agrees with [40]. Consider the subalgebra
m̃ := m ⊕ g>0 ⊂ g (where g>0 :=

⊕
i>0 gi) and set m̃χ := {ξ − 〈χ, ξ〉, ξ ∈ m̃}.

The element χ ∈ g∗ is t-invariant and so vanishes on g>0. Hence m̃χ = mχ×g>0.
We say that a U -module M is a generalized Whittaker module (for e

and θ) if

• M is finitely generated.

• t acts on M by diagonalizable endomorphisms.

• m̃χ acts on M by locally nilpotent endomorphisms.

The category of generalized Whittaker modules will be denoted by Wh(θ)
(this notation is again different from the one used in [39]).

Again, one can define a Verma module in Wh(θ). Let N0 be a W0-module
with diagonalizable t-action. Let Sk0 : W0-Mod → U(g0)-Mod be the Skryabin
functor (for the pair g0, e). Define the Verma module ∆e,θ(N0) := U ⊗U(g>0)

Sk0(N
0), where U(g>0) acts on Sk0(N

0) via a natural epimorphism U(g>0) �
U(g0).
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The following theorem is (a part of) the main result of [39].

Theorem 4.3 ([39], Theorem 4.1). There is an isomorphism Ψ : W0 →
W>0/W

+
>0 and an equivalence K : Wh(θ) → O(θ) of abelian categories such that

the functors K(∆e,θ(•)) and ∆θ(Ψ∗(•)) from the category of t-diagonalizable
W0-modules to O(θ) are isomorphic. Here Ψ∗ denotes the push-forward func-
tor with respect to the isomorphism Ψ.

Let us make a remark on an isomorphism Ψ. Such an isomorphism was
first established in [10]. It is however not completely clear if one can use the
isomorphism from [10] in Theorem 4.3. A peculiar feature of both isomorphisms
is that they do not intertwine the embeddings t ↪→ W>0/W

+
>0,W

0 but rather
induce a shift on t. Since this shift will be of importance later we will give
some details, see Remark 5.5 in [39]. Namely, let ι0, ι denote the embeddings
of t to W0,W>0/W

+
>0, respectively. Then we have ι(ξ) = Ψ(ι0(ξ)) − 〈δ, ξ〉 for

an element δ ∈ t∗ constructed as follows. Pick a Cartan subalgebra h ⊂ g

containing t and h. Let ∆<0 denote the set of all roots α of g with 〈α, θ〉 < 0.
Set

δ :=
∑

α∈∆<0,〈α,h〉=1

1

2
α|t +

∑

α∈∆<0,〈α,h〉>2

α|t. (4.1)

Till the end of the subsection we consider the category Wh(θ) in the special
case when e is principal in l. Here Wh(θ) (with a slightly different definition)
was studied before by McDowell, [43], by Milicic and Soergel, [45], and by
Backelin, [1].

To proceed we need some more notation. Choose a system Π of simple roots
such that θ is dominant. Then Π0 := {α ∈ Π : 〈α, θ〉 = 0} is a system of
simple roots for l. Let ∆+,∆l+ denote the systems of positive roots for g and l.
For a root α let eα denote a corresponding weight vector in g. Further, let Wl

denote the Weyl group of l. We have the dot action of W on h∗ defined as in
the previous subsection.

The W-algebra W0 is identified with the center Z(l) of U(l). So all irre-
ducible W0-module are 1-dimensional. The set of their isomorphism classes is
in one-to-one correspondence with orbits of the dot action of Wl on h∗.

One may assume that e =
∑

α∈Π0
e−α. Then m̃ is nothing else but the

maximal nilpotent subalgebra n of g corresponding to Π. Also we have 〈χ, eα〉 6=
0 if and only if α ∈ Π0. So we recover the setting of [1],[43],[45].

For λ ∈ h∗ let us write ∆(λ), L(λ) for the Verma and irreducible modules
with highest weight λ in the BGG category O and ∆e,θ(λ), Le,θ(λ) for the
Verma and irreducible modules in Wh(θ) corresponding to Wl · λ.

In [45] Milicic and Soergel proved that the (infinitesimal) block of Wh(θ)
corresponding to a regular integral central character is equivalent to the block
of the BGG category O with certain singular integral character that can be
recovered from Π0. For a generalization of this equivalence to the parabolic
setting see [61].
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For other blocks in Wh(θ) (corresponding to singular/non-integral central
characters) the situation is more subtle. But still one can relate the multiplicities
in O and in Wh(θ). For λ, µ ∈ h∗ let [∆(λ) : L(µ)], [∆e,θ(λ) : Le,θ(µ)] denote
the multiplicities in the corresponding categories.

Theorem 4.4 ([1], Theorem 6.2). Let λ, µ ∈ h∗. If

1. λ ∈ W · µ,

2. and there is w ∈ Wl such that w · µ is antidominant for l and λ−w · µ ∈
SpanZ>0

(∆+),

then [∆e,θ(λ) : Le,θ(µ)] = [∆(λ) : L(w · µ)]. Otherwise, [∆e,θ(λ) : Le,θ(µ)] = 0.

An element λ ∈ h∗ is said to be antidominant for l if 〈λ+ ρ, α∨〉 6∈ Z>0 for
any α ∈ ∆l+.

5. Ideals in U(g) Versus Ideals in W

In this section we will construct maps between the sets Id(U) and Id(W) of two-
sided ideals in U and W, respectively. This is done in the first two subsections.
In Subsection 5.3 we explain how these maps allow to relate (isomorphism
classes of) finite dimensional irreducible W-modules to primitive ideals J ⊂ U
such that the associated variety V(U/J ) is O. We conclude the section with
some remarks in Subsection 5.4.

5.1. Map •† : Id(U) → Id(W). Recall the algebras U~,A~

from Subsection 3.1, W~ from Subsection 3.2, and the topological algebras
U∧
~
,A∧

~
,W∧

~
from Subsection 3.3. By Theorem 3.3, U∧

~
∼= A∧

~
⊗̂K[[~]]W

∧
~
. Let us

introduce suitable sets of ideals of U~,U
∧
~
,W∧

~
,W~. Namely, let Id~(U~) denote

the set of K×-stable ~-saturated two-sided ideals in U~ (an ideal J~ ⊂ U~ is
said to be ~-saturated if ~a ∈ J~ implies a ∈ J~, in other words, if the quotient
U~/J~ is a flat K[~]-module). Define the sets Id~(U

∧
~
), Id~(W~), Id~(W

∧
~
) in a

similar way. We define a map •† as the composition

Id(U)
(a)
−−→ Id~(U~)

(b)
−−→ Id~(U

∧
~ )

(c)
−−→ Id~(W

∧
~ )

(d)
−−→ Id~(W~)

(e)
−−→ Id(W).

(5.1)
Let us describe the intermediate maps.

(a): this map sends J ∈ Id(U) to R~(J ) :=
⊕

(J ∩Fi U)~
i. It is a bijection,

the inverse map sends J~ ∈ Id~(U~) to its image under the natural epimorphism
U~ � U~/(~− 1) = U .

(b): this map sends J~ ∈ Id~(U~) to its closure J ∧
~

⊂ U∧
~
. Equivalently,

J ∧
~

= U∧
~
J~. This map is neither injective (but it is easy to say when two

ideals have the same image) nor surjective.
(c): this map sends J ′

~
∈ Id~(U

∧
~
) to I ′

~
:= J ′

~
∩ W∧

~
. It is a bijection: its

inverse sends I ′
~
∈ Id~(W

∧
~
) to A∧

~
⊗̂K[[~]]I

′
~
.
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(d): this map sends I ′
~
∈ Id~(W

∧
~
) to I~ := I ′

~
∩W~. It is again a bijection,

its inverse sends I~ ∈ Id~(W~) to its closure.
(e): this map is analogous to the inverse of (a).

Proposition 5.1. The map J 7→ J† has the following properties.

(1) J† is Q-stable.

(2) grW/J† is the pull-back of the K[g∗]-module grU/J to S ⊂ g∗.

(3) J† = W if and only if O ∩V(U/J ) = ∅.

(4) J† is a proper ideal of finite codimension in W if and only if O is an
irreducible component of V(U/J ). In this case dimW/J† equals the mul-
tiplicity of U/J on O.

(5) The natural map (J /Jmχ)
adm → (U/Umχ)

adm is injective. Its image
coincides with J†.

(1) follows directly from the construction. (2) is Proposition 3.4.2 in [37].
(3) and (4) follow from (2). (5) follows from Subsection 3.5 in [38].

5.2. Map •† : Id(W) → Id(U). By definition, •† is the composition

Id(W) → Id~(W~) → Id~(W
∧
~ ) → Id~(U

∧
~ ) → Id~(U~) → Id(U),

where all maps except Id~(U
∧
~
) → Id~(U~) are the inverses of the corresponding

maps in (5.1). The map Id~(U
∧
~
) → Id~(U~) sends J

′
~
∈ Id~(U

∧
~
) to J ′

~
∩ U~.

Let us list some properties of the map I 7→ I† : Id(W) → Id(U).

Proposition 5.2. (1) Let N be a W-module. Then AnnW(N)† =
AnnU (Sk(N)), where Sk denotes the Skryabin functor, see Subsection 4.1.

(2) Let N be a W-module from the category O(θ), see Subsection 4.2. Then
AnnW(N)† = AnnU (K(N)), where K is the functor from Theorem 4.3.

(3) Let I be an ideal of finite codimension in W. If I is prime (resp., com-
pletely prime, primitive), then so is I†.

(4) V (U/I†) = O if and only if I is of finite codimension.

(5) Recall that the center Z of U is identified with the center of W. Under
this identification for any I ∈ Id(W) we have I ∩ Z = I† ∩ Z.

(6) The map I 7→ I† is Q-invariant.

Recall that an ideal I in an associative unital algebra A is called prime (resp.,
completely prime) if a or b lies in A whenever aAb ⊂ I (resp., ab ∈ I). An ideal
I is said to be primitive if it is the annihilator of an irreducible A-module.
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(1) is assertion (ii) of [37], Theorem 1.2.2. (2) is a part of [39], Theorem
4.1. (3) stems from [37], Theorem 1.2.2. The “if” part of (4) follows from (1)
and [51], Theorem 3.1. The “only if” part follows from the inclusion (I†)† ⊂ I
that is a direct consequence of our constructions. (5) is assertion (iii) of [37],
Theorem 1.2.2. (6) follows directly from the construction.

5.3. Classification of finite dimensional irreducible W-
modules. This subsection is perhaps the most important part of the notes.
Here we explain known results about the classification of finite dimensional ir-
reducible W-modules. We have two results here, both are due to the author,
[38],[40]. Both relate the set Irrfin(W) of (isomorphism classes of) finite dimen-
sional irreducible W-modules to the set PrimO(U) consisting of all primitive
ideals J ⊂ U with V(U/J ) = O.

The first result was conjectured by Premet (private communication). To
state it we notice that the set Irrfin(W) is canonically identified with the set
Primfin(W) of maximal (=primitive) ideals of finite codimension in W (via
taking the annihilator). Thanks to assertions (3),(4) of Proposition 5.2, we
see that N 7→ AnnW(N)† is a map Irrfin(W) → PrimO(U). The group Q
acts on Irrfin(W). The connected component Q◦ of Q acts trivially because
the corresponding action of q on W is by inner derivations. So the Q-action on
Irrfin(W) descends to that of the component group C(e) = Q/Q◦. By assertion
(6) of Proposition 5.2, the map Irrfin(W) → PrimO(U) is C(e)-invariant.

Conjecture 5.3 (Premet). The map N 7→ Ann(N)† : Irrfin(W) → PrimO(U)
is surjective and any of its fibers is a single C(e)-orbit.

In [52] Premet proved that any J ∈ PrimO(U) with rational central char-
acter lies in the image. In full generality the surjectivity part was first proved
in [37], Theorem 1.2.2. Later alternative proofs were found in [26],[53]. The
description of fibers is more subtle. It was obtained in [38]. It is a corollary of
the following theorem.

Theorem 5.4 ([38], Theorem 1.2.2). Let I be a Q-stable ideal of finite codi-
mension in W. Then (I†)† = I.

The second result is stated in terms of the category O(θ). Let θ, l = g0,W
0

have the same meaning as in Subsection 4.2. Choose a Cartan subalgebra h ⊂ l

and a system of simple roots Π ⊂ h∗ as in the discussion preceding Theorem
4.4.

Let us introduce some more notation. For λ ∈ h∗ let L0(λ) stand for the
irreducible g0-module with highest weight λ. Set J(λ) := AnnU (L(λ)), J0(λ) :=
AnnU(g0)(L0(λ)). According to Duflo, [19], any primitive ideal in U (resp., in
U(g0)) has the form J(λ) (resp., J0(λ)) for some (in general, non-unique) λ ∈ h∗.

Proposition 5.5. [[40], Theorem 5.1.1] Let N0 be an irreducible finite dimen-
sional W0-module. If AnnW0(N0)

† = J0(λ) for some λ, then AnnW(Lθ(N0))
† =

J(λ). In particular, Lθ(N0) is finite dimensional if and only if V(U/J(λ)) = O.
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5.4. Remarks. In the representation theory of U there are many results
on the computation of V(U/J(λ)) and on the description of PrimO(U). They
are due to Joseph, Barbasch-Vogan and others, see, for example, [2],[3],[29]. In
particular, it is known that PrimO(U) is always non-empty.

Next, we remark that the maps between the sets of ideals upgrade to functors
between the categories of Harish-Chandra bimodules, see [26],[38]. The study
of these functors is supposed to help to obtain the complete description of
Irrfin(W) itself (not just of the quotient Irrfin(W)/C(e)).

6. One-dimensional W-modules

6.1. Motivation. The following conjecture was made by Premet.

Conjecture 6.1 ([51], Conjecture 3.1). Any W-algebra has a one-dimensional
representation (equivalently, a two-sided ideal of codimension 1).

At the moment when this text is being written the conjecture is known to
be true with exception of several cases in type E8, where it is still open.

The reason why Conjecture 6.1 is important is that it implies affirmative
answers to some old questions in representation theory of universal enveloping
algebras:

(A) the question of Humphreys on the existence of a small non-restricted
representation for semisimple Lie algebras in characteristic p.

(B) the existence of a completely prime primitive ideal with given associated
variety (this question traces back, at least, to Dixmier)

The proof that Conjecture 6.1 implies (A) for p � 0 is obtained in [53],
Theorem 1.4.

The claim that Conjecture 6.1 implies (B) follows from Proposition 5.2: if
I ⊂ W has codimension 1, then I† is completely prime and V(U/I†) = O.

In fact, the implication in the previous paragraph was obtained earlier by
Moeglin, [46],[47]. She considered primitive ideals in U admitting a Whittaker
model. Using the techniques of [25], one can show that a Whittaker model in the
sense of Moeglin is precisely the image of a one-dimensional W-module under
the Skryabin equivalence.

Actually, Moeglin obtained a stronger result: that any ideal admitting a
Whittaker model gives rise to a unique quantization (in an appropriate sense)
of a suitable covering of O, see [47] for details.

6.2. Classical algebras. It turns out that Conjecture 6.1 holds for all
classical simple Lie algebras. This was proved in [37], Theorem 1.2.3, (1). Let
us describe the idea of the proof.

We need to show that there is an ideal of codimension 1 in W. Thanks
to Proposition 5.1, this is the case when there is J ∈ Id(U) such that O is
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an irreducible component of V(U/J ) and the multiplicity of U/J on O is 1
(this implication also was proved by Moeglin using the language of Whittaker
models, see [47]).

Let G be one of the classical groups SLn(K), On(K), Sp2n(K) (depending
on g). We emphasize that for g = son we need a disconnected group. It turns
out that there is an ideal J in U such that grU/J = K[Ge], where gr is taken
with respect to the filtration on U/J induced from the PBW filtration on U .
Such an ideal is obtained by the quantization of the Kraft-Procesi construction
of Ge via a Hamiltonian reduction of a vector space, see [34],[35]1.

In type A more can be said. Form the quotient Wab of W by the relations
[a, b], a, b ∈ W. The one-dimensional W-modules are parametrized by points of
Spec(Wab). In [53], Subsection 3.8, Premet proved that for g = sln the algebra
Wab is the polynomial algebra in d − 1 variables, where d is the maximal size
of a Jordan block of e. Premet’s proof is based on the Brundan-Kleshchev
presentation of W, see Subsection 7.1 for details.

6.3. Parabolic induction. It is easy to prove Conjecture 6.1 when e is
even. Indeed, as we have seen in Subsection 2.2, the algebra W for even e can be
embedded into U(g(0)), see Subsection 2.2. Then we can take any 1-dimensional
representation of U(g(0)) and restrict it to W.

Premet, [53], observed that a similar result holds in a much more general
setting. In the theory of nilpotent elements in semisimple Lie algebras there is
a construction called the Lusztig-Spaltenstein induction. It was introduced in
[41], for a review see, for example, [44]. Namely, let g ⊂ g be a Levi subalgebra
and O ⊂ g be a nilpotent orbit. The Lusztig-Spaltenstein induction produces
a nilpotent orbit O ⊂ g from the pair (g,O). We say that O is induced from
(g,O). If e is even, then O is induced from (g(0), {0}). If O cannot be induced
from a nilpotent orbit in proper Levi subalgebra, O is called rigid.

Theorem 6.2 (Premet, [53]). Let O be induced from (g,O). If the algebra
W := U(g, e), where e ∈ O, has a one-dimensional representation, then W
does.

Premet’s proof of Theorem 6.2 is based on the reduction to positive char-
acteristic. Another proof, close in spirit to that for even elements, was found
by the author in [40]. Namely, under the assumptions of Theorem 6.2, there
is an embedding of W into a certain completion of W. The latter acts on all
finite dimensional W-modules. So a one-dimensional W-module again can be
obtained by restriction.

6.4. 1-dimensional representations via category O(θ). In
this subsection we will explain how to apply the category O(θ) to the study of
one-dimensional representations of W, see [40].

1After [37] was already published I learned that the construction of J used there (and
explained above) was discovered before by R. Brylinski,[15].
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We use the notation from Subsection 4.2. Let us impose the following con-
dition on a nilpotent element e:

(*) the algebra q is semisimple.

It turns out that this condition is satisfied for all rigid nilpotent elements. A
proof based on the classification of such elements can be found in [40], Subsec-
tion 5.2. It would be very interesting to find a conceptual proof.

Let N0 be a finite dimensional W0-module. We want a criterium for Lθ(N0)
to be 1-dimensional. Since N0 ↪→ Lθ(N0), of course, dimLθ(N0) = 1 implies
dimN0 = 1.

The following result follows from Theorem 5.2.1 in [40].

Theorem 6.3. Suppose the condition (*) holds. Let N0 be a 1-dimensional
W0-module. Then the following conditions are equivalent:

1. dimLθ(N0) = 1.

2. t ⊂ W0 acts on N0 by δ, where δ is given by (4.1).

When e is of principal Levi type (which is true for all but 2 rigid nilpotent
elements in exceptional Lie algebras), then any irreducible W0-module is 1-
dimensional (recall that W0 is just the center of U(l)).

Combining Theorem 6.3, Proposition 5.5, and assertion (4) of Proposition
5.2 one obtains a criterium for an ideal J ⊂ U to have the form I† with
dimW/I = 1. More precisely, we have the following result, [40], Subsection
5.3.

Corollary 6.4. Suppose q satisfies (*). Let θ, h,Π be chosen as in the discus-
sion preceding Theorem 4.4. Let O0 denote the adjoint orbit of e in l.

1. Let λ ∈ h∗ satisfy the following four conditions:

(A) The associated variety of U(l)/J0(λ) in g∗0 is O0.

(B) dimV(U/J(λ)) 6 dimO.

(C) λ− δ vanishes on t.

(D) J0(λ) corresponds to an ideal of codimension 1 in W0.

Then J(λ) = I† for some ideal I ⊂ W of codimension 1.

2. For any ideal I ⊂ W of codimension 1 there is λ ∈ h∗ satisfying (A)-(D)
and such that J(λ) = I†.

When e is principal in l the condition (A) means that λ is antidominant for
l, while the condition (D) becomes vacuous.
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6.5. Exceptional algebras. Let us summarize what is known about
Conjecture 6.1 for exceptional Lie algebras. As Premet checked in [51], W has
a one-dimensional module provided e is a minimal nilpotent element (in an
arbitrary simple Lie algebra). His approach was based on an analysis of gen-
erators and relations for W that are not very difficult for minimal nilpotents.
Recently Goodwin, Röhrle and Ubly, [28], extended Premet’s approach to all
rigid nilpotents in G2, F4, E6, E7 and some rigid nilpotents in E8. The result
is that for all nilpotent elements they considered a one-dimensional W-module
does exist. They used the GAP program to analyze the relations. “Large” nilpo-
tent elements in E8 remain to complicated computationally. Maybe, one can
deduce Conjecture 6.1 for E8 from Corollary 6.4.

7. Type A

This section is devoted to results concerning W-algebras for g = slN (or g =
glN ). In Subsection 7.1 we very briefly sketch a relation between W-algebras
and Yangians. In Subsection 7.2 we mention some other results: the higher
level Schur-Weyl duality of Brundan and Kleshchev and the Gelfand-Kirillov
conjecture for W-algebras proved by Futorny, Molev and Ovsienko.

7.1. W-algebras vs Yangians. In this subsection we will briefly ex-
plain a relationship betweenW -algebras for g = glN and certain inifinite dimen-
sional algebras called shifted Yangians. A shifted Yangian is a certain general-
ization of the usual Yangian for gln. For a comprehensive treatment of Yangians
and related algebras the reader is referred to Molev’s book [48]. A relation be-
tween Yangians and W-algebras was first observed by Ragoucy and Sorba in
[56] and then generalized to shifted Yangians by Brundan and Kleshchev, [12].

The Yangian Y (gln) can be defined as the algebra generated by elements

t
(r)
ij , i, j = 1, . . . , n, r ∈ N, subject to the relations

[
t
(r+1)
ij , t

(s)
kl

]
−

[
t
(r)
ij , t

(s+1)
kl

]
= t

(r)
kj t

(s)
il − t

(s)
kj t

(r)
il .

However, the generators t
(r)
ij are not convenient to establish a relation be-

tween the Yangians and W-algebras. In [11] Brundan and Kleshchev found
a new presentation of Y (gln). Generalizing this presentation they introduced
shifted Yangians in [12].

A shifted Yangian Yn(σ) depends on a positive integer n and some shift
matrix σ. By definition, σ = (sij)

n
i,j=1 is a shift matrix if sij is a nonnegative

integer (“shift”) with sij + sjk = sik whenever |i − j| + |j − k| = |i − j|. By
definition, the algebra Yn(σ) is given by generators

D
(r)
i (1 6 i 6 n, r > 0), E

(r)
i (1 6 i < n, r > si,i+1), F

(r)
i (1 6 i < n, r > si+1,i)
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subject to certain explicit relations (see [12], (2.4)-(2.15)). The shifted Yangian
coincides with the usual one when σ = 0. For l > s1,n+ sn,1 define the quotient
(the truncated shifted Yangian of level l) Yn,l(σ) of Yn(σ) by the two-sided ideal

generated by D
(r)
1 , r > p1 := l − s1,n − sn,1.

To establish a relationship between shifted Yangians and W -algebras fix a
positive integer n, pick a Young diagram λ = (λ1, . . . , λn), λ1 > . . . > λn > 0
(one can also work with more general diagrams called pyramids, see [12], §7
for details), and set l := λ1. Then to n and λ one can assign the shift matrix
σλ = (sij)

n
i,j=1 by setting sij := 0 for i > j and sij := λn+1−j − λn+1−i for

i < j. In particular, for the Young diagram of shape n× l, we get σ = 0.
To λ one assigns a nilpotent element eλ ∈ glN , where N :=

∑n
i=1 λi, in the

usual way (λi are the sizes of the Jordan blocks of eλ).

Theorem 7.1 ([12], Theorem 10.1). U(glN , eλ) ∼= Yn,l(σ
λ).

In [13] Brundan and Kleshchev used this theorem to study the representa-
tion theory of U(glN , eλ). In particular, they obtained a classification of finite
dimensional irreducible U(glN , e)-modules (which also follows from Proposition
5.5 thanks to Joseph’s computation of V(U(glN )/J(λ)), see [29]; we remark that
any nilpotent element in glN is of principal Levi type).

There is a generalization of the results explained above in this subsection to
other classical Lie algebras first observed by Ragoucy, [55] and worked out in
more detail by J. Brown, [7],[8]. Namely, for orthogonal and symplectic algebras
there are analogs of Y (gln) called twisted Yangians. Theorem 7.1 generalizes
to twisted Yangians. It is interesting that, similarly to Y (gln)-case, nilpotent
elements arising in this generalization again correspond to partitions with all
parts equal. It is unclear whether there is a reasonable shifted version of the
twisted Yangians that is related to the W-algebras constructed from arbitrary
nilpotent elements.

7.2. Other results. W-algebras in type A enjoy some other interesting
properties.

For example, in [14] Brundan and Kleshchev obtained a very nice result: a
“higher level” generalization of the classical Schur-Weyl duality. Recall that
the classical Schur-Weyl duality relates between polynomial representations
of GLN (K) and representations of the symmetric group Sd in d letters. The
Brundan-Kleshchev generalization relates modules over the cyclotomic degen-
erate Hecke algebra Hd(λ) corresponding to a partition λ of N (this algebra is
a higher level generalization of Sd) and modules over the W-algebra U(glN , eλ).
For details the reader is referred to [14] or to the review [60] by Wang.

Another result we would like to mention is an analog of the Gelfand-Kirillov
conjecture for W-algebras proved in [23].

For a Noetherian domain A let Q(A) denote its skew-field of fractions.
Gelfand and Kirillov, [24], conjectured that for any finite dimensional algebraic
Lie algebra a the skew-field Q(U(a)) is isomorphic to Q(Al(Fd)), where Fd is
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a purely transcendental extension of K of some degree d and Al(Fd) stands for
the Weyl algebra of a 2l-dimensional symplectic vector space over Fd. In [24]
the conjecture was verified for g = sln

2. In [23] Futorny, Molev and Ovsienko
proved that the straightforward analog of the Gelfand-Kirillov conjecture holds
for U(gln, e) (and for U(sln, e)) for an arbitrary nilpotent element e ∈ sln.
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Abstract

We present recent results on counting and distribution of circles in a given circle
packing invariant under a geometrically finite Kleinian group and discuss how
the dynamics of flows on geometrically finite hyperbolic 3 manifolds are related.
Our results apply to Apollonian circle packings, Sierpinski curves, Schottky
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1. Introduction

Let G be a connected semisimple Lie group and Γ < G a discrete subgroup with
finite co-volume. Dynamics of flows on the homogeneous space Γ\G have been
studied intensively over the last several decades and brought many surprising
applications in various fields notably including analytic number theory, arith-
metic geometry and Riemmanian geometry (see [45], [58], [12], [18], [32], [78],
[41], [74], [16], [21], [22], [76], [15], [49], [33], [75], [25], [27], [26], [66], etc.) The
assumption that the volume of Γ\G is finite is crucial in most developments in
the ergodic theory for flows on Γ\G, as many basic ergodic theorems fail in the
setting of an infinite measure space. It is unclear what kind of measure theoretic
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and topological rigidity for flows on Γ\G can be expected for a general discrete
subgroup Γ.

In this article we consider the situation when G is the isometry group of the
real hyperbolic space Hn, n ≥ 2, and Γ < G is a geometrically finite discrete
subgroup. In such cases we have a rich theory of the Patterson-Sullivan density
and the structure of a fundamental domain for Γ in Hn is well understood.
Using these we obtain certain equidistribution results for specific flows on the
unit tangent bundle T1(Γ\Hn) and apply them to prove results on counting
and equidistribution for circles in a given circle packing of the plane (and also
of the sphere) invariant under geometrically finite groups.

There are numerous natural questions which arise from the analogy with the
finite volume cases and most of them are unsolved. We address some of them
in the last section. We remark that an article by Sarig [61] discusses related
issues but for geometrically infinite surfaces.

Acknowledgement: I would like to thank Peter Sarnak for introducing Apol-
lonian circle packings to me and for the encouragement to work on this project.
I am grateful to Curt McMullen for showing me the picture of Sierpinski curve
which led me to think about more general circle packings beyond Apollo-
nian ones, as well as for many valuable discussions. I thank my collabora-
tors Nimish Shah and Alex Kontorovich for the joint work. I also thank Marc
Burger and Gregory Margulis for carefully reading an earlier draft and making
many helpful comments. Finally I thank my family for their love and support
always.

2. Preliminaries

We review some of basic definitions as well as set up notations. Let G be the
identity component of the isometry group of the real hyperbolic space Hn,
n ≥ 2. Let Γ < G be a torsion-free discrete subgroup. We denote by ∂∞(Hn)
the geometric boundary of Hn. The limit set Λ(Γ) of Γ is defined to be the set of
accumulation points of an orbit of Γ in Hn∪∂∞(Hn). As Γ acts on Hn properly
discontinuously, Λ(Γ) lies in ∂∞(Hn). Its complement Ω(Γ) := ∂∞(Hn)− Λ(Γ)
is called the domain of discontinuity for Γ.

An element g ∈ G is called parabolic if it fixes a unique point in ∂∞(Hn)
and loxodromic if it fixes two points in ∂∞(Hn). A limit point ξ ∈ Λ(Γ) is called
a parabolic fixed point if it is fixed by a parabolic element of Γ and called a
radial limit point (or a conical limit point or a point of approximation) if for
some geodesic ray β tending to ξ and some point x ∈ Hn, there is a sequence
γi ∈ Γ with γix→ ξ and d(γix, β) is bounded, where d denotes the hyperbolic
distance. A parabolic fixed point ξ is called bounded if StabΓ(ξ)\(Λ(Γ)− {ξ})
is compact.

The convex core CΓ of Γ is defined to be the minimal convex set in Hn mod
Γ which contains all geodesics connecting any two points in Λ(Γ). A discrete
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subgroup Γ is called geometrically finite if the unit neighborhood of its convex
core has finite volume and called convex co-compact if its convex core is compact.
It is clear that a (resp. co-compact) lattice in G is geometrically finite (resp.
convex co-compact). Bowditch showed [5] that Γ is geometrically finite if and
only if Λ(Γ) consists entirely of radial limit points and bounded parabolic fixed
points. It is further equivalent to saying that Γ is finitely generated for n = 2,
and that Γ admits a finite sided fundamental domain in H3 for n = 3. We refer
to [5] for other equivalent definitions.

Γ is called elementary if Λ(Γ) consists of at most two points, or equivalently,
Γ has an abelian subgroup of finite index.

We denote by 0 ≤ δΓ ≤ n−1 the critical exponent of Γ, that is, the abscissa
of convergence of the Poincare series of Γ:

PΓ(s) :=
∑
γ∈Γ

e−sd(o,γo)

where o ∈ Hn. For a non-elementary group Γ, δΓ is positive and Sullivan [71]
showed that for Γ geometrically finite, δΓ is equal to the Hausdorff dimension
of the limit set Λ(Γ).

For ξ ∈ ∂∞(Hn) and y1, y2 ∈ Hn, the Busemann function βξ(y1, y2) mea-
sures a signed distance between horospheres passing through y1 and y2 based
at ξ:

βξ(y1, y2) = lim
t→∞

d(y1, ξt)− d(y2, ξt)

where ξt is a geodesic ray toward ξ.

For a vector u in the unit tangent bundle T1(Hn), we define u± ∈ ∂∞(Hn)
to be the two end points of the geodesic determined by u:

u+ := lim
t→∞

gt(u) and u− := lim
t→−∞

gt(u)

where {gt} denotes the geodesic flow.

We denote by π : T1(Hn) → Hn the canonical projection. Fixing a base
point o ∈ Hn, the map

u 7→ (u+, u−, βu−(π(u), o))

yields a homeomorphism between T1(Hn) and (∂∞(Hn) × ∂∞(Hn) − {(ξ, ξ) :
ξ ∈ ∂∞(Hn)})× R.

Throughout the paper we assume that Γ is non-elementary.

Patterson-Sullivan density: Generalizing the work of Patterson [55] for n =
2, Sullivan [71] constructed a Γ-invariant conformal density {νx : x ∈ Hn} of
dimension δΓ on Λ(Γ). That is, each νx is a finite Borel measure on ∂∞(Hn)
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supported on Λ(Γ) satisfying that for any x, y ∈ Hn, ξ ∈ ∂∞(Hn) and γ ∈ Γ,

γ∗νx = νγx and
dνy
dνx

(ξ) = e−δΓβξ(y,x),

where γ∗νx(R) = νx(γ−1(R)).
For Γ geometrically finite, such conformal density {νx} exists uniquely up

to homothety. In fact, fixing o ∈ Hn, {νx} is a constant multiple of the following
family {νx,o} where νx,o is the weak-limit as s→ δ+

Γ of the family of measures

νx,o(s) :=
1∑

γ∈Γ e
−sd(o,γo)

∑
γ∈Γ

e−sd(x,γo)δγo

where δγo denotes the Dirac measure at γo.
Consider the Laplacian ∆ on Hn. In the upper half-space coordinates Hn =

{(x1, · · · , xn−1, y) : y > 0} with the metric

√
dx2

1+···+dx2
n−1+dy2

y , it is given as

∆ = −y2

(
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n−1

+
∂2

∂y2

)
+ (n− 2)y

∂

∂y

(strictly speaking, this is the negative of the usual hyperbolic Laplacian). Sul-
livan [71] showed that

φΓ(x) := |νx|
is an eigenfunction for ∆ with eigenvalue δΓ(n−1− δΓ). From the Γ-invariance
of the Patterson-Sullivan density {νx}, φΓ is a function on Γ\Hn. Sullivan
further showed that if Γ geometrically finite and δΓ > (n− 1)/2, φΓ belongs to
L2(Γ\Hn) and is a unique (up to a constant multiple) positive eigenfunction
with the smallest eigenvalue δΓ(n − 1 − δΓ) (cf. [73]). Combined with a result
of Yau [77], it follows that δΓ = n− 1 if and only if Γ is a lattice in G.

Bowen-Margulis-Sullivan measure: Fixing the Patterson-Sullivan density
{νx}, the Bowen-Margulis-Sullivan measure mBMS

Γ ([6], [46], [72]) is the induced
measure on T1(Γ\Hn) of the following Γ-invariant measure on T1(Hn):

dm̃BMS(u) = eδΓβu+ (x,π(u)) eδΓβu− (x,π(u)) dνx(u+)dνx(u−)dt

where x ∈ Hn.
It follows from the conformality of {νx} that this definition is independent

of the choice of x. The measure mBMS
Γ is invariant under the geodesic flow

and is supported on the non-wandering set {u ∈ T1(Γ\Hn) : u± ∈ Λ(Γ)} of
the geodesic flow. Sullivan showed that for Γ geometrically finite, the total
mass |mBMS

Γ | is finite and the geodesic flow is ergodic with respect to mBMS
Γ

[72]. This is a very important point for the ergodic theory on geometrically
finite hyperbolic manifolds, since despite of the fact that the Liouville measure
is infinite, we do have a finite measure on T1(Γ\Hn) which is invariant and
ergodic for the geodesic flow. Rudolph [60] showed that the geodesic flow is
even mixing with respect to mBMS

Γ .



1312 Hee Oh

Figure 1. Apollonian circle packing and Sierpinski curve (by C. McMullen)

3. Counting and Distribution of Circles in the
Plane

A circle packing in the plane C is simply a union of circles. As circles may
intersect with each other beyond tangency points, our definition of a circle
packing is more general than what is usually thought of. For a given circle
packing P in the plane, we discuss questions on counting and distribution of
small circles in P. A natural size of a circle is measured by its radius. We will
use the curvature (=the reciprocal of the radius) of a circle instead.

We suppose that P is infinite and that P is locally finite in the sense that
for any T > 0, there are only finitely many circles of curvature at most T in any
fixed bounded region of the plane. See Fig. 1, 6 and 8 for examples of locally
finite packings.

For a bounded region E in the plane C, we consider the following counting
function:

NT (P, E) := #{C ∈ P : C ∩ E 6= ∅, Curv(C) < T}

where Curv(C) denotes the curvature of C. The local finiteness assumption is
so that NT (P, E) <∞ for any bounded E. We ask if there is an asymptotic for
NT (P, E) as T tends to infinity and what the dependence of such an asymptotic
on E is, if exists.

Consider the upper half space model H3 = {(z, r) : z ∈ C, r > 0} with the

hyperbolic metric given by

√
|dz|2+dr2

r . An elementary but helpful observation

is that if we denote by Ĉ ⊂ H3 the convex hull of C, that is, the northern
hemisphere above C, then NT (P, E) is equal to the number of hemispheres of
height at most T−1 in H3 whose boundaries lie in P and intersect E, as the
radius of a circle is same as the height of the corresponding hemisphere.
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Let Γ < PSL2(C) be a geometrically finite discrete subgroup and fix a Γ-
invariant Patterson-Sullivan density {νx : x ∈ H3}.

In order to present our theorem on the asymptotic of NT (P, E) for P in-
variant under Γ, we introduce two new invariants associated to Γ and P. The
first one is a Borel measure on C which depends only on Γ.

Definition 3.1. Define a Borel measure ωΓ on C: for ψ ∈ Cc(C),

ωΓ(ψ) =

∫
z∈C

ψ(z)eδΓβz(x,z+j) dνx(z)

where j = (0, 1) ∈ H3 and x ∈ H3. By the conformal property of {νx}, this
definition is independent of the choice of x ∈ H3.

Note that ωΓ is supported on Λ(Γ) ∩C and in particular that ωΓ(E) > 0 if
the interior of E intersects Λ(Γ) ∩ C non-trivially. We compute:

dωΓ = (|z|2 + 1)δΓdνj .

The second one is a number in [0,∞] measuring certain size of P:

Definition 3.2 (The Γ-skinning size of P). For a circle packing P invariant
under Γ, we define:

skΓ(P) :=
∑
i∈I

∫
s∈StabΓ(C†i )\C†i

eδΓβs+ (x,π(s))dνx(s+)

where x ∈ H3, {Ci : i ∈ I} is a set of representatives of Γ-orbits in P and

C†i ⊂ T1(H3) is the set of unit normal vectors to the convex hull Ĉi of Ci. Again
by the conformal property of {νx}, the definition of skΓ(P) is independent of
the choice of x and the choice of representatives {Ci}.

We remark that the value of skΓ(P) can be zero or infinite in general and

we do not assume any condition on StabΓ(C†i )’s (they may even be trivial). By
the interior of a circle C, we mean the open disk which is enclosed by C. We
then have the following:

Theorem 3.3 ([51]). Let Γ be a non-elementary geometrically finite discrete
subgroup of PSL2(C) and let P = ∪i∈IΓ(Ci) be an infinite, locally finite, and
Γ-invariant circle packing with finitely many Γ-orbits.

Suppose one of the following conditions hold:

1. Γ is convex co-compact;

2. all circles in P are mutually disjoint;

3. ∪i∈IC◦i ⊂ Ω(Γ) where C◦i denotes the interior of Ci.
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For any bounded region E of C whose boundary is of zero Patterson-Sullivan
measure, we have

NT (P, E) ∼ skΓ(P)

δΓ · |mBMS
Γ |

· ωΓ(E) · T δΓ as T →∞

and 0 < skΓ(P) <∞.

Remark 3.4. 1. If Γ is Zariski dense in PSL2(C), considered as a real alge-
braic group, any real algebraic curve has zero Patterson-Sullivan measure
[23, Cor. 1.4]. Hence the above theorem applies to any Borel subset E
whose boundary is a countable union of real algebraic curves.

2. We call the complement in Ĉ of the set ∪i∈IΓ(C◦i ) the residual set of P.
The condition (3) above is then equivalent to saying that Λ(Γ) is contained
in the residual set of P.

3. If we denote by H−∞(j) the contracting horosphere based at ∞ in T1(H3)
which consists of all upward normal unit vectors on C + j = {(z, 1) : z ∈
C}, we can alternatively write the measure ωΓ as follows:

ωΓ(ψ) =

∫
u∈H−∞(j)

ψ(u−)eδΓβu− (x,π(u)) dνx(u−)

and recognize that ωΓ is the projection of the conditional of the Bowen-
Margulis-Sullivan measure m̃BMS on the horosphere H−∞(j) to C via the
map u 7→ u−. It is worthwhile to note that the hyperbolic metric on C+j
is precisely the Euclidean metric.

4. Suppose that circles in P are disjoint possibly except for tangency points
and that Λ(Γ) is equal to the residual set of P. If ∞ is either in Ω(Γ)
(that is, P is bounded) or a parabolic fixed point for Γ, then δΓ is equal
to the circle packing exponent eP given by

eP = inf

{
s :
∑
C∈P

r(C)s <∞

}
= sup

{
s :
∑
C∈P

r(C)s =∞

}

where r(C) denotes the radius of C [54]. This extends the earlier work of
Boyd [7] on bounded Apollonian circle packings.

We discuss some concrete circle packings to which our theorem applies.

3.1. Apollonian circle packings in the plane. Apollonian circle
packings are one of the most beautiful circle packings whose construction can
be described in a very simple manner based on an old theorem of Apollonius
(262-190 BC). It says that given three mutually tangent circles in the plane,
there are exactly two circles which are tangent to all the three circles.
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Figure 2. Possible configurations of four mutually tangent circles

Figure 3. Dual circles

In order to construct an Apollonian circle packing, we start with four mu-
tually tangent circles. See Fig. 2 for possible configurations. By Apollonius’
theorem, there are precisely four new circles that are tangent to three of the
four circles. Continuing to repeatedly add new circles tangent to three of the
circles from the previous generations, we arrive at an infinite circle packing,
called an Apollonian circle packing,

See Fig. 4 and 8 for examples of Apollonian circle packings where each circle
is labeled by its curvature (that is, the reciprocal of its radius). There are also
Apollonian packings which spread all over the plane as well as spread all over
to the half plane. As circles in these packings would become enormously large
after a few first generations, it is harder to draw them on paper.

There are many natural questions about Apollonian circle packings either
from the number theoretic or the geometric point of view and we refer to the
series of papers by Graham, Lagarias, Mallows, Wilks, and Yan especially [30]
[29], and [17] as well as the letter of Sarnak to Lagarias [64] which inspired the
author to work on the topic personally. Also see a more recent article [62].
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Figure 4. A bounded Apollonian circle packing and the Apollonian packing of a tri-
angular region

To find the symmetry group of a given Apollonian packing P, we consider
the dual circles to any fixed four mutually tangent circles (see Fig. 3 where the
dotted circles are the dual circles to the solid circles). Inversion with respect to
each dual circle fixes three circles that the dual circle crosses perpendicularly
and interchanges two circles tangent to those three circles. Hence the group, say,
Γ(P), generated by the four inversions with respect to the dual circles preserves
the packing P and there are four Γ(P) orbits of circles in P.

As the fundamental domain of Γ(P) in H3 can be taken to be the exterior of
the four hemispheres above the dual circles in H3, Γ(P) is geometrically finite.
It is known that the limit set of Γ(P) coincides precisely with the residual set of
P and hence the critical exponent of Γ(P) is equal to the Hausdorff dimension
of the residual set of P, which is approximately

α = 1.30568(8)

due to C. McMullen [48] (note that as any two Apollonian packings are equiva-
lent to each other by a Mobius transformation, α is independent of P). In par-
ticular it follows that Γ(P) is Zariski dense in the real algebraic group PSL2(C)
and hence we deduce the following from Theorem 3.3 and the remark following
it:

Corollary 3.5 ([51]). Let P be an Apollonian circle packing. For any bounded
region E of C whose boundary is a countable union of real algebraic curves, we
have

NT (P, E) ∼ skΓP (P)

α · |mBMS
ΓP
|
· ωΓP (E) · Tα as T →∞

where ΓP := Γ(P) ∩ PSL2(C).

Remark 3.6. 1. In the cases when P is bounded and E is the largest disk
in such P, and when P lies between two parallel lines and E is the whole
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Figure 5. Limit sets of Schottky groups (reproduced with permission from Indra’s
Pearls, by D.Mumford, C. Series and D. Wright, copyright Cambridge University
Press 2002).

period (see Fig. 8), the above asymptotic was previously obtained in [37]
with a less explicit description of the main term.

2. Corollary 3.5 applies to any triangular region T (see Fig. 4) of an Apol-
lonian circle packing.

3.2. More circle packings.

3.2.1. Counting circles in the limit set Λ(Γ). If Γ\H3 is a hyperbolic
3 manifold with boundary being totally geodesic, then Γ is automatically ge-
ometrically finite [34] and Ω(Γ) is a union of countably many disjoint open
disks. Hence Theorem 3.3 applies to counting these open disks in Ω(Γ) with
respect to the curvature, provided there are infinitely many such. The picture
of a Sierpinski curve in Fig. 1 is a special case of this (so are Apollonian circle
packings). More precisely, if Γ denotes the group generated by reflections in
the sides of a unique regular tetrahedron whose convex core is bounded by four
π
4 triangles and by four right hexagons, then the residual set of a Sierpinski
curve in Fig. 1 coincides with Λ(Γ) (see [47] for details), and it is known to be
homeomorphic to the well-known Sierpinski carpet by a theorem of Claytor [9].
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Figure 6. Schottky dance (reproduced with permission from Indra’s Pearls, by
D.Mumford, C. Series and D. Wright, copyright Cambridge University Press 2002)

Three pictures in Fig. 5 can be found in the beautiful book Indra’s pearls
by Mumford, Series and Wright [50] and the residual sets are the limit sets of
some (geometrically finite) Schottky groups and hence our theorem applies to
counting circles in those pictures.

3.2.2. Schottky dance. Other kinds of examples are obtained by consider-
ing the images of Schottky disks under Schottky groups. Take k ≥ 1 pairs of
mutually disjoint closed disks {(Di, D

′
i) : 1 ≤ i ≤ k} in C and choose Möbius

transformations γi which maps Di and D′i and sends the interior of Di to the
exterior of D′i, respectively. The group, say, Γ, generated by {γi : 1 ≤ i ≤ k} is
called a Schottky group of genus k (cf. [42, Sec. 2.7]). The Γ-orbits of the disks
nest down onto the limit set Λ(Γ) which is totally disconnected. If we denote
by P the union ∪ki=1(Γ(Ci) ∪ Γ(C ′i)) where Ci and C ′i are the boundaries of
Di and D′i respectively, P is locally finite, as the nesting disks will become
smaller and smaller (cf. [50, 4.5]). The common exterior of hemispheres above
the initial disks Di and D′i, 1 ≤ i ≤ k, is a fundamental domain for Γ in the
upper half-space model H3, and hence Γ is geometrically finite. Since P con-
sists of disjoint circles, Theorem 3.3 applies to P. For instance, see Fig. 6 ([50,
Fig. 4.11]). One can find many more explicit circle packings in [50] to which
Theorem 3.3 applies.

4. Circle Packings on the Sphere

In the unit sphere S2 = {x2 +y2 +z2 = 1} with the Riemannian metric induced
from R3, the distance between two points is simply the angle between the rays
connecting them to the origin o = (0, 0, 0).
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Figure 7. Apollonian packing and Sierpinski curve on the sphere (by C. McMullen)

Let P be a circle packing on the sphere S2, i.e., a union of circles. The
spherical curvature of a circle C in S2 is given by

CurvS(C) = cot θ(C)

where 0 < θ(C) ≤ π/2 is the spherical radius of C, that is, the half of the visual
angle of C from the origin o. We suppose that P is infinite and locally finite in
the sense that there are only finitely many circles in P of spherical curvature
at most T for any fixed T > 0.

For a region E of S2, we set

NT (P, E) := #{C ∈ P : C ∩ E 6= ∅, CurvS(C) < T}.

We consider the Poincare ball model B = {x2
1 + x2

2 + x2
3 < 1} of the hyperbolic

3 space with the metric d given by
2
√
dx2

1+dx2
2+dx2

3

1−(x2
1+x2

2+x2
3)
. Note that the geometric

boundary of B is S2 and that for any circle C in S2, we have

sin θ(C) =
1

cosh d(Ĉ, o)

where Ĉ ⊂ B is the convex hull of C. As both sin θ and cosh d are monotone
functions for 0 ≤ θ ≤ π/2 and d ≥ 0 respectively, understanding NT (P, E) is
equivalent to investigating the number of Euclidean hemispheres on B meeting
the ball of hyperbolic radius T based at o whose boundaries are in P and
intersect E.

Let G denote the orientation preserving isometry group of B.

Theorem 4.1 ([52]). Let Γ be a non-elementary geometrically finite discrete
subgroup of G and P = ∪i∈IΓ(Ci) be an infinite, locally finite, and Γ-invariant
circle packing on the sphere S2 with finitely many Γ-orbits.
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Suppose one of the following conditions hold:

1. Γ is convex co-compact;

2. all circles in P are mutually disjoint;

3. ∪i∈IC◦i ⊂ Ω(Γ) where C◦i denotes the interior of Ci.

Then for any Borel subset E ⊂ S2 whose boundary is of zero Patterson-Sullivan
measure,

NT (P, E) ∼ skΓ(P) · νo(E)

δΓ · |mBMS
Γ |

· 2δΓ · T δΓ as T →∞

where 0 < skΓ(P) <∞ is defined in Def. 3.2.

5. Integral Apollonian Packings: Primes and
Twin Primes

A circle packing P is called integral if the curvatures of all circles in P are inte-
gral. One of the special features of Apollonian circle packings is the abundant
existence of integral Apollonian circle packings.

Descartes noted in 1643 (see [10]) that a quadruple (a, b, c, d) of real numbers
can be realized as curvatures of four mutually tangent circles in the plane
(oriented so that their interiors are disjoint) if and only if it satisfies

2(a2 + b2 + c2 + d2)− (a+ b+ c+ d)2 = 0. (5.1)

Usually referred to as the Descartes circle theorem, this theorem implies that
if the initial four circles in an Apollonian circle packing P in the plane have
integral curvatures, then P is an integral packing, as observed by Soddy in 1937
[70]. The Descartes circle theorem provides an integral Apollonian packing for
every integral solution of the quadratic equation (5.1) and indeed there are
infinitely many distinct integral Apollonian circle packings.

Let P be an integral Apollonian circle packing. We can deduce from the
existence of the lower bound for the non-zero curvatures in P that such P is
either bounded or lies between two parallel lines. We assume that P is primitive,
that is, the greatest common divisor of curvatures is one.

Calling a circle with a prime curvature a prime and a pair of tangent prime
circles a twin prime, Sarnak showed:

Theorem 5.2 ([64]). There are infinitely many primes, as well as twin primes,
in P.

For P bounded, denote by πP(T ) the number of prime circles in P of cur-
vature at most T , and by πP2 (T ) the number of twin prime circles in P of
curvatures at most T . For P congruent to the packing in Fig. 8, we alter the
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Figure 8. An Apollonian circle packing between two parallel lines.

definition of πP(T ) and πP2 (T ) to count prime circles in a fixed period. Sarnak
showed [64] that

πP(T )� T

(log T )
3/2

.

Recently Bourgain, Gamburd and Sarnak ([3] and [4]) obtained a uniform
spectral gap for the family of congruence subgroups Γ(q) = {γ ∈ Γ : γ ≡
1 (mod q)}, q square-free, of any finitely generated subgroup Γ of SL2(Z) pro-
vided δΓ > 1/2. This theorem extends to a Zariski dense subgroup Γ of SL2(Z[i])
and its congruence subgroups over square free ideals of Z[i] if δΓ > 1.

Denoting by Q the Descartes quadratic form

Q(a, b, c, d) = 2(a2 + b2 + c2 + d2)− (a+ b+ c+ d)2,

the approach in [37] for counting circles in Apollonian circle packings which are
either bounded or between two parallel lines is based on the interpretation of
such circle counting problem into the counting problem for wΓ ∩ Bmax

T where
Γ < OQ(Z) is the so-called Apollonian group, w ∈ Z4 with Q(w) = 0 and Bmax

T

denotes the maximum norm ball in R4.
Using the spin double cover SpinQ → SOQ and the isomorphism SpinQ(R) =

SL2(C), we use the aforementioned result of Bourgain, Gamburd and Sarnak to
obtain a smoothed counting for wΓ(q) ∩BT with a uniform error term for the
family of square-free congruence subgroups Γ(q)’s where BT is the Euclidean
norm ball. This is a crucial ingredient for the Selberg’s upper bound sieve,
which is used to prove the following:

Theorem 5.3 ([37]). As T →∞,

πP(T )� Tα

log T
, and πP2 (T )� Tα

(log T )2

where α = 1.30568(8) is the residual dimension of P.

Remark 5.4. 1. Modulo 16, the Descartes equation (5.1) has no solutions
unless two of the curvatures are even and the other two odd. In particular,
there are no “triplet primes” of three mutually tangent circles, all having
odd prime curvatures.
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2. We can also use the methods in [37] to give lower bounds for almost
primes in a packing. A circle in P is called R-almost prime if its curvature
is the product of at most R primes. Similarly, a pair of tangent circles is
called R-almost twin prime if both circles are R-almost prime. Employing
Brun’s combinatorial sieve, our methods show the existence of R1, R2 > 0
(unspecified) such that the number of R1-almost prime circles in P whose
curvature is at most T is � Tα

log T ,
1 and that the number of pairs of R2-

almost twin prime circles whose curvatures are at most T is � Tα

(log T )2 .

3. A suitably modified version of Conjecture 1.4 in [3], a generalization of
Schinzel’s hypothesis, implies that for some c, c2 > 0,

πP(T ) ∼ c · Tα

log T
and πP2 (T ) ∼ c2 ·

Tα

(log T )2
.

The constants c and c2 are detailed in [24].

4. Recently Bourgain and Fuchs [2] showed that in a given bounded integral
Apollonian packing P, the growth of the number of distinct curvatures at
most T is at least c · T for some c > 0.

5. The spherical Soddy-Gossett theorem says (see [38]) that the quadruple
(a, b, c, d) of spherical curvatures of four mutually tangent circles in P
satisfies

2(a2 + b2 + c2 + d2)− (a+ b+ c+ d)2 = −4.

This theorem implies again that there are infinitely many integral spher-
ical Apollonian circle packings, that is, the spherical curvature of every
circle is integral. It will be interesting to have results analogous to Theo-
rems 5.2 and 5.3 for integral spherical Apollonian packings.

6. Equidistribution in Geometrically Finite
Hyperbolic Manifolds

Let G be the identity component of the group of isometries of Hn and Γ < G
be a non-elementary geometrically finite discrete subgroup.

We have discussed that the Bowen-Margulis-Sullivan measure is a finite
measure on the unit tangent bundle T1(Γ\Hn) which is mixing for the geodesic
flow. Another measure playing an important role in studying the dynamics of
flows on T1(Γ\Hn) is the following Burger-Roblin measure.

Burger-Roblin measure: The Burger-Roblin measure mBR
Γ is the induced

measure on T1(Γ\Hn) of the following Γ-invariant measure on T1(Hn):

dm̃BR(u) = e(n−1)βu+ (x,π(u)) eδΓβu− (x,π(u)) dmx(u+)dνx(u−)dt

1By f(T ) � g(T ), we mean g(T ) � f(T ) � g(T ).
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where mx denotes the probability measure on the boundary ∂∞(Hn) invariant
under the maximal compact subgroup StabG(x0). For any x and x0 ∈ Hn, we
have dmx(ξ) := e−(n−1)βξ(x,x0)dmx0

(ξ) and it follows that this definition of
mBR

Γ is independent of the choice of x ∈ Hn.

Burger [8] showed that for a convex cocompact hyperbolic surface with δΓ at
least 1/2, this is a unique ergodic horocycle invariant measure up to homothety.
Roblin [59] extended Burger’s result in much greater generality, for instance,
including all non-elementary geometrically finite hyperbolic manifolds.

The name of the Burger-Roblin measure was first suggested by Shah and
the author in [37] and [53] in recognition of this important classification result.

We note that the total mass |mBR
Γ | is finite only when δΓ = n − 1 (or

equivalently only when Γ is a lattice in G) and is supported on the set {u ∈
T1(Γ\Hn) : u− ∈ Λ(Γ)}.

Let S† ⊂ T1(Hn) be one of the following:

1. an unstable horosphere;

2. the oriented unit normal bundle of a codimension one totally geodesic
subspace of Hn

3. the set of outward normal vectors to a (hyperbolic) sphere in Hn.

We consider the following measures on StabΓ(S†)\S† :

dµLeb
S† (s) = e(n−1)βs+ (x,π(s))dmx(s+), dµPS

S† (s) = eδΓβs+ (x,π(s))dνx(s+)

for any x ∈ Hn.

Denote by p the canonical projection T1(Hn)→ T1(Γ\Hn) = Γ\T1(Hn).

Theorem 6.1 ([53]). For ψ ∈ Cc(T1(Γ\Hn)) and any relatively compact subset
O ⊂ p(S†) with µPS

S† (∂(O)) = 0,

e(n−1−δΓ)t ·
∫
O
ψ(gt(s)) dµLeb

S† (s) ∼
µPS
S† (O∗)

δΓ · |mBMS
Γ |

·mBR
Γ (ψ) as t→∞

where

O∗ = {s ∈ O : s+ ∈ Λ(Γ)}.

Definition 6.2. For a hyperbolic subspace S = Hn−1 ⊂ Hn, we say that a
parabolic fixed point ξ ∈ Λ(Γ) ∩ ∂∞(Hn−1) of Γ is internal if any parabolic
element γ ∈ Γ fixing ξ preserves Hn−1.

Recalling the notation π for the canonical projection from T1(Hn) to Hn,
we set S = π(S†).
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Theorem 6.3 ([53]). We assume that the projection map StabΓ(S)\S → Γ\Hn
is proper. In the case when S is a codimension one totally geodesic subspace,
we also assume that every parabolic fixed point of Γ in the boundary of S is
internal.

For ψ ∈ Cc(T1(Γ\Hn)),

e(n−1−δΓ)t ·
∫
p(S†)

ψ(gt(s)) dµLeb
S† (s) ∼

µPS
S† (S

†
∗)

δΓ · |mBMS
Γ |

·mBR
Γ (ψ) as t→∞

where
S†∗ = {s ∈ p(S†) : s+ ∈ Λ(Γ)}.

We have 0 ≤ µPS
S† (S

†
∗) < ∞, and µPS

S† (S
†
∗) = 0 may happen only when S is

totally geodesic.

It can be shown by combining results of [11] and [45] that in a finite volume
space Γ\Hn, the properness of the projection map StabΓ(S)\S → Γ\H3 implies
that StabΓ(S)\S is of finite volume as well, except for the case when n = 2 and
S is a proper geodesic in H2 connecting two parabolic fixed points of a lattice
Γ < PSL2(R).

When both Γ\Hn and StabΓ(S)\S are of finite volume, we have n− 1 = δΓ
and both mBMS

Γ and mBR
Γ are finite invariant measures and µPS

S† = µLeb
S† (up to a

constant multiple). In this case, Theorem 6.3 is due to Sarnak [63] for the closed
horocycles for n = 2. The general case is due to Duke, Rudnick and Sarnak [14]
and Eskin and McMullen [19] gave a simpler proof of Theorem 6.3, based on the
mixing property of the geodesic flow of a finite volume hyperbolic manifold. The
latter proof, combined with a strengthened version of the wavefront lemma [28],
also works for proving Theorem 6.1. We remark that the idea of using mixing in
this type of problem goes back to the 1970 thesis of Margulis [46] (see also [31,
Appendix]). Eskin, Mozes and Shah [20] and Shah [69] provided yet another
different proofs using the theory of unipotent flows. When both Γ\Hn and
StabΓ(S)\S are of finite volume, Theorem 6.1 easily implies Theorem 6.3 but
not conversely.

In the case when S† is a horosphere, Theorem 6.1 was obtained in [59],
and Theorem 6.3 was proved in [37] when δΓ > (n − 1)/2 with a different
interpretation of the main term.

Remark 6.4. 1. The condition on the internality of all parabolic fixed
points of Γ in the boundary of S is crucial, as µPS

S† (S
†
∗) = ∞ otherwise.

This can already be seen in the level of a lattice: take Γ = SL2(Z) and
let S be the geodesic connecting 0 and ∞ in the upper half space model.
Then any upper triangular matrix in Γ fixes ∞ but does not stabilize S.
Indeed the length of the image of S in Γ\H2 is infinite.

2. In proving Theorem 3.3, we count circles in C by counting the corre-
sponding Euclidean hemispheres in H3. As the Euclidean hemispheres
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are totally geodesic hyperbolic planes, this amounts to understanding the
distribution of a Γ-orbit of a totally geodesic hyperbolic plane in H3. The
equidistribution theorem we use here is Theorem 6.3 for S a hyperbolic
plane.

3. More classical applications of the equidistribution theorem such as Theo-
rem 6.3 can be found in the point counting problems of Γ-orbits in various
spaces.

For a Γ-orbit in the hyperbolic space Hn, the orbital counting in Rieman-
nian balls was obtained Lax-Phillips [39] for δΓ >

n−1
2 and by Roblin [59]

in general.

Extending the work of Duke, Rudnick and Sarnak [14] and of Eskin and
McMullen [19] for Γ lattices, we obtain in [53], for any geometrically finite
group Γ of G, the asymptotic of the number of vectors of norm at most
T lying in a discrete orbit wΓ of a quadric

F (x1, · · · , xn+1) = y

for a real quadratic form F of signature (n, 1) and any y ∈ R (when
y > 0, there is an extra assumption on w not being Γ strongly parabolic.
See [53] for details). When y = 0 and n = 2, 3, special cases of this result
were obtained in [35], [37] and [36] under the condition δΓ > (n − 1)/2.
Based on the Descartes circle theorem, this result in [37] was used to prove
Theorem 3.5 for the bounded Apollonian packings. In [40], a Γ-orbit in
the geometric boundary is shown to be equidistributed with respect to
the Patterson-Sullivan measure, extending the work [25] for the lattice
case.

4. For ψ ∈ Cc(Γ\Hn), we have

mBR
Γ (ψ) = 〈ψ, φΓ〉 :=

∫
Γ\Hn

ψ(x) · φΓ(x) dmLeb(x)

where φΓ(x) = |νx| is the positive eigenfunction of the Laplace operator
on Γ\Hn with eigenvalue δΓ(n− 1− δΓ) and

dmLeb(u) = e(n−1)βu+ (x,π(u)) e(n−1)βu− (x,π(u)) dmx(u+)dmx(u−)dt

for any x ∈ Hn. Hence Theorem 6.3 says that for ψ ∈ Cc(Γ\Hn),

e(n−1−δΓ)t ·
∫
p(S†)

ψ(π(gt(s))) dµLeb
S† (s) ∼

µPS
S† (S

†
∗)

δΓ · |mBMS
Γ |

·〈ψ, φΓ〉 as t→∞.

(6.5)

When δΓ > (n − 1)/2, φΓ ∈ L2(Γ\Hn) and its eigenvalue δΓ(n − 1 − δΓ)
is isolated in the L2-spectrum of the Laplace operator [39]. It will be
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desirable to obtain a rate of convergence in (6.5) in terms of the spectral
gap of Γ in such cases. For Γ lattices, it was achieved in [14] for p(S)
compact and in [1] in general. This was done in the case of a horosphere
in [37], which was the main ingredient in the proof of Theorem 5.3. It
may be possible to extend the methods of [37] to obtain an error term in
general.

7. Further Remarks and Questions

Let G be the identity component of the group of isometries of Hn and Γ be
a geometrically finite group. We further assume that Γ is Zariski dense in G
for discussions in this section. When we identify Hn with G/K for a maximal
compact subgroup K, the unit tangent bundle T1(Hn) can be identified with
G/M where M is the centralizer in K of a Cartan subgroup, say, A, whose
multiplication on the right corresponds to the geodesic flow. The frame bundle
of Hn can be identified with G and the frame flow on the frame bundle is given
by the multiplications by elements of A on the right.

We have stated the equidistribution results in section 6 in the level of the
unit tangent bundle T1(Γ\Hn). As the frame bundle is a homogeneous space
of G unlike the unit tangent bundle, it is much more convenient to work in
the frame bundle. Fortunately, as observed in [23], the frame flow is mixing
on Γ\G with respect to the lift from Γ\G/M to Γ\G of the Bowen-Margulis-
Sullivan measure. Using this, we can extend Theorems 6.1 and 6.3 to the level of
the frame bundle Γ\G. It seems that the classification theorem of Burger and
Roblin can also be extended: for a horospherical group N , any locally finite
N -invariant ergodic measure on Γ\G is either supported on a closed N -orbit or
the lift of the Burger-Roblin measure (we caution here that a locally finite N -
invariant measure supported on a closed N -orbit need not be a finite measure
unlike the Γ-lattice cases).

In analogy with Ratner’s theorem [56], [57], we propose the following prob-
lems: let U be a one-parameter unipotent subgroup, or more generally a sub-
group generated by unipotent one parameter subgroups of G:

1. [Measure rigidity] Classify all locally finite Borel U -invariant ergodic mea-
sures on Γ\G.

2. [Topological rigidity] Classify the closures of U -orbits in Γ\G.

We remark that as G = SO(n, 1) (up to a local isomorphism) in our set-up,
the above topological rigidity for Γ lattices was also obtained by Shah ([68],
[67]) based on the apporoach of Margulis ([43], [44]) and of Dani and Margulis
[13].

Both questions are known for n = 2 due to Burger [8] and Roblin [59],
as in this case, there is only one unipotent one-parameter subgroup up to
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conjugation, which gives the horocycle flow. Shapira used them to prove equidis-
tribution for non-closed horocycles [65].

It may be a good idea to start with a sampling case when G = SL2(C),
U = SL2(R) and Γ < G Zariski dense and geometrically finite.

1. Are there any locally finite SL2(R)-invariant ergodic measure on
Γ\SL2(C) besides the Haar measure (=the SL2(C)-invariant measures)
and the SL2(R)-invariant measures supported on closed SL2(R) orbits?

2. Is every non-closed SL2(R)-orbit dense in Γ\ SL2(C) ?

It seems that the answers are no for (1) and yes for (2).
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[16] N. D. Elkies and C. T. McMullen. Gaps in
√
n mod 1 and ergodic theory. Duke

Math. J., 123(1):95–139, 2004.

[17] Nicholas Eriksson and Jeffrey C. Lagarias. Apollonian circle packings: number
theory. II. Spherical and hyperbolic packings. Ramanujan J., 14(3):437–469,
2007.

[18] Alex Eskin. Counting problems and semisimple groups. In Proceedings of the
International Congress of Mathematicians, Vol. II (Berlin, 1998), number Extra
Vol. II, pages 539–552 (electronic), 1998.

[19] Alex Eskin and C. T. McMullen. Mixing, counting, and equidistribution in Lie
groups. Duke Math. J., 71(1):181–209, 1993.

[20] Alex Eskin, Shahar Mozes, and Nimish Shah. Unipotent flows and counting
lattice points on homogeneous varieties. Ann. of Math. (2), 143(2):253–299,
1996.

[21] Alex Eskin and Hee Oh. Ergodic theoretic proof of equidistribution of Hecke
points. Ergodic Theory Dynam. Systems, 26(1):163–167, 2006.

[22] Alex Eskin and Hee Oh. Representations of integers by an invariant polynomial
and unipotent flows. Duke Math. J., 135(3):481–506, 2006.

[23] L. Flaminio and R. J. Spatzier. Geometrically finite groups, Patterson-Sullivan
measures and Ratner’s rigidity theorem. Invent. Math., 99(3):601–626, 1990.

[24] E. Fuchs and K. Sanden. Some experiments with integral apollonian circle pack-
ings. Preprint, 2010.

[25] Alex Gorodnik and Hee Oh. Orbits of discrete subgroups on a symmetric space
and the Furstenberg boundary. Duke Math. J., 139(3):483–525, 2007.

[26] Alex Gorodnik and Hee Oh. Rational points on homogeneous varieties and
equidistribution of adelic periods (with an appendix by Borovoi), Preprint
(arXiv:0803.1996), 2008.

[27] Alex Gorodnik, Hee Oh, and Nimish Shah. Integral points on symmetric varieties
and Satake compactifications. Amer. J. Math., 131(1):1–57, 2009.

[28] Alex Gorodnik, Hee Oh, and Nimish Shah. Strong wavefront lemma and counting
lattice points in sectors. Israel. J. Math., 176: 419–444, 2010.

[29] Ronald L. Graham, Jeffrey C. Lagarias, Colin L. Mallows, Allan R. Wilks, and
Catherine H. Yan. Apollonian circle packings: number theory. J. Number Theory,
100(1):1–45, 2003.

[30] Ronald L. Graham, Jeffrey C. Lagarias, Colin L. Mallows, Allan R. Wilks, and
Catherine H. Yan. Apollonian circle packings: geometry and group theory. I. The
Apollonian group. Discrete Comput. Geom., 34(4):547–585, 2005.

[31] D. Kleinbock and G. A. Margulis. Bounded orbits of nonquasiunipotent flows
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[59] Thomas Roblin. Ergodicité et équidistribution en courbure négative. Mém. Soc.
Math. Fr. (N.S.), (95):vi+96, 2003.

[60] Daniel J. Rudolph. Ergodic behaviour of Sullivan’s geometric measure on a
geometrically finite hyperbolic manifold. Ergodic Theory Dynam. Systems, 2(3-
4):491–512 (1983), 1982.

[61] Omri Sarig. Unique ergodicty for infinite measures. To appear in Proc. ICM
(2010).

[62] Peter Sarnak. Integral Apollonian packings. MAA Lecture, 2009, available at
www.math.princeton.edu/ sarnak.

[63] Peter Sarnak. Asymptotic behavior of periodic orbits of the horocycle flow and
eisenstein series. Comm. Pure Appl. Math., 34(6):719–739, 1981.

[64] Peter Sarnak. Letter to J. Lagarias, 2007. available at
www.math.princeton.edu/ sarnak.

[65] Barbara Schapira. Equidistribution of the horocycles of a geometrically finite
surface. Int. Math. Res. Not., (40):2447–2471, 2005.

[66] Nimish Shah. Equidistribution of translated submanifolds on homogeneous
spaces and Dirichler’s approximation theorem To appear in Proc. ICM (2010).

[67] Nimish Shah. Closures of totally geodesic immersions in manifolds of constant
negative curvature. In Group theory from a geometrical viewpoint (Trieste, 1990),
pages 718–732. World Sci. Publ., River Edge, NJ, 1991.

[68] Nimish Shah. Uniformly distributed orbits of certain flows on homogeneous
spaces. Math. Ann., 289(2):315–334, 1991.

[69] Nimish Shah. Limit distributions of expanding translates of certain orbits on
homogeneous spaces. Proc. Indian Acad. Sci. Math. Sci., 106(2):105–125, 1996.



Dynamics on Geometrically Finite Hyperbolic Manifolds 1331

[70] F. Soddy. The bowl of integers and the hexlet. Nature, 139:77–79, 1937.

[71] Dennis Sullivan. The density at infinity of a discrete group of hyperbolic motions.
Inst. Hautes Études Sci. Publ. Math., (50):171–202, 1979.

[72] Dennis Sullivan. Entropy, Hausdorff measures old and new, and limit sets of
geometrically finite Kleinian groups. Acta Math., 153(3–4):259–277, 1984.

[73] Dennis Sullivan. Related aspects of positivity in Riemannian geometry. J. Dif-
ferential Geom., 25(3):327–351, 1987.
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Understanding the limiting distributions of translates of measures on subman-
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1. Introduction

Several problems in number of theory and geometry involve more than one
groups of symmetries or invariance in a direct or an indirect manner. Under-
standing the dynamics associated to interactions between these groups equips
us with deeper new insights into these problems. The proof of Oppenheim
conjecture on values of quadratic forms at integral points due to Margulis[16]
via study of unipotent flows provided great impetus to the approach of solv-
ing number theoretic problems via homogeneous flows techniques. The work
of Ratner [17, 18] on classification of invariant measures and orbit closures for
unipotent flows as conjectured by Raghunathan and Dani [3] has created the
foundation for this area. Since than significant progress and success have been
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achieved in this field by several authors in terms of deep number theoretic and
dynamical theorems and powerful techniques. We will discuss a class of such
results which are based on describing the limit distributions of sequences of
translates of smooth measures on submanifolds in homogeneous spaces of Lie
groups.

2. Counting Integral Points on Varieties and

Translates of Closed Orbits of Subgroups

Let V be an affine algebraic subvariety of Rn defined over Q. Let B be a
bounded open convex set in Rn−1 with smooth boundary. For T > 0, define

N(T, V ) = Cardinality(V ∩ Zn ∩ TB).

In general, it is a difficult problem to estimate N(T, V ) as T → ∞.
In [9] Duke, Rudnick and Sarnak observed that when V is an orbit of an

algebraic semisimple Q-group G acting linearly on Rn, due a theorem of Borel
and Harish-Chandra, V ∩Zn is a union of finitely many orbits of a finite index
subgroup, say Γ, of G(Z). And hence, if p ∈ V ∩ Zn 6= ∅, we want to obtain
asymptotic estimate of

N(T,Γp) = Cardinality(Γp ∩ TB)

as a function of T for large T > 0. Recognizing the role of symmetry and
invariance groups in this problem, they noted that if H denotes the stabilizer
of p, then under some natural conditions we might expect the following limit
to hold:

lim
T→∞

N(T,Γp)

VolG/H({gH ∈ G/H : g ∈ G, gp ∈ TB})
= 1, (1)

were the G-invariant VolG/H on G/H is determined by the choices of Haar
measures on G and H such that Vol(G/Γ) = Vol(H/H ∩ Γ) = 1.

In [9], they verified this limit for affine symmetric varieties V by introducing
a counting technique, and relating it to the following equidistribution result.

Theorem 2.1 (Duke-Rudnick-Sarnak). Let G be a non-compact simple Lie
group, and H be a symmetric subgroup of G; that is, H is the fixed point set
of an involutive automorphism (for example, a Cartan involution) of G. Let
Γ be a lattice in G, and suppose that H ∩ Γ is a lattice in H. Let µG denote
the G-invariant probability measure on G/Γ, and µH denote the H-invariant
probability measure on G/Γ supported on HΓ/Γ ∼= H/H ∩ Γ. Then for any
sequence {gi} in G which is divergent modulo H, we have

∫

giHΓ/Γ

f d(giµH) :=

∫

y∈HΓ/Γ

f(giy) dµH(y)
i→∞
−−−→

∫

G/Γ

f dµG,
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for any bounded continuous function f on G/Γ.
In other words, the sequence of translated measures giµH converge to µG in

the space of probability measures on G/Γ with respect to the weak-∗ topology.

The proof of this result in [9] is based on deep results of harmonic analysis of
L2(G/Γ). Later Eskin and McMullen [10] deduced Theorem 2.1 as a geometric
or a Lie theoretic consequence the mixing property of the sequence of gi-actions
on G/Γ.

The above counting problem and the equidistribution theorem, in view of
Ratner’s theorem[17] on unipotent flows, motivated the following more general
result of [11].

Theorem 2.2 (Eskin-Mozes-Shah). Let G and H ⊂ G be connected real alge-
braic groups defined groups over Q and admitting no nontrivial Q-characters.
Let Γ ⊂ G(Q) be a lattice in G. Let µG and µH be invariant probability mea-
sures G/Γ and HΓ/Γ, respectively. Suppose that for a sequence {gi} in G, the
sequence of translated measures giµH converges to a probability measure λ on
G/Γ with respect to the weak-∗ topology. Then there exists a Q-subgroup L of
G containing H and c ∈ G such that

(i) λ = cµL, were µL is the L-invariant probability measure on LΓ/Γ; and

(ii) there exist sequences {γi} ⊂ Γ and ci → c in G such that giH = ciγiH
and γiH ⊂ Lγi for all large i.

Thus any limit measure is algebraically defined, and the obstruction for this
measure to be G-invariant can be algebraically explained.

To prove this theorem one shows that except for the case when gi is bounded
modulo Z(H) ∩ Γ, there exists a sequence Xi ∈ Lie(H) such that Xi → 0 and
(Ad gi)Xi → Y 6= 0 in Lie(G), and λ is invariant under the action of the one-
parameter subgroup {exp(tY ) : t ∈ R}. Since 0 is the only eigenvalue of Y ,
the measure λ is invariant under a unipotent one-parameter subgroup. Now
Ratner’s theorem describing such measures become applicable to this question.

In [11], using the counting technique introduced by Duke, Rudnick, and
Sarnak, the above result was used for proving (1) under appropriate conditions
for a wide class of varieties V , and in particular, when H is a maximal Q-
subgroup of G. For example, we show the following:

Let p(x) ∈ Z[x] be an irreducible monic polynomial. Then the cardinality
of the set of n × n integral matrices of norm at most T and having p(x) as
the characteristic polynomial is asymptotically equivalent to cTn(n−1)/2, where
c > 0 is a constant which can be described in terms of class number, regulator,
and discriminant associated to the number field generated by a root of p(x) (cf.
[22]).

2.1. Expanding translates of smooth measures on horo-
spherical leaves. The work of Eskin and McMullen [10] also motivated
the following result [21]:
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Theorem 2.3 (Shah). Let G be a noncompact simple Lie group, and g ∈ G be
a semisimple element not contained in a compact subgroup of G . Let U = {u ∈
G : g−nugn → e as n → ∞} denote the expanding horospherical subgroup of g.
Let L be a Lie group containing G, and Γ a lattice in L such that Gx0 is dense
in L/Γ, where x0 = eΓ. Let λ be a probability measure on U which is absolutely
continuous with respect to a Haar measure on U . Let λ̄ be the pushforward of
λ on Gx0 under the map h 7→ hx0 from G to L/Γ. Then as n → ∞, anλ̄
converges weakly to µL, the L-invariant probability measure on L/Γ. In other
words, for any bounded continuous function f on L/Γ,

lim
n→∞

∫

h∈U

f(gnhx0) dλ(h) =

∫

L/Γ

f dµL.

The above result can be generalized as follows: Let

P− = {b ∈ G : {gnbg−n : n ∈ N} is compact}

denote the stable subgroup for g. Let λ be any probability measure on G such
that the pushforward of λ on P−\G is absolutely continuous. Let λ̄ denote the
pushforward of λ on Gx0. Then gnλ̄ converges weakly to µL.

As a special case one generalizes Theorem 2.1 as follows: Let H be a sym-
metric subgroup of G, λ be a probability measure which is absolutely continuous
with respect to a Haar measure on H, and λ̄ denote the pushforward of λ on
Hx0. Then for any sequence {gi} ⊂ G, which diverges modulo H, the sequence
giλ̄ converges weakly to µL as i → ∞. This result has interesting consequences
to equidistribution of dense orbits of lattices on homogeneous spaces [13, 12].

3. Limits of measures on stretching translates

of submanifolds

In view of the results and notation of subsection 2.1, we ask the following
question: Let M be an immersed submanifold of U with dim(M) < dim(U) and
λ be a probability measure on M which is absolutely continuous with respect
to a smooth measure on M . Let λ̄ denote the pushforward of λ on Gx0. Under
what condition on the geometric shape ofM we have that gnλ̄ → µL as n → ∞?

3.0.1. An algebraic obstruction to the limit of gnλ̄ being equal to µL.

Define

P−

L = {b ∈ L : {gnbg−n : n > 0} is compact}.

Suppose that H is a proper subgroup of L containing g, and q ∈ L is such
that the orbit Hqx0 is closed and carries a finite H-invariant measure. Suppose
that M ⊂ U ∩ P−

L Hq. Then any weak-∗ limit of probability measures gnλ̄ is
a direct integral of measures which are supported on closed sets of the form
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bHqx0, where b ∈ P−

L is such that {gnbg−n : n < 0} is compact. Such limiting
measures are concentrated on strictly low dimensional submanifolds of L/Γ.

We ask if this is the only condition on the geometric shape of M . In the
remaining article we will show that this is indeed the case in certain specific
situations, and obtain new number theoretic and geometric consequences.

3.1. Translates of a finite arc under geodesic flow. Let
G = SO(n, 1) and {at} be a connected maximal R-diagonalizable subgroup of
G. Let P− = {b ∈ G : {atba−t : t > 0} is compact} and U be the corresponding
expanding horospherical subgroup of G. Here P−\G ∼= Sn−1 and U ∼= Rn−1,
and the map u 7→ P−u from U to P−\G correspond to the inverse-stereographic
projection, and the right action of G on P−\G ∼= Sn−1 is via conformal trans-
formations. If H is a proper closed subgroup of G containing {at} and some
nontrivial unipotent subgroup, then P−H correspond to a proper subsphere of
Sn−1. Therefore U ∩ P−Hg is an affine subspace or a subsphere in U ∼= Rn−1.
In [23] we show the following:

Theorem 3.1 (Shah). Let φ : (0, 1) → U be an analytic map such that φ(0, 1)
is not contained in a proper subsphere or a proper affine subspace. Then for
any lattice Γ in G, x ∈ G/Γ and any bounded continuous function f on G/Γ,

lim
t→∞

∫ 1

0

f(atφ(s)x) ds =

∫

G/Γ

f dµG

where µG is the G-invariant probability measure on G/Γ.

The above result was generalized for smooth maps in [24]. We can obtain
its following geometric application:

Let Hn denote the hyperbolic n-ball. Let Γ ⊂ SO(n, 1) be a torsion free
discrete group of isometries of Hn such that the hyperbolic manifold M = Hn/Γ
has finite Riemannian volume. Let π : T 1(Hn) → T 1(M) denote the natural
quotient map of the unit tangent bundles, and let gt denote the geodesic flow on
T 1(M). For v ∈ T 1(Hn), let v+ ∈ ∂Hn denote the end of the directed geodesic
starting from v.

Theorem 3.2 (Shah). Let φ : [0, 1] → T 1(Hn) be a continuous map such
that the map s 7→ φ(s)+ : (0, 1) → ∂Hn is C1 and its derivative dφ(s)+/ds is
Lipschitz and nonzero for almost all s. Suppose that the set {s ∈ (0, 1) : φ(s)+ ∈
S} has zero Lebesgue measure for any proper subsphere S ⊂ ∂Hn such that S
is the boundary of an isometric copy of Hk (2 ≤ k < n) in Hn whose image on
M is a closed subset. Then for any bounded continuous function f on T 1(M),

lim
t→∞

∫ 1

0

f(gtπ(φ(s)) ds =

∫

T 1(M)

f dµ̃M ,

where µ̃M is the probability measure on T 1(M) corresponding to the natural
Riemannian volume form on T 1(M).
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When φ is analytic, the condition of the theorem holds if the image of φ+

is not contained in a proper subsphere of ∂Hn.

4. Applications to Diophantine approximation

The above study was also prompted by the following result due to Kleinbock and
Margulis [14]: Let n ≥ 2 and Ω := {gZn : g ∈ SL(n,R)} ∼= SL(n,R)/SL(n,Z)
denote the space unimodular lattices in Rn. Given ε > 0, define Ω(ε) = {Λ ∈
Ω : ‖v‖ ≥ ε, ∀v ∈ Λr {0}}. Then Ω(ε) is compact, and ∪ε>0Ω(ε) = Ω.

For t = (t1, . . . , tn−1) ∈ Rn−1 and v = (v1, . . . , vn−1) ∈ Rn−1, define

a(t) =





et1+···+tn−1

e−t1

. . .
e−tn−1



 , u(v) =





1 v1 ... vn−1

1

. . .
1



 .

Theorem 4.1 (Kleinbock-Margulis). Let φ : (0, 1) → Rn−1 be a non-degenerate
Cn-map; that is, for almost all t ∈ (0, 1), the derivatives φ(i)(t), 1 ≤ i ≤ n− 1,
span Rn−1. Then there exist constants C > 0 and α > 0 such that

`({s ∈ (0, 1) : a(t)u(φ(s))Zn 6∈ Ω(ε)}) ≤ Cεα, ∀ε > 0, ∀t ∈ Rn−1
+ .

Kleinbock and Margulis [14] used this result to settle conjectures on metric
properties of diophantine approximation on submanifolds of Rn due to Mahler,
Sprindzuk and Baker.

The result raises the following dynamical question: Let ν denote the push-
forward of the Lebesgue measure on (0, 1) under the map s 7→ u(φ(s))x0 on Ω.
Let ti ∈ Rn−1

+ be a sequence such that all coordinates of ti tend to infinity. Then
as i → ∞, does the measure a(ti)ν tend to µ, the unique SL(n,R)-invariant
probability measure on Ω?

It was observed by Kleinbock and Weiss [15] that an affirmative answer to
this question would resolve a problem proposed by Davenport and Schmidt [7]
in the late 60’s on non-improvability of Dirichlet’s simultaneous approximation
theorem. To describe the problem, consider the following definition:

Given λ > 0 we say that ξ ∈ Rk is DT(λ) if for all but finitely many N ∈ N,
there exist 0 6= q = (q1, . . . , qk) ∈ Zk and p ∈ Z such that

|q · ξ + p| ≤ λ/Nk and |qi| ≤ N, ∀i. (2)

Similarly, we say that ξ = (ξ1, . . . , ξk) ∈ Rk is DT′(λ) if for all but finitely
many N ∈ N, there exist 0 6= q ∈ Z and p ∈ Zk such that

|qξi + p| ≤ λ/N, ∀i, and |q| ≤ Nk.

Dirichlet’s simultaneous approximation theorem states that every ξ ∈ Rk

is DT(1) and DT′(1). Davenport and Schmidt [6] showed that for any λ < 1,
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almost every ξ ∈ Rk is not DT(λ) and not DT′(λ). In [7] they showed that for
almost any ξ ∈ R the vector (ξ, ξ2) is not DT(1/4). The result was generalized
by Baker [1] for points on more general curves on R2, by Dodson, Rynne and
Vickers [8] for points on ‘low co-dimensional curved submanifolds’ of Rn, by
Bugeaud [2] for the curve (ξ, ξ2, . . . , ξn), and by Kleinbock and Weiss [15] for
all nondegenerate curves on Rk. In each case, it was proved that almost all
points of the parametrized submanifold with respect to the parameter measure
are not DT(λ) for some very small value of λ > 0 depending on the submanifold.

In [25] we provide the following answer to the above problem:

Theorem 4.2 (Shah). Let B be a ball in Rd for some d ≥ 1, and φ : B → Rk

be an analytic map whose image is not contained in a proper affine subspace of
Rk. Then for almost every b ∈ B, the point φ(b) is neither DT(λ) nor DT′(λ)
for any λ < 1.

The above statement is a consequence of the following equidistribution re-
sult [25]:

Theorem 4.3 (Shah). Let L be any Lie group and ρ : G = SL(n,R) → L
be a continuous homomorphism. Let Γ be a lattice in L. Let B be a bounded
open subset in Rd (d ≥ 1). Let φ : B → SL(n,R) be an analytic map such that
the image of the first row of this map is not contained in a proper subspace of
Rn. Put at = a((t, t, . . . , t)) ∈ SL(n,R) (t ∈ R). Let x ∈ L/Γ and suppose that
ρ(G)x is dense in L/Γ. Then for a bounded continuous function f on L/Γ,

lim
t→∞

1

Vol(B)

∫

b∈B

f(ρ(atu(φ(b))x) db =

∫

L/Γ

f dµL, (3)

where db denotes the Lebesgue integral on Rd, and µL is the L-invariant prob-
ability measure on L/Γ.

4.0.1. Expanding translates of shrinking submanifolds. Fix any b ∈ B
and let Bt denote a ball of radius e−t about b. If B is replaced by the shrinking
balls Bt in (3) then we still expect the limiting measure to be µL. This has
been verified in the case of n = 3. This type of result would allows us to deduce
the above theorem when φ to is a non-degenerate Cn curve as in Theorem 4.1.

4.1. Multiplicative Dirichlet-Minkowski approximation.
The following generalization of Dirichlet’s theorem is known as Minkowski’s
theorem on simultaneous approximation of Linear forms: For n ≥ 2, let
(φij) ∈ SL(n,R). Let α1, . . . , αn > 0 be such that α1 · · ·αn = 1. Then there
exist x1, . . . , xn ∈ Z, not all 0s, such that

|φ11x1 + · · ·+ φ1nxn| ≤ α1; |φi1x1 + · · ·+ φinxn| < αi (i ≥ 2). (4)

By putting φ11 = · · · = φnn = 1 and φij = 0 for i ≥ 2 and j 6= i, we get
a multiplicative version Dirichlet’s theorem. Now we define the corresponding



Equidistribution and Dirichlet’s Approximation 1339

λ-version: For k = n − 1, let N ⊂ Nk be an infinite sequence and 0 < λ ≤ 1.
We say that (ξ1, . . . , ξk) ∈ Rk is MDT(λ) along N if for all but finitely many
(N1, . . . , Nk) ∈ N , there exist q1, . . . , qk ∈ Z, not all zero, and p ∈ Z such that

|p+ q1ξ1 + · · ·+ qkξk| ≤ λ/(N1N2 . . . Nk) and |qi| < Ni, ∀i. (5)

We also define MDT′(λ) in a similar way. Minkowski’s result implies that all
points are MDT(1) and MDT′(1) along any N .

Kleinbock and Weiss [15] proved that if each coordinate projection of N is
a divergent sequence then almost all ξ ∈ Rk are neither MDT(λ) nor MDT′(λ)
along N for any λ < 1. They also showed that given a non-degenerate smooth
curve in Rk, there exists a very small λ > 0 so that for almost every ξ on this
curve is not MDT(λ) along N .

For analytic curves not contained in proper affine subspaces of Rk we extend
their result for any λ < 1 in [26] as follows:

Theorem 4.4 (Shah). Let N be an infinite subset of Nk. Let B be an open ball
in Rd and φ : B → Rk be an analytic map whose image is not contained in a
proper affine subspace. Then for almost all b ∈ B with respect to the Lebesgue
measure on Rd and λ < 1 there exist infinitely many (N1, . . . , Nk) ⊂ N such
that both the following sets of inequalities are simultaneously insoluble:

|q1φ1(b) + · · ·+ qkφk(b) + p| ≤ λ/(N1 · · ·Nk), |qi| ≤ Ni (∀i), (6)

for p, q1, . . . , qk ∈ Z, not all zeros; and

|qφi(b) + pi| ≤ λN−1
i (∀i), |q| ≤ N1N2 . . . Nk, (7)

for p1, . . . , pk, q ∈ Z, not all zeros.

In particular, φ(b) is neither MDT(λ) nor MDT′(λ) along N for any λ < 1
and almost all b ∈ B.

It may be noted that, due to a theorem of Minkowski and Hajosh on critical
lattices, the analogue of the above theorem on multiplicative non-improvability
alongN fails to hold if we take an unbounded sequenceN contained (R+)

k such
that one of the coordinates of N converges to an element of Rr N (see [26]).

The deductions of the above results are based on the following relation be-
tween the approximation inequality and matrix action on the space of unimod-
ular lattices in Rk+1 (see[4, 14, 15]); that is, the inequalities (5) are equivalent
to







N1···Nk

N−1

1

. . .
N−1

k











1 ξ1 ... ξn−1

1

. . .
1









p
q1

...
qk



 ∈ [−λ, λ]× [−1, 1]k,

or in other words a(t)u(ξ)x0 ∈ Lλ, where t = (logN1, . . . , logNk), x0 = Zn ∈
Ω, and

Lλ = {gZn ∈ Ω : g ∈ SL(n,R), gZn ∩ [−λ, λ]× [−1, 1]k 6= {0}}
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is the complement of a nonempty open subset of Ω if 0 < λ < 1. In view of this
relation, the dynamical result needed to prove theorem 4.4 is as follows [26]:
Given an unbounded sequence {ti} in Rn−1

+ , after permuting coordinates and
passing to a subsequence, we will assume that its first m coordinate projections
are divergent sequences (1 ≤ m ≤ n − 1), and its remaining (n − 1 − m)
coordinate projections are convergent sequences. Let

Q =
{

(gi,j) ∈ SL(n,R) : for i > m+ 1,
gi,j = 0 if j 6= i
gi,i = 1

}

. (8)

Then as i → ∞, a(ti)Q → a(t0)Q in SL(n,R)/Q for some t0 ∈ Rn−1. In
particular, if all coordinates of ti are divergent then Q = G and t0 = 0.

Theorem 4.5 (Shah). Let B be a bounded open subset of Rd (d < n). Let
φ : B → Rn−1 be an analytic map whose image is not contained in a proper
affine subspace. Let L be a Lie group, ρ : SL(n,R) → L be a continuous homo-
morphism, and Γ be a lattice in L. Let {ti} be a sequence as above. Let x ∈ L/Γ.
Then for any bounded continuous function f on L/Γ,

lim
i→∞

1

Vol(B)

∫

B

f(ρ(a(ti)u(φ(b)))x) db =

∫

y∈Hx

f(ρ(a(t0))y) dµH(y),

where H is the smallest closed subgroup of L containing ρ(Q) such that Hx is
closed and admits an H-invariant probability measure, say µH .

5. Unipotent flows, Linearization and Linear

dynamics

To prove the above dynamical results one shows that if λ is the normalized
parameter measure on the submanifold ρ(u(φ(B)))x of L/Γ, which is being
translated by a sequence gi = ρ(a(ti)), and if we prove that giλ converges to a
measure µ on L/Γ, then µ turns out to be a direct integral of finite measures
which are invariant under actions unipotent subgroups of G. Due to Ratner’s
measure classification theorem, if µ is not L-invariant, then µ is strictly pos-
itive on the image of a proper algebraic subvariety, say V of L projected to
L/Γ. This variety is right invariant under certain subgroup, say N , containing
unipotents and such that NΓ is closed. At this stage one applies linearization
technique [19, 5, 20] in conjunction with functions of (C,α)-growth (as intro-
duced in [14]) to show that for each a(ti) there exists γi ∈ L stabilizing x such
that ρ(a(ti)u(φ(B)))γi, a lift of the entire translated trajectory, lives in a thin
neighbourhood of the subvariety V in L modulo N . At this stage we invoke
the following new observation of linear dynamical nature, to deduce that there
exist some fixed γ ∈ L stabilizing x such that ρ(a(ti)u(φ(B))γ gets arbitrarily
close to V in L modulo N . The linear dynamical observation, which turns out
to be one of the most crucial part of the argument, is as follows [23, 24, 25, 26]:
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Theorem 5.1 (Shah). Let φ : (0, 1) → Rn−1 be a C1-map such that for some
interval B ⊂ (0, 1), φ(B) is not contained in a proper affine subspace of Rn−1.
Suppose that SL(n,R) acts linearly on a finite dimensional vector space V . Let
a sequence {ti} and the associated subgroup Q be as in (8). Then for any v ∈ V
which is not fixed by Q, and any compact set C ⊂ V ,

atiu(φ(B))v 6⊂ C for all large i. (9)

Note that if v is fixed by Q then atiu(φ(B))v = ativ → at0v as i → ∞.

Our proof of this result uses the description of finite dimensional represen-
tations of SL(2,R) to understand the intertwined linear dynamics of various
copies of SL(2,R)s and SL(m,R)s sitting in SL(n,R).

In the case when φ is a nondegenerate Cn-map, we expect that (9) will hold
even if we put Bi in place of B where Bi’s are intervals around some s ∈ (0, 1)
shrinking at some specific rate depending on a(ti). For example, in the case
when ti = (ti, . . . , ti) (all same coordinates) then we can shrink Bi (around any
s except for finitely many s ∈ B) at the rate of e−ti as i → ∞, and (9) can be
expected to hold.

The basic strategy behind the dynamical theorems of the previous section
is that in very general situations, using Ratner’s theorem and Linearization
techniques we can reduce the equidistribution problem to a problem about
‘Dynamics of subgroup actions on finite dimensional linear representations’. At
that stage n we need to prove the results that are very similar to Theorem 5.1,
possibly with B also shrinking at a very specific rate as i → ∞. Proving a
suitable linear dynamical result remains to be the the main difficulty in de-
scribing the limiting distributions of stretching translates of submanifolds on
homogeneous spaces of very general Lie groups.
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Abstract

In this note we describe a representation theoretic approach to functorial functor
valued knot invariants with the focus on (categorified) Schur-Weyl dualities.
Applications include categorified Reshetikhin-Turaev invariants, an extension
of Khovanov homology and a diagrammatical description of the category of
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Introduction

The category C of finite dimensional modules over a complex semi-semisimple
Lie algebra is a well-known semi-simple tensor category. A ground breaking
generalization of this category appeared through the introduction of Quantum
groups by Drinfeld and Jimbo ([Dr1], [Ji]), originally in the context of Yang-
Baxter equations. In contrast to the category C, the tensor category of finite
dimensional modules over the corresponding quantum group comes along with
a very interesting non-trivial braiding. Although at least generically still semi-
simple, and therefore quite easy to handle, this braiding provides an important
additional structure which was extensively used to construct knot invariants.
The most basic one arising from the smallest quantum group Uq(sl2) is the Jones
polynomial, or more general, the Reshetikhin-Turaev invariant [Jo1], [RT]. The
first one was introduced by Jones in the 1980’s in the context of von Neumann
algebras (see [Jo1] for a wonderful overview), and is a (Laurent)-polynomial
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invariant of knots and links. The second one uses the representation theory of
the quantum group in a much more subtle way and generalizes to invariants of
tangles and 3-manifolds.

One crucial observation is that these structures have an integral version.
In the 1990’s Crane and Frenkel started to propagate the idea of categorifying
integral structures. In this way one should be able to lift the above mentioned
invariants to functorial valued invariants which should be finer and carry even
more structure than the original ones. Crane and Frenkel presented an aston-
ishing proposal for a possible invariant of 4-manifolds obtained via a partition
function on the triangulation of the 4-manifold and conjectured that such an
invariant can be brought into existence via some ‘Hopf-categorification’, i.e. the
promoting of a Hopf algebra to an appropriate category. Although such a Hopf
categorification has not yet been established (nor worked out axiomatically)
there were several fundamental steps done in the last few years. One of the first
successful categorifications in this context was obtained by Khovanov [K1] who
categorified the Jones polynomial via some combinatorially defined categories.
This so-called Khovanov homology turned out to be very powerful. One of the
main applications is Rasmussen’s combinatorial proof [Ra1] of the Milnor con-
jecture determining the slice genus of a (p, q)-torus knot. It is also known that
Khovanov homology detects the unknot.

The most fascinating feature of Khovanov homology seems to me to be its
connections to many different fields; there is no way one could mention all the
applications, connections and occurrences of this homology theory. One of the
basic problems is the following

Problem 1. 1. Construct a functorial Reshetikhin-Turaev tangle invariant
extending Khovanov’s categorification

2. Construct a categorification of Reshetikhin-Turaev’s 3-manifold invariant

A categorification of functorial Reshetikhin-Turaev tangle invariant was ob-
tained by the author in 2003 ([St3]) which later was shown to agree with Kho-
vanov’s categorification of links and even tangles after restriction to a certain
subcategory ([St4], [BS3]). The second part of the problem is much harder and
so far open. The first step here should be a categorification of the tensor category
Rep(Uq(sl)2) of finite dimensional representations of quantum sl2 by defining
a braided monoidal functor Ψ which assigns to an object Vd1

⊗ Vd2
⊗ · · · ⊗ Vdr

in Rep(Uq(sl)2) a graded category, to a morphism between two objects an ex-
act functor between the corresponding categories, and also lift the monoidal
structure and the braiding. Then Clebsch-Gordon coefficients should have an
interpretation in terms of dimensions of vector spaces, Jones-Wenzl projectors
should become quotient functors etc.

In this article we want to indicate a representation theoretic approach to
this task, where the associated categories are certain highest weight categories
of modules for various gl(n,C)’s. To avoid too many technicalities, we do
not want to present the whole construction of the functor Ψ here, but only
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consider tensor products of the natural 2-dimensional representation V ,
where we have a very nice extra structure given by the so-called Schur-Weyl
duality. We indicate how Khovanov homology arises from a categorification of
Schur-Weyl duality, providing a natural explanation why this homology theory
categorifies the Jones polynomial, and connecting it with highest weight Lie
theory and categories of perverse sheaves. The main goal of this paper is to
illustrate which important role is played by Schur-Weyl dualities in recent
categorifications, constructions of link homologies and higher representation
theory.

What are direct applications to representation theory? We obtain a
combinatorial, elementary description of blocks of the parabolic category O
for maximal parabolics in type A, as well as for blocks of finite dimensional
representation for the Lie supergroup GL(m|n).

Outline of the paper: We start by recalling briefly the very classical setup of
Schur-Weyl duality going back to the early 20th century, to work of Frobenius,
Schur and Weyl. It connects the representation theory of the general linear
group with that of the symmetric group. Based on this we explain the basic
construction of the Reshetikhin-Turaev-Jones invariants for tangles using the
quantum group Uq(sl2). Then the first theorem provides a categorification of
the Schur-Weyl duality with resulting functor valued functorial knot invari-
ants (which finally provides the above mentioned braided monoidal 2-functor
Φ from the category of tangles to a certain category with objects certain de-
rived categories). Theorem 2.5 provides the link between our categorification of
the invariants using highest weight categories of representations of the general
linear Lie algebra, Braden’s description of the category of perverse sheaves on
Grassmannians and the combinatorially defined Khovanov homology. The lat-
ter appears then naturally as a categorification of the space of Uq(sl2)-invariant
vectors inside our categorification.

We believe that our extra structure and information will be a key tool in the
construction of 3-manifold invariants or for connecting the symplectic Khovanov
homology with the original Khovanov theory. Some ideas are outlined below.

The second part of the paper relies on a Schur-Weyl duality for higher levels.
This duality connects modules for gln with modules over a cyclotomic version of
Drinfeld’s degenerate affine Hecke algebra (pioneered by Arakawa-Suzuki [AS]
and Brundan-Kleshchev [BK1]). There are two main results here: the first one is
a new proof of Theorem 2.5 (bypassing geometry completely) and constructing
an interesting 2-Kac-Moody representation in the sense of [Ro] in complete
detail, the second one is an interesting grading and a new presentation of the
above mentioned cyclotomic quotient of Drinfeld’s algebra in case of level 2
arising naturally from the Koszul grading on the category O (which should also
be true for general level). These algebras turned up recently as a special case in
independent work of Khovanov-Lauda, Rouquier and Vasserot-Varagnolo who
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constructed algebraically (resp. geometrically) categorifications of the negative
part of quantum groups. They have the potential to categorify Schur-Weyl
dualities in general, and then provide a categorification of knot invariants from
quantum groups of arbitrary semi-simple complex Lie algebras (see Section 2.4).
These algebras also give a new insight into the representation theory of Hecke
algebras.

The last part of the article is built on a super version of the higher Schur-
Weyl duality. There we consider the category F(m|n) of finite dimensional
modules over the Lie supergroup GL(m|n). By results of Serganova [Ser] and
Brundan [B1], the character formulas for simple modules are known with a
given -more or less satisfactory- algorithm. It was observed a long time ago that
these character formulas can be presented using Kazhdan-Lusztig polynomials
for maximal parabolic in type A (i.e. the Grassmannian case). We make this
precise and relate F(m|n) with modules over a generalized Khovanov algebra.
In this way we obtain as a byproduct very easy formulas for the characters in
terms of diagrams. It turns out that the category F(m|n) is actually equivalent
to a certain limit version of the category of perverse sheaves on Grassmannians.
This result might in fact replace the missing geometry (in form of a localization
theorem) in this context.

Acknowledgement. I would like to thank H. Andersen, J. Brundan, S.
Cautis, C. Haug, V. Mazorchuk, J. Sussan, I. Smith, and P. Teichner for vari-
ous helpful discussions and comments on a previous version of this paper. I am
particularly grateful to my math teacher Capo for his constant support.

1. Classical and Quantum Schur-Weyl Duality

For a fixed natural number k let V = C
k be the natural vector represen-

tation of G = GL(k,C). The symmetric group Sn acts on the tensor prod-
uct V ⊗n by permuting the factors, obviously commuting with the G-action.
The Schur-Weyl duality states that the subalgebras of EndC(V

⊗n) generated
by the image of the two actions are precisely each others’ commutants, in
particular all G-endomorphisms can be expressed in terms of the symmet-
ric group. The image of the G-action is the Schur algebra S(k, n). Then, if
k ≥ n, tensoring with the above (G,Sn)-bimodule V ⊗n defines an equivalence
from the category of finite dimensional S(k, n)-modules (that means polyno-
mial representations of G, homogeneous of degree n) to the category of finite
dimensional Sn-modules. Instead of G one might prefer to work with the semi-
simple Lie algebra sl(k,C) or, equivalently, its universal enveloping algebra
U(k) = U(sl(k,C)). In the quantum Schur-Weyl duality ([Ji]) this picture gets
then deformed: U(k) is replaced by the quantum group Uq(k) a certain Hopf
algebra deformation of U(k) which in an appropriate way specializes to U(k).
It acts now on V = C(q)k, and the group algebra of Sn gets replaced by a
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q-deformation, the (generic) Hecke algebra H(Sn) over C(q). A simple transpo-
sition si does not act by an involution anymore. The action arises from an inter-
esting braiding on the category Rep(Uq(k)) of finite dimensional Uq(k)-modules
(the universal R-matrix). Again, the images of the two actions are each other
commutants.

All the statements so far have an integral version ([Do], [Lu]). In the follow-
ing we will tacitly use the Z[q, q−1]-form of Uq(k) and H(Sn), but stick to the
old notation.

1.1. Invariants of tangles. In the basic case k = 2, the image TLn of
the Hecke algebra action is called Temperley-Lieb algebra and easily explained
in terms of the tensor structure of Rep(Uq(k)). Fixing an isomorphism V ∼= V ∗

there are the (co)evaluation morphisms ∪ : C(q) → V⊗V and ∩ : V⊗V → C(q),
and the image of the H(Sn)-action is generated by the θi := 1⊗(i−1) ⊗ ∪ ◦ ∩ ⊗
1⊗(n−i−1) = ∩i ◦ ∪i, for 1 ≤ i ≤ n− 1 (deforming the elements 1 + si ∈ C[Sn]).
One can identify a Z[q, q−1]-basis of TLn with isotopy classes of (n, n)-tangle
diagrams with no crossings and no internal circles, such that the multiplication
is given by concatenation of diagrams and replacing each circle by a scalar
q+q−1. For instance θ2i = (q+q−1)θi (deforming the equality (1+si)

2 = 2(1+si)
in C[Sn]). We might reformulate the duality as

Sq(2, d) y V ⊗d
x TLn (1)

where Sq(2, d) denotes the quantized Schur algebra. The faithful TLn action
identifies (n, n)-tangles without crossings and internal circles with basis vectors
in the space of intertwiners of V ⊗n. More generally, each (n, n′)-tangle diagram
t without crossings defines a Uq(2)-module homomorphism P2(t) from V ⊗d to

V ⊗d′

providing a bijection between isotopy classes of tangles with no crossings
and internal circles and a Z[q, q−1]-basis of intertwiners. In other words we get a
fully faithful functor P2 from the Temperley-Lieb category with objects natural
numbers and morphisms isotopy classes of tangle diagrams without crossing and
no internal circles, to the subcategory C of Rep(Uq(2)) with objects the various
V ⊗d and morphisms generated by the ∪i’s, and ∩i’s.

1.2. Skein relations and crossings. The braid group action men-
tioned above associates to the crossings (displayed in (2)) of the ith and (i+1)th

strand the Z[q, q−1]-linear maps qθi− id and q−1θi− id respectively. In this way,
P2 extends to the Reshetikhin-Turaev invariant of tangles [RT], with the skein
relation

qkPk

( )

− q−kPk

( )

= (q − q−1)Pk

( )

(2)

where k = 2. Any (0, 0)-tangle is hereby mapped to an endomorphism of
Z[q, q−1], which is the multiplication by the Jones (Laurent)-polynomial ([Jo1]).
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2. Categorification and Functorial Knot
Invariants

A categorification of the classical Schur-Weyl-duality for k = 2 was suggested by
Bernstein, Frenkel and Khovanov and completed in the quantum case in [St3],
[FKS], see [MS2] for the general case. Involved here are certain (depending
on k) categories of g = gl(n,C)-modules introduced in [BGG] and generalized
in [R-C]. For k = 2, let C(n) =

⊕n

i=0 O
i,n−i be the direct sum of (i, n − i)-

parabolic subcategories of the principal block of the highest weight category O
for g equipped with the Koszul grading from [BGS]. Let C(n)! =

⊕n

i=0 Oi,n−i be
the Koszul or quadratic dual category of C(n) given by certain singular blocks of
O. The Koszul grading turns the Grothendieck groups K0(C(n)) and K0(C(n)

!)
into Z[q, q−1]-modules, isomorphic to V ⊗n. Important here is that each Oi,n−i

is equivalent to the category of finite dimensional modules over some complex
finite dimensional algebra Ai,n−1 which can naturally be equipped with a Z-
grading. It has

(
n
i

)
isomorphism classes of simple modules, hence is suitable for

categorifying a
(
n
i

)
-dimensional weight space of V ⊗n.

Example 2.1. We have A0,2 = A2,0 = C, whereas A1,1 is isomorphic to the

path algebra A of
1
•�

2
• with the relation 1 → 2 → 1 being zero, and the grading

given by path length. The intertwiner θi can be lifted to the functor Ae2A⊗A−,
where e2 is the second primitive idempotent. Lifting the quantum group action
involves passage to the derived category. On the other hand viewing Ae2 as
an (A,C)-bimodule defines (via tensoring) a functor which together with its
adjoint can be used to lift the quantum group action. However to construct
a commuting lift of θi one has again to pass to the derived category. The
involved derived functors can be defined by saying that the two constructions
are connected by Koszul duality (note that A is isomorphic to its quadratic
dual A! in this special example).

The above example generalizes Lie theoretically to two categorifications of
the quantum Schur-Weyl duality (1) (linked via Koszul duality):

graded versions of certain
derived Zuckerman functors

y Db(C(n)) x graded versions of certain
exact projective functors

graded versions of certain
exact projective functors

y Db(C(n)!) x graded versions of certain
derived Zuckerman functors

Note that in the first example the Temperley-Lieb algebra action is categorified
via exact functors, the quantum group action however only exists when passing
to the derived category. It is vice versa in the Koszul dual situation. To
explain this in more detail note that the tensor category of finite dimensional
g-modules acts via exact endofunctors E 7→− ⊗E on O. By the famous
classification theorem of [BG], the endofunctors of the principal block of O
obtained in this way form an additive tensor category with indecomposable
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objects indexed by elements of the symmetric group, categorifying the action
of the regular representation of the symmetric group. By definition, these
functors restrict to endofunctors on each parabolic Oi,n−i. It is still a mystery
how these so-called projective functors decompose and behave under restriction
to general parabolic O’s. A crucial result of [St3] proves that they behave well
under restrictions to C(n) via F 7→ ⊕F|Oi,d−i . Graded versions (as defined in
[St1]) of these projective functors restrict to an additive category with split
Grothendieck ring isomorphic to TLn acting on K0(D

b(C(n))) as desired.
Under Koszul duality the functors become derived graded Zuckerman functors
([R-H], [MOS]). The quantum group action is given by a family of graded
Zuckerman respectively projective functors naturally commuting with the
TLn-action. Koszul duality interchanges in some sense the two sides of the
Schur-Weyl duality.

The main result of [St3] with [St4] is then the following:

Theorem 2.2. 1. The categorification of TLn via graded projective functors
extends to a functorial tangle and knot invariant which assigns to each
(n, n′)-tangle diagram a functor from Db(C(n)) to Db(C(n′)) inducing the
above Reshetikhin-Turaev-Jones invariant P2 on K0.

2. This extends further to an invariant of cobordisms, well-defined up to
scalars; each cobordism is sent to a natural transformation homogeneous
of degree equal to the negative of the Euler characteristic of the cobordism.

By introducing certain markings (“disorientation lines”) on cobordisms,
(see [CMW]), the above construction finally defines a 2-functor from the 2-
category with objects the natural numbers, morphisms tangle diagrams, and
2-morphisms cobordisms with disorientation lines into a category where objects
are the categories Db(C(n)), morphisms are (certain) triangulated functors and
2-morphisms are (certain) natural transformations.

The Uq(2)-weight space decomposition corresponds to a decomposition into
indecomposable abelian categories; the isotypic component decomposition only
corresponds to a filtration of the categories (in the singular case by the Gelfand-
Kirillov dimension, in the parabolic case by the annihilator, see [MS2]). The
unique irreducible (n + 1)-dimensional Uq(2)-summand Vn corresponds to a
category Cn equivalent to

d⊕

i=0

H∗(Gr(i, d))−gmod (3)

where Gr(i, d) denotes the Grassmannian of i-planes in C
d. The Uq(2)-action

is given by correspondences, see [FKS], passing between the direct summands.
An alternative categorification of V ⊗n was constructed in [CK1] using de-

rived categories of (equivariant) coherent sheaves on a compactification of a
resolution of the Slodowy slice to an adjoint orbit. The action of the category
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of tangles is provided by certain explicit Fourier-Mukai transforms. There, the
weight spaces do not correspond to direct summands. Conjecturally, the abelian
categories arising from Lie theory are equivalent to subcategories of certain ex-
otic t-structures (in the sense of [Be]), see [SW] for a more precise conjecture.

The above construction generalizes to arbitrary k. To get a functorial invari-
ant satisfying (2) ones needs apart from Schur-Weyl duality a categorification
of the tensor products of fundamental representations ∧kV of gln. Intertwin-
ers correspond to colored trivalent graphs satisfying the Murakami-Ohtsuki-
Yamada relations. Such a categorification was established using O in [Su] and
[MS3], and using coherent sheaves in [CK2]. These invariants suffer from the
problem that, as given, they are quite hard to compute, but on the positive side
provide natural situations for interesting braid group actions and carry many
aspects of the integral representation theory of the original quantum group.

A different approach to functor valued knot invariants using (homotopy)
categories of matrix factorizations was already developed in [KR1], [KR2]. We
refer to [MS3] for an indication of a possible connection to the theories above.

2.1. Arbitrary tensor products. Built on (3), a powerful axiomatic
theory of abelian categorifications of irreducible sl2-modules was invented by
Chuang and Rouquier [CR] and substantially further developed in [Ro] in form
of 2-Kac-Moody representations. The higher structure rigidifies enough to ob-
tain a unique categorification for each irreducible module. As advocated in [CF]
such a 2-representation theory should provide a machinery that produces new
categories out of some given categories, in particular interesting tensor cate-
gories. One of the challenging problems here is the following:

Problem 2. Develop a 2-representation theory for tensor categories arising
from quantum groups or more general Kac-Moody algebras.

The answer should in particular include the existing abelian categorifications
of arbitrary tensor products in Rep(Uq(n)) from [FKS], where Vd1

⊗ · · · ⊗ Vdr

is categorified using Harish-Chandra bimodules with central character corre-
sponding to (d1, d2, . . . , dr), a quotient category of the above categorification of
V ⊗d, d =

∑r

i=1 di. This construction allows categorifications of the Jones-Wenzl
projectors, the colored Reshetikhin-Turaev tangle invariant and 3j-symbols, ex-
tending the original work of Khovanov [K2] in a new direction.

Conjecture 2.3. There are renormalized 6j-symbols which can be categorified
using Harish-Chandra bimodules.

In this way we hope to provide a first step in direction categorifying 3-
manifold invariants. Details of this current work will appear in [FSS].

2.2. Braid group action and Serre functor. The Hecke algebra
action on K0(C(n)) arises from a braid group action on Db(C(n)) which is
known to be faithful on each summand ([KS]). These braid group actions have



1352 Catharina Stroppel

a long history in the representation theory of complex semisimple Lie algebras,
known as Enright-Joseph’s completion, Irving’s shuffling, Arkhipov’s twisting
functors etc. and were originally introduced to study the so-called Kazhdan-
Lusztig conjecture [KL], now a theorem, describing multiplicity formulas of
simple composition factors of Verma modules. It is a well-supported principle
that for any suitable braid group action on a category, the Serre functor will
be given by the functor C2

w0
corresponding to the full (positive) twist w2

0 in the
center of the braid group, indeed ([MS1]):

Theorem 2.4. Up to a shift (depending on i) in the derived category, the
functor C2

w0
is the Serre functor of Db(Oi,n−i). Its square root Cw0

is (up to a
shift) the Ringel duality functor.

The quasi-hereditaryness of Oi,n−i implies that the categories are quite
far away from being Calabi-Yau categories. However let P i,n−i be a minimal
projective generator of Oi,n−i with endomorphism ring Ai,n−i and consider the
unique direct summand fixed under the Serre functor. Its endomorphism ring
Ei,n−i is then a symmetric algebra, see [MS1] for a more general statement. It
is this algebra Ei,n−i, naturally arising from the Serre functor, which gives a
precise connection to Khovanov homology as we explain now.

2.3. Khovanov homology. A combinatorially defined functorial knot
invariant categorifying the Jones polynomial was constructed by Khovanov in
[K1] with an extension to even tangles in [K3]. The resulting doubly graded ho-
mological invariant is called Khovanov homology. The following result describes
the connection between our tangle invariant and Khovanov’s:

Theorem 2.5. Khovanov’s arc algebra Hn is isomorphic as a graded algebra to
the algebra En,n. Under this isomorphism, the combinatorially defined functor
valued invariants are then obtained from the representation theoretically defined
functor valued invariants by restriction.

The isomorphism was first proved in [St4] using the fact that Oi,n−i is, via
localization theorem and Riemann-Hilbert correspondence, equivalent to the
category of perverse sheaves, constructible with respect to the Schubert strati-
fication, on Gr(i, n), identifying Braden’s explicit description of Ai,n−i ([Bra])
with a combinatorially defined generalized Khovanov algebra. A second quite
recent proof (bypassing geometry completely) with the explicit identification
of the functor valued invariants was obtained in [BS3] and will be explained
in more detail below. As predicted (see [K4]), the two tangle invariants have
the same information, since the category On,n can be reconstructed from Hn

via some double centralizer property, meaning that there is a functor from
Ai,n−i −mod to Ei,n−i −mod fully faithful on projectives (see [St2] for a gen-
eral statement). This property generalizes Soergel’s structure theorem [So1]
describing singular blocks of O by modules over the cohomology ring H∗(G/P )
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of the associated partial flag variety, with the commutative Frobenius algebra
H∗(G/P ) replaced by a (non-commutative) symmetric algebra.

Remark 2.6. Theorem 2.5 gives a tool to prove a refinement of Theorem 2.2:
The Temperley-Lieb category comes equipped with a natural tensor structure
given by composing horizontally: the tensor product on objects is just the sum,
on morphisms it is given by putting the tangle diagrams next to each other.
Then Theorem 2.2 extends to a (weak) tensor functor. Using also braid diagrams
and their categorifications, it extends to a functor of braided tensor categories.

A construction of a singly graded knot homology theory in terms of La-
grangian intersection Floer homology of certain Stein varieties (more precisely
the generic fibre of the adjoint quotient map for sl(2n,C) restricted to a
transversal slice of the nilpotent orbit of a nilpotent matrix of Jordan type
(n, n)) was worked out by Seidel and Smith in [SS], see [Ma] for a conjectural
realization in terms of Hilbert schemes. A categorified Schur-Weyl duality in
this context is not yet available, and the precise relationship to Khovanov ho-
mology is still unclear. Conjecturally, enlarging the Lagrangian Floer homology
by adding additional non-compact Lagrangians should provide the ring An,n,
in analogy to Remark 3.1. Then to set up a fully faithful functor connecting
the two theories and proving formality, passing from Khovanov’s algebra to
the Koszul algebra An,n might be helpful, since the Hochschild cohomology is
finite dimensional, and it might be possible to control higher A∞-structures.
In the case of the simplest algebra A1,n−1 in our family of algebras, this is
worked out explicitly in [Sei] (the case of the Milnor fibres of simple singu-
larities of type An). Let A = Ai,n−i be one of our Koszul algebras from
above. Let K• be the Koszul resolution of the semi-simple degree zero part
A0 with the grading shifted such that the differentials are homogeneous of de-
gree 1. Then the Hochschild cohomology H

∗(A) =
⊕

s,t H
s(A)t is naturally bi-

graded such that Hs(A)t is a subquotient of the space of degree t homogeneous
maps inside HomA−A(K

s ⊗A0 A,A). The space H
2(A) =

⊕

s H
s(A)2−s con-

trols A∞-deformations. Based on explicit calculations we strongly believe the
following

Conjecture 2.7. H
s(A)2−s = 0 if s 6= 0, in particular H

2(A) = Z(A)2.

Here, Z(A) = Z(Ai,n−i) denotes the center of Ai,n−i. This is known to be
canonically isomorphic to the cohomology ring of the corresponding (i, n − i)-
Springer fibre (see the special case [St4, Theorem 4.5.2] of the general theorem
from [B2], [St4]). Hence Z(A)2 is (n− 1)-dimensional.

2.4. Knot invariants for other types. Recently, B. Webster [W]
announced an amazing generalization of the above categorifications for arbi-
trary finite dimensional complex semi-simple Lie algebras based on Khovanov-
Lauda’s graphical calculus from [KLa].
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3. Higher Schur-Weyl Duality and
2-representations

Higher Schur-Weyl duality relates the category O(g) for g = gln to cyclotomic
quotients of the degenerate affine Hecke algebra Hd introduced by Drinfeld
[Dr2]. Hd is the associative algebra which equals as a vector space C[x1, . . . , xd]⊗
CSd. Multiplication is defined so that under the obvious inclusions C[x1, . . . , xd]
and CSd become subalgebras of Hd, together with the relations

sixj = xjsi if i 6= j, j + 1, sixi+1 = xisi + 1.

Let M be an arbitrary gln-module, then by [AS] the Sd-action on V ⊗d can be
extended to an Hd-action onM ⊗V ⊗d such that x1 acts by multiplication with
the Casimir element on the first two factors M ⊗ V . This defines commuting
actions

gln yM ⊗ V ⊗d
x Hd (4)

hence a functor from the category O for gln to modules over Hd. Of course,
the image of either of the two actions depends on the choice of M . With an
appropriate choice this defines a higher Schur-Weyl duality, see [BK1]. We now
want to indicate two applications, first the proof of Theorem 2.5 and secondly a
description of the category of finite dimensional GL(i|j)-modules for arbitrary
i, j. The way how Schur-Weyl duality enters here is different from the way it
entered Theorem 2.2: here the Hecke algebra action will arise as 2-morphisms in
a categorification, whereas there it was given by functors. We present the main
idea of the proof (following [BS3]) here, since we believe that this approach
provides a quite general machinery to prove equivalences of categories without
having a candidate of a functor available. To set up a connection between at
the first sight totally unrelated categories, we first explain how they categorify
certain Uq(gl∞)-modules.

3.1. Step 1: categorifications of certain gl
∞
-modules.

3.1.1. The Lie theory side. Fix non-negative integers i, j = n− i and con-
sider O(i, j), the sum of all integral blocks of the (i, j)-parabolic category O for
gln = gli+j , equipped with the Koszul grading. Under the usual identification of

integral weights of gli+j with Z
i+j , the simple objects in O(i, j) are (up to grad-

ing shifts) precisely the irreducible modules L(λ) of highest weight λ ∈ Λ(i, j),
where Λ(i, j) ⊂ Z

i+j (after the usual shift with ρ = (0,−1,−2, . . . ,−(n− 1)))
consists of tuples which are strictly decreasing in the first i entries as well as
in the last j entries. Let W = ⊕s∈ZCvs denote the natural U(gl∞)-module (of
infinite column vectors) and let W be its (integral) quantum version, then we
have an isomorphism of Z[q, q−1]-modules

Φ : K0(O(i, j)) ∼=
∧i

W ⊗
∧j

W. (5)
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• If we choose Φ to send isomorphism classes of standard graded lifts of
parabolic Verma modules to the standard basis, then simple modules are
mapped to Lusztig’s dual canonical basis, whereas the canonical basis
corresponds to tilting modules (i.e. indecomposable projective modules
twisted by the square root of the Serre functor). There are explicit for-
mulas for the transformation matrices, based on [LS], [FK], easily express-
ible in terms of diagrams which motivated our construction of generalized
Khovanov algebras (see below).

• Graded versions of projective functors categorify the Uq(gl∞)-action:
there are functors Es, Fs : O(i, j) → O(i, j), s ∈ Z lifting the action
of the Chevalley generators es, fs. The functor F = ⊕s∈ZFs is a suitably
chosen graded version of tensoring with the natural gln-module V . (One
might ask what categorifying means in this context. For our purposes it
is enough to require that the linear maps on K0 induced by the functors
Es, Fs satisfy the Chevalley relations, in reality however we construct
much more, namely a 2-Kac Moody representation in the sense of [Ro],
see [BS3, Remark 5.7]).

3.1.2. The diagrammatical side. To each block Γ of O(i, j) , we associate
now a finite dimensional graded algebra KΓ defined diagrammatically (gener-

alizing Khovanov’s arc algebra from [K1]). Each basis vector in
∧i

W ⊗
∧j

W
gets identified with a combinatorial weight in the sense of [BS3], i.e. with the
diagram consisting of a number line whose vertices are indexed by Z and where
the sth vertex is labeled ∨, ∧, ×, ◦ depending on whether vs occurs in the first,
second, both or no tensor factor. Under this identification the isomorphism class
of the parabolic Verma module of highest weight 0 for instance corresponds to

· · · ◦ ◦∧ ∧ ∧
∨ ∨ ∨◦◦ · · ·

︸ ︷︷ ︸

j

︸ ︷︷ ︸

i

where the ∧’s and ∨’s are on the vertices indexed 1 − n, . . . ,−1, 0. Two basis
vectors correspond to the same block if they only differ by a permutation of
∧’ and ∨’s not touching the other labels. (In the above example there are

(
n
i

)

basis vectors corresponding to the block Γ.) The algebra KΓ has a vector space
basis

{(aλb) | for all oriented circle diagrams aλb with L(λ) ∈ Γ} .

given by triples (a, λ, b) of a cup diagram (involving cups and vertical rays), a
combinatorial weight λ, and a cap diagram (involving caps and vertical rays)
with some compatibility conditions. Its multiplication is defined by an explicit
combinatorial procedure in terms of such diagrams (see [St4] for an alterna-
tive construction using a generalized 2-dimensional TQFT). For instance the
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principal block of O(1, 1) would correspond to an algebra with basis

∧
∨

∧
∨

� �
∧

∨

� �
∨

∧� �
� �

� �
� �
∧

∨

This basis is homogeneous with grading given just by the number of clockwise
cups and clockwise caps, in this case 0, 1, 1, 0, 2. The algebra structure is built
such that it becomes isomorphic to the algebra A1,1 from Example 2.1.

Remark 3.1. The diagrams for Oi,n−i from Section 2 have a natural inter-
pretation in the theory of Springer fibres associated with 2-block nilpotent
matrices of Jordan type (i, n− i), indicating a direct connection to [CK2], [SS].
Weights naturally correspond to fixed points under a C

∗-action, the occurring
cup diagrams correspond to the closures of fixed point attracting sets, the arcs
indicate the type of flags they contain. Then our basis should be seen as labeling
precisely triples {(x, L1, L2) | x ∈ L1∩L2} of fixed points in the closure of pair-
wise intersections of two attracting sets. The graded vector space underlying
our algebra is isomorphic to

⊕

(L1,L2)

H∗(L1 ∩ L2)〈dimL1 − dim(L1 ∩ L2)〉

with the algebra structure given by a certain convolution product, see [SW].
We also want to mention that putting 1 ∧ and n − 1 ∨’s on arbitrary n + 1
fixed vertices produces an algebra studied by Khovanov and Seidel [KS], [Sei].

Let KΓ−gmod be the category of finite dimensional graded KΓ-modules.
Taking their direct sum over all blocks Γ of O(i, j) defines a category with
the same properties as in Section 3.1.1. The action of the Chevalley generators
is given by explicitly (graphically) defined bimodules. We also want to stress
that the transformation matrix between the canonical and dual canonical basis
already determines the dimension of the algebra. The construction in terms of
triples (a, λ, b) should indicate the BGG-reciprocity formula passing between
three bases of K0. One can show, [BS2], (purely combinatorially)

Theorem 3.2. The algebra KΛ is a graded Koszul quasi-hereditary algebra.

3.2. Step 2: Higher structure: cyclotomic Hecke algebras.

3.2.1. Semisimple categories. For simplicity assume i ≥ n − i = j. Each
simple module L(λ) in O with highest weight of the form

· · · · · ·

i−j
︷ ︸︸ ︷

j
︷ ︸︸ ︷

× × × ∨ ∨ ∨ ◦ ◦ ◦



Schur-Weyl Dualities and Link Homologies 1357

is a unique simple in its block, the same holds for its counter-part L(λ)diag on
the diagrammatical side. (Note that the only cup/cap diagram which could be
put underneath or above to be oriented is the one containing rays only.) The
corresponding blocks Λ are semi-simple, in particular equivalent. Under the
isomorphism Φ these blocks correspond to highest weight vectors of

∧i
W ⊗

∧j
W .

3.2.2. Creating interesting categories from semisimple ones. The
principal idea is now to construct two 2-categories, from O(i, j) and from
the diagram side: objects are projective objects in the original category, mor-
phisms are compositions of the functors categorifying the Uq(gl∞) generators,
their finite direct sums and finite summands, and 2-morphisms are natural
transformations. Applying 1-morphisms to the semi-simple categories from
the last section, one can create enough self-dual projective objects in either of
the two categories. Finally one shows that higher Schur-Weyl duality provides
enough natural transformations to control the endomorphism ring of a self-dual
projective generator on either side and invokes a double centralizer property
(see Section 2) to deduce an equivalence.

Let L(λ) be as in the preceding section. Applying the higher Schur-Weyl
duality [BK1] to T := L(λ) ⊗ V ⊗d = F d(L(λ)) gives the first part of the
following theorem, the others are more involved (see [BS3] for details)

Theorem 3.3. 1. The Hd-action on T factors through the cyclotomic quo-
tient Hd(i, j) := Hd/((x1 − i)(x1 − j)) of level 2, inducing a surjective
morphism of algebras Hd(i, j) → EndO(T ).

2. Let T diag = F d(L(λ)diag). Then there is a homomorphism Hd(i, j) →
End(F d) of algebras which induces under evaluation a natural surjection
onto the endomorphism algebra of T diag.

3. Via the above morphisms, the endomorphism rings of the projections of
T resp. T diag to a fixed block Γ, are both isomorphic to eαHd(i, j)eα for
some appropriately chosen idempotent eα ∈ Hd(i, j) depending on Γ. The
composition of isomorphisms identifies the grading induced by the Koszul
grading on O(i, j) with the diagrammatical grading.

Using the combinatorics from step 1 and a double centralizer construction
one can then deduce Theorem 2.5. An interesting direct consequence is the
following

Corollary 3.4. The algebra RΛ
α := eαHd(i, j)eα inherits a Z-grading from the

grading on O(i, j) respectively the naive grading on the diagram algebras.
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4. A Graded Presentation of Cyclotomic Blocks

Corollary 3.4 predicts a quite unusual presentation of the level 2-quotients of
Drinfeld’s degenerate affine Hecke algebra compatible with the grading. Using
the diagrammatically defined algebra this can be made completely explicit as
follows: Under (5), a block is contained in a single weight space whose weight
differs from the weight Λ obtained from λ by subtraction of a positive root
α = αi1 +αi2 + · · ·+αid of height d. Let Iα denote the Sd orbit of (i1, i2, . . . , id).
Then there is a presentation of RΛ

α where generators are

{e(i) | i ∈ Iα} ∪ {y1, . . . , yd} ∪ {ψ1, . . . , ψd−1},

with relations

y
(αi1

,Λ)
1 e(i) = 0; e(i)e(j) = δi,je(i);

∑

i∈Iαe(i) = 1;

yre(i) = e(i)yr; ψre(i) = e(sr·i)ψr; yrys = ysyr;

ψrys = ysψr if s 6= r, r + 1; ψrψs = ψsψr if |r − s| > 1;

ψryr+1e(i) =

{

(yrψr + 1)e(i) if ir = ir+1,

yrψre(i) if ir 6= ir+1;

yr+1ψre(i) =

{

(ψryr + 1)e(i) if ir = ir+1,

ψryre(i) if ir 6= ir+1;

ψ2
re(i) =







0 if ir = ir+1,

(ir+1 − ir)(yr+1 − yr)e(i) if ir = ir+1 ± 1,

e(i) otherwise;

ψrψr+1ψre(i) =

{

(ψr+1ψrψr+1 + (ir+1 − ir))e(i) if ir+2 = ir = ir+1 ± 1,

ψr+1ψrψr+1e(i) otherwise.

By inspecting the relations it follows that there is a Z-grading on RΛ
α defined

by declaring the e’s to be of degree 0, the y’s is of degree 2, and ψre(i) of degree
−2, 1 or 0 according to whether ir = ir+1, |ir − ir+1| = 1 or |ir − ir+1| > 1.
This is precisely the grading inherited from O. This statement should be true
in general, not only for maximal parabolic blocks of category O.

4.1. Khovanov-Lauda-Rouquier-Varagnolo-Vasserot alge-
bras. The above algebra turns out to be isomorphic to a level two cyclo-
tomic quotient of an algebra associated with the Dynkin quiver of type A∞,
denoted R(α; Λ) in [KLa], and arising in a family of algebras constructed (inde-
pendently) algebraically by Khovanov-Lauda and Rouquier, and geometrically
by Vasserot-Varagnolo ([KLa], [Ro], [VV]). These algebras were introduced to
categorify the negative part of quantum groups. Our approach gives a concep-
tual interpretation of the somehow (at least in the algebraic definition) artificial
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looking grading on RΛ
α . Although the algebras RΛ

α are not quasi-hereditary, they
have the nice structure of a graded cellular algebra in the sense of [GL]. Our
methods yield a special graded cellular basis for RΛ

α parameterized by some dia-
grams which are in bijection with certain Young tableaux, see [BKW] where the
existence of such bases is predicted. In particular we deduce from this a graded
dimension formula for the irreducible RΛ

α-modules (in level two for finite type
A). The construction of a graded cellular basis was generalized to higher levels
in [HM].

5. GL(m|n)-modules Via Super Higher
Schur-Weyl

The principal idea of the proof of Theorem 2.5 indicated above can also be
applied (in a super version) to the category of finite dimensional integrable
modules for the Lie superalgebra gl(m|n), i.e. blocks for the Lie supergroup
GL(m|n), see [BS4] for details. Herem, n are arbitrary positive integers (playing
not the same role as in the previous sections). The main result here is

Theorem 5.1. Let C be a fixed algebraically closed field of characteristic 0.

1. Any block of GL(m|n) of atypicality r is Morita equivalent to H∞
r , a

certain algebra (usually infinite dimensional) arising as a limit of gener-
alized Khovanov algebras (built from combinatorial weights with r ∨’s and
infinitely many ∧’s).

2. These algebras are symmetric, quasi-hereditary and Koszul.

Note that Koszulity is proved by completely elementary means using the
diagram algebras (see Theorem 3.2). In the case of the super group we cannot
invoke geometry, since so far no satisfying localization theorem is available. The
theorem suggest that the missing geometry might not necessarily be found in
the world of super flag varieties, but rather as a limit version of the categories
of perverse sheaves on ordinary Grassmannians. (The diagrammatic approach
gives as a byproduct a complete elementary proof of the Koszulity for O(i, j)
without passing to perverse sheaves).

5.1. The category of finite dimensional GL(m|n)-modules.
To explain more details fix again m,n ≥ 0 and let G denote the algebraic super-
group GL(m|n) over C, that is the functor from the category of commutative
superalgebras over C to the category of groups, mapping a commutative super-
algebra A = A0̄ ⊕ A1̄ to the group G(A) of all invertible (m + n) × (m + n)
matrices of the form

g =

(
a b
c d

)

(6)
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where a (resp. d) is an m ×m (resp. n × n) matrix with entries in A0̄, and b
(resp. c) is an m× n (resp. n×m) matrix with entries in A1̄.

We are interested here in finite dimensional representations ofG equivalently
in integrable supermodules over its Lie superalgebra gl(m|n,C). Allowing only
even G-morphisms between G-modules turns it into an abelian category which
decomposes into blocks. We pick one from each equivalence class under par-
ity change and denote the resulting category F(m|n). The simple objects are
then in bijection with dominant weights X+(T ) for the standard torus T and
Borel B.

By [B1], the category F(m|n) is a highest weight category. In analogy to
(3.1.1) we obtain an isomorphism (only of Z-modules, since there is no grading
available)

K0(F(m|n)) ∼=
∧m

W ⊗
∧n

W
?
. (7)

As in case of category O we have simple, indecomposable tilting, and standard
or Verma modules (usually called Kac modules after [Ka]) giving rise to three
distinguished bases.

5.2. The diagrammatics. Now we turn again our attention to the di-
agram algebra side and identify X+(T ) with the set Λsuper = Λ(m|n) of all
diagrammatical weights with a total of m vertices labeled × or ∨, a total of n
vertices labeled ◦ or ∨, and all of the (infinitely many) remaining vertices are
labeled ∧. The (“super version” of the) identification rule is now different from
before: the i-th vertex is labelled ×, ◦, ∨, ∧ depending on whether vi occurs in
the first tensor factor, in the second, in both, or in none. For example, assuming
m ≥ n, the zero weight parameterizing the trivial G-module is now identified
with the diagram

· · · · · ·

m
︷ ︸︸ ︷

m−n
︷ ︸︸ ︷

∧∧
∨ ∨ ∨ × × × ∧ ∧

where the leftmost ∨ is on vertex (1 −m). Blocks usually have now infinitely
many simple objects. The usual notion of atypicality in the representation the-
ory of GL(m|n) as in e.g. [Ser] is here just the number of ∨’s. Atypicality zero
means the category is semi-simple. In terms of the corresponding diagrammat-
ical algebra it is half the top degree. The construction of the diagram algebras
works fine in this more general context, but produces infinite dimensional non-
unital algebras. Theorem 3.2 is still valid. (For a general treatment of infinite
dimensional Koszul algebras see [MOS]).

5.3. The equivalence. Let K(m|n) denote the direct sum of the module
categories for the diagram algebras KΓ, Γ ⊂ Λsuper.

Theorem 5.2. There is an equivalence of highest weight categories

E : F(m|n) → K(m|n).
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Consequences.

• In the diagrammatic setting the following non-trivial result of Serganova
from [Ser] becomes obvious: the blocks of GL(m|n) for all m,n depend
up to equivalence only on the degree of atypicality of the block (not on
m,n).

• Blocks of GL(m|n) are Koszul, in particular can be equipped with a
grading.

• When combined with the results from [BS3], our results can be used to
prove the Super Duality Conjecture as formulated in [CWZ]. A direct
algebraic proof of this conjecture, and its substantial generalization from
[CW], has recently been found by Cheng and Lam [CL].

All of these results suggest some more direct geometric connection between
the representation theory of GL(m|n) and the category of perverse sheaves on
Grassmannians may exist. The above result gives a very concrete and explicit
description of the category F(m|n), but unfortunately not well adapted to the
tensor product structure on this category. It is a challenge to find a categorifica-
tion of the Schur-Weyl duality for tensor products of the natural representation
for Uq(gl(1|1)) with a result similar to Theorem 2.5. In this way one should be
able to solve the following

Problem 3. Find an algebro-representation theoretic categorification of the
Alexander polynomial P0 from a categorification of the representation theory of
gl(1|1).

Note that the Alexander polynomial P0 is the Euler characteristic of a
bigraded knot homology theory, discovered by Ozsvath-Szabo [OS] and Ras-
mussen [Ra1]. A categorification of a (super or not super) higher Schur-Weyl
duality analogous to Theorem 2.5 is (so far) not available.
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We give a survey of results on restriction of cohomology classes on locally sym-
metric spaces to smaller locally symmetric spaces; these results are closely con-
nected with cohomological representations of semi-simple Lie groups associated
with the locally symmetric spaces and we describe the connection.
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1. Introduction

If S(Γ) = Γ\X is an arithmetic quotient of a Hermitian symmetric domain
X (a connected component of a “ Shimura Variety”) then a natural class of
subvarieties that one can costruct explicitly are quotients of Hermitian subdo-
mains by smaller arithmetic subgroups (“Shimura Subvarieties”). It is easy to
see from the “homotopy version” of the Lefschetz hyperplane section theorem
that these subvarieties are not intersections of hyperplane sections.

However, one may consider all the translates of these Shimura Subvarieties
under Hecke operators and ask for (a cohomological version of) a weaker Lef-
schetz property for the collection of these Hecke translates.

In [Oda], it is shown that Hecke translates of the Jacobian of a fixed Shimura
curve span the Albanese of a quotient of the unit ball in Cn by an arithmetic
group of the group SU(n, 1) of automorphisms of the unit ball in Cn. This
proves a version of the Lefschetz Theorem on the injection of the cohomology
to Shimura curves.

There are a number of criteria developed in recent years to determine
if Hecke translates a given cohomology class on a Shimura Variety, restricts
non-trivially to a given Shimura subvariety. We give a survey of these results.
These results are formulated in terms of the “representation type (“Aq”) to
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which the cohomology class belongs. The criteria can be extended even to
non-hermitian cases, and are expressed in terms of the compact dual of the
symmetric space under consideration.

2. Notation and Statements

Fix two semi-simple algebraic groups H and G defined over Q and a morphism
j : H → G of algebraic groups defined over Q, with finite kernel. Fix a maximal
compact subgroup KH of H(R) and extend j(KH) to a maximal compact sub-
group K∞ of G(R). We have then an embedding j : XH → XG of the symetric
spaces XH = H(R)/KH and XG = G(R)/K∞.

If Γ ⊂ G(Q) is a torsion-free congruence arithmetic group, then the quotient
S(Γ) = Γ\XG is a manifold covered by XG. Denote by Af the ring of finite
adeles over Q and by G(Af ) the group of Af rational points. The group G(R)
acts on XG and G(Af ) acts on the left on G(Af ); hence G(Q) ⊂ G(R)×G(Af )
acts diagonally on XG × G(Af ). Also, G(Af ) acts (by right multiplication on
the second factor) on X × G(Af ). Hence G(Af ) acts on the quotient SG =
G(Q)\XG × G(Af ). Moreover, SG is the inverse limit SG(K) = SG/K where
K ⊂ G(Af ) is a compact open subgroup. The space SG(K) is a finite union of
locally symmetric manifolds S(Γ) for a finite set of Γ.

Denote by H∗(SG) the cohomology of SG with complex coefficients. Then
(by [Rohlfs]), the cohomology ring H∗(SG) is the direct limit over K ⊂ G(Af )
of the cohomology groups H∗(SG(K),C) on which G(Af ) acts via its right
action on SG. If g ∈ G(Af ) and ω ∈ H∗(SG), then we denote by g∗(ω) the
action of g onω.

We have similarly the space SH = H(Q)\XH ×H(Af ) and a map j : SH →
SG.

We can now define the “Oda restriction map” (see [Oda])

Res : H∗(SG) →
∏

g∈G(Af )

H∗(SH),

defined by Res(ω) = (j∗g∗(ω))g∈G(Af ).
In this survey we are concerned with describing the kernel of Res in terms

of representation theory.
If G is anisotropic over Q, then SG is compact and by the Matsushima

formula we have the decomposition

H∗(SG) = ⊕m(π)H∗(g,K∞, π∞)⊗ πf .

In this formula, π = π∞ ⊗ πf is a representation of the group G(A) =
G(R)×G(Af ) which occurs in L2(G(Q)\G(A) and π∞ is a cohomological rep-
resentation, i.e. the relative Lie algebra cohomology space H∗(g,K∞, π∞) 6= 0,
where g is the complexification of the Lie algebra of G(R), and m(π) is the
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multiplicity of the representation π = π∞ ⊗ πf of G(R) × G(Af ) = G(A) in
L2(GQ)\G(A).

The representations with cohomology, of G(R) are classified (by the work
of Parthasarathy, Kumaresan, Vogan and Zuckerman) in terms of the θ-stable
parabolic subalgebras q of the complex semi-simple Lie algebra g, with θ being
the Cartan involution on G(R) with respect to the maximal compact subgroup
K∞. If g = k ⊕ p is the associated Cartan decomposition, we have the θ-
stable Levi decomposition q = l ⊕ u of the parabolic subalgebra q and the
decomposition u = u ∩ k⊕ u ∩ p. Put R = dim(u ∩ p).

The Cartan decompositon g = k⊕p is a decomposition of K∞ modules. The
line ∧R(u ∩ p) generates an irreducible representation V (q) of K∞ in ∧Rp.

The classification of unitary irreducible cohomological representations π∞

of (g,K∞) now says that to each θ-stable parabolic subalgebra q as above, there
exists a cohomological representation Aq characterised by the property that the
only irreducibleK∞ representation common to ∧∗p and Aq is the representation
V (q). Moreover, every cohomological representation π∞ is an Aq.

If ω ∈ HR(SG), and under the Matsushima decomposition, ω lies in the
component HR(g,K∞, π∞)⊗πfm(π), where π∞ = Aq and R = dim(u∩p), we
will then refer to ω as a strongly primitive class of type Aq.

Denote by X̂G and X̂H the compact dual symmetric spaces of XG and XH .
The Matsushima component corresponding to the trivial representation of G(A)

is siomorphic to H∗(X̂G). The submanifold X̂H yields a cohomology class (its

fundamental class) in H∗(X̂G) ⊂ H∗(SG), denoted [X̂H ].
The Levi subgroup L(C) ⊂ Q(C) ⊂ G(C) is defined over R and is θ-stable.

We have an associated map of compact symmetric spaces X̂L ⊂ X̂G, and the
restriction map R̂es : H∗(X̂G) → H∗(X̂L). We have then the following criterion
for the non-vanishing of the Oda-restriction purely in terms of the compact dual
of XG ([V1]):

Theorem 1. If ω is a strongly primitive cohomology class of type Aq in

HR(SG), and if R̂es([X̂H ]) 6= 0 in H∗(X̂L), then the Oda restriction of ω
is non-zero.

As a corollary, we get the following result ([V1]) (conjectured by M.Harris
and J-S.Li ([H-L]), and proved by them in degrees i ≤ 2).

Theorem 2. If G(R) = SU(n, 1) and H(R) = SU(m, 1) up to compact factors
and j : H → G induces the standard embedding of SU(m, 1) in SU(n, 1), then
the restriction map

Res : Hi(SG) →
∏

g∈G(Af )

Hi(SH)

is injective for i ≤ m.

The criterion of Theorem 1 is especially useful in the case when both XG

and XH are Hermitian symmetric domains and the embedding j : XH →



Cohomology of Arithmetic Groups and Representations 1369

XG is holomorphic. Then we have the K∞-equivariant decomposition of the
complexified tangent space p into holomorphic and anti-holomorphic tangent
spaces p = p+ ⊕ p−. Similarly, for the subalgebra h we have h = h ∩ k⊕ h ∩ p,
and pH = h ∩ p decomposes into a direct sum of p+H and p−H .

The embedding j induces a map p+H → p+.

Moreover, u ∩ p = u ∩ p+ ⊕ u ∩ p−. We have g = u⊕ l⊕ u− where u− is the
nilradical opposite to u and stable under l.

Write R± = dimu ∩ p±. Then R = R+ + R−. Set V +(q)=span of K∞

translates of the line ∧R+

(u ∩ p+) ∧ ∧R−

(u− ∩ p+) in the K∞-representation
∧Rp+.

Denote by E(G,H,R) the K∞-span of the subspace ∧Rp+H . When XG is
Hermitian, note that SG is a projective limit of algebraic varieties.

We have then the necessary condition ([V1]) for the non-vanishing of Res:

Theorem 3. If G is anisotropic over Q and is of Hermitian type, and if ω is
a strongly primitive class on SG of Hodge type (R+, R−) and of type Aq, then
Res(ω) 6= 0 provided V +(q) ∩ E(G,H,R) 6= 0.

When the class ω is of Hodge type (m, 0) (i.e. R = R+), this criterion is
necessary and sufficient ([Cl-V]):

Theorem 4. If G is anisotropic over Q and is of Hermitian type, and if ω is
a holomorphic form of degree R on SG of typ Aq, then Res(ω) 6= 0 if and only
if E(G,H,R) ⊃ V (q).

The case when the cohomology classes are not of holomorphic type is more
involved and this is the result of Theorem 3; however, in this case, the criterion
of Theorem 3 is only proved to be sufficient.

2.1. Applications to cup-products. We take G/Q as before, of Her-
mitian type. Replace the pair (H,G) by the diagonal embedding (G,G × G).
The restriction to the diagonal G of a tensor product class ω1 ⊗ω2 ∈ H∗SG)⊗
H∗(SG) = H∗(SG×G) is simply the cup product, and from Theorem 3 we get

Theorem 5. If ω1 and ω2 are two strongly primitive classes on SG of type
Aq1

and Aq−2, then for some g ∈ G(Af ) the cup product g∗(ω1) ∧ ω2 6= 0 if
V +(q1) ∧ V +(q2) 6= 0 ⊂ ∧∗p+.

In case the classes are holomorphic, this is actually necessary and suffi-
cient thanks to a result of Clozel ([Clo 2]) In Parthasarathy ([Par]) a sufficient
condition for the vanishing of cup products is given.

As an application of Theorem 5, we have([V1]): if G/Q is such that G(R) =
SU(n, 1) up to compact factors, then given ω1 ∈ Hi(SG) and ω2 ∈ Hj(SG) (not
necessarily primitive), the cup product g∗(ω1) ∧ ω2 6= 0 for some g ∈ G(Af ).
Analogous results were proved earlier by Kudla ([Ku]).
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2.2. Cycles on Shimura Varieties. The results (Theorem 3 and The-
orem 1) may be used to prove some results on cycles on compact Shimura
varieties ([V2] and [V3]).

Let G/Q be an anisotropic semi-simple group such that G(R) is, up to
compact factors, isomorphic to SU(n, 2). It can be shown that H4(SG) is a
direct sum of H4,0 ⊕H0,4 and H2,2 as Q-Hodge structures. Moreoer, we may
write H2,2(SG) = H4(X̂G) ⊕ W where W consists of non-G(Af ) invariant
classes. Using the foregoing criteria, one may prove that W restricts injectively
into H2(SU(2, 1)) ⊗ H2(SU(2, 1); one may even prove that W restricts into
a product of Hodge classes: W ⊂ H1,1

Q (SU(1, 2)) ⊗ H1,1
Q (SU(1, 2)). Using the

Lefschetz (1,1) Theorem, we now get ([V2])

Corollary 1. All the Hodge classes in H2n−2,2n−2(SG) are generated by G(Af )-
translates of fundamental classes of products of curves i.e. classes of the form
[C1 ×C2] where C1 and C2 are curves and C1 ×C2 embeds in SG/K for some
compact open subgroup K ⊂ G(Af ).

The criteria of Theorem 3 and Theorem 1 can be applied to prove non-
triviality of certain cycle classes as well as the occurrence of certain cohomolog-
ical representations in the automorphic spectrum. The following can be shown.

Corollary 2. If XH ⊂ XG is an embedding of Hermitian domains, there exists
a hlomorphic cohomology class on SG which restricts non-trivially to SH and
if the centraliser of H(R) in G(R) is strictly larger than the centre of G, then
the G(Af )- module generated by the cycle class [SH(Γ)] is infinite dimensional.

In particular, the existence of holomorphic automorphic representations Aq,
implies the automorphy of Aq with Aq of Hodge type (p, p).

Examples: (1) If G = U(p, q) and H =
∏

1≤i≤r U(pi, qi) with
∑

pi = p or∑
qi = q.
(2) G = Spg and H = Spg1 × · · · × Spgr , with

∑
gi = g.

In contrast, if these equalities are not satisfied (i.e.
∑

pi < p and
∑

qi < q
and

∑
gi < g, then the cycle class [SH(Γ)] generates the trivial G(Af )-module.

These and similar computations raise the possibility that the following may
have a positive answer.

Question 1. Given a simple Lie group G defined over Q and a semi-simple
Q-subgroup H such that the centralizer of H in G is non-compact, is it always
the case that [SH(Γ] lies in H∗(X̂G) (i.e. generates the trivial G(Af )-module)?

2.3. Mumford-Tate Groups. The conjectures of Langlands on the
zeta functions on Shimura Varieties (and their extension to the non-tempered
case by Kottwitz and Arthur) predict that in low degrees, the Galois group (of
the number field over which a Shimura variety is defined) acts by a “small”
group. In particular, for very low degrees of cohomology, the Galois action is
potentially abelian. This is equivalent to saying (modulo the Mumford-Tate
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conjecture on the relation between the Galois group and the Mumford-Tate
group) that the Mumford-Tate group of the Q-Hodge structure associated to
low degree cohomology is abelian. This implication can be proved for several
arithmetic quotients of classical Hermitian domains. (see [Bla-Rog], [Mu-Ra2]
for related results).

Theorem 6. (1) If G(R) = Spg and g ≥ 2 then the Mumford-Tate group of
the Q-Hodge structure of Hg(SG) is abelian.

(2) If G(R) = SU(p, q) and 2 ≤ p ≤ q, then the Mumford-Tate group of the
Q-Hodge structure associated to Hp(SG) is abelian.

Here is a sketch of the proof. We use the criteria of restriction to deduce that
the cohomology restricts injectively to a product of Shimura Curves in SG, and
then use the fact that the Hodge types of cohomological representations in low
degrees are highly restricted (Vogan-Zuckerman). Then the following Lemma
completes the proof.

Lemma 7. Suppose that W is an irreducible pure Q-Hodge structure whose
Hodge types are holomorphic or anti-holomorphic: W ⊗ C = Wm,0 ⊕ W 0,m,
with m ≥ 0. Suppose that W is contained in a tensor product of two irreducible
Q-Hodge structures A and B, such that A ⊗ C = ⊕p,q≥0,p+q=aA

p,q and B ⊗
C = ⊕p,q≥0,p+q=bB

p,q. Then the Mumford-Tate groups of W , A and B are all
Abelian.

3. The Action of the Cohomology of the

Compact Dual

Under the Matsushima decomposition

H∗(SG) = ⊕m(π)H∗(g,K∞, π∞)⊗ πf ,

the part which corresponds to the trivial representation π is the cohomology of
the compact dual H∗(X̂G). Therefore, it acts on the cohomology of SG) by cup
product. If X is Hermitian symmetric, it is possible to split the Hodge structure
H∗(SG) into smaller pieces according to this action.

Suppose π∞ = Aq and π′
∞ = Aq′ are two cohomological representations

which have strongly primitive cohomology in degree i. Suppose that L and
L′ are respectively the Levi subgroups of the parabolic subgroups Q and Q′

corresponding to the θ-stable parabolic sublagebras q and q′. We consider the
restriction maps rL : H∗(X̂G → H∗(X̂L and rL′ : H∗(X̂G → H∗(X̂L′ . Denote
by Hodi(Aq) the smallest Q-Hodge structure whose complex points contain
all the strongly primitive cohomology classes in degree i of type Aq. Define
similarly, Hodi(Aq′).

Theorem 8. If the kernels of the maps rL and rL′ are distinct, then the Q
Hodge Structures Hodi(Aq) and Hodi(Aq′) are disjoint (their intersection is
the zero vector space).
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As an example, consider G such that G(R) = SU(2, 2) up to compact fac-
tors. Then, in degree i = 2, there are three parabolic subalgebras q whose Aq

have cohomology in degree 2. Two of them (say q1 and q2 are holomorphic (of
Hodge type (2, 0)) and the other (say, q3) is of Hodge type (1, 1). It can be ver-
ified from the criterion of Theorem 8 that the associated Q-Hodge structures
are all disjoint. By the Lefschetz (1, 1)-theorem, the Hodge structure associated
to q3 consists of algebraic cycles. This can be shown to yield the following.

Corollary 3. If G(R) = U(2, 2) up to compact factors, then all Tate classes
in H2(SG) are algebraic.

Remark 1. The Tate conjecture for H2 for most Shimura varieties is known,
in all dimensions at least five (by unpublished work of Blasius and Rogawski
(a much earlier work of Harder-Langlands ([Har-Lan]) , Murty-Ramakrishnan
([Mu-Ra]) and Klingenberg ([Kli]) treats the case of Hilbert modular surfaces).
The above Corollary shows that for U(2, 2) also, the Tate Conjecture holds.
The main open case is then that of compact quotients of the two fold product
of the upper half plane by cocompact irreducible lattices in SL2(R)× SL2(R).

4. Non-Hermitian Case

To tackle the general (non-hermitian) case, M.Harris and J-S.Li devised an al-
ternative approach ([H-L]). This is in terms of the “automorphic dual” of G
in the sense of Burger, Li and Sarnak ([Bu-Sa]). Recall that G(R) is a real

semi-simple Lie group and denote by Ĝ(R) the space of equivalence classes of
irreducible unitary representations of G(R) under the Fell topology (of uni-
form convergence of matrix coefficients of representations on compact subsets

of G(R)). Denote by Ĝ(R)Aut the closure of the union (over all congruence sub-
groups Γ) of the collections of irreducibles π which occur weakly in L2(Γ\G(R)).

The following conjecture is due to many people ([H-L], [Ber] and [Ber-Cl]).

Conjecture 1. (Harris-Li, Bergeron and Clozel) If π is a cohomological repre-
sentation, then π is not a limit of complementary series representations σ with

σ ∈ Ĝ(R)Aut.
In particular, if π is a non-tempered cohomological representation, then it

is isolated in the automorphic dual od G.

A very special case of this is when π is the trivial representation of SL2

and the conjecture is equivalent to saying that the non-zero eigenvalues of the
Laplacian on quotients of the upper half plane by congruence subgroups of
SL2(Z) are bounded away from zero (Selberg’s “3/16” Theorem ([Sel]). For a
general semi-simple group G defined over Q, Clozel has proved that conjecture
1 is true for the trivial representation ([Clo]). A result of Vogan ([Vog]) says
that for most groups, the cohomological representations Aq are isolated even in
the unitary dual (the only ones which are not isolated are those for which the
Levi subgroup L over R is a product of copies of SO(m, 1) or SU(m, 1)).
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Harris and Li showed that under the assumption of Conjecture 1, the ques-
tion of the non-vanishing of the restriction of cohomology may be reduced purely
to a question of the discrete occurrence of a suitable cohomological representa-
tion of the smaller group H(R) in a cohomological representation of the larger
group G(R). In the special case that G(R) = SU(n, 1) (up to compact factors),
they proved that Shimura subvarieties of the complex hyperbolic manifold SG

satisfy a Lefschetz property namely

Res : Hi(SG) →
∏

g∈G(Af )

H∗SH),

is injective provided i ≤ dimSH (they even proved this unconditionally in the
case that i ≤ 2).

Clozel and Bergeron have an analogue for the real hyperbolic manifolds
under the assumption of Conjecture 1, namely the following theorem.

Theorem 9. (Clozel and Bergeron). Under the assumption of Conjecture 1,
if G(R) = SO(n, 1) and H(R) = SO(m, 1) up to compact factors, then the
restriction map

Res : Hi(SG) →
∏

g∈G(Af )

Hi(SH),

is injective provided i ≤ [m/2] (where [x] is the integral part of x).

Clozel and Bergeron have shown that Conjecture 1 follows from well known
conjectures of Arthur on the possible non-tempered automorpihc representa-
tions which can arise. Becuse of recent progress on the Fundamental Lemma,
and results of Arthur on consequences of the Fundamental Lemma, Conjecture
1 is close to being settled.

Theorem 9 has been proved unconditionally (only for i = 1) by [Ra-V],
[Lub] and [V4]).

In [Sp-V], Conjecture 1 for SO(n, 1) is reduced to the case when the coho-
mological representation is tempered.
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Abstract

The research presented here developed from rather mysterious observations,
originally made by the authors independently and in different circumstances,
that Lebesgue null sets may have uniquely defined tangent directions that are
still seen even if the set is much enlarged (but still kept Lebesgue null). This
phenomenon appeared, for example, in the rank-one property of derivatives of
BV functions and, perhaps in its most striking form, in attempts to decide
whether Rademacher’s theorem on differentiability of Lipschitz functions may
be strengthened or not.

We describe the non-differentiability sets of Lipschitz functions on R
n and

use this description to explain the development of the ideas and various ap-
proaches to the definition of the tangent fields to null sets. We also indicate
connections to other current results, including results related to the study of
structure of sets of small measure, and present some of the main remaining open
problems.
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1. Differentiability of Lipschitz Functions

One of the important results of Lebesgue tells us that Lipschitz functions on
the real line are differentiable almost everywhere. It is also well-known that
the converse is true: for every Lebesgue null set E on the real line there is a
real-valued Lipschitz function which is non-differentiable at any point of E.
That is:
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Theorem 1.1. For a given set E ⊂ R there is a Lipschitz function f : R → R

which is not differentiable at any point x ∈ E if and only if E is Lebesgue null.

One of our aims is to generalise Theorem 1.1, and also its more precise
variants that will be described in Theorem 1.13, to Lipschitz functions f : Rn →
R

m.
Since a Lipschitz function on R is differentiable almost everywhere, Fubini

Theorem implies immediately that the directional (or partial) derivative

f ′(x;u) := lim
t→0

f(x+ tu)− f(x)

t

of a Lipschitz function f : Rn → R
m exists for each direction u at a.e. x.

Although differentiability is not the same as the existence of sufficiently
many partial derivatives, the set of points at which these two notions differ is
relatively easy to control. First recall the following definition:

Definition 1.2. A set E ⊂ R
n is porous at a point x ∈ E if there is a c > 0

and there is a sequence yn → 0 such that the balls B(x+ yn, c|yn|) are disjoint
from E. The set E is porous if it is porous at each of its points, and it is called
σ-porous if it is a countable union of porous sets.

Theorem 1.3 ([3]). Let f : Rn → R
m be a Lipschitz function. Then the set of

those points at which f is not differentiable but it is differentiable in n linearly
independent directions is σ-porous.

It follows from Lebesgue’s density theorem that σ-porous sets have Lebesgue
measure zero. Therefore as an immediate corollary we obtain:

Theorem 1.4 (Rademacher). Every Lipschitz function f : Rn → R
m is differ-

entiable almost everywhere.

The converse direction, i.e. the description of those sets E ⊂ R
n for which

there is a non-differentiable Lipschitz function, is much harder. D. Preiss proved
that the converse of Rademacher’s theorem is false, already in dimension 2:

Theorem 1.5 ([9]). There is a Lebesgue null set E ⊂ R
2 such that every

Lipschitz function f : R2 → R is differentiable in at least one point of E.

Unlike in the classical Lebesgue and Rademacher theorem, Preiss’s result
is not an ‘almost everywhere’ result, he does not show that the function is
differentiable at ‘most’ of the points x ∈ E. Indeed this is not possible. We
prove the following theorem:

Theorem 1.6. For every Lebesgue null set E ⊂ R
2 there is a Lipschitz function

f : R2 → R
2 which is not differentiable at any point x ∈ E.

This theorem says that for every Lebesgue null set there are two real-valued
Lipschitz functions, namely, the coordinate functions of f , such that at each
x ∈ E at least one of the two functions are non-differentiable.
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Remark. In [9] the result is proved not only in R
2, but in every Banach

space with a smooth norm. Preiss’s set E is dense. In a recent paper [5], M.
Doré and O. Maleva constructed a closed (and hence nowhere dense) null set
with the same property: in every Banach space X with separable dual there
exists a closed bounded set of Hausdorff dimension one containing a Fréchet-
differentiability point of every Lipschitz function f : X → R.

Let E ⊂ R
n. It is immediate from the definition that a set E is porous at

x ∈ E if and only if the Lipschitz function f(x) = dist(x,E) is non-differentiable
at x. Of course σ-porous sets cannot fully describe non-differentiability sets of
Lipschitz functions (not even in R, since not all Lebesgue null sets of R are
σ-porous). But by Theorem 1.3, in order to find all Lebesgue null sets for
which there is a non-differentiable Lipschitz function, it is enough to consider
functions not having enough many directional derivatives.

From the point of view of differentiability problems, the sets that are the
most negligible are the sets of points at which a Lipschitz function may be
differentiable in no direction. We show that these sets form a σ-ideal. We call
them uniformly purely unrectifiable. Notice that uniformly purely unrectifiable
sets are purely unrectifiable, i.e. they are null on every rectifiable curve, since
a Lipschitz function is differentiable in the tangent direction at a.e. point of
a curve. We will see later that uniformly purely unrectifiable sets have the
(possibly only formally) stronger property that they can be covered by an open
set which is small on many curves simultaneously.

For simplicity, consider just Lipschitz functions f : R2 → R
m. We will show

that if f is not differentiable at the points of E ⊂ R
2, then at each point x ∈ E

except for a uniformly purely unrectifiable set, there is a unique differentiability
direction τ(x) of f . Moreover, this direction is determined by the geometry of
the set E, it is independent of the function f : for any other Lipschitz function
g, the direction constructed using f and g agree at each point of E except
for a uniformly purely unrectifiable set. Indeed, if E is contained in the non-
differentiability set of both f : R2 → R

m1 and g : R2 → R
m2 , then the direction

τ defined by the function h = (f, g) : R2 → R
m1+m2 must coincide with the

directions defined by f or g, whenever f , g and h have a unique direction of
differentiability.

Using also Theorem 1.6, we obtain:

Corollary 1.7. For every planar Lebesgue null set E, at each point x ∈ E
there is a direction τ(x) with the following property: every Lipschitz function
f : R2 → R

m is differentiable in the direction τ(x) at every x ∈ E, except
at a uniformly purely unrectifiable set of points. This direction is determined
uniquely, except for a uniformly purely unrectifiable set.

Remark. There are null sets which are very far from being purely unrectifiable.
For instance, R. O. Davies showed in [4] that every Borel set B ⊂ R

2 can be
covered by infinite straight lines without increasing its Lebesgue measure. One
can even put continuum many lines through each of the points of B so that the
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union of these lines has the same measure as B. Now if B = B0 is, say, a point,
applying Davies’s theorem iteratively, we can find B0 ⊂ B1 ⊂ B2 ⊂ . . . such
that each Bk has continuum many lines through the points of Bk−1, and the sets
Bk are Lebesgue null. Then

⋃
Bk is also Lebesgue null, and it has continuum

many lines through each of its points. What could be τ on
⋃
Bk? Since Lipschitz

functions are differentiable along lines, at each line of the construction, τ must
agree with the direction of the line at a.e. of its points. But there are continuum
many lines at each point, how can we choose only one of these, so that along
any given line at a.e. point we choose the direction of the given line and not
one of the others?

Now, consider Lipschitz functions on R
n.

Notation. We denote by Nn,k the σ-ideal of subsets of Rn generated by sets
for which there is a Lipschitz function f : Rn → R differentiable in at most k
linearly independent directions.

So Nn,0 are exactly the uniformly purely unrectifiable sets, while Nn,n−1

are the non-differentiability sets we are mainly interested in.
Since a Lipschitz function is differentiable in the tangent directions of any

k-rectifiable set atHk-almost all of its points, therefore Nn,k−1 sets are k-purely
unrectifiable, i.e. they meet every k-rectifiable set in an Hk-null set.

As a refinement of the above observations on directions of differentiability
in the plane, we will show that whenever E ∈ Nn,k, there is τ : E → G(n, k)
such that for all x ∈ E except those belonging to an Nn,k−1 set, every Lipschitz
function f : Rn → R

m is differentiable in the direction τ(x).

Definition 1.8. τ : E → G(n, k) is called a k-dimensional tangent field of a
set E if every Lipschitz function f : Rn → R

m is differentiable in the direction
τ(x) at all x ∈ E except those belonging to an Nn,k−1 set.

Theorem 1.9. Every set E ∈ Nn,k has a k-dimensional tangent field. More-
over, the tangent field is unique up to an Nn,k−1 set.

It is easy to see that:

Proposition 1.10. The set of (directional) non-differentiability of a Lipschitz
function f : Rn → R can be written as a countable union of sets E, for each of
which we may find a direction u and numbers a < b such that

lim inf
t→0

f(x+ tu)− f(x)

t
< a < b < lim sup

t→0

f(x+ tu)− f(x)

t
.

Since our f is Lipschitz, such set is null not only on every line in direction
u, but also on every curve γ : R → R

n provided that |γ′ − u| is small enough.
We can do slightly better: if δ > 0 is small enough, for every ε > 0 there is

an open set G ⊃ E such that the length of G ∩ γ is less than ε for every curve
γ : R → R

n with |γ′ − u| < δ.
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This observation motivates the following definition. Given a convex cone C,
we may define the C-width of an open set G as the supremum of the lengths of
γ ∩G where the supremum is taken over all Lipschitz curves γ that ‘go in the
direction of C’, i.e. for which γ′(t) ∈ C for a.e. t. Then we define the C-width
for general sets as the infimum of the C-widths of open sets containing it. In
fact, our definition of the width is slightly more complicated: instead of the
length we use a technically more convenient measure (that also depends on a
vector e ∈ int(C)) of the part of the curve that lies in the set G. (See later,
Definition 1.14.)

Using this notion of width, an equivalent description of the tangent field of
a set can be obtained without referring to non-differentiability sets and non-
differentiability directions of Lipschitz functions:

Definition 1.11. If E ⊂ R
n, we say that the mapping τ : E → G(n, k) is a

k-dimensional tangent field of E if for every cone C, the set of those points
x ∈ E for which τ(x) ∩ C = {0} has C-width zero.

This defines the same tangent field as Definition 1.8: one can show that the
family of those subsets of Rn that admit a k-dimensional tangent field according
to Definition 1.11 coincides with the σ-ideal Nn,k, and also that the two tangent
fields coincide.

According to Proposition 1.10 (and paragraphs preceding it), the set where
f is not differentiable can be covered by countably many sets, each of which
has width zero with respect to some cone.

We do not know whether this is a full description, i.e. we do not know
whether the non-differentiability sets of Lipschitz functions (i.e. those sets that
admit an (n− 1)-tangent field) are exactly described by the property that they
can be covered by countably many sets, each of which has width zero with
respect to some cone. It is not very hard to show, using Definition 1.11, that
the existence of an (n − 1)-tangent field of a set is equivalent to the property
that for every ε > 0 the set can be covered by a finite number of sets each
of which has width zero with respect to some cone that is only ε-far from a
halfspace.

Our results include:

Theorem 1.12. For every set E ⊂ R
n, the following are equivalent:

(i) There is a Lipschitz function f : Rn → R
n that is non-differentiable at

any point of E.

(ii) There is a sequence (possibly infinite) of Lipschitz functions fj : R
n → R

such that at every point of E at least one of the fj is non-differentiable.

(iii) The set E is in Nn,n−1.

(iv) The set E has an (n− 1)-tangent field.

(v) If n ≤ 2: E has Lebesgue measure zero.
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We do not know whether every Lebesgue null set is in Nn,n−1 for n > 2.
And we do not know whether it is true that for every m < n there is a null
set E ∈ R

n such that every Lipschitz function f : Rn → R
m is differentiable at

some point of E. Preiss proved in [9] that the answer is ‘yes’ for 1 = m < n.
Doré and Maleva in [6], building heavily on methods due to Lindenstrauss,
Preiss and Tǐser in [8] in their study of differentiability problems in infinite
dimensional Banach spaces, proved that the answer is also yes for 2 = m < n.
But their current methods do not work for m ≥ 3.

So far we didn’t say anything about how we can construct a non-
differentiable function for a given (small) set E. This is much harder than the
other direction, i.e. showing that the set of points of non-differentiability must
be small. In dimension 1 it is easy, and one may try to use the 1-dimensional
proof as a guidance. One could even consider generalising the more precise de-
scription of the sets of non-differentiability of Lipschitz functions f : R → R

due (with slightly worse constants) to Zahorski [11]. (See [7] for a more recent
proof.)

Theorem 1.13 (Zahorski). For any Gδ set E ⊂ R of Lebesgue measure zero
there is a Lipschitz function f : R → R with Lip(f) ≤ 1 which is differentiable
at every point x /∈ E and

lim inf
t→0

f(x+ t)− f(x)

t
= −1 < 1 = lim sup

t→0

f(x+ t)− f(x)

t

for every x ∈ E.

Recall that a set is Gδ if it is an intersection of countably many open sets.
Recall also that, by adding together suitable multiples of functions obtained by
this theorem for Gδ sets Ei, Zahorski showed that E ⊂ R is the set of points of
non-differentiability of some Lipschitz function f : R → R if and only if E is of
Lebesgue measure zero and of type Gδσ (a union of countably many Gδ sets).

So let us see how one can construct a Lipschitz function f : R → R non-
differentiable at the points of the given Lebesgue null set E. We recursively find
open sets G1 ⊃ G2 ⊃ · · · ⊃ E so small that Gk is small in every component
of Gk−1. (For example, |Gk ∩ C| < 2−k|b − a| for any component C = (a, b)
of Gk−1.) Let fk(x) denote the measure of (−∞, x) ∩ Gk. Then f ′k(x) = 1 at
each point x ∈ Gk, but the slope (fk(b) − fk(a)/(b − a) is close to 0. Using
this it is easy to check that f(x) =

∑
(−1)kfk(x) is not differentiable at any

point of
⋂
Gk. If E is Gδ and ε > 0, it is not difficult to choose the Gk so

that, defining f(x) =
∑
λkfk(x) where |λk| < ε and the partial sums of the λk

oscillate between ±1, we get a function that almost satisfies the statement of
Theorem 1.13. However, at the points of R\E we would only get that the upper
and lower derivatives of f differ by no more than 2ε, not that f is differentiable.
We are in fact able to find a higher dimensional analogue of this construction.
Recall however that Theorem 1.13 is proved in a different way, and that the
weaker statement that we have just indicated is not sufficient for showing the
full description of non-differentiability sets mentioned above.
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As a higher dimensional analogue of the functions fk, for an open setG ⊂ R
n

of (small) C-width w and unit vector e from the interior of C, we construct a
function ω : Rn → R such that Lip(ω) is bounded by a constant depending on
C and e, ω(y) ≥ ω(x) if y−x ∈ C, ω(x+ te) = ω(x)+ t if the segment [x, x+ te]
lies in G, and 0 ≤ ω(x) ≤ w for all x ∈ R

n.

The function ω can be used to construct non-differentiable functions, in
a similar way as the functions fk were used in dimension 1. Indeed, ω has
directional derivative 1 in the direction e at each x ∈ G, but from the more
global point of view ω looks like having derivative zero.

The technical details of the construction are quite complicated. They may
be somewhat simplified in the case of sets E ∈ Nn,0. Given any vector e, we
choose an open set G ⊃ E with small C-width where C is close to the halfspace
{x : 〈x, e〉 ≥ 0}. The function 〈x, e〉 − ω(x) sees, from every point of G, some
points in the direction e with slope almost one, but has local Lipschitz constant
close to zero on G. This allows us to iterate the construction locally. Moving
also the vectors e through a dense subset of the unit sphere, we get a function
which is non-differentiable at any point of E in any direction. More precisely,
here is our definition and the results we prove:

Definition 1.14. Let C be a convex cone and let e be a unit vector in C.

(i) We define M =MC,e : R
n → R by

M(x) = sup{λ ∈ R : x− λe ∈ C}.

(ii) The C-width w(G) = wC,e(G) of an open set G ⊂ R
n is defined as the

supremum of the numbers

∫
{t:γ(t)∈G}

M(γ′(t)) dt

among all Lipschitz curves γ : R → R
n which go in the direction of C.

(iii) For a general set E ⊂ R
n, w(E) is the infimum of w(G) among all open

sets G which contain E.

(iv) Let G ⊂ R
n be an open set of finite width. For every point x ∈ R

n we set
ω(x) = ωG,C,e(x) as the supremum of the numbers

−λ+

∫
t∈[a,b],γ(t)∈G

M(γ′(t)) dt

among all a, b ∈ R, λ ≥ 0 and γ : [a, b] → R
n such that γ(b) − x = λe

and γ goes in the direction of C.
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We use this function ω to prove:

Theorem 1.15. For every ε̃ > 0 and for every set E which is Gδ and uniformly
purely unrectifiable there is a function f : Rn → R such that

(i) Lip(f) = 1;

(ii) f is ε̃-differentiable on R
n \E, that is, for every x ∈ R

n \E there is r > 0
and a vector u such that

|f(x)− f(y)− 〈u, y − x〉| ≤ ε̃|y − x| for all y ∈ B(x, r),

(iii) for every x ∈ E, η ∈ B(0, 1) ⊂ R
n and ε > 0 there is an r < ε such that

|f(y)− f(x)− 〈η, y − x〉| ≤ εr for all y ∈ B(x, r).

In particular, f is not differentiable at the points of E, it is not even
ε-differentiable for any ε < 1.

Since every uniformly purely unrectifiable set is contained in a Gδ uniformly
purely unrectifiable set, this indeed shows that for every Nn,0 set there is a
Lipschitz function that is non-differentiable in any direction. However this result
does not provide Zahorski-type exact description of sets of non-differentiability
in any direction (which, by analogy, one would conjecture to be Nn,0 sets of
type Gδσ), since we do not know (in dimension n > 1) whether (ii) of Theorem
1.15 can be replaced by the condition that f is differentiable on R

n \ E.
By a rather delicate induction with respect to k (which is where we need the

condition (ii) of Theorem 1.15) we show that the sets of points of k-dimensional
differentiability can be characterised as follows:

Theorem 1.16. (i) Let f : Rn → R
m be a Lipschitz function, and for each

x ∈ R
n choose τ(x) to be a maximal dimensional subspace such that the

restriction of f to x+τ(x) is differentiable at x. For each 0 ≤ k ≤ n−1, let
Ek denote the set of those points at which dim τ(x) = k. Then Ek ∈ Nn,k.

(ii) Let Ek ⊂ R
n be an Nn,k set for some 0 ≤ k ≤ n − 1. Then there is a

Lipschitz function f : Rn → R
k+1 and a k-tangent field τ of Ek such that

f is not differentiable at any x ∈ Ek in any direction e that is orthogonal
to τ(x).

We can make (ii) of Theorem 1.16 more quantitative. Again, this is a weaker
analogy of Theorem 1.13, which is needed for induction and to which the same
remarks as to the case k = 0 apply.

Theorem 1.17. For each 0 ≤ k < n there is a constant cn,k > 0 such that,
whenever l > k, ε > 0 and E is a Gδ, Nn,k subset of R

n, then there is a
function f : Rn → R

l with Lip(f) ≤ 1 which is ε-directionally differentiable at
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every point of Rn \ E and has the property that for every x ∈ E there are k-
dimensional linear subspaces V,W of Rn,Rl, respectively, so that for any unit
vectors v ∈ V ⊥ and w ∈W⊥,

lim sup
t↘0

〈f(x+ tv)− f(x), w〉

t
− lim inf

t↘0

〈f(x+ tv)− f(x), w〉

t
≥ cn,k.

According to (iii) of Theorem 1.15, cn,0 = 2. We do not know whether
cn,k = 2 for k > 0.

We finish this section by showing that for differentiability with respect to
a measure (instead of at every point of a given set) it is sufficient to consider
real-valued functions:

Theorem 1.18. Let µ be a σ-finite Borel measure on R
n.

(i) Every real-valued Lipschitz function f : Rn → R is differentiable µ-almost
everywhere, if and only if every set in Nn,n−1 is µ-null.

(ii) On the other hand, if an Nn,n−1-set has positive µ-measure, then there
is a Lipschitz function f : Rn → R which is non-differentiable µ-almost
everywhere on this set.

In particular, for every singular probability measure µ in the plane there is a
Lipschitz function f : R2 → R which is non-differentiable µ-almost everywhere.

This nicely complements the result of Preiss mentioned before, according to
which there is a null set E ⊂ R

2 such that every Lipschitz function f : R2 → R

is differentiable in at least one point of E.
As we have already pointed out, the proof of Theorem 1.16 is rather involved.

However, Theorem 1.18 may be proved in a simpler way, closer to the argument
that we indicated for Theorem 1.15. Recall that the key point of this argument
was that for an open setG of small C-width and e ∈ C we constructed a function
ω with directional derivative 1 in the direction e at each x ∈ G, but looking like
having derivative zero from the global point of view. To prove Theorem 1.15,
we needed only one such G (as it contained the whole set E) while to prove
Theorem 1.16 we need several of them which may overlap and so constructions
that we need to do cannot be independent. However, to show Theorem 1.18,
we may throw away sets of small measure, and so achieve that the sets G in
which we have to construct the function ω are in positive distance from each
other. These constructions may still be handled independently, resulting in a
reasonably accessible proof.

2. Structure of Null Sets and Other Problems

In this section we list various results that can be proved using similar techniques
and ideas as the ones we use for the characterisation of non-differentiability of
Lipschitz functions.
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2.1. Tangent of null sets. In the planar case, we know that the σ-ideal
N2,1 and the σ-ideal of Lebesgue null sets coincide, i.e. every planar Lebesgue
null set admits a 1-tangent field. We do not know if the same is true in higher
dimension. However, there is another, weaker notion of tangent fields that can
be defined for any Lebesgue null set in R

n:

Definition 2.1. Given a set E ⊂ R
n, we say that a Borel measurable map

τ : E → G(n, k) defines a weak k-tangent field to E if for every k-rectifiable set
S, Tan(S, x) = τ(x) for Hk-a.e. x ∈ S ∩ E.

Notice that in this definition we had to include a measurability assump-
tion. It was not needed in Definition 1.8 since the tangent field defined there is
automatically Borel measurable (after a modification on an Nn,k−1 set). How-
ever, under the continuum hypothesis one can define a non-measurable weak
k-tangent field by ordering k dimensional C1 surfaces in R

n into Sα, α < ω1

and defining τ(x) as the tangent space of Sα at x where α is the first ordinal
for which x ∈ Sα.

It follows from the definition that, given a set E ⊂ R
n, the weak k-tangent

field, provided that it exists, is uniquely defined up to k-purely unrectifiable
subsets of E (recall that the k-tangent field is uniquely defined up to an Nn,k−1

set). Also, if a set admits a k-tangent field then it is also a weak k-tangent field.
We do not know (even in the planar case for k = 1) whether the σ-ideal Nn,k−1

coincides with the σ-ideal generated by Gδ (or Borel, or analytic) k-purely
unrectifiable sets, and we do not know in dimensions n > 2 whether every set
admitting a weak k-tangent field also admits a k-tangent field. However, we can
prove that:

Theorem 2.2. Any set E ⊂ R
n of Lebesgue measure zero admits a weak

(n− 1)-tangent field.

This result can be understood as saying the rather mysterious fact that one
can prescribe in which direction an (n− 1)-surface meets a null set E, without
knowing the surface itself. The mystery would deepen if, for example, one had a
purely 1-unrectifiable set in Nn,1\Nn,0: this set would have uniquely prescribed
directions that would not be possible to describe by meeting with curves.

2.2. Covering by Lipschitz slabs and intersecting by curves.
The notion ‘C-width’ can be defined in the following, equivalent way. Given a
cone C and a vector e ∈ int(C), if E is a ‘C-Lipschitz set’, i.e. E∩(x+C) = {0}
and E meets each line of direction e in exactly one point, then we call the set
between E and its shifted copy E + we (w > 0) a C-Lipschitz slab of width w.
If K ⊂ R

n is compact, we may define its C-width as the infimum of the total
width of families of C-Lipschitz slabs covering it. If G ⊂ R

n is open, then we
define its C-width as the supremum of C-widths of compact sets contained in
it, and finally if E ⊂ R

n is arbitrary, then its C-width is defined as the infimum
of the C-widths of open sets containing it.
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In our original definition of C-width, we measured the part of the curve γ
that lies in the set G (i.e. we chose the function M(x) in (i) of Definition 1.14)
in such a way that we obtain exactly the same width as the one defined using
C-Lipschitz slabs.

So a compact set has C-width zero if it can be covered by C-Lipschitz slabs
of arbitrary small total width. In particular, in R

2, every compact Lebesgue
null set is in N2,1, therefore it can be covered by Lipschitz slabs of arbitrary
small total width. In fact, in the plane one can cover any null set, and it is
enough to use the coordinate directions and Lipschitz graphs with Lipschitz
constant one. We show the following:

Theorem 2.3. Every set E ⊂ [0, 1]2 of measure 0 ≤ m < ab is the union of two
sets E = A ∪ B, where A has C-width less than a for C = {(x, y) : |x| > |y|}
and B has C-width less than b for C = {(x, y) : |y| > |x|}.

That is, there are Lipschitz functions fi : R → R, gj : R → R with Lipschitz
constant 1 and wi, wj > 0 with

∑
i wi < a,

∑
j wj < b, such that

A ⊂
⋃
i

{(x, y) : fi(x) ≤ y ≤ fi(x) + wi} B ⊂
⋃
j

{(x, y) : gj(y) ≤ x ≤ gj(y) + wj}.

This can be used e.g. to show that there is a 1-Lipschitz function f : R →
R whose graph (x, f(x)) or (f(x), x) meets E in length at least m1/2. The
analogous result is also true in higher dimension:

Theorem 2.4. For every set E ⊂ [0, 1]n of measure m there is a Lipschitz
curve (with a fixed Lipschitz constant that depends only on the dimension n)
that meets E in length at least cnm

1/n.

Here a curve means the graph of a map from one of the coordinate axis into
its orthogonal complement. We do not know whether there is a k-dimensional
Lipschitz surface (where surfaces are understood similarly) that meets E in
Hk-measure ck,nm

k/n.

2.3. Mappings onto balls and weak derivatives. Among the
problems exploring the geometric structure of sets with positive Lebesgue mea-
sure, the following one, proposed by M. Laczkovich, is particularly interesting:

Problem 2.5. Given a set E ⊂ R
n of positive Lebesgue measure, is there

a Lipschitz function f : Rn → R
n which maps E onto a set with non-empty

interior (or, equivalently, that maps E onto a ball)?

Without loss of generality we can assume that E is compact. In dimension
n = 1, f(x) = |(−∞, x)∩E| maps E onto an interval and R\E onto a countable
set.

P. Jones called our attention to a result of N. X. Uy in [10]:

Theorem 2.6 ([10]). For every compact set E ⊂ R
2 of positive Lebesgue mea-

sure there is a non-constant complex-valued Lipschitz function that is holomor-
phic everywhere outside E (including infinity).
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If we identify C and R
2, we obtain a mapping f : R2 → R

2 that is orientation
preserving and open on the complement of E; using degree theory it follows
that f(E) ⊃ f(R2 \E) ⊃ a ball. This gives a positive answer to Problem 2.5 in
dimension n = 2.

In dimension n = 2 a completely different construction can also be obtained
using our function ω from (iv) Definition 1.14 (more precisely, the function
u(x) = x − ω(x)e, whose distance from the identity is small). Instead of con-
structing an open mapping on R

2 \ E, we show that close to a density point
of E a Lipschitz perturbation of the identity can be found which maps R2 \ E
onto a 1-rectifiable set (and consequently, it maps E onto a set of non-empty
interior):

Theorem 2.7. For n = 1, 2 and for every E ⊂ R
n of positive Lebesgue measure

there is an orientation-preserving Lipschitz mapping f : Rn → R
n such that

f(E) = [0, 1]n and f(R2 \ E) is (n− 1)-rectifiable.

Unfortunately none of these methods are powerful enough to construct such
a mapping in higher dimension; the question in dimensions n ≥ 3 remains open.
It may be true that, in any dimension, there is a Lipschitz perturbation of the
identity that maps Rn \ E onto an (n− 1)-rectifiable set.

Another use of ω is the following. Let µ be a measure such that µ(S) > 0
for some S ∈ Nn,n−1, and let E be a subset of S with µ(E) > 0 of C-width zero
for some cone C. Let ωj denote the function ω for w = 1/j. Then the functions
ωj : R

n → R have uniformly bounded Lipschitz constants, they converge to
constant 0 as j tends to infinity, and ω′

j(x; e) ≥ 0 everywhere and ω′
j(x; e) = 1

for x ∈ E.

A moment’s reflection shows that ω′
j cannot converge to 0 = ω′ in any

weak sense with respect to µ (and a straightforward smoothing argument can
make them C1). Therefore, for a measure µ in R

n, weak derivatives of Lipschitz
functions may be defined iff µ is absolutely continuous with respect to Nn,n−1,
hence iff every Lipschitz function is differentiable µ-almost everywhere. For
n = 2 we know that the above holds iff µ is absolutely continuous with respect
to the Lebesgue measure. This answers a problem due to G. Mokobodzki.

2.4. Tangents of measures. Alberti proved in [1] the so-called ’rank-
one property’ of BV functions:

Theorem 2.8 ([1]). Let u and v be BV functions on R
n. Then the direction

of the gradients of u, v agree µ-a.e. whenever the measure µ is singular, and
absolutely continuous with respect to the variation of the gradients of both u
and v.

This result can be understood as saying that certain class of R
n-valued

measures in R
n, namely those that arise as singular parts of derivatives of BV

functions, have a.e. uniquely defined normal directions and so also ‘tangent’
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hyperplanes. The question naturally arises: for what measures is our (n − 1)-
dimensional tangent field uniquely defined almost everywhere? Is it the same
as the hyperplane defined via derivatives of BV functions?

The measure has to be concentrated on Nn,n−1 and it has to be absolutely
continuous with respect to Nn,n−2. Since sets from Nn,n−2 are purely (n− 1)-
unrectifiable, for the later requirement it suffices that the measure is absolutely
continuous with respect to purely (n−1)-unrectifiable sets. The former require-
ment would be equivalent to singularity if Nn,n−1 coincided with Lebesgue null
sets, which we do not know. But the methods used to prove it when n = 2 are
powerful enough to show that every Lebesgue null set in R

n is a union of a
set from Nn,n−1 and a purely (n− 1)-unrectifiable set. So it suffices to assume
that the measure is singular, and absolutely continuous with respect to purely
(n− 1)-unrectifiable sets.

Definition 2.9. Ameasure on R
n is called k-rectifiable if it is absolutely contin-

uous with respect to Hk|E , where E ⊂ R
n is a k-rectifiable set. Measures which

can be represented as integral combinations µ =
∫
µt dP (t) of k-rectifiable mea-

sures µt are called k-rectifiably representable.

Theorem 2.10. A measure µ is k-rectifiably representable if and only if µ(E) =
0 for every k-purely unrectifiable set E.

Definition 2.11. Given a k-rectifiably representable measure µ on R
n,

τ : Rn → G(n, k) defines a k-tangent field of µ, if for every representation
µ =

∫
µt dP (t) where µt is supported on a k-rectifiable set Et, there holds

Tan(Et, x) = τ(x) for µt-a.e. x and P -a.e. t.

The k-tangent field, if it exists, is uniquely determined up to µ-negligible
sets. We show that:

Theorem 2.12. An (n−1)-rectifiably representable measure admits an (n−1)-
tangent field if and only if it is singular.

Singular parts of derivatives of BV functions are (n − 1)-rectifiably repre-
sentable, and indeed, the hyperplane orthogonal to the gradient and the (n−1)-
tangent field of these measures coincide.

We finish this section by saying that, applying a version of Radon-Nýkodim
Theorem, we show that

Theorem 2.13. Every measure µ on R
n can be uniquely decomposed as

µ = µn + µn−1 + · · ·+ µ0,

where each µk is a k-rectifiably representable measure supported on a (k + 1)-
purely unrectifiable set.

We do not know whether the measure µk admits a k-tangent field for k <
n− 1.
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3. Combinatorial Connections

Combinatorial connections of our results were first noted by Matoušek. He
observed that a part of our proof of Laczkovich’s problem is similar to the
proof of the Erdős-Szekeres Theorem, and he recognised that this part may
be replaced by its corollary: for any planar set M having m2 points there is a
function ψ : R → R with Lip(ψ) ≤ 1 such that one of the sets

{(x, y) ∈M : y = ψ(x)} or {(x, y) ∈M : x = ψ(y)}

has at least m points.
Some of the results on which our proofs are based exploited this connec-

tion and may be considered as a continuous analogy of the Erdős-Szekeres or
Dilworth Theorems. For example, if a set E admits a k-tangent field then for
every decomposition G(n, k) =

⋃
Aj there corresponds a partition E ⊂

⋃
Ej ,

where Ej contains those x ∈ E for which τ(x) ∈ Aj . By definition, the set
Ej has width 0 with respect to any proper closed convex cone C for which
C ∩ S = {0} for all S ∈ Aj . That is, we can decompose E into parts that can
be covered by Lipschitz slabs of arbitrary small total width. Discrete analogue
of this statement says that, in the plane, a finite set of points can always be
covered by a small number of Lipschitz curves of given directions (and then of
course one of them must contain many points).

The relation to the combinatorial results becomes even more apparent if
we consider weak k-tangent fields. Look at only the special case k = n − 1,
and suppose that E ⊂ [0, 1]n is Lebesgue null and compact. Then we can
approximate E by a grid: it intersects o(Nn) out of Nn subcubes of [0, 1]n.
Let C be a convex cone, and consider the partial order on R

n defined by x1 ≺
x2 ⇐⇒ x2 − x1 ∈ C. By Dilworth Theorem, the set of the centres of the cubes
intersecting E can be covered by o(Nn−1) chains and o(N) antichains. Chains
are curves going in the direction of C and antichains are C-Lipschitz surfaces.
Since E lies in a O(1/N) neighbourhood of the set of the centres of the cubes,
it is covered by o(Nn−1) ’tubes’ going in the direction C and by o(N) Lipschitz
slabs of width O(1/N), i.e. by tubes of arbitrary small total cross-sectional
volume and by slabs of arbitrary small total width. The set covered by tubes
meets C-Lipschitz surfaces in a set of small Hn−1 measure, and the set covered
by slabs meets curves going in the direction C in small length.

This decomposition leads to a weak (n− 1)-tangent field as we let the angle
of C tend to a halfspace and its direction run through a dense set of directions.
For other results we would need to cover by slabs only, and we do not know
if this is always possible, except for the 2-dimensional case where there is no
difference between tubes and slabs.

Many results presented here are connected to a possibility of decomposing
certain small sets, or perhaps even all Lebesgue null sets, in a way reminiscent of
the decompositions of finite sets in combinatorial results. As we have seen above,
the existence of a weak (n − 1)-tangent field is a direct corollary of Dilworth
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Theorem. For other problems we need a much finer, continuous version of the
combinatorial results whose proofs also use techniques that are not available in
the discrete world, they are purely analytic.

There are also problems that could be solved using discrete decomposition
results, but we do not know if the discrete versions are true. Matoušek conjec-
tured a higher dimensional variant of the Erdős-Szekeres Theorem that would
fully solve Laczkovich’s problem. This conjecture was disproved by Tardos. One
can however modify his conjecture so that it would imply a positive answer to
our main problem (all Lebesgue null sets would belong to Nn,n−1):

Conjecture 3.1. For any set M ⊂ R
n having mn points there is a function

ψ : Rn−1 → R with Lip(ψ) ≤ Cn and an orthonormal system of coordinates
such that the set

{(x1, . . . , xn) ∈M : xn = ψ(x1, . . . , xn−1)}

has at least cnm
n−1 points.

This problem is open. We only show that, unlike in the plane, the coordi-
nate systems cannot be restricted to permutations of the standard coordinate
system, not even in R

3:

Theorem 3.2. For every Lipschitz constant L and for every ε > 0 there exists
a finite set M ⊂ R

3 of m3 points, such that for every φ : R2 → R with Lip(φ) <
L, in the standard coordinate system in R

3, all the three graphs x = φ(y, z),
y = φ(x, z) and z = φ(x, y) contain less than εm2 points of M .

However, the dyadic analogue of Conjecture 3.1 is true in any dimension,
even in the standard coordinate-system for Lipschitz mappings with constant
1.

Consider the unit cube Q = [0, 1]n ⊂ R
n. A cube in Q is called a dyadic cube

of size 1/2k, if it is obtained by dividing Q to 2kn subcubes of equal sizes in
the obvious manner. Let Q0 be the set of points that are not on the boundary
of any dyadic cube. The dyadic distance of two points x, y ∈ Q0 is the size of
the smallest dyadic cube that contains both x and y. This defines a metric on
Q0. In a current work M. Csörnyei and P. Jones showed that:

Theorem 3.3. (i) For any set M ⊂ Q0 ⊂ R
n having mn points there is a

function ψ : Rn−1 → R with dyadic Lipschitz constant 1 and there is a
coordinate-direction xk (k = 1, 2, . . . , n) such that the set

{(x1, . . . , xn) ∈M : xk = ψ(x1, . . . , xk−1, xk+1, . . . , xn)}

has at least mn−1 points.

(ii) Every set E ⊂ Q0 ⊂ R
n of Lebesgue measure m can be covered by dyadic

Lipschitz slabs of total width at most m1/n.
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1. Introduction

Let φ(z) be a function on the unit circle,

C = {z : |z| = 1}.

The Toeplitz determinant, DT
n [φ], is defined as

DT
n [φ] := detTn[φ], (1)

where
Tn[φ] := {φj−k}, k = 0, ..., n− 1,

and

φk =

∫

C

φ(z)z−k−1 dz

2πi
. (2)
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Similarly, given a function w(x) on the real line R the Hankel determinant,
DH

n [w], is defined as

DH
n [w] := detHn[w], (3)

where

Hn[φ] := {wj+k}, k = 0, ..., n− 1,

and

wk =

∫ ∞

−∞

xkw(x)dx. (4)

The principal analytic question is evaluation of the large n asymptotics of DT
n

and DH
n .

Starting with Onsager’s celebrated solution of the two-dimensional Ising
model in the 1940’s, Toeplitz and Hankel determinants play an increasingly
central role in modern mathematical physics. Simultaneously, the theory of
Toeplitz and Hankel determinants is a very beautiful area of analysis repre-
senting an unusual combinations of profound general operator concepts with
the highly nontrivial concrete formulae. The area has been thriving since the
classical works of Szegő, Fisher, Hartwig, Lenard and Widom, and it very much
continious to do so.

In the 90s, it has been realized ([21], [1], [13]) that the theory of Toeplitz
and Hankel determinants can be also embedded in the Riemann-Hilbert for-
malism of integrable systems. The new Riemann-Hilbert techniques have gone
far beyond the classical Wiener-Hopf schemes, and they have led to the so-
lutions of several important long-standing asymptotic problems of the theory.
We shall review some of the most recent results which includes the proof of the
Basor-Tracy conjecture concerning the asymptotics of Toeplitz determinants
with the most general Fisher-Hartwig type symbols, the Fisher-Hartwig type
asymptotics for Hankel determinants and for Toeplitz + Hankel determinants,
and the transition asymptotics involving the Painlevé functions. The Riemann-
Hilbert approach will be outlined as well.

The presentation is based on the author’s joint works with P. Deift, T.
Claeys, and I. Krasovsky.

2. Szegö and Fisher-Hartwig Asymptotics

The large n asymptotic behavior of DT
n [φ] depends significantly on the ana-

lytical properties of the generating function φ(z). In the case of the smooth
enough functions φ(z), the behavior is exponential and its leading and the pre-
exponential terms are given by the following classical result of Szegő, known as
the strong Szegő limit theorem.
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Theorem 2.1. Suppose that the generation function φ(z) satisfies the condi-
tions,

1. φ(z) 6= 0 , for all |z| = 1.

2. index φ(z) ≡ arg φ(e2πi)− arg φ(ei0) = 0

3.
∑∞

k=−∞ |k||Vk|
2 < ∞, where Vk are the Fourier coefficients of the func-

tion,
V (z) := lnφ(z), (5)

that is,

V (z) =

∞∑

k=−∞

Vkz
k, Vk =

1

2π

∫ 2π

0

V (eiθ)e−kiθdθ. (6)

Then,
DT

n [φ] ∼ ESz[φ] exp
(
nV0

)
, n → ∞, (7)

where the pre-exponential factor, ESz[φ], is given by the equation

ESz[φ] = exp

(
∞∑

k=1

kVkV−k

)
. (8)

Conditions (1) and (2) on the symbol φ(z) ensure that the function V (z)
is a well defined function on the unit circle. Condition (3) is a smoothness
condition which is, in fact, precise. In [33], Szegő proved this theorem under the
assumption that the symbol is positive and that the symbol and its derivative
are Lipshitz functions. It took a substantial period of time and the efforts
of several very skillful analysts to reduce the smoothness conditions to the
conditions (1) - (3) above. We refer the reader to the recent monograph of B.
Simon [32] for all the history details.

Conditions of the strong Szegő theorem are not satisfied for the symbols
having root and/or jump singularities. This type of symbols, in context of
the statistical mechanics, was first considered in the works of M. Fisher and
R. Hartwig [20], and A. Lenard [30]. These singularities are usually called the
Fisher-Hartwig singularities. The general form of the symbol φ(z) which has m,
m = 0, 1, 2, . . . fixed Fisher-Hartwig singularities can be given by the equation

φ(z) = eV (z)z
∑m

j=0
βj

m∏

j=0

|z − zj |
2αjgzj ,βj

(z)z
−βj

j , z = eiθ, θ ∈ [0, 2π),

(9)
where

zj = eiθj , j = 0, . . . ,m, 0 = θ0 < θ1 < · · · < θm < 2π; (10)

gzj ,βj
(z) ≡ gβj

(z) =

{
eiπβj 0 ≤ arg z < θj ,

e−iπβj θj ≤ arg z < 2π
, (11)

<αj > −1/2, βj ∈ C, j = 0, . . . ,m, (12)



1398 Alexander R. Its

and V (z) is a sufficiently smooth function on the unit circle so that the first
factor of the right hand side of equation (9) represents the “ Szegő part” of
the symbol. The presence of the roots and jumps yield the appearance of the
power-like factors in the large n behavior of the Toeplitz determinant. Indeed,
the formula for the asymptotics of DT

n now reads

DT
n [φ] ∼ EFH[φ]n

∑m
j=0

(α2
j−β2

j ) exp
(
nV0

)
, n → ∞. (13)

The pre-exponential constant factor, EFH[φ], is more elaborated than its Szegő
counterpart ESz[φ] from the Szegő equation (7). The description of EFH[φ]
involves a rather “exotic” special function - the Barnes’ G - function G(x)
which is defined by the equations (see e.g. [36]),

G(1 + x) = (2π)x/2e−(x+1)x/2−γx2/2
∞∏

n=1

{(1 + x/n)ne−x+x2/(2n)}, (14)

where γ is Euler constant. In addition to the Barnes’ G - function, the formula
for EFH[φ] involves the canonical Wiener-Hopf factorization of the Szegő part,
eV (z), of the symbol φ(z),

eV (z) = b+(z)e
V0b−(z), b+(z) = e

∑
∞

k=1
Vkz

k

, b−(z) = e
∑

−1

k=−∞
Vkz

k

.
(15)

Note that b+(z) and b−(z) are analytic inside and outside of the unit circle
|z| = 1, respectively, and they satisfy the normalization conditions b+(0) =
b−(∞) = 1. The exact expression for EFH[φ] is given by the equation (cf. (8)),

EFH[φ] = exp

(
∞∑

k=1

kVkV−k

)
m∏

j=0

b+(zj)
−αj+βj b−(zj)

−αj−βj

×
∏

0≤j<k≤m

|zj − zk|
2(βjβk−αjαk)

(
zk

zjeiπ

)αjβk−αkβj

×

m∏

j=0

G(1 + αj + βj)G(1 + αj − βj)

G(1 + 2αj)
. (16)

Asymptotics (13) was conjectured by M. Fisher and R. Hartwig in 1968 [20].
In the case of the root singularities only (all β are zero) formulae (13) - (16)
were proven by H. Widom in 1973 [35]. The proof of the formulae (13) - (16) in
the presence of jumps is due to Basor [4] for <βj = 0, Böttcher and Silbermann
[12] for |<αj | < 1/2, |<βj | < 1/2, and Ehrhardt [18] for the only restriction,
|<βj −<βk| < 1. We refer to [18] for a detail review of these and other related
results. The precise statement concerning the large n behavior of the Toeplitz
determinant DT

n [φ] with the Fisher-Hartweg generating function (9) is given by
the following theorem, proven by Ehrhardt [18].
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Theorem 2.2. ([18]) Let φ(z) be defined in (9), V (z) be C∞ on the unit circle,
<αj > −1/2, |<βj −<βk| < 1, and αj ±βj 6= −1,−2, . . . for j, k = 0, 1, . . . ,m.
Then, as n → ∞, the asymptotic behavior of the Toeplitz determinant DT

n [φ] is
given by the formulae (13) - (16).

The condition,

|<βj −<βk| < 1, ∀j, k = 0, 1, ...,m, (17)

is precise. Indeed, A. Böttcher and B. Silbermann [12] in 1985 and E. Basor and
C. Tracy [8] in 1991 found the examples with <βj not lying in a single interval
of length less than 1 and such that the large n asymptotics is very different
from the one given by (13). In the case of arbitrary complex βj , E. Basor and
C. Tracy conjectured in [8] the following description of the large n behavior of
the determinant DT

n [φ].
Let φ(z;n0, ..., nm) be a representation of the Fisher-Hartwig symbol φ(z)

(9) defined by the equation,

φ(z;n0, ..., nm) := φ(z)|βj→βj+nj
,
∑

nj = 0. (18)

We note that, all representations of φ(z) differ only by multiplicative constants,

φ(z) =

m∏

j=0

z
nj

j × φ(z;n0, . . . , nm). (19)

Among all the representations φ(z;n0, ..., nm) of the symbol φ(z), we single out
the set,

M = {φ(z;n0, ..., nm) :

m∑

j=0

(<βj + nj)
2 is minimal}. (20)

Theorem 2.3. (Basor - Tracy conjecture) Let φ(z) be given in (9), <αj >
−1/2, βj ∈ C, j = 0, 1, . . . ,m. Let M be non-degenerate, i.e. it contains no
representations such that αj + (βj + nj) or αj − (βj + nj) is a negative integer
for some j. Then, as n → ∞,

DT
n [φ] =

∑



m∏

j=0

z
nj

j




n

R(φ(z;n0, . . . , nm))(1 + o(1)), (21)

where the sum is over all representations in M. Each R(φ(z;n0, . . . , nm))
stands for the right-hand side of the formula (13), corresponding to
φ(z;n0, . . . , nm).

In the case of unique minimizer, this theorem was proven by T. Ehrhardt
in 2001 [18]. The general case of the Basor-Tracy conjecture has been proven
in [15] with the help of the new technique - the Riemann-Hilbert method.
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3. The Riemann-Hilbert Method

The Riemann-Hilbert approach to the Toeplitz determinants was first suggested
in [1] (see also [13]) as an extension to the Toeplitz case of the similar approach
introduced earlier in [21] for Hankel determinants. The method is based on
the classical relation between the Toeplitz determinants and the orthogonal
polynomials on the unite circle.

Let us define the polynomials, pk(z) = χkz
k + · · · , p̂k(z) = χkz

k + · · · of
degree k, satisfying

1

2πi

∫ 2πi

0

pk(z)z
−jφ(z)

dz

z
= χ−1

k δjk,
1

2πi

∫ 2π

0

p̂k(z
−1)zjφ(z)

dz

z
= χ−1

k δjk,

(22)
j = 0, 1, . . . , k.

Note, that relations (22) are equivalent to the equation,

1

2πi

∫ 2πi

0

pk(z)p̂k(z
−1)φ(z)

dz

z
= δjk. (23)

In the case of real valued symbol φ(z), we obviously have that p̂k(z) = pk(z̄)
and pk(z) becomes the orthogonal polynomials on the unite circle with respect
to the weight φ(z). Assuming that the polynomials pk(z), p̂k(z) exist (which
is, in particular, always the case for positive φ(z)) the following general formula
connecting pk(z) and the Toeplitz determinant DT

n [φ] is valid (see e.g. [32]),

DT
n+1

DT
n

= χ−2
n . (24)

Formula (24) reduces the asymptotic analysis of the Toeplitz determinantDn[φ]
to the asymptotic analysis of the orthogonal polynomials pk(z) which in turn
can be translated to the asymptotic analysis of the following matrix Riemann-
Hilbert problem posed on the counterclockwise oriented unite circle C = {z :
|z| = 1} for a 2× 2 matrix valued function Y (z).

(a) Y (z) is analytic for z ∈ C \ C.

(b) Let z ∈ C \ ∪m
j=0zj . Y has continuous boundary values Y+(z) as z ap-

proaches the unit circle from the inside, and Y−(z), from the outside,
related by the jump condition

Y+(z) = Y−(z)

(
1 z−kφ(z)
0 1

)
, z ∈ C \ ∪m

j=0zj . (25)

(c) Y (z) has the following asymptotic behavior at infinity:

Y (z) =

(
I +O

(
1

z

))(
zk 0
0 z−k

)
, as z → ∞. (26)
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(d) As z → zj , j = 1, . . . ,m, z ∈ C \ C,

Y (z) =

(
O(1) O(1) +O(|z − zj |

2αj )
O(1) O(1) +O(|z − zj |

2αj )

)
, if αj 6= 0, (27)

and

Y (z) =

(
O(1) O(ln |z − zj |)
O(1) O(ln |z − zj |)

)
, if αj = 0, βj 6= 0. (28)

Having the solution Y (z) of the Riemann-Hilbert problem, the orthogonal poly-
nomials pk(z), p̂k(z) and the coefficient χk can be reconstructed with the help
of the equations,

χ2
k−1 = −Y21(0), pk(z) = χkY11(z), p̂k(z) = −

zk−1

χk−1
Y21(z

−1). (29)

The asymptotic analysis of the above formulated Riemann-Hilbert problem
can be performed with the help of the nonlinear steepest descent method. This
method was introduced in the theory of integrable systems in 1992 by Deift
and Zhou [17] and extended to the Riemann-Hilbert problems appearing in the
orthogonal polynomial theory in the work [16]. The methodological idea of the
method is to perform a sequence of exact deformations of the given jump -
matrices and contours in order to transform the Riemann-Hilbert problem in
question to an equivalent Riemann-Hilbert problem whose jump matrices are
uniformly close to identity. As a result of these deformations, the asymptotic
solution of the original Riemann-Hilbert problem reduces to the solution of cer-
tain model local Riemann-Hilbert problems associated with the special points
and domains arising in the course of the deformation. The noncommutativity
of the matrix setting requires, however, the development of several rather so-
phisticated new technical ideas which, in particular, enable an explicit solution
of the model Riemann-Hilbert problems. The final result of the analysis is as
efficient as the asymptotic evaluation of the oscillatory integrals. For more de-
tail we refer to the original papers, [17], [16],[1], [15], to the lecture notes [23],
and to the monograph [14].

The important advantage of using the Riemann-Hilbert formalism for the
asymptotic evaluation of the Toeplitz determinants is that the method also
provides the asymptotics of the corresponding orthogonal polynomials. The
orthogonal polynomials are involved in many important algebraic identities of
the theory of Toeplitz as well as Hankel determinants. The possibility of the
asymptotic evaluation of pk(z) and p̂k(z) allow to use these identities in the
situations where the direct analysis of Dn is not available. In particular, the
proof of the Basor-Tracy conjecture obtained in [15] is based on the combination
of the asymptotic analysis of the Riemann-Hilbert problem1 (a) - (d) with the

1The asymptotic analysis of the Riemann-Hilbert problem (a) - (d), in the case when the
only root singularities are present was also (and earlier) considered in [31]
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following general identity.

DT
n [z

lφ(z)] = (−1)ln
Fn∏l−1
j=1 j!

DT
n [φ(z)], l ∈ Z+, (30)

where
Fn = det{P

(k)
n+j(0)}j,k=0,...l−1, (31)

and
Pk(z) = pk(z)/χk ≡ Y11(z). (32)

This identity expresses the Toeplitz determinant with the symbol zlφ(z) in
terms of the original Toeplitz determinant DT

n [φ] and the orthogonal polyno-
mials pk(z). The asymptotics of the latter are provided via the asymptotic
analysis of the Riemann-Hilbert problem.

4. Fisher-Hartwig Asymptotics for Hankel

Determinants

Consider the Hankel determinants DH
n [w] whose symbols are supported on the

finite interval [−1, 1]. The following equation establishes a direct link of this
type of Hankel determinants with the Toeplitz determinants.

(
DH

n [w(x)]
)2

=
π2n

4(n−1)2

(1 + P2n(0))
2

P2n(1)P2n(−1)
DT

2n[φ(z)], (33)

where the symbols w(x) and φ(z) are related by the equation,

w(x) =
φ(eiθ)

| sin θ|
, x = cos θ, x ∈ [−1, 1], (34)

and Pk(z) denote the monic orthogonal polynomials (32) on the unit circle with
the weight φ(z).

Suppose that the symbol w(x) is of general Fisher-Hartwig form, i.e.

w(x) = eU(x)
r+1∏

j=0

|x− λj |
2αjωj(x), 1 = λ0 > λ1 > · · · > λr+1 = −1,

ωj(x) =

{
eiπβj <x ≤ λj

e−iπβj <x > λj

, <βj ∈ (−1/2, 1/2],

β0 = βr+1 = 0, <αj > −
1

2
, j = 0, 1, . . . , r + 1. (35)

where U(x) is a sufficiently smooth function on the interval [−1, 1]. Identity
(33) allows to obtain the asymptotics of the Hankel determinants with the



Toeplitz Determinants 1403

Fisher-Hartwig symbols (35) from the similar asymptotics of the Toeplitz de-
terminants provided the asymptotics of the related orthogonal polynomials on
the unit circle are known. The orthogonal polynomial asymptotics are available
via the Riemann-Hilbert approach. The exact statement concerning the leading
asymptotics of the Hankel determinant DH

n [w] reads as following.

Theorem 4.1 ([15]). Let w(x) be defined as in (35) with <βj ∈
(
− 1

2 ,
1
2

)
,

j = 1, 2, . . . , r. Then as n → ∞,

DH
n [w]/DH

n [1] ∼ EH
FH [w]n2(α2

0+α2
r+1)+

∑r
j=1

(α2
j−β2

j )

× exp


nV0 + 2in

r∑

j=1

βj arcsinλj − 2n

r+1∑

j=0

αj ln 2


 , (36)

where V (eiθ) = U(cos θ), and the constant pre - factor EH
FH [w] admits an

explicit representation2 in terms of the parameters of the weight w(x) and the
Wiener-Hopf functions b±(z) (15).

The above results can be extended to the case of the symbols w(x) supported
on the infinite interval as well. Formula (33) is not applicable in this case, of
course. However, one can proceed with the direct Riemann-Hilbert analysis of
Hankel determinants using the Riemann-Hilbert representation of the orthogo-
nal polynomials on the line [21]. We refer to the work [24] and to the references
therein for the results concerning the asymptotics of Hankel determinants with
the symbols on the line and having the Fisher-Hartwig singularities.

5. Toeplitz + Hankel Determinants. The L -

functions

Let φ(z) be the Fisher-Hartwig symbol defined by equations (9) and, as be-
fore, denote φk its Fourier coefficients (2). The so-called Toeplitz + Hankel
determinants are defined as the following three types of the determinants,

det(φj−k + φj+k)
n−1
j,k=0, det(φj−k − φj+k+2)

n−1
j,k=0, det(φj−k ± φj+k+1)

n−1
j,k=0.
(37)

These determinants appear in the theory of classical groups and its applications
to random matrices, statistical mechanics, and number theory (see, e.g., [2, 19,
29, 10]). In all applications mentioned, the symbol φ(z) is an even function
on the circle, i.e. it satisfies the addition symmetry, φ(e−iθ) = φ(eiθ), which
implies that the matrices in (37) are symmetric.

2This representation is similar though even more involved to the representation (16) for
the Toeplitz pre-factor EFH [φ]. For the exact formula for EH

FH
[w] see [15].
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The key observation [34, 25, 2] (see also [15], Lemma 2.7) is that there are
simple relations between the determinants (37) and Hankel determinants on
[−1, 1] with added singularities at the end-points. Indeed, the following formulae
take place,

det(φj−k + φj+k)
n−1
j,k=0 =

2n
2−2n+2

πn
Dn

(
φ(eiθ(x))/

√
1− x2

)
(38)

det(φj−k − φj+k+2)
n−1
j,k=0 =

2n
2

πn
Dn

(
φ(eiθ(x))

√
1− x2

)
, (39)

det(φj−k + φj+k+1)
n−1
j,k=0 =

2n
2−n

πn
Dn

(
φ(eiθ(x))

√
1 + x

1− x

)
, (40)

det(φj−k − φj+k+1)
n−1
j,k=0 =

2n
2−n

πn
Dn

(
φ(eiθ(x))

√
1− x

1 + x

)
, (41)

where, as before, x = cos θ. These formulae in conjunction with Theorem 4.1
yield immediately the asymptotic expansions for Toeplitz + Hankel determi-
nants (37) with even Fisher-Hartwig symbols (9) whose <βj ∈

(
− 1

2 ,
1
2

)
. The

exact statement contains in Theorem 1.25 of [15].

Remark 5.1. Earlier, using the direct operator-theoretical methods, the
asymptotics of the determinant det(φj−k+φj+k+1)

n−1
j,k=0, in the case of all α = 0,

was obtained in [5] and in the case of non-even φ and still all α = 0 in [6]. Re-
cently, for smooth symbols, the asymptotics of all the determinants (37) (and
related more general ones) were found in [7].

