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˜D-modules on rigid analytic spaces

Konstantin Ardakov

Abstract. We give an overview of the theory of ÛD-modules on rigid analytic spaces and its applications

to admissible locally analytic representations of p-adic Lie groups.
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Keywords. D-modules, rigid analytic geometry, Beilinson-Bernstein localisation, locally analytic

representations, p-adic Lie groups

1. ıD-modules on rigid analytic spaces

1.1. Rigid analytic spaces. Let K be a field complete with respect to a non-archimedean

norm. The ultrametric inequality |x− y| � max |x|, |y| implies that the “unit circle” {|z| =
1} is open in the affine line over K, and the “closed unit disc” {|z| � 1} is disconnected,

being the disjoint union of the unit circle and the open unit disc. This is a basic feature of

non-archimedean geometry: every K-analytic manifold is totally disconnected with respect

to its natural topology.

In order to make the category of K-analytic manifolds more geometric, Tate invented

rigid analytic spaces [35], by introducing a new (Grothendieck) topology on this category,

with a basis given by K-affinoid varieties which are by definition the maximal ideal spectra

of K-affinoid algebras. The nth-Tate algebra is the algebra K〈x1, . . . , xn〉 of K-valued

functions on the n-dimensional polydisc that can be globally defined by a single power

series which converges on the entire polydisc, and a K-affinoid algebra is by definition any

homomorphic image of a Tate algebra.

The theory of rigid analytic spaces has now reached maturity comparable to that of the

theory of complex analytic manifolds, thanks to the works of Kiehl [20], Raynaud [25],

Berkovich [4], Huber [18] and many others. It is now an indispensable part of modern

arithmetic geometry, and has found many striking applications such as Tate’s uniformisation

of elliptic curves with bad reduction, and the proof of the Local Langlands conjecture for

GLn by Harris and Taylor.

1.2. Rigid analytic quantisation. We assume now that K is discretely valued, has char-

acteristic zero and that its residue field has characteristic p > 0. Let K◦ denote its ring of

integers and let π ∈ K◦ be a uniformiser. In a series of papers including [5–7], Berthelot

introduced the sheaf of arithmetic differential operators
’D(m)
X ,Q of level m on every smooth

formalK◦-scheme X in an attempt to better understand the p-adic cohomology of algebraic
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varieties in characteristic p.

Let X = Â1 be the formal affine line over K◦. One of the origins of this work was the

observation that it is possible to obtain the ring of global sections Γ(X ,’D(0)
X ,Q) by defining a

non-commutative multiplication ∗ on the second Tate algebra K〈x, y〉, which is completely

determined by the relation
y ∗ x− x ∗ y = 1.

In other words, if t denotes a local coordinate on X and ∂t is the corresponding vector

field then Γ(X ,’D(0)
X ,Q) is isomorphic to the Tate-Weyl algebraK〈t; ∂t〉 which can be defined

by π-adically completing the usual Weyl algebra A1(K
◦) = K◦[t; ∂t] with coefficients in

K◦, and inverting π. In this way we view Γ(X ,’D(0)
X ,Q) as a naive “rigid analytic quantisation”

of the two-dimensional polydisc.

The aim of this paper is to sketch the construction of the algebra ÙD(X) of infinite order

differential operators on a smooth K-affinoid variety X , developed in joint work with S. J.

Wadsley: proofs will appear elsewhere. Morally ÙD(X) is a “rigid analytic quantisation” of

the entire cotangent bundle T ∗X .

1.3. Lie algebroids. Let k → R be a morphism of commutative rings. Recall [26] that

a k-R-Lie algebra or a Lie algebroid is a pair (L, a) consisting of a k-Lie algebra and R-

module L, together with an R-linear k-Lie algebra homomorphism a from L to the set of

k-linear derivations Derk R of R, such that [v, rw] = r[v, w] + a(v)(r)w for all v, w ∈ L
and all r ∈ R. It is possible to form a unital associative k-algebra U(L) called the envelop-
ing algebra of (L, a) which is generated as a k-algebra by R and L, subject to appropriate

natural relations. Enveloping algebras of Lie algebroids simultaneously generalise the ordi-

nary enveloping algebra U(g) of a Lie algebra g over a field k, and also the algebra D(X)
of (crystalline) differential operators on a smooth affine algebraic variety X over k, since
T (X) = DerkO(X) is itself naturally a k-O(X)-Lie algebra such that U(T (X)) = D(X).

The ring U(L) has a natural positive filtration with associated graded ring the symmetric

R-algebra S(L) whenever L is a projective R-module; thus U(L) is an algebraic quantisa-

tion of the underlying topological space SpecS(L). In this way, the enveloping algebraU(g)
can be viewed as an algebraic quantisation of g∗ = SpecS(g), and D(X) as an algebraic

quantisation of the cotangent bundle T ∗X = SpecS(T (X)).

1.4. Quantised rigid analytic cotangent bundles. Let O(X) be the algebra of rigid K-

analytic functions on a smooth K-affinoid variety X , let O(X)◦ be its subring of power-

bounded elements, and let T (X) be the Lie algebra of continuous K-linear derivations of

O(X).
Definition. We say that an O(X)◦-submodule L of T (X) is a Lie lattice if it is a sub K◦-
O(X)◦-Lie algebra of T (X), is finitely generated as a module over O(X)◦ and generates

T (X) as a K-vector space. Let ’U(L) be the π-adic completion of U(L) and let ◊�U(L)K :=
’U(L) ⊗K◦ K. We define ÙD(X) to be the inverse limit of the ◊�U(L)K where L runs over all
possible Lie lattices in T (X).
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Every Lie lattice L gives rise to a tower

◊�U(L)K ← ÿ�U(πL)K ← Ÿ�U(π2L)K ← · · ·
of Noetherian Banach K-algebras, whose inverse limit is a Fréchet K-algebra in the sense

of non-archimedean functional analysis [32]. Since any two Lie lattices in T (X) contain

a π-power multiple of each other, the inverse limit of this tower is isomorphic to ÙD(X),
regardless of the choice of the Lie lattice L.

Example. Let X denote the closed disc of radius 1 in the affine line over K, with lo-

cal coordinate t. Then O(X) is the first Tate algebra K〈t〉 and O(X)◦ is the subalgebra

K◦〈t〉 := K〈t〉 ∩K◦[[t]]. Let L = K◦〈t〉∂t, so that πnL is a Lie lattice in T (X) for each
n � 0 and

Ÿ�U(πnL)K ∼= K〈t;πn∂t〉
is a deformation of the Tate-Weyl algebra over K. Thus

ÙD(X) =
⋂
n�0

K〈t;πn∂t〉 =
{ ∞∑

i=0

ai∂
i
t ∈ K〈t〉[[∂t]] : lim

i→∞
ai
πin

= 0 for all n � 0

}

is naturally in bijection with O(T ∗X).

If Y ↪→ X is an open embedding of smooth K-affinoid varieties and L is a Lie lattice

in T (X), then O(Y )◦ ⊗O(X)◦ L need not be a Lie lattice in T (Y ) in general. However,

a sufficiently large π-power multiple of O(Y )◦ ⊗O(X)◦ L is a Lie lattice in T (Y ), and the

functoriality of enveloping algebras of Lie algebroids induces a ring map ÙD(X) → ÙD(Y ).
We have the following non-commutative analogue of Tate’s Acyclicity Theorem:

Theorem. Let X be a smooth K-affinoid variety. Then ÙD is a sheaf on X with vanishing
higher cohomology.

This construction extends naturally to a sheaf ofK-algebras ÙD on arbitrary smooth rigid

analytic varieties over K.

1.5. Coadmissible ÙD-modules. Recall [33] that Schneider and Teitelbaum defined a Fréchet-
Stein algebra to be the inverse limit of a countable inverse system of Noetherian K-Banach

algebras (An)n∈N with flat transition maps.

Theorem. Let X be a smooth K-affinoid variety. Then the algebra ÙD(X) is Fréchet-Stein.
There is a well-behaved abelian category of coadmissibleA-modules associated with any

Fréchet-Stein algebra A, whose objects are inverse limits of compatible familes (Mn)n∈N
where each Mn is a finitely generated module over An. LetX be a smooth rigidK-analytic

variety, and let (Xj)j be an admissible K-affinoid covering of X . It is possible to prove a

precise non-commutative analogue of Kiehl’s Theorem from [20], which allows us to glue

the resulting categories of coadmissible ÙD(Xj)-modules in an appropriate way in order to

obtain the category CX of coadmissible ÙD-modules on X .

Every ÙD-module that is coherent as an OX -module is coadmissible in this sense. As in

the classical theory [17] over C, we may think of these ÙD-modules as rigid vector bundles
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equipped with a flat connection, and thereby obtain a link between our ÙD-modules and the

well-established theory of p-adic differential equations [19]. There is also a natural exact an-

alytification functor from the category of coherent D-modules on a smooth algebraic variety

Y over K to CY an . For these reasons, we will regard CX as an appropriate rigid analytic

analogue of the category of coherent algebraic D-modules.

1.6. Functoriality. In the classical setting [17], it is known that the inverse and direct image

functors for D-modules preserve O-quasi-coherence, but need not in general preserve D-

coherence. Since our category of coadmissible ÙD-modules is modelled on the category of

coherent algebraic D-modules, and since it is well-known that there is no obvious well-

behaved analogue of quasi-coherentO-modules in rigid analytic geometry, it is unreasonable

to expect to be able to define direct and inverse image functors in full generality in our current

setting. However, given a morphism f : X → Y between smooth rigid analytic varieties, it

is possible to define a transfer bimodule ÙDX→Y := OXÙ⊗f−1OY
f−1

ÙDY , and a direct image

functor
f+ : CrX → CrY

M �→ f∗
Ä

MÙ⊗
ÛDX

ÙDX→Y

ä

between the derived categories of coadmissible right ÙD-modules, at least in the case when

f is proper. It would be interesting to investigate whether the classical inverse and direct

image functors extend to our setting in a greater generality.

1.7. Dimension theory. Whenever A is an Auslander-regular ring [13], the functor M �→
RHomA(M,A) induces an anti-equivalence between the derived categories of finitely gen-

erated left, and right,A-modules [36]. This allows us to associate with any finitely generated

A-module M its canonical dimension d(M), defined in terms of the vanishing of the Ext
groups ExtjA(M,A).

When A is the ring of regular functions on a smooth affine variety X over a field, d(M)

is the Krull dimension of the support of the associated sheaf M̃ on X .