The asymptotic formulae for the Toeplitz+Hankel determinants obtained
in [15] have an interesting application arising in the framework of the random
matrix approach in the theory of the Riemann zeta - function and other L -
functions [28]. Define

φ(z) =

∣∣∣∣2 sin
θ

2

∣∣∣∣
2k

eV (z), k ∈ N, (42)

where

V (eiθ) = 2k





∫ e

1

u(y)




∞∑

j=−∞

Ci(|θ + 2πj| ln y lnX)dy


− ln

∣∣∣∣2 sin
θ

2

∣∣∣∣



 ,

Ci(z) = −

∫ ∞

z

cos t

t
dt,

and u(y) is a smooth nonnegative function supported on [e1−1/X , e] and of total
mass one. Consider the following average over the orthogonal group SO(2n),

ESO(2n)




n∏

j=1

φ(eiθj )


 . (43)
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We are interested in the large n and large X behavior of this average. Observe
that

ESO(2n)




n∏

j=1

f(eiθj )


 =

1

2
det(φj−k + φj+k)

n−1
j,k=0,

and that symbol (42) is of Fisher-Hartwig type with a single α - singularity at
z0 = 1, and α0 = k. A direct application of Theorem 1.25 of [15] leads then to
the following asymptotic behavior of average (43),

ESO(2n)




n∏

j=1

f(eiθj )


 ∼ G(1+k)

(
Γ(1 + 2k)

G(1 + 2k)Γ(1 + k)

)1/2(
2n

eγ lnX

)k(k−1)/2

,

(44)

where γ is Euler’s constant. Formula (44) has been already conjectured by Bui
and Keating as the random matrix counterpart of a relevant number theoretical
conjecture concerning the mean values of certain Dirichlet L - functions in the
Katz-Sarnak orthogonal family [10]. In a similar way, Theorem 1.25 of [15]
provides a justification of the Bui-Keating conjecture about the average of the
same product

∏n
j=1 φ(e

iθj ) over the symplectic group. In context of the random
matrix approach in number theory, this means that the asymptotic results of
[15] support the number theoretical conjectures of [10].

6. Transition Asymptotics and Painlevé

Functions

Painlevé transcendents appear in the framework of the Riemann-Hilbert
method in a very natural way. Indeed, they represent the model Riemann-
Hilbert problems associated with the paramterices to the solution of the orig-
inal Riemann-Hilbert problem at its coalescing special points. The situation
is very similar to the appearance of the linear counterparts of the Painlevé
functions, i.e. Airy functions, Bessel functions, etc., in the asymptotic analy-
sis of an oscillatory contour integral when its stationary points or/and poles
coalesce.

Consider the one-parameter family of Toeplitz determinants Dn(t) with the
symbol,

φ(z) ≡ φ(z; t) = (z − et)α+β(z − e−t)α−βz−α+βe−iπ(α+β)eV (z), (45)

α± β 6= −1,−2, ...,

where t ≥ 0 is sufficiently small and α, β ∈ C with <α > − 1
2 . The potential V (z)

is assumed to be analytic in an annulus containing the unit circle. When t > 0,
the symbol (45) is smooth (in fact, analytic) on the unit circle and the Toeplitz
determinant exhibits the Szegő type assymptotic behavior. When t = 0, the
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branch points coalesce at z = 1 and the symbol becomes of the Fisher-Hartwig
type. The asymptotics of Dn(t) transforms to the Fisher-Hartwig asymptotics.
The analysis of the corresponding Rimeann-Hilbert problem [11] shows that
the transition asymptotics, which is uniform with respect to t ≥ 0, is given in
terms of a special solution to the fifth Painlevé equation. We shall now present
the exact formulation of this result for the case (for general case - see [11]).

<β = 0, α > −
1

2
∈ R, 2α /∈ Z. (46)

Consider the Jimbo-Miwa-Okamoto σ - form of the fifth Painlevé equation
(cf. [26]),

(
x
d2σ

dx2

)2

=

(
σ − x

dσ

dx
+ 2

(
dσ

dx

)2

+ 2α
dσ

dx

)2

−4

(
dσ

dx

)2(
dσ

dx
+ α+ β

)(
dσ

dx
+ α− β

)
. (47)

The particular choice of the solution to this equation which is participating in
the uniform asymptotic expansion of the determinant Dn(t) is characterized by
the following asymptotic condition as x → 0,

σ(x) = α2 − β2 +
α2 − β2

2α
x
(
1− x2αC(α, β)

)
(1 +O(x)), (48)

where

C(α, β) =
Γ(1 + α+ β)Γ(1 + α− β)

Γ(1− α+ β)Γ(1− α− β)

Γ(1− 2α)

Γ(1 + 2α)2
1

1 + 2α
.

Under the assumptions (46), the solution σ(x) is real and has no singularities
for x > 0. As x → +∞, the function σ(x) decays exponentially. The leading
asymptotic behavior of the solution σ(x) for large positive x is given by the
formulae,

σ(x) = −x−1+2αe−x 1

Γ(α− β)Γ(α+ β)

(
1 +O

(
1

x

))
, x → ∞. (49)

The asymptotic expansion of the Toeplitz determinant with symbol (45) which
interpolates between Szegő and Fisher-Hartwig asymptotics is given explicitly
in terms of the function σ(x) and reads as follows.

Theorem 6.1 ([11]). Let α and β satisfy conditions (46), and let σ(x) be
the unique solution of the fifth Painlevé equation (47) characterized by either
asymptotics (48) at x = 0, or by asymptotics (49) at x = +∞. Then the
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following asymptotic expansion holds for the Toeplitz determinant Dn(t) as n →
∞ with the error term O(1/n) uniform for 0 ≤ t < t0 where t0 is sufficiently
small:

lnDn(t) = nV0+(α+β)nt+

∞∑

k=1

k

[
Vk − (α+ β)

e−tk

k

] [
V−k − (α− β)

e−tk

k

]

+ ln
G(1 + α+ β)G(1 + α− β)

G(1 + 2α)
+ Ω(2nt) +O(1/n), (50)

where G(z) is Barnes’ G-function (14) and

Ω(2nt) =

∫ 2nt

0

σ(x)− α2 + β2

x
dx+ (α2 − β2) ln 2nt. (51)

Taking into account the asymptotic properties of the Painlevé function σ(x)
and the identity,

∞∑

k=1

e−2tk

k
= − ln(1− e−2t),

we see that the asymptotics (50) is the Szegö type asymptotics (7) for any
t > 0, and it becomes the Fisher-Hartwig type asymptotics (13) when t = 0.

The statement of Theorem 6.1 remains essentially valid in general case of
α, β ∈ C, <α > − 1

2 . One only has to account for the possible finite number of
real poles of the function σ(x) (and real zeros of Dn(t)) and modify the formu-
lation accordingly (see [11]). With these modifications, Theorem 6.1 generalizes
the classical result of Wu-McCoy-Tracy-Barouch [37] concerning the Painlevé
III - description of the phase transition in the large distance behavior of the
2-spin correlation function in the 2D Ising model. Indeed, the Ising phase tran-
sition corresponds to the Toeplitz determinant with the symbol of type (45) and
the choice of the parameters α = 0 ad β = − 1

2 . The Painlevé V equation (47),
as it was shown in [27], can be then reduced to the third Painlevé equation.

The reason for appearance of the Painlevé function in expansion (50) is the
coalescence of the branch points of symbol (45) on the unite circle as parameter
t approaches zero. This yields the necessity to introduce in the neighborhood
of these points a model Riemann-Hilbert problem whose relevant linear system
3 has two regular singular points and one irregular singular point of Poincaré
rank 1. This Riemann-Hilbert problem is known to be the Riemann-Hilbert
problem for the fifth Painlevé equation (see [26]; see also [22]).

3See e.g.[22] for a detail exposition of the classical connection of the Riemann-Hilbert
problems and the monodromy theory of linear systems of differential equations with rational
coefficients
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Similar to Theorem 6.1 results featuring other types of transition regimes in
the asymptotic behavior of Toeplitz and Hankel determinants had been earlier
obtained in the works [1], [3] and [9].
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Abstract

We give necessary and sufficient conditions for the inverse of a Sobolev home-
omorphism to be a Sobolev homeomorphism and conditions under which the
inverse is of bounded variation.
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1. Planar Sobolev Mappings

Consider the usual Cantor ternary function u on the interval (0, 1). Then u
is continuous, non-decreasing, constant on each complementary interval of the
ternary Cantor set, and fails to be absolutely continuous. Now, let g(x) =
x + u(x) on (0, 1). Then also g fails to be absolutely continuous and hence g
does not belong to the Sobolev class W 1,1

loc ((0, 1),R). On the other hand, the
Lipschitz function h = g−1 maps (0, 2) homeomorphically onto (0, 1). Thus,
even the inverse of a Lipschitz homeomorphism h can fail to belong to W 1,1

loc .
If one analyzes the situation more carefully, one notices that the crucial thing
here is that h′ vanishes in a set of positive measure; if this were not the case,
h−1 = g would necessarily belong to W 1,1

loc ((0, 1),R).
In dimension two, the mapping f(x1, x2) = (h(x1), x2), where h is as above,

provides us with a Lipschitz homeomorphism whose inverse fails to belong to
W 1,1

loc (R
2,R2). Here W 1,1

loc (Ω;R
2) consists of all locally integrable mappings of Ω

into R
2 whose both component functions have locally integrable distributional

derivatives. Notice that the Jacobian determinant Jf (x) of the mapping f above
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Department of Mathematics and Statistics, University of Jyväskylä, P.O.Box 35 (MaD),

FI-40014 University of Jyväskylä, Finland. E-mail: pkoskela@maths.jyu.fi.
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vanishes in a set of positive area. Our first result from [9] shows that this is the
only situation where the inverse fails to belong to W 1,1

loc .

Theorem 1.1. Let Ω ⊂ R
2 be a domain. Suppose that f ∈ W 1,1

loc (Ω,R
2) is a

homeomorphism and that Jf (x) > 0 for a.e. x ∈ Ω. Then f−1 ∈ W 1,1
loc (f(Ω),R

2)
and

∫

f(Ω)

|Df−1(y)| dy =

∫

Ω

|Df(x)| dx.

Notice that the the above result does not assert that Jf−1(y) > 0 almost
everywhere. It is not difficult to give examples where this property fails under
the assumptions above. The following stronger result from [9] gives a symmetric
statement.

Theorem 1.2. Let Ω ⊂ R
2 be a domain. Suppose that f ∈ W 1,1

loc (Ω,R
2) is a

homeomorphism, and assume further that Df(x) vanishes almost everywhere

in the zero set of Jf . Then f−1 ∈ W 1,1
loc (f(Ω),R

2) and Df−1(y) vanishes almost

everywhere in the zero set of Jf−1 . Moreover,
∫

f(Ω)

|Df−1(y)| dy =

∫

Ω

|Df(x)| dx.

Recall that a homeomorphism f ∈ W 1,1
loc (Ω, f(Ω)) is classically differentiable

almost everywhere [17], see also [5]. Thus either Jf (x) ≥ 0 almost everywhere
or Jf (x) ≤ 0 almost everywhere. For simplicity, let us assume from now on
that Jf (x) ≥ 0 almost everywhere. Under the assumptions of Theorem 1.2, the
inequality

|Df(x)|2 ≤ Kf (x)Jf (x)

then holds a.e., where 1 ≤ K(x) < ∞ a.e. In fact, the optimal such function is
obtained by setting Kf (x) = |Df(x)|2/Jf (x) when Jf (x) > 0 and Kf (x) = 1
otherwise (assuming that Df vanishes a.e. in the zero set of Jf ). For simplicity,
we then say that f is a mapping (or homeomorphism) of finite distortion Kf

(cf. [13]). The proof of Theorem 1.2 actually allows for a stronger formulation.

Theorem 1.3. Let Ω ⊂ R
2 be a domain and let f ∈ W 1,1

loc (Ω,R
2) be a home-

omorphism. Then f−1 ∈ W 1,1
loc (f(Ω),R

2) if and only if f has finite distortion,

and if either of these conditions hold, then f−1 also has finite distortion.

It is now natural to inquire if a suitable integrability condition on Kf would
guarantee better regularity for the inverse of f. Our next result from [9],[2]
gives an affirmative answer.

Theorem 1.4. Let Ω ⊂ R
2 be a domain. Suppose that f ∈ W 1,1

loc (Ω,R
2)

is a homeomorphism of finite distortion with Kf ∈ L1(Ω). Then f−1 ∈

W 1,2
loc (f(Ω),R

2) and f−1 is a mapping of finite distortion. Moreover,
∫

f(Ω)

|Df−1(y)|2 dy =

∫

Ω

Kf (x) dx.
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The identity from Theorem 1.4 indicates that L1-minimization problems
for Kf are related to harmonic mappings. This is indeed the case, but it turns
out to be more convenient to use another distortion function, defined using
the Hilbert-Schmidt norm instead of the operator norm of Df(x) [2], [11].
For convex Ω and suitable boundary values, there is a unique homeomorphic
minimizer for the L1-minimization for this distortion function. Moreover, this
minimizer is smooth and its inverse is a harmonic mapping.

Based on the conclusions of Theorem 1.2 and Theorem 1.4, it would be
natural to expect for an interpolation-type result, where the integrability of a
power 0 < a < 1 of K would result in the q-integrability for |Df−1| for some
1 < q(a) < 2. This turns out not to be the case [9].

Theorem 1.5. Let 0 < δ < 1. There is a homeomorphism f : B(0, 1) → B(0, 1)
of finite distortion such that f ∈ W 1,1(B(0, 1),R2) and K1−δ

f ∈ L1(B(0, 1)),

but f−1 /∈ W 1,1+δ
loc (B(0, 1),R2).

As Theorem 1.5 easily implies, the integrability of K1−δ
f does not necessarily

result in any better than W 1,1-regularity of f−1, even when δ is small. One
could still hope for some improvement under some a priori assumption on f.
This turns out to be the case: given a homeomorphism f ∈ W 1,p

loc (Ω,R
2), p >

1, of finite distortion with Ka
f ∈ L1(Ω), 0 < a ≤ 1, one always has f−1 ∈

W 1,q
loc (f(Ω),R

2), where 1 < q(p, a) ≤ 2, see [9]. In the special case when f is
Lipschitz, one can take q = a+1. There would be no additional gain at an Lq-
scale from an exponent a > 1: simply notice that the Lipschitz homeomorphism

f(x) = x||x||s

has a bounded K for each (large) s > 0 and f−1 /∈ W 1,q
loc for q = 2 + 2/s.

It had been known for a long time that Kf ∈ L1(Ω) and f ∈ W 1,2
loc (Ω,R

2)

guarantee that f−1 ∈ W 1,2
loc (f(Ω),R

2), see [3], [7]. In [15], it was further shown

that the regularity assumption f ∈ W 1,2
loc (Ω,R

2) can be slightly relaxed, say, to
|Df |2 log−1(e+ |Df |) ∈ L1

loc. These results were based on a duality argument,
relying on integration by parts against the Jacobian determinant Jf , that does

not work when one only assumes that f ∈ W 1,p
loc (Ω,R

2) for some p < 2. The
proofs of the first three theorems above are thus based on a different ingredient.
The real problem is to prove that the distributional derivatives of the inverse
mapping are indeed functions. This is obtained through delicate change of vari-
able arguments; notice that in the setting of Theorem 1.2 f may well map a
set of zero area to a set of positive area and a set of positive area to a set of
zero area. If f preserves the class of sets of area zero, the situation is naturally
substantially easier [19].

Recall that the statement of Theorem 1.2 is symmetric. Thus one could in-
quire if some power of the distortion of f−1 in Theorem 1.4 is also integrable.
Our next result from [9], [6] shows that such a conclusion holds under exponen-
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tial integrability of Kf , and the arguments in [9] show that one indeed needs
exponential integrability.

Theorem 1.6. Let Ω ⊂ R
2 be a domain and let f ∈ W 1,1

loc (Ω,R
2) be a homeo-

morphism of finite distortion. Assume that the distortion function Kf satisfies

exp(λKf ) ∈ L1
loc(Ω), for some λ > 0. Then Kp

f−1 ∈ L1
loc(f(Ω)) for all p < λ.

Moreover, the claim may fail when p = λ.

Let us close this section with some comments on the zero set of the Jacobian
of our homeomorphism f. First of all, given any 0 < p < 1, one can construct a
homeomorphism f of finite distortion Kf so that Kp

f is locally integrable and
the Jacobian of f vanishes on a set of positive area (then, necessarily, f maps a
set of positive area onto a set of area zero). On the other hand, if Kf is locally
integrable, then the Jacobian of f cannot vanish on a set of positive area. In
fact, given p ≥ 1, local integrability of Kp

f guarantees the local integrability of
logp(e + 1/Jf ). For all this, see [14], [16]. What then about the possibility of
the Jacobian being zero almost everywhere? This cannot happen for a home-
omorphism of finite distortion because then also the partial derivatives would
have to be zero almost everywhere, which would force our mapping to be a
constant mapping. However, for every 1 ≤ p < 2 there exist homeomorphisms
f ∈ W 1,p

loc (Ω,R
2) whose Jacobians equal zero almost everywhere, see [8], but no

such homeomorphism can exist when p ≥ 2.

2. Planar BV-mappings

Recall the Lipschitz homeomorphism f(x1, x2) = (h(x1), x2) from the previous
section. As discussed earlier, f−1 fails to be of the class W 1,1

loc . However, it is
easy to check that f−1 is of locally bounded variation, f−1 ∈ BVloc(f(Ω),R

2).
Let us recall the definition of a mapping of locally bounded variation. Given

a domain G and a mapping g : G → R
2, we say that g has bounded varia-

tion, g ∈ BV (G,R2), if both component functions of g belong to the space
BV (G). This means that the distributional partial derivatives of each compo-
nent function h of g are measures with finite total variation in G : there are
Radon (signed) measures µ1, µ2 defined in G so that for i = 1, 2 |µi|(G) < ∞
and

∫

G

hDiϕ dx = −

∫

G

ϕ dµi

for all ϕ ∈ C∞

0 (G). The gradient of h is then a vector-valued measure with
finite total variation

||Dh|| = sup
{

∫

G

h div v dx : v = (v1, v2) ∈ C∞

0 (G,R2),

|v(x)| ≤ 1 for x ∈ G
}

< ∞.
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The total variation of ||Dh|| can be considered as a Radon measure: given
A ⊂ G we set

||Dh||(A) = sup
{

∫

G

h div v dx : v = (v1, v2) ∈ C∞

0 (G,R2),

|v(x)| ≤ χA(x) for x ∈ Ω
}

.

If h ∈ W 1,1(G), then ||Dh||(A) =
∫

A
|∇u| dx. For all this see [1]. Further,

g ∈ BVloc(G,R2) requires that f ∈ BV (G′,R2) for each subdomain G′ ⊂⊂ G.
The following result from [12] can be viewed to be an analog of Theorem

1.2.

Theorem 2.1. Let Ω, Ω′ ⊂ R
2 be domains and suppose that f : Ω → Ω′ is

a homeomorphism. Then f ∈ BVloc(Ω,R
2) if and only if f−1 ∈ BVloc(Ω

′,R2).
Moreover, both f and f−1 are differentiable almost everywhere.

Since each homeomorphism f ∈ W 1,1
loc (Ω,R

2) belongs to BVloc(Ω,R
2), we

conclude from the above theorem, that the inverse of each planar Sobolev-
homeomorphism is of locally bounded variation (but not necessarily of Sobolev-
class W 1,1

loc ).

3. Mappings in Higher Dimensions

It should come as no big surprise that the results from the previous sections
do not extend as such to higher dimensions. Indeed, given p strictly less n− 1,
where n ≥ 3 is the dimension of our Euclidean space, it is not hard to construct
homeomorphisms with p-integrable distributional derivatives so that the inverse
mappings are not of locally bounded variation. For this see [12]. As observerved
in [10], [12], [18], slightly stronger regularity assumptions are sufficient, but the
following optimal result [4] was not proven until very recently.

Theorem 3.1. Let Ω ⊂ R
n be a domain and suppose that f ∈ W 1,n−1

loc (Ω,Rn)
is a homeomorphism. Then f−1 ∈ BVloc(f(Ω),R

n). If f furthermore has finite

distortion, then f−1 ∈ W 1,1
loc (f(Ω),R

n) and has finite distortion.

Theorem 1.2 was a crucial tool for the further results, except for Theorem
1.5 and Theorem 1.6, discussed in Section 1. Similarly, Theorem 3.1 allows one
to prove higher dimensional versions of those results, see for example [10], [4].
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Abstract

Multiple orthogonal polynomials are a generalization of orthogonal polynomi-
als in which the orthogonality is distributed among a number of orthogonality
weights. They appear in random matrix theory in the form of special determi-
nantal point processes that are called multiple orthogonal polynomial (MOP)
ensembles. The correlation kernel in such an ensemble is expressed in terms of
the solution of a Riemann-Hilbert problem, that is of size (r + 1) × (r + 1) in
the case of r weights.

A number of models give rise to a MOP ensemble, and we discuss recent
results on models of non-intersecting Brownian motions, Hermitian random ma-
trices with external source, and the two matrix model. A novel feature in the
asymptotic analysis of the latter two models is a vector equilibrium problem
for two or more measures, that describes the limiting mean eigenvalue density.
The vector equilibrium problems involve both an external field and an upper
constraint.
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1. Introduction

1.1. Random matrix theory. The Gaussian Unitary Ensemble (GUE)
is the most prominent and most studied ensemble in random matrix theory. It is
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a probability measure on n×n Hermitian matrices for which the joint eigenvalue
probability density function (p.d.f.) has the explicit form

1

Zn

∏

1≤j<k≤n

(xk − xj)
2

n∏

j=1

e−
n
2 x2

j (1)

where Zn is an explicitly known constant. The density (1) can be analyzed
with the help of Hermite polynomials. Due to this connection with classical
orthogonal polynomials many explicit calculations can be done, both for finite
n and in the limit n → ∞, see [40]. In particular it leads to a description of
the limiting behavior of eigenvalues on the global (macroscopic) scale as well
as on the local (microscopic) scale. The global scale is given by the well-known
Wigner semi-circle law

ρ(x) =
1

2π

√

4− x2 − 2 ≤ x ≤ 2, (2)

in the sense that for eigenvalues x1, . . . , xn taken from (1), the empirical eigen-
value distribution 1

n

∑n
j=1 δ(xj) converges weakly to ρ(x) almost surely as

n → ∞.
The local scale is characterized by the sine kernel

S(x, y) = sinπ(x− y)

π(x− y)
(3)

in the bulk. This means that for any given x∗ ∈ (−2, 2) and any fixed m ∈ N,
the m-point correlation function (i.e., the marginal distribution)

Rm,n(x1, . . . , xm)

=
n!

(n−m)!

∫

Rn−m




1

Zn

∏

1≤j<k≤n

(xk − xj)
2

n∏

j=1

e−
1
2nx

2
j



 dxm+1 · · · dxn (4)

has the scaling limit

lim
n→∞

1

[ρ(x∗)n]m
Rm,n

(

x∗ +
x1

ρ(x∗)n
, . . . , x∗ +

xm

ρ(x∗)n

)

= det [S(xi, xj)]1≤i,j≤m . (5)

At the edge points ±2 the sine kernel (3) is replaced by the Airy kernel

A(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
(6)

and a scaling limit as in (5) (with scaling factor cn2/3 instead of ρ(x∗)n) holds
for x∗ = ±2. This result leads in particular to the statement about the largest
eigenvalue

lim
n→∞

Prob

(

max
1≤k≤n

xk < 2 +
t

cn2/3

)

= det
[
I −A(t,∞)

]
(7)
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where A is the Airy kernel (6) and the determinant is the Fredholm determi-
nant of the integral operator with Airy kernel acting on L2(t,∞). The limiting
distribution (7) is the famous Tracy-Widom distribution named after the au-
thors of the seminal work [45] in which the right-hand side of (7) is expressed
in terms of the Hastings-McLeod solution of the Painlevé II equation.

These basic results of random matrix theory have been extended and gen-
eralized in numerous directions. Within the theory of random matrices, they
have been generalized to ensembles with unitary, orthogonal and symplectic
symmetry and to non-invariant ensembles (Wigner ensembles). The distribu-
tion functions of random matrix theory also appear in many other probabilistic
models that have no apparent connection with random matrices (models of
non-intersecting paths, tiling models, and stochastic growth models), see e.g.
[8], [31].

Mehta’s book [40] is the standard reference on random matrix theory. The
book of Deift [22] has been very influential in introducing Riemann-Hilbert
techniques into the study of random matrices. In recent years, a number of new
monographs appeared [2], [6], [16], [23], [29] that cover the various aspects of
the theory of random matrices.

1.2. Unitary ensembles and orthogonal polynomials. One
direction within random matrix theory is the study of ensembles of the form

1

Zn
e−nTrV (M) dM (8)

defined on n × n Hermitian matrices M , which reduces to the GUE in case
V (x) = 1

2x
2. The ensembles (8) have the property of unitary invariance and

are called unitary ensembles. The eigenvalues have the p.d.f.

1

Zn

∏

1≤j<k≤n

(xk − xj)
2

n∏

j=1

e−nV (xj) (9)

with a different normalizing constant Zn. [Throughout, we use Zn to denote a
normalizing constant, which may be different from one formula to the next.]

Again explicit calculations can be done due to the connection with orthog-
onal polynomials [23], [40]. For a given n, we consider the monic polynomial
Pk,n of degree k that satisfies

∫ ∞

−∞
Pk,n(x)x

je−nV (x)dx = hk,nδj,k, j = 0, . . . , k.

Then (9) is a determinantal point process [2], [44], with kernel

Kn(x, y) =
√

e−nV (x)
√

e−nV (y)

n−1∑

k=0

Pk,n(x)Pk,n(y)

hk,n
(10)
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which means that for every m ∈ N the m-point correlation functions, defined
as in (4), have the determinantal form

det [Kn(xi, xj)]i,j=1,...,m .

As n → ∞, the limiting mean eigenvalue density

ρ(x) = lim
n→∞

1

n
Kn(x, x)

is no longer Wigner’s semi-circle law (2), but instead it is the density ρ of the
probability measure µ that minimizes the weighted logarithmic energy

∫∫

log
1

|x− y|dµ(x)dµ(y) +
∫

V (x)dµ(x) (11)

among all probability measures on R.

Local eigenvalue statistics, however, have a universal behavior as n → ∞,
that is described by the sine kernel (3) in the bulk. Thus for points x∗ with
ρ(x∗) > 0 the limit (5) holds true. At edge points of the limiting spectrum the
density ρ typically vanishes as a square root and then the universal Airy kernel
(6) appears. For real analytic potentials V this was proved in [11], [24] using
Riemann-Hilbert methods. This was vastly extended to non-analytic potentials
in recent works of Lubinsky [38] and Levin and Lubinsky [37], among many
others.

1.3. This paper. In this paper we present an overview of the work (mainly
of the author and co-workers) on multiple orthogonal polynomials and their
relation to random matrix theory. Multiple orthogonal polynomials are a gen-
eralization of orthogonal polynomials that have their origins in approximation
theory (Hermite-Padé approximation), see e.g. [3, 42].

They enter the theory of random matrices via a generalization of (9) which
we call a multiple orthogonal polynomial (MOP) ensemble [34]. We present a
number of models that give rise to a MOP ensemble, namely the model of non-
intersecting Brownian motions, the random matrix model with external source
and the two matrix model.

The MOPs are described by a Riemann-Hilbert problem that may be used
for asymptotic analysis as n → ∞ by extending the Deift-Zhou method of
steepest descent [25]. The extensions are non-trivial and involve either an a
priori knowledge of an underlying Riemann surface (the spectral curve) or the
formulation of a relevant equilibrium problem from logarithmic potential theory
[43], which asks for a generalization of the weighted energy functional (11).

The latter approach has been succesfully applied to the random matrix
model with external source and to the two matrix model, but only in very
special cases, as will be discussed at the end of the paper.
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2. Multiple Orthogonal Polynomials

2.1. MOP ensemble. We will describe here multiple orthogonal polyno-
mials of type II, which we simply call multiple orthogonal polynomials. There
is also a dual notion of type I multiple orthogonal polynomials.

Suppose we have a finite number of weight functions w1, . . . , wr on R and
a multi-index ~n = (n1, . . . , nr) ∈ N

r. Associated with these data is the monic
polynomial P~n of degree |~n| = n1 + · · ·+ nr so that

∫ ∞

−∞
P~n(x)x

jwk(x) dx = 0, for j = 0, . . . , nk − 1, k = 1, . . . , r. (12)

The linear system of equations (12) may not be always uniquely solvable, but
in many important cases it is. If P~n uniquely exists then it is called the multi-
ple orthogonal polynomial (MOP) associated with the weights w1, . . . , wr and
multi-index ~n.

Existence and uniqueness does hold in the following situation. Assume that

1

Zn
det [fj(xk)]j,k=1,...,n




∏

1≤j<k≤n

(xk − xj)



 (13)

is a p.d.f. on R
n, where n = |~n| and the linear span of the functions f1, . . . , fn

is the same as the linear span of the set of functions

{xjwk(x) | j = 0, . . . , nk − 1, k = 1, . . . , r}.

So the assumption is that (13) is non-negative for every choice of x1, . . . , xn ∈
R

n, and that the normalization constant Zn can be taken so that the integral
(13) over Rn is equal to one. Then the MOP satisfying (12) exists and is given
by

P~n(x) = E





n∏

j=1

(x− xj)



 .

We call a p.d.f. on R
n of the form (13) a MOP ensemble, see [34].

2.2. Correlation kernel and RH problem. The MOP ensemble
(13) is a determinantal point process [44] (more precisely a biorthogonal en-
semble [17]) with a correlation kernel Kn that is constructed out of multiple
orthogonal polynomials of type II and type I. It is conveniently described in
terms of the solution of a Riemann-Hilbert (RH) problem. This RH problem for
MOPs [47] is a generalization of the RH problem for orthogonal polynomials
due to Fokas, Its, and Kitaev [28].
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The RH problem asks for an (r + 1)× (r + 1) matrix valued function Y so
that







• Y : C \ R → C
(r+1)×(r+1) is analytic,

• Y has limiting values on R, denoted by Y+ and Y−, where Y±(x) is
the limit of Y (z) as z → x ∈ R with ± Im z > 0, satisfying

Y+(x) = Y−(x)








1 w1(x) · · · wr(x)
0 1 · · · 0
...

...
...

0 0 · · · 1








for x ∈ R,

• Y (z) = (I +O(1/z)) diag
(
zn z−n1 · · · z−nr

)
as z → ∞.

(14)

If the MOP P~n with weights w1, . . . , wr and multi-index ~n = (n1, . . . , nr)
exists then the RH problem (14) has a unique solution. If the MOPs with multi-
indices ~n − ~ej also exist, where ~ej is the jth unit vector of length r, then the
first column of Y consists of

Y1,1(z) = P~n(z), Yj+1,1(z) = cj,~nP~n−~ej (z), j = 1, . . . , r (15)

where cj,~n is the constant

cj,~n = −2πi

[∫ ∞

−∞
P~n−~ej (x)x

nj−1wj(x)dx

]−1

6= 0.

The other columns of Y contain Cauchy transforms

Yj,k+1(z) =
1

2πi

∫ ∞

−∞

Yj,1(x)wk(x)

x− z
dx, j = 1, . . . , r + 1, k = 1, . . . , r.

It is a remarkable fact that the correlation kernel of the MOP ensemble (13)
is expressed as follows in terms of the solution of the RH problem, see [20],

Kn(x, y) =
1

2πi(x− y)

(
0 w1(y) · · · wr(y)

)
Y −1
+ (y)Y+(x)








1
0
...
0








, x, y ∈ R.

(16)
The inverse matrix Y −1 contains MOPs of type I, and the formula (16) is es-
sentially the Christoffel-Darboux formula for multiple orthogonal polynomials.

Besides giving a concise formula for the correlation kernel, the expression
(16) for the kernel gives also a possible way to do asymptotic analysis in view
of the Deift-Zhou method of steepest descent for RH problems.
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Figure 1. Non-intersecting Brownian bridges starting and ending at 0. At any inter-
mediate time t ∈ (0, 1) the positions of the paths have the same distribution as the
(appropriately rescaled) eigenvalues of an n× n GUE matrix.

3. Non Intersecting Path Ensembles

A rich source of examples of determinantal point processes is provided by non-
intersecting path ensembles. In special cases these reduce to MOP ensembles.

3.1. Non-intersecting Brownian motion. Consider a one-
dimensional strong Markov process with transition probability densities pt(x, y)
for t > 0. Suppose n independent copies are given with respective starting
values a1 < a2 < · · · < an at time t = 0 and prescribed ending values
b1 < b2 < · · · < bn at time t = T > 0 that are conditioned not to inter-
sect in the full time interval 0 < t < T . Then by an application of a theorem of
Karlin and McGregor [32], the positions of the paths at an intermediate time
t ∈ (0, T ) have the joint p.d.f.

1

Zn
det [pt(aj , xk)]1≤j,k≤n · det [pT−t(xk, bl)]1≤k,l≤n . (17)

In a discrete combinatorial setting the result of Karlin and McGregor is known
as the Lindstrom-Gessel-Viennot theorem.

The density function (17) is a biorthogonal ensemble, which in very special
cases reduces to the form (13) of a MOP ensemble.

An example is the case of Brownian motion (actually Brownian bridges)
with the transition probability density

pt(x, y) =
1√
2πt

e−
(x−y)2

2t , t > 0.
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Figure 2. Non-intersecting Brownian bridges starting at two different values and end-
ing at 0. At any time t ∈ (0, 1) the positions of the paths have the same distribution
as the eigenvalues of an n× n GUE matrix with external source. The distribution is
a multiple Hermite ensemble with two Gaussian weights (18).

In the confluent limit where all aj → 0 and all bl → 0 the p.d.f. (17) turns into

1

Zn

∏

1≤j<k≤n

(xk − xj)
2

n∏

j=1

e−
T

2t(T−t)
x2
j

with a different constant Zn. This is up to trivial scaling the same as the p.d.f.
(1) for the eigenvalues of an n× n GUE matrix.

If however, we let all bl → 0 and choose only r different starting values,
denoted by a1, . . . , ar, and nj paths start at aj , then (17) turns into a MOP
ensemble with weights

wj(x) = e−
T

2t(T−t)
x2+

aj

t
x, j = 1, . . . , r, (18)

and multi-index (n1, . . . , nr). This is a multiple Hermite ensemble, since the
associated MOPs are multiple Hermite polynomials [5]

3.2. Non-intersecting squared Bessel paths. The squared Bessel
process is another one-dimensional Markov process which gives rise to a MOP
ensemble. The squared Bessel process is a Markov process on [0,∞), depending
on a parameter α > −1, with transition probability density

pt(x, y) =
1

2t

(y

x

)α/2

e−
1
2t (x+y)Iα

(√
xy

t

)

, x, y > 0,
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where Iα is the modified Bessel function of first kind of order α. In the limit
where all aj → a > 0 and bj → 0 the p.d.f. (17) for the positions of the paths
at time t ∈ (0, T ) is a MOP ensemble with two weights

w1(x) = xα/2e−
T

2t(T−t)
xIα

(√
ax

t

)

w2(x) = x(α+1)/2e−
T

2t(T−t)
xIα+1

(√
ax

t

)

and multi-index (n1, n2) where n1 = dn/2e and n2 = bn/2c, see [35]. In the
limit a → 0 this further reduces to an orthogonal polynomial ensemble for a
Laguerre weight.

4. Random Matrix Models

The random matrix model with external source, and the two matrix model also
give rise to MOP ensembles.

4.1. Random matrices with external source. The Hermitian
matrix model with external source is the probability measure

1

Zn
e−nTr(V (M)−AM)dM (19)

on n×n Hermitian matrices, where the external source A is a given Hermitian
n × n matrix. This is a modification of the usual Hermitian matrix model, in
which the unitary invariance is broken [18], [48].

Due to the Harish-Chandra/Itzykson-Zuber integral formula [30], it is possi-
ble to integrate out the eigenvectors explicitly. In case the eigenvalues a1, . . . , an
of A are all distinct, we obtain the explicit p.d.f.

1

Zn
det [enaixj ]1≤i,j≤n ·

∏

1≤j<k≤n

(xk − xj) ·
n∏

j=1

e−nV (xj)

for the eigenvalues of M . In case that a1, . . . , ar are the distinct eigenvalues
of A, with respective multiplicities n1, . . . , nr, then the eigenvalues of M are
distributed as a MOP ensemble (13) with weights

wj(x) = e−n(V (x)−ajx), j = 1, . . . , r (20)

and multi-index (n1, . . . , nr), see [13]
For the case V (x) = 1

2x
2 the external source model (19) is equivalent to the

model of non-intersecting Brownian motions with several starting points and
one ending point, cf. (18).
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4.2. Two matrix model. The Hermitian two matrix model

1

Zn
e−nTr(V (M1)+W (M2)−τM1M2) dM1dM2 (21)

is a probability measure defined on couples (M1,M2) of n × n Hermitian ma-
trices. Here V and W are two potentials (typically polynomials) and τ 6= 0 is
a coupling constant. The model is of great interest in 2d quantum gravity [21],
[30], [33], as it allows for a large class of critical phenomena.

The eigenvalues of the matrices M1 and M2 are fully described by biorthog-
onal polynomials. These are two sequences (Pk,n)k and (Qj,n)j of monic poly-
nomials, degPk,n = k, degQj,n = j, such that

∫ ∞

−∞

∫ ∞

−∞
Pk,n(x)Qj,n(y)e

−n(V (x)+W (y)−τxy) dx dy = 0, if j 6= k, (22)

see e.g. [9], [27], [40], [41].
If W is a polynomial then the biorthogonality conditions (22) can be seen

as multiple orthogonal polynomial conditions with respect to r = degW − 1
weights

wj,n(x) = e−nV (x)

∫ ∞

−∞
yje−n(W (y)−τxy)dy, j = 0, . . . , r − 1, (23)

see [36]. Furthermore, the eigenvalues of M1 are a MOP ensemble (13) with
the weights (23) and multi-index ~n = (n0, . . . , nr−1) with nj = dn/re for j =
0, . . . , q − 1 and nj = bn/rc for j = q, . . . , r − 1 if n = pr + q with p and

0 ≤ q < r non-negative integers, see [26] for the case where W (y) = y4

4 .

5. Large n Behavior and Critical Phenomena

We discuss the large n behavior in the above described models.

5.1. Non-intersecting Brownian motion. In order to have inter-
esting limit behavior as n → ∞ in the non-intersecting Brownian motion model
we scale the time variables T 7→ 1/n, t 7→ t/n, so that 0 < t < 1. In the case of
one starting value and one ending value, see Figure 1, the paths will fill out an
ellipse as n → ∞.

In the situation of Figure 2 the paths fill out a heart-shaped region as
n → ∞, as shown in Figure 3. New critical behavior appears at the cusp point
where the two groups of paths come together and merge into one.

Around the critical time the correlation kernels have a double scaling limit,
which is given by the one-parameter family of Pearcey kernels

P(x, y; b) =
p(x)q′′(y)− p′(x)q′(y) + p′′(x)q(y)− bp(x)q(y)

x− y
, b ∈ R, (24)
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Figure 3. Non-intersecting Brownian bridges starting at two different values and end-
ing at 0. As n → ∞, the paths fill out a heart-shaped domain. Critical behavior at
the cusp point is desribed by the Pearcey kernel (24).

where p and q are solutions of the Pearcey equations p′′′(x) = xp(x)−bp′(x) and
q′′′(y) = yq(y) + bq′(y). This kernel was first identified by Brézin and Hikami
[18] who also gave the double integral representation

P(x, y) =
1

(2πi)2

∫

C

∫ i∞

−i∞
e−

1
4 s

4+ b
2 s

2−ys+ 1
4 t

4− b
2 t

2+xt ds dt

s− t
(25)

where the contour C consists of the rays from ±∞eiπ/4 to 0 and the rays from
0 to ±∞e−iπ/4.

Consideration of multiple times near the critical time leads to an extended
Pearcey kernel and the Pearcey process given by Tracy and Widom [46].

As already noted above, the model of non-intersecting Brownian motion
with two starting points and one ending point is related to the Gaussian random
matrix model with external source

1

Zn
e−nTr( 1

2M
2−AM) dM, (26)

with external source

A = diag(a, . . . , a
︸ ︷︷ ︸

n/2 times

,−a, . . . ,−a
︸ ︷︷ ︸

n/2times

). (27)

In this setting the critical a-value is acrit = 1 and the Pearcey kernel (24)
arises as n → ∞ with a = 1 + b

2
√
n
. In [15] this was studied with the use of

the Riemann-Hilbert problem (14) for multiple Hermite polynomials with two
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weights e−n( 1
2x

2±ax). The asymptotic analysis as n → ∞ was done with an
extension of the Deift-Zhou method of steepest descent [25] to the case of a
3 × 3 matrix valued RH problem. See also [14] and [4] for a steepest descent
analysis of the RH problem in the non-critical regimes a > 1 and 0 < a < 1,
respectively.

Another interesting asymptotic regime is the model of non-intersecting
Brownian motion with outliers. In this model a rational modification of the
Airy kernel appears that was first described in [7] in the context of complex
sample covariance matrices, see also [1].

5.2. Random matrices with external source. If V is quadratic
in the random matrix model with external source (19) then this model can
be mapped to the model of non-intersecting Brownian motions. Progress on
this model beyond the quadratic case is due to McLaughlin [39] who found the
spectral curve for the quartic potential V (x) = 1

4x
4 and for a sufficiently large

(again A is as in (27)).
A method based on a vector equilibrium problem was introduced recently

by Bleher, Delvaux and Kuijlaars [10]. The vector equilibrium problem extends
the equilibrium problem for the weighted energy (11) that is important for the
unitary ensembles and which is crucial in the steepest descent analysis of the
RH problem for orthogonal polynomials [24].

In [10] it is assumed that V is an even polynomial, and that A is again given
as in (27). The vector equilibrium problem involves two measures µ1 and µ2,
and it asks to minimize the energy functional

∫∫

log
1

|x− y|dµ1(x)dµ1(y) +

∫∫

log
1

|x− y|dµ2(x)dµ2(y)

−
∫∫

log
1

|x− y|dµ1(x)dµ2(y) +

∫

(V (x)− a|x|) dµ1(x) (28)

where µ1 is on R with
∫
dµ1 = 1, µ2 is on iR (the imaginary axis) with

∫
dµ2 =

1/2, and in addition µ2 ≤ σ, where σ is the measure on iR with constant density

dσ

|dz| =
a

π
. (29)

There is a unique minimizer, and the density ρ1 of the measure µ1 is the
limiting mean eigenvalue density

ρ1(x) = lim
n→∞

1

n
Kn(x, x)

where Kn is the correlation kernel of the MOP ensemble with weights
e−n(V (x)±ax). The RH problem (14) is analyzed in the large n limit with the
Deift/Zhou steepest descent method in which the minimizers from the vector
equilibrium problem play a crucial role.
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The upper constraint µ2 ≤ σ is not active for large enough a and in that case
the support of µ1 has a gap around 0. For smaller values of a the constraint
σ is active along an interval [−ic, ic], c > 0, on the imaginary axis. Critical
phenomena take place when either the constraint becomes active, or the gap
around 0 closes, or both. If one of these two phenomena happens, then this
generically will be a phase transition of the Painlevé II type that was described
in the unitary matrix model in [12] and [19]. If the two phenomena happen
simultaneously then this is expected to be phase transition of the Pearcey type
which, if true, would be a confirmation of the universality of the Pearcey kernels
(24) at the closing of a gap [18].

Both kinds of transitions are valid in the external source model with even
quartic potential V (x) = 1

4x
4 − t

2x
2, see [10]. For the particular value t =

√
3,

there is a passage from the Painlevé II transition (for t >
√
3) to the Pearcey

transition (for t <
√
3). The description of the phase transition for t =

√
3

remains open.

5.3. Two matrix model. In [26] Duits and Kuijlaars applied the steep-
est descent analysis to the RH problem for the two matrix model (21) with
quartic potential

W (y) =
1

4
y4 (30)

and for V an even polynomial. The corresponding MOP ensemble has three
weights of the form (23) and the RH problem (14) is of size 4 × 4. Again a
vector equilibrium problem plays a crucial role.

The vector equilibrium problem in [26] involves three measures µ1, µ2 and
µ3. It asks to minimize the energy functional

3∑

j=1

∫∫

log
1

|x− y|dµj(x)dµj(y)

−
2∑

j=1

∫∫

log
1

|x− y|dµj(x)dµj+1(y) +

∫

(V (x)− 3

4
|τx|4/3) dµ1(x) (31)

among measures µ1 on R with
∫
dµ1 = 1, µ2 on iR with

∫
dµ2 = 2/3 and µ3

on R with
∫
dµ3 = 1/3. In addition µ2 ≤ σ where σ is a given measure on iR

with density

dσ

|dz| =
√
3

2π
|τ |4/3|z|1/3, z ∈ iR. (32)

There is a unique minimizer and the density ρ1 of the first measure µ1

is equal to the limiting mean eigenvalue density of the matrix M1 in the two
matrix model. In addition, the usual scaling limits (sine kernel and Airy kernel)
are valid in the local eigenvalue regime, see [26]. However there is no new critical
behavior in the two matrix model with W is given by (30).
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New multicritical behavior is predicted in [21] for more general potentials.
For the more general quartic potential W (y) = 1

4y
4 − t

2y
2 an approach based

on a modification of the vector equilibrium problem (31) is under current in-
vestigation.
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Abstract

We survey recent developments in the area of geometric function theory and
nonlinear analysis and in particular those that pertain to recent developments
linking these areas to dynamics and rigidity theory in dimension n ≥ 3. A self
mapping (endomorphism) of an n-manifold is rational or uniformly quasiregular
if it preserves some bounded measurable conformal structure. Because of Rick-
man’s version of Montel’s theorem there is a close analogy between the dynamics
of rational endomorphisms of closed manifolds and the classical Fatou-Julia the-
ory of iteration of rational mappings of Ĉ. The theory is particularly interesting
on the Riemann n-sphere R

n

where many classical results find their analogue,
some of which we discuss here. We present the most recent results toward a
solution of the Lichnerowicz problem of classifying those manifolds admitting
rational endomorphisms. As a by product we discover interesting new rigidity
theorems for open self maps of closed n-manifolds whose fundamental group is
word hyperbolic.
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1. Introduction

Basically a quasiregular mapping is a (possibly) branched covering map with
bounded distortion. These include, for instance, piecewise linear maps between
“fat” triangulations of manifolds and maps preserving measurable conformal
structures as described below. The theory of quasiregular mappings - founded
by Reshetnyak and Martio-Rickman-Väisälä in the 1970s - seeks to establish the
analogue in higher dimensions of the geometric aspects of the theory of analytic
and conformal mappings defined on subdomains of the plane, see [35, 36, 15] and
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the references therein. In this regard it has been quite successful with profound
applications across a spectrum of mathematics. We begin with a definition.

Definition. Let Ω ⊂ R
n be a domain and f : Ω → R

n a mapping lying in the
Sobolev space W 1,n

loc (Ω,R
n) consisting of those functions which together with

their first derivatives are locally n-integrable. We say f is quasiregular if there
is a finite number K for which f satisfies the distortion inequality

|Df(x)|n ≤ K J(x, f) (1)

where Df(x) is the Jacobian matrix of f at x and J(x, f) is the Jacobian de-
terminant. Hadamard’s inequality states |Df(x)|n ≥ J(x, f), so the distortion
inequality provides uniform bounds which are often interpreted as control of
the distortion of (infinitesimal) round objects. The number K is called the dis-
tortion of the map f . The key nontrivial topological properties of quasiregular
mappings were discovered by Reshetnyak [35],

Theorem 1.1. A non-constant quasiregular mapping f : Ω → R
n is continu-

ous, open and discrete.

Here discrete means that the preimage of a point y, {x : f(x) = y} ⊂ Ω is
discrete in Ω, that is can only accumulate on the boundary of Ω. Of course we
also mean the function can be redefined on a set of measure 0 so as to have
these properties.

The extension of this definition to the case of manifolds is clear. It is then a
tautology that there is a measurable function G : Ω → S(n), the non-positively
curved symmetric space of positive definite symmetric n× n matrices of deter-
minant equal to 1, for which f satisfies the Beltrami system

Dtf(x)Df(x) = J(x, f)2/nG(x) almost everywhere in Ω (2)

By setting G(x) = In, the n × n identity matrix, whenever the left hand side
of (2) is undefined, we may assume that G is defined everywhere (though the
equation still only holds almost everywhere). Now such a matrix G can be used
to define an inner-product on the tangent spaces to Ω by the rule

〈u, v〉G = 〈u,G(x)v〉, u, v ∈ TΩx (3)

In this way we view G as a measurable conformal (or Riemannian) structure
on Ω. If u, v ∈ TΩx, then almost everywhere

〈f∗u, f∗v〉 = 〈Df(x)u,Df(x)v〉 = 〈u,Dtf(x)Df(x)v〉

= 〈u, J(x, f)2/nG(x)v〉 = J(x, f)2/n〈u, v〉G

This shows that f preserves the inner-product between tangent vectors up
to a scalar multiple, therefore preserves angles, and so f can be viewed as a
conformal mapping between the spaces (Ω, G) and (Ω′, In), with Ω′ = f(Ω). As
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we shall see, this is a profitable point of view. In particular (and more generally),
given measurable conformal structures on domains, say (Ω, G) and (Ω′, H) we
can consider the families of solutions to the generalised Beltrami systems

Dtf(x)H(f(x))Df(x) = J(x, f)2/nG(x) almost everywhere in Ω (4)

Typically one assumes an ellipticity condition on equation (4). For instance

‖d(G, In)‖∞ + ‖d(H, In)‖∞ <∞,

where d is the metric of S(n). Basically this bounds from above and below
the ratio of the largest to the smallest eigenvalues of G and H. Following the
calculation above, we see that (4) implies that f is conformal between these
bounded measurable structures. A few words are necessary concerning these
highly nonlinear systems of partial differential equations.

2. Theory of Beltrami Systems

2.1. Two dimensions. Here it is fair to say the theory is complete
and about as good as one could wish for. A thorough modern account is
given in [2]. We have existence and uniqueness (up to the obvious confor-
mal mappings) of solutions to (4) basically due to Morrey, [32]. Thanks to
Astala’s proof of the area distortion theorem [1], we also have optimal regular-
ity. There is also substantial progress being made in the degenerate elliptic case
[17, 2].

2.2. Rigidity n ≥ 3. In higher dimensions the following rigidity theo-
rem, pertaining to the case G(x) = H(x) = In, has quite important ramifi-
cations. Roughly it states that there are no conformal mappings in n-space,
n ≥ 3, apart from the obvious ones. It was first proven by Liouville in 1850 for
smooth mappings [22], then refined by Gehring and Reshetnyak in the 60s and
70s, see [9, 35] to the natural space W 1,n

loc . However, using the nonlinear Hodge
Theory developed in [16] the following sharp version is now known - sort of like
the classical Looman-Menchoff Theorem in two dimensions.

Theorem 2.1. Let Ω ⊂ R
n
, n even, be a domain and f : Ω → f(Ω) a

W
1,n/2
loc (Ω, f(Ω)) solution to the Liouville equation

Dtf(x)Df(x) = J(x, f)2/n In almost everywhere in Ω (5)

Then there is a Möbius transformation Φ : R
n
→ R

n
such that

f = Φ
∣

∣Ω

This result is sharp in the sense that for each domain Ω and p < n/2, there is a
W 1,p

loc (Ω, f(Ω)) solution which is not the restriction of a Möbius transformation.
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These solutions guaranteed here for p < n/2 are highly irregular - not even
locally bounded. Conjecturally one might have this rigidity for continuousW 1,1

loc

solutions. For n odd, similar but less precise results are known.

2.3. Beltrami systems: Existence. Here there is very little to say
apart from an obvious reworking of the classical results from the 1920s of Weyl
and Schouten (which assume the vanishing of a second order tensor [46] [38])
in the case that the conformal tensors G and H are smooth. It is an extremely
interesting problem to try and give reasonable conditions on G and H (even if
one of them is assumed equal to In, the n× n Identity) which guarantee local
existence if G and H are not C1+ε smooth - most importantly the case G and
H are only assumed measurable.

2.4. Beltrami systems: Uniqueness. When either G(x) or H(x) is
equal to In, then an easy local application of the rigidity theorem, Theorem
2.1, together with analytic continuation (for Möbius transformations) implies
global uniqueness up to a Möbius transformation. There seems no reasonable
way to pose a point Cauchy problems unless G and H are highly regular. Away
from these cases, there is only the following theorem known. It uses the solution
to the Hilbert-Smith conjecture for quasiconformal actions on domains in space
[24] and is discussed in [25].

Theorem 2.2. Let f, g : Ω → Ω′ be quasiconformal solutions to (4). If f ≡ g
on a set X of topological dimension at least n−1, then f ≡ g on Ω. This result
is sharp in the sense that the dimension of X cannot in general be lowered to
n− 2 and still have uniqueness.

2.5. Beltrami systems: Regularity. Fairly sharp regularity results
in even dimensions are known when given in terms of the operator norm of the
higher dimensional Beurling transform (whose norms are not known, even in
two dimensions, but can be estimated). The following two theorems of [15] give
an idea of the sorts of results one can expect. The first is a slight improvement
on Gehring’s famous higher integrability paper [8].

Theorem 2.3. Let Ω ⊂ R
n
be a domain and f : Ω → R

n
a mapping. Then

there is ε = ε(n,G,H) > 0 such that every W 1,n−ε
loc (Ω, f(Ω)) solution to the

equation (4) lies in the better space W 1,n+ε
loc (Ω, f(Ω))

The improved regularity here is important for such things as the change
of variable formula and so forth. Of course ε here really only depends on the
ellipticity constants of the equation and not directly on G and H themselves.

Next we have a topological rigidity theorem. It is basically this result which
assures us we are going to have to deal with discontinuous conformal structures
if there is to be a viable theory of branched mappings.
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Theorem 2.4. Let f : Ω → f(Ω) be a W 1,n
loc (Ω, f(Ω)), n ≥ 3, solution to the

equation (4) where both G and H are continuous. Then f is a local homeomor-
phism.

In fact rather more can be said here. The result holds if G and H are only
close to continuous in a BMO sense. Thus to admit branching, we must have
jump discontinuities in G or H of a fixed size (in the metric of S(n)).

3. Uniformly Quasiregular Mappings

Having now much of the basic theory at hand we discuss connections with
dynamics and in particular analogues of the theory of iteration of rational
mappings of Ĉ.

A quasiregular map f : R
n
→ R

n
with a uniform bound on the distortion

of all its iterates f ◦ f, . . . , f ◦ · · · ◦ f, . . . is called uniformly quasiregular (uqr).
Such maps are always rational with respect to some measurable Riemannian
structure [15]. This means that there is a bounded measurable G : R

n
→ S(n)

such that

Dtf(x)G(f(x))Df(x) = J(x, f)2/nG(x), a.e. R
n

(6)

The space of W 1,n(R
n
) solutions to this nonlinear PDE forms a semigroup

analogous to the analytic functions – and quasiconformally conjugate to the
rational functions in two-dimensions. Because of Rickman’s version of Montel’s
Theorem [36] there is a reasonably complete Fatou-Julia theory associated with
the iteration of uqr mappings, this was started in joint work with Iwaniec [15],
but has been developed by V. Mayer, K. Peltonen and others, see [26, 27]. There
are also strong restrictions on the geometry and topology of closed manifolds
admitting nontrivial uqr mappings, for instance (as we shall see) they cannot
be negatively curved.

The Fatou set F(f) of a uqr-mapping f is the open set where the iterates
form a normal family (that is have locally uniformly convergent subsequences).
The Julia set J (f) is the complement of the Fatou set

J = R
n
\ F

If the degree of f ≥ 2, the only interesting case for us, then the Julia set is
nonempty, closed and a completely invariant set,

f−1(J ) = J

The following factorisation theorem shows that in fact uqr mappings are quite
common.
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4. Stoilow Factorisation

We have the following variant of Stöılow’s theorem, [28].

Theorem 4.1. Suppose g : R
n
→ R

n
is a non-constant quasiregular mapping,

n ≥ 2. Then there exists a uniformly quasiregular mapping f whose Julia set is
a Cantor set, and a quasiconformal mapping h : R

n
→ R

n
such that g = f ◦ h.

Indeed it is shown that the uqr mapping is structurally stable (or generic),
there is a single attracting fixed point, no relations between critical points
and the Julia set is ambiently quasiconformally equivalent to the middle thirds
Cantor set (so is not wild).

Classically the factorization (for quasiregular maps of Ĉ = S
2 ) is unique up

to Möbius transformation. If ϕ◦f = ψ◦g, then there is a Möbius transformation
Φ so that ϕ ◦ Φ = ψ. Clearly this statement cannot hold in higher dimensions
if ϕ and ψ are merely assumed uqr. However if we fix the invariant conformal
structure, then we can make uniqueness statements up to a finite dimensional
Lie group.

Theorem 4.2. Let G be bounded measurable conformal structure on R
n
. Then

there is a closed finite dimensional Lie group Γ of quasiconformal homeomor-
phisms of R

n
with the following property: If g, h : R

n
→ R

n
are quasiconformal

mappings such that
ϕ ◦ g = ψ ◦ h : R

n
→ R

n
, (7)

and both ϕ and ψ are rational with respect to G, then there is γ ∈ Γ such that

ϕ ◦ γ = ψ : R
n
→ R

n

We remark that in two dimensions the space of generic uqr mappings that
our factorization produces can be described.

4.1. Smooth uqr mappings. The technique used in construction of
the factorisation is sufficiently robust that if the map f is smooth of class
Ck(R

n
), then the quasiconformal homeomorphism h, and consequently the uqr

mapping ϕ, can be chosen to be smooth of the same class. Typically one does
not expect branched (not locally injective) quasiregular mappings to be smooth,
however there are examples of M. Bonk and J. Heinonen [3] of a quasiregular
map f : S3 → S

3 which is C3−ε(S3) for every ε > 0. Kaufman, Tyson and Wu
extended these results to higher dimensions, [19]. The following theorem (which
was certainly known to Bonk and Heinonen) is a consequence.

Theorem 4.3. There are smooth uqr mappings of R
n
with nonempty branch

set, Bf 6= ∅. Indeed,

• For each ε > 0, there is a C3−ε(S3) uniformly quasiregular mapping ϕ
whose Julia set is a Cantor set.
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• For each ε > 0, there is a C2−ε(S4) uniformly quasiregular mapping ϕ
whose Julia set is a Cantor set.

• For each n ≥ 5 there is an ε = ε(n) > 0 and a C1+ε(Sn) uniformly
quasiregular mapping ϕ whose Julia set is a Cantor set.

Note that although these maps are smooth, any invariant conformal struc-
ture must be quite irregular near the branch set and the Julia set.

5. Dynamics of UQR mappings

We first consider the classification of fixed points of uqr-mappings. In [14] we
showed that uniformly quasiregular mappings are locally Lipschitz near a fixed
point x0 which is not a branch point. This is used to show that the family F =
{fλ : λ > 1} is a normal family, where fλ(z) = λf(z/λ). Moreover, it is shown
that all limits of convergent subsequences of F are uniformly quasiconformal
mappings. The set of all such limit mappings is called the generalized derivative
of f at x0. Uniformly quasiconformal mappings have been classified as either
loxodromic, elliptic or parabolic. It follows that the elements of the generalized
derivative are either all constant, all elliptic, or all loxodromic, and this allows
for a classification of the fixed points of a uniformly quasiregular mapping as
attracting/repelling (generalized derivative loxodromic), neutral (generalized
derivative elliptic), or super-attracting (fixed point is a branch point).

Theorem 5.1. The Fatou set of a uniformly quasiregular mapping has precisely
the same types of stable components as rational functions do.

For attracting and repelling fixed points we know

Theorem 5.2. Any uniformly quasiregular mapping is locally quasiconformally
conjugate to the Möbius group generated by x 7→ 2x near a repelling fixed point.
Any uniformly quasiregular mapping is quasiconformally conjugate to x 7→ 1

2
x

near an attracting fixed point.

There are examples of uqr maps with parabolic dynamics. It can be shown
that a map with a parabolic fixed point can be constructed in such a way that it
does not admit a quasiconformal linearization in its attracting parabolic petal
(unlike the rational case).

Question: A very interesting problem is to decide whether or not it is pos-
sible to have a “Siegel disk” (presumably a ball or solid torus with irrational
rotational dynamics) for a non-injective uqr mapping.

A classical result is the density of repellors in the Julia set. This is not
known in complete generality yet for uqr mappings. We do know

Theorem 5.3. The set of repelling and neutral fixed points is dense in the
Julia set.
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In certain cases (assumptions on the topological structure of the Julia set
such as separating) we do know repellors are dense.

6. Rational Maps of Manifolds

A natural question is to ask what sort of manifolds support rational endomor-
phisms. In two dimensions it is an easy application of the signature formula
for branched coverings to see that only the sphere and torus admit noninjec-
tive rational self maps. In higher dimensions the question is bound to be more
complicated - though a complete answer was given by Kangaslampi in three
dimensions [18].

6.1. The Lichnerowicz problem. Here we shall consider such map-
pings acting on closed manifolds M of dimension at least two and our problem
is to determine what kind of manifolds admit the action of such a map and also
to determine what kind of uqr mappings can act on a given manifold. A result
of Sullivan (see Tukia - Väisälä [42]) shows that any topological n-manifold,
n 6= 4, admits a unique quasiconformal structure and this is enough to define a
bounded measurable Riemannian structure and what it means to be quasireg-
ular [36]. In four dimensions (where there are many interesting and unsolved
questions from the point of view of quasiconformal geometry) we shall have to
suppose our manifolds admit such a structure.

Note that a uqr map f : M → M is surjective since the continuity and
openness of a quasiregular map implies that the image fM is both compact
and open; hence fM = M . The first part of our problem is a non-injective
version of the answer given by Ferrand [7] to a conjecture of Lichnerowicz
[21]. She essentially showed that, up to quasiconformal equivalence, the only
compact n-manifold which admits a non-compact quasiconformal group action
is the standard n-sphere S

n. If there is a uqr map f of a closed manifold M ,
then the semi-group {fn}∞n=1 is non-compact (in fact the Julia set of f is
always non-empty). Therefore, the existence of such a map should imply severe
restrictions on the manifold M . The first of these is the following obstruction
for the existence of uqr maps, [27].

Theorem 6.1. If Mn is a closed n-manifold and f : Mn → Mn is a non-
injective uqr mapping, then there exists a non-constant quasiregular mapping
g : Rn →Mn.

Manifolds admitting such a map g are called qr-elliptic, and answering a
question of Gromov, Varopoulos, Saloff-Coste and Coulhon [44] showed thatM
must in turn have a fundamental group of at most polynomial growth.

The generalized Lichnerowicz problem seeks to determine determining all
closed manifolds which admit non-injective uqr mappings: This problem was
discussed and largely solved in [27] with the following results.
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Theorem 6.2. Let f be a non-injective uqr map of the closed manifold M and
suppose that f is locally homeomorphic, that is, the branch set Bf = ∅. Then
M is the quasiconformal image of a Euclidean space form.

and as a sort of converse

Theorem 6.3. . IfM is quasiconformally equivalent to a euclidean space form,
then M admits no branched quasiregular (and in particular no branched uqr)
mappings.

Actually under these circumstances we prove that M does not admit an
orientation preserving, discrete and open map which is branched. In the case of
the sphere, lens spaces and other spherical manifolds the existence of uqr maps
is due to [16] and K. Peltonen [34]. These results suggest that there are few
uqr mappings in three or more dimensions compared with the space of rational
functions of the Riemann sphere S

2 = Ĉ.
By a Euclidean space form we mean the quotient of Rn under a Bieberbach

group (co-finite volume lattice) Γ ⊂ Isom+(Rn). The two other types of space
forms are the quotients by torsion free co-finite volume lattices of isometries of
the n-sphere and of hyperbolic n-space. In these cases we have

For Euclidean space forms we gave a complete description of the possible
uqr mappings:

Theorem 6.4. Any non-injective uqr map of a closed Euclidean space form
M is the quasiconformal conjugate of a conformal map.

We remark that, in this second result, we no longer suppose that the map
has to be locally injective. This result is surprising because it is false for globally
injective mappings. Indeed, V. Mayer shows that there are uniformly quasicon-
formal (even bi-Lipschitz) maps of three (or higher) dimensional tori which
cannot be quasiconformally conjugate to a conformal map [23]. Next, we dis-
tinguish space forms according to the type of uqr maps they support:

Theorem 6.5. If M is a closed space form, then we have the following char-
acterization:

1. M admits a branched uqr map if and only if M is a spherical space form.

2. M admits a non-injective, locally injective uqr map if and only if M is a
Euclidean space form.

3. M admits no non-injective uqr map if and only if M is a hyperbolic space
form.

We suggest that the correct counterpart for the Lichnerowicz conjecture for
uqr maps could be that if a closed manifold M supports a non-injective uqr
map, then it must be a finite product

M =M1 × · · · ×Mk
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of closed manifolds Mi which are quasiconformal images of either Euclidean
or spherical space forms. It remains an interesting open question whether for
example a space like (S2×S

2)#(S2×S
2) supports uqr maps. This manifold was

very recently proven to be elliptic by S. Rickman [37] and perhaps represents
a best candidate as a counterexample to the conjecture.

6.2. Negative curvature. Here we study the existence or otherwise
of branched (not locally injective) quasiregular maps between manifolds of
negative curvature as discussed in work with M. Bridson and A. Hinkannen
[4]. Our main results are to show, as a particular case of a more general result,
that a branched quasiregular mapping f : M → N between closed hyper-
bolic manifolds can never induce an injection on fundamental groups. This also
strengthens the earlier results of [27] discussed above - that the only uniformly
quasiregular automorphisms of closed hyperbolic manifolds are the obvious ones
(i.e., uniformly quasiconformal mappings isotopic to periodic isometries). In
fact in [4] we prove that such manifolds admit no non-obvious quasiregular
self mappings at all - there are no discrete open self maps whatsoever which
are not homeomorphisms isotopic to an isometry. We give a number of related
results, including an extension of the above theorem to convex co-compact man-
ifolds and a generalization concerning open mappings between closed negatively
curved manifolds of dimension n 6= 4. We further discuss the case of complete
finite-volume hyperbolic manifolds. The proofs of these latter results rely on an
analysis of the self-maps of word hyperbolic and relatively hyperbolic groups
which are of independent interest.

6.3. Proper open surjections and π1. The following lemma of
Walsh [45] and Smale [41] will turn out to be quite important in what follows.
Recall a map is proper if the preimage of a compact set is compact.

Lemma 6.6. Let M1 and M2 be connected manifolds (possibly with boundary).
If a map f :M1 →M2 is proper, open and surjective, then the index of f∗π1M1

in π1M2 is finite.

The same argument applies with minor modification in the case thatMi are
orbifolds. Further it is also noted in [41] Theorem 3 that under the hypotheses
of the lemma the map f induces a surjection on rational homology. Finally, in
light of what is to follow we note a main result of Walsh’s paper, Corollary
5.15.3, essentially a converse to Lemma 6.6

Theorem 6.7. If M and N are compact connected PL manifolds and f :
M → N a map with |f∗π1M1 : π1M2| <∞, then f is homotopic to a light open
mapping

Here a light mapping is one for which the preimage of every point is totally
disconnected, for instance a Cantor set.
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7. Quasiregular Mappings Between

Hyperbolic Manifolds

Chernavski [5] and Väisälä [43] proved a key theorem stating that a discrete
open mapping f :M →M of an n-manifold has the dimension of its branch set
less than or equal to n− 2, dim(Bf ) ≤ n− 2, and further dim(f(Bf )) ≤ n− 2.
As a consequence of the Hurewitz and Wallman theorems, the set Bf does not
locally separate M at any point. Thus, f |M \ f−1(f(Bf )) → M \ f(Bf ) is a
covering map, whereM \f−1(f(Bf )) itself is a connected open manifold, dense
in M . Moreover, for each y ∈ M \ f(Bf ) the set f−1(y) must contain exactly
the same number d (the degree) points.

If Γ ⊂ Isom+(Hn) is a discrete non-elementary (Kleinian) group, we denote

its limit set by Λ(Γ) ⊂ ∂Hn = R
n−1

. The orbit space of a Kleinian group Γ is
H

n/Γ a hyperbolic orbifold (or manifold should the group Γ be torsion free). In
what follows dim refers to the topological dimension while dimH refers to the
Hausdorff dimension.

Theorem 7.1. For i = 1, 2, let Mi be a hyperbolic n–orbifold with fundamental
group Γi and limit sets Λi. Let f :M1 →M2 be a proper quasiregular mapping
such that f∗ : Γ1 → Γ2 has finite kernel. Suppose that one of the following
conditions is satisfied:

1. dim(Λ1) ≥ n− 2

2. dim(Λ2) ≥ n− 2

3. dimH(Λ1) = n− 1

4. dimH(Λ2) = n− 1

Then f is a finite-sheeted covering map whose lift to H
n is a quasiconformal

homeomorphism with f(Λ1) = Λ2.

If the hyperbolic manifolds Mi are closed, then the hypothesis that f is
proper is redundant and all four conditions are satisfied. Thus

Corollary 7.2. Let M and N be closed hyperbolic n-manifolds. Then there is
no π1-injective branched quasiregular mapping f :M → N .

Notice next that the above dimension hypothesis on the limit sets is satisfied
if one of them separates. This will be the case if, for instance, one of the mani-
folds has more than one boundary component (not a cusp). For instance if, say
M is convex co-compact - i.e. (H

n
\ ΛM )/ΓM is compact where the boundary

components are the manifolds (∂Hn \ ΛM )/ΓM .

Corollary 7.3. Let M and N be convex co-compact hyperbolic n-manifolds
one of which has more than one boundary component. Then there is no proper
π1-injective branched quasiregular mapping f :M → N .
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It is possibly true that more generally ifM and N are hyperbolic manifolds,
then there is no proper branched π1-injective quasiregular mapping. In three
dimensions this is true.

Theorem 7.4. LetM and N be hyperbolic 3-manifolds. Then there is no proper
π1-injective branched quasiregular mapping f :M → N .

Application of the conditions on the Hausdorff dimension of the limit sets
can be found when considering geometrically infinite Kleinian groups.

It is clear from Theorem 7.1 that we will have to address the question of
when a quasiregular map, or more generally an open map, between hyperbolic
manifolds induces an injection on fundamental groups.

8. Endomorphisms of Hyperbolic Groups

The following theorem was proved by Z. Sela, [39], Theorem 3.9 (also [40], The-
orem 1.12) in the course of his work on the Hopf property for word hyperbolic
groups.

Theorem 8.1. Let Γ be a torsion-free hyperbolic group and let φ : Γ → Γ be
a homomorphism. Then there is an integer k0, so that ker(φn) = ker(φk0) for
every n > k0.

Sela also proved that torsion-free, freely indecomposable, non-elementary
word hyperbolic groups are co-Hopfian, [40]. In particular co-compact lattices
of n-dimensional hyperbolic space are co-Hopfian. Daniel Groves recently ex-
tended Sela’s results from the hyperbolic setting to toral relatively hyperbolic
groups [13]. Every geometrically-finite subgroup of SO(n, 1) has a subgroup of
finite index that lies in this class.

In the current setting we require a variation on this: we must allow freely-
decomposable groups, but we need only constrain homomorphisms whose image
is of finite index.

Lemma 8.2. If a finitely generated torsion-free group Γ can be expressed as a
free product Γ = A ∗ B with A and B nontrivial, then there does not exist an
injective homomorphism φ : Γ → Γ with 1 < [Γ : φ(Γ)] <∞.

These results now combine to give us the following interesting result of [4].

Theorem 8.3. If Γ is a torsion-free non-elementary hyperbolic group, then
there is no homomorphism φ : Γ → Γ with 1 < [Γ : φ(Γ)] <∞.

For residually finite groups (such as subgroups of SO(n, 1), our main in-
terest) one also deduce Theorem 8.3 from Theorem 8.1 by using the following
generalisation of Malcev’s famous observation that finitely generated residually
finite groups are Hopfian.
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Proposition 8.4. If Γ is finitely-generated, torsion-free and residually finite,
and φ : Γ → Γ is a homomorphism for which [Γ : φk(Γ)] remains bounded as
k → ∞, then φ is an isomorphism.

8.1. Topological rigidity results. The following is an immediate con-
sequence of Theorem 8.3 and Lemma 6.6.

Theorem 8.5. If M is a connected manifold whose fundamental group is
torsion-free, non-elementary and word hyperbolic, then every proper open sur-
jective mapping f :M →M induces an isomorphism of the fundamental group.

Remark 8.6. We stated Theorem 8.5 only for manifolds for simplicity. But
the proof of Walsh’s Lemma applies in far greater generality and hence the
above theorem can be generalised enormously: it suffices to assume that M
is a locally-finite cell complex, for example. Further, if M is closed then the
hypotheses that f is surjective and proper are redundant.

Corollary 8.7. If M is a closed n-manifold whose fundamental group is
torsion-free, non-elementary and word hyperbolic, then every quasiregular map-
ping f :M →M is a homeomorphism.

Proof. Every quasiregular map f : M → M is open discrete and so finite
to one. As above, the induced map on fundamental group is an isomorphism.
Thus has f has degree 1, B(f) = ∅ and f is a covering map by [43]. Thus f is
a homeomorphism. 2

The Farrell and Jones [6] topological rigidity theorem for non-positively
curved manifolds tells us that closed negatively curved manifolds of dimension
n ≥ 5 are homeomorphic if their fundamental groups are isomorphic. Perel-
man’s proof of the geometrisation conjecture implies that the same result is
true in dimension 3. If the curvature is strictly negative, the fundamental group
of such a manifold is word hyperbolic. Thus Theorem 8.5 implies:

Theorem 8.8. Let M1 and M2 be closed Riemannian n-manifolds (n 6= 4) of
negative sectional curvature. Suppose there are open maps f : M1 → M2 and
g :M2 →M1. Then M1 is homeomorphic to M2.

Proof. By Theorem 8.5, the compositions f ◦g :M2 →M2 and g◦f :M1 →M1

induce isomorphisms on π1. 2

Sela noted a version of this result for degree 1 maps. Ian Agol has suggested
an alternative proof in the hyperbolic case based on the Gromov norm.

The results of Farrell-Jones and Perelman also yield the refinement:

Theorem 8.9. IfM is a closed n-manifold of negative sectional curvature (n ≥
5), then every open mapping f :M →M is homotopic to a homeomorphism.



1446 Gaven J. Martin

9. Quasiregular Maps and Rigidity of

Hyperbolic Manifolds

Putting together these results gives the following.

Theorem 9.1. If M is a convex co-compact hyperbolic n–manifold, then every
proper, quasiregular mapping f :M →M is a homeomorphism.

Proof. Once again Lemma 6.6 tells us that f∗(π1M) ⊂ π1M is of finite index,
and Theorem 8.3 then tells is that f∗ is an isomorphism. Theorem 7.1 then tells
us that f is a homeomorphism. 2

We combine what the above result with Mostow rigidity to obtain the first
item in the following corollary, and include the Euclidean case for comparison.

Corollary 9.2. Let M be a space form and f :M →M quasiregular.

• IfM is hyperbolic, then f is quasiconformal and homotopic to an isometry
of finite period.

• IfM is euclidean, then f is quasiconformally conjugate to a multiplication
or f is quasiconformal (i.e., injective).

In the spherical case, above dimension 1, a locally injective map must be
injective.

Our results combine to give the following generalisation of the Mostow rigid-
ity theorem [33],

Theorem 9.3. LetM1 andM2 be closed hyperbolic n–manifolds. Suppose there
is an open mapping f :M1 →M2 and an injection φ : π1(M2) → π1(M1) with
[π1(M1) : φ(π1(M2))] <∞. Then f is homotopic to an isometry.

One can extend our results for convex co-compact subgroups of SO(n, 1)
to all geometrically finite torsion-free lattices by using the work of Groves [13]
in place of Sela’s Theorem. Walsh’s Lemma still applies in this context, but
one needs an adaptation of Theorem 7.1, which we do not present here. The
conclusion is that every quasiregular self mapping of a finite volume hyperbolic
n–manifold is isotopic to an isometry.

Finally we want to make the following observation relating what we have
above with Wilson’s counterexample to the Whyburn conjecture [47] giving a
dichotomy between discrete open and light open mappings of hyperbolic man-
ifolds.

Theorem 9.4. Let M be a closed hyperbolic n–manifold. Then any discrete
open mapping f :M →M is a homeomorphism isotopic to an isometry. How-
ever, there are light open mappings g :M →M which are not homeomorphisms.
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Presumably the arguments used to prove these results lead to the same
conclusion if M is a closed negatively curved n–manifold whose universal cover
has boundary an (n−1)-sphere. The action of the fundamental group (Gromov
hyperbolic) on the boundary sphere as a convergence group [10] with every
limit point a point of approximation (or conical limit point) will imply that the
induced boundary map of the lift of f is a homeomorphism (see [29, 30] for
proofs of these sorts of results) since we know the induced map on fundamental
groups is an isomorphism.

References

[1] K. Astala, Area distortion of quasiconformal mappings, Acta Math., 173, (1994),
37–60.

[2] K. Astala, T. Iwaniec and G.J. Martin, Elliptic partial differential equations
and quasiconformal mappings in the plane, Princeton Mathematical Series, 48.
Princeton University Press, Princeton, NJ, 2009.

[3] M. Bonk, and J. Heinonen, Smooth quasiregular mappings with branching, Publ.
Math. Inst. Hautes tudes Sci., 100, (2004), 153–170.

[4] M. Bridson, A. Hinkkanen and G. Martin, Quasiregular self-mappings of mani-
folds and word hyperbolic groups, Compos. Math., 143, (2007), 1613–1622.
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[22] J. Liouville, Théorèm sur l’équation dx2 + dy2 + dz2 = λ(dα2 + dβ2 + dγ2), J.
Math. Pures Appl., 1, (15) (1850), 103.

[23] V. Mayer, Cyclic parabolic quasiconformal groups that are not the quasicoformal
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function of one complex variable. In this case, one can recover the zeroes of
F by applying the Laplacian to log |F |. This paves the way for using complex
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wealth of interesting and difficult questions and with very few advances. In
essence, in this part, the reader will find a discussion of one recent theorem
on the number of connected components of zero sets of Gaussian spherical
harmonics along with various open questions.

Part I. Random Complex Zeroes

The study of zeroes of random polynomials and random analytic functions has
a long history. It started with the pioneering works of Kac, Littlewood, Offord,
Rice, and Wiener, and was later continued by Hammersley, Kahane, Maslova,
and many others. The subject was revived in the 1990’s by several groups
of researchers (Bogomolny-Bohigas-Leboeuf, Shub-Smale, Edelman-Kostlan,
Ibragimov-Zeitouni, Hannay, Bleher-Shiffman-Zelditch, Nonnenmacher-Voros)
who came from very different areas and established new links to mathematical
physics, probability theory, and complex geometry. Some of these results were
surveyed in the lectures by Zelditch [54] and Sodin [44]; see also an introductory
article [33] and the recent book by Hough, Krishnapur, Peres, and Virág [21].

In particular, Kostlan, Bogomolny-Bohigas-Leboeuf, Shub-Smale, and Han-
nay introduced a remarkable construction of random Gaussian entire functions
with translation invariant distribution of their zeroes. Let

F (z) =
∑

n≥0

ζn
zn√
n!

where ζn are independent standard complex Gaussian random coefficients (i.e.,

the density of ζk with respect to the Lebesgue measure in C is 1
π e

−|ζ|2). The
distribution of the random function F is invariant with respect to rotations
around the origin, but it is not translation invariant, for instance, because
E|F (z)|2 = e|z|

2

(here and below, E means the mathematical expectation).
However, the distribution of the zero set Z = F−1{0} is translation invariant.
One of the ways to see this is to check that the Gaussian random function

Fλ(z) = F (z + λ)e−zλ− 1

2
|λ|2 , λ ∈ C ,

has the same covariance function as F :

E
{
F (z)F (w)

}
= E

{
Fλ(z)Fλ(w)

}
= ezw

which is nothing else but the reproducing kernel in the classical Fock-Bargmann
space of entire functions. This coincidence is not accidental [33]. Moreover, due
to remarkable Calabi’s rigidity [21, Section 2.5], this is the only translation in-
variant zero set of a Gaussian entire function up to scaling. We call the function
F the Gaussian Entire Function (G.E.F., for short).

It is worth mentioning that there exist similar constructions for other do-
mains with transitive groups of isometries (the hyperbolic plane, the Riemann
sphere, the cylinder and the torus).
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1. Linear Statistics

One of the most traditional ways to study asymptotic properties of a random
discrete subset X of the plane is to take a test-function h, and to look at the
asymptotic behaviour of the linear statistics

nX(r, h) =
∑

a∈X

h
(
a
r

)

as r → ∞. We put n(r, h) = nZ(r, h). An easy computation shows that

En(r, h) = r2

π

∫

R2

h .

If h = 1lE is the indicator function of a set E, then n(r, 1lE) = n(rE) is the
number of zeroes in the set rE.

A usual “triad” in the asymptotic study of random variables is

variance, asymptotic normality, large fluctuations

First, we’ll discuss the variance, which is the easiest part of the triad.

1.1. The variance.

Theorem 1.1 (The variance). For every non-zero function h ∈ (L1 ∩L2)(R2)
and every r > 0,

Varn(r, h) = r2
∫

R2

|ĥ(λ)|2M(r−1λ) dm(λ)

where
M(λ) = π3|λ|4

∑

α≥1

1

α3
e−

π2

α |λ|2 ,

and

ĥ(λ) =

∫

R2

h(x)e−2πi 〈λ,x〉 dm(x)

is the Fourier transform of h.

This theorem was proven in [34]. The asymptotic of the variance had been
known for two special cases since the work by Forrester and Honner [17]: if
h ∈ C2

0 (i.e., h is a C2-function with compact support), then

Varn(r, h) =
ζ(3) + o(1)

16πr2
‖∆h‖2L2 , r → ∞ , (1.1)

while for bounded domains G with piecewise smooth boundary,

Varn(rG) =
ζ(3/2) + o(1)

8π3/2
r L(∂G) , r → ∞ . (1.2)

Here, ζ( · ) is Riemann’s zeta-function.
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A less precise form of Theorem 1.1 might be more illustrative:

Varn(r, h) ' r−2

∫

|λ|≤r

|ĥ(λ)|2|λ|4 dm(λ) + r2
∫

|λ|≥r

|ĥ(λ)|2 dm(λ) , (1.3)

where the notation A ' B means that the quotient B/A is bounded from below
and from above by positive numerical constants. The right-hand side of (1.3)
interpolates ‖h‖2L2(m) and ‖∆h‖2L2(m).

1.2. Digression: “superhomogeneous” point processes.
By (1.2), the random zero process Z belongs to the family of translation in-
variant point processes with variance of the number of points in large domains
proportional to the length of the boundary rather than to the area, as it would
be, say, for the Poisson process. Such processes are called superhomogeneous.

A “toy model” for such processes is the point process

S =
{
ω + ζω : ω ∈ √

π Z2
}

(1.4)

obtained by perturbing the lattice
√
π Z2 by independent standard complex

Gaussian random variables ζω. The normalization by
√
π is not essential here,

it is introduced to have asymptotically the same mean number of points in large
areas as our process Z has. The choice of the square lattice is not essential
either.

Curiously, the same kernel ezw that occurs in the definition of random com-
plex zeroes generates by a very different construction another interesting super-
homogeneous point process G, namely, the determinantal process whose k-point
functions can be expresed in terms of the determinants formed by this kernel.

ρ(z1, ..., zk) = π−ke−
∑k

i=1
|zi|2 det

∥∥ezizj
∥∥
1≤i,j≤k

.

This process arises as the largeN limit of eigenvalues of Ginibre ensemble ofN×
N matrices with independent standard complex Gaussian entries, and we will
call it the limiting Ginibre process. It is known that the Ginibre point process is
a special, explicitly solvable case of a one-component plasma of charged particles
of one sign confined by a uniform background of the opposite sign. Though the
one-component plasma has been studied by physicists for a long time, it seems
that most of rigorous results still pertain only to the very special case of the
Ginibre ensemble.

Resemblances and differences between the processes Z, S, and G were dis-
cussed both in the physical and the mathematical literature. For instance, the
behaviour of smooth linear statistics for these three processes is quite different.
In particular, decay of the variance of smooth linear statistics (1.1) distinguishes
the zero process Z from the processes G and S, since for the latter two processes,
the variance of smooth linear statistics tends to the positive limit proportional
to ‖∇h‖2L2(m).
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Figure 1. Samples of the Poisson process (figure by B. Virág), limiting Ginibre process,
and zeroes of a GEF (figures by M. Krishnapur). Some properties of the last two
processes are quite different, though the eye does not easily distinguish between them.

1.3. Asymptotic normality of fluctuations.

1.3.1. Normal fluctuations. We say that the linear statistics n(r, h) have
asymptotically normal fluctuations if the normalized linear statistics

n(r, h)− En(r, h)√
Varn(r, h)

converge in distribution to the standard (real) Gaussian random variable as
r→∞.

Let Cα
0 , α > 0, be the class of compactly supported Cα-functions, by C0

0

we denote the class of bounded compactly supported measurable functions.

Theorem 1.2 (Asymptotic normality). Suppose that h ∈ Cα
0 with some α ≥ 0,

and that for some ε > 0 and for every sufficiently big r, we have

Varn(r, h) > r−2α+ε . (1.5)

Then the linear statistics n(r, h) have asymptotically normal fluctuations.

Note that by (1.3), we always have Varn(r, h) ≥ c(h)r−2 with positive c(h)
independent of r. Hence, for α > 1, condition (1.5) holds automatically, and we
obtain the following

Corollary 1.1. Suppose that h ∈ Cα
0 with α > 1. Then the linear statistics

n(r, h) have asymptotically normal fluctuations.

Using estimate (1.3), one can show that for any bounded measurable set E
of positive area, Varn(rE) & r, cf. (1.2). Hence,

Corollary 1.2. Let E be a bounded measurable set of positive area. Then the
number of random complex zeroes n(rE) on the set rE has asymptotically nor-
mal fluctuations.
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1.3.2. Abnormal fluctuations of linear statistics. Do there exist Cα
0 -

functions h with abnormal asymptotic behaviour of linear statistics n(r, h)?
The answer is “yes”, and the simplest example is provided by the function
hα = |x|αψ(x), where ψ is a smooth cut-off that equals 1 in a neighborhood of
the origin. Clearly, hα ∈ Cα

0 and it is not difficult to show that Varn(r, hα) '
r−2α. This shows that Theorem 1.2 is sharp on a rough power scale. The reason
for the loss of asymptotic normality is that only a small neighbourhood of the
origin where hα loses its smoothness contributes to the variance of n(r, hα).
This neighbourhood contains a bounded number of zeroes of F , which is not
consistent with the idea of normal fluctuations.

1.3.3. Comments and questions. Theorem 1.2 was preceded by a result of
Sodin and Tsirelson [45, Part I]. Using the moment method and the diagrams,
they showed that the fluctuations are asymptotically normal provided that
h ∈ C2

0 . Their technique works in several other cases, for instance, when h = 1lG
is the indicator function of a bounded domain G with a piecewise smooth
boundary. However, it seems very difficult to adapt it for proving Theorem 1.2
in its full generality.

In the case α > 0, the proof of Theorem 1.2 is given in [34]. It uses a classical
idea of S.Bernstein to approximate the random variable n(R, h) by a sum of
a large number of independent random variables with negligible error. Such
approximation becomes possible only after we separate the high and the low
frequencies in h. In this approach, independence appears as a consequence of the
almost independence of the values of the G.E.F. at large distances, which we’ll
discuss below in Section 3.1. We do not know whether asymptotic normality
holds for all functions h ∈ C1

0 , or whether the condition r2α Varn(r, h) → ∞ is
already sufficient for asymptotic normality of linear statistics associated with a
Cα

0 -function. Also, we believe that the assertion of Theorem 1.2 can be extended
to functions h ∈ Cα ∩ L2

0 with −1 < α < 0 but our current techniques seem
insufficient to handle this case properly.

In the case α = 0, the proof is given in [35]. It uses a different idea which
comes from statistical mechanics. First, we show that k-point functions of the
zero process Z are clustering, see Section 3.2 for the precise statement. Then,
using clustering, we estimate the cumulants of the random variable n(r, h).

It is interesting to juxtapose Theorem 1.2 with what is known for the lim-
iting Ginibre process G described above. For bounded compactly supported
functions h, a counterpart of Theorem 1.2 is a theorem of Soshnikov. In [47], he
proved among other things that for arbitrary determinantal point processes, the
fluctuations of linear statistics associated with a compactly supported bounded
positive function are normal if the variance grows at least as a positive power
of expectation as the intensity tends to infinity. A counterpart of the limiting
case α = 2 in Theorem 1.2 (that is, of the result from [45, Part I]) was recently
found by Rider and Virág in [42]. They proved that the fluctuations for lin-
ear statistics of process G are normal when the test function h belongs to the
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Sobolev space W 2
1 . It is not clear whether there is any meaningful statement

interpolating between the theorems of Soshnikov and Rider and Virág. It can
happen that our Theorem 1.2 simply has no interesting counterpart for the pro-
cess G. It is also worth mentioning that the proofs in the determinantal case are
quite different from ours. They are based on peculiar combinatorial identities
for the cumulants of linear statistics that are a special feature of determinantal
point processes.

1.4. Probability of large fluctuations. Now, we turn to the prob-
ability of exponentially rare events that, for some r � 1, |n(r, h) − En(r, h)|
is much bigger than

√
Var(n(r, h). Mostly, we consider the case when h is the

indicator function of the unit disk D; i.e., we deal with the number n(r) of
random zero points in the disk of large radius r centered at the origin. Recall
that En(r) = r2 and E

{
(n(r) − r2)2

}
∼ cr for r → ∞ (with some c > 0).

Hence, given α ≥ 1
2 , we need to find the order of decay of the probability

P
{
|n(r)− r2| > rα

}
.

1.4.1. Näıve heuristics. The aforementioned similarity between the zero
process Z and independent complex Gaussian perturbations S of the lattice√
π Z2 helps to guess the correct answer.

We fix the parameter ν > 0, and consider the random point set Sν = {ω +
ζω}ω∈√

πZ2 , where ζω are independent, identical, radially distributed random
variables with the tails P{|ζω| > t} decaying as exp(−tν) as t→ ∞. Set

nν(r) = #{ω ∈ √
π Z2 : |ω + ζω| ≤ r}.

Then, for every α ≥ 1
2 and every ε > 0,

exp[−rϕ(α,ν)+ε] < P
{
|nν(r)− r2| > rα

}
< exp[−rϕ(α,ν)−ε] ,

provided that r is sufficiently big. Here

ϕ(α, ν) =





2α− 1, 1
2 ≤ α ≤ 1;

(ν + 1)α− ν, 1 ≤ α ≤ 2;

( 12ν + 1)α, α ≥ 2 .

Actually, one can find much sharper estimates for P
{
|nν(r)− r2| > rα

}
.

This suggests that the probability P{|n(r)− r2| > rα} we are after should
decay as exp[−rϕ(α)] with

ϕ(α) = ϕ(α, 2) =





2α− 1, 1
2 ≤ α ≤ 1;

3α− 2, 1 ≤ α ≤ 2;

2α, α ≥ 2 .
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1.4.2. Jancovici-Lebowitz-Manificat Law. Unfortunately, we do not
know how to represent random complex zeroes as independent, or weakly cor-
related, Gaussian perturbations of the lattice points, so we cannot use the
heuristics given above. Nevertheless, we can prove

Theorem 1.3 (JLM Law for random complex zeroes). For every α ≥ 1
2 and

every ε > 0,

exp[−rϕ(α)+ε] < P
{
|n(r)− r2| > rα

}
< exp[−rϕ(α)−ε]

for all sufficiently large r > r0(α, ε) with the same ϕ(α) as above.

In [18], Jancovici, Lebowitz and Manificat showed that this law holds for
the one-component plasma. Their derivation was not a rigorous one, except
for the case of the limiting Ginibre process G. It would be desirable to have a
clear explanation why the same Jancovici-Lebowitz-Manificat law holds for the
random processes Z, S, and G in the range α > 1.

1.4.3. Comments and questions. The function ϕ from the exponent in the
Jancovici-Lebowitz-Manificat Law loses smoothness at three points. Accord-
ingly, there are three different régimes ( 12 < α < 1, 1 < α < 2, and α > 2).
The point α = 1

2 corresponds to the asymptotic normality of n(r), and devia-
tions in the range 1

2 < α < 1 are called moderate. In this range, the deviation
|n(r) − r2| is small compared to the length of the circumference {|z| = r}. In
this case, the theorem was proven by Nazarov, Sodin, and Volberg [37]. The
point α = 1 corresponds to the classical large deviations principle. In the range
1 < α < 2, the deviation is already big compared to the length of the boundary
circumference, but is still small compared to the area of the disk {|z| ≤ r}. In
this case, the lower bound for P

{
|n(r)− r2| > rα

}
is due to Krishnapur [22],

while the upper bound was proven in [37].

The case α = 2 contains an estimate for the “hole probability” P {n(r) = 0}.
In this case, the theorem was proved by Sodin and Tsirelson [45, Part III]. A
very sharp estimate of the hole probability

logP {n(r) = 0} = −3e2

4
r4 +O

(
r

18

5

)
, r → ∞ ,

was recently obtained by Nishry [38]; in [39] he extended this asymptotics to
a rather wide class of entire functions represented by Gaussian Taylor series.
There are two interesting questions pertaining to the hole probability. We have
no idea how to find the asymptotics of the expected number of random com-
plex zeroes in the disk RD, R ≥ r, conditioned on the hole {n(r) = 0}.
We also do not know how to extend Nishry’s result from the unit disk to
other bounded domains G. It seems plausible that for a large class of bounded
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domains G,

logP {n(rG) = 0} = −(κ(G) + o(1))r4 , r → ∞,

with κ(G) > 0. If this is true, how does κ(G) depend on G?

The range α > 2 in the Jancovici-Lebowitz-Manificat Law is the “over-
crowding” régime. In [22], Krishnapur proved that for α > 2,

logP {n(r) > rα} = −
(
1
2α− 1 + o(1)

)
r2α log r , r → ∞ .

The bounds in Theorem 1.3 are not too tight. As we’ve already mentioned,
in some cases, much better bounds are known. It would be good to improve
precision of Theorem 1.3 in other cases. For instance, to show that for α ≤ 2
and for δ > 0 there exists the limit

lim
r→∞

logP
{
|n(r)− r2| > δrα

}

rϕ(α)

and to find its value.

1.4.4. Moderate deviations for smooth linear statistics. Here is a re-
cent result of Tsirelson [52]:

Theorem 1.4. Let h ∈ C2
0 . Then

logP
{
rn(r, h) > tσ‖∆h‖L2

}
= (1 + o(1)) log

( 1√
2π

∫ ∞

t

e−x2/2 dx
)

and

logP
{
rn(r, h) < −tσ‖∆h‖L2

}
= (1 + o(1)) log

( 1√
2π

∫ ∞

t

e−x2/2 dx
)
,

as r → ∞, t > 0, and t log
2 r
r → 0. Here, σ2 = ζ(3)

16π (cf. (1.1)).

The proof of this theorem is quite intricate. Note that it gives bounds that
are much sharper than the ones in Theorem 1.3. In the case t = const, The-
orem 1.4 gives another proof of the asymptotic normality of smooth linear
statistics of random complex zeroes.

It is not clear whether the assumption t log
2 r
r → 0 can be replaced by a more

natural one t
r → 0. To the best of our knowledge, until now, there have been

no results about large or huge deviations for smooth linear statistics of random
complex zeroes when t is comparable or much larger than r.
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2. Uniformity of Spreading of Random
Complex Zeroes Over the Plane

Let Z be a point process in R
d with the distribution invariant with respect to

the isometries of Rd. A natural way to check how evenly the process Z is spread
over Rd is to find out how far the counting measure

nZ =
∑

a∈Z

δa

of the set Z (δa is the unit mass at a) is from the Lebesgue measure md in R
d.

We describe a convenient way to measure the distance between nZ and md.
Suppose that the mean number of points of Z per unit volume equals 1. We

want to partition the whole space Rd, except possibly a subset of zero Lebesgue
measure, into disjoint sets B(a) of Lebesgue measure 1 indexed by sites a ∈ Z in
such a way that each set B(a) is located not too far from the corresponding site
a ∈ Z. In other words, we are looking for a measurable map T : Rd → Z such
that for each a ∈ Z, we havemd(T

−1 {a}) = 1. We also want the distances |Tx−
x| to be not too large. The map T is called the transportation (a.k.a. “matching”,
“allocation”, “marriage”, etc.) of the Lebesgue measure md to the set Z.

Alternatively, we can fix a lattice Γ ⊂ R
d with cells of unit volume, and look

for a bijection Θ: Γ → Z for which the distances |Θγ − γ|, γ ∈ Γ, are not too
large. Since for each two lattices Γ1, Γ2 with cells of the same volume, there
is a bijection θ : Γ1 → Γ2 with sup {|θγ − γ| : γ ∈ Γ1} < ∞, the choice of the
lattice is not important, so we can take Γ = Z

d.
Since we deal with random discrete sets Z, the corresponding transporta-

tion maps T (or the bijections Θ) will be random maps. In interesting cases
(including the random complex zeroes Z), almost surely, the transportation
distances |Tx − x| are unbounded, so we are interested in the rate of decay of
the probability tails P{|Tx− x| > R} as R→ ∞.

Here we present two approaches to this problem developed in [45, Part II]
and in [36]. Though we discuss only the random complex zeroes Z, we believe
that both approaches should work for other natural translation invariant point
processes. At last, we recall that the random complex zero process Z has inten-
sity π, not 1. For this reason, we will look for a transportation of the measure
πm2 to Z, and for a bijection between the lattice

√
π Z2 and Z.

2.1. Random complex zeroes as randomly perturbed
lattice points.

Theorem 2.1 (Existence of well-localized bijection). There exists a translation
invariant random function ξ : Z2 → C such that

(a) the random set {γ + ξ(γ) : γ∈√
π Z2} is equidistributed with the random

complex zeroes Z;

(b) P{|ξ(0)| > R} ≤ exp
(
−cR4/ logR

)
for some c > 0 and every R ≥ 2.
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The theorem is almost optimal since the probability that the disk of radius
λ ≥ 1 is free of random complex zeroes is not less than exp

(
−Cλ4

)
. It seems

that the question about the existence of a matching between the lattice and Z
with tails decaying as exp

(
−cλ4

)
remains open as well as the same question for

the Gaussian perturbations S of the lattice points and for the limiting Ginibre
process G.

It would be interesting to find a version of Theorem 2.1 with weakly corre-
lated perturbations ξk,l at large distances. This could shed some light on the
reasons hidden behind the Jancovici-Lebowitz-Manificat Law.

2.1.1. Uniformly spread sequences in R
d. The proof of Theorem 2.1 is

based on a deterministic idea which might be useful in study of the uniformity
of spreading of sequences and measures. We need to establish the bijection
between the sets Z and

√
πZ2 with controlled tails of the distances |ξk,l|. First

we look at a simpler situation when |ξk,l| are uniformly bounded. It is too
much to expect from a typical zero set, but let us try anyway. We say that
the set Z ∈ R

d is r-uniformly spread over R
d (with density 1) if there exists

a bijection between Z and a lattice with the unit volume of the cell such that
the distances between Z and the corresponding lattice points do not exceed r.
If such a bijection exists then clearly

n(U) ≤ ν(U+r) and ν(U) ≤ n(U+r) (2.1)

for every U ⊂ R
d; here U+r stands for the r-neighbourhood of U , n is the

counting measure of the set Z, and ν is the counting measure of the lattice.
In fact, (2.1) is not only necessary but also sufficient, which is basically a
well-known locally finite marriage lemma due to M. Hall and R. Rado. When
verifying condition (2.1), we can replace ν by the Lebesgue measure md at the
expense of adding a constant to r .

Now, given a locally finite measure µ on R
d, we define Di(µ) as the infimum

of r ∈ (0,∞) such that

µ(X) ≤ md(X+r) and md(X) ≤ µ(X+r)

for every bounded Borel set X ⊂ R
d. The range of Di is [0,+∞] with the both

ends included. The following theorem gives a useful upper bound for Di(µ) in
terms of the potential u:

Theorem 2.2 (Upper bound for the transportation distance). Let u be a locally
integrable function in R

d such that ∆u = µ−md in the sense of distributions.
Then

Di(µ) ≤ Constd · inf
r>0

{
r +

√
‖u ∗ χr‖∞

}
.

Here, χr is the indicator function of the ball of radius r centered at the origin
normalized by the condition ‖χr‖L1 = 1, and ∗ denotes the convolution.
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Now, we explain how Theorem 2.1 is deduced from Theorem 2.2. After
smoothing, the random potential U(z) = log |F (z)| − 1

2 |z|2 is locally uniformly
bounded. Still, a.s. it remains unbounded in C, so we cannot apply Theorem 2.2
directly. The idea is to introduce on C a random metric ρ that depends on a
G.E.F. F . The metric ρ is small where the random potential U is large. Then we
apply a counterpart of Theorem 2.2 with the distances measured in the metric
ρ, instead of the Euclidean one.

2.1.2. Comments. Theorems 2.1 and 2.2 are taken from Sodin and
Tsirelson [45, Part II] (cf. [46]). In that paper, the authors proved a weaker
subgaussian estimate for the tails, however, after a minor modification of the
proof given therein, one gets the result formulated here. Note that the method
developed in Sodin and Tsirelson [45, Part II] needs only the existence of a
stationary random vector field v in R

d with div v = µ−cdmd. The tail estimate
depends on the rate of decay of the tails of the field v or of the tails of the
potential u such that v = ∇u (if such a u exists).

In the last 20 years, the concept of uniformly spread discrete subsets of Rd

has appeared in very different settings. Laczkovich used uniformly spread sets
in R

d in his celebrated solution of the Tarski’s circle squaring problem [23]
(see also [24]). There are various probabilistic counterparts of this notion. For
instance, Ajtai, Komlós and Tusnády [1], Leighton and Shor [25], and Tala-
grand [51] studied a finite counterpart of this, namely, a high probability match-
ing of a system of N2 independent random points in the square [0, N)2 ⊂ R

2

with the grid Z2 ∩ [0, N)2.

2.2. Gradient transportation. Unfortunately, the proof of Theo-
rem 2.1 is a pure existence one. It gives us no idea about what the (almost)
optimal transportation of the Lebesgue measure to the zero process Z looks
like. Now, we discuss another approach, namely, the transportation by the gra-
dient flow of a random potential. The main advantage of this approach is that it
yields a quite natural and explicit construction for the desired transportation.

2.2.1. Basins of zeroes. Let U(z) = log |F (z)| − 1
2 |z|2 be the random po-

tential corresponding to the G.E.F. F . It is easy to check that the distribution
of U is invariant with respect to the isometries of the plane. We shall call any
integral curve of the differential equation

dZ

dt
= −∇U(Z)

a gradient curve of the potential U . We orient the gradient curves in the direc-
tion of decrease of U (this is the reason for our choice of the minus sign in the
differential equation above). If z /∈ Z, and ∇U(z) 6= 0, by Γz we denote the
(unique) gradient curve that passes through the point z.
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Definition 2.1. Let a be a zero of the G.E.F. F . The basin of a is the set

B(a) = {z ∈ C \ Z : ∇U(z) 6= 0, and Γz terminates at a} .
Clearly, each basin B(a) is a connected open set, and B(a′) ∩ B(a′′) =

∅ if a′ and a′′ are two different zeroes of F . Remarkably, all bounded basins
have the same area π. Indeed, ∂U

∂n = 0 on ∂B(a) and therefore, applying the
Green formula and recalling that the distributional Laplacian of U equals ∆U =
2π

∑
a∈ZF

δa − 2m, one gets

1− mB(a)

π
=

1

2π

∫∫

B(a)

∆U(z) dm(z) =
1

2π

∫

∂B(a)

∂U

∂n
(z) |dz| = 0 ;

i.e., mB(a) = π. The picture below helps to visualize what’s going on.

Figure 2. Random partition of the plane into domains of equal area generated by
the gradient flow of the random potential U (figure by M. Krishnapur). The lines are
gradient curves of U , the black dots are random zeroes. Many basins meet at the same
local maximum, so that two of them meet tangentially, while the others approach it
cuspidally forming long, thin tentacles.

2.2.2. Results.

Theorem 2.3 (Random partition). Almost surely, each basin is bounded by
finitely many smooth gradient curves (and, thereby, has area π), and

C =
⋃

a∈Z
B(a)

up to a set of measure 0 (more precisely, up to countably many smooth boundary
curves).
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The tails of this random partition have three characteristic exponents 1, 8

5
,

and 4. The probability that the diameter of a particular basin is greater than
R is exponentially small in R. Curiously enough, the probability that a given
point z lies at a distance larger than R from the zero of F it is attracted to

decays much faster: as e−R8/5

. This is related to long thin tentacles seen on the
picture around some basins. They increase the typical diameter of the basins
though the probability that a given point z lies in such a tentacle is very small.
At last, given ε > 0, the probability that it is impossible to throw away ε% of
the area of the basin so that the diameter of the remaining part is less than
R decays as e−R4

. All three exponents are optimal. The proofs of these results
rely on the following long gradient curve theorem.

Theorem 2.4 (Long gradient curve). Let R ≥ 1. Let Q(R) be the square
centered at the origin with side length R. The probability of the event that
there exists a gradient curve joining ∂Q(R) with ∂Q(2R) does not exceed

Ce−cR(logR)3/2 .

The proof of this theorem is, unfortunately, rather long and complicated.
It might be helpful for the reader to look at the first version of [36] posted in
the arxiv where the authors gave a more transparent proof of a weaker upper
bound Ce−cR

√
logR in the long gradient curve theorem.

2.2.3. Comments and questions. Gradient transportation was introduced
by Sodin and Tsirelson [45, Part II] and studied by Nazarov, Sodin, Volberg
in [36].

There are several questions related to the statistics of our random partition
of the plane. It is not difficult to show that, almost surely, any given point z ∈ C

belongs to some basin. We denote that basin by Bz, and the corresponding sink
by az. We say that two basins are neighbours if they have a common gradient
curve on the boundary. By Nz we denote the number of basins B neighbouring
the basin Bz. Clearly, Nz equals the number of saddle points of the potential
U connected with the sink az by gradient curves. Heuristically, since almost
surely each saddle point is connected with two sinks,

ENz = 2
mean number of saddle points per unit area

mean number of zeroes per unit area
.

Douglas, Shiffman and Zelditch proved in [15] that the mean number of saddle
points of U per unit area is 4

3π . (They proved this for another closely related
“elliptic model” of Gaussian polynomials. It seems that their proof also works
for G.E.F.’s) This suggests that ENz = 8

3 . Another characteristic of the random
partition is the number of basins that meet at the same local maximum. Taking
into account the result from [15], we expect that its average equals 8.

The next question concerns the topology of our random partition of the
plane. By the skeleton of the gradient flow we mean the connected planar graph
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with vertices at local maxima of U and edges corresponding to the boundary
curves of the basins. The graph may have multiple edges and loops. We do not
know whether there are any non-trivial topological restrictions on finite parts
of the skeleton that hold almost surely.

In [11] Chatterjee, Peled, Peres, Romik applied the ideas from [36] to study
the gradient transportation of the Lebesgue measure to the Poisson point pro-
cess in R

d with d ≥ 3 (they called it ‘gravitational allocation’). Their work
required a delicate and thorough analysis of the behaviour of the Newtonian
potential of the Poisson point process. It’s worth mentioning that a very differ-
ent construction of the stable marriage between the Lebesgue measure md and
the Poisson process in R

d with d ≥ 2 was developed by Hoffman, Holroyd and
Peres in [20]. The case d = 2 is especially interesting: see the recent work by
Holroyd, Pemantle, Peres, Schramm [19].

3. Almost Independence and Correlations

3.1. Almost independence at large distances. The covariance

function of the normalized Gaussian process F ∗(z) = F (z)e−
1

2
|z|2 equals

ezw− 1

2
|z|2− 1

2
|w|2 = eiIm(zw)− 1

2
|z−w|2 ,

which decays very fast as |z − w| grows. This suggests an idea that the zeroes
of G.E.F.’s must be “almost independent” on large distances. Still the precise
formulation of this independence property is not obvious: due to analyticity of
F , if we know the process F ∗ in a neighbourhood of some point, we know it
everywhere on the plane.

It is not difficult to show that two standard complex Gaussian random
variables with small covariance can be represented as small perturbation of
two independent standard complex Gaussian random variables. Developing this
idea, we show that if {Kj} is a collection of well-separated compact sets, then
the restrictions F ∗∣∣

Kj
of normalized process F ∗ can be simultaneously approx-

imated by restrictions F ∗
j

∣∣
Kj

of normalized independent realizations of G.E.F.’s

Fj with high precision and the probability very close to 1. This is a very useful
principle that lies in the core of the proofs of most of the results described
above. Here is the precise statement [34]:

Theorem 3.1 (Almost independence). Let F be a G.E.F.. There exists a nu-
merical constant A > 1 with the following property. Given a family of compact
sets Kj in C with diameters d(Kj), let λj ≥ max{d(Kj), 2}. Suppose that
A
√

log λj-neighbourhoods of the sets Kj are pairwise disjoint. Then

F ∗ = F ∗
j +G∗

j on Kj ,
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where Fj are independent G.E.F.’s and for every j, we have

P
{
max
Kj

|G∗
j | ≥ λ−1

j

}
. e−λj .

Less general versions of this result were proven in [36, 37].
The proof of Theorem 3.1 goes as follows. First, for each compact set Kj , we

choose a sufficiently dense net Zj and consider the bunch Nj =
{
vz : z ∈ Zj

}

of unit vectors vz = F ∗(z) in the Hilbert space of complex Gaussian random
variables. Since the compact sets Kj are well-separated, the bunches Nj are
almost orthogonal to each other. Then we slightly perturb the vectors vz with-
out changing the angles between the vectors within each bunch Nj , making the
bunches orthogonal to each other. More accurately, we construct new bunches
Ñj =

{
ṽz : z ∈ Zj

}
so that for z ∈ Zj , ζ ∈ Zk,

〈ṽz, ṽζ〉 =
{
〈vz, vζ〉 for j = k,

0 for j 6= k

with good control of the errors ‖vz− ṽz‖. Then we extend the Gaussian bunches{
ṽze

1

2
|z|2 : z ∈ Zj

}
to independent G.E.F.’s Fj . The difference Gj = F −Fj is a

random entire function that is small on the net Zj with probability very close
to one. At the last step of the proof, using some simple complex analysis, we
show that G∗

j is small everywhere on Kj .

3.2. Uniform estimates of k-point functions. Clustering.
There is yet another way (originated in statistical mechanics) to describe point
processes by the properties of their k-point correlation functions. Recall that
the k-point function ρ = ρk of the zero process Z is a symmetric function on
C

k defined outside of the diagonal subset

Diag(Ck) = {(z1, ..., zk) : zi = zj for some i 6= j}

by the formula

ρ(z1, ..., zk) = lim
ε→0

pε(z1, ..., zk)

(πε2)k
(3.1)

where pε(z1, ..., zk) is the probability that each disk {|z − zj | ≤ ε}, 1 ≤ j ≤ k,
contains at least one point of Z. The k-point functions describe correlations
within k-point subsets of the point process. Estimates for the k-point functions
are crucial for understanding many properties of point processes. The following
results taken from [35] provide rather complete quantitative information about
the behaviour of the k-point functions of random complex zeroes.

The first result treats the local behaviour of k-point functions. It appears
that for a wide class of non-degenerate Gaussian analytic functions, the k-
point functions of their zeroes exhibit universal local repulsion when some of
the variables z1, ..., zk approach each other.
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Recall that a Gaussian analytic function f(z) in a plane domain G ⊆ C is
the sum

f(z) =
∑

n

ζnfn(z)

of analytic functions fn(z) such that
∑

n

|fn(z)|2 <∞ locally uniformly on G,

where ζn are independent standard complex Gaussian coefficients. By ρf =
ρf (z1, ..., zk) we denote the k-point function of the zero set of the function f . It
is a symmetric function defined outside the diagonal set Diag(Gk) as in (3.1).

We skip the technical definition of d-degeneracy, which we use in the as-
sumptions of the next theorem, and only mention that Gaussian Taylor series
(either infinite, or finite)

f(z) =
∑

n≥0

ζncnz
n

are d-nondegenerate, provided that c0, c1, ..., cd−1 6= 0. In particular, the G.E.F.
is d-nondegenerate for every positive integer d.

Theorem 3.2 (Local universality of repulsion). Let f be a 2k-nondegenerate
Gaussian analytic function in a domain G, let ρf be a k-point function of zeroes
of f , and let K ⊂ G be a compact set. Then there exists a positive constant
C = C(k, f,K) such that, for any configuration of pairwise distinct points
z1, ..., zk ∈ K,

C−1
∏

i<j

|zi − zj |2 ≤ ρf (z1, ..., zk) ≤ C
∏

i<j

|zi − zj |2 .

The next result is a clustering property of zeroes of G.E.F.’s. It says that
if the variables in C

k can be split into two groups located far from each other,
then the function ρk almost equals the product of the corresponding factors.
This property is another manifestation of almost independence of points of the
process at large distances. It plays a central rôle in the proof of the asymptotic
normality theorem 1.2 for bounded measurable functions.

For a non-empty subset I = {i1, ..., i`} ⊂ {1, 2, ..., k}, we set ZI =
{zi1 , ..., zi`}. We denote by

d(ZI , ZJ ) = inf
i∈I,j∈J

|zi − zj |

the distance between the configurations ZI and ZJ .

Theorem 3.3 (Clustering property). For each k ≥ 2, there exist positive con-
stants Ck and ∆k such that for each configuration Z of size k and each parti-
tion of the set of indices {1, 2, ..., k} into two non-empty subsets I and J with
d(ZI , ZJ ) ≥ 2∆k, one has

1− ε ≤ ρ(Z)

ρ(ZI)ρ(ZJ )
≤ 1 + ε with ε = Cke

− 1

2
(d(ZI ,ZJ )−∆k)

2

. (3.2)
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Combining Theorems 3.2 and 3.3, and taking into account the translation
invariance of the point process Z, we obtain a uniform estimate for ρk valid in
the whole C

k:

Theorem 3.4. For each k ≥ 1, there exists a positive constant Ck such that
for each configuration (z1, ..., zk),

C−1
k

∏

i<j

`(|zi − zj |) ≤ ρ(z1, ..., zk) ≤ Ck

∏

i<j

`(|zi − zj |) ,

where `(t) = min(t2, 1).

The proofs of Theorems 3.2 and 3.3 start with the classical Kac-Rice-
Hammersley formula [21, Chapter 3]:

ρf (z1, ..., zk) =

∫

Ck

|η1|2...|ηk|2 Df (η
′; z1, ..., zk) dm(η1)...dm(ηk), (3.3)

where Df ( · ; z1, ..., zk) is the density of the joint probability distribution of the
random variables

f(z1), f
′(z1), ... , f(zk), f

′(zk) , (3.4)

and η′ = (0, η1, ..., 0, ηk)
T
is a vector in C

2k. Since the random variables (3.4)
are complex Gaussian, one can rewrite the right-hand side of (3.3) in a more
explicit form

ρf (z1, ..., zk) =
1

π2k det Γf

∫

Ck

|η1|2...|ηk|2e−
1

2
〈Γ−1

f η′,η′〉dm(η1)...dm(ηk), (3.5)

where Γf = Γf (z1, ..., zk) is the covariance matrix of the random variables (3.4).
We consider the linear functionals

Lf =

k∑

j=1

[αjf(zj) + βjf
′(zj)] =

1

2πi

∫

γ

f(z)rL(z) dz,

where

rL(z) =

k∑

j=1

[
αj

z − zj
+

βj
(z − zj)2

]
,

and γ ⊂ K is a smooth contour that bounds a domain G′ ⊂ K that contains
the points z1, ..., zk. Observe that for every vector δ = (α1, β1, ..., αk, βk)

T
in

C
2k, we have

〈Γfδ, δ〉 = E|Lf |2 .
This observation allows us to estimate the matrix Γ−1

f , and hence the integral
on the right-hand side of (3.5), using some simple tools from the theory of
analytic functions of one complex variable.
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We note that using another approach to analyzing the right-hand side
of (3.5), Bleher, Shiffman, and Zelditch proved in [5] that if the points zi are
well separated from each other, i.e.,

min
i6=j

|zi − zj | ≥ δ > 0,

then some estimate similar to (3.2) holds with a factor C(k, δ) instead of Ck.
Unfortunately, in this form the result is difficult to apply. For instance, it does
not yield the boundedness of the k-point functions on the whole C

k, and we
could not use it for the proof of Theorem 1.2. On the other hand, the result of
Bleher, Shiffman and Zelditch is valid for a wider class of zero point processes.

Part II. Random Nodal Lines

4. Gaussian Spherical Harmonic and Gaussian
Plane Wave

We introduce two remarkable Gaussian random functions closely related to each
other: the Gaussian spherical harmonic on the two-dimensional sphere S

2 and
its scaling limit, the Gaussian plane wave. The study of random plane waves,
and in particular, of their nodal portraits, originated in applied mathematics
and goes back to M. S. Longuet-Higgins [27] who computed various statistics
of nodal lines for Gaussian random waves in connection with the analysis of
ocean waves. One of the reasons for the recent interest in random plane waves
is the heuristic principle proposed by M. V. Berry [3] called ‘the random wave
conjecture’. This principle says that the behaviour of high-energy Laplace eigen-
functions in the case when the corresponding geodesic flow is ergodic (the so
called ‘highly excited quantum chaotic eigenfunctions’) should resemble the be-
haviour of Gaussian random waves. More generally, one would expect that the
random spherical harmonic can serve as a good model for the typical behaviour
of high-energy Laplace eigenfunctions on a compact surface endowed with a
smooth Riemannian metric.

4.1. Spherical harmonics. The spherical harmonic of degree n is a
real-valued eigenfunction of the Laplacian (with the minus sign) on the two-
dimensional sphere S

2 corresponding to the eigenvalue λn = n(n + 1). Equiv-
alently, it is a trace of a homogeneous harmonic polynomial in R

3 of degree
n on the unit sphere. Let Hn be the 2n + 1-dimensional real Hilbert space of
spherical harmonics of degree n equipped with the L2(S2)-norm. The Gaussian
spherical harmonic f is the sum

fn =
n∑

k=−n

ξkYk
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where ξk are independent identically distributed mean zero Gaussian (real)
random variables with Eξ2k = 1

2n+1 and
{
Yk

}
is an orthonormal basis of Hn, so

E‖f‖2L2(S2) = 1. As a random function, fn does not depend on the choice of the

basis
{
Yk

}
in Hn. Since the scalar product in the Hilbert space Hn is invariant

under rotations of the unit sphere, the distribution of the random spherical
harmonic fn is also rotation invariant. The covariance function of the Gaussian
spherical harmonic equals

E
{
fn(x)fn(y)

}
= Pn(cosΘ(x, y))

where Θ(x, y) is the angle between x and y, and Pn is the Legendre polynomial
of degree n normalized by Pn(1) = 1.

4.2. Random plane waves. Now, we turn to the Gaussian plane wave.
Informally speaking, it is the two-dimensional Fourier transform of the white
noise on the unit circumference S

1 ⊂ R
2. More formally, we start with the

Hilbert space L2
sym(S

1) that consists of complex valued L2-functions ϕ on S
1

satisfying the symmetry condition

ϕ(−λ) = ϕ(λ), λ ∈ S
1,

and consider the Fourier image of this space H = FL2
sym(S

1) with the scalar

product inherited from L2
sym(S

1). The space H consists of real-analytic functions

Φ(x) =

∫

S1

eix·λϕ(λ) dm(λ)

(m is the Lebesgue measure on S
1) satisfying the Helmholtz equation ∆Φ+Φ =

0. The Gaussian plane wave is the sum of the random series

F =
∑

k

ηkΦk

where ηk are standard identically distributed independent (real) Gaussian ran-
dom variables, and {Φk} is an orthonormal basis in H. The series converges
almost surely, and its sum is again a real analytic function in R

2 satisfying
the same Helmholtz equation. This construction does not depend on the choice
of the basis

{
Φk

}
, and the distribution of the random function F is invariant

with respect to translations and rotations of the plane (since the norm in H is
translation and rotation invariant).

Applying the Fourier transform to the standard orthonormal basis
{
λm

}
m∈Z

in L2(S1), we get the functions imJm(r)eimθ where (r, θ) are polar coordinates,
and Jm is the Bessel function of order m. This yields a more explicit formula
for the Gaussian plane wave:

F (x) = Re
∑

m∈Z

ζmJ|m|(r)e
imθ, x = (r, θ),
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where ζm are independent identically distributed complex Gaussian random
variables with E|ζm|2 = 2.

The covariance function of F (which is the same as the reproducing kernel
of the space H) is given by the Bessel kernel:

E
{
F (x)F (y)

}
= J0(|x− y|) .

It is worth mentioning that there are other constructions of random plane
‘monochromatic’ waves as random linear combinations (‘superpositions’) of el-
ementary plane waves eλ(x) = eiλ·x. For instance, following Oravecz, Rudnick,
Wigman [40] and Rudnick, Wigman [43], one can consider ‘arithmetic random
waves’

hN (x) = Re
∑

ν

ζνe
2πi(ν·x)

where ζν are independent identically distributed complex Gaussian random
variables with E|ζm|2 = 2, and the sum is taken over ν ∈ Z

2 with |ν|2 = N . This
model remarkably combines analysis and probability theory with the number
theory. Its covariance function

E
{
hN (x)hN (y)

}
=

∑

ν

cos 2π
(
ν · (x− y)

)

has a more erratic behaviour than the covariance functions of the Gaussian
spherical harmonic and the Gaussian plane wave.

4.3. Random plane waves as scaling limits of random
spherical harmonics. The Gaussian plane wave F is a scaling limit of
the Gaussian spherical harmonic fn when n → ∞. This is a very special case
of a result of Zelditch [55] pertaining to a wide class of Riemannian smooth
surfaces, in particular, to all real-analytic Riemannian surfaces.

Informally, for any fixed R, the restrictions of the Gaussian functions fn on
spherical disks of radius R/n converge as random processes to the restriction
of F on the euclidean disk of radius R. More formally, we fix a point x0 ∈ S

2,
and define the random Gaussian function Fn on the tangent plane Tx0

S
2 by

Fn(u) =
(
fn ◦ expx0

) (
u
n

)
, (4.1)

where expx0
: Tx0

S
2 → S

2 is the exponential map. After this scaling, the covari-
ance equals

E
{
Fn(u)Fn(v)

}
= Pn

(
cosΘ

(
expx0

(
u
n

)
, expx0

(
v
n

)))

When n goes to ∞, the angle between the points expx0

(
u
n

)
, and expx0

(
v
n

)
on

the sphere is equivalent to |u − v|/n (locally uniformly in u and v). Then by
classical Hilb’s asymptotics of the Legendre polynomials [50, Theorem 8.21.6],
the scaled covariance function E

{
Fn(u)Fn(v)

}
converges to the Bessel kernel

J0(|u− v|) locally uniformly in u and v.
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5. Nodal Portrait

In most cases, the basic questions about the asymptotic behaviour of the nodal
portrait of the Gaussian spherical harmonic fn as n → ∞, and their counter-
parts for the Gaussian plane wave in the ‘large area limit’ are equivalent to each
other. In what follows, we concentrate on spherical harmonic versions which are
somewhat easier to formulate.

For the spherical harmonic g ∈ Hn, we denote by Z(g) = {x ∈ S
2 : g(x) = 0}

its nodal set. The connected components of the complement S2 \Z(g) are called
nodal domains of g. The following (deterministic) facts are special cases of well-
known results valid for Laplace eigenfunctions on smooth Riemannian surfaces:

Theorem 5.1. There is a positive numerical constants C such that for each
g ∈ Hn, the nodal set Z(g) is a Cn−1-net on S

2.

Theorem 5.2. There is a positive numerical constant c > 0 such that for each
g ∈ Hn, every nodal domain of g contains a disk of radius cn−1.

Together with Figure 3, this gives a very rough idea of how the nodal por-
traits of a spherical harmonic of large degree should look.

Figure 3. Nodal portrait of the Gaussian spherical harmonic of degree 40 (figure by
A. Barnett)

One can find more information about the geometry and the topology of
the nodal portraits of spherical harmonics (and more generally, of high-energy
Laplace eigenfunctions on smooth Riemannian surfaces) in the pioneering
works of Donnelly and Fefferman [12, 13, 14], as well as in the more recent
works of Eremenko, Jackobson, and Nadirashvili [16], Mangoubi [29], Nazarov,
Polterovich and Sodin [31], and Zelditch [55]. Still, our understanding of nodal
portraits is rather restricted, and, in our opinion, this classical area of analysis
is very much underdeveloped.

5.1. Length of the nodal set. The basic characteristics of the nodal
set of a spherical harmonic g are its length L(g) and the number N(g) of
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connected components (which is one less than the number of nodal domains).
Useful classical integral formulas for the length due to Poincaré and to Kac and
Rice make the length a somewhat easier object for a study. For instance, one
can prove

Theorem 5.3. There exists a positive numerical constant C such that for each
g ∈ Hn, C

−1n ≤ L(g) ≤ Cn

This is a special case of a more general result valid for Laplace eigenfunctions
corresponding to large eigenvalues (with n replaced by

√
λ). The lower bound

is valid for any smooth Riemannian surface (this is a result of Brüning [10]),
while the upper bound was proven by Donnelly and Fefferman [12] for real-
analytic surfaces. In the smooth category, it was conjectured by S. T. Yau, and
still remains open in spite of many efforts. Note that one can easily deduce
the upper bound in Theorem 5.3 from the fact that spherical harmonics are
restrictions of polynomials (that is, without using the deep result of Donnelly
and Fefferman).

For the Gaussian spherical harmonic, Bérard showed in [2] that

Theorem 5.4. EL(fn) = π
√
2λn =

√
2πn+O(1).

The question about the variance is more delicate. Recently, Wigman [53]
confirmed a guess made by M. V. Berry [4] in a slightly different context:

Theorem 5.5. For n→ ∞,

variance of L(fn) =
65

32
log n+O(1) .

The proof of this theorem is based on a very careful analysis of asymptotic
cancelations that appear in the Kac-Rice integral representation of the variance
of L(fn).

5.2. The number of connected components. There are few clas-
sical facts about the number of components N(g). The celebrated Courant
nodal domain theorem yields

Theorem 5.6. For every g ∈ Hn, N(g) ≤ n2.

For large n, this upper bound was improved by Pleijel [41] to 0.69n2. Appar-
ently, the sharp asymptotic upper bound is not known yet. Simple examples
show that it cannot be less than ( 12 + o(1))n2. H. Lewy [26] gave an elegant
construction of spherical harmonics of any degree n whose nodal sets have one
component for odd n and two components for even n, which proves that no
non-trivial lower bound for N(g) is possible.

Till recently, nothing had been known about the asymptotic properties of
the random variable N(fn) when the degree n is large. The principal difficulty
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is its non-locality: observing the nodal curves only locally, one cannot make any
definite conclusion about the number of connected components. Several years
ago Blum, Gnutzmann, and Smilansky [6] raised a question about the distribu-
tion of the number of nodal domains of high-energy Laplace eigenfunctions. In
the ergodic case, in accordance with Berry’s heuristic principle, they suggested
to find this distribution for Gaussian random plane waves and performed the
corresponding numerics. To compute this distribution, Bogomolny and Schmit
proposed in [8] an elegant percolation-like lattice model for description of nodal
domains of random Gaussian plane waves. This model completely ignores the
(quite big) correlations between the values of the random function fn at differ-
ent points but nevertheless agrees with numerics pretty well. This agreement
is probably due to some hidden ‘universality law’ rather then the possibility to
directly reduce one model to another.

5.3. Bogomolny-Schmit percolation-like model.
The Bogomolny-Schmit hypothesis is that the distribution of nodal domains
N(fn) is roughly the same as in the following critical percolation model. Con-

sider the square lattice with the total number of sites equal to
(
EL(fn)

)2
, that

is proportional to n2, and change at each site the line crossing to one of the
two equiprobable avoided crossing, as shown in the following figure. At different

+

−

−

+ −

+−

− +

−+

+

Figure 4. Avoided nodal crossings in the Bogomolny-Schmit model

sites, the changes are independent.
Then Bogomolny and Schmit introduce two dual square lattices: the ‘blue

one’ with vertices at the cells of the grid where the function is positive, and the
‘red one’ with vertices at the cells of the grid where the function is negative.
Each realization of the random process generates two graphs, the blue one whose
vertices are the blue lattice points and the red one whose vertices are the red
lattice points. Two vertices are connected by an edge if the corresponding cells
of the grid belong to the same nodal domain of the random function. Each of
these graphs uniquely determines the whole picture, so it suffices to consider
only one of them, and each of them represents the critical bond percolation
on the corresponding square lattice. Then using some heuristics coming from
statistical mechanics, Bogomolny and Schmit predicted that for n→ ∞,

EN(fn) = (a+ o(1))n2,
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Figure 5. Bond percolation on the ‘blue’ lattice

and
variance of N(fn) = (b+ o(1))n2,

with explicitly computed positive numerical constants a and b. They also argued
that the fluctuations of the random variable N(fn) are asymptotically Gaussian
when n → ∞, and concluded their work with a remarkable prediction of the
power distribution law for the areas of nodal domains, based on the percolation
theory.

It would be interesting to test numerically whether the Bogomolny-Schmit
model persists for random linear combinations of plane waves eik·x with different
wave numbers k.

5.4. Rigorous results. Recently, we showed in [32] that, in accordance
with one of the Bogomolny and Schmit predictions, EN(f)/n2 tends to a posi-
tive limit when n→ ∞, though our proof does not provide us with an explicit
value of the limit a, so we cannot juxtapose it with the one predicted by Bogo-
molny and Schmit. In addition, we proved that the random variable N(f)/n2

concentrates around this limit exponentially. Since for any spherical harmonic
g ∈ H, the total length of its nodal set Z(g) does not exceed Constn, our result
yields that, for a typical spherical harmonic, most of its nodal domains have
diameters comparable to 1/n.

Theorem 5.7 (Number of nodal domains). There exists a constant a > 0 such
that, for every ε > 0, we have

P
{∣∣∣∣
N(fn)

n2
− a

∣∣∣∣ > ε

}
≤ C(ε)e−c(ε)n

where c(ε) and C(ε) are some positive constants depending on ε only.

The exponential decay in n in Theorem 5.7 cannot be improved: we showed
that given a positive and arbitrarily small κ,

P
{
N(fn) < κn2

}
≥ e−C(κ)n .

On the other hand, our proof of Theorem 5.7 gives a very small value c(ε) ' ε15

and it would be nice to reduce the power 15 of ε to something more reasonable.
The question about the variance of N(fn) remains open.
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The last but not least remark is that the proof of Theorem 5.7 uses only
relatively simple tools from the classical analysis, which we believe may work
in a more general setting of random functions of several real variables (and
for higher Betti numbers), while it seems that the Bogomolny-Schmit model is
essentially a two-dimensional one.

5.5. Related work. We are aware of several encouraging attempts to
tackle similar questions in different contexts. In [49] (motivated by some engi-
neering problems), Swerling estimated from below and from above the mean
number of connected components of the level lines Z(t, f) = {f = t} of a ran-
dom Gaussian trigonometric polynomial f of two variables of a given degree
n. His method is based on estimates of the integral curvature of the level line
Z(t, f). The estimates are rather good when the level t is separated from zero,
but as t → 0 they are getting worse and, unfortunately, give nothing when
t = 0.

In the paper [28], Malevich considered C2-smooth Gaussian random func-
tions f on R

2 with positive covariance function that decays polynomially as the
distance between the points tends to infinity. She proved that for T ≥ T0,

C−1T 2 ≤ EN(T ) ≤ CT 2 ,

where N(T ) is the number of the connected components of the zero set of f
that are contained in the square [0, T ] × [0, T ], and C is a positive numerical
constant. Her proof relies heavily on the positivity property of the covariance
function that does not hold for Gaussian spherical harmonics or for Gaussian
trigonometric polynomials.

In the recent paper [30], Mischaikow and Wanner studied the following
question. Suppose f is a random smooth function on the square [0, 1]2 with
periodic boundary conditions and that the signs of f are computed at the
vertices of the grid with mesh δ. How small must δ be (in terms of the a
priori smoothness constants of f) in order to recover the Betti numbers of the
sets {f > 0} and {f < 0} with probability close to one ? In particular, they
show that for random trigonometric polynomials of two variables of degree N ,
it suffices to take δ = cN−2 where c is a sufficiently small positive numerical
constant. It is possible that their bounds can be significantly improved if instead
of recovering the exact values of the Betti numbers one tries to recover them
with a small relative error.

6. The Sketch of the Proof of the Theorem on
the Number of Nodal Domains

Here, we will describe the main ideas behind the proof of Theorem 5.7. All the
details can be found in [32].
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6.1. The lower bound EN(fn) ≥ cn2. This is the simplest part of
the story. Denote by d(., .) the spherical distance. Given a point x ∈ S

2 and a
large positive constant C, we consider the event

Ωx =
{
fn(x) > C, and fn(y) < −C for all y satisfying d(x, y) =

ρ

n

}
,

where ρ is a constant whose value will be specified below. Clearly, if the event
Ωx occurs, then the disk of radius ρ/n centered at x contains a closed nodal
line of fn. We claim that

P(Ωx) ≥ c > 0 ,

where c is a positive constant. The reason is rather straightforward: for every
point x ∈ S

2, there exists a function bx ∈ Hn with ‖bx‖ = 1 such that

bx(x) > c0
√
n and bx(y) < −c0

√
n whenever d(x, y) =

ρ

n
.

One can take as bx the zonal spherical harmonic with “pole” x. Then we can
represent fn in the form

fn = ξ0bx + fx

where ξ0 is a Gaussian random variable with Eξ20 = 1
2n+1 , and fx is a Gaussian

spherical harmonic with E‖fx‖2 = 2n
2n+1 independent of ξ0, and check that with

positive probability, the ‘perturbation’ fx cannot destroy a short nodal curve
around point x provided by the function bx.

It remains to pack the sphere S
2 by ' n2 disjoint disks of radius 2ρ/n.

With a positive probability, each of these disks contains a closed nodal line of
fn. Whence, the lower bound for EN(fn).

6.2. Levy’s concentration of measure principle. To establish
the exponential concentration of the random variable N(fn) around its median,
we would like to use a version of classical Levy’s concentration of measure
principle.

Given a set K, we denote by K+ρ the ρ-neighbourhood of K. We apply this
notation to subsets of Hn and the L2-distance, to subsets of S2 and the usual
spherical distance, and also to subsets of Rd with the Euclidean distance. The
following Gaussian isoperimetric theorem is due to Sudakov and Tsirelson [45]
and Borell [7]:

Theorem 6.1. Let γd be the standard Gaussian measure on R
d. Let Σ ⊂ R

d

be a Borel set, and Π be an affine half-space such that

γd(Σ) = γd(Π) .

Then for each t > 0,

γd(Σ+ρ) ≥ γd(Π+ρ) .
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A simple computation shows that if γd(Π+ρ) is not too close to 1, then
γd(Π) must be exponentially small in d, like exp[−cρ2d]. Applying this to the
2n+ 1-dimensional space Hn of spherical harmonics of degree n, we get

Corollary 6.1 (Concentration of Gaussian measure on Hn). Let G⊂Hn be
any measurable set of spherical harmonics. Suppose that the set G+ρ satisfies

P(G+ρ) <
3
4 . Then P(G) ≤ 2e−cρ2n.

To use the concentration of measure principle, we need to show that the
number N(f) doesn’t change too much under slight perturbations of f in the
L2(S2)-norm. Certainly, this is not true for all f ∈ Hn, but we will show
that the “unstable” spherical harmonics f ∈ Hn for which small perturbations
can lead to a drastic decrease in the number of nodal lines are exponentially
rare. Here is a key lemma which is probably the most novel part of the whole
story:

Lemma 6.1 (Uniform lower semi-continuity of N(fn)/n
2). For every ε > 0,

there exist ρ > 0 and an exceptional set E ⊂ Hn of probability P(E) ≤
C(ε)e−c(ε)n such that for all f ∈ Hn \E and for all g ∈ Hn satisfying ‖g‖ ≤ ρ,
we have

N(f + g) ≥ N(f)− εn2 .

The uniform lower semi-continuity lemma readily yields the exponential con-
centration of the random variable N(fn)/n

2 near its median an. First, consider
the set

G =
{
f ∈ Hn : N(f) > (an + ε)n2

}
.

Then for f ∈ (G\E)+ρ, we haveN(f) > ann
2, and therefore, P

(
(G\E)+ρ

)
≤ 1

2 .

Hence, by the concentration of Gaussian measure, P(G \ E) ≤ 2e−cρ2n, and
finally,

P(G) ≤ P(G \ E) + P(E) ≤ 2e−cρ2n + C(ε)e−c(ε)n ≤ C(ε)e−c(ε)n .

Now, we turn to the set

F =
{
f ∈ Hn : Nf < (an − ε)n2

}
.

Then

F+ρ ⊂
{
f ∈ Hn : Nf < ann

2
}
∪ E ,

so that

P(F+ρ) ≤
1

2
+ C(ε)e−c(ε)n <

3

4

for large n, and it follows that P(F ) ≤ 2e−cρ2n.
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6.3. The uniform lower continuity of the functional f 7→
N(f) outside of an exceptional set. Here we explain how we prove
Lemma 6.1.

6.3.1. Exceptional spherical harmonics E with unstable nodal por-

traits. Instability of the nodal portrait of a spherical harmonic f ∈ Hn under
small perturbations is caused by points where f and ∇f are simultaneously
small. Let α and δ be small positive parameters, and let R be a large positive
parameter (all of them will depend on ε from Lemma 6.1). Cover the sphere
S
2 by ' R−2n2 disks Dj of radius R/n in such a way that the concentric disks

4Dj with 4 times larger radius cover the sphere with a bounded multiplicity. We
call the disk Dj stable if for each x ∈ 3Dj either |f(x)| ≥ α or |∇f(x)| ≥ αn.
Otherwise, the disk Dj is unstable. We call the spherical harmonic f ∈ Hn

exceptional if the number of unstable disks is at least δn2, and denote by E the
set of all exceptional spherical harmonics of degree n.

Lemma 6.2. Given δ > 0, there exist positive C(δ) and c(δ) such that

P(E) ≤ C(δ)e−c(δ)n

provided that the constant α is sufficiently small.

Curiously, the proof of this lemma uses the concentration of measure principle
again. It also uses the fact that given x ∈ S

2, the Gaussian random variable
f(x) and the Gaussian random vector ∇f(x) are independent.

6.3.2. Identification of unstable connected components. It remains to
show that at most εn2 nodal components of a stable spherical harmonic can
disappear after perturbation of f by another spherical harmonic g ∈ Hn with
sufficiently small L2-norm. First, in several steps, we identify possibly ‘unstable’
connected components of the nodal set Z(f) that can disappear after perturba-
tion, show that their number is small compared to n2, and discard them. Then
we verify that all other connected components of Z(f) do not disappear after
the perturbation.

First, we discard the nodal components Γ whose diameter is bigger than R/n.
By the upper bound in the length estimate in Theorem 5.3, their number is
. CR−1n2 which is small compared to n2.

With each remaining component Γ of the nodal set Z(f) we associate a disk
Dj such that Dj ∩ Γ 6= ∅. Then Γ ⊂ 2Dj . Since each nodal domain contains a
disk of radius c/n (Theorem 5.2), the number of components Γ intersecting Dj

(and, thereby, contained in 2Dj) is bounded.

Second, we discard the components Γ with unstable disks Dj . Since f is not
exceptional, and since each disk Dj cannot intersect too many components
contained in 2Dj , the number of such components is also small compared to n2.
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At last, we discard the components Γ such that

max
3Dj

|g| ≥ α .

To estimate the number N of such disks, we denote by D∗
j ⊂ 4Dj the disk of

radius 1/n centered at the point yj where |g| attains its maximum in 3Dj . By
standard elliptic estimates,

∫

D∗

j

|g|2 & n−2|g(yj)| = α2n−2 ,

whence

ρ2 ≥ ‖g‖L2(S2) & Nα2n−2 ,

that is, N . ρ2α−2n2. As above, we conclude that the number of components Γ
affected by this is . R2N . R2ρ2α−2n2 which is much less than εn2 provided
that ρ2 is much less than εα2R−2.

6.3.3. Verification of stability of the remaining connected compo-

nents. Now, we claim that the remaining components Γ cannot be affected by
the perturbation of f by g. To see this, we consider the connected component
AΓ(t) of the set {|f | < t} that contains Γ, and look what may happen with this
component when t grows from 0 to α.

• As long as AΓ(t) stays away from the boundary ∂(3Dj), it cannot merge
with another component of {|f | < t} because such a merge can occur only
at a critical point of f and there are none of them in AΓ(t) ∩ 3Dj .

• For the same reason, neither of the two boundary curves of AΓ(t) can
collapse and disappear.

• At last, AΓ(t) cannot reach ∂(3Dj) before it merges with some other
component: indeed, if x ∈ AΓ(t) and AΓ(t) lies at a positive distance
from the boundary ∂(3Dj) then we can go from x in the direction of ∇f if
f(x) < 0 and in the direction of−∇f if f(x) > 0. In any case, since |∇f | >
αn in AΓ(t), we shall reach the zero set Z(f) after going the length 1/n
or less. Since Γ is the only component of Z(f) in AΓ(t) before any merges,
we conclude that AΓ(t) ⊂ Γ+1/n. Recalling that dist (Γ, ∂(3Dj) ) > R/n,
we see that, for each t ≤ α, AΓ(t) stays away from the boundary ∂(3Dj).

Thus, each component Γ lies in a topological annulus AΓ = AΓ(α) which
is contained with its boundary in the open disk 3Dj and such that f = +α in
one boundary curve of AΓ and f = −α on the other. Recalling that |g| < α in
3Dj , we conclude that Z(f + g) has at least one connected component in AΓ.
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6.4. Existence of the limit of EN(fn)/n
2 . We already know

that EN(fn) & n2 and that N(fn)/n
2 concentrates near its median exponen-

tially. Thus, to finish the proof of Theorem 5.7, it remains to show that the
sequence

{
EN(fn)/n

2
}
converges. We deduce this from the fact that the Gaus-

sian spherical harmonic has a scaling limit combined with rotation invariance
of the distribution of fn. Since this part does not require any new ideas be-
yond the ones we’ve already introduced, we just refer the reader to [32] for the
details.

6.5. Comments and questions. Making use of a non-critical version
of their percolation model, Bogomolny and Schmit obtained in [9] a series of
predictions for the behaviour of the components of level sets which agree with
numerics. In a stark contrast, we do not have a rigorous answer even to the
following most basic question:

Question 6.1. Prove that for each ε> 0 and each η > 0, the probability that
the level set

{
x ∈ S

2 : fn(x) > ε
}

has a component of diameter larger than η
tends to zero as n→ ∞.

One of the reasons for our ignorance is the aforementioned non-locality of
the number of connected components. Another essential difficulty is a very
slow decay of the correlations which does not allow us to think of restrictions
of our process to a collection of well-separated disks as of almost independent
processes.

Question 6.2. Estimate the mean number of large components of the nodal set
whose diameter is much bigger than 1/n. For instance, of those whose diameter
is comparable to n−α with 0 < α < 1.

Nothing is known about the number of connected components of the nodal
set for ‘randomly chosen’ high-energy Laplace eigenfunction fλ on an arbitrary
compact surface M without boundary endowed with a smooth Riemannian
metric g. It is tempting to expect that Theorem 5.7 models what is happening
when M is the two-dimensional sphere S

2 endowed with a generic Riemannian
metric g that is sufficiently close (with several derivatives) to the constant one.

Instead of perturbing the ‘round metric’ on the sphere S
2, one can add a

small potential V to the Laplacian on the sphere. The question remains just as
hard.
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Bony-Sjöstrand-Meyer seminar, 1984–1985, Exp. No. 14 , 10 pp., École Poly-
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Abstract

A central question in Potential Theory is the extent to which the geometry of
a domain influences the boundary regularity of solutions to divergence form
elliptic operators. To answer this question one studies the properties of the cor-
responding elliptic measure. On the other hand one of the central questions in
Geometric Measure Theory (GMT) is the extent to which the regularity of a
measure determines the geometry of its support. The goal of this paper is to
present a few instances in which techniques from GMT and Harmonic Anal-
ysis come together to produce new results in both of these areas. In particu-
lar, the work described in section 3 makes it clear that for this type of prob-
lems in higher dimensions, GMT is the right alternative to complex analysis in
dimension 2.
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1. Introduction

A central theme in potential theory is understanding the properties of solutions
to divergence form elliptic operators. On regular domains one can associate to
such operators a family of probability measures indexed by the points in the
domain. All the measures in this family are mutually continuous (in fact they
are A∞ weights with respect to each other). We refer to any one of them as
the elliptic measure. To address the question of boundary regularity of the
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solutions to these operators one studies the properties of the corresponding
elliptic measure. The introduction of techniques from geometric measure theory
has enabled us to deepen our understanding of the subject in two different
directions. On the one hand we have begun to understand the properties of the
elliptic measure on rough domains. On the other hand we have studied to extent
to which the regularity of the harmonic measure (that is the elliptic measure
associated to the Laplacian) determines the geometry of the boundary of a
domain. The underlying trend is that there is a strong relationship between the
regularity properties of the elliptic measure and the geometry of the domain.
Roughly, the geometry of the domain determines the doubling properties of
the elliptic measure as well as its behavior with respect to the surface measure
of the boundary in the cases where this notion makes sense, and vice versa.
While the two problems above are very different in nature, they share common
features. The key to this work is the interplay between harmonic analysis and
geometric measure theory.

An important initial contribution of GMT to the calculus of variations and
geometric analysis was the introduction of large classes of geometric objects
(e.g. sets of locally finite perimeter, rectifiable sets (see [EG])) regular enough
to be admissible candidates in minimizations problems but without any, a pri-
ori, classical smoothness properties. Quantified versions of these notions (see
[DS]) allow us to introduce new classes of domains on which the boundary regu-
larity of solutions to divergence form elliptic operators can be well understood.
With the appropriate notion of convergence, these domains appear naturally
as limits of smooth domains. The first results in this direction concerned the
doubling properties of the harmonic measure and the regularity of the Poisson
kernel (i.e. the Radon-Nikodym derivative of harmonic measure with respect to
surface measure to the boundary) on rough domains, see [JK], [S1], [DJ], [KT1],
[HMT]. The results presented in section 2 include recent work on the regularity
properties of the elliptic measure corresponding to operators which are pertur-
bations of the Laplacian on rough domains. The crucial idea behind this work
is that when looked at with the right lens from harmonic analysis, chord arc
domains (see the definition in section 2) have many features in common with
the half space.

The converse problem addresses the question of whether the properties of
the harmonic measure determine the geometry of the domain. In the plane this
problem as been studied extensively (see section 3 for a brief summary). In
higher dimensions this problem was initially studied as a free boundary reg-
ularity problem for the harmonic measure and the Poisson kernel (see [KT2],
[KT3]). Recently combining a monotonicity inequality from free boundary regu-
larity problems ([ACF]) and the machinery of tangent measures from geometric
measure theory ([P]) we give a full description of the boundary of a domain in
terms of the harmonic measure (see section 3, [KPT]). GMT accomplishes in
higher dimensions what complex analysis did in the plane.
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2. Regularity of Elliptic Measure on Rough

Domains

The Dirichlet problem addresses the following question: given a bounded do-
main Ω ⊂ R

n and a function f ∈ C(∂Ω) does there exists u satisfying
{

Lu = div (A(X)∇u) = 0 in Ω
u = f on ∂Ω ?

(1)

Here A(X) = (aij(X)) is a symmetric measurable matrix such that for all
X ∈ Ω and ξ ∈ R

n, λ|ξ|2 ≤
∑n

i,j=1 aij(X)ξiξj ≤ Λ|ξ|2, i.e. L is strongly
elliptic.

The domain Ω is regular for L, if for all f ∈ C(∂Ω), there exists uf = u ∈
C(Ω) satisfying (1). Moreover Ω is regular for L if and only if it is regular for the
Laplacian ∆ (i.e. when A is the identity matrix). If Ω is regular the maximum
principle and the Riesz representation theorem ensure that there is a family of
probability measures {ωX

L }X∈Ω such that

u(X) =

∫

∂Ω

f(Q)dωX
L (Q),

ωX
L is called the L−elliptic measure of Ω with pole X. Jerison and Kenig intro-

duced a special class of regular domains, the non-tangentially accessible (NTA)
domains (see [JK]). They proved that on NTA domains the elliptic measure is
doubling and that the non-tangential limit of the solution of (1) at the bound-
ary exists and coincides with f ωL a.e.. Quasispheres (i.e. images of the unit
ball by quasi-conformal transformations of Euclidean space) and Lipschitz do-
mains are both examples of NTA domains. In the case that Ω is a Lipschitz
domain (i.e. it can be locally represented a the region above the graph of a
Lipschitz function) a natural question arises: what is the relationship between
ωL and the surface measure of ∂Ω, σ = Hn−1 ∂Ω? Here Hn−1 denotes the
(n − 1)-dimensional Hausdorff measure. This question also makes sense in a
larger class of domains, that of chord arc domains (see also SKT domains in
[HMT]). A chord arc domain (CAD) is an NTA domain whose surface measure
at the boundary is Ahlfors regular, i.e. there exists C > 1 such that for all
Q ∈ ∂Ω and r ∈ (0, diamΩ)

C−1rn−1 ≤ σ(B(Q, r)) ≤ Crn−1. (2)

The best such C is called the Ahlfors regularity constant of σ.
We address the following question. Let Ω be a CAD, L an operator as

above and u the solution of (1). Given 1 < p < ∞ is the non-tangential maximal
function of u bounded in Lp(σ)? Namely we are interested in the (D)p problem,
i.e. given f ∈ C(∂Ω) and u satisfying

{
Lu = 0 in Ω
u = f on ∂Ω
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does there exist C > 0 depending only on the geometry of the domain, the
Ahlfors regularity constant of σ and the ellipticity constants of L such that
following bound hold?

‖N(u)‖Lp(σ) ≤ C‖f‖Lp(σ), (3)

where the non-tangential maximal function of u is defined for Q ∈ ∂Ω by

N(u)(Q) = sup
X∈Γ(Q)

|u(X)|

Γ(Q) = {X ∈ Ω : |X −Q| < 2δ(X)} and δ(X) = dist (X, ∂Ω). (4)

This PDE question has an equivalent formulation in harmonic analysis, by
means of the theory of weights. In fact (3) holds if and only if the elliptic
measure of L, ωL and σ are mutually absolutely continuous and the Radon-
Nikodym derivative kL = dωL

dσ satisfies the reverse Hölder inequality:

(
1

σ(∆(Q, r))

∫

∆(Q,r)

kqL dσ

) 1

q

≤ C
1

σ(∆(Q, r))

∫

∆(Q,r)

kL dσ, (5)

where 1
p + 1

q = 1, ∆(Q, r) = B(Q, r) ∩ ∂Ω, Q ∈ ∂Ω and r ∈ (0, diamΩ). If (5)

holds we say that ωL ∈ Bq(σ).
We briefly recall the history of the (D)p problem. Dahlberg’s pioneering

work established that for the Laplacian, i.e. L = ∆, the harmonic measure
ω∆ = ω satisfies ω ∈ B2(σ), thus (D)2 holds for all Lipschitz domains [D1].
By contrast if Ω is a CAD there exists q ∈ (1,∞) so that ω ∈ Bq(σ), but such
q is not uniform across the class of chord arc domains (see [DJ] and [S1]). It
was shown in [CFK], and independently in [MM], that there are operators L
for which ωL and σ are mutually singular, hence neither (3) nor (5) hold. Thus
one of the main questions in this area is to find sharp conditions that ensure
that (3) and (5) are satisfied.

Suppose that we have two operators L0 and L1, whose respective coefficient
matrices A0 and A1 coincide on a neighborhood of ∂Ω. Then if (D)p holds
for L0 it also holds for L1. This is a consequence of the properties of non-
negative harmonic functions on NTA domains. Thus (D)p is a property that
only depends on the behavior of the coefficients of L near ∂Ω. Therefore we are
lead to consider the following notion: we say that L1 is a perturbation of L0 if
there exists a constant C > 0 such that the deviation function

a(X) = sup{|A1(Y )−A0(Y )| : Y ∈ B(X, δ(X)/2)} (6)

satisfies
sup

0<r<diamΩ,Q∈∂Ω
h(Q, r) ≤ C, (7)

where

h(Q, r) =

(
1

σ(∆(Q, r))

∫

T (∆(Q,r))

a2(X)

δ(X)
dX

)1/2

, (8)
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i.e. a2(X)
δ(X) dX is a Carleson measure. Here T (∆(Q, r)) = B(Q, r) ∩ Ω is the

Carleson region associated to the surface ball ∆(Q, r). Note that if (7) holds
then L1 = L0 on ∂Ω. We include below some of the most remarkable results
in this direction. In the sequel we assume that 0 ∈ Ω and we denote by ωi the
Li-elliptic measure in Ω with pole 0.

Theorem 2.1. [D2] Let Ω = B(0, 1). If L0 = ∆, and limr→0 sup|Q|=1 h(Q, r) =
0, then ω1 ∈ Bq(σ) for all q > 1.

In [F], Fefferman removed the smallness condition of h(Q, r) above by defin-
ing an appropriate quantity A(a)(Q). Recall that A∞(σ) = ∪q>1Bq(σ).

Theorem 2.2. [F] Let Ω = B(0, 1), L0 = ∆, Γ(Q) be as in (4), and A(a)(Q) =

(
∫
Γ(Q)

a2(X)
δ(X)n dX)1/2. If A(a) ∈ L∞(σ) then ω1 ∈ A∞(σ).

Theorem 2.3. [FKP] Let Ω be a Lipschitz domain. Let L1 be such that (7)
holds then ω1 ∈ A∞(dσ) whenever ω0 ∈ A∞(dσ).

Theorem 2.4. [FKP] Let Ω be a Lipschitz domain. Let G0 denote the Green
function for L0 in Ω with pole at 0 ∈ Ω. There exists an ε0 > 0, such that if

sup
∆⊆∂Ω

(
1

ω0(∆)

∫

T (∆)

a2(X)
G0(X)

δ2(X)
dX

)1/2

≤ ε0, (9)

then ω1 ∈ B2(ω0).

Theorems 2.1 and 2.2 are proved using Dahlberg’s idea of introducing a
differential inequality to estimate the Bq norm for a family of elliptic measures.
Theorem 2.3 was proved by a direct method which used Theorem 2.4. Theorem
2.4 relied on techniques from harmonic analysis.The basic approach was to
look at the solution of (1) for L1 as a perturbation of the solution of (1) for
L0 and estimate the error term using the duality properties of the tent spaces
introduced in [CMS].Tent spaces were initially defined as special subspaces
of functions on the half space. The geometry of a Lipschitz domain and the
properties of the surface measure of its boundary allow the notion of tent space
to be extended to this class of domains. Let Ω ⊂ R

n be a Lipschitz domain, for
1 ≤ p ≤ ∞ the tent space T p is defined by

T p =
{
f ∈ L2(Ω) : A(f) ∈ Lp(σ)

}
(10)

where

A(f)(Q) =

(∫

Γ(Q)

f2(X)

δ(X)n
dX

)1/2

, (11)

and

T ∞ =
{
f ∈ L2(Ω) : C(f) ∈ L∞(σ)

}
(12)
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where

C(f)(Q) = sup
Q∈∆

(
1

σ(∆)

∫

T (∆)

f2(X)

δ(X)
dX

)1/2

. (13)

As mentioned above the proof of Theorem 2.4 relies on the duality of tent
spaces which is expressed as T q is the dual of T p where 1

p + 1
q = 1 for

1 ≤ p ≤ ∞; the Lp(σ) equivalence of C(f) and A(f) for 2 < p < ∞, i.e.
‖C(f)‖Lp(σ) ∼ ‖A(f)‖Lp(σ); and the properties of non-negative solutions to (1)
on Lipschitz domains. A careful look at the proof shows that, from the PDE
point of view, only the properties of non-negative solutions to (1) on NTA do-
mains are used. The proof of the two other properties appears to depend heavily
on the geometry of the domain, in particular, on the fact that locally, truncated
cones of a given direction and a given aperture with vertex at the boundary lie
inside the domain. On the other hand the definitions in (10) and (12) as well
as condition (9) make sense when Ω is a CAD. In recent work with Milakis
and Pipher we prove that both the duality statement and the equivalence C(f)
and A(f) in Lp(σ) for 2 < p < ∞ hold on chord arc domains. Furthermore we
prove that theorems 2.3 and 2.4 also hold on chord arc domains. A thorough
understanding of the geometry of these domains is required to accomplish this.

Theorem 2.5. [MPT] Let Ω be a CAD, there exists ε0 > 0 such that if (9)
holds then ω1 ∈ B2(ω0).

Corollary 2.1. [MPT] Let Ω be a CAD, there exists ε > 0 such that if
supQ∈∂Ω, r>0 h(Q, r) < ε then ω1 ∈ A∞(σ) whenever ω0 ∈ A∞(σ).

The following three questions, which were motivated by the results above,
are currently under investigation.

• Let Ω be a CAD. Suppose that supQ∈∂Ω supr>0 h(Q, r) < ∞. Does ω0 ∈
A∞(σ) imply that ω1 ∈ A∞(σ)?

• Let Ω be a CAD. Suppose that limr→0 supQ∈∂Ω h(Q, r) = 0. If log k0 ∈

VMO(σ) does log k1 ∈ VMO(σ) where kj =
dωj

dσ ?

This question is motivated by the corresponding result on Lipschitz do-
mains proved in [E] using the Dalhberg’s differential inequality idea. In
particular it is known that if Ω is a CAD whose unit normal is in VMO(σ)
then log k0 ∈ VMO(σ) for L0 = ∆ (see [KT1]).

• Let Ω be a CAD. Is the solvability of an endpoint BMO Dirichlet problem
for a strongly elliptic operator L equivalent to ωL ∈ A∞(σ)?

This question is motivated by recent work in [DKP], where the corre-
sponding result for Lipschitz domains was established.

The proof of theorems 2.1 and 2.2 rely to some extent on the ability to
approximate Lipschitz domains by smooth interior domains in such a way that
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the surface measure and the unit normal to the boundary of the original domain
are the limits of the surface measures and the unit normals of the approximating
domains. Such an approximation is not known to exist for chord arc domains,
which raises an interesting question.

Question 2.1. Let Ω be a CAD. Does there exist a family of smooth domains
{Ωm}m such that Ωm ⊂ Ω is CAD with constants that only depend on the NTA
and Ahlfors regularity constants of Ω, and χΩm

→ χΩ in BVloc?

We turn our attention to the Neumann and regularity problems on CAD,
which is an area that has not been explored yet (see [KP] for the corresponding
results on Lipschitz domains).

We say that the regularity problem for L with data in W 1,p(σ) is solvable
(i.e. (R)p holds) if given f ∈ C(∂Ω) ∩W 1,p(σ) the corresponding u satisfying

{
Lu = 0 in Ω
u = f on ∂Ω

verifies
‖Ñ(∇u)‖Lp(σ) ≤ C‖f‖W 1,p(σ), (14)

where C > 0 depends only on the geometry of the domain, the Ahlfors regularity
constant of σ and the ellipticity constants of L. Ñ is a modified non-tangential
maximal function, introduced to overcome the fact that ∇u 6∈ L∞

loc in general.
It is defined by

Ñ(F )(Q) = sup
X∈Γ(Q)

(
��

∫∫

B(X,δ(X)/2)

F 2(Z)dZ

)1/2

. (15)

We say that the Neumann problem for L with data in Lp(σ) is solvable (i.e.
(N)p holds) if given f ∈ L2(σ) ∩ Lp(σ) with

∫
∂Ω

f dσ = 0 the corresponding u
satisfying {

Lu = 0 in Ω
A∇u · −→n = f on ∂Ω

verifies
‖Ñ(∇u)‖Lp(σ) ≤ C‖f‖Lp(σ), (16)

where C > 0 depends only on the geometry of the domain, the Ahlfors regularity
constant of σ and the ellipticity constants of L. Here −→n (Q) denotes the inward
unit normal to ∂Ω.

Question 2.2. Let Ω be a CAD. Does (R)p hold for the Laplacian for some
p > 1? Does (N)p hold for the Laplacian for some p > 1?

In [HMT] it was proved that, for the Laplacian, given p > 1 there exits
ε > 0 such that if Ω is a CAD and −→n ∈ BMO(σ) with ‖−→n ‖BMO(σ) < ε then
(R)p and (N)p hold. Locally the boundary of this type of domains can be
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represented as the graph of a Lipschitz function with small constant union a
set of very small measure (see [S2]). The proof in [HMT] depends heavily on
this structure which is not shared by general CAD.

Two central questions in this area are:

Question 2.3. Let Ω be a CAD. Suppose that supQ∈∂Ω supr>0 h(Q, r) < ∞.
If (R)q0 holds for L0 for some q0 > 0, does (R)q1 also hold for L1 for some
q1 > 0?

Question 2.4. Let Ω be a CAD. Suppose that limr→0 supQ∈∂Ω h(Q, r) = 0. If
(R)q and (N)q hold for L0 for some q > 0 do (R)q and (N)q also hold for L1?

3. Boundary Structure and Size Are

Determined by Harmonic Measure

As mentioned in the introduction this problem is to some extent the converse
of the one discussed above in the sense that the properties of the harmonic
measure determine the size of the boundary and the geometry of the domain.
Let us briefly describe some of the classical 2-dimensional results concerning
the Hausdorff dimension of the harmonic measure and the structure of the
boundary as determined by the harmonic measure. Recall that the Hausdorff
dimension of ω (denote by H− dimω) is defined by

H− dimω = inf {k : there exists E ⊂ ∂Ω with Hk(E) = 0 and (17)

ω(E ∩K) = ω(∂Ω ∩K) for all compact sets K ⊂ R
n}

Let Ω ⊂ R
2 be a regular domain, and let ω be the harmonic measure of Ω.

Carleson ([C]) and Jones & Wolff ([JW]) showed that H − dimω ≤ 1. If Ω is
simply connected, Makarov ([Mak]) proved Oskendal’s conjecture in dimension
2, i.e. H− dimω = 1.

Let Ω ⊂ R
2 be a Jordan domain (i.e. a simply connected domain bounded

by a Jordan curve). A combination of the works of Choi, Makarov, McMillan
and Pommerenke (see [GM] for references) shows that the boundary of Ω can
be decomposed as the union of a “good set” where ω and H1 are mutually
absolutely continuous, a set of harmonic measure 0 and a set of 1-Hausdorff
measure 0, i.e.

∂Ω = G∪S∪N where ω � H1 � ω in G, ω(N) = 0 and H1(S) = 0. (18)

T. Wolff [W] showed, by a deep example, that, for n ≥ 3, Oksendal’s con-
jecture (H − dimω = n − 1) fails. He constructed what we will call “Wolff
snowflakes”, domains in R

3; for which H − dimω > 2 and others for which
H − dimω < 2. In Wolff’s construction, the domains are 2-sided NTA (i.e. Ω
and int(Ωc) are both NTA) which should be understood as a weak regularity
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property. This plays an important role in his estimates. Whenever we refer to
a “Wolff snowflake,” we will mean a 2-sided NTA domain in R

n, for which
H − dimω 6= n − 1. In [LVV], Lewis, Verchota and Vogel reexamined Wolff’s
construction and were able to produce “Wolff snowflakes” in R

n, n ≥ 3, for
which

H− dimω± > n− 1 or H− dimω± < n− 1. (19)

Here ω± denotes the harmonic measure of Ω±, where Ω+ = Ω and Ω− =
int(Ωc). They also observed, as a consequence of the monotonicity formula in
[ACF], that if

ω+ � ω− � ω+ then H− dimω± ≥ n− 1. (20)

Returning to the case of n = 2, when Ω is a Jordan domain, the work
of Bishop, Carleson, Garnett & Jones [BCGJ] combined with (18) yields the
following new decomposition in terms of ω+ and ω−

∂Ω = G∪S ∪N where ω+ � ω− � ω+ in G, ω±(N) = 0, ω+ ⊥ ω− on S
(21)

In [B], motivated by this last result, Bishop asked whether in the case of
R

n, n ≥ 3, if ω−, ω+ are mutually absolutely continuous on a set E ⊂ ∂Ω,
ω±(E) > 0, then ω± are also mutually absolutely continuous with respect to
Hn−1 on E (modulo a set of ω± measure zero) and hence dimH(E) = n−1. Here
dimH denotes the Hausdorff dimension. On the other hand, Lewis, Verchota and
Vogel [LVV] conjectured that there are “Wolff snowflakes” in R

n, n ≥ 3 with
H− dimω± > n− 1, for which ω+, ω− are not mutually singular.

In [KPT] we study these and related questions for domains Ω ⊂ R
n which

verify the weak regularity assumption of being 2-sided locally NTA (a condition
satisfied by the Wolff snowflakes constructed both by Wolff and Lewis, Verchota
& Vogel).

Theorem 3.1. [KPT] Let Ω ⊂ R
n be a 2-sided locally NTA domain. Then the

boundary of Ω can be decomposed as follows:

∂Ω = G∪S∪N where ω+ � ω− � ω+ in G, ω±(N) = 0, ω+ ⊥ ω− on S.
(22)

Moreover dimH G ≤ n−1, and if ω±(G) > 0 then dimH G = n−1. Furthermore
if Hn−1 ∂Ω is a Radon measure then G is (n− 1)-rectifiable.

The following theorem, which is a corollary of Theorem 3.1 proves that
there are no Wolff snowflakes for which ω+ and ω− are mutually absolutely
continuous, answering a question in [LVV].

Theorem 3.2. [KPT] Let Ω be a 2-sided locally NTA domain. Assume that
ω+ and ω− are mutually absolutely continuous, then

H− dimω+ = H− dimω− = n− 1. (23)
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The study of these questions requires three main ingredients:

1. Alt-Caffarelli-Friedman monotonicity formula: (see [ACF]) this
yields Beurling’s inequality in higher dimensions, i.e. given a compact
set K ⊂ R

n, for Q ∈ ∂Ω ∩K and r ∈ (0, RK) where RK > 0 depends on
K there exits a constant C > 0 depending on the NTA constants such
that

ω+(B(Q, r)) · ω−(B(Q, r)) ≤ Cr2(n−1).

2. Classification of the tangent measures to ω
±: this is possible by

means of a blow-up procedure compatible with the singularities of u±,
the corresponding Green’s functions associated to ω±. This procedure
simultaneously blows up the domains, their boundaries, the harmonic
measures and the corresponding Green’s functions in such a way that the
sub-sequential limits are the harmonic measures ω±

∞ and the correspond-
ing Green’s functions with pole at infinity u±

∞ of the blow-up domains
Ω±

∞ ([KT4]). This blow-up procedure has the additional property that it
lifts the singularities of ∇u± at the limit. A remarkable feature is that the
2-sided locally NTA assumption ensures that at points where ω+ and ω−

are mutually absolutely continuous and the Radon-Nikodym derivative of
ω− with respect to ω+ is well behaved, all blow-up limits u∞ = u+

∞−u−
∞

are harmonic polynomials.

3. Connectivity property of the cone of tangent measures to ω
±:

this resembles the one used by Preiss in his deep work concerning the
rectifiability of measures (see [P]). In our case, the connectivity is a con-
sequence of the fact that u∞ is a harmonic polynomial.

Recently Badger (see [Ba]) proved that when Ω is a 2-sided locally NTA do-
main with ω+ and ω− mutually absolutely continuous and the Radon-Nikodym
derivative of ω− with respect to ω+ is sufficiently regular, ∂Ω can be decom-
posed as a finite union of sets Γk such that all blow-ups of ∂Ω at points in Γk are
the zero set of a homogeneous harmonic polynomial of degree k. More precisely,
if Ω is a 2-sided locally NTA domain with ω+ and ω− mutually absolutely con-
tinuous and log f ∈ VMO(dω+) where f = dω−/dω+, then there exists d ∈ N

depending on the NTA constants of Ω such that ∂Ω = Γ1∪· · ·∪Γd. For Q ∈ Γk,
1 ≤ k ≤ d, all blow ups u∞ are homogeneous harmonic polynomials of degree
k. Furthermore ω±(∂Ω\Γ1) = 0.

Question 3.1. Regularity of the set of mutual absolute continuity for

ω
±.

In [B], Bishop asked whether in the case of Rn, n ≥ 3, if ω−, ω+ are mutually
absolutely continuous on a set E ⊂ ∂Ω and ω±(E) > 0, then ω± are mutually
absolutely continuous with respect to Hn−1 on E. In this case is E (n − 1)-
rectifiable?
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The work described above proves that if Ω is a 2-sided locally NTA domain
then dimH(E) = n− 1. It also answers Bishop’s question under the additional
assumption that Hn−1 ∂Ω is a Radon measure. In this case E is (n − 1)-
rectifiable. The general question is still open.

Question 3.2. Find a larger class of domains for which Theorem 3.1

holds.

One of the major questions in this area is whether the 2-sided locally NTA
assumption can be removed from the hypothesis of Theorem 3.1. In particular
it would be very interesting to know to what extent the decomposition theorem
holds for John domains (see [A]).
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1. Introduction

Orbit equivalence and measure equivalence theories deal with countable groups
Γ acting on standard measure spaces and with the associated orbit partitions of
the spaces. This is very much connected from its birth with operator algebras
[MvN36]; many of the recent progresses in both areas were made conjointly (see
[Pop07b, Vae07, Vae10]). It turns out to be also connected with geometric group
theory (see section 9 and [Fur09]), descriptive set theory (see [JKL02, KM04]),
percolation on graphs (see [LP09])... with fruitful cross-pollination.

There are many examples of mathematical domains where the orbit equiva-
lence or measured approach helps solving delicate questions involving countable
groups Γ. For instance, in connection with group `2-Betti numbers β(2)

n (Γ), this
was useful to attack:

– various vanishing results in [Gab02, ST07];

– the study of harmonic Dirichlet functions on percolation subgraphs
[Gab05b];

– the comparison between the uniform isoperimetric constant and β(2)

1 (Γ)
[LPV08];

∗Unité de Mathématiques Pures et Appliquées, Université de Lyon, CNRS, ENS Lyon,
69364 Lyon cedex 7, FRANCE. E-mail: damien.gaboriau@ens-lyon.fr.
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– problems of topological nature, related to the work of Gromov about the
minimal volume [Sau09].

In geometric group theory, the quasi-isometry invariance of various co-
homological properties for amenable groups [Sha04] was obtained that way.
Gaboriau-Lyons’ measurable solution to von Neumann’s problem [GL09] hap-
pens to be a way to extend results about groups containing a copy of the
free group F2 to every non-amenable group (see section 10). This was used by
[Eps08] and in Dixmier’s unitarizability problem [EM09, MO10].

The purpose of this survey is to describe some foundations of the theory
and some of its most recent developments. There are many aspects upon which
we shall inevitably not touch here, and many results are just alluded to, with
as far as possible the relevant bibliography.

There are several excellent books and surveys with various focuses on orbit
equivalence to which the reader is referred for further information, for instance
[KM04, Gab05a, Sha05, Pop07b, Fur09, Kec10].

2. Setting and Examples

The measure spaces X will always be assumed to be standard Borel spaces
and unless specified otherwise, the measure µ will be a non-atomic probability
measure. Measurably, (X,µ) is isomorphic to the interval ([0, 1],Leb) equipped
with the Lebesgue measure. Moreover, the actions Γyα(X,µ) we shall consider
will be by Borel automorphisms and probability measure preserving (p.m.p.),
i.e. ∀γ ∈ Γ, A ⊂ X: µ(γ.A) = µ(A) (we only consider Borel sets). Shortly,
α is a p.m.p. action of Γ. In this measured context, null sets are neglected.
Equality for instance is always understood almost everywhere. The action α is
(essentially) free if µ{x : γ.x = x} > 0 ⇒ γ = id. The action is ergodic if
the dynamics is indecomposable, i.e. whenever X admits a partition X = A∪cA
into invariant Borel subsets, then one of them is trivial, i.e. µ(A)µ(cA) = 0.

We now present a series of basic examples which shall already exhibit a rich
variety of phenomena.

Example 2.1. The action of Zn on the circle S
1 by rationally independent

rotations.

Example 2.2. The standard action SL(n,Z) y T
n on the n-torus R

n/Zn

with the Lebesgue measure. The behavior is drastically different for n ≥ 3
and for n = 2. The higher dimensional case was central in the super-rigidity
results of Zimmer [Zim84] and Furman [Fur99a, Fur99b] (see section 12). The
2-dimensional case SL(2,Z) y T

2 played a particularly important role in the
recent developments of the theory, mainly because of its relation with the semi-
direct product SL(2,Z)nZ

2, in which Z
2 is known to have the so called relative

property (T) (see section 11), while SL(2,Z) is a virtually free group (it has a
finite index free subgroup).
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Example 2.3. Volume-preserving group actions on finite volume manifolds.

Example 2.4. Given two lattices Γ,Λ in a Lie group H (or more generally
a locally compact second countable group) the actions by left (resp. right by
the inverse) multiplication on H induce actions on the finite measure standard
spaces Γ y H/Λ and Λ y Γ\H.

Example 2.5. A compact group K, its Haar measure µ and the action of a
countable subgroup Γ by left multiplication on K.

Example 2.6. Let (X0, µ0) be a standard probability measure space, possibly
with atoms1. The standard Bernoulli shift action of Γ is the action on the
space XΓ of sequences (xγ)γ∈Γ by shifting the indices g.(xγ)γ∈Γ = (xg−1γ)γ∈Γ,
together with the Γ-invariant product probability measure ⊗Γµ0. In particular,
every countable group admits at least one p.m.p. action. The action is free (and
ergodic) iff Γ is infinite.

More generally, consider some action Γ y V of Γ on some countable set V.
The generalized Bernoulli shift action of Γ is the action on the space XV

of sequences (xv)v∈V by shifting the indices g.(xv)v∈V = (xg−1.v)v∈V, with the
invariant product probability measure.

Example 2.7. Profinite actions. Consider an action Γ y (T, v0) of Γ on a
locally finite rooted tree. The action preserves the equiprobability on the levels,
and the induced limit probability measure on the set of ends of the tree is Γ-
invariant. For instance, if Γ is residually finite, as witnessed by a chain of finite
index subgroups Γ = Γ0 > Γ1 > Γ2 > · · ·Γi > · · · with trivial intersection,
such a rooted tree (T, (v0 = Γ/Γ0)) is naturally built with vertex set (of level
i) the cosets Γ/Γi and edges given by the reduction maps Γ/Γi+1 → Γ/Γi. The
action is ergodic iff it is transitive on the levels.

A first connection with functional analysis is made through the following.
The Koopman representation of a p.m.p. action Γyα(X,µ) is the represen-
tation κα of Γ on L2

0(X,µ) given by2 κα(γ)(ξ)(x) = ξ(α(γ−1)(x)) [Koo31].
A lot of dynamical properties of the action are read from this unitary rep-

resentation and its spectral properties. For instance, the action is ergodic if
and only if its Koopman representation has no Γ-invariant unit vector. In
examples 2.1 and 2.2 or 2.6, various properties are deduced from the fact
that the Koopman representation admits a Hilbert basis which is either made
of eigenvectors or permuted by Γ (see for instance [Sch80], [KT08]). The
classical ergodic theory considers such actions up to conjugacy (notation:

Γ1y
α1X1

Conj
∼ Γ2y

α2X2).

1for instance X0 = {0, 1} and µ0({0}) = 1− p, µ0({1}) = p for some p ∈ (0, 1). The only
degenerate situation one wishes to avoid is X0 consisting of one single atom.

2The constants are fixed vectors for the representation on L2(X,µ). Its orthocomplement
L2

0
(X,µ) = L2(X,µ)	C1 consists of {ξ ∈ L2(X,µ) :

∫
X

ξ(x)dµ(x) = 0}.
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We now introduce a weaker notion of equivalence and turn from classical
ergodic theory to orbit equivalence theory. Here Γ.x denotes the orbit of x under
the Γ-action.

Definition 2.8 (Orbit equivalence). Two actions Γiy
αi(Xi, µi) (for i = 1, 2)

are orbit equivalent (OE) (notation: Γ1y
α1X1

OE
∼ Γ2y

α2X2) if there is a
measured space isomorphism3 f : X1 → X2 that sends orbits to orbits:

for a.a. x ∈ X1: f(Γ1.x) = Γ2.f(x).

In particular, the groups are no longer assumed to be isomorphic. When
studying actions up to orbit equivalence, what one is really interested in, is
the partition of the space into orbits or equivalently the orbit equivalence
relation:

Rα := {(x, y) ∈ X : ∃γ ∈ Γ s.t. α(γ)(x) = y}. (1)

This equivalence relation satisfies the following three properties: (1) its
classes are (at most) countable, (2) as a subset of X × X, it is measurable,
(3) it preserves the measure µ: this means that every measurable automor-
phism φ : X → X that is inner (x and φ(x) belong to the same class for a.a.
x ∈ X) has to preserve µ.

Axiomatically [FM77a], the object of study is an equivalence relation R
on (X,µ) satisfying the above three conditions: we simply call it a p.m.p.
equivalence relation. Two p.m.p. equivalence relations R1,R2 will be orbit
equivalent if there is a measured space isomorphism f : X1 → X2 sending
classes to classes.

This abstraction is necessary when one wants to consider, for instance, the
restriction R|A of R to some non-null Borel subset A ⊂ X: the standard
Borel space A is equipped with the normalized probability measure µA(C) =
µ(C)/µ(A) and (x, y) ∈ R|A ⇔ x, y ∈ A and (x, y) ∈ R.

In fact, this more general context allows for much more algebraic flexibility
since the lattice of subrelations of Rα for some Γ-action α is much richer than
that of subgroups of Γ (see von Neumann’s problem in section 10). Also, Rα is
easier to decompose as a “free product or a direct product” than Γ itself (see
section 7 and [AG10]).

By an increasing approximation Rn ↗ R of a p.m.p. equivalence rela-
tion R we mean an increasing sequence of standard (p.m.p.) equivalence sub-
relations with ∪nRn = R.

An important notion is that of hyperfiniteness: a p.m.p. equivalence relation
R is hyperfinite if it admits an increasing approximation by finite equivalence
subrelations Rn (i.e. the classes of the Rn are finite). Obviously all the actions
of locally finite groups (i.e. groups all of whose finitely generated subgroups are

3An isomorphism of measure spaces is defined almost everywhere and respects the mea-
sures: f∗µ1 = µ2.
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finite) generate orbit equivalence relations in this class; for instance such groups
as Γ = ⊕NΛn, where the Λn are finite. This is also the case for all Z-actions.
Dye’s theorem is among the fundamental theorems in orbit equivalence theory:

Theorem 2.9 ([Dye59]). All the ergodic hyperfinite p.m.p. equivalence relations
are mutually orbit equivalent.

A series of results due in particular to Dye, Connes, Krieger, Vershik... leads
to Ornstein-Weiss’ theorem (see [CFW81] for a more general version):

Theorem 2.10 ([OW80]). If Γ is amenable then all its p.m.p. actions are
hyperfinite.

In particular, when ergodic, these actions are indistinguishable from the
orbit equivalence point of view! All the usual ergodic theoretic invariants are
lost. This common object will be denoted Rhyp. On the other hand, if Γ admits
a free p.m.p. hyperfinite action, then Γ has to be amenable, thus showing the
border of this huge singular area that produces essentially a single object. The
non-amenable world is much more complicated and richer.

3. The Full Group

The full group of R denoted by [R] is defined as the group of p.m.p. auto-
morphisms of (X,µ) whose graph is contained in R:

[R] := {T ∈ Aut(X,µ) : (x, T (x)) ∈ R for a.a. x ∈ X}.

It was introduced and studied by Dye [Dye59], and it is clearly an OE-invariant.
But conversely, its algebraic structure is rich enough to remember the equiva-
lence relation:

Theorem 3.1 ([Dye63]). (Dye’s reconstruction theorem) Two ergodic p.m.p.
equivalence relations R1 and R2 are OE iff their full groups are algebraically
isomorphic; moreover the isomorphism is then implemented by an orbit equiv-
alence.

The full group has very nice properties. The topology given by the bi-
invariant metric d(T, S) = µ{x : T (x) 6= S(x)} is Polish. In general, it is not
locally compact and, in fact, homeomorphic with the separable Hilbert space
`2 [KT10].

Theorem 3.2 ([BG80, Kec10]). The full group is a simple group iff R is er-
godic.

And it satisfies this very remarkable, automatic continuity:

Theorem 3.3 (Kittrell-Tsankov [KT10]). If R is ergodic, then every group
homomorphism f : [R] → G with values in a separable topological group is
automatically continuous.
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Hyperfiniteness translates into an abstract topological group property:

Theorem 3.4 (Giordano-Pestov [GP07]). Assuming R ergodic, R is hyperfi-
nite iff [R] is extremely amenable.

Recall that a topological group G is extremely amenable if every contin-
uous action of G on a (Hausdorff) compact space has a fixed point. Together
with Kittrell-Tsankov’s result, this gives that every action of [Rhyp] by home-
omorphisms on a compact metrizable space has a fixed point.

Closely related to the full group, the automorphism group Aut(R) :=
{T ∈ Aut(X,µ) : (x, y) ∈ R ⇒ (T (x), T (y)) ∈ R for a.a. x ∈ X} . [R] and the
outer automorphism group (the quotient) Out(R) = Aut(R)/[R] have at-
tracted much attention for several years; see for instance [GG88a, Gef93, Gef96,
Fur05, IPP08, Pop06b, Kec10, Kid08c, PV08d, PV08a, Gab08] and references
therein and section 11.

4. Associated von Neumann Algebra

In fact, the original interest for orbit equivalence came from its connection with
von Neumann algebras. Murray and von Neumann [MvN36] considered p.m.p.
group actions Γyα(X,µ) as a machine to produce finite von Neumann algebras
Mα, via their group-measure-space construction. And Singer [Sin55] was the
first to explicitly notice that Mα only depends on the OE class of the action.
Feldman-Moore [FM77b] extended the group-measure-space construction to the
context of p.m.p. equivalence relations.

A p.m.p. equivalence relation R on (X,µ), considered as a Borel subspace of
X×X is naturally equipped with a (a priori infinite) measure ν. It is defined
as follows: for every Borel subset C ⊂ R,

ν(C) =

∫
X

|π−1
l (x) ∩ C|dµ(x), (2)

where πl : R → X is the projection onto the first coordinate, π−1
l (x) is the

fiber above x ∈ X, and |π−1
l (x) ∩ C| is the (at most countable) cardinal of its

intersection with C. A similar definition could be made with the projection πr

on the second coordinate instead, but the fact that R is p.m.p. ensures that
these two definitions would coincide.

The (generalized) group-measure-space von Neumann algebra L(R)
associated with R is generated by two families of operators of the separable
Hilbert space L2(R, ν): {Lg : g ∈ [R]} and {Lf : f ∈ L∞(X,µ)}, where
Lgξ(x, y) = ξ(g−1x, y) and Lfξ(x, y) = f(x)ξ(x, y) for every ξ ∈ L2(R, ν). It
contains {Lf : f ∈ L∞(X,µ)} ' L∞(X,µ) as a Cartan subalgebra (i.e.
a maximal abelian subalgebra whose normalizer generates L(R)). With this
definition, L(R) is clearly an OE-invariant.
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Definition 4.1 (von Neumann equivalence or W∗-equivalence). Two p.m.p.
equivalence relations Ri on (Xi, µi) (for i = 1, 2) are von Neumann equiva-

lent or W∗-equivalent if L(R1) ' L(R2) (notation: R1
vN
∼ R2).

There exist non-OE equivalence relations producing isomorphic L(R)
([CJ82], [OP08b]). Indeed, the additionnal data needed to recover R is the
embedding L∞(X,µ) ⊂ L(R) of the Cartan subalgebra inside L(R) (up to
isomorphisms) [Sin55, FM77b].

5. Strong Ergodicity

Recall that a standard p.m.p. equivalence relation R is ergodic if every R-
invariant4 Borel set A ⊂ X satisfies µ(A)(µ(A)− 1) = 0. The notion of strong
ergodicity was introduced by Schmidt as an OE-invariant.

Definition 5.1 ([Sch80]). An ergodic p.m.p. countable standard equivalence
relation R is strongly ergodic if every almost invariant sequence5 of Borel
subsets An ⊂ X is trivial, i.e. satisfies limn→∞ µ(An)(1− µ(An)) = 0.

There are several equivalent definitions of strong ergodicity, see for instance
[JS87]. We give yet another one below through approximations.

Proposition 5.2. An ergodic equivalence relation R is strongly ergodic if
and only if every increasing approximation Rn ↗ R admits an ergodic restric-
tion Rn|U to some non-negligeable Borel set U , for big enough n.

In other words, for big enough n the ergodic decomposition of Rn admits
an atom. It is easy to see that whenever a p.m.p. action Γ y (X,µ) is non-
strongly ergodic, its Koopman representation κ0 almost has invariant vectors.
The converse does not hold in general [Sch81], [HK05]. However, Chifan-Ioana
[CI10] extending an argument of Abert-Nikolov [AN07] proved that this is in-
deed the case when the commutant of Γ y (X,µ) in Aut(X,µ) acts ergodically
on (X,µ). Standard Bernoulli shifts are strongly ergodic iff the group is non-
amenable. In particular every non-amenable group admits at least one strongly
ergodic action.

Kechris-Tsankov [KT08] characterized the generalized Bernoulli shifts Γ y

(X0, µ0)
V that are strongly ergodic as those for which the action Γ y V is

non-amenable (i.e. the representation on `2(V) does not admit any sequence
of almost invariant vectors).

The consideration of the Koopman representation κ0 ensures that for (infi-
nite) groups with Kazhdan property (T) every ergodic p.m.p. action is strongly
ergodic. And Connes-Weiss (by using Gaussian random variables) showed that
this is a criterion for property (T) [CW80].

4for each g in the full group [R], µ(A∆gA) = 0.
5i.e. for each g in [R], limn→∞ µ(An∆gAn) = 0.
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A graphing Φ (see section 6) on X naturally defines a “metric” dΦ on X:
the simplicial distance associated with the graph structure in the classes of
RΦ and dΦ = ∞ between two points in different classes. This is a typical
instance of what Gromov calls a mm-space [Gro00], i.e. a probability mea-
sure space (X,µ) together with a Borel function d : X × X → R

+ ∪ {∞}
satisfying the standard metric axioms except that one allows d(x, x′) = ∞. A
mm-space (X,µ, d) is concentrated if ∀δ > 0, there is ∞ > rδ > 0 such that
µ(A), µ(B) ≥ δ ⇒ d(A,B) ≤ rδ. For instance, if Φ = 〈ϕ1 : X → X〉 is given
by a single p.m.p. ergodic isomorphism, (X,µ, dΦ) is never concentrated. Gro-
mov observed for finitely generated groups that every p.m.p. ergodic action of
Γ has (respectively, never has) the concentration property if Γ has Kazhdan’s
property (T) (respectively, if Γ is amenable). Pichot made the connection with
strong ergodicity:

Theorem 5.3 ([Pic07a]). Let Φ = (ϕi)i=1,··· ,p be a graphing made of finitely
many partial isomorphisms. The space (X,µ, dΦ) is concentrated iff RΦ is
strongly ergodic.

See also [Pic07b] for a characterization of strong ergodicity (as well as of
property (T) or amenability) in terms of the spectrum of diffusion operators
associated with random walks on the equivalence relation R.

For the standard SL(2,Z) action on the 2-torus R2/Z2, every non-amenable
subgroup Λ < SL(2,Z) acts ergodically, and even strongly ergodically. Similarly
for the generalized Bernoulli shift Γ y (X0, µ0)

V, where the stabilizers of the
action Γ y V are amenable. Inspired by [CI10], define more generally:

Definition 5.4 (Solid ergodicity). A p.m.p. standard equivalence relation R
is called solidly ergodic if for every (standard) subrelation S there exists a
measurable partition {Xi}i≥0 of X in S-invariant subsets such that:

(a) the restriction S|X0 is hyperfinite

(b) the restrictions S|Xi are strongly ergodic for every i > 0.

In particular, an ergodic subrelation of a solidly ergodic relation is either
hyperfinite or strongly ergodic. By Zimmer [Zim84, Prop. 9.3.2], every ergodic
p.m.p. standard equivalence relation R contains an ergodic hyperfinite subre-
lation S which, being non strongly ergodic, contains an aperiodic subrelation
with diffuse ergodic decomposition. Thus the X0 part cannot be avoided, even
for aperiodic subrelations.

One gets an equivalent definition if one replaces “strongly ergodic” by “er-
godic” (see [CI10, Prop. 6] for more equivalent definitions). It may seem quite
unlikely that such relations really exist. However, Chifan-Ioana [CI10] observed
that the notion of solidity and its relative versions introduced by Ozawa [Oza04]
(by playing between C∗- and von Neumann algebras) imply solid ergodic-
ity (hence the name). Moreover, they established a general solidity result for
Bernoulli shifts.
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Theorem 5.5. The following actions are solidly ergodic:

– The standard action SL(2,Z) y R
2/Z2 [Oza09].

– The generalized Bernoulli action Γ y (X0, µ0)
V, when the Γ-action Γ y V

has amenable stabilizers [CI10].

When the group Γ is exact6, the above statement for the standard Bernoulli
shifts also follows from [Oza06, Th. 4.7].

A positive answer to the following percolation-theoretic question would give
another proof of solid ergodicity for the standard Bernoulli shifts:

Question 5.6. Let Γ be a countable group with a finite generating set S. Let
π : (X0, µ0)

Γ → [0, 1] be any measure preserving map (i.e. π∗(⊗Γµ0) = Leb)
and Φπ be the “fiber-graphing” made of the restriction ϕs of s ∈ S to the set
{ω ∈ (X0, µ0)

Γ : π(s.ω) = π(ω)}. Is the equivalence relation generated by Φπ

finite?

6. Graphings

The cost of a p.m.p. equivalence relation R has been introduced by Levitt
[Lev95]. It has been studied intensively in [Gab98, Gab00a]. See also [KM04,
Kec10, Fur09] and the popularization paper [Gab10b]. When an equivalence
relation is generated by a group action, the relations between the generators of
the group introduce redundancy in the generation, and one can decrease this
redundancy by using instead partially defined isomorphisms.

A countable family Φ = (ϕj : Aj
∼
→ Bj)j∈J of measure preserving isomor-

phisms between Borel subsets Ai, Bi ⊂ X is called a graphing. It generates
a p.m.p. equivalence relation RΦ: the smallest equivalence relation such that
x ∼ ϕj(x) for j ∈ J and x ∈ Aj . Moreover, Φ furnishes a graph structure
(hence the name) Φ[x] on the class of each point x ∈ X: two points y and z in
its class are connected by an edge whenever z = ϕ±1

j (y) for some j ∈ J . If R
is generated by a free action of Γ and if Φ is made of isomorphisms associated
with a generating set S of Γ, then the graphs Φ[x] are isomorphic with the cor-
responding Cayley graph of Γ. When all the graphs Φ[x] are trees, Φ is called
a treeing. If it admits a generating treeing, R is called treeable. See Adams
[Ada88, Ada90] for the first study of treed equivalence relations.

The cost of Φ is the number of generators weighted by the measure of
their support: Cost(Φ) =

∑
j∈J µ(Aj) =

∑
j∈J µ(Bj). The cost of R is the

infimum over the costs of its generating graphings: Cost(R) = inf{Cost(Φ) :
R = RΦ}. It is by definition an OE-invariant. The cost of R is ≥ 1 when
the classes are infinite [Lev95]. Together with Ornstein-Weiss’ theorem this

6Recall that a discrete group Γ is exact iff it acts amenably on some compact topological
space.
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gives that every p.m.p. free action of an infinite amenable group has cost = 1.
Various commutation properties in a group Γ also entail cost = 1 for all of its
free actions. For instance when Γ = G×H is the product of two infinite groups
and contains at least one infinite order element or Γ = SL(n,Z), for n ≥ 3. It
is not difficult to see that when a finite cost graphing Φ realizes the cost of RΦ

then Φ is a treeing. The main results in [Gab98] claim the converse:

Theorem 6.1. If Φ is a treeing then Cost(RΦ) = Cost(Φ). In particular, the
free actions of the free group Fn have cost n.

In particular, free groups of different ranks cannot have OE free actions.
The cost measures the amount of information needed to construct R. It is
an analogue of the rank of a countable group Γ, i.e. the minimal number of
generators or in a somewhat pedantic formulation, the infimum of the measures
δ(S) over the generating systems S, where δ denotes the counting measure on
the group. Similarly the cost of R is the infimum of the measures ν(C) over the
Borel subsets C ⊂ R which generateR, where ν is the measure onR introduced
in section 4, equation (2) (compare Connes’ Bourbaki seminar [Con04]).

In [Gab00a] the notion of free product decomposition R = R1∗R2 (and
more generally free product with amalgamation R = R1 ∗R3

R2) of an
equivalence relation over subrelations is introduced (see also [Ghy95, Pau99]).
Of course, when R is generated by a free action of a group, a decomposition of
Γ = Γ1 ∗Γ3

Γ2 induces the analogous decomposition of R = RΓ1
∗RΓ3

RΓ2
. The

cornerstone in cost theory is the following computation:

Theorem 6.2 ([Gab00a]). Cost(R1 ∗R3
R2) = Cost(R1) + Cost(R2) −

Cost(R3), when R3 is hyperfinite (possibly trivial).

These techniques allow for the calculation of the cost of the free actions of
several groups: for instance SL(2,Z) (Cost = 1 + 1/12), surface groups π1(Σg)
(Cost = 2g−1)... In all the examples computed so far, the cost does not depend
on the particular free action of the group, thus raising the following question
(which proved to be related to rank gradient and a low-dimensional topology
problem; see [AN07]) (see also Question 8.2):

Question 6.3 (Fixed Price Problem). Does there exist a group Γ with two
p.m.p. free actions of non equal costs?

Observe that both the infimum Cost(Γ) ([Gab00a]) and the supremum
Cost∗(Γ) ([AW]) among the costs of all free p.m.p. actions of Γ are realized
by some actions.

Question 6.4 (Cost for Kazdhan groups). Does there exist a Kazdhan property
(T) group with a p.m.p. free action of cost > 1?

In his very rich monograph [Kec10], Kechris studied the continuity proper-
ties of the cost function on the space of actions and proved that Cost(R) > 1
for an ergodic R forces its outer automorphism group to be Polish. He also
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introduced the topological OE-invariant t([R]), defined as the minimum num-
ber of generators of a dense subgroup of the full group [R] and related it with
the cost [Kec10]. When R is generated by a free ergodic action of Fn, Miller
obtained the following lower bound: n + 1 ≤ t([R]), and [KT10] proved that
t([Rhyp]) ≤ 3 and that t([R]) ≤ 3(n+ 1).

Lyons-Pichot-Vassout [LPV08] introduced the uniform isoperimetric
constant h(R) for p.m.p. equivalence relations, a notion similar to that for
countable groups h(Γ). They were able to obtain the purely group theoretic
sharp comparison 2β(2)

1 (Γ) ≤ h(Γ) (where β(2)

1 (Γ) is the first `2-Betti number).
Two complementary inequalities from [LPV08, PV09a] lead to “2(Cost(R) −
1) = h(R)”, thus identifying two OE-invariants of apparently different nature.
See [LP09] for an application of cost to percolation theory.

7. Dimensions

Geometric group theory studies countable groups through their actions on “nice
spaces”. Similarly, for a p.m.p. equivalence relation (it is a groupoid [ADR00])
R on (X,µ), one might consider its actions on fields of spaces X 3 x 7→ Σx,
or R-field. For instance, a graphing Φ defines a measurable field of graphs
x 7→ Φ[x], on which the natural isomorphism Φ[y] ' Φ[z] for (y, z) ∈ RΦ induces
an action of RΦ. The Bass-Serre theory [Bas76, Ser77] relates the actions of
a group on trees to its free product with amalgamation decompositions (and
HNN-extensions). Alvarez [Alv09b, Alv09a] developped an analogous theory in
the framework of equivalence relations. For instance an equivalence relation R
acts “properly” on a field of trees iff R is treeable [Alv09b]. He also obtained
a theorem describing the structure of subrelations of a free product [Alv09a],
analogous to Kurosh’s theorem. This led in [AG10] to the essential uniqueness
of a free product decomposition R = R1 ∗ · · · ∗ Rn when the factors are freely
indecomposable (i.e. indecomposable as a non-trivial free product) (compare
[IPP08, CH10]). See also [Sak09b] for similar results for some free products
with amalgamation over amenable groups.

Definition 7.1 ([AG10]). A countable group is called measurably freely in-
decomposable (MFI ) if all its free p.m.p. actions are freely indecomposable.

Examples of MFI groups are provided by non-amenable groups with
β(2)

1 = 0.

Question 7.2 ([AG10]). Produce a MFI group with β(2)

1 > 0.

More generally, a simplicial R-field is a measurable field of simplicial
complexes with a simplicial action of R (see [Gab02]): the space Σ(0) of 0-cells
has a Borel structure and a measurable map π onto X with countable fibers.
The cells are defined in the fibers; R permutes the fibers; and everything is
measurable. The action is discrete (or smooth, or proper) if it admits a
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measurable fundamental domain in Σ(0). For example, consider a free p.m.p.
action Γyα(X,µ) and a free action of Γ on a (usual, countable) simplicial
complex L. This defines a proper simplicial Rα-action on X×L induced by the
diagonal Γ-action. It is instructive to consider an OE action Λ y

β(X,µ) and
to try to figure out the action of Rβ = Rα on X × L once Γ is forgotten.

The geometric dimension geo-dim(R) of R is defined as the smallest pos-
sible dimension of a proper R-field of contractible simplicial complexes [Gab02].
It is analogous to (and bounded above by) the classical geometric dimension
([Bro82]) of Γ. The approximate dimension [Gab02] (no classical analogue)
approx-dim(R) of R is defined as the smallest possible upper limit of geometric
dimensions along increasing approximations of R:

approx-dim(R) := min{sup(geo-dim(Rn))n : (Rn) ↗ R}.

For instance, geo-dim(R) = 0 for finite equivalence relations; approx-dim(R) =
0 iff R is hyperfinite; and geo-dim(R) = 1 iff R is treeable. Thus, quite sur-
prisingly, surface groups admit free actions of geo-dim = 1. Every free ac-
tion of a Kazhdan property (T) group satisfies approx-dim = geo-dim > 1
[AS90, Moo82, Gab10a]. In the following statement, β(2)

n denotes the n-th `2-
Betti number (see section 8).

Theorem 7.3 ([Gab10a]). These dimensions satisfy:
-a- geo-dim(R)− 1 ≤ approx-dim(R) ≤ geo-dim(R).
-b- If Λ < Γ satisfies β(2)

p (Λ) 6= 0, then geo-dim(Rα) ≥ p for every free p.m.p.
action Γyα(X,µ). If moreover geo-dim(Rα) = p, then β(2)

p (Γ) 6= 0.

It follows that every free action of Fr1 × · · · × Frp (rj ≥ 2) (resp. Z ×
Fr1 × · · · × Frp) has approx-dim = geo-dim = p (resp. geo-dim = p + 1).
Moreover, for every p ≥ 3, there is a group Γp with free actions αp and βp

such that approx-dim(Rαp
) = geo-dim(Rαp

) = p and approx-dim(Rβp
) + 1 =

geo-dim(Rβp
) = p.

In [DG09], Dooley-Golodets study the behavior of the dimension geo-dim
under finite extensions. The notion of measurable cohomological dimen-
sion introduced in [ST07] has some similarity with the geometric dimension.

8. L
2-Betti Numbers

The `2-Betti numbers of cocompact group actions on manifolds were introduced
by Atiyah [Ati76] in terms of the heat kernel. Connes [Con79] defined them
for measured foliations. Cheeger-Gromov [CG86] introduced `2-Betti numbers
β(2)
n (Γ) ∈ [0,∞], n ∈ N, for arbitrary countable groups Γ. In [Gab02] the

L2-Betti numbers β(2)
n (R) ∈ [0,∞], n ∈ N are defined for p.m.p. equivalence

relations R, by using proper simplicial R-fields (see section 7). In any case, the
definitions rely on the notion of generalized von Neumann dimension, expressed
as the trace of certain projections. One of the main results in [Gab00b, Gab02]
is the invariance of the β(2)

n (Γ) under orbit equivalence.
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Theorem 8.1 ([Gab02] ). If RΓ is generated by a free p.m.p. action of Γ, then
β(2)
n (RΓ) = β(2)

n (Γ) for every n ∈ N.

The inequality Cost(Γ) ≥ β(2)

1 (Γ) − β(2)

0 (Γ) + 1 proved in [Gab02] is an
equality in all cases where the computations have been achieved, thus leading
to the question:

Question 8.2 (Cost vs first `2-Betti number). Is there an infinite countable
group with Cost(Γ) > β(2)

1 (Γ) + 1 ?

The following compression formula was a key point in various places notably
when studying “self-similarities” (the “fundamental group”, see [Pop06a]) and
measure equivalence (see section 9).

Theorem 8.3 ([Gab02]). The L2-Betti numbers of R and of its restriction to
a Borel subset A ⊂ X meeting all the classes satisfy: β(2)

n (R) = µ(A)β(2)
n (R|A).

It follows that lattices in a common locally compact second countable group
have proportional `2-Betti numbers.

In [BG04], L2-Betti numbers for profinite actions are used to extend Lück’s
approximation theorem [Lüc94] to non-normal subgroups. We refer to the book
[Lüc02] for information about `2-Betti numbers of groups and for an alternative
approach to von Neumann dimension. See [Sau05, ST07, Tho08] for extension
of β(2)

n (R) to measured groupoids, and several computations using Lück’s ap-
proach ([NR09] proves that the various definitions coincide).

Very interesting combinatorial analogues of the cost and β(2)

1 have been
introduced by Elek [Ele07] in a context of sequences of finite graphs.

9. Measure Equivalence

Two groups Γ1 and Γ2 are virtually isomorphic if there exist Fi / Λi < Γi

such that Λ1/F1 ' Λ2/F2, where Fi are finite groups, and Λi has finite index
in Γi. This condition is equivalent with: Γ,Λ admit commuting actions on a set
Ω such that each of the actions Γ y Ω and Λ y Ω has finite quotient set and
finite stabilizers.

A finite set admits two natural generalizations, a topological one (compact
set) leading to geometric group theory and a measure theoretic one (finite
measure set) leading to measured group theory.

Definition 9.1 ([Gro93]). Two countable groups Γ1 and Γ2 are measure

equivalent (ME) (notation: Γ1
ME
∼ Γ2) if there exist commuting actions of

Γ1 and Γ2, that are (each) measure preserving, free, and with a finite measure
fundamental domain, on some standard (infinite) measure space (Ω,m).

The ratio [Γ1 : Γ2]Ω := m(Ω/Γ2)/m(Ω/Γ1) of the measures of the funda-
mental domains is called the index of the coupling Ω. The typical examples,
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besides virtually isomorphic groups, are lattices in a common (locally compact
second countable) group G with its Haar measure, acting by left and right
multiplication.

The topological analogue was shown to be equivalent with quasi-isometry
(QI) between finitely generated groups [Gro93], thus raising measured group
theory (i.e. the study of groups up to ME) to parallel geometric group the-
ory. See [Fur99a] for the basis in ME and the surveys [Gab05a, Sha05, Fur09]
for more recent developments. Measure equivalence and orbit equivalence are
intimately connected by considering the relation between the quotient actions
Γ1 y Ω/Γ2 and Γ2 y Ω/Γ1. In fact two groups are ME iff they admit SOE
free actions.

Definition 9.2 (Stable Orbit Equivalence). Two p.m.p. actions of Γi y

(Xi, µi) are stably orbit equivalent (SOE) if there are Borel subsets Yi ⊂ Xi,
i = 1, 2 which meet almost every orbit of Γi and a measure-scaling isomorphism
f : Y1 → Y2 s.t.

f(Γ1.x ∩ Y1) = Γ2.f(x) ∩ Y2 a.e.

The index or compression constant of this SOE f is [Γ1 : Γ2]f = µ(Y2)
µ(Y1)

.

The state of the art ranges from quite well understood ME-classes to mys-
terious and very rich examples. For instance, the finite groups obviously form a
single ME-class. The infinite amenable groups form a single ME-class [OW80].
The ME-class of a lattice in a center-free simple Lie group G with real rank
≥ 2 (like SL(n,R), n ≥ 3) consists in those groups that are virtually isomorphic
with a lattice in G [Fur99a]. If Γ is a non-exceptional mapping class group, its
ME-class consists only in its virtual isomorphism class [Kid08a]. Kida extended
this kind of result to some amalgamated free products (see [Kid09]).

On the opposite, the ME-class of the (mutually virtually isomorphic)
free groups Fr (2 ≤ r < ∞) contains the free products ∗ri=1Ai of infinite
amenable groups, surface groups π1(Σg) (g ≥ 2), certain branched surface
groups [Gab05a], elementarily free groups [BTW07]... and is far from being un-
derstood. Being ME with a free group is equivalent to admitting a free p.m.p.
treeable action [Hjo06].

There is a considerable list of ME-invariants (see [Gab05a] and the refer-
ences therein). For instance Kazhdan property (T), Haagerup property, the
ergodic dimension (resp. approximate ergodic dimension) defined as
the infimum of the geometric (resp. approximate) dimension among all the free
p.m.p. actions of Γ, the sign of the Euler characteristic (when defined), the
Cowling-Haagerup invariant, belonging to the classes Creg, C. Recently exact-
ness (see [BO08]) and belonging to the class S of Ozawa [Sak09a] were proved to
be ME-invariants. There are also numerical invariants which are preserved un-
der ME modulo multiplication by the index: Cost(Γ)− 1, the `2-Betti numbers
(β(2)

n (Γ))n∈N [Gab02].
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ME is stable under some basic constructions:

(a) if Γi
ME
∼ Λi for i = 1, · · · , n then Γ1 × · · · × Γn

ME
∼ Λ1 × · · · × Λn

(b) if Γi
ME
∼ Λi with index 1, then Γ1 ∗ · · · ∗Γn

ME
∼ Λ1 ∗ · · · ∗Λn (with index 1).

Some papers study when the converse holds [MS06, IPP08, CH10, AG10].
One has of course to impose some irreducibility conditions on the building
blocks, and these conditions have to be strong enough to resist the measurable
treatment. These requirements are achieved

(a) (for direct products) if the Γi,Λi belong to the class Creg of [MS06] (for
instance if they are non-amenable non-trivial free products): the non-triviality
of the bounded cohomology H2

b(Γ, `
2(Γ)) is an ME-invariant preventing Γ to

decompose (non-trivially) as a direct product;

(b) (for free products) if the Γi,Λi are MFI (for instance if they have β(2)

1 =
0 and are non-amenable) [AG10]: they are not ME with a (non-trivial) free
product. We prove for instance:

Theorem 9.3 ([AG10]). If Γ1 ∗ · · · ∗ Γn
ME
∼ Λ1 ∗ · · · ∗ Λp, where both the Γi’s

and the Λj’s belong to distinct ME-classes and are MFI , then n = p and up

to a permutation of the indices Γi
ME
∼ Λi.

See also [IPP08, CH10] when the groups have Kazhdan property (T), or
are direct products, under extra ergodicity hypothesis. The delicate point of
removing ergodicity assumptions in [AG10] was achieved by using [Alv09a].

Similar “deconstruction” results were obtained by Sako [Sak09b] for building
blocks made of direct products of non-amenable exact groups when considering
free products with amalgamation over amenable subgroups or by taking wreath
product with amenable base.

Refinements of the notion of ME were introduced in [Sha04, Tho09, LSW09]
or by Sauer and Bader-Furman-Sauer.

10. Non-orbit Equivalent Actions for a Given
Group

In this section, we only consider ergodic free p.m.p. actions Γyα(X,µ) of infinite
countable groups and the associated orbit equivalence relations Rα. Ornstein-
Weiss’ theorem [OW80] implies that amenable groups all produce the same
relation, namely Rhyp. What about non-amenable groups? How many non-OE
actions for a given group? Most of the OE-invariants depend on the group
rather than on the action, and thus cannot distinguish between various actions
of the group. However, for non-Kazhdan property (T) groups, Connes-Weiss
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[CW80] produced two non-OE actions distinguished by strong ergodicity (see
section 5). And along the years, various rigidity results entailed some specific
families of groups to admit continously7 many non-OE actions (see for instance
[BG81, Zim84, GG88b, MS06, Pop06b, Pop07a]).

We briefly describe below the crucial steps on the route toward the general
solution:

Theorem 10.1 ([Ioa07, Eps08]). Every non-amenable group admits continu-
ously many orbit inequivalent free ergodic p.m.p. actions.

The first step was made by Hjorth [Hjo05] when, within the circle of ideas
from Connes [Con80] and Popa [Pop86], he obtained the result for Kazhdan
property (T) groups. Roughly speaking, a pair of OE actions α and β defining
the same equivalence relationR gives a diagonal action (γ.(x, y) = (γ.αx, γ.βy))
onR and thus a unitary representation on L2(R, ν). When considering uncount-
ably many OE actions, a separability argument shows that the characteristic
function 1D of the diagonal is sufficiently almost invariant for some pair of
actions. Now, an invariant vector near 1D, which is given by property (T), de-
livers a conjugacy between the actions. There exists a continuum of pairwise
non-conjugate actions, and by the above the OE-classes in this continuum are
countable.

The next step was the analogous theorem for the prototypical non-
property (T), non-rigid group, namely the free groups and some free products
[GP05]. It lay again within the same circle of ideas but there, rigidity was ob-
tained through Popa’s property (T) relative to the space (see section 11).

Then Ioana [Ioa07] extended it to all groups containing a copy of F2. For
this, he introduced a weak version of property (T) relative to the space and
used a general construction called co-induction8.

Eventually, Epstein obtained the theorem in full generality [Eps08]. For
this she had to generalize the co-induction construction to the setting provided
by Gaboriau-Lyons’ measurable solution to von Neumann’s problem (see
below). Moreover, Ioana extended Epstein’s result from orbit inequivalent to
von Neumann inequivalent actions [Ioa07].

When von Neumann introduced the notion of amenability [vN29], he ob-
served that a countable group containing a copy of F2 cannot be amenable.
The question of knowing whether every non-amenable countable group has to
contain a copy of F2, known as von Neumann’s problem, was answered in
the negative by Ol′šanskĭı [Ol′80]. In the measurable framework, offering much
more flexibility, the answer is somewhat different:

7This is an upper bound since Card(Aut([0, 1],Leb)) = 2ℵ0 .
8Co-induction is the classical right adjoint of restriction. Its measure theoretic version was

brought to my attention by Sauer and used in [Gab05a], but it probably first appeared in
preliminary versions of [DGRS08].
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Theorem 10.2 ([GL09]). For any non-amenable countable group Γ, the orbit
equivalence relation of the Bernoulli shift action Γ y ([0, 1],Leb)Γ contains a
subrelation generated by a free ergodic p.m.p. action of F2.

In the terminology of [Mon06], there is a randembedding of F2 in any non-
amenable group. The proof uses percolation theory on graphs and [HP99, LS99,
PSN00, Gab05b, Hjo06]. The following general question remains open:

Question 10.3. Does every ergodic non-hyperfinite p.m.p. equivalence relation
contain a (treeable) subrelation of cost > 1?

11. Relative Property (T)

In his seminal paper [Kaz67] on property (T), Kazhdan implicitly9 introduced
the notion of property (T) relative to a subgroup Λ < Γ. In particular, a group
always has property (T) relative to its “unit subgroup” {1} < Γ. When consid-
ering a groupoid likeR, its space of units (X,µ) (and its “relative representation
theory”) is much more complicated. The introduction by Popa [Pop06a] of the
fruitful notion of property (T) relative to the space (X,µ) (also simply
called rigidity) allowed him to solve some long standing problems in von Neu-
mann algebras. In fact, the definition involves a pair of von Neumann algebras
B ⊂ M (for instance L∞(X,µ) ⊂ L(R)) and parallels the analogous notion for
groups, in the spirit of Connes-Jones [CJ85].

The typical example is provided by the standard action of SL(2,Z) and
its non-amenable subgroups Γ (for instance free groups Fr, r ≥ 2) on T

2.
Notice Ioana’s result that in fact every ergodic non-amenable subrelation of
RSL(2,Z)yT2 still has property (T) relative to the space T2 [Ioa09]. The property
(T) relative to the space (X,µ) comes from the group property (T) of Z2

o Γ
relative to the subgroup Z

2, via viewing Z
2 as the Pontryagin dual of T2. This

property (never satisfied by standard Bernoulli shifts) entails several rigidity
phenomena (see for instance [Pop06a, IPP08, GP05]). More examples come
from [Val05, Fer06] and they all involve some arithmeticity. This led Popa to
ask for the class of groups admitting such a free p.m.p. action with property (T)
relative to the space. Törnquist [Tör06] ensures that the class is stable under
taking a free product with any countable group. More generally, [Gab08] shows
that the class contains all the non-trivial free products of groups Γ = Γ1 ∗ Γ2:
in fact RΓ1

and RΓ2
may be chosen to be conjugate with any prescribed free

Γi-action and the arithmeticity alluded to is hidden in the way they are put in
free product. This leads, using ideas from [PV08a] to (plenty of) examples of
RΓ with trivial outer automorphism group, in particular the first examples for
free F2-actions [Gab08]. Ioana [Ioa07] proved that every non-amenable group
admits a free p.m.p. action satisfying a weak form of the above property, enough
for various purposes, see section 10.

9This was made explicit in [Mar82].
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12. Some Rigidity Results

We have three notions of equivalence between free p.m.p. actions:

(Γ1y
α1X1

Conj
∼ Γ2y

α2X2) =⇒ (Γ1y
α1X1

OE
∼ Γ2y

α2X2) =⇒ (Rα1

vN
∼ Rα2

).

Rigidity phenomena consist ideally in situations where (for free actions) some
implication can be reversed, or more generally when a big piece of information
of a stronger nature can be transferred through a weaker equivalence. Zim-
mer’s pioneering work (see [Zim84]) inaugurated a series of impressive results

of rigidity for the first arrow (
Conj
∼ L99

OE
∼ ), made possible by the introduction

in OE theory and in operator algebras of new techniques borrowed from di-
verse mathematical domains, like algebraic groups, geometry, geometric group
theory, representation theory or operator algebras. These rigidity results for
Γ1y

α1X1 take various qualifications according to whether an OE hypothesis
entails

– strong OE rigidity: conjugacy under some additionnal hypothesis about
the mysterious action Γ2y

α2X2, or even

– OE superrigidity: conjugacy of the actions with no hypothesis at all on
the target action.

These notions are virtual when they happen only up to finite groups (see
[Fur99b] for precise definitions).

To give some ideas we simply evoke a sample of some typical and strong
statements far from exhaustiveness or full generality.

Theorem 12.1 ([Fur99b]). Any free action that is OE with the standard action
SL(n,Z) y T

n for n ≥ 3, is virtually conjugate with it.

This is more generally true for lattices in a connected, center-free, simple,
Lie group of higher rank, and for “generic” actions (see [Fur99b]). Monod-
Shalom [MS06] obtained strong OE rigidity results when Γ1 is a direct prod-
uct of groups in Creg, under appropriate ergodicity assumptions on both sides.
See also Hjorth-Kechris [HK05] for rigidity results about actions of products,
where the focus is more on Borel reducibility. Kida’s results [Kid08b] consider
actions of mapping class groups of orientable surfaces and their direct prod-
ucts. He also obtains very strong rigidity results for certain amalgamated free
products [Kid09]. A series of ground breaking results in von Neumann algebras
obtained by Popa [Pop06a, Pop06c, Pop06d, Pop07a, Pop08] and his collabora-
tors [PS07, IPP08, PV08d, PV08b, PV08a, Ioa08, PV08c, PV09b] (see [Vae07]
for a review) dramatically modified the landscape. On the OE side, these culmi-
nated in Popa’s cocycle superrigidity theorems, that imply several impressive
OE superrigidity corollaries, for instance:
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Theorem 12.2 ([Pop07a, Pop08]). Assume that Γ is either an infinite ICC
Kazhdan property (T) group or is the product of two infinite groups H × H ′

and has no finite normal subgroup. Then any free action that is orbit equivalent
with the Bernoulli shift Γ y (X0, µ0)

Γ is conjugate with it.

See Furman’s ergodic theoretical treatment and generalizations [Fur07] for
the Kazhdan property (T) case. In the opposite direction, Bowen obtained some
surprising non-rigidity results [Bow09a, Bow09b] showing for instance that all
the Bernoulli shifts of the free groups Fr, 2 ≤ r < ∞ are mutually SOE (see
Def. 9.2).

As it follows from [Sin55, FM77b], being able to reverse the second ar-

row (
OE
∼ L99

vN
∼ ) essentially amounts to being able to uniquely identify the

Cartan subalgebra inside L(R), i.e. given two Cartan subalgebras A1, A2 in
L(R1) ' L(R2), being able to relate them through the isomorphism. Such
results are qualified vNE rigidity or W ∗-rigidity. The starting point is
Popa’s breakthrough [Pop06a] where a uniqueness result is obtained under
some hypothesis on both A1 and A2 (and this was enough to solve long
standing problems in von Neumann algebras). See also [IPP08, CH10] for
this kind of strong statements under various quite general conditions. We
refer to the surveys [Pop07b, Vae07, Vae10] for the recent developments in
vNE or W ∗-rigidity. However, after a series of progresses (see for instance
[OP08a, OP08b, Ioa08, Pet09, PV09b, Pet10]), the most recent achievement is:

Theorem 12.3 ([Ioa10]). If a free action of a group is von Neumann equivalent
with the standard Bernoulli shift action of an ICC Kazhdan property (T) group,
then the actions are in fact conjugate.

13. Some Further OE-invariants

In order to distinguish treeable Borel equivalence relations, Hjorth introduced a
technique preventing a p.m.p. equivalence relation from being OE with a profi-
nite one [Hjo06]. Then Kechris and Epstein-Tsankov isolated representation-
theoretic properties (i.e. in terms of the Koopman representation) leading to
strong forms of non-profiniteness; see [Kec05, ET10].

Elek-Lippner introduced the sofic property for equivalence relations. It is
satisfied by profinite actions, treeable equivalence relations and Bernoulli shifts
of sofic groups [EL10]. They also proved that the associated von Neumann
algebra satisfies the Connes’ embedding conjecture.
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Abstract

We give a brief account of group actions on operator algebras mainly focusing on
classification results. We first recall rather classical results on the classification
of discrete amenable group actions on the injective factors, which may serve as
potential goals in the case of C∗-algebras for the future. We also mention Galois
correspondence type results and quantum group actions for von Neumann alge-
bras. Then we report on the recent developments of the classification of group
actions on C

∗-algebras in terms of K-theoretical invariants. We give conjectures
on the classification of a class of countable amenable group actions on Kirchberg
algebras and strongly self-absorbing C

∗-algebras, which involve the classifying
spaces of the groups.
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1. Introduction

There are two classes of main objects in the theory of operator algebras, C*-
algebras and von Neumann algebras. They are subalgebras of the set of bounded
operators B(H) on a complex Hilbert space H closed under the adjoint opera-
tion, and closed under appropriate topologies, the norm topology for the former,
and the weak operator topology for the latter. Since the celebrated Gelfand-
Naimark theorem says that any abelian C∗-algebra with unit is isomorphic to
the set of continuous functions C(X) on a compact Hausdorff space X, C∗-
algebras are sometimes regarded as noncommutative analogues of topological
spaces, while von Neumann algebras are regarded as those of measure spaces
for a similar reason. To certain extent, this analogy is helpful to understand
the difference between the two classes, though it may be misleading sometimes.
If one further pursues the analogy, the difference between group actions on
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C∗-algebras and those on von Neumann algebras could be compared to that
between topological dynamics and ergodic theory. Group actions on operator
algebras have always been one of the main interests in the field for the sake of
applications to physics, and of course, for intrinsic reasons.

In operator algebraic formulation of quantum physics, the symmetries
and time evolution of a physical system are usually described by (anti-
)automorphisms of a relevant operator algebra. Indeed, for the purpose of direct
applications to physics, a group of mathematical physicists started working on
group actions on operator algebras in the 60s, which brought important new
ideas to the field such as the KMS-condition for actions of the real numbers R
(see [1],[3],[11] for example).

Group actions are also essential for understanding the structure of operator
algebras. One can see it typically in Connes’s classification of injective factors,
which involves the classification of cyclic group actions. Factors are von Neu-
mann algebras with trivial center, and they are building blocks of general von
Neumann algebras. Connes completely classified injective factors up to isomor-
phism in the mid 70s except for one case, which was settled by Haagerup about
10 years later. Thanks to these results, it turns out that injectivity, which is a
functional analytic property, is equivalent to approximately finite dimensional-
ity (see [52]).

Connes’s argument for the classification of cyclic group actions is based on
a noncommutative analogue of the Rohlin tower construction in ergodic theory,
which has a great influence on other classification results of group actions.
A far reaching generalization of Connes’s classification of cyclic group actions
was accomplished by many hands, which says that countable amenable group
actions on injective factors are completely classified up to cocycle conjugacy by
computable classification invariants (see [23]).

These results on injective factors and countable amenable group actions on
them are one of the most significant establishments in the theory of operator
algebras, which may suggest possible goals in other areas of operator algebras
for the future. One of the purposes of this note is to report on the progress
of group actions on operator algebras after these results. We mainly focus on
the case of C∗-algebras, though we also mention other topics such as Galois
correspondence for compact group actions and quantum group actions in the
von Neumann algebra case.

Nuclearity for C∗-algebras is the right counterpart of injectivity for von
Neumann algebras. The classification of simple nuclear C∗-algebras is still an
ongoing project, which is called the Elliott program. Being noncommutative
topological spaces, C∗-algebras are expected to have classification invariants
with a topological flavor. Indeed, Elliott’s conjecture says that separable simple
nuclear C∗-algebras in certain classes should be classified up to isomorphism
by invariants coming from K-theory. Those classes for which the conjecture
is verified are said to be classifiable. Thanks to the remarkable progress of the
Elliott program in these two decades, there are a few known classes of classifiable
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C∗-algebras with good intrinsic characterizations. Kirchberg algebras form one
of such classes with the best permanence properties; for example, they are
closed under taking crossed products by outer actions of countable amenable
groups (see [28],[47]).

Now we ask the following question: what are plausible statements for the
classification of group actions on classifiable C∗-algebras? Since amenability for
groups is the same sort of property as injectivity for von Neumann algebras and
nuclearity for C∗-algebras, we should keep the amenability assumption for the
groups in the case of classifiable C∗-algebras too. Although finite groups clearly
form the tamest subclass of amenable groups as far as analysis is concerned,
it is known that K-theory for finite group actions are practically out of con-
trol. Since K-theory is the most essential element in the Elliott program, finite
groups are not in a preferable situation. Indeed, recent developments of the clas-
sification of Z2-actions on classifiable C∗-algebras suggest that the topology of
the automorphism groups of the C∗-algebras and the classifying spaces of the
groups should be involved in the classification invariants of the actions, which is
a completely new aspect from the case of injective factors. This would be rather
natural for “noncommutative topological spaces”, and would be consistent with
the difficulties in finite group actions because their classifying spaces are always
infinite dimensional. Trying to answer the above question, we formulate a few
conjectures at the end of this note.

Throughout the note, separability or second countability for topological
spaces is often assumed without mentioning it. Our standard references are
[50], [51], [52] for von Neumann algebras, [2] for K-theory, and [28], [47] for
the classification of nuclear C∗-algebras. The reader is referred to them for the
definitions of undefined terms, and the proofs of results stated without citing
references.

We end this section with recalling the basic definitions for group actions
on operator algebras. Let A be a C∗-algebra or a von Neumann algebra, and
let G be a locally compact group. An action α of G on A is a continuous
homomorphism from G to the automorphism group Aut(A). We denote by
A oα G the crossed product of A by α, which is an analogue of a semidirect
product in group theory (since we deal with only amenable groups, we do not
need to distinguish the reduced crossed products from the full crossed products).
We denote by Aα the fixed point subalgebra of A for α. Two actions α and β
of G on A are conjugate if there exists γ ∈ Aut(A) satisfying γ ◦αg ◦ γ−1 = βg

for all g ∈ G. We denote by U(A) the group of all unitaries in A. An α-
cocycle u is a continuous map from G to U(A) satisfying the 1-cocycle relation
ugh = ugαg(uh) for all g, h ∈ G. When u is an α-cocycle, one can perturb α
by u, and αu

g = Adug ◦ αg is again an action, where Ad v denotes the inner
automorphism of A induced by v ∈ U(A). This perturbation is often allowed for
the purpose of applications because there exists an isomorphism between the
crossed products by α and αu extending the identify of A. Two actions α and
β are cocycle conjugate if there exists an α-cocycle u such that β is conjugate
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to αu. A G-action α is said to be outer if αg is not inner for any g ∈ G \ {e}.
In the case of C∗-algebras, we denote by αs the stabilization of α, which is the
G-action on A⊗K defined by αs

g = αg⊗Adπ(g), where K is the set of compact
operators on `2 and π is a direct sum of infinitely many copies of the regular
representation of G.

2. Group Actions on Factors

2.1. Injective factors. We first recall the basics of injective factors. Fac-
tors are divided into type I, type II1, type II∞, and type III. A type I factor
is isomorphic to B(H) for a Hilbert space H, and so it is completely char-
acterized by the dimension of H. A type II1 factor M is characterized as an
infinite dimensional factor with a finite trace τ , a linear functional satisfying
τ(ab) = τ(ba) for all a, b ∈ M and τ(1) = 1. A type II∞ factor is isomor-
phic to the tensor product of a type II1 factor and B(`2), and it has a unique
(unbounded) semifinite trace up to a scalar multiple. Remaining factors are of
type III.

We give fundamental examples of nuclear C∗-algebras and injective factors
here. Let {nj}

∞
j=1 be a sequence of natural numbers greater than 1. For k ∈ N,

we set

Ak =
k⊗

j=1

Mnj
(C),

where Mn(C) denotes the matrix algebra over C. Since Mn(C) is identified
with B(Cn), it is a C∗-algebra. We embed Ak into Ak+1 by ιk : Ak 3 x 7→
x ⊗ 1 ∈ Ak+1. Since this embedding is isometric, the inductive limit of the
system {Ak}k∈N has a norm extending that of Ak. The completion A of the
inductive limit with respect to this norm is called the UHF-algebra, a typical
example of a simple nuclear C∗-algebra. Let τk be the normalized trace of
Ak, which is the usual trace divided by n1n2 · · ·nk. Since the restriction of
τk+1 to Ak coincide with τk, there exists a trace τ of A extending τk. We can
introduce an inner product into A by 〈x, y〉 = τ(y∗x), and we denote by Hτ

the completion of A with respect to this inner product. The UHF-algebra A
acts on Hτ by left multiplication (called the GNS representation for τ), and the
weak closure R of A in this representation is an injective type II1 factor. While
Murray and von Neumann showed that the isomorphism class of R does not
really depend on the sequence {nj}

∞
j=1, Glimm [10] completely classified the

UHF-algebras up to isomorphism whose classification invariant is the formal
product of {nj}∞j=1, called the supernatural number. This means that there
are infinitely many isomorphism classes of UHF-algebras, and one can see the
sharp contrast between the two theories here. If we replace τ with other product
states, we can obtain factors of other types, called Araki-Woods factors.

Type III factors are further divided into type IIIλ, 0 ≤ λ ≤ 1, thanks to
Tomita-Takesaki theory. Every type IIIλ factor with 0 < λ < 1 is expressed
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as the crossed product N oα Z with a type II∞ factor N and a trace-scaling
Z-action α. Likewise, every type III1 factor is expressed as N oα R.

The classification of injective factors says that there exists a unique isomor-
phism class of injective factors for each type except for the type III0 case. The
injective type III0 factors are in one-to-one correspondence with the nontran-
sitive ergodic flows.

2.2. The classification of group actions. Although type I factors
are considered as rather trivial objects in operator algebras, we nevertheless
start with group actions on them in order to illustrate the difference between
the two equivalence relations, conjugacy and cocycle conjugacy. It is known that
every automorphism of a type I factor is inner, which shows that an action of a
countable group Γ on a type I factor B(H) is a synonym of a projective unitary
representation of Γ in H. Therefore the classification of Γ-actions on B(H) up
to conjugacy is equivalent to that of projective unitary representations of Γ in
H up to unitary equivalence, which cannot be accomplished even for Γ = Z2

and H = `2. On the other hand, the set of cocycle conjugacy classes of Γ-actions
on B(`2) is in one-to-one correspondence with the second cohomology group
H2(Γ,T), which is a computable object.

To a Γ-action α on a type II∞ factor, one can associate a homomorphism
mα : Γ → R

×
+ by the relation τ ◦ αg = mα(g)τ , where τ is the unique (up to a

scalar multiple) semifinite trace τ on the II∞ factor.

Connes [5], Jones [21], and Ocneanu [42] obtained a complete classification
result of countable amenable group actions on the injective type II factors. For
simplicity, we state the following particular case here.

Theorem 2.1. Let Γ be a countable amenable group.

(1) There exists a unique cocycle conjugacy class of outer Γ-actions on the
injective type II1 factor.

(2) For a given homomorphism m : Γ → R
×
+, there exists a unique cocy-

cle conjugacy class of outer Γ-actions α on the injective type II∞ factor
satisfying mα = m.

A countable group Γ is amenable if there exists a left-invariant linear func-
tional ϕ on `∞(Γ) with ϕ(1) = ||ϕ|| = 1. For example, every solvable group is
amenable. The amenability assumption in the above theorem is known to be
necessary.

General (not necessarily outer) Γ-actions α on the injective II1 factor are
classified up to cocycle conjugacy by a relative cohomology type invariant
with respect to the normal subgroup N(α) = {g ∈ Γ| αg is inner}. Count-
able amenable group actions on injective type III factors are also completely
classified up to cocycle conjugacy due to Katayama, Kawahigashi, Sutherland,
and Takesaki (see [23] for the final form of the statement).
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While the original proofs of these results are a massive collection of case-by-
case analysis depending on types, Masuda [33] recently obtained a short proof,
which is independent of types. Interestingly enough, his proof is based on Evans
and Kishimoto’s intertwining argument ([9]) developed in C∗-algebras.

An action α of a compact group G on a factor M is said to be minimal if α
is faithful as a homomorphism from G to Aut(M), and the relative commutant
of the fixed point subalgebra M ∩ Mα′ = {x ∈ M | ∀y ∈ Mα, xy = yx} is
trivial. The following theorem is obtained by Popa and Wassermann [46] for
compact Lie groups, and by Masuda and Tomatsu [34] for general compact
groups.

Theorem 2.2. For every separable compact group G, there exists a unique
conjugacy class of minimal G-actions on the injective type II1 factor and type
II∞ factor.

As a discrete Kac algebra, the dual of a compact group is amenable. Masuda
and Tomatsu actually generalized Theorem 2.1 to actions of Kac algebras, and
they obtained Theorem 2.2 by a duality argument.

The full classification of minimal actions of compact groups on the injective
type III factors is still in progress. See [14], [35] for related results.

2.3. Galois correspondence. The first Galois correspondence type re-
sult for group actions on operator algebras was obtained by Nakamura and
Takeda [41] in 1960 for finite group actions on II1-factors. The following gen-
eralization was obtained by Longo, Popa and the author [17].

Theorem 2.3. Let α be a minimal action of a compact group G on a factor
M . Then there exists a one-to-one correspondence between the closed subgroups
H ⊂ G and the intermediate subfactors Mα ⊂ N ⊂ M given by H 7→ Mα|H =
N .

To obtain this result, more general inclusions of factors are studied in [17],
which has applications to algebraic quantum field theory (see [22] for example).
The crossed product inclusion of an outer action of a countable group on a factor
is also a particular case.

Theorem 2.4. Let α be an outer action of a countable group Γ on a factor M .
Then there exists a one-to-one correspondence between the subgroups Λ ⊂ Γ
and the intermediate subfactors M ⊂ N ⊂ M oα Γ given by Λ 7→ M oα

Λ = N .

Tomatsu [54] generalized Theorem 2.3 to arbitrary compact quantum groups
overcoming technical difficulties due to the lack of normal conditional expec-
tations onto intermediate subfactors. Left coideals play the role of closed sub-
groups in this case.
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2.4. Quantum group actions and Poisson boundaries. Let
G be a closed subgroup of the unitary group U(n), which acts on the matrix
algebra Mn(C) by conjugation. The infinite tensor product (ITP) of this action
is a typical example of a minimal action of G on an injective factor. A similar
construction works for a compact quantum group too if the right order of the
tensor products is chosen. However, if the antipode of the quantum group is
not involutive, (for example, it is the case for the q-deformations of the classical
groups), the ITP action is never minimal. What is the relative commutant of the
fixed point algebra then? It turns out that the relative commutant is identified
with the noncommutative Poisson boundary for a convolution operator acting
on the dual quantum group.

The notion of noncommutative Poisson boundaries was introduced by the
author in [13] in order to answer the above question. Let M be a von Neu-
mann algebra, and let P : M → M be a unital normal complete positive map.
Although the fixed point set H∞(M,P ) = {x ∈ M | P (x) = x} is not neces-
sarily an algebra, one can introduce a new product into H∞(M,P ) so that it
becomes a von Neumann algebra. We call the von Neumann algebra obtained
in this way the noncommutative Poisson boundary for the pair (M,P ). When
M is commutative, the new product of H∞(M,P ) is commutative too, and
H∞(M,P ) is identified with the L∞-space over the Poisson boundary of the
random walk given by the Markov operator P .

In the case of the q-deformations of SU(N), Neshveyev, Tuset and the
author [19] showed that the noncommutative Poisson boundary is identified
with the quantum flag manifold SUq(N)/TN−1, which is generalized to the q-
deformations of arbitrary classical groups by Tomatsu [53]. For related results
on other quantum groups, see Vaes and Vander Vennet [55], [56].

3. Group Actions on C
∗-algebras

3.1. K-theory. We first recall the basics of K-theory, which gives efficient
isomorphism invariants of C∗-algebras. K-theory of C∗-algebras is a functor
from the category of C∗-algebras to that of abelian groups, which associates
two abelian groups K0(A) and K1(A) to a C∗-algebra A.

We denote by Mn(A) the C∗-algebra of the n by n matrices with entries in
A, by Pn(A) the set of projections in Mn(A), and by Un(A) the set of unitaries
in Mn(A). For x ∈ Mm(A) and y ∈ Mn(A), we set

x⊕ y =

(
x 0
0 y

)
∈ Mm+n(A).

We say that two projections p, q in a C∗-algebra A are equivalent if there
exists v ∈ A such that v∗v = p and vv∗ = q. We say that p and q in Pm(A)
are stably equivalent if there exists r ∈ Pn(A) such that p ⊕ r and q ⊕ r are
equivalent in Mm+n(A). Identifying p ∈ Pm(A) with p ⊕ 0 ∈ Pm+1(A), we
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regard Pm(A) as a subset of Pm+1(A), and we set P∞(A) =
⋃∞

m=1 Pm(A).
We denote by K0(A)+ the set of stable equivalence classes of the projections
in P∞(A), which is a semigroup with addition given by the direct sum. Its
Grothendieck group is K0(A). The element in K0(A) given by the equivalence
class of p ∈ Pm(A) is denoted by [p]0.

Identifying a unitary u ∈ Um(A) with u ⊕ 1 ∈ Um+1(A), we regard
Um(A) as a closed subgroup of Um+1(A), which induces a homomorphism from
Um(A)/Um(A)0 to Um+1(A)/Um+1(A)0, where Um(A)0 is the connected com-
ponent of the identity. The K1-group K1(A) is defined to be the inductive
limit of the system {Um(A)/Um(A)0}

∞
m=1. We denote by [u]1 the element in

K1(A) given by u ∈ Um(A). The quadruple (K0(A),K0(A)+, [1]0,K1(A)) is an
isomorphism invariant of A.

If a projection p in a C∗-algebra is equivalent to its proper subprojection,
it is said to be infinite. If p is not infinite, it is said to be finite. If every
projection of A is finite, the C∗-algebra A is said to be finite. If Mn(A) is finite
for every natural number n, the C∗-algebra A is said to be stably finite. For
a stably finite A, the pair (K0(A),K0(A)+) is an ordered group, that is, we
have K0(A)+∩ (−K0(A)+) = {0}. II1 factors and the UHF-algebras are typical
examples of stably finite C∗-algebras.

Let A be a C∗ algebra not isomorphic to the complex numbers C. If for
every a ∈ A \ {0}, there exist x, y ∈ A satisfying xay = 1, the C∗-algebra
A is said to be purely infinite. For a purely infinite C∗-algebra A, we have
K0(A) = K0(A)+, and one can drop K0(A)+ from the above isomorphism
invariant. Type III factors are examples of purely infinite C∗-algebras.

The Cuntz algebra On, for n ≥ 2, is the universal C∗-algebra generated by
isometries S1, S2, · · · , Sn with the relations S∗

i Sj = δi,j and
∑n

i=1 SiS
∗
i = 1.

When n = ∞, we define O∞ in a similar way imposing only the first relation.
The Cuntz algebras are separable, nuclear, and purely infinite. For theK-theory
of the Cuntz algebras, we have (K0(On), [1]0,K1(On)) ∼= (Z/(n−1)Z, 1, {0}) for
finite n, and (K0(O∞), [1]0,K1(O∞)) ∼= (Z, 1, {0}).

Kasparov’s KK-theory is a functor associating two abelian groups
KK0(A,B) and KK1(A,B) to C∗-algebras A and B, which are contravari-
ant for A and covariant for B. The group KK0(A,B) is often simply denoted
by KK(A,B). We have KK∗(C, B) = K∗(B), and KK∗(A,C) = K∗(A), the
K-homology group of A. Every homomorphism ρ from A to B gives a KK-
class KK(ρ) ∈ KK(A,B). The most remarkable feature of KK-theory is the
existence of an associated product, called the Kasparov product, which is a
generalization of the composition of homomorphisms:

KKi(A,B)×KKj(B,C) 3 (x, y) 7→ x#y ∈ KKi+j(A,C),

where KK∗+2(A,B) = KK∗(A,B). When there exist x ∈ KK(A,B) and
y ∈ KK(B,A) satisfying x#y = KK(idA) and y#x = KK(idB), the two
C∗-algebras A and B are said to be KK-equivalent.
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A C∗-algebra that is KK-equivalent to an abelian C∗-algebra is said to be
K-abelian. We denote by N the category of separable K-abelian C∗-algebras,
and call N the UCT class. It is an important open problem whether every
nuclear C∗-algebra belongs to N . We denote by Nnuc the set of nuclear C∗-
algebras in N . The UHF-algebras and the Cuntz algebras are in Nnuc.

3.2. Classifiable C
∗-algebras. In the early stage, the classification of

nuclear C∗-algebras developed by extending the classes of building blocks of
inductive limit C∗-algebras. When a C∗-algebra A has an increasing sequence
of C∗-subalgebras {Ak}∞k=1 whose union is dense in A, we say that A is the
inductive limit of {Ak}

∞
k=1. If each Ak is a direct sum of Ak,j , 1 ≤ j ≤ mk,

we say that Ak,j is a building block of A. There are several important classes
of inductive limit C∗-algebras specified by the classes of building blocks. For
example, if every building block is a matrix algebra, we say that A is an AF-
algebra. The UHF-algebras are inductive limits of full matrix algebras, and they
form a subclass of AF-algebras. More generally, if every building block is of the
form pMn(C(Ω))p, where Ω is a compact Hausdorff space and p is a projection
in Mn(C(Ω)), the C∗-algebra A is said to be an AH-algebra. AT-algebras, for
which Ω is the circle T = {z ∈ C |z| = 1}, form a subclass of AH-algebras. If
every building block is a subalgebra of Mn(C(Ω)), the C∗-algebra A is said to
be an ASH-algebra.

After Glimm’s classification of the UHF-algebras, Bratteli and Elliott classi-
fied AF-algebras in the 70s. In modern terms, Elliott’s classification invariant is
the triple (K0(A),K0(A)+, [1]0) (the K1-group is trivial for an AF-algebra). In
the early 90s, Elliott generalized this result to AT-algebras of real rank 0, where
the real rank of a C∗-algebra is a generalization of the covering dimension of a
topological space. This is the breakthrough of the remarkable developments of
the classification of nuclear C∗-algebras in these two decades.

The first classifiable class of nuclear C∗-algebras without referring to in-
ductive limits was discovered in the purely infinite case. A separable simple
nuclear purely infinite C∗-algebra is said to be a Kirchberg algebra. The Cuntz
algebras are fundamental examples of Kirchberg algebras. Kirchberg obtained
the following result in the mid 90s.

Theorem 3.1. Let A be a unital nuclear separable simple C∗-algebra. Then
the following hold:

(1) The tensor product A⊗O2 is isomorphic to O2.

(2) If A is purely infinite, the tensor product A⊗O∞ is isomorphic to A.

The above theorem shows that O2 plays the role of a zero element, and O∞

plays the role of a unit element for tensor product. This fits well with the facts
that O2 is KK-equivalent to {0}, and that O∞ is KK-equivalent to C.

Based on Theorem 3.1, Kirchberg and Phillips showed that the KK-theory
of Kirchberg algebras is given by the asymptotically unitary equivalence classes
of homomorphisms, and they obtained the following classification theorem.
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Theorem 3.2. Let A and B be unital Kirchberg algebras.

(1) The two C∗-algebras A and B are KK-equivalent if and only if they are
stably isomorphic, that is, A⊗K ∼= B ⊗K.

(2) Assume that A,B ∈ Nnuc. Then A and B are isomorphic if and only if

(K0(A), [1A]0,K1(A)) ∼= (K0(B), [1B ]0,K1(B)).

For any countable abelian groups M0 and M1, and any m ∈ M0, there exists
a model of A satisfying the assumption of (2) such that

(M0,m,M1) ∼= (K0(A), [1A]0,K1(A)).

The Elliott program in the stably finite case is still in progress. The first
classifiable class of stably finite C∗-algebras without referring to inductive limits
was provided by Huaxin Lin. A unital simple C∗-algebra A is said to have tracial
topological rank 0 if it satisfies the following condition: for every ε > 0, for every
a ∈ A+ \ {0}, and for every finite set F ⊂ A, there exists a non-zero projection
p ∈ A satisfying the following:

(1) For every x ∈ F , we have ‖px− xp‖ < ε.

(2) The projection 1− p is equivalent to a projection in the closure of aAa.

(3) There exists a finite dimensional C∗-subalgebra B of pAp and its finite
subset G such that the distance between G and {pxp ∈ A; x ∈ F} is less
than ε.

When one expresses x ∈ F as a matrix

x =

(
(1− p)x(1− p) (1− p)xp

px(1− p) pxp

)
,

the condition (1) means that the off diagonal entries are small in norm, and the
condition (2) means that the left up corner is small in the order of projections. If
p can be taken to be 1, the condition (3) is nothing but the local characterization
of AF-algebras (see [8]). Simple AF-algebras and simple AT-algebras of real
rank 0 have tracial topological rank 0.

Lin [29] proved the following classification theorem.

Theorem 3.3. Let A and B be unital simple C∗-algebras in Nnuc with tracial
topological rank 0. Then A and B are isomorphic if and only if

(K0(A),K0(A)+, [1A]0,K1(A)) ∼= (K0(B),K0(B)+, [1B ]0,K1(B)).
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An abstract characterization of the quadruple (K0(A),K0(A)+, [1A]0,
K1(A)) in Theorem 3.3 is also known. A similar result holds in the case of
tracial topological rank 1, where the set of traces are included in the classifica-
tion invariant (see [30]).

Jiang and Su [20] constructed a unital simple nuclear ASH-algebra Z with-
out nontrivial projections that is KK-equivalent to the complex numbers C.
One can regard Z as a stably finite version of O∞. Every C∗-algebra in known
classifiable classes absorbs Z by tensor product, which is believed to be the key
property for the classification of nuclear C∗-algebras. For the latest classifica-
tion results along this line, the reader is referred to Lin [31], Lin and Niu [32],
and Winter [57].

3.3. The Rohlin property. The Rohlin property, originally coming
from ergodic theory, was first used in operator algebras in Connes’s classification
of cyclic group actions of injective type II factors. In the 90s, its importance
drew attention of specialists in C∗-algebras, and systematic analysis of it was
launched. The reader is referred to [12] for the developments of the subject up
to 2000, mainly due to Kishimoto.

We say that an automorphism α of a unital C∗-algebra A has the Rohlin
property if for any natural number n, any ε > 0, and any finite set F ⊂ A,
there exists a partition of unity consisting of projections {ei}

n−1
i=0 ∪{fi}ni=0 ⊂ A

satisfying

‖α(ei)− ei+1‖ < ε, 0 ≤ ∀i ≤ n− 2,

‖α(fi)− fi+1‖ < ε, 0 ≤ ∀i ≤ n− 1,

‖xei − eix‖ < ε, 0 ≤ ∀i ≤ n− 1, ∀x ∈ F,

‖xfi − fix‖ < ε, 0 ≤ ∀i ≤ n, ∀x ∈ F.

In what follows, we often identify a single automorphism with the Z-action
generated by it. An automorphism is said to be aperiodic if the correspond-
ing Z-action is outer. For the classification of automorphisms α of a C∗-
algebra A up to cocycle conjugacy, the most important property is the sta-
bility of α, which is a statement of the following type: every unitary u ∈ A
in a certain class can be approximated by vα(v∗) with v in the same class.
For α to have this property, it needs to be outer in a very strong sense.
The Rohlin property is a means to deduce the stability of α (see [12] for
details).

Except for inductive limit actions, the first classification result of group
actions on C∗-algebras was obtained by Kishimoto [25]. For a C∗-algebra A with
a unique trace τ , and for α ∈ Aut(A), we denote by α the weakly continuous
extension of α to the weak closure of A in the GNS representation for τ . We
say that α is strongly outer if α is outer.
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Theorem 3.4. Let A be a UHF-algebra, and let α ∈ Aut(A). The following
conditions are equivalent:

(1) α has the Rohlin property.

(2) αn is strongly outer for any n ∈ Z \ {0}.

(3) The crossed product Aoα Z has a unique trace.

(4) The crossed product Aoα Z is a simple AT-algebra of real rank 0.

Moreover, there exists a unique cocycle conjugacy class of automorphisms with
the Rohlin property.

The condition (2) is a useful criterion to see if a given automorphism has
the Rohlin property. In fact, it is easy to construct an aperiodic automorphism
without satisfying this condition. The condition (4) means that Aoα Z is still
in a classifiable class, which suggests that sufficiently large classifiable classes
should have a permanence property under crossed products by Z-actions with
the Rohlin property. Several authors ([26], [27], [37], [38], [43]) have generalized
various aspects of Theorem 3.4 to simple AT-algebras of real rank 0 and more
generally, simple C∗-algebras of tracial rank 0. For the Jiang-Su algebra, Sato
[48] showed that there exists a unique cocycle conjugacy class of strongly outer
Z-actions.

Following Kishimoto’s strategy, Nakamura [40] completely classified aperi-
odic automorphisms of Kirchberg algebras. The Rohlin property is automatic
in this case.

Theorem 3.5. Every aperiodic automorphism of a unital Kirchberg algebra A
has the Rohlin property. Moreover, the following conditions are equivalent for
two aperiodic automorphisms α, β ∈ Aut(A):

(1) KK(α) = KK(β),

(2) there exist γ ∈ Aut(A) and u ∈ U(A) satisfying KK(γ) = KK(id) and
β = Adu ◦ γ ◦ α ◦ γ−1.

To generalize the above results to group actions, we need to formulate the
Rohlin property for group actions first. Nakamura [39] and the author [15]
discussed it for ZN -actions and finite group actions respectively. We present it
in a unified form here.

Let Γ be a countable group. We say that a Γ-action α on a unital C∗-
algebra A has the Rohlin property if for any finite set Γ0 ⊂ Γ \ {e}, there exist
finitely many subgroups Λ1,Λ2, . . . ,Λr < Γ of finite index such that Γ0 does
not intersect with any conjugate of Λj for 1 ≤ j ≤ r, and the following holds:
for any ε > 0, any finite set F ⊂ A, and any finite set Γ1 ⊂ Γ, there exists a
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partition of unity consisting of projections
⋃r

j=1{e
(j)
k }k∈Γ/Λj

⊂ A satisfying

∥∥∥αg(e
(j)
k )− e

(j)
gk

∥∥∥ < ε, 1 ≤ ∀j ≤ r, ∀k ∈ Γ/Λj , ∀g ∈ Γ1,

∥∥∥xe(j)k − e
(j)
k x

∥∥∥ < ε, 1 ≤ ∀j ≤ r, ∀k ∈ Γ/Λj , ∀x ∈ F.

It is easy to see that this condition forces Γ to be residually finite.
Toward the classification of Γ-actions, we have to take the following two

steps: (1) to show that every (strongly, if A is stably finite) outer Γ-action
has the Rohlin property, (2) to classify Γ-actions with the Rohlin property up
to cocycle conjugacy. When Γ is finite, the Rohlin property is reduced to the
condition with r = 1, Λj = {e}, and it gives a strong K-theoretical constraint.
In fact, there are many K-theoretical obstructions for the step (1), and we
have to give up general classification as in the two theorems above. On the
other hand, the step (2) has already been done by the author. For Γ = ZN , it
seems, at least to the author, that there is no obstruction to these two steps.
We report on the recent progress of these cases in the next two subsections.

3.4. Finite group actions. The reader is referred to [15],[16] for the
proofs of the results stated in this subsection.

Let Γ be a finite group. For a Γ-action α on a C∗-algebra A, the Rohlin
property takes the following form: for every ε > 0 and every finite set F ⊂ A,
there exists a partition of unity consisting of projections {eg}g∈Γ in A satisfying

‖αg(eh)− egh‖ < ε, ∀g, h ∈ Γ,

‖xeg − egx‖ < ε, ∀g ∈ Γ, ∀x ∈ F.

This condition implies that the following equation holds in K0(A) if ε is suffi-
ciently small: ∑

g∈Γ

K0(αg)([ee]0) = [1]0,

which looks a strong constraint for K0(A) as a Γ-module. In fact, a much
stronger statement holds. We say that a Γ-module M is cohomologically trivial
if the Tate cohomology Ĥ∗(Λ,M) vanishes for every subgroup Λ of Γ (see [4]).
If nM is cohomologically trivial for all n ∈ N, we say that M is completely
cohomologically trivial.

Theorem 3.6. Let α be an action of a finite group Γ on a simple unital C∗-
algebra A. If α has the Rohlin property, then K0(A) and K1(A) are completely
cohomologically trivial Γ-modules.

This immediately implies that any C∗-algebra A with either K0(A) ∼= Z or
K1(A) ∼= Z, e.g. A = O∞, has no nontrivial finite group action with the Rohlin
property.
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Although there is little hope to classify general outer actions of finite groups
on Kirchberg algebras, we have the following theorem for those with the Rohlin
property.

Theorem 3.7. Let Γ be a finite group.

(1) Let A be a unital Kirchberg algebra in Nnuc. If α and β are Γ-actions on
A with the Rohlin property such that K∗(αg) = K∗(βg) for all g ∈ Γ, then
there exists θ ∈ Aut(A) satisfying K∗(θ) = 1 and θ ◦αg ◦ θ

−1 = βg for all
g ∈ Γ.

(2) For countable completely cohomologically trivial Γ-modules M0 and M1,
there exists a Γ-action α with the Rohlin property on a unital Kirchberg
algebra A in Nnuc such that Ki(A) is isomorphic to Mi as a Γ-module for
i = 0, 1.

The statement (1) holds for A in the class in Theorem 3.3 too.
The Rohlin property for finite group actions is also useful to formulate the

following Γ-equivariant version of Theorem 3.1,(1).

Theorem 3.8. Let α be an outer action of a finite group Γ on a separable simple
unital nuclear C∗-algebra A. Then the Γ-action id⊗α on O2 ⊗ A is conjugate
to a unique (up to conjugate) Γ-action on O2 with the Rohlin property.

If we restrict ourself to Z/2Z-actions on O2, we have a reasonable classi-
fication result. We say that a Z/2Z-action α on a C∗-algebra A is strongly
approximately inner if there exists a sequence of unitaries {un}

∞
n=1 ⊂ Aα such

that the sequence {unxu
∗
n}

∞
n=1 converges to α1(x) for all x ∈ A. If moreover we

can choose un to be self-adjoint, we say that α is approximately representable.
It is easy to see that the dual action of an approximately representable action
has the Rohlin property. Showing that strongly approximate innerness implies
approximate representability in the case of O2, the author obtained the follow-
ing theorem by classifying the dual actions.

Theorem 3.9. Let α and β be outer strongly approximately inner Z/2Z-actions
on O2.

(1) Two actions α and β are cocycle conjugate if and only if their crossed
products are isomorphic.

(2) Two actions α and β are conjugate if and only if their fixed point algebras
are isomorphic.

The K-groups of the crossed product of O2 by any Z/2Z-action are always
uniquely 2-divisible (i.e. multiplying by 2 is a group automorphism). On the
other hand, for any countable uniquely 2-divisible abelian groups M0, M1,
there exists an outer Z/2Z-action α on O2 satisfying Ki(O2oαZ/2Z) ∼= Mi for
i = 0, 1. Every known Z/2Z-action on O2 is strongly approximately inner (and
hence approximately representable).
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The reader is referred to [38], [44], [45] for the permanence property of
classifiable classes under the crossed products by finite group actions with the
Rohlin property (or its variant).

3.5. ZN -actions. The Rohlin property for ZN -actions on C∗-algebras was
first discussed by Nakamura [39]. He showed that the Rohlin property of Z2-
actions on the UHF-algebras is equivalent to strong outerness as in Theorem
3.4, and he classified product type Z2-actions with the Rohlin property. This
classification result was generalized by Katsura and Matui [24] to general Z2-
actions with the Rohlin property on the UHF-algebras (see also [37]).

Matui and the author [18] recently classified a large class of outer Z2-actions
on a Kirchberg algebra A by KK1(A,A). We say that two actions α and β of
a group Γ on A are KK-trivially cocycle conjugate if there exist γ ∈ Aut(A)
with KK(γ) = KK(id) and α-cocycle u satisfying γ ◦ βg ◦ γ−1 = αu

g for all
g ∈ Γ.

Theorem 3.10. Let A be a unital Kirchberg algebra.

(1) Every outer ZN -action on A has the Rohlin property.

(2) There exists a one-to-one correspondence between

{x ∈ KK1(A,A)| [1]0#x = 0 ∈ K1(A)},

and the set of KK-trivially cocycle conjugacy classes of outer Z2-actions
α with KK(αg) = KK(id) for all g ∈ Z2.

We can see from (2) that there exist exactly n− 1 cocycle conjugacy classes
of outer Z2-actions on the Cuntz algebra On for finite n.

The classification invariant in KK1(A,A) arises in the following way. Let
G be a path connected topological group, and let g, h ∈ G with gh = hg. We
choose a continuous path {g(t)}t∈[0,1] in G connecting e and g. Then the path
{g(t)hg(t)−1h−1}t∈[0,1] is a loop inG. It is easy to show that the class of the loop
in the fundamental group π1(G) does not really depend on the choice of the path
{g(t)}t∈[0,1]. For a Z2-action α, we could apply this argument to G = Aut(A)0,
the connected component of id, and the images of the canonical generators
of Z2 if they were in Aut(A)0. Although our assumption KK(αg) = KK(id)
does not really imply αg ∈ Aut(A)0, it is known that θ ∈ Aut(A) satisfies
KK(θ) = KK(id) if and only if θ ⊗ id ∈ Aut(A ⊗ K)0. Thus we can apply
the argument to the stabilization of α. On the other hand, Dadarlat [6] showed
that π1(Aut(A⊗K)0) is isomorphic to KK1(A,A), and we get an invariant of
α in KK1(A,A).

For ZN -actions, Matui [36], and Matui and the author [18] obtained the
following uniqueness result.

Theorem 3.11. Let A be either O2, O∞, or O∞ ⊗ B with B being a UHF-
algebra of infinite type (i.e. B ∼= B ⊗ B). Then there exists a unique cocycle
conjugacy class of outer ZN -actions on A for any natural number N .
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A unital C∗-algebra A 6= C is said to be strongly self-absorbing if there
exists an isomorphism ρ from A onto A ⊗ A that is approximately unitarily
equivalent to the inclusion map A 3 x 7→ x⊗1 ∈ A⊗A. A C∗-algebra A is said
to be K1-injective if the canonical map from U(A)/U(A)0 to K1(A) is injective.
The C∗-algebras in the statement of Theorem 3.11 are examples of strongly self-
absorbing K1-injective C∗-algebras. The UHF-algebras of infinite type and the
Jiang-Su algebra Z are other examples. Indeed, Katsura and Matui [24], and
Matui and Sato [38] showed the following.

Theorem 3.12. Let A be either a UHF-algebra of infinite type or the Jiang-Su
algebra Z. Then there exists a unique cocycle conjugacy class of strongly outer
Z2-actions on A.

3.6. Conjectures. Before ending this note, we clarify what our classi-
fication invariant in Theorem 3.10 means in obstruction theory (see [49] for
example), and present two conjectures, which would generalize Theorem 3.10,
Theorem 3.11, and Theorem 3.12.

Let Γ be a discrete group, and let G be a topological group. We denote by
BΓ the classifying space of Γ, and denote by EΓ the universal covering space
of BΓ. To a homomorphism ρ : Γ → G, we can associate a principal G-bundle
Pρ over BΓ, which is the quotient space of EΓ×G by the equivalence relation
(x · γ, g) ∼ (x, ρ(γ)g) for x ∈ EΓ, g ∈ G and γ ∈ Γ. For two homomorphisms
ρ and σ, whether Pρ and Pσ are isomorphic or not can be determined as
follows. Let Iρ,σ be the quotient space of EΓ × G by the equivalence relation
(x · γ, g) ∼ (x, ρ(γ)gσ(γ)−1) for x ∈ EΓ, g ∈ G and γ ∈ Γ, which is a fiber
bundle over BΓ. Then the two principal G-bundles Pρ and Pσ over BΓ are
isomorphic if and only if Iρ,σ has a continuous section.

Assume now that Γ = Z2 and G is path connected. For g = ρ((1, 0)) and
h = ρ((0, 1)), the π1-class of the loop {g(t)hg(t)−1h−1}t∈[0,1] discussed in the
previous subsection can be identified with the the primary obstruction class in

H2(BZ
2, π1(G)) = H2(T2, π1(G)) ∼= π1(G),

for the existence of a continuous section of the principal G-bundle Pρ over T2.
The author would like to thank Sergey Neshveyev for this observation.

Whenever an action α of a group Γ on a C∗-algebra A is given, we can
associate to α a principal Aut(A)-bundle Pα over the classifying space BΓ,
where Aut(A) is not necessarily connected. We denote by Aut(A)s the subgroup
of Aut(A ⊗ K) generated by Aut(A) and the inner automorphism group of
A⊗K, where we identifying θ ∈ Aut(A) with θ ⊗ id ∈ Aut(A⊗K). We regard
the stabilization αs of α as a homomorphism from Γ to Aut(A)s, and denote
by Ps

α the corresponding principal Aut(A)s-bundle over BΓ. If two Γ-actions α
and β are cocycle conjugate, their stabilizations are conjugate in Aut(A)s, and
so the two principal Aut(A)s-bundles P

s
α and Ps

β are isomorphic. When A is a
unital Kirchberg algebra, and KK(αg) = KK(id) for all g ∈ Γ, we can regard



1544 Masaki Izumi

αs as a homomorphism from Γ to Aut(A⊗K)0 too, and we denote by Ps,0
α the

corresponding principal Aut(A⊗K)0-bundle over BΓ.

Conjecture 1. Let A be a unital Kirchberg algebra, and let Γ be a countable
amenable group whose classifying space BΓ has the homotopy type of a finite
CW complex.

(1) Two outer actions α and β of Γ on A are cocycle conjugate if and only if
the principal Aut(A)s-bundles Ps

α and Ps
β over BΓ are isomorphic.

(2) Let α and β be outer actions of Γ on A satisfying KK(αg) = KK(βg) =
KK(id) for all g ∈ Γ. The two actions α and β are KK-trivially cocycle
conjugate if and only if the principal Aut(A⊗K)0-bundles Ps,0

α and Ps,0
β

over BΓ are isomorphic.

Conjecture 1 is true for Γ = Z thanks to Theorem 3.5, and (2) is true for
Γ = Z2 thanks to Theorem 3.10. Finite groups are excluded from the conjecture
because the classifying space BΓ does not have the homotopy type of a finite
CW complex for any nontrivial finite group Γ.

Classical obstruction theory says that whether Ps,0
α and Ps,0

β are isomorphic
or not can be determined by computing relevant cohomology classes in

Hn(BΓ, πn−1(Aut(A⊗K)0)), 2 ≤ n ≤ dimBΓ.

This can be done, at least in principle, because Dadarlat [8] computed the
homotopy groups πn(Aut(A⊗K)) for the Kirchberg algebras.

Dadarlat and Winter [7] showed that if A is a strongly self-absorbing K1-
injective C∗-algebra, the homotopy groups πn(Aut(A)) are trivial for n ≥ 0.
This implies that if α is a Γ-action on such a C∗-algebra A, the principal
Aut(A)-bundle Pα over BΓ is trivial.

Conjecture 2. Let Γ be a countable amenable group whose classifying space
BΓ has the homotopy type of a finite CW complex.

(1) If A is either O2, O∞ or O∞ ⊗B with B being a UHF-algebra of infinite
type, there exists a unique cocycle conjugacy class of outer Γ-actions on
A.

(2) If A is either a UHF-algebra of infinite type or the Jiang-Su algebra Z,
there exists a unique cocycle conjugacy class of strongly outer Γ-actions
on A.

If Γ is a cocompact lattice of a simply connected solvable Lie group S, we
may choose S for EΓ because S is homeomorphic to Rn. Thus the assumption
on Γ in the two conjectures above is satisfied. For a Γ-action α on a C∗-algebra
A, we let

Mα = {f ∈ Cb(S,A)| f(xγ) = αγ
−1(f(x)), ∀x ∈ S, γ ∈ Γ},
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where Cb(S,A) is the set of bounded continuous maps from S to A. The C∗-
algebra Mα is identified with the set of continuous sections of the fiber bundle
Pα ×Aut(A) A over BΓ associated with Pα. Therefore the isomorphism class
of Pα determines Mα, and hence the K-theory of Mα. On the other hand,
since the crossed product Mα oλ S by the left translation action λ is stably
isomorphic to the crossed product A oα Γ, the K-theory of Mα is the same
as that of A oα Γ, up to degree change, thanks to repeated use of Connes’s
Thom isomorphism. This means that the isomorphism class of Pα determines
the K-theory of Aoα Γ, which is consistent with the two conjectures above.
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Abstract

We survey connections between the theory of bi-Lipschitz embeddings and the
Sparsest Cut Problem in combinatorial optimization. The story of the Spars-
est Cut Problem is a striking example of the deep interplay between analysis,
geometry, and probability on the one hand, and computational issues in dis-
crete mathematics on the other. We explain how the key ideas evolved over the
past 20 years, emphasizing the interactions with Banach space theory, geomet-
ric measure theory, and geometric group theory. As an important illustrative
example, we shall examine recently established connections to the the structure
of the Heisenberg group, and the incompatibility of its Carnot-Carathéodory
geometry with the geometry of the Lebesgue space L1.
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1. Introduction

Among the common definitions of the Heisenberg group H, it will be convenient
for us to work here with H modeled as R3, equipped with the group product

(a, b, c) · (a′, b′, c′) def
= (a+ a′, b+ b′, c+ c′ + ab′ − ba′). The integer lattice Z3 is

then a discrete cocompact subgroup of H, denoted by H(Z), which is generated
by the finite symmetric set {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}. The word metric
on H(Z) induced by this generating set will be denoted by dW .

As noted by Semmes [66], a differentiability result of Pansu [61] implies
that the metric space (H(Z), dW ) does not admit a bi-Lipschitz embedding
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into Rn for any n ∈ N. This was extended by Pauls [62] to bi-Lipschitz non-
embeddability results of (H(Z), dW ) into metric spaces with either lower or
upper curvature bounds in the sense of Alexandrov. In [52, 27] it was observed
that Pansu’s differentiability argument extends to Banach space targets with
the Radon-Nikodým property (see [14, Ch. 5]), and hence H(Z) does not admit
a bi-Lipschitz embedding into, say, a Banach space which is either reflexive or
is a separable dual; in particular H(Z) does not admit a bi-Lipschitz embedding
into any Lp(µ) space, 1 < p < ∞, or into the sequence space `1.

The embeddability of H(Z) into the function space L1(µ), when µ is non-
atomic, turned out to be much harder to settle. This question is of particular
importance since it is well understood that for µ non-atomic, L1(µ) is a space
for which the differentiability results quoted above manifestly break down. Nev-
ertheless, Cheeger and Kleiner [26, 25] introduced a novel notion of differen-
tiability for which they could prove a differentiability theorem for Lipschitz
maps from the Heisenberg group to L1(µ), thus establishing that H(Z) does
not admit a bi-Lipschitz embedding into any L1(µ) space.

Another motivation for the L1(µ) embeddability question for H(Z) origi-
nates from [52], where it was established that it is connected to the Sparsest Cut
Problem in the field of combinatorial optimization. For this application it was
of importance to obtain quantitative estimates in the L1(µ) non-embeddability
results for H(Z). It turns out that establishing such estimates is quite subtle, as
they require overcoming finitary issues that do not arise in the infinite setting
of [25, 28]. The following two theorems were proved in [29, 30]. Both theorems
follow painlessly from a more general theorem that is stated and discussed in
Section 5.4.

Theorem 1.1. There exists a universal constant c > 0 such that any embedding
into L1(µ) of the restriction of the word metric dW to the n × n × n grid
{1, . . . , n}3 incurs distortion & (log n)c.

Following Gromov [38], the compression rate of f : H(Z) → L1(µ), denoted
ωf (·), is defined as the largest non-decreasing function such that for all x, y ∈
H(Z) we have ‖f(x)− f(y)‖1 > ωf (dW (x, y)) (see [7] for more information on
this topic).

Theorem 1.2. There exists a universal constant c > 0 such that for every
function f : H(Z) → L1(µ) which is 1-Lipschitz with respect to the word metric
dW , we have ωf (t) . t/(log t)c for all t > 2.

Evaluating the supremum of those c > 0 for which Theorem 1.1 holds true
remains an important open question, with geometric significance as well as
importance to theoretical computer science. Conceivably we could get c in
Theorem 1.1 to be arbitrarily close to 1

2 , which would be sharp since the
results of [8, 64] imply (see the explanation in [41]) that the metric space
(

{1, . . . , n}3, dW
)

embeds into `1 with distortion .
√
log n. Similarly, we do

not know the best possible c in Theorem 1.2; 1
2 is again the limit here since it
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was shown in [69] that there exists a 1-Lipschitz mapping f : H(Z) → `1 for
which ωf (t) & t/(

√
log t · log log t).

The purpose of this article is to describe the above non-embeddability re-
sults for the Heisenberg group. Since one of the motivations for these investi-
gations is the application to the Sparsest Cut Problem, we also include here a
detailed discussion of this problem from theoretical computer science, and its
deep connections to metric geometry. Our goal is to present the ideas in a way
that is accessible to mathematicians who do not necessarily have background
in computer science.

Acknowledgements. I am grateful to the following people for helpful com-
ments and suggestions on earlier versions of this manuscript: Tim Austin,
Keith Ball, Subhash Khot, Bruce Kleiner, Russ Lyons, Manor Mendel, Gideon
Schechtman, Lior Silberman.

2. Embeddings

A metric space (M , dM ) is said to embed with distortion D > 1 into a metric
space (Y , dY ) if there exists a mapping f : M → Y , and a scaling factor s > 0,
such that for all x, y ∈ M we have sdM (x, y) 6 dY (f(x), f(y)) 6 DsdM (x, y).
The infimum over those D > 1 for which (M , dM ) embeds with distortion D
into (Y , dY ) is denoted by cY (M ). If (M , dM ) does not admit a bi-Lipschitz
embedding into (Y , dY ), we will write cY (M ) = ∞.

Throughout this paper, for p > 1, the space Lp will stand for Lp([0, 1], λ),
where λ is Lebesgue measure. The spaces `p and `np will stand for the space of
p-summable infinite sequences, and Rn equipped with the `p norm, respectively.
Much of this paper will deal with bi-Lipschitz embeddings of finitemetric spaces
into Lp. Since every n-point subset of an Lp(Ω, µ) space embeds isometrically

into `
n(n−1)/2
p (see the discussion in [12]), when it comes to embeddings of finite

metric spaces, the distinction between different Lp(Ω, µ) spaces is irrelevant.
Nevertheless, later, in the study of the embeddability of the Heisenberg group,
we will need to distinguish between sequence spaces and function spaces.

For p > 1 we will use the shorter notation cp(M ) = cLp
(M ). The parameter

c2(M ) is known as the Euclidean distortion of M . Dvoretzky’s theorem says
that if Y is an infinite dimensional Banach space then cY (`n2 ) = 1 for all n ∈ N.
Thus, for every finite metric space M and every infinite dimensional Banach
space Y , we have c2(M ) > cY (M ).

The following famous theorem of Bourgain [15] will play a key role in what
follows:

Theorem 2.1 (Bourgain’s embedding theorem [15]). For every n-point metric
space (M , dM ), we have

c2(M ) . log n. (1)



1552 Assaf Naor

Bourgain proved in [15] that the estimate (1) is sharp up to an iterated
logarithm factor, i.e., that there exist arbitrarily large n-point metric spaces Mn

for which c2(Mn) &
logn

log logn . The log log n term was removed in the important

paper [56] of Linial, London and Rabinovich, who showed that the shortest path
metric on bounded degree n-vertex expander graphs has Euclidean distortion
& log n.

If one is interested only in embeddings into infinite dimensional Banach
spaces, then Theorem 2.1 is stated in the strongest possible form: as noted
above, it implies that for every infinite dimensional Banach space Y , we have
cY (M ) . log n. Below, we will actually use Theorem 2.1 for embeddings into
L1, i.e., we will use the fact that c1(M ) . log n. The expander based lower
bound of Linial, London and Rabinovich [56] extends to embeddings into L1

as well, i.e., even this weaker form of Bourgain’s embedding theorem is asymp-
totically sharp. We refer to [58, Ch. 15] for a comprehensive discussion of these
issues, as well as a nice presentation of the proof of Bourgain’s embedding
theorem.

3. L1 as a Metric Space

Let (Ω, µ) be a measure space. Define a mapping T : L1(Ω, µ) → L∞(Ω×R, µ×
λ), where λ is Lebesgue measure, by:

T (f)(ω, x)
def
=







1 0 < x 6 f(ω),
−1 f(ω) < x < 0,
0 otherwise.

For all f, g ∈ L1(Ω, µ) we have:

∣

∣

∣
T (f)(ω, x)− T (g)(ω, x)

∣

∣

∣
=

{

1 g(ω) < x 6 f(ω) or f(ω) < x 6 g(ω),
0 otherwise.

Thus, for all p > 0 we have,

‖T (f)− T (g)‖pLp(Ω×R,µ×λ) =

∫

Ω

(

∫

(g(ω),f(ω)]t(f(ω),g(ω)]

dλ

)

dµ(ω)

=

∫

Ω

|f(ω)− g(ω)|dµ(ω) = ‖f − g‖L1(Ω,µ). (2)

Specializing (2) to p = 2, we see that:

‖T (f)− T (g)‖L2(Ω×R,µ×λ) =
√

‖f − g‖L1(Ω,µ).

Corollary 3.1. The metric space
(

L1(Ω, µ), ‖f − g‖1/2L1(Ω,µ)

)

admits an iso-

metric embedding into Hilbert space.
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Another useful corollary is obtained when (2) is specialized to the case p = 1.
Take an arbitrary finite subset X ⊆ L1(Ω, µ). For every (ω, x) ∈ Ω×R consider
the set S(ω, x) = {f ∈ X : x 6 f(ω)} ⊆ X. For every S ⊆ X we can define
a measurable subset ES = {(ω, x) ∈ Ω × R : S(ω, x) = S} ⊆ Ω × R. By the
definition of T , for every f, g ∈ X we have

‖f − g‖L1(Ω,µ)
(2)
= ‖T (f)− T (g)‖L1(Ω×R,µ×λ)

=

∫

Ω×R

∣

∣

∣
1S(w,x)(f)− 1S(w,x)(g)

∣

∣

∣
d(µ× λ)(ω, x)

=
∑

S⊆X

(µ× λ)(ES)
∣

∣

∣
1S(f)− 1S(g)

∣

∣

∣
,

where here, and in what follows, 1S(·) is the characteristic function of S. Writing
βS = (µ× λ)(ES), we have the following important corollary:

Corollary 3.2. Let X ⊆ L1(Ω, µ) be a finite subset of L1(Ω, µ). Then there
exist nonnegative numbers {βS}S⊆X ⊆ [0,∞) such that for all f, g ∈ X we
have:

‖f − g‖L1(Ω,µ) =
∑

S⊆X

βS

∣

∣

∣
1S(f)− 1S(g)

∣

∣

∣
. (3)

A metric space (M , dM ) is said to be of negative type if the metric space
(

M , d
1/2
M

)

admits an isometric embedding into Hilbert space. Such metrics will

play a crucial role in the ensuing discussion. This terminology (see e.g., [33]) is
due to a classical theorem of Schoenberg [65], which asserts that (M , dM ) is
of negative type if and only if for every n ∈ N and every x1, . . . , xn ∈ X, the
matrix (dM (xi, xj))

n
i,j=1 is negative semidefinite on the orthogonal complement

of the main diagonal in Cn, i.e., for all ζ1, . . . , ζn ∈ C with
∑n

j=1 ζj = 0 we have
∑n

i=1

∑n
j=1 ζiζjdM (xi, xj) 6 0. Corollary (3.1) can be restated as saying that

L1(Ω, µ) is a metric space of negative type.
Corollary (3.2) is often called the cut cone representation of L1 metrics. To

explain this terminology, consider the set C ⊆ Rn2

of all n × n real matrices
A = (aij) such that there is a measure space (Ω, µ) and f1, . . . , fn ∈ L1(Ω, µ)
with aij = ‖fi − fj‖L1(Ω,µ) for all i, j ∈ {1, . . . , n}. If f1, . . . , fn ∈ L1(Ω1, µ1)
and g1, . . . , gn ∈ L1(Ω2, µ2) then for all c1, c2 > 0 and i, j ∈ {1, . . . , n} we have

c1‖fi − fj‖L1(Ω1,µ1) + c2‖fi − fj‖L1(Ω2,µ2) = ‖hi − hj‖L1(Ω1tΩ2,µ1tµ2),

where h1, . . . , hn are functions defined on the disjoint union Ω1 tΩ2 as follows:
hi(ω) = c1fi(ω)1Ω1

(ω) + c2gi(ω)1Ω2
(ω). This observation shows that C is a

cone (of dimension n(n− 1)/2). Identity (3) says that the cone C is generated
by the rays induced by cut semimetrics, i.e., by matrices of the form aij =
|1S(i) − 1S(j)| for some S ⊆ {1, . . . , n}. It is not difficult to see that these
rays are actually the extreme rays of the cone C . Carathéodory’s theorem (for
cones) says that we can choose the coefficients {βS}S⊆X in (3) so that only
n(n− 1)/2 of them are non-zero.
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4. The Sparsest Cut Problem

Given n ∈ N and two symmetric functions C,D : {1, . . . , n} × {1, . . . , n} →
[0,∞) (called capacities and demands, respectively), and a subset ∅ 6= S (

{1, . . . , n}, write

Φ(S)
def
=

∑n
i=1

∑n
j=1 C(i, j) · |1S(i)− 1S(j)|

∑n
i=1

∑n
j=1 D(i, j) · |1S(i)− 1S(j)|

. (4)

The value

Φ∗(C,D)
def
= min

∅6=S({1,...,n}
Φ(S) (5)

is the minimum over all cuts (two-part partitions) of {1, . . . , n} of the ratio
between the total capacity crossing the boundary of the cut and the total
demand crossing the boundary of the cut.

Finding in polynomial time a cut for which Φ∗(C,D) is attained up to a defi-
nite multiplicative constant is called the Sparsest Cut problem. This problem is
used as a subroutine in many approximation algorithms for NP-hard problems;
see the survey articles [68, 22], as well as [53, 1] and the references in [6, 5]
for some of the vast literature on this topic. Computing Φ∗(C,D) exactly has
been long known to be NP-hard [67]. More recently, it was shown in [31] that
there exists ε0 > 0 such that it is NP-hard to approximate Φ∗(C,D) to within
a factor smaller than 1 + ε0. In [47, 24] it was shown that it is Unique Games
hard to approximate Φ∗(C,D) to within any constant factor (see [44, 45] for
more information on the Unique Games Conjecture; we will return to this issue
in Section 4.3.3).

It is customary in the literature to highlight the support of the capacities
function C: this allows us to introduce a particulary important special case of
the Sparsest Cut Problem. Thus, a different way to formulate the above setup
is via an n-vertex graph G = (V,E), with a positive weight (called a capacity)
C(e) associated to each edge e ∈ E, and a nonnegative weight (called a demand)
D(u, v) associated to each pair of vertices u, v ∈ V . The goal is to evaluate in
polynomial time (and in particular, while examining only a negligible fraction
of the subsets of V ) the quantity:

Φ∗(C,D) = min
∅6=S(V

∑

uv∈E C(uv) |1S(u)− 1S(v)|
∑

u,v∈V D(u, v) |1S(u)− 1S(v)|
.

To get a feeling for the meaning of Φ∗, consider the case C(e) = D(u, v) = 1
for all e ∈ E and u, v ∈ V . This is an important instance of the Sparsest Cut
problem which is called “Sparsest Cut with Uniform Demands”. In this case
Φ∗ becomes:

Φ∗ = min
∅6=S(V

#{edges joining S and V \ S}
|S| · |V \ S| .



Embeddings of the Heisenberg Group 1555

Thus, in the case of uniform demands, the Sparsest Cut problem essentially
amounts to solving efficiently the combinatorial isoperimetric problem on G:
determining the subset of the graph whose ratio of edge boundary to its size is
as small as possible.

In the literature it is also customary to emphasize the size of the support
of the demand function D, i.e., to state bounds in terms of the number k of
pairs {i, j} ⊆ {1, . . . , n} for which D(i, j) > 0. For the sake of simplicity of
exposition, we will not adopt this convention here, and state all of our bounds
in terms of n rather than the number of positive demand pairs k. We refer to
the relevant references for the simple modifications that are required to obtain
bounds in terms of k alone.

From now on, the Sparsest Cut problem will be understood to be with
general capacities and demands; when discussing the special case of uniform
demands we will say so explicitly. In applications, general capacities and de-
mands are used to tune the notion of “interface” between S and V \ S to a
wide variety of combinatorial optimization problems, which is one of the rea-
sons why the Sparsest Cut problem is so versatile in the field of approximation
algorithms.

4.1. Reformulation as an optimization problem over L1.
Although the Sparsest Cut Problem clearly has geometric flavor as a discrete
isoperimetric problem, the following key reformulation of it, due to [11, 56],
explicitly relates it to the geometry of L1.

Lemma 4.1. Given symmetric C,D : {1, . . . , n} × {1, . . . , n} → [0,∞), we
have:

Φ∗(C,D) = min
f1,...,fn∈L1

∑n
i=1

∑n
j=1 C(i, j)‖fi − fj‖1

∑n
i=1

∑n
j=1 D(i, j)‖fi − fj‖1

. (6)

Proof. Let φ denote the right hand side of (6), and write Φ∗ = Φ∗(C,D).
Given a subset S ⊆ {1, . . . , n}, by considering fi = 1S(i) ∈ {0, 1} ⊆ L1 we see
that that φ 6 Φ∗. In the reverse direction, if X = {f1, . . . , fn} ⊆ L1 then let
{βS}S⊆X be the non-negative weights from Corollary 3.2. For S ⊆ X define
a subset of {1, . . . , n} by S′ = {i ∈ {1, . . . , n} : fi ∈ S}. It follows from the
definition of Φ∗ that for all S ⊆ X we have,

n
∑

i=1

n
∑

j=1

C(i, j)|1S(fi)− 1S(fj)|
(4)
= Φ(S′)

n
∑

i=1

n
∑

j=1

D(i, j)|1S(fi)− 1S(fj)|

(5)

> Φ∗
n
∑

i=1

n
∑

j=1

D(i, j)|1S(fi)− 1S(fj)|. (7)



1556 Assaf Naor

Thus

n
∑

i=1

n
∑

j=1

C(i, j)‖fi − fj‖1
(3)
=
∑

S⊆X

βS

n
∑

i=1

n
∑

j=1

C(i, j)|1S(fi)− 1S(fj)|

(7)

> Φ∗ ∑

S⊆X

βS

n
∑

i=1

n
∑

j=1

D(i, j)|1S(fi)− 1S(fj)|
(3)
=

n
∑

i=1

n
∑

j=1

D(i, j)‖fi − fj‖1.

It follows that φ > Φ∗, as required.

4.2. The linear program. Lemma 4.1 is a reformulation of the Sparsest
Cut Problems in terms of a continuous optimization problem on the space
L1. Being a reformulation, it shows in particular that solving L1 optimization
problems such as the right hand side of (6) is NP-hard.

In the beautiful paper [53] of Leighton and Rao it was shown that there
exists a polynomial time algorithm that, given an n-vertex graph G = (V,E),
computes a number which is guaranteed to be within a factor of . log n of
the uniform Sparsest Cut value (4). The Leighton-Rao algorithm uses com-
binatorial ideas which do not apply to Sparsest Cut with general demands.
A breakthrough result, due to Linial-London-Rabinovich [56] and Aumann-
Rabani [9], introduced embedding methods to this field, yielding a polyno-
mial time algorithm which computes Φ∗(C,D) up to a factor . log n for all
C,D : {1, . . . , n} × {1, . . . , n} → [0,∞).

The key idea of [56, 9] is based on replacing the finite subset {f1, . . . , fn} of
L1 in (6) by an arbitrary semimetric on {1, . . . , n}. Specifically, by homogene-
ity we can always assume that the denominator in (6) equals 1, in which case
Lemma 4.1 says that Φ∗(C,D) equals the minimum of

∑n
i=1

∑n
j=1 C(i, j)dij ,

given that
∑n

i=1

∑n
j=1 D(i, j)dij = 1 and there exist f1, . . . , fn ∈ L1 for which

dij = ‖fi−fj‖1 for all i, j ∈ {1, . . . , n}. We can now ignore the fact that dij was
a semimetric that came from a subset of L1, i.e., we can define M∗(C,D) to be
the minimum of

∑n
i=1

∑n
j=1 C(i, j)dij , given that

∑n
i=1

∑n
j=1 D(i, j)dij = 1,

dii = 0, dij > 0, dij = dji for all i, j ∈ {1, . . . , n} (n(n − 1)/2 symmetry con-
straints) and dij 6 dik + dkj for all i, j, k ∈ {1, . . . , n} (6 n3 triangle inequality
constraints).

Clearly M∗(C,D) 6 Φ∗(C,D), since we are minimizing over all semimetrics
rather than just those arising from subsets of L1. Moreover, M∗(C,D) can be
computed in polynomial time up to arbitrarily good precision [40], since it is a
linear program (minimizing a linear functional in the variables (dij) subject to
polynomially many linear constraints).

The linear program produces a semimetric d∗ij on {1, . . . , n} which satisfies

M∗(C,D) =
∑n

i=1

∑n
j=1 C(i, j)d∗ij and

∑n
i=1

∑n
j=1 D(i, j)d∗ij = 1 (ignoring ar-

bitrarily small errors). By Lemma 4.1 we need to somehow relate this semimetric
to L1. It is at this juncture that we see the power of Bourgain’s embedding the-
orem 2.1: the constraints of the linear program only provide us the information
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that d∗ij is a semimetric, and nothing else. So, we need to be able to somehow
handle arbitrary metric spaces—precisely what Bourgain’s theorem does, by
furnishing f1, . . . , fn ∈ L1 such that for all i, j ∈ {1, . . . , n} we have

d∗ij
log n

. ‖fi − fj‖1 6 d∗ij . (8)

Now,

Φ∗(C,D)
(6)

6

∑n
i=1

∑n
j=1 C(i, j)‖fi − fj‖1

∑n
i=1

∑n
j=1 D(i, j)‖fi − fj‖1

(8)

. log n ·
∑n

i=1

∑n
j=1 C(i, j)d∗ij

∑n
i=1

∑n
j=1 D(i, j)d∗ij

= log n ·M∗(C,D). (9)

Thus, Φ∗(C,D)
logn . M∗(C,D) 6 Φ∗(C,D), i.e., the polynomial time algorithm

of computing M∗(C,D) is guranteed to produce a number which is within a
factor . log n of Φ∗(C,D).

Remark 4.2. In the above argument we only discussed the algorithmic task of
fast estimation of the number Φ∗(C,D), rather than the problem of producing
in polynomial time a subset ∅ 6= S ( {1, . . . , n} for which Φ∗(S) is close up
to a certain multiplicative guarantee to the optimum value Φ∗(C,D). All the
algorithms discussed in this paper produce such a set S, rather than just ap-
proximating the number Φ∗(C,D). In order to modify the argument above to
this setting, one needs to go into the proof of Bourgain’s embedding theorem,
which as currently stated as just an existential result for f1, . . . , fn as in (8).
This issue is addressed in [56], which provides an algorithmic version of Bour-
gain’s theorem. Ensuing algorithms in this paper can be similarly modified to
produce a good cut S, but we will ignore this issue from now on, and continue
to focus solely on algorithms for approximate computation of Φ∗(C,D).

4.3. The semidefinite program. We have already stated in Section 2
that the logarithmic loss in the application (8) of Bourgain’s theorem cannot be
improved. Thus, in order to obtain a polynomial time algorithm with approxi-
mation guarantee better than . log n, we need to impose additional geometric
restrictions on the metric d∗ij ; conditions that will hopefully yield a class of
metric spaces for which one can prove an L1 distortion bound that is asymp-
totically smaller than the . log n of Bourgain’s embedding theorem. This is
indeed possible, based on a quadratic variant of the discussion in Section 4.2;
an approach due to Goemans and Linial [37, 55, 54].

The idea of Goemans and Linial is based on Corollary 3.1, i.e., on the
fact that the metric space L1 is of negative type. We define M∗∗(C,D)
to be the minimum of

∑n
i=1

∑n
j=1 C(i, j)dij , subject to the constraint that

∑n
i=1

∑n
j=1 D(i, j)dij = 1 and dij is a semimetric of negative type on {1, . . . , n}.
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The latter condition can be equivalently restated as the requirement that, in ad-
dition to dij being a semimetric on {1, . . . , n}, there exist vectors v1, . . . , vn ∈ L2

such that dij = ‖vi − vj‖22 for all i, j ∈ {1, . . . , n}. Equivalently, there ex-
ists a symmetric positive semidefinite n× n matrix (aij) (the Gram matrix of
v1, . . . , vn), such that dij = aii + ajj − 2aij for all i, j ∈ {1, . . . , n}.

Thus, M∗∗(C,D) is the minimum of
∑n

i=1

∑n
j=1 C(i, j)(aii + ajj − 2aij),

a linear function in the variables (aij), subject to the constraint that (aij) is
a symmetric positive semidefinite matrix, in conjunction with the linear con-
straints

∑n
i=1

∑n
j=1 D(i, j)(aii + ajj − 2aij) = 1 and for all i, j, k ∈ {1, . . . , n},

the triangle inequality constraint aii + ajj − 2aij 6 (aii + akk − 2aik) + (akk +
ajj−2akj). Such an optimization problem is called a semidefinite program, and
by the methods described in [40], M∗∗(C,D) can be computed with arbitrarily
good precision in polynomial time.

Corollary 3.1 and Lemma 4.1 imply that M∗(C,D) 6 M∗∗(C,D) 6

Φ∗(C,D). The following breakthrough result of Arora, Rao and Vazirani [6]
shows that for Sparsest Cut with uniform demands the Goemans-Linial ap-
proach does indeed yield an improved approximation algorithm:

Theorem 4.3 ([6]). In the case of uniform demands, i.e., if C(i, j) ∈ {0, 1}
and D(i, j) = 1 for all i, j ∈ {1, . . . , n}, we have

Φ∗(C,D)√
log n

. M∗∗(C,D) 6 Φ∗(C,D). (10)

In the case of general demands we have almost the same result, up to lower
order factors:

Theorem 4.4 ([5]). For all symmetric C,D : {1, . . . , n}× {1, . . . , n} → [0,∞)
we have

Φ∗(C,D)

(log n)
1

2
+o(1)

. M∗∗(C,D) 6 Φ∗(C,D). (11)

The o(1) term in (11) is. log log logn
log logn . We conjecture that it could be removed

altogether, though at present it seems to be an inherent artifact of complications
in the proof in [5].

Before explaining some of the ideas behind the proofs of Theorem 4.3 and
Theorem 4.4 (the full details are quite lengthy and are beyond the scope of this
survey), we prove, following [58, Prop. 15.5.2], a crucial identity (attributed
in [58] to Y. Rabinovich) which reformulates these results in terms of an L1

embeddability problem.

Lemma 4.5. We have

sup

{

Φ∗(C,D)

M∗∗(C,D)
: C,D : {1, . . . , n} × {1, . . . , n} → (0,∞)

}

= sup
{

c1
(

{1, . . . , n}, d
)

: d is a metric of negative type
}

. (12)



Embeddings of the Heisenberg Group 1559

Proof. The proof of the fact that the left hand side of (12) is at most the right
hand side of (12) is identical to the way (9) was deduced from (8).

In the reverse direction, let d∗ be a metric of negative type on {1, . . . , n} for

which c1({1, . . . , n}, d∗) def
= c is maximal among all such metrics. Let C ⊆ Rn2

be the cone in the space of n× n symmetric matrices from the last paragraph
of Section 3, i.e., C consists of all matrices of the form (‖fi − fj‖1) for some
f1, . . . , fn ∈ L1.

Fix ε ∈ (0, c−1) and let Kε ⊆ Rn2

be the set of all symmetric matrices (aij)
for which there exists s > 0 such that sd∗(i, j) 6 aij 6 (c − ε)sd∗(i, j) for all
i, j ∈ {1, . . . , n}. By the definition of c, the convex sets C and Kε are disjoint,
since otherwise d∗ would admit an embedding into L1 with distortion c− ε. It
follows that there exists a symmetric matrix (hε

ij) ∈ Rn2 \ {0} and α ∈ R, such

that
∑n

i=1

∑n
j=1 h

ε
ijaij 6 α for all (aij) ∈ Kε, and

∑n
i=1

∑n
j=1 h

ε
ijbij > α for

all (bij) ∈ C . Since both C and Kε are closed under multiplication by positive
scalars, necessarily α = 0.

Define Cε(i, j)
def
= hε

ij1{hε
ij
>0} and Dε(i, j)

def
= |hε

ij |1{hε
ij
60}. By definition of

M∗∗(Cε, Dε),

n
∑

i=1

n
∑

j=1

Cε(i, j)d∗ij > M∗∗(Cε, Dε) ·
n
∑

i=1

n
∑

j=1

Dε(i, j)d∗ij . (13)

By considering aij
def
=
(

(c− ε)1{hε
ij
>0} + 1{hε

ij
<0}
)

d∗(i, j) ∈ Kε, the inequality
∑n

i=1

∑n
j=1 h

ε
ijaij 6 0 becomes:

n
∑

i=1

n
∑

j=1

Dε(i, j)d∗ij > (c− ε)

n
∑

i=1

n
∑

j=1

Cε(i, j)d∗ij . (14)

A combination of (13) and (14) implies that (c − ε)M∗∗(Cε, Dε) 6

1. At the same time, for all f1, . . . , fn ∈ L1, the inequality
∑n

i=1

∑n
j=1 h

ε
ij‖fi − fj‖1 > 0 is the same as

∑n
i=1

∑n
j=1 C

ε(i, j)‖fi − fj‖1 >
∑n

i=1

∑n
j=1 D

ε(i, j)‖fi − fj‖1, which by Lemma 6 means that Φ∗(Cε, Dε) > 1.
Thus Φ∗(Cε, Dε)/M∗∗(Cε, Dε) > c−ε, and since this holds for all ε ∈ (0, c−1),
the proof of Lemma 4.5 is complete.

In the case of Sparsest Cut with uniform demands, we have the following
result which is analogous to Lemma 4.5, where the L1 bi-Lipschitz distortion
is replaced by the smallest possible factor by which 1-Lipschitz functions into
L1 can distort the average distance. The proof is a slight variant of the proof of
Lemma 4.5; the simple details are left to the reader. This connection between
Sparsest Cut with uniform demands and embeddings that preserve the average
distance is due to Rabinovich [63].

Lemma 4.6. The supremum of Φ∗(C,D)/M∗∗(C,D) over all instances of
uniform demands, i.e., when C(i, j) ∈ {0, 1} and D(i, j) = 1 for all i, j ∈
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{1, . . . , n}, equals the infimum over A > 0 such that for all metrics d on
{1, . . . , n} of negative type, there exist f1, . . . , fn ∈ L1 satisfying ‖fi − fj‖1 6

d(i, j) for all i, j ∈ {1, . . . , n} and A
∑n

i=1

∑n
j=1 ‖fi−fj‖1 >

∑n
i=1

∑n
j=1 d(i, j).

4.3.1. L2 embeddings of negative type metrics. The proof of Theo-
rem 4.3 in [6] is based on a clever geometric partitioning procedure for metrics
of negative type. Building heavily on ideas of [6], in conjunction with some sub-
stantial additional combinatorial arguments, an alternative approach to The-
orem 4.3 was obtained in [59], based on a purely graph theoretical statement
which is of independent interest. We shall now sketch this approach, since it is
modular and general, and as such it is useful for additional geometric corollar-
ies. We refer to [59] for more information on these additional applications, as
well as to [6] for the original proof of Theorem 4.3.

Let G = (V,E) be an n-vertex graph. The vertex expansion of G, denoted
h(G), is the largest h > 0 such that every S ⊆ V with |S| 6 n/2 has at least
h|S| neighbors in V \ S. The edge expansion of G, denoted α(G), is the largest
α > 0 such that for every S ⊆ V with |S| 6 n/2, the number of edges joining S

and V \S is at least α|S| · |E|
n . The main combinatorial statement of [59] relates

these two notions of expansion of graphs:

Theorem 4.7 (Edge Replacement Theorem [59]). For every graph G = (V,E)
with h(G) > 1

2 there is a set of edges E′ on V with α(V,E′) & 1, and such that

for every uv ∈ E′ we have dG(u, v) .
√

log |V |. Here dG is the shortest path
metric on G (with respect to the original edge set E), and all implicit constants
are universal.

It is shown in [59] that the .
√
log n bound on the length of the new edges in

Theorem 4.7 is asymptotically tight. The proof of Theorem 4.7 is involved, and
cannot be described here: it has two components, a combinatorial construction,
as well a purely Hilbertian geometric argument based on, and simpler than,
the original algorithm of [6]. We shall now explain how Theorem 4.7 implies
Theorem 4.3 (this is somewhat different from the deduction in [59], which deals
with a different semidefinite program for Sparsest Cut with uniform demands).

Proof of Theorem 4.3 assuming Theorem 4.7. An application of (the easy di-
rection of) Lemma 4.6 shows that in order to prove Theorem 4.3 it suffices
to show that if (M , d) is an n-point metric space of negative type, with
1
n2

∑

x,y∈M
d(x, y) = 1, then there exists a mapping F : M → R which is

1-Lipschitz and such that 1
n2

∑

x,y∈M
|F (x) − F (y)| & 1/

√
log n. In what fol-

lows we use the standard notation for closed balls: for x ∈ M and t > 0, set
B(x, t) = {y ∈ M : d(x, y) 6 t}.

Choose x0 ∈ M with 1
n

∑

y∈M
d(x0, y) = r

def
= minx∈M

1
n

∑

y∈M
d(x, y).

Then r 6 1
n2

∑

x,y∈M
d(x, y) = 1, implying 1 > 1

n

∑

y∈M
d(x0, y) > 2

n |M \
B(x0, 2)|, or |B(x0, 2)| > n/2. Similarly |B(x0, 4)| > 3n/4.
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Assume first that 1
n2

∑

x,y∈B(x0,4)
d(x, y) 6 1

4 (this will be the easy case).
Then

1 =
1

n2

∑

x,y∈M

d(x, y) 6
1

4
+

2

n2

∑

x∈M

∑

y∈M\B(x0,4)

(

d(x, x0) + d(x0, y)
)

=
1

4
+
2r

n
|M \B(x0, 4)|+

2

n

∑

y∈M\B(x0,4)

d(x0, y) 6
3

4
+
2

n

∑

y∈M\B(x0,4)

d(x0, y),

or 1
n

∑

y∈M\B(x0,4)
d(x0, y) >

1
8 . Define a 1-Lipschitz mapping F : M → R by

F (x) = d
(

x,B(x0, 2)
)

= miny∈B(x0,2) d(x, y). The triangle inequality implies

that for every y ∈ M \B(x0, 4) we have F (y) > 1
2d(y, x0). Thus

1

n2

∑

x,y∈M

|F (x)− F (y)| > |B(x0, 2)|
n2

∑

y∈M\B(x0,4)

d
(

y,B(x0, 2)
)

>
1

2n

∑

y∈M\B(x0,4)

1

2
d(y, x0) & 1 =

1

n2

∑

x,y∈M

d(x, y).

This completes the easy case, where there is even no loss of 1/
√
log n (and we

did not use yet the assumption that d is a metric of negative type).
We may therefore assume from now on that 1

n2

∑

x,y∈B(x0,4)
d(x, y) > 1

4 .

The fact that d is of negative type means that there are vectors {vx}x∈M ⊆ L2

such that d(x, y) = ‖vx − vy‖22 for all x, y ∈ M .
We will show that for a small enough universal constant ε > 0, there are

two sets S1, S2 ⊆ B(x0, 4) such that |S1|, |S2| > εn and d(S1, S2) > ε2/
√
log n.

Once this is achieved, the mapping F : M → R given by F (x) = d(x, S1) will

satisfy 1
n2

∑

x,y∈M
|F (x)− F (y)| > 2

n2 |S1| · |S2| ε2√
logn

> 2ε4√
logn

, as desired.

Assume for contradiction that no such S1, S2 exist. Define a set of edges E0

on B(x0, 4) by E0
def
=
{

{x, y} ⊆ B(x0, 4) : x 6= y ∧ d(x, y) < ε2/
√
log n

}

.

Our contrapositive assumption says that any two subsets S1, S2 ⊆ B(x0, 4)
with |S1|, |S2| > εn > ε|B(x0, 4)| are joined by an edge from E0. By a (simple)
general graph theoretical lemma (see [59, Lem 2.3]), this implies that, provided
ε 6 1/10, there exists a subset V ⊆ B(x0, 4) with |V | > (1− ε)|B(x0, 4)| & n,

such that the graph induced by E0 on V , i.e., G =
(

V,E = E0 ∩
(

V
2

)

)

, has

h(G) > 1
2 .

We are now in position to apply the Edge Replacement Theorem, i.e., The-
orem 4.7. We obtain a new set of edges E′ on V such that α(V,E′) & 1 and
for every xy ∈ E′ we have dG(x, y) .

√
log n. The latter condition means that

there exists a path {x = x0, x1, . . . , xm = y} ⊆ V such that m .
√
log n and

xixi−1 ∈ E for every i ∈ {1, . . . ,m}. By the definition of E, this implies that

xy ∈ E′ =⇒ d(x, y) 6

n
∑

i=1

d(xi, xi−1) 6 m
ε2√
log n

. ε2. (15)
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It is a standard fact (the equivalence between edge expansion and a Cheeger
inequality) that for every f : V → L1 we have

1

|E′|
∑

xy∈E′

‖f(x)− f(y)‖1 >
α(V,E′)

2|V |2
∑

x,y∈V

‖f(x)− f(y)‖1. (16)

For a proof of (16) see [59, Fact 2.1]: this is a simple consequence of the cut
cone representation, i.e., Corollary 3.2, since the identity (3) shows that it
suffices to prove (16) when f(x) = 1S(x) for some S ⊆ V , in which case the
desired inequality follows immediately from the definition of the edge expansion
α(V,E′).

Since L2 is isometric to a subset of L1 (see, e.g., [71]), it follows from (16)
and the fact that α(V,E′) & 1 that

ε
(15)

&
1

|E′|
∑

xy∈E′

√

d(x, y) =
1

|E′|
∑

xy∈E′

‖vx − vy‖2

&
1

|V |2
∑

x,y∈V

‖vx − vy‖2 &
1

n2

∑

x,y∈V

√

d(x, y). (17)

Now comes the point where we use the assumption 1
n2

∑

x,y∈B(x0,4)
d(x, y) > 1

4 .

Since for any x, y ∈ B(x0, 4) we have d(x, y) 6 8, it follows that the number
of pairs (x, y) ∈ B(x0, 4)× B(x0, 4) with d(x, y) > 1/8 is at least n2/64. Since
|V | > (1− ε)|B(x0, 4)|, the number of such pairs which are also in V × V is at

least n2

64−3εn2 & n2, provided ε is small enough. Thus 1
n2

∑

x,y∈V

√

d(x, y) & 1,
and (17) becomes a contradiction for small enough ε.

Remark 4.8. The above proof of Theorem 4.7 used very little of the fact that
d is a metric of negative type. In fact, all that was required was that d admits
a quasisymmetric embedding into L2; see [59].

It remains to say a few words about the proof of Theorem 4.4. Unfortunately,
the present proof of this theorem is long and involved, and it relies on a variety
of results from metric embedding theory. It would be of interest to obtain a
simpler proof. Lemma 4.5 implies that Theorem 4.4 is a consequence of the
following embedding result:

Theorem 4.9 ([5]). Every n-point metric space of negative type embeds into

Hilbert space with distortion . (log n)
1

2
+o(1).

Theorem 4.9 improves over the previously known [23] bound of . (log n)3/4

on the Euclidean distortion of n-point metric spaces of negative type. As we
shall explain below, Theorem 4.9 is tight up to the o(1) term.
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The proof of Theorem 4.9 uses the following notion from [5]:

Definition 4.10 (Random zero-sets [5]). Fix ∆, ζ > 0, and p ∈ (0, 1). A
metric space (M , d) is said to admit a random zero set at scale ∆, which is ζ-
spreading with probability p, if there is a probability distribution µ over subsets
Z ⊆ M such that µ ({Z : y ∈ Z ∧ d(x, Z) > ∆/ζ}) > p for every x, y ∈ M

with d(x, y) > ∆. We denote by ζ(M ; p) the least ζ > 0 such that for every
∆ > 0, M admits a random zero set at scale ∆ which is ζ-spreading with
probability p.

The connection to metrics of negative type is due to the following theorem,
which can be viewed as the main structural consequence of [6]. Its proof uses [6]
in conjunction with two additional ingredients: an analysis of the algorithm
of [6] due to [50], and a clever iterative application of the algorithm of [6], due
to [23], while carefully reweighting points at each step.

Theorem 4.11 (Random zero sets for negative type metrics). There exists a
universal constant p > 0 such that any n-point metric space (M , d) of negative
type satisfies ζ(M ; p) .

√
log n.

Random zero sets are related to embeddings as follows. Fix ∆ > 0. Let
(M , d) be a finite metric space, and fix S ⊆ M . By the definition of ζ(S; p),
there exists a distribution µ over subsets Z ⊆ S such that for every x, y ∈ S
with d(x, y) > ∆ we have µ ({Z ⊆ S : y ∈ Z ∧ d(x, Z) > ∆/ζ(S; p)}) > p.
Define ϕS,∆ : M → L2(µ) by ϕS,∆(x) = d(x, Z). Then ϕS,∆ is 1-Lipschitz, and
for every x, y ∈ S with d(x, y) > ∆,

‖ϕS,∆(x)− ϕS,∆(y)‖L2(µ)
=

(
∫

2S
[d(x, Z)− d(y, Z)]

2
dµ(Z)

)1/2

>
∆
√
p

ζ(S; p)
. (18)

The remaining task is to “glue” the mappings {ϕS,∆ : ∆ > 0, S ⊆ M }
to form an embedding of M into Hilbert space with the distortion claimed in
Theorem 4.9. A key ingredient of the proof of Theorem 4.9 is the embedding
method called “Measured Descent”, that was developed in [48]. The results
of [48] were stated as embedding theorems rather than a gluing procedure; the
realization that a part of the arguments of [48] can be formulated explicitly as
a general “gluing lemma” is due to [50]. In [5] it was necessary to enhance the
Measured Descent technique in order to prove the following key theorem, which
together with (18) and Theorem 4.11 implies Theorem 4.9. See also [4] for a
different enhancement of Measured Descent, which also implies Theorem 4.9.
The proof of Theorem 4.12 is quite intricate; we refer to [5] for the details.

Theorem 4.12. Let (M , d) be an n-point metric space. Suppose that there is
ε ∈ [1/2, 1] such that for every ∆ > 0, and every subset S ⊆ M , there exists
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a 1-Lipschitz map ϕS,∆ : M → L2 with ||ϕS,∆(x) − ϕS,∆(y)||2 & ∆/(log |S|)ε
whenever x, y ∈ S and d(x, y) > ∆. Then c2(M ) . (log n)ε log log n.

The following corollary is an obvious consequence of Theorem 4.9, due to
the fact that L1 is a metric space of negative type.

Corollary 4.13. Every X ⊆ L1 embeds into L2 with distortion .

(log |X|) 1

2
+o(1).

We stated Corollary 4.13 since it is of special importance: in 1969, Enflo [34]
proved that the Hamming cube, i.e., {0, 1}k equipped with the metric induced
from `k1 , has Euclidean distortion

√
k. Corollary 4.13 says that up to lower

order factors, the Hamming cube is among the most non-Euclidean subset of L1.
There are very few known results of this type, i.e., (almost) sharp evaluations of
the largest Euclidean distortion of an n-point subset of a natural metric space.
A notable such result is Matoušek’s theorem [57] that any n-point subset of the
infinite binary tree has Euclidean distortion .

√
log log n, and consequently, due

to [20], the same holds true for n-point subsets of, say, the hyperbolic plane.
This is tight due to Bourgain’s matching lower bound [16] for the Euclidean
distortion of finite depth complete binary trees.

4.3.2. The Goemans-Linial conjecture. Theorem 4.4 is the best known
approximation algorithm for the Sparsest Cut Problem (and Theorem 4.3 is
the best known algorithm in the case of uniform demands). But, a comparison
of Lemma 4.5 and Theorem 4.9 reveals a possible avenue for further improve-
ment: Theorem 4.9 produces an embedding of negative type metrics into L2

(for which the bound of Theorem 4.9 is sharp up to lower order factors), while
for Lemma 4.5 all we need is an embedding into the larger space L1. It was
conjectured by Goemans and Linial (see [37, 55, 54] and [58, pg. 379–380])
that any finite metric space of negative type embeds into L1 with distortion
. 1. If true, this would yield, via the Goemans-Linial semidefinite relaxation,
a constant factor approximation algorithm for Sparsest Cut.

As we shall see below, it turns out that the Goemans-Linial conjecture is
false, and in fact there exist [30] arbitrarily large n-point metric spaces Mn of
negative type for which c1(Mn) > (log n)c, where c is a universal constant. Due
to the duality argument in Lemma 4.5, this means that the algorithm of Sec-
tion 4.3 is doomed to make an error of at least (log n)c, i.e., there exist capacity
and demand functions Cn, Dn : {1, . . . , n} × {1, . . . , n} → [0,∞) for which we
have M∗∗(Cn, Dn) . Φ∗(Cn, Dn)/(log n)

c. Such a statement is referred to in
the literature as the fact that the integrality gap of the Goemans-Linial semidef-
inite relaxation of Sparsest Cut is at least (log n)c.

4.3.3. Unique Games hardness and the Khot-Vishnoi integrality gap.

Khot’s Unique Games Conjecture [44] is that for every ε > 0 there exists a prime
p = p(ε) such that there is no polynomial time algorithm that, given n ∈ N

and a system of m-linear equations in n-variables of the form xi − xj = cij
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mod p for some cij ∈ N, determines whether there exists an assignment of an
integer value to each variable xi such that at least (1−ε)m of the equations are
satisfied, or whether no assignment of such values can satisfy more than εm of
the equations (if neither of these possibilities occur, then an arbitrary output
is allowed). This formulation of the conjecture is due to [46], where it is shown
that it is equivalent to the original formulation in [44]. The Unique Games
Conjecture is by now a common assumption that has numerous applications
in computational complexity; see the survey [45] (in this collection) for more
information.

In [47, 24] it was shown that the existence of a polynomial time constant fac-
tor approximation algorithm for Sparsest Cut would refute the Unique Games
Conjecture, i.e., one can use a polynomial time constant factor approximation
algorithm for Sparsest Cut to solve in polynomial time the above algorithmic
task for linear equations.

For a period of time in 2004, this computational hardness result led to a
strange situation: either the complexity theoretic Unique Games Conjecture is
true, or the purely geometric Goemans-Linial conjecture is true, but not both.
In a remarkable tour de force, Khot and Vishnoi [47] delved into the proof
of their hardness result and managed to construct from it a concrete family of
arbitrarily large n-point metric spaces Mn of negative type for which c1(Mn) &
(log log n)c, where c is a universal constant, thus refuting the Goemans-Linial
conjecture. Subsequently, these Khot-Vishnoi metric spaces Mn were analyzed
in [49], resulting in the lower bound c1(Mn) & log log n. Further work in [32]
yielded a & log log n integrality gap for Sparsest Cut with uniform demands,
i.e., “average distortion” L1 embeddings (in the sense of Lemma 4.6) of negative
type metrics were ruled out as well.

4.3.4. The Bretagnolle, Dacunha-Castelle, Krivine theorem and in-

variant metrics on Abelian groups. A combination of Schoenberg’s classi-
cal characterization [65] of metric spaces that are isometric to subsets of Hilbert
space, and a theorem of Bretagnolle, Dacunha-Castelle and Krivine [18] (see
also [70]), implies that if p ∈ [1, 2] and (X, ‖ · ‖X) is a separable Banach

space such that the metric space (X, ‖x − y‖p/2X ) is isometric to a subset of
Hilbert space, then X is (linearly) isometric to a subspace of Lp. Specializ-
ing to p = 1 we see that the Goemans-Linial conjecture is true for Banach
spaces. With this motivation for the Goemans-Linial conjecture in mind, one
notices that the Goemans-Linial conjecture is part of a natural one parame-
ter family of conjectures which attempt to extend the theorem Bretagnolle,
Dacunha-Castelle and Krivine to general metric spaces rather than Banach
spaces: is it true that for p ∈ [1, 2) any metric space (M , d) for which (M , dp/2)
is isometric to a subset of L2 admits a bi-Lipschitz embedding into Lp? This
generalized Goemans-Linial conjecture turns out to be false for all p ∈ [1, 2);
our example based on the Heisenberg group furnishes counter-examples for
all p.
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It is also known that certain invariant metrics on Abelian groups satisfy the
Goemans-Linial conjecture:

Theorem 4.14 ([10]). Let G be a finite Abelian group, equipped with an invari-
ant metric ρ. Suppose that 2 6 m ∈ N satisfies mx = 0 for all x ∈ G. Denote
D = c2

(

G,
√
ρ
)

. Then c1(G, ρ) . D4 logm.

It is an interesting open question whether the dependence on the exponent
m of the group G in Theorem 4.14 is necessary. Can one construct a counter-
example to the Goemans-Linial conjecture which is an invariant metric on the
cyclic group Cn of order n? Or, is there for every D > 1 a constant K(D)
such that for every invariant metric ρ on Cn for which c2

(

G,
√
ρ
)

6 D we have
c1(G, ρ) 6 K(D)?

One can view the above discussion as motivation for why one might consider
the Heisenberg group as a potential counter-example to the Goemans-Linial
conjecture. Assuming that we are interested in invariant metrics on groups,
we wish to depart from the setting of Abelian groups or Banach spaces, and
if at the same time we would like our example to have some useful analytic
properties (such as invariance under rescaling and the availability of a group
norm), the Heisenberg group suggests itself as a natural candidate. This plan
is carried out in Section 5.

5. Embeddings of the Heisenberg Group

The purpose of this section is to discuss Theorem 1.1 and Theorem 1.2 from
the introduction. Before doing so, we have an important item of unfinished
business: relating the Heisenberg group to the Sparsest Cut Problem. We will
do this in Section 5.1, following [52].

In preparation, we need to recall the Carnot-Carathéodory geometry of the
continuous Heisenberg group H, i.e., R3 equipped with the non-commutative
product (a, b, c)·(a′, b′, c′) = (a+a′, b+b′, c+c′+ab′−ba′). Due to lack of space,
this will have to be a crash course, and we refer to the relevant introductory
sections of [29] for a more thorough discussion.

The identity element of H is e = (0, 0, 0), and the inverse element of
(a, b, c) ∈ H is (−a,−b,−c). The center of H is the z-axis {0} × {0} × R. For
g ∈ H the horizontal plane at g is defined as Hg = g(R×R×{0}). An affine line
L ⊆ H is called a horizontal line if for some g ∈ H it passes through g and is con-
tained in the affine plane Hg. The standard scalar product 〈·, ·〉 on He naturally
induces a scalar product 〈·, ·〉g on Hg by 〈gx, gy〉g = 〈x, y〉. Consequently, we
can define the Carnot-Carathéodory metric dH on H by letting dH(g, h) be the
infimum of lengths of smooth curves γ : [0, 1] → H such that γ(0) = g, γ(1) = h
and for all t ∈ [0, 1] we have γ′(t) ∈ Hγ(t) (and, the length of γ′(t) is computed
with respect to the scalar product 〈·, ·〉γ(t)). The ball-box principle (see [39])

implies that dH
(

(a, b, c), (a′, b′, c′)
)

is bounded above and below by a constant
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multiple of |a− a′|+ |b− b′|+
√

|c− c′ + ab′ − ba′|. Moreover, since the integer
grid H(Z) is a discrete cocompact subgroup of H, the word metric dW on H(Z)
is bi-Lipschitz equivalent to the restriction of dH to H(Z) (see, e.g, [19]). For
θ > 0 define the dilation operator δθ : H → H by δθ(a, b, c) = (θa, θb, θ2c). Then
for all g, h ∈ H we have dH(δθ(g), δθ(h)) = θdH(g, h). The Lebesgue measure
L3 on R3 is a Haar measure of H, and the volume of a dH-ball of radius r is
proportional to r4.

5.1. Heisenberg metrics with isometric Lp snowflakes. For
every (a, b, c) ∈ H and p ∈ [1, 2), define

Mp(a, b, c) =
4

√

(a2 + b2)2 + 4c2 ·
(

cos

(

p

2
arccos

(

a2 + b2
√

(a2 + b2)2 + 4c2

)))1/p

.

It was shown in [52] thatMp is a group norm on H, i.e., for all g, h ∈ H and θ > 0
we haveMp(gh) 6 Mp(g)+Mp(h),Mp(g

−1) = Mp(g) andMp(δθ(g)) = θMp(g).

Thus dp(g, h)
def
= Mp(g

−1h) is a left-invariant metric on H. The metric dp is bi-
Lipschitz equivalent to dH with distortion of order 1/

√
2− p (see [52]). More-

over, it was shown in [52] that (H, d
p/2
p ) admits an isometric embedding into

L2. Thus, in particular, the metric space (H, d1), which bi-Lipschitz equivalent
to (H, dH), is of negative type.

The fact that (H, dH) does not admit a bi-Lipschitz embedding into Lp for
any 1 6 p < ∞ will show that the generalized Goemans-Linial conjecture
(see Section 4.3.4) is false. In particular, (H, d1), and hence by a standard
rescaling argument also (H(Z), d1), is a counter-example to the Goemans-Linial
conjecture. Note that it is crucial here that we are dealing with the function
space Lp rather than the sequence space `p, in order to use a compactness
argument to deduce from this statement that there exist arbitrarily large n-
point metric spaces (Mn, d) such that (Mn, d

p/2) is isometric to a subset of
L2, yet limn→∞ cp(Mn) = ∞. The fact that this statement follows from non-
embeddability into Lp is a consequence of a well known ultrapower argument
(see [42]), yet for `p this statement is false (e.g., `2 does not admit a bi-Lipschitz
embedding into `p, but all finite subsets of `2 embed isometrically into `p).
Unfortunately, this issue creates substantial difficulties in the case of primary
interest p = 1. In the reflexive range p > 1, or for a separable dual space such
as `1 (= c∗0), the non-embeddability of H follows from a natural extension of a
classical result of Pansu [61], as we explain in Section 5.2. This approach fails
badly when it comes to embeddings into L1: for this purpose a novel method
of Cheeger and Kleiner [25] is needed, as described in Section 5.3.

5.2. Pansu differentiability. LetX be a Banach space and f : H → X.
Following [61], f is said to have a Pansu derivative at x ∈ H if for every y ∈ H

the limit Dx
f (y)

def
= limθ→0

(

f(xδθ(y)) − f(x)
)

/θ exists, and Dx
f : H → X is a

group homomorphism, i.e., for all y1, y2 ∈ H we have Dx
f (y1y

−1
2 ) = Dx

f (y1) −



1568 Assaf Naor

Dy
f (y2). Pansu proved [61] that every f : H → Rn which is Lipschitz in the

metric dH is Pansu differentiable almost everywhere. It was observed in [52, 27]
that this result holds true if the target space Rn is replaced by any Banach
space with the Radon-Nikodým property, in particular X can be any reflexive
Banach space such as Lp for p ∈ (1,∞), or a separable dual Banach space
such as `1. As noted by Semmes [66], this implies that H does not admite a
bi-Lipschitz embedding into any Banach space X with the Radon-Nikodým
property: a bi-Lipschitz condition for f implies that at a point x ∈ H of Pansu
differentiability, Dx

f is also bi-Lipschitz, and in particular a group isomorphism.
But that’s impossible since H is non-commutative, unlike the additive group
of X.

5.3. Cheeger-Kleiner differentiability. Differentiability theorems
fail badly when the target space is L1, even for functions defined on R; consider
Aronszajn’s example [3] of the “moving indicator function” t 7→ 1[0,t] ∈ L1.
For L1-valued Lipschitz functions on H, Cheeger and Kleiner [25, 28] developed
an alternative differentiation theory, which is sufficiently strong to show that
H does not admit a bi-Lipschitz embedding into L1. Roughly speaking, a dif-
ferentiation theorem states that in the infinitesimal limit, a Lipschitz mapping
converges to a mapping that belongs to a certain “structured” subclass of map-
pings (e.g., linear mappings or group homomorphisms). The Cheeger-Kleiner
theory shows that, in a sense that will be made precise below, L1-valued Lips-
chitz functions on H are in the infinitesimal limit similar to Aronszajn’s moving
indicator.

For an open subset U ⊆ H let Cut(U) denote the space of (equivalences
classes up to measure zero) of measurable subsets of U . Let f : U → L1 be
a Lipschitz function. An infinitary variant of the cut-cone decomposition of
Corollary 3.2 (see [25]) asserts that there exists a measure Σf on Cut(U), such
that for all x, y ∈ U we have ‖f(x)− f(y)‖1 =

∫

Cut(U)
|1E(x)− 1E(y)|dΣf (E).

The measure Σf is called the cut measure of f . The idea of Cheeger and Kleiner
is to detect the “infinitesimal regularity” of f in terms of the infinitesimal
behavior of the measure Σf ; more precisely, in terms of the shape of the sets E
in the support of Σf , after passing to an infinitesimal limit.

Theorem 5.1 (Cheeger-Kleiner differentiability theorem [25, 28]). For almost
every x ∈ U there exists a measure Σx

f on Cut(H) such that for all y, z ∈ H we
have

lim
θ→0

‖f(xδθ(y))− f(xδθ(z))‖1
θ

=

∫

Cut(H)

|1E(y)− 1E(z)|dΣx
f (E). (19)

Moreover, the measure Σx
f is supported on affine half-spaces whose boundary

is a vertical plane, i.e., a plane which isn’t of the form Hg for some g ∈ H

(equivalently, an inverse image, with respect to the orthogonal projection from
R3 onto R× R× {0}, of a line in R× R× {0}).
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Theorem 5.1 is incompatible with f being bi-Lipschitz, since the right hand
side of (19) vanishes when y, z lie on the same coset of the center of H, while
if f is bi-Lipschitz the left hand side of (19) is at least a constant multiple of
dH(y, z).

5.4. Compression bounds for L1 embeddings of the Heisen-
berg group. Theorem 1.1 and Theorem 1.2 are both a consequence of the
following result from [29]:

Theorem 5.2 (Quantitative central collapse [29]). There exists a universal
constant c ∈ (0, 1) such that for every p ∈ H, every 1-Lipschitz f : B(p, 1) →
L1, and every ε ∈

(

0, 1
4

)

, there exists r > ε such that with respect to Haar
measure, for at least half of the points x ∈ B(p, 1/2), at least half of the points
(x1, x2) ∈ B(x, r)×B(x, r) which lie on the same coset of the center satisfy:

‖f(x1)− f(x2)‖1 6
dH(x1, x2)

(log(1/ε))c
.

It isn’t difficult to see that Theorem 5.2 implies Theorem 1.1 and Theo-
rem 1.2. For example, in the setting of Theorem 1.1 we are given a bi-Lipschitz
embedding f : {1, . . . , n}3 → L1, and using either the general extension theo-
rem of [51] or a partition of unity argument, we can extend f to a Lipschitz
(with respect to dH) mapping f̄ : [1, n]3 → L1, whose Lipschitz constant is at
most a constant multiple of the Lipschitz constant of f . Theorem 5.2 (after
rescaling by n) produces a pair of points y, z ∈ [1, n]3 of distance &

√
n, whose

distance is contracted under f̄ by & (log n)c. By rounding y, z to their nearest
integer points in {1, . . . , n}3, we conclude that f itself must have bi-Lipschitz
distortion & (log n)c. The deduction of Theorem 1.2 from Theorem 5.2 is just
as simple; see [29].

Theorem 5.2 is a quantitative version of Theorem 5.1, in the sense it gives
a definite lower bound on the macroscopic scale at which a given amount of
collapse of cosets of the center, as exhibited by the differentiation result (19),
occurs. As explained in [29, Rem. 2.1], one cannot hope in general to obtain rate
bounds in differentiation results such as (19). Nevertheless, there are situations
where “quantitative differentiation results” have been successfully proved; im-
portant precursors of Theorem 5.2 include the work of Bourgain [17], Jones [43],
Matoušek [57], and Bates, Johnson, Lindenstrauss, Preiss, Schechtman [13].
Specifically, we should mention that Bourgain [17] obtained a lower bound on
ε > 0 such that any embedding of an ε-net in a unit ball of an n-dimensional
normed space X into a normed space Y has roughly the same distortion as
the distortion required to embed all of X into Y , and Matoušek [57], in his
study of embeddings of trees into uniformly convex spaces, obtained quantita-
tive bounds on the scale at which “metric differentiation” is almost achieved,
i.e., a scale at which discrete geodesics are mapped by a Lipschitz function
to “almost geodesics”. These earlier results are in the spirit of Theorem 5.2,
though the proof of Theorem 5.2 in [29] is substantially more involved.
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We shall now say a few words on the proof of Theorem 5.2; for lack of
space this will have to be a rough sketch, so we refer to [29] for more de-
tails, as well as to the somewhat different presentation in [30]. Cheeger and
Kleiner obtained two different proofs of Theorem 5.1. The first proof [25] started
with the important observation that the fact that f is Lipschitz forces the cut
measure Σf to be supported on sets with additional regularity, namely sets
of finite perimeter. Moreover, there is a definite bound on the total perime-
ter:

∫

Cut(U)
PER(E,B(p, 1))dΣf (E) . 1, where PER(E,B(p, 1)) denotes the

perimeter of E in the ball B(p, 1) (we refer to the book [2], and the detailed
explanation in [25, 29] for more information on these notions). Theorem 5.2 is
then proved in [25] via an appeal to results [35, 36] on the infinitesimal struc-
ture of sets of finite perimeter in H. A different proof of Theorem 5.2 was found
in [28]. It is based on the notion of metric differentiation, which is used in [28]
to reduce the problem to mappings f : H → L1 for which the cut measure is
supported on monotone sets, i.e., sets E ⊆ H such that for every horizontal line
L, up to a set of measure zero, both L ∩ E and L ∩ (H \ E) are either empty
or subrays of L. A non-trivial classification of monotone sets is then proved
in [28]: such sets are up to measure zero half-spaces.

This second proof of Theorem 5.2 avoids completely the use of perimeter
bounds. Nevertheless, the starting point of the proof of Theorem 5.2 can be
viewed as a hybrid argument, which incorporates both perimeter bounds, and
a new classification of almost monotone sets. The quantitative setting of The-
orem 5.2 leads to issues that do not have analogues in the non-quantitative
proofs (e.g., the approximate classification results of “almost” monotone sets
in balls cannot be simply that such sets are close to half-spaces in the entire
ball; see [29, Example 9.1]).

In order to proceed we need to quantify the extent to which a set
E ⊆ B(x, r) is monotone. For a horizontal line L ⊆ H define the non-
convexity NCB(x,r)(E,L) of (E,L) on B(x, r) as the infimum of

∫

L∩B(x,r)
|1I −

1E∩L∩Br(x)|dH1
L over all sub-intervals I ⊆ L ∩ Br(x). Here H1

L is the 1-

dimensional Hausdorff measure on L (induced from the metric dH). The

non-monotonicity of (E,L) on B(x, r) is defined to be NMB(x,r)(E,L)
def
=

NCB(x,r)(E,L)+NCB(x,r)(H\E,L). The total non-monotonicity of E onB(x, r)
is defined as:

NMB(x,r)(E)
def
=

1

r4

∫

lines(B(x,r))

NMB(x,r)(E,L)dN (L),

where lines(U) denotes the set of horizontal lines in H which intersect U , and
N is the left invariant measure on lines(H), normalized so that the measure of
lines(B(e, 1)) is 1.

The following stability result for monotone sets constitutes the bulk of [29]:

Theorem 5.3. There exists a universal constant a > 0 such that if a measur-
able set E ⊆ B(x, r) satisfies NMB(x,r)(E) 6 εa then there exists a half-space
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P such that
L3 ((E ∩Bεr(x))4P)

L3(Bεr(x))
< ε1/3.

Perimeter bounds are used in [29, 30] for two purposes. The first is finding
a controlled scale r such that at most locations, apart from a certain collection
of cuts, the mass of Σf is supported on subsets which satisfy the assumption
of Theorem 5.3 (see [30, Sec. 9]). But, the excluded cuts may have infinite
measure with respect to Σf . Nonetheless, using perimeter bounds once more,
together with the isoperimetric inequality in H (see [60, 21]), it is shown that
their contribution to the metric is negligibly small (see [30, Sec. 8]).

By Theorem 5.3, it remains to deal with the situation where all the cuts
in the support of Σf are close to half-spaces: note that we are not claiming in
Theorem 5.3 that the half-space is vertical. Nevertheless, a simple geometric
argument shows that even in the case of cut measures that are supported on
general (almost) half-spaces, the mapping f must significantly distort some
distances. The key point here is that if the cut measure is actually supported
on half spaces, then it follows (after the fact) that for every affine line L, if
x1, x2, x3 ∈ L and x2 lies between x1 and x3 then ‖f(x1)− f(x3)‖1 = ‖f(x1)−
f(x2)‖1 + ‖f(x2)− f(x3)‖1. But if L is vertical then dH|L is bi-Lipschitz to the
square root of the difference of the z-coordinates, and it is trivial to verify that
this metric on L is not bi-Lipschitz equivalent to a metric on L satisfying this
additivity condition. For the details of (a quantitative version of) this final step
of the argument see [30, Sec. 10].
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[23] S. Chawla, A. Gupta, and H. Räcke. Embeddings of negative-type metrics and
an improved approximation to generalized sparsest cut. ACM Trans. Algorithms,
4(2):Art. 22, 18, 2008.

[24] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and D. Sivakumar. On
the hardness of approximating multicut and sparsest-cut. Comput. Complexity,
15(2):94–114, 2006.



Embeddings of the Heisenberg Group 1573

[25] J. Cheeger and B. Kleiner. Differentiating maps into L
1 and the geometry of BV

functions. To appear in Ann. Math., preprint available at
http://arxiv.org/abs/math/0611954, 2006.

[26] J. Cheeger and B. Kleiner. Generalized differentiation and bi-Lipschitz nonem-
bedding in L

1. C. R. Math. Acad. Sci. Paris, 343(5):297–301, 2006.

[27] J. Cheeger and B. Kleiner. On the differentiability of Lipschitz maps from metric
measure spaces to Banach spaces. In Inspired by S. S. Chern, volume 11 of Nankai
Tracts Math., pages 129–152. World Sci. Publ., Hackensack, NJ, 2006.

[28] J. Cheeger and B. Kleiner. Metric differentiation, monotonicity and maps to L
1.

Preprint available at
http://arxiv.org/abs/0907.3295, 2009.

[29] J. Cheeger, B. Kleiner, and A. Naor. Compression bounds for Lipschitz maps
from the Heisenberg group to L1. Preprint, 2009.
http://arxiv.org/abs/0910.2026.

[30] J. Cheeger, B. Kleiner, and A. Naor. A (log n)Ω(1) integrality gap for the Sparsest
Cut SDP. In Proceedings of 50th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2009), pages 555–564, 2009.

[31] J. Chuzhoy and S. Khanna. Polynomial flow-cut gaps and hardness of directed
cut problems [extended abstract]. In STOC’07—Proceedings of the 39th Annual
ACM Symposium on Theory of Computing, pages 179–188. ACM, New York,
2007.

[32] N. R. Devanur, S. A. Khot, R. Saket, and N. K. Vishnoi. Integrality gaps for
sparsest cut and minimum linear arrangement problems. In STOC’06: Pro-
ceedings of the 38th Annual ACM Symposium on Theory of Computing, pages
537–546. ACM, New York, 2006.

[33] M. M. Deza and M. Laurent. Geometry of cuts and metrics, volume 15 of Algo-
rithms and Combinatorics. Springer–Verlag, Berlin, 1997.

[34] P. Enflo. On the nonexistence of uniform homeomorphisms between Lp-spaces.
Ark. Mat., 8:103–105 (1969), 1969.

[35] B. Franchi, R. Serapioni, and F. Serra Cassano. Rectifiability and perimeter in
the Heisenberg group. Math. Ann., 321(3):479–531, 2001.

[36] B. Franchi, R. Serapioni, and F. Serra Cassano. On the structure of finite perime-
ter sets in step 2 Carnot groups. J. Geom. Anal., 13(3):421–466, 2003.

[37] M. X. Goemans. Semidefinite programming in combinatorial optimization. Math.
Programming, 79(1–3, Ser. B):143–161, 1997. Lectures on mathematical program-
ming (ismp97) (Lausanne, 1997).

[38] M. Gromov. Asymptotic invariants of infinite groups. In Geometric group theory,
Vol. 2 (Sussex, 1991), volume 182 of London Math. Soc. Lecture Note Ser., pages
1–295. Cambridge Univ. Press, Cambridge, 1993.
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Matrices: Extreme Singular Values
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Abstract

The classical random matrix theory is mostly focused on asymptotic spectral
properties of random matrices as their dimensions grow to infinity. At the same
time many recent applications from convex geometry to functional analysis to
information theory operate with random matrices in fixed dimensions. This sur-
vey addresses the non-asymptotic theory of extreme singular values of random
matrices with independent entries. We focus on recently developed geometric
methods for estimating the hard edge of random matrices (the smallest singular
value).
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1. Asymptotic and Non-asymptotic Problems

on Random Matrices

Since its inception, random matrix theory has been mostly preoccupied with
asymptotic properties of random matrices as their dimensions grow to infinity.
A foundational example of this nature is Wigner’s semicircle law [96]. It applies
to a family of n × n symmetric matrices An whose entries on and above the
diagonal are independent standard normal random variables. In the limit as
the dimension n grows to infinity, the spectrum of the normalized matrices
1√
n
An is distributed according to the semicircle law with density 1

2π

√
4− x2
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supported on the interval [−2, 2]. Precisely, if we denote by Sn(z) the number
of eigenvalues of 1√

n
An that are smaller than z, then for every z ∈ R one has

Sn(z)

n
→ 1

2π

∫ z

−∞
(4− x2)

1/2
+ dx almost surely as n → ∞.

In a similar way, Marchenko-Pastur law [55] governs the limiting spectrum
of n × n Wishart matrices WN,n = A∗A, where A = AN,n is an N × n ran-
dom Gaussian matrix whose entries are independent standard normal random
variables. As the dimensions N,n grow to infinity while the aspect ratio n/N
converges to a non-random number y ∈ (0, 1], the spectrum of the normalized
Wishart matrices 1

NWN,n is distributed according to the Marchenko-Pastur

law with density 1
2πxy

√

(b− x)(x− a) supported on [a, b] where a = (1−√
y)2,

b = (1+
√
y)2. The meaning of the convergence is similar to the one in Wigner’s

semicircle law.
It is widely believed that phenomena typically observed in asymptotic ran-

dom matrix theory are universal, that is independent of the particular distri-
bution of the entries of random matrices. By analogy with classical probability,
when we work with independent standard normal random variables Zi, we
know that their normalized sum Sn = 1√

n

∑n
i=1 Zi is again a standard normal

random variable. This simple but useful fact becomes significantly more useful
when we learn that it is asymptotically universal. Indeed, The Central Limit
Theorem states that if instead of normal distribution Zi have general identical
distribution with zero mean and unit variance, the normalized sum Sn will still
converge (in distribution) to the standard normal random variable as n → ∞.
In random matrix theory, universality has been established for many results. In
particular, Wigner’s semicircle law and Marchenko-Pastur law are known to be
universal – like the Central Limit Theorem, they hold for arbitrary distribution
of entries with zero mean and unit variance (see [60, 6] for semi-circle law and
[95, 5] for Marchenko-Pastur law).

Asymptotic random matrix theory offers remarkably precise predictions as
dimension grows to infinity. At the same time, sharpness at infinity is often
counterweighted by lack of understanding of what happens in finite dimensions.
Let us briefly return to the analogy with the Central Limit Theorem. One
often needs to estimate the sum of independent random variables Sn with fixed
number of terms n rather than in the limit n → ∞. In this situation one may
turn to Berry-Esseen’s theorem which quantifies deviations of the distribution
of Sn from that of the standard normal random variable Z. In particular, if
E|Z1|3 = M < ∞ then

|P(Sn ≤ z)− P(Z ≤ z)| ≤ C

1 + |z|3 · M√
n
, z ∈ R, (1.1)

where C is an absolute constant [11, 23]. Notwithstanding the optimality of
Berry-Esseen inequality (1.1), one can still hope for something better than the
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polynomial bound on the probability, especially in view of the super-exponential
tail of the limiting normal distribution: P(|Z| > z) . exp(−z2/2). Better es-
timates would indeed emerge in the form of exponential deviation inequalities
[61, 47], but this would only happen when we drop explicit comparisons to the
limiting distribution and study the tails of Sn by themselves. In the simplest
case, when Zi are i.i.d. mean zero random variables bounded in absolute value
by 1, one has

P(|Sn| > z) ≤ 2 exp(−cz2), z ≥ 0, (1.2)

where c is a positive absolute constant. Such exponential deviation inequalities,
which are extremely useful in a number of applications, are non-asymptotic
results whose asymptotic prototype is the Central Limit Theorem.

A similar non-asymptotic viewpoint can be adopted in random matrix the-
ory. One would then study spectral properties of random matrices of fixed
dimensions. Non-asymptotic results on random matrices are in demand in a
number of today’s applications that operate in high but fixed dimensions.
This usually happens in statistics where one analyzes data sets with a large
but fixed number of parameters, in geometric functional analysis where one
works with random operators on finite-dimensional spaces (whose dimensions
are large but fixed), in signal processing where the signal is randomly sampled
in many but fixed number of points, and in various other areas of science and
engineering.

This survey is mainly focused on the non-asymptotic theory of the extreme
singular values of random matrices (equivalently, the extreme eigenvalues of
sample covariance matrices) where significant progress was made recently. In
Section 2 we review estimates on the largest singular value (the soft edge). The
more difficult problem of estimating the smallest singular value (the hard edge)
is discussed in Section 3, and its connection with the Littlewood-Offord problem
in additive combinatorics is the content of Section 4. In Section 5 we discuss
several applications of non-asymptotic results to the circular law in asymptotic
random matrix theory, to restricted isometries in compressed sensing, and to
Kashin’s subspaces in geometric functional analysis.

This paper is by no means a comprehensive survey of the area but rather
a tutorial. Sketches of some arguments are included in order to give the reader
a flavor of non-asymptotic methods. To do this more effectively, we state most
theorems in simplified form (e.g. always over the field R); the reader will find
full statements in the original papers. Also, we had to completely omit several
important directions. These include random symmetric matrices which were
the subject of the recent survey by Ledoux [48] and random matrices with
independent columns, see in particular [1, 94]. The reader is also encouraged
to look at the comprehensive survey [19] on some geometric aspects of random
matrix theory.
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2. Extreme Singular Values

Geometric nature of extreme singular values The non-asymptotic view-
point in random matrix theory is largely motivated by geometric problems in
high dimensional Euclidean spaces. When we view an N×nmatrix A as a linear
operator Rn → R

N , we may want first of all to control its magnitude by placing
useful upper and lower bounds on A. Such bounds are conveniently provided
by the smallest and largest singular values of A denoted smin(A) and smax(A);
recall that the singular values are by definition the eigenvalues of |A| =

√
A∗A.

The geometric meaning of the extreme singular values can be clear by con-
sidering the best possible factors m and M in the two-sided inequality

m‖x‖2 ≤ ‖Ax‖2 ≤ M‖x‖2 for all x ∈ R
n.

The largest m and the smallest M are precisely the extreme singular values
smin(A) and smax(A) respectively. They control the distortion of the Euclidean
geometry under the action of the linear transformation A; the distance between
any two points in R

n can increase by at most the factor smax(A) and decrease by
at most the factor smax(A). The extreme singular values are clearly related to
the operator norms of the linear operators A and A−1 acting between Euclidean
spaces: smax(A) = ‖A‖ and if A is invertible then smin(A) = 1/‖A−1‖.

Understanding the behavior of extreme singular values of random matrices
is needed in many applications. In numerical linear algebra, the condition num-
ber κ(A) = smax(A)/smin(A) often serves as a measure of stability of matrix
algorithms. Geometric functional analysis employs probabilistic constructions
of linear operators as random matrices, and the success of these constructions
often depends on good bounds on the norms of these operators and their in-
verses. Applications of different nature arise in statistics from the analysis of
sample covariance matrices A∗A, where the rows of A are formed by N inde-
pendent samples of some unknown distribution in R

n. Some other applications
are discussed in Section 5.

Asymptotic behavior of extreme singular values We first turn to the
asymptotic theory for the extreme singular values of random matrices with
independent entries (and with zero mean and unit variance for normalization
purposes). From Marchenko-Pastur law we know that most singular values of
such random N × n matrix A lie in the interval [

√
N −√

n,
√
N +

√
n]. Under

mild additional assumptions, it is actually true that all singular values lie there,
so that asymptotically we have

smin(A) ∼
√
N −√

n, smax(A) ∼
√
N +

√
n. (2.1)

This fact is universal and it holds for general distributions. This was established
for smax(A) by Geman [29] and Yin, Bai and Krishnaiah [97]. For smin(A), Sil-
verstein [71] proved this for Gaussian random matrices, and Bai and Yin [8] gave
a unified treatment of both extreme singular values for general distributions:
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Theorem 2.1 (Convergence of extreme singular values, see [8]). Let A = AN,n

be an N ×n random matrix whose entries are independent copies of some ran-
dom variable with zero mean, unit variance, and finite fourth moment. Suppose
that the dimensions N and n grow to infinity while the aspect ratio n/N con-
verges to some number y ∈ (0, 1]. Then

1√
N

smin(A) → 1−√
y,

1√
N

smax(A) → 1 +
√
y almost surely.

Moreover, without the fourth moment assumption the sequence 1√
N
smax(A) is

almost surely unbounded [7].

The limiting distribution of the extreme singular values is known and univer-
sal. It is given by the Tracy-Widom law whose cumulative distribution function
is

F1(x) = exp
(

−
∫ ∞

x

[

u(s) + (s− x)u2(s)
]

ds
)

, (2.2)

where u(s) is the solution to the Painlevè II equation u′′ = 2u3 + su with the
asymptotic u(s) ∼ 1

2
√
πs1/4

exp(− 2
3s

3/2) as s → ∞. The occurrence of Tracy-

Widom law in random matrix theory and several other areas was the subject
of an ICM 2002 talk of Tracy and Widom [91]. This law was initially discov-
ered for the largest eigenvalue of a Gaussian symmetric matrix [89, 90]. For
the largest singular values of random matrices with independent entries it was
established by Johansson [37] and Johnstone [39] in the Gaussian case, and by
Soshnihikov [74] for more general distributions. For the smallest singular value,
the corresponding result was recently obtained in a recent work Feldheim and
Sodin [25] who gave a unified treatment of both extreme singular values. These
results are known under a somewhat stronger subgaussian moment assumption
on the entries aij of A, which requires their distribution to decay as fast as the
normal random variable:

Definition 2.2 (Subgaussian random variables). A random variable X is sub-
gaussian if there exists K > 0 called the subgaussian moment of X such that

P(|X| > t) ≤ 2e−t2/K2

for t > 0.

Examples of subgaussian random variables include normal random variables,
±1-valued, and generally, all bounded random variables. The subgaussian as-
sumption is equivalent to the moment growth condition (E|X|p)1/p = O(

√
p)

as p → ∞.

Theorem 2.3 (Limiting distribution of extreme singular values, see [25]). Let
A = AN,n be an N × n random matrix whose entries are independent and
identically distributed subgaussian random variables with zero mean and unit
variance. Suppose that the dimensions N and n grow to infinity while the as-
pect ratio n/N stays uniformly bounded by some number y ∈ (0, 1). Then the
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normalized extreme singular values

smin(A)
2 − (

√
N −√

n)2

(
√
N −√

n)(1/
√
n− 1/

√
N)1/3

and
smax(A)

2 − (
√
N +

√
n)2

(
√
N +

√
n)(1/

√
n+ 1/

√
N)1/3

converge in distribution to the Tracy-Widom law (2.2).

Non-asymptotic behavior of extreme singular values It is not entirely
clear to what extent the limiting behavior of the extreme singular values such
as asymptotics (2.1) manifests itself in fixed dimensions. Given the geometric
meaning of the extreme singular values, our interest generally lies in establishing
correct upper bounds on smax(A) and lower bounds on smin(A). We start with a
folklore observation which yields the correct bound smax(A) .

√
N +

√
n up to

an absolute constant factor. The proof is a basic instance of an ε-net argument,
a technique proved to be very useful in geometric functional analysis.

Proposition 2.4 (Largest singular value of subgaussian matrices: rough
bound). Let A be an N×n random matrix whose entries are independent mean
zero subgaussian random variables whose subgaussian moments are bounded by
1. Then

P
(

smax(A) > C(
√
N +

√
n) + t

)

≤ 2e−ct2 , t ≥ 0.

Here and elsewhere in this paper, C,C1, c, c1 denote positive absolute constants.

Proof (sketch). We will sketch the proof for N = n; the general case is simi-
lar. The expression smax(A) = maxx,y∈Sn−1〈Ax, y〉 motivates us to first control
the random variables 〈Ax, y〉 individually for each pair of vectors x, y on the
unit Euclidean sphere Sn−1, and afterwards take the union bound over all such
pairs. For fixed x, y ∈ Sn−1 the expression 〈Ax, y〉 =

∑

i,j aijxjyi is a sum
of independent random variables, where aij denote the independent entries of
A. If aij were standard normal random variables, the rotation invariance of
the Gaussian distribution would imply that 〈Ax, y〉 is again a standard normal
random variable. This property generalizes to subgaussian random variables.
Indeed, using moment generating functions one can show that a normalized
sum of mean zero subgaussian random variables is again a subgaussian ran-
dom variable, although the subgaussian moment may increase by an absolute
constant factor. Thus

P
(

〈Ax, y〉 > s
)

≤ 2e−cs2 , s ≥ 0.

Obviously, we cannot finish the argument by taking the union bound over
infinite (even uncountable) number of pairs x, y on the sphere Sn−1. In order
to reduce the number of such pairs, we discretize Sn−1 by considering its ε-net
Nε in the Euclidean norm, which is a subset of the sphere that approximates
every point of the sphere up to error ε. An approximation argument yields

smax(A) = max
x,y∈Sn−1

〈Ax, y〉 ≤ (1− ε)−2 max
x,y∈Nε

〈Ax, y〉 for ε ∈ (0, 1).
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To gain a control over the size of the net Nε, we construct it as a maximal ε-
separated subset of Sn−1; then the balls with centers in Nε and radii ε/2 form
a packing inside the centered ball of radius 1+ ε/2. A volume comparison gives
the useful bound on the cardinality of the net: |Nε| ≤ (1 + 2/ε)n. Choosing for
example ε = 1/2, we are well prepared to take the union bound:

P
(

smax(A) > 4s
)

≤ P
(

max
x,y∈Nε

〈Ax, y〉 > s
)

≤ |Nε| max
x,y∈Nε

P
(

〈Ax, y〉 > s
)

≤ 5n · 2e−cs2
.

We complete the proof by choosing s = C
√
n+ t with appropriate constant C.

By integration, one can easily deduce from Proposition 2.4 the correct ex-
pectation bound Esmax(A) ≤ C1(

√
N +

√
n). This latter bound actually holds

under much weaker moment assumptions. Similarly to Theorem 2.1, the weak-
est possible fourth moment assumption suffices here. R. Latala [46] obtained
the following general result for matrices with not identically distributed entries:

Theorem 2.5 (Largest singular value: fourth moment, non-iid entries [46]).
Let A be a random matrix whose entries aij are independent mean zero random
variables with finite fourth moment. Then

Esmax(A) ≤ C






max

i





∑

j

Ea2ij





1/2

+max
j

(

∑

i

Ea2ij

)1/2

+





∑

i,j

Ea4ij





1/4





.

For random Gaussian matrices, a much sharper result than in Proposi-
tion 2.4 is due to Gordon [31, 32, 33]:

Theorem 2.6 (Exteme singular values of Gaussian matrices, see [19]). Let A
be an N × n matrix whose entries are independent standard normal random
variables. Then

√
N −√

n ≤ Esmin(A) ≤ Esmax(A) ≤
√
N +

√
n.

This result is a consequence of the sharp comparison inequalities for Gaus-
sian processes due to Slepian and Gordon, see [31, 32, 33] and [49, Section
3.3].

Tracy-Widom fluctuations One can deduce from Theorem 2.6 a deviation
inequality for the extreme singular values. It follows formally by using the
concentration of measure in the Gauss space. Since the smin(A), smax(A) are
1-Lipschitz functions of A considered as a vector in R

Nn, we have

P
(
√
N −√

n− t ≤ smin(A) ≤ smax(A) ≤
√
N +

√
n+ t

)

≥ 1− 2e−t2/2, t ≥ 0,
(2.3)
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see [19]. For general random matrices with independent bounded entries, one
can use Talagrand’s concentration inequality for convex Lipschitz functions on
the cube [76, 77]. Namely, suppose the entries of A are independent, have mean
zero, and are uniformly bounded by 1. Since smax(A) is a convex function of A,
Talagrand’s concentration inequality implies

P
(

|smax(A)−Median(smax(A))| ≥ t
)

≤ 2e−t2/2.

Although the precise value of the median is unknown, integration of the previous
inequality shows that |Esmax(A)−Median(smax(A))| ≤ C. The same deviation
inequality holds for symmetric random matrices.

Inequality (2.3) is optimal for large t because smax(A) is bounded below by
the magnitude of every entry of A which has the Gaussian tail. But for small
deviations, say for t < 1, inequality (2.3) is meaningless. Tracy-Widom law
predicts a different tail behavior for small deviations t. It must follow the tail
decay of the Tracy–Widom function F1, which is not subgaussian [3], [39]:

c exp(−Cτ3/2) ≤ 1− F1(τ) ≤ C exp(−C ′τ3/2) τ ≥ 0.

The concentration of this type for Hermitian complex and real Gaussian ma-
trices (Gaussian Unitary Ensemble and Gaussian Orthogonal Ensemble) was
proved by Ledoux [48] and Aubrun [3]. Recently, Feldheim and Sodin [25] in-
troduced a general approach, which allows to prove the asymptotic Tracy–
Widom law and its non-asymptotic counterpart at the same time. Moreover,
their method is applicable to random matrices with independent subgaussian
entries both in symmetric and non-symmetric case. In particular, for an N × n
random matrix A with independent subgaussian entries they proved that

p(τ) := P
(

smax(A) ≥
√
N +

√
n+ τ

√
N
)

≤ C exp(−cnτ3/2) τ ≥ 0. (2.4)

Bounds (2.3) and (2.4) show that the tail behavior of the maximal singu-
lar value is essentially different for small and large deviations: p(τ) decays
like exp(−cnτ3/2) for τ ≤ c(n/N)2 and like exp(−c1Nτ2) for larger τ . For
square matrices the meaning of this phenomenon is especially clear. Large de-
viations of smax(A) are produced by bursts of single entries: both P(smax(A) ≥
Esmax(A) + t) and P(|a1,1| ≥ Esmax(A) + t) are of the same order exp(−ct2)
for t ≥ Esmax(A). In contrast, for small deviations (for smaller t) the situation
becomes truly multidimensional, and Tracy-Widom type asymptotics appears.

The method of [25] also addresses the more difficult smallest singular value.
For an N×n random matrix A whose dimensions are not too close to each other
Feldheim and Sodin [25] proved the Tracy–Widom law for the smallest singular
value together with a non-asymptotic version of the bound smin(A) ∼

√
N−√

n:

P

(

smin(A) ≤
√
N −√

n− τ
√
N · N

N − n

)

≤ C

1−
√

n/N
exp(−c′nτ3/2). (2.5)
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3. The Smallest Singular Value

Qualitative invertibility problem In this section we focus on the behavior
of the smallest singular value of random N × n matrices with independent
entries. The smallest singular value – the hard edge of the spectrum – is generally
more difficult and less amenable to analysis by classical methods of random
matrix theory than the largest singular value, the “soft edge”. The difficulty
especially manifests itself for square matrices (N = n) or almost square matrices
(N−n = o(n)). For example, we were guided so far by the asymptotic prediction
smin(A) ∼

√
N −√

n, which obviously becomes useless for square matrices.
A remarkable example is provided by n × n random Bernoulli matrices A,

whose entries are independent ±1 valued symmetric random variables. Even the
qualitative invertibility problem, which asks to estimate the probability that A
is invertible, is nontrivial in this situation. Komlós [44, 45] showed that A is
invertible asymptotically almost surely: pn := P(smin(A) = 0) → 0 as n → ∞.
Later Kahn, Komlos and Szemeredi [43] proved that the singularity probability
satisfies pn ≤ cn for some c ∈ (0, 1). The base c was gradually improved in
[78, 81], with the latest record of pn = (1/

√
2 + o(1))n obtained in [12]. It is

conjectured that the dominant source of singularity of A is the presence of two
rows or two columns that are equal up to a sign, which would imply the best
possible bound pn = (1/2 + o(1))n.

Quantitative invertibility problem The previous problem is only con-
cerned with whether the hard edge smin(A) is zero or not. This says nothing
about the quantitative invertibility problem of the typical size of smin(A). The
latter question has a long history. Von Neumann and his associates used random
matrices as test inputs in algorithms for numerical solution of systems of linear
equations. The accuracy of the matrix algorithms, and sometimes their running
time as well, depends on the condition number κ(A) = smax(A)/smin(A). Based
on heuristic and experimental evidence, von Neumann and Goldstine predicted
that

smin(A) ∼ n−1/2, smax(A) ∼ n1/2 with high probability (3.1)

which together yield κ(A) ∼ n, see [92, Section 7.8]. In Section 2 we saw several
results establishing the second part of (3.1), for the largest singular value.

Estimating the smallest singular value turned out to be more difficult. A
more precise form of the prediction smin(A) ∼ n−1/2 was repeated by Smale
[73] and proved by Edelman [20] and Szarek [79] for random Gaussian matrices
A, those with i.i.d. standard normal entries. For such matrices, the explicit
formula for the joint density of the eigenvalues λi of

1
nA

∗A is available:

pdf(λ1, . . . , λn) = Cn

∏

1≤i<j≤n

|λi − λj |
n
∏

i=1

λ
−1/2
i exp

(

−
n
∑

i=1

λi/2

)

.

Integrating out all the eigenvalues except the smallest one, one can in principle
compute its distribution. This approach leads to the following asymptotic result:
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Theorem 3.1 (Smallest singular value of Gaussian matrices [20]). Let A = An

be an n × n random matrix whose entries are independent standard normal
random variables. Then for every fixed ε ≥ 0 one has

P
(

smin(A) ≤ εn−1/2
)

→ 1− exp(−ε− ε2/2) as n → ∞.

The limiting probability behaves as 1− exp(−ε− ε2/2) ∼ ε for small ε. In
fact, the following non-asymptotic bound holds for all n:

P
(

smin(A) ≤ εn−1/2
)

≤ ε, ε ≥ 0. (3.2)

This follows from the analysis of Edelman [20]; Sankar, Spielman and Teng
[68] provided a different geometric proof of estimate (3.2) up to an absolute
constant factor and extended it to non-centered Gaussian distributions.

Smallest singular values of general random matrices These methods
do not work for general random matrices, especially those with discrete distri-
butions, where rotation invariance and the joint density of eigenvalues are not
available. The prediction that smin(A) ∼ n−1/2 has been open even for random
Bernoulli matrices. Spielman and Teng conjectured in their ICM 2002 talk [75]
that estimate (3.2) should hold for the random Bernoulli matrices up to an
exponentially small term that accounts for their singularity probability:

P
(

smin(A) ≤ εn−1/2
)

≤ ε+ cn, ε ≥ 0

where c ∈ (0, 1) is an absolute constant. The first polynomial bound on smin(A)
for general random matrices was obtained in [63]. Later Spielman-Teng’s con-
jecture was proved in [65] up to a constant factor, and for general random
matrices:

Theorem 3.2 (Smallest singular value of square random matrices [65]). Let
A be an n × n random matrix whose entries are independent and identically
distributed subgaussian random variables with zero mean and unit variance.
Then

P
(

smin(A) ≤ εn−1/2
)

≤ Cε+ cn, ε ≥ 0

where C > 0 and c ∈ (0, 1) depend only on the subgaussian moment of the
entries.

This result addresses both qualitative and quantitative aspects of the in-
vertibility problem. Setting ε = 0 we see that A is invertible with probability
at least 1− cn. This generaizes the result of Kahn, Komlos and Szemeredi [43]
from Bernoulli to all subgaussian matrices. On the other hand, quantitatively,
Theorem 3.2 states that smin(A) & n−1/2 with high probability for general ran-
dom matrices. A corresponding non-asymptotic upper bound smin(A) . n−1/2

also holds [66], so we have smin(A) ∼ n−1/2 as in von Neumann-Goldstine’s
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prediction. Both these bounds, upper and lower, hold with high probability
under the weaker fourth moment assumption on the entries [65, 66].

This theory was extended to rectangular random matrices of arbitrary
dimensions N × n in [67]. As we know from Section 2, one expects that
smin(A) ∼

√
N − √

n. But this would be incorrect for square matrices. To
reconcile rectangular and square matrices we make the following correction of
our prediction:

smin(A) ∼
√
N −

√
n− 1 with high probability. (3.3)

For square matrices one would have the correct estimate smin(A) ∼ √
n −√

n− 1 ∼ n−1/2. The following result extends Theorem 3.2 to rectangular ma-
trices:

Theorem 3.3 (Smallest singular value of rectangular random matrices [65]).
Let A be an n×n random matrix whose entries are independent and identically
distributed subgaussian random variables with zero mean and unit variance.
Then

P
(

smin(A) ≤ ε(
√
N −

√
n− 1)

)

≤ (Cε)N−n+1 + cN , ε ≥ 0

where C > 0 and c ∈ (0, 1) depend only on the subgaussian moment of the
entries.

This result has been known for a long time for tall matrices, whose the as-
pect ratio λ = n/N is bounded by a sufficiently small constant, see [10]. The
optimal bound smin(A) ≥ c

√
N can be proved in this case using an ε-net argu-

ment similar to Proposition 2.4. This was extended in [53] to smin(A) ≥ cλ
√
N

for all aspect ratios λ < 1 − c/ log n. The dependence of cλ on the aspect
ratio λ was improved in [2] for Bernoulli matrices and in [62] for general sub-
gaussian matrices. Feldheim-Sodin’s Theorem 2.3 gives precise Tracy-Widom
fluctuations of smin(A) for tall matrices, but becomes useless for almost square
matrices (say for N < n + n1/3). Theorem 3.3 is an an optimal result (up to
absolute constants) which covers matrices with all aspect ratios from tall to
square. Non-asymptotic estimate (3.3) was extended to matrices whose entries
have finite (4 + ε)-th moment in [93].

Universality of the smallest singular values The limiting distribution
of smin(A) turns out to be universal as dimension n → ∞. We already saw
a similar universality phenomenon in Theorem 2.3 for genuinely rectangular
matrices. For square matrices, the corresponding result was proved by Tao and
Vu [87]:

Theorem 3.4 (Smallest singular value of square matrices: universality [87]).
Let A be an n × n random matrix whose entries are independent and iden-
tically distributed random variables with zero mean, unit variance, and finite
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K-th moment where K is a sufficiently large absolute constant. Let G be an
n × n random matrix whose entries are independent standard normal random
variables. Then

P(
√
nsmin(G) ≤ t− n

−c)− n
c ≤ P(

√
nsmin(A) ≤ t) ≤ P(

√
nsmin(G) ≤ t+ n

−c) + n
c

where c > 0 depends only on the K-th moment of the entries.

On a methodological level, this result may be compared in classical prob-
ability theory to Berry-Esseen theorem (1.1) which establishes polynomial de-
viations from the limiting distribution, while Theorems 3.2 and 3.3 bear a
similarity with large deviation results like (1.2) which give exponentially small
tail probabilities.

Sparsity and invertibility: a geometric proof of Theorem 3.2 We will
now sketch the proof of Theorem 3.2 given in [65]. This argument is mostly
based on geometric ideas, and it may be useful beyond spectral analysis of
random matrices.

Looking at smin(A) = minx∈Sn−1 ‖Ax‖2 we see that our goal is to bound be-
low ‖Ax‖2 uniformly for all unit vectors x. We will do this separately for sparse
vectors and for spread vectors with two very different arguments. Choosing a
small absolute constant c0 > 0, we first consider the class of sparse vectors

Sparse := {x ∈ Sn−1 : | supp(x)| ≤ c0n}

Establishing invertibility of A on this class is relatively easy. Indeed, when
we look at ‖Ax‖2 for sparse vectors x of fixed support supp(x) = I of size
|I| = c0n, we are effectively dealing with the n×c0n submatrix AI that consists
of the columns of A indexed by I. The matrix AI is tall, so as we said below
Theorem 3.3, its smallest singular value can be estimated using the standard
ε-net argument. This gives smin(AI) ≥ cn1/2 with probability at least 1−2e−n.
This allows us to further take the union bound over

(

n
c0n

)

≤ en/2 choices of

support I, and conclude that with probability at least 1 − 2e−n/2 we have
invertibility on all sparse vectors:

min
x∈Sparse

‖Ax‖2 = min
|I|≤c0n

smin(AI) ≥ cn1/2. (3.4)

We thus obtained a much stronger bound than we need, n1/2 instead of n−1/2.
Establishing invertibility of A on non-sparse vectors is more difficult because

there are too many of them. For example, there are exponentially many vectors
on Sn−1 whose coordinates all equal ±n−1/2 and which have at least a constant
distance from each other. This gives us no hope to control such vectors using
ε-nets, as any nontrivial net must have cardinality at least 2n. So let us now
focus on this most difficult class of extremely non-sparse vectors

Spread := {x ∈ Sn−1 : |xi| ≥ c1n
−1/2 for all i}.
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Once we prove invertibility of A on these spread vectors, the argument can
be completed for all vectors in Sn−1 by an approximation argument. Loosely
speaking, if x is close to Sparse we can treat x as sparse, otherwise x must have
at least cn coordinates of magnitude |xi| = O(n−1/2), which allows us to treat
x as spread.

An obvious advantage of spread vectors is that we know the magnitude of all
their coefficients. This motivates the following geometric invertibility argument.
If A performs extremely poor so that smin(A) = 0, then one of the columnsXk of
A lies in the span Hk = span(Xi)i6=k of the others. This simple observation can
be transformed into a quantitative argument. Suppose x = (x1, . . . , xn) ∈ R

n

is a spread vector. Then, for every k = 1, . . . , n, we have

‖Ax‖2 ≥ dist(Ax,Hk) = dist

(

n
∑

i=1

xiXi, Hk

)

= dist(xkXk, Hk)

= |xk| · dist(Xk, Hk) ≥ c1n
−1/2 dist(Xk, Hk). (3.5)

Since the right hand side does not depend on x, we have proved that

min
x∈Spread

‖Ax‖2 ≥ c1n
−1/2 dist(Xn, Hn). (3.6)

This reduces our task to the geometric problem of independent interest
– estimate the distance between a random vector and an independent random
hyperplane. The expectation estimate 1 ≤ E dist(Xn, Hn)

2 = O(1) follows easily
by independence and moment assumptions. But we need a lower bound with
high probability, which is far from trivial. This will make a separate story
connected to the Littlewood-Offord theory of small ball probabilities, which we
discuss in Section 4. In particular we will prove in Corollary 4.4 the optimal
estimate

P(dist(Xn, Hn) ≤ ε) ≤ Cε+ cn, ε ≥ 0, (3.7)

which is simple for the Gaussian distribution (by rotation invariance) and diffi-
cult to prove e.g. for the Bernoulli distribution. Together with (3.6) this means
that we proved invertibility on all spread vectors:

P

(

min
x∈Spread

‖Ax‖2 ≤ εn−1/2

)

≤ Cε+ cn, ε ≥ 0.

This is exactly the type of probability bound claimed in Theorem 3.2. As we
said, we can finish the proof by combining with the (much better) invertibility
on sparse vectors in (3.4), and by an approximation argument.

4. Littlewood-Offord Theory

Small ball probabilities and additive structure We encountered the fol-
lowing geometric problem in the previous section: estimate the distance between
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a random vector X with independent coordinates and an independent random
hyperplane H in R

n. We need a lower bound on this distance with high prob-
ability. Let us condition on the hyperplane H and let a ∈ R

n denote its unit
normal vector. Writing in coordinates a = (a1, . . . , an) and X = (ξ1, . . . , ξn),
we see that

dist(X,H) = 〈a,X〉 =
∣

∣

∣

∣

∣

n
∑

i=1

aiξi

∣

∣

∣

∣

∣

. (4.1)

We need to understand the distribution of sums of independent random vari-
ables

S =
n
∑

i=1

aiξi, ‖a‖2 = 1,

where a = (a1, . . . , an) ∈ R
n is a given coefficient vector, and ξ1, . . . , ξn are

independent identically distributed random variables with zero mean and unit
variance.

Sums of independent random variables is a classical theme in probability
theory. The well-developed area of large deviation inequalities like (1.2) demon-
strates that S nicely concentrates around its mean. But our problem is opposite
as we need to show that S is not too concentrated around its mean 0, and per-
haps more generally around any real number. Several results in probability
theory starting from the works of Lévy [50], Kolmogorov [42] and Esséen [24]
were concerned with the spread of sums of independent random variables, which
is quantified as follows:

Definition 4.1. The Lévy concentration function of a random variable S is

L(S, ε) = sup
v∈R

P(|S − v| ≤ ε), ε ≥ 0.

Lévy concentration function measures the small ball probability [51], the
likelihood that S enters a small interval. For continuous distributions one can
show that L(S, ε) . ε for all ε ≥ 0. For discrete distributions this may be false.
Instead, a new phenomenon arises for discrete distributions which is unseen
in large deviation theory: Lévy concentration function depends on the additive
structure of the coefficient vector a. This is best illustrated on the example where
ξi are independent Bernoulli random variables (±1 valued and symmetric). For
sparse vectors like a = 2−1/2(1, 1, 0, . . . , 0), Lévy concentration function can be
large: L(S, 0) = 1/2. For spread vectors, Berry-Esseen’s theorem (1.1) yields a
better bound:

For a′ = n−1/2(1, 1, . . . , 1), L(S, ε) ≤ C(ε+ n−1/2). (4.2)

The threshold n−1/2 comes from many cancelations in the sums
∑±1 which

occur because all coefficients ai are equal. For less structured a, fewer cancela-
tions occur:

For a′′ = n−1/2

(

1 +
1

n
, 1 +

2

n
, . . . , 1 +

n

n

)

, L(S, 0) ∼ n−3/2. (4.3)
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Studying the influence of additive structure of the coefficient vector a on the
spread of S =

∑

aiξi became known as the Littlewood-Offord problem. It was
initially developed by Littlewood and Offord [52], Erdös and Moser [21, 22],
Sárkozy and Szemerédi [69], Halasz [40], Frankl and Füredi [26]. For example,
if all |ai| ≥ 1 then L(S, 1) ≤ Cn−1/2 [52, 21], which agrees with (4.2). Similarly,
a general fact behind (4.3) is that if |ai − aj | ≥ 1 for all i 6= j then L(S, 1) ≤
Cn−3/2 [22, 69, 40].

New results on Lévy concentration function Problems of invertibility
of random matrices motivated a recent revisiting of LO problem by Tao and Vu
[83, 84, 86, 88], the authors [65, 67], Friedland and Sodin [27]. Additive struc-
ture of the coefficient vector a is related to the shortest arithmetic progression
into which it embeds. This length is conveniently expressed as the least com-
mon denominator lcd(a) defined as the smallest θ > 0 such that θa ∈ Z

n \ 0.
Examples suggest that Lévy concentration function should be inversely propor-
tional to the least common denominator: lcd(a′) = n1/2 ∼ 1/L(S, 0) in (4.2)
and lcd(a′′) = n3/2 ∼ 1/L(S, 0) in (4.3). This is not a coincidence. But to state
a general result, we will need to consider a more stable version of the least
common denominator. Given an accuracy level α > 0, we define the essential
least common denominator

lcdα(a) := inf

{

θ > 0 : dist(θa,Zn) ≤ min

(

1

10
‖θa‖2, α

)}

.

The requirement dist(θa,Zn) ≤ 1
10‖θa‖2 ensures approximation of θa by non-

trivial integer points, those in a non-trivial cone in the direction of a. The
constant 1

10 is arbitrary and it can be replaced by any other constant in (0, 1).
One typically uses this concept for accuracy levels α = c

√
n with a small

constant c such as c = 1
10 . The inequality dist(θa,Zn) ≤ α yields that most

of the coordinates of θa are within a small constant distance from integers.
For such α, in examples (4.2) and (4.3) one has as before lcdα(a

′) ∼ n1/2 and
lcdα(a

′′) ∼ n3/2. Here we state and sketch a proof of a general Littlewood-
Offord type result from [67].

Theorem 4.2 (Lévy concentration function via additive structure). Let
ξ1, . . . , ξn be independent identically distributed mean zero random variables,
which are well spread: p := L(ξk, 1) < 1. Then, for every coefficient vector
a = (a1, . . . , an) ∈ Sn−1 and every accuracy level α > 0, the sum S =

∑n
i=1 aiξi

satisfies

L(S, ε) ≤ Cε+ C/ lcdα(a) + Ce−cα2

, ε ≥ 0, (4.4)

where C, c > 0 depend only on the spread p.

Proof. A classical Esseen’s concentration inequality [24] bounds the Lévy con-
centration function of an arbitrary random variable Z by the L1 norm of its
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characteristic function φZ(θ) = E exp(iθZ) as follows:

L(Z, 1) ≤ C

∫ 1

−1

|φZ(θ)| dθ. (4.5)

One can prove this inequality using Fourier inversion formula, see [80, Section
7.3].

We will show how to prove Theorem 4.2 for Bernoulli random variables ξi;
the general case requires an additional argument. Without loss of generality
we can assume that lcdα(a) ≥ 1

πε . Applying (4.5) for Z = S/ε, we obtain by
independence that

L(S, ε) ≤ C

∫ 1

−1

|φS(θ/ε)| dθ = C

∫ 1

−1

n
∏

j=1

|φj(θ/ε)| dθ,

where φj(t) = E exp(iajξjt) = cos(ajt). The inequality |x| ≤ exp(− 1
2 (1 − x2))

which is valid for all x ∈ R implies that

|φj(t)| ≤ exp

(

−1

2
sin2(ajt)

)

≤ exp

(

−1

2
dist

(

ajt

π
,Z

)2
)

.

Therefore

L(S, ε) ≤ C

∫ 1

−1

exp



−1

2

n
∑

j=1

dist

(

ajθ

πε
,Z

)2


 dθ = C

∫ 1

−1

exp
(

− 1

2
f2(θ)

)

dθ

(4.6)

where f(θ) = dist
(

θ
πεa,Z

n
)

. Since lcdα(a) ≥ 1
πε , the definition of the essential

least common denominator implies that for every θ ∈ [−1, 1] we have f(θ) ≥
min( θ

10πε‖a‖2, α). Since by assumption ‖a‖2 = 1, it follows that

exp

(

−1

2
f2(θ)

)

≤ exp

(

−1

2

(

θ

10πε

)2
)

+ exp(−α2/2).

Substituting this into (4.6) yields L(S, ε) ≤ C1(ε+ 2 exp(−α2/2)) as required.

Theorem 4.2 justifies our empirical observation that Lévy concentration
function is proportional to the amount of structure in the coefficient vector,
which is measured by the (reciprocal of) its essential least common denom-
inator. As we said, this result is typically used for accuracy level α = c

√
n

with some small positive constant c. In this case, the term Ce−cα2

in (4.4) is
exponentially small in n (thus negligible in applications), and the term Cε is
optimal for continuous distributions.
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Theorem 4.2 performs best for totally unstructured coefficient vectors a,
those with exponentially large lcdα(a). Heuristically, this should be the case for
random vectors, as randomness should destroy any structure. While this is not
true for general vectors with independent coordinates (e.g. for equal coordinates
with random signs), it is true for normals of random hyperplanes:

Theorem 4.3 (Random vectors are unstructured [65]). Let Xi be random vec-
tors in R

n whose coordinates are independent and identically distributed sub-
gaussian random variables with zero mean and unit variance. Let a ∈ R

n denote
a unit normal vector of H = span(X1, . . . , Xn−1). Then, with probability at least
1− e−cn,

lcdα(a) ≥ ecn for α = c
√
n,

where c > 0 depends only on the subgaussian moment.

Therefore for random normals a, Theorem 4.2 yealds with high probability
a very strong bound on Lévy concentration function:

L(S, ε) ≤ Cε+ cn, ε ≥ 0. (4.7)

This brings us back to the distance problem considered in the beginning of this
section, which motivated our study of Lévy concentration function:

Corollary 4.4 (Distance between random vectors and hyperplanes [65]). Let
Xi be random vectors as in Theorem 4.3, and Hn = span(X1, . . . , Xn−1). Then

P
(

dist(Xn, Hn) ≤ ε
)

≤ Cε+ cn, ε ≥ 0,

where C, c > 0 depend only on the subgaussian moment.

Proof. As was noticed in (4.1), we can write dist(Xn, Hn) as a sum of indepen-
dent random variables, and then bound it using (4.7).

Corollary 4.4 offers us exactly the missing piece (3.7) in our proof of the
invertibility Theorem 3.2. This completes our analysis of invertibility of square
matrices.

Remark. These methods generalize to rectangular matrices [67, 93]. For exam-
ple, Corollary 4.4 can be extended to compute the distance between random vec-
tors and subspaces of arbitrary dimension [67]: for Hn = span(X1, . . . , Xn−d)
we have (E dist(Xn, Hn)

2)1/2 =
√
d and

P
(

dist(Xn, Hn) ≤ ε
√
d
)

≤ (Cε)d + cn, ε ≥ 0.

5. Applications

The applications of non-asymptotic theory of random matrices are numerous,
and we cannot cover all of them in this note. Instead we concentrate on three
different results pertaining to the classical random matrix theory (Circular
Law), signal processing (compressed sensing), and geometric functional analysis
and theoretical computer science (short Khinchin’s inequality and Kashin’s
subspaces).
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Circular law Asymptotic theory of random matrices provides an important
source of heuristics for non-asymptotic results. We have seen an illustration of
this in the analysis of the extreme singular values. This interaction between the
asymptotic and non-asymptotic theories goes the other way as well, as good
non-asymptotic bounds are sometimes crucial in proving the limit laws. One
remarkable example of this is the circular law which we will discuss now.

Consider a family of n×n matrices A whose entries are independent copies
of a random variable X with mean zero and unit variance. Let µn be the em-
pirical measure of the eigenvalues of the matrix Bn = 1√

n
An, i.e. the Borel

probability measure on C such that µn(E) is the fraction of the eigenvalues
of Bn contained in E. A long-standing conjecture in random matrix theory,
which is called the circular law, suggested that the measures µn converge to
the normalized Lebesgue measure on the unit disc. The convergence here can be
understood in the same sense as in the Wigner’s semicircle law. The circular
law was originally proved by Mehta [56] for random matrices with standard
normal entries. The argument used the explicit formula for joint density of
the eigenvalues, so it could not be extended to other classes of random ma-
trices. While the formulation of Wigner’s semicircle law and the circular law
look similar, the methods used to prove the former are not applicable to the
latter. The reason is that the spectrum of a general matrix, unlike that of a
Hermitian matrix, is unstable: a small change of the entries may cause a signif-
icant change of the spectrum (see [6]). Girko [30] introduced a new approach
to the circular law based on considering the real part of the Stieltjes transform
of measures µn. For z = x + iy the real Stieltjes transform is defined by the
formula

Snr(z) = Re

(

1

n
Tr(Bn − zIn)

−1

)

= − ∂

∂x

(

1

n
log |det(Bn − zI)|

)

.

Since |det(Bn − zI)|2 = det(Bn − zI)(Bn − zI)∗, this is the same as

Snr(z) = −1

2

∂

∂x

(

1

n
log |det(Bn − zI)(Bn − zI)∗|

)

= −1

2

∂

∂x





1

n

n
∑

j=1

log s
(n)
j (z)



 ,

where s
(n)
1 (z) ≥ . . . ≥ s

(n)
n (z) ≥ 0 are the eigenvalues of the Hermitian matrix

(Bn−zI)(Bn−zI)∗, or in other words, the squares of the singular values of the
matrix Vn = Bn − zI. Girko’s argument reduces the proof of the circular law
to the convergence of real Stieltjes transforms, and thus to the behavior of the
sum above. The logarithmic function is unbounded at 0 and ∞. To control the
behavior near ∞, one has to use the bound for the largest singular value of Vn,
which is relatively easy. The analysis of the behavior near 0 requires bounds on
the smallest singular value of Vn, and is therefore more difficult.

Girko’s approach was implemented by Bai [4], who proved the circular law
for random matrices whose entries have bounded sixth moment and bounded
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density. The bounded density condition was sufficient to take care of the small-
est singular value problem. This result was the first manifestation of the uni-
versality of the circular law. Still, it did not cover some important classes
of random matrices, in particular random Bernoulli matrices. The recent re-
sults on the smallest singular value led to a significant progress on establishing
the universality of the circular law. A crucial step was done by Götze and
Tikhomirov [34] who extended the circular law to all subgaussian matrices us-
ing [63]. In fact, the results of [34] actually extended it to all random entries
with bounded fourth moment. This was further extended to random variables
having bounded moment 2+ε in [35, 82]. Finally, in [85] Tao and Vu proved the
Circular Law in full generality, with no assumptions besides the unit variance.
Their approach was based on the smallest singular value bound from [82] and
a novel replacement principle which allowed them to treat the other singular
values.

Compressed Sensing Non-asymptotic random matrix theory provides a
right context for the analysis of random measurements in the newly developed
area of compressed sensing, see the ICM 2006 talk of Candes [14]. Compressed
sensing is an area of information theory and signal processing which studies ef-
ficient techniques to reconstruct a signal from a small number of measurements
by utilizing the prior knowledge that the signal is sparse [18].

Mathematically, one seeks to reconstruct an unknown signal x ∈ R
n from

some m linear measurements viewed as a vector Ax ∈ R
m, where A is some

known m × n matrix called the measurement matrix. In the interesting case
m < n, the problem is underdetermined and we are interested in the sparsest
solution:

minimize ‖x∗‖0 subject to Ax∗ = Ax, (5.1)

where ‖x‖0 = | supp(x)|. This optimization problem is highly non-convex and
computationally intractable. So one considers the following convex relaxation
of (5.1), which can be efficiently solved by convex programming methods:

minimize ‖x∗‖1 subject to Ax∗ = Ax, (5.2)

where ‖x‖1 =
∑n

i=1 |xi| denotes the `1 norm.

One would then need to find conditions when problems (5.1) and (5.2) are
equivalent. Candes and Tao [16] showed that this occurs when the measurement
matrix A is a restricted isometry. For an integer s ≤ n, the restricted isometry
constant δs(A) is the smallest number δ ≥ 0 which satisfies

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 for all x ∈ R
n, | supp(x)| ≤ s. (5.3)

Geometrically, the restricted isometry property guarantees that the geometry
of s-sparse vectors x is well preserved by the measurement matrix A. In turns
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out that in this situation one can reconstruct x from Ax by the convex program
(5.2):

Theorem 5.1 (Sparse reconstruction using convex programming [16]). Assume
δ2s ≤ c. Then the solution of (5.2) equals x whenever | supp(x)| ≤ s.

A proof with c =
√
2−1 is given in [15]; the current record is c = 0.472 [13].

Restricted isometry property can be interpreted in terms of the extreme
singular values of submatrices of A. Indeed, (5.3) equivalently states that the
inequality √

1− δ ≤ smin(AI) ≤ smax(AI) ≤
√
1 + δ

holds for all m× s submatrices AI , those formed by the columns of A indexed
by sets I of size s. In light of Sections 2 and 3, it is not surprising that the
best known restricted isometry matrices are random matrices. It is actually
an open problem to construct deterministic restricted isometry matrices as in
Theorem 5.2 below.

The following three types of random matrices are extensively used as mea-
surement matrices in compressed sensing: Gaussian, Bernoulli, and Fourier.
Here we summarize their restricted isometry properties, which have the com-
mon remarkable feature: the required number of measurements m is roughly
proportional to the sparsity level s rather than the (possibly much larger) di-
mension n.

Theorem 5.2 (Random matrices are restricted isometries). Let m,n, s be pos-
itive integers, ε, δ ∈ (0, 1), and let A be an m× n measurement matrix.

1. Suppose the entries of A are independent and identically distributed sub-
gaussian random variables with zero mean and unit variance. Assume that

m ≥ Cs log(2n/s)

where C depends only on ε, δ, and the subgaussian moment. Then with probabil-
ity at least 1− ε, the matrix Ā = 1√

m
A is a restricted isometry with δs(Ā) ≤ δ.

2. Let A be a random Fourier matrix obtained from the n×n discrete Fourier
transform matrix by choosing m rows independently and uniformly. Assume that

m ≥ Cs log4(2n). (5.4)

where C depends only on ε and δ. Then with probability at least 1−ε, the matrix
Ā = 1√

n
A is a restricted isometry with δs(Ā) ≤ δ.

For random subgaussian matrices this result was proved in [9, 57] by an ε-net
argument, where one first checks the deviation inequality |‖Ax‖22 − 1| ≤ δ with
exponentially high probability for a fixed vector x as in (5.3), and afterwards
lets x run over some fine net. For random Fourier matrices the problem is
harder. It was first addressed in [17] with a little higher exponent than in (5.4);
the exponent 4 was obtained in [64], and it is conjectured that the optimal
exponent is 1.
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Short Khinchin’s inequality and Kashin’s subspaces Let 1 ≤ p < ∞.
The classical Khinchin’s inequality states that there exist constants Ap, Bp such
that for all x = (x1, . . . , xn) ∈ R

n

Ap‖x‖2 ≤



 Ave
ε∈{−1,1}n

∣

∣

∣

∣

∣

∣

n
∑

j=1

εjxj

∣

∣

∣

∣

∣

∣

p



1/p

≤ Bp‖x‖2.

The average here is taken over all 2n possible choices of signs ε (it is the same
as the expectation with respect to independent Bernoulli random variables εj).
Since the mid-seventies, the question was around whether Khinchin’s inequality
holds for averages over some small sets of signs ε. A trivial lower bound follows
by a dimension argument: such a set must contain at least n points. Here we
shall discuss only the case p = 1, which is of considerable interest for computer
science. This problem can be stated more precisely as follows: as follows:

Given δ > 0, find α(δ), β(δ) > 0 and construct a set V ⊂ {−1, 1}n of
cardinality less than (1+δ)n such that for all x = (x1, . . . , xn) ∈ R

n

α(δ)‖x‖2 ≤ Ave
ε∈V

∣

∣

∣

∣

∣

∣

n
∑

j=1

εjxj

∣

∣

∣

∣

∣

∣

≤ β(δ)‖x‖2. (5.5)

The first result in this direction belongs to Schechtman [70] who found an
affirmative solution to this problem for δ greater than some absolute constant.
He considered a set V consisting of N = b(1 + δ)nc independent random ±1
vectors, which can be written as an N × n random Bernoulli matrix A. In the
matrix language, the inequality above reads α(δ)‖x‖2 ≤ N−1‖Ax‖1 ≤ β(δ)‖x‖2
for all x ∈ R

n. This means that one can take

α(δ) = N−1 inf
x∈Sn−1

‖Ax‖1, β(δ) = N−1 sup
x∈Sn−1

‖Ax‖1.

These expressions bear a similarity to the smallest and the largest singular
values of the matrix A. In fact, up to the coefficient N−1, β(δ) is the norm of A
considered as a linear operator from `n2 to `n1 , and α(δ) is the reciprocal of the
norm of its inverse. Schechtman’s theorem can now be derived using the ε-net
argument.

The case of small δ is more delicate. For a random A, the bound for β(δ) ≤
C can be obtained by the ε-net argument as before. However, an attempt
to apply this argument for α(δ) runs into to the same problems as for the
smallest singular value. For any fixed δ > 0 the solution was first obtained first
by Johnson and Schechtman [38] who showed that there exists V satisfying
(5.5) with α(δ) = c1/δ. In [54] this was established for a random set V (or
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a random matrix A) with the same bound on α(δ). Furthermore, the result
remains valid even when δ depends on n, as long as δ ≥ c/ log n. The proof uses
the smallest singular value bound from [53] in a crucial way. The bound on
α(δ) has been further improved in [2], also using the singular value approach.
Finally, a theorem in [62] asserts that for a random set V the inequalities (5.5)
hold with high probability for

α(δ) = cδ2, β(δ) = C.

Moreover, the result holds for all δ > 0 and n, without any restrictions. The
proof combines the methods of [63] and a geometric argument based on the
structure of a section of the `n1 ball. The probability estimate of [62] can be
further improved if one replaces the small ball probability bound of [63] with
that of [65].

The short Khinchin inequality shows also that the `1 and `2 norms are
equivalent on a random subspace E := ARn ⊂ R

N . Indeed, if A is an N ×
n random matrix, then with high probability every vector x ∈ R

n satisfies
α(δ)‖x‖2 ≤ N−1‖Ax‖1 ≤ N−1/2‖Ax‖2 ≤ C‖x‖2. The second inequality here
is Cauchy-Schwartz, and the third one is the largest singular value bound.
Thierefore

C−1α(δ)‖y‖2 ≤ N−1/2‖y‖1 ≤ ‖y‖2 for all y ∈ E. (5.6)

Subspaces E possessing property (5.6) are called Kashin’s subspaces. The classi-
cal Dvoretzky theorem states that a high-dimensional Banach space has a sub-
space which is close to Euclidean [59]. The dimension of such subspace depends
on the geometry of the ambient space. Milman proved that such subspaces al-
ways exist in dimension c log n, where n is the dimension of the ambient space
[58] (see also [59]). For the space `n1 the situation is much better, and such sub-
spaces exist in dimension (1− δ)n for any constant δ > 0. This was first proved
by Kashin [41] also using a random matrix argument. Obviously, as δ → 0,
the distance between the `1 and `2 norms on such subspace grows to ∞. The
optimal bound for this distance has been found by Garnaev and Gluskin [28]
who used subspaces generated by Gaussian random matrices.

Kashin’s subspaces turned out to be useful in theoretical computer science,
in particular in the nearest neighbor search [36] and in compressed sensing.
At present no deterministic construction is known of such subspaces of di-
mension n proportional to N . The result of [62] shows that a b(1 + δ)nc × n
random Bernoulli matrix defines a Kashin’s subspace with α(δ) = cδ2. A ran-
dom Bernoulli matrix is computationally easier to implement than a random
Gaussian matrix, while the distance between the norms is not much worse than
in the optimal case. At the same time, since the subspaces generated by a
Bernoulli matrix are spanned by random vertices of the discrete cube, they
have relatively simple structure, which is possible to analyze.



1598 Mark Rudelson and Roman Vershynin

References

[1] R. Adamczak, A. Litvak, A. Pajor, N. Tomczak-Jaegermann, Quantitative esti-

mates of the convergence of the empirical covariance matrix in log-concave en-

sembles, J. Amer. Math. Soc. 23 (2010), 535–561.

[2] S. Artstein-Avidan, O. Friedland, V. D. Milman, S. Sodin, Polynomial bounds

for large Bernoulli sections of lN1 , Israel J. Math. 156 (2006), 141–155.

[3] G. Aubrun, A sharp small deviation inequality for the largest eigenvalue of a
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[51] W. V. Li, Q.-M. Shao, Gaussian processes: inequalities, small ball probabilities
and applications. Stochastic processes: theory and methods, 533–597, Handbook
of Statistics, 19, North-Holland, Amsterdam, 2001.

[52] J. E. Littlewood, A. C. Offord, On the number of real roots of a random algebraic

equation. III. Rec. Math. [Mat. Sbornik] N.S. 12 (54), (1943), 277–286

[53] A. Litvak, A. Pajor, M. Rudelson, N. Tomczak-Jaegermann, Smallest singular

value of random matrices and geometry of random polytopes, Adv. Math. 195
(2005), 491–523.

[54] A. E. Litvak, A. Pajor, M. Rudelson, N. Tomczak-Jaegermann, R. Vershynin,
Euclidean embeddings in spaces of finite volume ratio via random matrices, J.
Reine Angew. Math. 589 (2005), 1–19.

[55] V. A. Marchenko, L. A. Pastur, The distribution of eigenvalues in certain sets of

random matrices, Mat. Sb., 72 (1967), 507–536.

[56] M. L. Mehta, Random matrices and the statistical theory of energy levels. Aca-
demic Press, New York-London 1967.

[57] S. Mendelson, A. Pajor, N. Tomczak-Jaegermann, Uniform uncertainty principle

for Bernoulli and subgaussian ensembles, Constr. Approx. 28 (2008), 277–289.

[58] V. Milman, A new proof of the theorem of A. Dvoretzky on sections of convex

bodies, Funct. Anal. Appl. 5 (1971), 28–37.

[59] V. D. Milman, G. Schechtman, Asymptotic theory of finite-dimensional normed

spaces. With an appendix by M. Gromov. Lecture Notes in Math. 1200, Springer-
Verlag, Berlin 1986.



Non-asymptotic Theory of Random Matrices 1601

[60] L. A Pastur, On the spectrum of random matrices, Teoret. Mat. Fiz. 10 (1973),
102–112.

[61] V. V. Petrov, Sums of independent random variables. Ergebnisse der Mathematik
und ihrer Grenzgebiete, Band 82. Springer-Verlag, New York-Heidelberg, 1975.

[62] M. Rudelson, Lower estimates for the singular values of random matrices, C. R.
Math. Acad. Sci. Paris 342 (2006), 247–252.

[63] M. Rudelson, Invertibility of random matrices: norm of the inverse, Annals of
Mathematics 168 (2008), 575–600.

[64] M. Rudelson, R. Vershynin, On sparse reconstruction from Fourier and Gaussian

measurements, Communications on Pure and Applied Mathematics 61 (2008),
1025–1045.

[65] M. Rudelson, R. Vershynin, The Littlewood-Offord problem and invertibility of

random matrices, Adv. Math. 218 (2008), 600–633.

[66] M. Rudelson, R. Vershynin, The least singular value of a random square matrix

is O(n−1/2), Comptes rendus de l’Académie des sciences - Mathématique 346
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1. Introduction

The aim of this paper is to explore the appearance of planar algebra structure
in three areas of mathematics: subfactor theory; free probability theory; and
random matrices.

Jones’ subfactor theory has lead to a revolution in understanding what may
be termed “quantum symmetry”. The standard invariant of a subfactor — the
so-called lattice of higher relative commutants, or “λ-lattice” [Pop95, GHJ89]
is a remarkable mathematical object, which can represent a very general type
of symmetry. For example, a subfactor inclusion (and so its standard invariant)

∗Research supported by NSF grants DMS0555680 and DMS0900776.

Department of Mathematics, UCLA, Los Angeles, CA 90095, USA.

E-mail: shlyakht@math.ucla.edu.



1604 Dimitri Shlyakhtenko

can be associated to a Lie group representation. In this case, the vector spaces
that make up the standard invariant are the spaces of intertwiners between
tensor powers of that representation. Thus the standard invariant of such a
subfactor can be used to encode the representation theory of a Lie group, and
thus symmetries associated with Lie group actions.

In his groundbreaking paper [Jon99, Jon01] Jones (building on an earlier
algebraic axiomatization of standard invariants by Popa [Pop95]) showed that
there is a striking way to characterize standard invariants of subfactors: these
are exactly planar algebras (see §3.4 below for a definition). Very roughly, one
can think of a planar algebra as a sequence of vector spaces consisting of vec-
tors invariant under some “quantum symmetry”, together with very general
ways (dictated by planar diagrams) of producing new invariant vectors from
existing vectors. The planar algebra thus encodes the underlying symmetry. In
the context of the present paper, we shall use the terms “quantum symmetry”
and “planar algebra” interchangeably.

Curiously, planar diagrams also occur in random matrix theory. Certain
random multi-matrix ensembles (see §4.7 below) are asymptotically described
by combinatorics involving counting planar maps (these objects are very much
like planar diagrams appearing in the definition of planar algebras). This fact
has been discovered and extensively used by physicists, starting from the works
of ’t Hooft, Brezin, Iszykson, Parisi, Zuber and others (see e.g. [tH74, BIPZ78]).
A rigorous proof of convergence was obtained by Guionnet and Maurel Segala
(see [Gui06, GMS06] and references therein) and Ercolani and McLaughlin
[EM03].

Finally, turning to Voiculescu’s free probability theory [VDN92], it was
shown by Speicher [Spe94] and others that many important free probability
laws (such as the semicircle law, the free Poisson law and so on) have com-
binatorial descriptions involving counting planar objects (such as non-crossing
partitions, which are also very closely related to planar diagrams).

Thus one is faced with two natural questions. First, why do these planar
structures appear in these three areas? And second, how can these similarities
be exploited?

Concerning the first question, we do not know a fully satisfactory answer.
However, if one grants that planar structure is necessary to describe “quan-
tum symmetries” (i.e., subfactors), then one is able to find explanations for
appearances of planar structure in free probability theory and random matri-
ces. We show that one has a natural notion of a non-commutative probability
law having a quantum symmetry — this law is given by a trace on a ring nat-
urally associated to a planar algebra. Mathematically, this is accomplished by
a “change of rings” procedure, where we replace the ring of non-commutative
polynomials in K variables with a certain canonical ring associated to a given
planar algebra (see §3.9). This “change of rings” is analogous to the passage
from some probability space Ω to the quotient space Ω/G in the case that the
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laws of some family of random variables are invariant under the action of a
group G.

Also, we show how to construct random matrix ensembles, which asymp-
totically give rise to a non-commutative law with a given quantum symmetry.

This means that any time one considers a natural equation in free proba-
bility theory, or a natural equation giving the asymptotics of a random matrix
ensemble, this equation must make sense not only as an equation involving
polynomials in K non-commuting indeterminates, but also arbitrary planar al-
gebra elements. Thus the equation (and so its solutions) must have a natural
planar structure.

Concerning the second question, we give a number of applications of our
techniques. One such application is a version of the ground-breaking theorem
of Popa [Pop95, PS03] which states that every planar algebra P arises from a
subfactor N ⊂ M with N,M isomorphic to free group factors. It turns out that
both N and M can in fact be chosen to be natural non-commutative probability
spaces “in the presence of the symmetry P”. On the random matrix side, our
approach gives a mathematical framework to formulate the work of a number
of physics authors [EZJ92, Kos89, ZJ03] on the so-called O(n) matrix model.
In fact, using our techniques one can make rigorous sense of the O(n) matrix
model for n ∈ {2 cos π

n
: n ≥ 3} ∪ [2,+∞) (non-integer values of n are used in

the physics literature).

The remainder of the paper is organized as follows. We first discuss some
basic notions from free probability theory and subfactors. Next, we discuss a
notion of a non-commutative probability law having a symmetry encoded by
a planar algebra P and present some applications to subfactor theory. Finally,
we show that one can construct random matrix ensembles that model certain
non-commutative laws with a given planar algebra symmetry P, and explain
connections with a class of random matrix ensembles used in the physics liter-
ature, and derive some random matrix consequences.

This paper is based on the joint work with A. Guionnet and V.F.R. Jones
[GJS08, GJS09].

2. Background and Basic Notions: Free

Probability and Non-commutative

Probability Spaces

2.1. Non-commutative probability spaces. Recall (see for exam-
ple [VDN92]) that an algebraic non-commutative probability space (A, 1A, τ)
consists of an algebra A with unit 1A and a unital linear functional τ : A → C.
We often make the assumption that A is a ∗-algebra and τ is a trace, i.e.,
τ(ab) = τ(ba) for all a, b ∈ A. Elements of A are called non-commutative ran-
dom variables. Here are a few examples:
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Example 2.2. (a) If (X, µ) is a measure space and µ is a probability mea-

sure, then (A = L∞(X, µ), 1A, f
τ
→
∫
fdµ) is a non-commutative proba-

bility space.

(b) For any N , the algebra of N ×N matrices (A = MN×N (C), 1A = Id, τ =
1
N
Tr) is a non-commutative probability space.

(c) Consider A = MN×N (L∞,−(X, µ)), with (X, µ) as in (a). Thus elements
of A are random matrices. Then (A, 1A,E(

1
N
Tr(·))) is a non-commutative

probability space.

Note that in all of these examples, τ is a trace: τ(xy) = τ(yx).

In order to be able to do analysis on non-commutative probability spaces we
make the assumption that the algebra (A, 1A, τ) is represented (by bounded or
unbounded operators) on a Hilbert space H by a faithful unital representation
π, so that τ(a) = 〈Ω, π(a)Ω〉 for some fixed vector Ω ∈ H.

Elements of non-commutative probability spaces are called non-
commutative random variables.

2.3. Non-commutative laws. Given K = 1, 2, . . . classical real ran-
dom variables X1, . . . , XK , which we can think of as an R

K -valued function
X on some probability space (X, µ), their joint law is defined to be the push-
forward by τ = X∗µ of µ to a probability measure on R

K . If µ has finite
moments, we obtain a linear functional on the algebra of polynomials on R

K .

By analogy, given non-commutative random variables X1, . . . , XK ∈ A,
their non-commutative law τX1,...,XK

is the linear function on the algebra of
all non-commutative polynomials in K indeterminates C[t1, . . . , tK ] obtained
by composing τ with the canonical map sending tj to Xj . In other words

τX1,...,XK
(P (t1, . . . , tK)) = τ(P (X1, . . . , XK))

for any non-commutative polynomial P .

If K = 1, non-commutative laws are the same as commutative laws, modulo
identification of measures with linear functionals they induce on polynomials
by integration. For example, in the case of a single self-adjoint matrix Y ∈
(MN×N , 1

N
Tr), its non-commutative law corresponds to integration against the

measure µY = 1
N

∑
δλj

, where λ1, . . . , λN are the eigenvalues of Y . If Y is a
random matrix, its non-commutative law captures the expected value of the
random spectral measures associated to Y , E(µY ).

The classical notion of independence of random variables can be re-
formulated algebraically by stating that (X1, . . . , XK) is independent from
(XK+1, . . . , XK+L) in a non-commutative probability space (A, τ) if the law
of (X1, . . . , XK+L) ∈ (A, τ) is the same as that of the variables

(α1(X1), . . . , α1(XK), α2(XK+1), . . . , α2(XK+L)) ∈ (A⊗A, τ ⊗ τ).
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Here α1(X) = X ⊗ 1, α2(X) = 1 ⊗ X are two natural embeddings of A into
A⊗A.

Voiculescu developed his free probability theory (see e.g. [VDN92]) around
another notion of independence, free independence. For this notion, we say
that (X1, . . . , XK) is freely independent from (XK+1, . . . , XK+L) in a non-
commutative probability space (A, τ) if the law of (X1, . . . , XK+L) ∈ (A, τ) is
the same as that of the variables

(α1(X1), . . . , α1(XK), α2(XK+1), . . . , α2(XK+L)) ∈ (A ∗A, τ ∗ τ),

where ∗ denotes the free product [Voi85, VDN92], and α1, α2 are the natural
embeddings of A into A ∗A (into the first and second copy, respectively).

If τ is a non-commutative law satisfying positivity and boundedness require-
ments, the GNS construction yields a representation of C[t1, . . . , tK ] on L2(τ)
and thus generates a von Neumann algebra W ∗(τ). The non-commutative case
here differs significantly from the commutative case. In the commutative case,
W ∗(τ) = L∞(X), and, notably, all measure spaces X are isomorphic (at least for
laws τ which are non-atomic). In the non-commutative case, the von Neumann
algebras W ∗(τ) are much more diverse, and it is in general a very difficult and
challenging question to decide, for two laws τ, τ ′, when W ∗(τ) ∼= W ∗(τ ′), or to
somehow identify the isomorphism class of W ∗(τ).

3. Symmetries: Subfactors, Planar Algebras, and

Non-commutative Laws

3.1. Non-commutative laws with quantum symmetry. Con-
sider a complex-valued classical random variable Z; thus we actually have a pair
of random variables Z, Z̄, whose joint law is described by a probability measure
µ on C = R

2: for any function of two variables f(x, y), we are interested in the
value ∫∫

f(z, z̄)dµ(z, z̄).

In this way, the law of (Z, Z̄) is a functional on the space of functions on
(−∞,∞)× (−∞,∞).

Assume that we know that the law of (Z, Z̄) is invariant under rotations:
(Z, Z̄) ∼ (wZ, w̄Z̄) for any w ∈ C, |w| = 1. Then the joint law of (Z, Z̄) is
completely determined by its “radial part”, the integrals of the form

∫

g(|z|)dµ(z, z̄),

and thus defines a linear functional on the space of rotation-invariant functions,
i.e., effectively on the space of functions on [0,+∞) = C

2/rotation.
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Thus the presence of a symmetry dictates that we use a different probability
space. Our aim is to extend this observation to the non-commutative setting,
allowing the most general notions of symmetry possible.

We defined a non-commutative probability law to be a linear functional τ
defined on the algebra A = C[X1, . . . , XK ] of non-commutative polynomials
in K variables. If symmetries are present, this choice of the algebra A may
not be suitable. In this case the algebra A (the non-commutative analog of
the ring of polynomials on R

K) must be replaced by the analog of the ring of
functions on a different algebraic variety. For instance, one may be interested
in ∗-probability spaces, i.e., we want to have an algebra A that has a non-
trivial adjoint operation (involution). This can be accomplished by considering
the algebra B = C[X1, . . . , XK , X∗

1 , . . . , X
∗
K ] and defining X∗

j to be the adjoint
of Xj . An even more interesting situation is the case that our algebra B has
a natural symmetry. For example, we may consider the action of the unitary
group U(K) on B given on the generators by

U ·Xk =
∑

UikXi, U ·X∗
k =

∑

UikX
∗
i , U = (Uij). (3.1.1)

In this case we may only be interested in a part of B, the algebra BU(K)

consisting of U(K)-invariant elements. One can easily see that BU(K) is not even
a finitely-generated algebra, but it is the natural non-commutative probability
space on which to define U(K)-invariant laws.

More generally, in this paper we will be interested in non-commutative laws
defined on a class of “symmetry algebras”, which are the analogs of algebras such
as BU(K) above for more general symmetries (including actions of quantum
groups).

As is well-known, subfactor theory of Jones provides a framework for con-
sidering such very general symmetries. To formalize our notion of a “non-
commutative probability law with a quantum symmetry”, we shall first review
Jones’ notion of planar algebras [Jon99, Jon01].

3.2. The standard invariant of a subfactor: spaces of in-
tertwiners. Planar algebras [Jon99, Jon01] were introduced by Jones in his
study of invariants of subfactors of II1 factors.

Let M0 ⊂ M1 be an inclusion of II1 factors of finite Jones’ index [Jon83,
GHJ89]. Then M1 can be regarded as a bimodule over M0 by using the left and
right multiplication action of M0 on M1. Using the operation of the relative
tensor product of bimodules (see e.g. [Con, Pop86, Con94, Bis97]) one can
construct other M0,M0-bimodules by considering tensor powers

Mk = M1 ⊗M0
⊗ · · · ⊗M0

M1
︸ ︷︷ ︸

k

.

One can then consider the intertwiner spaces

Aij = HomM0,M0
(Mi,Mj)
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consisting of all homomorphisms from Mi to Mj , which are linear for both
the left and the right action of M0. Because the index of M0 ⊂ M1 is finite,
these spaces turn out to be finite-dimensional. The system of intertwiner spaces
Aij has more structure than the algebra structure of the individual Aij ’s. For
example, having an intertwiner T : Mi → Mj one can also construct an “in-
duced representation” intertwiner T ⊗ 1 : Mi+1 → Mj+1. More generally, one
can restrict intertwiners, take their tensor products, etc., thus providing many
operations involving elements of the various Aij ’s.

The following example explains how classical representation theory of a Lie
group can be viewed in subfactor terms. Similar examples exist also in the case
of quantum group representations:

Example 3.3. Let G be a Lie group and V be an irreducible representation
of G, and denote by V op the representation on the dual of V . Let M be a II1
factor carrying an action of G satisfying a technical condition of being properly
outer (such an action always exists with M a hyperfinite II1 factor or a free
group factor). Consider the “Wassermann-type” inclusion

M0 = MG ⊂ (M ⊗ End(V ))G = M1.

Here NG denotes the fixed points algebra for an action of G on N , and G acts
on End(V ) by conjugation. Then

HomM0,M0
(Mk) = HomG(V ⊗ V op ⊗ · · · ⊗ V ⊗ V op

︸ ︷︷ ︸

k

)

is the space of all G-invariant linear maps on (V ⊗ V op)⊗k.

The main theorem of Jones [Jon99, Jon01] is that there is a beautiful ab-
stract characterization of systems of intertwiner spaces associated to a subfactor
(also called “standard invariants”, “λ-lattices”, systems of higher-relative com-
mutants): such systems are exactly the planar algebras. His proof relied on an
earlier axiomatization of λ-lattices by Popa [Pop95].

3.4. Planar algebras. To state the definition of a planar algebra, let us
introduce the notion of a planar tangle T with r input disks or sizes k1, . . . , kr
and output disk of size k (we’ll write T (k1, . . . , kr; k) for the set of such tangles).
Such a tangle is given by drawing (up to isotopy on the plane) r “input” disks
(Dj : j = 1, . . . , r) inside the “output” disk D. Each disk Dl has 2kl points
marked on its boundary (one of which is marked as the “first” point). The
output disk D has 2k points marked on its boundary, one of which is marked
“first”. Furthermore, all marked boundary points are connected to other marked
points by non-crossing paths.1

1One also assumes that the connected components of D \
⋃

j Dj are colored by two colors,

so that adjacent regions are colored by different colors. We shall, however, ignore this part of

this structure in this paper.
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Figure 1. Planar tangles; composing planar tangles.

Figure 1(a) shows an example of a planar tangle in T (3, 3, 2; 3); the first
point on each interior disk is labeled by a ∗. Note that tangles may contain
loops which are not connected to any interior disks.

Tangles can be composed by gluing the output disk of one tangle inside
an input disk of another tangle in a way that aligns points marked “first” and
preserves the orientation of boundaries (see Figure 1(b), which illustrates the
composition of a tangle in T (3, 2, 2; 3) with three tangles, from T (2; 3), T (; 2)
and T (; 2)). (This is only possible if disks are of matching sizes).

Definition 3.5. Let (Pk : k = 0, 1, 2, . . . ) be a collection of vector spaces.
We say that (Pk)k≥0 forms a planar algebra if any planar tangle T ∈
T (k1, . . . , kr; k) gives rise to a multi-linear operation Op(T ) : Pk1

⊗· · ·⊗Pkr
→

Pk in such a way that the assignment T → Op(T ) is natural with respect to
composition of tangles and of multilinear maps.

Very roughly, one should think of the spaces Pk as the space of “intertwiners”
of degree 2k for some quantum symmetry (see §3.6.1 below). The various op-
erations Op(T ) correspond to the various ways of combining such intertwiners
to form new intertwiners.

We also often make the assumption that the space P0 is one-dimensional
and all Pk are finite-dimensional. In particular, a tangle T with no input disks
and one output disk with zero marked points and no paths inside gives rise to a
basis element of P0, which we’ll denote by ∅. If we instead consider a tangle T ′

with no input disks, one output disk with no marked points, and a simple closed
loop inside of the output disk, then T ′ produces an element δ∅ in P0 (where δ
is some fixed number). Furthermore, it follows from naturality of composition
of tangles that if some tangle T is obtained from a tangle T ′ by removing a
closed loop, then Op(T ) = δOp(T ′).

The tangle in Figure 2(a) gives rise to a bilinear form on each Ak, which
we assume to be non-negative definite. We endow each Pk with an involution
compatible with the action of orientation-preserving planar maps on tangles.
Finally, we assume a spherical symmetry, so that we consider tangles up to
isotopy on the sphere (and not just the plane).

A planar algebra satisfying these additional requirements is called a subfac-
tor planar algebra with parameter δ. It is a famous result of Jones [Jon83] that
δ ∈ {2 cos π

n
: n ≥ 3} ∪ [2,+∞), and all of these values can occur.
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Figure 2. Canonical bilinear form; Temperley Lieb diagrams.

3.6. Examples of planar algebras. Planar algebras can be thought
of as families of linear spaces consisting of vectors “obeying a symmetry”, where
the word symmetry is taken in a very generalized sense (such “symmetries”
include group actions as well as quantum group actions). We consider a few
examples:

3.6.1. Planar algebras of polynomials. Let X1, . . . , XK , X∗
1 , . . . , X

∗
K be

indeterminates, and denote by A the algebra spanned by alternating mono-
mials of the form Xi1X

∗
j1
· · ·XikX

∗
jk

. Let Pk be the linear subspace of A con-
sisting of all elements that have degree 2k. We claim that P = (Pk)k≥0 is
a planar algebra if endowed with the following structure. Given a monomial
W = Xi1X

∗
j1
· · ·XikX

∗
jk

∈ Pk, associate to it the labeled disk D(W ) whose 2k
boundary points are labeled (clockwise, from the “first” point) by the 2k-tuple
(i1, j1, i2, j2, . . . , ik, jk). Now given a planar tangle T ∈ T (k1, . . . , kr; k) and
monomials W1, . . . ,Wr of appropriate degrees, we define

Op(T )(W1, . . . ,Wr) =
∑

W

CWW.

Here the sum is over all monomials W ∈ Ak and CW are integers obtained as
follows. Glue the disks D(Wj) into the input disks of T and then the output
disk of T into D(W ). We obtain a collection of disks, whose marked boundary
points are connected by curves. Then CW is the total number of ways to assign
integers from {1, . . . ,K} to these curves, so that each curve has the same label
as its endpoints. (CW = 0 if no such assignment exists).

In this case, P is actually a subfactor planar algebra with parameter δ = K
(the number of ways to assign an integer from {1, . . . ,K} to a closed loop). The
corresponding subfactor inclusion is rather trivial: it corresponds to the K×K
matrix inclusion M0 = M ⊂ M ⊗MK×K(C) = M1, for any II1 factor M .

Consider the action of the unitary group U(K) on each Pk defined by (3.1.1).

In other words, we identify Pk with the k-th tensor power of C
K ⊗ CK =

End(CK), where C
K is the basic representation of U(K). Then the linear sub-

spaces P
U(K)
k consisting of vectors fixed by the U(K) action turn out to form a

planar algebra PU(K) (taken with the restriction of the planar algebra structure
of P). The associated subfactor has the form

MU(K) ⊂ (M ⊗ End(CK))U(K).
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3.6.2. The Temperley-Lieb planar algebra. Let TLk be the linear space
spanned by tangles T ∈ T (; k) with no internal disks and 2k points on the
outer disk. Such tangles are called Temperley-Lieb diagrams (see Figure 2(b)).
Then TL = (TLk)k≥0 is a planar algebra in the following natural way. Given
any tangle T ∈ T (k1, . . . , kr; k) and Temperley-Lieb diagrams T1, . . . , Tr ,
Op(T )(T1, . . . , Tr) is defined to be the result of gluing the diagrams T1, . . . , Tr

into the input disks of T , provided that we agree that closed loops contribute
a multiplicative factor of δ. TL is actually a subfactor planar algebra when δ is
in the set of allowed index values {2 cos π

n
: n ≥ 3} ∪ [2,+∞).

It should be noted that any planar algebra P contains a homomorphic image
of TL; indeed, TL elements arise as Op(T ) when T ∈ T (; k).

3.7. Algebras and non-commutative probability spaces
arising from planar algebras. A planar algebra P = (Pk)k≥0 has,
by definition, a large variety of mutli-linear operations. We shall single out the
following bilinear operations ∧k, each of which is an associative multiplication
on ⊕n≥kPk. The operation ∧k takes Pk+n × Pk+m → Pk+m+n and is given by
the following tangle (here k = 2, n = 1 and m = 2):

3.7.1. The product ∧0. Perhaps the easiest way to see the importance of
these operations is to realize that in the case of planar algebra of polynomials
(see §3.6.1) the multiplication ∧0 is just the ordinary multiplication of polyno-
mials.

Thus if we think of ⊕k≥0Pk as a linear space consisting of vectors which are
invariant under some “quantum symmetry”, the product ∧0 is a kind of tensor
product of these invariants, and thus (P,∧0) has the natural interpretation of
the algebra of “invariant polynomials”.

3.7.2. The higher products ∧k. In the case of the polynomial algebra
(§3.6.1), the product ∧k corresponds to the product on the algebra of differ-
ential operators of degree k. Let us consider such operators of the form (for
simplicity, if k is even)

Xi1X
∗
j1
· · ·Xik/2

X∗
jk/2

Xt1X
∗
s1
· · ·XtnX

∗
sn
∂Xik/2+1

∂X∗

jk/2+1
· · · ∂Xik

∂X∗

jk
∈ Pk+n.

Such expressions can be multiplied using the convention that ∂Xa
s
Xb

t =
δa 6=bδs=t1, where a, b ∈ { , ∗}. This is exactly the multiplication ∧k.

Note that the map Ek given by the tangle in Figure (3)(c) defines a natural
map from (P,∧k) to (P,∧0).
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Figure 3. (a) The Voiculescu trace; here
∑

TL stands for the sum of all TL elements
with the appropriate number of strings. (b) The element ∪. (c) The map Ek (here
k = 2).

Figure 4. Free Poisson law (δ = 8).

Definition 3.8. A planar algebra law associated to a planar algebra P is a
linear functional τ on the algebra (P,∧0), so that τ ◦ Ek is a trace on (P,∧k)
for any k ≥ 0.

Since Pk can be thought of as the space of vectors with a “quantum sym-
metry encoded by P”, a planar algebra law is a law having this “quantum
symmetry”.

3.9. The Voiculescu trace on (P,∧0). Any planar algebra proba-
bility space comes with a natural trace τ = τTL given by the tangle in Figure
(3)(a).

Lemma 3.10. [GJS08] (Non-commutative analog of the χ-squared distribu-
tion). Consider the element ∪ ∈ TL described in Figure (3)(b). Then law of
∪ ∈ TL ⊂ (P,∧0, τTL) is the free Poisson law of parameter δ (see Figure 4).

The polynomial planar algebra (see §3.6.1) contains TL; one can compute

that ∪ =
∑K

i=1 XiX
∗
i , which explains the analogy with the χ-squared law.

Theorem 3.11. [GJS08] Assume that P is a subfactor planar algebra. Then
trace τTL is non-negative definite. If δ > 1, then the von Neumann algebra
M0(P) = W ∗(τTL) generated in the GNS representation is a II1 factor.

There are several ways in which one can obtain this statement. One such
way is show explicitly that the Hilbert space L2(τTL) can be identified with the
L2 direct sum of the spaces making up the planar algebra [JSW08]. To prove
that M0(P) is a factor, one first shows that the element ∪ generates a maximal
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abelian sub-algebra. Thus the center of M is contained in W ∗(∪); some further
analysis shows that the center is in fact trivial.

In a similar way one can prove:

Theorem 3.12. [GJS08] For a subfactor planar algebra P, consider the trace
τnTL on (P,∧n) given by τTL ◦ En. Then τnTL is non-negative definite, and the
von Neumann algebra Mn(P) = W ∗(τnTL) is a II1 factor whenever δ > 1.

3.13. Application: constructing a subfactor realizing a
given planar algebra. The following tangle gives rise to a natural inclu-
sion from M0(P) into M1(P):

It turns out that this makes M0(P) into a finite-index subfactor of M1(P),
which canonically realizes P:

Theorem 3.14. [GJS08] (a) The inclusions M0(P) ⊂ M1(P) ⊂ · · · ⊂
Mn−1(P) ⊂ Mn(P) are canonically isomorphic to the tower of basic construc-
tions for M0(P) ⊂ M1(P). (b) The planar algebra associated to the inclusion
M0(P) ⊂ M1(P) is again P.

In other words, we are able to construct a canonical subfactor realizing the
given planar algebra. A construction that does this was given earlier by Popa
[Pop93, Pop95, Pop02, PS03] using amalgamated free products. In fact, it turns
out that our construction is related to his; in particular, the algebras Mi(P)
are isomorphic to certain amalgamated free products [GJS09, KS09a, KS09b].
We are able to identify the isomorphism classes of the algebras Mj(P):

Theorem 3.15. [GJS09, KS09a, KS09b] Assume that dimP0 = C, δ > 1 and
P is finite-depth of global index I. Then

M0(P) ∼= L(Ft)

where t = 1+2(δ−1)I. More generally, Mj(P) = L(Ftj ) with tj = 1+δ−2j(δ−
1)I, j ≥ 0.

Here L(Ft) is the interpolated free group factor [Dyk94, Răd94]: L(Ft) =
pL(Fn)p where p is a projection so that t− 1 = τ(p)2(n− 1).

Of course, it should be noted that rather than considering von Neumann
algebras Mj(P) = W ∗(P,∧j , τTL ◦ Ej) one can also consider the C∗-algebras
C∗(P,∧j , τTL ◦ Ej). Little is known about their structure.
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Figure 5. (a) The multiplication �k (there are k horizontal lines joining the input
disks). (b) The trace τ �k τ (there are k loops).

3.16. Application: the symmetric enveloping algebra. Con-
sider the associative multiplication �k defined on ⊕n≥kPk by the tangle in
Figure 5(a) and the trace τ �k τ on (

⊕

n≥k Pk,�k) defined in Figure 5(b).
Let us call Mk � Mk the von Neumann algebra generated by this algebra

in the GNS representation. These algebras are related to Popa’s symmetric
enveloping algebra M1 �e0 Mop

1 . For k = 1 we obtain exactly the symmetric
enveloping algebra, at least in the Temperley-Lieb case.

The symmetric enveloping algebra was introduced by Popa as an important
analytical tool in the study of the “quantum symmetry” behind a planar algebra.
For example, such analytic properties as amenability, property (T) and so on
are encoded by the symmetric enveloping algebra [Pop99].

4. Random Matrices and Planar Algebras

4.1. GUE and the Voiculescu trace τTL. Let MN×N ′ denote the
linear space of complex N ×N ′ matrices. Let K = 1, 2, . . . be an integer, and
endow (MN×N ′)K with the Gaussian measure

dµ(N,N ′)(A1, . . . , AK , A∗
1, . . . , A

∗
K)

=
1

ZN

exp(−
1

2
NTr(

∑

A∗
jAj)) dA1 · · · dAKdA∗

1 · · · dA
∗
K .

Here dAjdA
∗
j stands for Lebesgue measure on the j-th copy of MN×N ′ .

A K-tuple of matrices (A1, . . . , AK) chosen at random from (MN×N ′)K

according to this measure is called the Gaussian Unitary Ensemble (GUE).
Let Q be a non-commutative polynomial in X1, . . . , XK , X∗

1 , . . . , X
∗
K which

is a linear combination of monomials of the form Xi1X
∗
j1
· · ·XipX

∗
jp

(in other

words, we can think of Q as an element of (P,∧0), where P is the planar algebra
of polynomials, see §3.6.1). For each N,N ′, consider the non-commutative law
τ (N,N ′) defined by

τ (N,N ′)(Q)

=

∫
1

N
Tr(Q(A1, . . . , AK , A∗

1, . . . , A
∗
K))dµ(N,N ′)(A1, . . . , AK , A∗

1, . . . , A
∗
K).
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The non-commutative law τ (N,N ′) captures certain aspects of the random multi-
matrix ensemble (A1, . . . , AK). For example, the value of τ (N) ((A1A

∗
1)

p) is the
p-th moment of the empirical spectral measure associated to A1A

∗
1: if λ1 <

· · · < λN are the random eigenvalues of A1A
∗
1, then

τ (N) ((A1A
∗
1)

p) = E

(∑

λp
j

)

.

In his seminal paper [Voi91], Voiculescu showed that the laws τ (N) have a
limit as N → ∞; rephrasing slightly he proved:

Theorem 4.2. [Voiculescu] With the above notation, assume that N,N ′ → ∞
so that N ′/N → 1. Then τ (N) → τTL, where τTL is the Voiculescu trace on the
planar algebra of polynomials.

One can re-derive some well-known random matrix results from this theo-
rem. For example, combining it with Lemma 3.10, one can recover convergence
of singular values of block random GUE matrices to the Marcenko-Pastur law
[MP67].

4.3. The case of a general planar algebra. It turns out that
Theorem 4.2 also holds in the context of more general planar algebras (i.e., “in
the presence of symmetry”). We now describe the appropriate random matrix
ensembles.

4.3.1. Graph planar algebras. Our construction relies on the following fact
[Jon01, GJS08]:

Proposition 4.4. Every planar algebra P is a subalgebra (in the sense of
planar algebras) of some graph planar algebra PΓ.

Here the graph planar algebra PΓ is a planar algebra canonically associated
to an arbitrary bipartite graph, taken with its Perron-Frobenius eigenvector µ
(if P is finite depth, Γ can be taken to be a finite graph). The spaces PΓ

k have
as linear bases the sets of closed paths of length 2k on Γ. The planar algebra
structure is defined in a manner analogous to the case of the polynomial planar
algebra, §3.6.1; see [Jon01] for details. The graph Γ can be chosen to be finite
if the planar algebra is finite depth (in particular, if δ < 2).

4.4.1. Random matrix ensembles on graphs. Let P be a planar algebra
of finite depth. Thus P ⊂ PΓ for some finite bi-partite graph. Let us write µ(v)
for the value of the Perron-Frobenius eigenvector at a vertex v of Γ.

To an oriented edge e of Γ which starts at v and ends at w we associated
a matrix Xe of size [Nµ(v)] × [Nµ(w)] (here [·] denotes the integer part of a
number). To a path e1 · · · en in the graph we associate the product of matrices
Xe1 · · ·Xen (here Xeo = X∗

e if eo is the edge e but with opposite orientation).
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Thus any element W ∈
⊕

k Pk is a specific expression in terms of the
matrices {Xe}e∈E(Γ). For example, let ∪ be as in Figure 3(b). Then ∪ =
∑

e

√
µ(v)
µ(w)XeX

∗
e , the sum taken over all positively oriented edges; here v and

w are, respectively, the start and end of e. Let us write W =
∑

v Wv, where
Wv is in the linear span of closed paths that start at v. Thus for example

∪v =
∑

e

√
µ(v)
µ(w)XeX

∗
e , where the sum is taken over all edges e starting at v.

With this notation, the expression

dνN = Z−1
N exp

(

−N
∑

v

µ(v)Tr(∪v)

)
∏

e

dXe

makes sense and gives us a probability measure, with respect to which we can
choose our random matrix ensemble {Xe}.

For any Q ∈ Pk, the expression

τN (Q) =

∫
∑

v

µ(v)

N
Tr(P (Qv(Xe : e ∈ Γ)))dνN

gives rise to a non-commutative law on the non-commutative probability space
(PΓ,∧0) and so in particular on (P,∧0). We denote this restriction by τ (N).

Theorem 4.5. With the above notation, τ (N) → τTL, where τTL is the
Voiculescu trace on the planar P.

4.6. Random matrix ensembles. More generally, let us assume that
we are given a non-commutative polynomial V (t1, . . . , tK , t∗1, . . . , t

∗
K) which is

a sum of monomials of the form ti1t
∗
j1
· · · tipt

∗
jp

. Then consider on (MN×N )K

the measure

dµ
(N)
V (A1, . . . , AK , A∗

1, . . . , A
∗
K)

=
1

ZN

1{‖Aj‖≤R} exp(−NTr(V (A1, . . . , AK , A∗
1, . . . , A

∗
K)))

dA1 · · · dAKdA∗
1 · · · dA

∗
K , (4.6.1)

where dAj stands for Lebesgue measure on the j-th copy of MN×N . The

constant ZN is chosen so that µ
(N)
V is a probability measure (the cutoff

R insures that the support of µ
(N)
V is compact). Of course, R = ∞ and

V (A1, . . . , AK) =
∑

AkA
∗
k corresponds to the Gaussian measure.

The measures µ
(N)
V are matrix analogs of the classical Gibbs measures µV =

Z−1 exp(−V (x))dx.
Let us call the K-tuple of random matrices chosen from (Msa

N×N )K at ran-
dom according to this measure a random multi-matrix ensemble (see [AGZ10,
Chapter 5]).
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Certain properties of the random multi-matrix ensemble A1, . . . , AK is

captured by the non-commutative laws τ
(N)
V defined on the algebra of non-

commutative polynomials in X1, . . . , XK , X∗
1 , . . . , X

∗
K by

τ
(N)
V (Q(X1, . . . , XK , X∗

1 , . . . , X
∗
K)) =

∫
1

N
Tr(Q(A1, . . . AK , A∗

1, . . . , A
∗
K))dµ

(N)
V (A1, . . . , AK , A∗

1, . . . , A
∗
K).

4.7. Combinatorial properties of the laws τ
(N)
V

. Remarkably,

the laws τ
(N)
V have a very nice combinatorial interpretation. Let P , W1, . . . ,Wn

be a monomials, and set V (t1, . . . , tK) = (
∑

tjt
∗
j ) +

∑n
j=1 βjWj . Define a non-

commutative law τV by

τV (P ) =
∑

m1,...,mn≥0

∑

D

n∏

j=1

(−βj)
mj

mj !
(4.7.1)

where the summation is taken over all planar tangles D with output disk labeled
by P and having mj interior disks labeled by Wj as in §3.6.1.

Theorem 4.8. [Gui06, GMS06] Let P , W1, . . . ,Wn be monomials, and assume
that V (t1, . . . , tK) = (

∑
tjt

∗
j ) +

∑n
j=1 βjWj. Then for sufficiently small βj,

τ
(N)
V (P ) = τV (P ) +O(N−2).

The right-hand side of (4.7.1) would make sense if we were to replace P and
Wj by arbitrary elements of an arbitrary planar algebra (in fact, as written,
equation (4.7.1) can be taken to occur in the planar algebra of polynomials).
The term

∑
tjt

∗
j correpsonds to the element ∪ defined in Figure 3(b). We thus

make the following definition.

Definition 4.9. Let P be a planar algebra, and assume that Q ∈ Pk,Wj ∈ Pkj
,

j = 1, . . . , n are elements of algebra P. Let Vβ = ∪+
∑

j βjWj . We define the
associated free Gibbs law with symmetry P to be the planar algebra law

τVβ
(Q) =

∑

m1,...,mn≥0

∑

D

n∏

j=1

(−βj)
mj

mj !
Op(D)(P,W1, . . . ,W1

︸ ︷︷ ︸

m1

, . . . ,Wn, . . . ,Wn
︸ ︷︷ ︸

mn

).

(4.9.1)

Here the summation takes place over all planar tangles D having one disk of
size k, m1 input disks of size k1, m2 disks of size k2, etc. and no output disks.

One can check that in the case of the planar algebra of polynomials, (4.9.1)
is equivalent to (4.7.1).
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Theorem 4.10. Assume that Q ∈ Pk,Wj ∈ Pkj
, j = 1, . . . , n are elements of a

finite-depth planar algebra P, and let Vβ = ∪+
∑

j βjWj. Then for sufficiently
small β, the free Gibbs law given by (4.9.1) defines a non-negative trace on
(⊕k≥0Pk,∧0).

We now show that the laws τVβ
arise from random matrix ensembles, just

as in §4.4.1 (which corresponds to β = 0). Once again, we embed P into a
graph planar algebra PΓ and consider a family of random matrices Xe of size
[Nµ(v)]× [Nµ(w)] labeled by the edges e of Γ (here [·] denotes the integer part
of a number and µ is the Perron-Frobenius eigenvector of Γ). The matrices Xe

are chosen according to the measure

dνN = Z−1
N exp

(

−N
∑

v

µ(v)Tr ((Vβ)v)

)
∏

e

dXe.

For any Q ∈ Pk, the expression

τN (Q) =

∫
∑

v

µ(v)

N
Tr(P (Qv(Xe : e ∈ Γ)))dνN

gives rise to a non-commutative law on the non-commutative probability space

(PΓ,∧0) and, by restriction, on (P,∧0). We denote this restriction by τ
(N)
Vβ

.

Theorem 4.11. Assume that V = ∪ +
∑

j βjWj as above. Then there is a
R0 > 0 so that for any R > R0, there is a β0 > 0 so that for all |βj | < β0,

τ
(N)
V → τV where τV is as in Theorem 4.10.

The finite-depth assumption seems to be technical in nature and is probably
not necessary; it is automatically satisfied if δ < 2.

4.12. Example: O(n) models. One application of our construction
sheds some light on the construction of so-called O(n) models used by in physics
by Zinn-Justin and Zuber in conjunctions with questions of knot combinatorics
[ZJ03, ZJZ02]. For n an integer, the O(n) model is the random matrix ensemble
corresponding to the measure

Z−1
N exp(−NTr(V (X1, . . . , Xn)))dX1 · · · dXndX

∗
1 · · · dX

∗
n

where V is a fourth-degree polynomial in X1, . . . , Xn, X
∗
1 , . . . , X

∗
n , which is

invariant under the U(n) action given by (3.1.1). In degree ≤ 4, up to cyclic
symmetry, the only such invariant polynomials actually lie in the copy of TL
contained in the algebra PU(n) in the notation of section §3.6.1: they are linear
combinations of the constant polynomial and the polynomials ∪ =

∑
XiX

∗
i ,

∪∪ =
∑

XiX
∗
i XjX

∗
j and d =

∑
XiX

∗
jXjX

∗
i (these diagrams are in TL ⊂

PU(n) with parameter δ = n).
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Hence the O(n) model is the random matrix ensemble associated to the
measure

µ
(N)
(β,n)

= Z
−1
N exp

(

−NTr
(∑

XiX
∗
i + βi

∑

XiX
∗
i XjX

∗
j + β2

∑

XiX
∗
jXjX

∗
i

)

.

Thus we are led to consider the laws τβ associated to the element

V(β,δ) = ∪+ β1 ∪
2 +β2d ∈ TL

β = (β1, β2) for each of the possible parameters δ ∈ {2 cos π
n
: n ≥ 3}∪ [2,+∞).

From our discussion we conclude that the limit law associated to the O(n)
model is exactly τV(β,δ=n)

.
But since our setting permits non-integer δ, we thus gain the flexibility of

considering the laws τV (β,δ) for other values of δ. It can be shown that the values
of τV(β,δ=n)

on a fixed element of TL are analytic in δ. Thus the extension we
get is exactly the analytic extension from n ∈ Z to C considered by physicists
in their analysis.

The combinatorics of the resulting law τV is governed by equation (4.9.1),
which is written entirely in planar algebra terms. In particular, this shows that
the O(n) makes rigorous sense for any δ ∈ {2 cos π

n
: n ≥ 3} ∪ [2,+∞) (in the

physics literature, the O(n) model was used for non-integer n; the definition
involved extending various equations analytically from n ∈ Z to C).

It should be mentioned that O(n) models were introduced in the physics
literature to handle questions of knot enumerations; planar algebra interpreta-
tions of these computations are the subject of on-going research.

4.13. Properties of the limit laws τV . Because of Theorem 4.11,
fixing a finite-depth planar algebra P and a family of elements Vβ = ∪+βW ∈
P, we obtain a family laws τβ = τVβ

. These in turn give rise to a family of von
Neumann algebras W ∗(τβ) generated in the GNS representation associated to
τβ . When β = 0 these are free group factors (see Theorem 3.15). Voiculescu
conjectured that this is also the case for β 6= 0 sufficiently small.

Using ideas from free probability theory, there has been significant progress
on identifying properties of the associated Neumann algebras and C∗-algebras.
The key is the following approximation result, whose proof relies on the theory
of free stochastic differential equations [BS98].

Proposition 4.14. [GS09] Assume that P is a the planar algebra of poly-
nomials in K variables. Let S1, S2, . . . be an infinite free semicircular family
generating the C∗ algebra B with semicircular law τ , and let Aβ = C∗(τβ)
in the GNS representation associated to τβ. Let X1, . . . , Xr ∈ Aβ. Then there
is a β0 > 0 so that for all |β| < β0 and any ε > 0 there exists an embedding
α : Aβ → (Aβ , τβ)∗(B, τ) and elements Y1, . . . , Yr ∈ B so that ‖α(Xj)−Yj‖ < ε.

Using this Proposition, many of the properties of the algebras Aβ can be
deduced from those of the algebra B.
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Theorem 4.15. [GS09] Let V = ∪+βW be an element of a finite-depth planar
algebra P. Let τβ be the associated law on (P,∧0). The von Neumann algebra
M = W ∗(τβ) and the C∗-algebra A = C∗(τβ) satisfy:

1. M is a non-Γ II1 factor and has the Haagerup property;

2. A is exact;

3. M has Ozawa’s property AO and is therefore solid [Ash09].

In the case that V is a polynomial potential (i.e., we are in the setting
of Theorem 4.8), one can use the results of [PV82] to prove that K0(A) = 0
and that Aβ is projectionless. Indeed, if p ∈ A were a non-trivial idempotent,
then because of Proposition 4.14, C∗(S1, S2, . . . ) ⊂ C∗

red
(F2) would be forced

to contain a non-trivial idempotent as well. This statement has random matrix
consequences:

Corollary 4.16. [GS09] Let P be the planar algebra of polynomials in K vari-
ables, V = Vβ = ∪ + βW ∈ P, and let τβ = τVβ

be as in Theorem 4.8. Let

Q = Q∗ ∈ P be arbitrary polynomial. Let Q(N) = Q(X1, . . . , XK) be the random
matrix obtained by evaluating Q in the random matrices (X1, . . . , XK) chosen
according to the measure (4.6.1). Let µ(N) be the expected value of the spectral
measure of Q. Then µ(N) → µ where µ is a measure with connected support.

Proof. Let Q(∞) denote the element of C∗(τβ) that corresponds to the poly-
nomial Q in the GNS construction associated to τβ . Then the law of Q is
exactly µ. If the support of µ is not connected, the spectrum of Q ∈ C∗(τβ)
is disconnected. But that means that C∗(τβ) contains a non-trivial projection,
contradicting Theorem 4.15.

It turns out that in the presence of symmetry (for non-integer δ) the algebra
Aβ may contain non-trivial projections (even at β = 0). This phenomenon is
not well-understood at this point, however. It would be interesting to compute
the K-theory of the algebras Aβ for general planar algebras P.
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Abstract

We give a survey of recent classification results for von Neumann algebras
L∞(X)oΓ arising from measure preserving group actions on probability spaces.
This includes II1 factors with uncountable fundamental groups and the construc-
tion of W∗-superrigid actions where L∞(X) o Γ entirely remembers the initial
group action Γ y X.
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1. Classifying II1 Factors, a Panoramic
Overview

A von Neumann algebra is a an algebra of bounded linear operators on a Hilbert
space that is closed under the adjoint ∗-operation and that is closed in the weak
operator topology. Von Neumann algebras arise naturally in the study of groups
and their actions on measure spaces. These constructions go back to Murray
and von Neumann’s seminal papers [MvN36, Chapter XII] and [MvN43, §5.3].

• If Γ is a countable group, the left translation unitary operators on `2(Γ)
generate the group von Neumann algebra LΓ.
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• Every action Γ y (X,µ) of a countable group Γ by measurable transfor-
mations of a measure space (X,µ) and preserving sets of measure zero,
gives rise to the group measure space von Neumann algebra L∞(X)o Γ.

It is a central problem in the theory of von Neumann algebras to classify
LΓ and L∞(X) o Γ in terms of the group Γ or the group action Γ y (X,µ).
More generally, classifying or distinguishing families of von Neumann algebras
is extremely challenging. In the first part of this exposition, I give a panoramic
overview of the spectacular progress that has been made in this area over the
last years. The overview is more thematically ordered than chronologically and
necessarily incomplete. Several related important topics, including Jones’ the-
ory of subfactors or Voiculescu’s free probability theory, are not treated.

All notions that are written in italics are defined in the preliminary section 2.

1.1. II1 factors. The ‘simple’ von Neumann algebras M are those that can-
not be written as a direct sum of two. Equivalently, the center of M is trivial
and M is called a factor. Murray and von Neumann have classified factors into
three types [MvN36] and proven that every von Neumann algebra can be decom-
posed as a direct integral of factors [vN49]. Connes [Co72] showed how general
factors can be built up from those that admit a finite positive trace, called
II1 factors. The final form of this decomposition theory is due to Connes and
Takesaki [Ta73, CT76]. Altogether, II1 factors form the basic building blocks
of arbitrary von Neumann algebras.