Theorem. Let X be the d-dimensional polydisc and let L be the free O(X)◦-submodule
of T (X) spanned by the standard vector fields. For every n � 0, the deformed Tate-Weyl

algebra Ÿ�U(πnL)K is an Auslander-regular ring of global dimension d.

Proof. This version of Bernstein’s Inequality for deformed Tate-Weyl algebras follows from

[1, Theorem B].

Schneider and Teitelbaum observed in [32, §8] that if A = lim
←−

An is a Fréchet-Stein al-

gebra such that each An is Auslander-regular of the same global dimension, then the canon-

ical dimension function extends naturally to the category of coadmissible A-modules. It

follows from the above result that their formalism applies to our algebras ÙD(X) whenever

X is sufficiently small, and allows us to define the canonical dimension of a coadmissible
ÙD-module on an arbitrary smooth rigid K-analytic variety.

Definition. We say that a non-zero coadmissible ÙD-module is holonomic if its canonical
dimension is zero.

1.8. Support and Kashiwara’s equivalence. The support of an abelian sheaf on a topo-

logical space is a fundamental invariant. Since our sheaves are defined on a space with a
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Grothendieck topology, the usual definition of support in terms of stalks seems inferior to

the alternative one given by

SuppM := X −
⋃{

U admissible open in X :M|U = 0
}
.

It is natural to hope that SuppM is an analytic subspace of X for every coadmissible ÙD-

module M. However, morally a coadmissible ÙD-module is a coherent sheaf on a rigid

analytic quantisation of T ∗X and the projection map T ∗X → X isn’t proper, so this hope

is probably unreasonable. Nevertheless, it seems possible that there is an appropriately large

subcategory of coadmissible ÙD-modules whose objects do have analytic support.

As there is no natural exhaustive ring filtration on the sheaf ÙD due to the presence of

completions, it is not clear at present how to define a good analogue of the characteristic va-
riety for coadmissible ÙD-modules. Nevertheless it is conceivable that in the future it will be

possible to do this by “microlocalising” coadmissible ÙD-modules to appropriate Lagrangian

affinoid subspaces of T ∗X , and thereby make more precise the words “rigid analytic quan-

tisation”. In any case, the notion of support defined above is sufficient for us to be able to

formulate a rigid-analytic version of the fundamental Kashiwara equivalence:

Theorem. Let i : Y → X be a closed immersion of smooth rigid analytic varieties. Then the
functor i+ induces an equivalence of abelian categories between CY and the full subcategory
CYX consisting of objectsM in CX with support contained in the image of Y .

2. p-adic representations of p-adic Lie groups

2.1. Locally analytic representations. Let L be a finite extension of Qp, assume that our

ground field K contains L and let G be a locally L-analytic group. In a series of papers

including [29, 31–33], Schneider and Teitelbaum developed the theory of admissible locally
analytic G-representations in locally convex K-vector spaces. This theory has found appli-

cations to several areas, including p-adic automorphic forms [22], p-adic interpolation [15],

non-commutative Iwasawa theory [30] and the p-adic local Langlands programme [3, 10–

12].

By definition, the locally analytic distribution algebra of G over K is the strong dual

D(G,K) of the vector space of locally analyticK-valued functions on G. It may be viewed

as a certain K-Fréchet space completion of the group ring K[G].
When the group G is compact, Schneider and Teitelbaum showed that D(G,K) is a

Fréchet-Stein algebra, so the notion of coadmissible D(G,K)-module makes sense. A lo-

cally analytic representation V of an arbitrary locally L-analytic group G is admissible if

its strong dual is coadmissible as a module over the distribution algebra D(H,K) of every
compact open subgroup H of G.

One of the most basic problems in this theory is to gain a better understanding of the ir-
reducible admissible locally analytic representations of G, or equivalently, the simple coad-

missible modules over the distribution algebra D(G,K).

2.2. Arens-Michael envelopes. There is a natural embedding of the Lie algebra g of G
into D(G,K), which extends to an embedding of K-algebras U(gK) ↪→ D(G,K), where

gK := K ⊗L g. It follows from the work of Kohlhaase [21] that the closure of the image
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consists of theK-valued locally analytic distributions on G which are supported at the iden-

tity in a suitable sense, and is isomorphic to the Hausdorff completion ˙U(gK) of U(gK)with

respect to all submultiplicative seminorms on U(gK). Following Schmidt [27], we call this

completion the Arens-Michael envelope of U(gK).

If {x1, . . . , xd} is a K-basis for gK , then ˙U(gK) can be identified with the vector space

of power series in the xi converging everywhere on Kd:

˙U(gK) =

{∑
α∈Nd

λαx
α ∈ K[[x1, . . . , xd]] : sup

α∈Nd

|λα|r−|α| <∞ for all r > 0

}
.

This allows us to view ˙U(gK) as a “rigid analytic quantisation” of g∗K .

2.3. Infinitesimal central characters. Assume from now on that G is an open subgroup

of the group of L-rational points of a split semisimple L-algebraic group G. Let g be the

Lie algebra of G. The classical “Harish-Chandra” centre Z(gK) of U(gK) remains central

inD(G,K), and Kohlhaase showed that the Arens-Michael envelope of Z(gK) is in fact the

centre of D(G,K) whenever the centre of G is trivial.

Theorem. Let M be a simple coadmissible ˙U(gK)-module. Then there exists a K-algebra
homomorphism θM : Z(gK) → K such that z · m = θM (z)m for all z ∈ Z(gK) and
m ∈M . Thus M has an infinitesimal central character.

This result follows from our analogue of Quillen’s Lemma [1, Theorem D] for affinoid

enveloping algebras. Dospinescu and Schraen have extended this Theorem to simple coad-

missible D(G,K)-modules in [14].

2.4. Beilinson-Bernstein Localisation. It follows from Theorem 2.3 that in the quest for

simple coadmissible ˙U(gK)-modules, it will be sufficient to study the central quotients

ıUθ := ˙U(gK)/〈ker θ〉
for every central character θ : Z(gK) → K in turn. It is well-known that a good way to

understand the uncompleted algebras U(gK)/〈ker θ〉 is through geometric representation
theory [2], which interprets them as rings of globally defined twisted differential operators

on the flag variety G/B associated with gK .

Theorem. Let (G/B)an be the rigid analytic flag variety. Let tK be a Cartan subalgebra
of g and let λ ∈ t∗K be a dominant regular weight. Then there is an equivalence of abelian
categories

®

coadmissible
¯Uλφ−modules

´

∼=
®

coadmissible
ˆDλ−modules on (G/B)an

´

where φ : Z(gK)→ S(tK) is the Harish-Chandra homomorphism.

Here ˆDλ denotes a λ-twisted version of the ring ÙD from §1.4. This rigid analytic ana-

logue of the Beilinson-Bernstein Localisation Theorem has several precursors, including [8,

Theorem 3.2], [23, Théorème 2.1] and [1, Theorem C].
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2.5. Canonical dimension estimates. Schneider and Teitelbaum’s dimension theory from

[32, §8] applies not only to our algebras ÙD(X) as explained in §1.7 above, but also to

the Arens-Michael envelopes ˙U(gK) and the distribution algebras D(G,K) whenever G is

compact locally Qp-analytic group. The canonical dimension of a coadmissible D(G,K)-
module M is zero precisely when M is finite dimensional as a K-vector space.

Using the folklore observation [9] that the main mechanism behind the Beilinson-

Bernstein Localisation Theorem is a quantisation of the Springer resolution, we obtain the

following analogue of Bernstein’s Inequality for ˙U(gK).

Theorem. Suppose that p is a very good prime forG. Let r be the half the smallest possible
dimension of a non-zero G(K)-orbit in g∗K and let M be a coadmissible ˙U(gK)-module.
Then either d(M) = 0 or d(M) � r.

We refer the reader to [1, §6.8, §9.9] for the meaning of the words “very good prime”,

and the precise values that the invariant r takes. Roughly speaking, r is the square root of

the dimension of G: for example if G = SLn then r = n− 1. Theorem 2.5 is an analogue

of Smith’s Theorem for classical enveloping algebras of complex semisimple Lie algebras

[34], and follows easily from the corresponding statement for semisimple affinoid enveloping

algebras [1, Theorem 9.10]. A similar estimate holds for semisimple Iwasawa algebras [1,

Theorem A], and semisimple locally analytic distribution algebras [28, Theorem 9.9].

2.6. Equivariant ÙD-modules. At the time of writing, the main applications of our methods

to the theory of locally analytic representations have been the dimension estimates explained

above. However, we believe that there is significant scope for other applications. Using
ÙD-modules it should be possible to construct irreducible coadmissible D(G,K)-modules

geometrically, and to better understand the admissible representations arising in the p-adic
local Langlands programme for GL2(Qp) and for other p-adic Lie groups.

There have been several attempts to prove a version of the Beilinson-Bernstein Localisa-

tion Theorem for locally analytic distribution algebras, including [28] and [24]. We expect

that it will be possible in the future to show that the abelian category of admissible locally

analytic representations ofGwith dominant regular infinitesimal central character λφ is anti-

equivalent to the category of coadmissible G-equivariant ˆDλ-modules on the rigid analytic

flag variety.
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1. Introduction

Extending a recurrence theorem due to Eskin and Margulis in [9], We proved with Jean-

François Quint in [4] a recurrence theorem for random walks on finite volume homogeneous

spaces. This text is an introduction to these two recurrence theorems.

We will explain in this preprint the main ideas of the proof of both recurrence theorems

by working on the first non-trivial examples. We will not seek for generality, but we hope

that these examples will help the reader to understand the meaning of these theorems. For a

complete account on these theorems the reader is refered to [4] and [9].

2. Markov-Feller chains

We first define Markov-Feller operators and their recurrence properties.

A Markov chain on a space X is a mathematical model which describes the evolution of

a stochastic process (xt)t∈N, for which the position xt+1 at time t + 1 is chosen randomly

according to a law Pxt which depends only on the position xt at time t. In this paper we

will deal only with Markov-Feller chains on second countable locally compact spaces X ,

i.e. with Markov chains for which the law Pxt
on X depends continuously on the point xt.

In a more formal way, let X be a second countable locally compact space. A Markov-
Feller chain on X is a continuous map x → Px from X to the space P(X) of Borel prob-

ability measures on X . As usual, this space P(X) is endowed with the ∗-weak topology.