The group von Neumann algebras LΓ always admit a finite positive trace
and are factorial if and only if Γ has infinite conjugacy classes (icc). When
Γ y (X,µ) is essentially free, ergodic1 and probability measure preserving
(p.m.p.), the group measure space von Neumann algebra L∞(X) o Γ is a II1
factor. Moreover, as proven by Singer [Si55], its isomorphism class only depends
on the equivalence relation given by the orbits of Γ y (X,µ). This lead to the
study of group actions up to orbit equivalence [Dy58] and we refer to [Sh05,
Po06b, Fu09, Ga10] for surveys of the recent developments in this area of ergodic
theory.

1.2. (Non)-isomorphism of II1 factors. Two von Neumann algebras can
be isomorphic in unexpected ways. While all hyperfinite2 II1 factors were al-
ready shown to be isomorphic in [MvN43], the culmination came with Connes’
uniqueness theorem for amenable II1 factors [Co75b] implying that all LΓ and
all L∞(X)oΓ are isomorphic when Γ is any amenable icc group or Γ y (X,µ)
is an arbitrary free ergodic p.m.p. action of an amenable group.

1Essential freeness means that for every g 6= e, the set of x ∈ X with g ·x = x has measure
zero. Ergodicity means that globally Γ-invariant measurable subsets have either measure 0
or a complement of measure 0.

2A von Neumann algebra is hyperfinite if it is the direct limit of finite dimensional subal-
gebras.
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In the early years examples of non-isomorphic II1 factors M were obtained
by analyzing asymptotically central sequences3 of elements in M : property
Gamma4 [MvN43] allowed to prove that the free group factors LFn are not
hyperfinite, a refinement yielded uncountably many non-isomorphic II1 factors
[McD69] and the χ-invariant [Co75a] provided the first examples where M is
non-isomorphic to its opposite algebra Mop and where M 6∼=M⊗M .

The first rigidity phenomena for von Neumann algebras were discovered by
Connes [Co80] who showed that the fundamental group5 of LΓ is countable
when Γ is an icc property (T) group. Several properties of groups – including
property (T), the Haagerup property and related approximation properties –
were shown in [CJ83, CH88, Jo00] to actually be properties of LΓ, leading to
remarkable non-isomorphism and non-embeddability theorems for group von
Neumann algebras. Altogether it became clear that the world of II1 factors is
extremely rich, but that understanding the natural examples LΓ or L∞(X)oΓ
in terms of the initial group or action is intrinsically very difficult.

1.3. Popa’s deformation/rigidity theory. A major breakthrough in the
classification of II1 factors was realized by Popa and his discovery of deforma-
tion/ rigidity theory [Po01] (see [Po06b, Va06a] for a survey). Typically, Popa
studies von Neumann algebras M that have a rigid subalgebra – e.g. given by
the relative property (T) – such that the ‘complement’ has a strong deformation
property. This gives the rigid subalgebra a canonical position within the ambient
von Neumann algebra and has lead in [Po01] to the first example of a II1 factor
with trivial fundamental group: M = L(Z2

o SL(2,Z)) = L∞(T2) o SL(2,Z).
The canonical position of L∞(T2) implies that the fundamental group of M
equals the fundamental group of the orbit equivalence relation of the action
SL(2,Z) y T

2, which is trivial because of [Ga99, Ga01].

In [Po03, Po04] Popa established a striking progress in his deforma-
tion/rigidity program by proving the following strong rigidity theorem for group
measure space factors. Take an arbitrary free ergodic p.m.p. action Γ y (X,µ)
of a property (T) group Γ and let Λ y (Y, η) := (Y0, η0)

Λ be the Bernoulli ac-
tion of an arbitrary icc group Λ. If the group measure space factors L∞(X)oΓ
and L∞(Y ) o Λ are isomorphic, then Γ must be isomorphic with Λ and their
actions must be conjugate. Popa’s strong rigidity theorem was the first result
ever where conjugacy of actions could be deduced from the mere isomorphism
of group measure space factors.

3A bounded sequence (xn) in a II1 factor M is called asymptotically central if xny− yxn

converges to 0 in the strong operator topology for every y ∈ M .
4A II1 factor has property Gamma if it admits an asymptotically central sequence of

unitaries having trace 0.
5The fundamental group F(M) of a II1 factor M consists of the numbers τ(p)/τ(q) where

p and q run over the projections in M satisfying pMp ∼= qMq. Here τ denotes the trace on
M .
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1.4. Fundamental groups of II1 factors. Progress in the classification of
group measure space factors went hand in hand with major developments in
the calculation of invariants of II1 factors. The most well known invariant of M
is the fundamental group F(M) of Murray and von Neumann [MvN43]. In one
of their long-standing questions they asked what subgroups of R∗

+ might occur
as F(M).

Until 10 years ago, progress on this question has been scarce. Some II1 fac-
tors, including the hyperfinite II1 factor [MvN43] and LF∞ [Vo89, Ra91], were
shown to have fundamental group R

∗
+ while Connes [Co80] proved that F(LΓ)

is countable whenever Γ is an icc property (T) group. A breakthrough in the
understanding of fundamental groups came with Popa’s first examples of II1
factors having trivial fundamental group [Po01] and having prescribed count-
able fundamental group [Po03]. It remained a major open problem whether
uncountable groups 6= R

∗
+ could appear as fundamental group.

In [PV08a] we solved this problem and proved that F(L∞(X)oF∞) ranges
over a large family of subgroups of R∗

+, including all countable subgroups and
many uncountable subgroups that can have arbitrary Hausdorff dimension be-
tween 0 and 1. A similar result is true [PV08c] when F∞ is replaced by al-
most any infinite free product of non-trivial groups, while F(L∞(X) o Γ) is
necessarily trivial when Γ y (X,µ) is an arbitrary free ergodic p.m.p. ac-
tion of a free product of two finitely generated groups, one of them having
property (T). So far, [PV08a, PV08c] provide the only known constructions
of group measure space factors with fundamental group different from {1}
or R∗

+.

The fundamental group F(M) of a II1 factor M can also be viewed as
the set of t > 0 such that the II∞ factor M⊗B(H) admits an automorphism
scaling the (infinite) trace τ ⊗ Tr by t. In [PV08a] we provide examples where
F(M) = R

∗
+, although M⊗B(H) admits no continuous trace-scaling action

of R∗
+.

1.5. Outer automorphisms and generalized symmetries. Another in-
variant of a II1 factor M is its outer automorphism group6 OutM . In [IPP05]
Ioana, Peterson and Popa established Bass-Serre isomorphism and subgroup
(rather subalgebra) theorems for amalgamated free products of von Neumann
algebras. As a consequence they obtained the first calculations of outer auto-
morphism groups and proved that OutM can be any compact abelian group.
In particular, they positively answered the question on the existence of II1 fac-
tors without outer automorphisms. Later we showed [FV07] that in fact OutM
can be any compact group. The results in [IPP05, FV07] are existence theo-
rems involving a Baire category argument. We obtained the first concrete and

6The outer automorphism group OutM is defined as the quotient AutM/ InnM , where
InnM denotes the normal subgroup of AutM consisting of the inner automorphisms Adu,
u ∈ U(M).
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explicit calculations of OutM in [PV06, Va07] and proved that OutM can be
any countable group.

Both the elements of the fundamental group and the automorphisms of a
II1 factor M give rise to Hilbert M -M -bimodules MHM. An M -M -bimodule
that is finitely generated, both as a left and as a right M -module is said to
be of finite Jones index [Jo82]. The finite index M -M -bimodules form a C∗-
tensor category BimodM and this should be considered as the generalized (or
quantum) symmetry group of M . Whenever M ⊂ P is a finite index subfactor,

ML2(P )M is a finite index bimodule. In this sense, BimodM also encodes the
subfactor structure ofM . In [Va06b] I proved the existence of II1 factorsM such
that BimodM is trivial, i.e. only consists of multiples of the trivial bimodule
L2(M). Such II1 factors have trivial fundamental group, trivial outer automor-
phism group and no non-trivial finite index subfactors. Explicit examples were
provided in [Va07] where also several concrete calculations of BimodM were
made. These calculations were exploited in [DV10] to give a full classification of
all finite index subfactors of certain II1 factors. In [FV08] every representation
category of a compact group K is realized as BimodM . More precisely, for
every compact group K we prove the existence of a minimal action of K on a
II1 factorM such that, denoting byMK the subfactor of K-invariant elements,
the natural faithful tensor functor RepK → Bimod(MK) is ‘surjective’, i.e. an
equivalence of categories.

1.6. W∗-superrigidity and uniqueness of Cartan subalgebras. Two
free ergodic p.m.p. actions Γ y (X,µ) and Λ y (Y, η) are called

• conjugate (or isomorphic), if there exists an isomorphism of probability
spaces ∆ : X → Y and an isomorphism of groups δ : Γ → Λ satisfying
∆(g · x) = δ(g) ·∆(x) for all g ∈ Γ and a.e. x ∈ X;

• orbit equivalent (OE), if there exists an isomorphism of probability spaces
∆ : X → Y satisfying ∆(Γ · x) = Λ ·∆(x) for a.e. x ∈ X;

• W∗-equivalent, if L∞(X)o Γ ∼= L∞(Y )o Λ.

Obviously, conjugacy of actions implies orbit equivalence and Singer [Si55]
proved that an orbit equivalence is the same as a W∗-equivalence sending the
group measure space Cartan subalgebras7 L∞(X) and L∞(Y ) onto each other.
Rigidity theory for group actions aims at establishing the converse implications
under appropriate assumptions. Pioneering OE rigidity results were obtained

7In general, a Cartan subalgebra A of a II1 factor M is a maximal abelian subalgebra
whose normalizing unitaries generate M . Whenever Γ y (X,µ) is a free ergodic p.m.p.
action, L∞(X) ⊂ L∞(X) o Γ is an example of a Cartan subalgebra that we call of group
measure space type. Not all II1 equivalence relations can be implemented by a free action
of a countable group [Fu98b] and hence a general Cartan subalgebra need not be of group
measure space type.
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by Zimmer [Zi79, Zi84] and the first breakthrough W∗-rigidity theorems were
proven by Popa [Po01, Po03, Po04] (see paragraph 1.3). Our aim here however
is to discuss the ideal kind of rigidity, labeled W∗- (respectively OE-) super-
rigidity, where the entire isomorphism class of Γ y (X,µ) is recovered from its
W∗-class (resp. OE class).

While a striking number of OE superrigid actions have been discovered over
the last 10 years [Fu98b, Po05, Po06a, Ki06, Io08, PV08b, Ki09, PS09], the first
W∗-superrigid actions were only discovered very recently in my joint paper with
Popa [PV09]. We found a family of amalgamated free product groups Γ and a
large class of W∗-superrigid Γ-actions, including (generalized) Bernoulli actions,
Gaussian actions and certain co-induced actions.

Note that W∗-superrigidity for an action Γ y (X,µ) is equivalent to the
‘sum’ between its OE superrigidity and the uniqueness, up to unitary conjugacy,
of L∞(X) as a group measure space Cartan subalgebra in L∞(X) o Γ. This
makes W∗-superrigidity results extremely difficult to obtain, since each one of
these problems is notoriously hard. Contrary to the long list of OE superrigid
actions referred to in the previous paragraph, unique Cartan decomposition
proved to be much more challenging to establish, and the only existing results
cover very particular group actions. Thus, a first such result, obtained by Ozawa
and Popa [OP07], shows that given any profinite action Γ y X of a product
of free groups Γ = Fn1

× · · · × Fnk
, with k ≥ 1, 2 ≤ ni ≤ ∞, all Cartan

subalgebras of M = L∞(X) o Γ are unitarily conjugate to L∞(X). A similar
result, covering groups Γ that have the complete metric approximation property
and that admit a proper 1-cocycle into a non-amenable representation, was then
proved in [OP08]. More recently, Peterson showed [Pe09] that factors arising
from profinite actions of non-trivial free products Γ = Γ1 ∗ Γ2, with at least
one of the Γi not having the Haagerup property, have a unique group measure
space Cartan subalgebra, up to unitary conjugacy. But so far, none of these
group actions could be shown to be OE superrigid. Nevertheless, an intricate
combination of results in [Io08, OP08, Pe09] were used to prove the existence
of virtually8 W∗-superrigid group actions Γ y X in [Pe09], by a Baire category
argument.

In [PV09] we established a very general unique Cartan decomposition result,
which allowed us to obtain a wide range of W∗-superrigid group actions. Thus,
we first proved the uniqueness, up to unitary conjugacy, of the group measure
space Cartan subalgebra in the II1 factor given by an arbitrary free ergodic
p.m.p. action of any group Γ belonging to a large family G of amalgamated free
product groups. By combining this with Kida’s OE superrigidity in [Ki09], we
deduced that if Tn < PSL(n,Z) denotes the group of upper triangular matrices
in PSL(n,Z), then any free mixing p.m.p. action of Γ = PSL(n,Z)∗Tn

PSL(n,Z)

8Following [Fu98a], virtual means that the ensuing conjugacy of Γ y X and Λ y Y is up
to finite index subgroups of Γ,Λ.
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is W∗-superrigid. In combination with [Po05, Po06a], we proved that for many
groups Γ in the family G, the Bernoulli actions of Γ are W∗-superrigid.

Very recently, Ioana [Io10] obtained the beautiful result that all Bernoulli
actions of property (T) groups are W∗-superrigid.

Recall from paragraph 1.3 Popa’s strong rigidity theorem for Bernoulli ac-
tions and note the asymmetry in the formulation: there is a (rigidity) condition
on the group Γ and a (deformation) condition on the action Λ y (Y, η). One
of the novelties of [PV09] is a transfer of rigidity principle showing that under
W∗-equivalence of Γ y X and Λ y Y , some of the rigidity properties of Γ per-
sist in the arbitrary unknown group Λ. Note however that property (T) itself is
not stable under W∗-equivalence: there exist W∗-equivalent group actions such
that Γ has property (T) while Λ has not (see Section 5).

1.7. Indecomposability results. Related to the uniqueness problem of Car-
tan subalgebras obviously is the existence question. Voiculescu [Vo95] proved
that the free group factors admits no Cartan subalgebra, because the presence
of a Cartan subalgebra forces the free entropy dimension of any generating set
to be smaller or equal than 1. Another application of Voiculescu’s free entropy
theory was given by Ge [Ge96] who showed that the free group factors are
prime: they cannot be written as the tensor product of two II1 factors.

Using delicate C∗-algebra techniques, Ozawa [Oz03] proved that for all icc
word hyperbolic groups Γ – in particular when Γ equals the free group Fn – the
group factor LΓ is solid: the relative commutant A′∩LΓ of an arbitrary diffuse9

subalgebra is injective. Obviously non-hyperfinite solid II1 factors, as well as all
their non-hyperfinite subfactors, are prime. A combination of techniques from
[Po01, Oz03] then allowed Ozawa and Popa [OP03] to introduce a family of II1
factors that have an essentially unique tensor product decomposition into prime
factors. Peterson’s L2-rigidity [Pe06] – a II1 factor analogue for the vanishing
of the first `2-Betti number of a group – as well as Bass-Serre rigidity for free
products of von Neumann algebras [IPP05, CH08] provided further examples
of prime factors.

The free group factors have no Cartan subalgebra and are solid. In [OP07]
both properties are brought together and LFn is shown to be strongly solid:
the normalizer of an arbitrary diffuse abelian subalgebra is hyperfinite. Other
examples of strongly solid II1 factors were given in [Ho09, HS09].

Organization of the paper. In so far as the above gave an overview of
some recent developments, in the rest of the paper I present the main ideas
behind a number of chosen topics: Popa’s deformation/rigidity theory in Section
3, computations of fundamental groups in Section 4, the (non-)uniqueness of
Cartan subalgebras in Section 5 and W∗-superrigidity in Section 6.

9A von Neumann algebra is called diffuse if it admits no minimal projections.
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2. Preliminaries

Traces, II1 factors and the Hilbert bimodule L2(M). A finite trace on
a von Neumann algebra M is a linear map τ :M → C satisfying τ(xy) = τ(yx)
for all x, y ∈M . We say that τ is positive if τ(x) ≥ 0 for all positive operators
x ∈ M . A positive trace τ is called faithful if the equality τ(x∗x) = 0 implies
that x = 0. A positive trace τ is called normal if τ is weakly continuous on the
unit ball of M .

A II1 factor is a von Neumann algebra with trivial center that admits a
non-zero finite positive trace τ and that is non-isomorphic to a matrix algebra
Mn(C). Normalizing τ such that τ(1) = 1, the trace is unique. Moreover τ is au-
tomatically normal. We denote by ‖x‖2 =

√
τ(x∗x) the L2-norm corresponding

to τ . Completing M w.r.t. the scalar product 〈x, y〉 = τ(x∗y) yields the Hilbert
space L2(M), which is an M -M -bimodule by left and right multiplication on
M .

We denote by Tr the non-normalized trace on Mn(C). Occasionally, Tr de-
notes the infinite trace on positive operators in B(H).

Group von Neumann algebras. Let Γ be a countable group. Then LΓ is
the unique tracial von Neumann algebra generated by unitary elements (ug)g∈Γ

with the following two properties: uguh = ugh for all g, h ∈ Γ and τ(ug) = 0 for
all g 6= e. Alternatively, we denote by (δg)g∈Γ the standard orthonormal basis
of `2(Γ), define the translation unitary operators ug as ugδh = δgh and define
LΓ as the von Neumann algebra generated by {ug | g ∈ Γ}, with τ being given
by τ(x) = 〈δe, xδe〉 for all x ∈ LΓ.

Group measure space construction. If (P, τ) is a tracial von Neumann

algebra and Γ
α
y P is an action of a countable group Γ by trace preserving

automorphisms αg ∈ AutP , the crossed product P o Γ is the unique tracial
von Neumann algebra (M, τ) generated by a trace-preserving copy of P and
unitary elements (ug)g∈Γ satisfying the following properties:

ugau
∗
g = αg(a) for all g ∈ Γ, a ∈ P , uguh = ugh for all g, h ∈ Γ ,

τ(aug) = 0 for all a ∈ P, g 6= e .

The map aug 7→ a ⊗ δg provides an identification L2(P o Γ) = L2(P )⊗`2(Γ)
and then an explicit realization of P o Γ as an algebra of bounded operators
on the Hilbert space L2(P )⊗`2(Γ).

When Γ y (X,µ) is a probability measure preserving (p.m.p.) action, one
considers the corresponding trace preserving action Γ y L∞(X) and constructs
M = L∞(X) o Γ. The abelian subalgebra L∞(X) ⊂ M is maximal abelian if
and only if Γ y (X,µ) is essentially free, meaning that for all g 6= e the set
{x ∈ X | g · x = x} has measure zero. When Γ y (X,µ) is essentially free, the
center of M equals L∞(X)Γ, the algebra of Γ-invariant functions in L∞(X).
Hence, factoriality of M is then equivalent with ergodicity of Γ y (X,µ).
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(Generalized) Bernoulli actions. If Γ is an infinite countable group and if
(X0, µ0) is a non-trivial probability space, define the infinite product (X,µ) :=
(X0, µ0)

Γ on which Γ acts by shifting the indices: (g · x)h = xg−1h. The action
Γ y (X,µ) is called the Bernoulli action with base space (X0, µ0) and it is a
free ergodic p.m.p. action.

More generally, if Γ acts on the countably infinite set I, one considers the
generalized Bernoulli action Γ y (X0, µ0)

I given by (g · x)i = xg−1·i. This
action is p.m.p. and it is ergodic if and only if every orbit Γ · i is infinite. If
(X0, µ0) is non-atomic, essential freeness is equivalent with every g 6= e acting
non-trivially on I. If (X0, µ0) has atoms, essential freeness is equivalent with
every g 6= e moving infinitely many i ∈ I.

Bimodules. AnM -N -bimodule MHN between von Neumann algebrasM and
N is a Hilbert space H equipped with a normal unital ∗-homomorphism λ :
M → B(H) and a normal unital ∗-anti-homomorphism ρ : N → B(H) such
that λ(M) and ρ(N) commute. We write xξy instead of λ(x)ρ(y)ξ.

Bimodules should be considered as the II1 factor analogue of unitary group
representations. Based on this philosophy, several representation theoretic prop-
erties of groups have a II1 factor counterpart: amenability, the Haagerup prop-
erty, property (T), etc.

To establish the dictionary between group representations and bimodules,
take a countable group Γ and putM = LΓ. Whenever π : Γ→ U(K) is a unitary
representation, define the Hilbert space Hπ = `2(Γ)⊗K and turn Hπ into an
M -M -bimodule by putting ug(δh⊗ξ)uk := δghk⊗π(g)ξ. The trivial representa-
tion corresponds to the trivial bimodule ML2(M)M, the regular representation
corresponds to the coarse bimodule M ⊗ 1

(
L2(M)⊗L2(M))1 ⊗ M and one defines

the notions of containment and weak containment of bimodules [Po86] in such a
way that through the construction π  Hπ these notions exactly correspond to
the well known concepts from representation theory. Finally, the Connes tensor
product of bimodules [Co94, V.Appendix B] is so that Hπ ⊗M Hρ

∼= Hπ⊗ρ.

Definition 2.1. A tracial von Neumann algebra (M, τ) is called amenable
[Po86] if the coarse bimodule weakly contains the trivial bimodule.

We say that (M, τ) has property (T) [CJ83] if any M -M -bimodule weakly
containing the trivial bimodule, must contain the trivial bimodule.

We finally say that the subalgebra N ⊂ M has the relative property (T)
[Po01] if anyM -M -bimodule weakly containing the trivial bimodule, must con-
tain the bimodule NL

2(M)M.

Completely positive maps and bimodules. A linear map ϕ : M → N is
called completely positive if for every n the amplified map id ⊗ ϕ : Mn(C) ⊗
M → Mn(C) ⊗ N maps positive operators to positive operators. In the same
way as unitary representations are related to positive definite functions, also
bimodules and completely positive maps form two sides of the same story.
Whenever ϕ : M → N is a unital trace preserving completely positive map,
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the separation and completion of the algebraic tensor product M ⊗alg N w.r.t.
the scalar product 〈a⊗ b, c⊗ d〉 = τ(b∗ϕ(a∗c)d) defines a Hilbert space H that
naturally becomes an M -N -bimodule. By construction ξ = 1 ⊗ 1 is a cyclic
vector, meaning that MξN is dense in H, and is a trace vector, meaning that
τ(a) = 〈ξ, aξ〉 and τ(b) = 〈ξ, ξb〉 for all a ∈ M, b ∈ N . Every bimodule with a
cyclic trace vector arises in this way.

Cartan subalgebras and equivalence relations. Whenever A ⊂ M is a
von Neumann subalgebra, we denote by NM (A) := {u ∈ U(M) | uAu∗ = A}
the group of unitaries in M that normalize A. A Cartan subalgebra A ⊂ M of
a II1 factor is a maximal abelian subalgebra such that NM (A) generates M .
Whenever Γ y (X,µ) is a free ergodic p.m.p. action, L∞(X) ⊂ L∞(X)o Γ is
a Cartan subalgebra. We call such Cartan subalgebras of group measure space
type.

The relevance of Cartan subalgebras in the study of group measure space
factors stems from the following theorem.

Theorem 2.2 (Singer [Si55]). Let Γ y (X,µ) and Λ y (Y, η) be free ergodic
p.m.p. actions and denote A = L∞(X), B = L∞(Y ). Assume that ∆ : X →
Y is an isomorphism of probability spaces with corresponding trace preserving
isomorphism ∆∗ : A→ B : F 7→ F ◦∆−1. Then, the following are equivalent.

• ∆ is an orbit equivalence: for almost every x ∈ X, we have ∆(Γ · x) =
Λ ·∆(x).

• ∆∗ extends to a ∗-isomorphism Ao Γ→ B o Λ.

A II1 equivalence relation [FM75] on a standard probability space (X,µ)
is an equivalence relation R ⊂ X ×X with countable equivalence classes such
that R is a Borel subset of X ×X and such that R is ergodic and probability
measure preserving. Here R is called ergodic if every R-saturated Borel set has
measure 0 or 1, while R is said to be p.m.p. if every bimeasurable bijection
ϕ : X → X with graph inside R, preserves µ.

Whenever Γ y (X,µ) is an ergodic p.m.p. action, the orbit equivalence
relation R(Γ y X) is of type II1. Every II1 equivalence relation is of this form,
but it is not always possible to choose an essentially free action implementing
R (see [Fu98b] and [PV08b, Section 7]).

A variant of the group measure space construction [FM75] allows to as-
sociate a II1 factor LR to any II1 equivalence relation R on (X,µ). By con-
struction LR contains a copy of L∞(X) as a Cartan subalgebra. Every Cartan
inclusion A ⊂M arises in this way, modulo the possible appearance of a scalar
2-cocycle on R. When Γ y (X,µ) is a free ergodic p.m.p. action, we canonically
have L∞(X) o Γ = L(R(Γ y X)). It is however important to note that both
the crossed product and the orbit equivalence relation make sense for non-free
actions, but no longer yield isomorphic von Neumann algebras.
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Fundamental groups of II1 factors. WhenM is a II1 factor and t > 0, one
defines as follows the amplification M t. For 0 < t ≤ 1, take a projection p ∈M
with τ(p) = t and put M t := pMp. For larger t, take an integer n, a projection
p ∈ Mn(C)⊗M with (Tr⊗τ)(p) = t and put M t := p(Mn(C)⊗M)p. As such,
M t is well defined up to isomorphism. One proves that (M t)s ∼= M ts. The
fundamental group F(M) is defined as the set of t > 0 such that M t ∼=M . The
fundamental group of a II1 equivalence relation R is defined in a similar way.
If M = LR denotes the associated II1 factor, by construction F(R) ⊂ F(M),
but this inclusion can be strict [Po06a, Section 6.1].

3. Popa’s Deformation/Rigidity Theory

Popa’s deformation/rigidity theory, initiated in [Po01], has revolutionized our
understanding of II1 factors. We explain in this section what kind of deforma-
tions Popa introduced and how they can be combined with the rigidity given
by the relative property (T).

Definition 3.1. A deformation of the identity on a tracial von Neumann al-
gebra (M, τ) is a sequence of normal completely positive maps ϕn : M → M
that are unital, trace preserving and satisfy

‖ϕn(x)− x‖2 → 0 for all x ∈M .

Both group factors LΓ and crossed products P o Γ admit natural defor-
mations of the identity. Indeed, if ϕ : Γ → C is a positive definite function,
both

LΓ→ LΓ : ug 7→ ϕ(g)ug for all g ∈ Γ and

P o Γ→ P o Γ : aug 7→ ϕ(g)aug for all a ∈ P, g ∈ Γ

extend to normal completely positive maps on LΓ, resp. P o Γ. If ϕ is normal-
ized, i.e. ϕ(e) = 1, these maps are unital and trace preserving.

Example 3.2. If Γ has the Haagerup approximation property [Ha78], there
exists a sequence ϕn : Γ→ C of positive definite functions converging pointwise
to 1 and with ϕn ∈ c0(Γ) for every n. As we discuss below, the corresponding
deformation of the identity of P o Γ plays a crucial role in [Po01].

If Γ = Γ1 ∗ Γ2 is a free product and |g| denotes the natural word length of
g ∈ Γ w.r.t. this free product decomposition and if 0 < ρ < 1, then the formula
ϕρ(g) = ρ|g| defines a positive definite function on Γ. If ρ → 1, then ϕρ → 1
pointwise. The corresponding deformation of the identity is the starting point
for [IPP05, PV09] and also this is discussed below.

A second family of deformations of the identity arises as follows. Let Γ
α
y

(P, τ) be a trace preserving action. Assume that ϕn : P → P is a deformation
of the identity such that ϕn ◦ αg = αg ◦ ϕn for all g ∈ Γ, n ∈ N. Then, the
formula aug 7→ ϕn(a)ug defines a deformation of the identity on P o Γ.
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Definition 3.3 ([Po03]). A p.m.p. action Γ y (X,µ) is malleable if there exists
a continuous family (αt)t∈[0,1] of p.m.p. transformations of X×X such that for
all t ∈ [0, 1], αt commutes with the diagonal action g · (x, y) = (g · x, g · y) and
such that α0 = id and α1(x, y) is of the form (. . . , x).

The Bernoulli action Γ y [0, 1]Γ is malleable. It suffices to construct a con-
tinuous family (α0

t )t∈[0,1] of p.m.p. transformations of the square [0, 1] × [0, 1]
such that α0

0 = id and α0
1(x, y) = (. . . , x). This can be done by ‘rotating the

square’ counterclockwise over 90 degrees. Next, one identifies [0, 1]Γ × [0, 1]Γ =
([0, 1] × [0, 1])Γ and defines (αt(x, y))g = α0

t (xg, yg). By construction, αt com-
mutes with the diagonal Γ-action.

Other examples of malleable actions are generalized Bernoulli actions Γ y

[0, 1]I given by an action Γ y I or Gaussian actions given by an orthogonal
representation of Γ on a real Hilbert space.

Example 3.4. If αt is a malleable deformation, put A = L∞(X) and define
the corresponding automorphisms αt of A⊗A = L∞(X×X) given by αt(F ) :=
F (α−1

t ( · )). By definition α0 = id and α1(a⊗1) = 1⊗a for all a ∈ A. View A ↪→
A⊗A : a 7→ a⊗1 and denote by E : A⊗A→ A the trace preserving conditional
expectation (which corresponds to integration w.r.t. the second variable). The
formula ϕt : A→ A : ϕt(a) = EA(αt(a⊗1)) defines a continuous family of unital
trace preserving completely positive maps with ϕ0 = id and ϕ1(a) = τ(a)1.
When t→ 0, we get a deformation of the identity on L∞(X)oΓ that is at the
heart of [Po03, Po04].

A variant of the malleable deformation for Bernoulli actions is the tensor
length deformation [Io06]. Indeed, given a base probability space (X0, µ0) and
a countable set I, put (X,µ) = (X0, µ0)

I and identify A := L∞(X) with the
infinite tensor product ⊗i∈I(A0, τ), where A0 := L∞(X0). We write A = AI

0.
Whenever J ⊂ I is a subset, we view AJ

0 as a subalgebra of AI
0. We then define

for every 0 < ρ < 1,

θρ : A→ A : θρ(a) = ρna when a ∈ (A0 	 C1)J and |J | = n .

Then θρ is a well defined unital trace preserving normal completely positive map
and θρ → id when ρ → 1. By construction, θρ commutes with the generalized
Bernoulli action Γ y AI

0 whenever Γ y I.

Combining deformation and rigidity. Let N ⊂ M be an inclusion with
the relative property (T), see Definition 2.1. Whenever ϕn : M → M is a
deformation of the identity, it follows that ϕn converges uniformly in ‖ · ‖2 on
the unit ball of N . We illustrate this combination of deformation and rigidity
by indicating the main ideas behind two of Popa’s theorems.

Theorem 3.5 (Popa [Po01]). The II1 factor M = L(Z2
o SL(2,Z)) has trivial

fundamental group.
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Write A = L∞(T2), Γ = SL(2,Z) and identify M = A o Γ. The group Γ
has the Haagerup property and hence admits a sequence of positive definite
functions ϕn such that ϕn ∈ c0(Γ) for all n and ϕn → 1 pointwise. As in
Example 3.2, we get a deformation of the identity on M given by θn(aug) =
ϕn(g)aug. Assume that N ⊂M has the relative property (T) and choose ε > 0.
Because ϕn ∈ c0(Γ), we find n ∈ N and a finite subset F ⊂ Γ such that for
all b in the unit ball of N , the ‖ · ‖2-distance of b to span{aug | a ∈ A, g ∈
F} is smaller than ε. The only ‘obvious’ subalgebras of A o Γ with such an
approximation property are those that are unitarily conjugate to a subalgebra
of A, i.e. vNv∗ ⊂ A for some v ∈ U(M). Popa’s intertwining-by-bimodules, that
we recall below, ensures that this feeling is indeed (almost) correct. It is even
exactly correct when moreover N ⊂M is a Cartan subalgebra.

Now observe that A ⊂ M has the relative property (T) and is a Cartan
subalgebra. So, whenever α is an automorphism of M , the subalgebra α(A)
still has the relative property (T) and the previous paragraph implies that,
up to a unitary conjugacy, every automorphism of M globally preserves A.
This means that every automorphism of M induces an automorphism of the
orbit equivalence relation of SL(2,Z) y T

2. A similar statement is true for
isomorphismsM → pMp and therefore, the fundamental group ofM equals the
fundamental group of the equivalence relation, which is trivial by [Ga99, Ga01].

Theorem 3.6 (Popa [Po03, Po04]). Let Γ be a property (T) group and Γ y

(X,µ) any free ergodic p.m.p. action. Let Λ be any icc group and Λ y (Y0, η0)
Λ

the Bernoulli action. Put (Y, η) := (Y0, η0)
Λ.

If L∞(X)o Γ ∼= L∞(Y )oΛ, then the groups Γ,Λ are isomorphic and their
actions are conjugate.

Put A = L∞(X) and B0 = L∞(Y0). Assume that A o Γ = BΛ
0 o Λ and

consider on BΛ
0 o Λ the tensor length deformation θρ defined after Example

3.4. Since the subalgebra LΓ has property (T), for ρ close enough to 1, we get
that θρ is uniformly close to the identity on the unit ball of LΓ. When b ∈ BΛ

0 ,
the norm ‖θρ(b) − b‖2 is small when b can be written as a linear combination
of ‘short’ elementary tensors. The only obvious ‘short’ subalgebras of BΛ

0 o Λ
are those that can be unitarily conjugated into either LΛ or BJ

0 for some finite
subset J ⊂ Λ. The abelian algebra BJ

0 can never house the property (T) algebra
LΓ and Popa indeed manages to prove that LΓ must be unitarily conjugate to
a subalgebra of LΛ.

So we may assume that LΓ ⊂ LΛ. In a second and analytically very delicate
part, Popa basically proves the following: if a subalgebra A of BΛ

0 o Λ is both
abelian and normalized by many unitaries in LΛ, then A must be unitarily
conjugate to a subalgebra of BΛ

0 .

This brings us in the situation where A can be unitarily conjugated into
BΛ

0 and LΓ can be unitarily conjugated into LΛ. Popa proves that automat-
ically both unitary conjugations can be done with the same unitary, yielding
isomorphism of the groups and conjugacy of the actions.
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Popa’s intertwining-by-bimodules. In [Po01, Po03] Popa developed a pow-
erful technique to approach the following question: when are two subalgebras
N,P ⊂ M unitarily conjugate? A detailed explanation and motivation for his
method can be found in [Po06b, Section 5] and [BO08, Appendix F]. So, we
are rather brief here. First consider the case where M = P o Γ for some trace
preserving action Γ y P . Every element x ∈M has a unique Fourier expansion

x =
∑

g∈Γ

xgug with xg ∈ P

converging in ‖ · ‖2. We call the xg ∈ P the Fourier coefficients of x.

Theorem 3.7 (Popa [Po01, Po03]). Let N ⊂ P o Γ be a von Neumann subal-
gebra. Then the following two conditions are equivalent.

• There exist projections p ∈ P, q ∈ N , a normal unital ∗-homomorphism
ϕ : qNq → pPp and a non-zero partial isometry v ∈ q(P o Γ)p satisfying
av = vϕ(a) for all a ∈ qNq.

• There is no sequence of unitaries vn ∈ N whose Fourier coefficients con-
verge to 0 pointwise in ‖ · ‖2, i.e. ‖(vn)g‖2 → 0 for all g ∈ Γ.

When P ⊂ M is no longer the ‘core’ of a crossed product, there is no
notion of Fourier coefficients and their convergence to 0 has to be replaced
by the condition ‖EP (xvny)‖2 → 0 for all x, y ∈ M , where EP : M → P is
the unique trace preserving conditional expectation. If M = P o Γ, note that
(vn)g = EP (vnu

∗
g).

The first condition in Theorem 3.7 is of course not saying that v is a unitary
satisfying v∗Nv ⊂ P . The left support projection of v lies in the relative com-
mutant of qNq – which in concrete applications is usually known – but the right
support projection of v lies in the relative commutant of ϕ(qNq) which is of
course a priori unknown, since we do not know ϕ. Several techniques based on
mixing properties have been developed to take care of this relative commutant
issue and we refer to [Po06b, Section 5] for a more detailed explanation.

4. Fundamental Groups of II1 Factors

In order to construct II1 factors with a prescribed fundamental group F , you
first need a cute construction of a II1 factor M such that all t ∈ F obviously
belong to F(M) and then you need a powerful theory to make sure that no
other t > 0 belong to F(M). As an illustration, we first briefly explain two
constructions that produce II1 factors with prescribed countable fundamental
group.
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Connes-Størmer Bernoulli actions [Po03]. Let (X0, µ0) be an atomic
probability space and Γ a countable group. Put (X,µ) = (X0, µ0)

Γ and de-
fine on (X,µ) the following II1 equivalence relation: x ∼ y if and only if there
exists a g ∈ Γ and a finite subset J ⊂ Γ such that xgh = yh for all h ∈ Γ − J
and such that

∏
h∈J µ0(xgh) =

∏
h∈J µ0(yh). Whenever a ∈ X0, define the sub-

set Ya ⊂ X as Ya := {x ∈ X | xe = a}. Given a, b ∈ X0, the map Ya → Yb
changing xe from a to b and leaving the other xg untouched is an isomorphism
of the restricted equivalence relations. Hence, µ0(a)/µ0(b) belongs to F(R) for
all a, b ∈ X0.

Denote by M = LR the II1 factor associated with R and denote by F the
subgroup of R

∗
+ generated by all the ratios µ0(a)/µ0(b). We have seen that

F ⊂ F(M). In [Po03] Popa shows that taking Γ = SL(2,Z) n Z
2, one has the

equality F = F(M), with one of the ingredients of the proof being the triviality
of the fundamental group of LΓ.

Free products of amplifications [IPP05]. Recall from Section 2 the no-
tation M t for the amplification of a II1 factor M . In [DR98] Dykema and
Rădulescu established the following remarkable formula for an infinite free prod-
uct of II1 factors Mn: (

∗
n∈N

Mn

)t
∼= ∗

n∈N

M t
n .

So, whenever F ⊂ R
∗
+ is a countable subgroup different from {1} and whenever

M is a II1 factor, we put P = ∗t∈FM
t and conclude that both F and F(M)

are subgroups of F(P ). As a consequence of their Bass-Serre theory for free
products of II1 factors, Ioana, Peterson and Popa [IPP05] manage to prove
that F = F(P ) when you take M = L(SL(2,Z) n Z

2). A more elementary
variant of the previous construction was proposed in [Ho07].

Both constructions presented so far can be used to produce II1 factors with
arbitrary fundamental group F . However, for uncountable subgroups F ⊂ R

∗
+

the resulting II1 factors do not have separable predual.

II1 factors with uncountable fundamental group [PV08a, PV08c].
Again we start with a construction of a II1 factor sowing a number of elements
into the fundamental group. Let Γ y (Z, γ) be a free ergodic action preserving
the infinite non-atomic measure γ. Put N := L∞(Z)o Γ and note that N is a
II∞ factor. Whenever ∆ is a non-singular10 automorphism of (Z, γ) satisfying
∆(g · z) = g ·∆(z) a.e., the Radon-Nikodym derivative between γ ◦∆−1 and γ
is Γ-invariant and hence constant a.e. So, ∆ scales the infinite measure γ by a
factor that we denote by mod∆. Denote the group of all these automorphisms
∆ as CentrAutZ(Γ). Every ∆ ∈ CentrAutZ(Γ) gives rise to an automorphism
∆∗ of N scaling the trace with the same factor mod∆. Whenever p ∈ N is a

10This means that ∆ preserves sets of measure zero.
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projection of finite trace, put M = pNp and note that M is a II1 factor. By
construction we have

modCentrAutZ(Γ) ⊂ F(pNp) . (1)

In the following paragraphs we explain the three main aspects of [PV08a,
PV08c]: how to get an equality in (1), how to make sure that pNp is itself
a group measure space II1 factor and finally, how wild modCentrAutZ(Γ) can
be. At the end this will give a feeling for the validity of the following theorem.

Theorem 4.1 (Popa, Vaes [PV08a, PV08c]). Let Γ0 be a non-trivial group
and Σ an infinite amenable group. Put Γ = Γ∗∞

0 ∗Σ. There exists a free ergodic
p.m.p. action Γ y (X,µ) such that L∞(X) o Γ has a fundamental group of
arbitrary prescribed Hausdorff dimension between 0 and 1.

Actually, F(L∞(X)o Γ) can be any group in the family

Scentr := {F ⊂ R
∗
+ | there exists an amenable Λ and a free ergodic Λ y (Y, η)

preserving η such that F = modCentrAutY (Λ) }

How to get equality in (1). Take Γ of the form Γ1 ∗ Λ and assume that
Γ y (X,µ) is a free p.m.p. action with Γ1 acting ergodically. Let Λ y (Y, η)
be a free ergodic action preserving the infinite non-atomic measure η. Put
(Z, γ) = (X × Y, µ × η) and consider the action Γ y Z given by g · (x, y) =
(g · x, y) if g ∈ Γ1 and h · (x, y) = (h · x, h · y) if h ∈ Λ. It is easy to see
that modCentrAutZ(Γ) equals modCentrAutY (Λ). We now make the following
assumptions on the action Γ1 ∗ Λ y (X,µ).

1. The action Γ1 y (X,µ) is rigid, i.e. L∞(X) ⊂ L∞(X)oΓ1 has the relative
property (T) in the sense of Definition 2.1.

2. The group Λ is amenable.

3. If φ : X0 → X1 is a non-singular isomorphism between the non-negligible
subsets X0, X1 ⊂ X satisfying φ(X0 ∩ Γ1 · x) ⊂ Γ · ϕ(x) for a.e. x ∈ X0,
then φ(x) ∈ Γ · x for a.e. x ∈ X0.

For the following heuristic reasons, these assumptions imply that the inclusion
in (1) actually is an equality. Consider the II∞ factor N = L∞(X×Y )o(Γ1∗Λ)
and let α be an automorphism of N . The Bass-Serre theory of [IPP05] and the
relative property (T) of L∞(X) imply that after a unitary conjugacy, α globally
preserves L∞(X × Y ). In a next step, the relative property (T) of L∞(X)
together with the amenability of Λ roughly implies that α globally preserves
L∞(X)⊗1. Then the third assumption above implies that we may assume that
α(a⊗ 1) = a⊗ 1 for all a ∈ L∞(X) and hence that α is induced by an element
of CentrAutY (Λ).

It is highly non-trivial to find group actions Γ1 ∗ Λ y (X,µ) satisfying the
conditions 1, 2 and 3 above. Actually, in [PV08a, PV08c] we use a Baire category
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argument to prove their existence whenever Γ1 is an infinite free product Γ1 =
Γ∗∞
0 with Γ0 being an arbitrary non-trivial group. Replacing Γ0 by Γ0 ∗ Γ0,

we may assume that Γ0 is infinite. The proof roughly goes as follows: start
with arbitrary free ergodic p.m.p. actions Γ0 y (X,µ) and Λ y (X,µ) and
view Γ,Λ as subgroups of Aut(X,µ). By [Ga08], there exists an automorphism
β1 ∈ Aut(X,µ) such that the subgroups Γ0 and β1Γ0β

−1
1 of Aut(X,µ) generate

a free and rigid action of Γ∗2
0 := Γ0∗Γ0 on (X,µ). By [IPP05, To05] there exists

ψ ∈ Aut(X,µ) such that together with ψΛψ−1, we obtain a free action of Γ∗2
0 ∗Λ

on (X,µ). We now start adding copies of Γ0 acting as βnΓ0β
−1
n ⊂ Aut(X,µ)

for well chosen βn ∈ Aut(X,µ). At stage n, given the free action Γ∗n
0 ∗Λ y X,

the rigidity of the action Γ∗2
0 y (X,µ) implies that there are essentially only

countably many partial isomorphisms φ that map Γ∗2
0 -orbits into Γ∗n

0 ∗Λ-orbits.
By [IPP05, To05] there exists βn+1 ∈ Aut(X,µ) such that βn+1Γ0β

−1
n+1 is free

w.r.t. these countably many partial isomorphisms. Adding this new Γ0-action,

we obtain a free action of Γ
∗(n+1)
0 ∗Λ. Continuing by induction, we get the free

action Γ∗∞
0 ∗ Λ y (X,µ). We finally prove that there exists an infinite subset

E ⊂ N containing {0, 1} such that (∗n∈EΓ0) ∗Λ y (X,µ) satisfies condition 3.
Since {0, 1} ⊂ E and Γ∗2

0 y (X,µ) is rigid, condition 1 is satisfied as well.

Is pNp itself a group measure space factor. Take Γ1 ∗ Λ y X × Y as
above, with Λ being infinite amenable. Let Σ be any infinite amenable group. By
[PV08c, Lemma 3.6], the restriction of the orbit equivalence relationR(Γ1∗Λ y

X × Y ) to a set of finite measure is implemented by a free action of Γ∗∞
1 ∗ Σ.

So, pNp is a group measure space factor.

How wild can modCentrAutY (Λ) be. In [MNP68] the notion of an ergodic
measure ν on the real line is introduced: it is a σ-finite measure on the Borel
sets of R such that for every x ∈ R, the translation νx of ν by x is either singular
w.r.t. ν or equal to ν, and such that denoting

Hν := {x ∈ R | νx = ν}

the action ofHν on (R, ν) by translation is ergodic. More precisely, if F : R→ R

is a Borel function and if for every x ∈ Hν we have F (x+ y) = F (y) for ν-a.e.
y, then F is constant ν-a.e. The easiest examples of ergodic measures are the
Lebesgue measure and the counting measure on a countable subgroup of R.

In [Aa86] it is shown that all subgroups of R∗
+ of the form exp(Hν) arise

as modCentrAutY (Z). Allowing more general amenable groups Λ instead of Z,
this can be easily seen as follows. Assume that Hν 6= {0}. Viewing Hν as a
closed subgroup of Aut(L∞(R, ν)) one turns Hν into a Polish group. Take a
countable dense subgroup Q ⊂ Hν and define the additive subgroup R ⊂ R as
R = Z[exp(Q)]. Then Q acts on R through multiplication by exp(q) and we put
Λ := R oQ. Define the measure ν̃ on R such that dν̃(x) = exp(−x)dν(x) and
denote by λ the Lebesgue measure on R. Put (Y, η) := (R2, λ× ν̃). The action
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Λ y Y given by (r, q) · (x, y) = (r + exp(q)x, q + y) is measure preserving and
ergodic. One checks easily that modCentrAutY (Λ) = exp(Hν).

It is also shown in [Aa86] (cf. [PV08a, page 389]) thatHν can be uncountable
without being R

∗
+ and that actually Hν can have any Hausdorff dimension

between 0 and 1.

Problem I. Give an intrinsic description of the subgroups of R∗
+ that are of

the form F(M) where M is a II1 factor with separable predual.

The only known a priori restriction on F(M) is given by [PV08a, Proposition
2.1]: F(M) is a Borel subset of R∗

+ and carries a unique Polish group topology
whose Borel sets are precisely the ones inherited from R

∗
+. It is however hard to

believe that all ‘Polishable’ Borel subgroups of R∗
+ can arise as the fundamental

group of a II1 factor with separable predual.

Property (T) and fundamental groups. Roughly speaking, the presence
of property (T) forces fundamental groups to be countable. When Γ is an icc
property (T) group, Connes [Co80] proved that F(LΓ) is countable and the
same method [GG88] yields the countability of F(L∞(X) o Γ) and F(R(Γ y

X)), for all free ergodic p.m.p. actions Γ y (X,µ). For non-icc property (T)
groups, Ioana [Io08] could still prove the countability of F(R(Γ y X)), but in
[PV08c] we proved that if Γ is a property (T) group whose virtual center11 is
not virtually abelian12, then Γ admits a free ergodic p.m.p. action such that
L∞(X) o Γ is McDuff and in particular, has fundamental group R

∗
+. We were

informed by Ershov that such groups exist as quotients of Golod-Shafarevich
groups with property (T).

Zimmer [Zi80] introduced a notion of property (T) for II1 equivalence rela-
tions which is such that for free ergodic p.m.p. actions, the orbit equivalence
relation R(Γ y X) has property (T) if and only if the group Γ has property
(T). Using techniques from [AD04] we proved [PV08b] that for n ≥ 4, the re-
striction of the II∞ relation R(SL(n,Z) y R

n) to a subset of finite Lebesgue
measure, is a II1 equivalence relation with property (T) in the sense of Zimmer
and with fundamental group R

∗
+. In particular, this II1 equivalence relation

cannot be implemented by a free action of a group.

5. (Non-)uniqueness of Cartan Subalgebras

Non-uniqueness of Cartan subalgebras. Connes and Jones [CJ81] have
given the first examples of II1 factors M having more than one Cartan subal-
gebra up to conjugacy by an automorphism of M . Their construction goes as

11The virtual center is the set of elements with finite conjugacy class. It is a normal sub-
group.

12A group is virtually abelian if it has an abelian subgroup of finite index.
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follows. Take a finite non-abelian group Σ0, build the countable group Σ = Σ
(N)
0

and the compact group K = ΣN
0 that we equip with its Haar measure. Consider

the action Σ y K by translation. Finally, let Γ be any non-amenable group.
Put X := KΓ and consider the diagonal action Σ y X which commutes with
the Bernoulli action Γ y X. We obtain a free ergodic p.m.p. action Γ×Σ y X
and hence, the Cartan subalgebra A = L∞(X) ofM = L∞(X)o(Γ×Σ). Taking
non-commuting elements g, h ∈ Σ0 and defining gn, hn ∈ Σ as being g, h in po-
sition n, one obtains two non-commuting central sequences in M . Hence, M is
a McDuff factor [McD70], which means that M ∼=M⊗R, where R denotes the
hyperfinite II1 factor. Choosing any Cartan subalgebra B ⊂ R, one transports
back the Cartan subalgebra A⊗B ⊂M⊗R to a Cartan subalgebra of M whose
associated equivalence relation is not strongly ergodic. The initial equivalence
relation given by A ⊂ M is strongly ergodic, so that both Cartan subalgebras
are non-conjugate by an automorphism of M .

Ozawa and Popa [OP07] provided examples of II1 factors where one can
explicitly see two Cartan subalgebras. We first explain the general procedure
and provide a concrete example below. Assume that Γ is a countable group and
Σ�Γ an infinite abelian normal subgroup. Assume that Σ�Γ has the following
relative icc property: for every g ∈ Γ − Σ, the set {sgs−1 | s ∈ Σ} is infinite.
Let Σ ↪→ K be a dense embedding of Σ into a compact abelian group K. Equip
K with its Haar measure and define the action Σ y K by translation. Assume
that we are given an extension of this action to an essentially free p.m.p. action
Γ y K. Then, L∞(K) and LΣ are non-unitarily conjugate Cartan subalgebras
of L∞(K)o Γ.

An interesting concrete example is given by Γ = Z
n
o SL(n,Z) and its

natural affine action on Z
n
p . We get

L∞(Zn
p )o (Zn

o SL(n,Z)) = L∞(Tn)o (Ẑn
p o SL(n,Z)) .

If n = 2, the group Ẑn
p o SL(n,Z) has the Haagerup property while Z

n
o

SL(n,Z) does not. If n ≥ 3, the group Z
n
o SL(n,Z) has property (T) while

Ẑn
p o SL(n,Z) does not. So, neither property (T) nor the Haagerup property

are stable under W∗-equivalence. Since they are stable under orbit equivalence,
it follows that the Cartan subalgebras L∞(Zn

p ) and L∞(Tn) are non-conjugate
by an automorphism of the ambient II1 factor.

Uniqueness of Cartan subalgebras. Wementioned in Section 1 that Ozawa
and Popa [OP07, OP08] established the first – and up to now, only – uniqueness
results for Cartan subalgebras up to unitary conjugacy. Recall that a profinite
p.m.p. action Γ y (X,µ) is by definition the inverse limit lim

←−
(Xn, µn) of a

directed system of actions Γ y (Xn, µn) on finite probability spaces.

Theorem 5.1 (Ozawa, Popa [OP07]). Let n ≥ 2 and let Fn y (X,µ) be an
ergodic profinite p.m.p. action. Put A = L∞(X) and M = Ao Fn.
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It the action is free, A ⊂ M is the unique Cartan subalgebra up to unitary
conjugacy. If the action is not free, M has no Cartan subalgebras.

The proof of Theorem 5.1 consists of two parts. The group Fn has the
complete metric approximation property (CMAP) [Ha78]. This means that there
exists a sequence ϕk : Γ → C of finitely supported functions converging to 1
pointwise and such that the maps θk : ug 7→ ϕk(g)ug are completely bounded
with lim sup ‖θk‖cb = 1. Then, θk automatically extends to an ultraweakly
continuous map LFn → LFn without increasing ‖θk‖cb. Since Fn y (X,µ) is
profinite, it follows that M has CMAP as a II1 factor: there exists a sequence
of finite rank, ultraweakly continuous, completely bounded maps θk :M →M
converging pointwise in ‖ · ‖2 to the identity and satisfying lim sup ‖θk‖cb = 1.
Ozawa and Popa prove the following general statement: let M be a II1 factor
with CMAP and P ⊂M a diffuse amenable (in particular, abelian) subalgebra;
denote by G the group of unitaries in M normalizing P . Then, the action of G
on P by automorphisms Adu is necessarily weakly compact. We do not explain
this notion here but just note that the slightly stronger notion of compactness
means that the closure of AdG inside the Polish group AutP is compact.

So far, the reasoning in the previous paragraph works for any profinite action
of a CMAP group. In the second part of the proof, Ozawa and Popa prove the
following. Let Fn y (X,µ) be any ergodic p.m.p. action, P ⊂ L∞(X) o Fn a
subalgebra and G a group of unitaries normalizing P such that the action AdG
on P is weakly compact. Then either G generates an amenable von Neumann
algebra or there almost exists a unitary conjugacy of P into L∞(X) (in the
sense of Theorem 3.7). The two parts together yield Theorem 5.1.

Problem II. Let n ≥ 2 and let Fn y (X,µ) be any free ergodic p.m.p.
action. Does L∞(X)oFn always have a unique Cartan subalgebra up to unitary
conjugacy?

Let n ≥ 2 and let M be an arbitrary II1 factor. Is it always true that
M⊗LFn has no Cartan subalgebra? By [OP07], this is indeed the case ifM has
the complete metric approximation property.

Another breakthrough unique Cartan decomposition theorem was obtained
in [PV09]. On the one hand it is weaker than Theorem 5.1 since we are only
able to deal with group measure space Cartan subalgebras, but on the other
hand it is stronger since we consider arbitrary group actions.

Theorem 5.2 (Popa, Vaes [PV09]). Let Γ = Γ1 ∗ Γ2 be a free product where
Γ1 admits a non-amenable subgroup with the relative property (T) and where
Γ2 is any non-trivial group. Let Γ y (X,µ) be any ergodic p.m.p. action and
put M = L∞(X)o Γ.

If the action is free, L∞(X) is, up to unitary conjugacy, the unique group
measure space Cartan subalgebra. If the action is not free, M has no group
measure space Cartan subalgebra.
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Write A = L∞(X). So, M = A o Γ and we denote by x =
∑

g∈Γ xgug the
unique Fourier expansion of x ∈M , with xg ∈ A for all g ∈ Γ.

Assume thatM = BoΛ is any other group measure decomposition. Denote
by (vs)s∈Λ the canonical unitary elements that correspond to this decomposi-
tion. The first step of the proof of Theorem 5.2 consists in transferring some of
the rigidity of Γ to Λ. Assume that ϕn is a deformation of the identity of M . If
instead of Γ, our unknown group Λ would have a non-amenable subgroup Λ0

with the relative property (T), this would imply that on the unitary elements
vs, s ∈ Λ0, the deformation ϕn converges uniformly to the identity: for n large
enough and all s ∈ Λ0, we get that ‖ϕn(vs) − vs‖2 is small. Moreover, the
abelian algebra A cannot contain a copy of the non-amenable algebra LΛ0 so
that Theorem 3.7 provides a sequence sk in Λ0 such that the Fourier coefficients
of vsk tend to zero pointwise in ‖ · ‖2: for all g ∈ Γ, we have ‖(vsk)g‖2 → 0 as
k →∞.

Obviously, we cannot prove that Λ automatically has a non-amenable sub-
group with the relative property (T). Nevertheless, we have the following trans-
fer of rigidity result.

Lemma 5.3. Let AoΓ =M = BoΛ be two crossed product decompositions of
the same II1 factor with A and B being amenable. Assume that Γ admits a non-
amenable subgroup with the relative property (T) and let ϕn be a deformation
of the identity of M . For every ε > 0 there exists an n ∈ N and a sequence of
group elements sk ∈ Λ such that

• ‖ϕn(vsk)− vsk‖2 < ε for all k,

• the Fourier coefficients of vsk tend to zero pointwise: for all g ∈ Γ, we
have ‖(vsk)g‖2 → 0 as k →∞.

Lemma 5.3 is proven by playing the following positive-definite ping-pong:
the formula ψn(s) = τ(v∗sϕn(vs)) defines a sequence of positive definite func-
tions on Λ, which in turn define completely positive maps θn : B o Λ →
B o Λ : θn(bvs) = ψn(s)bvs, which in their turn define positive definite func-
tions γn : Γ → C : γn(g) = τ(u∗gθn(ug)). By construction, γn → 1 pointwise
and hence uniformly on the subgroup of Γ with the relative property (T). From
this, one can deduce the conclusion of Lemma 5.3.

The starting point to prove Theorem 5.2 is an application of Lemma 5.3 to
the word length deformation ϕρ onM = Ao(Γ1∗Γ2) given in Example 3.2. The
fact that ‖ϕρ(x)− x‖2 is small means that x lies close to a linear combination
of aug, a ∈ A and g ∈ Γ with |g| not too large. We refer to such elements x ∈M
as being ‘short’. Lemma 5.3 provides a sequence of short unitaries vsk . Since B
is abelian and normalized by the short unitaries vsk , a combinatorial argument
implies that the elements of B are themselves ‘uniformly short’. But Ioana,
Peterson and Popa, in their study of rigid subalgebras of amalgamated free
products [IPP05], proved that this implies that B can be unitarily conjugated
into one of the ‘obvious’ short subalgebras of Ao (Γ1 ∗ Γ2), namely Ao Γ1 or
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AoΓ2. It follows that B can actually be conjugated into A since otherwise the
normalizer of B, i.e. the whole of M , would get conjugated in Ao Γi as well.

Problem III. Does the transfer of rigidity lemma hold for arbitrary Cartan
subalgebras? More precisely, let B ⊂ M be a Cartan subalgebra. Does there
exist an n and a sequence of unitaries vk ∈ M , normalizing B and satisfying
the same two properties as the unitaries vsk in the formulation of Lemma 5.3?

In the affirmative case, one can replace ‘group measure space Cartan’ by
‘Cartan’ throughout the formulation of Theorem 5.2.

6. Superrigidity for Group Measure Space
Factors

As explained in paragraph 1.6, W∗-superrigidity of an action Γ y (X,µ) arises
as the ‘sum’ of OE superrigidity and the uniqueness of the group measure
space Cartan subalgebra in L∞(X) o Γ, up to unitary conjugacy. This makes
W∗-superrigidity theorems extremely hard to obtain.

Unfortunately, none of the profinite actions covered by the uniqueness of
Cartan theorems in [OP07, OP08] is known to be (virtually) OE superrigid. Also
actions Γ1∗Γ2 y (X,µ) are not OE superrigid so that we cannot directly apply
Theorem 5.2. But Theorem 5.2 can be generalized so that it covers arbitrary
actions of certain amalgamated free products Γ = Γ1 ∗Σ Γ2 over a common
amenable subgroup Σ which is sufficiently non-normal inside Γ (see [PV09]). In
combination with Popa’s OE superrigidity for Bernoulli actions [Po05] or Kida’s
OE superrigidity [Ki09], we obtained the following examples of W∗-superrigid
actions. A general statement and more examples, including Gaussian actions
and certain co-induced actions, can be found in [PV09].

Theorem 6.1 (Popa, Vaes [PV09]). Let n ≥ 3 and denote by Tn < PSL(n,Z)
the subgroup of upper triangular matrices.

Let Λ 6= {e} be an arbitrary group and Σ < Tn an infinite subgroup. Put
Γ = PSL(n,Z) ∗Σ (Σ × Λ). Then, the Bernoulli action Γ y (X0, µ0)

Γ is W∗-
superrigid. More generally, whenever Γ y I and Σ · i is infinite for all i ∈ I,
the generalized Bernoulli action Γ y (X0, µ0)

I is W∗-superrigid.
Any free mixing p.m.p. action of PSL(n,Z) ∗Tn

PSL(n,Z) is W∗-superrigid.

The following beautiful result was obtained very recently by Ioana [Io10]
and should be compared with Theorem 3.6.

Theorem 6.2 (Ioana [Io10]). Let Γ be an icc group that admits an infinite
normal subgroup with the relative property (T). Then, the Bernoulli action Γ y

(X0, µ0)
Γ is W∗-superrigid.

Again, because of Popa’s OE superrigidity for Bernoulli actions [Po05], the
issue is to prove that M has a unique group measure space Cartan subalgebra
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up to unitary conjugacy. Write A = L∞
(
XΓ

0

)
and M = A o Γ. Assume that

M = BoΛ is another group measure space decomposition. The first step of the
proof of Theorem 6.2 is similar to the transfer of rigidity ping-pong technique
that I explained after Lemma 5.3. Denote by (vs)s∈Λ the canonical group of
unitaries in B o Λ. So, Ioana considers the ∗-homomorphism ∆ : B o Λ →
(B o Λ)⊗LΛ given by ∆(bvs) = bvs ⊗ vs for all b ∈ B, s ∈ Λ. Since LΛ ⊂ M ,
we rather view ∆ as an embedding of M into M⊗M .

But M arises from a Bernoulli action of a (relative) property (T) group.
As a corollary of Theorem 3.6, every automorphism of M is of a special form,
i.e. the composition of an inner automorphism and automorphisms induced by
a character ω : Γ → S1 and by a self-conjugacy of the action Γ y A. In an
amazing technical tour de force Ioana manages to generalize Popa’s methods
from automorphisms to embeddings and to give an almost complete picture
of all possible embeddings of M into M⊗M , when M arises from a Bernoulli
action of a property (T) group. This picture is sufficiently precise so that applied
to the embedding ∆ constructed in the previous paragraph, one can conclude
that A and B are unitarily conjugate.
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Abstract

For twist maps of the annulus and Tonelli Hamiltonians, two linear bundles, the
Green bundles, are defined along the minimizing orbits.

The link between these Green bundles and different notions as: weak and
strong hyperbolicity, estimate of the non-zero Lyapunov exponents, tangent
cones to minimizing subsets, is explained.

Various results are deduced from these links: the relationship between the
hyperbolicity of the Aubry-Mather sets of the twist maps and the C

1-regularity
of their support, the almost everywhere C

1-regularity of the essential invari-
ant curves of the twist maps, the link between the Lyapunov exponents and
the angles of the Oseledec bundles of minimizing measures, the fact that C

0-
integrability implies C

1-integrability on a dense Gδ-subset.
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1. Introduction

In the study of twist maps or optical Hamiltonians, mathematicians have stud-
ied the orbits that can be found via minimization for a long time: an action
is associated with such a dynamical system, and an orbit piece corresponds to
a critical point of the action. For example, a way to find periodic orbits is to
minimize the action among the periodic arcs (for Hamiltonians) or sequences
(for twist maps).
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More recently, the existence of some globally minimizing orbits has been
proved, i.e. the existence of orbits that minimize the action along all the in-
tervals of time. In the case of twist maps, these orbits are contained in some
minimizing sets (i.e. sets filled with minimizing orbits) called Aubry-Mather
sets, which were independently discovered in the 80’s by S. Aubry & P. Le
Daeron and J. Mather. In the case of the so-called Tonelli Hamiltonians, their
existence was proved by J. Mather in the 90’s when he proved the existence
of minimizing measures. In the case of a Tonelli Hamiltonian of a cotangent
bundle T ∗M , some minimizing sets similar to the Aubry-Mather sets, called
Aubry sets, also exist.

To have an idea of what these Aubry-Mather sets may be, let us consider the
case of a completely integrable twist map of A = T×R: f : (q, p) → (q+dτ(p), p).
Then the annulus is foliated by invariant circles {p = C}, which are the Aubry-
Mather sets. If we slightly perturb f , a lot of these invariant curves will persist
(this is a consequence of the K.A.M. theorems), but some others will become
smaller invariant sets, Cantor sets or periodic orbits; these three kinds of sets are
Aubry-Mather sets; in a certain way, they are the ghosts of the initial invariant
circles.

In the case of a generic twist map of the annulus, a result due to Patrice Le
Calvez states that the majority of Aubry-Mather sets are hyperbolic (see [30]).
No such result is known for the Tonelli Hamiltonians.

In the case of twist maps, too, we know that some non-hyperbolic Aubry-
Mather sets, the K.A.M. curves, may persist after perturbation.

We can then ask ourselves:

Question 1. is there a means of distinguishing between the hyperbolic and the
non hyperbolic Aubry or Aubry-Mather sets? Is there a means of seeing the
Lyapunov exponents of a minimizing measure when knowing only the measure
and not the dynamic?

For the twist maps, there are three kinds of Aubry-Mather sets:

– the invariant curves, which are never uniformly hyperbolic;

– the periodic orbits, which may be hyperbolic or non hyperbolic; there is, of
course, no way to distinguish between a hyperbolic and a non hyperbolic
finite orbit if we only know the orbit;

– the Cantor sets, which may be hyperbolic or non hyperbolic; we will give
a way to distinguish between hyperbolic and non hyperbolic Cantor sets.

Hence, in the case of twist maps, we obtain a criterion to decide if an Aubry-
Mather set is hyperbolic or not, without knowing the dynamic. To be a little
more precise, we define a notion of C1-regularity for the subsets of a manifold,
and we prove that hyperbolicity is equivalent to C1-irregularity. In the case of
Tonelli Hamiltonians, we will see that this result is no longer true, but a partial
result subsists.
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The main tool to prove this kind of result is what is called the pair (G+, G−)
of Green bundles that are defined along every minimizing orbit. These La-
grangian bundles were introduced by L. Green in 1958 in [26] for geodesic flows
to prove some rigidity results. More precisely, the existence of only one La-
grangian invariant bundle transverse to the vertical (for example one Green bun-
dle) is required in order to obtain some rigidity results in Riemannian geometry.

Then these Green bundles were used to characterize the Anosov geodesic
flows (see [16], and [29] for related results). In this article, we will be interested
in this kind of more dynamical result.

We will introduce the Green bundles, give their main properties and ex-
plain what kind of results were recently obtained through their use. Roughly
speaking, the Green bundles are the limits of the successive images of the “ver-
ticals”. Let us mention that in the 30’s, G. Birkhoff already used the images of
the verticals to obtain some a priori inequalities for the invariant curves of twist
maps, i.e. to obtain some Lipschitz regularity results. We will speak of the rela-
tions between Green bundles and hyperbolicity, Green bundles and Lyapunov
exponents and Green bundles and regularity.

The main definitive results that we give are:

• the characterization of the weak (strong) hyperbolicity of the minimizing
measures of twist maps by the C1-irregularity of their support (section
5); this gives a way to see hyperbolicity;

• for the minimizing measures, the link between the positive Lyapunov
exponents and the angle between the Oseledec bundles (section 3); this
relation is specific to the case of a twisting dynamical system and doesn’t
exist for general dynamical systems; this is a way to see the Lyapunov
exponents;

• some regularity results for the invariant graphs that are C0-Lagrangian
when we make some dynamical assumptions (see section 4). Roughly
speaking, we will see that a slow dynamic implies some regularity.

Let us give the outline of this article:

• in section 2, we recall some well-known facts concerning the twist maps
and the Tonelli Hamiltonians, construct the Green bundles, and prove
that uniform hyperbolicity is equivalent to the transversality of the Green
bundles;

• in section 3, we characterize the number of zero Lyapunov exponents of
a minimizing measure by way of the dimension of the intersection of the
two Green bundles, and we give some estimates of the non-zero Lyapunov
exponents via the angle between the Oseledec bundles;

• in section 4, we explain the relationship between the Green bundles and
some cones that are tangent to the minimizing subsets. We deduce some
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regularity results such as: every continuous invariant graph of a twist
map is C1 almost everywhere; every C0-integrable Tonelli Hamiltonian is
C1-integrable on an invariant dense Gδ-subset;

• in section 5 we give a complete explaination of the case of the Aubry-
Mather sets of twist map: if they have no isolated point, their (weak or
uniform) hyperbolicity is equivalent to their C1-irregularity;

• in section 6, we give an overview of weak KAM theory;

• in section 7, we explain the link between the weak KAM solutions and the
Green bundles. We deduce that the support of any minimizing measure all
of whose Lyapunov exponents are zero is almost everywhere C1-regular.

Let us mention that twist maps and Tonelli Hamiltonians appear in numer-
ous problems issued from physics: motivated by the restricted 3-body problem,
H. Poincaré introduced the twist maps at the end of the 19th century. More-
over, all the mechanical systems, that correspond to a Hamiltonian that is the
sum of a kinetic energy and a potential energy are Tonelli Hamiltonian (N-body
problems, simple pendulum. . . ).

2. Green Bundles and Uniform Hyperbolicity

In this section, we will define the two Green bundles along locally minimizing
orbits and prove that their transversality implies some hyperbolicity.

2.1. Well-known facts for twist maps. A twist map of the annulus
A = T × R is a C1-diffeomorphism f : (q, p) → (Q,P ) of A that is is isotopic
to identity, satisfies the twist condition:

(twist): for any lift F : R2 → R
2 of f , if we write: F (x, y) = (X,Y ), then the

map: (x, y) → (x,X(x, y)) is a C1 diffeomorphism; and has a global generating
function S : A → R i.e. such that: PdQ− pdq = dS.

The inverse of a twist map is a twist map. The twist map f is positive if the
map (x, y) → (x,X(x, y)) is orientation preserving.

In general , the generating function is expressed in the lifted coordi-
nates (x,X): s(x,X) = S ◦ p(x, y) where p : R

2 → A is the covering
map. We can associate the action functionals An,m with this generating func-
tion: given a sequence (xn, . . . xm) of points of R, its action is defined by:

An,m(xn, . . . , xm) =

m−1
∑

k=n

s(xk, xk+1). Then (xn, . . . , xm) is the projection of an

orbit segment of F on the x-axis if, and only if, it is is a critical point of An,m

restricted to the space of sequences (zn, . . . , zm) with fixed endpoints: zn = xn

and zm = xm. In this case the corresponding orbit segment is (xk, yk)n≤k≤m

where yk = ∂s
∂X

(xk−1, xk) = − ∂s
∂x

(xk, xk+1). A bi-infinite sequence (xk)k∈Z is
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(globally) minimizing if for any [n,m] ⊂ Z, (xk)n≤k≤m minimizes the action
with fixed endpoints. In this case, it is the projection of a unique orbit of F ,
and we usually say that the corresponding orbit of f is minimizing. We say
that (xk)k∈Z is locally minimizing if, for any [n,m] ⊂ Z, (xk)n≤k≤m locally
minimizes the action with fixed endpoints.

In the 80’s, J. Mather and S. Aubry & P. Le Daeron proved the existence of
minimizing orbits (see [5], [34]). Moreover, they proved that every such minimiz-
ing orbit is contained in an invariant compact Lipschitz graph above a part of T
that is the union of some minimizing orbits. These Lipschitz graphs are called
Aubry-Mather sets. A very important property of these Aubry-Mather sets is
that the projected dynamic (on T) of the dynamic restricted to one of these
Aubry-Mather set is the restriction of an orientation preserving bi-Lipschitz
homeomorphism of the circle. Hence, we can associate a rotation number with
such an Aubry-Mather set. We don’t give a precise definition here because we
won’t need it, but the reader can find more details in [25].

Let us recall that an invariant probability µ is ergodic if the µ-measure
of every invariant subset is 0 or 1. An ergodic Borel probability measure with
compact support is said to be minimizing if its support contains only minimizing
orbits. Then its support is an Aubry-Mather set.

2.2. Well-known facts for Hamiltonians. We may define Tonelli
Hamiltonians on the cotangent bundle of any closed manifold, but to avoid some
complications in the choice of the coordinates ( via a Riemannian connection),
we will assume that the manifold is Td. Then T

d is endowed with its usual flat
Riemannian metric and we denote by π : (q, p) ∈ T

d × R
d → q ∈ T

d the usual
projection. A Tonelli Hamiltonian of Td×R

d is a C3 map H : Td×R
d → R that

is super-linear in the fiber and C2 strictly convex in the fiber (i.e. the Hessian
Hp,p is positive definite at every point).

This Hamiltonian defines a Hamiltonian flow (ϕt) on T
d × R

d, solution to
the Hamilton equations:

q̇ =
∂H

∂p
(q, p); ṗ = −

∂H

∂q
(q, p).

Let us point out a nice interpretation of the convexity assumption: if V (q, p) =
kerDπ(q, p) ⊂ T(q,p)(T

d × R
d) is the linear vertical, for all small enough t, the

image DϕtV (q, p) of a vertical by the linearized flow is a Lagrangian subspace
transverse to the vertical, a graph of a symmetric matrix, st(ϕt(q, p)), close to
1
t
∂2H
∂p2 (q, p); moreover, as long as these images are transverse to the vertical, the

family (st(q, p)) is decreasing for the natural order of the symmetric matrices.

We can associate its Legendre map L : Td × R
d → T

d × R
d, defined by:

L(q, p) = (q, ∂H
∂p

(q, p)) with such a Tonelli Hamiltonian. This Legendre map

is a C2-diffeomorphism. We can define too the Lagrangian L : Td × R
d → R
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associated with H, defined by:

L(q, v) = max
p∈T∗

q M
(p.v −H(q, p)) = L−1(q, v).v −H ◦ L−1(q, v).

The function L is then as regular as H is and γ : I → M is the projection of an
orbit segment of the Hamiltonian flow of H if, and only if, (γ, γ̇) is a solution
to the Euler-Lagrange equations associated with L:

q̇ = v;
d

dt

(

∂L

∂v
(q, v)

)

=
∂L

∂q
(q, v).

In this case, the corresponding orbit for the Euler-Lagrange flow (ft) is given
by: t → (γ(t), γ̇(t)) and the corresponding orbit for the Hamiltonian flow is:
t → L−1(γ(t), γ̇(t)). Hence, the two flows are conjugated by L.

An arc γ : [a, b] → T
d gives a solution (γ, γ̇) to the Euler-Lagrange equations

if and only if it is a critical point of the Lagrangian action: A(γ) =
∫ b

a
L(γ, γ̇)

restricted to the set of C1 arcs with fixed endpoints. We say that γ : R → T
d

is a minimizer if for any segment [a, b], γ|[a,b] minimizes the Lagrangian action
among the C1-curves having the same endpoints. We say that γ is a local min-
imizer if for any segment [a, b], γ|[a,b] is a local (for the C0-topology) minimizer
of the action defined on the set of C1-arcs with fixed endpoints. The corre-
sponding orbits will be called (locally) minimizing orbits. J. Mather proved the
existence of minimizing orbits in [35], and the existence of minimizing measures
with compact support, which are ergodic invariant Borel probability measures
whose support contains only minimizing orbits.

A classical result asserts that a curve γ : [a, b] → T
d is locally minimizing if,

and only if, γ is a solution to the Euler-Lagrange equations and L−1(γ, γ̇)|]a,b[
has no conjugate points; two points x, y ∈ T

d ×R
d are conjugate if t 6= 0 exists

so that ϕt(x) = y and DϕtV (x) ∩ V (y) 6= 0.
A way to obtain a lot of locally minimizing measures and orbits is to use

the so-called modified Lagrangians: if η is a closed 1-form of Td, then L−η has
the same Euler-Lagrange flow as L but not the same minimizing orbits. Hence,
the two flows have the same locally minimizing orbits (because they have the
same pairs of conjugate points) but not the same minimizing orbits. Using a
lot of cohomologically different 1-forms, one finds a lot of locally minimizing
orbits and measures.

2.3. Construction of the Green Bundles, first properties.
There is a canonical way to identify T(q,p)(T

d × R
d) with R

d × R
d. In these

coordinates, we have V (q, p) = {0} × R
d; a Lagrangian subspace is said to be

horizontal if it is transverse to the vertical and h(q, p) = R
d × {0} is such a

horizontal subspace. Let us recall that the graph of a linear map S : h(q, p) →
V (q, p) is Lagrangian if, and only if, S is symmetric.

In the tangent space along a locally minimizing orbit, we may define two
invariant horizontal Lagrangian bundles, called the Green bundles. These bun-
dles were introduced by L. Green in in 1958 in [26] for geodesic flows. P. Foulon
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extended the construction to the Finsler metrics in [21] and G. Contreras &
R. Iturriaga built them for any Tonelli Hamiltonian in [14]. The construction
for the twist maps of the annulus, and more generally for the twist maps of
T
d × R

d is due to M. Bialy & R. MacKay (see [9])
The method is the following. We consider a locally minimizing orbit (xt)

where t is a real number or an integer, and at x0 we construct the family of
Lagrangian subspaces that are the images of the verticals by the linearized
dynamical system: Gt(x0) = DϕtV (x−t) where (ϕt) designates the Hamilto-
nian flow or the positive twist map. Because the orbit is minimizing, it has
no conjugate points and then all the Gt(x0) for t 6= 0 are transverse to the
vertical. There is a natural partial order for the Lagrangian subspaces that are
transverse to the vertical. On the annulus, this order is the usual order between
the slopes of the lines. In higher dimensions, it corresponds to the usual or-
der for the symmetric operators associated with Lagrangian subspaces that we
have just defined. For this relation, the family (Gt)t>0 is a decreasing family
of Lagrangian subspaces and (G−t)t>0 is an increasing family. Moreover, we
have: ∀u, t > 0, G−u(x0) ≤ Gt(x0). We have then an increasing sequence of
Lagrangian subspaces bounded from above and a decreasing one bounded from
below. We can take the limit and define the two Green bundles:

G−(x0) = lim
t→+∞

G−t(x0); G+(x0) = lim
t→+∞

Gt(x0).

These two bundles are Lagrangian, invariant, transverse to the vertical and
satisfy:

∀t > 0, G−t(x0) < G−(x0) ≤ G+(x0) < Gt(x0).

Being the limits of monotone sequences of continuous bundles, these bundles
are semicontinuous (see [1], [3]): G− is lower semicontinuous and G+ is upper
semicontinuous.

Remark. In the case of a Tonelli Hamiltonian, an orbit has no conjugate points
if, and only if, there exists an invariant Lagrangian sub-bundle F along this
orbit that is transverse to the vertical. In this case, we have along the orbit:
G− ≤ F ≤ G+.

2.4. A dynamical criterion and some consequences. The or-
bit (xt) being locally minimizing and relatively compact, there is a classical
result that gives a way to prove that some vectors are in one of the two Green
bundles:

Proposition 1 (dynamical criterion). Let v ∈ Tx0
(Td × R

d). Then:

– if v /∈ G−(x0), then lim
t→+∞

‖Dπ ◦Dϕt.v‖ = +∞;

– if v /∈ G+(x0), then lim
t→+∞

‖Dπ ◦Dϕ−t.v‖ = +∞.
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Proof. To prove the first point of the proposition, we express the matrix of Dϕt

in the global coordinates of Rd × R
d. Then, we use a linear symplectic change

of coordinates along the orbit so that the “horizontal subspace” becomes G−.
Because G− is between G−1 and G1, which depend continuously on x, this
change of coordinates is bounded. Then in these coordinates the matrix of
Dϕt(x0) is:

Mt(x0) =

(

−bt(x0)s−t(x0) bt(x0)
0 st(xt)bt(x0)

)

where Gt(x), which is Lagrangian, is the graph of the symmetric matrix st(x).
The matrix being symplectic, we have: tbt(x0)st(xt)bt(x0) = −(s−t(x0))

−1. As
(st(xt))t≥1 is bounded by s−1 and s1 and as (s−t(x0))t>0 tends to 0 from below
when t tends to +∞, we deduce that lim

t→∞
m(bt) = +∞ where m(b) = ‖b−1‖−1

designates the conorm of b. From this we deduce immediately that if a vector
v = (v1, v2) is not in G−, i.e. if v2 6= 0, then: lim

t→+∞
‖Dπ ◦Dϕt.v‖ = +∞.

Remark.

1) We deduce from the dynamical criterion that in the Hamiltonian case, the
Hamiltonian vector-field XH belongs to the two Green bundles. Because
these two Green bundles are Lagrangian, this implies that G+ and G−

are tangent to the Hamiltonian levels {H = c}.

2) Moreover, we deduce, too, that if there is an Oseledec splitting (this will
be defined precisely in section 3), T (Td × R

d) = Es ⊕ Ec ⊕ Eu above a
invariant compact set K without conjugate points, then Es ⊂ G− and
Eu ⊂ G+. Because the flow is symplectic, Eu and Es are isotropic and
orthogonal to Ec for the symplectic form (see [10]). We deduce that G− ⊂
Es⊕Ec,G+ ⊂ Eu⊕Ec and thenG−∩G+ ⊂ Ec. Hence,G−∩G+, being an
isotropic subspace of the symplectic subspace Ec, we obtain: dimEc ≥
2 dim(G− ∩ G+). The dimension of the intersection of the two Green
bundles gives a lower bound of the number of zero Lyapunov exponents.
We will soon prove that this inequality is, in fact, an equality.

We have the same results for a hyperbolic or partially hyperbolic dy-
namic. Let us notice that in the hyperbolic case, G− (resp. G+) is nothing
else but the stable (resp. unstable) bundle Es (resp. Eu).

3) Let us consider the case of a K.A.M. torus that is a graph: the dynamic
on this torus is C1 conjugated to a flow of irrational translations on the
torus Td; M. Herman proved in [28] that such a torus is Lagrangian, and it
is well-known that any invariant Lagrangian graph is locally minimizing.
Then the orbit of every vector tangent to the K.A.M. torus is bounded,
and belongs to G− ∩ G+. In this case, the two Green bundles are equal
to the tangent space of the invariant torus.
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The dynamical criterion is the key argument for proofs of hyperbolicity
results. In [16] , [21], [14], the authors prove that if there is no conjugate points
in a whole energy level and if the Green bundles are transverse in the tangent
space of the energy level, then the flow restricted to this energy level is Anosov.
In fact, we may extend these results to the locally minimizing subsets. Let us
recall: a subset K ⊂ A that is invariant by a twist map f is hyperbolic if along
K there is an Df -invariant splitting TxA = Es ⊕ Eu so that along the stable
bundle Es, Df is uniformly contracting and along the unstable bundle Eu,
Df is uniformly expanding. A subset K ⊂ T

d × R
d is partially hyperbolic for

the Tonelli flow (ϕt) if there is an invariant splitting Es ⊕ Ec ⊕ Eu such that
Dϕt|Es is uniformly contracting, Dϕt|Eu is uniformly expanding and Dϕt|Ec is
less contracting than Dϕt|Es and less expanding than Dϕt|Eu .

For an Hamiltonian flow, as the flow direction and the energy direction are
in Ec, we always have: dimEc ≥ 2.

Theorem 2 (Green bundles and uniform hyperbolicity). Let K be a compact
invariant locally minimizing set. Then:

• in the case of a twist map, K is hyperbolic if, and only if, at all points of
K, G+ and G− are transverse;

• in the case of a Hamiltonian flow, if K contains no singularity, K is
partially hyperbolic with a center bundle with dimension 2 if, and only if,
at all points of K, G− and G+ are transverse in the energy level.

Proof. Let us outline the ideas of the proof in the direct sense in the case of
transversality of the Green bundles (for example for twist maps). In the Hamil-
tonian case, where these two bundles are not transverse in the whole tangent
space, we restrict and reduce the dynamic to obtain a symplectic cocycle on
TE/RXH where E designates the energy level: for this symplectic reduced cocy-
cle, there exist two reduced Green bundles that are transverse (see [2]). Hence,
we only have to prove the result for transverse Green bundles and symplectic
cocycles.

In this case, the dynamical criterion implies that the cocycle is quasi-
hyperbolic, i.e. that the orbit of any non null vector under the cocycle is
unbounded. Quasi-hyperbolic dynamics (or more precisely quasi-Anosov dy-
namics) were studied by R. Mañé in [31]. Quasi-Anosov dynamics that are
not Anosov exist (see [22], [38]), but we proved in [3] that a quasi-hyperbolic
symplectic cocycle is hyperbolic. The proof mainly uses the original ideas of
Mañé.

Remark. We have seen that in the hyperbolic case, the Green bundles G−, G+

are equal to the stable/unstable bundles Es, Eu. We have seen, too, that along
a KAM curve, the two Green bundles are equal. We deduce from these remarks
and from the fact that the two Green bundles are semicontinuous that: if T is a
KAM curve and if ε > 0 is a positive number, a neighborhood U of T exists so
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that along any hyperbolic invariant locally minimizing set K contained in U ,
the two Oseledec bundles Es and Eu are ε-close to each other. In section 3, we
will give a refinement of these remarks by giving some inequalities between the
Lyapunov exponents and the angle between the stable and unstable Oseledec
bundles.

3. Non-uniform Hyperbolicity, Estimations of

the Lyapunov Exponents of Minimizing

Measures

In this section, we will speak of the link between the angle of the two Green
bundles and the Lyapunov exponents of a locally minimizing measure.

If K is an invariant subset of a Tonelli flow or twist map denoted by (ϕt),
we will say that there is an Oseledec splitting on K if there exist λ1 < · · · < λm

and an invariant splitting T (Td×R
d) = E1⊕· · ·⊕Em with constant dimensions

above K so that:

∀x ∈ K, ∀i ∈ [1,m], ∀v ∈ Ei(x), lim
t→+∞

1

t
log ‖Dϕtv‖ = lim

t→−∞

1

t
log ‖Dϕtv‖ = λi.

The Lyapunov exponents are then the λi. The stable bundle is Es =
⊕

λi<0

Ei,

the center bundle is Ec =
⊕

λi=0

Ei and the unstable bundle is Eu =
⊕

λi>0

Ei.

The integer dimEi is the multiplicity of λi. In the symplectic case, 0 always
has an even multiplicity, and the Lyapunov exponents λ and −λ have the same
multiplicity. In the symplectic case, Es and Eu are isotropic for the symplectic
form and Ec is symplectic and orthogonal to Es ⊕ Eu (see [10]).

Oseledec’s theorem ([37]) asserts: if µ is an invariant ergodic Borel proba-
bility with compact support of (ϕt), then there exists an invariant subset K
with full µ-measure so that there exists an Oseledec splitting on K. The corre-
sponding Lyapunov exponents are called the Lyapunov exponents of µ.

In the case of a discrete dynamical system, we say that the measure µ
is weakly hyperbolic if all its Lyapunov exponents are non zero. If (ϕt) is a
symplectic flow, then the multiplicity of the exponent zero is at least 2 (in the
directions of the flow and of the energy), and we say that the measure is weakly
hyperbolic if dimEc = 2. In this case, the extended stable and unstable bundles
are Ẽs = Es⊕RXH and Ẽu = Eu⊕RXH where XH designates the vector-field.

3.1. The link between the Green bundles and the number
of zero Lyapunov exponents. Let us now consider a minimizing mea-
sure. Because we have assumed that we are only looking at ergodic measures,
we can associate its Lyapunov exponents with such a measure. Because the dy-
namic is symplectic, the number of positive exponents is equal to the number
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of negative exponents, and the number of zero exponents is even. We obtain in
[3] and [2] the following result:

Theorem 3. Let µ be a minimizing measure. Then µ has exactly 2ρ zero
Lyapunov exponents if, and only if, at µ-almost every point, we have: dim(G−∩
G+) = ρ.

Proof. We assume that µ is a minimizing measure. The map (q, p) →
dim(G−(q, p) ∩ G+(q, p)) being measurable, invariant and µ being ergodic, it
is constant almost everywhere. We denote its value by ρ. Let us assume for a
while that ρ = 0. We use then some coordinates analogous to the ones used in
the proof of proposition 1, but our “horizontal bundle” is now G+. Let us recall
that the matrix of the linearized dynamic in these coordinates is:

Mt(x0) =

(

−bt(x0)s−t(x0) bt(x0)
0 st(xt)bt(x0)

)

We denote by s±(x) the symmetric matrix whose Green bundle G± is the graph.
Then s+ = 0 and the matrix s− is negative definite almost everywhere.

If the time is continuous, i.e. if the dynamical system is a Hamiltonian flow
(ϕt), there exists a time τ > 0 such that µ is ergodic for the map ϕτ . We
may assume that τ = 1 and from now we work on with the discrete dynamical
system (ϕk)k∈Z.

Using an Egorov theorem, we find for every ε > 0 a measurable subset
Jε of Td × R

d and two constants β > α > 0 so that µ(Jε) > 1 − ε, (m(bn))
tends uniformly to +∞ on Jε, and: ∀x ∈ Jε, β1 ≥ −s−(x) ≥ α1 where 1

designates the (symmetric) matrix of identity. Then we choose N ≥ 0 such
that ∀x ∈ Jε, ∀n ≥ N,m(bn(x)) ≥

2
α
.

Using the Birkhoff ergodic theorem, we know that for long intervals of time,
the orbit piece of almost every point of Jε comes back into Jε in a proportion
of time bigger than 1 − 2ε. We deduce that there is, in such an orbit piece, a
proportion bigger than 1−2ε

N
of points that belong to Jε and that correspond

to times whose difference is more than N . If x0 ∈ Jε is a generic point for µ
and if we denote by m1 < m2 < · · · < mn < . . . the return times in Jε so
that mn+1 −mn ≥ N , because the term −bn(x0)s−n(x0) is multiplicative, for
a big enough n, we find that m(−bmn

smn
(x0)) is greater than the product of

n ≥ 1−2ε
N

.mn terms greater than α. 2
α

= 2. Hence, for almost every point of

Jε and for a big enough n, we obtain: m(−bmn
smn

(x0)) ≥
(

2
1−2ε
N

)mn

. This

implies that µ has at least d Lyapunov exponents greater than 1−2ε
N

log 2 > 0
and finishes the proof in this case.

If ρ 6= 0, we have seen that µ has at least 2ρ zero exponents. Then, we
consider the restricted-reduced cocycle on (G+ +G−)/G− ∩G+ and we prove
that it is a symplectic cocycle whose Green bundles are transverse µ almost
everywhere. We apply the previous result to find 2(d − ρ) positive Lyapunov
exponents.
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3.2. Lower and upper bounds for the positive Lyapunov
exponents in the Hamiltonian case. In the case of ergodic measures
of a geodesic flow with support filled by locally minimizing orbits, i.e. in the
case of measures with no conjugate points, A. Freire and R. Mané proved in
[23] a nice formula for the sum of the positive exponents (see [21] and[14] too).
A slight improvement of this formula gives:

Theorem 4. Let µ be a Borel probability measure with no conjugate points that
is ergodic for the Hamiltonian flow. If G+ is the graph of U and G− the graph
of S, the sum of the positive Lyapunov exponents of µ is equal to:

Λ+(µ) =
1

2

∫

tr

(

∂2H

∂p2
(U− S)

)

dµ.

Hence, we see that the more distant the Green bundles, the greater is the
sum of the positive Lyapunov exponents. This gives an upper bound to the pos-
itive Lyapunov exponents. A similar statement was given in the (non published)
thesis of G. Kniepper.

We can be more precise by introducing a notion of symplectic angle:

Definition. Let F , G be two Lagrangian subspaces of a symplectic linear space
(E,ω) endowed with an adapted scalar product. The greatest angle between F
and G is defined by:

β(F,G) = max
(v,w)∈(F\{0})×(G\{0})

ω(v, w)

‖v‖.‖w‖
.

This angle is equal to 0 if, and only if, F = G. Otherwise, it is positive. In
particular, for a weakly hyperbolic measure, if Ẽs = Es⊕RXH and Ẽu = Eu⊕
RXH are the enlarged stable and unstable bundles of the Oseledec splitting,
their greatest angle is positive.

To obtain some precise estimates of Λ+(µ) by using this angle, we need
some notations:

Notations. If C > 0 is a real number and K ⊂ T
d × R

d is a compact subset,
we denote by HC(K) the set of Tonelli Hamiltonians such that:

∀x ∈ K, ∃t, u ∈]0, 1], st(x) ≤ C1 and s−u(x) ≥ −C1;

where st is the matrix of Gt and 1 denotes the matrix of identity.
Hence, we say that the elements of HC(K) have a minimal twist of the

vertical in K.

An easy consequence of theorem 4 is a formulation using the greatest angle:

Corollary 5. Let H ∈ HC(K) be a Tonelli Hamiltonian and let µ be a weakly
hyperbolic ergodic Borel probability measure whose support in contained in K
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and has no conjugate points. Then:

1

2

∫

m

(

∂2H

∂p2

)

β(Ẽs, Ẽu)dµ ≤ Λ+(µ) ≤
d(1 + C2)

2

∫

Tr

(

∂2H

∂p2

)

.β(Ẽs, Ẽu)dµ

where Tr(b) designates the trace of b and m(b) = ‖b−1‖−1 the conorm of b.

Proof. A consequence of the linearized Hamilton equations is that if the graph
G of a symmetric matrix G is invariant by the linearized flow, then any infinites-

imal orbit (δq,Gδq) satisfies the following equation: δq̇ = (∂
2H
∂p2 G+ ∂2H

∂q∂p
)δq.

Hence, we have: d
dt

det(Dπ ◦Dϕt|G) = tr(∂
2H
∂p2 G+ ∂2H

∂q∂p
) det(Dπ ◦Dϕt|G); we

deduce: 1
T
log det(Dπ ◦DϕT |G(q, p))

=
1

T
log det(Dπ(q, p)|G) +

1

T

∫ T

0

tr

(

∂2H

∂p2
G+

∂2H

∂q∂p

)

(ϕt(q, p))dt.

Via ergodic Birkhoff’s theorem, we deduce for (q, p) generic that:

lim inf
T→+∞

1

T
log det(Dπ ◦DϕT |G(q, p)) =

∫

tr

(

∂2H

∂p2
G+

∂2H

∂q∂p

)

dµ.

Moreover, we know that Es ⊂ G− ⊂ Es⊥ = Ec ⊕ Es and that Eu ⊂ G+ ⊂
Eu⊥ = Ec ⊕ Eu. Hence, the sum of the Lyapunov exponents of the restricted
cocycle (Dϕt|G+

) is exactly Λ+(µ) and the sum of the Lyapunov exponents of
the restricted cocycle (Dϕt|G−

) is Λ−(µ) = −Λ+(µ). Then we have:

Λ+(µ) =

∫

tr

(

∂2H

∂p2
U+

∂2H

∂q∂p

)

dµ and −Λ+(µ) =

∫

tr

(

∂2H

∂p2
S+

∂2H

∂q∂p

)

dµ

We obtain the conclusion by subtracting the two equalities.

We obtain, too, a lower bound for the smallest positive Lyapunov exponent.
To explain this, we need a notation:

Notations. If S is a positive semidefinite matrix, then q+(S) is its smallest
positive eigenvalue.

Theorem 6. Let µ be a measure with no conjugate points and with at least
one non zero Lyapunov exponent; then its smallest positive Lyapunov exponent

λ(µ) satisfies: λ(µ) ≥ 1
2

∫

m(∂
2H
∂p2 ).q+(U− S)dµ.

Hence, the gap between the two Green bundles gives a lower bound of the
smallest positive Lyapunov exponent. It is not surprising that when Es and Eu

collapse, the Lyapunov exponents are 0. What is more surprising and specific
to the case of Tonelli Hamiltonians is the fact that the bigger the gap between
Es and Eu is , the greater the Lyapunov exponents are: in general, along a
hyperbolic orbit, you may have a big angle between the Oseledec bundles and
some very small Lyapunov exponents.
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Proof. Let µ be an ergodic Borel probability measure with no conjugate points;
its support K is compact and H belongs to some HC(K). We choose a point
(q, p) that is generic for µ and (δq,Uδq) in the Oseledec bundle corresponding
to the smallest positive Lyapunov exponent λ(µ) of µ. Using the linearized
Hamilton equations, we obtain:

d

dt
((δq(U− S)δq) = δq(U− S)

∂2H

∂p2
(qt, pt)(U− S)δq.

Hence:
d

dt
((δq(U− S)δq) ≥ m

(

∂2H

∂p2

)

q+(U− S)δq(U− S)δq;

and: 2
T
log(‖δq(T )‖) + log 2C

T
≥ 1

T
log(δq(T )(U− S)(qT , pT )δq(T )) ≥

1

T
log(δq(0)(U− S)(q, p)δq(0)) +

1

T

∫ T

0

m

(

∂2H

∂p2
(qt, pt)

)

q+((U− S)(qt, pt))dt.

Using Birkhoff’s ergodic theorem, we obtain:

λ(µ) ≥
1

2

∫

m

(

∂2H

∂p2

)

q+(U− S)dµ.

3.3. The non negative Lyapunov exponent for twist maps.
In this case, we are interested in exactly one Lyapunov exponent. Hence, a
formula giving the sum of the positive Lyapunov exponents is enough to bound
the unique non negative Lyapunov exponent from below and above. Using the
standard coordinates of A, we obtain:

Theorem 7. Let f : A → A be a positive twist map and let µ be a minimizing
measure whose non negative Lyapunov exponent is λ. If s−, s+ designate the
slopes of the two Green bundles and sk designates the slope of Gk, we have:

λ =
1

2

∫

log

(

s+ − s−1

s− − s−1

)

dµ =
1

2

∫

log

(

1 +
s+ − s−
s− − s−1

)

dµ.

As in the Hamiltonian case, we see that the greatest/smallest exponent

depends only on the deviation of the vertical (s−1 in the discrete case, ∂2H
∂p2 and

C in the Hamiltonian case) and on the “angle” between the two Green bundles.

Proof. As in the proof of proposition 1, we use coordinates such that G− is the
horizontal bundle; the matrix of Dfn at x is then:

M =

(

bn(x)(s−(x)− s−n(x)) bn(x)
0 bn(x)(sn(f

nx)− s−(f
nx))

)
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We know that G− ⊂ Es ⊕ Ec, hence along G− we see the Lyapunov exponent
−λ. The entry bn(x)(s−(x)− s−n(x), which represents the linearized dynamic
along G−, being multiplicative, we have along any µ-generic orbit: −λ =

lim
n→∞

1

n
log (bn(x)(s−(x)− s−n(x))

= lim
n→∞

1

n

n
∑

k=0

log
(

b1(f
kx)(s−(f

kx)− s−1(f
kx))

)

In the same way, we have: λ =

lim
n→∞

1

n
log (bn(x)(s+(x)− s−n(x))

= lim
n→∞

1

n

n
∑

k=0

log
(

b1(f
kx)(s+(f

kx)− s−1(f
kx))

)

By subtracting these two equalities and using Birkhoff’s ergodic theorem, we
obtain the equality of the theorem.

4. Invariant Lagrangian Graphs: Problems of

C
1-regularity

In this section, we will explain the relation between the cones that are tangent
to minimizing sets and the Green bundles. Then we will deduce some regularity
results. In particular, we will improve Birkhoff’s regularity result that asserts
that any essential invariant curve of a twist map is a Lipschitz graph, and we
will prove that C0 integrability implies C1 integrability on a dense Gδ-subset.

4.1. Two notions of C
1 regularity. We define what the “tangent

vectors” to a set that is not necessarily a manifold are. This definition was
given by G. Bouligand in the 30’s in [12].

Definition. Let K ⊂ T
d ×R

d be a subset of Td ×R
d and let x ∈ K be a point

of K. We say that v ∈ Tx(T
d ×R

d) belongs to the contingent cone to K at x if
there exist a sequence (xn) of points of K converging to x and a sequence (tn)
of positive real numbers so that: v = lim

n→∞
tn(xn − x). The contingent cone to

K at x is denoted by Cx(K).

We say that v ∈ Tx(T
d × R

d) belongs to the paratingent cone to K at x if
two sequences (xn) and (yn) of points of K converging to x and a sequence (tn)
of positive real numbers exist so that: v = lim

n→∞
tn(xn − yn). The paratingent

cone to K at x is denoted by Px(K).
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As the sets in which we are interested are contained in some Lagrangian
graphs, we give the following definitions of C1 regularity:

Definition. We say that K ⊂ T
d × R

d is strongly C1-regular at x ∈ K if the
paratingent cone Px(K) is contained in a Lagrangian subspace.

We say that K ⊂ T
d × R

d is weakly C1-regular at x ∈ K if a Lagrangian
subspace P of Tx(T

d × R
d) exists so that, for every sequence (xn) of points of

K converging to x, we have: lim sup
n→∞

Cxn
(K) ⊂ P where the lim sup is taken for

the Hausdorff metric. The union of such limits will be called the generalized
contingent cone and will be denoted by C∗

x(K).

Because C∗
x(K) ⊂ Px(K), strong C1-regularity implies weak C1-regularity.

Moreover, if K is the graph of a Lipschitz map η above the zero section, then
K is weakly C1-regular if, and only if, K is strongly C1-regular if, and only if,
the map η is C1.

4.2. Tangent cones and Green bundles. We recalled before that
if x ∈ T

d × R
d is a point, there is a natural order between the Lagrangian

subspaces of Tx(T
d × R

d) that are transverse to the vertical. But the tangent
(contingent or paratingent) cone to a set is not necessarily contained in a linear
Lagrangian subspace. We need, then, a new order to compare such a tangent
cone to the Green bundles.

Definition. If A ⊂ Tx(T
d ×R

d) is a subset of Tx(T
d ×R

d) an if P , P ′ are two
Lagrangian subspaces of Tx(T

d×R
d) that are transverse to the vertical, we say

that A is between P and P ′ and we write P ≤ A ≤ P ′ if, for every a ∈ A, there
exists a Lagrangian subspace PA such that P ≤ PA ≤ P ′.

Let us notice that when A is a Lagrangian subspace, P ≤ A ≤ P ′ is not
ambiguous: it has the same meaning for the two orders. In the case of a twist
map of the annulus, P ≤ A ≤ P ′ just means that the slope of every element of
A is between the slope of every element of P and the slope of every element of
P ′. Let us notice that: P ≤ A ≤ P ⇔ A ⊂ P . We prove this in [3]:

Theorem 8. Let f : A → A be a positive twist map and K be an Aubry-Mather
set. Then:

∀x ∈ K,G−(x) ≤ Px(K) ≤ G+(x).

Similarly, we have (a slightly different version of this is given in see [1] ):

Theorem 9. Let G be the graph of a C0 closed form η that is invariant by the
Hamiltonian flow of the Tonelli Hamiltonian H. Then:

∀x ∈ G, G−(x) ≤ Px(G) ≤ G+(x).

Hence, for the C0-Lagrangian graphs, the Green bundles give some bounds
for the paratingent cones. We will see in section 7 that for the Aubry sets , we
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obtain a weaker result (which concerns only the generalized contingent cone);
the reason is that in section 7, we use discontinuous Lagrangian graphs, called
pseudo-graphs.

4.3. Regularity of invariant C
0-Lagrangian graphs. A classi-

cal result asserts that every C0-Lagrangian invariant graph is locally minimiz-
ing. Then, we use two properties of the Green bundles that we found before:
the dynamical criterion and the relation between the Green bundles and the
paratingent cone to obtain some regularity results for the C0-Lagrangian graphs
(see [1], [4]). Let us mention that an invariant C0-Lagrangian graph is always
Lipschitz (see [19]), but it may happen that a Lipschitz graph is nowhere C1.

At first, we obtain some results for small dimensions: in this case, the re-
stricted linearized dynamic cannot tend to ∞ on a set with a non zero Lebesgue
measure; hence, the two Green bundles are equal and the paratingent cone is a
tangent subspace:

Theorem 10. Let f : A → A be a twist map and let γ : T → R be a continuous
map whose graph is invariant by f . Then there exists a dense Gδ subset U of
T whose Lebesgue measure is 1 and so that every t of U is a point of differen-
tiability of γ and a point of continuity of γ′. More precisely, the graph of γ is
strongly C1-regular at every point (t, γ(t)) with t ∈ U .

This result improves G. Birkhoff’s famous result asserting that such an
invariant curve is always Lipschitz (see [11]) and proves that some Lipschitz
graphs exist that are invariant by no twist map.

Some examples of twist maps exist that have such an invariant curve that
is not C1. But all the known examples have a rational rotation number. Hence,
we ask:

Question 2. Does an example of an invariant curve with an irrational rotation
number that is not C1 exist?

Theorem 11. Let H : T2 × R
2 → R be a Tonelli Hamiltonian all of whose

singularities are non-degenerate. Let G be a C0- Lagrangian graph that is in-
variant by the Hamiltonian flow of H. If G is the graph of λ, then there exists a
dense Gδ subset D of T2 with full Lebesgue measure so that λ is differentiable
on D and its derivative is continuous at every point of D. More precisely, G is
strongly C1-regular at every (q, λ(q)) with q ∈ D.

When we can specify the restricted dynamic in such a way that all the orbits
of the restricted linearized dynamic are bounded, we have, too, G− = G+ and
some regularity results:

Theorem 12. Let f : A → A be a twist map and let γ : T → R be a continuous
map whose graph is invariant by f . Let us assume that the restriction of f to
the graph of γ is bi-Lipschitz conjugated to a rotation. Then γ is C1 and the
restriction of f to the graph of γ is C1 conjugated to a rotation.
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Theorem 13. Let H : Td × R
d → R be a Tonelli Hamiltonian and let G be a

C0-Lagrangian graph that is invariant by the Hamiltonian flow so that the time
one flow restricted to G is bi-Lipschitz conjugated to a translation of Td. Then
the graph G is C1.

Another interesting application of the Green bundles is a description of what
happens in the C0 completely integrable case:

Definition. Let f : A → A be a twist map. Then f is C0-integrable if

A =
⋃

γ∈Γ

G(γ) where:

1. Γ is a subset of C0(T,R) and G(γ) is the graph of γ;

2. ∀γ1, γ2 ∈ Γ, γ1 6= γ2 ⇒ G(γ1) ∩G(γ2) = ∅;

3. ∀γ ∈ Γ, f(G(γ)) = G(γ).

Remark. The general reference for this remark is [27].
A theorem of Birkhoff states that under the hypothesis of this definition,

every γ ∈ C0(T,R) whose graph is invariant by f is Lipschitz and that the set
L(f) of those invariant graphs is closed for the C0-topology.

If we fix a lift f̃ of f , we can associate with every γ ∈ L(f) its rotation
number ρ(γ). Then, if γ1, γ2 ∈ L(f), we have: G(γ1) ∩ G(γ2) 6= ∅ ⇒ ρ(γ1) =
ρ(γ2) and G(γ1) ∩ G(γ2) = ∅ ⇒ ρ(γ1) 6= ρ(γ2). We deduce that L(f) = Γ and
therefore Γ is closed for the C0 topology.

Theorem 14. Let f : A → A be a twist map that is C0 integrable. Let Γ be
the set of γ ∈ C0(T,R) whose graph is invariant under f . Then a dense Gδ

subset G of Γ endowed with the C0-topology exists so that: every γ ∈ G is C1.
Moreover, in G, the C0-topology is equal to the C1-topology.

We say that a Hamiltonian H : Td×R
d → R is C0-integrable if there exists

a partition P of Td × R
d into C0-Lagrangian graphs that are invariant by the

flow and so that the map sending an element of P on its cohomology class sends
P onto H1(M,R).

Theorem 15. Let H : Td×R
d → R be a C0-integrable Tonelli Hamiltonian and

let Λ1 be the set of closed 1-forms whose graphs are elements of the partition.
Then a dense Gδ subset of Λ1 all of whose elements are C1, exists.

Proof. To prove the two last theorems, we begin by noticing that there is a
dense set of completely periodic invariant Lagrangian graphs G, i.e. so that
there exists T > 0 satisfying: ϕT |G = IdG . Using the dynamical criterion, on
such a graph we have then G− = G+. Using the semicontinuity of G− and G+,
we obtain G− = G+ on a dense Gδ-subset of invariant graphs, and then these
invariant graphs are C1.
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Question 3. Are there examples of Tonelli Hamiltonians or twist maps that
are C0-integrable but not C1-integrable?

5. The Link Between the Shape of the

Aubry-Mather Sets and Their Lyapunov

Exponents

In this section, we give a complete characterization of the Aubry-Mather sets
that are uniformly hyperbolic and of the minimizing measures with non-zero
Lyapunov exponents. The following results are proved in [3].

Theorem 16. Let f be a twist map and let M be an Aubry-Mather set of f
with no isolated point. The two following assertions are equivalent:

• for all x ∈ M , M is not strongly C1-regular at x;

• the set M is uniformly hyperbolic (for f).

An amusing corollary is the following: if M is an Aubry-Mather set with no
isolated point for two twist maps f1 et f2, then it is uniformly hyperbolic for
f1 if, and only if, it is hyperbolic for f2.

Proof. For the direct sense, we know that the C1-irregularity implies the
transversality of the two Green bundles and then the uniform hyperbolicity.
For the other sense, we prove that when M is uniformly hyperbolic, we have
along M : Eu ∪ Es ⊂ P(M) and then the irregularity.

Theorem 17. Let f be a twist map and let µ be a minimizing measure whose
support has no isolated point. The two following assertions are equivalent:

• for µ-almost every x, the support of µ, denoted by suppµ, is C1-regular
at x;

• the Lyapunov exponents of µ (for f) are zero.

Proof. The fact that irregularity implies non zero Lyapunov exponents is very
similar to what was done in the proof of theorem 16. If now suppµ is C1 regu-
lar µ-almost everywhere, the projected dynamic of f|suppµ is C1-conjugated to
the initial dynamic f|suppµ µ almost everywhere. We can extend this projected
dynamic to a bi-Lipschitz homeomorphism h of T. For such a bi-Lipschitz home-
omorphism, we may define a kind of modified Lyapunov exponent and prove
that it is zero everywhere by using a subtle improvement of Klingman’s sub-
multiplicative ergodic theorem due to A. Furman (see [24]).

Hence, knowing the measure µ, we can say if the Lyapunov exponents are
zero or not, but the knowledge of its support is a priori not sufficient to deduce
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if the Lyapunov exponents are zero or no. To be more precise, it is interesting
to answer the following questions:

Question 4. Do two twist maps f and g and two minimizing measures µf

for f and µg for g exist, so that µf and µg have the same support but are not
equivalent (i.e. not mutually absolutely continuous)?

Another question concerns the existence of such non-uniformly hyperbolic
measures:

Question 5. Do there exist any minimizing measures with non zero Lyapunov
exponents that are not uniformly hyperbolic?

However, in extreme cases, we obtain a result concerning the link between
the support and the Lyapunov exponents:

Corollary 18. Let f be a twist map and let µ be a minimizing measure whose
support has no isolated point. If the support is C1-regular everywhere, then the
Lyapunov exponents of µ are zero.

It is not hard to see that an Aubry-Mather set is everywhere C1-regular
if, and only if, a C1 map γ : T → R exists, whose graph contains M . In
[27], M. Herman gives some examples of Aubry-Mather sets that are invariant
by a twist map, contained in a C1-graph but not contained in an invariant
continuous curve.

Question 6. Do any examples of minimizing measures with zero Lyapunov
exponents that are not supported in a C1 curve exist?

It is possible that the numerical evidence contained in [6] and [7] gives such
examples.

6. Weak KAM Theory

In the case of a completely integrable Tonelli Hamiltonian, the manifold T
d×R

d

is foliated by invariant Lagrangian tori that are graphs. When we perturb such
a Hamiltonian, a lot of these tori persist, due to the strong KAM theorems.

The invariant “pseudographs” that we will study in this section are in a cer-
tain sense the ghosts of the invariant Lagrangian graphs. It may happen that
a Tonelli Hamiltonian has no invariant Lagrangian graph, but it always has
some negatively (resp. positively) invariant discontinuous Lagrangian graphs,
called pseudographs, which contain true invariant subsets. This name of “pseu-
dograph” is due to P. Bernard (see [8]) and the proof of the existence of nega-
tively invariant pseudographs is what is called the weak KAM theorem and is
due to A. Fathi ([18], [20]). We won’t give any proof in this section, but all the
results that we give here are proved in [18] or [8].
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6.1. The Lax-Oleinik semigroup and its interpretation on
pseudographs. Before explaining what a pseudograph is and which kind
of transformation of these pseudographs to consider, let us define a semigroup
on the set C0(Td,R) of continuous maps from T

d to R. This semigroup is well-
known in PDE.

The negative semigroup (T−
t )t>0 of Lax-Oleinik is defined on C0(Td,R) by:

T−
t u(q0) = inf

(

u(q) +

∫ t

0

L(γ(s), γ̇(s))ds

)

;

where the infimum is taken on all the C1 arcs γ : [0, t] → T
d such that γ(t) = q0.

In [18] (see also [8]), A. Fathi proves that for every ε > 0, there exists a
constant K > 0 such that for every t ≥ ε and every u ∈ C0(Td,R), the function
T−
t u is K-semi-concave where:

1. A function v : V → R defined on a subset V of Rd is K-semi-concave if
for every x ∈ V , there exists a linear form px defined on R

d so that:

∀y ∈ V, v(y) ≤ v(x) + px(y − x) +K‖y − x‖2.

Then we say that px is a K-super-differential of v at x.

2. Let us fix a finite atlas A of the manifold T
d; a function u : Td → R is

K-semi-concave if for every chart (U, φ) belonging to A, u ◦ φ−1 is K-
semi-concave. Then a K-super-differential of u at q is px ◦ Dφ(q) where
px is a K-super-differential of u ◦ φ−1 at x = φ(q).

A semi-concave function is always Lipschitz and so differentiable almost every-
where and for such a function, we define its pseudograph: a pseudograph is the
graph G(du) of du, where u : Td → R is a semi-concave function.

As the images of any continuous function by the Lax-Oleinik semigroup are
semi-concave, we had better consider the action of the Lax-Oleinik group on
the set SC(Td) of the semi-concave functions of Td.

A very nice interpretation of the action of the semigroup in terms of pseu-
dographs is given in [8]:

Theorem 19. (P. Bernard) Let H : Td × R
d → R be a Tonelli Hamiltonian

whose flow is denoted by (ϕt) and let u : Td → R be a semi-concave function.
Then:

∀t > 0,G(dT−
t u) ⊂ ϕt(G(du)).

Hence, if we are looking at the pseudographs, the action of T−
t on u ∈

SC(Td) consists in cutting the image ϕt(G(du)) of the pseudograph of du by
the flow, removing some parts of this set to obtain a new pseudograph.
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6.2. The weak KAM theorem and Mañé’s critical value.
The weak KAM theorem, due to A. Fathi, gives us some pseudographs that are
invariant by this action:

Theorem 20 (Weak KAM theorem, A. Fathi). Let H : T
d × R

d → R be
a Tonelli Hamiltonian. There exists a unique constant c ∈ R such that the
modified semigroup (T̃−

t ) defined by:

T̃−
t u = T−

t u+ ct

has at least one fixed point. Such a fixed point is called a weak KAM solution
and c is called Mañé’s critical value.

We denote by S−(H) the set of weak KAM solutions for H. The weak KAM
theorem proves the existence of some negatively invariant pseudographs such
that: ∀t > 0, ϕ−t(G(du)) ⊂ G(du). As said earlier, a compact invariant subset
corresponds to such a pseudograph:

I(du) =
⋂

t>0

ϕ−t(G(du)) =
⋂

t>0

ϕ−t(G(du)).

This set I(du) is, in fact, a Lipschitz graph.
There is a relation between the Lax-Oleinik semigroup and the Hamilton-

Jacobi equation:

Proposition 21. (A. Fathi) Let H : Td × R
d → R be a Tonelli Hamiltonian

and let u : Td → R be a semi-concave function. Then u is a weak KAM solution
associated with H if, and only if, it is a solution to the Hamilton-Jacobi equation
H = c, i.e. if at every point of differentiability q of u, we have: H(q, du(q)) = c.

Hence, the pseudographs of the weak KAM solutions are all contained in
the critical level {H = c}.

Let us mention that the result given by A. Fathi is more general, because
it deals with the viscosity solution of the Hamilton-Jacobi equation; we don’t
want to define this notion, but the reader can find some material in [15]. A
good introduction to the PDE aspects of the weak KAM theory can be found
in [17].

6.3. Mather, Aubry and Mañé sets. There is a third characteri-
zation of Mañé’s critical value c:

−c = inf
µ

∫

Td×Rd

Ldµ

where µ varies among the Borel probability measures on T
d×R

d that are invari-
ant by the Euler-Lagrange flow of L. This lower bound is, in fact, achieved by
a measure with compact support. A Borel probability measure µ with compact
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support in T
d × R

d is said to be minimizing if it is invariant by the Euler-
Lagrange flow and satisfies −c =

∫

Td×Rd Ldµ. It can be proved that for ergodic
measures, this definition is equivalent to the one that we gave before (via the
Legendre map). If we denote by suppµ the support of the measure µ, theMather
set is defined by:

M∗(H) =
⋃

µ

L−1(suppµ).

where the intersection is taken on all the minimizing measures.

J. Mather proved that M∗(H) is an invariant non-empty compact subset of
T
d × R

d which is a Lipschitz graph above a compact part of the zero section.
A. Fathi proved that the pseudograph of any weak KAM solution contains the
Mather set. Moreover, for such a weak KAM solution u, any invariant Borel
probability measure whose support is contained in G(du) is, in fact, the image
via the Legendre map of a minimizing measure.

The Aubry set is defined by: A∗(H) =
⋂

u∈S−(H)

I(du) and the projected

Aubry set is: A(H) = π(A∗(H)). The Aubry set is then an invariant compact
Lipschitz graph above a part of the zero section.

The Mañé set is defined by:

N ∗(H) =
⋃

u∈S−(H)

I(du).

It is compact and invariant, but in general, it is not a graph.

We have: M∗(H) ⊂ A∗(H) ⊂ N ∗(H) ⊂ E = H−1(c).

There are some other characterizations of the Aubry and Mañé sets (see [32]
and [13]). Following Mañé, let us define the Mañé potential. For all (q1, q2) ∈ M2

and all t > 0, we define: at(q1, q2) = inf
∫ t

0
L(γ(s), γ̇(s))ds where the infimum

is taken on all the C1 curves γ : [0, t] → T
d such that γ(0) = q1 and γ(t) = q2.

The Mañé potential is defined by: Φ(q1, q2) = inf
t>0

(at(q1, q2) + ct). A curve γ :

I → T
d is said to be semi-static if for all t1 < t2 in I:

∫ t2

t1
(L(γ(t), γ̇(t))+ c)dt =

Φ(γ(t1), γ(t2)). Then a curve γ : R → T
d is semi-static if, and only if, L−1(γ, γ̇)

is the orbit of a point of the Mañé set.

Following Mather (see [35]), we define the Peierls barrier: h : Td × T
d → R

by: h(q1, q2) = lim inf
t→+∞

(at(q1, q2) + ct). A. Fathi proved that, in fact, we have

a true (and uniform) limit. Then a point q is in the projected Aubry set if,
and only if, h(q, q) = 0. Moreover, if γn : [0, tn] → T

d is a sequence of arcs so

that γn(0) = γn(tn) = q, lim
n→∞

tn = +∞ and lim
n→∞

∫ tn

0

(L(γn(t), γ̇n(t)) + c) = 0,

then lim
n→∞

L−1(γn(tn), γ̇n(tn)) = lim
n→∞

L−1(γn(0), γ̇n(0)) = (q, p) where (q, p) is

the point of the Aubry set so that π(q, p) = q.
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6.4. The symmetrical Hamiltonian and the positive Lax-
Oleinik semigroup. If H : Td × R

d → R is a Tonelli Hamiltonian, its
symmetrical Hamiltonian is defined by: Ȟ(q, p) = H(q,−p). Then its associated
Lagrangian is defined by: Ľ(q, v) = L(q,−v). If (ϕt) (resp. (ϕ̌t)) is the Hamilto-
nian flow associated with H (resp. Ȟ), if we denote by i : Td×R

d → T
d×R

d the
involution: i(q, p) = (q,−p), then we have: ϕ̌t(q, p) = i ◦ϕ−t ◦ i(q, p). Moreover,
γ : R → T

d is a solution to the Euler-Lagrange equations for L if, and only if,
γ̌ : R → T

d defined by γ̌(t) = γ(−t) is a solution to the Euler-Lagrange equa-
tions for Ľ and γ : [a, b] → T

d minimizes the Lagrangian action of L between
γ(a) and γ(b) if, and only if, γ̌ : t ∈ [−b,−a] → γ(−t) ∈ T

d minimizes the
action of Ľ between γ(b) and γ(a). From this remark, we deduce the following
expression of the negative Lax-Oleinik semigroup of Ľ:

Ť−
t u(q) = inf

γ

(

u(γ(0)) +

∫ t

0

L(γ(s), γ̇(s))ds

)

where the infimum is taken on all the C1 curves γ : [0, t] → T
d such that

γ(0) = q.
We then define the positive Lax-Oleinik semigroup for H by: T+

t u(q) =
−Ť−

t (−u). Hence:

T+
t u(q) = sup

γ

(

u(γ(t))−

∫ t

0

L(γ(s), γ̇(s))ds

)

.

Instead of restricting ourselves to the set of semi-concave functions, we now use
the set of semi-convex functions (a function u : Td → R is K-semi-convex if
−u is K-semi-concave). The graph of du where u is semi-convex is called an
anti-pseudograph, and the anti-pseudograph G(du) of any fixed point u of the
positive Lax-Oleinik semigroup of H satisfies: ∀t > 0,G(du) ⊂ ϕ−t(G(du)).

Let us notice that H and Ȟ have the same critical value (use the char-
acterization by the minimizing measures) and that M∗(H) = i

(

M∗(Ȟ)
)

is
contained in the pseudograph of any positive weak KAM solution (for H).
Moreover, A. Fathi proved that for any negative weak KAM solution u−, there
exists a unique positive weak KAM solution u+ such that u−|M(H) = u+|M(H).
Such a pair (u−, u+) of weak KAM solutions with u−|M(H) = u+|M(H) is called
a pair of conjugate weak KAM solutions. We always have:

u+ ≤ u−; π(I(du−)) = {q ∈ M ;u−(q) = u+(q)};

du−|π(I(du−))(H) = du+|π(I(du−)).

A consequence is that, for every pair (u−, u+) of conjugate weak KAM solutions,
the Aubry set (and then the Mather set) of H is in G(du−) ∩ G(du+).

7. Weak KAM Solutions and Green Bundles

We proved in [2] that the Green bundles give some bounds for the “second
derivative” of the weak KAM solutions along the Aubry set; what we denote
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by G̃± is a modified Green bundle that is very close to the original Green
bundle:

Theorem 22. Let H : Td×R
d → R be a Tonelli Hamiltonian and let (u−, u+)

be a pair of conjugate weak KAM solutions. Then:

∀x ∈ I(du−), G̃−(x) ≤ Cx(G(du−))

≤ G+(x) and G−(x) ≤ Cx(G(du+)) ≤ G̃+(x).

Proof. The proof is rather technical. We begin by selecting a pseudograph in
the images of the physical verticals, where the physical vertical at x ∈ T

d ×R
d

is: V(x) = π−1(π(x)) ⊂ T
d × R

d. Let x0 = (q0, p0) ∈ I(du−). Then for every
t > 0 we prove that there there exist two C2- functions g+t , g

−
t : T

d → R,
the first one semi-concave and the second one semi-convex, so that g−t (q0) =
u−(q0) = u+(q0) = g+t (q0), g

−
t ≤ u+ ≤ u− ≤ g+t and: G(dg+t ) ⊂ ϕt(V(ϕ−tx)),

G(dg−t ) ⊂ ϕ−t(V(ϕtx)). Then we manage to deduce that Cx(G(du−)) ≤ Gt(x)
and G−t(x) ≤ Cx(G(du+)) where Gt(x) (resp. G−t(x)) is the tangent subspace
at x to G(dg+t ) (resp. G(dg

−
t )). When t tends to +∞, we find the results of the

theorem.

Corollary 23. Let H : Td×R
d → R be a Tonelli Hamiltonian and let (u−, u+)

be a pair of conjugate weak KAM solutions. Then:

∀x ∈ I(du−), G̃−(x) ≤ Cx(I(du−)) ≤ G+(x)

Using the results of section 3 and the fact that the support of every mini-
mizing measure is contained in a subset I(du−), we deduce:

Corollary 24. Let H : Td × R
d → R be a Tonelli Hamiltonian and let µ be

a minimizing measure all of whose Lyapunov exponents are zero. Then, the
support of µ is weakly C1-regular at µ-almost every point.

This last result is less complete than the one contained in theorem 17,
because we obtain only one implication. In fact, the other implication is not
correct in this case: it may happen that a hyperbolic set is very smooth, and
then that a hyperbolic measure has a regular support.
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iens. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 9, 1043–1046.

[21] P. Foulon, Estimation de l’entropie des systèmes lagrangiens sans points con-
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1. Introduction

A very classical problem in dynamics consists in studying the Hamiltonian sys-
tem on the symplectic manifolds T ∗

T
n = T

n×R
n generated by the Hamiltonian

Hε : T× T ∗
T
n = T× T

n × R
n −→ R

(t, x, y) 7−→ 1

2
‖y‖2 + εG(t, x, y) (1)

where ε is a small perturbation parameter. More general unperturbed systems
h(y) can be considered instead of ‖y‖2/2, but we restrict to that particular case
in the present paper in order to simplify some notations. For ε = 0, the system is
integrable, and the momenta y are integrals of motion. For ε > 0, these variables
undergo small oscillations. KAM theory implies that these oscillations remain
permanently bounded for many initial conditions. For other initial conditions, a
large evolution might be possible. By Nekhoroshev theory, it must be extremely
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slow. The questions we discuss in the present text is whether this large evolution
is actually possible, and to what geometric structures it is associated.

Let us consider a resonant momentum y0 = (I0, 0) ∈ R
m × R

r = R
n, and

assume that I0 is not resonant, which means that k · I0 never belongs to Z for
k ∈ Z

m, k 6= 0. In order to study the dynamics near the torus {y = y0}, it
is useful to introduce the notations x = (θ, q) ∈ T

m × T
r, and y = (I, p) ∈

R
m ×R

r, m+ r = n. In the neighborhood of the torus {y = y0}, the dynamics
is approximated by the averaged system

1

2
‖y‖2 + εV (q),

where

V (q) =

∫

T×Tm

G(t, θ, q, y0)dθdt.

Following a classical idea of Poincaré and Arnold, we can try to exploit this
observation by considering the system

H(t, θ, q, I, p) =
1

2
‖p‖2 + 1

2
‖I‖2 − εV (q)− µR(t, θ, q, I, p) (2)

with a second perturbation parameter µ independent from ε. We assume that
V has a unique non-degenerate minimum, say at q = 0. Fixing ε > 0, we can
study this system for µ > 0 small enough, which is a simpler problem which
may give some hints about the dynamics of (1). The reason why instability is
more easily proved in (2) than in (1) is the presence of the hyperbolic fixed
point at (0, 0) of the (q, p) component of the averaged system. Studying (2) for
µ > 0 small enough is thus called the a priori unstable problem, or the a priori
hyperbolic problem. In contrast, the Hamiltonian (1) is called a priori stable.
The a priori unstable case is by now quite well understood for m = 1, see
[46, 17, 18, 26, 5, 48] for example. The a priori unstable case for m > 1 and the
a priori stable case can be considered as widely open, in spite of the important
announcements of John Mather in [42]. The starting point in the study of
(2) is the famous paper of Arnold, [1]. In this paper, Arnold introduced a
particular a priori unstable system where some geometric structures associated
to diffusion, partially hyperbolic tori (that he called whiskered), their stable
and unstable manifolds, and heteroclinic connections, can be almost explicitly
described. This geometric structure have been called a transition chain. Most
of the subsequent works on the a priori unstable problem have consisted in
trying to find transition chains in more general cases, but understanding the
general a priori unstable Hamiltonian have required a change of paradigm:
from partially hyperbolic tori to normally hyperbolic cylinders. The variational
methods introduced by John Mather in [41] and Ugo Bessi in [9] have also been
very influential.

Transforming the understanding gained on the dynamics of (2) to informa-
tions on the a priori stable case is not an easy task. Since we understand the
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system (2) when m = 1 the first attempt should be to study (1) in the neighbor-
hood of an (n− 1)-resonant line, for example the line consisting of momenta of
the form y = (I, 0), I ∈ R. We could hope to prove the existence of drift along
such a line by using the a priori unstable approximations near each value of y.
However, we face the problem that an approximation like (2) holds only in the
neighborhood of the torus {y = (I, 0)} when the frequency I ∈ R is irrational.
Near the torus {y = (I, 0)} with I rational, one should use an approximation
of the form

H(t, x, y) =
1

2
‖y‖2 − εW (x)− µR(t, x, y)

and different methods must be used. This is often called the problem of double
resonances when n = 2. We will call it the problem of maximal resonances.

Our general goal in this paper is to study a priori unstable systems with
a sufficient generality to be able to gain informations on the a priori stable
case. We start with a relatively detailed description of the Arnold’s example in
Section 2, which is also an occasion to settle some notations and introduce some
important objects, like the partially hyperbolic tori, their stable and unstable
manifolds, and the associated generating functions. Working with these gener-
ating functions allows to highlight the connections between the various classical
approaches, geometric methods, variational methods, and weak KAM theory.
Then, from the end of Section 2 to Section 3, we progressively generalize the
setting and indicate how the methods introduced on the example of Arnold can
be improved to face the new occurring difficulties. We present the Large Gap
Problem, which prevents Arnold’s mechanism from being directly applied to
general a priori unstable systems, and explain how the presence of a normally
hyperbolic cylinder can be used to solve this Problem and prove instability in
general a priori unstable systems. In section 4 we give a new result from [6], on
the existence of normally hyperbolic cylinders in the a priori stable situation,
which should allow to apply the tools exposed in the previous sections to a
priori stable systems. This suggests a possible strategy to prove the following
conjecture:

Conjecture 1. For a typical perturbation G, there exists two positive numbers
ε0 and δ, such that, for each ε ∈]0, ε0[, The system (1) has an orbit

(θ(t), q(t), θ̇(t), q̇(t)) : R −→ T× T
n−1 × R× R

n−1

such that supt θ̇ − inft θ̇ > δ.

We are currently working on this program in collaboration with Vadim
Kaloshin and Ke Zhang. The same conjecture can be stated with a more general
unperturbed system h(y), and the same proof should work provided h is convex
and smooth. Our strategy of proof does not consist in solving the maximal
resonance problem, but rather in observing that the conjectured statement can
be reached without solving that difficulty. In that respect, what we expose
is much easier than the project of Mather as announced in [42]. The result is
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weaker since only limited diffusion is obtained. The maximal resonance problem
has to be solved in order to prove the existence of global diffusion on a whole
resonant line, or from one resonant line to another. Our strategy, on the other
hand, has the advantage of working with all n > 2, while Mather is limited to
n = 2 at the moment.

2. The Example of Arnold and Some Extensions

Following Arnold [1], we consider the Hamiltonian

H(t, θ, q, I, p) =
1

2
‖p‖2 + 1

2
‖I‖2 + ε(cos(2πq)− 1)(1 + µf(t, θ, q)) (3)

with (t, θ, q, I, p) ∈ T × T × T × R × R. We will often use the corresponding
Lagrangian

L(t, θ, q, θ̇, q̇) =
1

2
‖q̇‖2 + 1

2
‖θ̇‖2 + ε(1− cos(2πq))(1 + µf(t, θ, q)).

We will see ε > 0 as a fixed parameter, and discuss mainly the small parameter
µ. When µ = 0, the variable I is an integral of motion. Our goal is to study
its evolutions for µ > 0. The form of the perturbation is chosen in such a way
that the two-dimensional tori

T (a) = T
2 × {0} × {a} × {0}, a ∈ R

are invariant in the extended phase space, and carry a linear motion of fre-
quency (1, a). By studying invariant manifolds attached to these invariant tori,
Arnold discovered a remarkable diffusion mechanism, now called the Arnold
Mechanism, that we are now going to describe. In the case µ = 0, the tori T (a)
appear as the products of the hyperbolic fixed point {0, 0} of the pendulum
in (q, p) by the invariant torus T × T × {a} of the integrable system in the
(t, θ, I) space. They are thus partially hyperbolic, and have stable and unstable
manifolds, which coincide and can be given explicitly as

W(a) =
{(

t, θ, q, a,±∂qS0(q)
)

: (t, θ, q) ∈ T
3
}

with

S0(q) =
2
√
ε

π
(1− cos(πq)). (4)

The coincidence and compactness of these stable manifolds is a very special
feature of the unperturbed case µ = 0. For µ 6= 0, the tori T (a) still have stable
and unstable manifolds which can be described as follows: There exists two
functions

S±
a,µ(t, θ, q) : T× T× [−3/4, 3/4] −→ R, (5)
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which converge to ±S0 when µ −→ 0, and such that the graphs

W±
µ (a) =

{(

t, θ, q mod 1, a+ ∂θS
±(t, θ, q), ∂qS

±(t, θ, q)
)}

are pieces of the stable and unstable manifolds of the torus T (a). More precisely,
the set W+(a) is negatively invariant under the extended Hamiltonian flow, and

T (a) =
⋂

t60

ϕt
(

W+(a))

while the set W−(a) is positively invariant under the extended Hamiltonian
flow, and

T (a) =
⋂

t>0

ϕt
(

W−(a)).

The functions S±
a solve the Hamilton-Jacobi equation

∂tS +H(t, θ, q, a+ ∂θS, ∂qS) = a2/2,

which merely says that the invariant manifolds are contained in the energy level
of the torus. The functions S±

a have an expression in terms of the action:

S+
a (t, θ, q) =

∫ τ

−∞
L(s, θ+(s), q+(s), θ̇+(s), q̇+(s))− aθ̇+(s) + a2/2ds (6)

S−
a (t, θ, q) =

∫ +∞

τ

L(s, θ−(s), q−(s), θ̇−(s), q̇−(s))− aθ̇−(s) + a2/2ds,

where τ is any real number such that τ mod 1 = t, and (θ±(s), q±(s)) is the
solution of the Euler-Lagrange equations such that

θ±(τ) = θ, q±(τ) = q mod 1, θ̇±(τ) = a+ ∂θS
±(t, θ, q), q̇±(τ) = ∂qS

±(t, θ, q).

Note that the result does not depend on the choice of τ .

2.1. Homoclinic orbits. If (T,Θ, Q) ∈ T × T×]1/4, 3/4[ is a critical
point of the function

∆a(t, θ, q) = S+
a (t, θ, q)− S−

a (t, θ, q − 1),

then the point
(

T,Θ, Q mod 1, a+ ∂θS
+
a (T,Θ, Q), ∂qS

+
a (T,Θ, Q)

)

=(T,Θ, (Q− 1) mod 1, a+ ∂θS
−
a (T,Θ, Q− 1), ∂qS

−
a (T,Θ, Q− 1)

)

obviously belongs both to W+(a) and W−(a), hence it is a homoclinic point. It
is a transversal homoclinic point if in addition the Hessian of ∆a has rank two
(it can not have rank 3 because the intersection is necessarily one-dimensional).
It is not obvious at this point that the function ∆a necessarily has critical points
on the domain T× T×]1/4, 3/4[. When µ is small enough, this follows from:
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Lemma 2. If (T,Q) is a critical point of the function ∆̄a : (t, q) 7−→
∆a(t, q, 1/2), then (T,Q, 1/2) is a critical point of ∆a, hence the manifolds
W−(a) and W+(a) intersect above (T,Θ, 1/2) ∈ T

3. This homoclinic point is
transversal if and only if the Hessian of ∆̄a at (T,Q) is a non-degenerate 2× 2
matrix.

Note that the function ∆̄a is defined on T
2, and therefore it has critical

points.
Proof. We have ∂tS

+(T,Q, 1/2) = ∂tS
−(T,Q,−1/2), let us denote by e this

value. We also have ∂θS
+(T,Q, 1/2) = ∂θS

−(T,Q,−1/2), we denote by I this
value. It is enough to prove that ∂qS

+(T,Q, 1/2) = ∂qS
−(T,Q,−1/2). In order

to do so, it is enough to observe that ∂qS
+ is the only non-negative solution of

the equation
e+H(T,Θ, 1/2, a+ I, .) = a2/2,

and that precisely the same characterization is true for ∂qS
−(T,Q,−1/2).

Note that the equation above has two solutions, and that we can discriminate
between them because we work in a perturbative setting which gives us
rough informations on the signs. In more general situation, this is a source of
difficulty.

2.2. Heteroclinic orbits. We have proved the existence of homoclinic
orbits. But what is interesting for Arnold diffusion are heteroclinic orbits be-
tween different tori. We can deduce the existence of a heteroclinic orbit between
T (a) and T (a′) provided we can find a critical point of the function

T× R×]1/4, 3/4[3 (t, θ, q) 7−→ S+
a (t, θ, q)− S−

a′(t, θ, q − 1) + (a− a′)θ,

where we have lifted the functions S without changing their names. As before,
we can limit ourselves to finding critical points of the function

Σa,a′ : T× R 3 (t, θ) 7−→ S+
a (t, θ, 1/2)− S−

a′(t, θ,−1/2) + (a− a′)θ, (7)

but the term (a− a′)θ prevents us from finding them using a global variational
method when a′ 6= a. This reflects the fact that we are studying a non exact
Lagrangian intersection problem. For µ = 0, heteroclinics do not exist. However,
recalling that ∆̄a(t, θ) = ∆a(t, θ, 1/2), we have:

Lemma 3. If the function ∆̄a(t, q) has a non-degenerate critical point, then
the functions Σa,a′ and Σa′,a both have a non-degenerate critical point provided
a′ is sufficiently close to a.

Proof. The theory of partial hyperbolicity implies that the stable and unsta-
ble manifolds W±

µ (a) depend regularly on the parameter a. As a consequence,
their generating functions S±

a also regularly depend on a, and the functions
Σa,a′ depend regularly on a and a′. The result follows since Σa,a = ∆̄a.
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We say that a0, a1, . . . , ak is an elementary transition chain if the functions
Σai−1,ai

have non-degenerate critical points. We will sometimes use the same
terminology for the different requirement that these functions have isolated
local minima. From Lemma 3, we deduce:

Proposition 1. Let µ be given and sufficiently small. Let [a−, a+] be an inter-
val such that each of the functions ∆̄a,µ, a ∈ [a−, a+] have a non-degenerate
critical point, which means that each of the tori Tµ(a), a ∈ [a−, a+] has a
transversal homoclinic orbit. Then there exists an elementary transition chain
a− = a0, a1, . . . , ak = a+.

Proof. Let us consider the set A ⊂ [a−, a+] of points that can be reached
from a− by a transition chain. The set A is open : If a′ ∈ A, then there exists
a transition chain a− = a0, a1, . . . ak = a′ and, by Lemma 3, the sequence
a− = a0, a1, . . . ak, ak+1 is a transition chain when ak+1 is sufficiently close
to a. The set A is closed : Let a be in the closure of A. By Lemma 3, the
pair a, a′ is a transition chain when a′ is close to a. Since a is in the closure
of A, the point a′ can be taken in A. Then, there exists a transition chain
a− = a0, . . . , ak = a′, and then the longer sequence a− = a0, . . . , ak, ak+1 = a
is a transition chain between a0 and a, hence a ∈ A. Being open, closed and
not empty (it contains a0), the set A is equal to [a−, a+].

The existence of transition chains implies the existence of diffusion orbits.
This is proved by Arnold invoking an “obstruction property”. This obstruction
property is a characteristic of the local dynamics near the partially hyperbolic
tori. It has been proved by Jean-Pierre Marco in [38], see also [21, 31]. The most
appealing way to understand the geometric shadowing of transition chains is
to use the following statement of Jacky Cresson [22], which can be seen as a
strong obstruction property:

Lemma 4. If there exists a transversal heteroclinic between T (a) and T (a′)
and a transversal heteroclinic between T (a′) and T (a′′), then there exists a
transversal heteroclinic between T (a) and T (a′′).

This Lemma implies:

Corollary 5. If a0, a1, . . . , ak is an elementary transition chain, then there
exists a transversal heteroclinic orbit between T (a0) and T (ak).

Putting everything together, we obtain:

Theorem 1. Let µ be given and sufficiently small. Let [a−, a+] be an interval
such that each of the functions ∆̄a,µ, a ∈ [a−, a+] have a non-degenerate critical
point. Then there exists a heteroclinic orbit between T (a−) and T (a+).

2.3. Poincaré-Melnikov approximation. We have constructed dif-
fusion orbits under the assumption that transversal homoclinics exist. We
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have proved that homoclinic orbits necessarily exist, and one may argue that
transversality should hold for typical systems, we will come back on this later.
However, it is useful to be able to check whether transversality holds in a given
system. A classical approach consists in proving the existence of non-degenerate
critical points of the functions ∆̄a,µ defined in Lemma 3 by expanding them
in power series of µ. As a starting point the generating functions S±

a can be
expanded as follows:

S+
a (t, θ, q) = S0(q) + µM+

a (t, θ, q) +O(µ2), (8)

S−
a (t, θ, q) = −S0(q)− µM−

a (t, θ, q) +O(µ2),

where S0(q) =
2
√
ε

π
(1− cos(πq)) is the generating function of the unperturbed

manifolds, and M± are the so-called Poincaré-Melnikov integrals,

M+
a (t, θ, q) = ε

∫ t

−∞
F

(

s, θ + a(s− t),
2

π
arctan

(

e2π
√
ε(s−t) tan(πq/2)

)

)

ds

M−
a (t, θ, q) = ε

∫ +∞

t

F

(

s, θ + a(s− t),
2

π
arctan

(

e2π
√
ε(t−s) tan(πq/2)

)

)

ds

where F (t, θ, q) = (1− cos(2πq))f(t, θ, q). To better understand these formula,
it is worth recalling that

s 7−→ 2

π
arctan

(

e2π
√
ε(s−t) tan(πq/2)

)

is the homoclinic orbit of the system ‖p‖2/2 + ε(cos(2πq)− 1) which takes the
value q at time t. The formula above are similar to (6), but the integration
is performed on unperturbed trajectories, which are explicitly known. For q ∈
]1/4, 3/4[, we obtain:

∆a(t, θ, q) = S+
a (t, θ, q)− S−

a (t, θ, q − 1) = µMa(t, θ, q) +O(µ2),

where Ma is the Poincaré-Melnikov integral

Ma(t, θ, q) = M+
a (t, θ, q) +M−

a (t, θ, q − 1)

= ε

∫

R

F

(

s, θ + a(s− t),
2

π
arctan

(

e2π
√
ε(s−t) tan(πq/2)

)

)

ds.

In the specific case studied by Arnold, where f(t, θ, q) = cos(2πθ) + cos(2πt),
the Melnikov integral can be computed explicitly through residues, we obtain:

Ma(t, q, 1/2) =
a

sh(πa/2
√
ε)

cos(2πθ) +
1

sh(π/2
√
ε)

cos(2πt),

it has a non-degenerate minimum at (t, q) = (0, 0). We can conclude, following
Arnold:

Theorem 2 (Arnold, [1]). Let us consider the Hamiltonian (3) with f(t, θ, q) =
cos(2πθ)+cos(2πt) and µ > 0 small enough. Given two real numbers a− < a+,
there exists an orbit (θ(t), q(t), I(t), p(t)) and a time T > 0 such that I(0) 6 a−

and I(T ) > a+.
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2.4. Bessi’s variational mechanism. Ugo Bessi introduced in [9] a
very interesting approach to study the system (3), see also [10, 11]. In order to
describe this approach, let us define the function

Aa : R× T×]1/4, 3/4[×R× T×]1/4, 3/4[−→ R

((t1, θ1, q1), (t2, θ2, q2)) 7−→ min

∫ t2

t1

L(s, θ(s), q(s), θ̇(s), q̇(s))− aθ̇(s) + a2/2 ds,

where the minimum is taken on the set of C1 curves (θ(s), q(s)) : [t1, t2] −→
T× R such that

(θ(t1), q(t1)) = (θ1, q1 − 1) and (θ(t2), q(t2)) = (θ2, q2).

When the time interval t2 − t1 is very large, the minimizing trajectory in the
definition of Aa roughly looks like the concatenation of an orbit positively
asymptotic to T (a) followed by an orbit negatively asymptotic to T (a). Using
this observation, and recalling the formula (6), it is possible to prove that

Aa((t1, θ1, q1), (t2 + k, θ2, q2)) −→
S+
a (t2 mod 1, θ2, q2)− S−

a (t1 mod 1, θ1, q1 − 1)

when k −→ ∞. Fixing the real numbers a0, a1, . . . , ak and the integers
τ1, . . . , τk, we consider the discrete action functional

S+
a0
(t1 mod 1, θ1 mod 1, 1/2) + (a0 − a1)θ1

+Aa1
((t1, θ1 mod 1, 1/2), (t2 + τ2, θ2 mod 1, 1/2)) + (a1 − a2)θ2

+Aa2
((t2, θ2 mod 1, 1/2), (t3 + τ3, θ3 mod 1, 1/2)) + (a2 − a3)θ3

+ · · ·
+Aak−1

(tk−1 + τk−1, θk−1 mod 1, 1/2), (tk, θk mod 1, 1/2)) + (ak−1 − ak)θk

−S−
ak
(tk mod 1, θk mod 1, 1/2)

defined on (] − 1, 1[×] − 1, 1[)k. It is not hard to check that local minima of
this discrete action functional give heteroclinics between the Torus T (a0) and
the torus T (ak). In order to prove that local minima exist, observe that this
functional is approximated by

Σa0,a1
(t1 mod 1, θ1) + · · ·+Σak−1,ak

(tk mod 1, θk)

when the integers τi are large enough, with the functions Σ as defined in (7).
This limit functional has the remarkable structure that the variables (ti, θi)
are separated. This break-down of the action functional into a sum of inde-
pendent functions is sometimes called an anti-integrable limit, it is related to
the obstruction property of the invariant tori, to the λ-Lemma, and to the
Shilnokov’s Lemma, see [15]. The limit functional has an isolated local mini-
mum provided each of the functions Σai−1,ai

has one, which is equivalent to say
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that a0, a1, . . . , ak is an elementary transition chain. In this case, the integers
τi can be chosen large enough so that the action functional above has a local
minimum, which gives a heteroclinic orbit between T (a0) and T (ak). Techni-
cally, this method has several advantages. In our presentation we introduced
the generating functions S±

ai
of the invariant manifolds of the involved tori in

order to stress the relations between the geometric and the variational method,
and also because this works in a more general setting, see [15] for example. In
our context and when µ > 0 is small enough, it is easier to directly approximate
the functions Aa in terms of the Melnikov integrals, and to use the following
approximation for the action functional with large τi and small µ without the
intermediate step through S±:

µMa0
(t0 mod 1, θ0 mod 1, 1/2) + (a1 − a0)θ0 + · · ·+

µMak
(tk mod 1, θk mod 1, 1/2) + (ak − ak−1)θk.

The corresponding calculations, performed in [9], are much more elementary
than those required to derive the expansions (8).

2.5. Remarks on estimates. We have up to that point carefully
avoided to discuss the subtle and important aspect of explicit estimates. In
order to complete rigorously the proof of Theorem 2, we should prove the
existence of a threshold µ0(ε) such that the Melnikov approximation holds,
simultaneously for all a, when 0 < µ < µ0(ε). This can actually been done,
with

µ0(ε) = e
− C√

ε ,

but it is not simple, since it requires to study carefully the expansions of the
functions S±

a and how the coefficients depend on a and ε. This is related to
the so-called splitting problem, see [37]. As we mentioned above the approach
of Bessi allows to prove that Theorem 2 holds for 0 < µ < µ0(ε) without
estimating the splitting.

It is also important to give time estimates, that is to estimate the time
needed for the variable I to perform a large evolution. Once again, this is closely
related to the splitting estimates, although these can be avoided by using the
method of Bessi. One should distinguish two different problems. Either we fix
ε, and try to estimate the time as a function of µ, or we take µ as a function of
ε, say µ = µ0(ε)/2, and try to estimate the time as a function of ε.

The second problem is especially important, because it is relevant for the
study of the a priori stable problem. Once again, Ugo Bessi obtained the first
estimate,

T = e
C√
ε .

Estimating the time on examples allows to test the optimality of Nekhoroshev
exponents, see [39, 36, 49] for works in that direction, see also [16] concerning
the question of time estimates.
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It is worth mentioning also that in the first problem, estimating the time
as a function of µ, the estimate is polynomial, and not exponentially small.
This was first understood by Pierre Lochak, and proved by Bessi’s method in
[2], where the estimate T = C/µ2 is given, see also [23]. The optimal estimate
is T = C| lnµ|/µ, as was conjectured by Lochak in [35] and proved by Berti,
Biasco and Bolle in [8], see also [7].

Returning to the question of the threshold of validity, let us discuss what
happens when µ is increased above µ0(ε). The content of Section 2.3 on finding
transversal homoclinics via the Poincaré-Melnikov approximation breaks down,
but the geometric constructions of the earlier sections is still valid. Theorem 1
holds as long as the invariant tori T (a) remain partially hyperbolic, and that
their stable and unstable manifold can be represented by generating functions
like (5). Actually, the methods we are now going to expose allow even to re-
lax this last assumption. Being able to treat larger values of µ is especially
important in view of the possible applicability to the a priori stable problem.

2.6. Higher dimensions. Let us now discuss the following immediate
generalization in higher dimensions of Arnold’s example:

H(t, θ, q, I, p) =
1

2
‖p‖2 + 1

2
‖I‖2 − εV (q)(1 + µf(t, θ, q))

with (t, θ, q, I, p) ∈ T × T
m × T

r × R
m × R

r, where V (q) is a non-negative
function having a unique non-degenerate minimum at q = 0, with V (0) = 0.
The main difference with the example of Arnold appears for r > 1. In this
case, the system is not integrable even for µ = 0. There still exists a family of
partially hyperbolic tori of dimension m,

T (a) := {(t, θ, 0, a, 0), (t, θ) ∈ T× T
m}

parametrized by a ∈ R
m, but the system ‖p‖2/2 − εV (q) is not necessarily

integrable any more. As a consequence we do not know explicitly the stable
and unstable manifolds of the hyperbolic fixed point (0, 0), and so we do not
have a perturbative setting to describe the stable and unstable manifolds of
the hyperbolic tori T (a). This is also what happens for r = 1 if µ is not small
enough. There is no obvious generalization of the generating functions S±

a in
that setting, because the stable and unstable manifolds are not necessarily
graphs over a prescribed domain. The proof of the existence of homoclinic
orbits as given in 2.1 thus breaks down. The existence of homoclinic orbits in
that setting can still be proved by global variational methods, as is now quite
well understood, see [14, 28, 20, 3, 27] for example.

The proof is quite easy in our context, let us give a rapid sketch. We first
define a function Aa similar to the one appearing in Section 2.4, but slightly
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different:

Aa : R× T
m

× T
r
× R× T

m
× T

r
−→ R

((t1, θ1, q1), (t2, θ2, q2)) 7−→ min

∫ t2

t1

L(s, θ(s), q(s), θ̇(s), q̇(s))− aθ̇(s) + a2/2 ds,

where the minimum is taken on the set of curves (θ(s), q(s)) : [t1, t2] −→ T
m×T

r

such that (θ(ti), q(ti)) = (θi, qi) for i = 1 or 2. Let us set

ξ(a) := lim inf
N3k−→∞

Aa((0, 0, q0), (k, 0, q1)),

and consider a sequence of minimizing extremals

(θi(t), qi(t)) : [0, ki] −→ T
m × T

r

such that (θi(0), qi(0)) = (0, q0), (θi(ki), qi(ki)) = (0, q1), ki −→ ∞, and

∫ ki

0

L(s, θi(s), qi(s), θ̇i(s), q̇i(s))− aθ̇i(s) + a2/2 ds −→ ξ(a).

Let M be a submanifold of T× T
m × T

r which separates T× T
m × {q0} from

T×T
m×{q1}, and let Ti ∈ [0, ki] be a time such that (Ti mod 1, θi(Ti), qi(Ti)) ∈

M , and let τi be the integer part of Ti. It is not hard to check that the curves
(θi(t− τi), qi(t− τi)) converge (up to a subsequence) uniformly on compact sets
to a limit (θ∞(t), q∞(t)) : R −→ T

m × T
r. This limit curve satisfies

∫ ∞

−∞
L(s, θ∞(s), q∞(s), θ̇∞(s), q̇∞(s))− aθ̇∞(s) + a2/2 ds = ξ(a), (9)

and the corresponding orbit is a heteroclinic from T0(a) to T1(a). We call min-
imizing heteroclinics (for the lifted system) those which have minimal action,
or in other words those which satisfy (9). In the original system (before taking
the covering), we call minimizing homoclinic orbit a homoclinic which lifts to
a minimizing heteroclinic.

Let us now try to establish some connections between the present discussion
and the proof of the existence of homoclinic orbits given in 2.1. We define two
functions on T× T

m × T
r:

S−
a (t, θ, q) = − lim inf

N3k−→∞
Aa

(

(t, θ, q), (k, 0, q1)
)

(10)

S+
a (t, θ, q) = lim inf

N3k−→∞
Aa

(

(0, 0, q0), (t+ k, θ, q)
)

. (11)

Note that
S+
a (0, 0, q1) = −S−

a (0, 0, q0) = ξ(a).

The functions S±
a , whose definition is basic both in Mather’s ([41]) and in

Fathi’s ([29]) theory, share many features with those introduced in (5), that’s
why we use the same name. Let us state some of their properties:
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The function S−
a is non-positive and it vanishes on T×T

m×{q1} (and only
there). Moreover, it is smooth around this manifold, which is a transversally
non-degenerate critical manifold. Let us chose a small δ > 0. The set

W−
loc(a) :=

{

(

t, θ, q, a+ ∂θS
−
a , ∂qS

−
a (t, θ, q)

)

, S−
a (t, θ, q) > −δ

}

is a positively invariant local stable manifold of T1(a).
Similarly, S+

a is non-negative, it is null on T×T
m×{q0}, and smooth around

it, and this critical manifold is transversally non-degenerate. The set

W+
loc(a) :=

{

(

t, θ, q, a+ ∂θS
+
a , ∂qS

+
a (t, θ, q)

)

, S+
a (t, θ, q) < δ

}

is a negatively invariant local unstable manifold of T0(a).
The functions S±

a also have a global meaning. Let us give the details for
S+. For each point (T,Θ, Q), there exists a real number τ ∈ R and at least one
solution (θ(s), q(s)) : (−∞, τ ] −→ T

m × T
r of the Euler-Lagrange equations

such that (τ mod 1, θ(τ), q(τ)) = (T,Θ, Q), and which is calibrated by S+
a in

the following sense: The relation

S+
a (t mod 1, θ(t), q(t))− S+

a (s mod 1, θ(s), q(s))

=

∫ t

s

L(σ, θ(σ), q(σ), θ̇(σ), q̇(σ))− aθ̇(σ) + a2/2 dσ

holds for all s < t 6 τ . The corresponding orbit is asymptotic either to T0(a)
or to T1(a) when s −→ −∞. It is not easy in general to determine whether
the asymptotic torus is T0(a) or T1(a) but the following Lemma is not hard to
prove:

Lemma 6. If S+
a (T,Θ, Q) < ξ(a), then each calibrated curve

(θ(s), q(s)) : (−∞, τ ] −→ T
m × T

r

satisfying (τ mod 1, θ(τ), q(τ)) = (T,Θ, Q), is α-asymptotic to T0(a), and sat-
isfies

∫ τ

−∞
L(σ, θ(σ), q(σ), θ̇(σ), q̇(σ))− aθ̇(σ) + a2/2 dσ = S+

a (T,Θ, Q).

If the function S+
a is differentiable at (T,Θ, Q) then there is one and only

one calibrated curve as above, it is characterized by the equations

θ̇(τ) = a+ ∂θS
+
a (τ,Θ, Q), q̇(τ) = ∂qS

+
a (τ,Θ, Q).

Formally, the critical points of the difference S+
a −S−

a correspond to heteroclinic
orbits (in the lifted system). By studying a bit more carefully the relations be-
tween the calibrated curves and the differentiability properties of the functions
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S±
a (which is one of the central aspects of Fathi’s Weak KAM theory, see [29]),

this idea can be made rigorous as follows:

Lemma 7. If (T,Θ, Q) is a local minimum of the function S+
a −S−

a , then both
S+
a and S−

a are differentiable at the point (T,Θ, Q), we have

(

T,Θ, Q, a+ ∂θS
−, ∂qS

−) =
(

T,Θ, Q, a+ ∂θS
+, ∂qS

+
)

,

and the orbit of this point is either a heteroclinic between T0(a) and T1(a) or a
homoclinic to T0(a) or to T1(a) in the system lifted to the covering, and thus it
projects to an orbit homoclinic to T (a) in the original system.

Although it is not obvious a priori that a local minimum of the function
S+
a − S−

a exists away from q = q0 and q = q1, this follows from the existence of
minimizing heteroclinics, that we already proved. More precisely, we have:

• The minimal value of S+
a − S−

a is ξ(a).

• The point (T,Θ, Q) is a global minimum of S+
a − S−

a if and only if ei-
ther Q ∈ {q0, q1} or the orbit of the point

(

T,Θ, Q, a + ∂θS
−, ∂qS

−) =
(

T,Θ, Q, a+∂θS
+, ∂qS

+
)

, is a minimizing heteroclinic between T0(a) and
T1(a).

• The set of minima of the function S+
a − S−

a properly contains T× T
m ×

{q0} ∪ T× T
m × {q1}.

As a consequence, the trajectory (θ(t), q(t), θ̇(t), q̇(t)) is a minimizing hete-
roclinic if and only if (S+

a − S−
a )(tmod 1, θ(t), q(t)) = ξ(a) for each t ∈ R (and

if q(t) is not identically q0 or q1). This minimizing heteroclinic is called isolated
if, for some t ∈ R, the point (θ(t), q(t)) is an isolated minimum of the function

(θ, q) 7−→ (S+
a − S−

a )(t mod 1, θ, q).

Now we have proved that the stable and unstable manifolds of the torus
T (a) necessarily intersect, let us suppose that there exists a compact and con-
nected set A ⊂ R

m such that the intersection is transversal for a ∈ A. By
a continuity argument as in Proposition 1, we conclude that any two points
a− and a+ in A can be connected by a transition chain, that is a sequence
a0 = a−, a1, . . . , an = a+ such that the unstable manifold of T (ai−1) transver-
sally intersects the stable manifold of T (ai). We would like to deduce the ex-
istence of a transversal heteroclinic orbit between T (a−) and T (a+), but I do
not know whether the higher codimensional analog of Cresson’s transitivity
Lemma 4 holds. However, the weaker obstruction property proved in [21, 31] is
enough to imply the existence of orbits connecting any neighborhood of T (a−)
to any neighborhood of T (a+). It is also possible to build shadowing orbits
using a variational approach. We need the slightly different assumption that
A ⊂ R

m is a compact connected set such that, for all a ∈ A, all the minimizing
homoclinics of T (a) are isolated. For each a− and a+ in A, it is then possible
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to construct by a variational method similar to Section 2.4 a heteroclinic orbit
between T (a−) and T (a+).

3. The General a priori Unstable Case

A very specific feature of all the examples studied so far is that the perturbation
preserves the partially hyperbolic invariant tori T (a), a ∈ R

m. We now discuss
the general a priori unstable system (2).

3.1. The Large Gap Problem. Let us assume that r = 1 and try to
apply the method of Section 2. There is no explicit invariant torus any more,
but KAM methods can be applied to prove the existence of many partially
hyperbolic tori. More precisely, there exists a diffeomorphism

ωµ(a) : R
m −→ R

m,

close to the identity, such that an invariant quasiperiodic Torus Tµ(a) of fre-
quency ωµ(a) exists, and is close to T (a), provided the frequency ωµ(a) satisfies
some Diophantine condition. Moreover, for such values of a, the local stable and
unstable manifolds W±

µ (a) can be generated by functions

S±
a,µ(t, θ, q) : T× T

m × [−3/4, 3/4] −→ R,

as earlier. So we have exactly the same picture as in Section 2, except that
the objects are defined only on a subset Aµ ⊂ R

m of parameters. In order
to reproduce the mechanism of Section 2, we must find elementary transitions
chains a0, . . . , ak in R

m, with the additional requirement that ai ∈ Aµ. It is
necessary at this point to describe a bit more the set Aµ. Roughly, the KAM
methods allow to prove the existence of the Torus Tµ(a) provided a belongs to

Aµ =

{

a : k · (1, ωµ(a)) >

√
µ

‖k‖τ ∀k ∈ Z
m+1 − {0}

}

for some constant τ > m+1. This set Aµ is totally disconnected, hence it is not
possible to apply a continuity method like in Proposition 1 in order to prove the
existence of a transition chain. We must be more quantitative, which is possible
when µ is so small that the Poincaré-Melnikov approximation is valid. In that
regime, we have ∆̄a,µ ≈ µMa, where Ma has a non-degenerate critical point.
The conclusion of Lemma 3 can then be proved to hold under the more explicit
condition that ‖a′ − a‖ 6 Cµ. In other words, the sequence a0, a1, . . . , ak is an
elementary transition chain if ‖ai − ai−1‖ 6 Cµ. However, the gaps in Aµ have
a width of size

√
µ > Cµ. As a consequence, for small µ, it seems impossible

to build long transition chains, and the method fails. This is the Large Gap
Problem, see [35]. Even if there are classes of examples where the method can
be applied because more tori exist in some regions of phase space, see [13, 19, 8]
for example, the generic case seems out of range.
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3.2. Normally hyperbolic invariant cylinder. The Large Gap
problem has now been solved, at least in the case where m = 1, see [46, 17, 18,
26, 5, 44]. We will not discuss and compare all these solutions here, but just
expose some general ideas which arise from them.

An important new point of view is to focus on the whole cylinder C =
∪aT (a) rather than on each of the tori T (a) individually. This cylinder is Nor-
mally hyperbolic in the sense of [34, 30], and thus it is preserved in the perturbed
system. This new point of view is very natural, it appears in [43, 24], and then
in many other papers. The deformed cylinder Cµ contains all the preserved tori
Tµ(a) obtained by KAM theory. The restricted dynamics is described by an
a priori stable system on T × T

m × R
m. If m > 1, we are confronted to our

lack of understanding of the a priori stable situation. If m = 1, however, the
restricted system is the suspension of an area preserving twist map, and we can
exploit the good understanding of these systems given by Birkhoff theory which
has also been interpreted (and extended) variationally in the works of Mather
[40, 41]. We consider this case (m = 1) from now on. The invariant 2-tori
which are graphs are of particular importance (they correspond to rotational
invariant circles of the time-one map). To each of these invariant graphs, we
can associate two real numbers, the rotation number ω (defined from Poincaré
theory of circle homeomorphisms), and the area a, which is the symplectic area
of the domain of the cylinder Cµ ∩ {t = 0} delimited by the zero section and
by the invariant graph under consideration. If a given invariant graph T of the
restricted dynamics has irrational rotation number (or is completely periodic),
then there is no other invariant graph with the same area a. We can take a
two-covering and associate to this graph two functions S±

a by formula similar
to (10). They generate the local stable and unstable manifold of the Torus T ,
the correspond to the global minima of the difference of the so-called barrier
function S+

a −S−
a . Minimal homoclinics and isolated minimal homoclinics to T

can be defined as in Section 2.6. The existence of minimal homoclinics can be
proved basically in the same way as it was there.

Definition 8. An invariant graph is called a transition torus if it has irrational
rotation number (or if it is foliated by periodic orbits), and if all its minimal
homoclinic orbits are isolated.

Transition tori can be used to build transition chains in the same way as
partially hyperbolic quasiperiodic tori with transversal homoclinics. Let A ⊂ R

be the set of areas of transition tori. To each a ∈ A is attached a unique
transition torus Tµ(a) (note that this torus may be only Lipschitz, and is not
necessarily quasiperiodic). If A contains an interval [a−, a+], then the existence
of a heteroclinic orbit between Tµ(a−) and Tµ(a+) can be proved by already
exposed methods (considering the way we have chosen our definitions, a varia-
tional method should be used, but a parallel geometric theory could certainly
be given).

In general, the set A is totally disconnected, and transition chains can’t be
obtained by a simple continuity method. If we make the additional hypothesis
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that all invariant graphs of the restricted dynamics are transition tori, then the
set A is closed and a connected component ]a−, a+[ of its complement corre-
sponds to a “region of instability” of the restricted system in the terminology of
Birkhoff. More precisely, the tori Tµ(a−) and Tµ(a+) enclose a cylinder which
does not contain any invariant graph. The theory of Birkhoff then implies that
there exist orbits of the restricted dynamics connecting an arbitrarily small
neighborhood of Tµ(a−) to an arbitrarily small neighborhood of Tµ(a+). This
gives an indication about how to solve the large gap problem: use the Birkhoff
orbits to cross regions of instability, and the Arnold homoclinic mechanism to
cross transition circles. It is by no means obvious to prove the existence of actual
orbits shadowing that kind of structure. In order to do so, one should first put
these mechanisms into a common framework. The variational framework seems
appropriate, although a geometric approach is also possible. The Birkhoff the-
ory was described and extended using variational methods by Mather in [40],
and he proposed a new variational formalism adapted to higher dimensional
situations in [41]. On the other hand, Bessi’s method indicates how to put
Arnold’s mechanism into a variational framework. These heuristics lead to:

Theorem 3. Let [a−, a+] be a given interval. If all the invariant graphs of area
a ∈ [a−, a+] of the restricted dynamics are transition tori, then there exists an
orbit (θ(t), q(t), θ̇(t), q̇(t)) and a time T > 0 such that θ̇(0) 6 a− and θ̇(T ) > a+.

This theorem is proved using variational methods and weak KAM theory
in [5], Section 11, where it is deduced from more general abstract results. It
also almost follows from [18], Theorem 5.1, which is another general abstract
result proved by elaborations on Mather’s variational methods [41], see also
[4]. Applying that result of Cheng and Yan, however, would require a minor
additional generic hypothesis on the restricted dynamics. In the case where
r = 1, a slightly weaker version of Theorem 3 could also be deduced from the
earlier paper of Chen and Yan [17]. Under different sets of hypotheses, results
in the same spirit have been obtained by geometric methods in [32, 33]. At the
moment, these methods do not reach statements as general as Theorem 3, but
they apply in contexts where the variational methods can’t be used.

The following variant of Theorem 3 may deserve attention in connection to
the Arnold Mechanism: Assume that a− and a+ belong to A, or in other words
that there exist transition tori Tµ(a±). These tori enclose a compact invariant
piece Cµ[a−, a+] of the invariant cylinder. If all the invariant graphs contained
in Cµ[a−, a+] are transition tori, then we say that Cµ[a−, a+] is a transition
channel. The proof of Theorem 3 also implies that, if Cµ[a−, a+] is a transition
channel, then there exists a heteroclinic orbit connecting Tµ(a−) to Tµ(a+).

Theorem 3 proves the existence of diffusion under “explicit” conditions.
These conditions are hard to check on a given system, but they seem to hold
for typical systems. It is much harder than one may expect to prove a precise
statement in that direction, but it was achieved by Cheng and Yan in [17, 18].
The main difficulty comes from the condition on the isolated minimal homo-
clinics. Actually, it is not hard to prove that the homoclinics to a given torus
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are isolated for a typical perturbation, but we need the condition to hold for all
the tori simultaneously. Since there are uncountably many tori, it is necessary
to understand the regularity of the map a 7−→ S±

a . Recall that the functions
S±
a are well-defined provided there exists an invariant graph of area a which

has irrational rotation number or is foliated by periodic orbits. We call Ã this
set of areas, it contains A. Cheng and Yan prove that the map a 7−→ S±

a is
Hölder continuous on Ã, and deduce the genericity result using an unpublished
idea of John Mather.

4. Back to the a priori Stable Case

The main objects in Arnold’s mechanism are partially hyperbolic tori, that
he called whiskered tori. It was proved by Treshchev [46], that whiskered tori
exist in the a priori stable situation, see also [27, 45]. However, because of
the Large Gap Problem, it seems difficult to prove directly the existence of
transition chains made of whiskered tori. Actually, small transition chains do
exist, because the density of KAM tori increases near a given one, but the
length of these chains gets small when ε gets small, hence these chains do not
produce instability of the action variables in general.

The modern paradigm on the a priori unstable case that we exposed in
Section 3.2 elects 3-dimensional normally hyperbolic invariant cylinders as the
important structure. It is well-known that normally hyperbolic invariant cylin-
ders exist in the a priori stable case. For example, each 2-dimensional whiskered
torus has a center manifold, which is a 3-dimensional normally hyperbolic in-
variant cylinder, see e. g.[12]. Actually, it is simpler to prove directly the exis-
tence of normally hyperbolic invariant cylinders, this involves no small divisors.
However, the most direct proofs seem to produce “small” normally hyperbolic
cylinders, which means that their size is getting small with ε, so that we face
the same problem as above when we had small transition chains. The main
statement of [6] is that “large” normally hyperbolic cylinders exist, meaning
that their size is bounded from below independently of ε.

In order to be more specific, let us select a resonant momentum of the form
y0 = (I0, 0) ∈ R×R

n−1, with I0 Diophantine. Assuming that the corresponding
averaged potential V has a unique minimum and that this minimum is non-
degenerate, we have:

Theorem 4 ([6]). There exists two intervals [a−, a+] ⊂ J , J open, both inde-
pendent from ε, and ε0 > 0 such that, for ε ∈]0, ε0[ the following holds:

There exists a C1 map

(Q,P ) : T× T× J 3 (t, θ, I) 7−→
(

Q(t, θ, I), P (t, θ, I)
)

∈ T
n−1 × R

n−1

such that the flow is tangent to the graph Γ of (Q,P ). Moreover, there exist
two real numbers a0 < a− and a1 > a+ in J (which depend on ε) such that the
Treshchev tori T (a0) and T (a1) exist and are contained in Γ. The part Γ1

0 of Γ
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delimited by these two tori is then a compact invariant manifold with boundary
of the flow, it is normally hyperbolic. It is equivalent to say that it is partially
hyperbolic with a central distribution equal to the tangent space of Γ. The inner
dynamics is the suspension of an area-preserving twist map (where the area is
the one induced from the ambient symplectic form).

It is then reasonable to expect that, under generic additional hypotheses, Γ1
0

is a transition channel as defined in Section 3.2, and thus that T (a0) and T (a1)
are connected by a heteroclinic orbit. We are currently exploring that program
in collaboration with Vadim Kaloshin and Ke Zhang. It is important to observe
that the map (Q,P ) is not C1-close to (0, 0), and that the inner dynamics is
not close to integrable. Fortunately, Theorem 3 allows such a generality.
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Abstract

We recently proved the existence of quadratic polynomials having a Julia set
with positive Lebesgue measure. We present the ideas of the proof and the
techniques involved.

Mathematics Subject Classification (2010). Primary 37F50; Secondary 37F25.

Keywords. Holomorphic dynamics, Julia sets, small divisors.

1. Introduction

We study the dynamics of polynomials P : C → C, i.e., the sequences defined
by induction:

z0 ∈ C, zn+1 = P (zn).

The sequence (zn) is called the orbit of z0.

Definition 1. The filled-in Julia set K(P ) is the set of points z0 ∈ C with
bounded orbits. The Julia set J(P ) is the boundary of K(P ).

The filled-in Julia set K(P ) is a compact subset of C and so, its boundary
J(P ) has empty interior. Points outside K(P ) have an orbit tending to ∞.

This subject has its roots in complex analysis, strongly linked to Montel’s
theorem on normal families. In particular, the family of iterates (P ◦n)n≥0 is
normal on the complement of J(P ) (called the Fatou set of P ) and on any open
set intersecting the Julia set J(P ), the sequence of iterates is not normal, since
such an open set contains points with bounded orbit and points whose orbit
tends to ∞. Thus, the Julia set J(P ) may be viewed as the chaotic set for the
dynamics of P .

Periodic points play an important role from a dynamical point of view.
A periodic point of P of period p is a point z such that P ◦p(z) = z for some
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Figure 1. Left: the Julia set of a quadratic polynomial for which the critical point
is periodic of period 3. It is known as the Douady Rabbit. Right: the Julia set of a
quadratic polynomial with an unbounded critical orbit. The Julia set is a Cantor set.

smallest integer p ≥ 1. The set {z, P (z), . . . , P ◦(p−1)(z)} is a periodic cycle. The
periodic point is repelling (respectively attracting, superattracting, indifferent)
if its multiplier λ = (P ◦p)′(z) satisfies |λ| > 1 (respectively 0 < |λ| < 1, λ = 0,
|λ| = 1). The Julia set J(P ) may equivalently be defined as the closure of the
set of repelling periodic points of P .

Fatou observed that the dynamics of a polynomial P is intimately related
to the behavior of the orbit of the critical points of P . A critical point of P is
a point ω ∈ C for which P ′(ω) = 0. In particular, Fatou proved that K(P ) is
connected if and only if all the critical points of P are in K(P ). Further, when
all the critical points of P are in the complement of K(P ), then K(P ) = J(P )
is a Cantor set.

Fatou suggested that one should apply to J(P ) the methods of Borel-
Lebesgue for the measure of sets. This naturally yields the following question.

Question. What can we say about the Lebesgue measure of the Julia set of a
polynomial?

Until recently, the common belief was that Julia sets of polynomials always
had area (Lebesgue measure) zero. It is known that the area of J(P ) is zero
in several cases, in particular when J(P ) does not contain critical points of P
or when the orbit of any critical point of P contained in J(P ) is finite ([DH]
or [L1]).

In the rest of the article, we will mainly focus on the case of quadratic
polynomials

Qλ(z) = λz + z2 with λ ∈ C.

Such a polynomial has a fixed point at 0 with multiplier λ and a unique critical
point ωλ = −λ/2. So, we have the following dichotomy: K(Qλ) is connected if
the orbit of ωλ is bounded and is a Cantor set otherwise. We shall denote by
M the set of parameters λ ∈ C for which K(Qλ) is connected (see Figure 2).

The area of J(Qλ) is zero:

• when λ is outside the connectivity locus M;
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Figure 2. The set M of parameters λ ∈ C for which J(Qλ) is connected. It contains
the unit disk D for which Qλ has an attracting fixed point at 0.

• when Qλ has a (super)attracting cycle (conjecturally, this is true for all
λ in the interior of M, and according to [MSS], if there were a parameter
λ in the interior of M for which Qλ does not have an attracting cycle, it
is known that J(Qλ) would necessarily have positive area);

• for a generic (in the sense of Baire) λ in the boundary of M ([L1] or [L2]),

• if Qλ is not infinitely renormalizable ([L3] or [Sh]), a condition that we
will not define here;

• if λ = e2iπα with α = a0 +
1

a1 +
1

a2 +
.. .

and log an = O(
√
n) ([PZ]); this

condition on α holds for almost every α ∈ R/Z.

In the 1990’s, Douady proposed a program to show that there exist complex
numbers λ of modulus 1 so that the area of J(Qλ) is positive. After a major
breakthrough by the second author [C1], we finally brought Douady’s program
to completion in 2005. For a presentation of Douady’s initial program, the
reader is invited to consult [C2].

Theorem 1.1 ([BC2]). There exist λ of modulus 1 such that J(Qλ) has positive
area.

We will present the ideas of the proof and the techniques involved.

2. Quadratic Polynomials with an Indifferent
Fixed Point

We may classify the quadratic polynomials Qλ with |λ| = 1 in three categories
as follows. First, let us note λ = e2πiα with α ∈ R/Z and set

Pα(z) = ei2παz + z2, Kα = K(Pα) and Jα = J(Pα).



1704 Xavier Buff and Arnaud Chéritat

If α ∈ Q/Z, we say that 0 is a parabolic fixed point of Pα. In that case, Kα

has interior and 0 ∈ Jα. The orbit of a point in the interior of Kα converges to
0. The Julia set Jα has area zero.

If α ∈ (R − Q)/Z, the dynamical behavior of Pα near 0 depends subtly on
the arithmetical properties of α. We have the following dichotomy.

• If α is sufficiently Liouville, then Jα = Kα. Any neighborhood of 0 con-
tains points with bounded orbit and points whose orbit tends to ∞. Cre-
mer proved that the set of such angles α is Gδ dense in R/Z. We say that
Pα has a Cremer fixed point at 0.

• If α is badly approximated by rational numbers, then 0 is in the interior
of Kα. In that case, we denote by ∆α the component of the interior of Kα

that contains 0. Then Pα is holomorphically conjugate to the aperiodic
rotation Rα : z 7→ e2πiαz : there is an analytic isomorphism φ between the
unit disk D and ∆α such that φ(0) = 0 and φ◦Rα = Pα◦φ. One says that
the polynomial Pα is linearizable and the component ∆α is called a Siegel
disk. Siegel [Si] proved that this property holds when α is Diophantine,
in particular for a set of full measure in R/Z (α is Diophantine if there
are constants c > 0 and τ ≥ 2 such that |α− p/q| > c/qτ for all rational
numbers p/q).

Figure 3. The Julia set of Pα for α = (
√
5− 1)/2. We have drawn the orbits of some

points in the Siegel disk. Each orbit accumulates on a R-analytic circle.

In fact, there is a complete arithmetic characterization of the two previous
sets of angles. Let (pn/qn)n≥0 be the approximants to α given by the continued
fraction algorithm. Brjuno [Brj] proved that when

B(α) =
∑

n≥0

log qn+1

qn
< +∞,
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the polynomial Pα is linearizable. Yoccoz [Y] proved that when B(α) = +∞,
the polynomial Pα has a Cremer fixed point at 0. In addition, any neighborhood
of 0 contains a cycle which is not reduced to {0}.

We have the following refined versions of our theorem.

Theorem 2.1. There exist angles α ∈ (R−Q)/Z for which Pα has a Cremer
fixed point at 0 and area(Jα) > 0.

Theorem 2.2. There exist angles α ∈ (R − Q)/Z for which Pα has a Siegel
disk and area(Jα) > 0.

We will now sketch the proof of the first theorem. The proof of the second
theorem relies on similar ideas.

3. Strategy of the Proof

Proposition 3.1. The function α 7→ area(Kα) ∈ [0,+∞[ is upper semi-
continuous.

In other words, if αn → α, then

lim sup
n→∞

area(Kαn
) ≤ area(Kα).

Proof. Every open set containing Kα contains Kα′ for α′ close enough to α.

We shall see that the existence of Julia sets with positive area is an immedi-
ate consequence of the following key proposition which is illustrated by Figure
4.

Proposition 3.2. There exists a non empty set S of Diophantine numbers
such that: for all α ∈ S and all ε > 0, there exists α′ ∈ S with

• |α′ − α| < ε,

• Pα′ has a cycle in D(0, ε) \ {0} and

• area(Kα′) ≥ (1− ε)area(Kα).

With this proposition, one concludes as follows. First, we choose εn in (0, 1)
so that

∏

(1− εn) > 0. Then, we construct (θn ∈ S) so that:

• (θn) is a Cauchy sequence.

• area(Kθn) ≥ (1− εn)area(Kθn−1
).

• For θ = lim θn, the polynomial Pθ has small cycles.

Since θn is Diophantine, K(Pθn) has non empty interior and so, its area is
positive. Since Pθ has small cycles, it is not linearizable, and so Jθ = Kθ. By
upper semi-continuity of the function α 7→ area(Kα), we have

area(Jθ) = area(Kθ) ≥ lim sup
n→+∞

area(Kθn) ≥ area(Kθ0) ·
∏

n≥1

(1− εn) > 0.
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Figure 4. Two filled-in Julia sets Kα (top) and Kα′ (bottom), with α′ a well-chosen
perturbation of α. If α and α′ are chosen carefully enough the loss of measure from
Kα to Kα′ is small.

4. The Set S

For α ∈ R−Q, let us use the continued fraction notation

[a0, a1, a2, . . .] = a0 +
1

a1 +
1

a2 +
.. .

.

Recall that an irrational number α = [a0, a1, a2, . . .] is of bounded type if the
sequence (an) is bounded.
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Definition 2. For N ≥ 1, denote by SN be the set of irrational numbers
α = [a0, a1, a2, . . .] of bounded type such that an ≥ N for all n ≥ 1.

Proposition 4.1. If N ≥ 1 is a sufficiently large integer, then Proposition 3.2
holds with S = SN .

5. McMullen’s Results on Siegel Disks of
Bounded Type

As we shall see below, the proof of Proposition 4.1 reduces to the following
result that is illustrated on Figure 5.

Lemma 5.1. If N ≥ 1 is a sufficiently large integer, then for all α ∈ SN , there
is a sequence αn ∈ SN converging to α such that

• Pαn
has a cycle converging to 0 as n → ∞,

• for all open set U ⊂ ∆α, we have

lim inf
n→∞

area(U ∩∆αn
) ≥ 1

2
area(U ∩∆α) and

• ∆αn
→ ∆α for the Hausdorff topology on compact subsets of C.

The second assertion says that asymptotically, the Siegel disks ∆αn
are at

least 1/2-dense in ∆α.

Figure 5. Illustration of lemma 5.1 for N = 1, α = [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 . . .] and
α′ = [0, 1, 1, 1, 1, 1, 1, 1, 1010, 1, 1, . . .]. The Siegel disk ∆α is colored light grey. The
boundary of the Siegel disk ∆α′ is drawn. The darker set is the set of points in ∆α′

whose orbit under iteration of Pα′ remains in ∆α.
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We then use an argument of toll belts inspired by work of McMullen [McM]
to promote the loss of 1/2 for the area of Siegel disks to an arbitrarily small loss
for the area of the filled-in Julia sets. For the argument of toll belts to work,
we need that α is of bounded type and ∆αn

→ ∆α as n → ∞. More precisely,
we use the following result of McMullen.

Theorem 5.2 (McMullen). Assume α is a bounded type irrational and δ > 0.
Then, every point z ∈ ∂∆α is a Lebesgue density point of the set K(δ) of points
whose orbit under iteration of Pα remains at distance less than δ from ∆α and
eventually intersect ∆α.

Figure 6. If α = (
√
5 − 1)/2, the critical point of Pα is a Lebesgue density point of

the set of points whose orbit remain in D(0, 1). Left: the set of points whose orbit
remains in D(0, 1). Right: a zoom near the critical point.

Proof of Proposition 4.1 assuming lemma 5.1. Assume α ∈ SN and let
(αn)n≥0 be a sequence of SN given by lemma 5.1. Denote by K (resp. Kn)
the filled-in Julia set of Pα (resp. Pαn

) and by ∆ (resp. ∆n) its Siegel disk.
We know that asymptotically, the Siegel disks ∆n are at least 1/2-dense in the
Siegel disk ∆. We want to show that area(Kn) → area(K), which amounts to
proving that the density of Kn in ∆ tends to 1 as n → ∞.

For all S, one can find a finite nested sequence of toll belts (Ws)1≤s≤S

Ws =
{

z ∈ C ; 2δs < d(z,∆) < 8δs
}

with 8δs+1 < δs,

surrounding the Siegel disk ∆ such that for n large enough the following holds.

• The orbit under iteration of Pαn
of any point in ∆\Kn must pass through

all the toll belts.

• Thanks to Lemma 5.1, the toll belts surround the Siegel disk ∆n.
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• Thanks to Theorem 5.2 and Lemma 5.1, under the iterates of Pαn
, at

least 1/2− ε of points in the toll belt Ws+1 will be captured by the Siegel
disk ∆n without being able to enter the toll belt Ws.

• Since the toll belts surround the Siegel disk ∆n, they are free of the
postcritical set of Pαn

. This gives us Koebe control of points passing
through the belt, implying that at most 1/2 + ε of points in ∆ that
manage to reach Ws+1 under iteration of Pαn

will manage to reach Ws.

As a consequence, at most (1/2 + ε)S points in ∆ can have an orbit under
iteration of Pαn

that passes through all the belts and we are done by choosing
S large enough.

6. The Sequence (αn)

We claim that if N is a large enough integer and if α = [a0, a1, . . .] ∈ SN , then
Lemma 5.1 holds for the sequence (αn) defined by

αn = [a0, a1, . . . , an, An, N,N,N, . . .] (1)

where the sequence (An) is chosen so that

An ≥ N, qn

√

An −→
n→+∞

+∞ and qn

√

logAn −→
n→+∞

1.

Lemma 5.1 has three parts which can be treated one at a time: the existence
of a cycle of Pαn

close to 0, the density of the perturbed Siegel disk ∆αn
within

∆α and the Hausdorff convergence of ∆αn
to ∆α.

7. The Control of the Cycle

In order to prove the existence of a cycle of Pαn
close to 0, we use a result of

the second author [C1].

Proposition 7.1. Assume Pα has a Siegel disk. Let (pn/qn) be the approxi-
mant to α given by the continued fraction algorithm. Let χ : D → ∆α be an
isomorphism which sends 0 to 0. There is a sequence (rn) converging to 1 and a
sequence of univalent maps (χn : D(0, rn) → ∆α) converging locally uniformly
to χ : D → ∆α such that the following holds: if (αn) is a sequence converging
to α with lim sup qn

√

|αn − pn/qn| < 1 and if Cn is the set of qn-th roots of
αn − pn/qn, then for n large enough, χn(Cn) is a cycle of period qn of Pαn

.

The functions χn : D(0, rn) → ∆α are called explosion functions. They
control the explosion, as α goes away from pn/qn, of the cycle of period qn of
Pα which coalesces at 0 when α = pn/qn.
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Now, observe that the sequence (αn) defined by Equation (1) satisfies

αn − pn
qn

∼
n→∞

(−1)n

q2nAn
.

Since qn

√
An → +∞, we have that qn

√

|αn − pn/qn| → 0.
Thus, for n sufficiently large, the set Cn of qn-th roots of αn−pn/qn is con-

tained in an arbitrarily small neighborhood of 0. The sequence (χn) converges
locally uniformly to χ. So, for n large enough, the set χn(Cn), which is a cycle
of Pαn

, is contained in an arbitrarily small neighborhood of 0

8. The Density of Perturbed Siegel Disks

We still assume that (αn) is defined by Equation (1).
In order to control the density of the Siegel disks ∆αn

within the Siegel disk
∆α, we may work in the coordinates given by the explosion functions χn. In
other words, we set

fn = χ−1
n ◦ Pαn

◦ χn.

As n → ∞, the domain of fn eventually contains any compact subset of D.
The sequence (fn) converges locally uniformly to the rotation Rα. The map fn
fixes 0 with derivative e2πiαn and has a Siegel disk ∆n whose image by χn is
contained in the Siegel disk ∆αn

of Pαn
.

We want to prove that asymptotically as n → ∞, the Siegel disks ∆n are
1/2-dense in the unit disk. For this purpose, it is not enough to compare the
dynamics of fn with the dynamics of a rotation. Instead, we will compare it
with the (real) dynamics of an appropriate polynomial vector field ξn.

Note that by property of the explosion functions χn, the set Cn of qn-th
roots of εn = αn − pn/qn is a periodic cycle of fn of period qn. Let ξn be the
polynomial vector field which has simple roots exactly at 0 and the points of Cn

and which has derivative 2πiqnεn at 0. Then, the time-1 map of ξn fixes 0 and
the points of Cn (which are also fixed points of f◦qn

n ) with multiplier e2πiqnεn at
0 (which is also the multiplier of f◦qn

n at 0). Thanks to those properties, there
is a good hope that the time-1 map of ξn very well approximates f◦qn

n . This
vector field is

ξn = ξn(z)
d

dz
= 2πiqnz(εn − zqn)

d

dz
.

We have an explicit description of the vector field ξn which is invariant
under the rotation z 7→ e2πi/qnz. For all ρ < 1 and all n sufficiently large, the
set Xn(ρ) defined below is invariant under the real flow of the vector field ξn:

Xn(ρ) =

{

z ∈ C ;
zqn

zqn − εn
∈ D(0, sn)

}

with sn =
ρqn

ρqn + |εn|
.

This set looks like an amoeba with qn arms. Asymptotically, the density of
Xn(ρ) in D(0, ρ) is at least 1/2.
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Figure 7. Some real trajectories for the vector field ξn; zeroes of the vector field are
shown.

Using very careful estimates on how close f◦qn
n is to the time-1 map of the

vector field ξn and using Yoccoz renormalization techniques [Y], we obtain the
following result which implies the required control on the asymptotic density
of ∆n within D.

Proposition 8.1. For all ρ < 1, if n is large enough, the set Xn(ρ) is contained
in the Siegel disk ∆n of fn.

9. Hausdorff Convergence of Perturbed Siegel
Disks

In order to prove the Hausdorff convergence of ∆αn
to ∆α, we use techniques

of near parabolic renormalization introduced recently by Inou and Shishikura
[IS]. Those techniques are far too elaborate for us to present them here.

Let us however insist on the fact that it is to apply those techniques that
we have to assume that the entries in the continued fraction expansion of α are
large enough (an ≥ N for all n).

10. Further Questions

Our proof of existence of quadratic polynomials having a Julia set of positive
area is a priori not constructive. It would be interesting to have informations
regarding the set of α ∈ R for which the Julia set Jα has positive area.

Theorem 10.1 (Petersen, Zakeri). For almost every α ∈ R, we have
area(Jα) = 0.
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Question. Is the set of parameters α ∈ R for which area(Jα) > 0 a Gδ-dense
set?

Now that we have proved the existence of α ∈ R − Z for which Jα = Kα

has positive area, we can change the question. Indeed, we do not know of a
single example of a non linearizable quadratic polynomial Pα with α ∈ R − Q

for which the Julia set has area zero. It may well be that all such Julia set have
positive area.

Question. Is there α ∈ R such that Jα = Kα and area(Jα) = 0?

A key point in our proof was the observation that the function α 7→ area(Kα)
is upper semicontinuous. It would be interesting to have additional informations
regarding its continuity properties.

Theorem 10.2 (Douady). The function α 7→ area(Kα) is discontinuous at
rational numbers.

Question. Is the function α 7→ area(Kα) continuous at irrational numbers?

The techniques we have been developing for studying the area of Julia sets
already had fruitful applications, in particular for the study of Siegel disks.
Answering a question of Herman, we proved the following result in collaboration
with A. Avila.

Theorem 10.3 ([ABC]). There exist α ∈ R such that Pα has a Siegel disk
whose boundary is a smooth (C∞) Jordan curve.

In that case, the boundary of the Siegel disk Pα cannot contain the critical
point of Pα. This is in contrast to the following result of Petersen and Zakeri.

Theorem 10.4 (Petersen-Zakeri). For almost every α ∈ R, Pα has a Siegel disk
whose boundary is a Jordan curve passing through the critical point ωλ = −λ/2.

This raises naturally the following questions.

Question. If Pα has a Siegel disk, is the boundary of ∆α always a Jordan
curve?

Question. For which values of α does Pα have a Siegel disk whose boundary
contains the critical point?
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Abstract

In this lecture, we sketch the variational construction of diffusion orbits in posi-
tive definite Lagrangian systems. Diffusion orbits constructed this way connects
different Aubry sets, along which the action is locally minimized.
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1. Introduction

The variational method we are discussing here is based on Mather’s theory
for Tonelli Lagrangian systems. Let M be an n-dimensional smooth manifold
without boundary. A function L : TM × T is called Tonelli Lagrangian if it
satisfies the following conditions:

Positive definiteness. For each (x, t) ∈ M × T, the Lagrangian function is
strictly convex in velocity: the Hessian Lẋẋ is positive definite.

Super-linear growth. We assume that L has fiber-wise superlinear growth:
for each (x, t) ∈M × T, we have L/‖ẋ‖ → ∞ as ‖ẋ‖ → ∞.

Completeness. All solutions of the Lagrangian equation are well defined for
all t ∈ R.

Given a cohomology class c, let ηc be a closed 1-form such that its coho-
mology class [ηc] = c. Denote by −α(c) the c-minimal average action. A curve
γ : R →M is called c-minimal (c-semi static) if

∫ t1

t0

(L− ηc + α(c))(dγ(s), s)ds ≤

∫ t′1

t′0

(L− ηc + α(c))(dξ(s), s)ds
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Diffusion Orbits 1715

holds for each absolutely continuous curve ξ with ξ(t′0) = γ(t0), ξ(t
′
1) = γ(t1)

and any t0 < t1, t
′
0 < t′1 such that t0 − t′0, t1 − t′1 ∈ Z. In this case, we call

dγ = (γ, γ̇) c-minimal (c-semi static) orbit. All c-minimal orbits constitute the
Mañé set Ñ (c), in which one can define the Mather set M̃(c) and the Aubry
set Ã(c):

M̃(c) ⊆ Ã(c) ⊆ Ñ (c).

The symbols M(c), A(c) and N (c) denote their projection down to M × R

along each tangent fiber. Roughly speaking, Aubry set consists of the orbits
of stationary motion, besides the orbits in the Aubry set, Mañé set contains
transient orbits connecting different stationary states. For more details, one can
refer the pioneer work of Mather [51, 52] as well as Mañé [57, 58]. There are
also many contributions to this theory, for example see [4, 8, 10, 16, 26, 27, 34,
35, 36, 41, 59, 60].

The variational method has been developed a powerful tool for the study
of global instability in Hamiltonian systems convex in action (slow) variables.
Although the study of Arnold diffusion was started in the sixties of last cen-
tury [1, 2], it was until the nineties before this problem was considered from
variational point of view. In [12], a variational technique was applied to study
the original example of Arnold. It seems the beginning.

By the study of recent years, great progress has been made towards solving
the problem of Arnold diffusion by variational as well as geometric method.
We mention the papers [29, 62, 9] and the announcements [64, 55]. It is almost
impossible to list all works in this very active area, among which we also mention
[15, 13, 33, 30, 31, 32, 37, 38, 39, 40, 44, 42, 43, 53], it is clearly incomplete.

In this lecture, we shall describe briefly, mainly based on [24, 25, 46], how
to construct orbits connecting different Aubry sets by the variational method.
The first version of [25] appeared in 2004. In general, along each orbit in Aubry
set the variation of action (slow) variable is small. Along an orbit connecting
different Aubry sets far from each other, action variable undergoes substantial
variation. It implies diffusion.

To construct diffusion orbits, one needs to pose some hypotheses. Therefore,
one of the important issues is to convince people the rationality of the hypothe-
ses, for instance, the genericity. Up to now, to our knowledge, the generic prop-
erty of the relevant hypotheses is proved only in [24, 25, 46], some cusp-residual
property is provided in [62] for systems with two and half degrees of freedom.

2. Local Connecting Orbits

Throughout this report, we let M = Tn. Let γ: R → M be a solution of the
Euler-Lagrange equation:

d

dt

(∂L

∂ẋ

)

−
∂L

∂x
= 0.
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We call the orbit dγ = (γ, γ̇) connecting Ã(c) to Ã(c′) if its α-limit set α(dγ)∩
Ã(c) 6= ∅ and its ω-limit set ω(dγ) ∩ Ã(c′) 6= ∅. A connecting orbit is called
global if Ã(c′) is not close to Ã(c), and called local if they are close to each
other.

Global connecting orbits are constructed shadowing a sequence of local con-
necting orbits which are successively connected. Along each of these local con-
necting orbits the Lagrangian action attains local minimum. Up to now, we
have found two types of local connecting orbits, i.e. type-c and type-h connect-
ing orbits.

Type-h connecting orbit looks like heteroclinic orbit. Let π : M̄ → M be
a finite covering manifold, Ñ (c, M̄) denotes the corresponding Mañé set, then
πÑ (c, M̄) ⊇ Ñ (c), and in some case the inclusion is nontrivial. For example, if
there is a neighborhood of some lower dimensional torus N containing the time-
1-section of N (c): N ⊃ N0(c), then πÑ (c, M̄) ) Ñ (c) if M̄ is chosen such that
lift of N has two components N̄1 and N̄2. Indeed, it contains those homoclinic
orbits along which the action attains minimum. For the topic of homoclinic
orbits to Aubry sets, one can refer [14, 6, 28, 66]. In contrast with it, the Aubry
set remains the same if we consider it in each finite covering manifold.

Theorem 2.1. Let N be a neighborhood of lower dimensional torus such that

the group H1(M,N,Z) 6= 0 and let M̄ be a finite covering of M such that

the lift of N has two components N̄1 and N̄2. Assume that, N ⊃ N0(c) and

πN0(c, M̄)\N contains an isolated point, then for each c′ sufficiently close to c
there exists an orbit connecting Ã(c) to Ã(c′) or vise verse.

One can refer [24, 25] for the proof. This theorem can only be applied
to time-periodic systems. It has a version for autonomous systems [46]. The
relevant conditions are required as πÑ (c, M̄)\N×Rn contains an isolated orbit
and α(c′) = α(c).

Type-c local connecting orbits are obtained by making use of the c-
equivalence between corresponding cohomology classes. So-called c-equivalence
is introduced in [52] first. However, the equivalence defined in [52] is of no in-
terest for autonomous systems, as c is equivalent to c′ if and only if c and c′

are contained in the same flat of the α-function [7] and the Aubry set is the
same for all cohomology classes in the interior of the flat [59]. Since the minimal
points of the α-function constitute a flat, we only need to establish some kind
of equivalence among those cohomology classes in a non-minimum level set of
the α-function for autonomous systems.

Therefore, it is reasonable to assume that there exists a non-degenerate
embedded (n−1)-dimensional torus Σc ⊂ Tn such that, restricted to the Mañé
set N (c), the flow πxφ

t
L is transversal to Σc (see [45]), where πx : TM → M

is the standard projection. We say Σc is a non-degenerate embedded (n − 1)-
dimensional torus if there is a smooth injection ϕ: Tn−1 → Tn such that Σc
is the image of ϕ, and the induced map ϕ∗: H1(T

n−1,Z) → H1(T
n,Z) is an
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injection. Let

Vc =
⋂

U

{iU∗H1(U,R) : U is a neighborhood ofN (c) ∩ Σc}.

Clearly,

V ⊥
c =

⋃

U

{ker i∗U : U is a neighborhood ofN (c) ∩ Σc}.

We say that c, c′ ∈ H1(M,R) are c-equivalent if there exists a continuous curve
Γ: [0, 1] → H1(M,R) such that Γ(0) = c, Γ(1) = c′, α(Γ(s)) is constant for all
s ∈ [0, 1], and for each s0 ∈ [0, 1] there exists δ > 0 such that Γ(s) − Γ(s0) ∈
V ⊥
Γ(s0)

whenever s ∈ [0, 1] and |s− s0| < δ.

From the definition of c-equivalence for autonomous systems, one can easily
recover the original definition for time-periodic systems by considering t as an
angle variable, M ×T as the configuration manifold and M as the codimension
one section.

Theorem 2.2. ([24, 46]) If c is equivalent to c′, then there exists an orbit

connecting Ã(c) to Ã(c′).

Applying this theorem to twist map, one immediately obtains the result in
[50].

The proof of both theorem 2.1 and 2.2 are based on the semi-continuity of
pseudo-connecting orbit set on parameters. We only discuss it for time-periodic
case here ([25]), one can refer [46] for autonomous case. Let

Lη,µ,ψ = L− η − µ− ψ,

where η is a closed 1-form on M such that [η] = c, µ = ρ(t)µ̄ in which µ̄ is
a closed 1-form on M such that [µ̄] = c′ − c, ρ is a smooth function of t with
ρ = 0 for t ≤ 0 and ρ = 1 for t ≥ 1; ψ = %(t)ψ̄ in which % = 0 for t ≤ 0 as well
as t ≥ 1, ψ̄ is a function depending on configuration coordinates only.

Definition 2.1. The pseudo-connecting curve set Cη,µ,ψ of Lη,µ,ψ consists of

those absolutely continuous curves satisfying the condition

∫ τ

s

Lη,µ,ψ(dγ(t), t)dt = inf
s1−s∈Z, τ1−τ∈Z

s1≤0, τ1≥1
ξ(s1)=γ(s)
ξ(τ1)=γ(τ)

∫ τ1

s1

Lη,µ,ψ(dξ(t), t)dt

− (s1 − s)α(c) + (τ1 − τ)α(c′).

holds for each s ≤ 0 and τ ≥ 1. The pseudo-connecting orbit set C̃η,µ,ψ is

defined as

C̃η,µ,ψ = {dγ : γ ∈ Cη,µ,ψ}.
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If N ⊂ M exists such that A(c) ⊂ N , A(c′) ⊂ N and H1(M,N,Z) 6= 0, the
set Cη,µ,ψ,en can be defined similarly to the set Cη,µ,ψ by requiring an extra

condition that 0 6= [γ] ∈ H1(M,N,Z) for each curve γ ∈ Cη,µ,ψ,en . Let

C̃η,µ,ψ,en = {dγ : γ ∈ Cη,µ,ψ,en}.

Clearly, for each curve γ in the pseudo-connecting curve set, α(dγ) ⊂ Ã(c)
and ω(dγ) ⊂ Ã(c′) and ∪t∈R,γ∈Cη,0,0

(dγ(t), t) = Ñ (c). There would be an

orbit connecting Ã(c) to Ã(c′) if a curve in this set is a solution of the Euler-
Lagrangian equation determined by L. The upper-semi continuity (η, µ, ψ) →
(Cη,µ,ψ,Cη,µ,ψ,en) is used for the proof of both theorem 2.1 and 2.2. Refer [25]

to see how to choose µ̄ and ψ when Ã(c) has isolated homoclinic orbits and
when c is equivalent and close to c′.

The action along these local connecting orbits attains local minimum.
Roughly speaking, we call a curve locally minimal if the action along this curve
is smaller than the action along any other curve staying in its small neigh-
borhood. This minimal property appears to be certain variational version of
the transversal intersection of the “stable set” of an Aubry set with the “un-
stable set” of another Aubry set. Here is the precise definition for type-h. For
m0,m1 ∈ N and H1(M,N,Z) 6= 0

ht
−,t+

η,µ,ψ,en
(m0,m1) = inf

ξ(−t−)=m0
ξ(t+)=m1

[ξ] 6=0

∫ t+

−t−
Lη,µ,ψ(dγ(s), s)ds

+ t−α(c) + t+α(c′),

h∞c (m0,m1) = lim inf
t→∞

inf
ξ(−t)=m0
ξ(t)=m1

∫ t

−t

(L− η)(dξ(s), s)ds+ 2tα(c).

Local Minimal Property: Assume A(c),A(c′) ⊂ N , H1(M,N,Z) 6= 0, [η] =
c and [η+ µ̄] = c′. There exist two open balls V −, V + and two positive integers

t−, t+ such that V̄ − ⊂ N\M0(c), V̄
+ ⊂ N\M0(c

′), γ(−t−) ∈ V0, γ(t
+) ∈ V1

and

h∞c (x−,m0) + ht
−,t+

η,µ,ψ,en
(m0,m1) + h∞c′ (m1, x

+)

− lim inf
t
−
i

→∞

t
+
i

→∞

∫ t
+
i

−t−i

Lη,µ,ψ(dγ(t), t)dt− t−i α(c)− t+i α(c
′)

> 0

holds for any (m0,m1) ∈ ∂(V0 × V1), x
− ∈ M0(c)∩ πx(α(dγ)), x

+ ∈ M0(c
′)∩

πx(ω(dγ)). Where t−i , t
+
i are the sequences such that γ(−t−i ) → x− and γ(t+i ) →

x+, and πx : TM →M is the standard projection.

The local minimal property has a version for autonomous systems, refer [46]
for the precise statement.
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3. Global Connecting Orbits

The Aubry set for c can be connected to the Aubry set for c′ by an orbit if
there is a generalized transition chain joining c with c′. Such an orbit is a global
connecting orbit shadowing a sequence of local connecting orbits, along which
the Lagrangian action attains local minimum.

Definition 3.1. Let π : M̄ → M be a finite covering of a compact manifold

M and let c, c′ be two cohomolgy classes in H1(M,R). We say that c is joined

to c′ by a generalized transition chain if there is a continuous curve Γ: [0, 1] →
H1(M,R) such that Γ(0) = c, Γ(1) = c′ and for each τ ∈ [0, 1] at least one of

the following cases takes place:

(I), there are finitely many Aubry classes, and there is a small δτ > 0 such

that πN0(Γ(τ), M̄)\(A0(Γ(τ),M) + δτ ) 6= ∅ is totally disconnected;

(II), N0(Γ(τ),M) is homologically trivial, i.e. it has a neighborhood Uτ such

that the inclusion map H1(Uτ ,R) → H1(M,R) is the zero map.

This definition applies to time-periodic systems [25], one can find the version
for autonomous systems from [46]. By the definition, there are finitely many
cohomology classes c0 = c, c1, · · · , ck+1 = c′ such that Ã(ci) is connected to
Ã(ci+1) either by type-h or by type-c connecting orbits.

To construct orbits connecting Ã(c) to Ã(c′) in the time-periodic system,
we introduce a modified Lagrangian

L̃ = L− η0 −
k

∑

i=0

(−τi)
∗(µi + ψi).

where τi represents a time translation operator such that τ∗u(·, t) = u(·, t+ τ),

[η0 +
∑j

i=0 µ̄i] = [ηj+1] = cj+1, µi and ψi are carefully chosen so that each
curve either in Cηi,µi,ψi,en or in Cηi,µi,ψi

is a solution of the Euler-Lagrange
equation determined by L.

Given two points m ∈ A0(c0), m
′ ∈ A0(ck+1), we consider the minimum of

the action of L̃ along curves {γ : [−K,K ′ + τk] →M}

inf

∫ K′+τk

−K

L̃(dγ(t), t)dt+

k
∑

i=1

(τi − τi−1)α(ci) +Kα(c0) +K ′α(ck+1)

under certain constraints. By choosing sufficiently large τi+1 − τi, K and K ′,
the minimizer does not touch the boundary of the constraints. Thus the mini-
mizer is smooth everywhere, consequently, is the solution of the Euler-Lagrange
equation for L. Let K,K ′ → ∞, we obtain an orbit connecting Ã(c) to Ã(c′).
Refer [25] for details and refer [46] for the study in the autonomous case.

If the generic condition is dropped that there are finitely many Aubry classes
for each cohomology class, there would be extra difficulty in the construction of
global connecting orbits. In the definition of generalized transition chain, it is
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required that the Aubry set has finitely many classes if it is connected to other
Aubry set by an orbit of type-h. If the quotient Aubry sets occupy an interval
(see the example in [56]), we do not know yet how to show the smoothness of
the minimizer. It is proved in [54] the total disconnectedness of the quotient
Aubry set in low dimensions.

It is not our final goal to produce somehow abstract framework such as a
generalized transition chain, but it can be applied to interesting problems. The
first non-trivial example is generic a priori unstable systems.

4. A Priori Unstable Systems

It has been shown in [24, 25, 46] that in a priori unstable systems a generalized
transition chain exists generically in Ck-topology (k = 3, 4, · · · ,∞). By a priori

unstable system in time-periodic case we mean that it is the coupling of a rotator
and a pendulum:

H(u, v, t) = h1(p) + h2(x, y) + P (u, v, t)

where u = (q, x), v = (p, y), (p, q) ∈ R × T, (x, y) ∈ Tn × Rn, P is a time-1-
periodic small perturbation. H ∈ Cr (r = 3, 4, · · · ,∞) is assumed to satisfy
the following hypothesis:

1, h1 + h2 is a convex function in v, i.e., the Hessian matrix ∂2vv(h1 + h2)
is positive definite. It is finite everywhere and has superlinear growth in v, i.e.,
(h1 + h2)/‖v‖ → ∞ as ‖v‖ → ∞.

2, it is a priori hyperbolic in the sense that the Hamiltonian flow Φth2
,

determined by h2, has a non-degenerate hyperbolic fixed point (x, y) = (0, 0)
and the function h2(x, 0) : T

n → R attains its strict maximum at x = 0.
There is an invariant manifold Σ ⊂ Tn+1 × Rn+1 × T whose time-t-section

Σt is a small deformation of a cylinder T×R. Restricted to Σ0, the time-1-map
of the flow ΦtH is area-preserving and twist. By Aubry-Mather theory [48], the
minimal invariant set Mω,0 for each rotation number ω is either an invariant
curve, or an Denjoy set (cantori) or periodic points. Let Mω = ∪t∈T(Mω,0, t).

To use the variational method we study it in Lagrangian formalism. Let

L(u, u̇, t) = max
v

〈v, u̇〉 −H(u, v, t),

it determines the coordinate transformation L: (u, v, t) → (u, u̇, t). Obviously,
L is a Tonelli Lagrangian, and in the space of H1(T 1+n,R) = R1+n there is a
channel C ⊃ R×Bd such that for each c ∈ C the Mather set M̃(c) = LMω for
certain ω ∈ R, where Bd is an n-dimensional ball with radius d > 0. Therefore,
for each c of these cohomology classes, the homology group H1(M,N0(c),Z) is
non-trivial.

Let Γ: [0, 1] → H1(M,R) be a path connecting c, c′ ∈ C with Γ(s) ∈ R×Bd
for each s ∈ [0, 1]. Let σ ⊂ [0, 1] be the set such that s ∈ σ if an only if
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N0(Γ(s)) is an invariant curve. Generically, σ is a Cantor set with positive
Lebesgue measure. To obtain a generalized transition chain, we need to verify
the condition that for each s ∈ σ the set πN0(Γ(s), M̄)\N0(Γ(s)) + δ 6= ∅ is
totally disconnected. The verification of this condition is by no means trivial,
because the set σ is uncountable. Fortunately, it is done by checking some
regularity of the barrier function with respect to s when they are restricted
on σ. For other s ∈ [0, 1]\σ, the Manñé set N0(Γ(s)) is topologically trivial,
i.e. it does not contain non-shrinkable circle. In this case, Γ(s) is equivalent to
any cohomology class nearby. Therefore, we can make use of the c-equivalence.
In this way, we show that a generalized transition chain exists for Ck generic
perturbation. Refer [46] for the relevant study on autonomous systems.

The large gap problem was considered as a major challenge for the construc-
tion of diffusion orbits. Corresponding to a strong resonant rotation number,
generically there is a large Birkhoff instability region in the cylinder. By the
methods already known, one is unable to verify whether the stable manifold
of the invariant circle on one side intersects the unstable manifold of the circle
on the other side, the gap between these two circles is too big (see [47]). It
was proposed in [64] to overcome this problem by considering the Cantori in
the regions so that the stable and unstable sets of the Cantori would bridge
the large gap. The diffusion orbit claimed in [64] shadows a sequence of local
connecting orbits of type-h only. In [24, 25, 46], the large gap problem is solved
by constructing an orbit along a sequence of local connecting orbits with type-h
as well as type-c. All these exhibit the power of the variational method.

5. Barrier Functions and Elementary

Weak-KAM

To see that a Aubry set can be connected to another Aubry set nearby by a
type-h orbit, we need to make sure that the minimal homoclinic orbits to the
Aubry set are isolated, i.e. the minimal points of the barrier function in certain
region or at certain section are isolated. As there are uncountably many barrier
functions, this goal seems very difficult to reach. One strategy is to study the
Hausdorff or box dimensions of the set of barrier functions.

Assume that the Aubry set is contained in N for all cohomology classes
under consideration. Let Z be the set of those Lipschitz functions defined on
M\N , whose minimal point is not isolated, let B be the set of barrier functions
restricted in M\N . In vague language, Z is of “infinite co-dimensions”. If the
box dimension of B is finite, an open and dense set of small perturbations exists
such that the set of barrier functions for each perturbed system is a translation
of the original set B → B + u and (B + u) ∩ Z = ∅, i.e. the minimal points
are isolated for each barrier function.

The finiteness of box dimension is obtained if some Hölder regularity of
barrier function on parameters is found. Up to now, we are only succeeded in
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a priori unstable systems when the parameter is restricted on the Cantor set
σ ⊂ [0, 1], corresponding to invariant circles. This is sufficient for the existence
of a generalized transition chain obtained in [24, 25, 46]. If one try to obtain the
chain composed by local connecting orbits of type-h only, he needs to consider
the set of barrier functions for all s ∈ [0, 1] and to show the finiteness of its
Hausdorff dimension. The verification appears unavailable yet by studying the
regularity of the barrier functions on the parameter. However, the modulus of
continuity for Peierls’ barrier [49] is expected to be used for this purpose.

Barrier function can be expressed in terms of weak-KAM solutions [35].
However, we need simpler form of barrier function by so-called elementary weak-
KAM solution [20]. It is possible when there are finitely many Aubry classes
for each cohomology class, which is proved generic in [10].

We know that there is exactly only one weak-KAM if there is only one
Aubry class. If there are finitely many Aubry classes for certain cohomology
class c, denoted by {Ac,i, i = 1, 2, · · · , k} respectively, then we can construct
small non-negative perturbation such that its support does not intersect with
Ac,i which is the unique Aubry set for the perturbed system. Denoted by u−c,i,ε
the unique weak-KAM, it is easy to see that there is exactly one weak-KAM
u−c,i such that u−c,i,ε → u−c,i. In the same way one can define u+c,i. We call them
elementary weak-KAM. Thus, there are k pairs of elementary weak-KAM.

To construct type-h local connecting orbits, we need to consider the prob-
lem in certain finite covering configuration space. Let u±c,i be the elementary
weak-KAM with respect to the covering space, the elementary weak-KAM is
nontrivial and the barrier function is defined as

Bc,i,j = u−c,i − u+c,j .

It measures the action along curves which joining the i-th Aubry class to j-th
Aubry class in the covering space.

Generically, at most n + 1 Aubry classes exist for each cohomology class,
thus, there are finitely many barrier functions Bc,i,j for each c. It implies that
we obtained a set-valued map from the space of cohomology class to the space
of Lipschitz functions. As the limit of a sequence of elementary weak KAM is
also an elementary weak KAM, this set-valued map is upper semi-continuous
when it is restricted to each closed set with the topology inherited from the
standard topology in Rn.

Recall that u− is semi-concave and u+ is semi-convex, we find that barrier
function is differentiable at its local minimal points. By making use of the fact
that each weak-KAM solution is a viscosity solution of the Hamilton-Jacobi
equation, we are able to show in [20] that

The topological dimension of the set of barrier functions is finite.

Thus, it seems generically true for each cohomology that the stable set of
the Aubry set does not coincide with unstable set of the Aubry set everywhere.
Although it is useful in some special case, this is not sufficient to show the
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existence of a generalized transition chain in generic systems. We need the
following issue which remains open:

Open Problem 1: Generically, the Hausdorff dimension of the set of barrier

functions is finite.

6. A Priori Stable Systems

A nearly integrable Hamiltonian system of KAM type is usually called a priori

stable system when one studies the problem of Arnold diffusion:

H(x, y) = h(y) + hε(x, y),

where hε is small in Ck-topology ‖hε‖k ≤ ε (k ≥ 3). We can write time-
periodic system in the form of autonomous system by considering the time t as
an extra angle variable. To study dynamical instability, one tries to construct
global connecting orbits in resonant layers. Unlike KAM torus, a torus is easily
destructed if the frequency is resonant.

A frequency ω is called k-resonant if there are exactly k independent integer
vectors Ii such that 〈ω, Ii〉 = 0. In the unperturbed system, each standard torus
{y = constant} is invariant for the Hamiltonian flow. If the frequency on some
torus is k-resonant, this torus has a foliation into a family of (n−k)-dimensional
sub-tori, the frequency on these sub-tori is an (n − k)-dimensional and non-
resonant. If the frequency on sub-torus is of Diophantine, some sub-tori survive
small perturbations. Generically, if the frequency on n-torus is k-resonant, there
are at least 2k (n − k)-dimensional sub-tori surviving small perturbation [23],
and some partial results were obtained earlier in [11, 22, 61]. Without generic
assumption on perturbation, such result is proved in [17, 18] when k = 1, and
it is shown in [19] one of the (n − 1)-dimensional torus is the support of the
relevant minimal measure. However, the existence of these lower dimensional
tori depends on how small the perturbation is, comparing with the Diophantine
coefficient. That is, for any perturbation in generic sense, there are always some
Diophantine frequencies with “too small” coefficient such that the sub-tori are
destructed by the perturbation. Also, a sub-torus is easily destructed if the
frequency is of Liouville.

In practice, one is trying to construct global connecting orbits along a path
Γ: [0, 1] → Rn where each frequency ∂yh(Γ(s)) is k-resonant with k ≥ n−2. This
path must pass through strong resonant points, around which the Hamiltonian
is equivalent to the following [20]:

H ′(x, y) = h′(y) + Z(x, y) +R(x, y)

where ∂yh
′(Γ(s)) = ωs = (ω1,s, 0, · · · , 0), Z is invariant to the flow (x, y) →

(x + ωst, y) and R is a higher order term comparing with Z in the following
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sense: one can write R in the form

R =

k−2
∑

|i|=0

Yi(y − Γ(s))Ri(x, y),

where Yi(y) is i-homogenous in y and the following estimates hold:

‖Z‖2 ≤ 2ε, ‖Ri‖2 ≤ ε1+(k−2−i)λ, λ = (3n+ 4)−1.

To connect the Aubry set with the rotation vector ωλ to other Aubry sets by
the method we already know, we need to make sure that this Aubry set does not
cover the whole configuration manifold, but this problem remains open when
n > 3.

Open Problem 2: Assume there is only one minimal measure µc for a given

co-homology c, whose rotation vector is resonant, i.e. 〈ρ(µc), I〉 = 0 holds for

some non-zero integer vector I. Is the relative homology group ofM with respect

to A(c) non-trivial, H1(M,A(c),Z) 6= 0?