We also denote by P the induced Markov-Feller operator on the Banach space Cb(X) of

continuous bounded functions on X . It is given, for f in Cb(X) and x in X , by Pf(x) =∫
X
f(y) dPx(y).
Iterating n times this Markov chain, one gets a Markov chain x→ Pn

x . This probability

Pn
x is the law of xn when you know only the position of the chain at time zero x0 = x.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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This Markov chain x → Pn
x is defined inductively by P 1

x = Px and, for n ≥ 1, Pn+1
x =∫

X
Py dP

n
x (y). Its associated Markov operator on Cb(X) is nothing but the nth power Pn.

Here are two very strong recurrence property of P .

Definition 2.1. We say that P is recurrent onX if, for every ε > 0 and x inX , one can find

a compact setM ⊂ X and an integer n0 such that, for all n ≥ n0, one has Pn
x (M) ≥ 1− ε.

This means that there is no escape of mass for the laws of the Markov-Feller chain, i.e.

any ∗-weak limit of a subsequence of Pn
x will be a probability measure.

Definition 2.2. We say that P is uniformly recurrent on X if, for every ε > 0, one can find

a compact M ⊂ X such that, for all x in X , one can find an integer n0 such that, for all

n ≥ n0, one has Pn
x (M) ≥ 1− ε.

This means that the compact set M can be chosen independantly of the starting point x.
Most of the Markov chains we will study will be obtained in the following way. Let G

be a second countable locally compact group acting continuously on X , and μ be a Borel

probability measure onG. The Markov-Feller chain onX will be the corresponding random

walk on X , i.e. the transition probability will be x → Pμ,x := μ ∗ δx. In other words,

the corresponding Markov-Feller operator Pμ is given by, for all f in Cb(X) and x in X ,

Pμf(x) =
∫
G
f(gx) dμ(g).

3. Finite volume homogeneous spaces

We introduce now the random walk on finite volume homogeneous spaces and

state precisely the two recurrence theorems we want to explain.

3.1. Recurrence on G/Λ.

The reader non familiar with Lie groups may skip this general section. Indeed

later on we will mainly focus on examples.

Let G be a connected real algebraic Lie group, let Λ be a lattice in G i.e. Λ is a discrete

subgroup of finite covolume in G and X := G/Λ. Let μ ∈ P(G) be a probability measure

onG, with a finite exponential moment,
∫
G
‖g‖δ dμ(g) <∞, for some δ > 0. Let Γμ be the

closed subgroup generated by the support of μ andHμ be the Zariski closure of Γμ. We will

assume that Hμ is semisimple. We will denote by Hnc
μ the smallest algebraic cocompact

normal subgroup of Hμ. In [9] Eskin and Margulis proved the following:

Theorem 3.1. (Eskin-Margulis) Assume that μ has exponential moment, thatHμ is semisim-
ple and that the centralizer of Hnc

μ in G is trivial. Then X is uniformly Pμ-recurrent.

They conjectured in [9, 2.5] the following statement which we proved in [4].

Theorem 3.2. (Benoist-Quint) Assume that μ has exponential moments and that Hμ is
semisimple. Then X is Pμ-recurrent.

Here is a reformulation of Theorem 3.2.

Corollary 3.3. Same assumptions as in Theorem 3.2. Let x be in X . Any weak limit ν∞ of
the sequence νn := μ∗n ∗ δx in the space of finite measures on X , is a probability measure,
i.e. ν∞(X) = 1.
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Eskin-Margulis recurrence theorem 3.1 is used in [1] as the starting point for the clas-

sifications of both the μ-stationary probability measures on X and the Γμ-invariant closed
subsets of X when G is a simple group and Hμ = G. Benoist-Quint recurrence theorem

3.2 is used in [2] and [3] to extend these classifications to any Lie group G as soon as Hμ

is semisimple with no compact factor. We recommend the survey [5] for an introduction to

this classification theorem.

Here is a straightforward corollary of Theorem 3.2

Corollary 3.4. Let Γ be a discrete subgroup ofG whose Zariski closure is semisimple. Then
any discrete Γ-orbit in G/Λ is finite.

Proof of Corollary 3.4. By the recurrence property such a Γ-orbit supports a stationary prob-

ability measure ν i.e. a measure satisfying μ ∗ ν = ν. By the maximum principle, all the

points on this Γ-orbit have same mass for ν. Hence this orbit is finite.

For the sake of simplicity, we always assume from now on that μ has compact support

and that Hμ has no compact factor.

3.2. The space of unimodular lattices in Rd.

The main example of finite volume homogeneous space X = G/Λ is the space

Xd = SL(d,R)/SL(d,Z). In this case, the compact subsets are described by

the Mahler compactness criterion below.

The space Xd is also the space of unimodular lattices Δ of Rd, i.e. the set of discrete

subgroups of Rd spanned by a basis v1, . . . , vd of Rd of determinant 1.
For 0 ≤ i ≤ d, we define the ith-systole function αi on Xd by

αi(x) = min{‖v‖ | v ∈ Λix non-zero pure tensor}. (3.1)

The minimum is taken among tensor v that can be written as v = v1∧· · ·∧vi with v1, . . . , vi
linearly independant elements of the lattice x. For instance α1(x) is the length of the shortest

non-zero vector in the lattice x ⊂ Rd. By convention we set α0 ≡ αd ≡ 1. These systole

functions are continuous. Their relevance lies in the following criterion.

Lemma 3.5 (Mahler compactness criterion). For 0 < i < d, the systole functions α−1
i are

proper.

We recall that a real valued function f is said to be proper if the inverse image of a

bounded set is relatively compact. When i = 1, Lemma 3.5 means that, a sequence xn
in Xd goes to infinity if and only if there exists a sequence of non-zero vectors vn ∈ xn
converging to 0.

4. The contraction properties

We give in this section sufficient conditions for the recurrence and for the uni-

form recurrence of a Markov-Feller operator. These conditions called CH and

UCH are easy to check since they involve only one iteration of the Markov

chain.
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Let X be a second countable locally compact space and P a Markov-Feller operator on

X . We will say that P satisfies the contraction hypothesis if

CH for every compact L of X , there exists a Borel function f = fL : X → [0,∞] such
that,

(i) f takes finite values on L,

(ii) for every M <∞, f−1([0,M ]) is relatively compact in X ,

(iii) there exists constants a < 1, b > 0 such that Pf ≤ af + b.

Note that f is not assumed to be finite nor continuous.

ThisCHmeans that there exist onX functions f which have a very strongP -subharmonicity

property: the Markov operator contracts f up to an additive constant.

We will say that P satisfies the uniform contraction hypothesis if

UCH There exists a proper function f : X → [0,∞[ such that Pf ≤ af + b, where a < 1
and b > 0.

This UCH means that the function f in CH can be chosen to be everywhere finite. This

UCH is a variation of a condition due to Foster that one can find in [10], [13] and [9]. This

UCH is shown in [13] to be related to the existence of an exponential moment for the first

return time in some bounded sets of X.

Lemma 4.1. Let X be a second countable locally compact space and P a Markov-Feller
operator on X.

a) Assume that P satisfies the contraction hypothesis CH on X, then P is recurrent on
X.

b) Assume that P satisfies the uniform contraction hypothesis UCH on X, then P is
uniformly recurrent on X.

Proof. a) Let x be a point in X and f = fx be the function given by the hypothesis CH
for the compact set L = {x}. Choose for M the closure of the set

{y ∈ X | f(y) ≤ 2B
ε }

so that the indicator function of the complementary set Mc satisfies 1Mc ≤ ε
2Bf .

According to the hypothesis CH, one has, for every n ≥ 1

Pnf ≤ anf + b(1 + · · ·+ an−1) ≤ anf +B

with B = b
1−a . One then has the inequalities, for all x in X,

Pn
x (M

c) = Pn(1Mc)(x) ≤ ε

2B
Pnf(x) ≤ εan

2B
f(x) +

ε

2
≤ ε

as soon as n is sufficiently large so that f(x) ≤ B
an .

b) Same proof with a function f which does not depend on the point x.
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5. Countable spaces

In this section we give basic examples of Markov operators on countable spaces

and describe their recurrence properties.

The first example does not satisfy UCH.

Example 5.1. [Random walk on groups] Let G be a discrete infinite group acting on itself

by left multiplication, let μ be a probability measure on G whose support spans G, then Pμ
is not recurrent on G.

Proof. There are no ergodic stationary probability measure ν on G. Indeed, the set of ele-

ment g for which ν(g) is maximum is finite and G-invariant.

Remark 5.2. There is a classical notion of recurrence for a Markov chain that we will

call here 0-recurrence. It says that, for all neighborhood U of the starting point, almost all

trajectories of the Markov chain comes back in U . When G = Z the above Markov chain

Pμ is not recurrent on G eventhough it is 0-recurrent.

The second example is very simple but it gives a fairly good picture of what is a Markov

chain satisfying UCH.

Example 5.3 (Markov chain satisfying UCH). Consider the Markov chain x → Px on

X = N given by Px = 1
3δx+1 +

2
3δx−1 when x > 0 and Px = δx+1 when x = 0. This

Markov chain satisfies the uniform contraction hypothesis UCH. In particular it is uniformly

recurrent.

Proof. It satisfies UCH with the function f : x → 2x/2. Indeed, one has the inequality

Pf ≤ 2
√
2

3 f + 1.

The next example enlights the difference between UCH and CH.

Example 5.4 (Markov chain satisfying CH but not UCH). The trivial Markov chain on

X = N given by the transition probabilities Px = δx satisfies the contraction hypothesis

CH. In particular P is recurrent. However P is not uniformly recurrent.

Proof. It satisfies CH with the functions fn : x → 1 when x ≤ n and fn : x → ∞
otherwise. Indeed, one has the inequality Pfn ≤ 1

2fn + 1.

A Markov chain P on a countable set X is said to be transitive if for all x, y in X , there

exists n ≥ 1 such that Pn
x (y) > 0. The following example tells us very roughly that, except

for Example 5.4, the conditions UCH and CH are equivalent.

Example 5.5 (CH + T implies UCH). Let P be a transitive Markov chain on a countable set

X satisfying the contraction hypothesis CH. Then P satisfies also the uniform contraction

hypothesis UCH.

Proof. Since P satisfies CH, there exists a stationary probability measure ν on X . Since P
is transitive on X , this stationary probability measure has full support on X . By [6, Prop.

1.8], ν is the unique stationary probability measure on X . Hence, for all x in X , one has

lim
n→∞

1
n

∑
k≤n P

k
x = ν.
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For any ε > 0, one can find a finite set F such that ν(F c) ≤ ε/4. In particular, for all x in

X there exists n1 > 0 such that

Pn1
x (F c) ≤ ε/2.