In generic senese, this problem turns out to be simpler when n = 3. If
we forget about the higher order term R, the Hamiltonian h′(y) + Z(x, y) is
independent of the first component of x = (x1, x2, x3) because it is invariant to
the flow (x, y) → (x+ωt, y). Thus, its dynamics is the same as a system with two
degrees of freedom, y1 = constant. By the Lipschitz graph property of Aubry
set, each orbit in Aubry set is either a periodic orbit or a fixed point provided
the rotation vector satisfies some resonant condition. Under so-called cusp-
residual assumptions, the Aubry set of the system h′+Z+R remains in a small
neighborhood of the periodic orbit or the fixed point. That is, H1(M,A(c),Z) 6=
0 holds for every cohomology class under consideration.

However, even for three degrees of freedom the dynamical instability prob-
lem is not solved yet in cusp-residual a priori stable systems. Lack of estimation
on the Hausdorff dimension of barrier function set, one has not yet found way
to obtain the cusp-residual property. Nevertheless, we are optimistic about a
weaker result:

Conjecture: Given δ > 0 and two points (x, y) (x′, y′) in an energy surface,

there exists ε0 > 0 such that for each hε with ‖hε‖Ck ≤ ε < ε0, there are

uncountable many h′ε with ‖hε − h′ε‖C2 < ε1+(k−2)λ such that the Hamiltonian

flow of H ′ = h + h′ε has a trajectory that visits the δ-neighborhood of (x, y) as

well as that of (x′, y′).

To see it, we note that H is approximated by h + Z which is equivalent
to a system with two degrees of freedom, ‖H − h − Z‖C2 ≤ ε1+(k−2)λ. When
the configuration manifold is a two-dimensional torus and the Mather set M(c)
consists of one circle, the barrier function attains its minimum along each of
its minimal homoclinic curve. Thus, the barrier function would be constant
in an open set if the minimal homoclinic orbits are not isolated. Recall the
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finiteness of the topological dimension of the barrier function set, it would
be reasonable to expect that, generically, the minimal homoclinic orbits are
isolated for each cohomology class. By choosing small and suitable perturbation
R′ to h+Z → h+Z+R′, one can make sure that the minimal homoclinic orbits
for h + Z + R′ are also isolated. That is, one obtains a generalized transition
chain.

The conjecture of topological instability in higher-dimensional case by Arnold
[2, 3] is expected to be true for exact Hamiltonian systems, that is, the flow
is determined by a Hamiltonian function. It is interesting to recall a result for
volume-preserving diffeomorphism: a set of co-dimension one tori with posi-
tive Lebesque measure survives perturbations (see [21, 65, 63]). Consequently,
topological instability is not a generic phenomenon for volume-preserving dif-
feomorphisms.
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Abstract

We present some perturbation methods which help to describe the generic dy-
namical behaviour of geodesic flows.
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The difficulties in studying generic properties of geodesic flows with respect to
other classes of dynamical systems are twofold. The obvious difficulty of making
perturbations for the geodesic equations and the fact that perturbations of
geodesic flows are never local.

Indeed, let (M, g) be a compact riemannian manifold and write
g =

∑

ij gij(x) dxi ⊗ dxj . The phase space of the geodesic flow is the unit
tangent bundle SM . A perturbation of the coefficients of the riemannian met-
ric gij(x) with support A ⊂M changes the geodesic vector field along the whole
interior of the fiber SA = π−1(A), where π : SM → M is the projection. All
the known proofs of the closing lemma (cf. [25]) use local perturbations and
hence they can not be applied to geodesic flows.

Similar difficulties arise when one tries to change the Euler-Lagrange flow
of a lagrangian L : TM → R on a given energy level with perturbations by a
potential i.e. L′(x, v) = L(x, v) + ψ(x), where ψ : M → R is a function on M .
For a mechanical lagrangian, this corresponds to perturbing the conditions of
the problem without changing Newton’s law.

In [7] we prove Theorem 1 below, here we describe the ingredients its proof.

Theorem 1. On any closed manifold M with dimM ≥ 2 the set of C∞ rie-

mannian metrics whose geodesic flow contains a non-trivial hyperbolic basic set

is open and dense in the C2 topology.

That basic set is a horseshoe obtained from a homoclinic point. Using sym-
bolic dynamics, the existence of a horseshoe implies that such geodesic flows

∗Partially supported by conacyt Mexico.
CIMAT, P.O. Box 402, 36000 Guanajuato gto, Mexico. E-mail: gonzalo@cimat.mx.
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have positive topological entropy and that the number of closed geodesics grow
exponentially with their length.

1. Bumpy Metrics

The simplest invariant set in a geodesic flow is a periodic orbit Γ = (γ, γ̇)
arising from a closed geodesic γ onM . Given a small transversal section Σ to Γ
at Γ(0) in SM define the Poincaré map P = P(Σ, γ) : Σ←↩ as the first return
map under the geodesic flow. Its derivative P = dΓ(0)P is called the linearized

Poincaré map. The geodesic γ is said non-degenerate if 1 is not an eigenvalue
of P . This is the necessary condition in the implicit function theorem to obtain
a continuation of Γ under perturbations of the metric. It is also equivalent to Γ
being a non-degenerate critical point of the action functional A =

∫

‖v‖2 with
appropriate normalizations1. A metric is said bumpy if all its periodic orbits
are non-degenerate.

Let Rr(M), be the set of Cr riemannian metrics on M endowed with the
Cr topology. The Bumpy Metric Theorem states that the set of bumpy metrics
contains a residual subset in Rr(M), 2 ≤ r ≤ ∞. It was first announced by
Abraham [1] but the first complete proof was given by Anosov [2]. Klingenberg
and Takens [19] made a useful improvement:

Write n+1 = dimM . Given an integer k ≥ 1 let Jk
s (n) be the set of k-jets of

smooth symplectic maps of (R2n, 0)←↩. A set Q ⊂ Jk
s (n) is said invariant if for

all σ ∈ Jk
s (n), σQσ

−1 = Q. The theorem in [19] proves that if Q is a residual
and invariant subset of Jk(n) then the set of metrics such that the Poincaré
map of every closed geodesic is in Q contains a residual set in Rr(M). See [30],
[29] for analogous theorems on hypersurfaces of Rn+2.

The proof in [19] is based on a local perturbation theorem which says that
if γ is a closed geodesic for g ∈ Rr(M) there is g′ ∈ Rr(M) arbitrarily close
to g such that γ is a closed geodesic for g′ and its Poincaré map belongs to
Q. This implies the theorem above provided that the set of closed geodesics is
countable. This condition is ensured by the case k = 1 proved by Anosov [2]
together with the Bumpy Metric Theorem.

2. Twist Maps

We say that a closed geodesic is hyperbolic if its linearized Poincaré map has
no eigenvalues of modulus 1 (in a transversal section inside SM). We say that
it is elliptic if it is non-degenerate and non-hyperbolic.

The existence of a generic elliptic periodic orbit gives dynamical information
about the geodesic flow. If it is partially elliptic, i.e. if not all eigenvalues have

1i.e. on the space of closed curves in M with fixed parametrization interval [0, `] and initial
point in the transversal section Σ.
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modulus 1, using [15] one can obtain an invariant central manifold N where
the Poincaré map P|N is totally elliptic and N is normally hyperbolic.

Imposing generic conditions specifying only the jets of the Poincaré maps
at the periodic points [7, §3] it is possible apply Klingenberg and Takens The-
orem [19] to obtain coordinates in which a restriction of the Poincaré map P|N
becomes a weakly monotonous exact twist map on T

q × R
q which is C1 near

a totally integrable twist map. In this conditions we have the Birkhoff-Lewis
theorem (see Moser [18, appendix 3.3]) which says that any punctured neigh-
bourhood of the elliptic point contains a periodic point.

Indeed, the condition to write the Birkhoff normal form are that the elliptic
points are 4-elementary, this is that the eigenvalues of modulus one ρ1, . . . , ρq;
ρ1, . . . , ρq satisfy

∏q
i=1 ρ

νi

i 6= 1 whenever 1 ≤∑q
i=1 |νi| ≤ 4. (1)

Then the normal form is P(x, y) = (X,Y ), where

Zk = e2πi φk zk + gk(z),

φk(z) = ak +
∑q

`=1 βk` |z`|2

z = x+iy, Z = X+iY , ρi = e2π i ak and g(z) = g(x, y) has vanishing derivatives
up to order 3 at the origin. We say that the normal form is weakly monotonous

if the matrix βk` is non-singular. The property detβk` 6= 0 is independent of the
particular choice of normal form. In these coordinates, the matrix βk` can be
detected from the 3-jet of P at θ = (0, 0) and it can be seen that the property
{ (1) and detβk` 6= 0 } is open and dense in the jet space J3

s (q). Changing the
coordinates to (θ, r) ∈ T

q × R
q, where zj =

√
ε rj e

2πiθj on rj > 0, ∀j, the
Poincaré map becomes a weakly monotonous exact twist map of Tq × R

q. We
restrict our discussion to the generic set of riemannian metrics all of whose
closed geodesics are 4-elementary and have weakly monotonous normal forms.

Moreover, using techniques developed by Arnaud [3] we prove in [7] that
P|N has a 1-elliptic periodic point. This is a periodic point whose linearized
Poincare map on a transversal Σ inside SM has exactly two eigenvalues of
modulus 1. Such a periodic point has a normally hyperbolic central manifold
where the Poincaré map is an exact twist map of the 2-dimensional annulus
S
1 × R.
Such a generic twist map contains periodic points for all rational rotation

numbers in an interval. In fact for any such rational rotation number there are
elliptic and hyperbolic periodic points which have homoclinic intersections [20].

3. The Kupka-Smale Theorem

A single homoclinic intersection in a geodesic flow can be made transversal by a
perturbation argument by Donnay [11] in dimension 2 and Petroll [23] in higher
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dimensions. But perhaps this is not enough to make transversal two invariant
manifolds.

Another argument that can be used to change invariant manifolds or single
orbits in geodesic flows and also in lagrangian systems with perturbations by a
potential can be made along the following lines. Weak stable and weak unstable
manifolds are lagrangian submanifolds for the canonical symplectic form. A
lagrangian submanifold contained in a level set of an autonomous hamiltonian
is invariant under the hamiltonian flow. Then it is enough to deform the stable
manifold W s to a lagrangian submanifold Λ which is transversal to Wu and
then perturb the metric so that the geodesic hamiltonian H|Λ is constant. We
will have that W s = Λ for the new geodesic flow. The details appear in [9,
Theorem 2.5 and Appendix A].

This argument together with Anosov-Klingenberg-Takens theorem gives

Theorem 2. Let Q ⊂ Jk−1
s (n) be residual and invariant. There is a residual

subset G ⊂ Rk(M) such that if g ∈ G then

• The (k− 1)-jet of the Poincaré map of every closed geodesic of g is in Q.

• All heteroclinic intersections of hyperbolic orbits of g are transversal.

Choosing Q in the previous theorem as the condition { (1) and detβk` 6= 0 }
as above, we have that for a Kupka-Smale geodesic flow, if it contains an elliptic
closed geodesic then it has a transversal homoclinic orbit and hence a hyperbolic
subset. It remains to study the case in which all closed geodesics are hyperbolic.

4. Many Closed Geodesics

Bangert [5], Hingston [14] and Rademacher [26], [28] prove that a Ck generic
riemannian metric, 2 ≤ k ≤ ∞, contains infinitely many closed geodesics.

If the geodesic flow contains a generic elliptic closed geodesic, this is im-
plied by the Birkhoff-Lewis theorem (Moser [18, appendix 3.3]). But in this
case Rademacher [28] obtains infinitely many closed geodesics by imposing only
conditions on the 1-jet of the Poincaré map, which is easier to perturb as in
Anosov [2]. If there are finitely many closed geodesics Rademacher obtains a
resonance condition on the average indices of the geodesics. If there is one ellip-
tic closed geodesic, its average index can be perturbed to break the resonance
and hence obtain infinitely many closed geodesics. If all closed geodesics are
hyperbolic, then Hingston [14, §6.1] and Rademacher [26, Theorem 1] prove
that there are infinitely many.

It is not known if a simply connected manifold can have all its closed
geodesics hyperbolic. In [27] Rademacher proves that in the examples of ergodic
geodesic flows in S2 of Donnay [10] and Burns-Gerber [6], all the homologically
visible closed geodesics are hyperbolic.
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5. Stable Hyperbolicity

In order to prove the generic existence of a homoclinic orbit and hence a hyper-
bolic set when all closed geodesics are hyperbolic, we use the theory of stable
hyperbolicity developed by Mañé [22].

Recall that a linear map T : R2n → R
2n is hyperbolic if it has no eigenvalue

of modulus 1. Equivalently, if there is a splitting R
2n = Es ⊕ Eu and M ∈ Z

+

such that T (Es) = Es, T (Eu) = Eu,
∥

∥TM |Es

∥

∥ < 1
2 ,

∥

∥T−M |Eu

∥

∥ < 1
2 .

Let Sp(n) be the group of symplectic linear isomorphisms of R2n. We say
that a sequence ξ : Z→ Sp(n) is periodic if there is m ≥ 1 such that ξm+i = ξi
for all i ∈ Z. A periodic sequence is said hyperbolic if the linear map

∏m
i=1 ξi

is hyperbolic. In this case the stable and unstable subspaces of
∏m

i=1 ξj+i are
denoted by Es

j (ξ) and E
u
j (ξ) respectively.

A family ξ = {ξα}α∈A of sequences in Sp(n) is bounded if there exists Q > 0
such that ‖ξαi ‖ < Q for every α ∈ A and i ∈ Z. Given two families of periodic
sequences in Sp(n), ξ = {ξα}α∈A and η = {ηα}α∈A, we say that they are
periodically equivalent if they have the same indexing set A and for all α ∈ A
the periods of ξα and ηα coincide. Given two periodically equivalent sequences
in Sp(n), ξ = {ξα}α∈A and η = {ηα}α∈A define

d(ξ, η) = sup{ ‖ξαi − ηαi ‖ : α ∈ A, i ∈ Z }.

We say that a family ξ is hyperbolic if for all α ∈ A the periodic sequence ξα

is hyperbolic. We say that a hyperbolic periodic family ξ is stably hyperbolic if
there is ε > 0 such that any periodically equivalent family η satisfying d(ξ, η) <
ε is also hyperbolic.

Finally, we say that a family of periodic sequences ξ is uniformly hyperbolic

if there exist K > 0, 0 < λ < 1 and subspaces Es
i (ξ

α), Eu
i (ξ

α), α ∈ A, i ∈ Z

such that ξj(E
τ
j (ξ

α)) = Eτ
j+1(ξ

α) for all α ∈ A, j ∈ Z, τ ∈ {s, u} and
∥

∥

∥

∥

∥

∥

m
∏

i=1

ξαj+i

∣

∣

∣

∣

∣

Es
j
(ξα)

∥

∥

∥

∥

∥

∥

< K λm and

∥

∥

∥

∥

∥

∥

∥





m
∏

i=1

ξαj+i

∣

∣

∣

∣

∣

Eu
j
(ξα)





−1
∥

∥

∥

∥

∥

∥

∥

< K λm

for all m ∈ Z
+, α ∈ A, j ∈ Z.

In [7] we prove

Theorem 3. If ξα is a bounded stably hyperbolic family of periodic sequences

of symplectic linear maps then it is uniformly hyperbolic.

6. The Perturbation Lemma

Let Γ be a set of closed geodesics. Construct a family ξ of periodic sequences
in Sp(n) given by the linearized time 1 maps of the geodesic flow restricted to
the normal bundle N in SM to the geodesic vector field in Γ ⊂ SM .
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Suppose that there are infinitely many closed geodesics in Γ and that the
family ξ is uniformly hyperbolic. Then the subspaces Es, Eu are continuous in
Γ and hence they can be extended continuously to the closure Γ. The closure
would be a uniformly hyperbolic set. By the Spectral Decomposition Theorem
it contains a non-trivial hyperbolic basic set because it is not a union of isolated
periodic orbits.

We say that a set Γ of closed geodesics for a metric g0 is stably hyperbolic

if there is a neighbourhood U ⊂ R2(M) of g0 in the C2-topology such that for
every g ∈ U , the analytic continuation Γ(g) of Γ exists and all the orbits in
Γ(g) are hyperbolic. In [9] we prove a perturbation lemma which implies that
if Γ is a stably hyperbolic set of closed geodesics then the corresponding family
ξ of symplectic linear maps is stably hyperbolic.

Using that result we obtain that a geodesic flow can either be perturbed to
contain a generic elliptic closed geodesic, and hence a twist maps and homo-
clinics, or the set of its periodic orbits is stably hyperbolic and then contains a
hyperbolic basic set.

We need a lemma in which one can perturb the linearized Poincaré map of
the time one map in single geodesic in Γ by a fixed amount independently of
the length, position, self-intersection or self-accumulation of the geodesic. Since
there is no “transversal space” to mitigate the perturbation, such a lemma
can only hold in the C2 topology. The lemma is written for a small geodesic
segment.

For simplicity we assume that all our riemannian metrics have injectivity
radius larger than 2. Due to an algebraic obstruction in our proof of the lemma
we have to assume that the initial metric g0 is in the set G1 of metrics with
the property that every geodesic segment of length 1

2 has one point where the
sectional curvatures are all different. In [7, §6 and appendix A] we prove that
G1 is C2 open and C∞ dense.

For the sequel we need to characterize G1 precisely. The orthogonal group
O(n) acts on the set of symmetric matrices S(n) ⊂ R

n×n by conjugation:
K 7→ QKQ∗, K ∈ S(n), Q ∈ O(n). Given g ∈ R2(M), define the map
Kg : SM → S(n)/O(n) as Kg(θ) := [K], where Kij = 〈Rg(θ, ei) θ, ej〉, Rg

is the curvature tensor of g and { θ, e1, . . . , en } is a g-orthonormal basis for
Tπ(θ)M . Let h : S(n)/O(n)→ R be the function

h([K]) =
∏

1≤i<j≤n

(λi − λj)2,

where λ1, . . . , λn are the eigenvalues of K. Let H : R2(M)→ [0,+∞[ be

H(g) = min
θ∈SM

max
t∈[0, 1

2
]
h(Kg(θ)).

Then G1 = { g ∈ R2(M) : H(g) > 0 }.
Fix a C∞ riemannian metric g0 on M . Let γ : [0, 1] → M be a geodesic

segment for g0. Let W be any neighbourhood of γ([0, 1]) in M . Let F =
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{ η1, . . . , ηm } be any finite set of geodesic segments defined on [0, 1] with the
following properties

• The endpoints of ηi are not contained in W .

• The segment γ([0, 1]) intersects each ηi transversally.

Let U be a neighbourhood of ∪F := ∪mi=1ηi([0, 1]). Denote by
R∞(g0, γ,F ,W,U) the set of C∞ riemannian metrics g on M for which γ
is a geodesic segment, g = g0 on γ([0, 1]) and g = g0 on U ∪ (M \W ).

Let Nt = { ζ ∈ Tγ̇(t)SM | 〈dπ(ζ), γ̇(t)〉 = 1 } be the subspace transver-
sal to the geodesic vector field given by the kernel of the Liouville 1-form
λ(x,v)(ζ) = 〈ζ, v〉x. This subspace is the same for all metrics g with g = g0
on γ([0, 1]). Fix symplectic orthonormal basis for N0 and N1. Identify these
subspaces with R

2n and the symplectic linear maps N0 → N1 with Sp(n). Let
φgt be the geodesic flow of a metric g and S : R∞(g0, γ,F ,W,U) → Sp(n) be
the linearized Poincaré map S(g) := dγ̇(0)φ

g
1|N0

. Write

B(g, γ) := max







‖g|γ‖C4 ,

[

max
t∈[ 1

4
, 3
4
]
h(Kg

(

γ̇(t))
)

]−1






.

Theorem 4. Let g0 ∈ G1 ∩ Rr(M), 4 ≤ r ≤ ∞. Given a neighbourhood

U ⊂ R2(M) of g0 there is δ = δ(B(g0, γ),U) > 0 such that given any γ, W and

F as above there is a neighbourhood U = U(B(g0, γ),U , γ,W,F) of ∪F in M
such that the image of G1 ∩ U ∩ R∞(g0, γ,F ,W,U) under the map S contains

the ball of radius δ centered at S(g0).

The actual perturbation is made in a small neighbourhood of one point
in γ([ 14 ,

3
4 ]), so that the theorem can be applied independently to adjacent

segments. In order to perturb the linearized Poincaré map on a periodic orbit
we use Theorem 4 sequentially on segments of the orbit, taking care that the
support of the perturbations are disjoint, as suggested in figure 1. The radius δ
can remain constant δ = δ(max{‖g0‖C4 , H(g0)

−1},U) in this process. Because
despite the C4 norm of the perturbed metric grows and H(g) changes, the
estimate of δ only depends on the bounds along the segment γ and subsequent
perturbations have disjoint supports. Each perturbation is C2 small and all
perturbations remain in U .

The statement of the lemma for a closed orbit is as follows. Given a closed
geodesic γ for g0 and a neighbourhood W of γ let Rr(g0, γ,W ) be the set of
Cr riemannian metrics g for which γ is a geodesic, and such that g = g0 on
γ ∪ (M \W ). Let T be the minimal period of γ and let m ∈ N and τ ∈ [ 12 , 1]
be such that mτ = T . Let γk(t) = γ(t+ kτ), t ∈ [0, τ ] and for g ∈ Rr(g0, γ,W )
let Sk(g) = dγk(0)φ

g
τ ∈ Sp(n), identifying symplectic linear maps N (γ̇k(0)) →

N (γ̇k(τ)) with Sp(n), N (θ) = kerλθ|TθSM .
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Figure 1. Avoiding self-intersections.

Corollary. Let g0 ∈ G1 ∩ Rr(M), 4 ≤ r ≤ ∞. Given a neighbourhood U
of g0 in R2(M), there exists δ = δ(g0,U) > 0 such that if g ∈ U , γ is a

cosed geodesic for g0 and W is a tubular neighbourhood of γ, then the image of

U ∩ G1 ∩Rr(γ, g0,W )→ Πm−1
k=0 Sp(n), under the map (S0, . . . , Sm−1), contains

the product of balls of radius δ centered at Sk(g0) for 0 ≤ k < m.

The derivative of the geodesic flow is represented by Jacobi fields. To prove
Theorem 4 one has to perturb the solutions of the Jacobi equation. The Jacobi
equation is difficult to solve but the perturbation of the Jacobi equation giving
the derivative dgS can be solved by variation of parameters in terms of the
original solution S(g). This allows to estimate the expansion of dgS and then
the radius δ.

7. Elliptic Geodesics in the Sphere

Another problem in which these methods have been used [8] is to prove that
there is a C2 open and dense set of riemannian metrics in S

2 which contain an
elliptic closed geodesic.
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Henri Poincaré [24] claimed that every convex surface in R
3 contains an

elliptic closed geodesic. But Grjuntal [13] showed a counterexample. Pinching
conditions to obtain an elliptic closed geodesic on spheres have been given in
Grjuntal [12], Thorbergsson [31] and Ballmann, Thorbergsson, Ziller [4].

If the metric can not be perturbed to a metric with an elliptic closed
geodesic, then its set of closed orbits is stably hyperbolic and then its closure
is uniformly hyperbolic. The geodesic flow of S2 can not be Anosov, because
Anosov geodesic flows do not have conjugate points [17], [21].

The geodesic flow is the Reeb flow of the Liouville contact form on SM .
The unit tangent bundle of S2 is RP

3. Its double cover is S
3 and the geodesic

flow of S2 lifts to the Reeb flow of a tight contact form on S
3. If the metric is

bumpy one can apply the theory of Hofer, Wysocki, Zehnder [16].
In the dynamically convex case, there is a surface of section which is a disk

transversal to all but one orbit of the Reeb flow which is the boundary of the
disk. The return map to the disk preserves the finite area form which is the
differential of the contact form. This leads to a contradiction because it can be
proved that a homoclinic class of an area preserving map which is not Anosov
can not be uniformly hyperbolic. In the non-dynamically convex case we use
geometric arguments on the finite energy foliation of [16] to get a contradiction.
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Furstenberg and Margulis conjectured classifications of invariant measures for
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1. Introduction

The interaction between the theory of dynamical systems and number theory,
and in particular of the theory of diophantine approximation, has a long and
fruitful history. In particular, the study of the action of subgroups H < SLn(R)
on the quotient Xn = SLn(Z)\SLn(R) is often intimately linked to number
theoretic problems.

For instance G. A. Margulis used in the late 1980’s the subgroup

SO(2, 1)(R)◦ ⊂ SL3(R)

acting on
X3 = SL3(Z)\SL3(R)

by right translation to prove the long-standing Oppenheim conjecture concern-
ing the values Q(Zn) of an indefinite quadratic form in n ≥ 3 variables, see [38].
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Here the acting group SO(2, 1)(R)◦ is a simple non-compact subgroup of SL3(R)
that is generated by unipotent one-parameter subgroups. Here a unipotent one-
parameter subgroup is the image of a homomorphism u : R → SLn(R) given by
u(t) = exp(tm) for t ∈ R and some given nilpotent matrix m ∈ Matn(R).

Due to the work of Ratner [44, 45] the dynamics of H on Xn is to a
large extent understood if H is generated by unipotent one-parameter sub-
groups. These theorems and their extensions by Dani, Margulis, Mozes, Shah,
and others, have found numerous applications in number theory and dy-
namics. We refer to [32], [40], and [46] for more details on these important
topics.

These notes concern the dynamics of the diagonal subgroup A of SLn(R),
with the aim to explain the many connections between number theory and the
action of A on Xn (or similar actions). We hope that the compilation of these
applications will serve as a motivation to find new connections.

Before we list the applications let us briefly describe the dynamics of the
diagonal subgroup. First we need to point out that the dynamical properties
of a one-parameter subgroup a(t) of A is quite different from the dynamical
properties of a unipotent one-parameter subgroup. For instance if n = 2 then
the dynamical system given by right translation of the diagonal elements

a(t) =

(
et/2 0
0 e−t/2

)
= diag(et/2, e−t/2)

on X2 is precisely the geodesic flow on the unit tangent bundle of the modular
surface M = SL2(Z)\H. This flow is hyperbolic and one can find, e.g. by using
the Anosov shadowing lemma, an abundance of arbitrarily weird orbits. We
refer to [31] for the theory of hyperbolic flows and to [18, §9.7] for a discussion
of A-invariant measures on X2. This should be contrasted with the dynamics
of the horocycle flow, i.e. the dynamics of the unipotent one-parameter sub-

group u(t) =

(
1 t
0 1

)
on X2 where every orbit is either periodic or is equidis-

tributed in X2 with respect to the Haar (or Liouville) measure, see [4] and
[18, §11.7].

However, if n ≥ 3 and A denotes the full (n − 1)-dimensional subgroup,
then it is expected that the orbits are better behaved. For instance, we have
the following conjecture of G. A. Margulis.

Conjecture 1.1. Let n ≥ 3 and let

A = {diag(a1, . . . , an) : a1, . . . , an > 0, a1 · · · an = 1}.

Then any x ∈ Xn = SLn(Z)\SLn(R) for which xA has compact closure in Xn

must actually belong to a periodic (i.e. compact) orbit.
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The problem of classifying all A-invariant measures on Xn for n ≥ 3 is
strongly related to the study of orbits1. In fact, by the pointwise ergodic theorem
the time-average of a function over the orbit of a (typical) point approximates
the integral of the function with respect to an invariant measure. Here is the
analogous conjecture for invariant measures. Here is the analogous conjecture
for invariant measures, due to Margulis, and Katok and Spatzier.

Conjecture 1.2. Let n ≥ 3 and let A be as above. Then any A-invariant and
ergodic probability measure on Xn is necessarily the normalized Haar measure
on a finite volume orbit xH of an intermediate group A ⊆ H ⊆ SLn(R).

However, we also would like to mention the simplest case of such a con-
jectured classification result. Furstenberg proved in [21] that the full torus
T = R/Z and certain finite sets of rational points are the only closed sets in T

that are invariant under x → 2x and x → 3x. The related question for invariant
measures is a famous conjecture also due to Furstenberg (unpublished).

Conjecture 1.3. Let µ be an invariant and ergodic probability measure on
T = R/Z for the joint action of x → 2x and x → 3x. Then either µ equals the
Lebesgue measure or must have finite support (consisting of rational numbers).

These conjectures and their counterparts on similar homogeneous spaces
are still open, we refer to [14] for related more general versions of this conjec-
ture. What is known towards Conjecture 1.2 is the following theorem which we
obtained in joint work with A. Katok and E. Lindenstrauss [12].

Theorem 1.4. Let n ≥ 3. Then an A-invariant and ergodic probability measure
µ on Xn either equals the normalized Haar measure on a closed finite volume
orbit xH of an intermediate group A ⊂ H ⊆ SLn(R) or the measure-theoretic
entropy hµ(a) vanishes for all a ∈ A. If n is a prime number, then necessarily
H = SLn(R).

This theorem is the analogue to the theorem of Rudolph [48] towards Con-
jecture 1.3. Moreover, it is related to works of A. Katok, Spatzier, and Kalinin
[29, 30, 27, 28] and uses arguments both from our joint work with A. Katok
[11] and the paper of E. Lindenstrauss [36] on the Arithmetic Quantum Unique
Ergodicty conjecture. We do not want to describe the history of the theorem
in detail and instead refer to [14].

Theorem 1.4 reduces the problem to understanding the case where entropy
is zero. Depending on the application, this unsolved problem is avoided by
showing that the measure in the application has positive entropy. However,
this sometimes (but not always) forces extra conditions in the application. In
these cases the theorem in the application would improve if one could show

1Conjecture 1.2 implies Conjecture 1.1, but in contrast to the case of unipotent dynamics
an equidistribution result for A-orbits is not conjectured.
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that an ergodic measure with vanishing entropy must be the volume measure
on a periodic A-orbit xA.

Theorem 1.4 has been generalized (technically speaking to all maximal R
resp. Qp-split diagonal subgroups acting on any quotient of an S-algebraic
group). However, for this care must be taken as e.g. no such theorem can
be true for the two-parameter diagonal subgroup A on the space SL2(Z) ×
SL2(Z)\SL2(R) × SL2(R), as any product of two invariant measures for the
geodesic flow would be an invariant measure for A. Moreover, this scenario can
hide e.g. inside Γ\SL4(R). Whether or not this is an issue crucially depends on
the lattice Γ, which stands in contrast to the theorems concerning subgroups
generated by unipotent subgroups where the precise nature of the lattice is not
that important. We refer to [14] for the precise formulation and more details.

Here is the list of applications that we will discuss.

• Arithmetic Quantum Unique Ergodicity, see §2

• Diophanine approximation for points (and vectors) in fractals, see §3

• Non-uniformity of bad approximations of nα, see §4

• Littlewood’s conjecture, see §5

• Compact orbits and ideal classes, see §6

• Counting rational points in a certain variety, see §7

• Divisility properties of Hamiltonian quaternions, see §8

We also want to refer to the lecture notes [15] for the Clay summer school
in Pisa in 2007 which explain in detail the (otherwise not so readily available)
background of the papers [11, 12] as well as their content, and discusses two ap-
plications. Finally, we also wrote together with E. Lindenstrauss a joint survey
[14] on this topic, which explains in detail the general conjectures and partial
measure classifications and again some of the applications. In contrast to these
surveys and lecture notes, we want to give here a description of all the appli-
cations and try to point out most concretely how these topics are connected to
diagonal actions. For these applications we do not have to consider the most
general theorems as all applications concern quotients of the group SLn (or
products of the form SLn × · · ·×SLn). This is unfortunate, as the theorems (in
appropriate formulations) are more general.

I would like to thank my co-authors A. Katok, E. Lindenstrauss, Ph. Michel,
and A. Venkatesh for the many collaborations on these subjects.

2. Arithmetic Quantum Unique Ergodicity

Historically the first application of a partial measure classification for diagonal
flows (outside of ergodic theory) concerns the distributional properties of Hecke-
Maass cusp forms φ on M = SL2(Z)\H and similar quotients of the hyperbolic
plane H by congruence subgroups. Here a Maass cusp form is a smooth function
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φ on M which is an eigenfunction of the hyperbolic Laplace operator ∆M and
also belongs to L2(M) — we will always assume the normalization ‖φ‖2 = 1.
A Hecke-Maass cusp form is a Maass cusp form that in addition is also an
eigenfunction of the Hecke operators Tp for all p.

Rudnick and Sarnak [47] conjectured that for any sequence of Maass cusp
forms φi on M for which the eigenvalues go to infinity the probability measures
defined by |φi|

2 dvolM converges in the weak∗ topology to the uniform measure
dvolM . These conjectures are of interest to mathematical physics as well as
number theory. In quantum physics eigenfunctions of ∆ are energy states of
a free (spinless, non-relativistic) quantum particle, moving in the absence of
external forces on M . In number theory the eigenfunctions are of central im-
portance due to many connections between them and the theory of L-functions.
We refer to the survey [50] and the more recent [49] for more details.

After a conditional proof of the following theorem by Watson [59] relying on
the generalized Riemann hypothesis, Lindenstrauss [36] used a partial measure
classification to show the equidistribution except for the possibility that the
limit measure may not be a probability measure (or even the zero measure).
Soundararajan [56] complemented the proof of Lindenstrauss showing that the
limit measure must indeed be a probability measure. Together this gives the
following unconditional theorem.

Theorem 2.1 (Arithmetic Quantum Unique Ergodicity). Let M = Γ\H, with
Γ a congruence lattice over Q. Then |φi|

2 dvolM converges in the weak∗ topology
to dvolM as i → ∞ for any sequence of Hecke-Maass cusp forms for which the
Maass eigenvalues λi → −∞ as i → ∞.

The connection of this problem to the problem of classifying invariant mea-
sures on X = Γ\SL2(R) with respect to the geodesic flow is well motivated due
to the interpretation of the Maass forms on M as the distribution of quantum
particles on the surface M with a given energy (which up to a constant equals
the eigenvalue for the Laplace operator) and the study of the semi-classical
limit (corresponding to the limit where the energy goes to infinity). Moreover,
Shnirelman [55], Zelditch [61] and Coin-de Verdeire [6] used this connection
before to show the so-called Quantum Ergodicity. This theorem says that for
any compact quotient Γ\H and a subsequence of all eigenfunctions of density
one, the measures |φi|

2 dvolM indeed converge to dvolM . Part of this proof is
the construction of a so-called micro-local lift of a weak∗ limit, which is a mea-
sure µ on the unit tangent bundle X = Γ\SL2(R) that is invariant under the
geodesic flow.

The additional assumption in Theorem 2.1 that φi is also an eigenfunction
of the Hecke-operators can be used to prove additional properties of the micro-
local lift. Indeed, Bourgain and Lindenstrauss [2] show that a micro-local lift
must have the property that all of its ergodic components have positive entropy.
Here the positivity of entropy is shown by proving that the measure of a small
ball Bε(x) for x ∈ X decays like �x ε1+δ for δ = 2

9 . The ‘trivial bound’ in
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this case is � ε since the measure is known to be invariant under the one-
dimensional subgroup A consisting of diagonal elements. Any improvement of
the form �x ε1+δ for some δ > 0 shows positivity of entropy of almost all
ergodic components.

Furthermore, Lindenstrauss [36] also shows that such a micro-local lift of
a sequence of Hecke-Maass cusp forms has an additional recurrence property
under the p-adic group SL2(Qp) for any p — this is a much weaker requirement
than invariance but suffices due to the following theorem [36].

Theorem 2.2. Let Γ be a congruence lattice over Q, let X = Γ\SL2(R) and
let µ be a probability measure satisfying the following properties:

(I) µ is invariant under the geodesic flow,

(E) the entropy of every ergodic component of µ is positive for the geodesic
flow, and

(R) µ is Hecke p-recurrent for a prime p.

Then µ is the uniform Haar measure mX on X.

The proof of this theorem uses an idea from [11] and also an idea from
the work of Ratner on the rigidity of the horocycle flow [42, 43]. The latter is
surprising as the measure µ under consideration has a-priori very little structure
with respect to the horocycle flow.

We refer to the lecture notes [17], which explain carefully the arguments in
[2] and [36] (with the exception of the proof of Theorem 2.2).

After the work of Lindenstrauss, Silberman and Venkatesh [53] have gener-
alized this approach to quotients of SLn(R) by congruence lattices arising from
division algebras, where the degree n of the division algebra is assumed to be
a prime number. (In this case Theorem 1.4 holds in the same way.)

3. Diophantine Approximation for Points in

Fractals

The connection between the continued fraction expansion and the geodesic
flow on X2 = SL2(Z)\SL2(R) goes back to work of Artin [1], see also [51, 52].
This link between Diophantine approximation of real numbers and dynamics
on homogeneous spaces has been extended to higher dimension by Dani [3]
and since then has been used successfully by many authors. We will recall this
connection below.

In the theory of metric Diophantine approximations, one wishes to under-
stand how well vectors in Rd can be approximated by rational vectors. In par-
ticular, we say v ∈ Rd is well approximable if for any c > 0 there are infinitely
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many nonzero integers q for which there exists an integer vector p ∈ Zd with

∥∥∥∥v −
1

q
p

∥∥∥∥ ≤
c

q1+
1

d

.

Similarly we say v is badly approximable if there exists a constant c > 0 such
that ∥∥∥∥v −

1

q
p

∥∥∥∥ ≥
c

q1+
1

d

. (1)

for all q ∈ Z and p ∈ Zd. We will write WA (resp. BA) for the set of well
approximable (resp. badly approximable) vectors. It is well known that almost
every v is well approximable, but that the set of badly approximable vectors
is also in many ways big — e.g. W. Schmidt has shown that the set of badly
approximable vectors has full Hausdorff dimension.

Recently, the question how special submanifolds or fractals within Rd in-
tersect the set of badly or well approximable vectors (as well as other classes
of vectors with special Diophantine properties) has attracted attention. For
instance, it was shown for the Cantor set C ⊂ [0, 1] in [33] and [34], that
the dimension of C ∩ BA is full, i.e. equals log 2/ log 3. However, until recently
little was known about the intersection of WA with fractals. In joint work [10]
with L. Fishman and U. Shapira we obtained the following application of The-
orem 2.2.

Theorem 3.1. Almost any point in the middle third Cantor set (with respect to
the natural measure) is well approximable and moreover its continued fraction
expansion contains all patterns.

We would like to point out that the special invariance properties of the
Cantor set are actually crucial for the proof of Theroem 3.1 while the result
concerning the intersection of the Cantor set with BA are much more general.
The same method that gives Theorem 3.1 can also be used for d = 2 together
with Theorem 1.4 and leads to the following theorem.

Theorem 3.2. Let A : R2/Z2 → R2/Z2 be a hyperbolic automorphism, induced
by the linear action of a matrix A ∈ SL2(Z) and let µ be a probability measure
which is invariant and ergodic with respect to A, and has positive dimension.
Then µ almost any v ∈ R2/Z2 is well approximable.

To see the connection between these two theorems and Theorem 2.2 resp.
Theorem 1.4 we need to recall the interpretation of Xn = SLn(Z)\SLn(R) as
the space of unimodular lattices in Rn. In fact, we may identify the identity
coset SLn(Z) with the unimodular (i.e. covolume one) lattice Λ = Zn. More
generally, we identify the coset SLn(Z)g with the lattice Λ = Zng. This gives an
isomorphism betweenXn and the space of unimodular lattices in Rn, and makes
it possible to classify compact subsets by the following geometric property.
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Theorem 3.3 (Mahler’s compactness criterion). A subset C ⊂ Xn is bounded
(i.e. its closure is compact) if and only if there exists ε > 0 such that for any
lattice Λ ∈ C, Λ ∩ Bε(0) = ∅ i.e. if and only if there exists a uniform lower
bound for the lengths of nonzero vectors belongings to points in C.

This gives the basis of the dynamical interpretation of badly approximable
vectors v (used as row vector) in terms of the orbit of the associated lattice

Λv = Zd+1

(
Id 0
v 1

)

with respect to the generalization of the geodesic flow defined below. Here we
write Id for the d× d-identity matrix.

Corollary 3.4. We define the diagonal elements

at =

(
et/dId 0

0 e−t

)

for any t ∈ R. Then a vector v ∈ Rd is badly approximable if and only if the
forward orbit

{Λvat : t ≥ 0}

of the lattice Λv associated to v is bounded in Xd+1.

Let us indicate one direction of this characterization. If v is badly approx-
imable as in (1) and t ≥ 0, then the elements of the lattice Λvat are of the
form

((p− qv)et/d, e−tq).

We claim that any non-zero such element cannot be closer to the origin in Rd+1

than c. Otherwise, we derive from t ≥ 0 that q 6= 0 and by taking the product
of the norm of (p− qv)et/d and of the d-th root of e−tq that q1/d‖p− qv‖ < c
— a contradiction to (1). The opposite implication is similar.

Let us indicate now the relationship between Theorem 2.2 and Theorem
3.1. Write νC for the uniform measure on the middle third Cantor set. We
may embed νC as a measure on X2 by push-forward via the map v → Λv. By
Corollary 3.4 what we would like to show is that for νC-a.e. point the orbit
under the geodesic flow is unbounded.

To better phrase the special invariance properties that the Cantor set has,
it makes sense to introduce the 3-adic extension of X2. One can check that

X2 ' SL2

(
Z

[
1

3

])
\SL2(R)× SL2(Q3)/SL2(Z3),

so that we should think of X̃2 = SL2(Z[
1
3 ])\SL2(R)× SL2(Q3) as an extension

of X2 by compact fibers isomorphic to SL2(Z3).
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We note that

SL2(Z[
1

3
])

(
1 0
v 1

)(
3 0
0 3−1

)
= SL2

(
Z

[
1

3

])(
1 0
9v 1

)
,

which shows that right-multiplication by the diagonal element

(
3 0
0 3−1

)
cor-

responds to multipying v by 9. As the Cantor set has a special relationship
with respect to multiplication by 3 (or equivalently ternary digit expansions),

this can be exploited and one can construct an invariant measure ν̃C on X̃2 for
the map that multiplies on the right — both in the real and 3-adic component

— by

(
3 0
0 3−1

)
. However, this dynamical system is different from the exten-

sion of the geodesic flow at, which is just right multiplication by the diagonal

element

(
et 0
0 e−t

)
in the real component. Taking the average of ν̃C along the

orbit under at one obtains a measure that is invariant under the diagonal sub-
group — both in the real component and the 3-adic component. To this limit
measure µ one can apply Theorem 2.2. The recurrence condition is assured
since µ is actually invariant under a non-compact subgroup of SL2(Q3). The
entropy assumption is satisfied in the weaker sense that the entropy of µ is pos-
itive — this is a consequence of the fact that νC had positive dimension. From
this, we conclude not necessarily that µ equals the Haar measure but at least
that it contains the Haar measure as one of the ergodic components. Clearly
the Haar measure has non-compact support, and this can be used to deduce2

Theorem 3.1.

4. Non-uniformity of Bad Approximations

Recall that every irrational x ∈ [0, 1] can be written as a continued fraction.
The digits of the continued fraction expansion relates to the discussion of the
Diophantine approximation above. In fact, x is badly approximable if and only
if the digits an(x) of the expansion are bounded. If x is badly approximable,
then the quantity c(x) = lim sup an(x) measures the extend to which x is
badly approximable. In this sense, the next theorem says that the sequence
x, 2x, . . . , nx, . . . cannot be uniformly badly approximable.

Theorem 4.1. If we denote for v ∈ [0, 1], c(v) = lim sup an(v) where an(v) are
the coefficients in the continued fraction expansion of v, then for any irrational
v ∈ [0, 1], supn c(n

2v) = ∞, where n2v is calculated modulo 1.

2The cautious reader may notice that what we said implies only that the quantity c as in
(1) cannot be uniform for a.e. point in C, but with a bit more work, using only ergodicity of
the Haar measure, one really obtains a proof.
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This is also joint work with L. Fishman and U. Shapira [10]. We would like
to point out that this relates to a conjecture of M. Boshernitzan, who reported
to us that a stronger version of Theorem 4.1 holds for the special case of
quadratic irrationals.

The proof of Theorem 4.1 is similar in spirit to the proof of Theorem 3.1,
but this time takes place on

X2,A = SL2(Q)\SL2(A)

where multiplication of v by n2 can be converted to right multiplication by

the matrix

(
n 0
0 n−1

)
(in every component). These elements together with the

real diagonal subgroup give a big subgroup A′ of the full group AA of adelic
points of the diagonal subgroup, more precisely the quotient of AA by A′ is
compact. In this theorem there is no mention of entropy or dimension due to
the following theorem by E. Lindenstrauss [35] (which is the combination of
Theorem 2.2 and the method in [2]).

Theorem 4.2. The action of the group, AA, of adelic points of the diagonal
subgroup in SL2 on X2,A = SL2(Q)\SL2(A) is uniquely ergodic.

5. Littlewood’s Conjecture

Historically the second application of a partial measure classification result for
diagonal subgroups (in this case Theorem 1.4) has been a partial result towards
Littlewood’s conjecture.

Conjecture 5.1 (Littlewood (c. 1930)). For every α, β ∈ R,

lim inf
n→∞

n‖nα‖‖nβ‖ = 0, (2)

where ‖w‖ = minn∈Z |w − n| is the distance of w ∈ R to the nearest integer.

Similar to Corollary 3.4 one can also show the following characterization of
Littlewood’s conjecture in dynamical terms.

Proposition 5.2. (α, β) satisfy (2) if and only if the orbit

Λα,βas,t = SL(3,Z)



1 0 0
0 1 0
α β 1


 as,t

under the semigroup

A+ = {a(s, t) : s, t ≥ 0} a(s, t) =



et 0 0
0 es 0
0 0 e−t−s




is unbounded in X3 = SL(3,Z)\SL(3,R).
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Together with Theorem 1.4 this leads to the following theorem.

Theorem 5.3 ([12, Theorem 1.5]). For any δ > 0, the set3

Ξδ =
{
(α, β) ∈ [0, 1]2 : lim inf

n→∞

n‖nα‖‖nβ‖ ≥ δ
}

has zero upper box dimension4. In particular,
⋃

δ>0 Ξδ has zero Hausdorff di-
mension.

We refer to [12] or to [15] for an explanation on how the entropy assumption
in Theorem 1.4 is converted to the box dimension result above. A full solution
of either Conjecture 1.1 or Conjecture 1.2 would imply Conjecture 5.1.

The same method can also be used to obtain a partial result towards a
conjecture of B. de Mathan and O. Teulié [5]. They conjectured5 that for every
prime number p, for every u ∈ R and ε > 0

∣∣∣qu− q0

∣∣∣ < ε

q|q|p
=

ε

q′
for infinitely many pairs (q, q0) ∈ Z2,

where q = q′pk for some k ≥ 0, q′ is coprime to p, and |q|p = 1/pk denotes the
p-adic norm. Equivalently one can ask whether

lim inf
q→∞

|q| · |q|p · ‖qu‖ = 0 , (3)

In joint work with Kleinbock [13] we have shown the following analogue to
Theorem 5.3.

Theorem 5.4. The set of u ∈ R which do not satisfy (3) has Hausdorff di-
mension zero.

6. Compact Orbits and Ideal Classes

Another interesting connection between the dynamics of the full diagonal sub-
group A on Xn = SLn(Z)\SLn(R) and number theory arises in the study of
periodic (i.e. compact) orbits of A on Xn.

In fact, if I ⊂ OK is an ideal in the ring of integers of a totally real number
field K of degree n then this ideal can give rise to a compact A-orbit as follows.
To see this, let φ1, . . . , φn : K → R be the complete list of Galois embeddings.
Then

{(φ1(k), . . . , φn(k)) : k ∈ I} ⊂ Rn

3Since (2) depends only on α, β mod 1 it is sufficient to consider only (α, β) ∈ [0, 1]2.
4I.e., for every ε > 0, for every 0 < r < 1, one can cover Ξδ by Oδ,ε(r

−ε) boxes of size
r × r.

5Their conjecture is more general.
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is a lattice in Rn, which after normalization of the covolume, gives an element
ΛJ ∈ Xn. By Dirichlet’s unit theorem, there are n−1 multiplicatively indepen-
dent units in the ring OK . Let ξ be one such unit. Replacing ξ by ξ2 if necessary,
we may assume that φi(ξ) > 0 for all i. Then a = diag(φ1(ξ), . . . , φn(ξ)) ∈ A
satisfies

{(φ1(k), . . . , φn(k)) : k ∈ I}a = {(φ1(k), . . . , φn(k)) : k ∈ ξI},

which shows that ΛI = ΛIa is fixed under a since ξI = I for any unit. As A has
n− 1 dimensions and we have n − 1 independent units, one obtains that ΛIA
is an n− 1-dimensional torus and so compact. We write µΛIA for the Lebesgue
measure on this torus normalized to be a probability measure and viewed as a
meaure on Xn.

One can furthermore check that two ideals give rise to the same compact
orbit if and only if the two ideals are equivalent. Therefore, the number of
compact A orbits arising from the maximal order OK of the field is precisely
the class number of the field.

The same construction shows that any ideal in any order O of K gives rise
to a compact A-orbit. Allowing this more general construction one actually
obtains all compact A-orbits. It is natural to ask how the various compact
orbits for a given order distribute within Xn. If n = 2 special cases of the
expected equidistribution theorem have been proven around 1960 by Linnik
[37] and Skubenko [54]. The full statement has been proven by Duke [7] in
1988 using subconvexity estimates of L-functions. For n = 3 the analogue has
been obtained more recently in joint work with Lindenstrauss, Michel, and
Venkatesh [9].

Theorem 6.1. Let K` be a sequence of totally real degree three extensions of Q,
and let h` the class number of K`. Let x1,`A, . . . , xh`,`A ⊂ X3 be the periodic A
orbits corresponding to the ideal classes of K` as above. Let µ` =

1
h`

∑
i µxi,`A.

Then µ` converge in the weak∗ topology to the SL(3,R) invariant probability
measure mX3

on X3.

The proof uses a combination of methods. First, subconvexity estimates of
Duke, Friedlander and Iwaniec [8] imply that for certain test functions f , the
integrals

∫
X3

fdµ` converge to the expected value (i.e.
∫
X3

fdmX3
). The space

of these test functions is not sufficient to conclude Theorem 6.1, but can be
used to deduce that µ` is a probability measure (i.e. there is no escape of mass
to the cusp) and that the entropy of every ergodic component in such a limiting
measure is greater than an explicit lower bound. Once these two facts have been
established, Theorem 1.4 gives the result.

We also refer to [9, 16] and the survey [39] for more details on this and
related applications.
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7. Counting Rational Points

For the following application due to Zamojski we fix a monic irreducible poly-
nomial P (λ) ∈ Q[λ] of degree n. Let us assume that P (λ) factorizes over R. Let
V ⊂ Matnn be the variety consisting of all matrices whose characteristic poly-
nomial equals P (λ). Next recall that for any rational vector v = (p1

q , . . . , p`

q )
represented in lowest terms, we can define the height as the maximum of the
absolute values |pi| and the common denominator q. Zamojski [60] has proven
the following asymptotic counting formula.

Theorem 7.1. If NR denotes the number of rational matrices with character-
istic polynomial P (λ) and height bounded by R, then the limit

lim
R→∞

NR

Rn(n−1)/2+1

exists and is positive.

This proves a new case of Manin’s conjecture (see [57, 58]) which concerns
similar counting problems on more general varieties. There is already a rich
history for the interaction between asymptotic counting problems and ergodic
theory. Initially, only mixing in the form of the theorem by Howe and Moore
was used, see for instance the influential work of Eskin and McMullen [19].
However, after Ratner proved her theorems [44] further cases of the counting
problem could be handled. For instance, Eskin, Mozes, and Shah [20] have
proven in 1996 the integer version of Theorem 7.1.

In all of these proofs of asymptotic counting the following equidistribution
problem is of crucial importance. The variety V as above is actually a single
orbit of PGLn(R), we write H for its stabilizer. Similar to the discussion in §6
the orbit PGLn(Z)H of the identity coset is compact, we write µ for the measure
on X = PGLn(Z)\PGLn(R) that is supported on PGLn(Z)H and invariant
under H. Then the counting problem of integer points in V is related to the
equidistribution of the measure µg (obtained by applying right multiplication
by g) on the space X. In [20] it is shown that, at least on average, µg indeed
equidistributes. For this the theory of unipotent dynamics was used, which at
first may be surprising as H does not contain any unipotents. The key link of
this problem to unipotents lies in the fact that µg is invariant under g−1Hg,
which if gn → ∞ in H\G implies that any limit measure of µgn is invariant
under a one-parameter unipotent subgroup.

For counting rational points on homogenous varieties it is natural to replace
the quotient X by the corresponding adelic quotient, as was shown in the work
of Gorodnik, Maucourant, and Oh [22]. Also in the proof of Theorem 7.1 the
equidistribution of translates of a given finite volume measure on the adelic
quotient PGLn(Q)\PGLn(A) is studied. However, unlike the case of counting
integer points, it is no longer true that the translated measures will on average
develop invariance properties under a unipotent subgroup. Roughly speaking
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this is because it is not true that if a sequence gn ∈ PGLn(A) goes to infinity,
then for some place p the projection of gn to this place goes to infinity. Indeed, as
Zamojski shows for most sequences gn the projections stay bounded within each
place. Hence the limit measures are only known to have the same invariance as
the original measure µ— invariance under a conjugate of the diagonal subgroup
A. Zamojski shows, similar to a part of the proof of Theorem 6.1 in [9] that a
limit measure must have positive entropy (for all of its ergodic components) and
so Theorem 1.4 can be applied. However, if n is not a prime number, Zamojski
gives an additional argument which rules out the measures corresponding to
intermediate subgroups.

8. Divisibility Properties of Hamiltonian

Quaternions

Our last application uses an analogue of Theorem 2.2 for a quotient of the
form Γ\PGL2(Qp)×PGL2(Qq) for two primes p 6= q, and concerns divisibility
properties of integer Hamiltonian quaternions. This is a special case of ongoing
joint work with S. Mozes.

Let H = R[i, j, k] be the Hamiltonian quaternions, and let O = Z[i, j, k] be
the order consisting of integer combinations of 1 and the three imaginary units
i, j, k. We write N(a+ bi+ cj + dk) = a2 + b2 + c2 + d2 for the norm on H.

Let p 6= 2 be a prime number. Then

Γp = {α ∈ O : N(α) is a power of p}

is a multiplicative semi-group, for which ±1 and p generates the center C.
Taking the quotient by the center, one obtains a group PΓp = Γp/C. As a
consequence of Pall’s unique factorization theorem for elements of O it follows
that PΓp is virtually a free group (more concretely it contains a free group with
p+1
2 generators and index 4).
Similarly if p, q 6= 2 are two different odd prime numbers, then we define

the semigroup

Γp,q = {α ∈ O : N(α) is a product of powers of p and q}

which once more gives a group PΓp,q = Γp,q/C after dividing by the center.
The group PΓp,q is far from being a free group. This is known, but is also

shown clearly by the following theorem. For stating the theorem we need some
definitions. We say an element α ∈ O appears6 in β ∈ O if there exits some
`, r ∈ O such that β = `αr. The fact that PΓp contains a free subgroup shows
that for any fixed α ∈ Γp with N(α) > 1 the set

{β ∈ Γp : α does not appear in β and N(β) = pk}

6We write “appears” for this notion of divisibility to distinguish this notion from a left-
or right-divisibility that is sometimes considered for non-commutative rings.
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grows exponentially with k. We say that α ∈ Γp,q is reduced if 1
pα /∈ O and

1
qα /∈ O. In contrast to Γp we have the following theorem concerning Γp,q.

Theorem 8.1. Let p, q 6= 2 be two different primes. Then for any reduced
α ∈ Γp,q the set

{β ∈ Γp,q : α does not appear in β and N(β) = pkqk}

grows sub-exponentially. That is, if M(k) is the cardinality of the set, then

lim
k→∞

1

k
logM(k) = 0.

Let us indicate the connection between the above theorem and the dynamics
of diagonal flows, which goes back to [41]. First we may choose a subgroup
Γ ⊂ PΓp,q of finite index which does not contain the images of the elements
±i,±j,±k and is generated by two free subgroups of PΓp and PΓq. Then Γ
is naturally a lattice in the group G = PGL2(Qp) × PGL2(Qq) for which a
fundamental domain is given by the compact set F = PGL2(Zp)× PGL2(Zq).

Let ap =

(
p 0
0 1

)
× I, where I denotes the identity. Define aq similarly.

Since F is a fundamental domain, there exists for every f ∈ F some element
γ ∈ Γ∩PΓp and some f ′ ∈ F for which fap = γf ′. Clearly, if f is replaced by a
slight perturbation of f , then γ will not change. In this sense, γ corresponds to
an open subset Oγ of F ' Γ\G. More generally, if γ ∈ Γ then γ is the image of
some reduced element in O which we assume has norm pkqk and we can define
the open (and non-empty) subset

Oγ = {f ∈ F : fakpa
k
q ∈ γF}.

If now β = lαr for elements α, β, l, r ∈ O with N(l) = pmqn, then f ∈ Oβ

implies that famp anq ∈ Oα. This has a partial converse, meaning that if f ∈ Oβ

satisfies famp anq ∈ ΓOα for sufficiently small values of m and n then we deduce
that α appears in β.

In this sense an element β of norm N(β) = pkqk in which α does not
appear, gives rise to a piece of an orbit under the joint action of ap and aq
on Γ\G that does not visit the open set ΓOα. If there are exponentially many
such elements β as k → ∞, then one can construct (with the help of the
variational principle from ergodic theory) from these many large pieces of orbits
an invariant measure on Γ\G with positive entropy and zero mass on the set
Oα. The analogue of Theorem 1.4 for the action of ap and aq on Γ\G holds
and is indeed a version of Theorem 2.2, hence we derive a contradiction and
Theorem 8.1 follows.

9. Open Problems

We already mentioned the main open problems: Furstenberg’s Conjecture 1.3
regarding jointly invariant probability measures for the times 2 and times 3
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maps on T, and Margulis’ Conjectures 1.1–1.2 regarding bounded orbits and
invariant measures on SLn(Z)\SLn(R) for n ≥ 3. We also refer to [14] and [23]
for related conjectures on the measure classification.

However, even if we allow ourselves the positive entropy assumption there
are still unsolved cases where no analogue to Theorem 1.4 is known. For instance
we may take a subgroup A′ ⊂ A of dimension two within the three-dimensional
diagonal subgroup A ⊂ SL4(R) and ask what are the A′-invariant and ergodic
probability measures on X4 = SL4(Z)\SL4(R) for which some element a ∈ A′

acts with positive entropy. The current techniques that go into Theorem 1.4
fall short in this case.

The list of the applications, discussed above, also suggests a number of
open problems. For instance, Theorem 3.2 currently only holds for d = 2 and
Theorem 4.1 only for d = 1. However, we certainly would expect that these
hold in any dimension.

Also Theorem 6.1 currently only holds for cubic fields and the non-compact
space X3, so it is natural to ask for the same for higher dimensions or for
compact quotients of SL3(R) by the units in a degree 3 division algebra over
Q.

Another interesting question arises by comparing the argument in [10] (see
§3) with Host’s theorem [24, 25].

Conjecture 9.1. Let µ be a probability measure on an irreducible quotient
X = Γ\SL2(R) × SL2(R). Suppose µ is invariant and ergodic with respect to
the action of the one-parameter diagonal subgroup A1 ⊂ SL2(R) × {1} of the
first copy of SL2(R), and suppose µ has positive entropy with respect to A1.
Write A2 ⊂ {1}×SL2(R) for the one-parameter diagonal subgroup in the second
SL2(R). Then µ-a.e. x ∈ X has equidistributed orbit for the action of A2.

The theorem in [24] concerns the same problem with X = T, A1 replaced
by ×2, and A2 replaced by ×3. A slightly easier problem would be to generalize
the related theorem of Johnson and Rudolph [26], which might look as follows.

Conjecture 9.2. Let µ be a probability measure on an irreducible quotient
X = Γ\SL2(R) × SL2(R). Suppose µ is invariant and ergodic with respect to
the action of the one-parameter diagonal subgroup A1 ⊂ SL2(R) × {1} of the
first copy of SL2(R), and suppose µ has positive entropy with respect to A1.
Write A2 ⊂ {1}×SL2(R) for the one-parameter diagonal subgroup in the second
SL2(R). Then

1

T

∫

X

∫ T

0

f(xa2,t) dt dµ(x).

converges to
∫
f dmX where f ∈ Cc(X) and a2,t ∈ A2 denotes a homomorphism

from R to A2.

Similarly, the above two conjectures can be asked for other quotients for
which the analogue of Theorem 2.2 or Theorem 1.4 holds.
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Monatsh. Math. 143 (2004), no. 3, 229–245.
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Abstract

In this survey we shall present some relations between measure theory and
geometric topology in dynamics. One of these relations comes as follows, on
one hand from topological information of the system, some structure should
be preserved by the dynamics at least in some weak sense, on the other hand,
measure theory is soft enough that an invariant geometric structure almost
always appears along some carefully chosen invariant measure. As an example,
we have the known result that in dimension 2 the system has asymptotic growth
of hyperbolic periodic orbits at least equal to the largest exponent of the action
in homology.
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1. Introduction

In this survey we shall present some relations between measure theory and
geometric topology in dynamics. This interaction in particular would imply
ergodic properties for partially hyperbolic systems and some rigidity properties
of actions by higher rank groups. Also we will try to give some problems and
directions. We shall not try to be exhaustive on the results, we want just to
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give some flavor of how this relation works. Moreover, we will concentrate more
on possible future directions rather than known results.

The main idea comes as follows, on one hand geometric topology is strong
enough so that not any geometric structure can be invariant, but some geo-
metric structure should be preserved by the dynamics at least in some weak
sense, this comes in general from homotopic information on the system. On the
other hand, measure theory is soft enough that an invariant geometric structure
almost always appears along some carefully chosen invariant measure.

One of the principal examples of these invariant geometric structures are
invariant stable and unstable manifolds. One may have them appearing in a
uniform fashion like in Anosov systems, or in a more nonuniform way. Let us
put an example of what we mean:

Take a C∞ diffeomorphism f of a manifold and assume that its action in
homology has spectral radius larger than one. This implies, by Yondim’s solu-
tion [76] of Shub entropy conjecture [69], that the topological entropy of f is
positive, htop(f) > 0. By the variational principle there is an ergodic invari-
ant measure µ with positive entropy hµ(f) > 0. Using Ruelle’s inequality [64],
hµ(f) ≤

∑
λi>0 λi, we get that µ has at least one positive Lyapunov exponent,

indeed at least one positive and one negative. Using Pesin theory [5] this implies
that there are stable and unstable manifolds associated to negative and positive
exponents, they form some kind of absolutely continuous measurable foliations
with smooth leaves. Moreover, one may parametrize the unstable manifolds to
write the dynamics in some normal form similar to the normal forms around ex-
panding fixed points [29], if no resonance between Lyapunov exponents appears
then this normal forms become affine. When the dimension of the manifold is 2
then the measure is hyperbolic, i.e. has no zero Lyapunov exponents and hence,
by Katok’s shadowing lemma [33], the system is full of hyperbolic orbits and
indeed of hyperbolic sets with topological entropy as close to the topological
entropy of the diffeomorphism as wanted, in particular the asymptotic growth
of hyperbolic periodic orbits is at least equal to entropy and hence at least log
of the largest eigenvalue in homology. Getting exact multiplicative estimates
in the growth is still an open problem which is also related to the finiteness of
entropy maximizing measures.

We conjecture that something similar should be true in higher dimensions.
Indeed, in dimension 3 for example, we conjecture that if a smooth diffeomor-
phism has no hyperbolic periodic orbit (or only finitely many) then the action in
first homology has at most one positive and one negative Lyapunov exponent.

When the invariant geometric structures are continuous there is some hope
to get more, and even of classifying the systems. The hallmark of simply de-
scribed system is the affine automorphism of a homogeneous space, i.e. when
M = G/H is the quotient of a Lie group G by a closed subgroup H, and
f = gL, where L is an automorphism of G leaving H invariant and g is any
element in G. When the system preserve some continuous foliations, it is ex-
pected that the dynamics be conjugated, or at least come in some standard
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type of construction from these affine models. But this is far from understood
even for the uniformly hyperbolic, Anosov systems. On the other hand, for ex-
panding maps the picture was completely understood since the early 80’s by
the results of M. Shub [68] and M. Gromov [25] and expanding systems are
always conjugated to expanding automorphisms on nilmanifolds.

There are lot of unsolved issues even for perturbations of these affine models.
One of these being stable ergodicity and robust transitivity for perturbations of
affine automorphisms,local rigidity and measure rigidity for higher rank actions.
Growth of the number of compact invariant submanifolds, even understanding
w.r.t. to what should be measured the growth is a nontrivial fact (volume,
diameter, homology complexity...). These issues will hopefully appear along
the rest of the paper.

2. Rigidity of Actions of Higher Rank Groups

Let us begin with the simplest model, multiplication by an integer on the circle.
We shall see how to get global rigidity for commuting covering maps of degree
larger than one on the circle, see [51] for details. In this case, degree is used
to get a semi-conjugacy with the linear map, and hence preservation of some
structure, then this semi-conjugacy is used to get a measure which is large, i.e.
projects to Lebesgue measure under the semi-conjugacy and hence with positive
entropy. The measure is used to find a periodic point with some non-collapsing
property. This implies that Lyapunov exponents for this periodic orbits are
multiple of the linear exponents.

Let us state an interesting corollary of the general theorem. Let f, g : S1 →
S1 be two C1 maps of degree 2 and 3 respectively, i.e. deg(f) = 2 and deg(g) = 3
Assume also that f has at most finitely many critical points (this includes
having no critical point at all).

Theorem 2.1. Let f and g be as above, then there is a C1 diffeomorphism
h : S1 → S1 such that h ◦ f = 2h and h ◦ g = 3h, i.e. f and g are smoothly
conjugated to the linear action.

The theorem says in particular that there are no critical points neither
for f nor for g and moreover f and g should be expanding maps with an
absolutely continuous invariant measure. We believe that the assumption on
finitely many critical points can be removed. Previous results in this direction
used that the maps were expanding and required at least C1+α smoothness in
order to get existence and uniqueness of smooth absolutely continuous invari-
ant measures. In [78] appeared a proof for expanding maps without the use of
absolutely continuous invariant measure for expanding maps close to ours. In
the general Cr case, 1 < r ≤ ∞, ω there is also conjugacy of the same smooth-
ness as the action. This already follows from a result by A. Johnson and D.
Rudolph, [28]. Previous result by Sacksteder [65] obtained the conjugacy but
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with some loss of smoothness. M. Shub and D. Sullivan [71] proved that two
expanding maps on the circle with same homotopy data are smoothly conju-
gated without any loss of derivatives. For C1 expanding maps there need not be
an absolutely continuous measure [37], and even if it exists one may not have
uniqueness [50]. With our method and using Sternberg local linearization the-
orem [73] we can recover all the other proofs in addition to get the C1 general
case.

Let us emphasize here the feature that the theorem holds for C1 actions
though we make use of some sort of Pesin theory. As is well established, some
Hölder condition on the derivative is needed in order to use Pesin theory, see
[47]. Most rigidity results makes crucial use of Pesin theory. Here with C1

is enough, what makes it work in the circle is that the unstable manifold of
a point is already given, it is an interval. In higher dimension the unstable
manifold is not given a priori in general, what makes the use of all the power of
Pesin theory unavoidable at first glance. One may wonder what will happens if
unstable manifolds are already given with some regularity, like in geodesic flows,
where horospheres comes from geometry. Even in the case one gets a foliation
by horospheres, its regularity may be quite bad, for example, in nonpositive
curvature it is not known if it is absolutely continuous. It is know that it is not
Hölder continuous for large Hölder exponent at some points, [23], but maybe
with larger systems one may improve regularity. In any event, since the complete
picture is not known in the general setting, there is no harm on assuming any
smoothness to begin with.

It is more striking the fact that no dynamical assumption is given in the
circle case, i.e. no expanding assumption. But by now we assumed finitely many
critical points and though this does not look like a dynamical assumption,
it turns out to be dynamical. It is this assumption which gives as unstable
manifolds for the orbits, if not we will need to use a C1+α hypothesis and will
get also rigidity.

In higher dimensions, there are some results on this direction, but there
are examples of actions with Cartan homotopy data but not conjugated to the
linear ones. Here by homotopy data we mean the action in the first homotopy
group and by Cartan we mean maximal rank with all elements hyperbolic. Let
us observe that after the global rigidity results in [53] we get that the non-
conjugated actions homotopic to linear Cartan actions on tori can not be C1

close to the linear ones and cannot even be simultaneously homotoped to the
linear action. We believe that on one hand this is a problem at a C0 level, i.e.
if the semiconjugacy is injective then it is a diffeomorphism, on the other hand
we also believe that only finitely many blowups can be carried out and hence
not much harm can be done.

In [36] we proved, with A. Katok, that a real analytic action of SL(n,Z) on
T
n preserving some non trivial measure and with standard homotopy data is

essentially conjugated to the linear one. More precisely,
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Theorem 2.2. Let Γ ⊂ SL(n,Z), n ≥ 3 be a finite index subgroup. Let ρ be a
Cω (real-analytic) action of Γ on T

n with standard homotopy data, preserving
an ergodic measure µ whose support is not contained in a ball. Then:

1. There is a finite index subgroup Γ′ ⊂ Γ, a finite ρ0-invariant set F and a
bijective real-analytic map

H : Tn \ F → D

where D is a dense subset of suppµ, such that for every γ ∈ Γ′,

H ◦ ρ(γ) = ρ0(γ) ◦H.

2. The map H−1 can be extended to a continuous (not necessarily invertible)
map P : Tn → T

n such that ρ ◦ P = ρ0 ◦ P . Moreover, for any x ∈ F ,
pre-image P−1(x) is a connected set.

3. For Γ = SL(n,R) one can take Γ′ = Γ = SL(n,R).

The main issues in proving theorem 2.2 are existence of semiconjugacy with
the linear model, [46], existence of a periodic orbit for the action, or equivalently
a fix point for a finite index subgroup and linearization of the action around
the fixed point, [18]. For the existence of a periodic orbit we rely on our earlier
result about measure rigidity [34] where uniqueness of a large measure is proven
for actions with Cartan homotopy data. Previously B. Kalinin and A. Katok
[30], proved that such a large measure should be absolutely continuous w.r.t.
Lebesgue measure. In [32] we extended the non-uniform measure rigidity result
to a general setting only putting assumptions on Lyapunov exponents of the
system and entropy.

Opposite from single diffeomorphisms, existence of periodic orbits for ac-
tions of larger groups is a completely open area, very little is known, even for
flows and commuting diffeomorphisms. It is not clear what kind of invariants
should guarantee the existence of periodic orbits, something that generalize Lef-
schetz formula and indexes of fixed points. Of course one may think on compact
leaves of foliations also and their stability.

For example, let ρ be an action of SL(n,Z) on an n−dimensional ball.
Should it have a periodic orbit? should it have a periodic orbit in its interior?
what about if the action in the boundary sphere is the projective one. See the
related Thurston’s stability result in [74]. What about linearization of smooth
actions around fixed points? see [18] for some results along this directions.

Let us finish with a problem on analytic functions:

Problem 1. Let K1 and K2 be two compact subsets of [0, 1] with positive
measure and let A = K1 × [0, 1] ∪ [0, 1] ×K2. Let φ : A → R be a continuous
map. For every x ∈ K1 define φx : [0, 1] → R to be φx(y) = φ(x, y). Similarly
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define φy for y ∈ K2. Assume that φx is real analytic with radius of convergence
2 for every x ∈ K1 and φy : [0, 1] → R is real analytic with radius of convergence
2 for every y ∈ K2. Prove that φ coincides with a real analytic map in some
open set U such that Leb(A ∩ U) > 0.

If necessary, may be assumed that for some density point p of A, the Taylor
series of φ has positive radius of convergence.

3. Partially Hyperbolic Systems

I would said that one of the most resisting problems in partially hyperbolic
systems is the robust transitivity of Kolmogorov affine diffeomorphisms on ho-
mogeneous spaces. Indeed there is no natural example of a robustly transitive
diffeomorphism. The examples of M. Shub [70], R. Mañé [43], C. Bonatti and
L. Dı́az [10], are built by a careful perturbation of a simple system. In [10] a
mechanism for mixing called blender was created. But though these blenders
seem to be abundant in the absence of hyperbolicity, they are not present in
most natural examples. It would be interesting to have an example of a robustly
transitive time one map of Anosov flow, or even a robustly transitive partially
hyperbolic diffeomorphism with isometric central direction. All this examples,
when transitive, can be approximated by robustly transitive diffeomorphisms
as done in [10] with blenders, but this is by now the only known mechanism.

A very important issue in the classification problem for partially hyperbolic
systems is the integrability of the center distribution. It is known that the
center distribution is not always integrable, see the paper by K. Burns and
A. Wilkinson [15] for a nice account. The lack of integrability comes from two
sources, one is the break of Froebenius condition on integrability of a bundle
and the other is the lack of differentiability of the bundle. For a while the only
known type of example were the ones coming from the break of Froebenius
condition. Indeed, for some time we believed that when the dimension of the
center bundle is one (and hence any notion of Froebenius condition should hold)
then it should integrate to a foliation. But recently we found the example in
[59], whit the center bundle having no foliation tangent to it. The example is an
Axiom A partially hyperbolic diffeomorphism on T

3 and indeed is a quite simple
one. Of course it would be much more interesting to have a transitive example
and we hope there is not such example. It is worth comparing this example with
the results of M. Brin, D. Burago and S. Ivanov, [12, 13], where it is proven in
particular that on T

3 the center bundle is always uniquely integrable if there is
a stronger partially hyperbolic condition.

One of the driving directions in the theory of partially hyperbolic systems
has been the search of ergodicity and criteria guaranteeing it. Indeed, Pugh and
Shub conjectured, [49]

Conjecture 1. Stable ergodicity is open and dense among smooth volume pre-
serving partially hyperbolic systems.
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They gave a program for proving the conjecture which splits the conjecture
in proving that systems having the accessibility property, i.e. any two point
can be joined by a path made of stable and unstable leaves (an su-path), are
on one hand ergodic and on the other hand such systems contain an open and
dense set. For the first part, K. Burns and A. Wilkinson, [14] completely solved
the problem under some assumption called center-bunching which essentially
means that the dynamics in the central is close to conformal when compared
with the contraction and expansion rates of the strong directions. In particular,
when the central dimension is 1 this center bunching condition is automatically
satisfied. In this case we gave another proof in [55] where we also give a solu-
tion to the Pugh-Shub stable ergodicity conjecture when the central dimension
is 1.

In [60], with J. Rodriguez Hertz, A. Tahzibi and R. Ures, new criteria for er-
godicity w.r.t. volume measure of smooth systems is given (partially hyperbolic
or not). Indeed, it is given a description of the ergodic components in Pesin
theory, this are parallel to the homoclinic classes of hyperbolic periodic points.
We attach to each hyperbolic periodic point p (and in fact to its homoclinic
class) a set called Pesin homoclinic class which consists of regular points which
has some nontrivial transverse intersection of stable or unstable manifolds to
the ones of p. To be more precise, define

Bs(p) = {x s.t. W s(x) t Wu(o(p)) 6= ∅},

here p is assumed to be a forward regular point, similarly is defined Bu(p) with
backward regular points. Our criteria says

Theorem 3.1. If f is volume preserving and Bs(p) and Bu(p) are of positive
volume then they coincide a.e. with its intersection B(p) and the dynamics on
this set is ergodic and non-uniformly hyperbolic.

Using this criterium and blenders we solved the Pugh-Shub stable ergodicity
conjecture when the central dimension is 2 in [60]. It seems likely that this
method should be useful to solve Pugh-Shub stable ergodicity conjecture in C1

topology without any restriction on the central direction.

We think that to prove the conjecture in higher differentiability, a thorough
understanding of the structure of the accessibility classes is in order. Indeed
this was the way we solved the conjecture with J. Rodriguez Hertz and R. Ures
when the central dimension is one [55] and for perturbations of toral automor-
phisms [52]. When the central direction is one dimensional, the partition into
accessibility classes generates a lamination, i.e. the complement of the open
accessibility classes is laminated by the accessibility classes. So, to get acces-
sibility one should prove that this lamination cannot exist, or destroy it by
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perturbations. In dimension 3, for example, we were able to prove that in some
manifolds, this lamination cannot exist and hence every partially hyperbolic
system is ergodic. We conjectured [56] the following:

Conjecture 2. Let M be a manifold which is not the mapping torus of a
toral automorphism commuting with an Anosov map. Then any smooth partially
hyperbolic diffeomorphism is ergodic.

The following result in [58] supports the conjecture:

Theorem 3.2. Let f : M → M be a homeomorphism of a three dimensional
irreducible (every sphere bounds a ball) manifold. Assume there is an embedded
torus T ⊂ M such that f(T ) ∼ T and f#|π1(T ) is hyperbolic. Then M \ T =
T
2 × (0, 1).

The theorem implies that the lamination generated by the accessibility
classes has no compact leaves unless the manifold is one of the mentioned
in conjecture 2. This in turns seems to imply that the lamination should be a
minimal foliation of the whole manifolds. To prove this step, one way is to solve
the following:

Problem 2. Let f : S → S be a diffeomorphism of a complete surface S.
Assume f is Anosov, with uniform local product structure and with dense set
of periodic orbits. Is S a torus?

Ones we get that the partition into accessibility classes is a minimal foliation,
smoothness of this foliation implies it is ergodic w.r.t. Lebesgue measure, see
[20]. But it is still not clear for us how to get the desired smoothness (at least
C2).

On the other hand, the criterium was used by A. Avila and J. Bochi [1]
to strengthen R. Mañé, J. Bochi, M. Viana, theorem, [45, 8, 9] to get that
for a generic volume preserving diffeomorphism, either there is at least one
zero Lyapunov exponent a.e. or the Oseledets splitting extends to a dominated
splitting on the whole manifold. Previous results gave that Oseledets splitting
extend to a dominated one over closed invariant sets of arbitrary large measure.
In dimension 2, this gives that for a generic volume preserving diffeomorphism,
either it is Anosov, or all exponents vanish a.e.

J. Rodriguez Hertz, in [54] proved the full conjecture in dimension 3, i.e.

Theorem 3.3. For volume preserving diffeomorphisms in dimension 3 belong-
ing to a C1 generic set, either all exponents vanish a.e., or the system is ergodic
and non-uniformly hyperbolic with the Oseledets splitting extending to a domi-
nated splitting.

For dissipative systems, in [63] we extend the criterium for SRB measures
and prove uniqueness of SRB measures for transitive surface diffeomorphisms.
Existence of SRB measures is still a wide open problem, there are lot of ad-
vances, but mostly for particular examples like Henon-like maps. It is in general
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believed that having no zero exponents on a set of positive Lebesgue measures
should imply existence of an SRB measure, but the examples in [27] are saying
that maybe something more is needed to guarantee them at least if we want to
work with finite measures.

In our survey [57] on partially hyperbolic systems the reader may find a
large list of problems and directions. Even if some new results appear since
then we think that it is still updated.

4. Product Measures and Entropy Formula

One of the most striking formulas in ergodic theory is Ledrappier-Young entropy
formula, stating that entropy is a linear combination of the positive Lyapunov
exponents, where the coefficients have some dimension like meaning. To be
more precise, Let f be a C1+α diffeomorphism and µ be an invariant measure.
Oseledets theorem gives a splitting

TM = Eu
1 ⊕ E2 ⊕ · · · ⊕ Eu

u ⊕ E0 ⊕ Es
s ⊕ · · · ⊕ Es

2 ⊕ Es
1

associated to the positive, zero and negative Lyapunov exponents

χu
1 > χu

2 > · · · > χu
u > 0 > χs

s > · · · > χs
2 > χs

1.

Call Eu = Eu
1 ⊕E2 ⊕ · · · ⊕Eu

u and Es = Es
s ⊕ · · · ⊕Es

2 ⊕Es
1 , E0 is sometimes

also denoted Ec.

Pesin stable manifold theorem states that tangent to the flag

Eu
1 ⊂ Eu

1 ⊕ Eu
2 ⊂ · · · ⊂ Eu

1 ⊕ E2 ⊕ · · · ⊕ Eu
u = Eu

there is a flag V1(x) ⊂ V2(x) ⊂ · · · ⊂ Vu(x) = Wu(x). In general, the slow
bundles Eu

i , i > 1 are not integrable, though one may put some locally invariant
families of disks tangent to them which are commonly called Wi(x), but are in
general not canonically defined. Indeed one may build examples of affine systems
where this bundles cannot be integrated, but there are also some cases where
the Ei integrates in some canonical way, for example, for toral automorphisms.
We call fast invariant manifolds to the Vi’s and slow manifolds to the Wi’s.

Associated to this flag, there are measurable partitions ξ1 > ξ2 > · · · > ξu
subordinated to the V ′

i s. So we have conditional measures µξi for i = 1, . . . , u.
Let us call di the Haussdorff dimension of the µξi and γi = di − di−1 i =
1, . . . , u (here we put d0 = 0. So the γi’s are some sort of transverse dimensions
associated to some transverse measures. It can be seen that the di does not
depend on the ξi but only on the conditional measures along the Vi’s, µ

i, and
the same for hµ(f, ξi) which will then be called hµ(f, Vi). Ledrappier-Young
[40, 41] formula then states that
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Theorem 4.1. Let f and µ be as above, then for every r = 1, . . . , u

hµ(f, Vr) =

r∑

i=1

γiχ
u
i

and for r = u,

hµ(f) =
∑

χi>0

γiχi

Shub-Wilkinson [72] gave examples of partially hyperbolic systems with
circle center bundle having positive central exponents on T

3. In this case it
follows that χ1 > χ2 > 0, d1 = 1, d2 = 2 and γ1 = γ2 = 1, the conditional
measures along the central foliation are atomic so this conditional dimensions
are 0. This is very important to understand that the conditional dimension can
be completely different to the transverse direction, though it can be seen that
the conditional dimension is alway smaller than or equal to the transverse di-
mension. In fact the matching of conditional measures and transverse measures
give rise to all sorts of rigidity. When the measure µ is Lebesgue measure (or at
least some SRB measure), absolute continuity of the slow directions is known
to imply, in some cases, that conditionals and transverse dimensions match and
in this case some rigidity appears. See [4], [24] and [75] for examples of this
features. In particular, in [4] it is proven the rigidity property conjectured in
our survey [57]. To get this rigidity it comes into play the pioneering work of
F. Ledrappier [38] on random product of matrices. It was already there that
this type of rigidity appeared. We think that indeed this features should be
quite general and rigidity comes from the fact that conditional and transverse
dimensions match. Let us formulate the following

Conjecture 3. If all transverse dimensions coincide with the conditional di-
mensions, then the measure µu = µWu is locally a product.

It is a part of the conjecture to make some meaning of the conditional
dimension and so the meaning of been locally a product, one should use the
Wi’s and try to see that this dimensions do not depend on the choices, or make
some fix choice. We may assume to begin with some integrable case where
the slow directions Wi’s become integrable. It would be also a nice exercise to
understand first how things work for invariant measures of toral automorphisms.

When all conditional measures (also the ones in slow directions) are
Lebesgue, absolute continuity of the fast foliation implies that µWu is a product
measure and hence it is Lebesgue. F. Ledrappier and J-S. Xue analyzed also
the other extreme in [39], they prove that if the transverse dimension γi is 0
then the measure µi is supported in Vi−1 and hence equals µi−1. This prob-
lem appeared in [35] when relations between smoothness of entropy map and
rigidity of measures was proved.

It is very important to observe that the conditional dimensions does not
depend on the system f , just on the measures and the invariant manifolds (fast
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or slow), but the transverse dimensions depend on how this invariant manifolds
fit inside the flag. For example, if two systems leave invariant the same measure
µ and have the same Oseledets splitting, then a priori the γ′

is may change since
the flag may change. It is non trivial to see that this does not happens in some
cases and this was done by H. Hu in [26] where essentially it is proven that
the γi’s does not change as long us they correspond to expanding Lyapunov
exponents for both systems. In [26] the systems are assumed to commute but
we believe that this is almost essentially the case if the Oseledets splitting
coincides.

Another related problem is to understand when the measure µ itself is lo-
cally a product of µu, µc and µs. When the three conditional measures are
absolutely continuous w.r.t. Lebesgue and the central direction is associated
to some absolutely continuous foliation the measure itself is absolutely contin-
uous w.r.t. to Lebesgue, [41]. In the general case, almost nothing is known.
The key issue here seems to be absolute continuity of the complementary foli-
ation w.r.t. the conditional measures. But there is not much advances in this
directions, not even for linear maps. This again is a source of rigidity. Let us
point out that here we are looking for measures that are product (or equivalent
to product measures) and not only that they possesses asymptotically almost
local product structure, this was already done in the work of L. Barreira, Y.
Pesin and J. Schmeling, [6] where it is proven that every hyperbolic measure is
assymptotically a product.

Observe also that in the Furstenberg measure rigidity problem for liner au-
tomorphisms on T

3, the issue is with a measure having 0 conditional dimensions
on all three directions, but is not known if it is locally a product. When some
conditional dimension is non-zero then the problem is completely solved. If the
group is large enough then, it can be seen that the system has already non-zero
conditional dimension. This was already done in [11] and [7] for the case of
non abelian groups. In the case of abelian semigroups acting on the circle in
[21] M. Einsiedler and A. Fish assume that the semigroup growth with some
positive rate. Let us put the following problem which may be seen as a step in
the middle of Furstenberg problem and [21].

Problem 3. Let Γ be a non finitely generated multiplicative subsemigroup of
N, then the unique ergodic invariant measures for the linear action are either
Lebesgue or atomic.

In a conversation with V. Bergelson, it appeared that the first example not
included in previous works that may have a chance is a semigroup generated
by some increasing powers of the prime numbers.

Other instance where a product structure of the measure appears is for
entropy maximizing measures. In [62] we prove that

Theorem 4.2. For partially hyperbolic systems in dimension 3 with compact
central foliation having the accessibility property, either there is only one en-
tropy maximizing measure and the system is conjugated to an isometric ex-
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tension of an Anosov system, or there are at least two entropy maximizing
measures, one with negative central exponents and the other with positive ones.

This theorem relies on a theorem of A. Avila and M. Viana [3] for cocy-
cles over hyperbolic dynamics with invariant product measures, extending the
mentioned F. Ledrappier [38] result, and is parallel to the results in [4] where
similar results are proven for Lebesgue measure and relies in the work of [2].
We conjecture that if the system is transitive then there are at most 2 entropy
maximizing measures, this should follow from some averaged central dynam-
ics. For the examples of partially hyperbolic systems in dimension 3 isotopic
to Anosov diffeomorphisms it is proven in [17] that there is only one measure
of maximal entropy. It would be interesting to know what happens for pertur-
bations of the time one map of the geodesic flow over hyperbolic surfaces, we
believe that something similar to our theorem 4.2 happens there. We think that
the following should also be true, this conjecture is close to the one appearing
in the work of J. Buzzi [16]

Conjecture 4. If f is a C∞ transitive surface diffeomorphism with positive
topological entropy then there is only one measure of maximal entropy. More-
over, this measure is locally a product.

That the measure is locally a product seems likely to follow from the method
of construction appearing in [16], i.e. building countable Markov chains associ-
ated to the dynamics, what is not clear is how to build this countable Markov
chain. So it is reasonable to conjecture that entropy maximizing measures are
always locally a product in dimension 2.

In [3] A. Avila and M. Viana combine the technique of cocycle rigidity with
our previous result [52] on stable ergodicity for automorphisms on tori with 2
dimensional center bundle to get stably Bernoulli for symplectic perturbations.
Indeed they prove a dichotomy along ours, getting that either the system is
nonuniformly hyperbolic in the case the system has the accessibility property
or the system is smoothly conjugated to the linear one. We think that there
may be a proof of stable ergodicity for linear automorphisms regardless of its
central dimension combining these ideas. To be a little bit more precise, it seems
that it can be proved that every accessibility class is dense. In case f has not
the accessibility property the problem is that the s- and u-bundles need not be
jointly integrable, still we think that they fit inside some integrable subbundle
and this should coincide with the bundle of nonzero exponents.

On the other hand one can see this result as a nonlinear version of the result
in [42]. There it is proven in particular that any ergodic measure invariant by an
irreducible linear automorphism of the torus is either Lebesgue measure or the
support of the central conditional measures is a circle. One can also apply this
to study compact invariant subsets. The same technic applies to some extent to
study partially hyperbolic systems with isometric central dynamics. We believe
that with some zero Lyapunov exponents assumption on the central direction,
or even some zero entropy assumption on the central direction (whatever this
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means) some close results should be expected. In any case, the simplest case of
the time one map of Anosov flows seems to be not clear. Indeed the following
problem by J. Rodriguez Hertz and F. Ledrappier is still open.

Problem 4. Are there nonfinite compact minimal invariant sets invariant by
the time one map of an Anosov flow but not for the flow?

They posed the question for the case of the geodesic flow of a surface of
constant curvature. It seems likely that the answer is yes for most systems, in-
deed, we think that an example for the geodesic flow of some constant curvature
surface is also doable playing with the length of geodesic of a pair of pants, or
equivalently using the Teichmüller flow, but it is not clear for every surface. In
any case, how do these sets look like, can they be geodesic laminations? what
about entropy of this sets, even if the set is not minimal? The same question
for invariant measures seems to be true in all cases (for Anosov flows).
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1.1. Motivation. A continuous map T on a compact metric space Ω0 is
called uniquely ergodic if it has exactly one invariant probability measure. It
is natural to ask what is the right notion of “unique ergodicity” for maps on
non–compact spaces whose invariant measures are all infinite. The question is
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Following a program initiated in [ANSS], we studied the measure rigidity of
non–compact analogues of classical uniquely ergodic systems. The systems we
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1.2. Basic Definitions. Let T be a measurable map on a measurable
space (Ω,B), and suppose µ is a σ–finite measure on (Ω,B) s.t. µ(Ω) 6= 0.
We say that µ is invariant, if µ(T−1E) = µ(E) for all E ∈ B. We say that
µ is ergodic, if for every set E ∈ B s.t. T−1(E) = E, either µ(E) = 0 or
µ(Ω \ E) = 0.

We say that µ is conservative, if for every W ∈ B s.t. {T−n(W )}n≥0 are
pairwise disjoint, µ(W ) = 0. This condition is always satisfied in the following
cases: (1) µ is a finite invariant measure; and (2) µ is σ–finite non–atomic
ergodic invariant measure and T is a bimeasurable bijection [A1].

The ergodic theorems describe the information such measures contain on
the almost sure behavior of orbits {T kω}k≥0 (T k := T ◦ · · · ◦ T , k times):

Theorem 1.1 (Birkhoff). Let µ be a finite ergodic invariant measure for

T : Ω → Ω, then for every f ∈ L1(Ω,B, µ), 1
N

∑N
k=1 f(T

kω) −−−−→
N→∞

1
µ(Ω)

∫
Ω

fdµ µ–a.e.

Theorem 1.2 (Hopf). Suppose µ is a σ–finite conservative ergodic invariant
measure, then for every f, g ∈ L1(Ω,B, µ) s.t. g ≥ 0 and

∫
Ω
gdµ > 0,

∑N
k=1 f(T

kω)
∑N

k=1 g(T
kω)

−−−−→
N→∞

∫
Ω
fdµ∫

Ω
gdµ

for µ–almost every ω.

Specializing to the case when f and g are indicator functions of sets F , G of
positive finite measure, we see that if µ(Ω) = ∞ then the frequency of visits of
Tn(ω) to F and G tends to zero, but the ratio of these frequencies tends to a
definite limit.

The limit depends on µ, although it is the same for proportional measures.
It is therefore of great interest to know what are the possible ergodic invariant
measures up to scaling. To avoid pathologies (cf. [Sch2]), we restrict our at-
tention to measures which are locally finite in some sense which we now make
precise.

The following set-up is not the most general possible, but suffices for our
purposes. Suppose Ω0 is a locally compact second countable metric space with
Borel σ–algebra B0. Let Cc(Ω0) := {f : Ω0 → R : f continuous with compact
support}. A Borel measure µ on Ω0 is called a Radon measure, if µ(C) < ∞
for every compact set C ⊂ Ω0. Equivalently, every f ∈ Cc(Ω0) is absolutely
integrable.

In §3.3 we will need to deal with Borel maps T which are only defined on a
subset Ω ⊆ Ω0, Ω ∈ B0. Let B := {E∩Ω : E ∈ B0}. A measure µ on (Ω,B) is
called locally finite, if µ0(E) := µ(E ∩Ω) is a Radon measure on Ω0. If Ω = Ω0,
then the properties of being Radon and being locally finite are the same.

Theorems 1.1 and 1.2 are almost sure statements. It is interesting to know
what are their points of validity.
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Definition 1.1. A point ω ∈ Ω is called generic for µ if

1. µ(Ω) < ∞ and for all f ∈ Cc(Ω0),
1
N

∑N
k=1 f(T

kω) −−−−→
N→∞

1
µ(Ω)

∫
Ω
fdµ;

or

2. µ(Ω) = ∞, and for all f, g ∈ Cc(Ω0) such that g ≥ 0 and
∫
gdµ > 0,

∑N
k=1 f(T

kω)
∑N

k=1 g(T
kω)

−−−−→
N→∞

∫
Ω
fdµ∫

Ω
gdµ

.

Our assumptions on Ω0 and Hopf’s theorem guarantee that the set of generic
points of a locally finite conservative ergodic invariant measure µ has full µ–
measure.

Similar definitions can be made for flows. A Borel flow ϕ : Ω → Ω is a group
of maps ϕt : Ω → Ω (t ∈ R) such that (t, ω) 7→ ϕt(ω) is Borel, and ϕt◦ϕs = ϕt+s

(t, s ∈ R). A Borel measure is called ϕ–invariant, if it is ϕt–invariant for all t.
A Borel measure is called ϕ–ergodic, if any Borel set E s.t. ϕ−t(E) = E for all
t satisfies µ(E) = 0 or µ(Ω \ E) = 0. A point is called generic for a flow, if it

satisfies definition 1.1 with
∫ N

0
h(ϕsω)ds replacing

∑N
k=1 h(T

kω) (h = f, g).

1.3. Measure Rigidity. Let T be a Borel map on a Borel subset Ω of
a second countable locally compact metric space Ω0. We are interested in the
following problems:

1. Find all locally finite T–ergodic invariant measures;

2. Describe their generic points;

3. If there are many measures, find an ergodic theoretic property which
singles out just one (up to scaling).

If one or more of these questions can be answered, then we speak (somewhat
unorthodoxly) of “measurable rigidity”. The strongest form of measure rigidity
is unique ergodicity:

Definition 1.2. T is uniquely ergodic (u.e.) if (1) T admits one locally finite
invariant measure up to scaling; and (2) every point is generic for this measure.1

It is useful to weaken this as follows. Let δy denote the point mass at y. A point
ω is called exceptional for a map T (resp. a flow ϕ) if the measure

∑
n>0 δTn(ω)

(resp.
∫∞

0
δϕs(ω)ds) is locally finite.

Definition 1.3. T is uniquely ergodic in the broad sense if (1) up to scal-
ing, T admits one locally finite ergodic invariant measure not supported on a

1Usually unique ergodicity is only defined for continuous maps on compact metric spaces.
In this case the unique invariant measure is finite, and (1) implies (2).
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single orbit; and (2) every non–exceptional non–periodic point is generic for
this measure.

See theorems 2.3 and 2.5 for examples.
Interestingly enough, in the non–compact case there is a large collection

of “natural” examples which exhibit a different, more subtle, form of measure
rigidity. For these dynamical systems:

• There are no finite invariant measures at all, except perhaps measures
supported on periodic orbits;

• There are infinitely many locally finite ergodic invariant measures, all of
which can be specified;

• In some cases we know what are the generic points of these measures;

• In some cases we are able show that exactly one of these measures up to
scaling admits a generalized law of large numbers (cf. §2.5).

The purpose of this paper is to describe these examples.

2. Horocycle Flows

2.1. Definition. Let M be a complete, connected, orientable hyperbolic
surface. Let T 1M be its unit tangent bundle. The geodesic flow is the flow
g : T 1M → T 1M which moves a unit tangent vector, at unit speed, along its
geodesic. The Horocycle of a vector ω ∈ T 1M is the set

Hor(ω) := {ω′ ∈ T 1M : dist(gsω, gsω′) −−−→
s→∞

0}. (2.1)

We shall soon see that this is a smooth curve in T 1M . The horocycle flow of
M is the flow h : T 1M → T 1M which moves ω ∈ T 1M at unit speed along
Hor(ω) in the positive direction.2

It is useful to consider the case when M = H := {x+ iy : x, y ∈ R, y > 0},
equipped with the metric

√
dx2 + dy2/y. Poincaré’s Theorem ([Kat], chapter

1), says that the orientation preserving isometries of H are Möbius transforma-
tions z 7→ az+b

cz+d where a, b, c, d are real. We denote the collection of these maps

by Möb(H). Möb(H) acts transitively on T 1H: for every ω1, ω2 ∈ T 1H there
exists ϕ ∈ Möb(H) s.t. ϕ∗(ω1) = ω2. Schwarz’s Lemma says that ϕ is unique.

Let ω0 denote the unit tangent vector based at i and pointing north. It is
easy to see that the geodesic flow moves ω0 along the vertical ray it determines.
Since every ω ∈ T 1H can be mapped by an element of Möb(H) to ω0, and since

2Sometimes h is called the stable horocycle flow. The unstable horocycle flow is defined in
the same way, except that one takes the limit s → −∞ in (2.1).
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isometries map geodesics to geodesics, every geodesic is either a circular arc
perpendicular to ∂H := {z : Im z = 0}, or a vertical line.

One can check in a similar way that Hor(ω0) consists of the unit tangent
vectors based on the line Im z = 1 and pointing north. Since the hyperbolic
metric agrees with the euclidean metric on the line Im z = 1,

ht(ω0) = (ψt)∗ω0, where ψt : z 7→ z + t.

For general vectors ω ∈ T 1H, let ϕω be the unique element of Möb(H) s.t.
ω = (ϕω)∗ω0, then Hor(ω) = (ϕω)∗[Hor(ω0)] and

ht(ω) = (ϕω ◦ ψt)∗ω0. (2.2)

The Möbius transformation ϕω maps the line Im z = 1 onto a circle C which
is tangent to ∂H (possibly at ∞). Hor(ω) consists of the unit tangent vectors
based at C, perperndicular to C, and pointing in the direction of the tangency
point.

There is a useful algebraic description of h. The elements of Möb(H) are
parametrized by the elements of

PSL(2,R) :=

{(
a b
c d

)
: a, b, c, d ∈ R, ad− bc = 1

}
/

{
±
(

1 0
0 1

)}
.

We see that the map ω 7→ coefficient matrix of ϕω is bijection T 1H →
PSL(2,R). Applying this identification to (2.2), we obtain a conjugacy between
the horocycle flow on T 1H and the matrix flow h : PSL(2,R) → PSL(2,R)

ht :

(
a b
c d

)
7→
(
a b
c d

)(
1 t
0 1

)
.

This extends to other hyperbolic surfaces. The Killing–Hopf Theorem says
that any complete orientable connected hyperbolic surfaceM is isometric to an
orbit space Γ \H, where Γ is a discrete subgroup of Möb(H) without elements
of finite order (“torsion free”). Γ is called a uniform lattice if Γ \H is compact,
a lattice if Γ\H has finite area, and geometrically finite if Γ\H has finite genus.
Every uniform lattice is a lattice, and every lattice is geometrically finite [Kat].

The identifications T 1H ' Möb(H) ' PSL(2,R) turn the horocycle flow on
T 1M into the matrix flow h : Γ \ PSL(2,R) → Γ \ PSL(2,R)

ht : Γ

(
a b
c d

)
7→ Γ

(
a b
c d

)(
1 t
0 1

)
.

Let m0 denote the Riemannian volume measure on T 1M . We can use the
algebraic representation of h to relatem0 to the Haar measure of PSL(2,R), and
to deduce its h–invariance. It is enough to treat the case M = H, the general
case follows from the representation M = Γ \ H. The identification ω 7→the
coefficient matrix of ϕω conjugates the action of Möb(H) on T 1H to the action
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of PSL(2,R) on itself by multiplication on the left. Isometries preserve volume,
so m0 must be mapped to the left Haar measure on PSL(2,R). PSL(2,R) is
unimodular: its left Haar measure is invariant under multiplication on the right.
Since h acts by multiplication on the right, m0 is h–invariant.

Theorem 2.1 (Kaimanovich). m0 is h–ergodic iff every bounded harmonic
function on M is constant (“Liouville property”).

This is in [Kai] (see also [Su], part II).

2.2. Horocycle flows on hyperbolic surfaces with finite
genus. Henceforth, unless stated otherwise, a “hyperbolic surface” means
Γ \H, where Γ is a discrete torsion free subgroup of Möb(H).

Recall the following chain of inclusions for hyperbolic surfaces [Kat]: com-
pact ⊂ finite area ⊂ finite genus. The study of measure rigidity for horocycle
flows starts with the following fundamental result [F1]:

Theorem 2.2 (Furstenberg). If M is compact, then h : T 1M → T 1M is
uniquely ergodic. The invariant measure is, up to scaling, m0.

A non–compact hyperbolic surface of finite area has “cusps” (Fig. 1a): pieces
which are isometric to C := 〈z 7→ z + 1〉 \ {z ∈ H : Im z ≥ a} (where a > 0).
Cusps contain periodic horocycles. In fact any unit tangent vector ω ∈ T 1C
which points north is h–periodic, and the Lebesgue measure on its orbit is
a finite invariant measure. It follows that the horocycle flow is not uniquely
ergodic. But it is uniquely ergodic in the broad sense:

Theorem 2.3 (Dani–Smillie). Suppose M is a hyperbolic surface of finite area.

1. The ergodic invariant Radon measures are up to scaling the volume mea-
sure m0, and the measures supported on periodic horocycles.

2. Every ω ∈ T 1M whose horocycle is not periodic is generic for m0.

Part 1 is in [Da], part 2 is in [DS].
We see that in the finite area case all invariant measures are finite. For

infinite area surfaces there are no finite invariant measures at all, other than
measures supported on periodic horocycles (Ratner [Rat1]). We discuss the
finite genus case. To avoid trivial exceptions we always assume that the area is
infinite, and we only consider non–elementary surfaces, i.e. surfaces M = Γ \H
for which Γ is not generated by a single element.

Such surfaces have “funnels”. These are subsets which are isometric to F :=
〈z 7→ λz〉 \ {z ∈ H : Re z ≥ 0}, where λ > 1 (Fig. 1a). Funnels contain
exceptional orbits: if the geodesic of ω ∈ T 1F tends to some p ∈ {z ∈ ∂H :
Re z > 0}, then

∫∞

0
δhtωdt is a Radon measure. The Radon property is because

the horocycle eventually enters one fundamental domain of 〈z 7→ λz〉 and stays
there without accumulating anywhere.
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The set of exceptional ω’s constructed above is an h invariant set of positive
volume. Its complement also has positive volume. It follows that m0 is not
ergodic.

There does exist an h–ergodic invariant Radon measure µ which gives any
single orbit measure zero [Bu]. We describe it.

It is convenient to work in the unit disc model D := {z ∈ C : |z| < 1}
together with the metric 2

√
dx2 + dy2/(1 − x2 − y2). The map ϑ : H → D,

ϑ(z) = i−z
i+z is an isometry from H to D. It can be used to represent M in the

form ΓD \Möb(D), where ΓD = ϑΓϑ−1. We abuse notation and write Γ = ΓD.
T 1(D) can be identified with ∂D× R× R via (eiθ, s, t) ↔ (ht ◦ gs)(ω(eiθ)),

where h is the horocycle flow, g is the geodesic flow, and ω(eiθ) is the element of
T 1(D) based at the origin, and pointing at eiθ. (These are “KAN–coordinates”
for T 1(D) ∼= T 1H ∼= PSL(2,R).) In these coordinates, Γ acts by

ϕ∗ : (eiθ, s, t) 7→ (ϕ(eiθ), s− log |ϕ′(eiθ)|, t+ a(ϕ, eiθ, s)) (ϕ ∈ Γ) (2.3)

where a(ϕ, eiθ, s) is some function which does not depend on t. The horocycle
flow is just the linear translation on the t–coordinate.

We continue to assume that M = Γ \ D is non–elementary, and let Λ(Γ)
denote the limit set of Γ, equal by definition to ∂D ∩ {Γz} for some (hence all
[Kat]) z ∈ D. Let δ(Γ) denote the critical exponent of Γ, equal by definition to
the infimum of all δ s.t.

∑
ϕ∈Γ exp[−δ dist(z, ϕ(z))] < ∞. The following is in

[Pat]:

Theorem 2.4 (Patterson). There exists a probability measure ν on Λ(Γ) ⊆ ∂D
such that dν◦ϕ

dν = |ϕ′|δ(Γ) for all ϕ ∈ Γ.

One can now use (2.3) to verify by direct calculation that

dµ(eiθ, s, t) := eδ(Γ)sdν(eiθ)dsdt (2.4)

is a Γ–invariant h–invariant measure on T 1D. Γ–invariance means that µ de-
scends to an h–invariant Radon measure on T 1M . We call the resulting measure
the Burger measure. It is an infinite Radon measure. The following theorem im-
plies, through the ergodic decomposition, that it is ergodic.

Theorem 2.5 (Burger – Roblin). Suppose M = Γ \ H is a non–elementary
hyperbolic surface with finite genus and infinite area. The h–ergodic invariant
Radon measures are up to scaling

1. The Burger measure;

2. Infinite measures carried by horocycles of unit tangent vectors whose for-
ward geodesics escape to infinity through a funnel;

3. Finite measures carried by periodic horocycles whose forward geodesics
escape to infinity through a cusp.
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-1 0 1 2

(a) (c)

(b)

(d) (e)

Figure 1. (a) A cusp, a funnel, and a handle; (b) A “pair of pants”; (c) A Z–cover with
its Z–coordinates; (d) An F2–cover of a compact surface; (e) A pants decomposition
of a tame surface

The theorem was proved by Burger under the additional assumption that
δ(Γ) > 1

2 and that M has no cusps [Bu]. The general case was done by Roblin
[Ro], who also discusses extensions to variable negative curvature.

Theorem 2.6 (Schapira). Suppose M is a hyperbolic surface of finite genus
and infinite area, and let ω ∈ T 1M . Either ω is h–periodic, or ω is exceptional,
or ω is generic for the Burger measure.

For a characterization of the generic ω ∈ T 1M in terms of the endpoints of
their geodesics, see [Scha1], [Scha2]. For other equidistribution results which
involve Burger’s measure, see [Oh].

Together, theorems 2.5 and 2.6 say that the horocycle flow on a complete
connected orientable hyperbolic surface of finite genus is uniquely ergodic in
the broad sense.

2.3. Invariant measures in infinite genus. Horocycle flows on
hyperbolic surfaces of infinite genus are not always uniquely ergodic in the
broad sense, as was first discovered by Babillot and Ledrappier.

Their examples are Zd–covers of compact hyperbolic surfaces [BL] (Fig. 1c).
These are the surfaces of the form M = Γ\H, where Γ is a normal subgroup of
a uniform lattice Γ0 s.t. Γ0/Γ ' Zd. Topologically, M is a regular cover of the
compact surface M0 = Γ0 \D, with covering map p(Γg) = Γ0g. The covering
group

Cov(p) := {D :M →M : D is a homeomorphism s.t. p ◦D = p}

is isomorphic to Zd.
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The elements of Cov(p) are called “deck transformations”. They are isome-
tries, and they take the form Γz 7→ Γg0z (g0 ∈ Γ0). We parametrize the deck
transformations by Dξ (ξ ∈ Zd) in such a way that Dξ+η = Dξ ◦Dη. The deck

transformations act on T 1M by their differentials. Abusing notation, we denote
this action again by Dξ.

Theorem 2.7 (Babillot & Ledrappier). For each a ∈ Rd there exists up to
scaling a unique h–ergodic invariant Radon measure ma s.t. ma◦Dξ = e〈a,ξ〉ma

(ξ ∈ Zd).

The parameter a = 0 corresponds to m0, the measure induced by the Haar
measure. The measures ma with a 6= 0 are singular. Each is infinite, globally
supported, and quasi–invariant under the geodesic flow g : T 1M → T 1M : ∃c(a)
s.t.ma◦gs = ec(a)sm. For a related result on nilpotent regular covers of compact
hyperbolic surfaces, see Babillot [Ba].

Theorem 2.8 (S.). Every h–ergodic invariant Radon measure is proportional
to ma for some a.

See [Sa2]. Notice that although there is more than one non–trivial ergodic
invariant Radon measure, the collection of these measures is still small enough
to be completely described.

Babillot noticed a striking similarity between the list {ma : a ∈ Rd}, and
the list of minimal positive eigenfunctions of the Laplacian on M [Ba]. Some
definitions:

• The hyperbolic Laplacian of H is a second order differential operator on
C2(H) s.t. ∆H(f ◦ ϕ) = (∆Hf) ◦ ϕ for all ϕ ∈ Möb(H). This determines

∆H up to a constant. With a particular choice of constant, ∆H = y2( ∂2

∂x2 +
∂2

∂y2 ).

• The hyperbolic laplacian of M = Γ\H is (∆Mf)(Γz) := (∆Hf̃)(z) where

f̃(z) := f(Γz). The definition is proper, because of the commutation
relation between ∆H and Möb(H).

• The positive λ–eigenfunctions of ∆M are the positive F ∈ C2(M) for
which ∆MF = λF . (We allow infinite L2 norm.) We say that F is min-
imal, if ∆MG = λG, 0 ≤ G ≤ F ⇒ ∃c s.t. G = cF . The minimal
positive λ–eigenfunctions are the extremal rays of the cone of positive
λ–eigenfunctions.

The minimal positive eigenfunctions of the Laplacian on a Zd–cover of a com-
pact hyperbolic surface can be parametrized, up to scaling, by {Fa : a ∈ Rd},
where Fa ◦ Dξ = e〈a,ξ〉Fa (ξ ∈ Zd) (see [LP] and references therein). The
similarity with the list of ergodic invariant Radon measures is obvious.

Motivated by this observation and Sullivan’s work on the geodesic flow,
Babillot proposed a method for getting invariant Radon measures out of positive
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eigenfunctions, and conjectured that at least in some cases her method provides
a bijection between the two collections. We describe Babillot’s construction.

Again, it is convenient to represent M = Γ\D, where Γ is a discrete torsion
free subgroup of Möb(D). The hyperbolic laplacian on D is ∆Df := [∆H(f ◦
ϑ)] ◦ϑ−1, where ϑ : H → D is the isometry z 7→ i−z

i+z . The reader can check that

∆D commutes with Möb(D), and that ∆D = 1
4 (1− |z|2)2( ∂2

∂x2 + ∂2

∂y2 ).
Any positive eigenfunction of ∆M lifts to a Γ–invariant positive eigenfunc-

tion of ∆D. Any positive eigenfunction of ∆D can be represented in the form

F (z) =

∫

∂D

P (eiθ, z)αdνF (e
iθ),

where ν is a finite positive measure on ∂D, P (eiθ, z) = (1 − |z|2)/|eiθ − z|2 is
Poisson’s kernel, and α ≥ 1/2 (Karpelevich [Kar], see also [GJT]). If δ(Γ) ≥ 1

2 ,
then this representation is unique, and the Γ–invariance of F translates to the
following condition on ν:

dνF ◦ ϕ
dνF

= |ϕ′|α for all ϕ ∈ Γ.

Comparing this with (2.3), we see that the measure

dmF = eαsdνF (e
iθ)dsdt (2.5)

is a Γ–invariant, h–invariant measure on T 1(D). Its restriction to a fundamental
domain of Γ induces an h–invariant measure on M = Γ \ D.

Thus a positive eigenfunction F gives rise to a horocycle invariant Radon
measure mF . Babillot has conjectured – in the case of infinite regular covers of
compact surfaces with nilpotent covering group – that every invariant Radon
measure arises this way, and that minimal eigenfunctions F lead to ergodic
invariant Radon measures mF [Ba].

Babillot’s conjecture was proved for all infinite regular covers in [LS2] (see
[L] for a related result in higher dimension), and later for all tame surfaces
[Sa1]. To explain what these are, we recall some definitions and facts [Hub]:

• A hyperbolic surface with boundary is called a pair of pants, if it is home-
omorphic to a sphere minus three disjoint open discs or points (Fig. 1b).

• Every pair of pants has three boundary components of lengths 0 ≤ `i <∞
(i = 1, 2, 3), where ` = 0 corresponds to a cusp. Two pairs of pants with
the same triplet of lengths are isometric.

• The norm of a pair of pants Y is the sum of the lengths of its boundary
components, and is denoted by ‖Y ‖.

• A discrete subgroup Γ ⊂ Möb(D) is called a fuchsian group. A fuchsian
group is said to be of the first kind if its limit set Λ(Γ) equals ∂D.
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• A torsion free fuchsian group Γ is of the first kind iff Γ\D can be parti-
tioned into a countable collection of pants {Yi} which meet at boundary
components of the same length (see e.g. [Hub]).

We call {Yi} a pants decomposition of M .

Definition 2.1. The surface Γ \ D is called tame, if it admits a pants decom-
position {Yi} such that sup ‖Yi‖ <∞.

It can be shown that in this case δ(Γ) ≥ 1
2 [Sa1].

Any regular cover of a compact hyperbolic surface is tame, because it admits
an infinite pants decomposition whose components fall into finitely many isom-
etry classes. There are many other examples: if one glues a finite or countable
collection of pants of bounded norm one to another in such a way that every
boundary component is glued to some other boundary component of the same
length and orientation, then the result is a tame complete hyperbolic surface
(Fig. 1e).

We need a couple more definitions to state the result.

• A horocycle ergodic invariant Radon measure is called trivial if it is sup-
ported on a single horocycle made of unit tangent vectors whose forward
geodesics tend to a cusp.

• A Möbius function ϕ ∈ Möb(D) is called parabolic if it has exactly one
fixed point on ∂D. A positive eigenfunction is called trivial, if it is of the
form

F (z) :=
∑

g∈Γ/stabΓ(eiθ)

P (g(eiθ), z)α

where P (·, ·) is Poisson’s kernel, eiθ is a fixed point of some parabolic
element of Γ, and stabΓ(e

iθ) = {g ∈ Γ : g(eiθ) = eiθ}.
The following theorem is proved in [Sa1], under slightly weaker assumptions.

Theorem 2.9 (S.). If Γ \ D is tame, then the following map is a bijection
between the non-trivial positive minimal eigenfunctions of the Laplacian on Γ\D
and the non-trivial horocycle ergodic invariant Radon measures on T 1(Γ \ D):
[
F (Γz) =

∫

∂D

P (eiθ, z)αdν(eiθ)

]
↔
[
The restriction of dm = eαsdν(eiθ)dsdt
to a fundamental domain of Γ

]
.

We illustrate the result by examples [LS2]:

1. Furstenberg’s Theorem: All positive eigenfunctions on a compact surface
are constant. The constant function maps tom0. Consequently all ergodic
invariant Radon measures are proportional to m0.

2. Dani’s Theorem: The minimal positive eigenfunctions on a hyperbolic
surface of finite area are either constant, or trivial (Eisenstein series as-
sociated to cusps). So the ergodic invariant Radon measures are m0 and
trivial measures.
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3. Periodic surfaces of polynomial growth: These are regular covers of com-
pact hyperbolic surfaces with the property that the area of concentric balls
of radius R is O(Rδ) for some δ as R → ∞ (e.g. Zd–covers). Using Gro-
mov’s characterization of virtually nilpotent groups, it can be shown that
the group of deck transformations contains a nilpotent normal subgroup
N of finite index. The minimal positive eigenfunctions form a family

{cFϕ : c > 0, ϕ : N → R a homomorphism},
where Fϕ ◦D = eϕ(D)Fϕ for all D ∈ N ([LP],[CG], see also [LS2]). Con-
sequently the ergodic invariant Radon measures of the horocycle flow are

{cmϕ : c > 0, ϕ : N → R a homomorphism},
where mϕ ◦D = eϕ(D)mϕ for all D ∈ N .

There are periodic surfaces of exponential growth for which there are locally
finite ergodic invariant measures which are not quasi–invariant with respect to
some deck transformations, see [LS2].

Question 1. Does there exist an example of a (necessarily non–tame) surface
Γ \ D with an h–ergodic invariant Radon measure which is not carried by a
single orbit, and is not quasi invariant under the geodesic flow?

Question 2. What can be said about the infinite locally finite ergodic invariant
measures for general unipotent flows on a homogenous space Γ \ G when Γ is
not a lattice? (The finite invariant measures are known [Rat1].)

2.4. Generic points. At present, the generic points for horocycle flows
on surfaces of infinite genus are only understood in the case of Zd–covers of
compact surfaces.

SupposeM covers a compact surfaceM0 in such a way that the group of deck
transformations can be put in the form {Dξ : ξ ∈ Zd}, where Dξ+η = Dξ ◦Dη.

Choose some connected fundamental domain M̃0 for the action of the group of
deck transformations on T 1M . Define the Zd–coordinate of ω ∈ T 1M to be the
unique ξ(ω) ∈ Zd such that ω ∈ Dξ(ω)[M̃0] (Fig. 1c).

There is an analogy between the paths of the geodesic flow and the paths
of a random walk on Zd. Define the asymptotic drift of a vector ω ∈ T 1M to
be the following limit, if it exists:

Ξ(ω) := lim
T→∞

1

T
ξ(gTω), where g is the geodesic flow.

Since g moves at unit speed, ‖Ξ(ω)‖ is uniformly bounded. Let

C := closed convex hull of {Ξ(ω) : ω ∈ T 1M s.t. Ξ(ω) exists} ⊂ Rd.

In the previous section we parametrized the ergodic invariant Radon mea-
sures of h by the way they transform under the deck transformations. One can
also parametrize them by the almost sure value of Ξ(·):
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Theorem 2.10. Let M be a Zd–cover of a compact hyperbolic surface.

1. For every Ξ ∈ int(C) there exists an h–ergodic invariant Radon measure
mΞ such that Ξ(·) = Ξ mξ–a.e., and this measure is unique up to scaling.

2. The volume measure m0 is proportional to m0.

3. Every h–ergodic invariant Radon measure is proportional to mΞ for some
Ξ ∈ int(C).

See [BL], and theorem 2.8.

Theorem 2.11 (S. & Schapira). A vector ω ∈ T 1M is generic for some horo-
cycle ergodic invariant Radon measure m iff Ξ(ω) exists and Ξ(ω) ∈ int(C). In
this case m = cmΞ(ω) for some c > 0. In particular, ω is generic for m0 iff
Ξ(ω) = 0.

Using the hyperbolicity of the geodesic flow and a standard specification
argument, it is easy to construct vectors ω for which the limit Ξ(ω) does not
exist. It is not difficult to arrange for ω to have a dense (horocycle) forward
orbit. Thus there are abundantly many non-exceptional ω ∈ T 1M which are
not generic for any Radon measure. This is yet another way in which h fails to
be u.e. in the broad sense.

Question 1.What are the generic points for horocycle flows on nilpotent covers
of compact hyperbolic surfaces?

Question 2. Suppose M = Γ \ D is Liouville (cf. theorem 2.1). Is it true that
ω ∈ T 1M is generic for m0 whenever 1

T logF (base point of gs(ω)) −−−−→
T→∞

0 for

all positive minimal eigenfunctions F? This is the case for compact surfaces,
surfaces of finite area, and Zd–covers of compact surfaces.

2.5. Conditional unique ergodicity. We continue to consider the
special case of Zd–covers of compact hyperbolic surfaces.

We saw that there are infinitely many ergodic invariant measures. It turns
out that up to scaling, only one of them – the volume measure – is non patho-
logical from the ergodic theoretic point of view, in the sense that it admits a
generalized law of large numbers in the sense of Aaronson [A2].

We explain what this means. Suppose ϕ is an ergodic measure preserving
flow on a non–atomic measure space (Ω,B, µ), and fix some measurable set E
of finite measure. We think of t as of “time” and of E as of an “event”. The
times when E “happened” are encoded by the function

xE,ω(t) := 1E(ϕ
t(ω)) =

{
1 ϕt(ω) ∈ E;

0 ϕt(ω) 6∈ E.
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A generalized law of large numbers is a procedure for reconstructing µ(E) from
xE,ω : [0,∞) → {0, 1}:
Definition 2.2 (Aaronson). A generalized law of large numbers (GLLN) is a

function L : {0, 1}R+ → [0,∞), L = L[x(·)], such that for every E ∈ B of finite
measure, L[xE,ω(·)] = µ(E) for µ–a.e. ω.

For example, if the underlying measure space is a probability space, then
the ergodic theorem says that the following function is a GLLN:

L[x(t)] :=

{
lim

T→∞

1
T

∫ T

0
x(t)dt the integral and limit exist

0 otherwise.

It is obvious how to change L to make it work when 0 < µ(Ω) < ∞. But if
µ(Ω) = ∞, then it is not clear how to proceed, because the ergodic theorem

says that in this case lim
T→∞

1
T

∫ T

0
1E(ϕ

t(ω))dt = 0 for every E of finite measure.

It is natural to ask whether it is possible to find a(T ) = o(T ) so that for

every E ∈ B, lim
T→∞

1
a(T )

∫ T

0
1E(ϕ

t(ω))dt = µ(E). This is never possible [A1]:

Theorem 2.12 (Aaronson). Let ϕ be an ergodic measure preserving flow on
an infinite σ–finite non–atomic measure space (Ω,B, µ). Suppose f ∈ L1, f >

0. There is no a(T ) > 0 s.t. 1
a(T )

∫ T

0
f(ϕt(ω))dt converges a.e. to a constant

c 6= 0,∞.

It is still possibile that there exists a(T ) > 0 s.t. 1
a(T )

∫ T

0
f(ϕt(ω))dt oscil-

lates without converging to zero or infinity. One can hope for a summability
method which forces convergence to

∫
fdµ. Such “second order ergodic theo-

rems” are considered in [ADF]. Here is such a theorem [LS3]:

Theorem 2.13 (Ledrappier–S.). There exists a(T ) > 0 s.t. for all f ∈ L1(m0)

lim
N→∞

1

ln lnN

∫ N

3

1

T lnT

(
1

a(T )

∫ T

0

f ◦ hsds
)
dT =

∫
fdm0 m0-a.e.

The corresponding GLLN is L[x(t)] := lim
N→∞

1
ln lnN

∫ N

3
1

T lnT

(
1

a(T )

∫ T

0
x(s)ds

)
dT

when the limit make sense, and L[x(t)] := 0 otherwise.

We decribe a(T ). Recall the definitions of M̃0 and of the Zd–coordinate

ξ from §2.4. We pick ω ∈ M̃0 randomly according to the uniform distribu-
tion on M̃0, m0( · |M̃0), and consider the random variables ω 7→ ξ(gT (ω)).
It follows from the work of Ratner [Rat2] and Katsuda & Sunada [KS] that
ξ(gT (ω))/

√
T converges in distribution to a non–degenerate multivariate Gaus-

sian random variable N on Rd. If Cov(N) is the covariance matrix of N , and
σ := d

√
| detCov(N)|, then

a(T ) =
m0(M̃0)

(4πσ)d/2
T

(lnT )d/2
.
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Theorem 2.13 also holds for Zd–covers of non–compact surfaces of finite
area, but with different a(T ) [LS1].

There are no similar results for any of the other h–ergodic invariant Radon
measures. The reason is tied to the following property:

Definition 2.3 (Aaronson). An ergodic invariant measure m for a flow ϕ (or
a map T ) is called squashable, if there is a measurable map Q which commutes
with ϕ (or T ) such that m ◦Q−1 = cm with c 6= 0, 1.

Squashable measures do not admit GLLN’s: Suppose there were a GLLN
L[·]. Choose a measurable set E of positive finite measure, and some ω s.t.
L[1A(h

tv)] = m(A) for A = E,Q−1E and v = ω,Q(ω). We have

m(E) = L[1E(h
sQω)] = L[1E(Qh

sω)] = L[1Q−1E(h
sω)] = m(Q−1E) = cm(E),

whence c = 1, a contradiction. Thus no GLLN can exist.
Any locally finite h–ergodic invariant Radon measure m which is not pro-

portional to m0 is squashable, because by theorem 2.8 such a measure satisfies
m◦Dξ = e〈a,ξ〉m for some vector a 6= 0 and all deck transformations Dξ, and all
deck transformations commute with h, being isometries. As a result we obtain
the following “conditional unique ergodicity” result [LS2]:

Theorem 2.14 (Ledrappier – S.). The horocycle flow on a Zd–cover of a
compact hyperbolic surface has, up to scaling, exactly one ergodic invariant
Radon measure which admits a GLLN: the volume measure m0.

3. Non-compact Group Extensions of Uniquely

Ergodic Transformations

3.1. Group extensions. Suppose T : Ω → Ω is a bimeasurable bijection
on a standard measurable space (Ω,B). Let G be a locally compact second
countable topological group with left Haar measure mG, with mG(G) = 1
when G is compact. Fix a Borel function ϕ : Ω → G.

Definition 3.1. The skew–product with base T : Ω → Ω, and cocycle ϕ : Ω →
G is the map Tϕ : Ω×G→ Ω×G given by Tϕ : (ω, g) 7→

(
T (ω), gϕ(ω)

)
. Such

maps are called group extensions.

In the cases considered below, T is a homeomorphism of a topological space
Ω which is either a compact metric space, or a compact metric space Ω0 minus
a countable collection of points. With such examples in mind, we call a measure
m on Ω×G locally finite, if m(Ω×K) <∞ for all compact K ⊂ Ω.

If µ is a T–invariant probability measure, then m0 := µ ×mG is a locally
finite Tϕ–invariant measure, although it is not always ergodic (e.g. when ϕ can
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be put in the form ϕ = u(u ◦ T )−1 with u Borel). The basic measure rigidity
result for compact group extensions is [P], [F2]:

Theorem 3.1 (Furstenberg – Parry). Let T be a uniquely ergodic homeo-
morphism of a compact metric space Ω, G be a compact Abelian group, and
ϕ : Ω → G be continuous. Tϕ is uniquely ergodic iff m0 is Tϕ–ergodic.

If G is not compact, then there could be other measures: let α : G → R be
a measurable homomorphism, and suppose there is a probability measure να
on Ω s.t. dνα◦T

dνα
= exp[α ◦ ϕ], then the measure

dmα(ω, g) = e−α(g)dνα(ω)dmG(g) (3.1)

is a locally finite invariant measure for Tϕ, as can be verified by direct calcula-
tion. Such measures are called Maharam measures. Some remarks:

1. If G = R and α = id, then ϕ = log dν◦T
dν and Tϕ is called the Radon-

Nikodym extension of T . Tϕ preserves mα, even when T does not preserve
ν. This was Maharam’s original motivation [M].

2. Suppose α ≡ 0, then ν0 is T–invariant andm0 = ν0×mG. If G is compact,
then this is the only possibility, because all measurable homomorphisms
α : G→ R are trivial.

3. Maharam measures mα with α 6≡ 0 do not admit GLLN’s, because they
are squashable: if Qh : (ω, g) 7→ (ω, hg) and h 6∈ kerα, then Qh ◦ Tϕ =
Tϕ ◦Qh and mα ◦Qh = cmα where c = e−α(h) 6= 1.

There is an obvious generalization of Maharam’s construction to skew–
produts over group actions. Burger’s measure (2.4) and the measures arising
from Babillot’s bijection (2.5) are Maharam measures for the skew–product
action (2.3).

The following questions arise naturally [ANSS]: Given a u.e. T , a cocycle
ϕ : Ω → G, and a measurable homomorphism α : G → R, does the Maharam
measure mα exist, and is it unique? Is it ergodic? Is every locally finite ergodic
invariant measure proportional to a Maharam measure?

The following statement comes close to saying that every locally finite er-
godic invariant measure is “Maharam like”, after suitable change of coordinates
[Rau].

Theorem 3.2 (Raugi). If m is a locally finite Tϕ–ergodic invariant measure on
Ω×G, then there are a closed subgroup H ⊂ G and Borel function u : Ω → G
s.t.

1. if ϕ̃(x) := u(x)ϕ(x)u(Tx)−1, then ϕ̃(x) ∈ H for m a.e. (x, g) ∈ Ω×G;

2. if ϑ : (x, g) 7→ (x, gu(x)−1), then m ◦ ϑ−1 is a Tϕ̃–ergodic invariant mea-
sure supported on Ω × H, and there exists a measurable homomorphism
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α : H → R and a σ–finite measure να on Ω s.t. dνα◦T
dνα

= exp[α ◦ ϕ̃] and

dm ◦ ϑ−1(ω, h) = e−α(h)dνα(ω)dmH(h). (3.2)

3. But in general να and m ◦ ϑ−1 need not be locally finite.

The case G = Rn × Zm was done in [Sa2].
The significance of part (3) is that there is an abundance of infinite σ–finite

solutions to the equation dνα◦T/dνα = exp[α◦ϕ̃]. The challenge is to determine
which of them has the property that m = (e−α(h)dνα(ω)dmH(h)) ◦ ϑ is locally
finite. In some cases, and using additional structure, one can show that H = G
or that u is essentially bounded (i.e. u(ω) ∈ K a.e. for some K compact). In
such cases m is locally finite iff να is finite. We discuss two examples below.

3.2. Cylinder Transformations. The first example we consider is a
group extension of the irrational rotation Tθ : T → T, Tθ : ω 7→ (ω + θ)mod 1,
where θ is a fixed irrational number and T := R/Z. The cocycle is

ϕ : T → Z , ϕ(ω) :=

{
1 0 ≤ ω < 1

2

−1 1
2 ≤ ω < 1.

Let Tθ,ϕ := (Tθ)ϕ, then Tθ,ϕ : (ω, n) 7→ ((θ + α)mod 1, n+ ϕ(ω)). Note that ϕ
and Tθ,ϕ are not continuous.

The original motivation was the theory of random walks [AK]. The iterates
of a G–extension Tϕ are given in general by

Tn
ϕ (ω, g) =

(
Tn(ω), gϕ(ω)ϕ(Tω) · · ·ϕ(Tn−1ω)

)
. (3.3)

The second coordinate is a random walk on G started at g. The function ϕ
controls the jumps, and the map T : Ω → Ω is the driving noise. For example,
if Ω = {0, 1}N, T is the left shift (Tω)i = ωi+1 together with the Bernoulli
( 12 ,

1
2 )–measure, and ϕ : Ω → Z is the function ϕ(ω) = (−1)ω0 , then the second

coordinate in (3.3) is the simple random walk on Z (started at g). The interest
in the cylinder transformation Tθ,ϕ is that the random walk it generates is
driven by a map with entropy zero. Another reason Tϕ is interesting is that it
appears as the Poincaré section for the linear flow on the staircase surface, see
below.

The measure m0 := mT × mZ (Lebesgue times counting measure) is an
invariant Radon measure for Tθ,ϕ. This measure is ergodic [CK], see also [Sch1].
Nakada showed that Maharam’s construction yields additional locally finite
ergodic invariant measures [N1], [N2]:

Theorem 3.3 (Nakada). For every θ 6∈ Q and α ∈ R there is a unique
probability measure ν s.t. dν◦Tθ

dν = exp(αϕ). The measure dmα(ω, n) :=

e−αϕ(ω)dν(ω)dmZ(n) is a conservative ergodic invariant Radon measure for
Tθ,ϕ.
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Theorem 3.4 (Aaronson, Nakada, S., & Solomyak). Suppose θ 6∈ Q, then
every ergodic invariant Radon measure for Tθ,ϕ is proportional to mα for some
α ∈ R.

For more complicated step functions ϕ, see [ANSS] and [C].

If α 6= 0, then mα is squashable, and therefore does not admit a GLLN.
Aaronson & Keane have shown in [AK] that m0 is not squashable. In fact it
admits a GLLN. This is a particular case of the following general result [A1]:

Theorem 3.5 (Aaronson). Let T : Ω → Ω be a translation on a compact metric
group Ω, and suppose ϕ : Ω → Zd is measurable. Let m0 be the product of the
Haar measures on Ω and Zd. If m0 is ergodic, then m0 admits a GLLN.

Corollary 3.1. Suppose θ is irrational, then up to scaling, Tθ,ϕ has exactly
one ergodic invariant Radon measure with a GLLN: m0.

The GLLN presented in theorem 2.13 is finitely observable in the sense that
the knowledge of {1E(ϕtω)}0≤t≤T for finite T yields an approximation to m(E)
which tends a.s. to m(E) as T → ∞. The GLLN provided by the existing proof
of theorem 3.5 does not seem to be finitely observable.

If we assume more on θ, then we can exhibit a finitely observable GLLN,
using the theory of rational ergodicity [A1], [A3].

Definition 3.2 (Aaronson). A conservative ergodic measure preserving map τ
on a σ–finite measure space (Ω,B,m) is called rationally ergodic, if there are
M > 0 and a set A ∈ B with finite positive measure s.t. for all n ≥ 1,



∫

A

(
n−1∑

k=0

1A ◦ τk
)2

dm



1/2

≤M

[∫

A

(
n−1∑

k=0

1A ◦ τk
)
dm

]
. (3.4)

(The other direction to Cauchy–Schwarz.)

Rationally ergodic maps admit GLLN’s. To describe them, we use the fol-
lowing notation for Cesàro convergence: CLim

k→∞
xk := lim

N→∞

1
N

∑N
k=1 xk.

Theorem 3.6 (Aaronson). Let τ be a rationally ergodic map on the space
(Ω,B,m), fix some A of finite positive measure which satisfies (3.4), and set

an :=
1

m(A)2

∫

A

n−1∑

k=1

1A ◦ τkdm.

There are nk ↑ ∞ s.t. for every f ∈ L1, CLim
k→∞

[
1

ank

∑nk−1
j=0 f ◦ τ j

]
=

∫
fdm a.e.
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The sequence an is called the return sequence of τ . It is unique up to asymptotic
equivalence, see [A1].

Aaronson & Keane proved in [AK] that if θ is an irrational quadratic surd,
then m0 is rationally ergodic with return sequence an � n/

√
log n (an � bn

means C−1 ≤ an/bn ≤ C for some C > 0 and all n large enough). It follows
that

Theorem 3.7. Suppose θ is an irrational root of a quadratic polynomial with
integer coefficients, then Tθ,ϕ has, up to scaling, a unique ergodic invariant
Radon measure with a GLLN: m0. This GLLN takes the form

L[x(n)] :=




CLim
k→∞

[
1

ank

∑nk−1
j=0 x(j)

]
the limit exists

0 otherwise

for some sequences nk ↑ ∞ and an � n/
√
log n.

Question 1. What are the generic points for m0?

We finish our discussion of Tϕ with the following nice construction due to
Hubert and Weiss [HW]. Let {Rk}k∈Z be the sequence of tagged rectangles
Rk := [0, 2]× [0, 1]×{k} minus the points with integer coordinates. We denote
the left and right vertical sides of Rk by lk and rk, and the top and bottom
horizontal sides by tk, bk. For each k,

• glue lk to rk by the map (x, y; k) 7→ (x+ 2, y; k);

• glue the left half of tk to the right half of bk−1 by the map (x, y; k) 7→
(x+ 1, y − 1; k − 1);

• glue the right half of tk to the left half of bk+1 by the map (x, y; k) 7→
(x− 1, y − 1; k + 1).

The result is a surface of infinite area and infinite genus, which we denote
byM . Fix an angle β, and let ϕβ :M →M be the flow which moves each point
x at unit speed on the line with slope tanβ passing through x, while respecting
identifications (Fig. 2).

Theorem 3.8 (Hubert & Weiss). Suppose tanβ is irrational, and let Q :M →
M be the map Q(x, y; k) = (x, y; k + 1), then

1. For every α ∈ R there exists up to scaling exactly one ergodic invariant
Radon measure mα such that mα ◦Q = eαmα;

2. All ergodic invariant Radon measures are of this form.

The proof is done by first checking that the union of the horizontal sides of Rk

forms a Poincaré section with the properties that the roof function is constant,
and the Poincaré map is conjugate to some Tθ,ϕ with θ = θ(β) irrational [HW].
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Figure 2. The linear flow on the staircase surface

Imagining other translation surfaces, one is led to the following question:

Question 2. What can be said about the locally finite ergodic invariant mea-
sures for skew products over “typical” interval exchange transformations and
step function cocycles?

P. Hooper has recently obtained some very interesting related results [Hoo].

3.3. Hajian-Ito-Kakutani Maps. This example comes from the
world of symbolic dynamics. Recall that the horocycle flow parametrizes the
strong stable foliation of the geodesic flow: {ht(ω)}t∈R = {ω′ ∈ T 1M :
d(gsω′, gsω) −−−→

s→∞
0}. The HIK map parametrizes the symbolic dynamical

analogue of the stable foliation (tail relation) for a skew–product over a sub-
shift of finite type.

Let σ : Σ+
A → Σ+

A be a one–sided subshift of finite type. This means that
there is a finite set S = {0, . . . , N} and a matrix of zeroes and ones A = (tab)S×S

so that

Σ+
A := {(x0, x1, . . .) ∈ SN : ∀i ≥ 0, txixi+1

= 1},
and σ : (x0, x1, . . .) 7→ (x1, x2, . . .).

Endow Σ+
A with the metric d(x, y) := exp[−min{n ≥ 0 : xn 6= yn}]. This map

is expansive: if d(σnx, σny) < 1 for all n, then x = y. It is topologically mixing
iff there is an m s.t. all the entries of Am are positive.

Fix some continuous function f : Σ+
A → Rd. The system playing the role of

the geodesic flow is the (discrete time) map σf : Σ+
A × Rd → Σ+

A × Rd

σf : (x, ξ) 7→ (σ(x), ξ + f(x)).
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We metrize Σ+
A × Rd by d((x, ξ), (y, η)) := d(x, y) + ‖ξ − η‖. One can check,

using the expansivity of σ, that d(σn
f (x, ξ), σ

n
f (y, η)) −−−−→n→∞

0 iff

∃n s.t. σn(x) = σn(y) and ξ − η =

∞∑

k=0

[f(σky)− f(σkx)]. (∗)

(The sum always converges, in fact all terms with k ≥ n vanish.) If (x, ξ), (y, η)

satisfy (∗), then we write (x, ξ)
f∼ (y, η). This is an equivalence relation. For

an example how this equivalence relation appears as the symbolic dynamical
coding of “real” foliations, see [BM] and [PoS].

Our task is to construct a map whose orbits are the equivalence classes of
f∼. Such a map can be easily constructed using Vershik’s adic transformations
[V]. Here is the construction. Define � to be the reverse lexicographic order on
Σ+

A:

x � y ⇔ ∃n s.t.
(
xn ≤ yn and xn+k = yn+k for all k ≥ 1

)
.

Two points x, y are �–comparable iff ∃n s.t. σn(x) = σn(y). In this case we
write x ∼ y. If x ∼ y, then there are only finitely many points between x and
y (at most |S|n). It follows that for all x not equivalent to a �–maximal or
minimal point, the set {y : y ∼ x} has the same order structure as Z.

One can check that x is equivalent to a maximal (resp. minimal) point
iff σn(x) is maximal (resp. minimal) for some n. This leads to the following
definition:

Definition 3.3 (Vershik). Let Ω := Σ+
A \ {x : ∃n s.t.σn(x) is maximal or

minimal}. The adic transformation of Σ+
A is the map T : Ω → Ω, T (x) :=

min{y ∈ Ω : y � x}.

The point is that for every x ∈ Ω, {Tn(x) : n ∈ Z}={y : y ∼ x} for x ∈ Ω. To

get a map whose orbits are the equivalence classes of
f∼, we make the following

definition.

Definition 3.4 (Hajian–Ito–Kakutani). Let f : Σ+
A → Rd be a continuous

function. The HIK cocycle for f is

ϕ(x) :=

∞∑

k=0

[f(σkx)− f(σkTx)].

The HIK map is Tϕ : Ω× Rd → Ω× Rd, Tϕ : (x, ξ) 7→ (T (x), ξ + ϕ(x)).

A direct calculation shows that {Tn
ϕ (x, ξ)}n∈Z = {(y, η) : (y, η) f∼ (x, ξ)}, and

so {Tn
ϕ (x, ξ)}n∈Z = {(y, η) : d(σn

f (x, ξ), σ
n
f (y, η)) −−−−→n→∞

0}.
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Here is an example [HIK],[AW]. Suppose Σ+
A = SN. The unique maximal

point is (N,N,N, . . .), the unique minimal point is (0, 0, 0, . . .), and T is the
map

T : (N, . . . , N︸ ︷︷ ︸
n

, k, ∗) 7→ (0, . . . , 0︸ ︷︷ ︸
n

, k + 1, ∗) (k < N, n ≥ 0) (3.5)

Informally, T “adds one with carry to the right”. Formula (3.5) makes sense for
all points in SN \ {(1, 1, 1, . . .)}. If we define T (1, 1, 1, . . .) := (0, 0, 0, . . .), then
we obtain a homeomorphism of SN, widely known under the name the adding
machine.

Now fix some probability vector p
0
:= (p0, . . . , pN ) on S all of whose coor-

dinates are non–zero, let f : Σ+
A → R denote the function f(x) = − log px0

, and
define ϕ to be the HIK cocycle of f . A direct calculation shows that

ϕ = log

(
dν0 ◦ T
dν0

)
,

where ν0 is the Bernoulli measure of p
0
. This measure is in general not T–

invariant. But the measure e−tdν0(ω)dt is Tϕ–invariant. Similarly, given α ∈ R,
let p

α
denote the probability vector proportional to (pα0 , . . . , p

α
N ), and let να

denote the corresponding Bernoulli measure on Σ+
A = SN. Then log

(
dνα◦T
dνα

)
=

αϕ, so mα := e−αtdνα(ω)dt is Tϕ–invariant for every α ∈ R.

These measures are not always ergodic. The simplest example of this is
when p = (b, . . . , b) where b = 1/|S|. In this case ϕ takes values in bZ, and the
function F (ω, ξ) = exp[2πiξ/b] is Tϕ–invariant. The ergodic components of mα

take the form e−αtdνα(ω)dmbZ+c where mbZ+c is the counting measure on the
coset bZ + c, and 0 ≤ c < b [AW],[HIK]. We call this phenomenon the lattice
phenomenon.

We now turn to the case of general HIK maps, assuming only that σ : Σ+
A →

Σ+
A is topologically mixing, and that f : Σ+

A → Rd has summable variations:

∞∑

n=1

varnf <∞, where varnf := sup{f(x)− f(y) : xi = yi (i = 0, . . . , n− 1)}.

We denote fn := f + f ◦ σ + · · ·+ f ◦ σn−1. Let Hf denote the smallest closed
subgroup of Rd which contains {fn(x)− fn(y) : σ

n(x) = x, σn(y) = y, n ∈ N} .
The following fact can be found in [Sa2] (see also [PaS])

Lemma 3.1. There exists a function uf : Σ+
A → Rd with summable variations

and a constant cf such that f̃ := f + uf − uf ◦ σ + cf takes values in Hf .

The group Hf is invariant under addition of coboundaries and constants, so
one cannot reduce the range of f further by means of a continuous coboundary.
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Let ϕ and ϕ̃ be the HIK cocycles of f and f̃ , respectively. Direct calculations
show that ϕ̃ = ϕ + uf − uf ◦ T and that the image of ϕ̃ is in Hf . The map
ϑ(ω, ξ) = (ω, ξ + uf (ω)) satisfies ϑ−1 ◦ Tϕ ◦ ϑ = Tϕ̃. We see that if Hf 6= Rd,
then Tϕ is conjugate to an HIK map exhibiting the lattice phenomenon.

We describe the invariant measures of Tϕ.

Theorem 3.9.

1. For every α ∈ Rd there is a unique probability measure να s.t. dνα◦T
dνα

=

e〈α,ϕ〉;

2. If Hf = Rd, then mα := e−〈α,t〉dνα(ω)dt is a Tϕ–ergodic invariant locally
finite measure;

3. If Hf = Rd, then every Tϕ–ergodic invariant locally finite measure is
proportional to mα for some α ∈ Rd.

Part 1 is in [PeS], see also [ANSS]. Part 2 is because σf is mα–exact [G] (see
[ANSS] for details). Part 3 was proved under the assumption that f is locally
constant in [ANSS] and in the general case in [Sa2].

Next we discuss the lattice case. For every c ∈ Rd/Hf , let mHf+c denote
the measure on the coset Hf + c induced by the Haar measure on Hf .

Theorem 3.10. Suppose Hf 6= Rd, let f̃ := f + uf − uf ◦ σ + cf where uf , cf
are given by lemma 3.1, and let ϕ̃ denote the HIK cocycle of f̃ .

1. The locally finite ergodic invariant measures for Tϕ̃ are the measures
proportional to mα,c := e−〈α,t〉dνα(ω)dmHf+c(t) for some α ∈ Rd and

c ∈ Rd/Hf .

2. The locally finite ergodic invariant measures for Tϕ are the measures
proportional to mα,c ◦ ϑ (α ∈ Rd, c ∈ Rd/Hf ), where ϑ : (ω, ξ) 7→
(ω, ξ + uf (ω)).

Theorem 3.10 was proved for f : Σ+
A → Zd s.t. Hf = Zd in [ANSS], and in the

general case in [Sa2].
These results show that the group H mentioned in theorem 3.2 is always

equal to Hf , and that the measurable function u there can be chosen to be
bounded (in fact with summable variations). Consequently the change of coor-
dinates ϑ preserves local finiteness, and the problems mentioned in part (3) of
that theorem do not arise. For examples of skew products where these problems
do arise, see [Sa2],[Rau].

Finally we consider the problem of GLLN’s. Here we need the stronger
assumption that f is Hölder continuous. Under this assumption it is proved in
[ANSS] thatm0 is rationally ergodic (cf. definition 3.2). Since all other measures
are squashable, we obtain
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Theorem 3.11. If Hf = Rd, then Tϕ has, up to scaling a unique locally finite
ergodic invariant measure with a GLLN: m0. The GLLN takes the form

L[x(n)] :=




CLim
k→∞

[
1

ank

∑nk−1
j=0 x(j)

]
the limit exists

0 otherwise

for some sequences nk ↑ ∞ and an � n/(log n)d/2.

For an interesting application to the study of the stable foliation for a pseudo–
Anosov diffeomorphism, see [PoS].

The generic points of certain HIK maps can be described. This is ongoing work
with J. Aaronson, and will be published elsewhere.
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We show that universal maps (i.e. such whose iterations approximate every pos-
sible dynamics arbitrarily well) form a residual subset in an open set in the space
of smooth dynamical systems. The result implies that many dynamical systems
emerging in natural applications may, on a very long time scale, have quite
unexpected dynamical properties, like coexistence of many non-trivial hyper-
bolic attractors and repellers and attractors with all zero Lyapunov exponents.
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Mathematics Subject Classification (2010). Primary 37C20, 37D45; Secondary

37G25, 37J40, 37E20, 37D20, 37D25, 37D30, 37C70.

Keywords. Renormalization, homoclinic tangency, elliptic orbit, hyperbolic attrac-

tor, zero Lyapunov exponent, reversible system, Hamiltonian system

Decades of the study of dynamical systems with chaotic behavior revealed that
with few exceptions these systems are more difficult than we would like. The
diversity and variability of the types of chaotic dynamics occurring practically
in any application are so great that nobody nowadays pursues the goal of a de-
tailed mathematical description of the dynamics of a given system with chaos.
The main source of difficulty is that the most of chaotic dynamical systems
which emerge in natural applications appear to be structurally unstable. A sys-
tem, i.e. a smooth map f :M →M of a smooth n-dimensional manifold M , or
a smooth flow ft on M , is called structurally stable if it is topologically equiv-
alent to every close system (two systems are topologically equivalent if there
exists a homeomorphism of M which maps the orbits of one system to the
orbits of the other). A structurally unstable system is thus such that its orbit
structure can be changed by an arbitrarily small (in some Cr-metric on M)
perturbation.
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Structurally unstable systems can fill open regions in the space of smooth
dynamical systems. One of these regions, the so-called Newhouse domain N ,
is the interior of the closure of the set of the systems which have a homoclinic
tangency (that is an orbit of tangency between stable and unstable manifolds of
a saddle periodic orbit). By [1, 2], this open set is non-empty, for the space of Cr-
smooth maps on any manifoldM of dimension n ≥ 2 for any r ≥ 2. Importantly,
any generic family of maps which contains a map with a homoclinic tangency
intersects N for some open set of parameters [2, 4, 14, 15, 16]. As homoclinic
tangencies easily appear in a huge variety of chaotic dynamical systems for many
parameter values, it follows that a great many naturally emerging models belong
to the Newhouse domain for some, presumably large, regions of the parameter
space1. Studying dynamics of maps from the Newhouse domain is therefore one
of the basic questions of the mathematical chaos theory.

In [3, 5, 8, 9], it was shown, however, that by an arbitrarily small (in Cr,
for any r = 2, ...,∞, ω) perturbation of any map from the Newhouse domain,
one can create homoclnic tangencies of arbitrarily high orders and arbitrarily
degenerate periodic points. This result shows that bifurcations of any map from
N are too diverse, and their complete and detailed understanding is impossible.
An unfolding of tangency of order m requires m parameters, and here m can
be arbitrarily large, so no finite-parameter unfolding can capture all changes in
the dynamics which can occur at the perturbations of a given map f ∈ N . In
fact, for maps from an arbitrarily small neighborhood of f ∈ N in the space
of Cr-smooth maps, the relation of topological equivalence has infinitely many
independent continuous invariants (in other words, for any such neighborhood
the set of the equivalence classes is infinite-dimensional); the same is true if
we consider weaker equivalence relations: the topological equivalence on the set
of non-wandering orbits, or on the set of periodic orbits, or even on the set
of stable periodic orbits [3, 5]. The goal of this paper is to describe in precise
terms the scale of this variability and dynamical richness for systems from the
Newhouse domain.

In my opinion, the main characteristic feature of systems from N is the
absence of self-similarity: generically, the short-time behavior does not deter-
mine what will happen on longer time scales (contrary to Axiom A systems
where a finite Markov partition determines the dynamics for all times). In or-
der to describe this property, I use the following construction from [26, 27].
Let f be a Cr-map of an n-dimensional manifold M . Let B be any ball in M ,
i.e. let B = ψ(Un) where Un is the closed unit ball in Rn and ψ is some Cr-
diffeomorphism which takes Un into M (we may take various maps ψ for the
same ball B; transition from one particular choice of ψ to another corresponds

1to get convinced, one may take any map of a two-dimensional disc with a chaotic behavior,

find a saddle periodic point and follow, numerically, its stable and unstable invariant curves;

the usual picture is that, after a number of iterations, folds in the unstable curve come

sufficiently close to the stable curve, so the tangencies can be created by a slight parameter

tuning
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to a Cr-transformation of coordinates in B). We also assume that the Cr-
diffeomorphism ψ is, in fact defined on some larger ball V : Un ⊂ V ⊆ Rn. Given
positive m, the map fm|B is a return map if fm(B) ∩B 6= ∅. By construction,
the return map fm|B is smoothly conjugate with the map fm,ψ = ψ−1 ◦ fm ◦ψ
(in order the map fm,ψ to be properly defined, we need to also assume that
fm(B) ⊆ ψ(V )). The map fm,ψ is a Cr-map Un → Rn, and it is solely defined
by the choice of the coordinate transformation ψ and the number of iterations
m (the choice of the map ψ : Un → M fixes the ball B = ψ(Un) as well). We
will call the maps fm,ψ obtained by such procedure renormalized iterations of

f . The set
⋃

m,ψ

fm,ψ of all possible renormalized iterations of f will be called

the dynamical conjugacy class of f . As the balls ψ(Un) can be of arbitrarily
small radii, with the center situated anywhere, the dynamical conjugacy class
of f captures arbitrarily fine details of the long-time behavior of f .

When we speak about dynamics of the map, we somehow describe its itera-
tions, and the description should be insensitive to coordinate transformations.
Therefore, the class of the map f , as we just have introduced it, gives some
representation of the dynamics of f indeed: the larger the class, the more rich
and diverse the dynamics of f is. There are some natural restrictions on this
richness, as certain properties of the map f are inherited by all the maps from
its class. For instance, when the topological entropy of f is zero, so is the en-
tropy of every map from the class, any form of the hyperbolicity is inherited as
well, all the maps from the class of a symplectic map are symplectic (although
the symplectic form may become not a standard one), the class of a volume-
contracting or a volume-preserving map contains only volume-contracting and,
respectively, volume-preserving maps, an orientation-preserving map produces
a class which contains orientation-preserving maps alone.

Importantly, only few of such “inheritable” properties can survive Cr-small
perturbations of the map f . One of the known robust structures is the so-called
dominated splitting (see [18]). A smooth map f : M → M of a compact n-
dimensional manifold M has a dominated splitting when the tangent space at
every point x ∈M is split into direct sum of two subspaces: N+(x)⊕N−(x) =
Rn, which depend continuously on x, which are invariant with respect to the
derivative of f : f ′(x)N+(x) = N+(f(x)) and f ′(x)N−(x) = N−(f(x)), and
which, at each x0 ∈M , satisfy the following requirement:

λ−(x0) := limm→+∞ sup
‖u‖=1,u∈N−(x0)

1

m
ln ‖f ′(xm) · · · f ′(x0)u‖ <

< λ+(x0) := limm→+∞ inf
‖v‖=1,v∈N+(x0)

1

m
ln ‖f ′(xm) · · · f ′(x0)v‖,

where x0, x1, . . . , xm, . . . denotes the orbit of x0 by f ; in other words, the dom-
inance condition means that the maximal Lyapunov exponent corresponding
to the subspace N−(x0) is strictly less than minimal Lyapunov exponent cor-
responding to the subspace N+(x0). There always exist trivial splittings, with
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N− = ∅, N+ = Rn or N− = Rm, N+ = ∅. Non-trivial dominated splitting
exists for uniformly hyperbolic systems (in this case λ−(x) < 0 < λ+(x) for
every x) and for uniformly partially-hyperbolic and pseudo-hyperbolic (volume-
hyperbolic) systems. In general, there may be several dominated splittings for
the same map, so we may have a hierarchy of subspaces ∅ = N−

0 ⊂ N−
1 ⊂

· · · ⊂ N−
k = Rn, Rn = N+

0 ⊃ N+
1 ⊃ · · · ⊃ N+

k = ∅ such that every pair
N−
j , N+

j corresponds to a dominated splitting. For any particular field N±
k (x)

of the invariant subsets in this hierarchy, the linearized map restricted to the
subset may exponentially contract (or expand) d-dimensional volumes for some
d ≤ dimN±

k . This volume contraction/expansion property is also inheritable by
all renormalized iterations of f and it also persists at small smooth perturba-
tions.

The general suspicion is that, perhaps, no other robust inheritable proper-
ties exist. This claim can be demonstrated for various examples of homoclinic
bifurcations (see [24]), and can be used as a working guiding principle in the
study of systems with a non-trivial dynamics:
every dynamics which is possible in Un should be expected to occur at the bifur-
cations of any given n-dimensional system which has a compact invariant set
without a non-trivial dominated splitting and without a volume-contraction or
volume-expansion property.
This statement is not a theorem and it might be not true in some situations,
still it gives a useful view on global bifurcations, as we will see in a moment.

The basic example is given by an identity map of a ball. The identity map has
no kind of hyperbolic structure, neither it contracts nor expands volumes, so,
according to the above stated principle, ultimately rich dynamics should be ex-
pected at the bifurcations of this map. Indeed, let us call a map f Cr-universal
[26, 27] if its dynamical conjugacy class is Cr-dense among all orientation-
preserving Cr-diffeomorphisms acting from the closed unit ball Un into Rn. By
the definition, the dynamics of any single universal map is ultimately compli-
cated and rich, and the detailed understanding of it is not simpler than the
understanding of all diffeomorphisms Un → Rn altogether. At the first glance,
the mere existence of Cr-univesal maps of a closed ball is not obvious for suffi-
ciently large r. However, the following result is proven in [27].

Theorem 0.1. For every r = 1, . . . ,∞, Cr-universal diffeomorphisms of a
given closed ball D exist arbitrarily close, in the Cr-metric, to the identity map
of D.

A way to use this result is to note that, as it follows from Theorem 0.1,
every time we have a periodic orbit for which the corresponding first-return
map x 7→ x̄ is, locally, identity:

x̄ ≡ x,

or coincides with identity up to flat (i.e. sufficiently high order) terms:

x̄ = x+ o(‖x‖r),
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a Cr-small perturbation of the system can make the first-return map universal,
i.e. bifurcations of this orbit can produce dynamics as complicated as it only
possible for the given dimension of the phase space.

In examples below, we show how powerful this observation can be. We start
with the so-called absolute Newhouse domain A in the space of Cr-smooth
maps (r ≥ 2) of any given manifold M , dimM ≥ 2. This domain is an open
subset of the Newhouse domain such that no map from A has a non-trivial
dominated splitting, nor it uniformly contracts or expands volumes. The set A
can be constructed as the interior of the closure of the set of maps which have
a particular type of heteroclinic cycle.

Namely, in the two-dimensional case the heteroclinic cycle is the union of
4 orbits: two saddle periodic orbits, p1 and p2, such that the saddle value at
p1 is less than 1 and at p2 it is greater than 1, and two heteroclinic orbits,
Γ12 and Γ21, such that Γ12 corresponds to transverse intersection of Wu(p1)
and W s(p2) (the unstable manifold of p1 and the stable manifold of p2), and
Γ21 corresponds to tangency between the other pair of invariant manifolds,
Wu(p2) and W s(p1). The saddle value is defined as the absolute value of the
product of multipliers of the periodic orbit, i.e. it is the absolute value of the
determinant of the derivative of the first-return map (if x0 is a point of period
l, then f l(x0) = x0 and f l is called the first-return map). Thus, if the saddle
value is greater than 1, then the map f expands area near p1, and f is area-
contracting near p1 if the saddle value is less than 1. So, no map with the
heteroclinic cycle of the type we just described is uniformly area-contracting,
nor area-expanding. The tangency between the stable and unstable manifolds
forbids the existence of a non-trivial dominated splitting. When the map f

is perturbed, the tangency may disappear, however new orbits of heteroclinic
tangency may appear somewhere else, and indeed, as follows from [2, 7], maps
with a heteroclinic cycle of the above described type are dense (in Cr, r ≥ 2) in
a non-empty open region in the space of Cr-smooth maps; moreover, the closure
of this region contains all maps with such heteroclinic cycles. This region is our
domain A in the two-dimensional case.

In the higher-dimensional case, where n = dimM > 2, we consider hetero-
clinic cycles for which the saddle periodic orbits p1 and p2 have one-dimensional
unstable manifolds, so the multiplers λj1, λj2, . . . , λjn of the orbit pj are such
that |λj1| > 1 > max

k≥2
|λjk| for each j = 1, 2. For each of the points pj ,

we order the multipliers according to the decrease in the absolute value, i.e.
|λjk| ≥ |λjs| if k ≤ s. We assume then that λ12 is real, while the rest of the
multipliers λ1k, k ≥ 3, go in complex-conjugate (non-real) pairs except, maybe,
for the last one, λ1n, which must be real if n is odd. For the multipliers λ2k,
k ≥ 2, of the orbit p2, we will allow only the last one, λ2n, to be real if n is
odd. As in the two-dimensional case, we also assume that Wu(p1) and W

s(p2)
have a transverse intersection at the points of a heteroclinic orbit Γ12, while
Wu(p2) and W s(p1) have a tangency at the points of the heteroclinic orbit
Γ21.
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These conditions mean [24] that the map with such heteroclinic cycle cannot
have a non-trivial dominated splitting. Indeed, if we have a dominated splitting,
the spaces N+ and N− at a periodic point must be the invariant subspaces of
the derivative of the first-return map at this point; moreover, for some λ̄ > 0,
the space N+ corresponds to the multipliers whose absolute value is greater
than λ̄, and N− corresponds to the multipliers whose absolute value is less
than λ̄. As the multipliers λ2k, k ≥ 2, go in pairs of equal absolute value, for
any non-trivial dominated splitting the dimension of the space N+ at the points
of the orbit p2 must be odd. On the other hand, as the multipliers λ1k with
k ≥ 3 also go in complex-conjugate pairs, the only possibility for the space N+

at the points of the other periodic orbit, p1, be odd-dimensional corresponds to
dimN+ = 1. Since N+ depends on the point continuously, dimN+ should be
the same at the points of p1 as at the points of p2. Thus, the only possibility
for a non-trivial dominated splitting occurs when at the points of the periodic
orbits pj , j = 1, 2, the space N+ corresponds to the multiplier λj1 (whose
absolute value is greater than 1), and the space N− corresponds to the rest of
multipliers, i.e. N+ must be tangent to Wu(pj) and N− must be tangent to
W s(pj). By continuity, this would imply that N+ would be tangent to Wu(p2)
at every point ofWu(p2), and N

− would be tangent toW s(p1) at every point of
W s(p1). As the manifolds Wu(p2) and W

s(p1) are not transverse at the points
of the heteroclinic orbit Γ21, we find that N+ ⊕N− 6= Rn, a contradiction to
the definition of the dominated splitting.

Now, assume that

∣

∣

∣

∣

∣

n
∏

k=1

λ1k

∣

∣

∣

∣

∣

< 1 and

∣

∣

∣

∣

∣

n
∏

k=1

λ2k

∣

∣

∣

∣

∣

> 1, i.e. the map f con-

tracts volume at the points of p1 and expands volume at the points of p2. So,
the maps with the heteroclinic cycle that satisfies all these assumptions do
not have a non-trivial dominated splitting and cannot be uniformly volume-
contracting, nor volume-expanding. One can extract from [4, 14] that the Cr-
closure of the set of the maps with such heteroclinic cycles has a non-empty in-
terior, which is our absolute Newhouse domain A in the space of n-dimensional
Cr-maps.

By the definition, for any map f ∈ A, by an arbitrarily small perturbation of
f a heteroclinic cycle of the type we just described can be created. Typically, the
tangency between Wu(p2) and W s(p1) at the points of the heteroclinic orbit
Γ21 is quadratic, however, by an arbitrarily small (in Cr) perturbation, this
tangency can be split in such a way that a new orbit of the heteroclinic tangency
between Wu(p2) and W

s(p1) can be created, and for this new orbit the order
of tangency can be infinite [8, 9]. This contradicts the usual logic stemming
from singularity theory, where small perturbations usually lead to a decrease
in the degeneracy. Here, the order of degeneracy may be increased without a
bound (the price is that the new heteroclinic orbit which corresponds to the
flat tangency is, in some sense, much longer than the original orbit of quadratic
tangency). Importantly, by an additional, arbitrarily Cr-small perturbation of
the heteroclinic cycle with the flat tangency, a periodic spot can be created (cf.
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[9]). The periodic spot is a ball D ⊂ M filled by periodic points, i.e. f lx ≡ x

for every x ∈ D and some l, the same for all x ∈ D. By applying Theorem 0.1
to the map f l|D, we thus find

Theorem 0.2. For every r = 2, . . . ,∞, the Cr-universal maps form a residual
subset2 in the absolute Newhouse domain.

A more dramatic formulation of this result can be as follows: dynamics of
a generic map from the absolute Newhouse domain A is beyond human com-
prehension. Indeed, just by the definition, every possible robust (i.e. common
for an open set of maps) dynamical feature is present in each universal map
as well. In particular, each universal map has an infinite set of attractors of
all possible robust types, as well as an infinite set of repellers of all types. For
example, as a corollary to Theorem 0.2, we obtain

Theorem 0.3. For every r = 2, . . . ,∞, a Cr-generic map f ∈ A has infinitely
many uniformly hyperbolic attractors of every possible3 topological type.

Of course, every such map has all possible types of arbitrary uniformly-
hyperbolic sets, i.e. not just attractors, also “saddles” and repellers. Similar to
[7], one may show that the attractors and repellers are not separated (the closure
of all the attractors has a non-empty intersection with the closure of all the
repellers) for a generic map from A. Indeed, we obtain the attractors/repellers
from periodic spots, which are born in an arbitrarily small neighborhood of
some heteroclinic cycles; in particular, some iteration of such spot comes close
to the saddle periodic orbit which is a part of the heteroclinic cycle. By taking
smaller and smaller neighborhoods of the heteroclinic cycle, we find that the
limit of both attractors and repellers contain the same saddles. We note that
this inseparability of the set of attractors from the set of repellers means that
the Conley’s fundamental construction of attractor-repeller pairs [19] cannot,
generically, produce completely meaningful results.

The fact that generic maps may have an infinite (countable) set of attrac-
tors is known since [1] where the genericity of the maps with infinitely many
coexisting stable periodic orbits (“sinks”) was proven for area-contracting maps
from the Newhouse domain. Moreover, the closure of the set of stable periodic
orbits was shown to contain a non-trivial hyperbolic set. Generic inseparability
of the set of “sinks” from the set of “sources” (completely unstable periodic
orbits) was proven in [7] for the absolute Newhouse domain in the space of
two-dimensional maps (i.e. when no area-contraction nor area-expansion prop-
erty holds). Examples with coexistence of infinitely many non-trivial attractors
(invariant tori, Lorenz-like attractors, Benedics-Carleson attractors) were built
in [6, 10, 11, 12, 17]. Our results here show that attractors of arbitrarily com-
plicated nature can coexist in unbounded number.

2i.e. a countable intersection of open and dense subsets
3for a map of the n-dimensional ball, n ≥ 2



Richness of Chaos in the Absolute Newhouse Domain 1811

Maybe even more typical for the absolute Newhouse domain are strange
attractors of a different nature, as described by the following

Theorem 0.4. For every r = 2, . . . ,∞, ω, a Cr-generic map f ∈ A has an
uncountable (of the cardinality of continuum) set of weak attractors such that
for each orbit in each of these attractors all Lyapunov exponents are zero.

By the weak attractor we mean a compact, chain-transitive invariant set Y
which is an intersection of a nested sequence of trapping neighborhoods, namely

Y =
∞
⋂

i=1

Di where Di ⊆ Di+1 and (the trapping property) f(cl(Di)) ⊂ int(Di)

[20, 25]. This definition means that even if we add a sufficiently small bounded
noise to f , the forward iterations of any point in Y will forever stay in a small
neighborhood of Y (in one of the trapping regions Di). The chain-transitivity
means that for an arbitrarily small level of the bounded noise there exists a
“noisy” orbit of f which connects any two points in Y , i.e. the attractor Y
contains no smaller attractor. The weak attractors we construct in Theorem
0.4 are the so-called solenoids, filled by limit-periodic orbits. Namely, there is a
monotonically increasing sequence of integers ki such that each of the sets Di

is a union of ki disjoint balls Dij , j = 1, . . . , ki, and f(clDij) ⊂ intDi,j+1modki

(hence ki+1 is always a multiple of ki).
It is obvious that one can build such solenoids by a perturbation of periodic

spots. The periodic spot itself is a chain-transitive set and it can be made a
weak attractor (even asymptotically stable) by a small smooth perturbation.
Every orbit in the periodic spot has all Lyapunov exponents zero. However,
the maps with the periodic weak attractors with zero Lyapunov exponents are
not generic (the set of the maps with periodic spots is, as we explained above,
dense in A, but it is not residual - by Kupka-Smale theorem). Therefore, we
need a solenoid construction in order to achieve the Cr-genericty. Moreover,
in contrast to the previous results which have been proven so far only in the
smooth category, Theorem 0.4 holds in the real-analytic case (r = ω) as well.
There is a hope in the contemporary dynamical systems community that some
kind of non-uniform hyperbolicity or partial hyperbolicity is a typical feature
for the majority of systems. Theorem 0.4 shows, however, that this cannot be
fully true in the absolute Newhouse domain.

We have used a particular type of heteroclinic cycles in order to describe
the richness of dynamics and bifurcations in the absolute Newhouse domain.
One can, however, show that maps with other types of homoclinic and het-
eroclinic cycles or other bifurcating orbits whose existence prevents the map
from possessing a dominated splitting and from uniform contraction/expansion
of volumes (see the corresponding criteria in [24]) also belong either to the
absolute Newhouse domain itself, or to its boundary. One of the easiest ex-
amples is given by the so-called reversible maps. Given a smooth involution R
(i.e. R ◦ R = id) of the manifold M , a map f : M → M is called reversible if
f−1 = R◦f ◦R; such maps naturally appear as Poincaré maps in time-reversible
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flows. Often, naturally appearing time-reversible flows are also Hamiltonian,
however, non-Hamiltonian reversible flows are frequent too. A periodic point
x of the reversible map f is called symmetric if Rx = f lx for some l (in other
words, the set of points of the symmetric periodic orbit is invariant with respect
to R). The symmetric periodic orbit is called elliptic if all its multipliers are
simple and have absolute value 1. Obviously, the multipliers of a symmetric
periodic orbit come in pairs: if λ is the multiplier, then λ−1 is also a multiplier.
Therefore, a symmetric elliptic periodic orbit remains elliptic for an arbitrary
reversible map sufficiently close (in C1) to the original one. In other words,
reversible maps with symmetric elliptic periodic orbits form an open subset in
the space of all Cr-smooth reversible maps. This open subset is our absolute
Newhouse domain in the reversible case, Ar (note that no non-trivial domi-
nated splitting exists at the elliptic point, nor the map can contract/expand
volumes exponentially at such point).

It is well-known [21] that dynamics near a typical symmetric elliptic point
is pretty much conservative, e.g. invariant KAM-tori may exist. However, be-
tween the tori we have resonant periodic orbits, and one can show that by a
perturbation, which is arbitrarily small in Cr, r = 1, . . . ,∞, and which keeps
the map in the reversible class, arbitrarily degenerate resonant periodic orbits
(hence - periodic spots) can be born from the elliptic orbit. Even if a periodic
spot sequence is symmetric, it can be split into a pair of non-symmetric spot
sequences (i.e. one sequence in the pair is taken into the other spot sequence
by the involution R). Behavior near a non-symmetric periodic orbit (e.g. near
a non-symmetric periodic spot sequence) of a reversible map does no longer
need to be conservative-like or in any other way to differ from the general case
(cf. [13]). Thus, by applying Theorem 0.1 to the non-symmetric periodic spot
sequences which emerge near the symmetrtic elliptic orbit, we obtain

Theorem 0.5. For every r = 1, . . . ,∞, the Cr-universal maps form a resid-
ual subset in Ar. In particular, a Cr-generic map f ∈ Ar has infinitely many
uniformly-hyperbolic attractors and uniformly-hyperbolic repellers of every pos-
sible topological type, and the closure of the attractors of each of such maps
coincides with the closure of the repellers and contains all symmetric elliptic
points.

One may argue that the genericity notion we employ here is not necessarily
adequate to the intuitive idea of “being typical”. However, if we do not insist on
having an infinite set of hyperbolic attractors and are satisfied with, say, one,
the corresponding maps will be open and dense in Ar. Since the emergence of
hyperbolic theory in the 60-s, the problem of finding a uniformly-hyperbolic
attractor in a system of natural origin has been actively discussed (see also
a very interesting recent discovery in [22, 23]). Ironically, Theorem 0.5 offers
amazingly simple while seemingly useless solution: any reversible map with
elliptic point in general position possesses a hyperbolic attractor. Of course,
this is hardly what we want, as such attractor does not represent the whole of
dynamics and coexists with too many other, mainly unknown, objects.
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In the case of a symplectic map f of an even-dimensional symplectic man-
ifold M , we restrict the definition of the dynamical conjugacy class of f by
including into it only those renormalized iterations fm,ψ = ψ−1 ◦ fm ◦ψ which
all preserve the same given symplectic form on M (for example, when M is
a two-dimensional disc with the standard symplectic form dx ∧ dy, ψ can be
any map with a constant Jacobian). Though this requirement restricts possible
choices of the maps ψ, the balls ψ(Un) can still be of arbitrarily small sizes
and situated anywhere in M , so the such defined class of f still provides a
description of the behavior of f on arbitrarily fine spatial scales. With this def-
inition of the dynamical conjugacy class we call a symplectic map Cr-universal
if the Cr-closure of its class contains all orientation-preserving symplectic Cr-
diffeomorphisms acting from the closed unit ball Un into Rn.

Exactly like in the above discussed case of reversible maps, the maps with
elliptic periodic points form an open subset, As, in the space of Cr-smooth sym-
plectic maps. While most of the neighborhood of the elliptic point is filled by
KAM-tori, resonant periodic orbits between the tori can be arbitrarily degen-
erate, and periodic spots can be born out of the elliptic orbit by an arbitrarily
small smooth perturbation within the class of symplectic maps. By applying
a “symplectic version” of Theorem 0.1 to these spots (see [26, 9] for the two-
dimensional case) we obtain

Theorem 0.6. For every r = 1, . . . ,∞, the Cr-universal maps form a residual
subset in the absolute Newhouse domain As in the space of symplectic maps.

We, of course, do not have attractors or repellers here (as symplectic maps
are volume-preserving). Note also that in the two-dimensional case the set As

coincides with the usual Newhouse domain in the space of area-preserving maps,
and in this case Theorem 0.6 holds true for the analytic case (r = ω) as well
[9, 28].

Symplectic maps appear as Poincaré maps for Hamiltonian systems re-
stricted to a fixed energy level. Unless a special structure (uniform partial hy-
perbolicity) is imposed on the system, elliptic periodic orbits appear in Hamil-
tonian systems seemingly inevitably (e.g. they exist generically in energy levels
near points of minimum of the Hamiltonian). By Theorem 0.6, dynamics near
any such orbit can approximate iterations of an arbitrary symplectic map ar-
bitrarily well. It is one of the most basic physics beliefs that the fundamental
dynamical processes are described by Hamiltonian equations, the laws of na-
ture. By Theorem 0.6, given any such process, we may record what the values
of variables are at certain, arbitrarily long, discrete sequences of time values,
and, for an arbitrary large set of such recordings, almost any, arbitrarily chosen
Hamiltonian system (with an elliptic orbit somewhere) will reproduce all the
records with an arbitrary high precision, just by an appropriate change of vari-
ables and arbitrarily fine tuning of parameters - with the only requirement that
the number of degrees of freedom is determined correctly. In other words, for
an arbitrary choice of the laws of nature one can still have an arbitrarily good
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agreement with observation by making a right choice of variables. The point of
view that the laws of nature are relative, and their choice is, to a certain extent,
a matter of convenience, exists for a long time (see e.g. [29]); our results here
provide an additional support to it.
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Proceedings of the International Congress of Mathematicians

Hyderabad, India, 2010

Conservative Partially Hyperbolic

Dynamics

Amie Wilkinson∗

Abstract

We discuss recent progress in understanding the dynamical properties of par-
tially hyperbolic diffeomorphisms that preserve volume. The main topics ad-
dressed are density of stable ergodicity and stable accessibility, center Lyapunov
exponents, pathological foliations, rigidity, and the surprising interrelationships
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Introduction

Here is a story, told at least in part through the exploits of one of its main
characters. This character, like many a Hollywood (or Bollywood) star, has
played a leading role in quite a few compelling tales; this one ultimately concerns
the dynamics of partially hyperbolic diffeomorphisms.

We begin with a connected, compact, smooth surface S without boundary,
of genus at least 2. The Gauss-Bonnet theorem tells us that the average curva-
ture of any Riemannian metric on S must be negative, equal to 2πχ(S), where
χ(S) is the Euler characteristic of S. We restrict our attention to the metrics
on S of everywhere negative curvature; among such metrics, there is a finite-
dimensional moduli space of hyperbolic metrics, which have constant curvature.
Up to a normalization of the curvature, each hyperbolic surface may be repre-
sented by a quotient H/Γ, where H is the complex upper half plane with the
metric y−2(dx2 + dy2), and Γ is a discrete subgroup of PSL(2,R), isomorphic
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to the fundamental group of S. More generally, any negatively curved metric
on S lies in the conformal class of some hyperbolic metric, and the space of all
such metrics is path connected. Throughout this story, S will be equipped with
a negatively curved metric.

This negatively curved muse first caught the fancy of Jacques Hadamard
in the late 1890’s [39]. Among other things, Hadamard studied the properties
of geodesics on S and a flow ϕt : T

1S → T 1S on the unit tangent bundle to
S called the geodesic flow. The image of a unit vector v under the time-t map
of this flow is obtained by following the unique unit-speed geodesic γv : R → S
satisfying γ̇v(0) = v for a distance t and taking the tangent vector at that point:

ϕt(v) := γ̇v(t).

This geodesic flow, together with its close relatives, plays the starring role in
the story told here.

v

t (v)ϕ

Figure 1. The geodesic flow.

A theorem of Liouville implies that ϕt preserves a natural probability mea-
sure m on T 1S, known as Liouville measure, which locally is just the product
of normalized area on S with Lebesgue measure on the circle fibers. Poincaré
recurrence then implies that almost every orbit of the geodesic flow comes back
close to itself infinitely often.

In the special case where S = H/Γ is a hyperbolic surface, the unit tangent
bundle T 1S is naturally identified with PSL(2,R)/Γ, and the action of the
geodesic flow ϕt is realized by left multiplication by the diagonal matrix

gt =

(

et/2 0
0 e−t/2

)

.

Liouville measure is normalized Haar measure.
In his study of ϕt, Hadamard introduced the notion of the stable manifold

of a vector v ∈ T 1S:

Ws(v) :=
{

w ∈ T 1S | lim
t→∞

dist(ϕt(v), ϕt(w)) = 0
}

.

The proof that such sets are manifolds is a nontrivial consequence of nega-
tive curvature and a noted accomplishment of Hadamard’s. Indeed, each stable
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manifold Ws(v) is an injectively immersed, smooth copy of the real line, and
taken together, the stable manifolds form a foliation Ws of T 1M . Similarly, one
defines an unstable manifold by:

Wu(v) :=

{

w ∈ T 1S | lim
t→−∞

dist(ϕt(v), ϕt(w)) = 0

}

and denotes the corresponding unstable foliation Wu. The foliations Ws and
Wu are key supporting players in this story.

In the case where S = H/Γ, the stable manifolds are orbits of the positive
horocyclic flow on PSL(2,R)/Γ defined by left-multiplication by

hs
t =

(

1 t
0 1

)

,

and the unstable manifolds are orbits of the negative horocyclic flow, defined
by left-multiplication by

hu
t =

(

1 0
t 1

)

.

This fact can be deduced from the explicit relations:

g−th
s
rgt = hs

re−t and g−th
u
r gt = hu

ret . (1)

The stable and unstable foliations stratify the future and past, respectively,
of the geodesic flow. It might come as no surprise that their features dictate
the asymptotic behavior of the geodesic flow. For example, Hadamard obtained
from the existence of these foliations and Poincaré recurrence that periodic
orbits for ϕt are dense in T 1S.

Some 40 years after Hadamard received the Prix Poncelet for his work on
surfaces, Eberhard Hopf introduced a simple argument that proved the ergod-
icity (with respect to Liouville measure) of the geodesic flow on T 1S, for any
closed negatively curved surface S [44]. In particular, Hopf proved that almost
every infinite geodesic in S is dense (and uniformly distributed), not only in S,
but in T 1S. It was another thirty years before Hopf’s result was extended by
Anosov to geodesic flows for negatively curved compact manifolds in arbitrary
dimension.

Up to this point the discussion is quite well-known and classical, and from
here the story can take many turns. For example, for arithmetic hyperbolic
surfaces, the distribution of closed orbits of the flow and associated dynamical
zeta functions quickly leads us into deep questions in analytic number theory.
Another path leads to the study the spectral theory of negatively curved sur-
faces, inverse problems and quantum unique ergodicity. The path we shall take
here leads to the definition of partial hyperbolicity.

Let us fix a unit of time t0 > 0 and discretize the system ϕt in these units;
that is, we study the dynamics of the time-t0 map ϕt0 of the geodesic flow.
From a digital age perspective this is a natural thing to do; for example, to plot
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the orbits of a flow, a computer evaluates the flow at discrete, usually equal,
time intervals.

If we carry this computer-based analogy one step further, we discover an
interesting question. Namely, a computer does not “evaluate the flow” precisely,
but rather uses an approximation to the time-t0 map (such as an ODE solver
or symplectic integrator) to compute its orbits. To what extent does iterating
this approximation retain the actual dynamical features of the flow ϕt, such as
ergodicity?

To formalize this question, we consider a diffeomorphism f : T 1S → T 1S
such that the C1 distance dC1(f, ϕt0) is small. Note that f in general will no
longer embed in a flow. While we assume that the distance from f to ϕt0 is
small, this is no longer the case for the distance from fn to ϕnt0 , when n is
large.

x

f(x)

ϕt0(x)

fn(x)

ϕnt0(x)

Figure 2. fn(x) is not a good approximation to ϕnt0
(x).

The earliest description of the dynamics of such a perturbation f comes from
a type of structural stability theorem proved by Hirsch, Pugh, and Shub [43].
The results there imply in particular that if dC1(f, ϕt0) is sufficiently small, then
there exists an f -invariant center foliation Wc = Wc(f) that is homeomorphic
to the orbit foliation O of ϕt. The leaves of Wc are smooth. Moreover, the
homeomorphism h : T 1S → T 1S sending Wc to O is close to the identity and
Wc is the unique such foliation.

The rest of this paper is about f and, in places, the foliation Wc(f).

What is known about f is now substantial, but far from complete. For
example, the following basic problem is open.

Problem. Determine whether f has a dense orbit. More precisely, does there
exist a neighborhood U of ϕt0 in the space Diffr(T 1S) of Cr diffeomorphisms
of T 1S (for some r ≥ 1) such that every f ∈ U is topologically transitive?
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Note that ϕt0 is ergodic with respect to volume m, and hence is itself topo-
logically transitive. In what follows, we will explain results from the last 15
years implying that any perturbation of ϕt0 that preserves volume is ergodic,
and hence has a dense orbit. For perturbations that do not preserve volume, a
seminal result of Bonatti and Dı́az shows that ϕt0 can be approximated arbitrar-
ily well by C1-open sets of transitive diffeomorphisms [9]. But the fundamental
question of whether ϕt0 lives in such an open set remains unanswered.

In most of the discussion here, we will work in the conservative setting,
in which the diffeomorphism f preserves a volume probability measure. To fix
notation, M will always denote a connected, compact Riemannian manifold
without boundary, and m will denote a probability volume on M . For r ≥ 1,
we denote by Diffr

m(M) the space of Cr diffeomorphisms of M preserving m,
equipped with the Cr topology.

1. Partial Hyperbolicity

The map ϕt0 and its perturbation f are concrete examples of partially hyper-
bolic diffeomorphisms. A diffeomorphism f : M → M of a compact Riemannian
manifold M is partially hyperbolic if there exists an integer k ≥ 1 and a non-
trivial, Df -invariant, continuous splitting of the tangent bundle

TM = Es ⊕ Ec ⊕ Eu

such that, for any p ∈ M and unit vectors vs ∈ Es(p), vc ∈ Ec(p), and vu ∈
Eu(p):

‖Dpf
kvs‖ < 1 < ‖Dpf

kvu‖, and
‖Dpf

kvs‖ < ‖Dpf
kvc‖ < ‖Dpf

kvu‖.
Up to a change in the Riemannian metric, one can always take k = 1 in this
definition [37]. In the case where Ec is the trivial bundle, the map f is said to
be Anosov. The central example ϕt0 is partially hyperbolic: in that case, the
bundle Ec = Rϕ̇ is tangent to the orbits of the flow, and Es and Eu are tangent
to the leaves of Ws and Wu, respectively.

Partial hyperbolicity is a C1-open condition: any diffeomorphism sufficiently
C1-close to a partially hyperbolic diffeomorphism is itself partially hyperbolic.
Hence the perturbations of ϕt0 we consider are also partially hyperbolic. For
an extensive discussion of examples of partially hyperbolic dynamical systems,
see the survey articles [20, 41, 62] and the book [55]. Among these examples
are: the frame flow for a compact manifold of negative sectional curvature and
most affine transformations of compact homogeneous spaces.

As is the case with the example ϕt0 , the stable and unstable bundles Es

and Eu of an arbitrary partially hyperbolic diffeomorphism are always tangent
to foliations, which we will again denote by Ws and Wu respectively; this
is a consequence of partial hyperbolicity and a generalization of Hadamard’s
argument. By contrast, the center bundle Ec need not be tangent to a foliation,
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and can even be nowhere integrable. In many cases of interest, however, there is
also a center foliation Wc tangent to Ec: the content of the Hirsch-Pugh-Shub
work in [43] is the properties of systems that admit such foliations, known as
“normally hyperbolic foliations.”

There is a natural and slightly less general notion than integrability of Ec

that appears frequently in the literature. We say that a partially hyperbolic
diffeomorphism f : M → M is dynamically coherent if the subbundles Ec ⊕Es

and Ec ⊕ Eu are tangent to foliations Wcs and Wcu, respectively, of M . If
f is dynamically coherent, then the center bundle Ec is also integrable: one
obtains the center foliation Wc by intersecting the leaves of Wcs and Wcu. The
examples ϕt0 are dynamically coherent, as are their perturbations (by [43]: see
[24] for a discussion).

2. Stable Ergodicity and the Pugh-Shub

Conjectures

Brin and Pesin [16] and independently Pugh and Shub [57] first examined
the ergodic properties of partially hyperbolic systems in the early 1970’s. The
methods they developed give an ergodicity criterion for partially hyperbolic
f ∈ Diff2

m(M) satisfying the following additional hypotheses:

(a) the bundle Ec is tangent to a C1 foliation Wc, and

(b) f acts isometrically (or nearly isometrically) on the leaves of Wc.

In [16] it is shown that such an f is ergodic with respect to m if it satisfies a
condition called accessibility.

Definition 2.1. A partially hyperbolic diffeomorphism f : M → M is accessible
if any point in M can be reached from any other along an su-path, which is a
concatenation of finitely many subpaths, each of which lies entirely in a single
leaf of Ws or a single leaf of Wu.

This ergodicity criterion applies to the discretized geodesic flow ϕt0 : its
center bundle is tangent to the orbit foliation for ϕt, which is smooth, giving
(a). The action of ϕt0 preserves the nonsingular vector field ϕ̇, which implies
(b). It is straightforward to see that if S is a hyperbolic surface, then ϕt0 is
accessible: the stable and unstable foliations are orbits of the smooth horocyclic
flows hs

t and hu
t , respectively, and matrix multiplication on the level of the Lie

algebra sl2 shows that locally these flows generate all directions in PSL(2,R):

1

2

[(

0 1
0 0

)

,

(

0 0
1 0

)]

=

(

1

2
0

0 − 1

2

)

; (2)

the matrices appearing on the left are infinitesimal generators of the horocyclic
flows, and the matrix on the right generates the geodesic flow. Since ϕt0 is
accessible, it is ergodic.
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Now what of a small perturbation of ϕt0? As mentioned above, any f ∈
Diff2

m(T 1S) sufficiently C1 close to ϕt0 also has a center foliation Wc, and the
action of f on the leaves is nearly isometric. With some work, one can also show
that f is accessible (this was carried out in [16]). There is one serious reason
why the ergodicity criterion of [16] cannot be applied to f : the foliation Wc is
not C1. The leaves of Wc are C1, and the tangent spaces to the leaves vary
continuously, but they do not vary smoothly. We will explore in later sections
the extent to which Wc fails to be smooth, but for now suffice it to say that
Wc is pathologically bad, not only from a smooth perspective but also from a
measure-theoretic one.

The extent to which Wc is bad was not known at the time, but there was
little hope of applying the existing techniques to perturbations of ϕt0 . The first
major breakthrough in understanding the ergodicity of perturbations of ϕt0

came in the 1990’s:

Theorem A (Grayson-Pugh-Shub [38]). Let S be a hyperbolic surface, and let
ϕt be the geodesic flow on T 1S. Then ϕt0 is stably ergodic: there is a neigh-
borhood U of ϕt0 in Diff2

m(T 1S) such that every f ∈ U is ergodic with respect
to m.

The new technique introduced in [38] was a dynamical approach to under-
standing Lebesgue density points which they called juliennes. The results in [38]
were soon generalized to the case where S has variable negative curvature [74]
and to more general classes of partially hyperbolic diffeomorphisms [59, 60]. Not
long after [38] appeared, Pugh and Shub had formulated an influential circle of
conjectures concerning the ergodicity of partially hyperbolic systems.

Conjecture 1 (Pugh-Shub [58]). On any compact manifold, ergodicity holds
for an open and dense set of C2 volume preserving partially hyperbolic diffeo-
morphisms.

This conjecture can be split into two parts using the concept of accessibility.

Conjecture 2 (Pugh-Shub [58]). Accessibility holds for an open and dense
subset of C2 partially hyperbolic diffeomorphisms, volume preserving or not.

Conjecture 3 (Pugh-Shub [58]). A partially hyperbolic C2 volume preserving
diffeomorphism with the essential accessibility property is ergodic.

Essential accessibility is a measure-theoretic version of accessibility that is
implied by accessibility: f is essentially accessible if for any two positive volume
sets A and B, there exists an su-path in M connecting some point in A to some
point in B – see [20] for a discussion.

In the next two sections, I will report on progress to date on these conjec-
tures.
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Further remarks.

1. Volume-preserving Anosov diffeomorphisms (where dimEc = 0) are al-
ways ergodic. This was proved by Anosov in his thesis [1]. Note that
Anosov diffeomorphisms are also accessible, since in that case the folia-
tions Ws and Wu are transverse. Hence all three conjectures hold true
for Anosov diffeomorphisms.

2. It is natural to ask whether partial hyperbolicity is a necessary condition
for stable ergodicity. This is true when M is 3-dimensional [27] and also in
the space of symplectomorphisms [45, 68], but not in general [71]. What
is true is that the related condition of having a dominated splitting is
necessary for stable ergodicity (see [27]).

3. One can also ask whether for partially hyperbolic systems, stable ergod-
icity implies accessibility. If one works in a sufficiently high smoothness
class, then this is not the case, as was shown in the groundbreaking paper
of F. Rodŕıguez Hertz [61], who will also speak at this congress. Hertz used
methods from KAM theory to find an alternate route to stable ergodicity
for certain essentially accessible systems.

4. On the other hand, it is reasonable to expect that some form of acces-
sibility is a necessary hypothesis for a general stable ergodicity criterion
for partially hyperbolic maps (see the discussion at the beginning of [24]).
Unlike Anosov diffeomorphisms, which are always ergodic, partially hy-
perbolic diffeomorphisms need not be ergodic. For example, the product
of an Anosov diffeomorphism with the identity map on any manifold is
partially hyperbolic, but certainly not ergodic. See also Theorem 11.16 in
[10].

3. Accessibility

In general, the stable and unstable foliations of a partially hyperbolic diffeomor-
phism are not smooth (though they are not pathological, either – see below).
Hence it is not possible in general to use infinitesimal techniques to estab-
lish accessibility the way we did in equation (2) for the discretized hyperbolic
geodesic flow. The C1 topology allows for enough flexibility in perturbations
that Conjecture 2 has been completely verified in this context:

Theorem B (Dolgopyat-Wilkinson [31]). For any r ≥ 1, accessibility holds
for a C1 open and dense subset of the partially hyperbolic diffeomorphisms in
Diffr(M), volume-preserving or not.

Theorem B also applies inside the space of partially hyperbolic symplecto-
morphisms.

More recently, the complete version of Conjecture 3 has been verified for
systems with 1-dimensional center bundle.
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Theorem C (Rodŕıguez Hertz-Rodŕıguez Hertz-Ures [63]). For any r ≥ 1,
accessibility is C1 open and Cr dense among the partially hyperbolic diffeomor-
phisms in Diffr

m(M) with one-dimensional center bundle.

This theorem was proved earlier in a much more restricted context by Niţică-
Török [54]. The C1 openness of accesssibility was shown in [28]. A version of
Theorem C for non-volume preserving diffeomorphisms was later proved in [19].

The reason that it is possible to improve Theorem B from C1 density to
Cr density in this context is that the global structure of accessibility classes
is well-understood. By accessibility class we mean an equivalence class with
respect to the relation generated by su-paths. When the dimension of Ec is 1,
accessibility classes are (C1 immersed) submanifolds. Whether this is always
true when dim(Ec) > 1 is unknown and is an important obstacle to attacking
the general case of Conjecture 2.

Further remarks.

1. More precise criteria for accessibility have been established for special
classes of partially hyperbolic systems such as discretized Anosov flows,
skew products, and low-dimensional systems [23, 21, 64].

2. Refined formulations of accessibility have been used to study higher-order
statistical properties of certain partially hyperbolic systems, in particular
the discretized geodesic flow [29, 52]. The precise relationship between ac-
cessibility and rate of mixing (in the absence of other hypotheses) remains
a challenging problem to understand.

3. Accessibility also plays a key role in a recently developed Livsič theory
for partially hyperbolic diffeomorphisms, whose conclusions closely mirror
those in the Anosov setting [47, 73].

4. Ergodicity

Conjecture 1 has been verified under one additional, reasonably mild hypothe-
sis:

Theorem D (Burns-Wilkinson [22]). Let f be C2, volume-preserving, partially
hyperbolic and center bunched. If f is essentially accessible, then f is ergodic,
and in fact has the Kolmogorov property.

The additional hypothesis is “center bunched.” A partially hyperbolic dif-
feomorphism f is center bunched if there exists an integer k ≥ 1 such that for
any p ∈ M and any unit vectors vs ∈ Es(p), vc, wc ∈ Ec(p), and vu ∈ Eu(p):

‖Dpf
kvs‖ · ‖Dpf

kwc‖ < ‖Dpf
kvc‖ < ‖Dpf

kvu‖ · ‖Dpf
kwc‖. (3)

As with partial hyperbolicity, the definition of center bunching depends only on
the smooth structure on M and not the Riemannian structure; if (3) holds for a
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given metric and k ≥ 1, one can always find another metric for which (3) holds
with k = 1 [37]. In words, center bunching requires that the non-conformality of
Df | Ec be dominated by the hyperbolicity of Df | Eu ⊕Es. Center bunching
holds automatically if the restriction of Df to Ec is conformal in some metric
(for this metric, one can choose k = 1). In particular, if Ec is one-dimensional,
then f is center bunched. In the context where dim(Ec) = 1, Theorem D was
also shown in [63].

Combining Theorems C and D we obtain:

Corollary 1. The Pugh-Shub conjectures hold true among the partially hyper-
bolic diffeomorphisms with 1-dimensional center bundle.

Further remarks.

1. The proof of Theorem D builds on the original argument of Hopf for
ergodicity of geodesic flows and incorporates a refined theory of the juli-
ennes originally introduced in [38].

2. It appears that the center bunching hypothesis in Theorem D cannot be
removed without a significantly new approach. On the other hand, it is
possible that Conjecture 1 will yield to other methods.

3. Formulations of Conjecture 1 in the C1 topology have been proved for
low-dimensional center bundle [12, 61] and for symplectomorphisms [3].
These formulations state that ergodicity holds for a residual subset in the
C1 topology.

5. Exponents

By definition, a partially hyperbolic diffeomorphism produces uniform contrac-
tion and expansion in the directions tangent to Es and Eu, respectively. In none
of the results stated so far do we make any precise assumption on the growth of
vectors in Ec beyond the coarse bounds that come from partial hyperbolicity
and center bunching. In particular, an ergodic diffeomorphism in Theorem D
can have periodic points of different indices, corresponding to places inM where
Ec is uniformly expanded, contracted, or neither. The power of the julienne-
based theory is that the hyperbolicity in Eu ⊕Es, when combined with center
bunching and accessibility, is enough to cause substantial mixing in the system,
regardless of the precise features of the dynamics on Ec.

On the other hand, the asymptotic expansion/contraction rates in Ec can
give additional information about the dynamics of the diffeomorphism, and is
a potentially important tool for understanding partially hyperbolic diffeomor-
phisms that are not center bunched.
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A real number λ is a center Lyapunov exponent of the partially hyperbolic
diffeomorphism f : M → M if there exists a nonzero vector v ∈ Ec such that

lim sup
n→∞

1

n
log ‖Dfn(v)‖ = λ. (4)

If f preserves m, then Oseledec’s theorem implies that the limit in (4) exists
for each v ∈ Ec(x), for m-almost every x. When the dimension of Ec is 1, the
limit in (4) depends only on x, and if in addition f is ergodic with respect to
m, then the limit takes a single value m-almost everywhere.

Theorem E (Shub-Wilkinson [70]). There is an open set U ⊂ Diff∞
m (T3) of

partially hyperbolic, dynamically coherent diffeomorphisms of the 3-torus T
3 =

R
3/Z3 for which:

• the elements of U approximate arbitrarily well (in the C∞ topology) the
linear automorphism of T3 induced by the matrix:

A =





2 1 0
1 1 0
0 0 1





• the elements of U are ergodic and have positive center exponents, m-
almost everywhere.

Note that the original automorphism A has vanishing center exponents,
everywhere on T

3, sinceA is the identity map on the third factor. Yet Theorem E
says that a small perturbation mixing the unstable and center directions of A
creates expansion in the center direction, almost everywhere on T

3.
The systems in U enjoy the feature of being non-uniformly hyperbolic: the

Lyapunov exponents in every direction (not just center ones) are nonzero, m-
almost everywhere. The well-developed machinery of Pesin theory guarantees
a certain level of chaotic behavior from nonuniform hyperbolicity alone. For
example, a nonuniformly hyperbolic diffeomorphism has at most countably
many ergodic components, and a mixing partially hyperbolic diffeomorphism
is Bernoulli (i.e. abstractly isomorphic to a Bernoulli process). A corollary of
Theorem E is that the elements of U are Bernoulli systems.

The constructions in [70] raise the question of whether it might be possible
to “remove zero exponents” from any partially hyperbolic diffeomorphism via
a small perturbation. If so, then one might be able to bypass the julienne based
theory entirely and use techniques from Pesin theory instead as an approach to
Conjecture 1. More generally, and wildly optimistically, one might ask whether
any f ∈ Diff2

m(M) with at least one nonzero Lyapunov exponent on a positive
measure set might be perturbed to produce nonuniform hyperbolicity on a
positive measure set (such possibilities are discussed in [70]).

There is a partial answer to these questions in the C1 topology, due to
Baraveira and Bonatti [7]. The results there imply in particular that if f ∈
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Diffr
m(M) is partially hyperbolic, then there exists g ∈ Diffr

m(M), C1-close to
f so that the sum of the center Lyapunov exponents is nonzero.

Further remarks.

1. Dolgopyat proved that the same type of construction as in [70] can be
applied to the discretized geodesic flow ϕt0 for a negatively curved surface
S to produce perturbations with nonzero center exponents [30]. See also
[66] for further generalizations of [70].

2. An alternate approach to proving Conjecture 1 has been proposed, tak-
ing into account the center Lyapunov exponents [18]. For systems with
dim(Ec) = 2, this program has very recently been carried out in the C1

topology in [65], using a novel application of the technique of blenders, a
concept introduced in [9].

6. Pathology

There is a curious by-product of nonvanishing Lyapunov exponents for the
open set U of examples in Theorem E. By [43], there is a center foliation Wc

for each f ∈ U , homeomorphic to the trivial R/Z fibration of T
3 = T

2 ×
R/Z; in particular, the center leaves are all compact. The almost everywhere
exponential growth associated with nonzero center exponents is incompatible
with the compactness of the center foliation, and so the full volume set with
positive center exponent must meet almost every leaf in a zero set (in fact a
finite set [67]).

The same type of phenomenon occurs in perturbations of the discretized
geodesic flow ϕt0 . While in that case the leaves of Wc are mostly noncompact,
they are in a sense “dynamically compact.” An adaptation of the arguments
in [67] shows that any perturbation of ϕt0 with nonvanishing center exponents,
such as those constructed by Dolgopyat in [30], have atomic disintegration of
volume along center leaves.

Definition 6.1. A foliation F of M with smooth leaves has atomic disintegration
of volume along its leaves if there exists A ⊂ M such that

• m(M \A) = 0, and

• A meets each leaf of F in a discrete set of points (in the leaf topology).

At the opposite end of the spectrum from atomic disintegration of volume
is a property called absolute continuity. A foliation F is absolutely continuous
if holonomy maps between smooth transversals send zero volume sets to zero
volume sets. If F has smooth leaves and is absolutely continuous, then for
every set A ⊂ M satisfying m(M \ A) = 0, the intersection of A with the leaf
F through m-almost every point in M has full leafwise Riemannian volume.
In this sense Fubini’s theorem holds for absolutely continuous foliations. If F
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Figure 3. A pathological foliation

is a C1 foliation, then it is absolutely continuous, but absolute continuity is a
strictly weaker property.

Absolute continuity has long played a central role in smooth ergodic the-
ory. Anosov and Sinai [1, 2] proved in the 60’s that the stable and unstable
foliations of globally hyperbolic (or Anosov) systems are absolutely continuous,
even though they fail to be C1 in general. Absolute continuity was a key ingre-
dient in Anosov’s celebrated proof [1] that the geodesic flow for any compact,
negatively curved manifold is ergodic. When the center foliation for f fails to be
absolutely continuous, this means that one cannot “quotient out by the center
direction” to study ergodic properties f .

The existence of such pathological center foliations was first demonstrated
by A. Katok (whose construction was written up by Milnor in [53]). Theorem E
shows that this type of pathology can occur in open sets of diffeomorphisms
and so is inescapable in general. In the next section, we discuss the extent to
which this pathology is the norm.

Further remarks.

1. An unpublished letter of Mañé to Shub examines the consequences of
nonvanishing Lyapunov center exponents on the disintegration of volume
along center foliations. Some of the ideas there are pursued in greater
depth in [42].

2. The examples of Katok in [53] in fact have center exponents almost ev-
erywhere equal to 0, showing that nonvanishing center exponents is not
a necessary condition for atomic disintegration of volume.
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3. Systems for which the center leaves are not compact (or even dynamically
compact) also exhibit non-absolutely continuous center foliations, but the
disintegration appears to be potentially much more complicated than just
atomic disintegration [69, 36].

7. Rigidity

Examining in greater depth the potential pathologies of center foliations, we
discover a rigidity phenomenon. To be concrete, let us consider the case of a
perturbation f ∈ Diff∞

m (M) of the discretized geodesic flow on a negatively-
curved surface. If the perturbation f happens to be the time-one map of a
smooth flow, then Wc is the orbit foliation for that flow. In this case the center
foliation for f is absolutely continuous – in fact, C∞. In general, however, a
perturbation f of ϕt0 has no reason to embed in a smooth flow, and one can
ask how the volume m disintegrates along the leaves of Wc.

There is a complete answer to this question:

Theorem F (Avila-Viana-Wilkinson [6]). Let S be a closed negatively curved
surface, and let ϕt : T

1S → T 1S be the geodesic flow.
For each t0 > 0, there is a neighborhood U of ϕt0 in Diff∞

m (T 1S) such that
for each f ∈ U :

1. either m has atomic disintegration along the center foliation Wc, or

2. f is the time-one map of a C∞, m-preserving flow.

What Theorem F says is that, in this context, nothing lies between C∞

and absolute singularity of Wc – pathology is all that can happen. The geomet-
ric measure-theoretic properties of Wc determine completely a key dynamical
property of f – whether it embeds in a flow.

The heart of the proof of Theorem F is to understand what happens when
the center Lyapunov exponents vanish. For this, we use tools that originate in
the study of random matrix products. The general theme of this work, sum-
marized by Ledrappier in [49] is that “entropy is smaller than exponents, and
entropy zero implies deterministic.” Original results concerning the Lyapunov
exponents of random matrix products, due to Furstenberg, Kesten [34, 33],
Ledrappier [49], and others, have been extended in the past decade to deter-
ministic products of linear cocycles over hyperbolic systems by Bonatti, Gomez-
Mont, Viana [11, 13, 72]. The Bernoulli and Markov measures associated with
random products in those earlier works are replaced in the newer results by
invariant measures for the hyperbolic system carrying a suitable product struc-
ture.

Recent work of Avila, Viana [5] extends this hyperbolic theory from linear
to diffeomorphism cocycles, and these results are used in a central way. For co-
cycles over volume preserving partially hyperbolic systems, Avila, Santamaria,
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and Viana [4] have also recently produced related results, for both linear and
diffeomorphism cocycles, which also play an important role in the proof. The
proof in [4] employs julienne based techniques, generalizing the arguments in
[24].

Further remarks.

1. The only properties of ϕt0 that are used in the proof of Theorem F are
accessibility, dynamical coherence, one-dimensionality of Ec, the fact that
ϕt0 fixes the leaves of Wc, and 3-dimensionality of M . There are also more
general formulations of Theorem F in [6] that relax these hypotheses
in various directions. For example, a similar result holds for systems in
dimension 3 for whom all center manifolds are compact.

2. Deep connections between Lyapunov exponents and geometric properties
of invariant measures have long been understood [48, 50, 51, 46, 8]. The-
orem F establishes new connections in the partially hyperbolic context.

3. Theorem F gives conditions under which one can recover the action of
a Lie group (in this case R) from that of a discrete subgroup (in this
case Z). These themes have arisen in the related context of measure-
rigidity for algebraic partially hyperbolic actions by Einsiedler, Katok,
Lindenstrauss [32]. It would be interesting to understand more deeply
the connections between these works.

8. Summary, Questions

We leave this tale open-ended, with a few questions that have arisen naturally
in its course.

New criteria for ergodicity. Conjecture 1 remains open. As discussed in
Section 4, the julienne based techniques using the Hopf argument might have
reached their limits in this problem (at least this is the case in the absence
of a significantly new idea). One alternate approach which seems promising
employs Lyapunov exponents and blenders [65]. Perhaps a new approach will
find a satisfying conclusion to this part of the story.

Classification problem. A basic question is to understand which manifolds
support partially hyperbolic diffeomorphisms. As the problem remains open in
the classical Anosov case (in which Ec is zero-dimensional), it is surely exremely
difficult in general. There has been significant progress in dimension 3, however;
for example, using techniques in the theory of codimension-1 foliations, Burago
and Ivanov proved that there are no partially hyperbolic diffeomorphisms of
the 3-sphere [17].

Modifying this question slightly, one can ask whether the partially hyper-
bolic diffeomorphisms in low dimension must belong to certain “classes” (up to
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homotopy, for example) – such as time-t maps of flows, skew products, algebraic
systems, and so on. Pujals has proposed such a program in dimension 3, which
has spurred several papers on the subject [15, 14, 64, 40].

It is possible that if one adds the hypotheses of dynamical coherence and
absolute continuity of the center foliation, then there is such a classification.
Evidence in this direction can be found in [6].

Nonuniform and singular partial hyperbolicity. Unless all of its Lyapunov
exponents vanish almost everywhere, any volume-preserving diffeomorphism
is in some sense “nonuniformly partially hyperbolic.” Clearly such a general
class of systems will not yield to a single approach. Nonetheless, the techniques
developed recently are quite powerful and should shed some light on certain
systems that are close to being partially hyperbolic. Some extensions beyond
the uniform setting have been explored in [3], in which the center bunching
hypotheses in [24] has been replaced by a pointwise, nonuniform center bunching
condition. This gives new classes of stably ergodic diffeomorphisms that are not
center bunched.

It is conceivable that the methods in [3] may be further extended to apply
in certain “singular partially hyperbolic” contexts where partial hyperbolicity
holds on an open, noncompact subset of the manifold M but decays in strength
near the boundary. Such conditions hold, for example, for geodesic flows on
certain nonpositively curved manifolds. Under suitable accessibility hypotheses,
these systems should be ergodic with respect to volume.

Rigidity of partially hyperbolic actions. The rigidity phenomenon de-
scribed in Section 7 has only begun to be understood. To phrase those results
in a more general context, we consider a smooth, nonsingular action of an
abelian Lie group G on a manifold M . Let H be a discrete group acting on M ,
commuting with the action of G, and whose elements are partially hyperbolic
diffeomorphisms in Diff∞

m (M). Can such an action be perturbed, preserving
the absolute continuity of the center foliation? How about the elements of the
action? When absolute continuity fails, what happens?

The role of accessibility and accessibility classes has been exploited in a
serious way in the important work of Damjanović and A. Katok on rigidity of
abelian actions on quotients of SL(n,R) [26]. It seems reasonable that these ex-
plorations can be pushed further, using some of the techniques mentioned here,
to prove rigidity results for other partially hyperbolic actions. A simple case
currently beyond the reach of existing methods is to understand perturbations
of the action of a Z

2 lattice in the diagonal subgroup on SL(2,R)×SL(2,R)/Γ,
where Γ is an irreducible lattice.

Our final question takes us further afield, but back once again to the geodesic
flow. Fix a closed hyperbolic surface S, and consider the standard action on
T 1S by the upper triangular subgroup T < PSL(2,R), which contains both the
geodesic and positive horocyclic flows. Ghys proved that this action is highly
rigid and admits no m-preserving C∞ deformations [35]. Does the same hold
true for some countable subgroup of T? For example, consider the solvable
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Baumslag Solitar subgroup BS(1, 2) generated by the elements

a =

(
√
2 0
0 1√

2

)

and b =

(

1 1
0 1

)

,

which has the presentation BS(1, 2) = 〈a, b | aba−1 = b2〉. Can the standard
action be perturbed inside of Diff∞

m (T 1S)? More generally, can one classify all
faithful representations

ρ : BS(1, 2) → Diff∞
m (M),

where M is a 3-manifold? For results of a similar nature in lower dimensions,
see [25, 56].
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Abstract

On a Hilbert space H, consider the product P̂nP̂n−1 · · · P̂1 of a large number of
operators P̂j , with ‖P̂j‖ = 1. What kind of geometric considerations can serve
to prove that the norm ‖P̂nP̂n−1 · · · P̂1‖ decays exponentially fast with n ? In
the first part of this note, we will describe a situation in which H = L2(Rd),
and the operators P̂j are Fourier integral operators associated to a sequence
of canonical transformations κj . We will give conditions, on the sequence of
transformations κj and on the symbols of the operators P̂j , under which we can
prove exponential decay. This technique was introduced to prove results related
to the quantum unique ergodicity conjecture. In the second half of this paper,
we will survey applications in scattering situations, to prove the existence of a
gap below the real axis in the resolvent spectrum, and to get local smoothing
estimates with loss, as well as Strichartz estimates.
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1. Introduction

On a Hilbert space H, consider the product P̂nP̂n−1 · · · P̂1 of a large number
of operators P̂j , with ‖P̂j‖ = 1. Think, for instance, of the case where each
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and a unitary operator. What kind of geometric considerations can be helpful
to prove that the norm ‖P̂nP̂n−1 · · · P̂1‖ is strictly less than 1 ? or better,
that it decays exponentially fast with n ? In Section 2, we will describe a
situation in which H = L2(Rd), and the operators P̂j are Fourier integral
operators associated to a sequence of canonical transformations κj . We will
give a “hyperbolicity” condition, on the sequence of transformations κj and on

the symbols of the operators P̂j , under which we can prove exponential decay

of the norm ‖P̂nP̂n−1 · · · P̂1‖. This technique was introduced in [1, 2], and was
used in [1, 2, 3, 29, 4] to prove results related to the quantum unique ergodicity
conjecture, for eigenfunctions of the laplacian on negatively curved manifolds:
see Section 3. In the last section of this paper (Section 4), we will survey the
work of Nonnenmacher-Zworski [27, 28], Christianson [8, 9, 10], Datchev [12],
and Burq-Guillarmou-Hassell [6], who showed how to use the previous estimates
in scattering situations, to prove the existence of a gap below the real axis in
the resolvent spectrum, and to get local smoothing estimates with loss, as well
as Strichartz estimates.

2. The Hyperbolic Dispersion Estimate

In this section, Rd × (Rd)∗ is endowed with the canonical symplectic form

ω =
∑d

j=1 dxj ∧dξj , where dxj denotes the projection on the j-th vector of the

canonical basis in Rd, and dξj is the projection on the j-th vector of the dual
basis in (Rd)∗. The space Rd will also be endowed with its usual scalar product,
denoted 〈., .〉, and we will use it to systematically identify Rd with (Rd)∗.

We consider a sequence of smooth (C∞) canonical transformations κn :
Rd×Rd −→ Rd×Rd, preserving ω. We will only be interested in the restriction
of κ1 to a fixed relatively compact neighbourhood Ω of 0, and it is actually
sufficient for us to assume that the product κn ◦ κn−1 ◦ · · · ◦ κ1 is well defined,
for all n, on Ω. The Darboux-Lie theorem ensures that every lagrangian foliation
can be mapped, by a symplectic change of coordinates, to the foliation of Rd×Rd

by the “horizontal” leaves Lξ0 = {(x, ξ) ∈ Rd × Rd, ξ = ξ0}. Thus, for our
purposes, there is no loss of generality if we make the simplifying assumption
that each symplectic transformation κn preserves this horizontal foliation. It
means that κn is of the form (x, ξ) 7→ (x′, ξ′ = pn(ξ)) where pn : Rd −→ Rd

is a smooth function. In more elaborate words, κn has a generating function
of the form Sn(x, x

′, θ) = 〈pn(θ), x
′〉 − 〈θ, x〉 + αn(θ) (where x, x

′, θ ∈ Rd, and
αn : Rd −→ Rd is a smooth function). We have the equivalence

[

(x′, ξ′) = κn(x, ξ)
]

⇐⇒
[

ξ = −∂xSn(x, x
′, θ), ξ′

= ∂x′Sn(x, x
′, θ), ∂θSn(x, x

′, θ) = 0
]

.

The product κn ◦ . . . ◦ κ2 ◦ κ1 also preserves the horizontal foliation, and it
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admits the generating function

〈pn ◦ . . . ◦ p1(θ), x
′〉 − 〈θ, x〉+ α1(θ) + α2(p1(θ)) + . . .+ αn(pn−1 ◦ . . . ◦ p1(θ))

= 〈pn ◦ . . . ◦ p1(θ), x
′〉 − 〈θ, x〉+An(θ),

where the equality defines An(θ).

We will assume that the functions pn are smooth diffeomorphisms, and that
all the derivatives of pn, of p

−1
n and of αn are bounded uniformly in n. If p is

a map Rd −→ Rd, we will denote ∇p the matrix ( ∂pi

∂θj
)ij , which represents its

differential in the canonical basis.

Assumptions (H): We shall be interested in the following operators, acting
on L2(Rd):

P̂nf(x
′) =

1

(2π~)d

∫

x∈Rd,θ∈Rd

e
iSn(x,x′,θ)

~ a(n)(x, x′, θ, ~)f(x)dxdθ,

where ~ > 0 is a parameter destined to go to 0. We will assume that the
functions a(n)(x, x′, θ, ~) have the following properties:

• For a given ~ > 0, the function (x, x′, θ) 7→ a(n)(x, x′, θ, ~) is of class C∞;

• The function a(1)(x, x′, θ, ~) is supported in Ω with respect to the variable
x;

• With respect to the variables (x′, θ), the functions a(n)(x, x′, θ, ~) have a
compact support x′ ∈ Ω1, θ ∈ Ω2, independent of n and ~;

• When ~ −→ 0, each a(n)(x, x′, θ, ~) has an asymptotic expansion

a(n)(x, x′, θ, ~) ∼ (det∇pn(θ))
1/2

∞
∑

k=0

~ka
(n)
k (x, x′, θ),

valid up to any order and in all the C` norms. Besides, these asymptotic
expansions are uniform with respect to n.

• If (x′, θ′) = κn(x, θ), we have |a
(n)
0 (x, x′, θ)| ≤ 1. This condition ensures

that ‖P̂n‖L2−→L2 ≤ 1 +O(~).

The operators P̂n are (semiclassical) Fourier integral operators associated with
the transformations κn.

2.1. Propagation of a single plane wave. The following theorem

is essentially proved in [1]. We denote eξ0,~ the function eξ0,~(x) = e
i〈ξ0,x〉

~ .
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Theorem 2.1. Fix ξ0 ∈ Rd. In addition to the assumptions above, assume that

lim sup
n−→+∞

1

n
log‖∇(pn ◦ . . . ◦ p2 ◦ p1)(ξ0)‖ ≤ 0.

Fix K > 0 arbitrary, and an integerM ∈ N. Then we have, for n = K| log ~|,

P̂n ◦ . . . ◦ P̂2 ◦ P̂1eξ0,~(x)

= ei
An(ξ0)

~ eξn,~(x)(det∇pn ◦ . . . ◦ p1(ξ0))
1/2

[

M−1
∑

k=0

~kb
(n)
k (x, ξn)

]

+O(~M ).

The functions b
(n)
k , defined on Rd × Rd, are smooth, and

b
(n)
0 (xn, ξn) =

n
∏

j=1

a
(j)
0 (xj , xj+1, ξj),

where we denote ξn = pn ◦ . . . ◦ p1(ξ0), xn = x and the other terms are defined
by the relations (xj , ξj) = κj ◦ . . . ◦ κ1(x0, ξ0).

The next terms b
(n)
k have the same support as b

(n)
0 . We have |b

(n)
0 (xn, ξn)| ≤

1, and besides, we have bounds

‖dmb
(n)
k ‖ ≤ C(k,m)nm+3k,

where C(k,m) does not depend on n.