Since P satisfies CH, there exists a finite set M ⊂ X and n2 ≥ 0 such that, for all n ≥ n2,

for all y in F , one has Pn
y (M

c) ≤ ε/2. Then, for all n ≥ n1 + n2, one has Pn
x (M

c) ≤ ε.
Hence P satisfies UCH.

6. The uniform contraction hypothesis UCH

In this section we sketch the proof of Margulis-Eskin recurrence theorem. We

begin by simpler examples to enlight one by one the ideas entering the proof.

6.1. Linear random walk.

The first idea is a uniform contraction property for the linear random walk on

vector spaces which is nothing but a reformulation of the positivity of the first

Lyapounov exponent.

LetH be a real algebraic semisimple Lie group with no compact factor. Let μ be a Borel

probability measure on H which is Zariski dense, i.e. whose support spans a Zariski dense

subgroup of H . For sake of simplicity we will assume from now on that this support is

compact. Let V be a real finite dimensional algebraic representation of H . We set V H for

the set of fixed points of H in V .

The following functions on V are contracted by the Markov operators Pμ on V . They

will be the building blocks for the construction of f .

Lemma 6.1 ([9, Lemma 4.2]). Let V be a real algebraic representation of H such that
V H = {0}. Let ϕ be the function on V given by ϕ(v) = ‖v‖. Then there exists δ > 0,
a0 < 1 and n0 ≥ 1 such that

Pn0
μ ϕ−δ ≤ a0ϕ

−δ (6.1)

Proof. This Lemma 6.1 is proven in [9, Lemma 4.2]. We can assume that V is irreducible.

The proof relies on Furstenberg theorem on the positivity of the first Lyapounov exponent of

μ which tells us that, uniformly for v in V �0, the limit λ1 = lim
n→∞

∫
H
log ‖gv‖

‖v‖ dμ∗n(g) ex-

ists and is positive. One then write the asymptotic expansion up to order 2 of e−δ log(‖hv‖/‖v‖)

and computes its image by Pn
μ .

Since it is harmless to replace μ by the convolution power μ∗n0 , we will always assume

implicitely that n0 = 1.

6.2. The pointed torus.

Before dealing with the spacesX = G/Λ, we explain here on a simpler example

how Lemma 6.1 is used to prove the uniform contraction hypothesis UCH.

Proposition 6.2. Let μ be a probability measure on SL(d,Z) with finite support. Assume
that Hμ is semisimple with no compact factor and has no non-zero invariant vectors on Rd.
Then the Markov operator Pμ on the pointed torus Td � 0 satisfies UCH.
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Proof. We choose for function f on Td � 0, a small negative power of the distance to 0, i.e.
f(x) = d(x, 0)−δ with δ small enough.

For x in a small neighborhood U of 0, the random walk is linear hence by Lemma 6.1,

one has Pμf(x) ≤ a0f(x), for some constant a0 < 1.
For x in the compact set U c, Pμf is bounded by a constant b > 0.
In both cases, one has Pμf ≤ a0f + b.

6.3. H = SL(2,R) and X = SL(2,R)/SL(2,Z).

We can now give the proof of Margulis-Eskin recurrence theorem in the simplest

case.

Proposition 6.3. Let μ be a Zariski dense compactly supported probability measure on
SL(2,R). The Markov operator Pμ on X = SL(2,R)/SL(2,Z) satisfies UCH.

Proof. We follow the same strategy. We choose for function f onX , a small negative power

of the systole, i.e. f = α−δ
1 with δ small enough.

We want to bound Pμf by a f+b. The difficulty is that in general an average of maximum

is not always bounded by the maximum of the average. We fix a constant C > 0 such that,

for all g in the support of μ, one has ‖g‖ ≤ C and ‖g−1‖ ≤ C. Let v be a vector of x such

that α1(x) = ‖v‖. We distinguish two cases.

First case. If all non-collinear vectors w in x satisfy ‖w‖ ≥ C2‖v‖ . Then one has ‖gv‖ ≤
‖gw‖, and hence α1(gx) = ‖gv‖ . Using Lemma 6.1, one gets, with a0 < 1,

Pμα
−δ
1 (x) = Pμϕ

−δ(v) ≤ a0ϕ
−δ(v) = a0α

−δ
1 (x) . (6.2)

Second case. If there exists a non-collinear vector w in x with ‖w‖ ≤ C2‖v‖. Then we use

the inequality

‖v ∧ w‖ ≤ ‖v‖ ‖w‖ (6.3)

and the fact that, since x has covolume 1, the left-hand side is bounded below by 1. We

deduce that α1(x) ≥ C−1. Hence, by Mahler criterion, x belongs to a compact subset ofX .

The continuous function Pμf is bounded on this compact set by a constant b > 0. In both

cases, one has Pμf ≤ a0f + b.

6.4. H = SL(3,R) and X = SL(3,R)/SL(3,Z).

The main new idea needed to prove Margulis-Eskin recurrence theorem in the

second simplest case, is the use of all the systole functions αi.

Proposition 6.4. Let μ be a Zariski dense compactly supported probability measure on
SL(3,R). The Markov operator Pμ on X = SL(3,R)/SL(3,Z) satisfies UCH.

Proof. We follow the same strategy as for Proposition 6.3, but we will use negative powers

of both systole functions. For i = 1 and i = 2, we introduce the functions fi on X given by

fi(x) = αi(x)
−δ with δ small enough.

We fix a constant C > 0 such that, for all g in the support of μ, one has ‖g‖ ≤ C and

‖g−1‖ ≤ C. Let v be a vector of x such that α1(x) = ‖v‖. We still distinguish two cases.
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First case. If all non-collinear vectors w in x satisfy ‖w‖ ≥ C2‖v‖ . Then the same calcu-

lation (6.2), gives the bound Pμf1(x) ≤ a0f1(x).

Second case. If there exists a non collinear vector w in x with ‖w‖ ≤ C2‖v‖ . Then we use

the same inequality

‖v ∧ w‖ ≤ ‖v‖ ‖w‖ (6.4)

to deduce α1(x) ≥ C−1α2(x)
1
2 , and then α1(gx) ≥ C−2α2(x)

1
2 . One gets the bound

Pμf1(x) ≤ C2δf
1
2
2 (x). In both cases, one has

Pμf1 ≤ a0f1 + C2δf
1
2
2 , (6.5)

for some constants a0 < 1. This is not exactly what we wanted. That is why, we use the

companion inequality obtained by using the systole α2 of the dual lattice

Pμf2 ≤ a0f2 + C2δf
1
2
1 . (6.6)

Note that for every ε0 > 0 and z > 0, one has z
1
2 ≤ ε0 z + ε−1

0 . Setting f = f1 + f2,
one deduces from (6.5) and (6.6), the upper bound

Pμf ≤ af + b ,

for the constants a = a0 + ε0 C
2δ and b = 2 ε−1

0 C2δ . If ε0 is small enough one has a < 1
as required

6.5. H = SL(d,R) and X = SL(d,R)/SL(d,Z).

For larger d, the main new idea for proving Margulis-Eskin recurrence theorem

is Inequality (6.7) which allows us to compare the various systole functions αi.

Proposition 6.5. Let μ be a Zariski dense compactly supported probability measure on
SL(d,R). The Markov operator Pμ on X = SL(d,R)/SL(d,Z) satisfies UCH.

The new key point will be to replace Inequality (6.4) by the following key inequality. We

recall that an element u in ΛrRd is a pure tensor, if one can write u = u1 ∧ · · · ∧ ur with all

ui in Rd.

Lemma 6.6. For all pure tensors u ∈ ΛrRd, v ∈ ΛsRd and w ∈ ΛtRd, one has

‖u‖ ‖u ∧ v ∧ w‖ ≤ ‖u ∧ v‖ ‖u ∧ w‖ . (6.7)

Proof of Lemma 6.6. Set 〈u〉 for the vector subspaces spanned by the ui’s. One can reduce

to the case where the subspaces 〈u〉, 〈v〉 and 〈w〉 are orthogonal. Then we only have to check

the easy inequality ‖v ∧ w‖ ≤ ‖v‖ ‖w‖.
Proof of Proposition 6.5. We follow the same strategy as for Proposition 6.4, but we will

use negative powers of all the systole functions. For 0 ≤ i ≤ d, we introduce the functions

fi = α−δ
i on X with δ small enough. We fix a constant C > 0 such that, for all g in the

support of μ and all i ≤ d, one has ‖Λig‖ ≤ C and ‖Λig−1‖ ≤ C.
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Fix i with 0 < i < d. Using the key inequality (6.7) with r = i− j and s = t = j with

0 < j ≤ min(i, d − i), instead of using Inequality (6.4), one replace the bounds (6.5) and

(6.6) by the following bound.

Pμfi ≤ a0fi + C2δ
∑

j>0 f
1
2
i−jf

1
2
i+j , (6.8)

for some constants a0 < 1.
Setting

f =
∑

0<i<d

ψi where ψi = ε
i(d−i)
0 fi ,

with ε0 very small, one deduces the upper bounds

Pμψi ≤ a0ψi + ε0 C
2δ
∑
j>0

ψ
1
2
i−jψ

1
2
i+j

≤ a0ψi + ε0 C
2δ
∑

0≤k≤d

ψk ,

and hence

Pμf ≤ af + b ,

for the constant a = a0+d ε0 C
2δ and for b = 2 ε0 C

2δ . If ε0 is small enough one has a < 1
as required

6.6. H irreducible on Rd and X = SL(d,R)/SL(d,Z).

This case is not more difficult than the previous one.

Proposition 6.7. Let μ be a compactly supported probability measure on SL(d,R) such that
Hμ is a semisimple group with no compact factors which acts irreducibly on Rd. Then the
Markov operator Pμ on X = SL(d,R)/SL(d,Z) satisfies UCH.

In this case, the vector space V = ΛiRd is the sum V = V+ ⊕ V0 with V0 the set of Hμ-

invariant vectors and V+ the Hμ-invariant supplementary subspace. We write v = v+ + v0
for the corresponding decomposition of a vector v in V . The new feature is that this subspace

V0 might be non-trivial. This is harmless because of the following lemma.

We will write f � g for f ≤ C g where C is a constant.

Lemma 6.8. Keep these notations, in particular, Hμ is irreducible on Rd. For 0 < i < d
and all pure tensor v in ΛiRd, one has ‖v‖ � ‖v+‖.
Proof of Lemma 6.8. This follows from a compacity argument, since by the irreducibility

assumption, the space V0 does not contain non-zero pure tensors.

Proof of Proposition 6.7. The proof is exactly the same as for Proposition 6.5. We just notice

that, by Lemmas 6.1 and 6.8, the function ϕ : v �→ ‖v‖ on V = ΛiRd still satisfies Inequality

(6.1) on the set of pure tensors of ΛiRd.