If n is fixed, and if we write P̂n ◦ . . .◦ P̂2 ◦ P̂1eξ0,~(x) explicitly as an integral
over (Rd)2n, this theorem is a straightforward application of the stationary
phase method. If n is allowed to go to infinity as ~ −→ 0, our result amounts
to applying the method of stationary phase on a space whose dimension goes
to ∞, and this is known to be very delicate. The theorem was first proved
this way, in an unpublished version (available on request or on my webpage)
of the paper [1]. A nicer proof is available in [1], and has also appeared under
different forms in [2, 27]. In these papers, the proofs are written on a riemannian

manifold, for P̂n = e
iτ~∆

2 χ̂n, where the operators χ̂n belong to a finite family
of pseudodifferential operators, whose symbols are supported inside compact
sets of small diameters, and where ∆ is the laplacian and τ > 0 is fixed. In
local coordinates, the calculations done in [1, 2, 27] amount to the simpler
statement presented here. In the unpublished version, the assumptions were
much stronger; the transformations κj were assumed to be analytic, and the
symbols a(n) were taken in a Gevrey class. The result was also much stronger,
in that the conclusion held for n = ~−δ, for some δ > 0.

In all the papers under review, the dynamical systems under study satisfy
a uniform hyperbolicity condition, ensuring an exponential decay

sup
ξ∈Ω2

‖∇(pn ◦ . . . ◦ p2 ◦ p1)(ξ)‖ ≤ Ce
−λn, (1)
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with fixed constants C, λ > 0. This is why, following [27], we call our result a
hyperbolic dispersion estimate. Applications will be surveyed in Sections 3 and
4.

2.2. Estimating the norm of P̂n ◦ . . . ◦ P̂2 ◦ P̂1. We use the
~-Fourier transform

F~u(ξ) =
1

(2π~)d/2

∫

Rd

u(x)e−
i〈ξ,x〉

~ dx,

the inversion formula

u(x) =
1

(2π~)d/2

∫

Rd

F~u(ξ)e
i〈ξ,x〉

~ dξ,

and the Plancherel formula ‖u‖L2(Rd) = ‖F~u‖L2(Rd). Using the Fourier inver-
sion formula, Theorem 2.1 implies, in a straightforward manner, the following

Theorem 2.2. In addition to the assumptions above, assume that

lim sup
n−→+∞

1

n
log‖∇(pn ◦ . . . ◦ p2 ◦ p1)(ξ)‖ ≤ 0,

uniformly in ξ ∈ Ω2.
Fix K > 0 arbitrary. Then there exists ~K > 0 such that, for n = K| log ~|,

and for ~ < ~K,

‖P̂n◦ . . .◦ P̂2◦ P̂1‖L2−→L2 ≤
|Ω2|

1/2

(2π~)d/2
sup
ξ∈Ω2

| det∇pn◦ . . .◦p1(ξ)|
1/2(1+O(n3~)),

where |Ω2| denotes the volume of Ω2.

Of course, we always have the trivial bound ‖P̂n ◦ . . . ◦ P̂2 ◦ P̂1‖L2−→L2 ≤
1 +O(~| log ~|). Since we are working in the limit where ~ −→ 0, our estimate
can only have an interest if we have an upper bound of the form

sup
ξ∈Ω2

| det∇pn ◦ . . . ◦ p1(ξ)|
1/2 ≤ Ce−λn, λ > 0, (2)

and if K is large enough. Note that (2) is weaker than the condition (1).
We now state a refinement of Theorem 2.2. We consider the same family P̂i,

satisfying Assumptions (H). The multiplicative constants in our estimate have
no importance, and in what follows we will omit them.

Theorem 2.3. [4] In addition to the assumptions above, assume that

lim sup
n−→+∞

1

n
log‖∇(pn ◦ . . . ◦ p2 ◦ p1)(ξ)‖ ≤ 0,

uniformly in ξ ∈ Ω2.
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Let r ≤ d, and assume that the coisotropic foliation by the leaves {ξr+1 =
cr+1, . . . , ξd = cd} is invariant by each canonical transformation κn. In other
words, the map pn is of the form

pn((ξ1, . . . , ξr), (ξr+1, . . . , ξd)) = (mn(ξ1, . . . , ξd), p̃n(ξr+1, . . . , ξd)) ,

where mn : Rd −→ Rr and p̃n : Rd−r −→ Rd−r.
Fix K > 0 arbitrary. Then there exists ~K > 0 such that, for n = K| log ~|,

and for ~ < ~K,

‖P̂n◦. . .◦P̂2◦P̂1‖L2−→L2 ≤
1

(2π~)r/2

supξ∈Ω2
|(det∇pn ◦ . . . ◦ p1(ξ))|

1/2

infξ∈Ω2
|(det∇p̃n ◦ . . . ◦ p̃1(ξ))|1/2

(1+O(n3
~)).

Theorem 2.3 is an improvement of Theorem 2.2 in the case where we have

1

(2π~)d/2
sup
ξ∈Ω2

|(det∇pn ◦ . . . ◦ p1(ξ0))
1/2| � 1

but
1

(2π~)r/2
supξ∈Ω2

|(det∇pn ◦ . . . ◦ p1(ξ))|
1/2

infξ∈Ω2
|(det∇p̃n ◦ . . . ◦ p̃1(ξ))|1/2

� 1.

As a trivial example, when each κn is the identity, Theorem 2.2 gives a non-
optimal bound, whereas we can take r = 0 in Theorem 2.3, and recover the
(almost) optimal bound ‖P̂n ◦ . . . ◦ P̂2 ◦ P̂1‖L2−→L2 ≤ 1 + O(~| log ~|3). A less
trivial example will appear in Section 3.

3. An Application to the Quantum Unique

Ergodicity Conjecture

3.1. Statement of the conjecture. Let X be a d-dimensional com-
pact riemannian manifold, let ∆ denote the Laplace-Beltrami operator on X,
and let V be a smooth function on X. In the most general framework, the
question of “quantum ergodicity” asks about the behaviour of the solutions of
the stationary Schrödinger equation

(

−~2
∆

2
+ V

)

ψ~ = E~ψ~, (3)

in the limit ~ −→ 0 and assuming the eigenvalue E~ converges to a fixed value E.
We will always assume that the eigenfunction ψ~ is normalized in L2(X,Vol).
Quantum ergodicity asks about the weak limits of the family of probability
measures |ψ~(x)|

2dVol(x). Actually, people are interested in a family of dis-
tributions µ~ on the cotangent bundle T ∗X, that contain more information,
defined as follows:

∀a ∈ C∞c (T ∗X), 〈µ~, a〉 = 〈ψ~,Op~(a)ψ~〉L2(X), (4)
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where Op~(a) is a semiclassical pseudodifferential operator with principal sym-
bol a (if a = a(x, ξ), then Op~(a) = a(x,−i~∂x), and this can be defined
properly using the Weyl calculus in local coordinates). The distribution µ~ ap-
pears under various names in the literature, depending on the specific context:
Wigner transform, semiclassical/microlocal defect measure, microlocal lift of
ψ~... Although the definition of µ~ depends on the choice of local coordinates,
the collection of weak limits of µ~, as ~ −→ 0, is well defined, independently on
any choices. Besides, the definition (4) can be extended to the case when a is a
function on T ∗X depending only on the base point x, and in that case Op~(a)
is the multiplication operator by a. We see that the projection of µ~ on X is
the probability measure |ψ~(x)|

2dVol(x) that we were originally interested in.
The distribution µ~ contains more information, it tells us something about the
local directions of oscillations of ψ~.

The following is a form of the theorem of propagation of singularities, due to

Hörmander. Define the function H(x, ξ) =
‖ξ‖2

x

2 +V (x), on T ∗X – where ‖.‖2x is
the norm on T ∗

xX dual to the riemannian metric. Denote (Φt
H) the hamiltonian

flow defined by H, acting on T ∗X. In local coordinates, the flow (Φt
H) is defined

by the following first order differential equation:










ẋ = ∂H
∂ξ

ξ̇ = −∂H
∂x .

(5)

We will denote by YH , or simply Y , the vector field on T ∗X associated with
this flow.

Theorem 3.1. (i) Given any sequence ~n −→ 0, one can extract from the
sequence (µ~n

) a converging subsequence in D′(T ∗X).
We will call limits of such subsequences “semiclassical measures” associated

with the family (ψ~).
(ii) Let µ be a semiclassical measure. Then µ is a probability measure, car-

ried by the level set {H = E}.
(iii) In addition, µ is invariant by the hamiltonian flow (Φt

H): we have
(Φt

H)∗µ = µ, for all t.

This theorem does not suffice to characterize a unique limit µ, as there are
generally many invariant measures under (Φt

H). A hamiltonian flow on T ∗X
always preserves the Liouville measure, defined in local coordinates by dxdξ:
this measure, or more precisely its disintegration on {H = E}, is a candidate to
be a semiclassical measure. If the flow (Φt

H) has periodic orbits on the energy
level {H = E}, each of them carries an invariant measure, which is also a
candidate to be a semiclassical measure. Characterizing the set of semiclassical
measures is, in such generality, an open question. The two most studied cases
are completely integrable hamiltonian flows on the one hand, “chaotic” flows on
the other hand. In what follows we will focus on the “chaotic” case, and will
give a more precise definition of this term.
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Until the end of this section, we turn to a special case which has been most
studied, and is a source of numerous open questions: the case when V = 0.
In this case, (Φt

H) is the geodesic flow; we shall simply denote it by (Φt). We
consider the case of a non-singular energy level, in other words E 6= 0, and since
in this case the function H is homogeneous with respect to ξ, we may decide
without loss of generality to take E = 1

2 . Then the level set {H = E} is the

unit cotangent bundle S∗X. Letting λ = E~

~2 , equation (3) amounts to studying
the eigenfunctions of the laplacian,

−∆φλ = λφλ,

in the limit λ −→ +∞. We recall that, on a compact manifold, the eigenvalues
λ form a discrete set. We denote µλ ∈ D

′(T ∗X) the distribution defined previ-
ously, by 〈µλ, a〉 = 〈φλ,Opλ−1/2(a)φλ〉.We can rephrase our question by asking:
among the invariant probability measures of the geodesic flow, which ones can
be obtained as limits of the family (µλ) ? does the answer depend on the ge-
ometry ? The following theorem is referred to as “the Shnirelman theorem”,
or “the quantum ergodicity theorem”. It was later extended to more general
hamiltonian flows [20], and to the case of manifolds with a boundary (when X
has a boundary, one has to impose boundary conditions to the eigenfunctions)
[18].

Theorem 3.2. [33, 38, 11] Let X be a compact riemannian manifold. Let (φn)
be an orthonormal basis of L2(X) formed by eigenfunctions of the laplacian
(−∆φn = λnφn, with λn −→ +∞). Denote µn = µλn

.
Assume that the geodesic flow, acting on the unit cotangent bundle S∗X, is

ergodic with respect to the Liouville measure. Then, there exists a subset S ⊂ N

of density 1, such that

µn
n∈S
−→ Liouville,

the convergence taking place in D′(T ∗X).

The set S being of density 1 means that ]S∩[0,N ]
N −→

N→+∞
1.

It is a difficult question to know whether the whole sequence (µn) converges,
or if there can be exceptional subsequences converging to a measure other than
Liouville. Of course, the answer depends on the geometry. A particularly frus-
trating example is the case where X is a euclidean domain in R2 in the shape
of a stadium, called the Bunimovich stadium. In this example, it is quite clear
in numerical simulations that, although Shnirelman’s theorem holds, there are
also exceptional subsequences concentrating on the periodic trajectories that
bounce back and forth between the two parallel sides of the stadium. The first
breakthrough in that direction was made in 2008 by Hassell [19], who showed,
for “almost all stadia”, that there are exceptional subsequences of eigenfunc-
tions.

If X is a compact riemannian manifold with negative sectional curvatures,
Rudnick and Sarnak conjectured that, for any orthonormal basis of eigenfunc-
tions (φn), the whole sequence (µn) should converge to the Liouville measure:
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this is referred to as the quantum unique ergodicity conjecture [31]. A spe-
cial case of this conjecture, called arithmetic quantum unique ergodicity, was
proved by Lindenstrauss [25, 5], with the final touch by Soundararajan in the
case of the modular surface [36]. They deal with the case of certain hyperbolic
surfaces, called arithmetic congruence surfaces; and the eigenfunctions (φn) are
assumed to be common eigenfunctions of ∆ and of the Hecke operators ([36]
shows that there is no escape of mass to infinity, in the case of noncompact
finite volume arithmetic surfaces, such as the modular surface). The methods
therein are a very powerful mixture of number theory and ergodic theory. They
give, unfortunately, no clue as to the general conjecture.

3.2. Entropy of semiclassical measures on hyperbolic man-
ifolds. The papers [1, 2, 3] deal with the question of quantum unique er-
godicity by studying the Kolmogorov-Sinai entropy of semiclassical measures.
This entropy, denoted hKS in this paper, is a functional going from the set
M1

Φ(S
∗X) of Φt-invariant probability measures on S∗X, to R+. The shortest

definition of the entropy results from a theorem due to Brin and Katok [7]. For
any time T > 0, introduce a distance on S∗X,

dT (ρ, ρ
′) = max

t∈[−T/2,T/2]
d(Φtρ,Φtρ′),

where d is the distance built from the Riemannian metric. For ε > 0, denote by
BT (ρ, ε) the ball of centre ρ and radius ε for the distance dT . When ε is fixed
and T goes to infinity, it looks like a thinner and thinner tubular neighbourhood
of the geodesic segment [g−ερ, g+ερ] (this tubular neighbourhood is of radius
e−T/2 if the curvature of X is constant and equal to −1).

Let µ be a Φt–invariant probability measure on S∗X. Then, for µ-almost
every ρ, the limit

lim
ε−→0

lim inf
T−→+∞

−
1

T
log µ

(

BT (ρ, ε)
)

= lim
ε−→0

lim sup
T−→+∞

−
1

T
log µ

(

BT (ρ, ε)
) def
= hKS(µ, ρ)

exists and it is called the local entropy of the measure µ at the point ρ (it is
independent of ρ if µ is ergodic). The Kolmogorov-Sinai entropy is the average
of the local entropies: hKS(µ) =

∫

hKS(µ, ρ)dµ(ρ).
We recall the following (non obvious) facts:

• if µ ∈M1
Φ(S

∗X) is carried by a periodic trajectory of Φt, then hKS(µ) =
0.

• for all µ ∈ M1
Φ(S

∗X), we have 0 ≤ hKS(µ) ≤
∫

S∗X

∑d−1
j=1 λ

+
j (ρ)dµ(ρ),

where the numbers λ+j (ρ) are the nonnegative Lyapunov exponents of
ρ ∈ S∗X for the geodesic flow (the Ruelle-Pesin inequality). Note that
S∗X has dimension 2d − 1. Because the flow is symplectic, there can be
at most d− 1 positive Lyapunov exponents and d− 1 negative ones.
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• IfX has negative sectional curvatures, there is equality in the Ruelle-Pesin
inequality if and only if µ is the Liouville measure [24].

• the functional hKS is affine.

If the sectional curvature of X is constant equal to −1, the Ruelle-Pesin in-
equality takes the simpler form: hKS(µ) ≤ d− 1, with equality if and only if µ
is the Liouville measure.

The assumption on the curvature implies that the action of (Φt) on S∗X is
(uniformly) hyperbolic. This means that, for any ρ ∈ S∗X, the tangent space
to S∗X at ρ splits into flow direction, unstable and stable subspaces: there
exist C, λ > 0, and at each ρ ∈ S∗X a splitting Tρ (S

∗X) = RY (ρ) ⊕ E+
ρ ⊕

E−
ρ , dimE±

ρ = d− 1, such that

(i) For all ρ ∈ S∗X, dΦt
ρE

±
ρ = E±

Φt(ρ) for all t ∈ R;

(ii) For all ρ ∈ S∗X, for all v ∈ E∓
ρ , ‖dΦ

t
ρ.v‖ ≤ Ce

−λ|t|‖v‖, for ±t > 0.

Uniform hyperbolicity is a very strong, and very well understood, form of
“chaos”.

Let us define the unstable jacobian by

expΛ+
t (ρ) = det(dΦteE+

ρ
);

for t large enough, we have Λ+
t (ρ) > 0 for all ρ.

The following form of Theorem 2.2 is used in [1, 2]. Fix δ > 0, and consider
a finite family χ1, . . . , χK of smooth compactly supported functions on T ∗X,
such that

∑K
j=1 χj ≡ 1 on H−1[ 12 − δ,

1
2 + δ]. For all j, assume the function χj

is supported on a set Wj of diameter ≤ ε (that will be chosen small enough).
Also assume that each χj vanishes outside H−1[ 12 − 2δ, 12 + 2δ]. Consider the
associated pseudodifferential operators, defined by the Weyl calculus in local
coordinates: χ̂j = χj(x,−i~∂x). Define P̂j = e

iτ~∆
2 χ̂j , for some fixed time step

τ > 0. The following theorem amounts to Theorem 2.2 if one works in adapted
coordinates in each set Wj :

Theorem 3.3. In the definition of χ̂j, we can fix ε, δ small enough, so that the
following holds.

Fix K > 0 arbitrary. Then there exists ~K > 0 such that, for n = K| log ~|,
for any sequence (α1, . . . , αn) ∈ {1, . . . ,K}

n, and for all ~ < ~K,

‖P̂αn
◦ . . . ◦ P̂α2

◦ P̂α1
‖L2−→L2 ≤

1

(2π~)d/2

n
∏

j=1

e
Sτ (Wαj

)

2 ,

where Sτ (Wj) = − infρ∈Wj
Λ+
τ (ρ).

If τ is chosen large enough, then the hyperbolicity condition implies that

Sτ (Wj) < 0, and that
∏n

j=1 e
Sτ (Wαj

)

2 decays exponentially with n. If the sec-
tional curvature of X is constant, equal to −1, the estimate takes a simpler
form:
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Theorem 3.4. Assume that the sectional curvature of X is constant, equal to
−1. In the definition of χ̂j, we can fix ε, δ small enough, so that the following
holds.

Fix K > 0 arbitrary. Then there exists ~K > 0 such that, for n = K| log ~|,
for any sequence (α1, . . . , αn) ∈ {1, . . . ,K}

n, and for all ~ < ~K,

‖P̂αn
◦ . . . ◦ P̂α2

◦ P̂α1
‖L2−→L2 ≤

1

(2π~)d/2
e−(

d−1
2 )n(1 +O(δ))n.

In [1, 2, 3], we showed how these estimates imply the following lower bound
on the entropy of semiclassical measures.

Theorem 3.5. Let X be a compact d-dimensional riemannian manifold, with
negative sectional curvatures. Let (φλ) be a family of normalized eigenfunctions
of the laplacian, ∆φλ = −λφλ, with λ −→ +∞, and let µ be an associated
semiclassical measure. Then:

[1] We have hKS(µ) > 0.

[2] If the sectional curvature of X is constant, equal to −1, we have hKS(µ) ≥
d−1
2 .

Remark. In the case of arithmetic congruence surfaces; and assuming the
eigenfunctions (φλ) are common eigenfunctions of ∆ and of the Hecke opera-
tors, Bourgain and Lindenstrauss [5] proved the following bound on the mea-
sures µλ: for any ρ, and all ε > 0 small enough,

µλ

(

BT (ρ, ε)
)

≤ Ce−T/9, (6)

where the constant C does not depend on ρ or λ. This immediately yields
that any semiclassical measure associated with these eigenmodes satisfies
µ(BT (ρ, ε)) ≤ Ce−T/9, which implies that any ergodic component of µ has
entropy ≥ 1

9 . The measure classification result of [25] then implies that µ has
to be the Liouville measure.

In [2], Theorem 3.4 is used to prove an estimate that can, in a non rigourous
but intuitive manner, be formulated as follows:

µλ

(

BT (ρ, ε)
)

≤ C λ
d−1
4 e−

(d−1)T
2 . (7)

This bound only becomes non-trivial for times T � log λ. For this reason, we
cannot directly deduce bounds on the weights µ(BT (ρ, ε)); the link between (7)
and the entropic bounds of Theorem 3.5 is less direct and uses some specific
features of quantum mechanics.

By the properties of entropy, our Theorem 3.5 implies:

Corollary 3.6. Under the same assumptions,

[1] If X has (variable) negative sectional curvature, and if γ is a periodic tra-
jectory of Φt, then µ(γ) < 1.
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[2] If the sectional curvature of X is constant, equal to −1, and if γ is a periodic
trajectory of Φt, then µ(γ) ≤ 1

2 .

Corollary 3.7. [1] If the sectional curvature of X is constant, equal to −1,
then the Hausdorff dimension of the support of µ is ≥ d.

IfX has (variable) negative sectional curvature, we conjectured the following
explicit bound for any semiclassical measure µ:

hKS(µ) ≥
1

2

∫

S∗X

d−1
∑

j=1

λ+j (x, ξ)dµ(x, ξ). (8)

However, in variable curvature, we were not able to push our method that far.
This inequality has been proved in the case d = 2 by G. Rivière, who was able
to extend the proof to nonpositively curved surfaces [29, 30]. In this case, the
inequality implies that µ cannot be entirely concentrated on an exponentially
unstable closed geodesic.

Proving the quantum unique ergodicity conjecture would be equivalent to
getting rid of the 1

2 factor in (8). This is still far from reach, and would require
some new insight into the problem, as there exists an example of a discrete time
quantum dynamical system (namely, the “quantum cat-map” [16]) for which
equality is reached in (8). This example, however, comes from a symplectic map
that is not hamiltonian; see [16] for details.

At the moment, it is not known how to prove (8) when E+ or E− have
dimension d − 1 > 1; or for general non-uniformly hyperbolic systems. The
Bunimovich stadium would be a particularly interesting example: the inequal-
ity would imply that µ cannot be entirely concentrated on an exponentially
unstable periodic trajectory. It would be also be interesting to prove (8) for
systems that have some zero Lyapunov exponents. This is one of the motiva-
tions for the following paragraph.

3.3. Generalization to higher rank symmetric spaces of
nonpositive curvature. Let G be a connected semisimple Lie group with
finite center, let K be a maximal compact subgroup, and G/K the correspond-
ing symmetric space. Let Γ be a cocompact lattice in G, and X = Γ\G/K.

Example. Taking G = SOo(1, d;R), K = SO(d;R), one finds that G/K is the
d-dimensional real hyperbolic space, which was already treated in the previous
paragraph. In this section, one should keep in mind the case G = SL(n;R),
K = SO(n;R). For n = 2, G/K is again the 2-dimensional real hyperbolic
space, but from now on we will mostly be interested in n ≥ 3.

We will denote by g the Lie algebra of G; it is endowed with the Killing
bilinear form, which allows to endow G/K with a riemannian metric. We keep
using similar calligraphy for Lie subalgebras of g.
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The spectral problem. We look at the algebra D of G-invariant differential
operators onG/K. As a consequence of the structure of semisimple Lie algebras,
it is known that D is commutative, finitely generated. The number of generators
r coincides with the real rank of G/K, the dimension of a maximal flat totally
geodesic submanifold; or with the dimension of a, a maximal abelian subalgebra
of g contained in k⊥.

Note that D always contains the laplacian. If r = 1, D is generated by the
laplacian, but we will mostly be interested in the case r ≥ 2.

Example. For G = SL(n,R),K = SO(n,R), the subalgebra a is the set of
diagonal matrices with vanishing trace. We will denote by A the connected sub-
group of G generated by a, it consists of diagonal matrices with determinant 1
and nonnegative entries. The rank is the dimension of a, r = n− 1. We denote
the Weyl group by W , in this example it is the group of permutation matrices.
It acts on a (and on its dual a∗).

We look at the common eigenfunctions of D on X = Γ\G/K. The “eigen-
value” is now an r-dimensional vector. In fact, an eigenfunction of D generates a
spherical irreducible representation of G, and these are naturally parametrized
by ν ∈ a∗/W . In what follows, the “eigenvalue” will be parametrized by the
spectral parameter ν ∈ a∗/W .

The semiclassical limit (as proposed by Silberman-Venkatesh [34]). It con-
sists in the limit

‖ν‖ −→ +∞,
ν

‖ν‖
−→ ν∞. (9)

To keep semiclassical notations, one can define ~ = ‖ν‖−1.

We are again interested in the question of quantum ergodicity, which consists
in studying a sequence of L2-normalized eigenfunctions φν , of spectral param-
eters ν, in the asymptotic regime described above. We want to understand the
behaviour of the measures |φν(x)|

2dVol(x).

The “classical” dynamical system. Consider the algebra H of G-invariant
smooth hamiltonians (i.e. functions) on the cotangent bundle T ∗(G/K), that
are polynomial in the fibers of the projection T ∗(G/K) −→ G/K. Again by
the structure of semisimple Lie algebras, H is commutative under the Poisson
bracket, generated by r functions. The algebra H always contains the quadratic
form associated with the Killing metric. Common energy levels of H are natu-
rally parametrized by ν ∈ a∗/W . We will denote by Eν the energy layer corre-
sponding to the value ν.

We will restrict our attention to non-singular energy levels, in the sense
that the generators of H must have everywhere independent differentials. This
is equivalent to ν not being fixed by any element of W : in this case we will say
that ν is regular.
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The microlocal lift. The measures |φν(x)|
2dVol(x) are defined on X. Just as

in (4), we study the distributions µν(a) = 〈φν ,Op~(a)φν〉 (with ~ = ‖ν‖−1),
µν ∈ D

′(T ∗X), which project on X to the measure |φν(x)|
2dVol(x).

If a = H ∈ H, then Op~(H) is in D, and the isomorphism H(−i~•) ←→
Op~(H) is the Harish-Chandra isomorphism between H and D.

The analogue of Theorem 3.1 reads:

Theorem 3.8. (i) Given any sequence (νn) satisfying (9), one can extract from
the sequence (µνn

) a converging subsequence in D′(T ∗X).
We will call limits of such subsequences “semiclassical measures” associated

with the family (φνn
), or also “semiclassical measures in the direction ν∞”.

(ii) Let µ be a semiclassical measure in the direction ν∞. Then µ is a prob-
ability measure, carried by the level set Eν∞

.
(iii) In addition, for all H ∈ H, µ is invariant by the hamiltonian flow

(Φt
H): we have (Φt

H)∗µ = µ, for all t.

One can extend the quantum unique ergodicity conjecture to this new sit-
uation: is it true that the only semiclassical measure in the direction ν∞ is the
Liouville measure on the energy level Eν∞

?
Analogously to (8), I would expect the following inequality to hold, for any

semiclassical measure µ and all H ∈ H:

hKS(µ,Φ
t
H) ≥

1

2

∑

j

λ+j (Φ
t
H).

Here hKS(µ,Φ
t
H) is the entropy of µ for the flow generated by H, and the

λ+j (Φ
t
H) are the nonnegative Lyapunov exponents for that flow (since we are

on a homogeneous space, each λ+j (Φ
t
H) is a constant function). However, the

method of [2], so far, can only be pushed to prove the bound:

hKS(µ,Φ
t
H) ≥

∑

j

(

λ+j (Φ
t
H)−

λmax(Φ
t
H)

2

)

, (10)

where the sum is over all j, and λmax(Φ
t
H) is the largest of the Lyapunov

exponents λ+j (Φ
t
H). The right-hand side is, in general, negative, and the lower

bound is trivial.
In [4], we are able to prove an explicit, non-trivial lower bound. To do so,

we need to get rid of the low Lyapunov exponents in (10). This is where we
use the refined norm estimate Theorem 2.3. From now on, we assume that ν∞
regular.

Theorem 3.9. [4] Let µ be a semiclassical measure associated to the limit (9).
Assume that ν∞ regular.

For any H ∈ H,

hKS(µ,Φ
t
H) ≥

∑

j,λ+
j (Φt

H)≥
λmax(Φt

H
)

2

(

λ+j (Φ
t
H)−

λmax(Φ
t
H)

2

)

.
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We note that, unless H is a constant function, the entropy lower bound
given by Theorem 3.9 is always positive.

One reason to study this problem is that, when the rank r is ≥ 2, the com-
muting flows (Φt

H) (H ∈ H) are expected to have few joint invariant measures.
As a consequence, quantum unique ergodicity should be easier to prove.

To explain what is known about the joint invariant measures of the family
(Φt

H), we translate everything from the language of hamiltonian flows to the
language of group actions. For simplicity we stick to the case G = SL(n,R),K =
SO(n,R). If Eν∞

⊂ T ∗X is a regular energy level of H, it is known that there is
a G-equivariant identification between Eν∞

and Γ\G/M , where M is the group
of diagonal matrices of determinant 1 and entries ±1. Under this identification,
the action of the flows (Φt

H)H∈H on Eν∞
is transported to the right action of the

group A on Γ\G/M . More precisely, if H ∈ H is seen as a polynomial function
on g∗, the hamiltonian flow (Φt

H) is transported to the 1-parameter subgroup
etZ of A, with Z = dH(ν∞) ∈ a (see [21] for a detailed proof of this fact). In
particular, a semiclassical measure µ can be seen as a probability measure on
Γ\G/M , invariant under the right-action of A (in [34], Silberman-Venkatesh
constructed a microlocal lift of φν , that is directly defined on Γ\G/M instead
of T ∗X, and their construction has the advantage of being equivariant). The
Liouville measure on Eν∞

corresponds to the Haar measure on Γ\G/M .

Margulis’ conjecture (see [23]): Let G be a semisimple Lie group with finite
center, Γ < G a lattice, A < G a maximal split torus. Let µ be an A-invariant
and ergodic Borel probability measure on Γ\G. Then there exists a subgroup
L of G, containing A, closed and connected, and a closed orbit xL ⊂ Γ\G, such
that µ is supported on xL. Also, except possibly when L has a factor of rank
1, µ is algebraic, that is the L-invariant measure on xL.

Here is what is known about this conjecture. Let us denote µHaar the Haar
measure on Γ\G.

• [14], Theorem 4.1 : Let G be an R-split simple group. There exists 0 < c <
1 such that, if Γ is a lattice of G, and if µ is an A-invariant and ergodic
probability measure on Γ\G satisfying hKS(µ) ≥ c hKS(µHaar) for every
1-parameter subgroup of A, then µ is the Haar measure on Γ\G.

In the case G = SL(n,R) : if µ has positive entropy for each 1-parameter
subgroup of A, then µ is the Haar measure on Γ\G.

• [15] If G = SL(n,R), Γ = SL(n,Z), or if Γ is a lattice of “inner type”; if
µ is ergodic and has positive entropy for some 1-parameter subgroup of
A, then µ is algebraic.

• [26, 37] In the latter case, L must be of a certain form : it must be conju-
gate, via a permutation matrix, to the connected component of identity
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in GL(t,R)s ∩ SL(n,R); where n = ts and GL(t,R)s denotes the block-
diagonal embedding of s copies of GL(t,R) into GL(n,R).

Here is a reformulation of Theorem 3.9 :

Theorem 3.10. Let µ be a semiclassical measure associated to the limit (9).
Assume that ν∞ regular.

Then for any 1-parameter flow etZ in A (with Z ∈ a),

hKS(µ, e
tZ) ≥

∑

j,λ+
j (etZ)≥

λmax(etZ )
2

(

λ+j (e
tZ)−

λmax(e
tZ)

2

)

.

Unless Z = 0, this lower bound is positive. In the case G = SL(n,R), if we
knew that µ was ergodic, we could deduce from the result of [14] that µ is the
Haar measure, and quantum unique ergodicity would be proved. Unfortunately,
nothing tells us that µ is ergodic. However, our entropic lower bound is explicit,
and we can use the more precise measure classification results listed above, to
prove the following :

Theorem 3.11. [4] Let G = SL(3,R), and Γ be any cocompact lattice in G.
Let µ be a semiclassical measure associated to the limit (9). Assume that ν∞ is
regular.

Then µ has a Haar component, of weight ≥ 1
4 . In other words, there exists

an A-invariant probability measure ν on Γ\G/M , such that

µ =
1

4
µHaar +

3

4
ν,

where µHaar denotes the Haar measure on Γ\G/M .

Theorem 3.12. [4] Let G = SL(n,R), with n ≥ 3, and let Γ be a lattice asso-
ciated to a division algebra over Q. Let µ be a semiclassical measure associated
to the limit (9). Assume that ν∞ regular.

Then µ has a Haar component, of weight ≥ n−1
n−d

(

1
2 −

d−1
n−1

)

, where d is the

largest proper divisor of n.

We cannot prove quantum unique ergodicity, that says that the only semi-
classical measure is the Haar measure. But we have a partial result, saying that
any semiclassical measure has a Haar component. For n = 3 the result holds
for any lattice Γ in SL(n,R), whereas for n ≥ 4 we need to assume that Γ is
associated to a division algebra over Q to apply the results of [15, 26, 37].

As a comparison, for n prime, Γ coming from a division algebra over Q,
and assuming that the φν were also eigenfunctions of the Hecke operators,
Silberman-Venkatesh [34, 35] generalized the inequality (6), and improved it
by estimating the measures of tubular neighbourhoods of orbits of subgroups.
If µ is a semiclassical measure associated to a regular direction ν∞, their result
implies that every ergodic component of µ has positive entropy, with respect to
all 1-parameter subgroups of A. This generalizes the result of [5], and implies
that µ is the Haar measure.
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4. Resonances, Local Smoothing and Strichartz

Estimates

Nonnenmacher and Zworski used a variant of Theorem 2.2 in order to prove
spectral estimates in scattering theory [27]. For simplicity, we just state their
results in a special case. On Rd, consider a Schrödinger operator of the form

P (~) = −~2
∆

2
+ V (x), V ∈ C∞c (Rd,R),

where ∆ is the euclidean laplacian. The resonances of P (~) are defined as poles
of the meromorphic continuation of the resolvent

R(z, ~)
def
= (P (~)− z)−1 : L2(Rd) −→ L2(Rd), =m(z) > 0,

through the continuous spectrum [0,+∞). More precisely,

R(z, ~) : L2
comp(R

d) −→ L2
loc(R

d), z ∈ C \ (−∞, 0],

is a meromorphic family of operators (here L2
comp and L2

loc denote functions
which are compactly supported and in L2, and functions which are locally in
L2). The poles are called resonances, and their set is denoted by Res(P (~)).
They are counted according to their multiplicities.

The classical hamiltonian flow is given by Newton’s equations :

Φt(x, ξ)
def
= (x(t), ξ(t)),

ẋ(t) = ξ(t), ξ̇(t) = −dV (x(t)), x(0) = x, ξ(0) = ξ.

We will denote Y = YH = dΦt

dt t=0
the corresponding vector field. This flow

preserves the classical hamiltonian

H(x, ξ)
def
=
‖ξ‖2

2
+ V (x), (x, ξ) ∈ Rd × Rd,

and it leaves invariant the level sets EE = H−1(E). The incoming and outgoing
sets at energy E are defined as

Γ±
E = {ρ ∈ EE ,Φ

t(ρ) 6−→ ∞, t −→ ∓∞}.

The trapped set at energy E is KE = Γ+
E ∩ Γ−

E . It is a compact invariant set
for Φt. We will always assume that KE is non empty.

The fundamental assumption in [27] is that KE contains no fixed points
of the flow, and that the dynamics of (Φt) on KE is (uniformly) hyperbolic.
This means that, for any ρ ∈ KE , the tangent space to EE at ρ splits into
flow direction, unstable and stable subspaces: there exist C, λ > 0, and at each
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ρ ∈ KE a splitting TρEE = RY (ρ)⊕ E+
ρ ⊕ E

−
ρ , dimE±

ρ = d− 1, such that

(i) For all ρ ∈ KE , dΦ
t
ρE

±
ρ = E±

Φt(ρ) for all t ∈ R;

(ii) For all ρ ∈ KE , for all v ∈ E
∓
ρ , ‖dΦ

t
ρ.v‖ ≤ Ce

−λ|t|‖v‖, for ±t > 0.

Hyperbolicity implies structural stability, and in particular KE′ is also a
non empty hyperbolic set, for E′ close enough to E.

Let us introduce the unstable jacobian, defined by

expΛ+
t (ρ) = det(dΦteE+

ρ
);

for t large enough, we have Λ+
t (ρ) > 0 for all ρ.

By assumption, there exists R > 0 such that V is supported inside the ball
B(0, R). Fix δ > 0. The technique of complex scaling, used in [27] (but which
we don’t explain in detail here), allows to construct a deformation Pθ(~) of
P (~) with the following properties : (i) Pθ(~) is a non self-adjoint deformation

of P (~), such that the propagator e−it
Pθ(~)

~ damps very rapidly the functions
supported away from B(0, 3R); (ii) Pθ(~) coincides with P (~) inside B(0, 2R);
(iii) the resonances of P (~) close to the real axis are the eigenvalues of Pθ(~),
with the same multiplicities.

The following form of Theorem 2.2 is used in [27]. With the same δ > 0 as
previously, consider a finite family χ1, . . . , χK of smooth compactly supported
functions on Rd×Rd, such that

∑K
j=1 χj ≡ 1 on H−1[E−δ, E+δ]∩T ∗B(0, R).

For all j, assume the function χj is supported on a set Wj of diameter ≤ ε
(that will be chosen small enough). Also assume that each χj vanishes outside
H−1[E − 2δ, E + 2δ] ∩ T ∗B(0, 2R). Consider the associated pseudodifferential
operators, defined by the Weyl calculus : χ̂j = χj(x,−i~∂x). Define P̂j =

e−iτ
P (~)

~ χ̂j , for some fixed time step τ > 0 (in this definition, it is indifferent to
take P (~) or Pθ(~), since they coincide inside B(0, 2R)). The following theorem
is a variant of Theorem 2.2.

Theorem 4.1. In the definition of χ̂j, we can fix ε, δ small enough, so that the
following holds.

Fix K > 0 arbitrary. Then there exists ~K > 0 such that, for n = K| log ~|,
for any sequence (α1, . . . , αn) ∈ {1, . . . ,K}

n, and for all ~ < ~K,

‖P̂αn
◦ . . . ◦ P̂α2

◦ P̂α1
‖L2−→L2 ≤

1

(2π~)d/2

n
∏

j=1

e
Sτ (Wαj

)

2 ,

where Sτ (Wj) = − inf |E′−E|≤2δ,ρ∈Wj∩KE′ Λ
+
τ (ρ).

If τ is chosen large enough, then the hyperbolicity condition implies that

Sτ (Wj) < 0, and that
∏n

j=1 e
Sτ (Wαj

)

2 decays exponentially with n.
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To study the spectral theory of Pθ(~), we can write

e−inτ
Pθ(~)

~

=
∑

(α1,...,αn)

P̂αn
◦. . .◦P̂α2

◦P̂α1
+



e−inτ
Pθ(~)

~ −
∑

(α1,...,αn)

P̂αn
◦ . . . ◦ P̂α2

◦ P̂α1



 ,

where the sum runs over all (α1, . . . , αn) ∈ {1, . . . ,K}
n.

The term
(

e−inτ
Pθ(~)

~ −
∑

(α1,...,αn)
P̂αn
◦ . . . ◦ P̂α2

◦ P̂α1

)

only takes into

account classical trajectories that, at some time, exit H−1[E − δ, E + δ] ∩
T ∗B(0, R). The trajectories that start inside H−1[E−δ, E+δ]∩T ∗B(0, R), but

later exit that set, are very rapidly damped by e−inτ
Pθ(~)

~ ; an important part
of [27] is devoted to showing that this term is not relevant when one wants to
study the resonance spectrum near {<e(z) = E}. Concerning the other term,
we know that each operator P̂αn

◦ . . . ◦ P̂α2
◦ P̂α1

has a norm that decays expo-
nentially fast with n, but on the other hand there is an exponential number of
terms in the sum

∑

(α1,...,αn)
. To measure the competition between the expo-

nential number of terms, and the exponential decay of each term, it is natural
to introduce the following quantity

PE(s) = lim
δ−→0

lim
ε−→0

lim
n−→+∞

1

nτ
logZnτ (s, (Wj)),

where

Znτ (s, (Wj)) = inf
B







∑

(α1,...,αn)∈B

n
∏

j=1

e
Sτ (Wαj

)

2







,

and the inf is taken over all B ⊂ {1, . . . ,K}n, such that KE′ ⊂
∪(α1,...,αn)∈BWα1

∩ Φ−τWα2
∩ . . . ∩ Φ−(n−1)τWαn

for |E′ − E| ≤ δ.
The function s 7→ PE(s) is called the topological pressure associated with

the unstable jacobian. It is strictly decreasing with s.

Corollary 4.2. Fix η > 0 arbitrary. Then we can find τ > 0 large enough, ε, δ
small enough, and a partition of unity (χj) satisfying all the conditions above,
such that the following holds.

For K > 0 arbitrary, there exists ~K > 0 such that, for n = K| log ~|, and
for all ~ < ~K,

∥

∥

∥

∥

∥

∥

∑

(α1,...,αn)

P̂αn
◦ . . . ◦ P̂α2

◦ P̂α1

∥

∥

∥

∥

∥

∥

L2−→L2

≤
1

(2π~)d/2
enτPE( 1

2 )(1 + η)nτ .

We see that this upper bound is non trivial only if PE(
1
2 ) < 0, which means

in some sense that the trapped set KE is rather small. In dimension d = 2, this
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condition is equivalent to saying that the Hausdorff dimension of the trapped
set is < 2.

One of the main results in [27] is to deduce from Corollary 4.2 the existence
of a spectral gap in the resonance spectrum :

Theorem 4.3. [27] Assume that PE(
1
2 ) < 0.

Then there exists δ > 0 such that, for any γ satisfying

0 < γ < min
|E′−E|≤δ

(

−PE′

(

1

2

))

,

there exists ~δ,γ > 0 such that

0 < ~ < ~δ,γ =⇒ Res(P (~)) ∩ ([E − δ, E + δ]− i[0, ~γ]) = ∅.

This means that if the trapped set is small enough, the resonances stay away
from the real axis. This question has been present in the physics literature at
least since the seminal paper by Gaspard and Rice [17]. We note that the anal-
ogous result for scattering by a disjoint union of convex obstacles was proved
in 1988 by Ikawa [22]. One can say that Ikawa’s paper contained, in a hidden
form and in a specific geometric situation, the idea expressed by Theorem 2.1.

One important consequence of Corollary 4.2 is the following estimate on the
resolvent. It is proved in [27], using the relation between the resolvent and the
propagator.

Theorem 4.4. [27] Assume that PE(
1
2 ) < 0. Then, for any χ ∈ C∞c (Rd), there

exists C > 0 such that

‖χ(P (~)− E)−1χ‖L2−→L2 ≤
C log |~|

~
,

for ~ small enough.

These theorems hold for more general operators : see [27] for a more gen-
eral set of assumptions. An interesting situation is when there is no potential
(V = 0) and one studies the resonance spectrum of the laplacian for a rieman-
nian metric that is euclidean ouside a compact set1. Since the hamiltonian is
homogeneous, one can without loss of generality consider the case E = 1

2 , that
is, our hamiltonian flow is the unit geodesic flow. In this situation, the resolvent
estimate above was extended by Datchev to the case of asymptotically conic
manifolds, also called scattering manifolds [12]. It is shown in [9, 12] how such
resolvent estimates imply a local smoothing estimate :

Theorem 4.5. [27, 9, 12] Let (X, g) be a riemannian manifold that is euclidean
outside a compact set; or asymptotically conic (see [12] for the definition). Let
∆ denote the associated Laplace-Beltrami operator.

1In the case of convex-cocompact hyperbolic manifolds, the existence of a gap in the

resonance spectrum, if the limit set has small dimension, seems to have been known before.
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Assume that the trapped set K of the unit speed geodesic flow is compact,
hyperbolic, and that the pressure of the unstable jacobian on K satisfies P( 12 ) <
0.

Then, for any η > 0, for any T > 0 and any χ ∈ C∞c (M), there exists C > 0
such that

∫ T

0

‖χeit∆u‖2H1/2−ηdt ≤ C‖u‖
2
L2 . (11)

The local smoothing effect usually refers to the inequality

∫ T

0

‖χeit∆u‖2H1/2dt ≤ C‖u‖
2
L2 ,

which is known to hold when the trapped set for the geodesic flow is empty. Doi
[13] showed, in a variety of geometric situations, that the absence of trapped
geodesics is also a necessary condition for (11) to hold with η = 0. According
to Theorem 4.5, if the trapped set is hyperbolic and small enough, (11) holds
for all η > 0, which is called “local smoothing with loss”.

Burq-Guillarmou-Hassell [6] showed how the combination of Theorem 4.5
and the norm estimate of Corollary 4.2 yields a Strichartz estimate without
loss :

‖eit∆u‖Lp((0,1),Lq(M)) ≤ C‖u‖L2(M),

for 2
p + d

q = d
2 , p > 2, q ≥ 2, (p, q) 6= (2,∞). This estimate holds for

riemannian manifolds that are asymptotically conic, assuming that the trapped
set of the unit geodesic flow is compact, hyperbolic and satisfies P( 12 ) < 0.

Finally, Christianson [10] and Nonnenmacher-Zworski [28] show how to ex-
tend the resolvent estimate of Theorem 4.4 to the analytic extension of the
cut-off resolvent in a small strip below the real axis. As an application, Chris-
tianson [10] proves exponential decay of the local energy, under the action of the
wave group, on a riemannian manifold that it euclidean outside a compact set,
assuming once again that the trapped set of the unit geodesic flow is hyperbolic
and satisfies P( 12 ) < 0.

We refer the reader to the work of Emmanuel Schenck [32], who used sim-
ilar ideas to study the spectrum and the energy decay for the damped wave
equation.
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1. Introduction

In a series of papers in 1930-32, Paley and Zygmund [42] proved that for any
square summable sequence (cn) ∈ `2, if one consider the trigonometric series

u(x) =

+∞∑

n=0

cne
inx,

then, changing the signs of the coefficients cn randomly and independently
ensures that almost surely, the sum of the series is in every space Lp(T), 2 ≤
p < +∞. In modern language, this result reads
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Theorem 1.1. Consider a sequence (cn) ∈ `2 and a family of independent,
mean zero Bernouilli random variables, (bωn) on a probability space (Ω,P):

P(bn = ±1) =
1

2
,

and the corresponding series on the torus,

uω(x) =
+∞∑

n=0

bωncne
inx.

Then almost surely

∀2 ≤ p < +∞, uω ∈ Lp(T).

Actually, in 1930, the most difficult part in this result was precisely to define
what is a “family of independent, mean zero Bernouilli random variables”, and
Paley-Zygmund proof relied on an explicit realization (see Rademacher [43]
and Kolmogorov [27]). With modern technology, it is not difficult to give a
quantitative version of this result and one can prove (see section 2)

∀2 ≤ p < +∞, ∃C > 0; ∀λ > 0,P(‖uω‖Lp(T) > λ) ≤ Ce−λ2/C .

This much celebrated result has been followed by many works on random series
of functions (see in particular the books by Kahane [24] and Marcus-Pisier [36])
where the studies focused mostly on the question of giving criteria for the
uniform convergence of the series. It is quite remarkable that this very active
fields of research for the point of view of harmonic analysis were not, until
recently investigated from the point of view of partial differential equations.
To my knowledge, the first step toward this direction is due to Bourgain [7],
where these properties of random series on the torus T

2 were exploited in the
context of the (renormalized by Wick ordering) two dimensional non linear
cubic Schrödinger equations. The purpose of this talk is in fact to show that
these properties of random series can be exploited in a number of situations
including wave equations on manifolds and non linear harmonic oscillators.
The examples we have in mind are the semilinear wave equation on a compact
manifold

(
∂2

∂t2
−∆

)
u = −|u|p−1u, u |t=0= u0,

∂

∂t
u |t=0= u1, (1)

and the semilinear Schrödinger equation on the line

(
i
∂

∂t
− ∂2

∂x2
+ x2

)
u = −κ|u|p−1u, u |t=0= u0, κ = 0;±1. (2)
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As far as Cauchy theory is concerned, the (deterministic) behaviour of these
equations has been investigated for a long time and the picture is by now
fairly complete. Notice that up to now, the ideas presented in this talk do not
apply to the case of nonlinear Schrödinger equations on compact manifolds (see
Tzvetkov [47, Appendix] where some partial results are obtained in this case).
Notice also that in this setting of deterministic theory of semi-linear Schrödinger
equations on manifolds, the situation is much less well known, see Gérard [19]
for a review of this question). Many of the questions which remain open on
R

d are essentialy about the critical problems and the long time behaviour (or
possibly explosion, see the works by Merle-Raphael [37, 38, 40, 39]) of the
solutions. In particular, for both the wave equation on a compact manifold,
and the Schrödinger equation, the Cauchy problem is known to be well posed
above the scaling index

sc =
d

2
− 2

p− 1
.

(see Kapitanskii [25], Oh [41] and Carles [15], and the contributions by Bour-
gain [6], Colliander-Keel-Staffilani-Takaoka-Tao [17], and Kenig-Merle [29, 30]
for the critical problems), while it is known to be ill posed below the scaling
index. Indeed, the following result is known (see the works by Lebeau [32, 33],
Christ-Colliander-Tao [16], Burq-Gérard-Tzvetkov [9], Alazard-Carles [1] and
Thomann [48]).

Theorem 1.2. Assume that 0 < s < sc. Then there exists a sequence of initial
data (u0,n, u1,n) → 0 in Hs(M) ×Hs−1(M) as n → 0, and there exists times
tn → 0 such that the solutions of (1) exist (and are unique) in suitable spaces
for |t| ≤ tn, but

lim
n→+∞

‖u(tn)‖Hs(M) = +∞.

There exists also a sequence of initial data (u0,n) → 0 in Hs(R)) as n → 0, and
there exists times tn → 0 such that the solutions of (2) exist (and are unique)
in suitable spaces for |t| ≤ tn, but

lim
n→+∞

‖u(tn)‖Hs(R) = +∞.

In other word, the equations (1) and (2) admit no flow continuous at
t = 0, (u0, u1) = 0 (resp u0 = 0) for the Hs topology. Having this negative
result in mind, a natural question to ask is whether one can still find initial
states with super-critial regularity (i.e. (u0, u1) ∈ Hs(M) × Hs−1(M), (resp.
u0 ∈ Hs(M)), s < sc), for which the Cauchy problem (1) (resp. (2)) is locally
(or even better, globally) well posed. The purpose of this talk is precisely to
present such examples.

The paper is organized as follows: In Section 2, I will present a short proof
of Paley-Zygmund’s result which, using Hörmander-Sogge’s Laplace eigenfunc-
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tions estimates [21, 45], or Hermite eigenfunctions estimates [31] extends readily
to the more general setting of random series on manifolds (or on R

d). In sec-
tion 3, I will show how these estimates, combined with the usual Strichartz
estimates [46, 20, 28] allow to obtain a nice “probabilistic” Cauchy theory for
the wave equation on compact manifolds and I will give a particular exam-
ple where this local theory combined with Bourgain’s [7, 6] Gibbs measure
arguments gives a global (in time) result. In Section 4, I will follow the same
program for the semi-linear Schrödinger equation on the line R, with or with-
out harmonic oscillator. Finally, in a last section, I will focus on some different
randomizations in connexion with Sobolev embeddings.

2. Random Series

2.1. Random series on the torus. In this section I will give a simple
proof of Paley-Zygmund’s theorem, to show the versatility of the result.

Theorem 2.1 (see [2, 13, 14]). Assume that the random variable bωn are

1. independent,

2. have mean equal to 0,

3. have super-exponential decay

∃C, δ > 0; ∀α ∈ R,E(eα|b
ω
n |) ≤ Ceδα

2

. (3)

Notice that this latter assumption is satisfied for Bernouilli, or more gen-
erally for families of random variables having a (fixed) compact support,
or for standard Gaussian random variables.

Then, almost surely, uω
n ∈ Lp(T), ∀q < +∞. More precisely, the following large

deviation estimate holds

∀q < +∞, ∃C; P(‖uω‖Lq(T) > λ) ≤ Ce−Λ2/C .

The remaining of this section is devoted to the proof of Theorem 2.1.

2.2. Proof of Theorem 2.1. The proof relies on

Proposition 2.2. [Large deviation estimate] Assume that the random variables
satisfy the assumptions of Theorem 2.1. Then there exists δ > 0 such that for
any Λ > 0, and any sequence (vn) ∈ `2,

P
(∣∣∣∣∣
∑

n

vnb
ω
n

∣∣∣∣∣ > Λ

)
≤ e

−δ Λ2
∑

n |vn|2 .
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2.2.1. Proof of Theorem 2.1 assuming Proposition 2.2. Fix r ≥ q.
Remark that the norm of an integral is always smaller that the integral of the
norm. As a consequence,

‖‖uω(x)‖Lq
x
‖Lr

ω
=

(
‖
∫

x

|uω(x)|qdx‖
L

r/q
ω

)1/q

,

≤
(∫

x

‖|uω(x)|q‖
L

r/q
ω

dx

)1/q

,

= ‖‖uω(x)‖Lr
ω
‖Lq

x
.

(4)

Notice (x is a fixed parameter) that

‖uω(x)‖Lr
ω
=

∫ +∞

0

rλr−1P(|uω(x)| > λ)dλ,

and according to Proposition 2.2 applied to vn = une
inx, with x a fixed param-

eter (and the change of variables µ =
( √

2δ1/2∑
n |uneinx|2)1/2

)
,

‖uω(x)‖rLr
ω
≤ C

∫ +∞

0

rλr−1e
−δ λ2

∑
n |uneinx|2 dλ

≤
(
C
∑

n

|un|2
)r/2

r

∫ +∞

0

µr−1e−
µ2

2 dµ,

≤
(
C
∑

n

|un|2
)r/2

× r × r − 2× · · · × 1 ≤
(
C ′r

∑

n

|un|2
)r/2

. (5)

Notice now that the norm with respect to the x parameter is harmless (as the
bound does not depend on x). For future use, it should be noticed that we
use here that the Lq norm of the functions einx are uniformly bounded. As a
conclusion, we just proved

‖‖uω(x)‖Lq
x
‖Lr

ω
≤
(
C ′r

∑

n

|un|2
)1/2

.

To conclude, let us recall Tchebytchev inequality:

∀λ, λP(fω > Λ) ≤ E(f).

Apply this inequality to the random variable fω = ‖uω(x)‖r
Lq

x
and λ = Λr. We

get
P(‖uω(x)‖Lq

x
> Λ) = P(‖uω(x)‖rLq

x
> Λr = λ)

≤ 1

Λr
E(‖uω(x)‖rLq

x
) =

1

Λr
‖‖uω(x)‖Lq

x
‖rLr

ω

≤
(
(C ′r

∑
n |un|2)

Λ2

)r/2

.

(6)
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Now we optimize this inequality by choosing r so that

(C ′r
∑

n |un|2)
Λ2

=
1

2

(notice that the assumption r ≥ p requires that λ is large enough, but for
bounded λ’s, the large deviation estimate in Theorem 2.1 is straightforward).
This gives

P(‖uω(x)‖Lq
x
> Λ) ≤

(1
2

)r/2
= e

−δ Λ2
∑

n |un|2 ,

which ends the proof of Theorem 2.1.

2.2.2. Proof of Proposition 2.2. The proof we give is very classical. In the
special case where the random variables gn are gaussian random variables of
variance 1, the result is straightforward. Indeed,

∑
n vngn is a Gaussian random

variable of variance
∑

n |vn|2 and the result follows. In the general case, it is
enough to prove

P
(
∑

n

vnb
ω
n > λ

)
≤ e

−δ λ2
∑

n |vn|2 .

Indeed, the estimate for the other part, P(
∑

n vnb
ω
n < −λ) is obtained by

changing vn to −vn. Let us fix t > 0 and compute (using the fact that the
random variables are independent)

E

(
et

∑
n vnb

ω
n

)
= E

(
∏

n

etvnb
ω
n

)
=
∏

n

E

(
etvnb

ω
n

)

≤
∏

n

eδt
2|vn|2 ≤ et

2 ∑
n |vn|2 ,

(7)

where in the last but one inequality, we used the super-exponential decay as-
sumption(3). Now, using Tchebytchev inequality,

P
(
∑

n

vnb
ω
n > λ

)
= P

(
et

∑
n vnb

ω
n > etλ

)
,

≤ e−tλ
E

(
et

∑
n vnb

ω
n

)
,

≤ eδt
2 ∑

n |vn|2−tλ.

(8)

Optimize by choosing δt2
∑

n |vn|2 = tλ/2, i.e. t = λ/(2δ
∑

n |vn|2), which gives

P
(
∑

n

vnb
ω
n > λ

)
≤ e

−α λ2
∑

n |vn|2 ,
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which ends the proof of Proposition 2.2 and consequently the proof of Theo-
rem 2.1.

2.3. Random series on manifolds and on the line. Consider M
a riemanian manifold andH a non-negative self adjoint operator on L2(M) with
compact resolvent (the examples we have in mind are M a compact riemanian

manifold with H = −∆ and M = R with H = − d2

dx2 + x2 the harmonic
oscillator). It is well known that the eigenfunctions of H, en, associated to
eigenvalues −λ2

n provide a Hilbert base of L2(M)

u ∈ L2(M) ⇔ u =
∑

n∈N

unen(x), ‖u‖2L2(M) =
∑

n∈N

|un|2 < +∞

Definition 1. For any s ∈ R, let Hs(M) be the space of distributions such
that (Id+H)su ∈ L2(M), and let Ws,p(M) be the space of distributions u such
that ( Id + H)s/2u ∈ Lp(M) endowed with their natural norm. In particular,
we have

u ∈ Hs(M) ⇔ u =
∑

n∈N

unen(x),
∑

n∈N

(1 + λ2
n)

s)|un|2 = ‖un‖2Hs(M) < +∞

and notice that if M is a compact manifold, Hs(M) coincides with the usual
Sobolev space Hs(M) while if M is the real line and H the harmonic oscillator,
and s ≥ 0

Ws,p(M) = {u ∈ D′(R); 〈x〉su, 〈|Dx|〉su ∈ Lp(R)

(endowed with its natural norm [18]).

The starting point of the analysis is Hörmander-Sogge’s estimates for the
growth of the Lp norm of eigenfunctions on (compact) manifolds

Theorem 2.3. Consider M a compact riemanian manifold and (en)n∈N, the
L2- normalized eigenfunctions of the Laplace operator on M , associated to the
eigenvalues −λ2

n. Then, there exists C > 0 such that for any n ∈ N, and any
2 ≤ p ≤ +∞

‖en‖Lp(M) ≤ Cλδ(p)
n (9)

where

δ(p) =

{
d−1
2 − d

p if p ≥ 2(d+1)
d−1 ,

d−1
2

(
1
2 − 1

p

)
if p ≤ 2(d+1)

d−1 .
(10)

The end point p = ∞ is due to Hörmander [21] while the point p = 2(d+1)
d−1

is due to Sogge [45] (notice that the last extremal point p = 2 is trivial).
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Consider now the (L2 normalized) eigenfunctions of the Harmonic oscillator,
hn(x), (

− d2

dx2
+ x2

)
hn = λ2

nhn, λn =
√
2n+ 1

Then the analog of Sogge’s result is the following (see Yajima-Zhang [49] and
Koch-Tataru [31]

Theorem 2.4. For any 2 ≤ p ≤ +∞, there exists C > 0 such that for any
n ∈ N,

‖hn‖Lp(R) ≤ Cλσ(p)
n (11)

with

σ(p) =

{
−
(
1
6 + 1

3p

)
if 4 < p ≤ +∞

= −
(
1
2 − 1

p

)
if 2 ≤ p < 4

(12)

and

‖hn‖L4(R) ≤ Cλ
− 1

4
n log(λn)

1/4 (13)

Remark. Notice that in the case of the harmonic oscillator, the situation is
much more favorable as the Lp norms of the Hermite functions hn tend to be
small as n tend to infinity. This is of course natural, as, by elliptic regularity, the
functions hn are essentially concentrated in the set {|x| ≤ λn}, whose measure
is growing.

Remark. Following the Xs,b approach by Bourgain [4, 3, 5], multilinear ver-
sions of estimates (9) proved to be crucial in the analysis of the (deterministic)
well posedness of non linear Schrödinger equations on general compact man-
ifolds and spheres (see the works by Burq-Gérard-Tzvetkov [8, 10, 19]), while
the bilinear version of (13) was the starting point of our work on the non linear
harmonic oscillator (see [12] and Section 4.1).

Now the analog of Paley-Zygmund’s theorem is (see Burq-Tzvetkov [13])

Theorem 2.5. Consider a compact riemanian manifold, M . Fix 2 ≤ p < +∞
and consider

u =
∑

n

unen(x) ∈ Hs(M),

and random variables (bn) satisfying the assumptions in Theorem 2.1. Assume
that s > δ(p). Then almost surely the random series

uω =
∑

n∈N

bωnunen(x)
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belongs to Lp(M) and more precisely

∃C > 0;P(‖uω‖Lp(M) > λ) ≤ Ce−λ2/C . (14)

Furthermore, for any s′ > s, if u /∈ Hs′(M), then

P(‖uω‖Hs′ (M) < +∞) = 0. (15)

In the case of the harmonic oscillator, the analog of Paley-Zygmund’s the-
orem is (see Burq-Thomann-Tzvetkov [12])

Theorem 2.6. Fix 2 ≤ p < +∞ and consider

u =
∑

n

unhn(x) ∈ Hs(R),

and random variables (bn) satisfying the assumptions in Theorem 2.1. Assume
that s > σ(p). Then almost surely the random series

uω =
∑

n∈N

bωnunhn(x)

belongs to Lp(R) and more precisely

∃C > 0;P(‖uω‖Lp(R) > λ) ≤ Ce−λ2/C . (16)

Furthermore, for any s′ > s, if u /∈ Hs′(R), then

P(‖uω‖Hs′ (R) < +∞) = 0. (17)

Remark. Notice that these results exhibit gains of derivatives with respect to
the Sobolev embeddings. Indeed, it is of course clear for the harmonic oscillator
case as the Lp norms are better behaved almost surely than the L2 norms, while
in the case of a compact manifold, Sobolev embeddings read

‖u‖Lp(M) ≤ C‖u‖Hs(M), s = d

(
1

2
− 1

p

)
, 2 ≤ p < +∞.

3. Wave Equations and Random Series

3.1. Local theory. In this section, for simplicity, I shall consider the sim-
plest model on semi-linear wave equation, which is obtained for cubic non lin-
earities on three dimensional manifolds.

(∂2
t −∆)u+ u3 = 0, (u, ∂tu)|t=0 = (u1, u2) ∈ Hs(M)×Hs−1(M). (18)
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Notice that for this equation, the critical index is sc =
1
2 . The following result

(Burq-Tzvetkov [13]) shows that neverthless, the Cauchy problem is locally well
posed for a large number of supercritical initial data

Theorem 3.1. Consider a compact riemanian manifold, M . Let us fix s > 1
4

and

(u1, u2) =
∑

n

(un,1en(x), un,2en(x)) ∈ Hs(M)×Hs−1(M).

Let (gn) and (hn) be two families or independent random variables satisfying
the assumptions in Theorem 2.1. Consider

(uω
0 , u

ω
1 ) =

∑

n

(un,1g
ω
nen(x), h

ω
nun,2en(x))

the associated random function. Then for almost every initial data (uω
0 , u

ω
1 ),

there exists T > 0 such that there exists a unique solution u of (18) in a space
continuously embedded in C([−T, T ];Hs(M)), and furthermore, there exist C >
0, δ > 0 such that

p(T ≥ T0) ≥ 1− Ce−c/T δ
0 , c, δ > 0. (19)

Remark. Notice that if the initial data (u0, u1) are in Hs(M)×Hs−1(M) but
not in Hσ(M) × Hσ−1(M), then almost surely (uω

0 , u
ω
1 ) are not in Hσ(M) ×

Hσ−1(M). Consequently, this theorem provides us with a large number of initial
data of super-critical regularity, for which local existence of a strong solution
holds.

Sketch of proof. Let us recall first how, using purely deterministic arguments,
one can prove that (18) is locally well posed for initial data inHs(M)×Hs−1(M)
when s ≥ 1/2. We shall use the following Strichartz estimate due to Kapitan-
skii [26]

Theorem 3.2. The solution of the linear wave equation

(∂2
t −∆)u = f, (u, ∂tu)|t=0 = (u1, u2) (20)

satisfies

‖u‖L4((0,T×Ω)) ≤ C
(
‖(u1, u2)‖H1/2(M)×H−1/2(M) + ‖f‖L4/3((0,T )×M)

)
.

Now, to solve (18), we simply look for a fixed point of the operator

K : u 7→ cos(t
√
−∆)u1 +

sin(t
√
−∆)√

−∆
u2 +

∫ t

0

sin((t− s)
√
−∆)√

−∆
u3(s)ds
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in the space C0((0, T );Hs(M)) ∩ L4((0, T )×M), and using Theorem 3.2, it is
not difficult to see the existence of such a fixed point (notice that u ∈ L4 ⇒
u3 ∈ L4/3). The idea of the proof of Theorem 3.1 is now very simple. Instead of
performing, the previous fixed point in the Strichartz type space, we perform a
first iteration and search for a solution under the form

u = cos(t
√
−∆)u1 +

sin(t
√
−∆)√

−∆
u2 + v = ufree + v.

The function v is solution of

(∂2
t −∆)v + (ufree + v)3 = 0, (v, ∂tv)|t=0 = (0, 0) (21)

and we can rewrite this equation as a fixed point

v = K̃(v) =

∫ t

0

sin((t− s)
√
−∆)√

−∆
(ufree + v)3(s)ds.

Now, according to Theorem 2.5, almost surely, there exists T > 0 such that

ufree ∈ L4((0, T )×M)

(notice that the additional time dependence plays no role and the proof of
Theorem 2.1 applies). As a consequence, the same proof as in the deterministic

case for the operator K applies and shows the existence of a fixed point for K̃.

3.2. A global existence result. Having the previous local result in
mind, a natural question is whether one can exhibit cases where it is possible to
prove global (in time) existence for the solutions. It turns out that it is the case
for a very particular model problem: Consider the case of the wave equation in
the unit ball of R3, B, with Dirichlet boundary conditions

(∂2
t −∆)u+ |u|p−1u = 0, u |∂B= 0, (u, ∂tu)|t=0 = (u1, u2) (22)

In this case, the critical index is

sc =
3

2
− 2

p− 1
,

and for k > 3, sc >
1
2 . Consider now (en)n∈N the sequence of radial eigenfunc-

tions of the Laplace operator with Dirichlet boundary conditions in B. The
following result [14] shows that the Cauchy problem is, in this particular case
globally well posed for a large number of super-critical initial data.

Theorem 3.3. Suppose that k < 4. Fix a real number p such that max(4, 2α) <
p < 6. Let ((hn(ω), ln(ω))

∞
n=1 be a sequence of independent standard real Gaus-
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sian random variables on a probability space (Ω,A, p). Consider (22) with initial
data

fω
1 (r) =

∞∑

n=1

hn(ω)

nπ
en(r), fω

2 (r) =

∞∑

n=1

ln(ω)en(r) , (23)

where (en(r))
∞
n=1 is the orthonormal basis consisting in radial eigenfunctions of

the Laplace operator with Dirichlet boundary conditions, associated to eigenval-
ues −(πn)2. Then for every s < 1/2, almost surely in ω ∈ Ω, the problem (22)
has a unique global solution

uω ∈ C(R, Hs(B)) ∩ Lp
loc(Rt;L

p(B)) .

Furthermore, the solution is a perturbation of the linear solution

uω(t) = U(t)(fω
1 , f

ω
2 ) + vω(t) = cos(t

√
−∆)fω

1 +
sin (t

√
−∆)√

−∆
fω
2 + vω(t),

where vω ∈ C(R, Hσ(B)) for some σ > 1/2. Moreover there exists C > 0, and
almost surely Dω such that

‖uω(t)‖Hs(B) ≤ C log(Dω + |t|) 1
2 ,P(Dω > Λ) ≤ Ce−λ2/C .

Notice that as soon as s < 1/2, the initial data given by (23) are almost
surely in Hs(B) × Hs−1(B) and as soon as s ≥ 1

2 are almost surely not in
Hs(B)×Hs−1(B), and consequently in the range of non linearities 3 < k < 4,
the initial data we consider are super-critical. The proof of this result com-
bines a local Cauchy at the probabilistic level with the Gibbs measure strategy
performed by Bourgain [7], following the trend iniciated by Lebowitz-Rose-
Speer [34].

4. Non Linear Harmonic Oscillators

In this section, I will present some results on the non linear harmonic oscillator

{
i∂tu+ ∂2

xu− x2u = κ0|u|k−1u, (t, x) ∈ R× R,

u(0, x) = f(x),
(24)

where k ≥ 3 is an odd integer and where either κ0 = 1 or κ0 = −1. Our main
result [12] shows once again that the Cauchy problem is globally well posed for
a large number of initial data.

Theorem 4.1. Consider the L2 Wiener measure on D′(R), µ, constructed
on the harmonic oscillator eigenbasis, i.e. µ is the distribution of the random
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variable
∞∑

n=0

√
2

2n+ 1
gn(ω)hn(x),

where (hn)
∞
n=0 are the Hermite functions and (gn)

∞
n=0 is a system of standard

independent complex Gaussian random variables. Then in the defocusing case,
for any order of nonlinearity k < +∞, and in the focusing case for the cubic
non linearity, the Cauchy problem (24) is globally well posed for µ-almost every
initial data. Furthermore, in both cases, there exists a Gibbs measure, absolutely
continuous with respect to µ, which is invariant by this flow.

An interesting by-product of our analysis is the following result for the L2

critical and super-critical equation

{
i∂tu+ ∂2

xu = |u|k−1u, k ≥ 5, (t, x) ∈ R× R,

u(0, x) = u0(x)
(25)

Theorem 4.2. [[12]] For any 0 < s < 1/2, the equation (25) has for µ-almost
every initial data a unique global solution satisfying

u(t, ·)− e−it∆u0 ∈ C
(
R;Hs(R)

)

(the uniqueness holds in a space continuously embedded in C
(
R;Hs(R)

)
). More-

over, the solution scatters in the following sense. There exists µ-almost surely
states g± ∈ Hs(R) so that

‖u(t, ·)− eit∆(f + g±)‖Hs(R) −→ 0, when t −→ ±∞.

Remark. Notice that Theorem 4.2 gives global existence whilst no invariant
measure is involved in the proof (see Colliander-Oh [23, 22] for results in this
direction).

The proof of Theorem 4.2 uses the pseudo-conformal transform (see [15] for
a use of this transform in the context of L2 scattering problems).

Proposition 4.3. Suppose that v(s, y) is a solution of the problem

i∂sv + ∂2
yv = |v|k−1v, s ∈ R, y ∈ R. (26)

We define u(t, x) = L(v)(t, x) for |t| < π
4 , x ∈ R by

u(t, x) =
1

cos
1
2 (2t)

v

(
tan(2t)

2
,

x

cos(2t)

)
e−

ix2tg(2t)
2 . (27)
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Then u solves the problem

i∂tu− (∂2
x − x2)u = cos

k−5
2 (2t)|u|k−1u, |t| < π

4
, x ∈ R. (28)

As a consequence, in the case k = 5, (28) reduces to (25), and Theorem 4.2
follows rather directly from Theorem 4.1 In the case k ≥ 7, the proof is more
involved and relies on an analog of Theorem 4.1 for (28) (notice that this latter
equation is non autonomous).

Sketch of proof of Theorem 4.1. For low order non linearities (p ≤ 7), the
proof follows the same lines as in the case of wave equations, and relies on
Theorem 2.6 (or more precisely on similar estimates for the solution of the
linear harmonic Schrödinger equation u = eitHu0). However, as soon as p ≥ 9,
these estimates are not sufficient, because they allow only for a gain of at most
1/4 space derivatives, and the exponent for which sc =

1
4 is precisely k = 9. As

a consequence, our analysis requires a full bi-linear analysis at the probabilistic
level. The bilinear nature of our probabilistic analysis can be seen though the
following statement which shows that by considering nonlinear quantities, a
gain of (almost) 1/2 space derivatives can be achieved.

∀ θ < 1/2, ∀ t ∈ R, ‖(e−itHuω)2‖Hθ < +∞, µ almost surely. (29)

4.1. Bilinear estimates. In this section we give a proof of (29) which
was pointed to us by P. Gérard. Observe that (29), applied with t = 0 implies
that (uω

0 )
2(x) is a.s. in Hθ for every θ < 1/2 which is a remarkable smoothing

property satisfied by the random series (uω
0 )(x). The key point in the proof of

(29) is the following bilinear estimate for Hermite functions.

Lemma 4.4. There exists C > 0 so that for all 0 ≤ θ ≤ 1 and n,m ∈ N

‖hn hm‖Hθ(R) ≤ Cmax (n,m)
− 1

4+
θ
2
(
log
(
min (n,m) + 1

)) 1
2 . (30)

Proof. We give an argument we learned from Patrick Gérard. It suffices to prove
(30) for θ = 0 and θ = 1 (the general case then follows by interpolation). The
case θ = 1 can actually be directly reduced to the case θ = 0 by taking space
derivatives. We are going to use the generating series:

E(x, y, α) =
∑

n≥0

αn hn(x)hn(y)

=
1√

π(1− α2)
exp

(
−1− α

1 + α

(x+ y)2

4
− 1 + α

1− α

(x− y)2

4

)
. (31)

Therefore, if we set

I(α, β) ≡
∫

R

E(x, x, α)E(x, x, β)dx,
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then we get

I(α, β) =
1

π
(1− α2)−

1
2 (1− β2)−

1
2

∫

R

e−
(

1−α
1+α+ 1−β

1+β

)
x2

dx

=
1√
2π

(1− α)−
1
2 (1− β)−

1
2 (1− αβ)−

1
2 . (32)

On the other hand, coming back to the definition

I(α, β) =
∑

n,m≥0

αnβm

∫

R

h2
n(x)h

2
m(x)dx.

Hence to get a useful expression for the L2 norm of the product of two Hermite
functions, it suffices to expand (32) in entire series in α and β. Write

(1− x)−
1
2 =

∑

p≥0

cpx
p, c0 = 1, cp =

(2p− 1) !

22p−1 p ! (p− 1) !
, p ≥ 1.

Therefore, by the Stirling formula, there exists C > 0 so that |cp| ≤ C√
p+1

for

all p ≥ 0. Now by (32) and the previous estimate

∫

R

h2
n(x)h

2
m(x)dx =

1√
2π

∑

p,q,r≥0
p+r=n, q+r=m

cp cq cr

≤ C
∑

0≤r≤min(n,m)

(n− r + 1)−
1
2 (m− r + 1)−

1
2 (r + 1)−

1
2 .

Without restricting the generality we may suppose that m ≥ n. If m ≤ 2n
then we obtain the needed bound by considering separately the cases when
the sum runs over r < m/2 and r ≥ m/2. If m > 2n, then we can write

(m− r+ 1)−
1
2 ≤ c(1 +m)−

1
2 and the needed bound follows directly. Therefore

we get (30) in the case θ = 0. This completes the proof of Lemma 4.4.

Denote by uω
free(t, x) the free Schrödinger solution with initial condition

uω
0 φ(ω, x), i.e.

uω
free(t, x) = e−itHuω

0 =
∑

n≥0

√
2

λn
e−itλ2

n gωnhn(x).

Write the decomposition u =
∑

N uN , where the summation is taken over the
dyadic integers and for N a dyadic integer

uN (ω, t, x) =
∑

N≤n<2N

αn(t)hn(x)g
ω
n , αn(t) =

√
2

2n+ 1
e−i(2n+1)t .



Random Data Cauchy Theory 1877

Let us fix t ∈ R and 0 ≤ θ < 1
2 . It suffices to show that the expression

J(t, x, ω) ≡
∣∣∣∣∣
∑

M

∑

N

Hθ/2 (uN uM )

∣∣∣∣∣

belongs to L2(R × Ω) (here the summation is again taken over the dyadic
values of M,N). Using the Cauchy-Schwarz inequality, a symmetry argument
and summing geometric series, for all ε > 0 we can write

J(t, x, ω) ≤ C



∑

N≤M

M ε|Hθ/2 (uN uM ) |2



1
2

. (33)

Coming back to the definition we can write

Hθ/2
(
uN uM

)
=

∑

N≤n≤2N

M≤m≤2M

αn αm gn gm Hθ/2
(
hn hm

)
.

We now estimate E(|Hθ/2
(
uN uM

)
|2. We make the expansion

|Hθ/2
(
uN uM

)
|2 =

∑

N≤n1,n2≤2N

M≤m1,m2≤2M

αn1
αn2

αm1
αm2

gn1
gn2

gm1
gm2

Hθ/2
(
hn1

hm1

)
Hθ/2

(
hn2

hm2

)
.

The random variables gn are centered and independent, and consequently, we
have E

[
gn1

gn2
gm1

gm2

]
= 0, unless the indexes are pairwise equal (i.e. (n1 =

n2 and m1 = m2), or (n1 = m2 and n2 = m1). This implies that

E(|Hθ/2
(
uN uM

)
|2) ≤ C

∑

N≤n≤2N

M≤m≤2M

|αn|2|αm|2|Hθ/2
(
hn hm

)
|2. (34)

We integrate (34) in x and by (30) we deduce that for all ε > 0

∫

Ω×R

|Hθ/2(uN uM )|2 ≤ C
∑

N≤n≤2N

M≤m≤2M

|αn|2|αm|2
∫

R

|Hθ/2
(
hn hm

)
|2dx

≤ C
∑

N≤n≤2N

M≤m≤2M

(max (M,N))−
1
2+θ+ε|αn|2|αm|2.
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Therefore using that |αn| ≤ 〈n〉− 1
2 , we get

E(J(t, x, ω)2) ≤ C
∑

N≤M

∑

N≤n≤2N

M≤m≤2M

M− 1
2+θ+2ε|αn|2|αm|2

≤ C
∑

N≤M

∑

N≤n≤2N

M≤m≤2M

M− 1
2+θ+2ε(MN)−1 < ∞,

provided ε is small enough, namely ε such that − 1
2 +θ+2ε < 0. This completes

the proof of (29).

5. Improved Sobolev Embeddings

As shown in the previous section, our applications to partial differential equa-
tions of Paley-Zygmund’s result rely on the simple observation that “typical”
functions n Hs(M) enjoy better Lp properties than what the Sobolev embed-
dings would predict. Namely, the L∞ norm is essentially bounded (modulo log-
arithmic loss) by the H d−1

2 norm (versus the Hd/2 norm for classical Sobolev
embeddings). Notice that this bound is improved, in the case of the tora T

d all
the way down to H0. In this section, I will present some other randomizations
obtained with G. Lebeau [11] on compact manifolds. Notice that other applica-
tions to linear and non linear problems are developped in [11], and we expect
these constructions to be of interest in view of further applications to partial
differential equations.

5.1. Construction of the measure. Let M be a compact riemanian
manifold, let I = [c, c′], 0 ≤ c < c′ < ∞ be an interval and EI,h the subspace
of L2(M) of dimension N(I, h) defined by

EI,h =

{
u =

∑

k∈Ih

zkek(x), zk ∈ C

}
, Ih = {k, hωk ∈ I}. (35)

According to the precised Weyl formula (see [21, Theorem 1.1]), we have for
h ∈]0, 1]

N(I, h) = (2πh)−dVol(M)Vol(Sd−1)

∫

I

ρd−1dρ+O(h−d+1). (36)

Let us recall that Sobolev injections read

‖u‖L∞(M) ≤ Ch−d/2‖u‖L2(M) ∀u ∈ EI,h. (37)

Notice that these estimates are optimal as can easily bee seen by considering
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the sequence h−d/2χ(x/h), where χ ∈ C∞
0 a fixed function (in a local coordinate

chart). Denote by SI,h the unit sphere of the euclidean space EI,h = C
N(I,h),

and PI,h the uniform probability on SI,h. We can now define probability mea-
sures on EI,h by picking a probability measure in the radial variable ρ(r), with
sufficient fast decay near infinity (e.g. Gaussian), and defining

dµI,h = dPI,h ⊗ dρ.

A typical example (to which all other examples reduce eventually) is of course
the simplest choice ρ = δr=1 for which the measure µI,h is simply the uniform
measure on the unit sphere of EI,h, which in the sequel will still be denoted
by PI,h. Finally, taking any family of positive real numbers (αn) > 0, we can
rescale (in the radial variable) the measure by defining

dµI,h,αh
= dPI,h ⊗ αhdρ(

r

αh
).

The choice I = [1/2, 2[, hk = 2−k, k ∈ N (with a suitable modification for
k = 0) gives

L2(M) =

{
u =

∑

k

uk;uk ∈ EI,hk
;
∑

k

‖uk‖2L2 < +∞
}

and the Sobolev space Hs(M) can also be expressed in terms of this decompo-
sition

Hs(M) =

{
u =

∑

k

uk;uk ∈ EI,hk
;
∑

k

22ks‖uk‖2L2 < +∞
}
.

As a consequence, the choice of αhk
= 2−kβk with βk ∈ `2 ensures that the

measure
dµs,(βn) = ⊗kdµI,hk,αhk

defines a measure on ⊕kEI,hk
which is supported by Hs(M).

5.2. Improved Sobolev embeddings. The measures constructed in
the previous section satisfy:

Theorem 5.1. • For any choice of sequence (βn) ∈ `2, the measure
dµs,(βn) is supported in Hs(M).

• For any s′ > s, if the sequence (βn) satisfies

∑

n

|βn|2(1 + 22(s
′−s)) = +∞,

then the space Hs′(M) has dµs,(βn)-measure equal to 0.
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• For any s > 0, the measure dµs,(βn) is supported in L∞(M). In other
words, “for any ε > 0, almost surely, Hε(M) ⊂ L∞(M)”.

Remark. A similar result was obtained by Shiffman-Zelditch in [44] in the
different context of random sequences of holomorphic sections of high powers of
a positive line bundle.

The main step for the proof of Theorem 5.1 is the proof of the following
semi-classical result

Theorem 5.2. For any c < Vol(M), there exists C > 0 such that for any
h ∈ (0, 1], and any λ > 0,

PI,h({u ∈ EI,h; ‖u‖L∞ > λ}) ≤ Ch−d(1+d/2)e−c2λ
2

(38)

Indeed, taking λ = h−ε in (38), we obtain

PI,h({u ∈ EI,h; ‖u‖L∞ > h−ε}) ≤ C ′e−c′h−2ε

,

and Theorem 5.1 follows after suitable resummations. Now, in turn, Theo-
rem 5.2 follows from the classical concentration of measure phenomenon (see
Ledoux [35])

Theorem 5.3. Consider a Lipshitz function F , on the N dimensional sphere
S
N , endowed with its natural geodesic metric, and with the uniform probability

measure µN . Let us define the mediane, M(F ), of the function F by the relation

µN ({x ∈ S
N ;F (x) ≥ M(F )}) ≥ 1

2
, µ({x ∈ S

N ;F (x) ≤ M(F )}) ≥ 1

2
.

Then for any r > 0,

µ({x ∈ S
N ; F (x)−M(F )| > r}) ≤ 2e

−(N−1) r2

‖f‖2
Lip .
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Abstract

In the study of multidimensional systems of conservation laws people con-
front more difficulties than that for one-dimensional systems. The difficulties
include characteristic boundary, free boundary associated with unknown non-
linear waves, various nonlinear wave structure, mixed type equations, strong
singularities, etc. Most of them come from the complexity of characteristics.
We will give a survey on the progress obtained in the study of this topic with
the applications in various physical problems, and will also emphasize some
crucial points for the further development of this theory in future.

Mathematics Subject Classification (2010). Primary 35L65; Secondary 35L67;
35L60; 76N15; 35M10.

Keywords. Conservation laws; characteristics; free boundary value problem; shock;

transonic flow; mixed type equation.

1. Introduction

The system of conservation laws originates from the study of compressible fluid
dynamics, shallow water waves, elastrodynamics, magnetohydrodynamics etc.
The extensive study of it started from the middle of the last century. The
problems in its first studies are one-space-dimensional. Since the real physical
problems occur in the three-dimensional space, then in the study of one-space-
dimensional problems it is automatically assumed that all quantities under
consideration is uniform with respect to two space-variables among three space-
variables in regular physical space. However, many physical problems do not
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have such symmetry, so that they are generally multidimensional. Therefore, the
study of multidimensional conservation laws is inevitable and is indisputably
important.

In the study of multidimensional systems of conservation laws people of-
ten confronts more difficulties than that for one-dimensional systems. Most of
difficulties come from the complicated structure of their characteristics. As a
matter of fact, the characteristics are the path of the propagation of perturba-
tions in the motion of media. In one-space-dimensional case the characteristics
of the system under consideration are characteristic curves in time-space plane,
but in multidimensional case the characteristic variaties are surfaces or more
general manifolds, so that the location of characteristics or their intersections
will be rather complicated. This situation is also reflected in the descriptions
of various nonlinear waves associated with characteristics, including shocks,
rarefaction waves and contact discontinuities. As for the methodology, the inte-
gration along characteristic curves is a very efficient method in treating various
one-space-dimensional problems. Based on it many techniques are developed.
However, due to the complexity of characteristics one needs to develop totally
different methods to deal with corresponding problems in multidimensional
case. Next we will recall the progress obtained in the study of multidimensional
conservation laws with showing the main difficulties, which have been overcome
or to be overcome.

In this paper the main prototype of the system under consideration is the
Euler system for inviscid compressible flow with the form





∂ρ

∂t
+ div(ρ~v) = 0,

∂(ρ~v)

∂t
+ div(ρ~v × ~v) +∇p = 0,

∂E

∂t
+ div(~v(E + p)) = 0,

(1)

where ρ,~v, p, E represent the density, the velocity, the pressure and the total
energy respectively. Meanwhile, when the flow is isentropic and irrotational,
the Euler system can be reduced to a second order equation – potential flow
equation (see [34])

(ρ(∇φ))t +
3∑

j=1

(φxj
ρ(∇φ))xj

= 0, (2)

where φ is the potential of velocity, satisfying ~v = ∇φ.

2. Characteristic Boundary Value Problems

The first task in the study of the multidimensional conservation laws is to es-
tablish the local theory of classical solutions. The main tool in this stage is
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the energy estimates. In most cases the existence and the stability of solutions
to partial differential equations rely on various energy estimates. The main
estimates for multidimensional system of conservation laws are measured by
Sobolev norms. The usual Sobolev space is good in treating Cauchy problems
and boundary value problems when the boundary is not characteristic. How-
ever, when the boundary is characteristic, the derivatives of the system on the
normal direction at the boundary are not “complete”. Hence it is inevitable to
meet the smoothness loss at the boundary when a linearization or an iterative
process is designed to solve a boundary value problem for nonlinear equations
with characteristic boundary. On the other hand, the characteristic boundary
appears very often in the systems of conservation laws. For instance, if one
consider an inviscid flow in a domain with a rigid wall as its boundary (or a
part of its boundary), then the impermeable condition let the boundary be
characteristic for the Euler system describing the inviscid flow.

People found that in the proof of the regularity of the possible solutions
(or approximate solutions) to the characteristic boundary value problems for
multidimensional systems of conservation laws, it is necessary to introduce a
new weighted Sobolev space to deal with these problems (e.g. see [9]). This
space needs to have such a property: “one order gain of differentiation in nor-
mal direction to the boundary should be compensated by two orders loss of
differentiation in tangential directions”. More precisely, let Dp

qu denote the
derivative of the function u, where p is the order in tangential directions, q
is the order in the normal direction, let Hs

t denote the Sobolev space of u,
satisfying Dp

qu ∈ L2([0, h]× Ω) (p ≤ s, q ≤ t). Define

Bp =
⋂

d≤
p

2

Hp−2d
d ([0, h]× Ω), (3)

which is the Sobolev space describing the above-mentioned property (the space
is also denoted by Hp

∗ in [38],[41] etc.). Such a space has been employed to prove
the existence and uniqueness of the local existence of solutions to characteristic
boundary value problems [9],[42]. The Sobolev spaces with such a property is
also applied to other physical problems involving characteristic boundaries (for
instance, [2],[10]).

On characteristic boundary value problems of symmetric hyperbolic systems
we would like also mention the contributions given by R.Agemi[1], D.G.Ebin
[25] and P.Secchi [41].

3. 1-D Like Problems with M-D Perturbation –

Fan-shaped Wave Structure

Like the nonlinear systems of conservation laws in one space-dimension a gen-
eral solution of a nonlinear multidimensional system of conservation laws may
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develop singularities, no matter how smooth the initial data are (e.g. see [43]).
Therefore, in the next stage people must study the theory of weak solutions.
The main nonlinear waves for multidimensional systems of conservation laws
are shock wave, simple wave and contact discontinuity, like in the one-space-
dimensional case. However, the structure of nonlinear waves is much more com-
plicated. It should be noticed that the front of nonlinear waves often plays the
role of the boundary of a domain where the solution is smooth. Generally, the
location of the wave front should be determined together with the solution.
Hence to find the weak solution involving various nonlinear waves often require
to solve a free boundary value problem.

Due to the complexity of characteristic varieties of multidimensional systems
the nonlinear wave structure for these systems is plentiful. The simplest case is
the 1-d like structure with m-d perturbations. In 1-d case, besides a single wave
propagates along a curve, one often meets such a wave structure: several waves
represented by a set of curves issue from a point. Similarly, a common wave
structure in multidimensional case is that several nonlinear waves issue from a
smooth curve. Such a wave structure is called fan-shaped wave structure.
For instance, consider a Cauchy problem of multidimensional system of conser-
vation laws with initial data, which is discontinuous along an smooth curve (for
simplicity we only consider two-space-dimensional case here). Then there will
possibly be shock waves, simple waves and contact discontinuities issuing from
the curve bearing the discontinuity of the initial data. Especially, under some
restrictions on the initial data the solution will only contain one wave among
these three kinds of nonlinear waves.

In 1983 A.Majda started the study of weak solutions to multidimensional
system of conservation laws with fan-shaped wave structure. He first proved
the existence of the solution to the initial value problem of a nonlinear multi-
dimensional system involving a shock front, which issues from a curve carry-
ing the discontinuity of the initial data ([33]). In his work the Cauchy prob-
lem with discontinuous data is treated as a free boundary value problem, and
the shock front is the free boundary, which is to be determined together with
the solution. In the free boundary value problem the Rankine-Hugoniot condi-
tions give a differential relation of the function describing the unknown shock
front. An important fact is that the relation is an elliptic differential system
for the unknown function on the free boundary. Meanwhile, as a boundary
value problem for the original system of conservation laws the uniform Kreiss-
Lopatinski condition on the boundary is fulfilled. Such a property let suitable
estimates, which dominates the variation of the solution with a shock front,
can be established. Then the estimates directly lead to the stability of the
solution to the linearized problem and the existence of the local solution of
the nonlinear problem near the curve describing the discontinuity of the initial
data.

Under some other restrictions on the initial data one can find a solution to
the Cauchy problem containing a centered rarefaction wave. In this case the
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rarefaction wave is formed by a family of characteristic surfaces in two-space-
dimensional case. All these characteristic surfaces issue from a curve carrying
the discontinuity of the initial data. The rarefaction wave likes a fan with a
front surface and a back surface. The solution is differentiable inside the rar-
efaction wave region, and it is only continuous on the front surface and the
back surface of the fan. Moreover, the solution is discontinuous at the edge of
the fan. The front surface and the back surface are unknown and has to be
determined with the solution together, hence they can also be regarded as free
boundaries. Different from the shock front solution case the front and the back
of the rarefaction wave are characteristics. Hence in the corresponding itera-
tive process to establish the existence of the solution to the nonlinear problems
one will also confront the “derivative loss” difficulty, which happens even for
fixed boundary value problems with characteristic boundary, as indicated in the
previous section. An delicate treatment is given in [2], where the Nash-Moser
iterative scheme is applied to overcome this difficulty. Meanwhile, the weighted
Sobolev space Bp defined in the previous section is also employed once more.
In [2] the local existence of the solution with a rarefaction wave are proved.

The most difficult case in solving Cauchy problem of multi-dimensional sys-
tem of conservation laws with discontinuous initial data is the case of contact
discontinuity, which is a surface formed by stream lines, and is also called
compressible vortex sheets. This surface is obviously characteristic. However,
different from the rarefaction wave case the solution on this characteristic sur-
face is also discontinuous. On the other hand, different from the shock front
case the uniform Kreiss-Lopatinskii condition on the boundary is not satisfied.
In other words, in the study of the compressible vortex sheets one will confront
the difficulties, which appear in either the shock front case or the rarefaction
wave case. J-F.Coulombel and P.Secchi studied the vortex sheets case for mul-
tidimensional system of conservation laws in [23]. They noticed that the normal
component of the unknown vector on the boundary satisfies the weak Lopatin-
skii conditions. When the non-degenerate part of the Lopatinskii condition is
extracted, the microlocal symmetrizer can then be constructed. In the mean-
time, the Nash-Moser iterative scheme is also applied to avoid the derivatives
loss. These techniques help them to derive the energy estimates, which ensure
the stability of solutions to linearized problems and the existence of solutions
to nonlinear problems.

When the initial data do not satisfy the restrictions given in the above
three special cases the solution to the multidimensional systems under consid-
eration may contain more nonlinear waves, like two shocks (see [35],[37]), one
shock and one rarefaction wave (see [29]) etc. General data with discontinu-
ity on a smooth curve may develop all three kinds of nonlinear waves (shock,
rarefaction wave and contact discontinuity). Although the main difficulties in
the three individual cases have been overcome, the result in most general cases
has not been established so far. Obviously, such a result is significant and is
anticipated.
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People may also find fan-shaped configurations of nonlinear waves in many
other problems in fluid dynamics. For instance, an important problem in gas
dynamics is the study of supersonic flow past a wedge. For a steady supersonic
flow past a three-dimensional wedge, when the attack angle and the vertex
angle of the wedge are well controlled, an attached shock front at the edge of
the wedge will be formed. Such a physical problem can also be reduced to a
boundary value problem in a domain between the attached shock front and the
surface of the wedge. The shock front is the free boundary for this boundary
value problem. The local existence of the solution with the attached shock front
was proved in [11]. Other results on physical problems with fan-shaped wave
configurations can be found in [10] for shock reflection by a smooth surface, in
[36] for propagation of sound waves etc.

4. Essentially M-D Problems – Flower-shaped

Wave Structure

It should be emphasized that in the multidimensional space many complicated
wave structure are not 1-d like ones with m-d perturbations. Such structures
are essentially multidimensional. Based on the progress in the study of vari-
ous multidimensional problems with fan-shaped wave structure the researchers
gradually concentrate their concerns on more complicated cases.

A good example of the essentially multidimensional problem is the problem
on supersonic flow past a pointed body. Like the problem on supersonic flow
past a wedge, when the vertex angle of the pointed body is less than a critical
value, the shock front is attached at the tip of the body, forming a bigger conical
surface. Obviously, such a shock front is not a perturbation of a plane shock, and
the state between the shock and the surface of the body is not a perturbation
of a constant state either. Here the shock front, as well as the surface of the
body, issues from a single point – the tip of the conical body. Hence such a
wave structure is called flower-shaped wave structure. We notice that the
domain is formed by two conical surfaces with strong singularity at the tip,
which will cause new difficulties.

In [12] the author gives a proof of the existence of shock front solution
near the tip. The problem is first approximated by the straight version of the
original problem, i.e. the pointed body is replaced by a conical body with
straight generating lines, and the coming flow is assumed to be constant. For the
problem of straight version one can make analysis in self-similar coordinates,
by which the problem can be reduced to a free boundary value problem of an
elliptic equation.

The main result obtained in [12] is

Theorem 4.1. Assume that a pointed body is given by r = b(z, θ), where
(r, θ, z) is the relative cylindrical coordinates, r = R/z is the ratio of the regular
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cylindrical coordinates R and z, b(z, θ) is a small perturbation of a constant b0
in the sense of [12]. Assume that a supersonic flow parallel to the z-axis comes

from infinity with speed q = q∞ satisfying q∞ > a∞

(
=

(γp∞
ρ∞

) 1

2

)
, where

p∞, ρ∞ are the pressure and the density at infinity respectively. Besides, b0 is
less than a critical value determined by q∞, p∞, ρ∞ introduced in [24]. Then the
problem of the supersonic flow past the pointed body admits a local weak entropy
solution with a pointed shock front attached at the origin.

The result on the existence of the solution with its shock front structure
near the tip of the body enable us to study global existence and the asymptotic
behavior of the flow behind the shock waves [22],[31],[47].

Another well-known problem involving flower-shaped wave structure is
“shock reflection by a wedge”. This is a problem on unsteady flow in two-
dimensional space.

When a plane shock front hits a wedge, then a reflected shock will move
outward from the edge of the wedge, while the incident shock moves forward
in time. By symmetry the problem amounts to consider a shock front hit-
ting a ramp (hence the problem is also called “shock reflection by a ramp”).
Let the instant, when the shock front touches the edge of the wedge, be the
time t = 0, the problem is invariant under the dilation of the time coordi-
nate and the space coordinates. Hence one can look for the self-similar so-
lution of the problem. The corresponding flow in the self-similar coordinates
ξ = x/t, η = y/t is called pseudo-steady flow, because all parameters of the
flow depend only on the coordinates (ξ, η), and does not depend on the time t
explicitly.

Since all possible waves in this problem are invariant under the dilation, they
can be viewed as a “flower” generated from the origin. Hence in the (t, x, y)
physical space we obtain a flower-shaped wave structure. Depending on the
vertex angle of the wedge (or the angle between the ramp and the horizon) the
shock reflection may have various patterns. Among them the simplest case is
the regular reflection, for which only a smooth curved reflected shock moves
outward like an expanding bubble. Since in the region behind the reflected shock
both relatively supersonic flow and relatively subsonic flow will occur, to prove
the existence of the solution to the regular shock reflection problem needs to
solve a nonlinear mixed type equation, or at least a nonlinear degenerate elliptic
equation. B.L.Keyfitz and her collaborators [5],[6] first use UTSD (unsteady
transonic small disturbance) equation as the model to establish a result on the
existence of solution to the shock reflection problem. Later, G.Q. Chen and
M.Feldman [8] use the potential flow equation as the model to discuss regular
reflection. Since the coefficients of the potential flow equation depend on the
derivatives of the unknown function (the gradient of the flow potential), the
proof for the latter case is more difficult. Indeed, the authors of [8] indicated
the following conclusion:
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For a given supersonic incoming flow, one can find a suitable angle θc and
a number α, such that, if the angle of the inclination θw of the ramp is in(
θc,

π

2

)
, then there is a global self-similar solution of the potential flow equa-

tion, satisfying the assigned boundary conditions. The solution is globally in
C1,α, and is C∞ outside of the shock front and the sonic line. Moreover, the
solution is stable with respect to the change of the angle and converges to the
normal reflection as θw → π/2.

For some combinations of parameters of the upstream flow and the angle
of the ramp the regular reflection is impossible. The corresponding wave pat-
terns in these cases are called irregular shock reflection. Among them the most
important case is the Mach reflection, which is composed of three shock
fronts (incident, reflected and Mach stem) and a contact discontinuity. Near
the intersection of these waves the above wave configuration is called Mach

configuration. It is interesting that in the self-similar coordinate plane we
again confront such a wave structure, in which several nonlinear waves issue
from a point.

Even for the steady compressible flow the shock reflection can also be distin-
guished as regular reflection (oblique shock reflection) and irregular reflection
(including Mach reflection). In fact, it is von Neumann, who first found the
wave structure in Mach reflection and proposed the concept of Mach configu-
ration in 1943 based on the numerous physical experiments and mathematical
analysis for the shock reflection in steady compressible flow [3], [39].

In the study of Mach configuration, if all shock fronts and the contact dis-
continuity are straight lines and the states in each domains separated by these
nonlinear waves are constant, the configuration is called flat Mach config-

uration. Locally at the triple point, the Mach configuration always can be
approximately viewed as flat configuration. The related problem, which people
are deeply concerned with, is the stability of Mach configuration, because only
stable wave configuration can actually occur in physics.

Generally, the flow behind the Mach stem is always subsonic, but the flow
passing across the incident shock and then the reflected shock can be either
subsonic or supersonic. Therefore, referring to the flow in the downstream
part we classify the Mach configurations as E-E type and E-H type. For E-
E type Mach configuration the flow in the downstream part is composed of
two branches of subsonic flow separated by a stream line. For E-H type Mach
configuration the flow in the downstream part is composed of a supersonic
flow and a subsonic flow adjacent to each other with a stream line separating
them.

In [14], [15] we proved the stability of the E-E type Mach configuration
for both steady case and unsteady case. For example, the result in the steady
case is:

Theorem 4.2. Assume that the constant states U0

i (0 ≤ i ≤ 3) , the shock fronts
Si(i = 1, 2, 3) and the contact discontinuity D form a flat Mach configuration,
where U0

0
is the state of the coming supersonic flow, U0

1
is the state behind
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the incident shock S1, U
0

2
, U0

3
are the states behind the Mach stem S2 and the

reflected shock S3 respectively. U0

2
and U0

3
are both subsonic and are separated

by a contact discontinuity D. Assume that U0 and S̃1 are non-flat perturbations
of U0

0
and S1, then one can find a non-flat Mach configuration in a neighborhood

of the triple point, where the shock fronts S2, S3 and the contact discontinuity
D are slightly perturbed. Correspondingly, the states U1, U2, U3 in each domain
separated by these nonlinear waves are the perturbation of the corresponding
states for the original flat Mach configuration.

The stability of the E-H type Mach configuration is also proved in [20] under
an additional assumption that the reflected shock is weak.

The above result supported the reasonableness of the Mach configuration
proposed by von Neumann [39]. However, the global existence of the Mach
reflection is still quite open.

V.Elling and T.P.Liu studied the problem on a moving wedge hitting a
static gas in [26]. Suppose there is a uniform static gas filling up the whole
space outside a given wedge. The wedge suddenly moves into the air with a
constant speed in the direction of its symmetric axis, then the gas flow caused
by the motion of the wedge is also self-similar. Obviously, in the time-space
coordinate system the wave configuration is flower-shaped. If the speed of the
wedge is supersonic, then near the head of the wedge the motion of the air
is not influenced by the initial state, so that there is a shock front attached
at the edge of the wedge, provided the vertex angle of the wedge is less than
a critical value. Meanwhile, far from the vertex of the wedge, the motion of
the air amounts to one dimensional: a plane wall moves into the domain filled
with static gas along the normal direction. According to the theory of one-
dimensional conservation laws there will be a plane shock, moving along the
direction normal to he plane wall. On the self-similar coordinate plane the
latter is called tail shock. The straight head shock attached at the edge and
the straight tail shock are connected by a curved shock. In accordance, behind
the shock the flow is a mixture of a relatively supersonic flow and a relatively
subsonic flow. The existence of the solution for this problem was established in
[26].

Another interesting physical problem involving flower-shaped wave structure
is the dam-collapse problem [44]. Assume that a wedge-shaped reservoir is filled
with water. At the time t = 0 the dam suddenly collapsed so that the water
floods outside of the reservoir. The problem is to determine the flow in t >
0. Since the motion of the water is governed by the shallow water equation,
which is quite similar to the Euler equation in gas dynamics, the dam-collapse
problem is also similar to the problem of expansion of gas contained in a wedge-
shaped domain into vacuum. In both cases the motion of the fluid is given
by an interaction of two rarefaction waves indeed. The problem was solved
in [32].

More complicated wave structures with flower-shaped wave configura-
tion appear in the study of multidimensional Riemann problems. Consider
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two-dimensional Riemann problem, which is a Cauchy problem of the two-
dimensional system of conservation laws with piecewise constant initial data,
which takes different constants in different angular domains. In [49] the var-
ious cases for 2-d Riemann problems are mentioned and classified, where the
initial data take different constants in four quadrants. It is well known that
the Riemann problems in one-space-dimensional case has been well studied.
Particularly, the results on 1-d Riemann problem play the fundamental role
in the theory of conservation laws (see [27]). However, the study on Riemann
problems in multidimensional case is only at its beginning.

The Riemann problem is invariant under the dilation of the coordinates.
Its solution also has flower-shaped wave configuration. By using self-similar co-
ordinates all waves becomes fixed in the new coordinate plane. Hence a d+1
dimensional unsteady problem (1 time-dimension plus d space-dimensions) be-
comes a d-dimensional problem in self-similar coordinate system. The latter is
usually called pseudo-steady problem. Therefore, to determine a flower-shaped
wave structure for d+1 dimensional unsteady problem is then reduced to look
for a global solution on the self-similar coordinate system. Far away from the
origin the influence of the origin vanishes, so that the d+1 dimensional unsteady
problem is one space-dimensional, which can be solved by using the theory of
one-dimensional system of conservation laws. In accordance, for a given multi-
dimensional Riemann problem one may have many nonlinear waves (formed by
straight characteristics) coming from infinity in different directions, and these
nonlinear waves will interact when they meet together. The plentiful phenom-
ena of interaction of these waves lead to the great complexity of the nonlinear
wave structure either in the self-similar coordinates or in the original physical
coordinates.

The Riemann problem is a special initial value problem for the hyperbolic
system of conservation laws. Like the setting of the Riemann problems we can
also consider some initial boundary value problems invariant under dilation of
time coordinate and space coordinates. Many physical problems, including the
above-mentioned “shock reflection by a ramp” and “dam-collapse”, can be de-
rived in such a way, that the initial data take different constants in different
sectors, while some sectors are solid, where no flow could go into. Such prob-
lems are called initial boundary value problems of Riemann type. For
instance, we can take initial data as follows. The whole plane is separated by the
rays θ = θ0 (0 < θ0 < π/2), θ = π/2 and θ = −π to three sectors. The sector
−π < θ < θ0 are solid and no gas can go into. Meanwhile, the gas is assumed
to take different constant states in θ0 < θ < π/2 and π/2 < θ < π. Moreover,
the flow parameters in both sides of θ = π/2 can determine a single plane
shock moving forward to the ramp θ = θ0. Then, the initial boundary value
problem with such data amounts to the physical problem “shock reflection by a
ramp”.

Like the above setting one can also discuss other initial boundary value
problems of Riemann type. For instance, in the above example, if the flow
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parameters on the both side of θ = π/2 can determine a single rarefaction
wave moving forward to the ramp, then we obtain a problem “reflection of
rarefaction wave by a ramp”. Similarly, if θ0 < 0 we can obtain the problem
“shock diffraction by a convex angle”. In the latter case there may not be any
reflected shock, but there is a sonic wave propagating from the origin to infinity.

The dam-collapse problem can also be considered as such an initial boundary
value problem of Riemann type. The problem corresponds to the case with
initial data: the gas takes non-vacuum constant state in a sector −θ0 < θ < θ0,
while the domain θ0 < θ < 2π − θ0 at the initial time is vacuum. Similarly,
one can also consider the case corresponding to the initial data: the gas takes
non-vacuum state in the domain θ0 < θ < π/2, while the domain π/2 < θ < π
is vacuum and the domain π < θ < 2π + θ0 is solid. The problem will give
a wave pattern of the reflection of a “full” rarefaction wave (expanding up to
vacuum) by a ramp.

5. Global Theory and Mixed Type Equations

The previous section shows that in the study of compressible flow many prob-
lems involve both supersonic flow and subsonic flow (or relatively supersonic
flow and relatively subsonic flow in pseudo-steady case), then the system de-
scribing the flow has complex characteristics in subsonic region, while its all
characteristics in supersonic region are real. Therefore, in order to study the
flow globally, we have to consider transonic flows and mixed type equations.

The study of mixed type equations was initiated by F.Tricomi in 1923. The
Tricomi equation yuxx + uyy = 0 was named by his successors for his contri-
butions to this area [45]. Later, the mixed type equations uxx + yuyy = 0 and
uxx + sgny uyy = 0, called Keldysh equation and Lavrentiev-Bitsadze equation
respectively, are also proposed and studied by many authors. Both the Tri-
comi equation and the Keldysh equation are degenerate on the line where the
type of the equation is changed. The difference is that for the Tricomi equa-
tion the characteristics in hyperbolic region is perpendicular to the degenerate
line, while for the Keldysh equation the characteristics in hyperbolic region is
tangential to the degenerate line. On the other hand, the Lavrentiev-Bitsadze
equation has discontinuous coefficients with discontinuity on the line, where the
equation changes its type. These three equations are prototypes of more com-
plicated mixed type equations arisen in various physical problems, particularly
arisen in fluid dynamics. Therefore, the study on them are important for the
development of the theory of fluid dynamics. However, the change of type often
causes great difficulties in the corresponding study.

Next we introduce some problems in gas dynamics related to the mixed
type equations, most of them are still open. Obviously, the solution of them
will promote a series of new progress in both mathematics and physics. We
believe that the progress on the study of mixed type equations will bring us a
breakthrough in the study of multidimensional system of conservation laws.
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The first example is the E-H type Mach configuration. As mentioned in
the previous section, in the discussion of Mach reflection the flow behind the
reflected shock could be supersonic, which is adjacent to a subsonic flow with
a slip line separating them. Such a wave structure is called E-H type Mach
configuration. To determine such a (non-flat) wave configuration near the triple
point one has to solve a free boundary value problem of nonlinear mixed type
equation. On the curve, where the equation changes its type, the solution is
continuous, while its derivatives should satisfy some consistency conditions.
Since the coefficients of the equation is discontinuous due to the discontinuity
of the flow parameters on the contact discontinuity, the equation belongs to
Lavrentiev-Bitsadze’s mixed type equation. On the other hand, the data on
boundary conditions are assigned on the whole boundary of the elliptic region
and on a part of the boundary of the hyperbolic region. Such a setting of
boundary conditions is similar to that for Tricomi problem [45]. In [20] the
local existence and stability for E-H Mach configuration is proved under the
assumption that the reflected shock is weak.

Many hyperbolic problems in physical time-space variables may lead to
problems for mixed type equations in self-similar coordinates. Indeed, in the
self-similar coordinates plane the equation (2) can be written as

(c2 − (φξ − ξ)2)φξξ − 2(φξ − ξ)(φη − η)φξη + (c2 − (φη − η)2)φηη = 0, (4)

where φ is the potential of the velocity of the flow, (φξ, φη) = (u, v) is the
velocity of the flow. The discriminant of the equation is c2(c2−(u−ξ)2−(v−η)2),
so that the equation is elliptic for (ξ, η) satisfying c2 < (u−ξ)2+(v−η)2, and is
hyperbolic for (ξ, η) satisfying c2 > (u− ξ)2 +(v− η)2. Generally, the equation
is elliptic as (ξ, η) = (u, v), while it is hyperbolic as (ξ, η) → ∞. Therefore, the
equation is of mixed type generally.

The change of type causes much difficulties in various problems related to
mixed type equations. While in some exceptional cases we can consider the
solution in the hyperbolic region or in the elliptic region separately. One ex-
ceptional case is that the flow in the hyperbolic part is constant, and can be
determined by only solving some algebraic equations. Then the problem for
the mixed type equation will be reduced to a boundary value problem for a
degenerate elliptic equation. The problem on the regular shock reflection or
the interaction of two shock fronts belongs to such cases. By taking Chaplygin
gas as model to describe the compressible flow, D.Serre studied the interac-
tion of multidimensional shocks. The problem is finally reduced to a Dirichlet
boundary value problem for a degenerate elliptic equation of second order, and
the unique existence of its global solution is proved (see [40]). Meanwhile, the
problems studied in [8], [26] are also reduced to a boundary value problem
for degenerate elliptic equations of second order. The dam-collapse problem
is another exceptional case. In this case the elliptic domain in the problem
is reduced to a single point, so that the mixed type equation is reduced to
a degenerate hyperbolic equation. However, in general case the interaction of
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the solution in the hyperbolic region and the solution in the elliptic region is
inevitable.

Next we give two interesting problems related to mixed type equations in
steady compressible flow. The first one is the flow in de Laval nozzle. A de
Laval nozzle contains a converging part near the entrance and a diverging part
near the exit. The nozzle has a throat in the middle, where the cross sectional
area takes minimum. It is known that a compressible subsonic flow will speed
up as the nozzle becomes narrow and it will slow down as the nozzle becomes
wide. In contrary, a compressible supersonic flow will slow down in a convergent
part of a nozzle and will speed up in a divergent part of a nozzle. Therefore,
the subsonic flow at the entrance of the de Laval nozzle will speed up as the
nozzle is getting narrow. As Courant-Friedrichs conjectured in [24], for a suit-
able incoming subsonic flow and an assigned pressure at the exit the whole flow
pattern could be as follows: the flow reaches sonic speed near the throat, then
after passing over the throat the flow becomes supersonic and is accelerating
further. Afterwards, if the pressure or other flow parameters at the exit are well
controlled the supersonic flow may passes across a transonic shock front and
becomes a subsonic flow again, which finally reaches the assigned pressure at
the exit. Then the problem is how to determine the flow in the whole nozzle, as
well as the location of the sonic line and the possible transonic shock, provided
one only knows the incoming flow at the entrance and the assigned condition
at the exit.

Many works based on multidimensional PDE analysis for such a problem
are proceeded (see [7], [16], [17], [30], [46]). A recent result is that for an two-
dimensional expanding nozzle if the supersonic flow at the entrance is given and
the pressure at the exit is suitably controlled, then the transonic shock front
and the subsonic flow between the shock front and the exit can be uniquely
determined [17]. The result coincide with the Courant-Friedrichs’ conjecture
[24] in the divergent part of the de Laval nozzle. However, how does a subsonic
flow continuously transforms to a supersonic flow under the influence of the
shape of the nozzle is still open. Obviously, the complete result on the existence
and stability of the flow in de Laval nozzle depends on the study of mixed type
equations. We notice that at least some characteristics of the equation in the
hyperbolic region is tangential to the sonic line, then the nonlinear mixed type
equation describing the compressible flow in the de Laval nozzle may have more
similarity to the Keldysh equation.

The second example is the supersonic flow past a blunt body. It is also a long
standing problem in gas dynamics (see [24], [18]). When a uniform supersonic
flow attacks a fixed blunt body, there will appear a detached shock front ahead
of the body. Near the head of the body the shock is almost normal, so that
the flow behind the shock must be subsonic. On the other hand, if the blunt
body is finite, then the flow passes around the blunt body will finally merge
together. Therefore, far away from the head of the body the angle between
the shock front and the voticity of the flow will gradually become small, so
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that eventually the flow behind the shock front will be supersonic. The above
analysis indicates that the steady flow in the whole region between the shock
front and the surface of the body must be transonic. The problem to determine
the flow and the location of the shock front is also a free boundary value problem
for a nonlinear mixed type equation. In the meantime, the global existence of
solution must be considered. So far the analytical study on this problem is still
formidable and complete open.

In the end of this paper we would like especially emphasize the importance
of the study of mixed type equations. The theory of mixed type equations is
much less mature than the theory of elliptic equations and hyperbolic equations.
The new theory and technique to deal with various boundary value problems of
mixed type equations (particularly, nonlinear mixed type equations) are crucial
to the development of multidimensional conservation laws. They will also bring
a breakthrough to the whole theory of partial differential equations.

We certainly have not mentioned all difficulties in the study of multidimen-
sional systems of conservation laws. Particularly, the influence of vorticity has
not been discussed. Evidently, it is a troublesome factor in the study of various
physical problems. Besides, the study on viscous multidimensional conserva-
tion laws has also not been discussed. People probably have to combine the
study of viscous conservation laws and Navier-Stokers equations to get better
understanding on the role and influence of viscosity and vorticity.
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In this lecture, I wish to discuss solutions which are stable or not too unstable
of problems

−ε2∆u = f(u) in Ω (1)

u = 0 on ∂Ω

where Ω is a smooth bounded domain in R
N or Ω = R

N or Ω is a half space.
We could also consider other boundary conditions. We usually take ε small or
ε = 1. In fact we are usually interested in the case of a bounded domain. The
half space or whole space problems occur as limit problems for this problem.
We always assume f is C1. To see why this should be the case, we assume 0 ∈ Ω
(which we can do by a translation) and then we change the variables X = ε−1x
(which is a large stretching of the variables). In this case in our new variables,
our equation becomes

−∆′u = f(u) in ε−1Ω (2)

u = 0 on ∂(ε−1Ω)
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where ∆′ is the Laplacian in the new variables. Since 0 ∈int Ω, then, if ε is
small, ε−1Ω contains larger and larger balls and hence it is natural to expect
that as ε→ 0 the solutions of (1) approach the solutions of (2) on R

N . This is in
fact quite easy to prove if u is uniformly bounded. (Moreover many properties
of the solutions persist in the limit.) Note that it may happen that |u| has its
maximum within order ε of the boundary. In this case we choose our origin of
coordinates to be the point of ∂Ω closest to the maximum point |u| and stretch
the coordinates much as before. The stretching of coordinates tends to flatten
the boundary (where we used ∂Ω is smooth) and it turns out that the limit
problem is the half space problem (after a rotation of axis). Thus we see that
the half spaces and R

N problems occur naturally when we consider bounded
domain problems. We refer to using these limiting arguments as blowing up
arguments. The above ideas show the importance of studying problems on all
of RN or on half spaces even if we want to study bounded domain problems
with small diffusion.

In a number of cases, the bounded domain problem (1) has many positive
solutions when ε is small (cp. [14]). Thus is seems natural to consider a restricted
class of problems, those which are in some sense stable or more generally “not
too unstable”. This is natural from the point of view of applications. Lastly
for this introduction I should point out that problems such as (1) occur in
many applications, for example in population models in biology, the theory of
combustion and the theory of catalysts to name but a few. In many, but not all
of these applications, ε is rather small and the solutions are positive. Note that,
from the viewpoint of applications, it would also be natural to study systems.
Note also that, for applications, the natural cases are N = 2 or N = 3.

1. Linearized Stable Solutions on R
N

Here we consider bounded linearized stable solutions of

−∆u = f(u) (3)

on R
N , where u is said to be linearized stable if

J(φ) ≡

∫
(|∇φ|2 − f ′(u)φ2) ≥ 0 for all φ ∈ C∞

c (RN ), (4)

where f is assumed to be C1, the intervals are over RN and C∞
c (RN ) denotes

the smooth functions of compact support in R
N . In fact the choice of C∞

c (RN )
does not seem to be important. We could use any reasonable class of W 1,2

functions which decay reasonably rapidly at infinity.
Here there is a very natural and important conjecture. Assume N ≤ 8 and

u is a bounded linearized stable solutions of (3). Then either u is constant
on R

N or, after a rotation of axis, u = u(x1). In the latter case, it is easy
to deduce that u = u(x1) where u is monotone in x1. It is easy to use the
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first integral of the ordinary differential equation to completely classify these
solutions. This conjecture is known to be true for N = 2 and is known to
be false if N ≥ 11 because there are non-radial linearized stable solutions for
f(y) = yp for certain large p (cp. [17]). (In fact, as we see below, it fails for
N = 9). Note that the above conjecture is a strengthening of the well known De-
Georgi conjecture where our condition u is linearized stable is strengthened to
u is strictly monotone in some direction. The above conjecture seems the more
natural one for applications. Note that the De-Georgi conjecture is known for
N = 3 by [1] and the counterexample in [15] shows that it fails for N ≥ 9.
Savin [21] has proved the De-Georgi conjecture for 4 ≤ N ≤ 8 under additional
conditions on f and on the behaviour of u as x1 → ±∞ (where u is strictly
monotonic in x1).

We now discuss our main conjecture.

Theorem 1.1. If u is a bounded linearized stable solution of (3) and there is a
C > 0 and a sequence Ri → ∞ such that

∫
BRi

|∇u|2 ≤ CR2
i , then u is constant

or u = u(x1) after a rotation of axes.

This appears in [9], though there are closely related results in [1] and the
work of Gui-Ghoussoub. The idea is to first use the linearized stability to prove
that there exists a positive function h on R

N and µ ≥ 0 such that

−∆h = f ′(u)h+ µh (5)

on R
N . Unfortunately, we have almost no control on h at infinity. Note that ∂u

∂xi

satisfies (5) with µ = 0. We can use an old ordinary differential equation trick
by obtaining an equation for ∂u

∂xi

/h (which gets rid of the f ′(u) terms) and we

use a clever test function argument of Ambroseo and Cabre [2] to prove ∂u
∂xi

/h
is constant. The result can be proved rather easily from this.

Theorem 1.1 has some nice applications. Firstly if u is a bounded solution
of (3) on R

N , then standard elliptic estimates imply ∇u is bounded on R
N .

Hence it follows from Theorem 1.1 that our main conjecture is true for N = 2.
(Note that it is open if 3 ≤ N ≤ 8.) Moreover it is true if N ≤ 4 and f has
fixed sign because in this case one can easily use test function arguments (or
the divergence theorem) to prove the conditions of Theorem 1.1. (See [9] for
N = 3 and [16] for N = 4.) Note that, usually, the main difficulty in proving
the required inequality in Theorem 1.1 is to prove the corresponding inequality
for

∫
BR

uf(u).

There is another method due to Farina [17] which tends to give better
results if N > 4. First assume that u ≥ 0 and f(y) = yp where p > 1. There
is a restriction on p if p ≥ 11. The idea is to multiply the equation for u by
ψ(u)(l(x))2 and substitute φ(x) = s(u)l(x) in the linearized stability equation
where ψ′ = (s′)2, ψ(0) = 0, s(0) = 0 and l(x) is a smooth function of compact
support. If we then subtract the two equations, we get an inequality involving
no derivatives of u. (The idea of doing this in the bounded domain case seems to
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go back to Crandall and Rabinowitz [6]). By a number of elementary but very
clever tricks and, by careful choice of l, Farina proves the result. He can allow
u to change sign if f(y) = |y|p−1y. His result is essentially optimal for these
nonlinearities. More recently, he and Dupaigne [16] obtained similar results if
f has similar behaviour near zero, f is convex on [0,∞) and f is concave on
(−∞, 0).

In fact it is easy to localize the idea somewhat. For simplicity assume that
N ≤ 10. If p > 1, f(0) = 0, f ′(y)/yp−1 → a > 0 as y → 0+ and f ′(y) > y−1f(y)
for y > 0, one can prove that bounded linearized stable solutions u on R

N satisfy
u ≤ 0 on R

N . This is very useful because it settles our conjecture for N ≤ 4 for
non linearities f which are also of fixed sign for y ≤ 0 by applying our earlier
results. (One can do somewhat better for f ’s where 0 is a simple zero.)

There is a special case of our conjecture which should be easier but is very
important for bounded domain problems. Assume u is a positive linearized
stable solution of (3) on R

3 such that u → 0 as x1 → −∞ uniformly in x2, x3.
Then we conjecture u = u(x1). This is known if f has fixed sign or if f is not
too flat at any of its zeros (cp. [9] and [10]). The idea is to try to use moving
plane ideas to prove that u is monotone in x1. (The result would then follow
from this by [1]).

We close this section with a brief discussion of the half space case for the
Dirichlet boundary condition pointing out the differences. Firstly, for positive
bounded solutions, one can prove the only solutions are functions of x1 if N ≤
3 or if the only linearized stable solutions of (3) on R

N−1 are constants or
functions of one variable (cp. [4] and related papers of theirs). If we also require
that the solutions are linearized stable, we can replace “positive” by “non-
negative”. Secondly, ifN = 3 and the only bounded linearized stable solutions of
(3) on R

N are constant, one can prove under very weak additional assumptions
that there are no bounded sign changing linearized stable solutions on the half
space (for Dirichlet boundary conditions).

We have discussed the linearized stable solution on R
N in some detail be-

cause it is the basis for all the later sections.

2. Finite Morse Index Solutions on R
N

A solution u of (3) is said to have finite Morse index if there is a subspace W
of C∞

c (RN ) such that W has finite co-dimension in C∞
c (RN ) and such that

J(φ) ≥ 0 on W . (Here W has finite co-dimension in C∞
c (RN ) means that the

quotient space C∞
c (Ω)/W is finite dimensional. The co-dimension of W is the

dimension of this quotient.) The Morse index is the co-dimension of W when
a maximal W is chosen. Intuitively a finite Morse index solution is “not too
unstable”. If u is bounded, this is clearer because it is not difficult to prove that
our condition is equivalent to proving that the unbounded self-adjoint operator
−∆−f ′(u)I on L2(RN ) has finitely many negative points in the spectrum each
of which is an eigenvalue of finite multiplicity. However the above condition is
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easier to work with. Note also, as before, the choice C∞
c (RN ) is not crucial.

Note also that the condition that the Morse index is at most k behaves well
under limits. This is crucial in many proofs.

For the rest of this section we assume the condition that the only bounded
linearized stable solutions of (3) on R

N are constants. We call this condition
(Z). Indeed, almost nothing is known about the finite Morse index solutions
in other cases, even if N = 2. It seems much more complicated. This is an
interesting open question.

Suppose that condition (Z) holds and the zeros of f are isolated. Then it is
easy to prove that, if u is a bounded finite Morse index solution of (3) on R

N ,
then there is a zero c of f such that u(x) → c as ||x|| → ∞ (where f ′(c) ≤ 0 if
f is C1).

If we strengthen the condition on f near zeros of f we can prove much
more. We assume condition Z. In addition we assume condition (*): For each
non-simple zero c of f , assume either that f ′(x) ≤ 0 in a neighbourhood of c
or there exist p > 1, q > p − 1 and c+, c− both not zero such that f ′(x) ∼
c±|x− c|

p−1+O|x− c|q for x close to c. If N ≥ 11, we also need to assume that
p < pc(N) where pc(N) is the Joseph-Lungren exponent (cp. [17]). Note that
pc(N) = ∞ if N ≤ 10. Then we have the following theorem:

Theorem 2.1. Assume that condition (*) and condition Z both hold and u
is a bounded finite Morse index solution of (3) on R

N . Then ∇u ∈ L2(RN ),
(u− c)f(u) and F (u) ∈ L1(RN ) (where F ′ = f and F (c) = 0) and

∫
[(N − 2)(2N)−1(u− c)f(u)− F (u)] = 0.

Moreover, if u− c has fixed sign on R
N , then u is radial (up to translations).

Remark 1. In applying the last part of the theorem it is useful to note that if
u is a bounded solution of (3) on R

N , then f(supu) ≥ 0 and f(inf u) ≤ 0. This
is useful for proving that u− c has fixed sign.

Remark 2. The equality is known as the Pokojaev identity. The finite Morse
index condition is used to prove that we have good enough decay to prove the
Pokojaev identity.

Remark 3. It is an interesting open question to prove the radial result without
assuming finite Morse index but assuming u(x) → c as ||x|| → ∞

Remark 4. Condition (Z) holds if ±f are strictly convex or f ′ is strictly convex
provided condition (*) holds. This is closely related to the work of Gladiali,
Pacella and Weth [18] who assume ∇u ∈ L2(RN ) but do not assume u ∈
L∞(RN ) and do not assume the condition (*). Simple examples show that the
condition on p is necessary for Theorem 2.1. Note also that Gladiali et al. prove
under their conditions that solutions of Morse index at most N are radial. The
condition u ∈ L∞(RN ) rather than ∇u ∈ L2(RN ) seems much more convenient
for applications. On the other hand examples in Bartsch-Willem [3] and Musso,
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Pacard and Wei [20] show that for many f ’s with f ′ strictly convex there may
exist non-radial finite Morse index solutions such that u→ c as ||x|| → ∞ (even
examples where f ′(c) < 0).

The proof of Theorem 2.1 starts by using linearized stability results and
scaling to obtain ||x||−2/(p−1) decay of u and then using classical techniques
to greatly improve the decay if p is not too small (in particular if p > N+2

N−2 ).
The last part follows from the decay estimates and a moving plane argument.
(A moving plane argument is a geometric argument which compares u(x) with
u(xλ) where xλ is the reflection of x in some hyperplane.) It seems much harder
to understand the finite Morse index solutions on R

N in the case where there
is a 1-dimensional bounded strictly monotone solution of (3).

3. Application to Bounded Domain Problems

Here we are interested in applications of (1) where ε is small or we are interested
in large solutions. We restrict ourselves to the Dirichlet problem, though our
technique could be used for other boundary conditions. We first consider the
former case:

Theorem 3.1. Assume that K > 0, f is C1, f has isolated zeros, and that
(I) N = 2 or (II) condition Z holds or (III) N = 3 and a weak technical
condition holds near the non-simple zeros of f . Then the non-trivial stable
positive solutions of (1) with supu ≤ K are close to a positive zero C of f
in the interior of Ω and near ∂Ω are close after rescaling to a positive solution
of

−v′′(t) = f(v(t)) (6)

v(0) = 0, v > 0 on (0,∞), v → C as t → ∞. There is exactly one positive
stable solution for each C such that (6) has a positive solution. In particular
the number of stable positive solutions is independent of the shape of Ω.

u ∼ C Ω

Figure 1.

The proof of this is in two parts. Firstly, we use the results of the previous
section for R

N and half spaces and limit arguments to prove that any stable
solution has the above form if ε is small. Note that in some cases it is easier
to start from the interior while in other cases it is easier to start from the
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boundary and move into the interior. To prove the converse one uses more
classical techniques such as sub and supersolutions and blow ups.

If condition Z holds, it turns out that there are no stable changing sign
solutions. However if there is a non-constant monotone bounded solution of
−y′′ = f(y(t)) on R, there may sometimes be changing sign stable solutions
(cp. [19]). This uses gamma-convergence ideas. Whether these occur depends
on the shape of Ω. This case is poorly understood even for N = 2.

Suppose that condition Z holds and the zeros of f are nodal. Then it is
possible to use similar ideas to prove that when k > 0, then for small ε, positive
solutions of (1) of Morse index at most k are asymptotically of the form φε(x)+∑s

i=1(Wi(ε
−1(x− xi)− C) 1 ≤ s ≤ k, where φε is a positive stable solution of

(1) near C on most of Ω (or identically zero), Wi is a solution of (3) on R
N

such that Wi > C on R
N , and Wi → C as |x| → ∞ and xi ∈ Ω. In other

words, positive finite Morse index solutions look like a stable solution with
a finite number of sharp peaks superimposed. Under weak conditions we can
prove that the Wi are radial.

If N = 3, condition Z can be largely removed though it is unclear if it can
be completely removed. If we allow u to change sign, we obtain a similar result
except that we delete the requirement that Wi > C and Wi need not be radial.
The situation is much less clear if N = 2 and there is a non-constant bounded
monotone solution of −y′′ = f(y) on R. Also the location of the peaks are not
completely understood. (If C = 0, and we only have one peak, we have a rather
complete understanding.)

If we allow non nodal zeros, the theory is essentially the same except that
we may sometimes have unstable finite Morse index solutions which look to
first order like stable solutions. In the interior of the domain these solutions
rescaled look like a changing sign solution of

−∆v =|v|p in Ω

v → ∞ as x→ ∂Ω. (7)

Here p is the order of the zero C of f . This is discussed in [12]. This shows a
surprising connection with problems with infinite boundary values.

Lastly, our methods can be used to help prove that the branch of positive
solutions of (1) bifurcating from (0, 0) (where we use u and λ = ε−2 as variables)
has infinitely many bifurcations if f is real analytic, if f(y) > 0 for y > 0, if
f(0) > 0, if f ′(y) ∼ ey as y → ∞ and if 3 ≤ N ≤ 9. (If f(0) = 0), f ′(0) > 0,
the result is still true though the branch may not bifurcate from (0, 0).) Note
that the restriction on N is sharp even if Ω is a ball. There is a similar theorem
if f ′(y) ∼ yp−1 as y → ∞ if 3 ≤ N ≤ 10, p is large and Ω is star-shaped. (We
do not know if the star-shapedness condition can be removed.)

The idea here is to use real analytic bifurcation theory (see [5] and [6]) to
find an unbounded arc A of positive solutions bifurcating from (0, 0) such that
the linearisation (in u) of the equation is invertible except at isolated points
of the arc. This is where we use the real analyticity. (By an unbounded arc
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we mean a homeomorph of [0, 1).) The above result need not be true for C∞

maps.) By obtaining a limit equation on R
N , we prove that the Morse index of

a solution (u, λ) tends to infinity as ||u||∞ + |λ| → ∞ (The key result here is
to prove (see [11] and [13]) that the limiting problem −∆u = eu on R

N has no
negative finite Morse index solution. This is where the condition 3 ≤ N ≤ 9 is
used.) Thus there must be infinitely many points of A where the Morse index
changes. Finally, we use local topological invariants such as critical groups or
Conley indexes to prove that any point where the Morse index changes is a
bifurcation point. This uses the variational structure of the equation. Lastly,
the real analyticity can be avoided but the interpretation is then not so clear.
Moreover, the results can be proved for other asymptotic behaviours at infinity.

Lastly, a general question is to obtain similar theories for interesting general
classes of elliptic systems.
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1. Introduction

1.1. The regularity theory for area-minimizing currents.
In this note we will describe some recent contributions to the regularity theory
for integer rectifiable area-minimizing currents. For the sake of simplicity we
will restrict ourselves to currents in the Euclidean space. For all the relevant
definitions concerning currents we refer the reader to the classical textbooks
[16] and [39].

As it is well known there is a dramatic difference in the theory depending
on the codimension of the current. In codimension 1 currents without boundary
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are boundaries of sets of finite perimeter. This allows several important sim-
plifications in the theory (see for instance [23]) and it also implies that area-
minimizing currents of codimension 1 enjoy much better regularity properties.
Let us briefly review the main results in the interior regularity theory.

Codimension 1. Let T be an area-minimizing current of dimension n in R
n+1.

(a1) For n ≤ 6, T is an analytic submanifold in R
n+1 \ supp (∂T ) (see for

instance [16, Theorem 5.4.15]);

(a2) for n = 7, T is an analytic submanifold in R
n+1 \ supp (∂T ) with the

exception of a discrete set Sing(T ) of singular points (see for instance [16,
Section 5.4.16]);

(a3) for n = 7, in a neighborhood of each x ∈ Sing(T ) the current is a pertur-
bation of an area-minimizing cone (see [40]);

(a4) for n > 7, T is an analytic submanifold in R
n+1 \ supp (∂T ) with the

exception of a closed set Sing(T ) of (Hausdorff) dimension at most n− 7
(see for instance [39, Theorem 37.7]);

(a5) if n > 7, the singular set Sing(T ) is rectifiable and has locally finite
Hn−7-measure (see [42, Lecture 4, Theorem 4] and [41]; here Hα denotes,
as usual, the α-dimensional Hausdorff measure).

The results in (a2) and (a5) give the optimal estimates of the size of Sing(T ) .
The optimality of (a2) is shown by the Simons cone. The minimizing property
of this cone was first proved in the celebrated paper of Bombieri, De Giorgi,
and Giusti [8]. In order to prove the optimality of (a5) it suffices to take the
product of the Simons cone with a linear space of dimension n − 7 (cp. with
[16, Theorem 5.4.9]).

Codimension k > 1. Let T be an integer rectifiable area-minimizing current
of dimension n in R

n+k.

(b1) If n = 1, T is the union of nonintersecting straight lines;

(b2) if n = 2, T is an analytic submanifold in R
n+k \ supp (∂T ) with the

exception of a discrete set Sing(T ) (see [7]);

(b3) if n = 2, in a neighborhood of each x ∈ Sing(T ) the current is a pertur-
bation of a suitable “branched holomorphic curve” (see [32]);

(b4) for n > 2, T is an analytic submanifold in R
n+k \ supp (∂T ) with the

exception of a closed set Sing(T ) of dimension at most n− 2 (see [4]).

The size estimate of (b2) is optimal, as shown by taking any holomorphic curve
in R

4 = C
2 with branch points. This example plays a crucial role in the rest of

our discussion and will be examined in further detail later on.
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One first striking difference between these series of results is that in the
latter singularities appear quite naturally as soon as we depart from the trivial
case n = 1. Moreover, this appearance, linked to the well-known phenomenon
of branching of holomorphic curves, is far much easier to understand than the
minimizing property of the Simons cone, which is the simplest example of a
singular area-minimizing current with codimension 1.

The second striking difference is in the length, the intricacy and the technical
complications presented by Almgren’s and Chang’s results ((b2) and (b4)) in
comparison with Federer’s size estimates of Sing(T ) ((a2) and (a4)). Assuming
indeed a certain amount of prerequisites in geometric measure theory, (a1),
(a2) and (a4) are essentially the combination of three ingredients: the pioneering
work of De Giorgi on the excess-decay [9], the classical work of Simons on stable
minimal cones [43] and Federer’s reduction argument, see [17]. Moreover, only
a relatively small portion of the theorems in [43] are needed to prove (a4).
Let me also mention that, before the work of [43] completed the proof of (a1),
lower-dimensional versions were achieved in the works of Fleming, De Giorgi
and Almgren [19, 10, 3]. The interested reader might find a complete and quite
readable account in the beautiful book of Giusti [23].

Assuming the same amount of prerequisites, the theorem in (b4) is instead a
monograph of about 950 pages, see [4]. This monograph contains, among many
other things, far-reaching generalizations of both De Giorgi’s and Federer’s
arguments. The proof of (b2) is contained in the paper [7], where the author
builds upon (essentially all) the techniques developed in Almgren’s monograph
and on the important papers [33] and [47]. Indeed, some of the constructions
needed in [7] are claimed to be suitable modifications of the ones in [4], but the
detailed proofs of these statements have never appeared.

1.2. Branching. Let us examine in more details the first obstruction to
the full regularity in the case of higher codimension. The key observation relies
on a classical computation of Wirtinger [49], used by Federer in his elegant
proof of the following statement (cp. to [16, Section 5.4.19]).

Theorem 1.1. If M is a Kähler manifold of real dimension 2m and Γ a com-
plex submanifold of M of real dimension 2j, then Γ represents an integer recti-
fiable area minimizing current. More precisely, if U is a bounded open set with
U ∩ supp (∂Γ) = ∅ and Σ is an integer rectifiable current of dimension 2j such
that

• ∂(Γ− Σ) = 0,

• supp (Γ− Σ) ⊂ U ,

then the mass of Σ in U is larger than the mass of Γ in U . Moreover, the
inequality is strict unless Γ = Σ.

In a more modern language, the Wirtinger-Federer result can be rephrased
in the following way: the k-th exterior power of the Kähler form is a calibration
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for holomorphic submanifolds of complex dimension k. For a beautiful account
of calibrating forms we refer the reader to the paper [27].

The presence of branching phenomena in area-minimizing currents of codi-
mension larger than 1 is also the principal reason for the difficulty of Almgren’s
monumental result. Much of Section 2 will be devoted to give an intuitive ex-
planation of this.

1.3. Looking for a manageable proof. The intricacy of Almgren’s
big regularity paper [4] has essentially stopped the research in the area till few
years ago, in spite of the abundance of interesting geometric objects which are
naturally minimal submanifolds of “large” codimension (see again the paper
[27]). Recently, in view of some applications to geometry and topology, alter-
native proofs of Chang’s result have been found for J-holomorphic curves. The
first of these proofs has been given by Taubes in [45] for J-holomorphic curves in
symplectic 4-manifolds. The generalization of Taubes’ approach to 1−1 currents
in (even-dimensional) manifolds carrying a certain complex structure has been
given by Rivière and Tian (see [36], [35] and [37]). This proof contains several
beautiful ideas and faces some of the same problems which are solved in Alm-
gren’s monograph. However, its applicability seems limited to 2-dimensional
currents which are calibrated by some complex structure. At present, the gen-
eral theorem of Chang (not to speak of the result of Almgren) does not seem
reachable with similar approaches.

The remarkable papers [35] and [37] and several discussions of the author
with Tristan Rivière have been the starting point of the line of research which
will be presented here. The results which will be described in this note have
appeared in the papers [13], [14], [12], [44] and [15]. A substantial part of these
papers is dedicated to give self-contained and much simpler proofs of a consider-
able portion of Almgren’s monograph. In the remaining part we take advantage
of some new ideas to expand Almgren’s theories in other directions. Though
some fundamental ideas behind these papers are still the ones of Almgren, our
approaches highlight some rather new aspects. In some cases we have taken
advantage of modern techniques of metric analysis, in some other we have dis-
covered new phenomena. The overall result is that we can handle the complexity
of the subject in a much more efficient way. Our obvious final goal is to give a
less complex, yet complete account of Almgren’s and Chang’s regularity results
and possibly go beyond them in a not so far future.

In the next sections we will describe roughly the contents of the papers [13],
[14] and [15]. In the final section we collect several interesting related open
problems.

2. Why Multiple Valued Functions?

2.1. De Giorgi’s excess decay. The first breakthrough of the regu-
larity theory for area-minimizing currents is due to De Giorgi. In order to state
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De Giorgi’s main theorem, we have to introduce the so-called (spherical) ex-
cess Ex(T,Br(p)) of the current T in the ball Br(p). For every simple unitary
n-vector ~π, we set

Ex(T,Br(p), π) :=
1

2
−

∫

Br(p)

|~T − ~π|2d‖T‖ . (2.1)

The measure ‖T‖ is the localized mass of the current: for every open set U ,

‖T‖(U) is the total mass of the current in U . ~T is the simple unitary n-vector
field orienting T .

The spherical excess is then defined as

Ex(T,Br(p)) := min
π

Ex(T,Br(p), π) .

This definition is valid in any codimension. For the reader who is not very
familiar with the notation of geometric measure theory, the formulas can be
considerably simplified in codimension 1. First of all, the minimum can be taken
over all oriented n-dimensional planes π (~π is then just the unitary n-vector

orienting π). Moreover |~T − ~π| can be substituted by |νT − ν|, where:

• νT is the unit vector field normal to the current, compatible with the
orientation of the tangent n-vector ~T ;

• ν is the unit vector normal to π compatible with the orientation ~π.

A third important object that we need to introduce is the density of the current
at a point, which is defined as

θ(T, p) := lim
r↓0

‖T‖(Br(p))

ωnrn
, (2.2)

where ωn denotes, as usual, the n-dimensional measure of the n-dimensional
ball. The existence of the limit in (2.2) is guaranteed by the monotonicity
formula (cp. with [39, Section 4.17]).

Theorem 2.1. Let Q be a positive integer. There exist constants ε, β > 0
depending only on Q and n such that the following holds. Let T be an area-
minimizing integral current of dimension n in R

n+1. Assume that, for r > 0
and p ∈ supp (T ), the following hypotheses are satisfied:

(i) θ(T, p) = Q;

(ii) supp (∂T ) ∩Br(p) = ∅;

(iii) ‖T‖(Br(p)) ≤ (Q+ ε)ωnr
n;

(iv) the spherical excess of T in Br(p) is smaller than ε.

Then supp (T ) ∩Br/2(p) is the graph of a C1,β function f .
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To be more precise, De Giorgi in [9] proved the case Q = 1 of this theorem.
However the general case Q > 1 can be easily recovered from De Giorgi’s
statement using the decomposition of T in boundaries of sets of finite perimeter
as in [16, Section 4.5.17].

To get some intuitive idea about the theorem above, consider the extreme
case where the spherical excess in Br(p) is 0. Using assumption (ii) we then
conclude that T in Br(p) consists of (possibly countably many) parallel disks.
Exploiting (i), (iii) and the minimality of T , from the monotonicity formula
we easily conclude that, in a slightly smaller ball Br−Cε(p), T consists of a
single disk containing the origin and counted with multiplicity Q. Thus, the
assumptions (i)–(iv) tell us that the current T is close, in an “average” sense,
to Q copies of a single disk. Theorem 2.1 could be therefore classified as an
“ε-regularity theorem”.

2.2. Again branching. As already mentioned, De Giorgi’s original proof
covers the case Q = 1 and the extension to Q > 1 uses heavily the features of
codimension 1 currents. In higher codimension the statement is still correct for
Q = 1 (see for instance [16, Theorem 5.4.7]; in fact much more is true, see [2]),
but fails dramatically if Q > 1. Once again, the main reason for this breakdown
is the existence of branching points.

Remark 2.2. Consider in R
4 = C

2 the holomorphic curve Γ = {(z, w) : z2 =
w3}. Theorem 1.1 implies that Γ is an area–minimizing current of real dimension
2 in any bounded open subset of R4. Moreover, set p = 0. Then

θ(T, 0) = lim
r↓0

‖T‖(Br(0))

ω2r2
= 2 .

Obviously, given any positive ε > 0 there is a δ such that (i)–(iv) are satisfied
for every r < δ. On the other hand, no matter how small r is, Br(0)∩Γ is never
the graph of a smooth function.

We proceed our discussion by giving an oversimplified description of De
Giorgi’s proof of Theorem 2.1 in the case Q = 1. In a first step, the hypotheses
(i)–(iv) are used to approximate the current T with the graph G of a Lipschitz
(real valued) function f with small Lipschitz constant. In particular, the ap-
proximation algorithm ensures that the area of T and the area of G are close.
On the other hand, recall that the area of the graph of a function over a domain
Ω is given by the formula

∫

Ω

√

1 + |∇f |2 . (2.3)

If |∇f | is small, this integral is close to

∫

Ω

(

1 +
|∇f |2

2

)

(2.4)
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(in higher codimension, i.e. when f is vector-valued, the formula for (2.3) is more
complicated, but the second order expansion is nonetheless given by (2.4)).

Thus, the minimality of the current T implies that f is close, in a suitable
integral sense, to a minimum of the Dirichlet energy, i.e. to an harmonic func-
tion. Using the decay properties of harmonic functions, one can infer that the
excess Ex(T,Bρ(p)) is decaying like ρ2β for some β > 0. This decay leads then
to the C1,β regularity via a “Morrey-type” argument.

2.3. Dealing with branching. As already noticed, in codimension 1
the higher multiplicity case can be reduced to the case of multiplicity 1. Obvi-
ously, Remark 2.2 shows that this reduction is impossible in codimension larger
than 1. In that example the very beginning of De Giorgi’s strategy fails, since
it is simply not possible to approximate efficiently Γ with the graph of a (sin-
gle valued) function. This discussion motivates the starting idea of Almgren’s
monograph. In order to tackle the regularity question in codimension larger
than 1 we need to approximate currents with “multiple valued functions”.

It is interesting to notice that, if we turn our attention to stationary currents
(or, more generally, stationary integral varifolds), the reduction to multiplicity
1 becomes false even in the codimension 1 case. In this setting, the best result
available at present is Allard’s Theorem [2], which ensures regularity in a dense
open set. Nothing better is known, even assuming stability, in spite of the fact
that all available examples have singularities of dimension at most n− 1. If we
assume stability and an a-priori knowledge that the singular set has zero Hn−2-
measure, then the classical curvature estimates of Schoen and Simon imply that
the singular set has in fact dimension at most n− 7 (see [38]). In a very recent
paper [48], Wickramasekera has extended this result to the optimal assumption
that the Hn−1-measure of the singular set is 0. Related questions are open for
“stationary multiple valued functions” as well (see Section 8 below).

3. The Dirichlet Energy for Multiple Valued

Functions

3.1. The metric space of unordered Q-tuples. Roughly the first
fifth of Almgren’s monograph is devoted to develop the theory of multiple valued
functions. The obvious model case to keep in mind is the following. Given two
integers k,Q with MCD(k,Q) = 1, look at the function which maps each point
z ∈ C into the set M(z) := {wk : wQ = z} ⊂ C. Obviously for each z we can
order the elements of the set M(z) as {u1, . . . , uQ}. However, it is not possible
to do it globally in such a way that the maps z 7→ ui(z) are continuous.

This motivates the following definition. Given an integer Q we define a
Q-valued map from a set E ⊂ R

m into R
n as a function which to each point

x ∈ E associates an unorderedQ-tuple of vectors in R
n. There is a fairly efficient

formulation of this definition which will play a pivotal role in our discussion.
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Following Almgren, we consider the group PQ of permutations of Q elements
and we let AQ(R

n) be the set (Rn)Q modulo the equivalence relation

(v1, . . . , vQ) ≡ (vπ(1), . . . , vπ(Q)) ∀π ∈ PQ .

The set AQ(R
n) can be naturally identified with a subset of the set of measures

(cp. with [4] and [13, Definition 0.1]).

Definition 3.1 (Unordered Q-tuples). Denote by JPiK the Dirac mass in Pi ∈
R

n. Then,

AQ(R
n) :=

{

Q
∑

i=1

JPiK : Pi ∈ R
n for every i = 1, . . . , Q

}

.

This set has a natural metric structure; cp. with [4] and [13, Definition
0.2] (the experts will recognize the well-known Wasserstein 2-distance, cp. with
[46]).

Definition 3.2. For every T1, T2 ∈ AQ(R
n), with T1 =

∑

i JPiK and T2 =
∑

i JSiK, we set

G(T1, T2) := min
σ∈PQ

√

∑

i

∣

∣Pi − Sσ(i)

∣

∣

2
. (3.1)

3.2. Almgren’s extrinsic maps. The metric G is “locally euclidean”
at most of the points. Consider for instance the model case Q = 2 and a
point P = JP1K + JP2K with P1 6= P2. Then, obviously, in a sufficiently small
neighborhood of P , the metric space A2(R

n) is isomorphic to the Euclidean
space R2n. This fails instead in any neighborhood of a point of type P = 2 JP1K.
On the other hand, if we restrict our attention to the closed subset {2 JXK :
X ∈ R

n}, we obtain the metric structure of Rn. A remarkable observation of
Almgren is that AQ(R

n) is biLipschitz equivalent to a deformation retract of
the Euclidean space (cp. with [4, Section 1.3]). For a simple presentation of this
fact we refer the reader to [13, Section 2.1].

Theorem 3.3. There exists N = N(Q,n) and an injective ξ : AQ(R
n) → R

N

such that:

(i) Lip(ξ) ≤ 1;

(ii) if Q = ξ(AQ), then Lip(ξ−1|Q) ≤ C(n,Q).

Moreover there exists a Lipschitz map ρ : RN → Q which is the identity on Q.

In fact much more can be said: the set Q is a cone and a polytope. On each
separate face of the polytope the metric structure induced by G is euclidean,
essentially for the reasons outlined a few paragraphs above (cp. again with [4,
Section 1.3] or with [14, Section 6.1]).
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3.3. The generalized Dirichlet energy. Using the metric struc-
ture on AQ(R

n) one defines obviously measurable, Lipschitz and Hölder maps
from subsets of Rm into AQ(R

n). However, if we want to approximate area-
minimizing currents with multiple valued functions and “linearize” the area
functional in the spirit of De Giorgi, we need to define a suitable concept of
Dirichlet energy. We will now show how this can be done naturally. However,
the approach outlined below is not the one of Almgren.

Consider again the model case of Q = 2 and assume u : Ω → A2(R
n) is a

Lipschitz map. If, at some point x, u(x) = JP1K+ JP2K is “genuinely 2-valued”,
i.e. P1 6= P2, then there exist obviously a ball Br(x) ⊂ Ω and two Lipschitz
functions u1, u2 : Br(x) → R

n such that u(y) = Ju1(y)K + Ju2(y)K for every
y ∈ Br(x) (in this and similar situations, we will then say that there is a
regular selection for u in Br(x), cp. with [13, Definition 1.1]). For each separate
function ui, the classical Theorem of Rademacher ensures the differentiability
almost everywhere.

Recall that our ultimate goal is to define the Dirichlet energy so that it is
a suitable approximation of the area of the graph of u. The “graph of u over
Br(x)” is simply to union of the graphs of the two functions ui. When the
gradients ∇ui are close to 0, the area of each graph is close to

∫

Br(x)

(

1 +
1

2
|∇ui|

2

)

.

Thus, the only suitable definition of Dirichlet energy of u on the domain Br(x)
is given by

∫

Br(x)

|Du|2 :=

∫

Br(x)

(|Du1|
2 + |Du2|

2) .

By an obvious localization procedure, this definition can be extended to the
(open!) set Ω2 ⊂ Ω where u is genuinely 2-valued.

For each element z in the complement set Ω1 := Ω \ Ω2, u(z) is a single
point counted with multiplicity 2. Then there is a Lipschitz map v : Ω1 → R

n

such that u(z) = 2 Jv(z)K for every z ∈ Ω1. Again in view of our goal, the only
suitable definition of the Dirichlet energy of u over Ω1 is twice the Dirichlet
energy of v. We thus are left with only one possibility for the Dirichlet energy
on the global set Ω:

Dir(u,Ω) :=

∫

Ω2

(|Du1|
2 + |Du2|

2) + 2

∫

Ω1

|Dv|2 .

This analysis can be obviously generalized to any positive integer Q, lead-
ing to a general definition of Dirichlet energy for Lipschitz multiple valued
functions. The graphs of Lipschitz multiple valued functions carry naturally a
structure of integer rectifiable currents (see [4, Section 1.6] or [14, Appendix
C]). It is not difficult to see that, when the Lipschitz constant is small, the
Dirichlet energy defined in this section is the second order approximation of
the area of the corresponding graph (we refer the reader to [14, Section 2.3]).
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Almgren’s definition of Dir goes instead through a suitable concept of dif-
ferentiability for multiple valued functions and a corresponding Rademacher’s
theorem (in [4] the derivation of this result is quite involved and a much simpler
proof has been published in [24]). The arguments in [13, Section 1] easily show
that the two points of view are equivalent. In fact the “stratification” strategy
outlined above yields a fairly straightforward proof of Almgren’s generalized
Rademacher’s Theorem (see [13, Section 1.3.2]).

Having established the correct notion of Dirichlet energy for Lipschitz func-
tions, one could define the Sobolev space W 1,2(Ω,AQ(R

n)) through a “com-
pletion strategy”: a measurable map v : Ω → AQ(R

n) is in W 1,2 if and only
if there is a sequence of Lipschitz maps uk converging to v a.e. and enjoying a
uniform bound Dir(Ω, uk) ≤ C. The Dirichlet energy of v is then defined via a
“relaxation procedure”: Dir(Ω, v) is the infimum of all constants C for which
there is a sequence with the properties above.

Almgren’s approach is again rather different. W 1,2 maps are defined as
those maps u for which ξ ◦ u is W 1,2. The Dirichlet energy is again defined
via a suitable notion of approximate differentiability. In our paper [13] we start
from a third definition of Dirichlet energy and Sobolev space. However, all these
points of view are completely equivalent, as one can easily conclude from the
arguments in [13, Section 4] (cp. in particular with the Lipschitz approximation
technique of [13, Proposition 4.4]).

3.4. The cornerstones of the theory of Dir-minimizers. We
are now ready to state the three main theorems of Almgren concerning Dir-
minimizers. Their proofs occupy essentially Chapters 1 and 2, i.e. the first
fifth of Almgren’s monograph. In what follows, Ω is always assumed to be a
bounded open set with a sufficiently regular boundary (in fact, in order to give
a complete account, we should have defined the trace at ∂Ω of W 1,2 multiple
valued functions; we have avoided to enter in the details to keep our presentation
short: the interested reader can consult, for instance, [13, Definition 0.7]).

Theorem 3.4 (Existence for the Dirichlet Problem). Let g ∈ W 1,2(Ω;AQ).
Then there exists a Dir-minimizing f ∈ W 1,2(Ω;AQ) such that f |∂Ω = g|∂Ω.

Theorem 3.5 (Hölder regularity). There is a constant α = α(m,Q) > 0
with the following property. If f ∈ W 1,2(Ω;AQ) is Dir-minimizing, then f ∈
C0,α(Ω′) for every Ω′ ⊂⊂ Ω ⊂ R

m. For two-dimensional domains, we have the
explicit constant α(2, Q) = 1/Q.

For the second regularity theorem we need the definition of the singular set
of f .

Definition 3.6 (Regular and singular points). A Dir-minimizing f is regular
at a point x ∈ Ω if there exists a neighborhood B of x and Q analytic functions
fi : B → R

n such that

f(y) =
∑

i

Jfi(y)K for almost every y ∈ B (3.2)



1920 Camillo De Lellis

and either fi(x) 6= fj(x) for every x ∈ B, or fi ≡ fj . The singular set Σf of f
is the complement of the set of regular points.

Theorem 3.7 (Estimate of the singular set). Let f be Dir-minimizing. Then,
the singular set Σf of f is relatively closed in Ω. Moreover, if m = 2, then Σf

is at most countable, and if m ≥ 3, then the Hausdorff dimension of Σf is at
most m− 2.

Note in particular the striking similarity between the estimate of the size
of the singular set in the case of multiple valued Dir-minimizers and in that
of area-minimizing currents. It will be discussed later that, even in the case of
Dir-minimizers, there are singular solutions (which are no better than Hölder
continuous).

Complete and self-contained proofs of these theorems can be found in [13].
The key idea beyond the estimate for the singular set is the celebrated frequency
function (cp. with [13, Section 3.4]), which has been indeed used in a variety
of different contexts in the theory of unique continuation of partial differential
equations (see for instance the papers [20], [21]). This is the central tool of our
proofs as well. However, our arguments manage much more efficiently the tech-
nical intricacies of the problem and some aspects of the theory are developed in
further details. For instance, we present in [13, Section 3.1] the Euler-Lagrange
conditions derived from first variations in a rather general form. This is to
our knowledge the first time that these conditions appear somewhere in this
generality.

Largely following ideas of [7] and of White, we improve the second regularity
theorem to the following optimal statement for planar maps.

Theorem 3.8 (Improved estimate of the singular set). Let f be Dir-minimizing
and m = 2. Then, the singular set Σ of f consists of isolated points.

This result was announced in [7]. However, to our knowledge the proof has
never appeared so far. For a discussion of the optimality of these regularity
results, we refer the reader to Section 5 below.

4. Metric Analysis

4.1. An intrinsic approach. One of the less satisfactory points of Alm-
gren’s theory is the heavy use of the Lipschitz maps ξ and ρ. First of all, this
makes the arguments often counterintuitive. Second, there is the obvious dis-
turbing fact that, while several choices of ξ and ρ are possible, the objects of
the study and the ultimate conclusions of the theory are totally independent
of this choice. This fact has been pointed out for the first time in [24]. In the
papers [24] and [25] the author made some progress in the program of making
Almgren’s theory “intrinsic”, i.e. independent of the euclidean embedding.
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As far as the theory of Dir-minimizers is concerned, this program has been
completed in our paper [13]. This work also makes a clear link between Alm-
gren’s theory and the vast existing literature about metric analysis, metric ge-
ometry and general harmonic maps, which started with the pioneering papers
[22], [30] and [5] (we refer the interested reader to [13, Section 4.1]).

The metric approach has several features:

• One first advantage is that it allows to separate “hard” and “soft” parts in
Almgren’s theory. Several conclusions can indeed be reached in a straight-
forward way by “abstract nonsense”. Only few key points need deeply the
structure of AQ(R

n) and some “hard” computations. By quickly discard-
ing the minor points, the metric theory is a powerful tool to recognize
plausible statements and crucial issues.

• A second advantage is the natural link to the metric theory of currents
developed by Ambrosio and Kirchheim in [6]. This theory recovers many
of the central theorems of Federer and Fleming’s work [18] in a clean way
and offers some new powerful tools (like the Jerrard-Soner BV estimates
for the slicing theory). The reason why this connection is useful will be
explored in detail in Section 6.

4.2. Intrinsic definition of the Dirichlet energy. The metric
point of view relies upon the following alternative definitions of Dirichlet energy
and Sobolev functions (cp. with the general theory developed in [5] and [34];
the careful reader will notice, however, that there is a crucial difference between
the definition of Dirichlet energy in [34] and the one given below).

Definition 4.1 (Sobolev Q-valued functions). A measurable f : Ω → AQ is in
the Sobolev class W 1,p (1 ≤ p ≤ ∞) if there exist m functions ϕj ∈ Lp(Ω;R+)
such that

(i) x 7→ G(f(x), T ) ∈ W 1,p(Ω) for all T ∈ AQ;

(ii) |∂j G(f, T )| ≤ ϕj a.e. in Ω for all T ∈ AQ and for all j ∈ {1, . . . ,m}.

It is not difficult to show the existence of minimal functions ϕ̃j fulfilling
(ii), i.e. such that, for any other ϕj satisfying (ii), ϕ̃j ≤ ϕj a.e. (cp. with
[13, Proposition 4.2]). Such “minimal bounds” will be denoted by |∂jf | and
we note that they are characterized by the following property (see again [13,
Proposition 4.2]): for every countable dense subset {Ti}i∈N of AQ and for every
j = 1, . . . ,m,

|∂jf | = sup
i∈N

|∂j G(f, Ti)| almost everywhere in Ω. (4.1)

We are now ready to define the Dirichlet energy.

Definition 4.2. The function |Df |2 is defined to be the sum of |∂jf |
2. The

Dirichlet energy of f ∈ W 1,2(U ;AQ) is then defined by Dir(f, U) :=
∫

U
|Df |2.
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As already mentioned, this definition is equivalent to the one proposed in
the previous section.

The paper [13] gives therefore two different approaches to the theorems
stated in the previous section. One can follow a (considerably simpler) version
of Almgren’s “extrinsic” approach, exploiting the maps ξ and ρ. Or one can
use the intrinsic approach starting from the definitions above, without using
the maps ξ and ρ. However, proceeding further in Almgren’s program for the
regularity of area-minimizing currents, there is a point at which we have not
been able to avoid these extrinsic maps (see Sections 6.4 and 8).

5. Higher Integrability of Dir Minimizers and

Other Results

5.1. Multiple valued functions beyond Almgren. Many results
of Almgren have been extended in several directions. In particular

• The papers [11], [25], [52], [53] extend some of Almgren’s results to am-
bient spaces which are more general than the euclidean one;

• The papers [51], [54], [26] and [24] consider some other objects in the
multiple valued setting (such as differential inclusions, geometric flows
and quasiminima);

• The papers [31] and [12] extend some of Almgren’s theorems to more
general energy functionals.

5.2. Higher integrability. In this section we focus on a recent new
contribution to the theory, which plays an important role in our derivation of
the second main step in Almgren’s program. Dir-minimizing functions enjoy
higher integrability of the gradient. We believe that several intricate arguments
and complicated constructions in Almgren’s third chapter can be reinterpreted
as rather particular cases of this key observation (see for instance [4, Section
3.20]). Surprisingly, this higher integrability can be proved in a very simple way
by deriving a suitable reverse Hölder inequality and using a (nowadays) very
standard version of the classical Gehring’s Lemma.

Theorem 5.1 (Higher integrability of Dir-minimizers). Let Ω′ ⊂⊂ Ω ⊂⊂ R
m

be open domains. Then, there exist p > 2 and C > 0 such that

‖Du‖Lp(Ω′) ≤ C ‖Du‖L2(Ω) for every Dir-minimizing u ∈ W 1,2(Ω,AQ(R
n)).

(5.1)

This theorem has been stated and proved for the first time in [14]. The rel-
evant reverse Hölder inequality has been derived using a comparison argument
and hence relying heavily on the minimality of the Dir-minimizers. A second
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proof, exploiting the Euler-Lagrange conditions to give a Caccioppoli-type in-
equality, has been given in [44]. This last proof still uses the regularity theory
for Dir-minimizers. However, this occurs only at one step: one could hope to re-
move this restriction and generalize the higher integrability to “critical” points
of the Dirichlet energy (cp. with Section 8).

5.3. Optimality. In [44] a yet different proof for the planar case is pro-
posed, yielding the optimal range of exponents p for which (5.1) holds. The
optimality of this result, as well as the optimality of Theorems 3.5 and 3.8,
is shown by another remarkable observation of Almgren. Besides giving area-
minimizing currents, holomorphic varieties are locally graphs of Dir minimizing
Q-valued functions. In [4, Section 2.20] Almgren proves this statement appealing
to his powerful approximation results for area-minimizing currents (see Section
6 below). However this is unnecessary and a rather elementary proof can be
found in [44].

6. Approximation of Area-minimizing Currents

After developing the theory of multiple valued functions, Almgren devotes the
third chapter of his monograph to a suitable approximation theorem for area-
minimizing currents, which is the multiple valued counterpart of the classical
approximation theorem of De Giorgi in his proof of the excess-decay property.

6.1. Almgren’s main approximation theorem. We start by giv-
ing the exact statement of Almgren’s approximation result in the euclidean
setting. Compared to the rest of the note, this part is rather technical. On
the other hand, in order to get an understanding of Almgren’s approximation
theorem, a certain familiarity with the theory of currents can hardly be avoided.

Consider integer rectifiable m-dimensional currents T supported in some
open cylinder Cr(y) = Br(y) × R

n ⊂ R
m × R

n and satisfying the following
assumption:

π#T = Q JBr(y)K and ∂T = 0, (6.1)

where π : Rm × R
n → R

m is the orthogonal projection and m,n,Q are fixed
positive integers. In an informal language, the hypothesis (6.1) means that the
current “covers” Q times the base of the cylinder.

We denote by eT the non-negative excess measure and by Ex(T, Cr(y)) the
cylindrical excess, respectively defined by

eT (A) := M
(

T (A× R
n)
)

−Q |A| for every Borel A ⊂ Br(y), (6.2)

Ex(T, Cr(y)) :=
eT (Br(x))

|Br(x)|
=
eT (Br(x))

ωmrm
. (6.3)

Though it is not apparent from the definition given above, the cylindrical excess
bears some similarities with the spherical excess.
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Theorem 6.1. There exist constants C, δ, ε0 > 0 with the following property.
Let T be an area-minimizing, integer rectifiable m-dimensional current in the
cylinder C4 which satisfies (6.1). If E = Ex(T, C4) < ε0, then there exist a
Q-valued function f ∈ Lip(B1,AQ(R

n)) and a closed set K ⊂ B1 such that

Lip(f) ≤ CEδ, (6.4)

graph(f |K) = T (K × R
n) and |B1 \K| ≤ CE1+δ, (6.5)

∣

∣

∣

∣

M
(

T C1
)

−Qωm −

∫

B1

|Df |2

2

∣

∣

∣

∣

≤ C E1+δ. (6.6)

An interesting aspect which makes the proof of Theorem 6.1 quite hard is
the gain of a small power Eδ in the three estimates (6.4), (6.5) and (6.6). Ob-
serve that the usual approximation theorems stated commonly in the literature,
which cover the case Q = 1 and “stationary currents” (in fact, stationary inte-
gral varifolds), are stated with δ = 0. On the other hand, the gain of Theorem
6.1 plays a crucial role in some of the estimates needed for the third main step
of Almgren’s program, i.e. the “construction of the center manifold” (cp. with
Section 7).

6.2. Higher integrability for area-minimizing currents. The
note [14] provides a different, much simpler proof of Almgren’s theorem. A
key point is a higher integrability estimate for the Lebesgue density dT of the
measure eT , called the excess density,

dT (x) := lim sup
s→0

eT (Bs(x))

ωm sm
.

Theorem 6.2. There exist constants p > 1 and C, ε > 0 with the following
property. Assume T is an area-minimizing, integer rectifiable current of dimen-
sion m. If T satisfies (6.1) and E = Ex(T, C4) < ε, then

∫

{d≤1}∩B2

d
p ≤ C Ep. (6.7)

This estimate, which can be thought as the “current counterpart” of Theo-
rem 5.1, is not explicitly stated in [4], but it can be deduced from some of the
arguments therein. These arguments, which include quite elaborate construc-
tions and use several intricate covering algorithms, are the most involved part
of Almgren’s proof.

One comment is in order. In the case Q = 1 we know a posteriori that T
coincides with the graph of a C1,α function over B2 (cp. with Theorem 2.1).
However, the branching phenomenon makes Theorem 6.2 much more interesting
in the higher codimension, since essentially it cannot be improved (except in the
sense of optimizing the exponent p and the constant C). Consider in particular
the following example. Let η be a rather small constant and T be the current
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associated to the holomorphic variety {z2 = ηw} ⊂ C
2 = R

4. Set C4 := {|w| <
4} and Q = 2. If η is chosen very small compared to ε, then T satisfies all the
assumptions of Theorem 6.1. On the other hand, the corresponding function
dT does not belong to L2 and one can easily check that estimate (6.7) does not
hold if p ≥ 2.

6.3. Some new techniques coming from metric analysis.
The main contribution of [14] is to give a much shorter and conceptually clearer
derivation of (6.7) (in fact, since Theorem 6.2 is not stated by Almgren, the real
point is to establish Theorem 6.6 below, which however is trivially equivalent).
Moreover, in [14] we introduce several new ideas. In particular:

(i) we introduce a powerful maximal function truncation technique to ap-
proximate general integer rectifiable currents with multiple valued func-
tions;

(ii) we give a simple compactness argument to conclude directly a first har-
monic approximation of T ;

(iii) we give a new proof of the existence of Almgren’s “almost projections”
ρ?.

In the rest of this section we look more closely at these ideas.

Given a normal m-current T , following [6] we can view the slice map x 7→
〈T, π, x〉 as a BV function taking values in the space of 0-dimensional currents
(endowed with the flat metric). Indeed, by a key estimate of Jerrard and Soner
(see [6] and [29]), the total variation of the slice map is controlled by the mass
of T and ∂T . In the same vein, following [13], Q-valued functions can be viewed
as Sobolev maps into the space of 0-dimensional currents. These two points of
view can be combined with standard maximal function truncation arguments
to develop a powerful and simple Lipschitz approximation technique, which
gives a systematic tool to find graphical approximations of integer rectifiable
currents.

To give a more precise idea of this method, we introduce the maximal func-
tion of the excess measure of a current T (satisfying (6.1)):

MT (x) := sup
Bs(x)⊂Br(y)

eT (Bs(x))

ωm sm
= sup

Bs(x)⊂Br(y)

Ex(T, Cs(x)).

Our main approximation result is the following and relies on an improvement
of the usual Jerrard–Soner estimate.

Proposition 6.3 (Lipschitz approximation). There exist constants c, C > 0
with the following property. Let T be an integer rectifiable m-current in C4s(x)
satisfying (6.1) and let η ∈ (0, c) be given. Set K :=

{

MT < η
}

∩B3s(x). Then,
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there exists u ∈ Lip(B3s(x),AQ(R
n)) such that graph(u|K) = T (K × R

n),

Lip(u) ≤ C η
1

2 and

|B3s(x) \K| ≤
C

η
eT

(

{MT > η/2}
)

. (6.8)

In the rest of this section, we will often choose η = E2α (= Ex(T, C4s(x))
2α),

for some α ∈ (0, (2m)−1). The map u given by Proposition 6.3 will then be
called the Eα-Lipschitz (or briefly the Lipschitz ) approximation of T in C3s(x).
We therefore conclude the following estimates:

Lip(u) ≤ C Eα, (6.9)

|B3s(x) \K| ≤ C E−2α
eT

(

{MT > E2α/2}
)

, (6.10)
∫

B3s(x)\K

|Du|2 ≤ eT
(

{MT > E2α/2}
)

. (6.11)

In particular, the function f in Theorem 6.1 is given by the Eα-Lipschitz ap-
proximation of T in C1, for a suitable choice of α.

The second step in the proof of Theorem 6.2 is a compactness argument
which shows that, when T is area-minimizing, the approximation f is close to
a Dir-minimizing function w, with an o(E) error.

Theorem 6.4 (o(E)-improvement). Let α ∈ (0, (2m)−1). For every η > 0,
there exists ε1 = ε1(η) > 0 with the following property. Let T be a rectifiable,
area-minimizing m-current in C4s(x) satisfying (6.1). If E ≤ ε1 and f is the
Eα-Lipschitz approximation of T in C3s(x), then

∫

B2s(x)\K

|Df |2 ≤ η eT (B4s(x)), (6.12)

and there exists a Dir-minimizing w ∈ W 1,2(B2s(x),AQ(R
n)) such that

∫

B2s(x)

G(f, w)2 +

∫

B2s(x)

(

|Df | − |Dw|
)2

≤ η eT (B4s(x)). (6.13)

This theorem is the multi-valued analog of De Giorgi’s harmonic approxi-
mation, which is ultimately the heart of all the regularity theories for minimal
surfaces. Our compactness argument is, to our knowledge, new (even for n = 1)
and particularly robust. Indeed, we expect it to be useful in more general situ-
ations.

Next, Theorems 6.4 and 5.1 imply the following key estimate, which leads
to Theorem 6.2 via an elementary “covering and stopping radius” argument.

Proposition 6.5. For every κ > 0, there is ε2 > 0 with the following property.
Let T be an integer rectifiable, area-minimizing current in C4s(x) satisfying
(6.1). If E ≤ ε2, then

eT (A) ≤ κEsm for every Borel A ⊂ Bs(x) with |A| ≤ ε2|Bs(x)|. (6.14)
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Using now Theorem 6.2, we can prove the most important estimate con-
tained in Chapter 3 of [4].

Theorem 6.6. There exist constants σ,C > 0 with the following property.
Let T be an area-minimizing, integer rectifiable T of dimension m in C4. If T
satisfies (6.1) and E = Ex(T, C4) < ε0, then

eT (A) ≤ C E
(

Eσ + |A|σ
)

for every Borel A ⊂ B4/3. (6.15)

6.4. Almgren’s “almost projection” ρ?. The proof of Theorem
6.6 is then the only part where we follow essentially Almgren’s strategy. The
main point is to estimate the size of the set over which the graph of the Lipschitz
approximation f differs from T . As in many standard references, in the caseQ =
1 this is achieved comparing the mass of T with the mass of the graph of f ∗ρEω ,
where ρ is a smooth convolution kernel and ω > 0 a suitably chosen constant
(this idea is, essentially, already contained in De Giorgi’s original proof).

However, for Q > 1, the space AQ(R
n) is not linear and we cannot regu-

larize f by convolution. To bypass this problem, we follow Almgren and view
AQ as a subset of a large Euclidean space (via the biLipschitz embedding ξ).
We can then take the convolution of the map ξ ◦ f and project it back on the
set ξ(AQ). However, in order to do this efficiently in terms of the energy, we
need an “almost” projection, denoted by ρ?

µ, which is almost 1-Lipschitz in the
µ-neighborhood of ξ(AQ(R

n)) (µ is a parameter which must be tuned accord-
ingly). At this point Theorem 6.2 enters in a crucial way in estimating the size
of the set where the regularization of ξ ◦ f is far from ξ(AQ(R

n)).
The maps ρ?

µ are slightly different from Almgren’s almost projections, but
similar in spirit. In [14] we propose on original argument for the construction
of ρ?

µ. One advantage of this argument is that it yields more explicit estimates
in terms of the crucial parameter µ. As mentioned earlier, this is so far the
only stage where we cannot avoid Almgren’s extrinsic maps. It would be of
interest to develop a more intrinsic approximation procedure, bypassing this
“convolution and projection” technique (cp. Section 8 below).

7. Center Manifold: A Case Study

The fourth chapter of the big regularity paper (and roughly half of this mono-
graph) is devoted to the construction of the so called “center manifold”. In
that chapter Almgren succeeds in constructing a C3,α regular surface, which
he calls center manifold and, roughly speaking, approximates the “average of
the sheets of the current” (we refer to [4] for further details) in a neighborhood
of a branching point. In the model example of Remark 2.2, the “ideal center
manifold” would be the plane {z = 0}.

Essentially, the center manifold plays the same role of the barycenters of
the measures u(x) when u is a Q-valued map. In the latter example, it is rather
straightforward to prove that the resulting “average function” is a classical
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harmonic function (see for example [13, Lemma 3.23]). Unfortunately for the
case of area-minimizing current, due to the “nonlinear nature” of the problem,
there is no obvious PDE allowing for a similar conclusion.

7.1. Higher regularity “without PDEs”. In the introduction of
[4] Almgren observes that, in the case Q = 1, the center manifold coincides
necessarily with the current itself, thus implying directly its C3,α regularity.
Compared to the usual proofs, this is rather striking. In fact, after proving
Theorem 2.1, the “usual” regularity theory proceeds further by deriving the
well-known Euler–Lagrange equations for the function f . It then turns out that
f solves a system of elliptic partial differential equations and the Schauder
theory implies that f is smooth (in fact analytic, using the classical result by
Hopf [28]).

The corollary of Almgren’s construction is that the C3,α regularity can be
concluded without appealing to “nonparametric techniques”. In the note [15]
we give a simple direct proof of this remark, essentially following Almgren’s
strategy for the construction of the center manifold in the case Q = 1. Though
in a very simplified situation, this model case retains several key estimates of
Almgren’s construction. For instance it makes transparent the fundamental role
played by the Eδ-gain in the estimates of the Approximation Theorem 6.1.

Our hope is that this will be a first step in the full understanding of Alm-
gren’s result. It is worthwhile to notice that, compared to the extremely long
construction of the center manifold, the last portion of [4], containing the con-
cluding arguments of Almgren’s regularity theorem for area-minimizing integral
currents, is much shorter. The construction of the center manifold seems the
last big obstacle which needs to be overcome in order to understand the full
regularity results of Almgren and Chang.

It is of a certain interest to notice that this “higher regularity” result stops
a little after three derivatives. It does not seem possible, for instance, to get an
estimate for the C4 norm. In the proof presented in [15], this is quite transpar-
ent. In some sense, one can think of Almgren’s strategy as an extremely careful
approximation of the current obtained by pasting together (suitably rotated)
graphs of harmonic functions.

One reason for the C3,α estimate might be the fact that the Dirichlet energy
is a quite accurate approximation of the area functional. Loosely speaking, one
can think of De Giorgi’s theorem as a consequence of the fact that the har-
monic functions are first order expansions of solutions to the minimal surfaces.
One gains almost 2 derivatives in this way (a careful look at the proof of The-
orem 2.1 would show that it works for every β < 1, cp. with the Appendix of
[15]). Taking the Taylor expansion to the next level, it turns out that harmonic
functions approximate solutions of the minimal surface equations even “to the
next order”. To illustrate this phenomenon, consider the simpler situation of
a surface of codimension 1, given by the graph of a Lipschitz function f . The
key ingredient in De Giorgi’s argument for the excess-decay is the following
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observation on the integrand of the area functional:

I(∇f) :=
√

1 + |∇f |2 = 1 +
1

2
|∇f |2 + o(|∇f |2) .

However, the Taylor expansion yields a much more precise information:

I(∇f) = 1 +
1

2
|∇f |2 +O(|∇f |4) . (7.1)

The identity (7.1) is correct also in higher codimension.

8. Open Problems

In this section we collect a list of open problems on Q-valued functions. As
already mentioned, there are several directions in which Almgren’s theory could
be extended, in particular in generalizing it to non-euclidean ambient spaces.
However, in this list we have decided to focus on the euclidean setting and on
problems which would deliver new information rather than generalizing existing
theorems to different contexts. Many of these problems have been proposed by
Almgren and the reader might find them in the collection [1].

(1) In the proof of Theorem 3.7 a pivotal role is played by the so called “tan-
gent functions”. The key idea (which ultimately might be regarded as the
most important discovery of Almgren) is that, when suitably rescaling
a Dir-minimizer in a neighborhood of a singularity, the resulting maps
converge, up to subsequences, to Dir-minimizers which are radially ho-
mogeneous. This theorem is achieved through the monotonicity of the
celebrated frequency function, which in this context plays the same role
of the monotonicity formula for area-minimizing currents.

The uniqueness of the “blow-up” at a singularity is not known, except for
the planar maps (see [13, Theorem 5.3], where it is proved before Theorem
3.8 exploiting some ideas of [7]; assuming Theorem 3.8, this uniqueness is
an obvious consequence of the considerations in [32]). Almgren suggests
that a relevant role in this problem might be played by the techniques
developed in [40] (cp. with [1, Problem 5.6]).

(2) A tentative conjecture is that the singular set of a Dir-minimizer map
on an m–dimensional domain should have (locally) finite Hm−2 measure
and be rectifiable. This is only known to hold in the case m = 2 (cp. with
Theorem 3.8).

(3) In [1, Problem 5.5] Almgren asks whether the graph of a Dir-minimizer is
always a real analytic set. To our knowledge this is unknown even in the
case of planar maps, where rather detailed information is available (after
combining Theorem 3.8 with the results of [32]).

(4) It would be interesting to get other examples of Dir-minimizers. To our
knowledge, no other systematic class of examples is known apart from
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that of holomorphic varieties (cp. with the discussion in Section 5.3). Is
there any other similar class that one could derive from other calibrated
geometries?

(5) Essentially nothing is known if we replace the minimizing property with
stationarity. Different notions of stationary maps are possible, due to the
difference between inner and outer variations (cp. with [13, Section 3.1])
and to the possibility of introducing more general type of deformations.
Does the singular set have measure zero? It is easy to see that there are
maps which are stationary with respect to both inner and outer variations
and have a singular set of dimension m − 1. Does the singular set have
dimensionm−2 if the map is stationary with respect to any one-parameter
family of deformations (cp. with [4, Problem 5.5])?

(6) Very little is known if we change the Dirichlet energy. The paper [12]
shows the existence of a large class of semicontinuous functionals. If we
restrict to planar maps and quadratic (semicontinuous) functionals, the
only information available for minimizers is the Hölder continuity (proved
in [31]).

(7) Are Dir-minimizers continuous, or ever Hölder, up to the boundary, if
the boundary data are sufficiently regular? The only known result is the
continuity for 2–dimensional domains (proved in [50]).

(8) Can one avoid the map ρ?
µ in the proof of Theorem 6.1? Another way

to phrase this question is the following. Is there an “intrinsic” efficient
smoothing procedure for Q-valued functions? So far the following are the
only two available techniques:

– The (intrinsic) maximal function truncation argument which allows
to approximate general Q-valued functions in W 1,p with Lipschitz
maps.

– Almgren’s extrinsic smoothing: the given map u is transformed into
a Euclidean map ξ ◦ u; this map is than regularized (for instance
with a convolution) and, to produce again a Q-valued map, the reg-
ularization is projected on the set ξ(AQ).

The latter yields efficient estimates when dealing with the Dirichlet ener-
gies of the corresponding maps. We do not know of any intrinsic method
to achieve regularizations with the same estimates.
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Abstract

This paper deals with the construction of solutions to autonomous semilinear
elliptic equations considered in entire space. In the absence of space dependence
or explicit geometries of the ambient space, the point is to unveil internal mech-
anisms of the equation that trigger the presence of families of solutions with
interesting concentration patterns. We discuss the connection between minimal
surface theory and entire solutions of the Allen-Cahn equation. In particular,
for dimensions 9 or higher, we build an example that provides a negative answer
to a celebrated question by De Giorgi for this problem. We will also discuss re-
lated results for the (actually more delicate) standing wave problem in nonlinear
Schrödinger equations and for sign-changing solutions of the Yamabe equation.
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1. Introduction

Understanding the entire solutions of nonlinear elliptic equations in R
N such

as

∆u+ f(u) = 0 in R
N , (1.1)

is a basic problem in PDE research. This is the context of various classical
results in literature like the Gidas-Ni-Nirenberg theorems on radial symmetry,
Liouville type theorems, or the achievements around De Giorgi’s conjecture.
In those results, the geometry of level sets of the solutions turns out to be a
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posteriori very simple (planes or spheres). On the other hand, problems of the
form (1.1) with nonlinearities recurrent the literature, do have solutions with
more interesting patterns, and the structure of their solution sets has remained
mostly a mystery.

In many studies, problems like (1.1) are considered involving explicit de-
pendence on the space variable, or on a manifold or in a domain in R

N under
boundary conditions. Topological and geometric features of the domain are
often characteristic that trigger the presence of interesting solutions, whose
precise features can be analyzed when some singular perturbation parameter
is involved. In the absence of space inhomogeneity or geometry of the ambient
space, as in the “clean” equation (1.1), it is less clear which internal mecha-
nisms of the equation are behind complex patterns in the solution set, whose
richness may be nearly impossible to fully grasp.

In this paper we consider specific problems of the form (1.1) and describe
recent results on existence of families of solutions, depending on parameters,
that exhibit interesting asymptotic patterns linked to geometric objects in entire
space. We consider the following three classical problems:

1. The Allen-Cahn equation,

∆u + u− u3 = 0 in R
N .

2. The standing wave problem for the (focusing) nonlinear Schrödinger equation

∆u + |u|p−1u− u = 0 in R
N .

3. The Yamabe equation

∆u + |u| 4
N−2u = 0 in R

N , N ≥ 3.

Sections 1 to 5, will be devoted to discuss the Allen Cahn equation. We will
describe a link between entire minimal surfaces and solutions to the equation
which have a nodal set close to large dilations near such a surface, while ap-
proaching ±1 away from it, in particular answering negatively a long-standing
question by De Giorgi in dimensions N ≥ 9. We shall describe in Section 6
parallels and related results for the other two problems, which are in turn more
delicate.

2. The Allen-Cahn Equation

The Allen-Cahn equation in R
N is the semilinear elliptic problem

∆u + u− u3 = 0 in R
N . (2.1)

Originally formulated in the description of bi-phase separation in fluids [14] and
ordering in binary alloys [3], Equation (2.1) has received extensive mathematical
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study. It is a prototype for the modeling of phase transition phenomena in a
variety of contexts.

Introducing a small positive parameter ε and writing v(x) := u(ε−1x), we
get the scaled version of (2.1),

ε2∆v + v − v3 = 0 in R
N . (2.2)

On every bounded domain Ω ⊂ R
N , (2.1) is the Euler-Lagrange equation for

the action functional

Jε(v) =

∫

Ω

ε

2
|∇v|2 + 1

4ε
(1− v2)2.

We observe that the constant functions v = ±1 minimize Jε. They are idealized
as two stable phases of a material in Ω. It is of interest to analyze configurations
in which the two phases coexist. These states are represented by stationary
points of Jε, or solutions vε of Equation (2.2), that take values close to +1 in
a subregion of Ω of and −1 in its complement. Modica and Mortola [64] and
Modica [63], established that a family of local minimizers vε of Jε for which

sup
ε>0

Jε(vε) < +∞ (2.3)

must satisfy as ε→ 0, after passing to a subsequence,

vε → χΛ − χΩ\Λ in L1
loc(Ω). (2.4)

Here Λ is an open subset of Ω with Γ = ∂Λ ∩ Ω having minimal perimeter,
being therefore a (generalized) minimal surface. Moreover,

Jε(vε) →
2

3

√
2HN−1(Γ). (2.5)

2.1. Formal asymptotic behavior of vε. Let us argue formally to
obtain an idea on how a solution vε of Equation (2.2) with uniformly bounded
energy (2.3) should look like near a limiting interface Γ. Let us assume that Γ
is a smooth hypersurface and let ν designate a choice of its unit normal. Points
δ-close to Γ can be uniquely represented as

x = y + zν(y), y ∈ Γ, |z| < δ (2.6)

A well known formula for the Laplacian in these coordinates reads as follows.

∆x = ∂zz +∆Γz −HΓz
∂z (2.7)

Here

Γz := {y + zν(y) / y ∈ Γ}.



Entire Solutions to Semilinear Elliptic Equations 1937

∆Γz is the Laplace-Beltrami operator on Γz acting on functions of the variable
y, and HΓz designates its mean curvature. Let k1, . . . , kN denote the principal
curvatures of Γ. Then we have the validity of the expression

HΓz =

N
∑

i=1

ki
1− zki

. (2.8)

It is reasonable to assume that the solution has uniform smoothness in the
y-direction, while in the transition direction z, elliptic estimates applied to the
transformed equation (2.1) yield uniform smoothness in the variable ζ = ε−1z.
The equation for vε(y, ζ) then reads

ε2∆Γεζvε − εHΓεζ (y) ∂ζvε + ∂2ζvε + vε − v3ε = 0, y ∈ Γ, |ζ| < δε−1. (2.9)

We shall make two strong assumptions:

1. The zero-level set of vε lies within a O(ε2)-neighborhood of Γ, that is on
the region |ζ| = O(ε) and ∂τvε > 0 on this nodal set, and

2. vε(y, ζ) can be expanded in powers of ε as

vε(y, ζ) = v0(y, ζ) + εv1(y, ζ) + ε2v2(y, ζ) + · · · (2.10)

for smooth coefficients bounded, with bounded derivatives. We observe
also that

∫

Γ

∫ δ/ε

−δ/ε

[
1

2
|∂ζvε|2 +

1

4
(1− v2ε)

2 ] dζ dσ(y) ≤ Jε(vε) ≤ C (2.11)

Substituting Expression (2.10) in Equation (2.9), using the first assumption,
and letting ε→ 0, we get

∂2ζv0 + v0 − v30 = 0, (y, ζ) ∈ Γ× R,

v0(0, y) = 0, ∂ζ(0, y) ≥ 0, y ∈ Γ. (2.12)

while from (2.11) we get

∫

R

[
1

2
|∂ζv0|2 +

1

4
(1− v20)

2 ] dζ < +∞ (2.13)

Conditions (2.13) and (2.12) force v0(y, ζ) = w(ζ) where w is the unique solu-
tion of the ordinary differential equation

w′′ + w − w3 = 0, w(0) = 0, w(±∞) = ±1, (2.14)

namely
w(ζ) := tanh(ζ/

√
2). (2.15)



1938 Manuel del Pino

On the other hand, substitution yields that v1(y, ζ) satisfies

∂2ζv1 + (1− 3w(ζ)2)v1 = HΓ(y)w
′(ζ), ζ ∈ (−∞,∞) (2.16)

Testing this equation against w′(ζ) and integrating by parts in ζ we get the
relation

HΓ(y) = 0 for all y ∈ Γ

which tells us precisely that Γ must be a minimal surface, as expected. Hence,
we get v1 = −h0(y)w′(ζ) for a certain function h0(y). As a conclusion, from
(2.10) and a Taylor expansion, we can write

vε(y, ζ) = w(ζ − εh0(y)) + ε2v2 + · · ·

It is convenient to write this expansion in terms of the variable t = ζ − εh0(y)
in the form

vε(y, ζ) = w(t) + ε2v2(t, y) + ε3v3(t, y) + · · · (2.17)

Using expression (2.8) and the fact that Γ is a minimal surface, we expand

HΓεζ (y) = ε2ζ |AΓ(y)|2 + ε3ζ2H3(y) + · · ·

where

|AΓ|2 =

8
∑

i=1

k2i , H3 =

8
∑

i=1

k3i .

Thus setting t = ζ − εh0(y) and using (2.17), we compute

0 = ∆vε + vε + v3ε = [∂2t + (1− 3w(t)2)] (ε2v2 + ε3v3)

−w′(t) [ ε3∆Γh0 + ε3H3 t
2 + ε2|AΓ|2 (t+ εh0) ] + O(ε4).

And then letting ε→ 0 we arrive to the equations

∂2t v2 + (1− 3w2)v2 = |AΓ|2 tw′, (2.18)

∂2t v3 + (1− 3w2)v3 = [∆Γh0 + |AΓ|2h0 +H3 t
2]w′. (2.19)

Equation (2.18) has a bounded solution since
∫

R
tw′(t)2 dt = 0 Instead the

bounded solvability of (2.19) is obtained if and only if h0 solves the following
elliptic equation in Γ.

JΓ[h0](y) := ∆Γh0 + |AΓ|2h0 = c

8
∑

i=1

k3i in Γ, (2.20)

where c = −
∫

R
t2w′2 dt/

∫

R
w′2 dt. JΓ is by definition the Jacobi operator of the

minimal surface Γ.
We deal with the problem of constructing entire solutions of Equation (2.2),

that exhibit the asymptotic behavior described above, around a given, fixed
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minimal hypersurface Γ that splits the space R
N into two components, and for

which the coordinates (2.6) are defined for some uniform δ > 0. A key element
for such a construction is the precisely the question of solvability of Equation
(2.20), that determines at main order the deviation of the nodal set of the
solution from Γ.

In terms of the original problem (2.1), the issue is to consider a large dilation
of Γ,

Γε := ε−1Γ,

and find an entire solution uε to problem (2.1) such that for a function hε
defined on Γ with

sup
ε>0

‖hε‖L∞(Γ) < +∞, (2.21)

we have

uε(x) = w(ζ − εhε(εy)) +O(ε2), (2.22)

uniformly for

x = y + ζν(εy), |ζ| ≤ δ

ε
, y ∈ Γε,

while

|uε(x)| → 1 as dist (x,Γε) → +∞. (2.23)

We shall answer affirmatively this question in some important examples for
Γ. One is a nontrivial minimal graph in R

9. The solution found provides a
negative answer to to a famous question due to Ennio De Giorgi [25]. On the
other hand, in R

3 we find a broad new class of entire solutions with finite Morse
index, which suggests analogs of De Giorgi’s conjecture for solutions of (2.1) in
parallel with known classification results for minimal surfaces.

3. From Bernstein’s to De Giorgi’s Conjecture

Ennio De Giorgi [25] formulated in 1978 the following celebrated conjecture
concerning entire solutions of equation (2.1).

De Giorgi’s Conjecture: Let u be a bounded solution of equation (2.1) such
that ∂xN

u > 0. Then the level sets [u = λ] are all hyperplanes, at least for
dimension N ≤ 8.

Equivalently, u must depend only on one Euclidean variable so that it must
have the form u(x) = w((x− p) · ν) for some p ∈ R

N and some ν with |ν| = 1
and νN > 0.

The condition ∂xN
u > 0 implies that the level sets of u are all graphs of

functions of the first N − 1 variables. As we have discussed in the previous
section, level sets of solutions with a transition are closely connected to mini-
mal hypersurfaces. De Giorgi’s conjecture is in fact a parallel to the following
classical statement.
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Bernstein’s conjecture: A minimal hypersurface in R
N , which is also the

graph of a smooth entire function of N − 1 variables, must be a hyperplane.
In other words, if Γ is an entire minimal graph, namely

Γ = {(x′, xN ) | x′ ∈ R
N−1, xN = F (x′)} (3.1)

where F solves the minimal surface equation

HΓ ≡ ∇ ·
(

∇F
√

1 + |∇F |2

)

= 0 in R
N−1, (3.2)

then Γ must be a hyperplane, hence F must be a linear affine function.
Bernstein’s conjecture is known to be true up to dimension N = 8, see

Simons [80] and references therein, while it is false for N ≥ 9, as proven by
Bombieri, De Giorgi and Giusti [12], by building a nontrivial solution to Equa-
tion (3.2). Let us write x′ ∈ R

8 as x′ = (u,v) ∈ R
4 × R

4. Let us consider the
set

T := {(u,v) ∈ R
8 | |v| > |u| > 0 }. (3.3)

The set {|u| = |v|} ∈ R
8 is Simons’ minimal cone [80]. The solution found in

[12] is radially symmetric in both variables, namely F = F (|u|, |v|). In addition,
F is positive in T and it vanishes along Simons’ cone. Moreover, it satisfies

F (|u|, |v|) = −F (|v|, |u|) . (3.4)

Let us write (|u|, |v|) = (r cos θ, r sin θ). In [30] it is found that there is a
function g(θ) with

g(θ) > 0 in (π/4, π/2), g′(π/2) = 0 = g(π/4), g′(π/4) > 0,

such that for some σ > 0,

F (|u|, |v|) = g(θ) r3 +O(r−σ) in T. (3.5)

De Giorgi’s conjecture has been established in dimensions N = 2 by Ghous-
soub and Gui [41] and for N = 3 by Ambrosio and Cabré [15]. Savin [76] proved
its validity for 4 ≤ N ≤ 8 under the additional assumption

lim
xN→±∞

u(x′, xN ) = ±1 for all x′ ∈ R
N−1. (3.6)

Farina and Valdinoci [38] replaced condition (3.6) by the less restrictive as-
sumption that the profiles at infinity are two-dimensional functions, or that
their level sets are complete graphs. Condition (3.6) is related to the so-called
Gibbons’ Conjecture:

Gibbons’ Conjecture: Let u be a bounded solution of equation (2.1) satisfying
Condition (3.6) uniformly in x′. Then the level sets of u are all hyperplanes.
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Gibbons’ Conjecture has been established in all dimensions with different
methods by Caffarelli and Córdoba [17], Farina [36], Barlow, Bass and Gui
[10], and Berestycki, Hamel, and Monneau [11]. In [17, 10] it is proven that the
conjecture is true for any solution that has one level set which is a globally
Lipschitz graph.

The following result disproves De Giorgi’s statement for n ≥ 9.

Theorem 1 ([30, 31]). Let N ≥ 9. Then there is an entire minimal graph Γ
which is not a hyperplane, such that all ε > 0 sufficiently small there exists a
bounded solution uε(x) of equation (2.1) that satisfies properties (2.21)-(2.23).
Besides, ∂xN

uε > 0 and uε satisfies condition (3.6).

A counterexample to De Giorgi’s conjecture in dimension N ≥ 9 was be-
lieved to exist for a long time. Partial progress in this direction was made by
Jerison and Monneau [51] and by Cabré and Terra [13]. See also the survey
article by Farina and Valdinoci [37].

3.1. Outline of the proof. For a small ε > 0 we look for a solution uε
of the form (near Γε),

uε(x) = w(ζ − εh(εy)) + φ(ζ − εh(εy), y), x = y + ζν(εy) (3.7)

where y ∈ Γε, ν designates a unit normal to Γ with νN > 0, h is a function
defined on Γ, which is left as a parameter to be adjusted. Setting r(y′, y9) = |y′|,
we assume a priori in h that

‖(1 + r2)DΓh‖L∞(Γ) + ‖(1 + r)h‖L∞(Γ) ≤ M (3.8)

for some large, fixed number M , also with a uniform control on (1 + r3)D2
Γh.

Letting f(u) = u − u3 and using Expression (2.7) for the Laplacian, the
equation becomes

S(uε) := ∆uε + f(uε) =

∆Γζ
ε
uε − εHΓζ

ε
(εy) ∂ζuε +

∂2ζuε + f(uε) = 0, y ∈ Γε, |ζ| < δ/ε. (3.9)

Letting t = ζ − εh(εy), we look for uε of the form

uε(t, y) = w(t) + φ(t, y)

for a small function φ. The equation in terms of φ becomes

∂2t φ+∆Γε
φ+Bφ+ f ′(w(t))φ+N(φ) + E = 0. (3.10)

where B is a small linear second order operator, and

E = S(w(t)), N(φ) = f(w + φ)− f(w)− f ′(w)φ ≈ f ′′(w)φ2.
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While the expression (3.10) makes sense only for |t| < δε−1, it turns out that
the equation in the entire space can be reduced to one similar to (3.10) in entire
R × Γε, where E and the undefined coefficients in B are just cut-off far away,
while the operator N is slightly modified by the addition of a small nonlinear,
nonlocal operator of φ. Rather than solving this problem directly we carry
out an infinite dimensional form of Lyapunov-Schmidt reduction, considering a
projected version of it,

∂2t φ+∆Γε
φ+Bφ+ f ′(w(t))φ+N(φ) + E =

c(y)w′(t) in R× Γε,
∫

R

φ(t, y)w′(t) dt = 0 for all y ∈ Γε. (3.11)

the error of approximation E has roughly speaking a bound O(ε2r(εy)−2e−σ|t|),
and it turns out that one can find a solution φ = Φ(h) to problem (3.11) with
the same bound. We then get a solution to our original problem if h is such
that c(y) ≡ 0. Thus the problem is reduced to finding h such that

c(y)

∫

R

w′2 =

∫

R

(E +BΦ(h) +N(Φ(h)))w′dt ≡ 0.

A computation similar to that in the formal derivation yields that this problem
is equivalent to a small perturbation of Equation (2.20)

JΓ(h) := ∆Γh+ |AΓ|2h = c

8
∑

i=1

k3i +N (h) in Γ, (3.12)

where N (h) is a small operator. From an estimate by Simon [79] we know

that ki = O(r−1). Hence H3 :=
∑8

i=1 k
3
i = O(r−3). A central point is to

show that the unperturbed equation (2.20) has a solution h = O(r−1), which
justifies a posteriori the assumption (3.8) made originally on h. This step uses
the asymptotic expression (3.5). The symmetries of the surface allow to reduce
the problem to solving it in T with zero Dirichlet boundary conditions on
Simons’ cone. We have that H3 = O(g(θ)r−3) and one gets a positive barrier of
size O(r−1). The operator JΓ satisfies maximum principle and existence thus
follows. The full nonlinear equation is then solved with the aid of contraction
mapping principle. The detailed proof of this theorem is contained in [30].

The program towards the counterexample in [51] and [15] is based on an
analogous one in Bernstein’s conjecture: the existence of the counterexample
is reduced to establishing the minimizing character of a saddle solution in R

8

that vanishes on Simon’s cone. Our approach of direct construction is actually
applicable to build unstable solutions associated to general minimal surfaces,
as we illustrate in the next section. We should mention that method of infinite
dimensional reduction for the Allen Cahn equation in compact settings has
precedents with similar flavor in [73], [55], [29]. Using variational approach,
local minimizers were built in [54].
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4. Finite Morse Index Solutions of the

Allen-Cahn Equation in R
3

The assumption of monotonicity in one direction for the solution u in De
Giorgi’s conjecture implies a form of stability, locally minimizing character for u
when compactly supported perturbations are considered in the energy. Indeed,
the linearized operator L = ∆ + (1 − 3u2), satisfies maximum principle since
L(Z) = 0 for Z = ∂xN

u > 0. This implies stability of u, in the sense that its
associated quadratic form, namely the second variation of the corresponding
energy,

Q(ψ,ψ) :=

∫

R3

|∇ψ|2 + (3u2 − 1)ψ2 (4.1)

satisfies Q(ψ,ψ) > 0 for all ψ 6= 0 smooth and compactly supported. Stability
of u is indeed sufficient for De Giorgi’s statement to hold in dimension N = 2, as
observed by Dancer [22]. This question is open for 3 ≤ N ≤ 8. The monotonicity
assumption actually implies the globally minimizing character of the solution
on each compact set, subject to its own boundary conditions, see [1].

The Morse index m(u) is defined as the maximal dimension of a vector
space E of compactly supported functions such that

Q(ψ,ψ) < 0 for all ψ ∈ E \ {0}.

In view of the discussion so far, it seems natural to associate complete,
embedded minimal surfaces Γ with finite Morse index, and solutions of (2.1).
The Morse index of the minimal surface Γ, i(Γ), has a similar definition relative
to the quadratic form for its Jacobi operator JΓ := ∆Γ + |AΓ|2: The number
i(Γ) is the largest dimension for a vector spaced E of compactly supported
smooth functions in Γ with

∫

Γ

|∇k|2 dV −
∫

Γ

|A|2k2 dV < 0 for all k ∈ E \ {0}.

We point out that for complete, embedded surfaces, finite index is equivalent
to finite total curvature, namely

∫

Γ

|K| dV < +∞

where K denotes Gauss curvature of the manifold, see §7 of [48] and references
therein.

4.1. Embedded minimal surfaces of finite total curvature.
The theory of embedded, minimal surfaces of finite total curvature in R

3, has
reached a notable development in the last 25 years. For more than a century,
only two examples of such surfaces were known: the plane and the catenoid.
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The first nontrivial example was found in 1981 by C. Costa, [19, 20]. The Costa
surface is a genus one minimal surface, complete and properly embedded, which
outside a large ball has exactly three components (its ends), two of which are
asymptotically catenoids with the same axis and opposite directions, the third
one asymptotic to a plane perpendicular to that axis. The complete proof of em-
beddedness is due to Hoffman and Meeks [49]. In [50] these authors generalized
notably Costa’s example by exhibiting a class of three-end, embedded minimal
surface, with the same look as Costa’s far away, but with an array of tunnels
that provides arbitrary genus ` ≥ 1. This is known as the Costa-Hoffman-Meeks
surface with genus `.

As a special case of the main results of [32] we have the following

Theorem 2 ([32]). Let Γ ⊂ R
3 be either a catenoid or a Costa-Hoffman-Meeks

surface with genus ` ≥ 1. Then for all sufficiently small ε > 0 there exists a
solution uε of Problem (2.1) with the properties (2.21)-(2.23). In the case of the
catenoid, the solution found is radially symmetric in two of its variables and
m(uε) = 1. For the Costa-Hoffman-Meeks surface with genus ` ≥ 1, we have
m(uε) = 2`+ 3.

4.2. A general statement. In what follows Γ designates a complete,
embedded minimal surface in R

3 with finite total curvature. Then Γ is orientable
and the set R3 \Γ has exactly two components S+, S−, see [48]. In what follows
we fix a continuous choice of unit normal field ν(y), which conventionally we
take it to point towards S+.

For x = (x′, x3) ∈ R
3, we denote as before, r = r(x) = |x′|. It is known that

after a suitable rotation of the coordinate axes, outside the infinite cylinder
r < R0 with sufficiently large radius R0, Γ decomposes into a finite number m
of unbounded components Γ1, . . . ,Γm, its ends. From a result in [78], we know
that asymptotically each end of Γk either resembles a plane or a catenoid. More
precisely, Γk can be represented as the graph of a function Fk of the first two
variables,

Γk = { y ∈ R
3 / r(y) > R0, y3 = Fk(y

′) }
where Fk is a smooth function which can be expanded as

Fk(y
′) = ak log r + bk + bik

yi
r2

+O(r−3) as r → +∞, (4.2)

for certain constants ak, bk, bik, and this relation can also be differentiated.
Here

a1 ≤ a2 ≤ . . . ≤ am ,

m
∑

k=1

ak = 0 . (4.3)

We say that Γ has non-parallel ends if all the above inequalities are strict.
Let us consider the Jacobi operator of Γ

JΓ(h) := ∆Γh+ |AΓ|2h (4.4)
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where |AΓ|2 = k21 + k22 = −2K. A smooth function z(y) defined on Γ is called
a Jacobi field if JΓ(z) = 0. Rigid motions of the surface induce naturally some
bounded Jacobi fields: Associated to respectively translations along coordinates
axes and rotation around the x3-axis, are the functions

z1(y) = ν(y) · ei, y ∈ Γ, i = 1, 2, 3,

z4(y) = (−y2, y1, 0) · ν(y), y ∈ Γ. (4.5)

We assume that Γ is non-degenerate in the sense that these functions are
actually all the bounded Jacobi fields, namely

{ z ∈ L∞(Γ) / JΓ(z) = 0 } = span { z1, z2, z3, z4 } . (4.6)

This property is known in some important cases, most notably the catenoid
and the Costa-Hoffmann-Meeks surface of any order ` ≥ 1. See Nayatani [67, 68]
and Morabito [65].

Theorem 3 ([32]). Let N = 3 and Γ be a minimal surface embedded, complete
with finite total curvature and non-parallel ends, which is in addition nondegen-
erate. Then for all sufficiently small ε > 0 there exists a solution uε of Problem
(2.1) with the properties (2.21)-(2.23). Moreover, we have

m(uε) = i(Γ).

Besides, the solution is non-degenerate, in the sense that any bounded solution
of

∆φ + (1− 3u2ε)φ = 0 in R
3

must be a linear combination of the functions Zi, i = 1, 2, 3, 4 defined as

Zi = ∂iuε, i = 1, 2, 3, Z4 = −x2∂1uε + x1∂2uε.

It is well-known that if Γ is a catenoid then i(Γ) = 1. Moreover, in the
Costa-Hoffmann-Meeks surface it is known that i(Γ) = 2` + 3 where ` is the
genus of Γ. See [67, 68, 65].

4.3. Further comments. In analogy with De Giorgi’s conjecture, it
seems plausible that qualitative properties of embedded minimal surfaces with
finite Morse index should hold for the level sets of finite Morse index solutions
of Equation (2.1), provided that these sets are embedded manifolds outside a
compact set. As a sample, one may ask for the validity of the following two
statements:

• The level sets of any finite Morse index solution u of (2.1) in R
3, such

that ∇u 6= 0 outside a compact set should have a finite, even number of
catenoidal or planar ends with a common axis.
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The above fact does hold for minimal surfaces with finite total curvature and
embedded ends as established by Ossermann and Schoen. On the other hand,
the above statement should not hold true if the condition ∇u 6= 0 outside
a large ball is violated. For instance, let us consider the octant {x1, x2, x3 ≥
0}. Problem (2.1) in the octant with zero boundary data can be solved by a
super-subsolution scheme (similar to that in [23]) yielding a positive solution.
Extending by successive odd reflections to the remaining octants, one generates
an entire solution (likely to have finite Morse index), whose zero level set does
not have the characteristics above: the condition ∇u 6= 0 far away corresponds
to embeddedness of the ends of the level sets.

An analog of De Giorgi’s conjecture for the solutions that follow in complex-
ity the stable ones, namely those with Morse index one, may be the following:

• A bounded solution u of (2.1) in R
3 with i(u) = 1, and ∇u 6= 0 outside

a bounded set, must be axially symmetric, namely radially symmetric in
two variables.

The solution we found, with transition on a dilated catenoid has this prop-
erty. This statement would be in correspondence with results by Schoen [78]
and López and Ros [58]: if i(Γ) = 1 and Γ has embedded ends, then it must be
a catenoid.

5. The Allen-Cahn Equation in R
2

5.1. Solutions with multiply connected nodal set. The only
minimal surface Γ that we can consider in this case is a straight line, to which
the trivial solution depending on its normal variable can be associated.

A class of solutions to (2.1) with a finite number of transition lines, likely to
have finite Morse index, has been recently built in [34]. The location and shape
of these lines is governed by the Toda system, a classical integrable model for
scattering of particles on a line under the action of a repulsive exponential
potential:

√
2

24
f ′′j = e−

√
2(fj−fj−1) − e−

√
2(fj+1−fj), j = 1, . . . k, (5.1)

f0 ≡ −∞, fk+1 ≡ +∞. It is known that for a given solution there exist numbers
a±j , b

±
j such that

fj(z) = a±j |z|+ b±j +O(e−|z|) as z → ±∞

where a±j < a±j+1, j = 1, . . . , k − 1 (long-time scattering).
The role of this system in the construction of solutions with multiple tran-

sition lines in the Allen-Cahn equation in bounded domains was discovered in
[29]. In entire space the following result holds.
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Theorem 4 ([34]). Given a solution f of (5.1) if we scale

fε,j(z) :=
√
2 (j − k + 1

2
) log

1

ε
+ fj(εz),

then for all small ε there is a solution uε with k transitions layers near the lines
x2 = fε,j(x1). More precisely,

uε(x1, x2) =

k
∑

j=1

(−1)j−1w(x1 − fε,j(x2) ) + σk + O(ε), (5.2)

where σk = − 1
2 (1 + (−1)k) .

The transition lines are therefore nearly parallel and asymptotically straight.
In particular, if k = 2 and f solves the ODE

√
2

24
f ′′(z) = e−2

√
2f(z), f ′(0) = 0,

and fε(z) :=
√
2 log 1

ε + f(εz), then there exists a solution uε to (2.1) in R
2

with
uε(x1, x2) = w(x1 + fε(x2) ) + w(x1 − fε(x2)) − 1 +O(ε). (5.3)

The formal reason for the appearance of the Toda system can be explained
as follows: Let us consider the function

u∗(x1, x2) =
k
∑

j=1

(−1)j−1w(x1 − fj(x2) ) + σk

and assume that the fj ’s are ordered and very distant one to each other. Then
the energy

JS(u∗) =
1

2

∫

S

|∂x2
u∗|2 + |∂x1

u∗|2 +
1

4

∫

S

(1− u2∗)
2

computed in a finite strip S = R × (−`, `) becomes at main order, after some
computation,

JS(u∗) ≈ 2` [
1

2

∫

R

|w′|2+1

4

∫

R

(1−w2)2 ] + c1

k
∑

j=1

∫ `

−`

|f ′j |2−c2
∑

i6=j

∫ `

−`

e−
√
2|fi−fj |

for certain explicit constants c1 and c2. Assuming that the quantities e−
√
2|fi−fj |

are negligible for |i−j| ≥ 2, we obtain for the approximate equilibrium condition
of the functions fj , precisely the system (5.1).
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5.2. Remarks. The solutions (5.2) show a major difference between the
minimal surface problem and the Allen-Cahn equation, as it is the fact that two
separate interfaces interact, leading to a major deformation in their asymptotic
shapes. We believe that these examples should be prototypical of bounded finite
Morse index solutions of (2.1). A finite Morse index solution u is stable outside
a bounded set. If we follow a component of its nodal set along a unbounded
sequence, translation and a standard compactness argument leads in the limit
to a stable solution. Hence from the result in [22] its profile must be one-
dimensional and hence its nodal set is a straight line. This makes it plausible
that the ends of the nodal set of u are asymptotically a finite, even number
of straight lines. If this is the case, those lines are not disposed in arbitrary
way: Gui [46] proved that if e1,. . . e2k are unit vectors in the direction of the
ends of the nodal set of a solution of (2.1) in R

2, then the balancing formula
∑2k

j=1 ej = 0 holds.

As we have mentioned, another finite Morse solution is known, [23], the
so-called saddle solution. It is built by positive barriers with zero boundary
data on a quadrant, and then extended by odd reflections to the rest of the
plane, so that its nodal set is an infinite cross, hence having 4 straight ends.
The saddle solution has Morse index 1, see [77]. This is also formally the case
for the solutions (5.3), which also has 4 ends.

An interesting question is whether the parameter ε of the solutions (5.3) can
be continued to increase the nearly zero angle between ends up to π

2 , the case of
the saddle solution. Similarly, a saddle solutions with 2k ends with consecutive
angles π

k has been built in [2]. One may similarly ask whether this solution is
in some way connected to the 2k-end family (5.2).

6. The Stationary NLS and the Yamabe

Equations

6.1. The standing wave problem for NLS. We shall discuss some
results on the problem

∆u+ |u|p−1u− u = 0 in R
N (6.1)

where p > 1. Equation (6.1) arises for instance as the standing-wave problem
for the standard nonlinear Schrödinger equation

iψt = ∆ψ + |ψ|p−1ψ, (6.2)

corresponding to that of solutions of the form ψ(y, t) = u(y)e−it. It also arises
in nonlinear models in Turing’s theory biological theory of pattern formation,
such as the Gray-Scott or Gierer-Meinhardt systems, [44, 43]. The positive
solutions of (6.1) which decay to zero at infinity are well understood. Problem
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(6.1) has a radially symmetric solution wN (y) which approaches 0 at infinity
provided that

1 < p <







N+2
N−2 if N ≥ 3,

+∞ if N = 1, 2,

see [81, 7]. This solution is unique [56], and actually any positive solution to
(6.1) which vanishes at infinity must be radially symmetric around some point
[42].

Variations of Problem (6.1), where the space homogeneity is broken by the
action of an external potential or boundary conditions in a domain, have been
broadly treated in the PDE literature in the last two decades, especially con-
cerning the construction of positive solutions. Widely studied has been for in-
stance a singular perturbation problem of the form

ε2∆− V (x)u+ |u|p−1u = 0 (6.3)

where ε is a small parameter, or in a bounded domain with V ≡ 1, under Dirich-
let or Neumann boundary conditions. Many constructions in the literature refer
to “multi-bump solutions”, built from a perturbation of the superposition of
suitably scaled copies of the basic radial bump wN . The location of their max-
ima is determined typically by a criterion related either with the potential or
the geometry of the underlying domain. Among other contributions, we refer
the reader to the works [4, 6, 26, 27, 57, 39, 45, 52, 69, 70, 71, 24, 75, 83] and
their references. Solutions concentrating on a higher dimensional sets have been
considered for instance in [60, 61, 28, 59].

It is natural to ask about positive solutions to (6.1) which do not vanish at
infinity.

For instance, let us consider the solution w := w1 of (6.1) in R,

w′′ − w + wp = 0, w > 0, in R,

w′(0) = 0, w(±∞) = 0. (6.4)

Then the functions u(x, z) := w(x − a), a ∈ R, define a class of positive solu-
tions on (6.1) in R

2, which vanish in all but one space direction, corresponding
to single “bump lines”, very much in analogy to the trivial single transition so-
lutions to the Allen-Cahn equation induced by (2.14). In [8], these solutions of
(6.1) were found to be isolated in a uniform topology which avoids oscillations
at infinity. In constrast, in [21] it is found that a there is continuum of solutions
wδ(x, z) which are periodic in z and decay exponentially in x, bifurcating from
w(x).

A big qualitative difference between the homoclinic solution (6.4) and the
heteroclinic solution (2.14) is that the latter is stable, and that avoids these
bifurcations. Instead, there is a positive eigenvalue λ1 to with positive eigen-
function to the linearized equation

Z ′′ + (pwp−1 − 1)Z − λ1Z = 0 in R, Z(±∞) = 0,
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and the bifurcating Dancer solutions can be expanded as .

wδ(x, z) = w(x) + δZ(x) cos(
√

λ1z) +O(δ2e−|x|). (6.5)

Intuitively, as δ increases, the period becomes long and the oscillating am-
plitude largely varies: in fact a simple variational argument using symmetries
gives also the existence of a solution wT (x, z) with a large period T � 1 whose
profile is an “infinite bump array” solution like

wT (x, z) ≈
∞
∑

k=−∞
w2(x, z − k T ), (6.6)

where w2 is the radial positive solution that decays to zero of (6.1). The solu-
tions to (6.6)

Independently in [33] and [62], positive solutions that glue together respec-
tively bump-lines and infinite bump arrays have been built.

The result in [33] is the exact analog of Theorem 4, now with a Toda system
of the form

cpf
′′
j = e−(fj−fj−1) − e−(fj+1−fj), j = 1, . . . k, (6.7)

f0 ≡ −∞, fk+1 ≡ +∞, where cp is a explicit positive constant.

Theorem 5 ([33]). Given a solution f of (6.7) if we scale

fε,j(z) :=
√
2 (j − k + 1

2
) log

1

ε
+ fj(εz),

then for all small ε there is a positive solution uε of (6.1) with k bump lines:

uε(x, z) =

k
∑

j=1

w(x− fε,j(z) ) + O(ε). (6.8)

The profile of the solution (6.8) can actually be more accurately described
as a superposition of bifurcating Dancer solutions (6.5) wδj , with respective
axes given at main order by the straight line asymptote of to the graphs of the
fj ’s, and with δj(ε) → 0, plus a remainder that decays away and along these
lines.

In [62] a solution was built close to a given finite number of halves of infinite
bump arrays (6.6), with sufficiently large T , emanating from the origin, and
along three divergent rays with sufficiently large mutual angles. The solutions
in [33] and those in [62] may belong to endpoints of families with opposite
size in their Dancer parameters, in a way perhaps similar as the solutions in
Theorem 4 are expected to connect to the symmetric saddle solutions, but this is
still far from understood. Obtaining (even partial) classification of the positive
solutions of (6.1) is presumably much harder than in the Allen-Cahn equation.
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In particular, Morse index of the solutions built turn out to be infinite due to
the oscillations along their ends.

Another interesting issue is that of understanding sign changing solutions.
Even those with finite energy (and finite morse index) can exhibit very complex
patterns. From Ljusternik-Schirelmann theory applied to the energy functional

J(u) =
1

2

∫

RN

|∇u|2 + u2 − 1

p+ 1

∫

RN

|u|p+1

it is known that (6.1) possesses and infinite number of radially symmetric so-
lutions. Nonradial solutions have been built in [66], as a small perturbation
of a configuration of half arrays (6.6) symmetrically disposed, cut-off far away
outside a disk of very large radius, and so that the sides of the regular polygon
thus formed is filled with alternating sign, nearly equidistant bumps w2.

6.2. The Yamabe equation in R
N . Let us consider the equation at

the critical exponent

∆u+ |u| 4
N−2u = 0 in R

N (6.9)

N ≥ 3. It is known that a positive solution to this problem must be equal to
one of the Aubin-Talenti extremals for Sobolev’s embedding,

wµ,ξ(x) = αN

(

µ

µ2 + |x− ξ|2
)

N−2

2

, αN = (N(N − 2))
N−2

4 . (6.10)

See [72, 5, 82, 18].
The energy associated to Problem (6.9) is given by

J(u) =
1

2

∫

RN

|∇u|2 − N − 2

2N

∫

RN

|u| 2N
N−2 .

We consider the common value of the energy of the solitons (6.10),

SN := J(wµ,ξ).

Concerning sign changing solutions the whole picture is still far from un-
derstood. To our knowledge, only one result is available. Ding [40] proved the
existence of infinitely many solutions within a class of solutions which, when,
after the equation is lifted to the sphere SN , it is radially symmetric in two vari-
ables. The class of such functions turns out to regain the loss of compactness in
Sobolev’s embedding, and then Ljusternik-Schnirelmann arguments apply. No
further information on the solutions is available. Understanding solutions to
(6.9) and its energy levels is an major issue in the analysis of blow-up and well-
prosedness for the NLS (6.2) at the critical exponent, in a program initiated in
[53].

We have the following result, a special case of that in [35], which describes
in precise terms a class of finite energy solutions of (6.9) which do not have the
radial symmetries in [40].
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Let us consider the points

ξj := (e2πij/k, 0) ∈ C× R
N−2 = R

N , j = 1, . . . , k

where

Theorem 6 ([35]). for any k sufficiently large, there exists a solution uk of
(6.9) with the form

uk(x) = w1,0(x)−
k
∑

j=1

wµj ,ξj (x) + o(1)

where for a certain number µN > 0,

µj =
νN
k2

and o(1) → 0 uniformly in R
N as k → +∞. Besides we have

J(uk) = (k + 1)SN +O(1)

as k → ∞.

A characteristic of this problem is the fact that eventually the concentration
set becomes higher dimensional, namely a copy of S1 in R

N , in spite of being
the context just discrete. The hidden parameter here it is of course the num-
ber of bubbles. This concentration phenomena can be regarded as somehow
intermediate between point and continuum concentration. The idea of using
the number of concentrating cells as a singular perturbation parameter appears
already in the context of critical problems in [84].

The result o Theorem 6 extends considerably to similar patterns where the
limiting concentration set, is, after stereographic projection, a submanifold of
the sphere SN with suitable rotation invariances.

Again, when the Yamabe equation is perturbed by space inhomogeneities or
by exponents close to critical, many results on construction and classification
of bubbling solutions are present in the literature, but we will not survey them
here. The analysis of bubbling solutions has been a central tool for instance
in the understanding of the Yamabe and prescribed scalar curvature problems.
For changing sign solutions of equation (6.9) in dimension N = 3, an analysis
of the topology of level sets of the associated energy for low energies is present
in [9].
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Abstract

It was a great surprise when Hans Lewy in 1957 presented a non-vanishing
complex vector field that is not locally solvable. Actually, the vector field is the
tangential Cauchy–Riemann operator on the boundary of a strictly pseudocon-
vex domain. Hörmander proved in 1960 that almost all linear partial differential
equations are not locally solvable. This also has connections with the spectral
instability of non-selfadjoint semiclassical operators.

Nirenberg and Treves formulated their well-known conjecture in 1970: that
condition (Ψ) is necessary and sufficient for the local solvability of differential
equations of principal type. Principal type essentially means simple character-
istics, and condition (Ψ) only involves the sign changes of the imaginary part
of the highest order terms along the bicharacteristics of the real part.

The Nirenberg-Treves conjecture was finally proved in 2006. We shall present
the background, the main ideas of the proof and some open problems.
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1. Introduction

Sixty years ago, it was generally believed that at least non-degenerate linear
partial differential equations Pu = f have a local solution u for any smooth
f . Particularly, since Malgrange and Ehrenpreis had proved that all constant
coefficient linear partial differential equations have local solutions, and by the
Cauchy–Kovalevsky Theorem all analytic partial differential equations have
local analytic solutions.
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Therefore, it came as a complete surprise when Hans Lewy [35] showed that
the complex analytic vector field

L = ∂x1
+ i∂x2

+ i(x1 + ix2)∂x3
(1.1)

has the property that Lu = f has no local solution u at any point in R3 for
almost all smooth f , not even in a weak sense. Actually, it turns out that the
range of L is of the first category in C∞ and it contains the analytic functions
by the Cauchy–Kovalevsky Theorem.

What is even more surprising is that L is a non-vanishing vector field with
polynomial coefficients and it is naturally occuring, since it is the tangential
Cauchy–Riemann operator on the boundary of the strictly pseudoconvex do-
main

{

(z1, z2) ∈ C2 : |z1|
2 + 2 Im z2 < 0

}

This discovery opened up a new research area: to understand and find con-
ditions for the solvability of differential operators. Actually, in the definition of
local solvability the operator does not have to be surjective.

Definition 1.1. We say that the differential operator P is locally solvable at
a point x if the equation

Pu = f (1.2)

has a solution u near x for almost all f ∈ C∞.

Here we shall also allow weak (distributional) solutions to the equation. The
condition ”almost all”means that f satisfies finitely many conditions, so that
the range of P has finite codimension in C∞. Recall that a differential operator
is given by

p(x,D)u =
1

(2π)n

∫

ei〈x,ξ〉p(x, ξ)û(ξ) dξ (1.3)

where û is the Fourier transform of u ∈ C∞
0 (Rn), the smooth functions which

are zero outside a compact set, the support of u. By this definition, ξj corre-
sponds toDxj

= 1
i ∂xj

so a real p(ξ) gives a symmetric operator. If ξ 7→ p(x, ξ) is
a polynomial of degree m then p(x,D) is a partial differential operator, else one
can define it as a pseudodifferential operator. For example, when p(x, ξ) = |ξ|
we get |D| = (−∆)1/2. The calculus gives classical pseudodifferential operators
with the asymptotic expansion

p(x, ξ) = pm(x, ξ) + pm−1(x, ξ) + . . . (1.4)

where pj(x, ξ) is homogeneous of degree j in ξ. The function p(x, ξ) is called the
symbol of the operator p(x,D), and the highest order term pm(x, ξ) is called the
principal symbol, which is invariant under changes of variables, see [23, Chap-
ter 18]. The use of non-polynomial symbols makes it possible to microlocalize,
i.e., localize also in the frequency variable ξ. One can then define microlocal
solvability of pseudodifferential operators, see [23, Definition 26.4.3].
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Now, by the Hahn–Banach and Banach Theorems, local solvability is equiv-
alent to a priori estimates of the following type:

‖u‖ = ‖u‖(0) ≤ C‖P ∗u‖(k−m) + . . . u ∈ C∞
0 (1.5)

for operators of order m. Here P ∗ is the adjoint and we use the L2 Sobolev
norm defined by

‖u‖2(s) =
1

(2π)n

∫

(1 + |ξ|2)s|û(ξ)|2 dξ = ‖(1 + |D|2)s/2u‖2 (1.6)

on the Sobolev space H(s). We shall also allow non-local and lower order terms
in (1.5), otherwise P ∗ would have to be injective and P surjective. In (1.5), we
define k ≥ 0 as the loss of derivatives for the operator. This loss means that
the equation (1.2) has a solution u ∈ H(s+m−k) for almost all f ∈ H(s). If the
principal symbol satisfies p(x, ξ) 6= 0 for ξ 6= 0 then the operator is elliptic and
solvable with a loss of zero derivatives. When the loss satisfies 0 < k < 1, the
operator P ∗ is subelliptic, see [23, Chapter 27]. For real vector fields the loss
is one, and we obtain L2 estimates. Then, one could make the constant small
in (1.5) by restricting to u ∈ C∞

0 with small support. For example, for P ∗ = Dt

we have

‖u‖ ≤ CT‖P ∗u‖ when |t| ≤ T in the support of u (1.7)

which can be generalized to non-vanishing real vector fields by a change of
variables. This makes it possible to perturb the estimate (1.5) with lower order
terms in P ∗.

The generic case for non-elliptic operators is when the principal symbol
p(x, ξ) vanishes of first order, so that the gradient satisfies ∇p(x, ξ) 6= 0 when
p(x, ξ) = 0 and ξ 6= 0. Then we say that the operator is of principal type.
This terminology was first introduced by Hörmander [16] in his thesis 1955.
For example, non-vanishing complex vector fields like Lewy’s example (1.1) are
of principal type.

Lewy’s example showed that operators of principal type are not always lo-
cally solvable. This started the quest to find the conditions for the solvability
of principal type operators, and it turned out that almost all non-elliptic par-
tial differential equations are unsolvable. The solvability question presented an
interesting and complex research field, for which many tools were developed.
It actually took about 50 years to determine the precise conditions for local
solvability of operators of principal type, with the final answer [9] appearing in
2006.

In this paper, we shall make a short review of the complex history of the
solvability problem for differential operators of principal type and we shall only
consider the smooth category. We shall outline what is known in the research
area and also pose some open problems. The paper is intended as a non-technical
introduction, so we shall avoid unnecessary technicalities and instead concen-
trate on the main ideas. For a more extensive historical review, we refer the
reader to [25] (see also [32]).
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2. History

Since all non-vanishing real vector fields and all constant coefficient PDE’s
are locally solvable, the solvability of P seems to depend on the commutator
between the symmetric part ReP = (P+P ∗)/2 and antisymmetric part ImP =
(P−P ∗)/2i, where P ∗ is the adjoint. In fact, for vector fields with non-vanishing
symmetric part ReP we can use (1.7) with P ∗ = ReP to obtain

‖u‖ ≤ CT‖(ReP )u‖ ≤ CT (‖Pu‖+ ‖P ∗u‖)/2 (2.1)

when u ∈ C∞
0 has support in a ball of radius T . Since we estimate with the

adjoint, we shall consider the difference

‖Pu‖2 − ‖P ∗u‖2 = 〈[P ∗, P ]u, u〉 = 2i〈[ReP, ImP ]u, u〉 (2.2)

If P has principal symbol p, the commutator i[ReP, ImP ] has principal symbol
equal to the Poisson bracket

{Re p, Im p } =
∑

j

∂ξjRe p ∂xj
Im p− ∂xj

Re p ∂ξj Im p = HRe p Im p (2.3)

Here HRe p is the Hamilton vector field of Re p, which is the generator of the
bicharacteristics of Re p, called semibicharacteristics of p. Thus, non-positivity
of the bracket in (2.2) would give the solvability estimate (1.5) from (2.1).

Hörmander [16] had in fact already proved in his thesis 1955 that if P is a
PDO of principal type with principal symbol p satisfying

{Re p, Im p } ≡ 0 (2.4)

then P is locally solvable with a loss of one derivative, showing that symmetric
PDO’s of principal type are locally solvable. Now condition (2.4) is not in-
variant under the composition of P with elliptic operators. In fact, then the
principal symbol p is multiplied with an invertible factor, which adds terms
containing Re p and Im p to the Poisson bracket. Thus, the value of the Poisson
bracket (2.3) is only invariantly defined on the characteristics p−1(0).

Hörmander [17] generalized in 1960 Lewy’s counterexample by proving that
a necessary condition for solvability is that the principal symbol p satisfies

{Re p, Im p } ≤ 0 when p = 0 (2.5)

For PDO’s the Poisson bracket is an odd function of ξ, so this gives the necessary
condition for solvability of principal type PDO’s, that the principal symbol p
satisfies

{Re p, Im p } = 0 when p = 0 (2.6)

Thus almost all non-elliptic PDE’s are unsolvable. For example, the Lewy vector
field in (1.1) has bracket equal to 2ξ3 which is 6= 0 on the characteristics. For
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the operator P = Dt+ if(t, x,Dx), with real f homogeneous of degree one in ξ,
condition (2.6) means that ∂tf = 0 on f−1(0). Unfortunately, condition (2.6)
is not sufficient for solvability, see Example 2.2.

Actually, it suffices that the Poisson bracket (2.3) has some upper bound
in order to obtain solvability of the operator. In fact, making the conjugation
e−λφPeλφ with real valued φ subtracts 2λ(H2

Re pφ+H2
Im pφ) from the bracket,

giving solvability with a loss of one derivative when this is large enough. This is
an example of the conjugation method: if P is solvable then APB is solvable for
any invertible A and B. By choosing A = B−1 it suffices to prove the solvability
of

B−1PB = P +R

Now the principal symbol of R is Hpb/ib, where b is the principal symbol of B.
This makes it possible to change the lower order terms in the expansion of P .
But the problem is that the vector field Hp will in general not be solvable since
the bracket condition (2.6) is not satisfied in general, see (2.9). Observe that
if Hp has the radial direction and b is homogeneous of degree k, then Hpb/b is
not dependent of b. Thus, we shall in the following assume that the Hamilton
field of the principal symbol p is independent of the radial direction.

By the Banach Theorem, the range of a non-solvable operator is of the first
category. Hörmander [19] proved in 1963 that the range of a non-solvable vector
field determines the vector field up to right multiplication by functions. This
has recently been generalized to any non-solvable principal type operator by
Wittsten [43] but in general with weaker conclusions.

2.1. Principally normal operators. Obviously, there is a big gap
between the sufficient condition (2.4) and the necessary condition (2.6).
Hörmander [18] proved in 1960 that if P is a PDO of principal type with
principal symbol p satisfying

{Re p, Im p } = Re(qp) (2.7)

for some symbol q, then P is solvable with a loss of one derivative. When P is
of first order, for example a vector field, we find that q in (2.7) is of order 0.
Then (2.2) can essentially be estimated by

2Re〈Q∗P ∗u, u〉 ≤ C‖P ∗u‖‖u‖ (2.8)

giving solvability with a loss of one derivative by using (2.1). Observe that in
this case

[HRe p, HIm p] = H{Re p,Im p } = Re q ·HRe p − Im q ·HIm p on p−1(0) (2.9)

which is the Frobenius integrability condition for the real and imaginary parts
of the Hamilton vector field Hp. Thus, when dRe p and d Im p are linearly
independent, the characteristics p−1(0) have a natural two dimensional foliation



The Solvability of Differential Equations 1963

given byHp, called two dimensional bicharacteristics. Operators satisfying (2.7)
are called principally normal, and as before it actually suffices that there exists
q ∈ C∞ such that

{Re p, Im p } ≤ Re(qp) (2.10)

in order to estimate (2.2) and get solvability. For the operator P = Dt +
if(t, x,Dx) with real valued f(t, x, ξ) homogeneous of degree 1 in ξ, condi-
tion (2.10) means that ∂tf ≤ αf with α ∈ C∞. By Grönwall’s lemma we then
find that f(t, x, ξ) < 0 implies f(s, x, ξ) < 0 for s ≥ t. In the case when dRe p
and d Im p are linearly independent on p−1(0) we find by using the Taylor for-
mula that the condition (2.5) is equivalent to solvability. But in the general
case, the gap between the sufficient and the necessary conditions remained.
Simple but instructive examples are given by the following operators.

Example 2.1. The operators Pk = Dt − itk|Dx|, (t, x) ∈ R2, are solvable for
any k ∈ Z+ with a loss of one derivative. The adjoint P ∗

k = Dt + itk|Dx| is
solvable if and only if k is even, and then with a loss of one derivative.

Here it is easy to see that condition (2.5) holds when k > 1, but then the
operators are not principally normal. Observe that when k is even we can use
the conjugation method:

eλtP ∗
k e

−λt = P ∗
k + iλ = P ∗

k,λ (2.11)

Since tk|Dx| ≥ 0 we find ImP ∗
k,λ ≥ λ so by applying to eλtu we obtain that

λ‖eλtu‖2 ≤ Im〈eλtP ∗
k u, e

λtu〉 ≤ ‖eλtP ∗
k u‖‖e

λtu‖

By taking λ > 0 we obtain solvability of Pk with a loss of one derivative.
This conjugation works for Pk with λ < 0 when k is even. In fact, by the
G̊arding inequality it suffices that the imaginary part of the principal symbol
is semibounded. When k is odd a Fourier transform in the x variable gives that
Pku = f ∈ C∞

0 is equivalent to

∂tû(t, ξ) + tk|ξ|û(t, ξ) = if̂(t, ξ)

which has the general solution

û(t, ξ) = i

∫ t

0

e(s
k+1−tk+1)|ξ|/k+1f̂(s, ξ) ds+ e−tk+1|ξ|/k+1û0(ξ) (2.12)

Since k+1 is even the exponential is bounded, so the inverse Fourier transform
then gives solutions to Pku = f . This does not work for P ∗

k , in fact, the second
term in (2.12) gives solutions to Pku = 0 destroying any solvability estimates
of the type (1.5) for P ∗ = Pk. The operators in Example 2.1 are ΨDO’s, the
corresponding PDO’s are the following Mizohata operators.

Example 2.2. The operator Qk = Dt + itkDx with (t, x) ∈ R2 and k ∈ Z+ is
solvable with a loss of one derivative if (and only if) k is even.
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Observe that in contrast with the Lewy vector field (1.1) the operators in
Examples 2.1 and 2.2 are always solvable where t 6= 0, since they are principally
normal there. The operators in Example 2.2 were first studied by Mizohata [37],
and then by Nirenberg and Treves [38] in their study of general complex vector
fields in 1963. A natural generalization is the following vector fields.

Example 2.3. The C∞ vector field P = Dt+ ia(t, x)Dx1
with (t, x) ∈ R×Rn

is solvable with a loss of one derivative if a ≥ 0. P is principally normal if
∂ta = γa with γ ∈ C∞.

Nirenberg and Treves [38] proved this in the case when t 7→ a(t, x) only has
zeroes of finite order. The solvability of the operators in Examples 2.2 and 2.3
can now be proved directly from the Nirenberg–Treves Lemma (Lemma 2.6
below).

The operators in Examples 2.1–2.3 are on the form

P = Dt + if(t, x,Dx) (t, x) ∈ R×Rn (2.13)

with real f(t, x, ξ) homogeneous of degree 1 in ξ. They are solvable if and only
if

t 7→ f(t, x, ξ) does not change sign from − to + for increasing t (2.14)

Here, the t lines are the bicharacteristics of the symmetric part Dt of the op-
erators, called semibicharacteristics. Of course, any reasonable condition for
solvability has to be invariant under multiplication with non-vanishing scalars
and changes of variables.

2.2. The Nirenberg–Treves conjecture. Condition (2.14) was gen-
eralized by Nirenberg and Treves [39] in 1970 to the following definition.

Definition 2.4. We say that p satisfies condition (Ψ) if the imaginary part
of p does not change sign from − to + on the oriented bicharacteristics of the
real part.

The bicharacteristics are the flow-out of the Hamilton vector field of Re p on
(Re p)−1(0), they are called semibicharacteristics of p and have a natural ori-
entation. For the model operators (2.13), condition (Ψ) means exactly (2.14).
But since the gradient of Re p could vanish, one also have to check the condi-
tion on ip. Actually, Nirenberg and Treves [39] proved the non-trivial fact that
condition (Ψ) is invariant under multiplication with non-vanishing factors, so
it suffices to check the condition for some z ∈ C such that dRe(zp) 6= 0. Ob-
serve that the adjoint P ∗ has principal symbol p, which can then only have sign
changes from − to +. Condition (Ψ) has an interesting geometrical interpreta-
tion, see [42].

Example 2.5. The operator P = Dt + if(t, x)|Dx|, (t, x) ∈ R×Rn, satisfies
condition (Ψ) if and only f(t, x) does not change sign from − to + as t increases.
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For exampel, the operators Pk and P ∗
k in Example 2.1 both satisfy condi-

tion (Ψ) when k is even, and Pk but not P ∗
k satisfies the condition when k is

odd. Since the Poisson bracket {Re p, Im p } = HRe p Im p is the derivative of
Im p along the bicharacteristics of Re p, condition (Ψ) is stronger than (2.5)
but weaker than (2.10). Nirenberg and Treves [39] made the following famous
conjecture about local solvability in 1970.

Conjecture (The Nirenberg–Treves conjecture). A pseudodifferential operator
of principal type is locally solvable if and only if the principal symbol satisfies
condition (Ψ).

For PDO’s condition (Ψ) is equivalent to condition (P ) which rules out any
sign changes of the imaginary part on the bicharacteristics of the real part.
This follows from the parity of the principal symbol: if the order m is odd
the principal symbol changes sign when we switch ξ to −ξ, if it is even the
bicharacteristics change direction. The Mizohata operator Qk in Example 2.2
satisfies condition (P ) if and only if k is even. The operator P = Dt+if(t, x,Dx)
with real f(t, x, ξ) homogeneous of degree 1 in ξ, satisfies condition (P ) if and
only if t 7→ f(t, x, ξ) does not change sign. Actually, Nirenberg and Treves
formulated condition (P ) already in their study [38] of complex vector fields
in 1963. Vector fields satisfying condition (P ) can by a change of variables be
put on the form in Example 2.3 with Dx1

replaced with a real vector field
B(x,Dx) which is constant in t.

Nirenberg and Treves [39] proved Conjecture 2.2 for PDO’s having ana-
lytic principal symbol, getting a loss of one derivative. In the proof they used
microlocal analysis and the Weierstrass Preparation Theorem to reduce to the
model operator (2.13). By using analyticity and condition (P ) they could then
factorize the imaginary part f(t, x, ξ) and reduce to the following lemma.

Lemma 2.6 (The Nirenberg–Treves Lemma). Assume that P ∗ = Dt + iA(t)B
where 0 ≤ A(t) ≤ C, B = B∗ is self-adjoint and the commutators [B,A(t)] and
[B, [B,A(t)]] are bounded in L2. Then

‖u‖ ≤ CT‖P ∗u‖ (2.15)

if u ∈ C∞
0 has support where |t| ≤ T � 1.

When B ≥ 0 one can conjugate as in (2.11) to obtain the estimate (2.15).
In general, one gets (2.15) by applying the operator on the positive and non-
positive eigenspaces of B, using the commutator conditions. As before, the
estimate (2.15) can be perturbed with bounded operators for small enough T .

Actually, the analyticity of the principal symbol was only used to get the
factorization needed in Lemma 2.6. But such a factorization is in general not
possible in the smooth case as shown by a counterexample by Treves, see [20,
p. 576].
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2.3. The Beals–Fefferman localization. Beals and Fefferman [1]
managed to get around the factorization problem in 1973 by an innovative
localization, proving that condition (P ) is sufficient for local solvability.

Theorem 2.7. [1, Theorem 1] Assume that P is a pseudodifferential opera-
tor of principal type with principal symbol satisfying condition (P ). Then P is
solvable with a loss of one derivative.

Actually, Beals and Fefferman proved this for partial differential operators,
but the proof is microlocal and works for pseudodifferential operators as well.
We shall give a short sketch of the main ideas of the proof.

First, by using microlocal analysis and the Malgrange Preparation The-
orem, one can reduce the adjoint to the first order model operator P ∗ =
Dt + if(t, x,Dx), with real f(t, x, ξ) homogeneous of degree one in ξ. By a
Calderón–Zygmund decomposition one can localize where |ξ| ≈ h−1 � 1 so
that |f | = O(h−1). By homogeneity one obtains that

∂α
x ∂

β
ξ f(t, x, ξ) = O(h|β|−1) (2.16)

which is the usual classical symbol estimates. Here we use the multi-index
notation ∂α

x = ∂α1
x1

. . . ∂αn
xn

and |α| = α1+ · · ·+αn for α ∈ Nn. Now, by choosing

h−1/2x as new coordinates, one can make the symbol estimates isotropic:

∂α
x ∂

β
ξ f(t, x, ξ) = O(h−1+(|α|+|β|)/2) (2.17)

in boxes |∆x|+ |∆ξ| ≤ Ch−1/2.
The revolutionary idea of Beals and Fefferman was to localize in even smaller

boxes |∆x|+ |∆ξ| ≤ CH−1/2 so that f is still of first order:

∂α
x ∂

β
ξ f(t, x, ξ) = O(H−1+(|α|+|β|)/2) (2.18)

Here the length scale depends on the symbol:

1 ≤ H−1 = |f |+ |f ′|2 + 1 ≤ Ch−1 (2.19)

which actually are the smallest neighborhoods such that this works. Observe
that the calculus requires that we take the length scale H−1/2 ≥ 1, which is the
well-knowned uncertainty principle. For |α|+ |β| = 0 or 1, the estimate (2.18)
follows directly from the definition (2.19), for higher order derivatives it follows
from (2.17) and the fact that h ≤ CH. Beals and Fefferman made the local-
ization constant in t by taking the supremum of H−1 over t. If this supremum
has a fixed bound, the imaginary part is bounded and one obtains estimates by
the conjugation method. If supH−1 ≈ H−1(t0) � 1 then f(t0, x, ξ) is either
elliptic or of principal type in a neighborhood. By using the Taylor formula
and condition (P ), one then obtains the factorization in the Nirenberg–Treves
Lemma with B = f(t0, x,Dx).
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This idea of microlocalizing in neighborhoods depending on a specific
operator, was developed by Beals and Fefferman [2] into the well-knowned
Beals–Fefferman calculus. It was then generalized by Hörmander [21] into the
renowned Weyl calculus in 1979.

One can also define semiglobal solvability of differential equations. This
means that the equation Pu = f has a solution u near a given compact set K
for almost all f . Then one also needs geometrical conditions, for example that
there are no closed bicharacteristics of P in K, as shown by the angular vector
field on an annulus in the plane. Hörmander [20] studied in 1978 the semiglobal
solvability of pseudodifferential operators of principal type. If the operator sat-
isfies condition (P ) and the non-trapping condition that there are no closed
bicharacteristics over a compact set K, Hörmander proved that operator is
semiglobally solvable at K with a loss of 1 + ε derivative for any ε > 0. One
also gets C∞ solvability, giving a smooth solution u for smooth f . Since there
are no simple normal forms in the semiglobal case, the proof instead studies
the propagation of microlocal singularities (wave front sets) for the adjoint P ∗.
In fact, if P ∗u ∈ C∞ then the regularity function

s∗u(x, ξ) = sup
{

s : u ∈ H(s) microlocally at (x, ξ)
}

(2.20)

is essentially superharmonic on the two dimensional characteristics with respect
to the complex structure given by the Hamilton vector field Hp, see (2.9). Ob-
serve that condition (P ) implies that the bracket {Re p, Im p } = 0 on p−1(0).
On one dimensional characteristics, where Hp is proportional to a real vector
field, s∗u is quasiconcave so that the infimum is attained at the endpoints. Actu-
ally, the final case when the imaginary part vanishes of at least third order was
proved in 1981 by Dencker [3]. Since u ∈ C∞ microlocally if and only if s∗u = ∞
in a neighborhood, the wave front set is a union of one and two dimensional
bicharacteristics. By the non-trapping condition all solutions with support in K
to P ∗u = 0 are smooth, which gives semiglobal solvability of P . But since we
are taking the supremum in (2.20) one loses ε > 0 derivatives when using the
regularity function.

In 1980 Hörmander [22] proved the necessity of condition (Ψ) for local and
semiglobal solvability of principal type operator:

Theorem 2.8. [22, Theorem 3.2] Assume that P is a pseudodifferential oper-
ator of principal type and that P is solvable at the compact set K. Then the
principal symbol symbol of P satisfies condition (Ψ) near K.

Thus, the case for PDO’s is closed: condition (P ) is equivalent to local solv-
ability, and the loss is one derivative. The approach of the proof of Theorem 2.8
is to construct approximate solutions to the adjoint equation P ∗u = 0 when
condition (Ψ) does not hold, using an idea by Moyer. This involved modifying
the geometrical optics method to the complex case. In general, this is compli-
cated because the Hamilton vector field of the principal symbol is not solvable
since it does not satisfy condition (P ).
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But the important case of pseudodifferential operators remained, as well as
the microlocal solvability of partial differential operators. Lerner [26] proved
that condition (Ψ) is sufficient for local solvability with a loss of one derivative
in the two dimensional case (and in the oblique derivative problem [27]), by
factorizing the imaginary part as in Example 2.5. Menikoff [36] had already
in 1974 showed that an operator on the normal form P = Dt + if(t, x,Dx) is
locally solvable with a loss of one derivative if it satisfies condition (Ψ) and also

|∂xf |
2 + |∂ξf |

2 ≤ C|f | |ξ| = 1 (2.21)

which follows from Glaeser’s inequality if (x, ξ) 7→ f(t, x, ξ) does not change
sign for fixed t as in Example 2.10 below. Thus, since condition (Ψ) is sufficient
for local solvability of principal type operators with a loss of one derivative in
two dimensions and for PDO’s, it was believed that this was true in general,
and there even appeared claims for this.

2.4. Lerner’s counterexample. Therefore it came as a surprise when
Lerner [28] in 1994 presented a counterexample: a first order principal type
operator P in R3 that satisfies condition (Ψ) but is not locally solvable with a
loss of one derivative near the origin. In fact, there exists uj ∈ C∞

0 such that
|x| ≤ 1/j in the support of uj(x) and

lim
j→∞

‖uj‖/‖P
∗uj‖ = ∞ (2.22)

The adjoint of P is on the form

P ∗ = Dt + iA(t)B(t) +R(t) (2.23)

where 0 ≤ A(t) is bounded, t 7→ B(t) = B∗(t) is of order one and non-decreasing
in L2, R(t) is bounded. Actually, A(t) vanishes of infinite order at t = 0, and

B(t) = Dx1
+H(t)W

where W is a non-negative operator in the variables (x1, x2) ∈ R2 and H(t)
is the Heaviside function. Even though B(t) is non-decreasing as an operator
on L2, the positive eigenspace of B(t) for t < 0 is very close to the negative
eigenspace of B(t) for t > 0. This makes it possible to construct approximate
solutions to P ∗u = 0 in a similar manner as in (2.12) to obtain (2.22). This
unexpected property of B(t) was called the drift of the operator in [28], and it
shows that the two dimensional operators in Examples 2.1 and 2.2 did not really
exhibit the full complexity of the solvability problem. Clearly, Lerner’s coun-
terexample raised serious doubts about the validity of the Nirenberg–Treves
conjecture.

The problem was now that since the loss of derivatives could be more than
one, lower order terms could not be handled and the estimate (1.5) could not be
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localized. In fact, localizing (1.5) with a smooth cut-off function φ introduces
the commutator term [P ∗, φ] of order m− 1, giving

‖[P ∗, φ]u‖(k−m) ≤ C‖u‖(k−1)

in the right hand side of estimate (1.5). This term cannot be controlled by left
hand side since k > 1. Also lower order terms could destroy the estimate, and
these could not be conjugated away since the Hamilton vector field Hp is not
always solvable in the condition (Ψ) case. But Dencker [6] proved that Lerner’s
counterexamples are solvable with a loss of two derivatives. In fact, this follows
from the following generalization of the Nirenberg–Treves Lemma:

Lemma 2.9. [7, Theorem 2.1] Assume that P ∗ is on the form (2.23) with 0 ≤
A(t) ≤ C, t 7→ B(t) = B∗(t) is non-decreasing in L2, R(t) and Im(B(t)R(t))
are bounded. Then we obtain

‖u‖2 + T 2〈ABu,Bu〉 ≤ C(T 2 Im〈P ∗u,Bu〉+ T |〈P ∗u, u〉|) (2.24)

for u ∈ C∞
0 having support where |t| ≤ T .

Observe that
Im(B(t)R(t)) = [B(t), R(t)]/2i (2.25)

if R(r) = R∗(t) is symmetric, and by conjugation one can often reduce to this
case. For the proof of Lemma 2.9 one observes that by using (2.1) with P ∗ = Dt

it suffices to estimate the term

‖ABu‖2 ≤ ‖A‖‖A1/2Bu‖2 = ‖A‖〈ABu,Bu〉 (2.26)

If ∂tB ≥ 0 and Im(BR) is bounded, this can be done by using the identity

2 Im〈BP ∗u, u〉 = 〈∂tBu, u〉+ 2〈ABu,Bu〉+ 2 Im〈BRu, u〉 (2.27)

The adjoint of Lerner’s counterexample can be put on the form of Lemma 2.9
with a first order B(t) so that Im(BR) is bounded, which gives solvability with
a loss of two derivatives. In the case A ≥ c > 0 we obtain that

Im〈P ∗u,Bu〉 = Im〈A−1/2P ∗u,A1/2Bu〉 ≤ ‖A−1/2P ∗u‖〈ABu,Bu〉1/2 (2.28)

We then obtain L2 estimates for P ∗ from (2.24) for small enough T by the
Cauchy–Schwarz inequality. Thus it is essential that A(t) vanishes in Lerner’s
counterexample.

Lemma 2.9 gives solvability for P with a loss of two derivatives in the case
when one can factorize the imaginary part so that

P ∗ = Dt + ia(t, x,Dx)b(t, x,Dx) + r(t, x,Dx) (2.29)

where a ≥ 0 and r are bounded symbols, b is real first order and non-decreasing
in t (see [7, Corollary 2.6] or [31, Theorem 2.2]). In fact, one can then conjugate
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to make r real so that Im(b(t, x,Dx)r(t, x,Dx)) is bounded by (2.25). In the
case a > 0 one can use (2.28) to show that the loss is one derivative. Lemma 2.9
was also used in [13] to prove hypoellipticity for operators of degenerate Egorov
type, where B in (2.23) also satisfies the condition that ∂k

t B 6= 0 for some k.

Lemma 2.9 is an example of the multiplier method: to use the formal identity

2 ImBP ∗ = (BP ∗ − PB)/i = ∂tB + 2ReBF (2.30)

for the model operator P ∗ = Dt+iF (t) with symmetric F (t). Then the problem
is to find lower bounds on both ∂tB and ReBF . This method was used by
Lerner for the proof of the sufficiency of condition (Ψ) in two dimensions, but
with a bounded multiplier which was essentially the sign of F . Important for
that proof is that the sign changes of the imaginary part of the principal symbol
can only occur in the x variables. Hörmander [25] generalized this to the case
when the principal symbol f(t, x, ξ) of F (t) satisfies condition (Ψ) and only has
Lagrangean sign changes, which means that the sign of f(t, x, ξ) is independent
of ξ. A simple example is the following result of Egorov [15] from 1974.

Example 2.10. If P = Dt+if(t, x,Dx) where f is first order satisfying tf ≤ 0,
then by using the bounded multiplier B = t and the G̊arding inequality we
obtain from (2.30) that P is locally solvable with a loss of one derivative.

Now factorizations of the form in (2.29) of the principal symbol of the
imaginary part f(t, x, ξ) always exist in the condition (Ψ) case. For example
f = sgn(f)|f | where the sign function has the property that t 7→ sgn(f) is
non-increasing by condition (Ψ). But the problem is to have a factorization in
sufficiently good symbol classes, so that (2.25) is bounded.

Lerner [30] proved that a first order principal type operator that satisfies
condition (Ψ) can be written on the normal form (2.23) but with a bounded
term R that does not satisfy the conditions in Lemma 2.9, since Im(BR) is
not bounded. Thus every such operator is a sum of a solvable operator and
a bounded operator. But since the loss of derivatives is greater than one for
the solvable operator, perturbing with the bounded operator could destroy the
solvability estimate. It is still not known whether it is always possible in the
condition (Ψ) case to reduce the adjoint P ∗ to the form (2.23) satisfying the
conditions in Lemma 2.9, except when the dimension is two.

3. The Resolution of the Nirenberg–Treves

Conjecture

In 2006 Dencker [9] finally proved the sufficiency of condition (Ψ) for local
solvability of principal type operators with a loss of two derivatives, which
resolved the Nirenberg–Treves conjecture.
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Theorem 3.1. [9, Theorem 1.1] Assume that P is a principal type pseudod-
ifferential operator with principal symbol satisfying condition (Ψ). Then P is
locally solvable with a loss of two derivatives.

Instead of factorizing the imaginary part, the proof involved a direct con-
struction of multiplier B to use in an estimate of the adjoint. This was then
improved by Dencker [8] to a loss of 3/2 + ε derivatives, for any ε > 0. Lerner
[33] improved the loss to exactly 3/2 derivatives, by using essentially the same
method of proof but with an different multiplier. Observe that there are no
counterexamples giving a loss of more than 1 + ε derivatives, for any ε > 0.

3.1. The Proof. The proof of the Nirenberg–Treves conjecture is long and
complicated, so we shall only give the main ideas of the proof. First, by using
microlocal analysis and the Malgrange Preparation Theorem, one can reduce
the adjoint to the first order model operator

P ∗ = Dt + if(t, x,Dx) (3.1)

where f is real valued and homogeneous of degree one in ξ. Condition (Ψ)
means that t 7→ f(t, x, ξ) does not change sign from + to −. Since we lose
more than one derivative in the estimate, the reduction to (3.1) is rather non-
trivial and only possible because of the special type of estimate that we are
proving, see (3.2) below. We can also localize where |ξ| ≈ h−1 � 1 so that
|f | = O(h−1). By homogeneity one easily obtains the usual classical symbol
estimates (2.16) for f . In the following, we shall avoid using explicit constants,
and instead use the notation a . b when a ≤ Cb. As before, by choosing h−1/2x
as new coordinates, one can make the symbol estimates isotropic as in (2.17),
in particular ∂3

x,ξf = O(h1/2). We can also localize in neighborhoods where

|∆x|+ |∆ξ| . h−1/2.

Claim 3.2. Theorem 3.1 will follow if we can find a symmetric multiplier B
such that ‖B‖ . h−1/2 and

h1/2‖u‖2 . T Im〈P ∗u,Bu〉 (3.2)

when u ∈ C∞
0 has support where |t| ≤ T .

In fact, we then obtain

h1/2‖u‖2 . Th−1/2‖P ∗u‖‖u‖

which gives the solvability estimate with a loss of two derivatives for the original
operator. Now, since we are taking the imaginary part in (3.2), this estimate
can be localized and perturbed with lower order terms. In fact, lower order
terms can be made symmetric by conjugation, since ReP ∼ Dt is solvable.
Since B essentially is of order 1/2 we then obtain for symmetric R of order 0
that

Im〈Ru,Bu〉 =
1

2i
〈[B,R]u, u〉 . h1/2‖u‖2
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Now, in order to get the estimate (3.2) we shall again use the formal iden-
tity (2.30):

2 ImBP ∗ = (BP ∗ − PB)/i = ∂tB + 2ReBf (3.3)

so we have to find lower bounds on both ∂tB and ReBf . In order to avoid
technicalities, we shall treat the operators as if they were functions (which
is approximately true). Thus we want that t 7→ B(t) is non-decreasing and
Bf ≥ 0, one example is the sign function sgn(f). Another example with a more
regular symbol is:

δ = sgn(f) · d (3.4)

where d(t, x, ξ) is the (x, ξ) distance to the sign changes of f(t, x, ξ) for fixed
t. If f has no sign changes within the distance h−1/2, we put d = h−1/2 which
gives δ = O(h−1/2). By condition (Ψ) we find that the distance to the sign
changes decreases when f < 0 and increases when f > 0, thus we obtain that

∂tδ ≥ 0 and δf = d|f | ≥ 0

But the problem with choosing B = δ is that we don’t get any positive lower
bound on ImBP ∗, in fact, lower order terms in P ∗ will give a negative lower
bound. That problem can be remedied by adding a strictly increasing pertur-
bation % so that ∂tB ≥ ∂t% > 0, see Section 3.3 below. The main problem is
that (x, ξ) 7→ δ(t, x, ξ) is not smooth, only Lipschitz continuous. But it is a
well-known fact that the signed distance function is smooth when the gradient
of f is non-vanishing, and then in a neighborhood that is proportional to the
inverse curvature of the characteristics f−1(0). We shall first localize in such
neighborhoods.

3.2. The localization. One of the main ideas of the proof is to localize
in smaller neighborhoods |∆x| + |∆ξ| . H−1/2 as Beals and Fefferman did in
the proof of Theorem 2.7, but now with a t dependent localization.

Definition 3.3. For fixed t we define

1 ≤ H−1/2 = 1 + |δ|+
|f ′|

‖f ′′‖+ h1/4|f ′|1/2 + h1/2
. h−1/2 (3.5)

Here δ is the signed distance function given by (3.4), f ′ and f ′′ are the gradient
and Hessian of f with respect to (x, ξ).

Then since ∂3
x,ξf = O(h1/2) by (2.17) and h . H it follows that

∂α
x ∂

β
ξ f = O(MH(|α|+|β|)/2) (3.6)

if we define

M = |f |+ |f ′|H−1/2 + ‖f ′′‖H−1 + h1/2H−3/2 . h−1 (3.7)

By [9, Proposition 3.8] we have M ≈ ‖f ′′‖H−1 + h1/2H−3/2 . H−1. The
following geometrical property will be important for the proof.
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Proposition 3.4. [9, Proposition 3.9] If H−1/2 � 1 when f = 0 then we find
|f ′| � h1/2 > 0 and the curvature of f−1(0) is bounded by CH1/2. We can then
factorize

f = αδ when |δ| . H−1/2

where MH1/2 ≈ α ∈ C∞ so δ ∈ C∞ in (x, ξ).

Now, if we add a strictly increasing perturbation % to B = δ we may destroy
the non-negativity of Bf . In fact, when f = αδ as in Proposition 3.4 we find

Bf = (δ + %)αδ = α(δ + %/2)2 − α%2/4 ≥ −α%2/4 (3.8)

by completing the square. Since α ≈ MH1/2 and M . H−1 we find that

0 ≤ α%2 . MH1/2%2 . H−1/2%2

A first choice for the perturbation would be

% =
1

T

∫ t

0

H1/2(s) ds |t| ≤ T

making

∂tB ≥ ∂t% ≥ H1/2/T & h1/2/T

for some T � 1, which would then give the desired lower bound in (3.2). But
since Bf ≥ −CH−1/2%2 by (3.8), this can only be compensated by ∂t% if

% =
1

T

∫ t

0

H1/2(s) ds . H1/2(t) |t| ≤ T (3.9)

which in general is not true, since t 7→ H1/2(t) could have a large variation.

3.3. The weight. The main problem is to, for a chosen positive weight
m, find a perturbation % = O(m) such that ∂t(δ + %) � m.

Proposition 3.5. [9, Proposition 5.8] For m > 0 we define

%(t) = sup
−T≤s≤t

(

δ(s)− δ(t) +
1

2T

∫ t

s

m(r) dr −m(s)

)

|t| ≤ T � 1 (3.10)

Then we obtain that

∂t(δ + %) ≥
m

2T
� m (3.11)

We find that |%| ≤ m if

sup
s≤r≤t

m(r) ≤ δ(t)− δ(s) +m(s) +m(t) − T ≤ s ≤ t ≤ T (3.12)
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Condition (3.12) means that δ(t) has to increase when m(t) has a large vari-
ation, which is not always true for m = H1/2. For the proof of Proposition 3.5
we observe that

δ(t) + %(t) = sup
−T≤s≤t

(

δ(s)−
1

2T

∫ s

0

m(r) dr −m(s)

)

+
1

2T

∫ t

0

m(r) dr

and since the supremum is non-decreasing we obtain (3.11). We get %(t) ≥
−m(t) by putting s = t in the supremum (3.10). We obtain the upper bound
% ≤ m if

δ(s)− δ(t) +
1

2T

∫ t

s

m(r) dr −m(s) ≤ m(t)

when −T ≤ s ≤ t ≤ T , which follows from (3.12) since then

1

2T

∫ t

s

m(r) dr ≤ sup
s≤r≤t

m(r) ≤ δ(t)− δ(s) +m(s) +m(t) (3.13)

One way of obtaining (3.12) is to make the following construction.

Definition 3.6. Let

m(t) = inf
−T≤t−≤t≤t+≤T

(

δ(t+)− δ(t−) + max
(

H
1/2(t−)〈δ(t−)〉, H1/2(t+)〈δ(t+)〉

)

)

(3.14)

where 〈δ〉 = 1 + |δ| and the first term is non-negative by the monotonicity of
t 7→ δ.

The term 〈δ〉 in (3.14) does not change the weight close to the sign changes
of f , but makes the estimate (3.2) easier to prove when 〈δ〉 � 1. (Lerner used
H1/2〈δ〉2 instead of H1/2〈δ〉 in the definition of m in [33], which improved the
estimate (3.2).) When δ is constant in t we obtain that m is quasiconvex, i.e.,
the supremum of m on any interval is attained at the boundary.

Proposition 3.7. [9, Proposition 5.7] The weight m defined by (3.14) satis-
fies (3.12) and

h1/2〈δ〉 . m . H1/2〈δ〉 (3.15)

To prove Proposition 3.7 we observe that since h1/2 . H1/2 we obtain (3.15)
from Definition 3.6 by taking t± = t. We also obtain from the definition that

inf
t

(

|δ(t)− δ(t0)|+H1/2(t)〈δ(t)〉
)

≤ m(t0) ∀ t0

Since the infima in t± are taken independently, we obtain for fixed s ≤ r ≤ t
that

m(r) ≤ inf
t−≤s<t≤t+

(

δ(t+)− δ(t−) + max
(

H1/2(t−)〈δ(t−)〉, H
1/2(t+)〈δ(t+)〉

)

)

≤ δ(s)− δ(t) +m(s) +m(t)
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which gives (3.12) and Proposition 3.7. By taking B = δ + % = O(H−1/2) we
obtain from (3.8) and (3.15) that when H−1/2 � 1 and δ = O(1) we have

Bf ≥ −CH−1/2m2 ≥ −C0m (3.16)

Away from sign changes we get a non-negative lower bound and when H−1 ≤ C
we find |BF | . MH3/2 . m by Proposition 3.8 below.

3.4. The Wick Calculus. Now to ensure that positivity of symbols
gives positivity of the corresponding operators, we shall use the Wick quanti-
zation

aWick(x,D)u(x) =

∫

T∗Rn

a(y, η)Σy,η(x,D)u(x) dydη u ∈ C∞
0

where Σy,η(x,Dx) are rank one orthogonal projections in L2, thus a ≥ 0 gives
aWick ≥ 0 in L2. Then by using B = δ + % we obtain from (3.11) that

∂tB
Wick ≥ mWick/2T & h1/2/2T (3.17)

By choosing Σy,η suitably, we obtain that aWick(x,D) ∼ a(x,D) modulo lower
order terms when a is a symbol.

But the main difficulty is that Bf ≥ −Cm does not imply that

ReBWickf(t, x,Dx) ≥ −CmWick (3.18)

because we also have to consider the lower order terms in the expansion of
the composition BWickf . Since |Bf | . MH−1/2 and the symbols are real, the
following result will give (3.18) and thus Claim 3.2 by (3.17) and (3.3).

Proposition 3.8. [9, Proposition 5.5] With H defined by (3.5), M by (3.7)
and m by (3.14) we have that

MH3/2 . m (3.19)

This is in fact an essential part of the proof of Theorem 3.1. Since M ≈
‖f ′′‖H−1 + h1/2H−3/2, the estimate (3.19) follows from (3.15) if we can show
that

‖f ′′‖H1/2 . m

By using the definition of H−1/2 in (3.5) we obtain this if

‖f ′′‖ . m1/2|f ′|1/2 +m at (t, x, ξ) ∈ f−1(0) (3.20)

Since ‖f ′′‖ is bounded, we only have to prove (3.20) when |f ′| . m−1 and
m � 1 for a fixed t which we assume equal to 0.

Now, when m(0) � 1 there exist t− ≤ 0 ≤ t+ by Definition 3.6 so that
0 ≤ δ(t+)− δ(t−) < m and H1/2(t±) ≤ m. This means that in a ball of radius
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O(m−1) the curvature of f−1(0) is O(m) when t = t±. By using condition (Ψ)
one can find orthogonal coordinates w = (w1, w

′) in the (x, ξ) variables so that
f(0) = 0

sgn(w1)f(0, w) ≥ 0 when m · (1 + |w′|2) . |w1| . m−1

Then by estimating the odd and even terms in the Taylor expansion we find
that

|∂2
w1

f(0)| ≤ |f ′(0)|/|w1|+ Ch1/2|w1| m . |w1| . m−1

By choosing |w1| ≈ m + |f ′(0)|1/2m−1/2 . m−1 we obtain (3.20) for ∂2
w1

f(0).
The other second order derivatives can be estimated similarly, and we obtain
Proposition 3.8 which completes the sketch of the proof of Theorem 3.1.

Note that (3.20) essentially is Glaeser’s inequality for f ′ and it has the
geometric consequence that there cannot appear any singularities in the interior
of the bicharacteristics when condition (Ψ) holds.

4. Outlook and Open Problems

4.1. Solvability of systems. Since now the conditions for local solv-
ability of scalar principal type differential operators are known, it is natural to
look to the more general solvability problem for systems. To avoid complica-
tions, we shall only consider square systems of differential operators, defined as
in (1.3) with P (x, ξ) having values in N ×N matrices. But since the results are
local, they easily carry over to operators on vector bundles.

We shall define the property of being of principal type for systems. In the
following, we shall denote by KerP the kernel, RanP the range and CokerP =
CN/RanP the cokernel of the matrix P .

Definition 4.1. The N ×N system P (x, ξ) ∈ C∞ is of principal type if

KerP (x, ξ) 3 u 7→ ∂νP (x, ξ)u ∈ CokerP (x, ξ) u ∈ CN (4.1)

is bijective for some ν.

Principal type implies that the algebraic and geometric multiplicities of the
eigenvalue close to zero are equal when constant, see [11, Proposition 2.10].

Example 4.2. Define the system

P =

(

λ α
0 λ

)

with λ and α ∈ C∞. Then P is of principal type if and only if dλ 6= 0 and
α = 0 at λ−1(0). In fact, if α 6= 0 at λ−1(0) then KerP = RanP = C × { 0 },
which is preserved by ∂νP .
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Proposition 4.3. If P ∈ C∞ is of principal type and A, B ∈ C∞ are invertible
then APB is of principal type. We have that P is of principal type if and only
if the adjoint P ∗ is of principal type.

In fact, by Leibniz’ rule we have

∂ν(APB) = (∂νA)PB +A(∂νP )B +AP∂νB (4.2)

and Ran(APB) = A(RanP ) and Ker(APB) = B−1(KerP ) when A and B are
invertible, which gives the invariance. Since KerP ∗ = RanP⊥ we find that P
satisfies (4.1) if and only if

KerP ×KerP ∗ 3 (u, v) 7→ 〈∂νPu, v〉 (4.3)

is a non-degenerate bilinear form. Since 〈∂νP
∗v, u〉 = 〈∂νPu, v〉 we then obtain

that P ∗ is of principal type.

Recall that the eigenvalues of the symbol P (x, ξ) are the solutions to the
characteristic equation

|P (x, ξ)− λ IdN | = 0

where |A| is the determinant of the matrix A. Now if the matrix P (x, ξ) is
continuous then the eigenvalues can be chosen as continuous functions. Such a
continuous function λ(x, ξ) of eigenvalues we will call a section of eigenvalues
of P (x, ξ). If the section of eigenvalues λ(x, ξ) has constant algebraic multiplic-
ity then it is a C∞ function by the implicit function theorem.

Definition 4.4. A square symbol P (x, ξ) ∈ C∞ has constant characteristics if
there exists an ε > 0 such that any section of eigenvalues λ of P with |λ| < ε has
both constant algebraic and geometric multiplicity. We say that a square sys-
tem of pseudodifferential operators has constant characteristics if the principal
symbol has constant characteristics.

If P has constant characteristics then any section of eigenvalues sufficiently
close to zero has constant algebraic multiplicity, thus it is a C∞ function close
to zero.

Definition 4.5. Let P be a square system of pseudodifferential operators of
principal type having constant characteristics. We say that P satisfies condition
(Ψ) or (P ) if the eigenvalue λ close to zero of the principal symbol satisfies
condition (Ψ) or (P ).

These conditions are well-defined, since they only concern the section of
eigenvalues close to zero which is a smooth function. Similarly, one can define
the condition that the Hamilton vector field Hλ of the eigenvalue λ is indepen-
dent of the radial direction when λ = 0. The following result generalizes the
Nirenberg–Treves conjecture to square systems.
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Theorem 4.6. [11, Theorem 2.7] Let P be a square system of pseudodifferential
operators of principal type and constant characteristics, such that the Hamilton
vector field Hλ of the eigenvalue λ is independent of the radial direction when
λ = 0. Then P is locally solvable if and only if condition (Ψ) is satisfied, and
the loss of derivatives is at most 3/2.

When the multiplicity of the eigenvalues of the principal symbol is not
constant the situation is much more complicated. The following example shows
that in general it is not sufficient to have conditions only on the eigenvalues in
order to obtain solvability, not even for symmetric systems of principal type.

Example 4.7. Let x ∈ R2 and

P (x,D) =

(

Dx1
x1Dx2

x1Dx2
−Dx1

)

This system is symmetric of principal type with principal symbol having real
eigenvalues ±

√

ξ21 + x2
1ξ

2
2 but

1

2

(

1 −i
1 i

)

P

(

1 1
−i i

)

=

(

Dx1
− ix1Dx2

0
0 Dx1

+ ix1Dx2

)

(4.4)

which is not solvable. In fact, the scalar operators in (4.4) do not satisfy the
bracket condition (2.6) since the eigenvalues of the principal symbol of (4.4)
are ξ1 ± ix1ξ2.

Of course, the problem is that the eigenvalues are not invariant under mul-
tiplication with invertible systems. Instead we shall introduce the following
condition.

Definition 4.8. [10, Definition 4.5] The N×N system P ∈ C∞ is called quasi-
symmetrizable if there exists an N × N symmetrizer M ∈ C∞ and c > 0 so
that

{

Re〈M(∂νP )u, u〉 ≥ c‖u‖2 − C‖Pu‖2

Im〈MPu, u〉 ≥ 0
∀u ∈ CN (4.5)

Note that elliptic systems are quasisymmetrizable, since one can take M =
P−1. In the scalar case, the definition means that that there exists m ∈ C∞

such that ∂ν Re(mp) > 0 and Im(mp) ≥ 0 near p−1(0).

Proposition 4.9. [10, Propositions 4.7 and 4.10] If P ∈ C∞ is a
quasisymmetrizable system, then P is of principal type and P ∗ is quasisym-
metrizable. If A and B ∈ C∞ are invertible then BPA is quasisymmetrizable.

For quasisymmetrizable systems we have the following local solvability re-
sult.

Theorem 4.10. [12, Theorem 2.17] Assume that P is a square system of
pseudodifferential operators with quasisymmetrizable principal symbol, then P
is locally solvable with a loss of one derivative.
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By using the matrix version of Malgrange Preparation Theorem in [5], one
can reduce to model operators like the following example.

Example 4.11. Consider the first order system

P (t, x,Dt, Dx) = M(t, x,Dx)Dt + iF (t, x,Dx) (t, x) ∈ R×Rn (4.6)

where M ≥ c0 > 0 and ReF ≥ 0. Then P is quasisymmetrizable (with sym-
metrizer IdN ), so it is locally solvable with a loss of one derivative by Theo-
rem 4.10.

4.2. Spectral instability. The non-solvability of differential operators
has connections with the instability of spectrum (or pseudospectrum) of semi-
classical operators. The spectral instability of non-selfadjoint operators is a
topic of current interest in applied mathematics; it has been a problem for
many years in, for example, computational fluid dynamics, see [41]. The spec-
tral instability of semiclassical operators of principal type was studied in [14],
where the important connection with the bracket condition (2.6) was made.

Definition 4.12. We define the semiclassical operator

p(x, hD)u(x) =
1

(2π)n

∫ ∫

T∗Rn

p (x, hξ) ei〈x−y,ξ〉u(y)dydξ (4.7)

When p(x, ξ) is a polynomial in ξ we obtain a partial differential operator,
else it could be defined as a pseudodifferential operator. One can often reduce to
the case of bounded symbols p(x, ξ) ∈ C∞

b , so that all derivatives ∂α
x ∂

β
ξ p ∈ L∞.

This has the advantage that p(x, hD) is bounded on L2. The calculus gives an
asymptotic expansion

P (h) = p0(x, hD) + hp1(x, hD) + . . . (4.8)

where p0 is the principal symbol of P (h).
The spectrum of P (h) is defined as the complement of the set of z ∈ C

such that the resolvent (P (h)−z)−1 exists and is a bounded operator. One can
show that the spectrum of the semiclassical operator P (h) in (4.8) is, for small
enough h, contained in the closure of the values of the principal symbol

Σ(p) = { z ∈ C : ∃ (x, ξ) such that z = p0(x, ξ) }

We also define the values at infinity:

Σ∞(p) = { z ∈ C : ∃ (xj , ξj) → ∞, p(xj , ξj) → z }

which is a compact set since p is bounded. The following definition is from [14].

Definition 4.13. We define the semiclassical pseudospectrum:

Λ(p) = { p(x, ξ) : {Re p, Im p } (x, ξ) 6= 0 } ⊆ Σ(p)
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Observe that for analytic symbols we have that Λ(p) is equal to either Σ(p)
or ∅. The following result shows that the spectrum is generically unstable in
the values of the principal symbol when the bracket is non-zero.

Theorem 4.14. [14, Theorem 1.2] Assume that P (h) has principal symbol
p ∈ C∞

b . Then there exists a dense subset of z ∈ Λ(p) \ Σ∞(p) such that
∥

∥(P (h)− z)−1
∥

∥ ≥ CNh−N ∀N h → 0 (4.9)

Here we define
∥

∥(P (h)− z)−1
∥

∥ = ∞ in the spectrum of P (h). If p is analytic
then h−N can be replaced by exp(c/h), c > 0. Observe that it may happen that
Σ∞(p) = Σ(p), for example if p is constant in some variables. Actually, it suffices
that condition (Ψ) is not satisfied for p0 − z in order to get (4.9). This follows
by adapting the proof of the necessity of condition (Ψ) in [22], see [40]. One
application is the following result for the Schrödinger equation.

Example 4.15. Let P (h) = −h2∆+ V (x) with V ∈ C∞(Rn). Then, for any
z ∈ {ξ2 + V (x) : Im〈ξ, V ′(x)〉 6= 0} there exists u(h) ∈ L2(Rn) with the
property that ‖u(h)‖ ≡ 1 and

‖(P (h)− z)u(h)‖ ≤ CNhN ∀N h → 0 (4.10)

which gives (4.9). If the potential V (x) is real analytic then we can replace h∞

by exp(−1/Ch) in (4.10). These approximate eigenfunctions are called pseudo-
modes.

Theorem 4.14 can be generalized to semiclassical systems of principal type,
see [10]. In fact, the eigenvalues are generically of constant multiplicity, then
they are C∞ sections, so the bracket condition is well defined. We obtain as
in the scalar case that the resolvent blows up as in (4.9) when the bracket is
non-zero for almost all eigenvalues that are not limit eigenvalues at infinity, see
[10, Theorem 3.10].

4.3. Non-linear equations. The solvability of linear differential equa-
tions is connected with the solvability of the Cauchy problem for non-linear
differential equations. In fact, the initial data determines the coefficients of the
linearized equations initially, and generically the bracket condition (2.6) will
not be satisfied.

Lerner, Morimoto and Xu [34] studied the instability of the C∞ Cauchy
problem for quasilinear analytic vector fields, for example Burger’s equation.
For any analytic initial data, the Cauchy problem for those vector fields has
a local solution by the Cauchy–Kovalevsky Theorem. But for almost all ana-
lytic data there exists smooth data with the same Taylor expansion at a given
point for which the Cauchy problem has no C2 solution. For example, the non-
homogeneous Burger’s equation

∂tu+ u∂xu = f(t, x, u) (t, x) ∈ R×R

with analytic f has no C2 solution for almost all non-analytic Cauchy
data u(0, x).
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4.4. Open Problems. Even after the resolution of the Nirenberg–Treves
conjecture, there still remain many open questions, for example, the maximal
loss of derivatives in local solvability. We know that the loss is at most 3/2
derivatives, but we have no counterexample giving a loss of more than 1 + ε
derivatives, ∀ ε > 0.

Question 4.16. What is the maximal loss of derivatives for the local solvability
of pseudodifferential operators of principal type satisfying condition (Ψ)?

In the condition (P ) case, we obtain semiglobal solvability with a loss of
arbitrarily more than one derivative. But there is no counterexample giving a
loss of more than one derivative.

Question 4.17. What is the maximal loss of derivatives for the semiglobal
solvability of pseudodifferential operators of principal type satisfying condi-
tion (P )?

It is not known if condition (Ψ) is sufficient for semiglobal solvability, but
it is necessary by Theorem 2.8. A connected problem is the propagation of sin-
gularities for solutions to pseudodifferential equations satisfying condition (Ψ),
for which little is known in general.

Question 4.18. Is condition (Ψ) is sufficient for semiglobal solvability of pseu-
dodifferential operators of principal type?

It is also unclear what the conditions are for local solvability of pseudodif-
ferential operators with a loss of one derivative. Condition (Ψ) is not sufficient
by Lerner’s counterexamples, and condition (P ) is too strong. In fact, Lerner
[29] proved that P = Dt + if(t, x,Dx) with real first order f is solvable with a
loss of one derivative if P satisfies condition (Ψ) and

∂tf & |∂xf |
2 + |∂ξf |

2 |ξ| = 1

This means that transversal sign changes give no problems. It is not known if
condition (Ψ) gives a loss of one derivative in the special case when the operator
has analytic principal symbol. Observe that since Lerner’s counterexamples do
not have analytic principal symbols, there are no counterexamples to this.

Question 4.19. Which are the conditions for local solvability with a loss of
one derivative of pseudodifferential operators of principal type?

Very little is known about the solvability of systems of principal type having
non-constant characteristics. A special case is when the principal symbol of the
system is C∞ diagonalizable, i.e., there exists a C∞ base of eigenvectors. If then
all the eigenvalues satisfy condition (P ), the scalar estimates gives solvability
with a loss of one derivative, since these estimates can be perturbed with any
lower order terms. But when the eigenvalues have variable multiplicity satisfy-
ing condition (Ψ), one loses 3/2 derivatives in the scalar estimates, making it
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impossible to perturb with any lower order term. When one can factorize the
imaginary symbol as in Lemma 2.9 one gets solvability with a loss of two deriva-
tives if lower order terms are such that (2.25) is bounded, which in general is
not the case.

Question 4.20. Which are the conditions for local solvability of square systems
of principal type?

Not much is known about the propagation of singularities for systems of
pseudodifferential operators of principal type. For that one could use the vector
valued polarization sets defined in [4], where the propagation of polarization for
systems of real principal type was studied.
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thesis, Université de Rennes I, 2006.

[41] L.N. Trefethen and M. Embree, Spectra and Pseudospectra, Princeton University
Press, Princeton, N.J., 2005.

[42] F. Treves, Winding numbers and the solvability condition (Ψ), J. Differential
Geometry 10 (1975), 135–149.

[43] J. Wittsten, On some microlocal properties of the range of a pseudo-differential
operator of principal type, arXiv:1003.1676 [math.AP].



Proceedings of the International Congress of Mathematicians

Hyderabad, India, 2010

Equilibrium Configurations of

Epitaxially Strained Elastic Films:

Existence, Regularity, and Qualitative

Properties of Solutions

Nicola Fusco
∗
and Massimiliano Morini

†

Abstract

We consider a variational model introduced in the physical literature to de-
scribe the epitaxial growth of an elastic film over a thick flat substrate when a
lattice mismatch between the two materials is present. We prove existence of
minimizing configurations, study their regularity properties, and establish sev-
eral quantitative and qualitative properties of local and global minimizers of the
free-energy functional. Among the other results, we determine analytically the
critical threshold for the local minimality of the flat configuration, we investi-
gate also its global minimality, and we provide some conditions under which the
non occurrence of singularities in non flat global minimizers is guaranteed. One
of the main tools is a new second order sufficient condition for local minimality,
which provides the first extension of the classical criteria based on the positivity
of second variation to the context of functionals with bulk and surface energies.
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1. Introduction

The understanding of the mechanisms governing stress driven surface diffusion
of atoms, which are located at the interface between two different elastic solid
phases, is very important in view of its impact on several branches of physics
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and technology, such as low temperature physics, fracture mechanics, epitaxial
growth of films, and the construction of semiconductor devices with special
optic and electronic properties.

A technology that is central to the fabrication of modern semiconductor
electronic and optoelectronic devices is the epitaxial deposition of a thin film
onto a substrate in cases involving a mismatch in the lattice parameters between
the two materials. Because of the constraint of epitaxy, a mismatch strain arises
in the film and produces an interesting threshold effect: to release some of the
elastic energy due to the mismatch strain, the atoms on the free surface of the
film tend to diffuse and rearrange into a more favorable shape; in turn, this
migration of atoms bears an energetic cost in terms of surface tension. The
resulting configuration is overall more convenient only if the thickness of the
film is large enough. In this case, the film profile ceases to be flat and, typically,
becomes wavy or breaks into several material clusters (the so-called islands)
separated by a thin layer that wets the substrate. This phenomenon is usually
referred to as the Asaro-Grinfeld-Tiller instability of the flat configuration, after
the name of the scientists who pioneered the theoretical investigations on this
kind of stress driven morphological instabilities ([1], [11]).

Although several numerical and theoretical studies have been carried out to
study qualitative properties of equilibrium configurations of strained epitaxial
films (see, e.g., [10], [16], [17]), very few analytical results were present in the
literature until very recently.

Perhaps, the first paper to cast the study of AGT instability in a more ana-
lytical perspective is the one by Grinfeld [12]. In the spirit of Gibbs variational
approach, the author introduces a suitable free-energy functional (the sum of
the stored elastic energy of the film and the interfacial energy of its free sur-
face) and establishes various instability results for the flat morphology of the
film by looking at the second variation of the free-energy. However, existence
of minimizers and the problem of deriving second order sufficient minimality
conditions are not addressed in that work.

Subsequently, in [3] the authors attempted to provide a well-posed varia-
tional formulation for the existence problem of minimizing configurations, but
for an unrealistic one-dimensional model. Finally, in the framework of linear
elasticity and considering only two-dimensional morphologies (that correspond
to three-dimensional configurations with planar symmetry), the papers [2] and
[8] (for a slightly different model) succeeded in determining the proper func-
tional setting for the physically more relevant energy considered in [12]. The
methods used in the two papers are related to relaxation and geometric mea-
sure theory techniques. See also [6] for a partial extension of these relaxation
results to higher dimensions.

Besides dealing with the existence problem, the work [8] also develops a
complete regularity theory of (locally) minimizing configurations and estab-
lishes various results about their structure and qualitative behavior. More re-
cently, a finer study of several quantitative and qualitative properties of local
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and global minimizers has been undertaken in [9]. The results of [8] and [9] will
be recalled in Sections 2 and 3 of the present paper, respectively.

We now describe more in details the model studied in [2] and considered in
this paper. We start by introducing the reference configuration of the film

Ωh :=
{
z = (x, y) ∈ R

2 : 0 < x < b, 0 < y < h (x)
}
,

where h : [0, b] → [0,∞) represents the free-profile of the film. Since we work
within the theory of small deformations, we need to consider the linearized
elastic strain given by

E (u) :=
1

2

(
∇u+∇Tu

)
,

with u : Ωh → R
2 representing the planar displacement.

We consider the case of a film growing on an infinitely rigid substrate. Thus,
the lattice mismatch between film and substrate can be modeled by enforcing
the Dirichlet boundary condition u(x, 0) = e0(x, 0) at their interface, where the
positive constant e0 is proportional to the gap between the atomic distances
in the lattices of the two materials. Note that this boundary condition forces
the film to be strained, thus generating elastic energy. Following the physical
literature and [2], we also impose the periodicity conditions h(0) = h(b) and
u(b, y) = u(0, y) + (e0b, 0). The energy associated with a configuration (h, u)
when h is smooth is then given by

F (h, u) =

∫

Ωh

[
µ|E(u)|2 +

λ

2
(divu)2

]
dz + σH1(Γh) ,

where µ and λ represent the Lamé coefficients of the material, σ is the surface
tension on the profile of the film, Γh is the graph of h, and H1 denotes the
one-dimensional Hausdorff measure.

In the following, we assume without loss of generality that σ = 1. In order
to describe stable equilibrium configurations, one wants to minimize F among
all admissible configurations (h, u) satisfying a volume constraint |Ωh| = d.
However, note that smooth sequences may converge to irregular configurations,
where the profile h is just a lower semicontinuous function of bounded variation
and the (extended) graph of h may contain vertical parts and cuts (the latter
can be interpreted as vertical cracks forming in the film). Hence, we need to
consider a larger class X of relaxed configurations and extend accordingly the
definition of F , through a relaxation procedure. This has been done in [2], where
it is shown that the energy associated to any pair (h, u) ∈ X takes the form

F (h, u) =

∫

Ωh

[
µ|E(u)|2 +

λ

2
(divu)2

]
dz +H1(Γh) + 2H1(Σh) ,

with Γh and Σh denoting the (extended) graph of h and the union of all vertical
cuts, respectively. Notice that in the previous formula the length of vertical cuts
is counted twice, since they arise as limit of regular profiles.



1988 Nicola Fusco and Massimiliano Morini

The plan of the paper is the following. In Section 2, after giving the precise
statement of the Bonnetier-Chambolle relaxation result, we apply the regularity
results established in [8] (see also [7] dealing with the case of anisotropic surface
energy) to the model described above. In particular, we show that the profile of
locally minimizing configurations is regular away from a finite (possibly empty)
set of singularities of cusp type. As a corollary, we obtain a rigorous proof of
the zero contact angle condition between film and substrate and an analyti-
cal confirmation of the formal analysis of [15]. These regularity results are in
agreement with numerical simulations and experiments, where the appearance
of cusps, possibly leading to vertical fractures in the material, is observed (see
[10] and [16]).

In Section 3, we investigate further quantitative and qualitative properties
of stable equilibrium configurations. Using the results of [9], we determine ana-
lytically the critical threshold for the local minimality of the flat configuration,
we investigate also its global minimality, and we establish some conditions un-
der which cusp singularities or fractures do not form, once the flat configuration
becomes unstable. One of the main tools is a new sufficient condition for lo-
cal minimality based on the positive definiteness of a suitable notion of second
variation of the energy F . To the best of our knowledge, this result provides the
first extension of the classical sufficiency theorems for strong local minimizers
to the context of functionals with bulk and surface energies.

2. Existence and Regularity of Equilibrium

Configurations

In this section we present the model studied by Bonnetier and Chambolle in
[2] and the related functional setting. We also discuss the regularity theorem
proved in [8].

We start by introducing the admissible profiles over the interval (0, b), which
are functions with finite total variation in (0, b) whose b-periodic extensions are
lower semicontinuous (l.s.c.) in R. It is convenient to identify these functions
with the corresponding periodic extensions:

AP (0, b) :=
{
g : R → [0,+∞) : g is l.s.c. and b-periodic, Var(g; 0, b) < +∞

}
,

where Var(g; 0, b) denotes the pointwise total variation of g over the interval
(0, b). Since g ∈ AP (0, b) is b-periodic, its pointwise total variation is finite over
any bounded interval of R. Therefore, it admits right and left limits at every
x ∈ R denoted by g(x+) and g(x−), respectively. In the following we use the
notation

g+(x) := max{g(x+), g(x−)} , g−(x) := min{g(x+), g(x−)} . (1)

To represent the region occupied by the film, we set

Ωg := {(x, y) : x ∈ (0, b), 0 < y < g(x)}, Ω#
g := {(x, y) : x ∈ R, 0 < y < g(x)},
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while the profile of the film is given by

Γg := {(x, y) : x ∈ [0, b), g−(x) ≤ y ≤ g+(x)} .

The set of vertical cracks (or cuts) is

Σg := {(x, y) : x ∈ [0, b) , g(x) < g−(x), g(x) ≤ y ≤ g−(x)} .

We will also use the notation

Γ#
g := {(x, y) : x ∈ R, g−(x) ≤ y ≤ g+(x)} .

The set Σ#
g is defined similarly.

We now introduce a convergence in AP (0, b). We recall that if A,B are
closed subsets of R2 their Hausdorff distance is defined as

dH(A,B) := inf{ε > 0 : B ⊂ Nε(A) and A ⊂ Nε(B)} ,

where Nε(A) denotes the ε-neighborhood of A.

We say that hn → h in AP (0, b) if

sup
n

Var(hn; 0, b) < +∞ and dH(R2
+ \ Ω#

hn
,R2

+ \ Ω#
h ) → 0 , (2)

where R
2
+ = {(x, y) ∈ R

2 : y ≥ 0}.

Given g ∈ AP (0, b), we denote

LD#(Ωg;R
2):=

{
v ∈ L2

loc(Ω
#
g ;R

2) : v(x, y) = v(x+b, y) for (x, y) ∈ Ω#
g ,

E(v)|Ωg
∈ L2(Ωg;R

2)
}
,

where E(v) := 1
2 (∇v + ∇T v), ∇v being the distributional gradient of v and

∇T v its transpose. Given e0 ≥ 0, we define

X(e0; b) :=
{
(g, v) : g ∈ AP (0, b), v : Ω#

g → R
2 such that

v(·, ·)− e0(·, 0) ∈ LD#(Ωg;R
2), v(x, 0) = (e0x, 0) for all x ∈ R

}
.

We introduce the following convergence in X(e0; b).

We say that (hn, un) → (h, u) in X(e0; b) if and only if hn → h in AP (0, b)

and un ⇀ u weakly in H1
loc(Ω

#
h ;R

2).

Notice that the definition is well posed since by the second equation in (2)

it follows that if Ω′ ⊂⊂ Ω#
h then Ω′ ⊂⊂ Ω#

hn
for n large enough.

We work in the framework of linearized elasticity and for simplicity we
consider isotropic and homogeneous materials. Hence, the elastic energy density
Q : M2×2

sym → [0,+∞) takes the form

Q(ξ) :=
1

2
Cξ : ξ = µ|ξ|2 +

λ

2

[
tr(ξ)

]2
,
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where

Cξ =

(
(2µ+ λ)ξ11 + λξ22 2µξ12

2µξ12 (2µ+ λ)ξ22 + λξ11

)

and the Lamé coefficients µ and λ satisfy the ellipticity conditions

µ > 0 and λ > −µ . (3)

If (g, v) ∈ X(e0; b) and g is Lipschitz the energy is defined as

G(g, v) :=

∫

Ωg

Q(E(v)) dz +H1(Γg) .

The following result, proved in [2] (see also [8]), gives a representation formula
for the energy in the general case and an existence result for the corresponding
constrained minimum problem. To this aim, we set for any (g, v) ∈ X(e0; b)

F (g, v) := inf{lim inf
n

G(gn, vn) : (gn, vn) → (g, v) in X(e0; b), gn Lipschitz,

|Ωgn | = |Ωg|} .

Theorem 1. For any pair (g, v) ∈ X(e0; b)

F (g, v) =

∫

Ωg

Q(E(v)) dz +H1(Γg) + 2H1(Σg) . (4)

Moreover, for any d > 0 the minimum problem

min{F (g, v) : (g, v) ∈ X(e0; b), |Ωg| = d} (5)

has a solution, the minimum value in (5) is equal to

inf{G(g, v) : (g, v) ∈ X(e0; b), |Ωg| = d, g Lipschitz}

and the limit points of minimizing sequences are minimizers of (5).

Our regularity result applies not only to b-periodic global minimizers, i.e.
minimizers of (5), but also to local minimizers, which are defined as follows.

Definition 2. We say that an admissible pair (h, u) ∈ X(e0; b) is a b-periodic
local minimizer for F if there exists δ > 0 such that

F (h, u) ≤ F (g, v) (6)

for all pairs (g, v) ∈ X(e0; b), with |Ωg| = |Ωh| and dH(Γh ∪ Σh,Γg ∪ Σg) < δ.
If, in addition, when g 6= h (6) holds with strict inequality, then we say that
(h, u) is an isolated b-periodic local minimizer.
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Notice that a (sufficiently regular) b-periodic local minimizer (h, u) ∈
X(e0; b) satisfies the following set of Euler-Lagrange conditions:





divCE(u) = 0 in Ωh;

CE(u)[ν] = 0 on Γh ∩ {y > 0};

CE(u)(0, y)[ν] = −CE(u)(b, y)[ν] for 0 < y < h(0) = h(b);

k +Q(E(u)) = const on Γh ∩ {y > 0},

(7)

where ν denotes the outer unit normal to Ωh and k is the curvature of Γh. Due to
(3), equation (7)1 is a linear elliptic system satisfying the Legendre-Hadamard
condition.

Definition 3. Let (h, u) ∈ X(e0; b) be such that h ∈ C2([0, b]). We say that
the pair (h, u) is a critical point for F if it satisfies (7).

Before stating the regularity result, we need to introduce the set of cusp
points of a function g ∈ AP (0, b)

Σg,c := {(x, g(x)) : x ∈ [0, b) , g−(x) = g(x) , and g′+(x) = −g′
−
(x) = +∞} ,

where g− is defined in (1), while g′+ and g′
−
denote the right and left derivatives,

respectively. As before, the set Σ#
g,c is obtained by replacing [0, b) by R in the

previous formula and coincides with the b-periodic extension of Σg,c.

Theorem 4 (Regularity of local minimizers). Let (h, u) ∈ X(e0; b) be a b-
periodic local minimizer for F . Then the following regularity results hold:

(i) cusp points and vertical cracks are at most finite in [0, b), i.e.,

card
(
{x ∈ [0, b) : (x, y) ∈ Σh ∪ Σh,c for some y ≥ 0}

)
< +∞ ;

(ii) the curve Γ#
h is of class C1 away from Σ#

h ∪ Σ#
h,c and

lim
x→x±

0

h′(x) = ±∞ for every x0 ∈ Σ#
h ∪ Σ#

h,c;

(iii) Γ#
h ∩ {(x, y) : y > 0} is of class C1,α away from Σ#

h ∪ Σ#
h,c for all α ∈

(0, 1/2);

(iv) let A := {x ∈ R : h(x) > 0 and h is continuous at x}. Then A is an open
set of full measure in {h > 0} and h is analytic in A.

Statement (ii) of Theorem 4 implies in particular that the zero contact angle
condition between film and substrate holds. On the other hand, if h > 0, Γh is
of class C1,α for all α ∈ (0, 1/2), and (h, u) ∈ X(e0; b) satisfies the first three
equations in (7), then the elliptic regularity (see [9, Proposition 8.9]) implies
that u ∈ C1,α(Ωh) for all α ∈ (0, 1/2). Moreover, if also (7)4 holds in the
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distributional sense, then the results contained in [14, Subsection 4.2] imply
that (h, u) is analytic.

The proof of Theorem 4 is quite long. We describe here the principal steps
and the main ideas. For the details we refer to [8].

The first step consists in removing the constraint |Ωh| = d by showing that
if (h, u) is a b-periodic local minimizer, then (h, u) is also a local minimizer of
the penalized functional

(g, v) ∈ X(e0; b) 7→ F (g, v) + Λ
∣∣|Ωg| − d

∣∣ ,

for some Λ > 0 sufficiently large. This gives a much larger choice of variations
and in particular allows us to prove that Ω#

h satisfies an interior uniform ball
condition, namely that if % > 0 is sufficiently small (depending on u), then for

all z0 ∈ Γ#
h there exists an open ball B%(z) ⊂ Ω#

h such that ∂B%(z)∩Γ
#
h = {z0}.

In fact, suppose on the contrary that there exists a ball B%(z) ⊂ Ω#
h whose

boundary touches Γ#
h at two points (x1, y1), (x2, y2). To fix the ideas, and with

no loss of generality, let us assume that 0 ≤ x1 < x2 < b. Let us denote by
h̃ the function coinciding with h in [0, b) \ [x1, x2] and defined in (x1, x2) as
the affine function whose graph is the segment connecting (x1, y1) and (x2, y2).
Notice that if (h, u) satisfies the local minimality condition (6) for some δ > 0
there exists %0 > 0 such that if 0 < % < %0, then dH(Γh ∪ Σh,Γh̃ ∪ Σh̃) < δ. A
simple calculation then shows that

[
F (h, u) + Λ

∣∣|Ωh| − d
∣∣]−

[
F (h̃, u) + Λ

∣∣|Ωh̃| − d
∣∣] ≥ (L− `)− Λ|D| , (8)

where ` is the length of the segment joining (x1, y1) and (x2, y2), L the length
of the arc in Γh connecting the same two points, and D is the region bounded
by this arc and the segment. Since by the isoperimetric inequality

L− ` ≥
κ

%
|D| , (9)

for some universal constant κ > 0, one gets that if % < κ/Λ the right hand side
of (8) is positive, thus contradicting the local minimality of (h, u).

As a consequence of the interior ball condition one has that Γ#
h has (locally)

finitely many vertical cuts and cusp points. Moreover, outside these singular
points Γ#

h is the union of (locally) finitely many graphs of Lipschitz functions
having right and left derivatives at each point, right and left continuous, re-
spectively (see [5]). To prove that no such corner points exist and thus that

Γ#
h \

(
Σ#

h ∪ Σ#
h,c

)
is the union of (locally) finitely many C1 arcs, one argues

again by contradiction. In fact, if z0 = (x0, y0) is a corner point, then a blow-
up argument, combined with the classical results due to Grisvard ([13]) on the
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singularities at corner points of solutions to elasticity systems, gives that there
exist r0, C0 > 0 such that for all 0 < r ≤ r0

∫

Br(z0)∩Ωh

|Du|2 dz ≤ C0r
2β ,

for some β > 1/2. Then one can extend u to the whole ball Br0(z0) in such a
way that the resulting function ũ satisfies for all r < r0

∫

Br(z0)

|Dũ|2 dz ≤ C1r
2β , (10)

for some C1 independent of r. Then, given r sufficiently small, let
(x1, y1), (x2, y2) ∈ Γ#

h ∩ ∂Br(z0) be two points such that x1 < x0 < x2 and

Γ#
h ∩

(
(x1, x2)×R

)
⊂ Br(z0). Defining h̃ as above and comparing the energies

at the two pairs (h, u), (h̃, ũ) one easily gets from (10) and the fact that β > 1/2

[
F (h, u) + Λ

∣∣|Ωh| − d
∣∣]−

[
F (h̃, ũ) + Λ

∣∣|Ωh̃| − d
∣∣] ≥ 2r(1− sin(ϑ0/2)) + o(r) ,

where ϑ0 is the angle at the corner point z0. Hence, the local minimality of
(h, u) implies that ϑ0 = π and thus that there is no corner at z0.

The proof of statement (iii) in Theorem 4 combines in a similar way elliptic
regularity and variational arguments, while (iv) follows from the regularity
results proved in a more general framework in [14].

3. Second Variation and Minimality

In this section we present some qualitative and quantitative results dealing
with the local and global minimality of the flat configuration. We state also a
few theorems concerning the non occurrence of singularities in non flat global
minimizers. The results contained in this section were all proved by the authors
in [9]. Ultimately, they all rely on a new sufficient condition for local minimality,
stated in Theorem 6, which provides the first extension of the classical criteria
based on the positivity of second variation to the context of functionals with
bulk and surface energies.

3.1. The second variation. Let (h, u) ∈ X(e0; b) be an admissible

configuration such that h ∈ C∞(R) is strictly positive and let ϕ ∈ H̃1
#(0, b),

where

H̃1
#(0, b) :=

{
ϕ ∈ H1(0, b) : ϕ(0) = ϕ(b),

∫ b

0

ϕdx = 0

}
.

For t ∈ R sufficiently small, we set ht := h + tϕ and we let ut be the elastic
equilibrium corresponding to Ωht

under the usual periodicity and boundary
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conditions; i.e., (ht, ut) ∈ X(e0; b) and
∫

Ωht

CE(ut) : E(w) dz = 0 for all w ∈ A(Ωht
),

where for g ∈ AP (0, b)

A(Ωg) := {w ∈ LD#(Ωg;R
2) : w(·, 0) ≡ 0} .

We define the second variation of F at (h, u) along the direction ϕ as

∂2F (h, u)[ϕ] :=
d2

dt2
F (ht, ut)|t=0 .

The first result, also proved in [9], gives a representation formula for the second
variation. To this aim, it is convenient to associate to each function ϕ : (0, b) →
R the corresponding lifting ϕ̃ to Γh by setting

ϕ̃(x, y) :=
ϕ(x)√

1 + h′2(x)
for all (x, y) ∈ Γh.

Theorem 5 (Second variation formula). Let h ∈ C∞(R) be a strictly positive,
b-periodic function and u the corresponding elastic equilibrium. For all ϕ ∈
H̃1

#(0, b) we have

∂2F (h, u)[ϕ] = −2

∫

Ωh

Q(E(vϕ)) dz +

∫

Γh

(∂τ ϕ̃)
2dH1 (11)

+

∫

Γh

(
∂ν [Q(E(u)]− k2

)
ϕ̃2dH1 −

∫

Γh

(
Q(E(u)) + k

)
∂τ (h

′ϕ̃2)dH1 ,

where k is the curvature of Γh and vϕ is the unique solution in A(Ωh) to the
linear system

∫

Ωh

CE(vϕ) : E(w) dz =

∫

Γh

divτ
(
ϕ̃CE(u)

)
· w dH1 ∀w ∈ A(Ωh) .

In (11) we have denoted by ∂τ , ∂ν the tangential and normal derivative,
respectively. Notice that if (h, u) is a critical point for F , i.e., a solution to the
Euler–Lagrange system, the last equation in (7) implies that the last integral
in (11) is zero. Even in this case, the formula representing the second variation
is quite involved.

We can now state the following result, relating the positiveness of the second
variation to the local minimality.

Theorem 6 (Local minimality criterion). Let (h, u) ∈ X(e0; b) be a critical
point for F , with h ∈ C∞(R) and h > 0, and assume that the second variation
of F at (h, u) is positive definite, i.e.

∂2F (h, u)[ϕ] > 0 for all ϕ ∈ H̃1
#(0, b), ϕ 6≡ 0.

Then (h, u) is an isolated b-periodic local minimizer in the sense of Definition 2.
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Note that the regularity assumption on h is not so restrictive thanks to the
remarks following the statement of Theorem 4 in the previous section.

Since this theorem is the main result of the paper and its proof is rather
complicated, we outline here the overall strategy, referring to our paper [9] for
all the details.

A first crucial step consists in showing that the positivity of ∂2F (h, u) im-
plies that (h, u) is a strict local minimizer with respect to W 2,∞-perturbations
of the profile. The proof of this minimality property follows some ideas intro-
duced in [4] to study a similar notion of second variation for the Mumford-Shah
functional. However, the presence of the vectorial elastic energy in place of the
scalar Dirichlet functional requires a much more involved argument. Due to the
expression of ∂2F (h, u) given in (11), the analysis requires delicate regularity

estimates in the fractional Sobolev space H−
1

2 of the traces of the gradient of
E(u) on Γh which were not available in the literature.

The remaining part of the proof of Theorem 6 is devoted to showing that the
W 2,∞-local minimality is in fact equivalent to the local minimality with respect
to any admissible profile sufficiently close in the sense of Definition 2. Assume
by contradiction that the W 2,∞-local minimizer (h, u) is not a local minimizer.
Then one can find a sequence of configurations (kn, wn) with dH

(
Γh,Γkn

∪

Σkn

)
≤ 1

n , |Ωkn
| = |Ωh|, and F (kn, wn) ≤ F (h, u). We consider the obstacle

problems

min
{
F (g, v) + Λ

∣∣|Ωg| − |Ωh|
∣∣ : (g, v) ∈ X, g ≥ h− 1

n

}
, (12)

with Λ > 0, and we let (gn, vn) be the corresponding minimizing configurations.
Notice that we have replaced the volume constraint by a penalization term.
Since (kn, wn) is an admissible competitor for (12), we have in particular

F (gn, vn) ≤ F (gn, vn) + Λ
∣∣|Ωgn | − |Ωh|

∣∣ ≤ F (kn, wn) ≤ F (h, u) . (13)

We conclude by showing that if Λ > Λ0 ≡ Λ0(µ, λ, e0), then gn is regular
and gn → h in W 2,∞, which together with (13), gives a contradiction to the
W 2,∞-local minimality of (h, u).

The proof of the regularity and convergence of gn is obtained by refining
in a quantitative fashion the regularity estimates for minimal configurations
proved in [8] and outlined at the end of the previous section. The argument
goes as follows. We first show that if Λ is sufficiently large, then (h, u) is the
unique minimizer to

min
{
F (g, v) + Λ

∣∣|Ωg| − |Ωh|
∣∣ : (g, v) ∈ X, g ≥ h

}
.

From this fact we deduce that (gn, vn) must converge (in a suitable sense) to
(h, u). In particular, one can show that

gn → h in L∞(0, b) . (14)
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Next, we observe that from the representation formula (4) of F the profile gn
minimizes the functional

g → H1(Γg) + 2H1(Σg) + Λ
∣∣|Ωg| − |Ωh|

∣∣

among all admissible g such that h − 1
n ≤ g ≤ gn. This one-sided minimality

property alone suffices to provide a lower bound for the curvature (in a gen-
eralized sense) of Γgn ∪ Σgn . More precisely, using the isoperimetric inequality
(9) we show that for all z0 ∈ Γgn ∪ Σgn there exists a ball Bρ0

(z) ⊂ Ω#
gn such

that z0 ∈ ∂Bρ0
(z), with ρ0 ≡ ρ0(Λ) independent of n. As a purely geometric

consequence of this uniform inner ball condition and of (14), we deduce that
gn has no cusps nor vertical cut for n large and, in fact, gn → h in C1([0, b]).

Exploiting this last convergence we obtain, as in the proof of Theorem 4,
that for all β ∈ (0, 1)

∫

Br(z0)∩Ωgn

|∇vn|
2 dz ≤ C0r

2β

for all z0 ∈ Γgn , r ∈ (0, r0), where C0 and r0 are independent of n. With this
estimate at hand, a comparison argument similar to the one outlined at the
end of Section 2 implies a uniform bound of the C1,α-norms of {gn} for all
α ∈ (0, 1

2 ) and, in turn, by elliptic regularity, of {vn}. This allows us to use
the Euler-Lagrange equations to finally deduce the desired W 2,∞-convergence
of gn to h.

Using Theorem 5 we can now calculate the second variation of the flat
configuration. Given d > 0, the flat configuration with volume d is the pair
(d/b, ue0) ∈ X(e0; b), where

ue0(x, y) := e0

(
x,

−λ

2µ+ λ
y

)
.

Note that (d/b, ue0) is a critical point for the functional F ; i.e., it satisfies (7).

Let us fix ϕ ∈ H̃1
#(0, b) and set R = (0, b)× (0, d/b). From (11) we have

∂2F
(
d/b, ue0

)
[ϕ] = −2

∫

R

Q(E(vϕ)) dz +

∫ b

0

ϕ′2 dx ,

where vϕ is the solution in A(R) of the system





(2µ+ λ)
∂2v1ϕ
∂x2

+ µ
∂2v1ϕ
∂y2

+ (λ+ µ)
∂2v2ϕ
∂x∂y

= 0 in R,

µ
∂2v2ϕ
∂x2

+ (2µ+ λ)
∂2v2ϕ
∂y2

+ (λ+ µ)
∂2v1ϕ
∂x∂y

= 0 in R,
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satisfying the usual periodicity assumptions and the boundary conditions





∂v1ϕ
∂y

+
∂v2ϕ
∂x

=
4(µ+λ)e0
2µ+λ

ϕ′, λ
∂v1ϕ
∂x

+(2µ+λ)
∂v2ϕ
∂y

= 0 on {y = d/b},

vϕ = 0 on {y = 0} .

The above system can be explicitely solved (see [12] and [9]), thus leading to
an explicit formula for ∂2F

(
d/b, ue0

)
. To this aim, we set

νp :=
λ

2(λ+ µ)
, τ := e0

4µ(µ+ λ)

2µ+ λ

and introduce the function J defined for y ≥ 0 as

J(y) :=
y + (3− 4νp) sinh y cosh y

4(1− νp)2 + y2 + (3− 4νp) sinh
2 y

.

The quantity νp is often called the Poisson modulus of the elastic material.

Proposition 7. Given d > 0, for all ϕ ∈ H̃1
#(0, b) one has

∂2F
(
d/b, ue0

)
[ϕ] =

∑

n∈Z

n2ϕnϕ−n

[
1−

τ2(1− νp)bJ(2πnd/b
2)

2πµn

]
,

where the ϕn’s are the Fourier coefficients of ϕ in the interval (0, b).

3.2. Local and global minimizers. Combining the minimality crite-
rion Theorem 6 with the explicit expression of the second variation, we immedi-
ately obtain the sharp necessary and suffcient conditions for the local minimal-
ity stated in Theorem 8 below. Before that we introduce the Grinfeld function
K defined for y ≥ 0 by

K(y) := max
n∈N

1

n
J(ny) .

It turns out (see [9, Corollary 5.3]) that,

K is strictly increasing and continuous, K(y) ≤ Cy, and lim
y→+∞

K(y) = 1 ,

for some positive constant C.

Theorem 8 (Local minimality of the flat configuration). Let dloc : (0,+∞) →
(0,+∞] be defined as dloc(b) := +∞, if 0 < b ≤ π

4
2µ+λ

e2
0
µ(µ+λ)

, and as the solution

to

K

(
2πdloc(b)

b2

)
=

π

4

2µ+ λ

e20µ(µ+ λ)

1

b
,

otherwise. Then the flat configuration (d/b, ue0) is an isolated b-periodic local
minimizer for F if 0 < d < dloc(b).
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The threshold dloc is critical: indeed, for d > dloc(b) there exists (g, v) ∈
X(e0; b), with |Ωg| = d, and dH(Γg ∪ Σg,Γd/b) arbitrarily small such that
F (g, v) < F (d/b, ue0).

We come now to the issue of the global minimality of the flat configuration.
Next result shows that given b > 0, the flat configuration is the unique b-
periodic global minimizer provided the thickness d/b is small enough and that
if b is sufficiently small then the flat configuration is the unique b-periodic global
minimizer no matter how large the thickness of the film is.

Theorem 9 (Global minimality of the flat configuration). The following two
statements hold.

(i) For every b > 0, there exists 0 < dglob(b) ≤ dloc(b) (see Theorem 8) such
that the flat configuration (d/b, ue0) is a b-periodic global minimizer if and
only 0 < d ≤ dglob(b). Moreover, if 0 < d < dglob(b), then (d/b, ue0) is the
unique b-periodic global minimizer.

(ii) There exists 0 < bcrit ≤
π
4

2µ+λ
e2
0
µ(µ+λ)

such that dglob(b) = +∞ if and only if

0 < b ≤ bcrit, i.e., the flat configuration (d/b, ue0) is the unique b-periodic
global minimizer for all d > 0 if and only if 0 < b ≤ bcrit.

The results of Theorem 9 are more qualitative than those of Theorem 8. In
particular, the function dglob and the constant bcrit are not analitycally deter-

mined and it is an open problem to establish whether or not bcrit <
π
4

2µ+λ
e2
0
µ(µ+λ)

and dglob(b) < dloc(b). However, next result shows that the latter inequality
holds, at least for b large.

Proposition 10 (Comparison between local and global minimality thresholds).
There exists a constant c0 ≡ c0(λ, µ) such that

dloc(b)

b
≥

c0
e20

for all b > 0 .

Moreover,

lim
b→∞

dglob(b)

b
= 0 .

As a consequence of the previous proposition, we may prove a non-
uniqueness result.

Theorem 11 (Non uniqueness). Let b > 0 such that dglob(b) < dloc(b). Then
the minimum problem (5) with d = dglob(b) has at least another solution besides
the flat configuration (dglob(b)/b, ue0).

We next address the occurrence of regular non flat minimal configurations.
The following theorem gives an analytical confirmation of the numerical and
experimental observations that singularities do not form when the sample is
not too large in width and thickness.
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Theorem 12 (Regular non-flat minimal configurations). Let bcrit be the con-
stant introduced in Theorem 9. Then the following two statements hold.

(i) If bcrit < b < 2µ+λ
e2
0
µ(µ+λ)

, then for every b-periodic non-flat global minimizer

(h, u) we have h ∈ C1([0, b]).

(ii) Assume λ ≥ − 17
18µ. There exist breg > 2µ+λ

e2
0
µ(µ+λ)

and d0 > 0 with the

following property: If 2µ+λ
e2
0
µ(µ+λ)

≤ b < breg and dglob(b) ≤ d < dglob(b)+d0,

then for every b-periodic global minimizer (h, u) with |Ωh| = d we have
h ∈ C1([0, b]).

In both cases (h, u) satisfies all the conclusions of Theorem 4, with Σ#
h =

Σ#
h,c = ∅.

The last result deals with the existence of nontrivial analytic minimal con-
figurations. It states that if b is small enough, then b-periodic non-flat global
minimizers are analytic.

Theorem 13 (Analytic non-flat minimal configurations). Let bcrit be the con-
stant introduced in Theorem 9. There exists η0 > 0 such that if b = bcrit + η,
with η ∈ (0, η0), and (h, u) ∈ X(e0; 0, b) is any non-flat b-periodic global mini-
mizer, then (h, u) is analytic; more precisely, h is strictly positive and analytic

over R and, in turn, u is analytic in Ω
#

h .
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Abstract

We discuss basic properties (uniqueness and regularity) of viscosity solutions
to fully nonlinear elliptic equations of the form F (x,D2u) = 0, which includes
also linear elliptic equations of nondivergent form. In the linear case we consider
equations with discontinuous coefficients.
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1. Introduction

We consider elliptic equations written in terms of the Hessian D2u of the un-
known function u, i.e. we consider equations of the form

F (D2u(x), x) = 0, (1.1)

where u is a C2-function defined on a domain of Rn.

The equation (1.1) include as principal cases the fully nonlinear equation
depending only on the Hessian,

F (D2u(x)) = 0, (1.2)
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and the linear equation,

∑

aij(x)
∂2u

∂xi∂xj
= 0. (1.3)

The ellipticity conditions conditions for the equations (1.2) and (1.3) can be
written in the following form. We assume that F is a Lipschitz function defined
on an open set D ⊂ S2(Rn) of the space of n× n symmetric matrices. The
equation (1.2) is called uniformly elliptic if there exists a constant C = C(F ) ≥
1 (called an ellipticity constant) such that

C−1||N || ≤ F (M +N)− F (M) ≤ C||N || (1.4)

for any non-negative definite symmetric matrix N ; if F ∈ C1(D) then this
condition is equivalent to

1

C
|ξ|2 ≤ Fuij

ξiξj ≤ C|ξ|2 , ∀ξ ∈ Rn. (1.5)

Here, uij denotes the partial derivative ∂
2u/∂xi∂xj . The equation (1.2) is called

stritly elliptic if simply 0 < F (M +N) − F (M) for any positive definite sym-
metric matrix N ; if F ∈ C1(D) then this is equivalent to 0 < Fuij

. A function u
is called a classical solution of (1.1) if u ∈ C2(Ω) and u satisfies (1.1). Actually,
any classical solution of (1.1) is a smooth (Cα+3) solution, provided that F is
a smooth (Cα) function of its arguments.

For the linear equation (1.3) we assume that the coefficients aij(x) are mea-
surable functions which satisfy the inequalities

C−1|ξ|2 ≤
∑

aijξiξj ≤ C|ξ|2,

where C > 0 is an ellipticity constant.

Solutions of equations (1.2) and (1.3) have an important connection. Let
u1, u2 be two classical solutions of the equation (1.2). Then the difference u =
u1 − u2 is a solution of a linear uniformly elliptic equation (1.3):

∑

aij(x)
∂2(u1 − u2)

∂xi∂xj
= 0. (1.6)

The most of concrete examples of fully nonlinear equation (1.2) are invariant
under the rotations of the Euclidean space Rn, i.e., function F is invariant
under the action of the group O(n) on S2(Rn):

∀O ∈ O(n), F (tO · S ·O) = F (S) . (1.7)
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Such equations are called Hessian equations. In other words, denote by

λ(S) = {λi : λ1 ≤ ... ≤ λn} ∈ Rn

the (ordered) set of eigenvalues of the matrix S ∈ S2(Rn). Equation (1.2) is
called a Hessian equation if the function F (S) depends only on the eigenvalues
λ(S) of the matrix S, i.e., if

F (S) = f(λ(S)),

for some function f on Rn invariant under permutations of the coordinates.
If we assume that the function F (S) is defined for any symmetric matrix S,

i.e., D = S2(Rn) the Hessian invariance relation (1.7) implies the following:

(a) F is a smooth (real-analytic) function of its arguments if and only if f is
a smooth (real-analytic) function.

(b) Inequalities (1.4) are equivalent to the inequalities

µ

C0

≤ f(λi + µ)− f(λi) ≤ C0µ, ∀µ ≥ 0,

∀i = 1, ..., n, for some positive constant C0.

(c) F is a concave function if and only if f is concave.

Well known examples of the fully nonlinear equations are Laplace, Monge-
Ampère and Special Lagrangian equation (which are Hessian equations), Bell-
man and Isaacs equations.

Bellman and Isaacs equations appear in the theory of controlled diffusion
processes. The both are fully nonlinear uniformly elliptic equations of the form
(1.1). The Bellman equation is concave in D2u ∈ S2(Rn) variables. However,
Isaacs operators are, in general, neither concave nor convex. In a simple homo-
geneous form the Isaacs equation can be written as follows:

F (D2u) = sup
b

inf
a
Labu = 0, (1.8)

where Lab is a family of linear uniformly elliptic operators of type (1.3) with
an ellipticity constant C > 0 which depends on two parameters a, b.

The important difference of the equation (1.1) from the equations with the
origin in the calculus of variations is that the last ones have a divergent structure
which allows to use integral identities to define weak solutions of the equations.
For the equations (1.2) and (1.3) weak extension of the solutions known as the
viscosity solutions can be done in different ways.

For the fully nonlinear equation (1.2) the set of the viscosity solution can
be defined as the intersection of C-closures of the sets of classical super and
subsolutions. For the Bellman and Isaacs equation the probabilistic solutions
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can be defined as well, [19, 12, 24]. For the linear operator (1.3) one can define
a continuous strong Markov process x(t) such that x(t + h) − x(t) for h → 0
x(t) behaves as a Gaussian process with mean zero and covariance a(x(t)).

One can define the viscosity solutions for the equation (1.1) with just mea-
surable dependence of the function F on x, see [7], the case which uniforms the
equations (1.2) and (1.3). However, we will consider equations (1.2) and (1.3)
separately. Remarkably, the equality (1.6) holds for the viscosity extension of
the classical solutions of (1.2) and (1.3). Our main goal is to discuss the basic
properties of the viscosity solutions of the equations (1.2) and (1.3).

2. Stochastic Processes and Viscosity Solutions

of Linear Elliptic Equations

First we recall first the formal definitions of viscosity solutions to the equation
(1.3). Let Ω ⊂ Rn be a smooth bounded domain. Let L be a linear uniformly
elliptic operator (1.3) defined in Ω with the ellipticity constant C. We consider
a Dirichlet problem in Ω:

{

Lv = 0 in Ω
v = ϕ on ∂Ω

(2.1)

Definition 2.1. The function v is a viscosity solution of (1) if

v = lim vk,

where

Lvk =
∑

akij(x)
∂2vk

∂xi∂xj
= 0,

akij are continuous and akij → aij in L1(Ω).

Extending the notion of sub and super solutions Jensen [17] suggested an
equivalent definition of a viscosity solution of (1.3) which is close to the defini-
tion of a viscosity solution to fully nonlinear elliptic equations.

The existence of a viscosity solution to the Dirichlet problem (2.1) immedi-
ately follows from Definition 2.1. The important problem is the uniqueness of
the viscosity solution of (2.1). The uniqueness of the viscosity solution is related
to the uniqueness of the diffusion generated by the operator L. The diffusion
(ξt, Px) related to the operator L can be defined for example as a solution of the
martingale problem, [36]. The diffusion (ξt, Px) defines a solution of Dirichlet
problem (2.1):

u(x) = Ex{ϕ(ξτ )},
where τ is the first time when the path leaves the domain Ω.
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By Krylov, [21], and Stroock, Varadhan, [36], it is known that the diffusion
(ξt, Px) is unique if n = 2 or if coefficients of L are continuous functions. Hence
in these cases we have the uniqueness of the viscosity solution of the Dirichlet
problem (2.1). In the general case we prove the following result [25],

Theorem 2.1. There exists a uniformly elliptic operator L of the form (1.3)
defined in the unit ball B ⊂ R3 and there is a function ϕ ∈ C(∂B), such that
the Dirichlet problem (2.1) has at least two viscosity solutions.

The coefficients of the operator L given by Theorem 2.1 are severely discon-
tinuous, the set of discontinuity of aij has a complete Hausdorff dimension. If
on the contrary, the set of discontinuity of aij is small, a singular point or has
a small Hausdorff dimension, then the viscosity solution is unique, [8, 35]. We
conjecture: if the set of discontinuity of coefficients aij has Hausdorff dimension
less than 1, then the viscosity solution of the Dirichlet problem (2.1) is unique.

Other uniqueness results one can find in [5, 19].
One can rise a similar question on the uniqueness of the diffusion with

reflection from the boundary. Assume that ω ⊂ ∂Ω be a subdomain of the
boundary. Let l be a vector field defined on ω and transversal to the boundary,
(l, n) > δ > 0, |l| = 1. Consider a problem,







∆u = 0 in Ω
∂u/∂l = 0 on ω
u = ϕ on ∂Ω \ ω

(2.2)

Compactness results for the solutions of (2.2), see [22], allow to define viscosity
solutions of (2.2) for any measurable field l. In dimensions n ≥ 3 the question
of the uniqueness of the viscosity solutions of (2.2) is open. For a discussion of
linear and fully nonlinear oblique derivative problem see [4].

3. Nonclassical Solutions to Fully Nonlinear

Elliptic Equations

Consider the following Dirichlet problem

{

F (D2u(x)) = 0 in Ω
u = ϕ on ∂Ω

(3.1)

where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω, F is a uniformly
elliptic operator (1.2) and ϕ is a continuous function on ∂Ω.

It is not difficult to prove that the problem (3.1) has no more than one
classical solution (see e.g. [13]). The basic problem is the existence of such
classical solutions. Although the first systematic study of the Dirichlet problem
for fully nonlinear equations was done by Bernstein at the beginning of the
20-th century (see [13]), the first complete result did not appear until 1953,
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when Nirenberg proved the existence of a classical solution to problem (3.1) in
dimension n = 2 ([33]). For n ≥ 3, the problem of the existence of classical
solutions to Dirichlet problem (3.1) remained open.

In order to get a solution to the problem (3.1) one can try to extend the
notion of the classical solution of the equation (1.2). That was done recently:
Crandall-Lions and Evans developed the concept of viscosity (weak) solutions
of the fully nonlinear elliptic equations. As a characteristic property for such
extension can be taken the maximum principle in the following form:

Let u1, u2 be two solutions of the following equations, F (D2u1) = f1 in
Ω and F (D2u2) = f2 in Ω. Then for any subdomain G ⊂ Ω the inequalities
f1 ≤ f2 (f1 ≥ f2) in G and u1 ≥ u2 (u1 ≤ u2) on ∂G imply the inequality
u1 ≥ u2 (u1 ≤ u2) in G.

Such maximum principle holds for C2 functions u1, u2. We call a continu-
ous function u1 a viscosity solution of F (D2u1) = f1 if the above maximum
principle holds for u1 and all C2-functions u2.

It is possible to prove the existence of a viscosity solution to the Dirich-
let problem (3.1) and Jensen’s theorem says that the viscosity solution of the
problem (3.1) is unique. For more details see [6, 9].

There are important classes of the fully nonlinear Dirichlet problems for
which the viscosity solution is in fact a classical one, e.g., due to Evans-Krylov
regularity theory, in the case when the function F is convex, (see [11, 6, 20]).
Recently we have shown that in dimension 3 axial-symmetric viscosity solu-
tions of uniformly elliptic Hessian equations are in fact the classical ones [31].
However, for the general F the problem of the coincidence of viscosity solutions
with the classical remained open.

Our central result is the existence of nonclassical viscosity solution of (1.2)
in the dimension 12. More precisely we prove

Theorem 3.1. Let Ω ⊂ R12 be the unit ball. Then there exist a smooth uni-
formly elliptic F and ϕ ∈ C∞(Ω) such that the Dirichlet problem (3.1) has no
classical solution.

We discuss the ideas underlying the result. We can try to find a singular
viscosity solution of (1.2) in a form of a homogeneous order α function w(x),

w(kx) = kαw(x),

defined in the unit ball in Rn. On this way we immediately meet the following
restrictions:

(1) From the regularity results [6] for the solutions of (1.2) it follows that α
could be only in the range 1 + ε ≤ α ≤ 2, ε > 0.

(2) From the old result of A. Alexandrov, [2], it follows that n ≥ 4. (The
theorem of Alexandrov is valid for real analytic F . The corresponding
result for smooth F was proved in [14].)
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(3) If w(x) is a viscosity solution of (1.2) in the whole space Rn then α = 2
[32].

If after these discouraging remarks we still will to find a singular viscosity
solution in the form of a homogeneous function we need first to transform
problem into a question on implicit properties of the function w.

Let A ∈ S2(Rn). We say that the symmetric matrix A is hyperbolic with
the constant M, A ∈ HM if

1

M
< −λ1(A)

λn(A)
< M.

Lemma 3.1. Let
w(tx) = t2w(x), x ∈ Rn, t > 0

and
Hess w : Sn−1 → S2(Rn)

be a smooth embedding.
Assume (a) for all x, y ∈ Sn, x 6= y,

(D2w(x)−D2w(y)) ∈ HM .

Then w is a (viscosity) solution of a uniformly elliptic equation

F (D2w) = 0

in Rn.

We can get some simplification of the test of Lemma 3.1 for the function w
if we reduce the class of admissible functions w. We will consider homogeneous
order 2 functions w given in the following form,

w(x) =
P (x)

|x| ,

P being a cubic form in Rn. Let a, b ∈ Rn, |a|, |b| = 1, a 6= b, d = a− b, Pd =
∂P/∂d. Denote by λ1 ≤ ... ≤ λn the eigenvalues of the quadratic form Pd.

Lemma 3.2. Assume that λ3 < 0 < λn−2 and

λ1

λ3

,
λn

λn−2

< 2− δ, (3.2)

where δ > 0. Then
(D2w(a)−D2w(b)) ∈ HM ,

where M depends only on δ.
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Thus Lemma 3.2 links our initial problem of the existence of non-classical
viscosity solutions with the study of cubic forms and their spectral properties
(3.2) for various values of the parameter d.

As the first step towards the proper cubic form P we consider in C3 = R6

the form

P6 = Re(z1z2z3) = x1x2x3 − x1y2y3 − y1y2x3 − y1x2y3,

where zj = xj + iyj ∈ C. Then for d ∈ R6 it is not hard to prove the following
inequalities:

λ1

λ2

,
λ6

λ5

≤ 2. (3.3)

The inequalities (3.3) are obviously weaker than (3.2). First in (3.3) we have
the second eigenvalue instead of the third, secondly the inequalities (3.3) are
not strict. The second obstacle appears to be unexpectedly serious. One can
prove the following general algebraic statement: For any cubic form P in Rn

there exists a vector d such that if λ1 ≤ ... ≤ λn are the eigenvalues of the
quadratic form Pd then λ1/λ2 ≥ 2. Thus it is impossible to find a desirable
cubic form just by means of Lemma 3.2. Fortunately we have the following
upgrading of Lemma 3.2. Denote by Q the restriction of the quadratic form Pd

on the hyperplane orthogonal to d and let λ′
1 ≤ ... ≤ λ′

n−1 be the eigenvalues
of the quadratic form Q.

Lemma 3.3. Assume that for some δ > 0 and any d ∈ Sn−1
1 we have λ3 <

0 < λn−2 and
λ′
1

λ3

,
λ′
n−1

λn−3

< 2− δ. (3.4)

Then
(D2w(a)−D2w(b)) ∈ HM ,

where M depends only on δ.

The lemma is based on the fact that for any e ∈ Sn−1
1 , e ⊥ a one has

wee(a) = Pee(a)−P (a), thus wee(a)−wee(b) = Pee(a)−Pee(b)− (P (a)−P (b))
for e ⊥ a, b and taking the Taylor series of the difference P (a) − P (b) at the
point c = a+b

2
⊥ d = a− b one gets M proportional to δ.

Now in order to win the third eigenvalue in inequalities (3.3) it seems natural
to consider the Hamiltonian quaternions instead of the complex numbers. Thus
we consider the cubic form

P = P12 = Re(q1q2q3) (3.5)

in H3 = R12 where qi ∈ H are quaternions.
It is possible to prove that the cubic form (3.5) satisfies the inequalities

(3.4). The ideas behind this fact will be discussed in the next section. Hence
the function P12(x)/|x| is a non-classical viscosity solution in R12.
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Since inequalities (3.4) are just a sufficient condition for the function w to
be a viscosity solution of a fully nonlinear elliptic equation, it is interesting to
understand the situation over the field C, i.e., whether function w6 = P6(x)/|x|
satisfies the condition of Lemma 3.1. The careful analysis shows that the func-
tion w6 is a solution of a fully nonlinear elliptic equation, but unfortunately a
degenerate elliptic equation. More precisely, the equation rests strictly elliptic
but loses the uniform ellipticity in a neighborhood of the subset of S5

1 formed
by the points with |z1| = |z2| = |z3|, Re(z1z2z3) = 0.

To explain why P6 does not work and P12 does work we give in the next
section a short excursion in the area of division algebras and exceptional Lie
groups. That will lead us also to various extensions of Theorem 3.1.

4. Trialities, Quaternions, Octonions and

Hessian Equations

As we have seen in the previous section, cubic forms for which the quadratic
form Pd verifies the inequalities (3.2) or (3.3) should be rather exceptional. In
fact all examples of such forms known to us come from trialities, which in turn
are intimately related to division algebras and exceptional Lie groups. Let us
recall some of their elementary properties [1, 3].

Duality is ubiquous in algebra; triality is similar, but subtler. For two real
vector spaces V1 and V2, a duality is simply a nondegenerate bilinear map

f : V1 × V2 −→ R.

Similarly, for three real vector spaces V1, V2, and V3, a triality is a trilinear map

t : V1 × V2 × V3 −→ R

that is nondegenerate in the sense that if we fix any two arguments to any
nonzero values, the linear functional induced on the third vector space is
nonzero. Each vector spaces V1 has the dual vector space V2 = V ∗

1 . Trialities
are much rarer and in fact come from division algebras. Indeed, let

t : V1 × V2 × V3 −→ R

be a triality. By dualizing one gets a bilinear map

m : V1 × V2 −→ V ∗
3 .

By the nondegeneracy of t, the three spaces V1, V2 and V ∗
3 can be identified

with a single vector space, say V, which gives a product

m : V × V −→ V.
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Applying the nondegeneracy once more one sees that V is actually a divi-
sion algebra. It follows from the well-known theorem by Bott-Kervaire-Milnor
on non-parallelizability of spheres Sn, n > 7, that trialities only occur in di-
mensions 1, 2, 4, or 8. The one dimensional case is trivial and uninteresting.
Examples of trialities in dimensions 2, 4 and 8 are given by

t2 : C×C×C −→ R, t2(z1, z2, z3) = Re(z1z2z3),

t4 : H×H×H −→ R, t4(q1, q2, q3) = Re(q1q2q3),

t8 : O×O×O −→ R, t8(o1, o2, o3) = Re((o1o2)o3) = Re(o1(o2o3)).

A choice ofR-bases inC,H andO transforms t2, t4 and t8 into the following
cubic harmonic forms in 6,12 and 24 variables respectively:

P6 = X0Y0Z0 −X0Y1Z1 −X1Y1Z0 −X1Y0Z1,

P12 = (Y0Z0 − Y1Z1 − Y2Z2 − Y3Z3)X0 + (Y3Z2 − Y0Z1 − Y1Z0 − Y2Z3)X1+

(Y1Z3 − Y0Z2 − Y2Z0 − Y3Z1)X2 + (Y2Z1 − Y0Z3 − Y1Z2 − Y3Z0)X3,

P24 = (Z0Y0 − Z1Y1 − Z2Y2 − Z3Y3 − Z4Y4 − Z5Y5 − Z6Y6 − Z7Y7)X0+

(−Z1Y0 − Z0Y1 − Z4Y2 − Z7Y3 + Z2Y4 − Z6Y5 + Z5Y6 + Z3Y7)X1+

(−Z2Y0 + Z4Y1 − Z0Y2 − Z5Y3 − Z1Y4 + Z3Y5 − Z7Y6 + Z6Y7)X2+

(−Z3Y0 + Z7Y1 + Z5Y2 − Z0Y3 − Z6Y4 − Z2Y5 + Z4Y6 − Z1Y7)X3+

(−Z4Y0 − Z2Y1 + Z1Y2 + Z6Y3 − Z0Y4 − Z7Y5 − Z3Y6 + Z5Y7)X4+

(−Z5Y0 + Z6Y1 − Z3Y2 + Z2Y3 + Z7Y4 − Z0Y5 − Z1Y6 − Z4Y7)X5+

(−Z6Y0 − Z5Y1 + Z7Y2 − Z4Y3 + Z3Y4 + Z1Y5 − Z0Y6 − Z2Y7)X6+

(−Z7Y0 − Z3Y1 − Z6Y2 + Z1Y3 − Z5Y4 + Z4Y5 + Z2Y6 − Z0Y7)X7.

The main property of those forms is as follows:

Lemma 4.1. Let d = (a, b, c) ∈ Sk
1 ⊂ V 3, k = 5, 11 or 23, for V = C,H or

O. Let m = m(d) = |a| · |b| · |c| ∈ [0, 1

3
√
3
], n = n(d) = P (a, b, c), | n |≤ m for

P = P6, P12 or P24 respectively. The characteristic polynomial CHd(x) of the
quadratic form Qd = 2Pd = D2P (d) equals

CHd(x) = (x3 − x+ 2m)(x3 − x− 2m) for P = P6

CHd(x) = (x3 − x+ 2m)(x3 − x− 2m)(x3 − x+ 2n)2 for P = P12

CHd(x) = (x3 − x+ 2m)(x3 − x− 2m)(x3 − x+ 2n)6 for P = P24.
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To calculate the characteristic polynomial one uses the automorphism
groups of the trialities which are Lie groups closely connected to exceptional
ones. Note that the trialities t2, t4 and t8 are normed, i.e.

∀(v1, v2, v3) ∈ V 3, ∀j ∈ {2, 4, 8}, |tj(v1, v2, v3)| ≤ |v1||v2||v3|.

An automorphism of the normed triality

t : V1 × V2 × V3 −→ R

is a triple of norm preserving maps fi : Vi −→ Vi i = 1, 2, 3 such that

∀(v1, v2, v3) ∈ V1 × V2 × V3, t(f1(v1), f2(v2), f3(v3)) = t(v1, v2, v3).

The automorphism groups of our normed trialities are

Aut(t2) = {(g1, g2, g3) ∈ U(1)3 : g1g2g3 = 1} × Z2,

Aut(t4) = Sp(1)3/{±(1, 1, 1)},
Aut(t8) = Spin(8),

where

U(1) = S1 = {u ∈ C : |u| = 1}, Sp(1) = SU(2) = {v ∈ H : |v| = 1},

Spin(8) being the spinor group which sits in an exact sequence

1 −→ Z2 −→ Spin(8) −→ SO(8) −→ 1.

The polynomial CHd(x) is invariant under the action of the group Aut(tj)
which permits to reduce the vector d to a very special form which, in turn,
reduces the matrix of the form Qd to a very special form permitting to calculate
the characteristic polynomial.

More precisely, the action of Aut(t2) permits to assume that a, b are real for
d = (a, b, c) ∈ C3, which gives the formula for CHd(x) after a short calculation
(however, in this case the calculation is easy for a general d as well). In the
quaternionic case we can assume applying the action of Aut(t4) that

d = (a, b, c) ∈ C3 ⊂ H3

and thus the matrix M12,d of the form Qd takes the block form:

M12,d =

(

M6,d 0
0 A6

)

M6,d being the matrix for the case of C, and A6 being a simple structure matrix
with the characteristic polynomial (x3−x+2n)2. Finally, in the octonionic case
the action of Aut(t8) reduces d to

d = (a, b, c) ∈ H3 ⊂ O3
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(in fact, much more is true, one can assume that d = (a, b, c) ∈ R×C×H ⊂ O3)
and the matrix M24,d takes the form

M24,d =

(

M12,d 0
0 A12

)

for a simple structure matrix A12 with the characteristic polynomial
(x3 − x+ 2n)4.

We get for the spectrums Sp(Q6,d), Sp(Q12,d) and Sp(Q24,d) :

Corollary. Define the angles α, β ∈ [0, π] by m = cosα, n = cosβ. Then

Sp(Q6,d) =

{

2
√
3
cos

(

α+ πk

3

)}

, k ∈ [0, 5].

Sp(Q12,d) =

{

2
√
3
cos

(

α+ πk

3

)

, 2×
2
√
3
cos(

β + π(2l + 1)

3
)

}

, k ∈ [0, 5], l ∈ [0, 2].

Sp(Q24,d) =

{

2
√
3
cos

(

α+ πk

3

)

, 6×
2
√
3
cos

(

β + π(2l + 1)

3

)}

, k ∈ [0, 5], l ∈ [0, 2].

This immediately implies for Q12,d

Corollary. If λ1/λ3 = 2 then

CHd(x) =

(

x− 2√
3

)3 (

x+
2√
3

)(

x− 1√
3

)2 (

x+
1√
3

)6

,

and d = v1; if λ12/λ10 = 2 then

CHd(x) =

(

x+
2√
3

)3 (

x− 2√
3

)(

x+
1√
3

)2 (

x− 1√
3

)6

and d = v12 where vi is the normalized eigenvector corresponding to λi.

Since in this extremal cases the eigenvalue λ1 (resp. λ12) is simple and since
the set of d verifying those conditions is finite we get Lemma 3.3 for some
δ > 0; a more thorough analysis [26] permits to choose δ = 1/2 which is still
non-optimal.

Exceptional properties of Q24,d permit to ameliorate considerably Theorem
3.1, namely to consruct Hessian equations with singular, i.e. with unbouded
second derivatives, solutions.

One begins with an appropiate version of Lemma 3.1.

Lemma 4.2. 1). Let

w(tx) = t2w(x), x ∈ Rn, t > 0.
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Assume
for all x, y ∈ Sn, for all O ∈ O(n)

(D2w(x)− tO ·D2w(y) ·O) ∈ HM ∪ {0}.

Then w is a (viscosity) solution of a Hessian uniformly elliptic equation

F (D2w) = 0

in Rn.

2). Let for some δ ∈]0, 1]

wδ(tx) = t1+δwδ(x), x ∈ Rn, t > 0.

Assume
for all x, y ∈ Sn, for all O ∈ O(n) and for all K > 0

(D2wδ(x)−K · tO ·D2wδ(y) ·O) ∈ HM ∪ {0}.

Then wδ is a (viscosity) solution of a Hessian uniformly elliptic equation

F (D2w) = 0

in Rn.

Our analysis of the tests given by Lemma 4.2 is based on the following
classical result by H.Weyl [40]:

Lemma 4.3. Let A,B be two real symmetric matrices with the eigenvalues
λ1 ≤ λ2 ≤ . . . ≤ λn and λ′

1 ≤ λ′
2 ≤ . . . ≤ λ′

n respectively. Then for the
eigenvalues Λ1 ≤ Λ2 ≤ . . . ≤ Λn of the matrix A−B we have

Λn ≥ max
i=1,··· ,n

(λi − λ′
i), Λ1 ≤ min

i=1,··· ,n
(λi − λ′

i).

Since for e ∈ S23
1 , e ⊥ a one has wee(a) = Pee(a) − P (a), the restrition of

the form D2w(a) − tO ·D2w(b) · O to the 22-dimensional plane orthogonal to
a and O · b has a simple structure spectrum which pemits to apply the first
test of Lemma 4.2 to get a non-classical solution of a Hessian uniformly elliptic
equation. Moreover, since wδ,ee(a) = Pee(a)− (1 + δ)P (a), for any e ∈ S23

1 , e ⊥
a, a more profound analysis of this restriction shows that the second part of
Lemma is applicable as well for any δ ∈]0, 1] which leads to singular solutions of
such equations. In fact, since the multiplicity of some eigenvalues equals six one
can descend to 21 dimensions keeping these properties [30]. Finally, a far more
complicated analysis of the full Hessian D2wδ in 12 dimensions (which still has
the factor (x3−x+2n)2 in its characteristic polynomial!) permits to apply the
second part of Lemma 4.2 in 12 dimensions and its first part in 11 dimensions
thus giving singular and non-classical solutions of a Hessian uniformly elliptic
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equation in those dimensions [28, 30]. Moreover, one can formulate a test similar
to the second part of Lemma 4.2 which garanties that wδ is a solution to an
Isaacs equation.

In this way we get the following:

1). For any δ, 1 ≤ δ < 2 and any plane H ′ ⊂ R24, dimH ′ = 21 the function

(P24(x)/|x|δ)|H′

is a viscosity solution to a uniformly elliptic Hessian (1.2) in the unit ball
B ⊂ R21.

2). For any δ, 1 ≤ δ < 2 the function

w12,δ = P12(x)/|x|δ

is a viscosity solution to a uniformly elliptic Hessian equation (1.2) in the
unit ball B ⊂ R12.

3). For any hyperplane H ⊂ R12 the function

(P12(x)/|x|)|H

is a viscosity solution to a uniformly elliptic Hessian equation (1.2) in the
unit ball B ⊂ R11.

4). For any δ, 1 ≤ δ < 2 the function

w12,δ = P12(x)/|x|δ

is a viscosity solution to Isaacs equation (1.8) in the unit ball B ⊂ R12.

There remains a question on the minimal dimension n for which there exists
a homogeneous order a, 1 < a ≤ 2, solutions of fully nonlinear uniformly el-
liptic equations. Lawson and Osserman’s example [23] shows that Alexanrov’s
theorem does not hold in dimension 4. However, we expect that in dimension 4
there are still no such homogeneous solutions to fully nonlinear uniformly ellip-
tic equations. One notes also that the constuction of Lawson and Osserman’s
example resembles strikingly that of w12; it would be very intersting to clarify
the reason underliyng that similarity.

5. Special Lagrangian Equation

In this section we study weak solutions a Hessian fully nonlinear second-order
strictly, but not uniformly elliptic equations of the form (where h ∈ R)

Fh(D
2u) = det(D2u)− Tr(D2u) + hσ2(D

2u)− h = 0 (5.1)
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defined in a smooth-bordered domain of Ω ⊂ R3, σ2(D
2u) = λ1λ2+λ2λ3+λ1λ3

being the second symmetric function of the eigenvalues λ1, λ2, λ3 of D2u. This
equation is equivalent to the Special Lagrangian potential equation [15]:

SLEθ : Im{e−iθ det(I + iD2u)} = 0
(5.2)

for h := − tan(θ) which can be re-written as

Fθ = arctanλ1 + arctanλ2 + arctanλ3 − θ = 0.

The set

{A ∈ Sym2(R3) : Fh(A) = 0} ⊂ Sym2(R3)

has three connected components, Ci, i = 1, 2, 3 which correspond to the values
θ1 = − arctan(h)− π, θ2 = − arctan(h), θ3 = − arctan(h) + π.

We study the Dirichlet problem

{

Fh(D
2u) = 0 in Ω

u = ϕ on ∂Ω
(5.3)

where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω and ϕ is a
continuous function on ∂Ω.

For θ1 = − arctan(h)− π and θ3 = − arctan(h) + π the operator Fθ is con-
cave or convex, and the Dirichlet problem in these cases was treated in [10];
smooth solutions are established there for smooth boundary data on appropri-
ately convex domains.

The middle branch C2, θ2 = − arctan(h) is never convex (neither concave),
and the classical solvability of the Dirichlet problem remained open.

In the case of uniformly elliptic equations a theory of weak (viscosity) solu-
tions for the Dirichlet problem gives the uniqueness of such solutions, see [9].
One can define viscosity solutions for non-uniformly elliptic equations (such as
SLEθ) as well, but in this case the uniqueness of viscosity solutions known to
experts in the field is not given explicitly in the literature, so we use a new very
interesting approach to degenerate elliptic equations suggested recently by Har-
vey and Lawson [16]. They introduced a new notion of a weak solution for the
Dirichlet problem for such equations and proved the existence, the continuity
and the uniqueness of these solutions.

We are going to explain here why the classical solvability for Special La-
grangian Equations does not hold. More precisely, for any θ ∈]−π/2, π/2[ there
exist a small ball B ⊂ R3 and an analytic function ϕ on ∂B for which the
unique Harvey-Lawson solution uθ of the Dirichlet problem satisfies:

(i) uθ ∈ C1,1/3;

(ii) uθ /∈ C1,δ for ∀δ > 1/3.



2016 Nikolai Nadirashvili and Serge Vlăduţ

Our construction use the Legendre transform for solutions of F 1

h
(D2u) = 0

which gives solutions of Fh(D
2u) = 0; in particular, for h = 0 it transforms the

solutions of σ2(D
2u) = 1 into solutions of det(D2u) = Tr(D2u).

The costruction is based on the following result which can be verified by a
direct calculation along with the Cauchy-Kowalevskaya theorem :

Lemma 5.1. There exists a ball B = B(0, ε) centered at the origin s.t. the
equation

λ1λ2 + λ2λ3 + λ1λ3 = σ2(D
2u) = 1

has an analytic solution u0 in B verifying
(i)

u0 = −y4

3
+ 5y2z2 − x4 + 7x2z2 − z4

3
+ 2y2z − 2zx2 +

y2

2
+

x2

2
+O(r5)

(ii)

λ1 = 1 +O(r), λ2 = 1 +O(r), λ3 = −x2

2
− 3y2

2
− z2 +O(r3).

This lemma corresponds to h = 0; but the same statement is true for all h
with appropriate functions uh similar to u0. It is possible to show that ∇uh is
bijective on a small ball and its Legendre transform verifies the conditions (i)
and (ii).

Recall that the Special Lagrangian equation is equivalent to the condition
that the graph of ∇u is minimal [15] . However, for our solutions uθ the cor-
responding graph is smooth, and the singularity of solutions correspond to a
singularity of the projection of this graph onto the domain of definition. It
would be interesting to know whether it is always the case. Recall that the
subject of singular special Lagrange submanifolds became very popular due to
its possible connection to the mirror phenomena [37].

One can also ask whether there exists a non-classical solution of the Spe-
cial Lagrangian equation similar to those studied higher for uniformly elliptic
equations, i.e. homogenous of order two. It follows from the main result of [18]
that such solution does not exist in any dimension.
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[29] N. Nadirashvili, S. Vlăduţ, Singular solution to special lagrangian equations, to
appear in: Annales de l’Institut Henri Poincare (C) Non Linear Analysis .
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Abstract

It has been common wisdom among mathematicians that Extended Topolog-
ical Field Theory in dimensions higher than two is naturally formulated in
terms of n-categories with n > 1. Recently the physical meaning of these higher
categorical structures has been recognized and concrete examples of Extended
TFTs have been constructed. Some of these examples, like the Rozansky-Witten
model, are of geometric nature, while others are related to representation the-
ory. I outline two applications of higher-dimensional TFTs. One is related to
the problem of classifying monoidal deformations of the derived category of
coherent sheaves, and the other one is geometric Langlands duality.
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gory of coherent sheaves, geometric Langlands duality

1. Introduction

The notion of functional integral1 plays a central role in quantum field the-
ory, but it has defied attempts at a rigorous mathematical formulation, except
in some special cases (typically in space-time dimension 2). Topological Field
Theory (TFT) provides a useful playground for studying properties of the func-
tional integral in a simplified setting and has been the subject of many works
since the pioneering papers by E. Witten [35, 36, 37]. The physical definition
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1The term “functional integral” is synonymous with “path-integral”, but is more descrip-
tive, since in Quantum Field Theory one integrates over a space of functions of several vari-
ables rather than over a space of paths.
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of the functional integral uses an ill-defined measure on the space of field con-
figurations, but one can use the usual mathematical ploy and try to axiomatize
properties of the functional integral without making a direct reference to this
measure. The first attempt at such an axiomatization was made by M. Atiyah
[2]. Atiyah defines a TFT in n dimensions as a functor F from a certain ge-
ometrically defined category Bordn to the category of complex vector spaces
Vect (or to the category of Z2-graded complex vector spaces VectZ2

). The cat-
egory Bordn has as its objects compact oriented (n − 1)-manifolds without
boundary and has as its morphisms oriented bordisms between such manifolds.
F is supposed to be invariant with respect to diffeomorphisms. The disjoint
union gives the category Bordn a symmetric monoidal structure whose identity
object is the empty (n − 1)-manifold. The category Vect also has a natural
symmetric monoidal structure given by the tensor product; the identity object
is the field C. The functor F is required to be monoidal; in particular, it sends
the disjoint union of two (n − 1)-manifolds M1 and M2 to the tensor product
V (M1)⊗ V (M2), and it sends the empty manifold to C.

Since we can regard a closed oriented n-manifold N as a bordism between
∅ and ∅, the functor F sends any such N to a linear map from C to C, i.e.
a complex number F(N). This number is called the partition function of the
TFT on the manifolds N . So we see that an n-dimensional TFT assigns a
number to a closed oriented n-manifold and a vector space to a closed oriented
(n− 1)-manifold.

It is natural to ask if an n-dimensional TFT assigns anything to closed
oriented manifolds of lower dimensions. An obvious guess is that it assigns a
C-linear category to an (n − 2)-manifold, a C-linear 2-category to an (n − 3)-
manifold, etc. The resulting gadget is usually called an Extended Topological
Field Theory.2 Extending the TFT functor to lower-dimensional manifolds is
natural if we consider gluing closed manifolds out of manifolds with boundaries.
For example, given two oriented (n− 1)-dimensional manifolds N1 and N2 and
an orientation-reversing diffeomorphism ∂N1 → ∂N2, we can glue N1 and N2

along their common boundary and get a closed oriented (n− 1)-manifold N12.
An Extended TFT in n dimensions assigns to ∂N1 a C-linear category F(∂N1)
and assigns to N1 and N̄2 (the orientation-reversal of N2) objects F(N1) and
F(N̄2) of this category. The fact that N12 can be glued from N1 and N2 means
that the vector space F(N12) is the space of morphisms from the object F(N1)
to the object F(N̄2).

While the relevance of higher categories for TFT in higher dimensions has
been recognized by experts for some time [8, 9, 22, 3], an axiomatic definition
of an Extended TFT has not been formulated for an obvious reason: the lack

2It is likely that the language of (∞, n)-categories whose theory is being developed by J.
Lurie [23] is even better suited for TFT applications [24, 11]. Its physical significance remains
unclear at the time of writiing.



TFT, Higher Categories and Applications 2023

of a universally accepted definition of an n-category for n > 2.3 This technical
obstacle was compounded by a lack of understanding of the physical meaning
of higher categories.

The correct definition of a weak n-category being non-obvious, one is forced
to go back to the physical roots of the subject. We will first discuss two-
dimensional TFTs which have been studied extensively because of their con-
nection with Mirror Symmetry and explain why boundary conditions in a 2d
TFT form a category. This observation is due to M. Douglas [7]. Then we will
move on to three dimensions and explain why boundary conditions in a 3d TFT
form a 2-category. Applying these observations to n-dimensional TFT we will
be able to see from a more physical viewpoint why n-dimensional TFT assigns
a C-linear (k−1)-category to a compact oriented (n−k)-manifold. Then we will
describe two examples of TFTs in three and four dimensions and their appli-
cations to two different mathematical problems: the classification of monoidal
deformations of the derived category of coherent sheaves and the Geometric
Langlands Program.

2. Extended Topological Field Theory from a
physical viewpoint

2.1. Extended TFT in two dimensions. Consider a 2d TFT on a
compact oriented 2-manifold Σ with a nonempty boundary. It turns out nec-
essary to impose some conditions on the values of the fields on ∂Σ for the
functional integral to be well-defined on the physical level of rigor. Roughly
speaking, these conditions must define a Lagrangian submanifold in the space
of boundary values of the fields, where the symplectic form arises from the
boundary terms in the variation of the action. On the classical level, boundary
conditions are needed to make the initial-value problem for the classical equa-
tions of motion well-posed and to ensure the existence of a symplectic form on
the space of solutions.

Boundary conditions in a 2d TFT (also known as branes) form a C-linear
category. This is the category which the 2d TFT assigns to a point. Morphisms
in this category are boundary-changing local operators. To explain informally
what this means, suppose Σ is a half-plane {(x, y) ∈ R2|x ≥ 0}, and one
imposed a boundary condition A on the half-line {(0, y)|y < 0} and a boundary
condition B on the half-line {(0, y)|y > 0} (see Fig. 1). At the special point
(0, 0) additional data are needed to specify the functional integral uniquely.
These data define a boundary-changing point operator OAB between A and B.

3We remind that one distinguishes strict and weak n-categories. While the former are
easily defined, they almost never occur in practice; to define Extended TFTs one needs weak
n-categories.
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A

B

OAB ∈ VAB

Figure 1. Morphisms in the category of boundary conditions are boundary-changing
point operators.

It is a basic physical principle that the set of boundary-changing point oper-
ators has the structure of a (graded) vector space. To see why, let us introduce
polar coordinates (r, φ), r ∈ R+, φ ∈ [−π/2, π/2], so that the origin (0, 0) is
given by r = 0. To avoid dealing with divergences ubiquitous in quantum field
theory one may cut out a small half-disc r < ε for some ε > 0 and replace the
boundary-changing point operator by a suitable boundary condition on a semi-
circle r = ε (Fig. 2). (Unlike the boundary conditions A and B the boundary
condition corresponding to a boundary-changing point operator is nonlocal, in
general, in the sense that it does not merely constrain the values of the fields
and a finite number of their derivatives along the boundary but may involve
constraints on the Fourier components of the restrictions of the fields to the
boundary.) The key remark is that the half-plane with a half-disc removed is
diffeomorphic to a product of a half-line parameterized by r, r ≥ ε, and the
interval [−π/2, π/2] parameterized by φ. We now reinterpret r as the time co-
ordinate and φ as the spatial coordinate. On the spatial boundaries φ = ∓π/2
we have boundary conditions A and B, while the boundary condition at r = ε
is now regarded as an initial condition. Initial states in any quantum theory
form a vector space (in fact, a Hilbert space). We conclude that boundary-
changing point operators between boundary conditions A and B form a vector
space VAB.4

Next we consider a situation where Σ is a half-plane, but its boundary is
divided into three pieces: a half-line y < 0, an interval 0 < y < a, and a half-line
y > a. We impose boundary conditions A,B,C on the three pieces respectively,
so we need two boundary-changing point operators which are elements of vector
spaces VAB and VBC (Fig. 3). In a TFT the limit a→ 0 always exists, and one
should be able to interpret these two boundary-changing point operators as a
single boundary-changing point operator between A and C, i.e. an element of

4Note that orientation is important here, so VAB is not the same as VBA.
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A

B

OAB

Figure 2. A boundary-changing point operator is equivalent to a (possibly nonlocal)
boundary condition.

the vector space VAC. This gives a ‘fusion product”

VAB × VBC → VAC

One may further argue that this product is bilinear and associative in an obvious
sense. Note also that for any A the vector space VAA has a special element: the
boundary-changing point operator which is trivial. This element serves as a unit
in the algebra VAA. Altogether we obtain a category whose objects are branes,
whose morphisms are elements of vector spaces VAB, and with the composition
of morphisms defined by means of the fusion product.

A

B

C

OAB

OBC

A

C

OAB · OBC

Figure 3. Composition of morphisms corresponds to fusing boundary-changing point
operators. Fusion product is denoted by a dot.

Axioms of 2d TFT as usually formulated further imply that the resulting
category is self-dual, in the sense that the spaces VAB and VBA are naturally
dual, but we will not emphasize this aspect, since in some cases with infinite-
dimensional spaces VAB this requirement is not satisfied.
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The last remark we want to make about Extended TFTs in two dimen-
sions is that instead of closed oriented manifolds one may consider compact
oriented manifolds with a nonempty boundary. The connected components of
the boundary should be labeled by objects of the category of branes. We will
call this labeling a decoration of a manifold. Extended TFT assigns a complex
number to a decorated 2-manifold (the value of the functional integral with the
corresponding boundary conditions). It assigns a vector space to a decorated
1-manifold. The only connected decorated 1-manifold is an interval, whose dec-
oration consists of an ordered pair (A,B) of branes. The vector space assigned
to such a pair is the space of boundary-changing local operators VAB introduced
above. A good way to think about this rule is the following: if we consider our
2d TFT on a 2-manifold of the form R× [0, 1], where the two connected com-
ponents of the boundary are labeled by A and B, then we may regard it as a
1d TFT on R (this is called Kaluza-Klein reduction). A 1d TFT is simply a
quantum mechanical system, and its Hilbert space of states is what we assign
to the interval [0, 1].

2.2. Extended TFT in three dimensions. Three-dimensional
TFT is supposed to assigns a C-linear category to a closed oriented 1-manifold
and a C-linear 2-category to a point. Let us first explain the physical meaning
of the former. Consider a 3d TFT on a manifold of the form S1×Σ, where Σ is
an oriented 2-manifold which may be noncompact or have a nonempty bound-
ary. Another basic physical principle (Kaluza-Klein reduction) is that in such
a case one can describe the physics of the compactified theory by an effective
2d TFT on Σ. By definition, the category assigned to a circle is the category
of branes in this effective 2d TFT.

The 2-category assigned to a point is the 2-category of boundary conditions
in the 3d TFT. To explain where the 2-category structure comes from, consider a
3d TFT on an oriented 3-manifold W with a nonempty boundary, imagine that
a connected component of ∂W is subdivided by closed curves into domains,
and that one imposed unrelated boundary conditions on different domains.
Each domain is thus labeled by an element of the set of boundary conditions.
A closed curve separating the domains labeled by boundary conditions X and
Y is itself labeled by an element of a set WXY which determines how fields
behave in the neighborhood of the closed curve. Elements of the set WXY will
be called boundary-changing line operators from X to Y. Boundary-changing
line operators may be fused together (Fig. 4) which gives rise to a fusion product

WXY ×WYZ →WXZ, (A,B) 7→ A⊗ B, ∀A ∈WXY,∀B ∈WYZ. (1)

In every set WXX there is a special element, the trivial boundary-changing
line operator, which is an identity element with respect to the fusion product.
The associativity of the fusion product is more difficult to formulate because
there are boundary-changing line operators which are physically equivalent, but
not equal. From the mathematical point of view, the difficulty can be explained
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X Y Z

A B

X Z

A⊗ B

Figure 4. Boundary-changing line operator A from a boundary condition X to a bound-
ary condition Y and boundary-changing line operator B from Y to a Z can be fused to
produce a boundary-changing line operator from X to Z. This operation is denoted ⊗.

by saying that the set WXY is actually a category, and it is not natural to talk
about equality of objects in a category. Morphisms in this category are point
operators inserted at points on the closed curve separating domains X and Y
(Fig. 5). The insertion points of point operators divide the closed curve into
segments, and each segment is labeled by an element of the set WXY.

X Y

B

A

OAB

Figure 5. Boundary-changing line operators between boundary conditions X and Y
are objects of a category WXY. A morphism OAB from an object A to an object B is
a point operator inserted at the junction of A and B.

Let A and B be boundary-changing line operators between X and Y; we
will denote by VAB the set of point operators which can be inserted at the
junction of segments labeled by A and B. The same reasoning as in the case of
boundary-changing point operators tells us that VAB is a vector space. Point
operators sitting on the same closed curve can be fused (Fig. 6), which gives
rise to a product

VAB × VBC → VAC,
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which is bilinear and associative in an obvious sense. The category of boundary-
changing line operators between X and Y has WXY as its set of objects and the
sets VAB as the sets of morphisms. Let us denote this category CXY.

X Y

C

B

A

OAB

OBC X Y

C

A

OAB · OBC

Figure 6. Composition of morphisms in the category WXY arises from the fusion of
point operators sitting at the junctions of boundary-changing line operators.

The proper formulation of associativity of the fusion product (1) says that
that two triple products of three boundary-changing line operators differing by
a placement of parentheses are isomorphic:

(A⊗ B)⊗ C ' A⊗ (B⊗ C), ∀A ∈WXY,∀B ∈WYZ,∀C ∈WZT.

The isomorphism must be specified and must satisfy the so-called pentagon
identity [25]. The above discussion can be summarized by saying that boundary
conditions in a 3d TFT form a 2-category, whose sets of 1-morphisms are sets
WXY and whose sets of 2-morphisms are vector spaces VAB.

Kaluza-Klein reduction enables us to think about the category CXY in two-
dimensional terms. Consider a 3d TFT on a 3-manifold of the form Σ × [0, 1]
where Σ is an oriented but not necessarily closed 2-manifold. On the boundaries
Σ × {0} and Σ × {1} we impose boundary conditions X and Y respectively.
Kaluza-Klein reduction tells us that one can describe the physics of this 3d TFT
by an effective 2d TFT on Σ which depends on X and Y. We claim that the
category CXY is the category of branes for this effective 2d TFT. Indeed, consider
a 3d TFT on the half-space {(x, y, z)|x ≥ 0}, where we imposed the boundary
condition X on the half-plane {(0, y, z)|y < 0} and the boundary condition Y
on the half-plane {(0, y, z)|y > 0}. At the line given by x = y = 0 we insert
some boundary-changing line operator A ∈WXY. To regularize the problem we
need to cut out a solid half-cylinder x2 + y2 < ε2 for some ε > 0 and replace
A with a suitable boundary condition on the part of the boundary given by
x2 +y2 = ε2 (Fig. 7). Now we note that the half-space with a solid half-cylinder
removed is diffeomorphic to R+ ×R× [−π/2, π/2], where R+ is parameterized
by the radial coordinate on the (x, y) plane, R is parameterized by z, and the
interval is parameterized by the angular coordinate on the (x, y) plane. Thus we
may interpret the boundary condition at x2 +y2 = ε2 representing a boundary-
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changing line operator as a boundary condition in the effective 2d TFT on the
half-space R+ × R.

x

y

z

X

Y

A

Figure 7. A boundary-changing line operator is equivalent to a boundary condition on
a half-cylinder x2 +y2 = ε2, x > 0. This boundary condition is local in the z direction
but may be nonlocal in the angular direction in the xy plane. It can be interpreted as
a local boundary condition in a 2d TFT which is obtained by reducing the 3d TFT
on an interval.

For any object X of a 2-category the endomorphism category CXX has a
monoidal structure, i.e. an associative but not necessarily commutative tensor
product. This monoidal structure is not natural from the 2d viewpoint (there
is no physically reasonable way to define tensor product of branes in a general
2d TFT). Turning this around, if there is a mathematically natural monoidal
structure on a category of branes in a 2d TFT, it is likely that this 2d TFT
arises as a Kaluza-Klein reduction of a 3d TFT on an interval, and its category
of branes can be interpreted as the category CXX for some boundary condition
X in this 3d TFT. We will see an example of this below.

As in 2d TFT, we may consider decorated manifolds, i.e. compact oriented
manifolds with a nonempty boundary whose connected components are labeled
by elements of the set of boundary conditions. Extended TFT in three dimen-
sions assigns a number to a decorated 3-manifold (the value of the functional
integral with given boundary conditions), a vector space to a decorated 2-
manifold (the space of states of the effective 1d TFT obtained by Kaluza-Klein
reduction on this 2-manifold), and a category to a decorated 1-manifold. The
only connected decorated 1-manifold is an interval [0, 1]. If its endpoints are
labeled by boundary conditions X and Y, the corresponding category is the
category of boundary-changing line operators CXY.

2.3. Extended TFT in n dimensions. Continuing in the same fash-
ion we conclude that boundary conditions in an n-dimensional TFT form an
(n−1)-category. By analyzing more precisely the physical notion of a boundary
condition one should be able to arrive at a physically-motivated definition of a
weak n-category for all n > 0. We will not try to do it here.
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We can now see why n-dimensional TFT assigns a k-category to a closed
oriented (n−k−1)-manifold M . Consider an n-dimensional TFT on a manifold
of the form M ×N , where N is an oriented but not necessarily closed (k + 1)-
manifold. The Kaluza-Klein reduction principle tells us that we can describe
the physics by an effective (k + 1)-dimensional TFT on N . The k-category
assigned to M is the k-category of boundary conditions for this effective (k+1)-
dimensional TFT.

If M is the (n−k−1)-dimensional sphere, the corresponding k-category has
an alternative interpretation: it is the category of defects of dimension k. To
explain what a defect is, we might imagine that our TFT describes a particular
macroscopic quantum state of a system of atoms in space-time of dimension
n. It may happen that along some oriented submanifold L of dimension k the
atoms are in a different state than elsewhere (or perhaps there is an altogether
different kind of atoms inserted along this submanifold). In such a case one says
that there is a defect of dimension k inserted at L. Zero-dimensional defects
are also known as local operators, one-dimensional defects are known as line
operators, two-dimensional defects are known as surface operators.

We claim that defects of dimension k form a k-category, and that this cat-
egory is nothing but the k-category assigned to Sn−k−1. To see this, suppose
that L is a k-dimensional plane in Rn. We introduce “polar” coordinates in
Rn such that Rn\L is identified with Rk × Sn−k−1 × R+, and L is given by
r = 0, where r is the coordinate on R+. To regularize the problem we usually
need to cut out a small tubular neighborhood of L given by r < ε for some
ε > 0 and replace the defect by a suitable boundary condition at r = ε. Since
our n-manifold has a factor Sn−k−1, we may regard this boundary condition
as a boundary condition in an effective (k + 1)-dimensional TFT which is ob-
tained by Kaluza-Klein reduction on Sn−k−1. Thus defects of dimension k can
be regarded as objects of the k-category assigned to Sn−k−1. We will denote
it Dk.

Let us note a few special cases. Local operators (i.e. defects of dimension
0) are elements of the vector space assigned to Sn−1. This is usually called the
state-operator correspondence. Line operators are objects of a C-linear category,
while surface operators are objects of a C-linear 2-category.

Two defects of dimension k can be fused, which gives rise to a monoidal
structure on Dk. Another way to understand the origin of this monoidal struc-
ture is to note that a solid ball of dimension n − k with two smaller balls
removed gives a canonical bordims from Sn−k−1 t Sn−k−1 and Sn−k−1 (Fig.
8). The Extended TFT assigns to this bordism a k-functor from Dk × Dk to
Dk. This functor is associative (in some nontrivial sense). If n − k is greater
than 2 it is also commutative, while for n − k = 2 it is only braided. Thus
monoidal, braided monoidal and symmetric monoidal k-categories also natu-
rally arise from Extended TFT. We note that M. Kapranov and V. Voevodsky
proposed definitions for monoidal and braided monoidal 2-categories in [16]. It
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Figure 8. A canonical bordism from Sn−k−1 t Sn−k−1 to Sn−k−1, here shown for
n− k = 2.

is not clear if these definition agree with the definitions which are natural from
the point of view of Extended TFT.

3. The Rozansky-Witten model

3.1. Definition and basic properties. The Rozansky-Witten model
is a 3d TFT whose definition and basic properties have been described in [31].
It is a 3d sigma-model, i.e. its only bosonic field is a map φ : M → X, where M
is an oriented 3-manifold, and X is a complex manifold equipped with a holo-
morphic symplectic form. There are also fermionic fields: η ∈ Γ(φ∗T 0.1X) and
ρ ∈ Γ(φ∗T 1,0X ⊗ T ∗M). The partition function of the RW model is defined as
a functional integral over the infinite-dimensional supermanifold M with local
coordinates (φ, η, ρ). The measure is proportional to exp(−S(φ, η, ρ)), where S
is the action functional. Its explicit form is given in [31] but we will not need it
here. The most important property of this measure is that it is invariant with
respect to a certain odd vector field Q on M satisfying

{Q,Q} = 0,

where braces denote the super-Lie bracket. As a result the partition function
of the theory is unchanged if one adds to S a function of the form Q(f), where
f is any sufficiently well-behaved function onM. The Rozansky-Witten model
is topological because its action can be written as

S = Q(V ) + S0,

where S0 is independent of the metric on M and V is some metric-dependent
odd function.
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The Rozansky-Witten model has a formal similarity to the better-known
Chern-Simons gauge theory [32, 37]. For example, the non-Q-exact part of the
action reads

S0 =

∫
M

(
Ω(ρ,Dρ) +

1

3
Ω(ρ,R(ρ, ρ, η))

)
,

where Ω is the holomorphic symplectic form on X, D is the covariant differential
on φ∗T 1,0X ⊗ T ∗M with respect to a pull-back of a connection on T 1,0X, and
R ∈ Hom(T 1,0X ⊗ T 1,0X ⊗ T 0,1X,T 1,0X) is the curvature of this connection.
Compare this to the action of the Chern-Simons gauge theory:

SCS =

∫
M

(
κ(A, dA) +

1

3
κ(A, [A,A])

)
,

where A is a gauge field (a connection on a principal G-bundle over M) and κ
is a non-degenerate G-invariant symmetric bilinear form on the Lie algebra of
G. Clearly, the fermionic field ρ should be regarded as analogous to the bosonic
field A, i.e. the Rozansky-Witten model is an odd analogue of Chern-Simons
theory. The symplectic form Ω is an analogue of the symmetric bilinear form
κ.

This similarity is more than a mere analogy: as shown in [31] the Feynman
diagram expansion of the partition function of the Rozansky-Witten model is
basically the same as in Chern-Simons theory, with the curvature tensor playing
the role of the structure constants of the Lie algebra of G. The partition function
of the RW model (i.e. the number assigned to a closed oriented 3-manifold M)
was shown in [31] to be a finite-type invariant of M . In the same paper the
vector space assigned to a closed oriented 2-manifold of genus g was computed;
it turns out to be isomorphic to⊕

p

Hp

∂̄

(
X,
(∧

T 1,0X
)⊗g)

The category associated to a circle turns out to be [29, 30] a 2-periodic
version of the derived category of coherent sheaves on X which we de-
note DZ2(Coh(X)). Its objects are 2-periodic complexes of coherent sheaves
on X, and morphisms are obtained, as usual, by formally inverting quasi-
isomorphisms. One way to see this is to consider the Rozansky-Witten model
on S1 × Σ, where Σ is a not-necessarily-closed oriented 2-manifold. Kaluza-
Klein reduction in this case gives a very simple effective 2d TFT: the so-called
B-model with target X which has been studied extensively in connection with
Mirror Symmetry [38]. Its category of branes is well understood and is known
to be equivalent to the derived category of coherent sheaves [7, 1]. The only
difference compared to the usual B-model is that the Z-grading is replaced by
Z2-grading, leading to a 2-periodic version of the derived category.

The fact that the Rozansky-Witten model is Z2 -graded rather than Z-
graded might seem like a technicality, but it becomes crucially important when
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one turns to computing the braided monoidal structure on the category assigned
to S1. Both the usual and the 2-periodic derived categories have obvious sym-
metric monoidal structures given by the derived tensor product. However, the
braided monoidal structure on DZ2(Coh(X)) which arises from the Extended
TFT turns out to be not this obvious symmetric monoidal structure but its
deformation, which is no longer symmetric [29, 30]. Z2-grading is important
here, because the usual bounded derived category appears not to admit any
non-symmetric monoidal deformations (see below).

The braided monoidal deformation of DZ2
(Coh(X)) is a quantum deforma-

tion of the obvious monoidal structure, in the same sense that the category of
representations of the quantum group is a quantum deformation of the category
of representations of the corresponding classical group. That is, corrections to
the “obvious” associator arise as quantum corrections in the Feynman diagram
expansion of the Rozansky-Witten model. This has been worked out in detail
in [30]. The analogue of the Planck constant is the inverse of the symplectic
form Ω, i.e. under a rescaling Ω→ λΩ the p-th order quantum correction scales
like λ1−p.

Finally let us turn to the 2-category that the Rozansky-Witten model as-
signs to a point, i.e. the 2-category of boundary conditions [17, 18]. Its sim-
plest objects are complex Lagrangian submanifolds of X. There are also more
complicated objects which are described by a family of Calabi-Yau manifolds
parameterized by points of a complex Lagrangian submanifold Y , or even more
abstractly, a family of Calabi-Yau categories (i.e. categories which have the
same formal properties as the derived category of coherent sheaves of a Calabi-
Yau manifold) over Y . For simplicity we will not discuss these more complicated
objects here.

Even for the simplest geometric objects the description of the categories of
morphisms turns out quite complicated, so we will discuss only two extreme
cases (see [18] for a more general case). First, suppose that two complex La-
grangian submanifolds Y1 and Y2 intersect at isolated points, but not neces-
sarily transversely. The category of morphisms in this case is the direct sum
of categories corresponding to each intersection point, in the sense that the
set of objects is the union of the sets of objects assigned to each point, and
spaces of morphisms between objects coming from different intersection points
are 0-dimensional vector spaces. Thus it suffices to describe the category cor-
responding to a single intersection point.

In the neighborhood of the intersection point one may choose complex Dar-
boux coordinates, i.e. choose an identification of the neighborhood with an
open subset U of T ∗Cm with its canonical symplectic form. One can always
choose this identification so that Y1 ∩ U and Y2 ∩ U are represented by graphs
of exact holomorphic 1-forms dW1 and dW2 where W1 and W2 are holomorphic
functions on an open subset V of Cm. The category of morphisms in this case
is equivalent to the category of matrix factorizations of the function W2 −W1

[17, 18]. This category was introduced by M. Kontsevich in connection with
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Homological Mirror Symmetry and is defined as follows. An object of this cat-
egory is a Z2-graded holomorphic vector bundle E on V equipped with a holo-
morphic endomorphism D of odd degree satisfying D2 = W2−W1 + c, where c
is a complex number. Consider two such objects (E1, D1, c1) and (E2, D2, c2).
The space of holomorphic bundle maps from E1 to E2 is a Z2-graded vector
space equipped with an odd endomorphism D12 defined by

D12(φ) = D2 · φ− (−1)|φ|φ ·D1, ∀φ ∈ Hom(E1, E2),

where |φ| = 0 or 1 depending on whether φ is even or odd. The endomorphism
D12 satisfies D2

12 = c2 − c1. The space of morphisms in the category of matrix
factorizations from (E1, D1, c1) to (E2, D2, c2) is defined to be the cohomology
of the differential D12 if c1 = c2; otherwise it is defined to be zero.

The other relatively simple case is the category of endomorphisms of a com-
plex Lagrangian submanifold Y of X. On the classical level it is equivalent to
DZ2(Coh(Y )). One way to see this is to perform the Kaluza-Klein reduction
of the Rozansky-Witten model on an interval [0, 1] with boundary conditions
corresponding to Y . On the classical level the effective 2d TFT is a Z2-graded
version of the B-model with target Y , whose category of branes is DZ2

(Coh(Y )).
The monoidal structure is the usual derived tensor product. Both the monoidal
structure and the category itself are modified by quantum corrections, in gen-
eral.

3.2. Monoidal deformations of the derived category of co-
herent sheaves. As far as we know, the theory of deformations of monoidal
categories in general, and the derived category of coherent sheaves in partic-
ular, has not been systematically developed. A remarkably simple geometric
picture of monoidal deformations of the latter category emerges from the study
of the Rozansky-Witten model. Consider a complex Lagrangian submanifold
Y of a holomorphic symplectic manifold (X,Ω). The functional integral of the
Rozansky-Witten model localizes on constant maps, which implies that the
category of endomorphisms of the object Y depends only on the formal neigh-
borhood of Y in X. If this formal neighborhood happens to be isomorphic, as a
holomorphic symplectic manifold, to the formal neighborhood of the zero sec-
tion of T ∗Y (which we will denote T ∗f Y ), then one can show that the category
of endomorphisms of Y does not receive quantum corrections and therefore is
equivalent to DZ2

(Coh(Y )) as a monoidal category.
In general, the formal neighborhood of Y is isomorphic to T ∗f Y as a real

symplectic manifold, but not as a holomorphic symplectic one. The deviation
of the complex structure on T ∗f Y from the standard one is described by a (0, 1)-
form β with values in the graded holomorphic vector bundle

⊕∞p=2Symp(TY ). (2)

This (0, 1)-form satisfies a Maurer-Cartan-type equation

∂̄β +
1

2
[β, β] = 0. (3)
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Here brackets denote wedge product of forms combined with a Lie bracket
on sections of Sym•TY . The Lie bracket comes from the identification of the
space of sections of Sym•TY with the space of fiberwise-holomorphic functions
on T ∗f Y and the Poisson bracket on such functions. Note that because the wedge
product of 1-forms is skew-symmetric, the expression [β, β′] is symmetric with
respect to the exchange of 1-forms β and β′, and therefore [β, β] need not vanish.

The Rozansky-Witten model provides a map from the space of solutions of
the equation (3) to the space of monoidal deformations of DZ2

(Coh(Y )). As
usual, there is a group of gauge transformations whose action on the space of
solutions is determined by the action of its Lie algebra:

a : β 7→ β + ∂̄a+ [β, a], (4)

where a is a section of ⊕∞p=1SympTY .
The following natural conjecture was formulated in [17]:

Conjecture. Let MY be the space of solutions of the Maurer-Cartan equation
(3) where β is an inhomogeneous form of type (0, q) on Y with odd q with values
in the bundle (2). There is a surjective map from MY to the space of monoidal
deformations of the category DZ2

(Coh(Y )). Two monoidal deformations are
equivalent if the corresponding solutions of the Maurer-Cartan equation are
related by a gauge transformation whose infinitesimal form is given by (4).

If true, this conjecture gives an elegant description of all monoidal deforma-
tions of DZ2

(Coh(Y )). This description is strikingly similar to the description
of all deformations, monoidal or not, of the category Db(Coh(Y )) regarded as
an A∞ category [21]. The latter makes use of a Maurer-Cartan-type equation
for a (0, q) form P with values in the graded bundle Λ•TY :

∂̄P +
1

2
[P, P ]SN = 0. (5)

Here brackets denote the Schouten-Nijenjuis bracket on polyvector fields, and
the total degree of P (that is, the sum of the form degree and the polyvector
degree) is even. In particular a holomorphic Poisson bivector, i.e. a section of
Λ2TY satisfying

∂̄P = 0, [P, P ]SN = 0

gives rise to a noncommutative deformation of Y . The analog of the holomorphic
Poisson bivector in our case is a (0, q)-form β with values in Sym2TY satisfying

∂̄β = 0, [β, β] = 0.

The corresponding deformation of the monoidal structure makes the tensor
product on DZ2

(Coh(Y )) non-symmetric [17, 18]. Thus one may regard this
deformation as a categorification of deformation quantization, and the conjec-
tural relation between the space of solutions of the Maurer-Cartan equation (3)
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and the space of monoidal deformations as a categorification of the Formality
Theorem of M. Kontsevich [21].

Let us comment on the analogue of the above conjecture in the Z-graded
case, i.e. when DZ2(Coh(Y )) is replaced with Db(Coh(Y )). The latter category
can be interpreted as the endomorphism category of a boundary condition in a
Z-graded version of the Rozansky-Witten model. This Z-graded version exists if
the target manifoldX admits a C∗ action with respect to which the holomorphic
symplectic form has weight 2. To realize Db(Coh(Y )) as the endomorphism
category, we take X = T ∗Y with a canonical symplectic form dpdq, where p is
the fiber coordinate, and define the C∗ action by

λ : p 7→ λ2p, λ ∈ C∗.

That is, the fiber coordinate has weight 2. Accordingly, if we identify the space of
sections of SympTY with the space of functions on T ∗Y which are holomorphic
degree-p polynomials on the fibers, we should place it in cohomological degree
2p. A (0, q)-form with values in SympTY will therefore have degree q + 2p.
From the point of view of the Z-graded Rozansky-Witten model, holomorphic
symplectic deformations of T ∗Y should be identified with degree-3 solutions of
the Maurer-Cartan equation (3). Since p ≥ 2, the only such solution is the zero
one.5

The Z-graded Rozansky-Witten model with target T ∗Y is particularly sim-
ple since one can show that quantum corrections always vanish. This enables
one to give a fairly concise description of the 2-category of boundary condi-
tions for this 3d TFT. If we regard a monoidal category C as a categorification
of an associative algebra, then the categorification of a module is a module
category over C, .i.e. a category D on which C acts by endofunctors. Module
categories over a monoidal category form a 2-category. Roughly speaking, the 2-
category of boundary conditions for the Z-graded Rozansky-Witten model with
target T ∗Y is the 2-category of module categories over the monoidal category
Db(Coh(Y )). To be more precise, one needs to consider a differential graded
version of both the monoidal category Db(Coh(Y )) and module categories over
it. The resulting 2-category also appeared in the mathematical papers [4, 33].

Note that the existence of the Z-graded Rozansky-Witten model may be
regarded as a “physical reason” for the existence of the derived tensor product
on the category Db(Coh(Y )) associated to a complex manifold Y . That is,
while the derived tensor product has no physical meaning if one thinks about
Db(Coh(Y )) as the category of branes in a 2d TFT (the B-model with target
Y ), it arises naturally once we realize that the B-model with target Y can
be obtained by Kaluza-Klein reduction from a 3d TFT on an interval, with

5The restriction to p ≥ 2 appears because we want the complex structure of Y to be
undeformed. If we relax this assumption, then the only allowed β is a (0, 1)-form with values
in TY and satisfying the Maurer-Cartan equation (5). Such β describes a deformation of
Db(Coh(Y )) which arises from a deformation of the complex structure on Y . This deformation
is obviously monoidal, but not very interesting.
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identical boundary conditions at the two endpoints. This 3d TFT is the Z-
graded Rozansky-Witten model with target T ∗Y , and the boundary condition
is the complex Lagrangian submanifold given by the zero section of T ∗Y .

4. Topological Gauge Theory in four dimensions
and Geometric Langlands Duality

4.1. Electric-magnetic duality and Topological Gauge The-
ory. Another application of the Extended TFT has to do with the Geometric
Langlands Duality. 6 The physical origin of the Geometric Langlands Duality is
a conjectural isomorphism between two supersymmetric gauge theories in four
dimensions with gauge groups G and LG, where LG is the Langlands-dual of
G.7 This isomorphism is known as Montonen-Olive duality [27] and holds for
gauge theories with maximal supersymmetry [39, 28]. There are many com-
putations verifying particular implications of the Montonen-Olive conjecture,
but no general proof. In the case G = U(1) = LG, the Montonen-Olive duality
reduces to electric-magnetic duality, i.e. the transformation which exchanges
electric and magnetic fields. Electric-magnetic duality is well known to be a
symmetry of the U(1) gauge theory both on the classical and quantum levels.
The Montonen-Olive conjecture can be regarded as a far-reaching nonabelian
generalization of this fact.

To connect the Montonen-Olive conjecture to Geometric Langlands Duality
the first step is to replace supersymmetric gauge theories with much simpler
topological field theories [20]. This is achieved by means of a procedure called
twisting [35]. Roughly speaking, one redefines the stress-energy tensor of the
theory, so that it becomes Q-exact with respect to a certain nilpotent odd vector
field Q on the supermanifold of all field configurations. For historical reasons,
Q is known as the BRST operator. Simultaneously one restricts observables
(i.e. functions on the supermanifold of field configurations) to those which are
annihilated by Q. After twisting both the supersymmetric gauge theory with
gauge group G and its Montonen-Olive dual with gauge group LG one gets a
pair of isomorphic 4d TFTs.

In fact, the situation is more complicated than that. First of all, the maxi-
mally supersymmetric gauge theory in four dimensions admits three inequiva-
lent twists differing both by the choice of Q and by the required modification of
the stress-energy tensor [34]. Following [20] we will focus on the twist which was
first considered by N. Marcus [26] and is nowadays called the GL-twist. Second,
the GL-twisted gauge theory has two supercommuting BRST operators Ql and

6The relationship between ETFT and Geometric Langlands Duality is also discussed in
[5].

7We recall that the Langlands dual of compact simple Lie group G is a compact simple
Lie group LG whose maximal torus is isomorphic to the dual of the maximal torus of G.
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Qr, and one can take any linear combination of this as the BRST operator
which must annihilate the observables:

Q = uQl + vQr, u, v ∈ C, |u|2 + |v|2 > 0.

The overall normalization of Q does not affect the theory, so the GL-twisted
theory is really a family of 4d TFTs parameterized by points of CP1 [20]. We
will identify CP1 with a one-point compactification of the complex plane and
will label a particular TFT by a parameter t ∈ C ∪ {∞}.

It turns out that Montonen-Olive duality not only replaces G with LG but
also acts on the parameter t [20]. Geometric Langlands duality arises from a
particular instance of the Montonen-Olive duality which maps t = i to t = 1.8

4.2. From Topological Gauge Theory to Geometric Lang-
lands Duality. We can now attempt to extract some mathematical con-
sequences of the Montonen-Olive conjecture. Let us fix a compact simple Lie
group G and let C be a closed oriented 2-manifold. The 4d Topological Gauge
Theory with gauge group G assigns to C a family of C-linear categories pa-
rameterized by t; we will denote a member of this family by F(G, t, C). The
Montonen-Olive conjecture implies that there is an equivalence of categories

F(G, i, C) ' F(LG, 1, C).

It remains to understand the categories involved. This turns out to be rather
nontrivial. The category F(G, t, C) is the category of branes for the 2d TFT
obtained by Kaluza-Klein reduction of the 4d Topological Gauge Theory on C.
For g > 1 this 2d TFT was analyzed in [20]. It was shown that for t = i the 2d
TFT is a B-model whose target is the moduli space Mflat(GC, C) of flat GC-
connections on C. Here GC is the complexification of G. Accordingly, for t = i
the category of branes of the 2d TFT is the derived category of coherent sheaves
on Mflat(GC, C). For t = 1 the 2d TFT is a different topological sigma-model
(the A-model) whose target space is a symplectic manifoldMsymp

flat (GC, C). This
manifold is diffeomorphic toMflat(GC, C), with an exact symplectic form given
by

ω =

∫
C

κ(δA ∧ δφ),

where A is the real part of the flat GC-connection on C, φ is its imaginary
part, and κ is the Killing metric on the Lie algebra of G. The category of
branes for an A-model is the so-called Fukaya-Floer category [13] whose objects
are Lagrangian submanifolds of the target space and whose morphisms are
defined by means of the Lagrangian Floer homology. Thus Montonen-Olive
duality implies that the derived category of coherent sheaves on Mflat(GC, C)
is equivalent to the Fukaya-Floer category of Msymp

flat (LGC, C).

8More generally, one gets what is known as Quantum Geometric Langlands.
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The usual statement of the Geometric Langlands Duality is somewhat dif-
ferent. Instead of the Fukaya-Floer category of Msymp

flat (LGC, C) it involves the

derived category of D-modules over the moduli stack of holomorphic LGC-
bundles over C. It was shown in [20] that there is a functor from the former to
the latter, but it is not clear at the time of writing why this functor should be
an equivalence.

If C has genus zero, the effective 2d TFT one obtains by Kaluza-Klein
reduction is rather different. For t = i it was shown in [19] that the 2d TFT
is a GC-equivariant B-model whose target is the Lie algebra gC of GC placed
in cohomological degree 2. That is, the target is a purely even graded manifold
which we denote gC[2]. The group GC acts on gC by the adjoint representation.
The category of branes for this 2d TFT is the GC-equivariant derived category
of coherent sheaves on gC[2] [19]. For t = 0 and genus zero the 2d TFT has not
been analyzed thoroughly yet. From the mathematical viewpoint, one expects
that Geometric Langlands Duality relates the category Db

GC
(Coh(g[2])) and

the LG-equivariant constructible derived category of sheaves on the loop group
of LG [6]. It would be interesting to see if the latter category emerges as the
category of branes in a 2d TFT.

Instead of studying categories which the 4d TFT assigns to a closed oriented
2-manifold, we may consider 2-categories assigned to a circle. For a fixed gauge
group G we get a family of these 2-categories parameterized by t. Let us denote
a member of this family by F(G, t, S1). The Montonen-Olive conjecture implies
an equivalence of 2-categories:

F(G, i, S1) ' F(LG, 1, S1). (6)

Moreover, as mentioned above, both 2-categories are supposed to have braided
monoidal structure, and the equivalence is supposed to be compatible with
them.

To understand the 2-categories F(G, t, S1) one needs to study the Kaluza-
Klein reduction of the 4d Topological Gauge Theory on a circle. The corre-
sponding 3d TFT has been analyzed in [19]. It turns out that at t = i the
3d TFT is a GC-equivariant version of the Z-graded Rozansky-Witten model
with target T ∗GC, where GC acts on T ∗GC by conjugation. The corresponding
2-category of branes is, roughly speaking, the 2-category of module categories
over the GC-equivariant derived category of coherent sheaves over GC, regarded
as a monoidal category. A typical object of this 2-category is a family of cat-
egories over GC with an action of GC which lifts the action of GC on itself by
conjugation. For t = 1 the 3d TFT has not been studied thoroughly, but it
appears that its objects are module categories over a G-equivariant version of
the Fukaya-Floer category of T ∗G, regarded as a monoidal category.9

9The monoidal structure on this category is less obvious than for the analogous category
at t = i.
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5. Open Questions

It is plausible that the correct mathematical formalism for Extended Topo-
logical Field Theories is provided by the theory of (∞, n)-categories devel-
oped by J. Lurie [24, 23]. More precisely, what seems most relevant is the
linear case of this theory where the set of n-morphisms has the structure of
a differential graded vector space.10 Specifically, one expects that to every n-
dimensional TFT one can attach a linear (∞, n − 1)-category whose objects
are boundary conditions, whose 1-morphisms are boundary-changing operators
supported on submanifolds of the boundary of codimension 1, etc. Composi-
tions of k-morphisms arise from the fusion of the physical operators supported
on submanifolds of the boundary of codimension k. It would be interesting to
understand whether the definition of the (∞, n)-category captures the proper-
ties of fusion expected on physical grounds.

Extended Topological Field Theory provides a new viewpoint on the Geo-
metric Langlands Program. The most powerful statement implied by the topo-
logically twisted version of the Montonen-Olive conjecture is the equivalence
of 3-categories which the 4d Topological Gauge Theories with gauge groups G
and LG assign to a point. From the physical viewpoint, these are 3-categories
of boundary conditions. Some examples of boundary conditions for maximally
supersymmetric gauge theories and their Montonen-Olive duals have been con-
structed in [14, 15], but we are still far from understanding the nature of this
3-category.

One categorical level down, it would be very interesting to study the rich
structure on the 2-category F(G, t, S1) which the 4d Topological Gauge Theory
assigns to S1. We already mentioned that it has a braided monoidal structure
and an identity object. The monoidal structure arises from the bordism from
S1 t S1 to S1 depicted in fig. 8. Another way to draw it is shown in fig. 9;
we will call it the “pants” bordism. Similarly, the identity object arises from a
disc regarded as a bordism between the empty 1-manifold and S1 (the “cup”
bordism, see fig. 9). Further, the 2-category F(G, t, S1) is expected to be rigid,
i.e. there should be a 2-functor e from F(G, t, S1)×F(G, t, S1) to the 2-category
of linear categories, and a 2-functor ι in the opposite direction satisfying some
compatibility conditions. These 2-functors both arise from a cylinder regarded
either as a bordism from S1 t S1 to the empty 1-manifold (the “downward
plumbing fixture”, see fig. 9), or as a bordism from the empty 1-manifold to
S1 tS1 (the “upward plumbing fixture”, see fig. 9). All these 2-functors should
satisfy various compatibility conditions arising from the fact that although one
can glue a given oriented 2-manifold with boundaries from these four building
blocks (“pants”, “cup” and two “plumbing fixtures”) in many different ways,
the equivalence class of 2-functors corresponding to this 2-manifold must be

10From the physical viewpoint, linearity arises from the fact that the quantum-mechanical
space of states is a (graded) vector space.
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well-defined. One can summarize the situation by saying that F(G, t, S1) is a
rigid braided monoidal 2-category. A related viewpoint on the Geometric Lang-
lands Duality (not using the language of Extended Topological Field Theory)
is proposed in [12].

Figure 9. Basic 2d bordisms: pants, cup, downward plumbing fixture, upward plumb-
ing fixture.

Montonen-Olive duality predicts that F(G, i, S1) and F(LG, 1, S1) are equiv-
alent as rigid braided monoidal 2-categories. This statement should imply the
statement of the usual Geometric Langlands Duality in the following way. Given
any closed oriented 2-manifold C we may represent it as a result of gluing the
four building blocks shown in fig. 9. Extended TFT in four dimensions assigns
to every building block a 2-functor as described above, and therefore assigns
to the whole C a 2-functor from the 2-category of linear categories to itself.
Axioms of Extended TFT ensure that the equivalence class of this 2-functor
is independent of the way one cut C into pieces. The category F(G, t, C) can
be thought of as the result of applying this 2-functor to the category of vector
spaces. The rigid braided monoidal equivalence of F(G, i, S1) and F(LG, 1, S1)
then implies the equivalence of categories F(G, i, C) and F(LG, 1, C).
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Abstract

We consider a dynamical system consisting of subsystems indexed by a lattice.
Each subsystem has one conserved degree of freedom (“energy”) the rest being
uniformly hyperbolic. The subsystems are weakly coupled together so that the
sum of the subsystem energies remains conserved. We prove that the long time
dynamics of the subsystem energies is diffusive.
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1. Diffusion from Conservative Dynamics

One of the fundamental problems in deterministic dynamics is to understand
the microscopic origin of dissipation and diffusion. On a microscopic level a
physical system such as a fluid or a crystal can be described by a Schrödinger
or a Hamiltonian dynamical system with a macroscopic number of degrees of
freedom. Although the microscopic dynamics is reversible in time one expects
dissipation to emerge in large spatial and temporal scales e.g. in the form of
diffusion of heat or concentration of particles.

To fix ideas, consider a Hamiltonian dynamical system i.e. a Hamiltonian
flow on a symplectic manifold M . For the present purpose it suffices to con-
sider M = R

2n with position and momentum coordianates q, p ∈ R
n. The

Hamiltonian flow φt ∈ DiffM generated by the vector field (∂pH,−∂qH) where
H :M → R is the Hamiltonian or energy function preserves the energy

H ◦ φt = H

i.e. the flow preserves the constant energy sets ME = {(q, p) : H(q, p) = E}.

∗Supported by European Research Council and Academy of Finland

Helsinki University, Department of Mathematics, P.O.Box 68, 00014, Helsinki, Finland.

E-mail: ajkupiai@cc.helsinki.fi.



Origins of Diffusion 2045

On the other hand, the simplest diffusion process is given by the heat equa-
tion

∂tE(t, x) = κ∆E(t, x) (1)

and the associated semigroup ψt = eκt∆. Unlike for the reversible φt where
φ−t = φ−1

t , ψt has no inverse and describes dissipation. Physically, the energy
function E(t, x) describes a macroscopic energy density i.e. a coarse grained
function of microscopic dynamical variables, the positions and momenta of the
underlying Hamiltonian dynamics. The question we wish to pose is how does
this dissipative dynamics ψt arise from the conservative one φt.

A concrete physical system where diffusion occurs is a fluid. In classical
mechanics this is microscopically modeled by a Hamiltonian system whose flow
gives the trajectories of the fluid particles (qi(t), pi(t)) ∈ R

3 × R
3, i = 1 . . . N .

A typical Hamiltonian function is given by

H(q, p) =
∑

i

p2i
2m

+
∑

ij

V (qi − qj) (2)

consisting of the kinetic energy of the particles of mass m and a pair potential
energy of interaction of the particles. Let the energy of the i:th particle be
defined as

ei =
p2i
2m

+
1

2

∑

j 6=i

V (qi − qj) (3)

so that H =
∑

i ei. We can then define the energy density as the distribution

E(t, x) =
∑

i

eiδqi(t)(x) (4)

where δq is the Dirac mass at q. Since
∫

E(t, x)dx =
∑

i ei = H and Ḣ = 0 one
concludes

Ė(t, x) = ∇ · J(t, x) (5)

for a certain distribution, the energy current, depending on q(t), p(t). Eq. (5)
is a local conservation law deduced from the global energy conservation. In the
case of the fluid, there are two other similar local conservation laws related to
global momentum and particle number conservation laws. This leads to a richer
set of macroscopic laws in the case of the fluid than the diffusion equation for
the energy (in particular these include the Navier-Stokes equations).

2. Coupled Oscillators

Thus, to understand the origins of diffusion one should look for systems with
just one local conservation law eq. (5). There has been a lot of work in recent
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years around these questions in the context of coupled dynamics i.e. dynami-
cal systems consisting of elementary systems indexed by a d-dimensional lattice
Z
d. The total energy E of the system is a sum

∑

xEx of energies Ex which in-
volve the dynamical variables of the system at lattice site x and nearby sites.
The physical situation to keep in mind is then thermal conduction in a crystal
lattice (i.e. a solid).

Two types of systems have been considered. In the first case at each lattice
site we have an oscillator and the oscillators at neighboring sites are coupled
together. Typically one considers the system where the forces are weakly an-
harmonic. In the second case at each lattice site one puts a chaotic system and
weakly couples the neighboring systems. Let us start with the former case.

The setup resembles that of the fluid above, but now the “particle” positions
qx are indexed by the lattice, x ∈ Λ ⊂ Z

d where Λ is a finite subset, say a cube,
and they describe the deviation of an atom from its equilibrium position at x.
A simple classical mechanical model for this is a system of coupled oscillators

HΛ(q, p) =
∑

x∈Λ

(

p2x
2m

+ U(qx)

)

+
∑

|x−y|=1

V (qx − qy) (6)

where U is a pinning potential which we assume tending to infinity as |q| → ∞.
The potential V describes interaction of the atoms in nearest neighbor lattice
sites and is taken attractive. A challenging model is obtained already by taking

V (q) = q2, U(q) = q2 + λ|q|4 (7)

and further simplifying by taking qx ∈ R instead of Rd. Then a lattice version
of eq. (5) holds with the current given by

Jµ(x) = − 1

2
(px+µ + px)V

′(qx+µ − qx). (8)

In what sense should we expect the conservative dynamics (5) give rise to
a diffusive one as in eq. (1)? The answer is that this should happen for typical
initial conditions (q(0), p(0)) ∈ MΛ with respect to a specific measure on the
phase space MΛ := R

2|Λ| and under a proper scaling limit.
Recall first that the Hamiltonian dynamics preserves the Lebesgue measure

mΛ on MΛ. Since also HΛ is preserved so is the Gibbs measure (or equilibrium
measure)

µβΛ = Z−1
Λ e−βHΛmΛ

where β > 0 as well as its (thermodynamic) limit µβ = limΛ→Zd µβΛ. Let us
now replace the (inverse) temperature parameter β by a spatially varying one.
Let b ∈ C∞

0 (Rd) and β > ‖b‖∞. Write as in the fluid case

HΛ =
∑

x∈Λ

ex
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ex describing the energy contributed by the oscillator at x. Pick a scaling pa-
rameter L ∈ N and set βL(x) = β + b(x/L). Let µ(L) be the thermodynamic
limit of the measure

Z−1
L,Λe

−
∑

x∈Λ
βL(x)exmΛ.

Construction of this limit poses no problems if λ ≥ 0 in eq. (7) is small enough.

µ(L) is not invariant under the dynamics which maps it to µ
(L)
t = µ(L) ◦ φ−1

t .

However, one expects that as t → ∞ there is return to equilibrium i.e. µ
(L)
t →

µβ . The diffusion equation is expected to govern this process in the following
sense.

Let f ∈ C∞
0 (R+ × R

d) and consider the random variables

eL(f) = L−d−2
∑

(t,x)∈Z+×Zd

f(t/L−2, x/L)ex(q(t), p(t)). (9)

The statement of the hydrodynamic limit is then: with probability one in the
sequence of measures µ(L), eL(f) converges to

∫

f(t, x)E(t, x)dtdx where E is
the solution to the nonlinear diffusion equation

∂tE = ∇ · (κ(E)∇E) (10)

where κ(E) is a smooth positive function. The initial condition E(0, ·) is deter-
mined by the function b. Thus upon coarse graining and scaling the equation
(5) turns to eq. (10), almost surely in the initial conditions of the underlying
microscopic variables.

The proof of the hydrodynamic limit in our model is beyond present math-
ematical techniques. The existing techniques require the presence of plenty of
noise in the system. A simpler problem would be to establish the kinetic limit.
This is a weak anharmonicity limit. We replace λ in eq. (7) by λ/

√
L and and

consider the measures µ
(L)
Lt . As L → ∞ we expect these measures to become

gaussian whose covariance upon spatial scaling satisfies a Boltzman equation.
More precisely, denote (qx, px) by φ(x). Then it is conjectured that

lim
L→∞

∫

φ(Lx+ y)φ(Lx− y)µ
(L)
Lt (dφ) = G(t, x, y) (11)

exists and the Fourier transform of G(t, x, y) in y, Ĝ(t, x, k) satisfies the so
called phonon Boltzman equation

∂tĜ(t, x, k) +∇ω(k) · ∇Ĝ(t, x, k) = I(Ĝ(t, x, ·)) (12)

where I is a nonlinear integral operator and ω(k)2 is the Fourier transform
of the lattice operator 2(−∆ + 1), see [1]. Proof of these statements is still
open and a considerable challenge (for some progress see [2]). Derivation of a
hydrodynamic equation of the type (10) from the Boltzman equation (12) has
been carried out [3], see also [4] where an attempt to go beyond the kinetic
limit was carried out.
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3. Coupled Chaotic Flows

A second class of models deals with a complementary situation of weakly coupled

chaotic systems [5], [6], [7]. The setup is as follows. Let (M,H) be a Hamiltonian
system i.e. M is a symplectic manifold and H : M → R. Let, for each x ∈ Z

d

(Mx, Hx) be a copy of (M,H). Let h : M ×M → R and for each x, y ∈ Z
d,

|x − y| = 1 let hxy : Mx × My → R be a copy of h. Let Λ ⊂ Z
d be finite

and MΛ = ×x∈ΛMx. The coupled flow is the one on MΛ generated by the
Hamiltonian

HΛ =
∑

x∈Λ

Hx +
∑

|x−y|=1

λhxy. (13)

Of course, the coupled oscillators of the previous section are of this form. There,
the system (M,H) is integrable, and the diffusive dynamics is the consequence
of coupling and anharmonicity. In the present discussion we wish to take (M,H)
chaotic. Examples are Anosov systems or billiard systems. E.g. in the former
case the flow onM generated by H has dimM−2 non-zero Lyapunov exponents
and two vanishing ones corresponding to the Hamiltonian vector field and ∇H.

When the coupling parameter λ is zero (MΛ, HΛ) has 2|Λ| vanishing Lya-
punov exponents. For λ 6= 0 one expects that for a large class of perturbations
h the only constant of motion is HΛ and the system has only two vanishing ex-
ponents. However, zero should be near degenerate for the Lyapunov spectrum
and these long time scale motions should be at the origin to diffusion in the
Λ → Z

d limit.
Rigorous results on such Hamiltonian systems are rare: in [5] ergodicity

is proved in a one dimensional model. However, it seems very difficult to get
hold of the Lyapunov spectrum and it is far from obvious how such knowledge
would turn into a proof of diffusion in these systems. I want to argue that a
more fruitful approach is to study the local energy conservation law (5) and
try to show that the chaotic degerees of freedom act there like a noise that
redistributes locally the energy. To probe such an idea it is useful to turn to a
discrete time version of our model i.e. to study iteration of a map rather than
a flow.

4. Coupled Chaotic Maps

A discrete time version of the coupled flow setup of the previous section is
called a Coupled Map Lattice (CML). Now the local dynamical system is a
pair (M,f) where M is a manifold and f : M → M . Again for each x ∈ Z

d

(Mx, fx) is a copy of (M,f) and (MΛ, fΛ) with fΛ = ×x∈Λfx is the product
dynamics. The CML dynamics is a suitable local perturbation of the product
dynamics.

Our choice of M and f is motivated by the coupled chaotic flows discussed
before. A discrete time version (say given by a Poincare map) of a billiard
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or Anosov flow has one vanishing Lyapunov exponent corresponding to the
conserved energy and the remaining ones nonzero. We model such a situation
by taking for the local dynamics the manifold of form M = R+ × N with
N another manifold. Let us denote the variables at the lattice site x ∈ Z

d

by (E(x), θ(x)) ∈ R+ × N . We call the non-negative variables E energy and
postulate them to be conserved under the local dynamics:

(E(x), θ(x)) → (E(x), g(θ(x), E(x))) (14)

for each x ∈ Z
d.

θ ∈ N are the fast, chaotic variables. In the billiard case the dynamical
system θ → g(θ,E) is uniformly hyperbolic for any fixed E. We will model
this situation by taking g(θ,E) = g(θ) a fixed chaotic map, independent of E.
Examples are N = T

1 = R/Z and g an expansive circle map, e.g g(θ) = 2θ and
N = T

2 = R
2/Z2 and g a hyperbolic toral automorphism.

We should stress that the E independence is the most serious simplification
in this setup. In a realistic Hamiltonian system, such as the billiards the E
dependence of g can not be ignored. Indeed, it is obvious that as E → 0 the
Lyapunov exponents of g(·, E) also tend to zero since E sets the time scale.

The CML dynamics is a perturbation of the local dynamics (14). Let us use
the same notation (E, θ) ∈MΛ = R

Λ
+ ×NΛ. Then F :MΛ →MΛ is written as

F (x,E, θ) = (E(x) + f(x,E, θ), g(θ(x)) + h(x, θ)). (15)

Here f and h are small local functions of (E, θ) i.e. they depend weakly on
(E(y), θ(y)) for |x− y| large as we will specify later.

f is however constrained by the requirement that the total energy
∑

xE(x)
is conserved. This follows if

∑

x

f(x,E, θ) = 0

for all E, θ. A natural way to guarantee this is to consider a “vector field”
J(x) = {Jµ(x)}µ=1,...,d and take

f(x,E, θ) = (∇ · J)(x,E, θ) :=
∑

µ

(Jµ(x+ eµ, E, θ)− Jµ(x,E, θ)) (16)

With these definitions we arrive at the time evolution

E(t+ 1, x) = E(t, x) +∇ · J(x,E(t), θ(t)) (17)

θ(t+ 1, x) = g(θ(t, x)) + h(x, θ(t))). (18)

Note that (17) is a natural discrete space time version of (5). Let us discuss this
iteration from a general perspective before making more specific assumptions
of the perturbations.
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5. Fast Dynamics

The iteration (18) of the chaotic variables is autonomous. We shall assume the
perturbation h is C1 with the following locality property

|∂θ(y)h(x, θ)| ≤ εe−a|x−y| (19)

and Hölder continuity property

|∂θ(y)h(x, θ)− ∂θ(y)h(x, θ
′)| ≤ ε

∑

z

e−a(|x−y|+|x−z|)|θ(z)− θ′(z)|. (20)

These properties guarantee [8] that the θ-dynamics is space-time mixing. This
means that the dynamics is defined in the Λ → Z

d limit and it has a unique

Sinai-Ruelle-Bowen measure µ on the cylinder sets of NZ
d

which satisfies

E(F (θ(t, x))G(θ(0, y)))− E(F (θ(t, x))EG(θ(0, y)) ≤ Ce−c(t+|x−y|) (21)

for Hölder continuous functions F and G. Here E denotes expectation in µ.
We conclude that sampling θ(0, ·) with µ makes θ(t, x) random variables

which are exponentially weakly correlated at distinct space time points. There-
fore θx(t) acts as a random environment for the slow variable dynamics (17).

6. Quenched Diffusion

The previous discussion shows that we can view the current J(x,E, θ(t)) in the
slow variable dynamics (17) as a random field J(t, x, E) which is exponentially
weakly correlated in space and time. We may thus rephrase the problem of
deriving diffusion in deterministic dynamics as that of quenched diffusion in

random dynamics. We want to show that the random dynamical system

E(t+ 1, x) = E(t, x) +∇ · J(t, x, E(t)) := Φ(t, x, E(t)) (22)

has a diffusive hydrodynamical limit almost surely with respect to the SRB
measure µ. Let us inquire how this should come about and then list the as-
sumptions we need for the actual proof.

Consider first the annealed problem, i.e. averaged equation (22):

Ex(t+ 1)− Ex(t) = ∇ · E[J(t, x, E(t))] := ∇ · J (x,E(t)).

where, by stationarity of µ, J is time independent. Supposing that h and J

have natural symmetries under lattice translations and rotations we infer that
J vanishes at constant E and then locality assumptions of the type we assumed
for h imply

J (x,E) =
∑

y

κ(x, y, E)∇E(y).
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Hence the annealed dynamics is a discrete nonlinear diffusion

E(t+ 1)− E(t) = ∇ · κ(E(t))∇E(t)

provided the diffusion matrix κ(E(t)) is positive.
Let now

β(t, x, E(t)) = J(t, x, E(t))− J (x,E(t))

be the fluctuating part. Then slow dynamics becomes

E(t+ 1)− E(t) = ∇ · κ(E(t))∇E(t) +∇ · β(t, E(t))

E β(t, E) = 0

i.e. a nonlinear diffusion with a random drift. In a physical model one would
expect κ(E(t)) to be positive although not necessarily uniformly in E. If fur-
thermore β turned out to be a small perturbation quenched diffusion might be
provable. In what follows we will make such assumptions and then indicate how
to establish diffusion.

Before stating the assumptions let us make one more reduction. It is rea-
sonable to assume E = 0 is preserved by the dynamics. This then implies
β(t, 0) = 0. Let us study the linearization at E = 0:

E(t+ 1)− E(t) = ∇ · κ(0)∇E(t) +∇ · (Dβ(0, t)E(t)) (23)

or, in other words

Ex(t+ 1) =
∑

y

pxy(t)Ey(t) (24)

with
∑

x

pxy(t) = 1.

Since E ≥ 0 we have pxy ≥ 0 i.e. pxy(t) are transition probabilities of a random

walk. pxy(t) is space and time dependent and random i.e. it defines a random

walk in random environment.

7. Random Walk in Nonlinear Random

Environment

Consider a random walk defined by the transition probability matrix pxy(t) at
time t. p(t) = p(t, ω) is taken random defined on some probability space Ω. We
suppose the law of p is invariant under translations in space and time. Define

‖E‖ := sup
x

|E(x)|(1 + |x|)d+a (25)
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for some a > 0. Let, at t = 0, ‖E‖ <∞. We say the walk defined by p is has a
diffusive scaling limit if there exists C, κ such that almost surely in ω

lim
L→∞

‖LdE(L2t, L·)− Ct−d/2E∗
κ(·/

√
t‖ = 0 (26)

where E∗
κ(x) = e−x2/4κ. In other words

LdE(L2t, Lx) ∼ Ct−d/2e−x2/4κt

as L→ ∞.
We prove this for a non-linear perturbation of RWRE. Let us state the

assumptions for the random dynamical system eq. (22). We assume Φ is C2 in
‖E‖1 < δ and satisfies

Positivity: Φ(E) ≥ 0 for E ≥ 0.

Conservation law:
∑

x

Φ(t, x, E) =
∑

x

Ex

Weak nonlinearity:
∣

∣

∣

∣

∂2Φ(t, x, E)

∂Ey∂Ez

∣

∣

∣

∣

≤ e−|x−y|−|x−z|

Write the average map

EΦ(t, x, E) =
∑

y

T (x− y)Ey + o(E).

Ellipticity: T generates a diffusive random walk on Z
d.

Write
Φ(t, x, E)− EΦ(t, x, E) := ∇ · b(t, x, E).

Weak correlations. Assume

b(t, x, E) =
∑

A⊂Zd×[0,t]

bA(t, x, E) (27)

with
|bA(t, x, E)| ≤ εe−d((x,t)∪A)

and bA, bB are independent if A ∩B = ∅.
Remark. A representation of the form (27) arises from the model we have
discussed above with the proviso that bA, bB are independent only in the case
the θ dynamics is local, i.e. h = 0 in eq. (18). For the general h there is weak
dependence that can be handled.

Theorem 7.1. Under the above assumptions and δ, ε small enough the random

dynamical system Φt is diffusive, almost surely in ω.
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8. Renormalization Group for Random Coupled

Maps

The proof of Theorem 7.1. [9] is based on a renormalization group method
introduced in [10] and [11]. Let us introduce the scaling transformation SL:

(SLE)(x) = LdE(Lx). (28)

where L > 1. Fix L and define, for each n ∈ N, renormalized energies

En(t) = SLnE(L2nt).

We can then rephrase the scaling limit (26) as

lim
n→∞

LndE(L2nt, Lnx) = lim
n→∞

En(t, x).

En(t) inherits dynamics from E. We will call this the renormalized dynamics:

En(t+ 1) = Φn(t, En(t)).

Explicitely we have

Φn(t) = SLn(Φ(L2nt+ L2n − 1) ◦ · · · ◦ Φ(L2nt))SL−n .

The dynamics changes with scale as

Φn+1 = RΦn

with
RΦ(t, ·) = SLΦ(tL2) ◦ · · · ◦ Φ(t1)S−1

L

with t1 = L2t and tL2 = L2(t+ 1)− 1.

R is the the Renormalization group flow in a space of random dynamical
systems. We prove: almost surely the renormalized maps converge

Rnf → f∗

where the fixed point is nonrandom and linear:

f∗(E) = eκ∆E.

Moreover, the renormalized energies converge almost surely to the fixed point

∥

∥

∥

∥

En(t, ·)−
C

td/2
E∗

κ(·/
√
t)

∥

∥

∥

∥

→ 0

which is the diffusive scaling limit.
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These results may be summarized by saying that both the randomness and
the nonlinearity are irrelevant in the RG sense. Let us finish by sketching the
reasons for this.

We start by considering the linear problem

DΦ(t, x, 0)E =
∑

y

pxy(t)Ey.

Then DRΦ = p′ with

p′(t)xy = Ld(p(L2(t+ 1)− 1) . . . p(L2t))LxLy.

Write

pxy(t) = T (x− y) +∇y · cxy(t)

with Ep = T and Ec = 0. Then, for p′ = T ′ +∇c′ we get

T ′(x− y) = LdTL2

(Lx− Ly) + r(x− y) (29)

where r is an expectation of a polynomial in c. For the noise we get

∇xc
′
xy = Ld

L2

∑

t=1

∑

uv

T t(Lx− u)∇ucuv(t)T
L2−t−1(v − Ly) + γxy. (30)

where γ involves quadratic and higher order polynomials in c.
Ignoring first r we get for the average flow

Tn = LndTL2n

(Ln·)

i.e.

T̂n(k) = T̂L2n

(k/Ln).

Write T̂ (k) = 1− ck2 + o(k2). Then as n→ ∞:

T̂n(k) → e−ck2

explaining the fixed point.
Similarly, ignoring γ the noise is driven by the linear map

Lcxy(0) = Ld−1
L2

∑

t=1

∑

uv

T t(Lx− u)cuv(t)T
L2−t−1(v − Ly).

The variance of Lc contracts:

E(Lc)2 ∼ L−dEc2. (31)
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The intuitive reason behind this is the following. Take e.g. x = y = 0. For t of
order L2, T t(Lx−u) ∼ L−de−|x−u/L|. Hence the u and the v sums are localized
in an L cube at origin. Since cuv(t) has exponential decay in |u− v|

Lc00(0) ∼ L−d−1
L2

∑

t=1

∑

|u|<L

cuu(t). (32)

Since correlations of c decay exponentially in space and time (32) is effectively
a sum of Ld+2 independent random variables of variance L−2d−2(Ec)2 thus
leading to (31).

Taking into account the corrections r and γ in (29) and (30) we conclude
that the variance contracts as

E(cn)
2 ∼ εn = L−ndε.

The iteration of the mean becomes

Tn+1 = LdTL2

n (L·) +O(εn). (33)

The fixed point is the same but the O(εn) renormalizes the diffusion constant
κ at each iteration step (less and less as n→ ∞).

There is a problem however once we try to make this perturbative analysis
rigorous. Deterministically the noise is relevant: from (32) we see that ‖Lc‖∞
can be as big as O(L)‖c‖∞. This means that there are unlikely events in the
environment where the random walk develops a drift. We write

|cn(t, , E)| ≤ LNn(x)−bn.

Then Nn(x) can be (very) large, but with (very) small probability:

Prob(Nn(x) > N) ≤ e−KN

with K large.
Finally, to control the nonlinear contributions to Φn we show that the second

derivative D2
EΦ is irrelevant in all dimensions due to the scaling of E:

RΦ(t, x, E) = Ld(Φ(tL2) ◦ · · · ◦ Φ(t1))(Lx,L−dE(·/L)).

9. Towards Hamiltonian Systems

The coupled map lattices we have discussed are an alternative microscopic
model with a local conservation law that under a macroscopic limit gives rise
to diffusion. To be realistic they should however share some features with the
Hamiltonian systems that are more familiar and physically relevant. From this
point of view there is a lot missing from our analysis.
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The first problem to understand is to go beyond the perturbative analysis
around E = 0 (i.e. zero temperature). Then the equation (24) picks also a
driving term.

The second unnatural assumption is the E-independence of the θ dynamics.
In a realistic model rare configurations of E can slow down the θ dynamics.
Also the annealed system is probably not uniformly elliptic as we assumed and
the random drift can create traps in the environment with long lifetimes.

All these issues can and should be be studied with the renormalization group
approach sketched above.
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1. Introduction

The last few years have seen the development of a new line of investiga-
tion, aimed at applying methods of noncommutative geometry and theoretical
physics to address questions in number theory. A broad overview of some of the
main directions in which this area has progressed can be found in the recent
monographs [41] and [14]. In this talk I am going to focus mostly on a partic-
ular, but in my opinion especially promising, aspect of this new and rapidly
growing field, which did not get sufficient attention in [14], [41]: the question
of developing an appropriate geometry underlying the abelian extensions of
real quadratic fields. This line of investigation was initially proposed by Manin
in [27], [28], as the “real multiplication program” and it aims at developing
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within noncommutative geometry a parallel to the classical theory of elliptic
curves with complex multiplication, and their role in the explicit construction
of abelian extensions of imaginary quadratic fields, which would work for real
quadratic fields. I am going to give an overview of the current state of the art in
addressing this problem, by focusing on those aspects I have been more closely
involved with.

There are two complementary approaches to developing a noncommutative
geometry of real quadratic fields. One is based on working with noncommutative
tori as substitutes for elliptic curves, focussing on those whose real parameter
is a quadratic irrationality, which have non trivial self Morita equivalences,
analogous to the complex multiplication phenomenon for elliptic curves. This
approach requires constructing suitable functions on these spaces, which replace
the coordinates of the torsion points of elliptic curves, hence the problem of find-
ing suitable algebraic models for noncommutative tori. I will concentrate here
especially on the question of how to express certain numbers, the Stark num-
bers, which conjecturally generate abelian extensions of real quadratic fields,
in terms of the geometry of noncommutative tori.

The other complementary approach deals with a noncommutative space that
parameterizes noncommutative tori up to Morita equivalence. This is sometimes
referred to as the “invisible boundary” of the modular curves, since it param-
eterizes those degenerations of elliptic curves with level structure that are no
longer expressible in algebro-geometric terms but that continue to exist as non-
commutative tori. A related adelic version includes degenerations of the level
structure and gives rise to a quantum statistical mechanical system based on the
commensurability relation of lattices with possibly degenerate level structures,
whose zero temperature equilibrium states, evaluated on an algebra of arith-
metic elements should conjecturally provide generators of abelian extensions.
The main problem in this approach is to obtain the right algebra of functions on
this invisible boundary, which should consist of holographic images, or “shad-
ows”, that modular forms on the bulk space cast upon the invisible boundary.

2. Elliptic Curves and Noncommutative Tori

Elliptic curves are among the most widely studied objects in mathematics,
whose pervasive presence in geometry, arithmetic and physics has made them
a topic of nearly universal interest across mathematical disciplines. In number
theory, one of the most famous manifestations of elliptic curves is through the
theory of complex multiplication and the abelian class field theory problem
(Hilbert 12th problem) in the case of imaginary quadratic fields.

The analytic model of an elliptic curve is the complex manifold realized as
a quotient Eτ (C) = C2/Λ with Λ = Z + Zτ or with the Jacobi uniformiza-
tion Eq(C) = C∗/qZ with |q| < 1. The endomorphism ring of an elliptic
curves is a copy of Z, except in the special case of elliptic curves with complex
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multiplication where End(Eτ ) = Z + fOK, with OK the ring of integers of an
imaginary quadratic field and f ≥ 1 an integer (the conductor).

A beautiful result in number theory relates the geometry of elliptic curves
with complex multiplication to the explicit class field theory problem for imag-
inary quadratic fields: the explicit construction of generators of abelian exten-
sions with the Galois action.

There are two formulations of this construction, one that works directly with
the CM elliptic curves, and the coordinates of their torsion points, and one that
works with the values of modular forms on the CM points in the moduli space
of elliptic curves. (We refer the reader to [25], [49] for more information on this
topic.)

As I will explain in the rest of the paper, both approaches have a non-
commutative geometry analog in the case of real quadratic fields, which is in
the process of being developed into a tool suitable for the investigation of the
corresponding class field theory problem.

In the elliptic curve point of view, one knows that the maximal abelian
extension Kab of an imaginary quadratic field K = Q(

√
−d) has explicit gener-

ators

Kab = K(t(EK,tors), j(EK)),

where t is a coordinate on the quotient EK/Aut(EK) ' P1 and j(EK) is the
j-invariant.

I will explain below, based on a result of [37], how one can obtain an ana-
log of the quotient EK/Aut(EK) in the noncommutative geometry context for
real quadratic fields. I will also mention some current approaches aimed at
identifying the correct analog of the j-invariant in that setting.

Currently, the main problem in extending this approach to real quadratic
fields via noncommutative geometry lies in the fact that, while elliptic curves
have, besides the analytic model as quotients, an algebraic model as alge-
braic curves defined by polynomial equations, their noncommutative geometry
analogs, the noncommutative tori, have a good analytic model, but not yet a
fully satisfactory algebraic model. I will comment more on the current state of
the art on this question in §3.2 below.

The other point of view, based on the moduli space, considers all elliptic
curves, parameterized by the modular curve XΓ(C) = H/Γ, with H the complex
upper half plane and Γ = SL2(Z) acting on it by fractional linear transforma-
tions. One considers then the field F of modular functions. In this setting, the
explicit class field theory result for imaginary quadratic fields is stated in terms
of the generators

Kab = K(f(τ), f ∈ F, τ ∈ CM points of XΓ),

the values of modular functions at CM points. The Galois action of Gal(Kab/K)
is induced by the action of the automorphism group Aut(F ) of the modular
field.
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The case of the explicit class field theory of Q, the Kronecker–Weber theo-
rem, can be formulated in terms of a special degenerate case of elliptic curves.
When the parameter q in the elliptic curve Eq(C) tends to a root of unity,
or equivalently when the parameter τ ∈ H tends to a rational point in the
real line, the elliptic curve degenerates to a cylinder, the multiplicative group
C∗ = Gm(C). The maximal abelian extension of Q is then generated by the
torsion points of this degenerate elliptic curve,

Qab = Q(Gm,tors),

that is, by the roots of unity, the cyclotomic extensions.
The first case of number fields for which a solution to the explicit class field

theory problem is not known is that of the real quadratic fields K = Q(
√
d). The

approach currently being developed via noncommutative geometry is based on
the idea of relating this case also to a special degenerate case of elliptic curves,
the noncommutative tori. Manin’s “Real multiplication program” [27], [28], to
which I will return in the following, aims at building for noncommutative tori
a parallel to the theory of complex multiplication for elliptic curves.

When the modulus q of the elliptic curve Eq(C) tends to a point exp(2πiθ)
on the unit circle S1 ⊂ C∗ which is not a root of unity, or equivalently when
τ ∈ H tends to an irrational point on the real line, the elliptic curve degenerates
in a much more drastic way. The action of Z by irrational rotations on the unit
circle has dense orbits, so that the quotient, in the usual sense, does not deliver
any interesting space that can be used to the purpose of doing geometry. This
prevents one from considering such degenerations of elliptic curves in the usual
algebro-geometric or complex-analytic world.

Noncommutative geometry, however, is explicitly designed in such a way as
to treat “bad quotients” so that one can continue to make sense of ordinary
geometry on them as if they were smooth objects. The main idea of how one
does that is, instead of collapsing points via the equivalence relation of the
quotient operation, one keeps all the identifications explicit in the groupoid
describing the equivalence. More precisely, the algebra of functions on the quo-
tient is replaced by a noncommutative algebra of functions on the graph of the
equivalence relation with the associative convolution product dictated by the
transitivity property of the equivalence relation,

(f1 ? f2)(x, y) =
∑

x∼z∼y

f1(x, z)f2(z, y).

More precisely, in the case of the action of a discrete group G on a (com-
pact) topological space X, the resulting algebra of (continuous) functions on
the quotient is the crossed product algebra C(X) oα G, where the associa-
tive, noncommutative product is given by (fUg)(hUg′) = fαg(h)Ugg′ , with
αg(h)(x) = h(g−1(x)).

In the case of the quotient of S1 by the action of Z generated by exp(2πiθ),
an irrational rotation θ ∈ R r Q, the quotient is therefore described by the
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algebra C(S1)oθZ. This is by definition the algebra Aθ of continuous functions
on the noncommutative torus Tθ of modulus θ.

An equivalent description of the irrational rotation algebra Aθ is as the
universal C∗-algebra generated by two unitaries U , V with the commutation
relation V U = e2πiθUV . It has a smooth structure given by the smooth subal-
gebra of series

∑

n,m an,mU
nV m with rapidly decaying coefficients (cf. [8]).

Morita equivalence is the correct notion of isomorphism for noncommuta-
tive spaces, and it can be formulated in terms of the existence of a bimodule
that implements an equivalence between the categories of modules for the two
algebras. The algebras Aθ1 and Aθ2 are Morita equivalent if and only if there
exists a g ∈ SL2(Z) acting on R by fractional linear transformations, such that
θ1 = gθ2, see [8], [48]. The bimodules realizing the Morita equivalences be-
tween noncommutative tori are obtained explicitly in [8] in terms of spaces of
Schwartz functions on the line, and in [48] via a construction of projectors.

One can also describe the irrational rotation algebra of the noncommutative
torus as a twisted group algebra C∗(Z2, σθ), with the cocyle

σθ((n,m), (n′,m′)) = exp(−2πi(ξ1nm
′ + ξ2mn

′)), (2.1)

with θ = ξ2 − ξ1. This is the norm closure of the action of the twisted group
ring on `2(Z2) with the generators U and V are given by

Uf(n,m) = e−2πiξ2nf(n,m+ 1), V f(n,m) = e−2πiξ1mf(n+ 1,m).

This description of the noncommutative torus is especially useful in the non-
commutative geometry models of the integer quantum Hall effect, where this
noncommutative space replaces the Brillouin zone in the presence of a magnetic
field, see [3], [43].

3. L-functions, Solvmanifolds, and

Noncommutative Tori

I give an overview here of recent progress in understanding the geometry of a
special class of noncommutative tori, which have real multiplication, realized
by nontrivial self Morita equivalences. These are the quantum tori Tθ with
θ ∈ R a quadratic irrationality. In particular, I will focus on a result from [37]
that realizes certain L-functions associated to real quadratic fields in terms
of Riemannian and Loretzian geometry on the noncommutative tori with real
multiplication.

3.1. Noncommutative tori with real multiplication. The
starting observation of Manin’s “Real multiplication program” is the follow-
ing. The elliptic curves with complex multiplication are the only ones that have
additional nontrivial endomorphisms, by the ring of integers OK of an imaginary
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quadratic field, and they correspond to lattices Λ ⊂ C that are OK-submodules
with Λ⊗OK

K ∼= K, which corresponds to the parameter τ being a CM point of
H for the imaginary quadratic field K. In the same way, the noncommutative
tori Aθ for which the modulus θ is a real multiplication point in R, in a real
quadratic field K ⊂ R, have non-trivial self Morita equivalences, which play the
role of the additional automorphisms of the CM elliptic curve.

3.2. Analytic versus algebraic model. A good part of the recent
work on noncommutative tori with real multiplication was aimed at develop-
ing an algebraic model for these objects, in addition to the analytic model as
quotients and crossed product algebras.

The most interesting approach to algebraic models for noncommutative tori
is the one developed in [47], which is based on enriching the bimodules that
give the self Morita equivalences with a “complex structure”, in the sense of
[16]. These are parameterized by the choice of an auxiliary elliptic curve E, or
equivalently by a modulus τ ∈ H up to SL2(Z). By a suitable construction of
morphisms, one obtains in this way a category of holomorphic vector bundles
and a fully faithful functor to the derived categoryDb(E) of coherent sheaves on
the auxiliary elliptic curve. The image is given by stable objects in the heart of
a nonstandard t-structure, which depends on the parameter θ of the irrational
rotation algebra Aθ of the noncommutative torus. The real multiplication gives
rise to autoequivalences of Db(E) preserving the t-structure.

This then makes it possible to associate to a noncommutative torus Tθ with
real multiplication a noncommutative algebraic variety, in the sense of [1]. These
are described by graded algebras of the form

AF,O =
⊕

n≥0

Hom(O,Fn(O)) (3.1)

where O is an object of an additive category and F is an additive functor.
In the case of the noncommutative tori of [47], the additive category is the
heart of the t-structure in Db(E), the object O is Aθ, and F is induced by real
multiplication, tensoring with the bimodule that generates the nontrivial self
Morita equivalences.

The resulting ring was then related in [53] to the ring of quantum theta
functions. These provide a good theory of theta functions for noncommutative
tori developed in [29], [30]. As in the case of the classical theta functions,
these can be constructed in terms of Heisenberg groups as a deformation of the
classical case, see [29] (further elaborated upon in [46].) The relation between
the quantum theta functions and the explicit construction of bimodules over
noncommutative tori via projections was established in [4].

The arithmetic properties of the algebras of [47] were studied in [45], in terms
of an explicit presentation of the twisted homogeneous coordinate rings (3.1)
for real multiplication noncommutative tori, which involves modular forms of
cusp type with level specified by an explicitly determined congruence subgroup.
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A field of definition for these arithmetic structures on noncommutative tori can
then be specified in terms of the field of definition of the auxiliary elliptic
curve. It is not yet clear whether this approach to defining algebraic models for
noncommutative tori with real multiplication can be successfully employed to
provide a substitute for the coordinates of torsion points of elliptic curves in
the CM case.

There is, however, another approach which works directly with the analytic
model of noncommutative tori and with the candidate generators for abelian
extensions of real quadratic fields given by Stark numbers.

3.3. Stark numbers and L-functions. There is in number theory
a conjectural candidate for explicit generators of abelian extensions of real
quadratic fields, in the form of Stark numbers, [51]. These are obtained by con-
sidering a family of L-functions associated to lattices L ⊂ K in a real quadratic
field. In the notation of [27], one considers an `0 ∈ OK, with the property that
the ideals b = (L, `0) and a = (`0)b

−1 are coprime with f = Lb−1. Let UL

denote the set of units of K such that u(`0 + L) = `0 + L, and let ′ denote the
Galois conjugate, with N(`) = ``′. One then considers the function

ζ(L, `0, s) = sign(`′0) N(b)s
∑

`∈(`0+L)/UL

sign(`′)

|N(`)|s . (3.2)

The associated Stark number is then

S0(L, `0) = exp

(

d

ds
ζ(L, `0, s)|s=0

)

. (3.3)

Part of the “real multiplication program” of [27], [28] is the question of pro-
viding an interpretation of these numbers directly in terms of the geometry of
noncommutative tori with real multiplication.

To understand how one can relate these numbers to RM noncommutative
tori and to a suitable noncommutative space that plays the role of the quotient
E/Aut(E) of a CM elliptic curve, we concentrate here on the case of a closely
related L-function, the Shimizu L-function of a lattice in a real quadratic field.

The lattice L ⊂ K define a lattice Λ = ι(L) ⊂ R2 via the two embeddings
L 3 ` 7→ (`, `′). The group V of units of K satisfying

V = {u ∈ O∗
K |uL ⊂ L, ι(u) ∈ (R∗

+)
2}

has generator a unit ε and it acts on Λ by (x, y) 7→ (εx, ε′y). The Shimizu
L-function is then given by

L(Λ, s) =
∑

µ∈(Λr{0})/V

sign(N(µ))

|N(µ)|s . (3.4)

This corresponds to the case `0 = 0 of (3.2), with the sum avoiding the point
0 ∈ Λ.
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3.4. Solvmanifolds and noncommutative spaces. The hint on
how the L-function (3.4) is related to RM noncommutative tori comes from a
well known result of Atiyah–Donnelly–Singer [2], which proved a conjecture of
Hirzebruch relating the Shimizu L-function to the signature of the Hilbert mod-
ular surfaces, through the computation of the eta invariant of a 3-dimensional
solvmanifold which is the link of an isolated singularity of the Hilbert modu-
lar surface. The result of [2] is in fact more generally formulated for Hilbert
modular varieties and L-functions of totally real fields, but for our purposes we
concentrate on the real quadratic case only.