A proof of a more general case of Eskin-Margulis recurrence theorem will be given in

section 7.5.
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7. The contraction hypothesis CH

In this section, we want to explain the proof of Benoist-Quint recurrence theo-

rem.

7.1. H = SL(2,R) and X = SL(3,R)/SL(3,Z).

We begin by the simplest case. The main new idea is a modification of the

systole function in which one replaces the lattice x by its intersection with an

ε0-neighborhood of the expanding space.

Proposition 7.1. Let μ be a Zariski dense compactly supported probability measure on
SL(2,R). The Markov operator Pμ on X = SL(3,R)/SL(3,Z) satisfies CH.

Remark 7.2. We consider the group H = SL(2,R) as a subgroup of G = SL(3,R) fixing
the last vector e3 of the standard basis e1, e2, e3 of R3. Since the centralizer of H in G is

non trivial, Margulis-Eskin recurrence theorem does not apply to this case. Indeed Pμ does

not satisfy UCH, because, by Mahler criterion, the closed H-invariant subsets

Yε := {x ∈ X | ε e3 ∈ x}
are going away from any compact subsets of X when ε↘ 0.

The vector space V = R3 is the sum V = V+ ⊕ V0 with V+ = R2 and V0 = R. We

still write v = v+ + v0 for the corresponding decomposition of a vector v in V . Same for

V ∗ = Λ2V . A new key point will be to replace Inequality (6.4) by the following inequality

(7.1).

Lemma 7.3. For every v, w in R3, one has

‖(v ∧ w)+‖ ≤ ‖v+‖ ‖w0‖ + ‖v0‖ ‖w+‖ (7.1)

Proof of Lemma 7.3. One has (v ∧ w)+ = v+ ∧ w0 + v0 ∧ w+.

Proof of Proposition 7.1. We follow the same strategy as for Proposition 6.4. Since the pos-

itivity of the Lyapounov exponent occurs only in the V+ direction and since the projection

of a lattice in V+ might be dense, we have to introduce the following modification of the

systole functions. We fix ε0 > 0 small, and we set, for x in X ,

αε0,1(x) = min{‖v+‖ | v ∈ x� {0} , ‖v0‖ < ε0}. (7.2)

The minimum is taken among all non zero vectors v of x belonging to the ε0-neighborhood
of the plane V+. The new feature is that this quantity αε0,1(x) is not always positive, indeed

αε0,1(x) = 0⇐⇒ x ∈ Yε for some ε < ε0.

Similarly using the dual lattice x∗ = Λ2x in the dual space V ∗ = V ∗
+ ⊕ V ∗

0 , we set

αε0,2(x) = min{‖v+‖ | v ∈ x∗ � {0} , ‖v0‖ < ε0}. (7.3)

We introduce the functions fε0,i = α−δ
ε0,i

with δ small enough. We fix a constant C > 0 such

that, for all g in the support of μ, one has ‖g‖ ≤ C and ‖g−1‖ ≤ C. Let v be a vector of x
such that ‖v0‖ < ε0 and αε0,1(x) = ‖v+‖.
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First case. If all the non collinear vector w = w++w0 in xwith ‖w0‖ < ε0 satisfy ‖w+‖ ≥
C2‖v+‖ . The same arguments as in (6.2), gives the bound Pμfε0,1(x) ≤ a0fε0,1(x) with

a0 < 1.

Second case. There exists a non collinear vector w with ‖w0‖ < ε0 satisfying ‖w+‖ ≤
C2‖v+‖ .

In case ‖v+‖ < ε0, we have ‖(v ∧ w)0‖ < ε0, and we use Inequality (7.1) to deduce

2ε0C
2αε0,1(x) ≥ αε0,2(x) and get the bound Pμfε0,1(x) ≤ (2ε0C

3)δfε0,2(x).

In case ‖v+‖ ≥ ε0, one has the bound Pμfε0,1(x) ≤ ε−δ
0 Cδ . In all these three cases,

one has

Pμfε0,1 ≤ a0fε0,1 + (2ε0C
3)δfε0,2 + ε−δ

0 Cδ , (7.4)

for some constant a0 < 1. Similarly, one has

Pμfε0,2 ≤ a0fε0,2 + (2ε0C
3)δfε0,1 + ε−δ

0 Cδ . (7.5)

Setting fε0 = fε0,1 + fε0,2, one deduces then from (7.4) and (7.5), the upper bound

Pμfε0 ≤ a fε0 + b ,

for the constants a = a0 + (2ε0 C
3)δ and b = 2 ε−δ

0 Cδ . If ε0 is small enough one has a < 1
as required.

7.2. H = SL(d1,R) × SL(d2,R) and X = SL(d,R)/SL(d,Z).

In this case the main new idea is to replace the norm by a function ϕε0 which

takes into account suitable powers of the norm in the irreducible subrepresenta-

tions of Hμ.

Proposition 7.4. Let d = d1+d2. Let μ be a Zariski dense compactly supported probability
measure on SL(d1,R)×SL(d2,R). Then theMarkov operatorPμ onX =SL(d,R)/SL(d,Z)
satisfies CH.

We will need a stronger inequality generalizing both (6.7) and (7.1).

Let Rd := Rd1 ⊕ Rd2 be the associated orthogonal decomposition. For any couple λ =
(λ1, λ2) ∈ N2, we denote by u → uλ the projector of Λ∗Rd on the component Λλ1Rd1 ⊗
Λλ2Rd2 . We endow N2 with the partial order

λ ≤ μ⇐⇒ (λ1 ≤ μ1 and λ2 ≤ μ2). (7.6)

For any λ, μ in N2 we denote by mλ,μ the minimum and Mλ,μ the maximum of λ and μ,
that is mλ,μ = (min(λ1, μ1),min(λ2, μ2)) and similarly for the maximum. We denote by

R(λ, μ) := {ν ∈ N2 | mλ,μ ≤ ν ≤Mλ,μ}
the “rectangle” between mλ,μ and Mλ,μ, and by R the rectangle

R := {ν ∈ N2 | ν ≤ (d1, d2)}.
Lemma 7.5. (Mother inequality for SL× SL) For any pure tensors u, v, w in Λ∗(Rd1 ⊕
Rd2), and λ, μ in R, one has

‖uλ‖ ‖(u ∧ v ∧ w)μ‖ � max
ν,ρ∈R(λ,μ)
ν+ρ=λ+μ

‖(u ∧ v)ν‖ ‖(u ∧ w)ρ‖. (7.7)
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The only proof of Lemma 7.5 that I know relies on representation theory. We will explain

this proof in Section 7.3.

Example 7.6. For u, v, w vectors in Rd = Rd1 ⊕ Rd2 , one has

‖u1,0‖ ‖(u∧v∧w)3,0‖ � ‖(u∧v)2,0‖ ‖(u∧w)2,0‖,
‖u1,0‖ ‖(u∧v∧w)2,1‖ � ‖(u∧v)2,0‖‖(u∧w)1,1‖+‖(u∧v)1,1‖‖(u∧w)2,0‖,
‖u1,0‖ ‖(u∧v∧w)1,2‖ � ‖(u∧v)1,1‖‖(u∧w)1,1‖,
‖u1,0‖ ‖(u∧v∧w)0,3‖ � ‖(u∧v)0,2‖‖(u∧w)1,1‖+‖(u∧v)1,1‖‖(u∧w)0,2‖.

Among these inequalities, the most difficulty inequality is the third one since the terms

‖(u ∧ v)0,2‖ ‖(u ∧ w)2,0‖+ ‖(u ∧ v)2,0‖ ‖(u ∧ w)0,2‖

do not occur on the right hand side.

For λ ∈ R we set

|λ| := (d1−λ1)λ1 + (d2−λ2)λ2.

Let ε0 > 0. For v in ΛiE, with 0 < i < d, we define

ϕε0
(v) = max

λ∈R�0
ε
−(d−i)i
|λ|

0 ‖vλ‖
1
|λ| . (7.8)

Note that this function is the inverse of the function denoted ϕε0 in [4].

Lemma 7.7. There exists δ > 0, a0 < 1 and n0 ≥ 1 such that,

Pn0
μ ϕ−δ

ε0
≤ a0ϕ

−δ
ε0

for any ε0 > 0. (7.9)

Proof of Lemma 7.7. This follows from Lemma 6.1.

Proof of Proposition 7.4. The proof is the same as for Proposition 7.1, replacing Inequality

(6.1) by (7.9) and Inequality (7.1) by (7.7). We define for x in X

αε0(x) = min{ϕε0(v) | v ∈ Λ•x� 0 , pure tensor with ‖v0‖ < ε0},

where the minimum is taken over all the non-zero pure tensor v in some Λix for which

‖v0‖ < ε0. We also introduce the function on X

fε0(x) = αε0(x)
−δ.

If δ and ε0 are small enough, this function fε0 satisfies

Pμfε0 ≤ a fε0 + b

for some constants a < 1 and b > 0. Moreover, for x in X , one has the equivalence :

fε
0
(x) = ∞ if and only if, for some i, Λix contains an H-invariant pure tensor v with

‖v‖ < ε
(d−i)i
0 .

This proves that Pμ satisfies CH on X .
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7.3. Mother inequality.

In this section, we sketch the proof of Inequality (7.7). We will see that it is a

special case of the Mother Inequality (7.11) based on Representation Theory.

Let H ⊂ SL(Rd) be a semisimple algebraic subgroup, A ⊂ H be a maximal split

subtorus of H , Σ = Σ(A,H) be the set of (restricted) roots, i.e. Σ is the set of non-zero

weights of A in the Lie algebra h of H . We choose a system Σ+ ⊂ Σ of positive roots. Let

P be the set of algebraic characters of A. We endow P with the partial order given, for λ, μ
in P , by

λ ≤ μ⇐⇒ μ− λ is a sum of positive roots. (7.10)

For any real algebraic irreducible representation of H , the set of weights of A in this rep-

resentation has a unique maximal element λ called the (restricted) highest weight of the

representation. Let P+ be the set of all these highest weights. For any algebraic represen-

tation of H in a real finite dimensional vector space V , for λ in P+, we denote by v �→ vλ
theH-equivariant projection on the sum of all the irreducible subrepresentations of V whose

highest weight is equal to λ.

Lemma 7.8 (Mother inequality). Let H ⊂ SL(Rd) be a semisimple algebraic subgroup.
For pure tensors u, v, w in Λ∗Rd and λ, μ in P+, one has

‖uλ‖ ‖(u ∧ v ∧ w)μ‖ � max
ν,ρ∈P+

ν+ρ≥λ+μ

‖(u ∧ v)ν‖ ‖(u ∧ w)ρ‖. (7.11)

Proof of Lemma 7.8⇒ Lemma 7.5. Let H = SL(d1,R) × SL(d2,R), d = d1+d2. We

choose the Lie algebra a to be the set of diagonal matrices in h, and we choose the positive

roots of h to be the linear forms e∗i − e∗j with either 1 ≤ i < j ≤ d1 or d1 < i < j ≤ d. We

can embed the rectangle R as a subset of the set P+ of dominant weights. Indeed, for λ in

R, the representation of H in Λλ1Rd1 ⊗ Λλ2Rd2 is irreducible with highest weight

λ̃ = e∗1 + · · ·+ e∗λ1
+ e∗d1+1 + · · ·+ e∗d1+λ2

.

One can describe the restriction to the subset R̃+R̃ ⊂ P+ of the partial order (7.10). Indeed,

one has the equivalence, for λ, μ, ν, ρ in R,

ν̃ + ρ̃ ≥ λ̃+ μ̃⇐⇒ ( ν + ρ = λ+ μ and min(λ, μ) ≤ ν ≤ max(λ, μ) ).

In the left-hand side, the inequality is defined by (7.10) while, in the right-hand side, it

is defined by (7.6). This proves that the bound (7.11) can be reformulated as the bound

(7.7).

Proof of Lemma 7.8. Follows directly from the next two lemmas.

Lemma 7.9. LetH be a real algebraic reductive group, V be a real algebraic representation
of H . For λ, μ in P+ and v, w in V , one has

‖vλ‖ ‖wμ‖ � ‖(v ⊗ w)λ+μ‖ .
Proof. This bound follows by a compacity argument, once one has noticed that Equality

(v ⊗ w)λ+μ = 0 implies vλ ⊗ wμ = 0.
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Lemma 7.10. Let V = Rd and r, s, t ≥ 0. There exists a linear map

Ψ : Λr+sV ⊗ Λr+tV → ΛrV ⊗ Λr+s+tV such that

(u ∧ v)⊗ (u ∧ w) �→ u⊗ (u ∧ v ∧ w) ,

for all pure tensors u ∈ ΛrV , v ∈ ΛsV and w ∈ ΛtV .
This map Ψ is unique and is GL(V ) equivariant.

Proof. This exercise in exterior algebra is left to the reader. See [4].

7.4. Benoist-Quint recurrence theorem.

We show how Theorem 3.2 can be deduced from the previous ideas.

We will only deal with the following case which, thanks to Margulis Arithmeticity The-

orem (see [12]), is the most important one.

Proposition 7.11. Let G ⊂ SL(d,R) be a semisimple algebraic subgroup defined over Q
and Λ = G ∩ SL(d,Z). Let μ be a Zariski dense compactly supported probability measure
on a semisimple subgroup H with no compact factors. Then the Markov operator Pμ on
X = G/Λ satisfies CH.

Proof. We recall that the quotient X = G/Λ is closed in Xd = SL(d,R)/SL(d,Z) (see

[7]). Hence, we can assume that G = SL(d,R) and X = Xd. We keep the notation of

Section 7.3. We choose an element H0 in the interior of the Weyl chamber, and set, for λ in

P+, |λ| = λ(H0). Let ε0 > 0. Exactly as in Formula (7.8), for v in ΛiRd with 0 < i < d,
we define

ϕε0
(v) = max

λ∈P+�0
ε
−(d−i)i
|λ|

0 ‖vλ‖
1
|λ|

so that Lemma 7.7 is still true with this function ϕε0
. As in the proof of Proposition 7.4, we

define, for x in X ,

αε0(x) = min{ϕε0(v) | v ∈ Λ•x� 0 , pure tensor with ‖v0‖ < ε0}.
and check the condition CH with the same functions fε0 = α−δ

ε0 provided that δ and ε0 are

small enough.

7.5. Eskin-Margulis recurrence theorem.

We show how Theorem 3.1 can be deduced from Theorem 3.2.

We will again only deal with the most important case.

Proposition 7.12. Let G ⊂ SL(d,R) be a semisimple algebraic subgroup defined over Q
and Λ = G ∩ SL(d,Z). Let μ be a Zariski dense compactly supported probability measure
on a semisimple subgroupH with no compact factors and with trivial centralizer inG. Then
the Markov operator Pμ on X = G/Λ satisfies UCH.

Proof. We consider the function fε0 of Section 7.4 restricted to the finite volume G-orbit

G/Λ ⊂ SL(d,R)/SL(d,Z). We only have to check that, for ε0 small enough, fε0 is every-

where finite on G/Λ.
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Assume by contradiction that this is not the case, then there exists a sequence of H-

invariant non-zero vectors vn ∈ ΛiRd such that ‖vn‖ ↘ 0 and gn ∈ G such that gnvn
belongs to the lattice ΛiZd. As a consequence, there exists n0 such that, for n ≥ n0, every

G-invariant polynomial F on ΛiRd with F (0) = 0 satisfies also F (vn) = 0. This means

that vn is an unstable vector. By Kempf Theorem in [11], the stabilizer of an unstable vector

is a parabolic subgroup P �= G. Hence the semisimple group H is included in P . As a

consequence H has a non-trivial centralizer. Contradiction.

We conclude this survey by an open question: it is very likely that Theorems 3.1 and 3.2

are still true without any moment assumption on μ.
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1. Uniform growth for infinite groups and Lehmer’s conjecture

Let Γ be a finitely generated group and S a finite symmetric (i.e. S = S−1) generating set

containing the identity. The study of the growth of Γ is the study of the number of elements

in the n-th fold product set Sn = S · · · · · S ⊂ Γ as a function of n. The set Sn is also the

ball of radius n in the Cayley graph Cay(Γ, S) of Γ relative to the generating set S, namely

the graph with vertex set Γ in which two group elements x, y are linked by an (undirected)

edge if x = ys for some s ∈ S \ {1}. A simple way to quantify the growth of Γ with respect

to S is to introduce the exponential growth rate

ρS := lim
n→+∞

|Sn|1/n (1.1)

The limit exists by sub-multiplicativity |Sn+m| � |Sn| · |Sm|. Note that ρS � |Sn|1/n
for each n � 1. The group Γ is said to be of exponential growth if ρS > 1. While ρS
typically depends on S, the property that it is strictly bigger than 1 is easily seen to be

independent of the choice of generating set S. Similarly one says that Γ has polynomial

growth if there are constants C, d > 0 independent of n such that |Sn| � Cnd for all n � 1.
The growth of groups has been widely studied since the 1950’s and the initial works

of Svarc [83] and Milnor [70] who noticed that fundamental groups of negatively curved

compact manifolds have exponential growth. See [42, 44] and [68] for thorough recent

expository texts. We begin with a quick historical review of some important developments

regarding group growth:

• Milnor and Wolf [91] proved that nilpotent groups have polynomial growth and that

solvable groups have either exponential growth or are virtually nilpotent (i.e. contain

a nilpotent subgroup of finite index).

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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• Tits showed that linear groups, i.e. subgroups of GLn(K) over a (commutative) field

K have exponential growth unless they are virtually nilpotent, a consequence of his

famous alternative: any linear group either contains a non-abelian free group, or is

virtually solvable [85].

• Gromov [46] famously proved that every finitely generated group with polynomial

growth is virtually nilpotent.

• Grigorchuk [40], answering by the negative a question of Milnor, gave the first ex-

ample of a group with intermediate growth, i.e. whose growth is neither polyno-

mial nor exponential: the so-called Girgorchuk group (see [43]). Recently Bartholdi

and Erschler [4], using ingenious variants of Grigorchuk’s construction, built for each

α ∈ (.77, 1) groups for which ec1n
α � |Sn| � ec2n

α

for some constants c1, c2 > 0.
Interesting groups with oscillating behaviors also exist (see [4, 25, 56]).

• Kleiner [57] gave a new proof of Gromov’s theorem using harmonic functions and

arguments closely related to the work of Colding and Minicozzi [27] in differential

geometry. These arguments were pushed further by Shalom and Tao [82] to show

that if |Sn| � nε(log logn)ε for some small absolute constant ε > 0, then the group is

virtually nilpotent.

• The Grigorchuk gap conjecture asserts that if |Sn| � en
α

for some α < 1
2 , then the

group has polynomial growth and hence is virtually nilpotent ([41, 42]).

A finitely generated group is said to have uniform exponential growth if

inf
S

ρS > 1,

where S varies among all (finite symmetric) generating subsets of the group. Gromov [47,

Remark 5.2.] asked in the early eighties whether every group with exponential growth has

uniform exponential growth. The answer is no. The first example was given more than a

decade later by J.S. Wilson [90]. He built a group Γ containing a non-abelian free subgroup,

and hence having exponential growth, and subsets Sn := {1, a±1
n , b±1

n } generating Γ such

that ρSn
→ 1 as n → +∞. Wilson’s group is a subgroup of the group of automorphisms

of a rooted tree (as is Grigorchuk’s group by the way). It is known however that hyper-

bolic groups [59], solvable groups [75], linear groups in characteristic zero [33] or positive

characteristic [14] have uniform exponential growth when they have exponential growth.

Although non virtually nilpotent linear groups have uniform exponential growth, the ex-

ponential growth rate ρS can be arbitrarily close to 1 when S and the group are allowed to

vary. This fact, observed by Grigorchuk and de la Harpe in [45], can be seen as a conse-

quence of the existence of the Grigorchuk group of intermediate growth. Indeed consider

the Grigorchuk groupG, generated by the usual four generators a, b, c, d (see e.g. [42, p 21])

and list the relations ofG as reduced words in four letters of non-decreasing length (wn)n�1.

Then G = 〈a, b, c, d|w1, w2, . . . , wn, . . . 〉 is a presentation of G. Truncate this presentation

after the n-th relator: we get this way a finitely presented group Gn. Clearly Gn surjects

onto G and converges to G in the topology of marked groups: this means in particular that

a ball BG(1, R) of radius R centered at the identity in G will be in bijection with the same

ball BGn(1, R) in Gn provided n is large enough and R is fixed. Consequently:

ρS,Gn
� |BGn

(1, R)|1/R = |BG(1, R)|1/R = eε(R),
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where ε(R) tends to 0 as R tends to infinity, because G has sub-exponential growth. Grig-

orchuk and de la Harpe [6, 45] establish that eachGn has a quotient Γn containing the direct

product of a finite number (increasing with n) of copies of a non-abelian free group as a

subgroup of finite index. In particular ρS,Gn � ρS,Γn > 1. Moreover the Γn are clearly

linear, since they contain a linear group of finite index. In conclusion:

Fact 1. There are linear groups of exponential growth Γn � GLdn
(Z) each generated by a

set Sn of 4 matrices and their inverses such that ρSn
tends to 1 as n tends to infinity.