Although it does not look like it at first sight, and it was certainly not
formulated in those terms, the result of [2] is in fact saying something very
useful about the geometry of noncommutative tori with real multiplication, as
I explained in [37].

A first observation is the fact that, in noncommutative geometry, one often
has a way to construct a commutative model, up to homotopy, of a noncom-
mutative space describing a bad quotient. The idea is similar to the use of
homotopy quotients in topology, and is closely related to the Baum–Connes
conjecture. In fact, the latter can be seen as the statement that invariants
of noncommutative spaces, such as K-theory, can be computed geometrically
using a commutative model as homotopy quotient.

As we recalled above, a “bad quotient” can be described by a noncommu-
tative space with algebra of functions an associative convolution algebra, the
crossed product algebra in the case of a group action. In particular, we consider
the noncommutative space describing the quotient Tθ/Aut(Tθ) of a noncom-
mutative torus with real multiplication by the automorphisms coming from the
group V of units in the real quadratic field K preserving the lattice L ⊂ K. The
quotient of the action of the group of units V on the noncommutative torus
with real multiplication is described by the crossed product algebra Aθ o V .
This can also be described by a twisted group algebra of the form

Aθ o V ∼= C∗(Z2 oϕε
Z, σ̃θ), (3.5)

where, after identifying the lattice Λ with Z2 on a given basis, the action of
the generator ε of V on Λ is implemented by a matrix ϕε ∈ SL2(Z), and
one correspondingly identifies the semidirect product S(Λ, V ) = Λ oε V with
Z2 oϕε

Z. The cocycle σ̃ is given by

σ̃θ((n,m, k), (n
′,m′, k′)) = σθ((n,m), (n′,m′)ϕk

ε ). (3.6)

This is indeed a cocycle for S(Λ, V ), for ξ2 = −ξ1 = θ/2, since in this case (2.1)
satisfies σ((n,m)γ, (n′,m′)γ) = σ((n,m), (n′,m′)), for γ ∈ SL2(Z).

Groups of the form S(Λ, V ) satisfy the Baum–Connes conjecture. This im-
plies that the quotient noncommutative space Tθ/Aut(Tθ), with algebra of
coordinates C∗(S(Λ, V ), σ̃θ), admits a good homotopy quotient model. In this
case, as shown in [37], this homotopy quotient can be identified explicitly as
the 3-dimensional smooth solvmanifold Xε obtained as the quotient of R2 oε R
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by the group S(Λ, V ). This is the same 3-manifold that gives the link of the
singularity in the Hilbert modular surface in [2], whose eta invariant computes
the signature defect.

Another way to describe this 3-dimensional solvmanifold, with its natural
metric, is in terms of Hecke lifts of geodesics to the space of lattices (see [27]
and [37]). For t ∈ R one considers the lattice in R2 of the form

ιt(L) = {(xet, ye−t) | (x, y) ∈ Λ},

with ι1(L) = Λ, as above. Then one has a fibration T 2 → S(Λ, V ) → S1,
where the base S1 is a circle of length log ε, identified with the closed geodesic
in XΓ(C) corresponding to the geodesic in H with endpoints θ, θ′ ∈ R, for
{1, θ} a basis of the real quadratic field K. The fiber over t ∈ S1 is the 2-torus
T 2
t = R2/ιt(L).
The result of [2] can then be reintepreted as saying that the spectral theory

of the Dirac operator on the 3-dimensional solvmanifold Xε can be decom-
posed into a contribution coming from the underlying noncommutative space
Tθ/Aut(Tθ), and an additional spurious part, which depends on the choice of a
homotopy model for this quotient. The part coming from the underlying non-
commutative torus is the one that recovers the Shimizu L-function and that is
responsible for the signature defect computed in [2].

3.5. Spectral triples. To understand how the Dirac operator on the
manifold Xε can be related to a Dirac operator on the noncommutative space,
one can resort to the general formalism of spectral triples in noncommutative
geometry [9]. One encodes metric geometry on a noncommutative space by
means of the data (A,H, D) of a representation on a Hilbert space H of a
dense subalgebra A of the algebra of coordinates, together with a self-adjoint
(unbounded) operator D on H with compact resolvent, satisfying the condition
that commutators [D, a] with elements of the algebra are bounded operators.
This plays the role of an abstract Dirac operator which provides the metric
structure.

3.6. The Shimizu L-function and noncommutative tori.
One can then relate the Dirac operator on Xε to a spectral triple on the
noncommutative torus with real multiplication, which recovers the Shimizu L-
function, in two steps, [37]. The first makes use of the isospectral deformations
of manifolds introduced in [12]. Given a smooth spin Riemannian manifold X,
which admits an action of a torus T 2 by isometries, one can construct a de-
formation of X to a family of noncommutative spaces Xη, parameterized by a
real parameter η ∈ R, with algebras of coordinates AXη

, in such a way that,
if (C∞(X), L2(X,S), D) is the original spectral triple describing the ordinary
spin geometry onX, then the data (AXη

, L2(X,S), D) still give a spectral triple
on Xη. In this way, one can isospectrally deform the fibration T 2 → Xε → S1

to a noncommutative space Xε,θ, which is a fibration Tθ → Xε,θ → S1, where
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Tθ is the noncommutative torus with real multiplication. One then checks that,
up to a unitary equivalence, the restriction of the Dirac operator to the fiber
Tθ gives a spectral triple on this noncommutative torus with Dirac operator of
the form

Dθ,θ′ =

(

0 δθ′ − iδθ
δθ′ + iδθ 0

)

, (3.7)

with {1, θ} the basis for the real quadratic field K and θ′ the Galois conjugate
of θ. The derivations δθ and δθ′ act as

δθψn,m = (n+mθ)ψn,m, and δθψn,m = (n+mθ′)ψn,m,

and they correspond to leafwise derivations et∂x and e−t∂y on the tori T 2
t . The

Dirac operator Dθ,θ′ decomposes into a product of an operator with spectrum
sign(N(µ))|N(µ)|1/2, which recovers the Shimizu L-function, and a term whose
spectrum only depends on the powers εk on the unit ε, see §7 of [37].

3.7. Lorentzian geometry. An important problem in the context of
noncommutative geometry is extending the formalism of spectral triples from
Riemannian to Lorentzian geometries. This is especially important in the par-
ticle physics and cosmology models based on spectral triples and the spectral
action functionals, see [7], [44]. A proposal for Lorentzian noncommutative ge-
ometries, based on Krein spaces replacing Hilbert spaces in the indefinite sig-
nature context, was developed in [52].

Another interesting aspect of the geometry of noncommutative tori with
real multiplication is the fact that the spectral triples described above admit a
continuation to a Lorentzian geometry, based on considering the norm of the
real quadratic field N(λ) = λ1λ2 = (n+mθ)(n+mθ′) as the analog of the wave
operator in momentum space, with modes 2λ = N(λ). The Krein involution
is constructed using the Galois conjugation of the real quadratic field, and the
Wick rotation to Euclidean signature of the resulting Lorentzian Dirac operator
DK on Tθ, with D2

K,λ = 2λ, recovers the Dirac operator Dθ,θ′ . The eta function
of the Lorentzian spectral triple is a product

ηDK
(s) = L(Λ, V, s)Z(ε, s),

of the Shimizu L-function and a function that only depends on the unit ε.

3.8. Quantum field theory and noncommutative tori. This
result of [37] recalled above explains how certain number theoretic L-functions
associated to real quadratic fields, such as the Shimizu L-function or, more
generally, the zeta functions of (3.2) arise from the noncommutative geom-
etry of noncommutative tori with real multiplication Tθ and their quotients
Tθ/Aut(Tθ).

One would then like to explain the meaning in terms of noncommutative
geometry of numbers of the form exp(L′(0)), where L(s) is one of these L-
functions, since this is the class of numbers that the Stark conjectures propose
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as conjectural generators of abelian extensions. While there is at present no
completely satisfactory answer to this second question, I describe here some
work in progress in which I am trying to provide such interpretation in terms
of quantum field theory.

It should not come as a surprise that one would aim at realizing numbers of
arithmetic significance in terms of quantum field theory. In fact, there is a broad
range of results (see [40] for an overview) relating the evaluation of Feynman
integrals in quantum field theory to the arithmetic geometry of motives.

Here the point of connection is the zeta function regularization method
in quantum field theory. This expresses the functional integral that gives the
partition function as

∫

e−〈φ,Dφ〉D[φ] ∼ (det(D))−1/2,

where the quantity det(D) here is obtained through the zeta function regu-
larization, using the zeta function ζD(s) = Tr(|D|−s) of the operator D and
setting det(D) = exp(−ζ ′D(0)).

To adapt this to the setting described above of spectral triples on a non-
commutative torus with real multiplication, one can use the fact that there is a
well developed method [21] for doing quantum field theory on finite projective
modules, that is, for fields that are sections of “bundles over noncommutative
spaces”. This formalism was developed completely explicitly in [21] for the case
of finite projective modules over noncommutative tori. In the case with real
multiplication, one has a preferred choice of a QFT, namely the one associated
to the bimodule that generates the non-trivial self Morita equivalences that give
the RM structure. A description of the numbers (3.3) in terms of this quantum
field theory is work in progress [42].

4. The Noncommutative Boundary of Modular

Curves

In the case of the imaginary quadratic fields, as we mentioned above, the other
approach to constructing abelian extensions is by considering, instead of indi-
vidual CM elliptic curves, the CM points on the moduli space of elliptic curves.

In terms of noncommutative tori, one can similarly consider a moduli space
that parameterizes the equivalence classes under Morita equivalence. This it-
self is described by a noncommutative space, which corresponds to the quotient
of P1(R) by the action of Γ = SL2(Z) by fractional linear transformations.
As a noncommutative space, this is described by the crossed product algebra
C(P1(R)) o Γ. This space parameterizes degenerate lattices where τ ∈ H be-
comes a point θ ∈ R. One thinks of this space as the “invisible boundary” of
the modular curve XΓ(C). It complements the usual boundary P1(Q)/Γ (the
cusp point corresponding to the degeneration of the elliptic curve Eτ (C) to the
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multiplicative group Gm(C)) with the irrational points (R r Q)/Γ, treated as
a noncommutative space. These irrational points account for the degenerations
to noncommutative tori, “invisible” to the usual world of algebraic geometry
but nonetheless existing as noncommutative spaces.

In this approach, the main question becomes identifying what remnants
of modularity one can have on this “invisible boundary” and what replaces
evaluating a modular form at a CM point in this setting.

4.1. Modular shadow play. A phenomenon similar to the “holography
principle” (also known as AdS/CFT correspondence) of string theory relates
the noncommutative geometry of the invisible boundary of the modular curves
to the algebraic geometry of the classical “bulk space” XΓ(C) (see [36]). For
example, it was shown in [34] that the K-theory of the crossed product algebra
C(P1(R)) o Γ recovers Manin’s modular complex [31], which gives an explicit
presentation of the homology of the modular curves XΓ(C).

A way of inducing on the noncommutative boundary P1(R)/Γ a class of
functions corresponding to modular forms on the bulk space XΓ(C) was given
in [34], [35] in terms of a Lévy–Mellin transform, which can be thought of as
creating a “holographic image” of a modular form on the boundary.

Consider a complex valued function f which is defined on pairs (q, q′) of
coprime integers q ≥ q′ ≥ 1, satisfying f(q, q′) = O(q−ε) for some ε > 0. For
x ∈ (0, 1] set

`(f)(x) =
∞
∑

n=1

f(qn(x), qn−1(x)),

where the qn(x) are successive denominators of the continued fraction expansion
of x. Lévy’s lemma (see [34]) shows that one has

∫ 1

0

`(f)(x)dx =
∑

q≥q′≥1;(q,q′)=1

f(q, q′)

q(q + q′)
.

This identity can be used to recast identities of modular forms in terms of
integrals on the boundary P1(R). For example, it is shown in [34] that one can
use the function

f(q, q′) =
q + q′

q1+t
{0, q′/q}

with <(t) > 0 and {0, q′/q} the classical modular symbol, together with the
identity of [31],

∑

d|m

d
∑

b=1

∫

{0,b/d}

ω = (σ(m)− cm)

∫ i∞

0

π∗
Γ(ω),

where π∗
Γ(ω)/dz is a cusp form for Γ = Γ0(p), with p a prime, which is an

eigenvector of the Hecke operator Tm with eigenvalue cm, with p 6 |m, and with
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σ(m) the sum of the divisors of m. One then obtains an identity of the form

∫ 1

0

dx
∞
∑

n=0

qn+1(x) + qn(x)

qn+1(x)1+t

∫

{0,qn(x)/qn+1(x)}

ω

=

(

ζ(1 + t)

ζ(2 + t)
− L

(p)
ω (2 + t)

ζ(p)(2 + t)2

)

∫ i∞

0

π∗(ω),

where L
(p)
ω and ζ(p) are the Mellin transform and zeta function with omitted

p-th Euler factor. Other such examples were given in [34], [38].
This type of identities, recasting integrals of cusp forms on modular sym-

bols in terms of integrals along the invisible boundary of a transform of the
modular form producing a function on the boundary, can be formulated more
generally and more abstractly as a way of obtaining “shadows” of modu-
lar forms on the boundary. In [35] one considers pseudomeasures associated
to pair of rational points on the boundary with values in an abelian group,
µ : P1(Q) × P1(Q) → W , satisfying µ(x, x) = 0, µ(x, y) + µ(y, x) = 0, and
µ(x, y) + µ(y, z) + µ(z, x) = 0. In particular the modular pseudomeasures sat-
isfy µγ(x, y) = γµ(x, y), or an analogous identity twisted by a character, where
γ(x, y) = (γ(x), γ(y)) is the action of a finite index Γ ⊂ SL2(Z) on P1(Q) by
fractional linear transformations. The classical Hecke operators act on modular
pseudomeasures. Pseudomeasures can be equivalently formulated in terms of
currents on the tree T of PSL2(Z) embedded in the hyperbolic plane H. In
terms of noncommutative spaces, they can also be described as group homo-
morphisms µ : K0(C(∂T )o Γ) →W .

Integration along geodesics in H of holomorphic functions vanishing at cusps
define pseudomeasures on the boundary. It is shown in [35] that one can obtain
“shadows” of modular symbols on the boundary by the following procedure.
Given a finite index subgroup Γ ⊂ SL2(Z) and a weight w ∈ N, let Sw+2(Γ) be
the C-vector space of cusp forms f(z) of weight w + 2 for Γ, holomorphic on
H and vanishing at cusps. Let Pw be the space of homogeneous polynomials
of degree w in two variables and let W be the space of linear functionals on
Sw+2 ⊗ Pw. Then

µ(x, y) : f ⊗ P 7→
∫ y

x

f(z)P (z, 1)dz

defines a W -valued modular pseudomeasure, which is the shadow of the higher
weight modular symbol of [50].

A general formulation is the given in [35], which encompasses the averaging
techniques over successive convergents of the continued fraction expansion, used
in [34] to relate Mellin transforms of weight-two cusp forms to quantities defined
entirely on the noncommutative boundary of the modular curves. One considers
a class of functions `(f)(x) =

∑

I f(I)χI(x) that are formal infinite linear
combinations of characteristic functions of “primitive intervals” in [0, 1], with
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coefficients f(I) in an abelian group. More generally, this may depend on an
additional regularization parameter, `(f)(x, s). The primitive intervals are those
of the form I = (g(∞), g(0)) with g ∈ GL2(Z). Pseudomeasures are completely
determined by their values on these intervals. The Lévy–Mellin transform is

then defined in [35] as LM(s) =
∫ 1/2

0
`(f)(x, s)dx. The integration over [0, 1/2]

instead of [0, 1] keeps symmetry into account. When applied to a pseudomeasure
obtained as the shadow of a modular symbol, for an SL2(Z)-cusp form this gives
back the usual Mellin transform.

The formalism of pseudomeasures was also used in [33] to describe modular
symbols for Maass wave forms, based on the work of Lewis–Zagier [26]. In
particular, Manin gives in [33] an interpretation of the Lévy–Mellin transform
of [35] as an analog at arithmetic infinity (at the archimedan prime) of the
p-adic Mellin–Mazur transform.

4.2. Modular shadows and the Kronecker limit formula.
Modular pseudomeasures with values in a Γ-moduleW , with Γ = PSL2(Z), give
rise to 1-cocycles, by setting φµx(γ) = µ(γx, x). The cocycle condition φ(γ1γ2) =
φ(γ1) + γ1φ(γ2) follows from the modularity of µ together with the relations
µ(x, x) = 0, µ(x, y) + µ(y, x) = 0, and µ(x, y) + µ(y, z) + µ(z, x) = 0, see [35].
Conversely, any cocycle with φ(σ) = φ(τ), where σ and τ are the generators of
order two and three of Γ = Z/2Z?Z/3Z. In fact, a pseudomeasure is determined
by the relations (1+σ)µ(0,∞) = 0 and (1+τ+τ2)µ(0,∞) = 0, while a 1-cocycle
is determined by the relations (1 + σ)φ(σ) = 0 and (1 + τ + τ2)φ(τ) = 0.

An interesting recent result [54] gives a construction of a modular pseu-
domeasure involved in a higher Kronecker limit formula for real quadratic fields.
The pseudomeasure takes values in C(P1(R)) with the action of Γ of weight 2k.
One considers a function

ψ2k(x) = sign(x)

∗
∑

p,q≥0

(p|x|+ q)k,

where the ∗ on the sum means that the sum is for (p, q) 6= (0, 0) and that the
terms with p = 0 or q = 0 are counted with a coefficient 1/2. The modular
pseudomeasure is given by setting µ(0,∞) = ψ2k, since ψ2k = φ(σ) = φ(τ)
determines a 1-cocycle. For x > 0 the function ψ2k(x) is also expressed in
terms of the derivatives of functions F2k, constructed in terms of the digamma
function Γ′(x)/Γ(x), which give the higher Kronecker limit formula proved in
[54] as

ζ(b, k) =
∑

Q∈Red(b)

(Dk−1F2k)(Q),

where ζ(b, s) =
∑

n∈b
N(n)−s and Red(b) is the set of reduced quadratic forms

in the class b, by seeing narrow ideal classes as Γ-orbits on the set of integer
quadratic forms. The Dk−1 are differential operators of order k mapping differ-
entiable functions of one variable to functions of two variables, given explicitly
in [54].
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In particular, as shown in [54], one can use this higher Kronecker limit for-
mula to evaluate Stark numbers, as values at k = 1 of the zeta-functions rather
than as derivatives at zero. This provides an alternative way of connecting Stark
numbers to the geometry of noncommutative tori, not by working with a single
noncommutative torus with real multiplication, but with their noncommutative
moduli space and the modular shadows.

4.3. Quantum modular forms. There is at present another approach
to extending modularity to the boundary, in a form that arises frequently in very
different contexts, such as quantum invariants of 3-manifolds. Zagier recently
developed [55] a notion of quantum modular forms, which encompasses all these
phenomena. The idea is that, instead of the usual properties of modular forms,
namely a holomorphic function on H satisfying the modularity property

(f |kγ)(z) := f

(

az + b

cz + d

)

(cz + d)−k = f(z),

one has a function f defined on P1(Q), for which the function

hγ(x) = f(x)− (f |kγ)(x), (4.1)

which measures the failure of modularity, extends to a continuous or even (piece-
wise) analytic function on P1(R).

A more refined notion of “strong” quantum modular form prescribes that,
besides having evaluations at all rational points, the function f also has a
formal Taylor series expansion at all x ∈ Q, and (4.1) is an identity of formal
power series. Typical examples of strong quantum modular forms described in
[55] have the additional property that the function f : P1(Q) → C extends
to a function f : (C r R) ∪ Q → C, which is analytic on C r R, and whose
asymptotic expansion approaching a point x ∈ Q along vertical lines agrees with
the formal Taylor series of f at x. Such quantum modular forms can be thought
of as two analytic functions, on the upper and lower half plane, respectively,
that communicate across the rational points on the boundary.

There are two observations one can make to relate this setting to noncom-
mutative geometry. One is that, in the case of quantum modular forms, one is
dealing with functions f defined on the rational points of the boundary, while
the “invisible boundary” consisting of the irrational points is seen only through
the associated function hγ which measures the failure of modularity of f . Thus,
the object that should be interpreted in terms of the noncommutative space
C(P1(R))o Γ is the hγ rather than the quantum modular form f itself.

Another observation is that a similar setting, with functions that have eval-
uations and Taylor expansions at all rational points, is provided by the Habiro
ring of “analytic functions of roots of unity” [23]. This was, in fact, also de-
veloped to deal with the same phenomenology of quantum invariants of 3-
manifolds, such as the Witten–Reshetikhin–Turaev invariants, which typically
have a value at each root of unity as well as a formal Taylor expansion, the
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Ohtsuki series. Those strong quantum modular forms that satisfy an additional
integrality condition needed in the construction of the Habiro ring may be
thought of as objects satisfying a partial modularity property (through the as-
sociated hγ) among these analytic functions of roots of unity. Several significant
examples of quantum modular forms given in [55] indeed define elements in the
Habiro ring.

The functions in the Habiro ring were recently interpreted in [32] as pro-
viding the right class of functions to do analytic geometry over the “field with
one element” F1. This was then reformulated in the setting of noncommutative
geometry in [39] using the notion of endomotives developed in [10] (see also
§4 of [14]) which are a category of noncommutative spaces combining Artin
motives with semigroup actions, together with the relation between the endo-
motive associated to abelian extensions of Q and Soulé’s notion of geometry
over F1, established in [11]. The same noncommutative space and some natural
multivariable generalizations are related in [39] to another notion of geometry
over F1 developed by Borger [5] in terms of consistent lifts of Frobenius encoded
in the structure of a Λ-ring.

5. Quantum Statistical Mechanics and Number

Fields

The description of the boundary of modular curves in terms of the noncommu-
tative space C(P1(R))oΓ, for Γ a finite index subgroup of the modular group,
accounts for degenerations of lattices with level structures, to degenerate lattices
(pseudolattices in the terminology of [27]). In the adelic description, this would
correspond to degenerating lattices with level structures at the archimedean
component. In fact, one can also consider degenerating the level structures
at the non-archimedean components. This leads to another noncommutative
space, which contains the usual modular curves, and which also contains in its
compactification the invisible boundary described above.

In [13] such a noncommutative space of adelic degenerations of lattices with
level structures was described as the moduli space of 2-dimensional Q-lattices
up to commensurability and up to a scaling relation. A Q-lattice is a pair of a
lattice Λ together with a group homomorphism φ : Q2/Z2 → QΛ/Λ which is a
possibly degenerate level structure (it is not required to be an isomorphism).
Commensurability means that QΛ1 = QΛ2 and φ1 = φ2 modulo Λ1 + Λ2.
The scaling is by an action of C∗. The corresponding noncommutative space
is the convolution algebra of functions f((Λ, φ), (Λ′, φ′)) of pairs of commen-
surable lattices that are of degree zero for the C∗-action, with the convolution
product

(f1?f2)((Λ, φ), (Λ
′, φ′)) =

∑

(Λ′′,φ′′)∼(Λ,φ)

f1((Λ, φ), (Λ
′′, φ′′))f2((Λ

′′, φ′′), (Λ′, φ′)).
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This admits a convenient parameterization in terms of coordinates (g, ρ, z) with

g ∈ GL+
2 (Q), ρ ∈M2(Ẑ), and z ∈ H.

The advantage of adopting this point of view is that the resulting noncom-
mutative space, whose algebra of coordinates I denote here by AGL(2),Q, has a
natural time evolution, by the covolume of lattices

σt(f)((Λ, φ), (Λ
′, φ′)) =

(

covol(Λ′)

covol(Λ)

)it

f((Λ, φ), (Λ′, φ′)).

5.1. Zero temperature states and modular forms. The ex-
tremal low temperature KMS equilibrium states for the dynamical system
(AGL(2),Q, σ) are parameterized by those Q-lattices for which φ is an iso-
morphism (the invertible ones). Thus the set of extremal low temperature
KMS states can be identified ([13], [14] §3) with the usual Shimura variety
GL2(Q)\GL2(AQ)/C

∗. This can be thought of as the set of the classical points
of the noncommutative space AGL(2),Q.

The adelic group Q∗\GL2(AQ,f ) acts as symmetries of this quantum statis-

tical mechanical system, with the subgroup GL2(Ẑ) of GL2(AQ,f ) = GL+
2 (Q) ·

GL2(Ẑ) acting by automorphisms, and GL+
2 (Q) by endomorphisms, and the

quotient by Q∗ eliminating the inner symmetries that act trivially on the KMS
states.

The zero temperature extremal KMS states, defined in [13] as weak limits
of the positive temperature ones, have the property that, when evaluated at
elements of a Q-algebra MGL(2),Q of unbounded multipliers of AGL(2),Q, they
give values that are evaluations of modular forms f ∈ F at points in H. Under
the identification Q∗\GL2(AQ,f ) ∼= Aut(F ), for a generic set of points τ ∈ H

the action of symmetries of the dynamical system is intertwined with the action
of automorphisms of the modular field. This is very much like the GL(1)-case
of [6], which corresponds, in the same setting, to the case of 1-dimensional
Q-lattices.

5.2. Imaginary quadratic fields. One can recast in this setting of
quantum statistical mechanical systems the case of imaginary quadratic fields,
[15]. One considers a similar convolution algebra for 1-dimensional K-lattices,
for K = Q(

√
−d) and realizes it as a subalgebra AK of the algebra of com-

mensurability classes of 2-dimensional Q-lattices recalled above. In this case,
the extremal low temperature KMS states are parameterized by the invertible
K-lattices, which are labelled by a CM point in H and an element in ÔK. The
evaluation of extremal zero temperature KMS states on the restriction of the
algebra MGL(2),Q to AK then give evaluations of modular forms at CM points

and the action of symmetries induces the correct action of Gal(Kab/K).

5.3. Quantum statistical mechanical systems for number
fields. The construction of [15] of quantum statistical mechanical systems
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(AK, σ) associated to imaginary quadratic fields, using the system for 2-
dimensional Q-lattices of [13], was generalized in [22] to a construction of a
similar system for an arbitrary number field, using a generalization of the
GL(2)-system to quantum statistical mechanical systems associated to arbi-
trary Shimura varieties. Rewritten in the notation of [24] these quantum sta-
tistical mechanical systems (AK, σ) for number fields are given by semigroup
crossed product algebras of the form

AK = C(Gab
K ×Ô∗

K

ÔK)o J+
K ,

where J+
K is the semigroup of integral ideals and Gab

K = Gal(Kab/K). These also
admit an interpretation as convolution algebras of commensurability classes of
1-dimensional K-lattices, see [24]. The time evolution is by the norm of ideals

σt(f) = f, ∀f ∈ C(Gab
K ×Ô∗

K

ÔK), and σt(µn) = N(n)it µn, ∀n ∈ J+
K .

An explicit presentation for the algebras AK was obtained in [20], by embed-
ding them into larger crossed product algebras. What is still missing in this gen-
eral construction is the “algebra of arithmetic elements” replacingMGL(2),Q, on
which to evaluate the zero temperature extremal KMS states to get candidate
generators of abelian extensions. In the particular case of the real quadratic
fields, such an algebra would contain the correct replacement for the modular
functions on the invisible boundary of the modular curves.

5.4. Noncommutative geometry and anabelian geometry.
The quantum statistical mechanical systems for number fields described above
are explicitly designed to carry information on the abelian extensions of the
field, hence they involve the abelianization of the absolute Galois group. How-
ever, it appears that these noncommutative spaces may in fact contain also the
full “anabelian” geometry of number fields. This is presently being investigated
in my joint work with Cornelissen [19]. The question is to what extent one can
reconstruct the number field from the system (AK, σ). The fact that the par-
tition function of this quantum statistical mechanical system is the Dedekind
zeta function and that the evaluation of low temperature KMS states on ele-
ments in the algebra can be written in terms of Dirichlet series, shows that at
least the system recovers the arithmetic equivalence class of the field. A similar
results should in fact hold for function fields, where a version of these quan-
tum statistical mechanical systems in the positive characteristic setting with
partition function the Goss zeta function was developed in [17] (see [18] for
the role of the Goss zeta function for arithmetic equivalence.) It is more subtle
to see whether the system (AK, σ) recovers not only the field up to arithmetic
equivalence but also up to isomorphism, [19].
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Abstract

The universality hypothesis in statistical physics says that a number of macro-
scopic critical properties are largely independent of the microscopic structure,
at least inside a universality class of systems. In the case of planar interact-
ing Ising models, like Vertex or Ashkin-Teller models, this hypothesis means
that the critical exponents, though model dependent, verify a set of universal
extended scaling relations. The proof of several of such relations has been re-
cently achieved; it is valid for generic non solvable models and it is based on
the Renormalization Group methods developed in the context of constructive
Quantum Field Theory. Extensions to quantum systems and several challenging
open problems will be also presented.
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1. Phase Transitions and Critical Phenomena

The aim of Statistical mechanics is to predict the macroscopic properties of
the matter starting from its microscopic atomic description, and it is still well
explained by the words of Democritus (460-370 BC): “From the ordering and
positions of the atoms the changes of the matter can be explained”. In particu-
lar, one aims at understanding the phenomenon of phase transitions, in which
a material modifies its macroscopic state while its microscopic components re-
main the same.
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A phenomenon widely studied in statistical physics is magnetism. Several
magnetic materials, at temperatures T lower than a certain critical temperature
Tc, have a spontaneous magnetization which corresponds to a microscopically
ordered phase; the system undergoes a phase transition at h = 0 changing sud-
denly from positive to negative magnetization reversing the magnetic field h.
On the other hand, for T ≥ Tc, there is no spontaneous magnetization (disor-
dered phase); the point h = 0, T = Tc is called critical and the properties close
to it are particularly remarkable. In order to understand such a phenomenon we
can describe the magnet in terms of spin models. We can imagine the magnet
as made up of molecules sitting on the sites of a finite square lattice Λ ⊂ Z

d,
where Λ is centered around the origin and contains |Λ| = Ld lattice sites. Each
molecule can be regarded as a dipole pointing along a preferred axis, with two
possible directions. The molecule at the point x ∈ Λ has then two possible
configurations, which can be labelled by a spin variable σx with values 1 or −1.
The “configurations” of the system consist of a set σ = (σx1

, ..., σx|Λ|
) of |Λ|

numbers such that σx = ±. The number of these configurations is 2|Λ| and to
each spin configuration a certain energy H(σ) is assigned.

The postulates of statistical mechanics allow to compute macroscopic quan-
tities appearing in the thermodynamical theory of the system starting from the
microscopic energy H(σ); indeed the partition function is

Z =
∑

σ

e−βH(σ) (1.1)

where β = (κT )−1, T is the temperature and κ is the Boltzmann constant.
The free energy per site is defined as fΛ,β = −β−1|Λ|−1 logZ; it can be proved
under rather general conditions on the energy, see e.g. Theorem 2.4.1. of [50],
that the limit

fβ = −β−1 lim
|Λ|→∞

1

|Λ| logZ (1.2)

exists and is convex. Phase transitions, which can be present only in the thermo-
dynamic limit |Λ| → ∞, appear as non-analyticity points of fβ . The derivatives
of fβ correspond to physical observables; for instance the specific heat is defined
(when exists) as

Cv = − ∂

∂T
T 2 ∂

∂T

fβ
T

(1.3)

If O is some observable property of the system with value O(σ) in the spin
configuration σ, than its observed average thermodynamic value is

〈O〉Λ,β =
∑

σ

O(σ)
e−βH

Z
(1.4)

and if Ox is a local monomial in the spin variables, like σx or σxσx′ (where x′

is a nearest-neighbor of x), its truncated correlations are

lim
Λ→∞

[〈OxOy〉Λ,β − 〈Ox〉Λ,β〈Oy〉Λ,β ] (1.5)



2080 Vieri Mastropietro

The correlations measure, roughly speaking, the influence in a point y of a
perturbation located at a certain point x. The basic problem in equilibrium
statistical physics is the computation of the free energy and its derivatives and
of the other thermodynamic functions or correlations.

A particularly simple form for the energyH is the one in the nearest-neighbor
Ising model

HJ (σ) = −J
∑

<i,j>

σxi
σxj

− h
∑

x

σx (1.6)

where J > 0,
∑
<i,j> means that the sum is over pairs (xi,xj) of nearest

neighbor of Λ. The model is an oversimplified description of a magnet with
just one easy axis of magnetization; the first term in (1.6) takes into account
the exchange energy between the dipoles (the contribution to the energy of
two neighbor dipoles has opposite sign depending if the dipoles point in the
same or in the opposite direction) and the second term takes into account the
interaction with an external magnetic field.

In one dimension the model is solvable but the free energy is analytic in the
thermodynamic limit; there are no phase transitions. In three dimension, no
exact solution has been found; it is therefore particularly remarkable that, in
two dimensions and with no magnetic field, the nearest-neighbor Ising model
can be exactly solved and it exhibits a phase transition, that is a non analyticity
point in the free energy as a function of temperature. The solution is due to
Onsager [46]; before such result it was not even clear if the formalism of statis-
tical mechanics can describe phase transition. The free energy can be computed
(see §5 of [44] or [52]) and one can determine the critical temperature at which
the thermodynamic functions have singularities; for instance the specific heat
has a logarithmic divergence 1

Cv ∼ − log |β − βc| (1.7)

where
tanh(βcJ) =

√
2− 1 (1.8)

and βc is the critical temperature. Even if the model is so simplified with respect
to a real magnet, it explains several of its physical properties; for instance, the
solution predict a spontaneous magnetization which is vanishing at the critical
temperature with a critical exponent. In general the critical behavior of the 2D
Ising model (1.6) close to the critical point h = 0, T = Tc is characterized by
a set of J-independent critical exponents. For instance the energy correlation
function Gβ(x − y), defined by (1.5) with Ox chosen as σxσx′ (x′ a nearest
neighbor point of x), decays at large distances for β 6= βc faster than any power
of ξ−1|x− y|, with ξ the correlation length diverging at β = βc

ξ−1 ∼ |β − βc|ν (1.9)

1we say that X ∼ Y if there are two constants c1, c2 such that c1Y ≤ X ≤ c2Y
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with ν = 1; moreover at β = βc the energy correlations decay with a power law

Gβc
(x− y) ∼ 1

|x− y|X (1.10)

with exponent X = 2. In general, the correlation length of the correlations at
the critical point becomes infinite; a perturbation in a point have an influence
at a very large distance from it.

2. Universality

The Ising model is an oversimplified description of a real system; in general,
realistic models for matter are extremely complex and depend on a number of
microscopic details; the computation of the physical observables, to be com-
pared with experiments, is essentially hopeless. In this context, the universality
hypothesis plays a crucial role; it says that the critical properties should be in-
sensitive to the details of the microscopic description, at least inside a certain
universality class of systems. By such hypothesis highly oversimplified mod-
els can be used to get information on realistic and complex systems close to
criticality; this is a crucial property for having quantitative predictions.

In the case of systems in the class of universality of the Ising model, univer-
sality simply says that the critical exponents are the same. This is well confirmed
in experiments: for instance the experimental value of the exponents of Carbon
dioxide or Xenon coincide with the three dimensional Ising model ones (ob-
tained by numerical simulations), see [27], even if, of course, the Hamiltonians
describing such compounds is completely different. A spectacular confirmation
of universality came from a recent experiment in a space mission [37], in which
measured exponents for the λ-transition of Helium are coinciding with several
digits with the ones of the three dimensionalXY model. From the mathematical
point of view, universality in dimensions equal to 4 and above is a consequence
of a strengthened version of the central limit theorem, see [18] or [2]; in lower
dimension the phenomenon is more subtle.

We will be interested from now on about the issue of universality in two
dimensions. A basic question is to understand what happens if we consider,
instead of (1.6), a more general model; namely if Λ is a square subset of Z2 of
side L, and x = (x0, x) ∈ Λ

H(σ) = HJ(σ) + λV (σ) (2.1)

where HJ is the nearest neighbor Ising model (1.6), which can be written as

HJ(σ) = −J
∑

j=0,1

∑

x∈Λ

σxσx+ej
(2.2)
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where e0 = (0, 1), e1 = (1, 0), λ is a coupling and V is quartic in the spins; an
example is

V (σ) =
∑

j

∑

x,y∈Λ

v(x− y)σxσx+ej
σyσy+ej

(2.3)

with

|v(x− y)| ≤ e−κ0|x−y| (2.4)

and κ0 a constant; also a next to nearest neighbor interaction can be written in
the form (2.3)

V (σ) =
∑

j

∑

x∈Λ

σxσx+ej
σx+ej

σx+2ej
=

∑

j

∑

x∈Λ

σxσx+2ej
(2.5)

The Hamiltonian (2.1) is “physically equivalent” to (1.6), as from a physical
point of view there is no reason for which only nearest-neighbor spins should
interact; it is much more reasonable to assume that the interaction becomes
weaker and weaker as more distant spins are considered. In the same way, it is
also very natural to include interactions involving four or a greater number of
spins. Even if the Hamiltonian (2.1) is physically equivalent to (1.6), an exact
solution for it is not known and there is no exact way to compute the exponents.

It is generally believed that the Hamiltonian (2.1) is in the universality class
of the 2D Ising model. Only very recently a universality result for (2.1) has been
proved by Pinson and Spencer [57, 54] using as a starting point the Grassmann
integral representation of the correlations (see below). They proved that for λ
small enough the model (2.1) is critical at

tanhβcJ =
√
2− 1 +O(λ) (2.6)

and that the specific heat has the same logarithmic singularity (1.7) as in the
nearest neighbor case. They have also shown that if β 6= βc the energy cor-
relation decays at large distances faster than any power of ξ−1|x − y|, with
ξ−1 ∼ |β−βc|; moreover at β = βc it decays with a power law with exponent 2.
The critical temperature depends an the coupling λ in (2.1) but the exponents
are λ-independent.

There are however systems in which the exponents are not pure numbers
but depend on all the microscopic structure; this happens in physical systems
like planar magnetic materials, carbon nanotubes or spin chains like KCuF3.
In such cases universality acquires a more subtle form; it does not mean, as
for models in the Ising class, that the exponents do not depend from the mi-
croscopic details (on the contrary they do); rather, it means that there exist
universal and model-independent relations allowing to express, for instance, all
the exponents in terms of a few of them. Even if the critical exponents depend
on the extraordinarily complex microscopic details, the universal relations allow
concrete and testable predictions in terms of a few measurable parameters.
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The simplest class of models showing exponents depending on the Hamil-
tonian parameters is obtained by considering two planar Ising models coupled
by a quartic interaction; the Hamiltonian is

H(σ, σ′) = HJ (σ) +HJ ′(σ′)− λV (σ, σ′) (2.7)

with HJ given by (2.2), V is a short ranged, quartic interaction in the spin and
invariant under the spin exchange; an example is

V (σ) =
∑

j=0,1

∑

x,y∈Λ

v(x− y)σxσx+ej
σ′
yσ

′
y+ej

(2.8)

with v(x) a short range potential, and another example is provided by (2.12)
below. We will be interested in particular in the specific heat Cv and the energy
(ε = +) and cross-over (ε = −) correlations, defined as

Gεβ(x− y) = lim
Λ→∞

[〈OεxOεy〉Λ,β − 〈Oεx〉Λ,β〈Oεy〉Λ,β ] ε = ± (2.9)

where
Oεx =

∑

j=0,1

σxσx+ej
+ ε

∑

j=0,1

σ′
xσ

′
x+ej

(2.10)

The model (2.7) describes two interacting magnetic layers, each of them
described by an Ising model. Moreover several systems in statistical mechanics,
like the Ashkin-Teller or the Eight Vertex models, can be rewritten as coupled
Ising models, see [5].

In the Ashkin-Teller model the spin has four values A,B,C,D, and two
neighbor spins are associated an energy E1 for AA,BB,CC,DD, E2 for
AB,CD, E3 for AC,BD, E4 for AD,BC. It was proposed to describe the
properties of certain alloys and it can be also seen as a more realistic gener-
alization of the Ising model, as the assumption that the dipole can point only
in two directions is rather crude; in real systems the dipole can point in any
direction. It is easy to see that the Ashkin-Teller Hamiltonian can be written
in the form (2.7) with a suitable choice of λ, J, J ′ and

V (σ) =
∑

j=0,1

∑

x∈Λ

σxσx+ej
σ′
xσ

′
x+ej

(2.11)

For a choice of parameters such that J = J ′ the Ashkin-Teller model is called
isotropic, while for J 6= J ′ it is called anisotropic. When λ = 0 the model is
exactly solvable as its Hamiltonian is the sum of two independent Ising models,
and two critical temperatures are present which if J 6= J ′ which reduce to one
in the J = J ′ case; no solution is known for λ 6= 0.

The Eight Vertex model is a generalization of the Vertex models introduced
to describe the idrogen bounding in ice [5], and it can also be mapped in (2.7)
with a suitable identification of the parameters; in such a case J = J ′ and

V (σ) =
∑

j=0,1

∑

x∈Λ

σx+j(e0+e1)σx+e0
σ′
x+j(e0+e1)

σ′
x+e1

(2.12)
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The exact solution for the Eight Vertex model was found by Baxter [4] in the
early seventies. For a particular choice of the parameters the Eight Vertex model
reduces to Six Vertex models, previously solved by Lieb [36] and Sutherland
[56].

From the Baxter solution the specific heat α and the correlation length
exponent ν can be computed (see (10.12.22), (10.12.23) of [5]) and it is found
that they are non constant functions of λ and different from the Ising ones.
This was considered somewhat surprising at the time of this discovery; coupled
Ising models are not in the Ising universality class, in contrast to what a too
extended application of universality would suggest.

Note also how much exact solvability is a delicate property. When written in
terms of Ising spins, the Eight Vertex or the Ashkin Teller models look almost
identical; however, an exact solution is known only for the second one. One
expects that the exponents for the model (2.7) are non constant function of λ
also in the non solvable cases.

The understanding of the universality issue for such models grew out from a
number of authors in the Seventies and early Eighties, see e.g. [31],[33],[38],[26]
and several others; it was proposed that the exponents, though model-
dependent, verify a set of universal extended scaling relations allowing one to
express every exponents of a single model in terms of any one of them. Some
example of such relations are

X− =
1

X+
ν =

1

2−X+
α = 2− 2ν (2.13)

where X+ and X− are the energy and crossover exponents for the correlations
defined in (2.9), and ν, α are the exponents for the correlation length and the
specific heat. Such exponents depend on the choice of V but the relations are
model-independent and, once one exponent is fixed (say X+) all the others are
determined. The first of (2.13) was proposed by Kadanoff [31], the second by
Kadanoff and Wegner [33] and the third is one of the hyperscaling relations [58].
Of course some of the relations can be checked in certain solvable models; it is
the case of the relation α = 2− 2ν which was checked in the case of the Eight
Vertex model (see Eq.(10.12.24) of [5]). It is worth however to remark that,
even when there is an exact solution, not all the exponents can be computed;
for instance the exponents X± for the Eight Vertex model cannot be computed.

The mathematical proof of such universal relations (as well as other ones
which have been conjectured for such systems) has shown to be a rather chal-
lenging problem. Several attempts in the last thirty years have been devoted to
their proof [48], [45],[61] ,[55], using a variety of methods ranging from operator
product expansions, perturbation theory, Renormalization Group, bosonization
and several others. It is common to all such approaches to start from a formal
continuum limit in which extra symmetries are verified. However strictly speak-
ing such a formal limit is plagued by contact divergences which were absent in
the original lattice model. Moreover lattice effects destroy such symmetries and
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change the exponents, and it is not clear at all why the relations between ex-
ponents should be true also when such symmetries are violated. Indeed, while
the assumption of a continuum limit description of planar lattice model is very
powerful, it is well known that a mathematical justification of it is very difficult,
see e.g. [53].

Our main result is the proof of the extended scaling relations (2.13) (and
several others) for coupled Ising models (2.7) and for related models as well.

The proof applies to solvable or non solvable cases and it is based on the
new methods that have been introduced in [54] and [40] to study the critical
properties of perturbations of the 2D Ising model. We will describe the main
steps leading to it in the following sections.

3. Grassmann Integrals Representation

The starting point of the proof is the representation of the partition function of
spin models with Hamiltonian (2.1) or (2.7) in terms of (non gaussian) Grass-
mann integrals; such representation, following from the works of Schultz, Lieb
and Mattis [52], Hurst and Green [28] and Samuel [51], was known since a long
time but only recently the progresses in Constructive Quantum field Theory
[25] made it an useful starting point for the analysis of spin models.

The partition function of the Ising model with periodic boundary conditions
can be written in terms of Pfaffians, see eq.(V.2.12) of [44]

Z =
∑

σ

e−βHJ (σ) =
∑

γ

(−1)δγZγ (3.1)

where γ = (ε, ε′); ε, ε′ = ±1; moreover δ+,+ = 1 and δ−,+ = δ+,− = δ−,− = 2
and

Zγ = (−1)L
2 1

2
(2 coshβJ)L

2

PfAγ (3.2)

and Aγ matrices with elements (Ai)x,j;y,k, with x,y ∈ Λ, j, k = 1, . . . , 6, given
by:

(Aγ)x;x =




0 0 −1 0 0 1
0 0 0 −1 1 0
1 0 0 0 0 −1
0 1 0 0 −1 0
0 −1 0 1 0 1
−1 0 1 0 −1 0




(3.3)

and, if t = tanh(βJ),
(
(Aγ)x;x+e1

)
i,j

= tδi,1δj,2,
(
(Ai)x;x+e0

)
i,j

= tδi,2δj,1,

(Ai)x;x+e1
= −(Ai

T )x+e1;x, (Ai)x;x+e0
= −(Ai

T )x+e0;x; moreover

(Aγ)(L,x0);(1,x0) = −(ATγ )(1,x0);(L,x0) = ε(Aγ)(1,x0);(2,x0)

(Aγ)(x,L);(x,1) = −(ATγ )(x,1);(x,L) = ε′(Aγ)(x,1);(x,2) (3.4)
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and in all the other cases the matrices (Ai)x,y are identically zero.
The Ising model partition function (3.1) can be conveniently rewritten in

terms of Grassmann integrals. We recall that (see [17] for a detailed introduc-
tion), given a set of Grassmann variables ηα, with α belonging to some finite
set A and {ηα, ηα′} = ηαηα′ + ηα′ηα = 0, a Grassmann integral is a linear
functional dηα such that

∫
dηα = 0,

∫
dηαηα = 1 (3.5)

and the integral of any analytic function can be obtained by linearity. A Pfaffian
can be conveniently written in terms of Grassmann variables; indeed, given a
(2n)× (2n) antisymmetric matrix A

PfA = (−1)n
∫
dη1 · · · dη2ne

1
2

∑
i,j ηiAijηj

By using the above representation it is therefore straightforward to write (3.2)
as:

Z =
1

2
(2 coshβJ)L

2 ∑

γ

(−1)δγ
∫ ∏

x∈Λ

dHxdHxdV xdV
γ
x dTxdTxe

S̄γ

(3.6)

where Hx, Hx, V x, Vx, Tx, Tx is a finite set of Grassmannian variables with
ε–periodic resp. ε′–periodic boundary conditions in vertical resp. horizontal
direction and

S̄γ = t
∑

x

[
HxHx+e1

+ V xVx+e0

]
+

+
∑

x

[
V xHx +HxTx + VxHx +HxTx + TxV x + TxVx + TxTx

]
(3.7)

The T, T̄ variables, which appear only in the diagonal elements, can be easily
integrated out; by a suitable changes of variables [29] and partial integrations,
the integrals for Zγ can be more conveniently expressed as (if γ = (−,−) for
definiteness)

(Zγ)
2 = N1

∫ ∏

ω=±,k
dψ+

k,ωdψ
−
k,ωe

− Z

L2

∑
k
ψ+

k,ω
Akψ

−
k,ω = N2

∫
PZ,µ(dψ) (3.8)

where N1,N2 are constants, ψ±
k,ω, k ∈ D and ω = ±1 are a finite set of Grass-

mann variables, D is the set of k = (k0, k1) such that k0 = 2π
L (n0 + 1

2 ) and

k1 = 2π
L (n0 +

1
2 ) for n0, n1 = −L

2 , ...,
L
2 − 1, L an even integer and

Ak =

(
−i sin k0 + sin k + µ11(k) −µ+ µ12(k)

−µ+ µ21(k) −i sin k0 − sin k1 + µ22(k)

)
(3.9)
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with µ = O(|β − βc|), tanhβcJ =
√
2− 1, Z = O(1), µij = O(k2).

Note that PZ1,µ1
(dψ) is a Grassmann Gaussian integration; the exact solv-

ability of the Ising model is reflected from the fact that the partition function
is expressed in terms of a gaussian integral.

Let us consider now the coupled Ising model (2.7); we will be interested in
particular in the specific heat Cv and the energy ε = + and cross-over (ε = −)
correlations, defined as in (2.9). Starting from (3.7) such correlations can be
written as sums of functional derivatives (with respect to Aε, ε = + for the
energy and ε = − for the crossover) of Grassmann integrals with different
boundary conditions; in the thermodynamic limit and β 6= βc it is sufficient to
consider only one of them which is given by, in the case J = J ′ (for definiteness)

Z(A) =

∫
PZ1,µ1

(dψ)eL
2N+V(1)(

√
Z1ψ)+B(1)(

√
Z1ψ,A) , (3.10)

where N is a constant, ψ±
x,ω is a finite set of Grassmann variables, PZ1,µ1

(dψ)
is given by (3.8) with Z = Z1 and with µ1 = O(|t − tc|), t = tanhβJ , tc =
tanhβcJ =

√
2− 1− ζ and

V(1)(ψ) = ζ1
∑

x,ω=±
ψ+
x,ωψ

−
x,−ω + λ1

∑

x

ψ+
x,+ψ

−
x,+ψ

+
x,−ψ

−
x,− +R1(ψ) (3.11)

B(1)(ψ,A) =
∑

Aε,xO
ε
x +R2(A,ψ) (3.12)

with ζ1 = O(ζ), λ1 = O(λ); R1 is a sum of monomials in ψ more than quartic
in ψ or quartic with at least a derivative and R2 is a sum of monomials in A,ψ
more than quadratic in ψ or quadratic with at least a derivative; finally

O+
x = ψ+

x,+ψ
−
x,− + ψ+

x,−ψ
−
x,+ O−

x = i[ψ+
x,+ψ

+
x,− + ψ−

x,+ψ
−
x,−] (3.13)

The parameter ζ (usually called a counterterm) has to be chosen so that βc is
the critical temperature (in general the critical temperature in (2.7) is different
with respect to the Ising one).

While the Grassmann integral (3.8) appearing in the computation of the
partition function of the Ising model is Gaussian, the Grassmann integral (3.10)
for (2.1) is non Gaussian and it cannot be explicitly performed. In order to
evaluate it, the simplest possibility is to expand the exponential integrated in
(3.10) in Taylor series and use the Wick rule

∫
PZ1,µ1

(dψ)ψ−
x1,ω1

...ψ−
xn,ωn

ψ+
y1,ω′

1
...ψ+

yn,ω′
n
=

∑

π

(−1)pπ
n∏

i=1

gω1,ωπ(i)
(xi−yπ(i))

(3.14)

where the sum is over all the permutations π = (π(1), .., π(n)) of (1, ..., n), pπ
is the parity with respect to the fundamental permutation and gω,ω′(x− y) is
the propagator

gω,ω′(x− y) =
1

Z1L2

∑

k∈D
e−ik(x−y)[A−1

k ]ω,ω′ (3.15)
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In this way Grassmann integrals representing the correlations of (2.7) are writ-
ten as power series (in λ and ζ); they are analytic uniformly in L as function of
λ, ζ with a radius of convergence shrinking to zero as β → βc. This means that
such series cannot be of any help for the understanding of the critical behavior
of the spin model (2.7). Indeed in the power series expansion the n-th contri-
bution is given by a sum of coefficients, which can be conveniently graphically
expressed in terms of Feynman diagrams. Each term is given by the integral of
a product of propagators which, by (3.9) and (3.15), at the critical tempera-
ture β = βc have slow decay properties at large distances; therefore there are
coefficients in the power series expansion which are unbounded as β → βc and
L → ∞. This slow decay of the propagator is due to the singularity of A−1

k at
k = (0, 0) when µ = 0.

We recall now that, in the absence of interaction, Dirac fermions are de-
scribed by the Dirac equation, see e.g. [29], introduced in 1928 by Dirac to
describe elementary spin 1/2 particles (like electrons) at high energies, in agree-
ment with the principles of quantum mechanics and special relativity. It turns
out that. in presence of interactions and with a lattice regularization interacting
Dirac fermions in d = 1 + 1 are described by Grassmann integrals somewhat
similar to (3.10).

There is therefore a remarkable connection between two apparently com-
pletely unrelated objects, namely relativistic quantum particles appearing in
high energy physics, and Ising models, which are a classical description for a
magnet. This is a further example of how apparently completely unrelated phe-
nomena can reveal astonishing similarities at a deep mathematical level. We
will use such a connection to apply, to the problem of the critical behavior
of spin model (2.7), the powerful methods developed in the context of Con-
structive Quantum Field Theory [25]; by them a resummation of the series
expansion can be found from which information on the critical behavior can be
extracted.

4. Renormalization Group and Multiscale

Decomposition

Starting from the Grassmann integral representation (3.10) the following The-
orem has been proved

Theorem 4.1. (Mastropietro [39],[40]) The coupled Ising model (2.7) with
J = J ′ and λ small enough is critical at tanhβcJ =

√
2 − 1 + O(λ) and the

specific heat exists and is such that

Cv ∼ − 1

α
[1− |β − βc|−α] (4.1)
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with α = O(λ). If β 6= βc the energy and crossover correlations Gεβ(x − y),

ε = ± (2.9),(2.10) decay faster than any power of ξ−1|x− y|, with

ξ−1 ∼ |β − βc|ν (4.2)

with ν = 1 +O(λ). Finally

Gεβc
(x− y) ∼ 1

|x− y|2Xε
, as |x− y| → ∞ , (4.3)

with X± = 1 +O(λ).

The quartic interaction in (2.7) has two main effects. The first one is simply
to change the value of the critical temperature. The second and more dramatic
is that the critical behavior is modified even by an arbitrarily small interaction.
Indeed the exponents α,X±, ν are expressed in terms of convergent expansions
whose lowest order coefficients can be explicitly computed. It is found, in the
case of the Askhin-Teller (2.11) or Eight Vertex model (2.12)

α = 2a1λ+O(λ2), X± = 1∓ a1λ+O(λ2), ν = 1− a1λ+O(λ2) (4.4)

with a1 a suitable positive constant. Therefore the logarithmic singularity in
the specific heat of the Ising model is changed by the interaction into a power
law singularity if λ > 0; if λ < 0 the specific heat is indeed continuous, but
higher order derivatives of the free energy are singular. In order to establish
critical behavior the specific heat is evaluated at β 6= βc and L = ∞ and we
verify that it (or some of its derivatives) has a singular behavior as β → βc; the
limit L→ ∞ is not taken directly at β = βc.

Theorem (4.1) proves for the first time that the critical exponents in generic
non solvable coupled Ising models (2.7) are non trivial functions of the coupling.
From (4.4), the scaling relations (2.13) are verified if the expansion is truncated
at first order; however the complexity of the expansions makes essentially im-
possible to prove the universal relations directly from the series by an analysis
at all orders.

Let us consider now what happens when J 6= J ′, in the case of the
anisotropic Ashkin-Teller model for definiteness. If J − J ′ is large (strong
anisotropy) the two Ising subsystems have very different critical temperatures,
hence one can expect that if one system is almost critical the second one will
be out of criticality: the system is expected then to be in the Ising universality
class. On the other hand if J = J ′ the exponents are non trivial functions of λ,
as shown in the previous theorem, and the system is not in the Ising class; how
the crossover is realized for J − J ′ small is clarified by the following theorem.

Theorem 4.2. (Giuliani,Mastropietro [23],[24]) In the case of the anisotropic
Ashkin-Teller model (2.7),(2.11) (J 6= J ′) there are two critical temperatures,
β+
c and β−

c such that
|β−
c − β+

c | ∼ |J − J ′|XT (4.5)



2090 Vieri Mastropietro

with XT = 1 +O(λ) and

Cv ∼ −∆α log
|β − β−

c | · |β − β+
c |

∆2
(4.6)

where 2∆2 = (β − β−
c )

2 + (β − β+
c )

2 and α = O(λ).

By the above theorem we can see that the anisotropic Ashkin-Teller model is
in the class of universality of the Ising model for any nonvanishing value of J −
J ′: the specific heat has the same logarithmic singularity as in the Ising model,
and the X± and ν exponents are the Ising ones. However critical exponents
which are non trivial function of the coupling λ appear even if we are in the Ising
universality class: the difference between the two critical temperatures rescales
with an anomalous exponent in the isotropic limit |β+

c − β−
c | ∼ |J − J ′|XT .

Therefore, the ratio of the difference of the critical temperatures when λ 6= 0
or λ = 0 is vanishing or diverging as J → J ′ depending on the sign of λ, with a
power law driven by a transition exponent XT , whose existence was overlooked
in the physical literature.

Let us give the main ideas of the proof of Theorem 4.1, which is based on
an approach known as Renormalization Group, which produces a resummation
of the power series expansion of (3.10) which is well defined for β close to βc
uniformly L. Developed by Wilson [59] for Statistical Physics or Quantum Field
Theory, the ideas of Renormalization Group are used also in many mathematical
studies and often go under the name “multiscale analysis”; for instance, such
ideas are used in the proof of the pointwise convergence of Fourier series on the
circle, or in the convergence of Lindstedt series for KAM tori, see [19].

We follow the application of Wilsonian ideas to functional integrals like
(3.10) due to Polchinski [47] and Gallavotti [20]. The starting point (see e.g. [42]
for a tutorial introduction) is the addition property for Gaussian Grassmann in-
tegrals; if P (dψ), P (dψ1), P (dψ2) are Gaussian Grassmann integrations with
propagator g(k), g(1)(k), g(2)(k), with g(1)(k) + g(1)(k) = g(k) then the inte-
gration can be equivalently rewritten as

∫
P (dψ)F (ψ) =

∫
P (dψ(2))

∫
P (dψ(1))F (ψ(1) + ψ(2)) (4.7)

Let T 1 be the one dimensional torus, ||k − k′||T 1 the usual distance between k
and k′ in T 1 and ||k|| = ||k − 0||. We introduce a decomposition of the unity

1 = f1(k) +
0∑

h=−∞
fh(k) (4.8)

with fh(k): if h ≤ 0 a smooth compact support function with support {π4 2h−1 ≤
|k| ≤ π

4 2
h+1; if h = 1 f1(k) = 0 for |k| ≤ π

4 2
−1 and f1(k) = 1 for |k| ≥ π

4 2. We
define also

χh(k) =
h∑

k=−∞
fh(k) (4.9)
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which is vanishing for |k| ≥ π
4 2

h+1. Therefore, by applying (4.7), we can write
Z(A) (3.10) as

∫
PZ1,µ1

(dψ≤0)

∫
PZ1,µ1

(dψ(1))eL
2N+V(1)(

√
Z1ψ)+B(1)(

√
Z1(ψ

(≤0)+ψ(1),A)

= eS
(0)(A)

∫
PZ1,µ1

(dψ≤0)eL
2N (0)+V(0)(

√
Z1ψ

(≤0))+B(0)(
√
Z1ψ

(≤0),A), (4.10)

where V(0),B(0), S(0) is sum over all monomials multiplied by suitable kernels.
The advantage of this is that, while the propagator of PZ1,µ1

(dψ) has slow decay
properties, the propagator PZ1,µ1

(dψ(1)) decays faster than any power, and the
result of the integration is well defined (the kernels are analytic for small λ, ζ
uniformly in L, β).

We can iterate such a procedure and, after some rescaling and other ma-
nipulations, one defines a sequence of effective potentials V(h), effective sources
B(h), S(h) and a sequence of constants Zh, µh,Nh, h = 0,−1, , .. such that

Z(A) = e
S(h)(A)

∫
PZh−1,µh−1(dψ

(≤h))eL
2Nh+V(h)(

√

Zh−1ψ
(≤h))+B(h)(

√

Zh−1ψ
(≤h),A)

,

(4.11)

where ψ(≤h) =
∑h
j=−∞ ψ(j) and PZh,µh

(dψ(≤h)) is the Gaussian Grassmann

integration with propagator g(≤h)(x), with Fourier transform given by

ĝ(≤h)(k) =
χh(k)

Zh

(
−i sin k0 + sin k + µ++ −µh − µ−+

−µh − µ+− −i sin k0 − sin k1 + µ−−

)−1

(4.12)

The effective interaction V(h)(ψ) is a sum over monomials in the Grassmann
variables

V(h)(ψ(≤h)) = γhζhF
(h)
ν + λhF

(h)
λ +Rh(ψ

(≤h)) , (4.13)

where

F (h)
ν =

1

L2

∑

ω=±

∑

k

ψ
(≤h)+
k,ω ψ

(≤h)−
k,−ω , (4.14)

F
(≤h)
λ =

1

L8

∑

k1,...,k4

ψ
(≤h)+
k1,+

ψ
(≤h)+
k3,− ψ

(≤h)−
k2,+

ψ
(≤h)−
k4,− δ(k1 − k2 + k3 − k4) .

and Rh contains sum of monomials with more than four fields, or quartic with
at least a derivative, or bilinear with at least two derivatives. In the same way

B(h)(
√
Zh−1ψ

(≤h), A) =
∑

ε=±,x
Z

(ε)
h−1A

ε
xO

(≤h)ε
x + R̄h , (4.15)

where O± is given by (3.13) and R̄h contains terms more than quadratic, or
quadratic with a derivative.
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The above procedure has the effect that, after the integration of the fields
ψ(1), ..., ψ(h+1), Z(A) is expressed by a functional integral similar to (3.10), with
the difference that the fields have support in a smaller momentum region and
have, in general, renormalized masses, velocities and wave function renormal-
ization; in addition, the interaction is replaced by an effective interaction V(h)

which is typically sum of monomials of any degree in the fields ψ(≤h) and A.
To each monomial in the effective potential is associated a scaling dimension. If
only a finite set of monomials have non negative scaling dimension the theory
is said renormalizable; this is what happens in the present case as the scaling
dimension is given, for the monomials with n ψ-fields and m A-fields, by

D = 2− n

2
−m . (4.16)

so that only the monomials with (n,m) = (2, 0); (2, 1); (4, 0); (0, 2) have non
positive dimension.

The crucial point is that the kernels of the effective potentials V(h),B(h), S(h)

can be written as a power series expansions in the effective couplings {λk, ζk}k≥h
which is convergent uniformly in L and β − βc, provided that {λk, ζk}k≥h are
small enough. The proof of this remarkable property is based on the Gallavotti-
Nicolo’ tree expansion [21], the Battle-Bridges-Federbush formula [3] for the
truncated fermionic expectation together with the Gram bounds for determi-
nants [15]; it is technically similar to the analysis performed in constructive
Quantum Field Theory by Gawedsky and Kupianen [22] and Feldman, Mag-
nen, Rivasseau and Seneor [16] for the Gross-Neveu model, or by Lesniewski
[35] for the Yukawa model [35]. Note that the multiscale integration procedure
has replaced an expansion in λ, ζ which, as discussed at the end of the previous
section, has unbounded coefficients, with an expansion in {λk, ζk}k≥h which has
finite radius of convergence uniformly in L and β − βc.

There are however two main differences between our functional integral
(3.10) with respect to fermionic d = 1 + 1 Quantum Field Theories like the
Gross-Neveu or the Yukawa models. The first is that, as it is usually said,
(3.10) poses an infrared (that is, related to the divergence of the propagator at
low momenta when β = βc) and not an ultraviolet problem (related to the slow
decay of the propagator for large momenta).

The second and more crucial one is that the theory (3.10) is renormalizable
but not asymptotically free, as it is the case for the Gross-Neveu model. In the
case we are discussing here, asymptotic freedom would mean that λh, ζh → 0 as
h→ −∞; this would ensure that, by choosing λ small enough, the expansion in
terms of the effective coupling would be convergent. However this is not what
happens in the case (3.10), in which λh → λ−∞, with λ−∞(λ) = λ1+O(λ2) an
analytic non trivial function of λ. In the Renormalization Group language, one
says that there is a line of fixed points. Such kinds of models are much harder to
be constructed with respect to the asymptotically free ones: one has to exploit
non trivial cancellations in the expansions at all orders in the renormalized
expansion; this is a crucial difference with respect to the asymptotically free
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models in which a second order computation is enough for establishing the
nature of the flow of the effective coupling.

The first example of rigorous construction of a model of this kind was in [6, 7]
and it regards the Jellium model in 1D, describing interacting non relativistic
fermions in the continuum. The cancellations were proved using an indirect
argument based on comparison with the exact solution of the Luttinger model
found by Mattis and Lieb [43]. Later on, other models with lines of fixed points
were constructed without any use of exact solutions, using a technique, devel-
oped in [14], capable of combining Ward Identities based on local symmetries
with Renormalization Group methods; the main problem to face is that the
momentum cut-off breaks local symmetries producing additional terms in the
Ward Identities which can be however rigorously taken into account.

An important observation which will play an important role in the proof of
the universal relations (see below) is that the propagator of the field ψ(h) can
be written, for h ≤ 0, as

g(h)(x− y) = g
(h)
T (x− y) + r(≤h)(x− y) , (4.17)

where

g
(h)
T (x− y) =

1

L2

∑

k

e−ik(x−y) 1

Zh
T−1
h (k) , (4.18)

Th(k) = fh(k)

(
−ik0 + k −µh

µh −ik0 − k

)
(4.19)

and r(h)(x−y) verifying for large distances the same bound as g(h)(x,y) times
an extra 2h. The above decomposition means that the single scale propagator is
identical to a “relativistic” one (see the following section) up corrections which
are smaller and smaller as h→ −∞.

In order to prove that {λk, ζk}k≥h remain inside the radius of convergence
one considers a recursive equation (whose r.h.s. is called Beta function)

λj−1 = λj + β
(j)
λ (λj , ..., λ0) + β̄

(j)
λ (λj , ζj ; ...;λ0, ζ0) +O(λ̄j2

ϑj) , (4.20)

where 0 < ϑ < 1 is a constant, λ̄j = maxk≥j |λk|, β(j)
λ , β̄

(j)
λ are µ1-independent

and expressed by a convergent expansion in λj , ζj .., λ0, ζ0; moreover by defini-

tion β
(j)
λ (λj , ..., λ0) is sum of terms in which only the propagators g

(h)
T (4.18)

appear (the terms containing r(j) are included in the last term in the r.h.s.

of(4.20)) and β̄
(j)
λ vanishes if at least one of the ζk is zero. Remarkable cancel-

lations in the beta functions, expressed by the following bound

|β(j)
λ (λj , ..., λj)| ≤ C|λj |22θj (4.21)

for suitable positive constants C and θ < 1, and the fact that, for a suitable

choice of ζ1 = O(λ), ζj = O(2θjλ) and therefore β̄
(j)
λ = O(2θjλ2), imply that

λj → λ−∞(λ) = λ1 +O(λ2) (4.22)
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The critical exponents are found by the beta function for the effective renor-
malizations; we can write

Zj−1

Zj
= 1 + β(j)

z (λj , ..., λ0) + β̄(j)
z (λj , ζj ; .., λ0, ζ0) +O(λ2ϑj) , (4.23)

with β̄
(j)
z vanishing if at least one of the ζk is zero so that β̄

(j)
z = O(λ2θj).

Finally
β(j)
z (λj , ..., λ0) = β(j)

z (λ−∞, ..., λ−∞) +O(λ2θh) , (4.24)

where β
(j)
z (λ−∞, ..., λ−∞) is by definition sum of terms in which only the prop-

agators g
(h)
T (4.18) appear (the terms containing r(j) are included in the second

term in (4.24)). Similar equations hold for Z
(±)
h , µh, with

β±(λj , ..., λ0) = β±(λ−∞, ..., λ−∞) +O(λ2θh) . (4.25)

so that, by defining

η± = log2[1 + β
(−∞)
± (λ−∞, ...λ−∞)] , (4.26)

and similar equations for the other exponent, we get for any j ≤ 0,

Zj ∼ 2ηzj µj ∼ µ12
ηµj Z

(±)
j ∼ 2η±j (4.27)

The critical exponents in Theorem 4.1 are functions of λ−∞ only, as it is clear
from (4.24), and are such that

X± = 1− η± + ηz ηµ = η+ − ηz = 1−X+ . (4.28)

If µ1 6= 0 (that is, if the temperature is not the critical one), the correlations
decay faster than any power with rate proportional to µh∗ , where, if [x] denotes

the largest integer ≤ x, h∗ is given by h∗ =
[
log2 |µ1|
1+ηµ

]
.

5. The Extended Scaling Relations

The exponents of the model (2.7) are written as convergent series so that they
can be computed with arbitrary precision; at lowest orders, see (4.4), the rela-
tions (2.13) are verified, but to prove their validity at all orders directly from
the expansions is essentially impossible due to the complexity of the series.
Recently some of the universal relations have been proved.

Theorem 5.1. (Benfatto,Falco,Mastropietro [10, 11]). Given the coupled Ising
model with quartic interaction (1.4), with the same definitions as in Theorems
4.1 and 4.2 and λ small enough the following relations are true

X− =
1

X+
α =

2− 2X+

2−X+
, (5.1)

ν =
1

2−X+
XT =

2−X+

2−X−1
+
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The first three of the above relations were previously conjectured (see re-
marks after (2.13)) while the last one is completely new.

The idea of the proof of the above theorem is based on the introduction of a
fermionic theory, defined on the continuum space and not on the lattice, whose
correlations are the functional derivatives of the following Grassmann integral

∫
P (dψ(≤N))eV

(N)(ψ(≤N))+
∑

ω=±

∫
dx[ψ+

x,ωφ
−
x,ω+ψ−

x,ωφ
+
x,ω]+

∫
dxjµ(x)Jµ(x) (5.2)

with x ∈ Λ, Λ ⊂ R
2, Λ = [−L/2, L/2] × [−L/2, L/2], and P (dψ(≤N)) is the

fermionic gaussian integration with propagator

ĝ(≤N)(k) =
χN (k)

6 k (5.3)

6 k = γ0k0 + γ1k1, φ
±, J are external fields and

V (N)(ψ(≤N)) = λ∞
∑

µ=0,1

∫
dxdyv(x− y)jµ(x)jµ(y) (5.4)

with jµ(x) = ψ̄xγµψx, ψ̄ = ψ+γ0, ψ
+ = (ψ+

+ , ψ
+
−), ψ = (ψ−

− , ψ
−
−) and v(x−y) a

short range symmetric interaction with v̂(0) = 1 and |v̂(p)| ≤ e−κ0|p|; moreover

γ0 =

(
0 1
−1 0

)
γ1 =

(
0 −i
i 0

)
γ5 =

(
1 0
0 −1

)
(5.5)

The functional integral (5.2) is a regularization of the formal continuum limit
of (3.10) in which the lattice step is sent to zero and β = βc; note indeed the

single-scale propagator of this model is coinciding with g
(h)
T (x) in (4.17) when

µh = 0 and k ∈ R
2 (when L = ∞). Grassmann integrals similar to (5.2), with

v(x) replaced by a local interaction, appears in the construction of a Quantum
Field Theory known as Thirring model, describing Dirac fermions with a local
current-current interaction, see e.g. [9].

By a multiscale integration in the ultraviolet region one can perform safely
the limit N → ∞, see [41]. The multiscale integration for the infrared scales
can be done exactly as described in the previous section for the model (3.10);
the single scale propagator is given by the dominant propagator in (4.17) and,
after the integration of ψ(N), ..., ψ(j+1), one obtains an equation very similar to
(4.11), with the difference that, by the oddness of the free propagator, ζj = 0
and

λj−1 = λj + β
(j)
λ (λj , ...λ0) +O(λ̄2j2

ϑj) , (5.6)

with β
(j)
λ (λj , ...λ0) being the same function appearing in (4.21) for the model

(2.7). Therefore we can prove that λ−∞ = λ0+O(λ20); since λ0 = λ∞+O(λ2∞),
we have

λ−∞ = h(λ∞) = λ∞ +O(λ2∞) , (5.7)
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for some analytic function h(λ∞), invertible for λ∞ small enough. Moreover

Z±
j−1

Z±
j

= 1 + β
(j)
± (λj , ...λ0) +O(λ∞2ϑj) , (5.8)

with β
(j)
± exactly coinciding with the functions appearing in (4.25); moreover

η± = log2[1 + β
(−∞)
± (λ−∞, ...λ−∞).

While η± in the models (3.10) and (5.2) are the same as functions of λ−∞,
of course they are completely different as function of the coupling λ1 and λ∞
appearing respectively in (3.10) and (5.2). However all the dependence on the
model details is hidden in λ−∞: therefore if we call λ′j(λ) the effective couplings
of the model (3.10) appearing in the previous section, the invertibility of h(λ∞)
implies that we can choose λ∞ so that

λ−∞ = h(λ∞) = λ′−∞(λ) (5.9)

This implies that the exponents in the models (2.7) and (5.2) are the same,
provided that bare coupling λ∞ is chosen properly.

The point is now that the continuum fermionic theory (5.2) verifies extra
exact identities with respect to the original spin Hamiltonian. Indeed we can
perform the change of variables

ψ±
x → e±iαxψ±

x (5.10)

in (5.2); the interaction (5.4) is invariant, while P (dψ) and the source terms are
changed (and the Jacobian is 1). The derivative with respect to αx of (5.2) after
the the change of variables ψ±

x → e±iαxψ±
x is of course vanishing; therefore, by

deriving with respect to αx and to the external fields we get, if 〈...〉 are the

correlations with respect to P (dψ(≤N))eV
(N)

, the following Ward Identity

−i
∑

µ

pµ〈jµ,pψkψ̄k+p〉 = 〈ψkψ̄k〉 − 〈ψk+pψ̄
−
k+p〉+∆N (k,p) (5.11)

where
∆N = 〈δjpψkψ̄k+p〉 (5.12)

with

δp =

∫
dk[(χ−1

N (k+ p)− 1)( 6 k+ 6 p)− (χ−1
N (k)− 1) 6 k]ψ̄kψk+p (5.13)

An analogous expression is obtained for the axial current ψ̄γµγ5ψ.
If Ward Identities are derived from the ill-defined Grassmann integral (5.2)

without momentum cut-off (that is, in the formal expression with N = ∞), one
would get the same WI with ∆N = 0. On the contrary ∆N is not vanishing in
the limit N → ∞ but, see [41]

lim
N→∞

∆N (k,p) = −iτ v̂(p)
∑

µ

pµ〈jµ,pψk,ωψ̄k+p,ω〉 τ =
λ∞
4π

(5.14)
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An expression similar to (5.11) holds for the axial Ward Identity (the one
obtained through the transformation ψ±

x → e±iγ5αxψ±
x , with jµ replaced by

j5µ = ψ̄γµγ5ψ and τ replaced by −τ ; therefore, in the limit N → ∞

−i
∑

µ

pµ〈jµ,pψk,ωψ̄k+p〉 = A[〈ψkψ̄k〉 − 〈ψk+pψ̄
−
k+p〉] (5.15)

−i
∑

µ

pµ〈j5,µ,pψk,ωψ̄k+p〉 = Ā[〈ψkψ̄k〉 − 〈ψk+pψ̄
−
k+p〉]

with A−1 = 1− τ v̂(p) and A−1 = 1 + τ v̂(p). From the Ward Identities one can
write an equation for the correlations from which the exponents can be written
in terms of τ and λ∞

X+ = 1− 1

1 + τ
(λ∞/2π) X− = 1 +

1

1− τ
(λ∞/2π) (5.16)

and from the above expression the relation (5.1) in Theorem (5.1) follows, as
the exponents have simple expressions in λ∞, as consequence of the linearity
of τ . The other relations in Theorem 5.1 are proved in a similar way.

There are then two crucial points in the proof of the universal relations in
Theorem 5.1. The first is that the exponents of the lattice theory (2.7) are equal
to the ones of a continuum relativistic quantum field theory (5.2), provided that
the coupling λ∞ is chosen properly as a convergent series in λ with coefficients
depending from all the details of the spin model (2.7). The second crucial point
is that τ is linear in λ∞, and this implies that the exponents have a simple
expression as functions of λ∞, from which the validity of the relations can be
easily checked. Note that the validity of such a crucial property depends from
the choice of a non local interaction in (5.4); with a somewhat more natural
local interaction in (5.4) τ would be not linear in λ∞, see [9].

The fact that ∆N (k,p) is non vanishing removing the ultraviolet cut-off
N → ∞ is related to a quantum anomaly. In Quantum Field Theory anoma-
lies are the breaking of classical symmetries by quantum mechanical radiative
corrections; the classical Noether theorem is not verified in such cases due to
the apparence of extra terms in the conservation laws. The linearity of τ in
the bare coupling λ∞ is the non-perturbative analogue, see [41], of a property
called anomaly non renormalization in 4D Quantum Electrodynamic, proved
at a perturbative level by Adler and Bardeen [1] with a careful analysis of the
perturbative expansion.

6. Quantum Spin Chains

The Ising models seen previously describe magnets in which the dipoles are
described by a spin variable σx = ±; in a more realistic description, given by
the Heisenberg model, the spins, according to the rules of quantum mechanics,
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are represented by operators. In one dimension the Heisenberg spin model has
Hamiltonian

H = −
L−1∑

x=1

[J1S
1
xS

1
x+1+J2S

2
xS

2
x+1−hS3

x]+λ
∑

1≤x,y≤L
v(x−y)S3

xS
3
y+UL (6.17)

where Sαx = σαx /2, α = 1, 2, 3 and [σαx , σ
β
y ] = 0 for x 6= y while [σαx , σ

β
y ] =

2iεαβγσ
γ
x ; moreover |v(x− y)| ≤ Ce−κ0|x−y| and the last term in (6.17) depend

on the boundary conditions.
In the case of zero external magnetic field and nearest neighbor interaction,

that is v(x− y) = δ|x−y|,1/2 and h = 0, the model is known as the XY Z model
if J1 6= J2 and it is exactly solvable; remarkably, it appears to be equivalent,
with a suitable identification of the parameters, to the Eight Vertex model in
the sense that, as was shown by Sutherland [57], the transfer matrix of the
Eight Vertex model commutes with the Hamiltonian of the XYZ model.

Also in this case the model (6.17) can be exactly mapped onto a system of
interacting fermions through the Jordan-Wigner transformation: the operators
a±x =

∏x−1
y=1(−σ3

y)σ
±
x are a set of anticommuting fermionic operators and , if

σ±
x = (σ1

x ± iσ2
x)/2, we can write

σ−
x = e−iπ

∑x−1
y=1 a

+
y a

−
y a−x , σ+

x = a+x e
iπ

∑x−1
y=1 a

+
y a

−
y , σ3

x = 2a+x a
−
x − 1 . (6.18)

Hence, if we fix the units so that J1 + J2 = 2 we get

H = −1

2

L−1∑

x=1

[a+x a
−
x+1 + a+x+1a

−
x ]− u

L−1∑

x=1

[a+x a
+
x+1 + a−x+1a

−
x ] (6.19)

+h

L∑

x=1

(
a+x a

−
x − 1

2

)
+ λ

∑

1≤x,y≤L
v(x− y)

(
a+x a

−
x − 1

2

)(
a+y a

−
y − 1

2

)

where ρx = a+x a
−
x , u = (J1 − J2)/2; it is possible to choose UL so that periodic

boundary conditions are imposed in (6.19). In this form, the model describes
interacting non relativistic 1D fermions on a lattice with a short range inter-
action and a BCS-like term (in the anisotropic case J1 6= J2), and it can be
used to describe the properties of the conduction electrons of one-dimensional
metals.

If Ox is a local monomial in the Sαx or a±x operators, we call Ox =
eHx0Oxe

−Hx0 where x = (x, x0); moreover, if A = Ox1
· · ·Oxn

, we denote
its expectation in the grand canonical ensemble by

〈A〉L,β =
Tr[e−βHT(A)]

Tr [e−βH ]
(6.20)

with T being the time order product; 〈A〉T ;L,β denotes the corresponding trun-
cated expectation. We will be interested in < A >T= limL,β→∞ < A >T ;L,β .
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By Renormalization Group methods it was proved in [12] for small λ, J1 =
J2 = 1 and large x,

〈a−x a+0 〉T ∼ g0(x)
1 + λf(λ)

(x20 + v2sx
2)(η/2)

, (6.21)

where f(λ) is a bounded function, η = a0λ
2 +O(λ3), with a0 > 0, and

g0(x) =
∑

ω=±

eiωpF x

−ix0 + ωvsx
, (6.22)

vs = vF +O(λ) pF = cos−1(h+ λ) +O(λ) vF = sin pF . (6.23)

From (6.21) we see that the interaction has the effect to change the value of
the Fermi momentum from cos−1(h) to pF , and the Fermi velocity from vF in
the non interacting case to vs, and that the power law decay is changed. It was
also proved in [12] that the spin-spin correlation in the direction of the 3-axis
(or, equivalently, the fermionic density-density correlation) is given, for large
x, by

〈S(3)
x S

(3)
0 〉T ∼ cos(2pFx)Ω

3,a(x) + Ω3,b(x) , (6.24)

Ω3,a(x) =
1 +A1(x)

2π2[x2 + (vsx0)2]X+
, (6.25)

Ω3,b(x) =
1

2π2[x2 + (vsx0)2]

{
x20 − (x/vs)

2

x2 + (vsx0)2
+A2(x)

}
, (6.26)

with |A1(x)|, |A2(x)| ≤ C|λ| and X+ = 1− a1λ+O(λ2) with

a1 = [v̂(0)− v̂(2pF )]/(π sin pF ) (6.27)

Finally the Cooper pair density correlation, that is the correlation of the oper-
ator ρcx = a+x a

+
x′ + a−x a

−
x′ , x′ = (x+ 1, x0), behaves as

〈ρcxρc0〉T ∼ 1 +A3(x)

2π2(x2 + v2sx
2
0)
X−

, (6.28)

with X− = 1+ a1λ+O(λ2), a1 being the same constant appearing in the first
order of X+. In the case J1 6= J2 the correlations decay faster than any power
with rate ξ such that ξ ∼ C|J1 − J2|ν̄ with ν̄ = 1 + a1λ + O(λ2), a1 given by
(6.27).

The same strategy followed for proving the universal relations in the cou-
pled Ising models (1.6) allows to derive the same relations between the indices
appearing in the correlations of the spin chain; again all the indices can be
expressed in terms of a single one. There is in this case also an extra rela-
tion connecting the indices with the Fermi velocity vs and the susceptibility,
defined as

κ = lim
p→0

Ω̂(0, p) (6.29)
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where Ω̂(0, p) is the bidimensional Fourier transform of 〈S(3)
x S

(3)
0 〉T . In the

fermionic interpretation, κρ−2 is the compressibility (ρ is the fermionic density).

Theorem 6.1. (Benfatto,Mastropietro [13]) In the model (6.17) for λ small
enough the exponents in (6.21),(6.24),(6.28) obey

X+X− = 1 ν̄ =
1

2−X−1
+

2η = X+ +X−1
+ − 2 (6.30)

Moreover the susceptibility κ obeys

κ =
1

π

X+

vs
(6.31)

The relations (6.30) were conjectured by Luther and Peschel [38], while
(6.31) connecting the susceptibility defined in (6.29) with X+ and vs was con-
jectured by Haldane in [26]; it is part, together with (6.30), of the so called
Luttinger liquid conjecture. Note that, using (6.31) and (6.30), from the knowl-
edge of the suscebtibility and the Fermi velocity, all the exponents can be
determined.

In the case of the XY Z model (J1 6= J2) the exponent ν̄ has been computed
by Baxter and it has been found, see (10.12.24) of [5], if cos µ̄ = −J3/J1 = λ,

ν̄ =
π

2µ̄
= 1 +

2λ

π
+O(λ2) . (6.32)

and from (6.30) X− = 2(1 − µ̄
π ); from the Bethe ansatz solution [60] exact

expressions for vs and κ can be obtained,

vs =
π

µ̄
sin µ̄ κ = [2π(π/µ̄− 1) sin µ̄]−1 , (6.33)

and one can verify that (6.31) is verified in the special case of the XY Z model.
Either κ,K, vs depend in general on the magnetic field h and the specific form
of the interaction v̂(k), see (6.27). While there is no hope to understand how the
above explicit exact formulas (6.32), (6.33) change when h 6= 0 and for generic
v(k) (we know them only as series), our theorem says that (6.31) is still true.
Its proof is more complex than the proof of the relations between the exponents
(which is similar to the one discussed in §5); contrary to the exponents, κ and
vs are not function of λ−∞ only (that is, they are not universal in this sense)
but their product is nevertheless universal, see [13].

7. Conclusions and Open Problems

The validity of a number of universal relations between exponents and other
quantities in a wide class models, including solvable and not solvablemodels, has
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been established. The critical exponents are model dependent but satisfy model
independent relations, so allowing, for instance, to express all the exponents in
terms of a single one, or in terms of other quantities like the susceptibilities. Our
results provide one of the very few cases in which the universality hypothesis,
of so wide use in statistical physics, can be rigorously verified.

Of course, the issue of universality even in the class of models we have
considered still presents a number of open and challenging problems to math-
ematical physics. A first one is to prove Theorems 4.1 or 5.1 directly in the
spin variables; it is somewhat surprising that one has to pass to the Grassmann
integral representation to prove them, and one can wonder why similar results
cannot be proved directly in the “natural” spin representation. Also, in Theo-
rems 4.1. or 5.1 the coupling λ must be chosen very small, and the extension
of the proof to the optimal value of λ (which is expected anyway to be finite
from the exact solutions) would be very important.

A fundamental open problem for spin models like (2.1) or (2.7) is the com-
putation of the spin-spin correlations 〈σxσy〉. Already in the solvable Ising case
the analysis of such correlations is very tricky: it is based on an asymptotic
analysis of a Toeplitz determinant or, alternatively, on the derivation of highly
non trivial non linear finite difference equations, whose scaling limit is related
to the third Painleve’ equation [44]. In terms of the Grassmann integral repre-
sentation in §3, the spin correlations are expressed by non gaussian Grassmann
integrals of exponentials of quadratic forms summed over a line; their analyis is
therefore much more difficult than the energy or crossover correlations, in which
one has to integrate a monomial. There are up to now no results for the critical
exponents of the spin-spin correlation either in the case of a single perturbed
Ising model (2.1) or in the case of a couple of interacting Ising models (2.7); it
is believed, see [29], that the analysis of the corresponding Grassmann integrals
is related to a phenomenon known in quantum Field Theory as bosonization,
analyzed rigorously in [8], and perhaps some progress could be done using this
idea. Other interesting problems for spin models like (2.7), just to mention a
few, are: the analysis of the correlations of (2.7) directly at the critical point;
the proof of the conjectures about universal relations for the critical amplitudes;
the analysis of four or more interacting Ising models.

Regarding the analysis of quantum Hamiltonians like (6.17) or (6.19), an im-
portant open problem is the determination of critical exponents and universality
relations for the real time (or dynamic) correlations of quantum Hamiltonians
like (6.17) or (6.19), namely (6.20) with x0 replaced with ix0;such an issue is
important for the understanding of transport properties of spin chains. Another
important problem regards the proof of universal relations in the one dimen-
sional Hubbard model, that is the model (2.1) in which the fermionic operators
have an extra index for the spin: in such a case the phenomenon of spin-charge
separation is expected, which seems important for the understanding of high
Tc superconductivity, and relations similar to (6.31) are believed to be true for
the charge or spin susceptibilities.
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Abstract

The main assumption of the so-called ε-regularity theory of suitable weak so-
lutions to the Navier-Stokes equations is uniform smallness of certain scale-
invariant quantities, which rules out singularities. One of the best results of
ε-regularity is the famous Caffarelli-Kohn-Nirenberg theorem. Our goal is to un-
derstand what happens if the assumption on smallness of scale-invariant quanti-
ties is replaced with their uniform boundedness. The latter makes it possible to
use blow-up technique and reduce the local regularity problem to the question of
existence or non-existence of “non-trivial” ancient (backward) solutions to the
Navier-Stokes equations. There are at least two potential scenarios: the clas-
sical Liouville type problem for mild bounded ancient solutions and backward
uniqueness for the Navier-Stokes equations. In this survey, we discuss sufficient
conditions implying non-existence of “non-trivial” solutions and the correspond-
ing sufficient conditions ensuring local regularity of original weak solutions.
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1. Introduction

One of the main problems of the mathematical hydrodynamics can be formu-
lated as follows. Is the Cauchy problem, describing the flow of viscous incom-
pressible fluids, globally well-posed? In other words, given a smooth divergence
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free velocity field a compactly supported in R
3, does the classical Navier-Stokes

system

∂tv(x, t) + v(x, t) · ∇v(x, t)− ν∆v(x, t) +∇q(x, t) = 0,

div v(x, t) = 0 (1.1)

have a unique solution subject to the initial condition

v(x, 0) = a(x), x ∈ R
3, (1.2)

which is defined globally for all x ∈ R
3 and for all 0 < t < +∞? Here, as usual,

v and q stand for the velocity field and for the pressure field, respectively. In
this paper, we are not going to study the very important issue how solutions
depend on the viscosity ν and let it equal to 1.

There are two different approaches to attack the above problem. In one of
them, the Cauchy problem (1.1) and (1.2) can be reformulated as an integral
equation by removing the non-linear term to the right hand side of the first
equation in (1.1), by applying Leray’s projector P to both sides of it, and by
inverting then the linear part. As a result, the following equation with respect
to a function v of time t with values in a Banach space appears

v(t) = S(t)a−
t∫

0

S(t− τ)P (v(τ) · ∇v(τ))dτ.

Here, S(t) is the solution operator of the Cauchy problem for the heat equation.
Any solution to the above integral equation is called a mild solution to the
Cauchy problem (1.1) and (1.2). Existence and uniqueness of mild solutions
can be proved with the help of contraction mappings. For history, details, and
references, we recommend papers [14], [11], [2], and [18]. This approach is quite
effective for proving local well-posedness for a wide range of initial data.

Another method gives energy solutions called nowadays weak Leray-Hopf
solutions. They have been introduced by J. Leray in his pioneering paper [22]
for the Cauchy problem and in a sense by E. Hopf in [13] for initial boundary
value problems. The modern definition of weak solutions can be found, for
example, in [19] and includes the following ingredients:

(i) the velocity field v has finite kinetic energy and finite dissipation;

(ii) the Navier-Stokes system is satisfied in the sense of distributions with
divergence free test functions;

(iii) the velocity field v is a continuous function of time t with values in the
space L2 equipped with the weak topology;

(iv) the initial data are fulfilled in the strong L2-sense;
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(v) the velocity field v satisfies the global energy inequality for all possible
values of t.

Not all the above properties are independent each of other. Choosing diver-
gence free test functions in (ii), we exclude the pressure field from the definition
completely.

So, we have a global weak Leray-Hopf solution to the classical problem but
we do not know whether it is unique or not. However, as it has been observed
and proved by J. Leray in [22], any smooth solution to the classical Cauchy
problem is unique in the class of weak solutions. In other words, the problem
of uniqueness of weak solutions can be posed as a more particular problem of
their smoothness. The latter has been proposed as one of the seven Millennium
problems in [10].

By definition, the space-time point z = (x, t) is called a regular point of the
velocity field v if v is of class L∞ in a parabolic vicinity with the center at z.
The first moment of time T when singularities occur is called a blowup time.
Further smoothing in a neighborhood of a regular point is straightforward and
a simple consequence of the linear theory.

Our approach to the regularity problem is quite typical for the classical the-
ory of partial differential equations, namely, we are going to study smoothness
of weak solutions locally in space-time. Now, let us state the local regularity
problem for the Navier-Stokes equations rigorously.

Consider the Navier-Stokes system (1.1) in a canonical domain, say, in the
unit parabolic cylinder Q being the Cartesian product of the unit ball B of R3

with the center at the origin and the time interval ]− 1, 0[. More general cases
can be reduced to the canonical one with the help of the space-time shift and
the Navier-Stokes scaling

vλ(y, s) = λv(x0 + λy, t0 + λ2s),

qλ(y, s) = λ2q(x0 + λy, t0 + λ2s). (1.3)

Our question is as follows. What are the weakest assumptions on v and q that
provide regularity of v at the origin z = (x, t) = 0? Ideally, they should be
fulfilled for energy solutions but this is unknown and might be not necessary
true.

Nowadays, it is well understood that the main object of the local regularity
theory of the Navier-Stokes equations is the so-called suitable weak solutions.
They were introduced in the middle 70s by V. Scheffer in the series of papers, see
for example [25] and [26], where the importance of solutions satisfying the local
energy inequality was pointed out and exploited. In the early 80s, the essential
contribution to understanding suitable weak solutions in the context of the local
regularity theory was made in the celebrated paper [1] by L. Caffarelli, R.-V.
Kohn, and L. Nirenberg. However, in this survey, we are going to accept a more
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particular but very much convenient version of the definition of suitable weak
solutions given by F.-H. Lin in [23].

Definition 1.1. Functions v ∈ L2,∞(Q)∩W 1,0
2 (Q) and q ∈ L 3

2

(Q) are said to
be a suitable weak solution to the Navier-Stokes equations in Q if they satisfy
(1.1) in Q in the sense of distributions and, for a.a. t ∈]−1, 0[, the local energy
inequality

∫

B

ϕ(x, t)|v(x, t)|2dx+ 2

t∫

−1

∫

B

ϕ|∇v|2dxdt′ ≤
t∫

−1

∫

B

(
|v|2(∂tϕ+∆ϕ)

+v · ∇ϕ(|v|2 + 2q)
)
dxdt′

holds for any non-negative test function ϕ ∈ C∞
0 (B×]− 1, 1[).

Here, the following notation for mixed Lebesgue and Sobolev spaces is used:
Lm,n(Q) = Ln(−1, 0;Lm(B)), Lm,m = Lm, W 1,0

m,n(Q) = {v,∇v ∈ Lm,n(Q) },
and W 1,0

m,m = W 1,0
m .

It is not so difficult to show that among weak Leray-Hopf solutions to a
given Cauchy problem (1.1) and (1.2), there is at least one with the follow-
ing property. For any point z0 = (x0, t0) with t0 > 0, this solution v, to-
gether with the associated pressure q, satisfies all the requirements to be a
suitable weak solution to the Navier-Stokes equations in z0 + Q(R) for any
R > 0 subject to the restriction t0 − R2 > 0. By Q(R), we denote a parabolic
ball (cylinder) of R3 × R with radius R centered at the origin, i.e., Q(R) =
B(R)×] − R2, 0[ and B(R) ⊂ R

3 is a ball of radius R with the center at the
origin.

Another relatively well-understood thing is the role of quantities invariant
with respect to the Navier-Stokes scaling (1.3) with x0 = 0 and t0 = 0. By
the definition, such quantities are defined on parabolic balls Q(r) and have the
property F (v, q; r) = F (vλ, qλ; r/λ).

Now, we are in a position to explain the so-called ε-regularity theory for
suitable weak solutions to the Navier-Stokes equations. There are two types of
statements in it and the first one essentially proved in [1], see also [24], and
reads:

Suppose that v and q are a suitable weak solution to the Navier-Stokes equa-
tions in Q. There exist universal positive constants ε and ck, k = 0, 1, 2, ... such
that if F (v, q; 1) < ε then |∇kv(0)| < ck, k = 0, 1, 2, .... Moreover, the function
z 7→ ∇kv(z) is Hölder continuous (relative to the usual parabolic metric) with
any exponent less 1/3 in the closure of Q(1/2).
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Here, it is an important example of such kind of quantities:

F (v, q; r) =
1

r2

∫

Q(r)

(
|v|3 + |q| 32

)
dz.

The limited smoothing in time cannot be improved. This can be easily seen
from Serrin’s example

v(x, t) = C(t)∇h(x),

q(x, t) = −C ′(t)h(x)− 1/2C(t)|∇h(x)|2,

in which h is a harmonic function of x and C is a given function of t.

In the other type of statements, it is supposed that our quantity F is inde-
pendent of the pressure q:

Let v and q be a suitable weak solution in Q. There exist a universal pos-
itive constant ε with the property: if sup0<r<1 F (v; r) < ε then z = 0 is a
regular point. Moreover, for any k = 0, 1, 2, ..., the function z 7→ ∇kv(z) is
Hölder continuous with any exponent less 1/3 in the closure of Q(r) for some
positive r.

Dependence on the pressure in the above statement is hidden. In fact, the
radius r is determined by the L 3

2

-norm of the pressure over the whole parabolic
cylinder Q.

To illustrate the second statement, let us consider several examples. In the
first one, we deal with the Ladyzhenskaya-Prodi-Serrin type quantities

F (v; r) = Ms,l(v; r) = ‖v‖ls,l,Q(r) =

0∫

−r2




∫

B(r)

|v|sdx




l
s

dt

provided

3

s
+

2

l
= 1

and s ≥ 3. Local regularity results connected with those quantities have been
proved partially by J. Serrin in [34] and then by M. Struwe in [35] for the
velocity field v having finite energy even with no assumption on the pressure.
However, in such a case, we loose Hölder continuity, see the above example.
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The second kind of quantities will be called scaled energy quantities. Let us
list some of them:

A(v; r) = sup
−r2<t<0

1

r

∫

B(r)

|v(x, t)|2dx,

C(v; r) =
1

r2

∫

Q(r)

|v|3dz,

E(v; r) =
1

r

∫

Q(r)

|∇v|2dz,

D(q; r) =
1

r2

∫

Q(r)

|q| 32 dz.

For more examples of scaled energy quantities, we refer to the paper [12]. It
is interesting to note that the second statement applied to the scaled dissi-
pation E is the famous Caffarelli-Kohn-Nirenberg theorem. It gives the best
estimate for Hausdorff’s dimension of the singular set for a class of weak Leray-
Hopf solutions to the Cauchy problem. A sort of logarithmic improvement of
the latter result is explained in [6]. A certain generalization of the Caffarelli-
Kohn-Nirenber theorem itself has been proved in [28] and is formulated as
follows.

Proposition 1.2. Let v and q be a suitable weak solution to the Navier-Stokes
equations in Q. Given M > 0, there exists a positive number ε(M) having the
property: if two inequalities lim supr→0 E(r) < M and lim infr→0 E(r) < ε(M)
hold, then z = 0 is a regular point of v.

Typical examples of the third group of quantities invariant to the Navier-
Stokes scaling are:

G1(v; r) = sup
z=(x,t)∈Q(r)

|x||v(z)|,

G2(v; r) = sup
z=(x,t)∈Q(r)

√
−t|v(z)|.

A proof of the corresponding statements has been presented in [32], see also
[36], [16], and [5] for similar results.

The question we are interested in is what happens if we drop the condition
on smallness of scale-invariant quantities, assuming their uniform bounded-
ness only, i.e, sup0<r<1 F (v, r) < +∞. For Ladyzheskaya-Prodi-Serrin type
quantities with s > 3, the answer is still positive, i.e., z = 0 is a regu-
lar point. It follows from scale-invariance and the fact that the assumption
Ms,l(v; 1) = sup0<r<1 Ms,l(v; r) < +∞ implies Ms,l(v; r) → 0 as r → 0 if
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s > 3. Although in the marginal case s = 3 and l = +∞ the answer reamins
positive, the known proof is more complicated and will be outlined later.

In this review, we shall discuss various approaches to the problem in ques-
tion. Before going into details, let us recall certain definitions and make some
general remarks about relationships between some scale-invariant quantities.
Boundedness of sup0<r<1 G2(v; r) = G2(v, 1) = G20 < +∞ can be rewritten in
the form

|v(z)| ≤ G20√
−t

for all z = (x, t) ∈ Q. If v satisfies the above inequality and z = 0 is still a
singular point of v, we say that a singularity of Type I or Type I blowup takes
place at t = 0. All other singularities are of Type II. The main feature of Type
I singularities is that they have the same rate as potential self-similar solutions.
The important properties connected with possible singularities of Type I have
been proved in [31] and are as follows.

Proposition 1.3. Let functions v and q be a suitable weak solution to the
Navier-Stokes equations in Q.

(i) If min{G1(v; 1), G2(v; 1)} < +∞, then

g = sup
0<r<1

{A(v; r) + C(v; r) +D(q; r) + E(v; r)} < +∞.

(ii) If
g′ = min{ sup

0<r<1
A(v; r), sup

0<r<1
C(v; r), sup

0<r<1
E(v; r)} < +∞,

then g < +∞.

This proposition admits many obvious generalizations.

2. Blowup Techniques, Bounded Ancient

Solutions

In this section, we always assume that z = 0 is a singular point. Making use of
the space-time shift and the Navier-Stokes scaling, we can reduce the general
problem of local regularity to a particular one that in a sense mimics the first
time singularity.

Proposition 2.1. Let v and q be a suitable weak solution to the Navier-Stokes
equations in Q and z = 0 be a singular point of v. There exist two functions ṽ
and q̃ having the following properties:

(i) ṽ ∈ L3(Q) and q̃ ∈ L 3

2

(Q) obey the Navier-Stokes equations in Q in the
sense of distributions;
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(ii) ṽ ∈ L∞(B×]− 1,−a2[) for all a ∈]0, 1[;

(iii) there exists a number 0 < r1 < 1 such that ṽ ∈ L∞({(x, t) : r1 < |x| <
1, −1 < t < 0}).

Moreover, functions ṽ and q̃ are obtained from v and q with the help of the
space-times shift and the Navier-Stokes scaling and the origin remains to be a
singular point of ṽ.

The proof of Proposition 2.1 is essentially based on the application of the
Caffarelli-Kohn-Nirenberg theorem and given in the paper [31]. In what follows,
it is always deemed that such a replacement of v and q with ṽ and q̃ has been
already made. Coming back to the original notation, we assume that functions
v and q satisfy all the properties listed in Proposition 2.1 and z = 0 is a singular
point of v.

One of the most powerful methods to study potential singularities is a
blowup technique based on the Navier-Stokes scaling

u(k)(y, s) = λkv(x, t), p(k)(y, s) = λ2
kq(x, t)

with

x = x(k) + λky, x = tk + λ2
ks,

where x(k) ∈ R
3, −1 < tk ≤ 0, and λk > 0 are parameters of the scaling and

λk → 0 as k → +∞. It is supposed that functions v and q are extended by zero
to the whole R

3 × R. A particular selection of scaling parameters x(k), tk, and
λk depends upon a problem under consideration.

Now, our goal is to describe a universal method that makes it possible to
reformulate the local regularity problem as a classical Liouville type problem
for the Navier-Stokes equations. To see how things work, let us introduce the
function

M(t) = sup
−1<τ≤t

‖v(·, τ)‖∞,B(r1)
.

It tends to infinity as time t goes to zero from the left since the origin is a
singular point of v. Thanks to the obvious properties of the function M , one
can choose parameters of the scaling in a particular way letting λk = 1/Mk,
where a sequence Mk is defined as

Mk = ‖v(, tk)‖∞,B(r1)
= |v(x(k), tk)|.

Before discussing what happens if k tends to infinity, let us introduce a
subclass of bounded ancient (backward) solutions playing an important role in
the regularity theory of the Navier-Stokes equations.
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Definition 2.2. A bounded vector field u, defined on R
3×] − ∞, 0[, is called

a mild bounded ancient solution to the Navier-Stokes equation if there exists
a function p in L∞(−∞, 0;BMO(R3)) such that u and p satisfy the Navier-
Stokes system

∂tu+ div u⊗ u−∆u+∇p =0,

div u =0

in R
3×]−∞, 0[ in the sense of distributions.

The notion of mild bounded ancient solutions has been introduced in [17].
It has been proved there that u has continuous derivatives of any order in
both spatial and time variables. Actually, the definition accepted in the present
paper is different but equivalent to the one given in [17]. Here, we follow
[31].

The statement below that has been proved in [31] shows how mild bounded
ancient solutions appear in the regularity theory of the Navier-Stokes equations.

Proposition 2.3. There exist a subsequence of u(k) (still denoted by u(k)) and
a mild bounded ancient solution u such that, for any a > 0, the sequence u(k)

converges uniformly to u on the closure of the set Q(a) = B(a)×] − a2, 0[.
The function u has the additional properties: |u| ≤ 1 in R

3×] − ∞, 0[ and
|u(0)| = 1.

Let us demonstrate how this method works in the simplest case of the regular
Ladyzhenskaya-Prodi-Serrin quantity M5,5. Suppose that

M5,5(v, 1) = sup
0<r<1

M5,5(v, r) < +∞.

By the scale-invariance and by the pressure equation, we may assume without
loss of generality that

0∫

∞

∫

R3

(|u|5 + |p| 52 )dxdt < +∞.

Given ε > 0, we can find T < 0 such that

T∫

∞

∫

R3

(|u|5 + |p| 52 )dxdt < ε.
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Then, by Hölder inequality, we have

1

R2

t0∫

t0−R2

∫

B(x0,R)

(|u|3 + |p| 32 )dxdt < cε
3

5

for any x0 ∈ R
3, any R > 0, and any t0 ≤ T with some universal constant c. In

turn, the ε-regularity theory ensures the inequality

|u(x0, t0)| <
c

R

with another universal constant c. Tending R → ∞, we get u(·, t) = 0 as t ≤ T .
One can repeat more or less the same arguments in order to show that in fact
u is identically zero on R

3×]−∞, 0], which contradicts non-triviality condition
|u(0)| = 1.

It is worthy to notice that the trivial bounded ancient solution of the form

u(x, t) = c(t), p(x, t) = −c′(t) · x,

with arbitrary bounded function c(t), is going to be a mild bounded ancient
solution if and only if c(t) ≡ constant. As in [31], this allows us to make the
following plausible conjecture.

Conjecture Any mild bounded ancient solution to the Navier-Stokes equations
is a constant.

To explain what consequences of the conjecture could be for regularity the-
ory of the Navier-Stokes equations, let us assume that some “reasonable” scale-
invariant quantity for v is “uniformly” bounded, see Introduction for definitions.
By this assumption, together with Proposition 1.3, and by the conjecture, any
mild bounded ancient solution must be zero. However, by Proposition 2.3, if
z = 0 is a singular point, there must be at least one non-trivial mild bounded
ancient solution. So, the origin z = 0 cannot be a singular point of v. This would
be a positive answer to the question raised in the introduction. In particular,
according to Proposition 1.3, validity of the conjecture would rule out Type I
blowups.

As it has been shown in [17], the conjecture is true at least in two non-
trivial cases. One of them is the two-dimensional flow for which regularity of
energy solutions is well known, see Ladyzhenskaya’s monograph [19]. In the
second case, axial symmetry with respect to x3-axis is assumed and the behavior
of solutions far away from the axis of symmetry is supposed to respect the
property: √

x2
1 + x2

2|u(x, t)| ≤ C < +∞

for any x ∈ R3 and for any −∞ < t < 0. This result can be exploited to
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show that boundedness of g′, see definition of g′ in Proposition 1.3, implies
regularity of axially symmetric solutions with no assumption on the swirl. In
the corresponding arguments, the crucial point is that, for axially symmetric
solutions, boundedness of g′ for v provides the required decay of u, see a proof
in [33] or in [31]. A simple consequence of the latter statement is that axially
symmetric solutions cannot develop Type I blowups. Indeed, to this end, it is
sufficient to apply Proposition 1.3 (i) and get boundedness of g′.

Smoothness of axially symmetric solutions with no swirl is well known due
to O. A. Ladyzhenskaya in [20] and M. R. Ukhovskij and V. L. Yudovich in
[37], while the absence of Type I blowups with no assumptions on swirl has
been established relatively recently, see details in [3], [4], [17], and [31].

It is interesting to notice that for the non-regular Ladyzheskaya-Prodi-Serrin
condition (so-called L3,∞-case), we are still not able to prove this conjecture. In
the next sections, we shall discuss other ways of constructing ancient solutions
to the Navier-Stokes equations in order to solve L3,∞-problem.

3. Backward Uniqueness for Navier-Stokes

Equations

In this section, we deal with another subclass of ancient solutions u possessing
the following property: there exists a function p defined on R

3×] −∞, 0[ such
that functions u and p are a suitable weak solution to the Navier-Stokes equa-
tions in R

3×]−∞, 0[, i.e., they are a suitable weak solution on each parabolic
ball of the form Q(a) = B(a)×] − a2, 0[ with < a < +∞. We call u a local
energy ancient solution. Certainly, mild bounded ancient solutions belong to
this subclass.

Local energy ancient solutions can be obtained from a given suitable weak
solution v and q defined in Q with the help of the scaling mentioned in the
previous section provided boundedness of g′ takes place, see the definition of g′

in Proposition 1.3.

Proposition 3.1. Let v and q be a suitable weak solution to the Navier-Stokes
equations in Q with g′ < +∞ and let u(k)(y, s) = λkv(λky, λ

2
ks) and p(k)(y, s) =

λ2
kq(λky, λ

2
ks) with λk → 0 as k → +∞. Then there exist subsequences of u(k)

and p(k) still denoted by u(k) and p(k) such that, for each a > 0,

u(k) → u

in L3(Q(a)) ∩ C([−a2, 0];L 9

8

(B(a))) and

p(k) ⇀ p

in L 3

2

(Q(a)), where u is a local energy ancient solution with the corresponding
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pressure p. For them, the scaled energy quantities are uniformly bounded, i.e.,

sup
0<a<+∞

{A(u; a) + C(u; a) +D(p; a) + E(u; a)} < +∞.

Moreover, if z = 0 is a singular point of the velocity field v, then

∫

Q(3/4)

|u|3dz > c (3.1)

with a positive universal constant c, i.e., u is not identically equal to zero.

A proof of this proposition and similar facts can be found in [8], [29], [31],
and [30]. Let us comment the last statement of Proposition 3.1. Indeed, if z = 0
is a singular point of v, the ε-regularity theory gives us

1

r2

∫

Q(r)

(|v|3 + |q| 32 )dz > ε > 0

for all 0 < r < 1 and for some universal constant ε. Making the inverse change
of variables, we find

1

a2

∫

Q(a)

(|u(k)|3 + |p(k)| 32 )dyds =

1

λ2
ka

2

∫

Q(λka)

(|v|3 + |q| 32 )dxds > ε > 0

for each fixed radius a > 0 and for sufficiently large natural number k. We
cannot simply pass to the limit in the latter identity since it is not clear whether
the pressure p(k) converges strongly. This is quite typical issue when working
with sequences of weak solutions to the Navier-Stokes equations. In order to
treat this case one can split the pressure p(k) into two parts. The first part
is completely controlled by the velocity field u(k) while the second one is a
harmonic function with respect to the spatial variables. This, together with a
certain boundedness of the sequence p(k), implies (3.1). For more details, we
recommend papers [29] and [30].

We do not know whether local energy ancient solutions with bounded scaled
energy quantities are identically equal to zero. However, there are some inter-
esting cases for which the answer is positive. Let us describe them.

Our additional standing assumption of this section can be interpreted as a
restriction on the blowup profile of v and has the form

1

r
15

8

∫

B(r)

|v(x, 0)| 98 dx → 0 (3.2)
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as r → 0. The most important consequence of (3.2) is that

u(·, 0) = 0, (3.3)

where u is a local energy ancient solution generated by the scaling of Proposition
3.1. Indeed, for any a > 0, we have

1

a
15

8

∫

B(a)

|u(y, 0)| 98 dy ≤

c
1

a
15

8

∫

B(a)

|u(y, 0)− u(k)(y, 0)| 98 dy + c
1

a
15

8

∫

B(a)

|u(k)(y, 0)| 98 dy =

αk(a) + c
1

(λka)
15

8

∫

B(λka)

|v(x, 0)| 98 dx.

Now, by Proposition 3.1 and by (3.2), the right hand side of the latter inequality
tends to zero and this completes the proof of (3.3).

In a view of (3.3), one could expect that our local energy ancient solution
is identically equal to zero. We call this phenomenon a backward uniqueness
for the Navier-Stokes equations. So, if the backward uniqueness takes place or
at least our ancient solution is zero on the time interval ] − 3/4, 0[, then (3.1)
cannot be true and thus, by Proposition 3.1, the origin z = 0 is not a singular
point of the velocity field v.

The crucial point for understanding the backward uniqueness for the Navier-
Stokes equations is a similar phenomenon for the heat operator with lower
order terms. The corresponding statement for the partial differential inequality
involving the backward heat operator with lower order terms has been proved
in [8] and reads:

Theorem 3.2. Assume that we are given a function ω defined on R
n
+×]0, 1[,

where R
n
+ = {x = (xi) ∈ R

n, xn > 0}. Suppose further that they have the
properties:

ω and the generalized derivatives ∇ω, ∂tω, and ∇2ω are square integrable
over any bounded subdomain of Rn

+×]0, 1[;

|∂tω +∆ω| ≤ c(|ω|+ |∇ω|) (3.4)

on R
n
+×]0, 1[ with a positive constant c;

|ω(x, t)| ≤ exp{M |x|2} (3.5)

for all x ∈ R
n
+, for all 0 < t < 1, and for some M > 0;

ω(x, 0) = 0 (3.6)

for all x ∈ R
n
+.
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Then ω is identically zero in R
n
+×]0, 1[.

The interesting feature of Theorem 3.2 is that there has been made no
assumption on ω on the boundary xn = 0. In order to prove the theorem, two
Carleman’s inequalities have been established, see details in [8] and [9]. For the
further improvements of the above backward uniqueness result, we refer to the
interesting paper [7].

Theorem 3.2 clearly indicates what one should add to (3.3) in order to get
the backward uniqueness for ancient solutions to the Navier-Stokes equations.
Apparently, we need more regularity for sufficiently large x and a right decay
at infinity. One can hope then to apply Theorem 3.2 to the vorticity equation

∂tω −∆ω = ω · ∇u− u · ∇ω, ω = ∇∧ u,

which could be interpreted as a perturbation of the heat equation by lower order
terms. To make it possible, it is sufficient to show boundedness of u and ∇u
outside of the Cartesian product of some spatial ball and some time interval.
The most of the rest of the paper will be devoted to description of various
situations for which it is really true.

Let us assume that

|u(x, t)|+ |∇u(x, t)| ≤ c < +∞ (3.7)

for all |x| > R, for all −1 < t < 0, and for some constant c and try to figure out
what follows from (3.7). It is not difficult to see that (3.3) and (3.7) implies (3.6)
and (3.4), (3.5), respectively. At last, the linear theory ensures the validity of
first condition in Theorem 3.2, see details in [27]. So, Theorem 3.2 is applicable
and by it, ω(x, t) = 0 for all |x| > R and for −1 < t < 0. Using unique
continuation across spatial boundaries, see, for instance, [8], we deduce ω(x, t) =
∇∧ u(x, t) = 0 for all x ∈ R

3 and, say, for −5/6 < t < 0. Since u is divergence
free, it is a harmonic function in R

3 depending on t ∈]− 5/6, 0[ as a parameter.
Therefore, for any a >

√
5/6 and for any x0 ∈ R

3, by the mean value theorem
for harmonic functions, we have

sup
−5/6<t<0

|u(x0, t)|2 ≤

c sup
−5/6<t<0

1

a3

∫

B(x0,a)

|u(x, t)|2dx ≤

c sup
−5/6<t<0

1

a3

∫

B(|x0|+a)

|u(x, t)|2dx ≤

c
a+ |x0|

a3
A(u, a+ |x0|).

Thanks to boundedness of scaled energy quantities stated in Proposition 3.1,
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the right hand side of the latter inequality tends to zero as a goes to infinity.
By arbitrariness of x0, we conclude that u(x, t) = 0 for all x ∈ R

3 and for
−5/6 < t < 0, which contradicts (3.1). Hence, the origin z = 0 cannot be a
singular point of v.

Let us go back to the marginal case of Ladyzhenskaya-Prodi-Serrin condi-
tion, the so-called L3,∞-case, and show that it is completely embedded into the
above scheme. So, we assume that functions v and q are a suitable weak solution
to the Navier-Stokes equations in Q and satisfy the additional condition

‖v‖3,∞,Q < +∞. (3.8)

With the help of Proposition 1.3, it is not so difficult to show that g′ < +∞.
So, for v, all the assumptions of Proposition 3.1 hold and thus our blowup
procedure produces a local energy ancient solution u with the properties listed
in that proposition. Exploited the ε-regularity theory once more, we can show
further that v(·, 0) ∈ L3(B(2/3)), which in turn implies (3.2). Now, in order to
prove regularity of the velocity v at the point z = 0, it is sufficient to verify the
validity of (3.7). Indeed, by scale-invariance,

‖u‖3,∞,R3×]−∞,0[ < +∞.

Applying Proposition 3.1 once again and taking into account properties of har-
monic functions, one can conclude that

‖p‖ 3

2
,∞,R3×]−∞,0[ < +∞.

Combining the latter estimates, we show that for any T > 0

0∫

−T

∫

R3

(
|u|3 + |p| 32

)
dxdt < +∞. (3.9)

Our further arguments rely upon the ε-regularity theory. Indeed, letting, say,
T = 4, one can find R > 4 so that

0∫

−4

∫

R3\B(R/2)

(
|u|3 + |p| 32

)
dxdt < ε.

The rest of the proof of (3.7) is easy.

4. How Does L3-norm Approach Potential

Blowup?

Let v be a weak Leray-Hopf solution to the classical Cauchy problem. Assume
that it has a finite blowup time T . As it has been already shown by J. Leray,
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for any 3 < s ≤ +∞, there is a positive constant cs such that

‖v(·, t)‖s,R3 ≥ cs

(T − t)
s−3

2s

for t < T .

However, in the limit case s = 3, according to what has been discussed in
the previous section, we just have

lim sup
t→T−0

‖v(·, t)‖3,R3 = +∞.

It would be natural to ask whether

lim
t→T−0

‖v(·, t)‖3,R3 = +∞ (4.1)

is true or not? An answer to this question is still unknown. In this section, we
shall seek either some additional conditions providing the positive answer or
a weaker version of (4.1). Regarding to the first goal, we could formulate the
following statement.

Theorem 4.1. Let v be a weak Leray-Hopf solution to the Cauchy problem (1.1)
and (1.2) and let T be a finite time blowup. Assume that, for some 3 < s ≤ +∞,
there exists a positive constant Cs such that

‖v(·, t)‖s,R3 ≤ Cs

(T − t)
s−3

2s

for t < T . Then (4.1) is true.

Let us outline the proof of Theorem 4.1 following [30]. Without loss of gen-
erality, we always may assume s = +∞, which means that we restrict ourselves
to the case of Type I blowups. Indeed, this is a simple consequence of the ε-
regularity theory. So, after application of Proposition 1.3, we can conclude that
g′ < +∞.

It is known that, at the blowup time, all singular points of any weak Leray-
Hopf solution v belong to a bounded ball whose radius in a way depends upon
v. So, just by shift in space-time, we may assume that the origin z = 0 is a
singular point of v. Suppose further that (4.1) is wrong. Then, there exists an
increasing sequence {tk}∞k=1 tending to zero such that

sup
k

‖v(·, tk)‖3,R3 = M < +∞. (4.2)

Making use of Proposition 3.1, we may construct a local energy ancient solution
u. The sequence λk will be specified later. By partial regularity theory and by
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(4.2), one can assert that ‖v(·, 0)‖3,R3 < +∞, which in turn implies identity
(3.3) for u. In addition, by scale-invariance, our local energy ancient solution
satisfies the estimate

‖u(·, s)‖∞,R3 ≤ C∞√
−s

(4.3)

for any −∞ < s < 0.

Now, we need to provide the validity of decay estimate (3.7). To this end,
we choose λk in a special way

λk =

√−tk
2

.

In the rest of this section, we shall show why such a choice of λk gives (3.7).
The first argument in support of it is as follows: u obeys the important global
property

u(·,−4) ∈ L3(R
3). (4.4)

Our next step is to construct a solution to the Cauchy problem for the
Navier-Stokes equations with the velocity field u(·,−4) as the initial datum,
i.e., to solve the following initial value problem

∂tw(x, t) + w(x, t) · ∇w(x, t)−∆w(x, t) +∇r =0,

divw(x, t) =0 (4.5)

for x ∈ R
3 and −4 < t < 1,

w(x,−4) = u(x,−4)

for x ∈ R
3. With such initial data, one can find a mild solution (in Kato’s sense)

but in general it is local in time and thus does not necessary cover the whole
time interval ] − 4, 1[. On the other hand, we cannot ensure the existence of a
weak Leray-Hopf solution since u(·,−4) is not necessary in L2(R

3).

The way out is to use an interesting conception of local energy solutions
introduced by P. G. Lemarié-Riesset in [21]. This is an important generalization
of the notion of weak Leray-Hopf solutions to the Cauchy problem. The phase
space for local energy solutions is defined with the help of a particular Morrey
space

L2,unif =

{
‖u‖L2,unif

= sup
x∈R3

‖u‖2,B(x,1) < +∞
}
.

To proceed with our definitions, let us find the completion of C∞
0 (R3) in L2,unif

and denote it by E2. It is not so difficult to check that the space L3(R
3) is

embedded into the space E2. Finally, the phase (energy) space
◦

E2 consists of
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all divergence free vector fields belonging to E2. Having such an energy space
in hands, one can give a complete definition of local energy solutions. In our
version, we follow paper [15]. It is a little modification of the original definition
adopted in the monograph [21].

Definition 4.2. Functions w ∈ L∞(−4, 1;
◦

E2) and r ∈ L 3

2

(−4, 1;L 3

2
,loc(R

3))
are said to be a local energy weak Leray-Hopf solution or simply local energy
solution to the Cauchy problem (4.5) if the following conditions hold:

sup
x0∈R3

1∫

−4

∫

B(x0,1)

|∇w|2dz < +∞,

w and r meet (4.5) in the sense of distributions;
the function t 7→

∫
R3

w(x, t) · w̃(x) dx is continuous on [−4, 1] for any com-

pactly supported function w̃ ∈ L2(R
3);

for any compact K,

‖w(·, t)− u(·,−4)‖L2(K) → 0

as t → −4 + 0;
for a.a. t ∈]− 4, 1[, the local energy inequality

∫

R3

ϕ|w(x, t)|2 dx+ 2

t∫

−4

∫

R3

ϕ|∇w|2 dxdt′ ≤
t∫

−4

∫

R3

(
|w|2(∂tϕ+∆ϕ)

+w · ∇ϕ(|w|2 + 2r)
)
dxdt′

is valid for all nonnegative functions ϕ ∈ C∞
0 (R3×]− 4, 2[);

for each point x0 ∈ R
3, there exists a function cx0

∈ L 3

2

(−4, 1) such that

rx0
(x, t) ≡ r(x, t)− cx0

(t) = r1x0
(x, t) + r2x0

(x, t),

for (x, t) ∈ B(x0, 3/2)×]− 4, 1[, where

r1x0
(x, t) = −1

3
|w(x, t)|2 + 1

4π

∫

B(x0,2)

K(x− y) : w(y, t)⊗ w(y, t) dy,

r2x0
(x, t) =

1

4π

∫

R3\B(x0,2)

(K(x− y)−K(x0 − y)) : w(y, t)⊗ w(y, t) dy,

and K(x) = ∇2(1/|x|).
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As in the case of weak Leray-Hopf solutions, uniqueness of local energy
solutions to the Cauchy problem (4.5) is an open problem. However, bound
(4.3) makes it possible to show that our ancient solution u and any local energy
solution w, defined by the Cauchy problem (4.5) with the help of u, coincide in
the time interval ]− 4, 0[, see a proof, for example, in [30]. On the other hand,
we would like to remind that local energy solutions satisfy the local energy
inequality and thus the ε-regularity theory is applicable to them. Making use
of the ε-regularity theory, together with a certain decay of some integral norms
over unit balls with respect to their centers, see [21] or [15] for exact statements
and for a proof, one can show required point-wise estimate (3.7) for w and thus
for u. The rest of the proof is more or less the same as in the local L3,∞-case,
which means that z = 0 is actually not a singular point.

Now we are going to discuss a weaker version of (4.1).

Theorem 4.3. Let v be a weak Leray-Hopf solution to the Cauchy problem
(1.1) and (1.2) and let T be a finite time blowup. Then

lim
t→T−0

1

T − t

T∫

t

‖v(·, τ)‖33,R3dτ = +∞.

Apparently, Theorem 4.3 can be easily deduced from its local version, see
[29], which reads:

Proposition 4.4. Let v and q be a suitable weak solution to the Navier-Stokes
equations in Q. Assume, in addition, that

lim inf
t→−0

1

−t

0∫

t

‖v(·, τ)‖33,Bdτ < +∞. (4.6)

Then z = 0 is a regular point of v.

Let us outline a proof of Proposition 4.4. There are two simple consequences
of (4.6):

M = sup
k

1

−tk

0∫

tk

∫

B

|v(x, τ)|3dxdτ < +∞

for some increasing sequence {tk} tending to zero and

v(·, 0) ∈ L3(Q(5/6)). (4.7)

As to estimates for the pressure field, one can split it into two parts so that
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q = q1 + q2 where q1 has a “good” bound

1

−tk

0∫

tk

∫

B

|q1(x, τ)| 32 dxdτ ≤ cM

with a universal constant c while the second counter-part is a harmonic function
satisfying the estimate

sup
x∈B(2/3)

|q2(x, t)| 32 ≤ c



∫

B

|q(x, t)| 32 dx+

∫

B

|v(x, t)|3dx


 .

We cannot apply Proposition 3.1 directly since we do not know whether g′ is
bounded or not. So, we have to prove the existence of a non-trivial blowup
solution by hands.

We can choose λk =
√
−tk/10 and then, just by scaling, pick up subse-

quences, denoted by the same symbols, such that, for any positive number a,

u(k) ⇀ u

in L3(B(a)×]− 10, 0[),

p1(k) ⇀ p

in L 3

2

(B(a)×]− 10, 0[), and

p2(k) → 0

in L 3

2

(B(a)×]− 10, 0[). Here, pi(k)(y, s) = λ2
kq

i(λky, λ
2
ks), i = 1, 2. Then by the

linear theory and by the usual compactness arguments, one can show that, for
any a > 0,

u(k) → u

in L3(B(a)×]−10, 0[)∩C([−10, 0];L 9

8

(B(a))). Moreover, function u and p are a

suitable weak solution to the Navier-Stokes equations in R
3×]− 10, 0[ that has

the properties u ∈ L3(R
3×] − 10, 0[) and p ∈ L 3

2

(R3×] − 10, 0[). This solution

is non-trivial since it satisfies (3.1). The further arguments are similar to those
which have been used in Section 3. Finally, (4.7) implies (3.3). Repeating the
end of the proof in L3,∞-case, one can state that, in fact, u is identically equal
to zero, say, on R

3×]− 1, 0[, which contradicts (3.1). So, the origin is a regular
point of v.
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[31] G. Seregin, V. Šverák, On Type I singularities of the local axi-symmetric solu-

tions of the Navier-Stokes equations, Communications in PDE’s, 34 (2009), 171–
201.

[32] G. Seregin, W. Zajaczkowski, A sufficient condition of local regularity for

the Navier-Stokes equations, Zapiski Nauchn. Seminar, POMI, 336 (2006), 46–
54.

[33] G. Seregin, W. Zajaczkowski, A sufficient condition of regularity for axially sym-

metric solutions to the Navier-Stokes equations, SIMA J. Math. Anal., 39(2007),
669–685.

[34] J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equa-

tions, Arch. Ration. Mech. Anal., 9 (1962), 187–195.



Weak Solutions to the Navier-Stokes Equations 2127

[35] M. Struwe On partial regularity results for the NavierStokes equations, Comm.
Pure Appl. Math., 41 (1988), 437-458.

[36] S. Takahashi, On interior regularity criteria for weak solutions of the Navier-

Stokes equations, Manuscripta Math., 69 (1990), 237–254.

[37] M. R. Ukhovskij, V. L. Yudovich, Axially symmetric motions of ideal and viscous

fluids filling all space, Prikl. Mat. Mech. 32 (1968), 59–69.



Proceedings of the International Congress of Mathematicians

Hyderabad, India, 2010

Weakly Nonlinear Wave Equations with

Random Initial Data

Herbert Spohn∗

Abstract

We discuss the derivation of the kinetic equation for the weakly nonlinear
Schrödinger equation on the lattice Z

d and state a theorem, which establishes
that the equilibrium time covariance is damped because of the nonlinearity. A
more general space-time central limit theorem is discussed.

Mathematics Subject Classification (2010). Primary 82C05; Secondary 35Q55.

Keywords. Kinetic theory of wave equations

1. Introduction

The statistical mechanics of time-dependent phenomena deals with systems
of many degrees of freedom and random initial data. In the classical context
the evolution equations are deterministic and of Hamiltonian type. The initial
data are distributed according to some probability measure on phase space. The
latter assumption has stirred an ongoing debate centered around the problem of
the origin of this randomness. The proposed answers have a wide spectrum, see
[16] and [14] Chapter 5 and 7. One approach tries to relate the assumed random
initial data now to some properties of the system, possibly enlarged through
interactions with an environment, at some earlier time. The other extreme is
to regard the random initial data merely as a mathematical device, because of
the impossibility to follow individual trajectories. Of course, in such a scheme
one takes the responsibility to demonstrate that the predicted properties do
not depend too sensitively on the particular choice of the initial measure. For
example, one could argue that the chaoticity of the dynamics washes out the
information on finer details of the initial conditions. In the present lecture
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we will not touch upon such issues and pursue the pragmatic attitude that
reasonable initial probability measures will be delineated through the physical
context. Notwithstanding, initial randomness will be mandatory. A pointwise,
in the initial conditions, result is highly unlikely. At best one can hope that the
behavior claimed below holds for “typical” initial conditions.

More specifically, the topic of the lecture are weakly nonlinear wave equa-
tions with random initial data, see [21, 19] for the nonlinear case and [17, 2] for
the linear case with random coefficients. Many of our considerations are valid
for a general class of wave equations. But only the nonlinear Schrödinger equa-
tion has been studied in some mathematical detail and we will focus exclusively
on this case.

The wave field, ψ(x, t), x ∈ R
d, t ∈ R, is complex valued and governed by

the evolution equation

i
∂

∂t
ψ(x, t) = − 1

2∆ψ(x, t) + λ|ψ(x, t)|2ψ(x, t) , (1.1)

which is to be solved as Cauchy problem. We study only the defocusing case
λ ≥ 0, and eventually λ � 1. Instead of R

d one could also consider some
bounded domain Λ ⊂ R

d with smooth boundary and would have to prescribe
suitable boundary values at ∂Λ.

(1.1) is of Hamiltonian form. The Hamiltonian function is

H(ψ) = 1
2

∫

Rd

(
|∇ψ(x)|2 + λ|ψ(x)|4

)
dx . (1.2)

Defining the conjugate canonical fields by

q(x) =
1√
2
<ψ(x) , p(x) =

1√
2
=ψ(x) , (1.3)

Hamilton’s equation of motion for (1.2) yield the evolution equation (1.1). The
nonlinear Schrödinger equation is singled out from other wave equations because
q and p appear symmetrically in H. This symmetry simplifies the estimates
considerably.

The solution to (1.1) conserves the L2(Rd)-norm (the number) and the
energy

d

dt
‖ψ(t)‖2 = 0 ,

d

dt
H(ψ(t)) = 0 . (1.4)

Therefore a natural phase space for the nonlinear Schrödinger equation (1.1) is
Γ = {ψ ∈ L2(Rd)|H(ψ) <∞}. In this space (1.1) has solutions global in time.

The initial, t = 0, data are distributed according to a probability measure
µ on Γ. The prototypical example is a gauge invariant Gaussian measure µ,
where the former condition means that for every ϑ ∈ [0, 2π] it holds

ψ(x) = eiϑψ(x) (1.5)
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in probability. The Gaussian measure is then uniquely characterized by the
expectations

Eµ(ψ(x)) = 0 , Eµ(ψ(x)ψ(y)) = 0 , (1.6)

and the nontrivial part of the covariance

Eµ(〈f, ψ〉〈ψ, g〉) = 〈f, Cg〉 . (1.7)

Here 〈·, ·〉 is the scalar product of L2(Rd), f, g ∈ L2(Rd), and C ≥ 0 with
trC < ∞, tr[(−∆)C] < ∞,

∫
C(x, x)2dx < ∞. The latter conditions ensure

that µ is supported by Γ.

Generally speaking, one would like to understand the qualitative behavior
of solutions, in particular their long time limit. With current techniques such
a goal is too ambitious. However, there is some progress in understanding the
solution behavior for small λ.

2. Finite vs. Infinite Volume, Continuum vs.

Lattice, Equilibrium Measures

We formulated the Cauchy problem (1.1) in R
d and with finite number and

energy. Thus one expects the solution to spread out as t → ∞. A more in-
teresting long time behavior should result in case the system is confined to a
box. This brings in some dependence on boundary conditions. Another, from
the perspective of statistical mechanics very natural option would be to discard
the condition trC <∞ and to choose an initial measure µ, which is Gaussian,
gauge invariant, and translation invariant, thus determined by

Eµ(ψ(x)) = 0 , Eµ(ψ(x)ψ(y)) = 0 , (2.1)

Eµ(ψ(x)
∗ψ(y)) = (2π)−d

∫
eik·(x−y)W (k)dk (2.2)

with W smooth and of rapid decay. For such a measure, the typical ψ field has
a logarithmic increase at infinity. Thus the issue of existence of global solution
arises, which to our knowledge has not yet been studied. In fact to deal with
this problem, it might be simpler to mollify the |ψ|4 nonlinearity by

V (ψ) = 1
2λ

∫
|ψ(x)|2V (x− y)|ψ(y)|2dxdy , (2.3)

V : Rd → R, V (x) = V (−x), V continuous, V of finite range, and V̂ ≥ 0.

Out of the set of all probability measures, physically singled out are those
describing thermal equilibrium. Of course, such a measure is stationary in time.
But statistical correlations in equilibrium depend on space and time and one
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may ask about their properties in case of weak nonlinearity. The equilibrium
measure in some box Λ ⊂ R

d is formally given by the Gibbs measure

1

N
∏

x∈Λ

(
d<ψ(x)d=ψ(x)

)
exp[−βH(ψ) + βλ0N(ψ)] (2.4)

with λ0 < 0. To construct such a measure is one central problem of Euclidean
Quantum Field Theory [18]. Even with (2.3) instead of |ψ|4 the construction
is difficult. One also would have to show that the dynamics exists for a set of
initial fields which has full probability in equilibrium.

On general grounds, it is a wise strategy not to mix essentially disjoint prob-
lems. Following this guide line, in our case the natural choice is to discretize
(1.1) and to thereby remove all ultraviolet difficulties. In particular, the dy-
namics is well defined even for data with a slow increase at infinity and the
equilibrium measure (2.4) exists at infinite volume without any further limiting
procedure. There is a small price to pay, however: The linear part of the wave
equation requires more attention because of lattice effects. Still we replace R

d

by Z
d, to be kept as a standing assumption. The wave field is a function on Z

d,
ψ : Zd → C, the energy is given by

H(ψ) =
∑

x,y∈Zd

α(x− y)ψ(x)∗ψ(y) + 1
2λ

∑

x,y∈Zd

|ψ(x)|2V (x− y)|ψ(y)|2 , (2.5)

and the number by

N(ψ) =
∑

x∈Zd

|ψ(x)|2 . (2.6)

Here the real couplings α satisfy α(x) = α(−x) and α(x) = 0 for |x| > r, the
range of α. For the discrete Laplacian one would set α(x) = −1/2d for |x| = 1
and α(x) = 0 otherwise. But it is convenient to allow for a general α. The
equations of motion now read

i
d

dt
ψt(x) =

∑

y∈Zd

α(x− y)ψt(y) + λ
∑

y∈Zd

|ψt(y)|2V (y − x)ψt(x) . (2.7)

It is instructive to rewrite the dynamics in Fourier space. For this purpose
let us denote the Fourier transform of f : Zd → C by

f̂(k) =
∑

x∈Zd

f(x)e−i2πk·x , (2.8)

k ∈ R, and the inverse Fourier transform by

g̃(x) =

∫

Td

g(k)ei2πk·xdk (2.9)
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with T
d = [0, 1]d, as one parametrization of the d-dimensional torus. 〈·, ·〉 is

now the inner product for `2(Z
d), resp. for L2(Td), depending on the context.

The dispersion relation is defined by

ω(k) = α̂(k) (2.10)

and has the properties

(1) ω : Td → R and its periodic extension are real analytic functions.
(2) ω(k) = ω(−k).
Written in Fourier space the energy is

H(ψ) =

∫

Td

ω(k)|ψ̂(k)|2dk + 1
2λ

∫

(Td)4
δ(k1 + k2 − k3 − k4)V̂ (k2 − k3)

×ψ̂(k1)∗ψ̂(k2)∗ψ̂(k3)ψ̂(k4)dk1dk2dk3dk4 (2.11)

and the equations of motion read

d

dt
ψ̂t(k1) = −iω(k1)ψ̂t(k1)− iλ

∫
δ(k1 + k2 − k3 − k4)V̂ (k2 − k3)

×ψ̂t(k2)∗ψ̂t(k3)ψ̂t(k4)dk2dk3dk4 . (2.12)

In the discrete setting the existence and uniqueness of global solutions is
ensured, as first proved by Lanford, Lebowitz, and Lieb [12] in a comparable
context. Sharper propagation estimates and a controlled infinite volume limit
is achieved by Buttà et al. [5], on which the theorem below is based. One has

to assume the stability condition V̂ (k) ≥ 0. To state the theorem we introduce
the local energy in the cube Λν,` of center ν and side-length 2`+ 1,

Hν,`(ψ) =
∑

x,y∈Λν,`

ψ(x)∗α(x− y)ψ(y) +
∑

x∈Λν,`

(λ0|ψ(x)|2 + 1)

+λ
∑

x,y∈Λν,`

|ψ(x)|2V (x− y)|ψ(y)|2 (2.13)

and the “average” maximal energy

Q(ψ) = sup
ν∈Zd

sup

`≥
(
log(e+|ν|)

)1/d

(2`+ 1)−dHν,`(ψ) . (2.14)

Here λ0 is determined such that α̂(k) + λ0 > 0. Let

ℵ = {ψ|Q(ψ) <∞} . (2.15)

Theorem 2.1. Let V̂ (k) ≥ 0 and λ ≥ 0. Then there exists a one-parameter
group of transformations Φt : ℵ → ℵ, t ∈ R, such that t 7→ Φt(ψ) is the unique
global solution to Eq. (2.7) with initial conditions Φ0(ψ) = ψ.

The set ℵ is sufficiently large to support all initial measures of physical
interest, in particular the Gaussian measure µ with covariance (2.2).
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3. Kinetic Limit

For the nonlinear Schrödinger equation (2.7) we fix λ, but λ � 1. Then for
times at least up to order λ−1 the nonlinearity can be ignored. Thus for a while
we set λ = 0 and will come back to the issue of how to properly incorporate the
nonlinearity. Let us denote by U(t) the flow corresponding to the solution of
(2.7) with λ = 0. Let us impose good spatial mixing for the initial measure µ.
Then because of finite speed of propagation the random process t→ (U(t)ψ)(x)
depends for different times on essentially disjoint sets of initial ψ’s. Hence the
good mixing in space translates to a good mixing in time, which implies that the
suitably averaged process U(t)ψ(x) is approximately Gaussian. This common
lore has been worked out in a few exemplary cases. One is a noninteracting
Fermi liquid on a lattice [11]. Another class are discretized wave equations,
alias harmonic crystals [10, 6].

Most easily stated is the spatially homogeneous case, see [11]. Let µ be a

translation invariant probability measure on C
Z
d

with mean zero, Eµ(ψ(x)) = 0.
The spatial mixing is formalized by the property of `1-clustering which states
that the fully truncated correlation functions satisfy the `1-bound

∑

(x1,...,xn)∈(Zd)n

δx1,0

∣∣Eµ




n∏

j=1

ψ(xj , σj)




T

∣∣ <∞ (3.1)

for every n ≥ 2. Here the subscript T means full truncation and we use the
convention ψ(x, 1) = ψ(x), ψ(x,−1) = ψ(x)∗, hence σj = ±1. Let

Eµ

(
ψ(x)∗ψ(y)

)
= C(x− y) (3.2)

with Ĉ bounded and continuous and let µG be the translation and gauge in-
variant Gaussian measure with the covariance (3.2). Then, in the sense of con-
vergence of moments,

lim
t→∞

µ ◦ U(−t) = µG . (3.3)

The proof requires the decay of certain `p bounds on the spatial propagator

pt(x) =

∫

Td

ei2πk·xe−iω(k)tdk . (3.4)

Stronger general results, assuming probabilistic mixing conditions for µ, are
discussed in [6].

In the kinetic context one would like to treat also some spatial variation.
This can be most easily formulated by introducing the Wigner function Wψ,
which filters out the slowly varying pieces of products as ψ∗ψ. To each ψ we
associate

W ε
ψ(y, k) = (ε/2)d

∫

(2T/ε)d
ei2πy·ηψ̂(k − 1

2εη)
∗ψ̂(k + 1

2εη)dη (3.5)
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with k ∈ T
d, y ∈ (εZ/2)d, and ε a dimensionsless scale parameter, ε > 0 and

ε � 1. We prescribe a sequence µε of probability measures and assume that
the average Wigner function has a limit as ε→ 0,

lim
ε→0

Eµε

(
W ε
ψ(brcε, k)

)
=W (r, k) (3.6)

with some bounded and smoothW : Rd×T
d → R. Here b·cε denotes the integer

part modulo (εZ/2)d. If the limit in (3.6) exists, then the sequence of measures
µε have a slow spatial variation of order ε−1 on the scale of the lattice Z

d.
Slow variation is a macroscopic property and therefore should hold for al-

most all wave fields. In terms of the 2-point Wigner this leads to the further
condition

lim
ε→0

Eµε

(
W ε
ψ(br1cε, k1)W ε

ψ(br2cε, k2)
)
=W (r1, k1)W (r2, k2) (3.7)

provided r1 6= r2, which in the context of rarified gas dynamics is known as the
assumption of molecular chaos.

Under the assumptions (3.6) and (3.7) let us now study the time evolution
generated by the flow U(t). The time scale has to be adjusted to the spatial
scale. Since the speed of propagation is order 1, the time scale must be ε−1τ
with τ = O(1). A standard semiclassical analysis yields that the limit Wigner
function exists and is governed by the linear transport equation

∂

∂τ
W (r, k, τ) +

1

2π
∇kω(k) · ∇rW (r, k, τ) = 0 (3.8)

with initial conditions W (r, k, 0) = W (r, k). The factor 1/2π comes from our
definition of the Fourier transform. Molecular chaos also holds in the sense that

lim
ε→0

Eµε

(
WU(τ/ε)ψ(br1cε, k1)WU(τ/ε)ψ(br2cε, k2)

)

=W (r1, k1, τ)W (r2, k2, τ) (3.9)

provided r1 − (2π)−1∇ω(k1)τ 6= r2 − (2π)−1∇ω(k2)τ .
If, in addition, the initial measure has good spatial mixing properties, then

the Wigner function W (r, k, τ) can be given also a probabilistic interpretation
on the scale of the lattice [7]. On Z

d one considers the reference point bε−1rc and
an arbitrary bounded box centered at bε−1c. Then the measure µε ◦U(−ε−1τ)
restricted to this box converges as ε → 0 to a translation and gauge invari-
ant Gaussian measure with covariance W (r, k, τ) in Fourier space, depending
parametrically on r, τ .

Despite a somewhat winding discussion, I hope to have sufficiently empha-
sized that the free flow U(t) forces the local statistics to be Gaussian, transla-
tion, and gauge invariant. The limit ε → 0 is identical to the standard semi-
classical limit of the Schrödinger equation. There is one important difference
however which needs to be pointed out.
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The semiclassical limit of the Schrödinger equation holds for determinis-
tic initial data, i.e. for a sequence of initial wave functions ψε such that the
induced sequence of Wigner functions W ε

ψε converges weakly to a limit prob-

ability measure on the classical phase space R
d × T

d. In contrast, the kinetic
limit can hold only for initial data which are sufficiently random. Analytically
such assumptions are hidden in the smoothness of W (r, k) and in properties
like (3.7). The Gaussian measures discussed above have in a certain sense max-
imal randomness. How much the initial randomness can be relaxed is a little
understood topic.

We return now to the case of weak nonlinearity, λ > 0, λ � 1. Let us first
consider the spatially homogeneous case with an initial measure, µG, which is
gauge invariant, Gaussian, and satisfies

EµG

(
ψ(x)

)
= 0 , EµG

(
ψ(x)ψ(x′)

)
= 0 , (3.10)

for all x, x′ ∈ Z
d, and

EµG

(
ψ(x)∗ψ(x′)

)
=

∫

Td

ei2πk·(x−x
′)W (k)dk (3.11)

with a bounded and continuous W . As explained, during the initial time slip
such a measure would be established anyhow through the linear part of the
dynamics. The zero averages (3.10) are preserved under the dynamics and, as
a definition, the covariance function at time t is given by

EµG

(
ψt(x)

∗ψt(x)
)
=

∫

Td

ei2πk·(x−x
′)Wλ(k, t)dk . (3.12)

For λ = 0, µG is invariant and W0(k, t) =W (k). The nonlinearity will drive
the system away from the initial Gaussian measure, but the linear part pushes
back to the “manifold” of gauge and translation invariant Gaussian measures.
Thus we expect a slow evolution of Wλ(k, t). Since the collision rate is of order
λ2, Wλ(k, t) will vary for t = O(λ−2). In addition, to compute the evolution
equation for Wλ we may assume that the next time step can be computed
under the assumption that the measure at the current time t = λ−2τ is on the
Gaussian manifold. This reasoning leads to the

Kinetic Conjecture (spatially homogeneous). Let the initial measure µG be given
as in (3.10), (3.11). Then the limit

lim
λ→0

Wλ(k, λ
−2τ) =W (k, τ) (3.13)

exists and W (k, τ) solution of the kinetic equation

d

dτ
W (τ) = C

(
W (τ)

)
(3.14)
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with initial data W (0) = W . Here C is the cubic Peierls-Boltzmann collision
operator defined by

C(W )(k1) = 4π

∫

(Td)3
δ(k1 + k2 − k3 − k4)δ(ω1 + ω2 − ω3 − ω4)|V̂ (k2 − k3)|2

×(W1W3W4 +W2W3W4 −W1W2W3 −W1W2W4)dk2dk3dk4 ,

(3.15)

where ωj = ω(kj), Wj =W (kj), j = 1, 2, 3, 4. �
For a detailed argument we refer to [8], where a lattice Fermi fluid is studied.

Replacing in [8] the anticommuting Fermi field, a(k), by the commuting field ψ
and replacing “quasifree” by Gaussian, one arrives at a concise formal argument
for the validity of (3.14), (3.15).

To allow for spatial variation we follow the scheme of the semiclassical limit
with

ε = λ2 . (3.16)

The sequence of initial measures, µG,ε, is gauge invariant, Gaussian and satisfies
(3.6) and (3.7). This means that locally the measure is approximately Gaussian
and translation invariant. Therefore one can use the same reasoning as in the
translation invariant case.

Kinetic Conjecture (spatial inhomogeneous). Let the sequence of initial mea-
sures µG,ε be gauge invariant, Gaussian and satisfying the property (3.6) and
let Wλ(r, k, τ) be the scaled 1-point Wigner function at time t = λ−2τ and
location brcε. Then the limit

lim
λ→0

Wλ(r, k, τ) =W (r, k, τ) (3.17)

exists and W (r, k, τ) is the solution to the kinetic equation

∂

∂τ
W (r, k, τ) +

1

2π
∇kω(k) · ∇rW (r, k, τ) = C

(
W (r, k, τ)

)
. (3.18)

Here the collision operator acts locally on the k variables, according to (3.15),
at fixed r, τ . �

A proof of either conjecture remains open. There are two somewhat disjoint
approaches. Benedetto, Castella, Esposito and Pulvirenti [3], see also the pre-
vious ICM contribution of Pulvirenti [15], study the weak coupling limit for
quantum gases. Their methods and results can be translated to the present
case, although this has never been written out in complete detail. They start
from the hierarchy of multi-point Wigner functions. The free part leaves the
space of n-point Wigner functions invariant, while the nonlinearity couples n to
n+1. Thus it is natural to expand in λ. While the series cannot be controlled,
one can study each term separately. This program is followed up in [3] in their
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context, which corresponds to the nonlinear Schrödinger equation (1.1) on R
d

and with initial data of slow spatial variation. As an alternative approach [13]
we developed the Duhamel expansion for (2.7), which is the basic strategy to
prove the kinetic limit of equilibrium time correlations, see Section 4 below.

As a byproduct our proof provides also some information on the kinetic
conjecture in the spatially homogeneous case. We assume d ≥ 4, V̂ (k) = 1, and
implicit conditions on ω, which are established to hold for the lattice Laplacian.
Let us first define the collision operator Cj,n+2. Cj,n+2 acts on functions of
k1, . . . , kn+2, but only hitting the arguments kj , kn+1, kn+2. For these three
variables we use (3.15) with the integration over k4 worked out explicitly by
using the momentum conservation δ(k1 + k2 − k3 − k4). We also define

Cn+2 =

n∑

j=1

Cj,n+2 . (3.19)

Theorem 3.1. Let the initial measure, µG, satisfy (3.10) and (3.11) with con-
tinuous W . Then the odd terms of the Duhamel expansion vanish as λ → 0.
For the term of order 2n, n ∈ N, of the Duhamel expansion the limit λ → 0
exists and is given by

τn

n!
(C3 . . . C2n+1ρ̂2n+1)(k1) (3.20)

with

ρ̂2n+1(k1, . . . , k2n+1) =

2n+1∏

j=1

W (kj) . (3.21)

Note that (3.20) is the n-th order Taylor expansion for the solution of kinetic
equation (3.14) at τ = 0.

Taking absolute values and counting the number of terms, the expression
(3.20) is bounded by

τn
1

n!
c2n+1(1 · 3 · . . . · (2n+ 1)) , (3.22)

hence having a finite radius of convergence for the sum over n. The naive bound
on the Duhamel expansion has a further factor of n! coming from the initial
Gaussian measure. To fight the zero radius of convergence one cuts the series at
some large, λ-dependent n. But then one needs a priori estimate on the solution
to handle the remainder. Such a property is badly missing. In the case of the
linear Schrödinger equation with a weak random potential one can use that
‖ψ(t)‖ is conserved [9]. While still true for the nonlinear Schrödinger equation,
this by itself does not suffice for a workable a priori bound.

4. Equilibrium Time Correlations

Our enterprise started from the elementary observation that for equilibrium
time correlations one can use Schwarz inequality and time stationarity to bound
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the error term of the Duhamel expansion. To actually control the series still
requires a substantial effort [13]. But for the first time one controls the kinetic
limit for a weakly nonlinear wave equation, at least for initial conditions which
are local perturbations away from equilibrium.

We start from the finite volume Gibbs measure

1

ZΛ
exp

[
− β

(
H(ψ)− λ0N(ψ)

)] ∏

x∈Λ

(
d<ψ(x)d=ψ(x)

)
= µλΛ . (4.1)

Here Λ ⊂ Z
d is some box, β > 0 the inverse temperature, λ0 the chemical

potential, and the partition function ZΛ makes µλΛ a probability measure. Ex-
pectations with respect to µλΛ are denote by E

λ
Λ. For λ = 0, (4.1) is a Gaussian

measure. Its infinite volume limit has the covariance

E
0
(
ψ(x)∗ψ(x′)

)
=

∫

Td

ei2πk·(x−x
′)W eq(k)dk (4.2)

with the equilibrium covariance function

W eq(k) =
(
β(ω(k)− λ0)

)−1
. (4.3)

Thus one has to impose the condition

ω(k) > λ0 all k ∈ T
d . (4.4)

Then the Gaussian measure defined by (4.2) has exponential decay of correla-
tions. If ω(0) = λ0, and otherwise (4.4) holds, the measure in (4.2) has slow
decay of correlations and on top there could be a condensate component [4],
see also references in [20]. While this case is of great current interest physically,
a mathematical proof of the kinetic limit is out of reach, presently.

In a recent contribution [1], it is proved that the above properties remain
intact for sufficiently small λ. In particular, the infinite volume limit, Λ ↑ Z

d, of
the sequence of measures in (4.1) exists and defines a unique Gibbs measure, µλ,

on C
Z
d

. Expectations with respect to µλ are denoted by E
λ. Of importance in

our context is a sharp estimate of the closeness to the λ = 0 Gaussian measure.

Theorem 4.1. (i) Let β > 0 and (4.4) hold. Then, for all 0 < λ < λ with a
sufficiently small λ, the fully truncated correlation functions (cumulants) have
the bound

sup
Λ,σ∈{±1}n

∑

x∈Λn

δx1,0

∣∣∣∣∣∣
E
λ
Λ




n∏

j=1

ψ(xj , σj)




T

∣∣∣∣∣∣
≤ λ(c0)

nn! (4.5)

for all n ≥ 4, where σ = (σ1, . . . , σn), x = (x1, . . . , xn).

(ii) For the two-point function it holds, with Λ = [−L/2, L/2]d,

lim sup
L→∞

∑

|x|<L/2

∣∣EλΛ
(
ψ(0)∗ψ(x)

)
− E

0
(
ψ(0)∗ψ(x)

)∣∣ ≤ 2λ(c0)
2 . (4.6)
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The most basic time correlation is the two-point function

E
λ
(
ψt(x)

∗ψ0(x
′)
)
= Cλ(x− x′, t) . (4.7)

At λ = 0 it is purely oscillatory in Fourier space,

Ĉ0(k, t) =
(
β(ω(k)− λ0)

)−1
eiω(k)t . (4.8)

For λ > 0, but λ � 1, one expects these oscillations to be damped. We will
prove that this indeed happens on the time scale λ−2τ .

Our proof is structured in such a way that the dispersion relation ω is kept
general. There will be implicit conditions imposed on ω. The simplest one is
the `3-dispersivity which states that, with the definition

pt(x) =

∫

Td

e−iω(k)tei2πk·xdk , x ∈ Z
d , (4.9)

one has for some δ > 0

(‖pt‖3)3 ≤ c(1 + |t|)−(1+δ) . (4.10)

(4.10) can be proved by stationary phase methods and holds generically for
dimension d ≥ 3. In addition we require the constructive interference bound,
which involves a d-dimensional oscillatory integral, and the crossing bounds,
which involve 2d-dimensional oscillatory integrals. These conditions are some-
what technical to state and we refer to [13] for their precise formulation.

We prove our conditions for the lattice Laplacian. The interference bound
requires then d ≥ 4. It would be of interest to study these bounds for a more
general class of dispersion relations. For sure, the condition (4.10) will stay.
Thus d ≥ 3 seems to be necessary for the existence of the kinetic limit. For
the constructive interference bound there is some freedom and it is conceivable
that an improved version of the proof will also cover d = 3.

From a first order expansion in λ, one infers that already at time scale
λ−1τ , which is short compared to the dissipative scale λ−2τ , there are addi-
tional oscillatory contributions. More systematically they can be understood
by renormalizing ω(k) to

ωλ(k) = ω(k) + λ

∫

Td

(
V̂ (0) + V̂ (k − k1)

)
W eq(k1)dk1 . (4.11)

There will be further frequency shifts of order λ2. The renormalization (4.11)
plays a distinguished role, since it must be included in the free part and should
not be Duhamel expanded. Clearly for V̂ (k) = 1, the order λ correction in
(4.11) is independent of k, which is a welcome simplification. We believe that
our proof works also beyond the case V (x) = δx,0 without substantial changes.
This is a further point which we will have to address in the future.
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To state our result we still have to define the dissipative terms. With real
Γ1 and Γ2 let

Γ(k1) = Γ1(k1) + iΓ2(k1) = −2

∫ ∞

0

dt

∫

(Td)3
dk2dk3dk4δ(k1 + k2 − k3 − k4)

×eit(ω1+ω2−ω3−ω4)(W eq
3 W eq

4 −W eq
2 W eq

4 −W eq
2 W eq

3 ) (4.12)

and note that, by explicit computation,

Γ1(k1) = 2πW eq(k1)
−2

∫

(T3)d
dk2dk3dk4δ(k1 + k2 − k3 − k4)

×δ(ω1 + ω2 − ω3 − ω4)

4∏

j=1

W eq(kj) ≥ 0 . (4.13)

The `3-bound (4.10) ensures the existence of the integrations in (4.12) and
(4.13).

Theorem 4.2. Let d ≥ 4, V̂ = 1, and α the nearest neighbor Laplacian. Then
there exists t0 > 0 such that for all |t| < t0 it holds

lim
λ→0

E
λ
(
〈f̂ , ψ̂0〉∗〈e−iωλλ−2tĝ, ψ̂λ−2t〉

)

=

∫

Td

f̂(k)∗ĝ(k)e−Γ1(k)|t|−itΓ2(k)W eq(k)dk . (4.14)

The restriction to the finite kinetic t0 is hidden in the finite radius of con-
vergence for the sum over n in (3.20). Very roughly, in the Schwarz bound for
the error term in the Duhamel expansion, there are many terms which van-
ish as λ → 0. However there are still the terms of (3.20) which are not zero.
Schematically the remainder is then bounded by

∞∑

n=n0(λ)

|t/t0|n (4.15)

with n0(λ) → ∞ as λ→ 0. For (4.15) to vanish as λ→ 0 requires |t/t0| < 1.

5. Fluctuation Field

Under the equilibrium measure, ψt(x) is a stochastic process stationary in t ∈ R

and x ∈ Z
d. For small λ, ψt(x) has rapid oscillations which can be subtracted

by defining

〈f, φεt 〉 =
∫

Td

f̂(k)∗eiω
λ(k)t/εψ̂t/ε(k)dk , ε = λ2 , (5.1)
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with f ∈ `2(Z
d). Note that only time is rescaled while space euqals Z

d inde-
pendent of ε. Our main Theorem 4.2 can be rephrased that the covariance of
φεt (x) has a limit as ε → 0. Thus it is natural to ask whether the full process
has a limit.

We discuss first the limit process, denoted by φt(x). It is a gauge invariant
Gaussian process with covariance

E
(
〈f, φt〉〈φt′ , g〉

)
=

∫

Td

f̂(k)∗ĝ(k)e−Γ1(k)|t−t
′|−i(t−t′)Γ2(k)W eq(k)dk . (5.2)

(5.2) defines an infinite dimensional Ornstein-Uhlenbeck process, governed by

dφt(x) = Aφt(x)dt+ dη(x, t) , x ∈ Z
d . (5.3)

The linear operator A is convolution with the Fourier inverse of −Γ, Γ =
Γ1 + iΓ2. η(x, t) is complex valued Brownian motion in t and has a spatial
covariance given by the Fourier inverse of 2Γ1(k)W

eq(k). The invariant mea-
sure of the Ornstein-Uhlenbeck process has covariance W eq in Fourier space
and the process is time reversible meaning that

φt = φ∗−t (5.4)

in probability.
The Duhamel expansion can deal only with moments of the type

E
λ




n∏

j=1

〈fj , φεtj 〉〈φεtj+n
, gj〉


 (5.5)

for fj , gj ∈ `2(Z
d) and for arbitrary times t1, . . . , t2n. There seems to be no sim-

ple trick through which the moments (5.5) could be reduced to the covariance.
Rather one has to work out the Duhamel expansion for the product appearing
(5.5) and use Hölder inequality and stationary to bound the error term in the
expansion. While the details have not been written out, at the level of the 4-th
moment our method works fine and presumably also for higher moments. Thus
under the conditions of Theorem 4.2, in particular for |tj | < t0, j = 1, . . . , 2n,
it holds that

lim
ε→0

〈f, φεt 〉 = 〈f, φt〉 , (5.6)

where the convergence is in the sense of convergence of the moments (5.5).
There are correlations of physical interest which are not covered by (5.6).

An example may suffice at this stage. The local energy current at site x at time
t is defined by

Jα(x, t) =
∑

y∈Zd

(
ψ(x)∗γα(x− y)ψ(y) + ψ(y)∗γα(x− y)ψ(x)

)
(5.7)
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with γ̂α(k) =
(
∇αω(k)

)
ω(k), α = 1, . . . , d. Energy dissipation can be charac-

terized by the total energy current correlation, which is defined through
∑

x∈Zd

E
λ
(
Jα(x, t)Jα′(0, 0)

)
= Ccur

λ,αα′(t) , (5.8)

using that E
λ
(
Jα(x, t)

)
= 0. As before one would like to establish the limit

λ→ 0 of
Ccur
λ,αα′(λ−2t) . (5.9)

Because of the sum over x in (5.8) this limit is not covered by (5.6). In fact,
an interchange of limit and sum is not expected to be valid. To establish the
limit in (5.9) is a future challenge of interest.
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Introduction

cH ϕύσις o
¸
υδέν πoιει̃ cάλµατα - Nature does not make jumps - or does she?

Catastrophes and other phenomena related to singularity theory have chal-
lenged this Aristotelean thesis at least since the days of Felix Klein in the
1880s, and quantum phenomena in general are hardly compatible with it. On
the other hand, the description of singularities often naturally amounts to a de-
tailed study of a smooth neighborhood of a singularity, and in quantum physics,
classical and smooth limits are of paramount importance. Perhaps it is fair to
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say that nowadays, the dialectic between smooth and singular phenomena is a
driving force in geometry and in quantum physics. This, roughly, is the theme
of the present note.

It is hardly possible to give a complete overview on this broad topic, let alone
to give credit to all the contributors who deserve it. Therefore, this survey gives
my very personal account, attempting to address those aspects of singularity
theory which from my subjective point of view have influenced recent progress
in mathematical physics, as well as those which are certain to continue to be of
relevance. My personal interest lies in the interactions between geometry and
quantum field theory. And of course, putting false modesty aside, I take this
opportunity to summarize some of my collaborators’ and my own more recent
results and ideas in the area. This includes some progress in our understanding
of conformal field theory, both from an axiomatic and a constructive viewpoint.
On the other hand, topological quantum field theories and specifically their
geometric content and classification are addressed. The overall theme remains
the role of singularities and their geometry in various areas of quantum field
theory.

This note is structured as follows:

The following Section 1 gives a brief overview on some basic well established
notions from singularity theory, with a particular focus on simple singularities,
including their deformation theory in terms of unfoldings, as well as their min-
imal resolutions. As a welcome necessity, the theme of ADE classifications is
predominant. Moreover, I review Kodaira’s classification of degenerate fibers
in elliptic fibrations of complex surfaces. Finally, various aspects of the McKay
correspondence are summarized, including the special McKay correspondence
which quite undeservingly is little known, at least to physicists.

Section 2 is devoted to conformal and superconformal field theory. The
exposition includes a rough definition of conformal field theory, which has been
unpublished in this form, so far, with details to be presented elsewhere [83]. In
addition, better established notions are discussed, including that of the N = 2
super-Virasoro algebra and the conformal field theoretic elliptic genus. I then
turn to superconformal field theories associated to K3 and their geometric
interpretations. In particular, having the main theme “singularity theory” in
mind, orbifold conformal field theories associated to K3 are discussed. Here, the
determination of the B-field values on the exceptional divisor of the resolution
of quotient singularities is of interest, as well as their interpretation in terms of
the classical McKay correspondence. Moreover, the geometric interpretation of
the twist fields in orbifold conformal field theories is briefly addressed. Finally,
non-classical dualities are presented, including a version of mirror symmetry
for elliptically fibered K3 surfaces. Another non-classical duality allows for
the construction of superconformal field theories associated to certain smooth
quartic K3 surfaces.

Section 3 summarizes some basic concepts in topological field theory. In
particular, the role of singularity theory for these quantum field theories is
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addressed, explaining how the notions of Frobenius algebras, Frobenius man-
ifolds, and tt∗ geometry arise naturally in this context. Since already in the
1990s the proof of integrability of the tt∗ equations led to yet another ADE
classification, namely that of the N = (2, 2) Virasoro minimal models with
spacetime supersymmetry, I briefly review these results and comment on the
classification of all N = (2, 2) Virasoro minimal models, which has not been
completed, so far.

This note ends with an outlook on work in progress in the context of sin-
gularities in threefolds in Section 4; the construction of superconformal field
theories associated to so-called Borcea-Voisin threefolds as well as ongoing in-
vestigations of elliptically fibered Calabi-Yau threefolds are addressed.

1. Some Background on Singularities

This section is devoted to a summary of some well known but fundamental
mathematical background, concerning singularities, their resolution, and their
deformation. The literature on this topic is vast; standard references are the
classical textbooks by Arnol’d, Gusein-Zade and Varchenko [3]; a very nice
introductory overview by Brieskorn can be found in [15]; a less basic and more
extensive review is Kollár’s Seattle lecture on the topic [55].

In very general terms, a singularity is a point x ∈ X in a variety X
such that X is not smooth in x. Both the classification and desingularization of
such singularities have been a driving force in algebraic geometry, at least since
the days of Riemann. In modern terminology, a resolution of X is a smooth
variety X̃ together with a projective birational morphism π : X̃ → X. Probably
the most influential paper on the topic is Heisuke Hironaka’s seminal work
[47], containing an existence proof for resolutions of singularities of varieties
in arbitrary dimensions over fields of characteristic zero by repeated blow-up
along non-singular subvarieties. In the following, I always work in characteristic
zero and more specifically with varieties over the field of complex numbers
C. Moreover, unless stated otherwise, I discuss special classes of isolated
singularities.

The neighborhood of a singular point in an n-dimensional variety can often
be described as the zero set of a holomorphic function germ f : (Cn+1, 0) →
(C, 0) with an isolated critical point at 0. We then speak of a hypersurface
singularity. Let me introduce some of the standard notions describing sin-
gularities of this type:

Definition 1.1. Let f denote a holomorphic function germ f : (Cn+1, 0) →
(C, 0) with an isolated singularity at 0.

1. The Jacobi algebra of f is the algebra

J := C[x0, . . . , xn]/

(
∂f

∂x0
, . . . ,

∂f

∂xn

)
.



Geometry of Singularities in QFT 2147

The dimension µ of J is the Milnor number of the singularity.

2. A function germ f̃ : (Cm+1, 0) → (C, 0) with an isolated singularity at
0 is stably equivalent to f if after addition of quadratic forms in
an appropriate number of additional variables, f and f̃ are related by a
diffeomorphic change of independent variables.

3. A semiuniversal unfolding of the singularity given by f is a holomor-
phic function germ F : (Cn+1 × C

µ, 0) → (C, 0), such that

for (x; t) = (x0, . . . , xn; t1, . . . , tµ) ∈ C
n+1 × C

µ, f(x) = F (x; t = 0),

and the partial derivatives ∂F
∂ti

(x; t = 0), i ∈ {1, . . . , µ}, represent a basis
of the Jacobi algebra J of f .

4. The singularity given by f is simple if for every semiuniversal un-
folding F : (Cn+1 × C

µ, 0) → (C, 0) of f with Ft(x) := F (x; t) for
(x; t) ∈ C

n+1 × C
µ, in a sufficiently small neighbourhood M ⊂ C

µ of
0 ∈ C

µ the fibers F−1
t (0), t ∈ M , exhibit only a finite number of pairwise

stably non-equivalent singularities. The space M is called the base of the
semiuniversal unfolding.

According to a fundamental result by Arnol’d [1, 2], the germs of holomor-
phic functions with simple singularities enjoy an ADE-classification:

Theorem 1.2. If f : (Cn+1, 0) → (C, 0) is the holomorphic function germ of a

simple singularity, then f is stably equivalent to one of the following:

Ak : f(x, y) = x2 + yk+1, k ≥ 1,

Dk : f(x, y) = x2y + yk−1, k ≥ 4,

E6 : f(x, y) = x3 + y4,

E7 : f(x, y) = x3 + xy3,

E8 : f(x, y) = x3 + y5.

In other words, the singularity is stably equivalent to one of the quotient surface

singularities studied by Schwarz [72] and Klein [51, 52], namely 0 ∈ C
2/Γ with

Γ ⊂ SU(2) a finite subgroup:

Ak : cyclic group of order k + 1,

Dk : binary dihedral group of order 4(k − 2),

E6 : binary tetrahedral group of order 24,

E7 : binary octahedral group of order 48,

E8 : binary icosahedral group of order 120.

The respective groups Γ are called the ADE type finite groups in the

following.
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By a seminal result due to Milnor [60], the topology of every isolated hy-
persurface singularity f : (Cn+1, 0) → (C, 0) with polynomial f is uniquely
determined by its Milnor fibration. Here, one uses a disc ∆ ⊂ C with 0 ∈ ∆
which is small compared to the radius ε of a chosen ball Bε ⊂ C

n+1 around the
singular point 0 of f−1(0). Let X0 := Bε∩f−1(0) and X := Bε∩f−1(∆). Then
f : X −X0 → ∆−{0} is a locally trivial fiber bundle, the Milnor fibration.
The results of [60, 13, 31, 56] yield:

Theorem 1.3. Every fiber of the Milnor fibration of a polynomial isolated hy-

persurface singularity f : (Cn+1, 0) → (C, 0) is homotopy equivalent to a bouquet

of µ real n-spheres S
n, where µ is the Milnor number of the singularity.

One can choose these spheres as vanishing cycles S1, . . . , Sµ in the sense

of Lefschetz, that is, each Si can be homotopically deformed over a path in ∆
into the singular central fiber, where it vanishes. Then the intersection matrix

((Si · Sj)ij) completely determines the topology of the Milnor fibration.

For a semiuniversal unfolding F of an isolated hypersurface singularity f
as above, the vanishing cycles of Thm. 1.3 yield the Lefschetz thimbles
[67, 68]: With notations as in Def. 1.1 and the discussion before Thm. 1.3,
consider X := F−1(∆) ∩ (Bε ×M) ⊂ C

n+1 × C
µ. Then the map

ϕ : X → ∆×M, (x; t) 7→ (F (x; t), t) (1.1)

is a C∞-fibration of Milnor fibers outside a discriminant in ∆×M . A Lefschetz
thimble in Xt then, roughly, is given as the union of a continuous family of
vanishing cycles over a path in ∆ which connects a critical value of Ft with a
non-critical one in the boundary of ∆.

The results of Thm. 1.3 can be evaluated for the simple singularities classi-
fied in Thm. 1.2 by calculating the intersection matrices for these singularities
[36, 43, 44]:

Theorem 1.4. Consider a simple singularity f : (C3, 0) → (C, 0) as in

Thm. 1.2. Let S1, . . . , Sµ denote vanishing cycles which generate the homol-

ogy of the Milnor fibration. Then these cycles can be ordered such that the

intersection matrix ((Si · Sj)ij) is the negative of the Cartan matrix of a Lie

algebra of type Ak, Dk, E6, E7, or E8 if and only if the singularity, according

to the classification of Thm. 1.2, is of type Ak, Dk, E6, E7, or E8, respectively.

In view of Thm. 1.4 it is natural to expect that the universal unfolding
F of a simple singularity f is governed by the data of the associated simply
laced Lie algebra. The detailed relation, however, is quite subtle and has been
uncovered thanks to many separate contributions, probably beginning with two
famous conjectures by Grothendieck, see [75], which were proved by Brieskorn,
see [14]; the excellent book [74] is devoted to a detailed exposition. Roughly,
the base M of every semiuniversal unfolding of f can be identified with an open
subset of the Cartan algebra of the Lie algebra associated to the singularity. In
particular, there is a one-to-one correspondence between positive roots of the
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Lie algebra and vanishing cycles in the Milnor fibration of the singularity. A
choice of primitive roots corresponds to a choice of generators of the homology
in terms of vanishing cycles as in Thm. 1.4. A vanishing cycle corresponding to
a root α remains contracted to a point in the deformation Ft of f with t ∈ M
if and only if t, viewed as an element of the Cartan algebra, vanishes on α.

Apart from the beginning remarks, I have focussed the above discussion
entirely on the deformation of singularities. However, according to Hironaka’s
result [47], all the classes of singularities discussed so far allow a resolution by
repeated blow-up. Thm. 1.2 guarantees that all simple singularities can be rep-
resented as quotient singularities of the form C

2/Γ for appropriate groups Γ.
For these singularities, a unique minimal resolution always exists, and the inter-
section matrix of the irreducible components of its exceptional divisor recovers
data from the associated simply laced Lie algebra:

Theorem 1.5. Consider a simple singularity 0 ∈ C
2/Γ with Γ ⊂ SU(2) as

in Thm. 1.2 of type Ak, Dk, E6, E7, or E8. Let π : X̃ → C
2/Γ denote the

minimal resolution of this singularity. Then the exceptional divisor of X̃ is a

collection of rational curves, such that every non-trivial pairwise intersection

is transversal, and such that the resulting intersection matrix is the negative of

the Cartan matrix of the corresponding simply laced Lie algebra of type Ak, Dk,

E6, E7, or E8.

The theorem follows from work of du Val [32] and Artin [4]; the resolutions
were explicitly calculated by Brieskorn [12]. A noteworthy conclusion following
from a comparison between Thm. 1.4 and Thm. 1.5 is a correspondence, by
means of the associated simply laced Lie algebras, between the resolution and
the deformation of simple singularities.

The ADE classification of simple singularities reoccurs in a similar form
for complex surfaces in the context of elliptic fibrations p : X → ∆. Here,
without loss of generality ∆ ⊂ C is a disc containing 0 ∈ C, X is a smooth
complex surface, and p is a proper, connected, holomorphic map, such that
all fibers Xs for s ∈ ∆ with s 6= 0 are elliptic. Moreover, p is assumed to
be (relatively) minimal, that is, all fibers are free of (−1)-curves. Then, the
following Kodaira classification holds [54]:

Theorem 1.6. The fiber X0 of an elliptic fibration p : X → ∆ as above can be

of one of the following types:

1. If X0 is irreducible, then it is either smooth elliptic (of so-called Kodaira

type I0), or rational with a node (of so-called Kodaira type I1), or rational
with a cusp (of so-called Kodaira type II).

2. If X0 is reducible but not multiple, then X0 is a collection of rational

curves whose intersection matrix is either given by the Cartan matrix of

the extended Dynkin diagram of a simply laced Lie algebra, or by a degen-

erate form of it. In the case of extended Dynkin diagrams, Ãk corresponds



2150 Katrin Wendland

to fibers of Kodaira type Ik+1, D̃k corresponds to Kodaira type I∗k−4, and

Ẽ6, Ẽ7, Ẽ8 correspond to Kodaira types IV ∗, III∗, II∗, respectively. Oth-

erwise, two rational curves intersecting transversally in a double point

correspond to a degenerate version of Ã1, giving Kodaira type III, while
three rational curves intersecting in one point correspond to a degenerate

version of Ã2, giving Kodaira type IV .

3. If X0 is a multiple fiber, then it is a multiple of a fiber of Kodaira type

Ik.

The result can be illustrated by observing [61] that an elliptic fibration
p : X → ∆ with section can always be obtained by resolving the singularities
of a singular Weierstraß form

y2z = x3 + a(s)xz2 + b(s)z3, (x, y, z) ∈ CP
2, s ∈ ∆, a, b ∈ C∞(∆).

If the fiber over s = 0 is not smooth elliptic, then it is a rational curve with a
cusp (i.e. of Kodaira type II) or with a simple singularity. Resolution, in the
latter case, by Thm. 1.5 yields a fiber containing an ADE-type configuration
from the exceptional divisor of the resolution. Furthermore, there is the strict
transform of the original rational curve, which is responsible for the fact that
Kodaira’s classification yields the extended Dynkin diagrams (or a degenerate
form of them) rather than the ordinary ones. This is the essence of Tate’s
algorithm [76] which recovers Kodaira’s classification for elliptic pencils in terms
of a resolution procedure as indicated.

Hence, viewing the Kodaira classification Thm. 1.6 of degenerate fibers in
an elliptically fibered surface as an application of the classification of simple
singularities, so far, I have attempted to discuss singularities, and more specif-
ically simple singularities, in terms of their deformations and their resolutions.
The ADE theme evolving from this discussion is well-known to be central: The
ADE classification governs the classification of simple singularities as well as
finite subgroups of SU(2) in Thm. 1.2, the topology of their neighborhoods and
thus their deformations in Thm. 1.4, and moreover the topology of their reso-
lutions in Thm. 1.5. Another important occurrence of the ADE theme which I
cannot leave unmentioned is the McKay correspondence:

Theorem 1.7. Let Γ̃ ⊂ SL(2,C) denote a non-trivial finite group. Then there

exists a finite group Γ ⊂ SU(2) of ADE type as in Thm. 1.2 which is conju-

gate to Γ̃. Denote by g the corresponding simply laced Lie algebra of the same

ADE-type. Moreover, let ρi, i ∈ {0, . . . , µ} denote the pairwise non-isomorphic

irreducible representations of Γ, where ρ0 is the trivial representation.

1. There is a one-to-one correspondence between the representations ρi, i >
0, and the simple roots of g. Moreover, if ρ denotes the natural two-

dimensional representation of Γ on C
2, then

ρi ⊗ ρ =

µ⊕

j=0

aijρj
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defines the coefficients aij of a matrix A which obeys A = 2I − C̃, where

I denotes the (µ+1)× (µ+1) identity matrix and C̃ denotes the Cartan

matrix of the extended Dynkin diagram of g [59].

2. There exist locally free sheaves Rj on the minimal resolution X̃ of C2/Γ
which outside the exceptional divisor are obtained from the equivariant

bundle on C
2 associated to the representation ρj. Moreover, if ei denotes

the irreducible component of the exceptional divisor which corresponds to

the ith simple root of g by Thm. 1.5, then c1(Rj) · ei = δij uniquely char-

acterizes the first Chern class c1(Rj) of each of these sheaves [38, 53, 5].

There have been various successful attempts to generalize the classical
McKay correspondence of Thm. 1.7 to higher dimensions. Let me particularly
mention Ito and Reid’s dual McKay correspondence [49], which for every
finite subgroup Γ ⊂ SL(n,C) states a one-to-one correspondence between the
crepant divisors of a resolution of C

n/Γ and certain conjugacy classes in Γ,
namely those of so-called junior elements. Moreover, in [11], Bridgeland, King
and Reid show that for any nonsingular complex threefold Y and a finite auto-
morphism group Γ of Y , the Hilbert scheme parametrizing Γ-clusters in Y gives
a crepant resolution of Y/Γ, and that there is a derived equivalence between co-
herent sheaves on the resolution and coherent Γ sheaves on Y . A generalization
of Thm. 1.7.2 to the three-dimensional case was found by Degeratu [22].

While Thm. 1.7 and its above-mentioned generalizations to higher dimen-
sions state some of the best known classical incarnations of the McKay corre-
spondence, it is probably not so well known that a similar correspondence holds
much more generally for arbitrary quotient surface singularities:

Theorem 1.8. Consider a finite subgroup Γ ⊂ GL(2,C) which contains no

pseudoreflections.

1. The quotient singularity C
2/Γ has only finitely many isomorphism classes

of indecomposable reflexive modules [46, 7, 34], and these are in one-to-

one correspondence with the isomorphism classes of irreducible represen-

tations of the group Γ [46].

2. For every irreducible component ei of the exceptional divisor in a minimal

resolution π : X̃ → C
2/Γ, there exists a unique indecomposable reflexive

module Mi. Denoting by M̃i its locally free pull-back sheaf modulo torsion,

the first Chern class of M̃i is characterized by c1(M̃i) · ej = δij for all

i, j [86].

In other words, for general quotient surface singularities, there are special
representations which are in one-to-one correspondence with the irreducible
components of the exceptional divisor of a minimal resolution. Ito, who has
found a combinatorial criterion to determine special representations of cyclic
groups [48], therefore calls the correspondence stated in Thm. 1.8 the special
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McKay correspondence. In the physics literature, this generalization of the
classical McKay correspondence has already been used by Martinec, Moore and
collaborators, see [58] along with the work built on that paper.

2. Some Background on Conformal Field

Theory

An important lesson from the McKay correspondence points towards a deep
relationship between representation theory (in this case, of finite groups) on the
one hand and geometry (in this case, of the corresponding quotient singularities)
on the other hand. Another link between representation theory and geometry
is established by conformal field theory, although in most respects it is no less
mysterious than the McKay correspondence. The basic ingredients of conformal
field theories, their beautiful properties, as well as some results concerning their
geometric interpretations are summarized in this section.

For completeness, let me state a rough definition of conformal field theory
from my personal point of view. I apologize to the reader, since for lack of space,
the details of this definition are left to [83]:

Definition 2.1. A (two-dimensional Euclidean) unitary conformal
field theory with central charges c, c is given by

• a C-vector space H with positive definite scalar product 〈·, ·〉 and a com-
patible real structure φ 7→ φ∗,

• a system 〈· · · 〉 of n-point functions, that is, a Poincaré covariant, local
map

H
⊗n → Maps


C

n −
⋃

i6=j

Di,j ,C


, Di,j := {(z1, . . . , zn) ∈ C

n | zi = zj}

for every n ∈ N, which is compatible with complex conjugation, and such
that every function in the image is real analytic and allows an appropriate
expansion about every partial diagonal Dij .

The vector space H and the n-point functions must obey the following condi-
tions:

1. H is a unitary representation of two commuting copies of a Virasoro al-
gebra. The first, so-called left-handed Virasoro algebra is generated by
Ln, n ∈ Z, and a central element c, where

[Ln, Lm] = (m− n)Lm+n + c
12δn+m,0m(m2 − 1), (2.1)

and the second, right-handed one is generated by Ln, n ∈ Z, and
c with the analogous commutator relations. Both Virasoro actions are
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compatible with the real structure of H. The central elements c, c act by
multiplication with fixed constants, also denoted c, c ∈ R. The operators
L0 and L0 are self adjoint and positive semidefinite, and H decomposes
into a direct sum of their simultaneous eigenspaces

H =
⊕

(h,h)∈R

Hh,h, Hh,h := ker(L0 − h) ∩ ker(L0 − h).

That is, every vector in H is a sum of contributions from finitely many dif-
ferent eigenspaces Hh,h. Moreover, R does not have accumulation points
and all Hh,h are finite dimensional.

2. H possesses a unique vacuum Ω, that is H0,0 = spanC {Ω} with Ω∗ = Ω
and 〈Ω,Ω〉 = 1.

3. The system 〈· · · 〉 of n-point functions is conformally covariant and repre-
sents an operator product expansion, and reflection positivity holds.

4. The partition function

Z(τ) :=
∑

(h,h)∈R

(
dimC Hh,h

)
qh−c/24qh−c/24 = TrH

(
qh−c/24qh−c/24

)

with τ ∈ C, =(τ) > 0, and q := exp(2πiτ) is well defined for all values
of τ in the complex upper halfplane, and it is invariant under modular
transformations

τ 7→
aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,Z).

5. The following universality condition holds: If H ⊂ H
′ and 〈· · · 〉′ is a

system of n-point functions on H
′, whose restriction to H gives 〈· · · 〉, and

such that conditions 1.-4. hold for H′ and 〈· · · 〉′, then H = H
′.

From the above definition, representation theory and modular invariance
have been built into conformal field theory by hand. The relation to geometry,
however, is obscure. In fact, in many cases the precise relation to geometry
is unknown. While so-called non-linear sigma model constructions, in physics,
are believed to provide a map from certain geometries to conformal field the-
ories, the mathematical details are far from understood. On the other hand,
for certain classes of conformal field theories, geometric information can be
extracted, in fact even geometric information related to the geometry of sin-
gularities reviewed in Section 1. This is particularly true if the space of states
H of a conformal field theory carries an action of a left- and a right-handed
super-Virasoro algebra:
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Definition 2.2. The N = 2 super-Virasoro algebra with central charge
c is the super-Lie algebra with even generators Ln, n ∈ Z, Jn, n ∈ Z, and
a central element c, and odd generators G+

r , G
−
r , where in the Ramond (R)

sector all r ∈ Z and in the Neveu-Schwarz (NS) sector all r ∈ Z + 1
2 .

The Ln obey the Virasoro algebra (2.1), and furthermore, the following super-
commutator relations hold:

[
Ln, G

±
r

]
= (r − n

2 )G
±
n+r,

[
G+

r , G
−
s

]
= 2Lr+s + (s− r)Jr+s +

c
3 (r

2 − 1
4 )δr+s,0,

[
G±

r , G
±
s

]
= 0,

[Ln, Jm] = nJm+n,
[
Jn, G

±
r

]
= ±G±

n+r, [Jn, Jm] = c
3mδm+n,0.

An N = (2, 2) superconformal field theory is a conformal field theory
as in Def. 2.1 where both the left- and the right-handed Virasoro algebra are
extended to commuting N = 2 super-Virasoro algebras. Moreover, H carries a
compatible Z2 grading H = Hb ⊕ Hf , and the definition of locality is replaced
by semi-locality, while the trace featuring in the definition of the partition
function is only taken over the bosonic subspace Hb. In general, H enjoys
another compatible Z2 × Z2 grading

H = H
NS,NS ⊕H

R,R ⊕H
NS,R ⊕H

R,NS

where on H
A,A the odd parts of the two N = 2 left- and right-handed

Virasoro algebras, respectively, are represented in the A and the A sector,
A,A ∈ {R,NS}. Attention is very often restricted to so-called non-chiral
superconformal field theories, where the sectors HNS,R and H

R,NS are
trivial. Then, as a shorthand notation, one introduces H

A
k := H

A,A ∩ Hk with
A ∈ {R,NS} and k ∈ {b, f}. For such theories one has

Definition 2.3. Consider a non-chiral N = (2, 2) superconformal field theory
with central charges c, c. Assume that the operator J0 − J0 has only integral
eigenvalues, such that the eigenvalues of J0 − J0 are even on Hb and odd on
Hf . Then setting q := exp(2πiτ) with τ ∈ C, =(τ) > 0, and y := exp(2πiz)
with z ∈ C,

E(τ, z) := StrHR,R

(
yJ0qh−c/24qh−c/24

)

is the conformal field theoretic elliptic genus of the theory.

Using the properties of the N = 2 super-Virasoro algebra one shows that
the conformal field theoretic elliptic genus only has nonzero contributions with
h = c/24, it transforms covariantly under modular transformations, and it
is invariant under smooth deformations of the underlying superconformal field
theory into other N = (2, 2) superconformal field theories with the same central
charges. In fact, for theories which are obtained by a non-linear sigma model
construction from some Calabi-Yau variety Y , one expects that the conformal
field theoretic elliptic genus agrees with the geometric elliptic genus of Y .
Vice versa, following [33, 62],
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Definition 2.4. An N = (2, 2) superconformal field theory is said to be asso-
ciated to K3 if and only if the following conditions hold:

• For the left- and right-handed central charges, c = c = 6 on H.

• The theory is non-chiral, i.e. HNS,R = H
R,NS = {0}, and the operators

J0 and J0 have integral eigenvalues only, where the eigenvalues of J0−J0

are even on Hb and odd on Hf .

• The conformal field theoretic elliptic genus of the theory agrees with the
geometric elliptic genus of a K3 surface,

E(τ, z) = 2
ϑ2(τ, z)

2ϑ3(τ, 0)
2ϑ4(τ, 0)

2 + cycl.

η(τ)6
,

where the ϑk(τ, z) denote the classical Jacobi theta functions, and η(τ)
is the Dedekind eta function.

Two such theories are equivalent, if and only if an isomorphism between the un-
derlying C vector spaces exists which is compatible with the respective OPEs.1

All superconformal field theories which are associated to K3 in the sense
of Def. 2.4 are believed to arise from non-linear sigma model constructions on
K3 surfaces. Standard examples of such theories can be constructed by means
of orbifolding: Starting from examples of so-called toroidal N = (2, 2) su-
perconformal field theories with central charges c = c = 6, which are
well understood, orbifold techniques yield theories for which the conditions of
Def. 2.4 are readily checked. For the underlying toroidal theories, in fact, geo-
metric interpretations in terms of non-linear sigma models are mathematically
well understood. Each such theory can be constructed as a non-linear sigma
model on some flat torus T of complex dimension 2, equipped with a so-called
B-field, which is given by the de Rham cohomology class of a real closed
two-form on T [16, 64].

The Definition 2.4 turns out to be sufficiently strong such that the moduli
space of all theories associated to K3 can be determined, under the assumption
that the standard deformation theory for them (see e.g. [27]) yields integrable
deformations [17, 73, 6, 62]. Moreover, a partial completion of the smooth uni-
versal covering space of the moduli space can be identified with the parameter
space of non-linear sigma models on K3 surfaces [6]:

Theorem 2.5. Let Z
4,20 denote the standard unimodular lattice of rank 24

and signature (4, 20) in R
4,20 := Z

4,20 ⊗R R with the compatible scalar product

of signature (4, 20) and some chosen orientation. Let T 4,20 denote the Grass-

mannian of maximal positive definite oriented subspaces of R4,20, which carries

a natural action of O+(4, 20;R), the group of those elements in O(4, 20;R)

1In particular, no N = (2, 2) marking of our superconformal field theory is fixed.
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which preserve the orientation of such subspaces. By T 4,20
0 ⊂ T 4,20 we denote

the set of all those oriented maximal positive definite subspaces x ⊂ R
4,20 which

have the property that x⊥ does not contain any roots, that is all α ∈ x⊥ ∩
Z
4,20 obey 〈α, α〉 6= −2. Finally, with O+(4, 20;Z) := O+(4, 20;R) ∩ O(Z4,20)

and MK3 the so-called moduli space of superconformal field theories
associated to K3,

MK3 := O+(4, 20;Z)\T 4,20
0 ,

the following holds:

• The partial completion T 4,20 of the smooth universal covering space T 4,20
0

of MK3 can be identified with the parameter space of non-linear
sigma models on K3. Namely, denoting by X the diffeomorphism type

of a K3 surface, T 4,20 is a cover of the space of pairs (g,B) where g
denotes an Einstein metric on X and B is the de Rham cohomology class

of a real closed two-form on X, a so-called B-field.

• There is a one-to-one correspondence between the points of MK3 and

superconformal field theories associated to K3. Smooth families of su-

perconformal field theories associated to K3 are parametrized by smooth

subvarieties of T 4,20
0 .

Thm. 2.5 justifies the standard terminology according to which the spec-
ification of a superconformal field theory associated to K3 by means of the
parameter space T 4,0

0 , that is, by means of a pair (g,B) with g an Einstein
metric and B a B-field on K3, gives a geometric interpretation of the
theory. In fact, a non-linear sigma model construction on a K3 surface with
Einstein metric g and B-field B is believed to yield a superconformal theory
with geometric interpretation (g,B). Note that the so-calledT-duality group
O+(4, 20;Z) acts by permuting an infinity of distinct geometric interpretations
of a given superconformal field theory associated to K3.

As mentioned above, some standard examples of superconformal field theo-
ries associated to K3 can be obtained by orbifold constructions. On the other
hand, some of the standard constructions of K3 surfaces are in fact orbifold
constructions: Assume that a flat real four-torus T admits the choice of a com-
plex structure such that SU(2) acts naturally on the universal cover of T , and
T enjoys a symmetry given by a non-trivial finite subgroup Γ ⊂ SU(2). Ac-
cording to Fujiki [35], then Γ is cyclic of order M ∈ {2, 3, 4, 6}, or Γ is a binary
dihedral group Dk of order 4(k − 2) with k = 4 (and two inequivalent actions
exist) or k = 5, or Γ is binary tetrahedral. In any case, the singularities of the
quotient T/Γ are all of ADE type as in Thm. 1.2, and their minimal resolution
of Thm. 1.5 is crepant. This means that there is a resolution π : X → T/Γ
of all singularities, such that X is simply connected and admits an (orbifold
limit of) a Ricci-flat Kähler metric which is induced from the complex structure
and flat metric on T . In other words, X is a K3 surface. If Γ is cyclic, then T
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equipped with its complex structure possesses an elliptic fibration with section
such that the action of Γ is compatible with the fibration, and the resolution
of T/Γ carries an induced elliptic fibration. These basic facts are used in the
following theorem, which summarizes some of my own results, partly in joint
work with W. Nahm, substantiating the geometric content of superconformal
field theories associated to K3 in the case of orbifolds:

Theorem 2.6. Consider an N = (2, 2) superconformal field theory C associated

to K3 which is obtained from a toroidal N = (2, 2) superconformal field theory T
by orbifolding by a finite group Γ ⊂ SU(2). For the toroidal theory, assume that

a geometric interpretation as non-linear sigma model on some complex torus T
is given, such that the Γ action is induced by a symmetry of T . The geometric

interpretation of T specifies the theory in terms of a Ricci-flat Kähler metric

(that is, a flat metric) on T and a B-field, that is, a real de Rham cohomology

class on T which is invariant under the induced Γ action.

By X we denote the K3 surface which is obtained as a crepant resolution

of the orbifold T/Γ. It carries an orbifold limit g of a Kähler-Einstein metric,

induced by the chosen flat metric on T . Let BT ∈ H2(X,R) denote the image

of the B-field on the torus under the resolution procedure.

1. The theory C possesses a geometric interpretation (g,Borb), where

|Γ| ·Borb =
√
|Γ| ·BT + B̂Γ, B̂Γ ∈ H2(X,Z).

The value of B̂Γ is given by a sum of contributions from the exceptional

divisors over the quotient singularities S ⊂ T/Γ which is governed by the

McKay correspondence Thm. 1.7.2 as follows: For every quotient singu-

larity s ∈ S, whose local description is given by 0 ∈ C
2/Γs, Γs ⊂ Γ, let ρs

denote the regular representation of Γs and c1(Rs) the first Chern class

of the locally free sheaf Rs on X associated to ρs by means of Thm. 1.7.2.
Then [81]

B̂Γ =
∑

s∈S

c1(Rs).

2. Assume that Γ is cyclic of order M ∈ {2, 3, 4, 6}, and that the torus T is

elliptically fibered such that the Γ action is compatible with the fibration.

Then fiberwise T-duality on the elliptic fibration of T induces fiberwise

T-duality on X, see [63] for the explicit action on the degenerate fibers

(which according to Thm. 1.6 are of Kodaira types I∗0 if M = 2, IV ∗ if

M = 3, I∗0 and III∗ if M = 4, and I∗0 , II
∗, IV ∗ if M = 6). The resulting

duality is a version of mirror symmetry on X [63].

3. If Γ is cyclic of order M ∈ {2, 3, 4, 6} and the torus T is elliptically fibered

such that the Γ action is compatible with the fibration, then in the super-

conformal field theory C, the counterparts of the irreducible components

of the exceptional divisor for the resolution of T/Γ can be determined ex-

plicitly: For the resolution of each singularity of T/Γ, they are given by
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discrete Fourier transforms of the corresponding twisted ground states in

the orbifold conformal field theory C [63].

4. If Γ is cyclic of order 4, then the superconformal field theory C also has a

geometric interpretation (g,B) on a smooth algebraic K3 surface

X(f1, f2) : f1(x0, x1) + f2(x2, x3) = 0 in CP
3,

where the fk are homogeneous polynomials of degree 4, whose precise form
depending on the geometric interpretation of T is stated in [82]. Let ωFS

denote the class of the Kähler form associated to the Kähler metric on

X(f1, f2) which is induced by the Fubini-Study metric on CP
3. Choose

λ ∈ R
+ such that with respect to the volume form λ2

2 ωFS ∧ ωFS, the

surface X(f1, f2) has volume 1
2 . Then our geometric interpretation (g,B)

of C amounts to the Ricci-flat Kähler metric g on the K3 surface X(f1, f2)
in the class λωFS, and B-field B = − 1

2ωFS [82].

Note that in general, no explicit constructions are known for superconformal
field theories associated to smooth K3 surfaces. However, Thm. 2.6.4 gives a
simple (Z4 orbifold) construction for a class of superconformal field theories as-
sociated to smooth quartic K3 surfaces X(f1, f2) with a fixed (natural) Kähler
class and B-field.

3. Some Insights from Topological Field Theory

While in Section 2, I have tried to present a rather encouraging picture for
superconformal field theories associated to K3, where geometry is manifestly
visible within conformal field theory, the general situation is far more obscure.
However, every N = (2, 2) superconformal field theory possesses a “topological
sector” which in many cases allows the extraction of geometric data. This sec-
tion is devoted to the basic notions of these “topological sectors”, in particular
to the special geometries that arise from the study of families or moduli spaces
of topological field theories.

For every N = (2, 2) superconformal field theory the space of states H

possesses interesting subspaces which carry the structure of Frobenius alge-
bras: Given such a conformal field theory, consider

Ac,c :=
{
φ ∈ H | 2L0φ = J0φ, 2L0φ = J0φ

}
,

Ac,a :=
{
φ ∈ H | 2L0φ = J0φ, 2L0φ = −J0φ

}
,

and Aa,c, Aa,a are defined analogously. The A•,• are often called the (chiral,
chiral), (chiral, antichiral) rings, etc. [57], and indeed they inherit a
ring structure from the operator product expansion mentioned in Def. 2.1.3, so
each A•,• is in fact an algebra. Additionally, there is a non-degenerate bilinear
form on A•,• inherited from the two-point functions on H, and the axioms
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of conformal field theory ensure that these structures conspire to those of a
Frobenius algebra, as was first discovered by Witten [84, 85] and Dijkgraaf,
Verlinde, Verlinde [26]:

Definition 3.1. A Frobenius algebra over C is a commutative associative
C algebra with a unit e together with a non-degenerate bilinear form 〈·, ·〉 : A×
A → C, which is invariant, that is,

∀ a, b, c ∈ A : 〈a · b, c〉 = 〈a, b · c〉.

Therefore, from now on I call the A•,• the (chiral, chiral), (chiral,
antichiral) algebras, etc. In fact, the A•,• are closely related to the struc-
tures that give rise to the elliptic genus of Def. 2.3: Under the conditions stated
there, the space of states of an N = (2, 2) superconformal field theory enjoys
a certain vector space isomorphism H

NS,NS ∼= H
R,R known as the spectral

flow. Depending on the chosen normalizations and the chosen direction of the
flow, under the spectral flow, those states which in the elliptic genus contribute
to the leading order terms with h = c/24 and h = c/24 are mapped into one
of the four algebras A•,•. Recalling that the conformal field theoretic elliptic
genus is expected to agree with the geometric elliptic genus of a Calabi-Yau
variety Y if our superconformal field theory is obtained by a non-linear sigma
model construction from Y , and that the leading order terms of the geometric
elliptic genus capture the Euler characteristic of Y , we expect to be able to
identify the ring structure of A•,• with a natural ring structure on H∗,∗(Y,C).
This is one of the essential ideas of topological field theory.

The Frobenius algebra Ac,c is particularly interesting for a superconformal
field theory which has a Landau-Ginzburg model description (see for example
[80] for an excellent introduction). A Landau-Ginzburg model describes the
theory as a UV fixed point of the renormalization group flow for an N = 2
supersymmetric field theory with some superpotential f(x), which in general is
a quasihomogeneous polynomial in several variables x = (x0, . . . , xn). The
(chiral, chiral) algebra then is given by the Jacobi algebra J for f as in-
troduced in Def. 1.1.1. Indeed, by means of Landau-Ginzburg models there
is a fundamental relation between certain N = (2, 2) superconformal field
theories and singularity theory [78]. This relation is particularly beautiful
in the case of the N = (2, 2) Virasoro minimal models. These models
arise from the classification of unitary lowest weight representations of the
N = 2 super-Virasoro algebra. Indeed, if the central charge obeys c < 3,
then by [10] such representations only exist at discrete values of c, namely
for c = 3k/(k + 2) with k ∈ N, and for each such value of the central charge
only finitely many inequivalent unitary lowest weight representations exist. One
obtains a well defined N = (2, 2) superconformal field theory at each central
charge c = c = 3k/(k + 2), where the Hilbert space H of states is the direct
sum over all these representations, each taken in a two-fold “left-right sym-
metric” tensor product, one tensor factor for the action of the left handed
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and the other for the right handed N = 2 super-Virasoro algebra. The re-
sulting theory is the N = (2, 2) Virasoro minimal model of type Ak+1.
Indeed, its (chiral, chiral) algebra agrees with the Jacobi algebra of the quo-
tient singularity of type Ak+1 of Thm. 1.2, and its (antichiral, chiral) algebra
is trivial. Taking an appropriate sum over other left-right combinations of the
available unitary lowest weight representations at given central charge one also
obtains D and E type minimal models, where the (chiral, chiral) algebras ac-
cordingly agree with the Jacobi algebras of the corresponding simple surface
singularities [78], and the (antichiral, chiral) algebras are trivial.

One thus comes to the conclusion that the Jacobi algebras of certain sin-
gularities must in fact be Frobenius algebras [77]. Indeed, this is well known
[69, 70, 71] by means of the residual pairing for the universal unfolding of
the singularity. Furthermore, according to Def. 1.1.3, given such a semiuniver-
sal unfolding F of f , at fixed t the function germ Ft gives a deformation of
the Landau-Ginzburg potential f . The Landau-Ginzburg model with poten-
tial Ft is still a supersymmetric field theory, so the parameter space of such
Landau-Ginzburg families obtains the structure of a Frobenius manifold:

Definition 3.2. A Frobenius manifold is a complex manifold M , such that
the holomorphic tangent space T 1,0

t M for every t ∈ M is a Frobenius alge-
bra over C with commutative associative multiplication ·t, unit et, and non-
degenerate quadratic form gt = 〈·, ·〉t, obeying the following axioms:

• The quadratic form g defines a holomorphic metric on the holomorphic
tangent bundle T 1,0M with flat Levi-Civita connection ∇.

• The Higgs field C : T 1,0M → Ω1(M)⊗T 1,0M , CXY := −X ·Y gives a
smoth flat tensor field C, and the unit gives a smooth flat vector field e:

∇(C) = 0 and ∇(e) = 0.

• There is a smooth vector field E, called the Euler field, which obeys

LieE(·) = ·, LieE(g) = (2− d) g

for some d ∈ C.

Indeed, an exact identification of the bases of semiuniversal unfoldings of
the ADE singularities and the parameter spaces of their associated Landau-
Ginzburg families, along with their Frobenius manifold structures, can be found
in [8]. Moreover, the correlators in the corresponding topological field theories
are holomorphic functions of the moduli, governed by differential equations
which express the associativity of the operator product expansion mentioned
in Def. 2.1.3 [25]. These differential equations exhibit a beautiful integrable
structure [29].
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The special geometry of Landau-Ginzburg families is in fact much richer, as
was discovered by Cecotti [18, 19], and then generalized to arbitrary N = 2 su-
persymmetric quantum field theories by Cecotti and Vafa [20]. While the Frobe-
nius manifold captures the holomorphic structure of spaces of N = 2 supersym-
metric quantum field theories, the Hermitian metric, which for example in the
superconformal case theA•,• inherit from the space of states H, involves the real
structure of H, in other words it involves anti-holomorphic parameters. In the
physics literature, the process of taking into account these anti-holomorphic de-
pendencies is dubbed the topological-antitopological fusion. In math-
ematical terms, these structures were first introduced by Dubrovin [30], follow-
ing the work of Cecotti and Vafa. Namely, the holomorphic tangent bundle of
a Frobenius manifold is equipped with a compatible flat real structure, and
the so-called tt∗ equations are required to hold, imposing yet another flatness
condition on the Higgs field of the Frobenius manifold. Dubrovin has refor-
mulated these equations as a Riemann-Hilbert problem and has proved their
integrability. Closing the circle, one again comes to the conclusion that for
certain classes of singularities, the base of the semiuniversal unfolding should
carry a tt∗ geometry. Indeed, Hertling has shown that there is a canonical
such structure on the semiuniversal unfolding of every hypersurface singu-
larity [45]. Hertling also generalizes the tt∗ geometries to so-called TERP
structures, using the language of twistor theory, and he argues that TERP
structures offer a rich generalization of the notion of variations of Hodge
structures.

While the full beauty and impact of tt∗ geometry and all its generaliza-
tions has remained an active and exciting area of research to the very day, a
first application was almost immediately given by Cecotti and Vafa [21]. Us-
ing Dubrovin’s integrability result [30] for the tt∗ equations they were able to
prove an ADE classification for a certain class of N = (2, 2) superconformal
field theories. Namely, consider an N = (2, 2) superconformal field theory with
Landau-Ginzburg description which admits non-degenerate massive deforma-
tions. Then the vanishing cycles in the C∞-fibration (1.1), which arise from a
semiuniversal unfolding F of the corresponding singularity, can be interpreted
as “wave fronts of soliton solutions” close to a critical point of the potential Ft

in the infrared regime of the Landau-Ginzburg model. In particular, the soli-
ton spectrum in the infrared is given by the intersection theory of vanishing
cycles or Lefschetz thimbles, while the superconformal field theory of interest is
found in the UV limit. By Dubrovin’s integrability result [30], the dimension of
the Jacobi algebra and the intersection form of the vanishing cycles completely
determine the solutions of the tt∗ equations and thereby the geometry of the
underlying moduli space. Moreover, Dubrovin’s reformulation of the tt∗ equa-
tions in terms of a Riemann-Hilbert problem reduces the classification prob-
lem for such theories to the classification of the relevant matrices which define
the associated Riemann-Hilbert problem. In the case of N = (2, 2) Virasoro
minimal models with non-degenerate massive deformations, where it is also
tacitly assumed that J0 − J0 has only integral eigenvalues, the classification
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turns out to reduce to the solution of the very same combinatorial problem
which underlies the usual ADE classification, say, of simple singularities, as in
Thm. 1.2:

Theorem 3.3. There is an ADE classification of those N = (2, 2) Virasoro

minimal models which possess non-degenerate massive deformations and which

have only integral eigenvalues of J0 − J0. In fact, for every such model the

Frobenius algebra of (chiral, chiral) states is isomorphic to the Jacobi algebra of

an ADE type surface singularity. Moreover, the moduli space of topological field

theories obtained by massive deformations from such a model is isomorphic, as

a tt∗ geometry, to the base of a semiuniversal unfolding of the corresponding

ADE singularity [21].

Cecotti and Vafa’s Thm. 3.3 provides a very satisfactory and explicit link be-
tween conformal field theory and singularity theory. In particular, the classical
McKay correspondence of Thm. 1.7 is seen to play its role for those N = (2, 2)
Virasoro minimal models which possess non-degenerate massive deformations
and where J0 − J0 only has integral eigenvalues, if we allow ourselves to iden-
tify the base of our semiuniversal unfolding with the Cartan algebra of the
corresponding ADE Lie algebra, as explained in the discussion of Thm. 1.4.

However, the assumption that J0 − J0 in our superconformal field theory
possesses only integral eigenvalues amounts to a rather severe restriction. The
existence of N = (2, 2) Virasoro minimal models which do not meet this as-
sumption turns out to be very likely. In fact, Gannon has given a classification
of numerous candidates for such models [37]: He has determined all modular
invariant sums of left-right-handed combinations of characters of the unitary
lowest weight representations for the N = 2 super-Virasoro algebra at any
central charge c < 3, whose leading order term is q−c/24q−c/24, ensuring the
uniqueness of the vacuum from Def. 2.1.2. Hence the partition functions of all
N = (2, 2) Virasoro minimal models must belong to Gannon’s list. The list
at every central charge is finite but exhibits an abundance of additional can-
didates for partition functions, beyond the ADE classified ones of the models
in Thm. 3.3. Using Gannon’s list, Gray [40] was able to rederive the Cecotti-
Vafa ADE classification from a purely conformal field theoretic point of view,
by showing that the partition functions of the (ADE classified) N = (2, 2)
Virasoro minimal models classified by Cecotti and Vafa agree precisely with
those partition functions in Gannon’s list for which the operator J0 − J0 has
only integral eigenvalues. This latter condition is equivalent to the assump-
tion that the theory enjoys spacetime supersymmetry. Moreover, Gray has
shown that every modular invariant function in Gannon’s list can be obtained
from the partition function of an ADE model by an orbifold procedure. This
implies

Theorem 3.4. The partition function of every N = (2, 2) Virasoro minimal

model agrees with that of an orbifold of one of the ADE classified minimal
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models with spacetime supersymmetry [40]. All modular invariant functions in

Gannon’s list [37] can be obtained by such an orbifolding.

Since the basic consistency conditions for the relevant orbifoldings have also
been checked in [40], these results amount to overwhelming evidence for the
expectation that every function in Gannon’s list is in fact the partition function
of a well defined N = (2, 2) superconformal field theory. The zoo of necessary
orbifoldings is listed explicitly in [40] and awaits its geometric interpretation
[41]. It would be exciting if the role of the classical McKay correspondence
(Thm. 1.7) in the ADE classification of models with spacetime supersymmetry
(Thm. 3.3) could be taken by the special McKay correspondence (Thm. 1.8) in
the full classification of N = (2, 2) Virasoro minimal models which is expected
to follow from Thm. 3.4.

4. Further Directions

In the previous sections, the discussion was mostly focussed around surface
singularities and their geometry governing certain quantum field theories. The
situation in higher dimensions, unfortunately, is far less clear, and in particular
there is a lack of examples where more detailed explicit investigations could be
performed. From my personal point of view, two classes of examples give reason
for hope, because preliminary results are already at hand: For superconformal
field theories, explicit constructions associated to so-called Borcea-Voisin
threefolds can be carried out [50], and for string theories on elliptically
fibered Calabi-Yau threefolds, investigations of the underlying geometry are on
their way [24].

The Borcea-Voisin threefolds are examples of Calabi-Yau varieties. Their
first detailed study was carried out independently by Borcea [9] and Voisin
[79] in the context of mirror symmetry, since apart from few exceptions these
threefolds come naturally in mirror pairs:

Definition 4.1. Consider a K3 surface X which allows an antisymplectic in-
volution σ, and an elliptic curve E with the standard antisymplectic involution
ι acting by multiplication by (−1) on a universal cover of E. Denote by Z2 the
group of order two whose generator is given by the action of (σ, ι) on X × E.
The threefold which is obtained from (X ×E)/Z2 by minimal resolution of all
singularities is called a Borcea-Voisin threefold.

One checks that all Borcea-Voisin threefolds Y are Calabi-Yau varieties with
vanishing first Betti number. Moreover, closed formulas for all Hodge numbers
of Y are known [9, 79], which depend on the precise complex geometry of
the K3 surface X that enters in the construction. Here, the existence of an
antisymplectic involution σ on X is a crucial restriction. Nikulin has shown
that there are precisely 75 families M(r,a,δ) of K3 surfaces which admit such
an antisymplectic involution [66]. The parameters (r, a, δ) for each of these
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families in fact specify the action of σ: A K3 surface X is a member of the
family M(r,a,δ) if and only if it admits an antisymplectic involution σ such that
for the induced action of σ on H2(X,Z), the invariant sublattice S ⊂ H2(X,Z)
has the following characteristic properties: The rank of S is r ∈ {0, . . . , 20},
its discriminant is S∗/S ∼= (Z2)

a with a ∈ {0, . . . , 11}, and finally, δ is the
parity of the quadratic form 〈·, ·〉 induced by the cup product on H∗(X,Z).
In other words, δ = 0 if for all s∗ ∈ S∗, 〈s∗, s∗〉 ∈ Z, and δ = 1 otherwise.
The parameters (r, a, δ) actually determine the isomorphism class of the lattice
S uniquely [65], and except for the case (r, a, δ) = (11, 11, 1) its embedding
into H2(X,Z) is unique up to automorphisms. Then the family M(r,a,δ) is the
moduli space of S-polarized K3 surfaces [28]. The list of 75 possible three-
tuples (r, a, δ) in [66] is almost symmetric under (r, a, δ) ↔ (20 − r, a, δ), and
Borcea and Voisin have observed independently that every pair of Borcea-Voisin
threefolds Y, Y̌ constructed from a pair of K3 surfaces X, X̌ with X ∈ M(r,a,δ)

and X̌ ∈ M(20−r,a,δ) is in fact a mirror pair [9, 79].
To construct superconformal field theories associated to Borcea-Voisin

threefolds, one needs to take the tensor product CX ⊗ CE of a superconfor-
mal field theory CX associated to a K3 surface X and a superconformal field
theory CE associated to an elliptic curve E, and then perform an orbifolding,
induced by the geometric Z2 action of (σ, ι) on X×E as above. From Thm. 2.6,
any orbifold conformal field theory associated to K3 is a good candidate for CX ,
while superconformal field theories CE associated to elliptic curves are generally
completely under control. However, a priori it is far from obvious whether any
of the families M(r,a,δ) contain orbifold limits of K3. Moreover, compatibility
of the induced B-field values (see Thm. 2.6.1) with the action of (σ, ι) is not
obvious but a necessary precondition for a well defined orbifold to exist. In joint
work with M. Khalid we are addressing these questions, and we already have
preliminary results [50]:

Theorem 4.2. Let M(r,a,δ) denote a family of K3 surfaces from Nikulin’s

classification [66] which allows an antisymplectic involution σ as above.

1. In the family M(r,a,δ), every K3 surface X is a Z2 orbifold limit of K3
if and only if (r, a, δ) = (18, 4, 0).

2. The family M(r,a,δ) contains a K3 surface X which is a Z4 orbifold limit

of K3 if and only if (r, a, δ) = (20, 2, 1). The family M(20,2,1) has only

one element.

3. The family M(14,6,0) contains a K3 surface X which is a Z3 orbifold

limit of K3; the family M(18,4,1) contains a K3 surface X which is a Z6

orbifold limit of K3.

In 1.-3. above, the induced B-field for each of the corresponding orbifold con-

formal field theories associated to X is invariant under the induced action of

the antisymplectic involution σ on X.
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Even before the classification of all orbifold limits of K3 within the families
M(r,a,δ) has been completed, it follows that we obtain explicit constructions for
an interesting class of superconformal field theories from the study of Borcea-
Voisin threefolds. In particular, those superconformal field theories deserve spe-
cial attention which are associated to Borcea-Voisin threefolds whose underly-
ing K3 surface has the complex structure of X ∈ M(20,2,1): Using Thm. 2.6.4
it follows that these theories should have competing geometric interpretations
on threefolds that arise as Z2 orbifolds from the product of certain quartic
K3 surfaces with an elliptic curve. Hence these conformal field theories give a
particularly interesting class of models for future investigations, allowing the
construction of superconformal field theories associated to a family of threefolds
for which there were no known constructions up to now [50].

Elliptically fibered Calabi-Yau threefolds with section provide another class
of higher dimensional geometries, where interesting singularities occur naturally
in a setting that is relevant for string theory. Indeed, these Calabi-Yau threefolds
feature in a string-string duality, which declares that type IIA string theories or
their F-theory limits on elliptically fibered Calabi-Yau threefolds with section
are dual to E8×E8 heterotic strings on the product of an elliptic curve and aK3
surface. The mathematics of such string-string dualities is far from understood
to date. In the context of this note, the most pressing questions concern highly
degenerate fibers in elliptic fibrations:

Indeed, consider a (relatively minimally) elliptically fibered Calabi-Yau
threefold p : Y → Σ. This means [61, 42, 24] that Y and Σ are smooth, that
all fibers of p are one dimensional and geometrically connected, and that Y
contains no contractible surface whose contractible fibers lie in the fibers of p.
Moreover, the generic fiber of p is an elliptic curve, the reduced discriminant
locus is a divisor in Σ, and for every smooth curve C ⊂ Σ which does not
contain singular points of the reduced discriminant locus, the surface p−1(C)
is smooth. We also assume that the fibration possesses a section. Let ∆ ⊂ Σ
denote the discriminant of the fibration, a divisor, which decomposes into ir-
reducible components ∆ = ∪D

i=0∆i. Then our assumptions together with the
Kodaira classification Thm. 1.6 ensure that for each i ∈ {0, . . . , D}, the fibers
of p over ∆i generically have some fixed Kodaira type. However, the geometry
of those fibers which occur over singular points of ∆, in particular over the
intersections ∆i ∩ ∆j of two different components of ∆, is more complicated.
Some beautiful work in this context has been done already, most importantly by
Miranda [61] and by Grassi and Morrison [39]. However, a complete picture has
not yet been established. In particular, the prediction from string-string duali-
ties, which associates so-called charged matter multiplets to such highly
degenerate fibers, is still quite obscure from a mathematical point of view. In
joint work with A. Degeratu we are addressing these issues; for example, [24]
contains a refinement of Tate’s algorithm which allows us to understand the spe-
cific degenerations of elliptic fibrations over non-trivial intersections ∆i ∩ ∆j ,
i 6= j. We have already completed a detailed mathematical introduction to the
topic [23].
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maps I, II, Birkhäuser, Boston-Basel-Stuttgart, 1985.

[4] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966),
129–136.

[5] M. Artin, J.-L. Verdier, Reflexive modules over rational double points, Math.
Ann. 270 (1985), 79–82.

[6] P. Aspinwall, D. Morrison, String theory on K3 surfaces, in: Mirror symmetry II,
AMS/IP Stud. Adv. Math. 1, Amer. Math. Soc., Providence, RI (1997), 703–716.

[7] M. Auslander, Rational singularities and almost split sequences, Trans. Amer.
Math. Soc. 293 (1986), 511–531.

[8] B. Blok, A. Varchenko, Topological conformal field theories and the flat coordi-

nates, Int. J. Mod. Phys. A7 (1992), 1467–1490.

[9] C. Borcea, K3 surfaces with involution and mirror pairs of Calabi-Yau mani-

folds, in: Mirror symmetry II, AMS/IP Stud. Adv. Math. 1, Amer. Math. Soc.,
Providence, RI (1997), 717–743.

[10] W. Boucher, D. Friedan, A. Kent, Determinant formulae and unitarity for the

N = 2 superconformal algebras in two dimensions or exact results on string

compactification, Phys. Lett. B172 (1986), 316–322.

[11] T. Bridgeland, A. King, M. Reid, Mukai implies McKay: the McKay correspon-

dence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001),
535–554.

[12] E. Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. Math. 4
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