As far as we know it is an open problem to show that such a phenomenon of slow ex-

ponential growth arises as well in the class of all Gromov hyperbolic groups. However we

conjecture that this cannot happen for linear groups of bounded dimension:

Conjecture 1.1 (Growth conjecture). Given d ∈ N, there is ε(d) > 0 such that for every
field K and every finite subset S ⊂ GLd(K), either ρS = 1 and 〈S〉 is virtually nilpotent,
or

ρS > 1 + ε(d).

The examples of Grigorchuk and de la Harpe described above imply that ε(d) must tend

to 0 as d tends to infinity. Besides, their examples contain a direct product of a large number

of copies of the free group, hence cannot be linear in bounded dimension, i.e. dn → +∞.

In [12] we observed the following:

Fact 2. The Growth conjecture implies the Lehmer conjecture.

Let us recall the Lehmer conjecture. Given an algebraic number x with minimal poly-

nomial πx = adX
d + · · · + a1X + a0 ∈ Z[X], write πx = ad

∏d
1(X − xi) and define the

Mahler measure of πx as

M(πx) := |ad|
∏

|xi|�1

|xi|

Lehmer’s conjecture (initially stated as a problem) asserts that M(πx) ought to be bounded

away from 1 unless it is equal to 1. Kronecker’s theorem tells us thatM(πx) = 1 if and only

if x is a root of unity (i.e. πx is a cyclotomic polynomial). Hence Lehmer’s conjecture is the

statement that there is some absolute ε > 0 such that

M(πx) > 1 + ε,

for every algebraic number x ∈ Q, which is not a root of unity. The smallest known Mahler

measure is the Mahler measure of the so-called Lehmer polynomial X10 + X9 − X7 −
X6 − X5 − X4 − X3 + X + 1, which is approximately 1.17628. Somewhat surprisingly

this number coincides with the growth rate of the (2, 3, 7) triangle group 〈s, t, u|s2 = t2 =
u2 = 1, (st)2 = (tu)3 = (us)7 = 1〉 which is also the discrete subgroup of isometries of

the hyperbolic plane of smallest possible co-volume (see [35]).

Fact 2 above can be easily seen by considering the following set of matrices:

Sx := {
(

x 0
0 1

)±1

,

(
1 1
0 1

)±1

,

(
1 0
0 1

)
}. (1.2)
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A simple calculation (see [12, §7]), involving estimating the number of points of height

at most n in the ring Z[x], x ∈ C, shows that

M(πx) � ρSx (1.3)

where ρSx
is the rate of exponential growth of Sx. There is no equality in general in (1.3)

because M(πx) can be large, while ρSx
� 3 since there are only two generators and their

inverses. But there is equality in some cases, for example when x is a Salem number in the

interval [1, 2]. It can easily be shown that 〈Sx〉 is virtually nilpotent if and only if x is a root

of unity. If x is transcendental then 〈Sx〉 is isomorphic to the wreath product Zwr.Z and

thus ρSx is bounded away from 1. If x is not an algebraic unit or has a Galois conjugate

σ(x) such that |σ(x)| > 1 + η, then it is straightforward to establish a lower bound on ρSx

of the form 1+ε(η), where ε > 0 depends only on η (see [12]). However there are algebraic

numbers all of whose conjugates are close to the unit circle.

Note that for every possible choice of x, the group 〈Sx〉 in this example is solvable

of derived length 2. Somewhat surprisingly, it turns out that the solvable case is the most

difficult one. Indeed we have shown the following:

Theorem 1.2 (Growth gap [16, 17]). There is ε = ε(d) > 0 such that given any fieldK and
any finite symmetric set S containing 1 in GLd(K) and generating a non virtually solvable
subgroup,

ρS > 1 + ε.

Again we see that ε(d) must tend to 0 as d tends to infinity, because the examples given

above of Grigorchuk and de la Harpe contain a free subgroup, hence are not virtually solv-

able.

Theorem 1.2 is deduced from a more general statement, the uniform Tits alternative,

which we discuss further below. At the heart of its proof lies some diophantine geometry

and the behavior of large Galois orbits of algebraic numbers of small height. Earlier results in

this direction, in particular Eskin-Mozes-Oh [33] and its strengthening by Gelander and the

author [14], were focusing on proving a uniform lower bound on ρS where the matrix entries

of S were constrained within a certain fixed finitely generating ring (this is in particular the

situation when S varies among the generating sets of a fixed finitely generated subgroup).

The main novelty of Theorem 1.2 is the uniformity in the field of definition of the subgroup

〈S〉. Of course, this is where the interplay with number theory comes in.

It is not the first time that a connection between the exponential growth rate of groups

and some properties of algebraic numbers is made. For example Cannon [26] observed that

the exponential growth rate ρS of the fundamental group of a closed surface of genus g � 2
in its standard presentation as 〈a1, . . . , ag, b1, . . . , bg|

∏g
i=1[ai, bi] = 1〉 is a Salem number,

i.e. an algebraic number having only one conjugate outside of the closed unit disc and at

least one on the unit circle. More generally it is known [36, Chp 9.] that Gromov hyperbolic

groups such as fundamental groups of closed hyperbolic manifolds admit a rational growth

series, and thus the associated growth rates are algebraic numbers. See also the nice survey

[35].

We end this section with some suggestions for further research. It can be easily seen,

thanks to Theorem 1.2 that the growth conjecture reduces to the case of GL2(C) and even

to the subgroups 〈Sx〉 considered above. In light of this it would be interesting to deter-

mine whether the converse to Fact 2 above holds, i.e. whether the Growth and the Lehmer

conjecture are equivalent. This seems highly plausible and very likely related to Bernoulli
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convolutions. Another interesting problem would be to verify that Theorem 1.2 extends to

sub-semi-groups.

2. Uniform Tits alternative and uniform spectral gap estimates

The growth gap theorem (Theorem 1.2) above is a direct consequence of the following uni-

form Tits alternative:

Theorem 2.1 (Uniform Tits alternative [16, 17]). Given d ∈ N, there is N = N(d) ∈ N
such that if K is a field and S is a finite subset of GLd(K) with S = S−1 and 1 ∈ S, then

• either 〈S〉 is virtually solvable,

• or SN contains two generators of a non-abelian free subgroup.

That Theorem 1.2 follows from this is clear, because ρS � ρ
1/N

SN � 31/N ,where we have

the last inequality, because SN contains a pair {a, b} generating a free subgroup.

Recall that the Tits alternative ([48, 85] first conjectured by Bass and Serre) asserts that

every finitely generated linear group admits a non-abelian free subgroup unless it is virtually

solvable. It is an alternative, because the two cases are mutually exclusive: non-abelian free

subgroups do not contain solvable subgroups of finite index.

The proof of J. Tits uses the dynamics of powers of linear transformations on projective

space and the so-called ping-pong lemma, well-known to hyperbolic geometers since Fricke

and Klein. See [13, 48] for expositions. Theorem 2.1 is thus a strengthening of the Tits

alternative, in which the generating pair for the free subgroup is shown to arise already in a

ball of universally bounded radius in the Cayley graph of the linear group 〈S〉.
Theorem 2.1 improves on an earlier result of Gelander and the author [14] in which the

bound N was proven to be uniform as S varies among the generating sets of a fixed linear

group. That was the same kind of uniformity as was obtained by Eskin-Mozes-Oh [33] for

the rate of growth (as remarked in the situation of Theorem 1.2 above): it assumes that the

matrix entries of S lie in a fixed finitely generated ring. The key point in Theorem 2.1 is

the uniformity of N in the field K. This new uniformity is intimately linked to number

theory and as we will see below to properties of a certain height (in the sense of Diophantine

geometry) on the representation variety of the free group in GLd over Q. It is also key to

proving uniform spectral gap and diameter estimates for finite quotients such as SLd(Fp) as
shown in work of Gamburd and the author [21].

The Tits alternative [85] implies that finitely generated non virtually solvable linear

groups are non-amenable, because they contain a free subgroup. In a similar way, Theo-

rem 2.1 shows that this non-amenability is uniform when the generating set varies. The

non-amenability of a group can be quantified in terms of so-called Kazhdan constants

κ(S, π) := inf
f∈Hπ,||f ||=1

max
s∈S
{||π(s)f − f ||} (2.1)

with respect to a set S and a unitary representation π with Hilbert space Hπ . A discrete

group Γ is said to be non-amenable if

κ(S, λΓ) > 0
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for some (hence all) finite subset S of Γ, where λΓ is the left regular representation of Γ, i.e.
the unitary representation with Hilbert space �2(Γ) defined by

λΓ(g)f(x) = f(g−1x).

We can now state some spectral corollaries of Theorem 2.1.

Corollary 2.2 (uniform non-amenability). There is ε = ε(d) > 0 such that if K is a field
and S ⊂ GLd(K) a finite subset, either 〈S〉 is virtually solvable, or κ(S, λ〈S〉) > ε.

That a uniform Tits alternative would imply such a spectral bound was observed by

Shalom in [81, Theorem 8.4] in the context of hyperbolic groups. We now discuss further

similar spectral bounds, all inspired by [81] and [72]. A discrete group Γ is said to have

Kazhdan property (T ) if there is a finite subset S and a uniform ε = εS > 0 such that

κ(S, π) > ε for every unitary representation π of Γ without invariant vectors. Usually there

is no uniform lower bound on εS independent of the choice of S among generating subsets

of a fixed group with property (T ) (although that remains an open problem from SL3(Z)).
Gelander and Zuk [34] showed that no such lower bound exists in the case when Γ has a

non-discrete image in a connected topological group.

However if we restrict the set of representations to those coming from the ambient group,

one can sometimes obtain a uniform lower bound. Indeed Theorem 2.1 implies, via the well-

known tensor power trick (see [29, 71]):

Corollary 2.3 (Uniform Kazhdan constant). Given d ∈ N there is ε = ε(d) > 0 such
that the following holds. If G is a real Lie group with dim(G) � d and π is a unitary
representation of G which is strongly Lp, then for every finite subset S ⊂ G generating a
non-virtually solvable discrete subgroup

κ(S, π) >
ε√
p
.

Recall that a unitary representation π is called strongly Lp if there is a dense subspace of

vectors ξ ∈ Hπ whose matrix coefficients g �→ 〈π(g)ξ, ξ〉 belong to Lp(G) for each ξ. M.

Cowling [28] proved that for every simple Lie group with property (T ) (e.g. G = SLn(R),
n � 3) there is some p0 > 0 such that every unitary representation of G without non zero

invariant vectors is strongly Lp0 . See [63, 74] for the value of p0(G). Hence in this case

κ(S, π) can be bounded from below independently of π.
We conclude this section with a natural suggestion for further research. That is to give

good bounds on ε(d) and N(d) from Theorems 1.2 and 2.1. The proof of the uniform Tits

alternative given in [15–17] is effective, except at one point (the constant in [15, Lemma

2.1(b)] and Lemma 3.9 below). However even this constant can be made effective although

with a relatively poor bound. At any case it would be interesting to work out an explicit

lower bound on ε(d) in terms of d only and compare it to the upper bound given by the

examples of Grigorchuk and de la Harpe described in the previous section.

3. Heights on character varieties of semi-simple groups

3.1. A reformulation in terms of first order logic. The uniform Tits alternative (Theorem

2.1 above) for subgroups of GLd is uniform over all fields: the length of the two words
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giving rise to generators of a free subgroup is universally bounded in terms of d only. Fields

of different characteristic have to be dealt with independently, but it turns out that if the field

has characteristic p > 0, then the uniformity in Theorem 2.1 is much easier to establish,

is uniform in p, and requires no significantly new ingredient than what was already known

from the previous uniformity result by Gelander and the author [14]. So in what follows

we will focus on the zero characteristic case. It turns out that proving that the bound N(d)
holds uniformly over all fields of characteristic zero is equivalent to proving it for the field of

algebraic numbers Q. This can be seen in a number of ways. For example by specialization.

One other way is to view the statement of Theorem 2.1 as a countable union of statements

expressible in first order logic. Let us be more precise.

To begin with, the condition on the set S viewed as a k-tuple of elements in GLd for

〈S〉 to be virtually solvable is an algebraic condition: it defines a certain closed algebraic

subvariety of (GLd)
k, which we denote by Vsol. In fact virtually solvable subgroups ofGLd

in characteristic zero admit a subgroup of bounded index (i.e. < c(d)) which is conjugate to

a subgroup of the upper-triangular matrices. Hence 〈S〉 is virtually solvable if and only if a

certain number of words with letters in S and bounded length have a common fixed point in

the flag variety.

On the other hand, to say that no two words w1, w2 of length at mostN(d) can ever gen-

erate a free subgroup is equivalent to say that there is an integer n, such that for all possible

choices of w1, w2 among words of length at mostN(d)with letters in S, one can always find

a non-trivial word of length at most n in the free group, such that w(w1(S), w2(S)) = 1.
Clearly this is a finite set of algebraic conditions on S viewed as a k-tuple in (GLd)

k. Call

this subvarietyWn.

Theorem 2.1 is the statement that for each integer n,Wn is contained in Vsol. This im-

plication is in itself a statement of first order logic, because the algebraic varieties involved

are defined over Q. In particular if it holds for some algebraically closed field of character-

istic zero, it holds for all of them, because any two algebraically closed field with the same

characteristic have the same first order theory.

The discussion regarding Vsol shows that there is an integer n0 depending on d only

such that Vsol(C) ⊂ Wn0(C). Now Theorem 2.1 tells us that this is an equality. So finally

Theorem 2.1 can be reformulated as the statement that

Vsol =Wn

for each integer n � n0(d).
Note in passing that Theorem 2.1 cannot be deduced automatically by logical compact-

ness from the original Tits alternative. The reason is that the condition that two matrices

generate a free subgroup is not expressible in first order logic: it is a countable union of first

order logic statements. Indeed it is very hard in general to understand the locus of tuples,

say in (GLd)
k, which generate a free subgroup. Not much can be said on this set even in the

case of GL2.

Anyways, reducing (the characteristic zero case of) Theorem 2.1 to the field of algebraic

numbers Q allows to introduce the theory of heights and take advantage of known results in

Diophantine geometry, in particular regarding the action of the Galois group. For this pur-

pose, we introduced in [15] a certain conjugation invariant normalized height ĥ on (GLd)
k,

to be discussed below.

As we saw in Section 1, the uniform growth of linear groups is closely related to the

properties of algebraic numbers of high degree and small height, in particular to the Lehmer
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conjecture. There the Lehmer conjecture was the obstacle to prove uniform growth. This

situation can be reversed in the non solvable case, by first establishing a strong analogue of

the Lehmer conjecture for this normalized height ĥ. Let us first set up some notation.

3.2. A normalized height on reductive groups. In this paragraph we discuss the Height

gap theorem (Theorem 3.6 below), which is the key ingredient for the uniformity in the field

in the proof of the uniform Tits alternative.

Let G be a connected reductive algebraic group defined over a number field K (such as

G = GLd). Let (ρ,W ) be a faithful linear representation of G. Let VK be the set of places

of K, i.e. equivalence classes of absolute values on K. Associated to each v ∈ VK is a

local field Kv , the completion of K with respect to v, and an absolute value | · |v defined

on an algebraic closure Qv of Kv . Picking a basis of W , we can define a norm || · ||v on

WKv :=W ⊗Kv for each v ∈ VK to be equal to

• the Euclidean norm
√∑

i |xi|2v if v is archimedean (i.e. Kv = R or C),

• the sup norm max |xi|v if v is non archimedean.

Let S denote as before a finite subset of G(K). Set

hρ(S) :=
1

[K : Q]

∑
v∈VK

nv log
+ ||ρ(S)||v,

where nv is the degree of the local extension [Kv : Qv], log
+ is short for max{0, log}, and

||ρ(S)||v := max{||ρ(s)||v, s ∈ S},

where ||ρ(s)||v is the operator norm of the endomorphism ρ(s) of WKv associated to the

norm || · ||v .
Definition 3.3 (Normalized height). We set

ĥρ(S) := lim
n→+∞

1

n
hρ(S

n),

where Sn = S · · · · · S is the n-fold product set.

While hρ(S) depends on the particular choice of basis used to defined the Euclidean and

sup-norm on WKv , the normalized height ĥ(S) does not depend on this choice.

The definition of the normalized height is modeled on the definition of the Néron-Tate

height in the theory of abelian varieties. Here the normalization encodes the way the pow-

ers Sn grow in each valuation. In particular this height carries some important information

on the subgroup 〈S〉 generated by S. Heights on subgroups of matrices generated by one

element have been studied by Talamanca in [89]. Our height is a natural extension of Tala-

manca’s height to the case when S has more than one element.

The limit in the definition of ĥρ exists because of sub-additivity. Indeed it is straightfor-

ward to check that hρ(S
n+m) � hρ(S

n) + hρ(S
m) for all integers n,m � 1.

Moreover the height hρ and normalized height ĥρ do not depend on the choice of the

number fieldK. Namely if we replaceK by any finite extensionK ′ ofK, so that S is again

defined over K ′, then the value of the heights for K and for K ′ are the same.
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Example 3.4. Consider the set S = Sx, for x ∈ Q
×
, from (1.2) in Section 1 and let ρ be

the natural 2-dimensional representation of GL2. Then

ĥρ(Sx) = h(x),

where h(x) is the classical absolute Weil height (see [11] for background) of the algebraic

number x, namely

h(x) :=
1

[Q(x) : Q]

∑
v∈VQ(x)

nv log
+ |x|v

=
1

D
(log |aD|+

∑
y∈Gal(Q|Q)·x

log+ |y|)

=
1

D
logM(πx),

where M(πx) is as before the Mahler measure of the minimal polynomial πx := aDX
D +

· · ·+ a1X + a0 ∈ Z[X] of x. �
Example 3.5. Let S = {g} ∈ G(K) a singleton inG = GLd with the natural d-dimensional

representation ρ. Let λ1, . . . , λd the eigenvalues of g. Then

ĥρ(S) =
1

[K : Q]

∑
v∈VK

nv log
+max

i
{|λi|v}.

In particular
1

d
ĥρ(S) � max

i
{h(λi)} � ĥρ(S).

�
To get a better understanding of this height, let us record now its main properties. Below

S is a finite subset of G(Q).

Properties of ĥρ(S):

(i) (linearity in powers) ∀n ∈ N, ĥρ(S
n) = nĥρ(S),

(ii) (conjugation invariance) ∀g ∈ G(Q), ĥρ(gSg−1) = ĥρ(S),

(iii) (height zero points) ĥρ(S) = 0 if and only if 〈S〉 is virtually unipotent.

(iv) (change of representation) given two faithful linear representations ρ1, ρ2 of G there

are constants C1, C2 > 0 such that

C1ĥρ2(S) � ĥρ1(S) � C2ĥρ2(S)

for all finite subsets S ⊂ G(Q),

(v) (comparison between h and ĥ) There is C = C(G, ρ) > 0 such that for every finite

subset S ⊂ G(Q) generating a Zariski-dense subgroup ofG assumed semisimple, one

can find g ∈ G(Q) such that

ĥρ(S) � hρ(gSg
−1) � Cĥρ(S).
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By virtually unipotent in item (iii) we mean that 〈S〉 has a subgroup of finite index,

which can be conjugated inside a unipotent subgroup of G (i.e. there is a basis of W where

all matrices in this subgroup are upper-triangular with all eigenvalues equal to 1).
Item (v) suggests that the other natural way to build a conjugation invariant height on G

leads in fact to a comparable quantity, at least if S is not degenerate. There is at least one

more natural way to define a conjugation invariant height function on k-tuples of G. One

may consider the stable quotient Gk � G in the sense of Geometric Invariant Theory, where

the quotient is via the diagonal action of G on Gk by coordinate-wise conjugation. This

algebraic variety, whose coordinate ring is the ring of invariants C[Gk]G, is also called the

variety of G-characters of the free group Fk on k letters. Then one may simply consider a

height on this variety defined using the usual Weil height machine [51, 61]. This height will

be comparable, up to additive and multiplicative constants, to our height ĥ(S).
One particularly nice way to parametrize Gk �G is to consider the traces of short words

in the k-tuple. Fricke and Klein showed in the 19th century that tr(a), tr(b) and tr(ab) are
coordinates on the character variety of the free group F2 on SL2(C), namely away from

some singular locus, these 3 values determine the conjugacy class of the pair (a, b). More

recently Procesi [76] extended this to GLd(C), showing that the coordinate ring of Gk � G,

when G = GLd(C) is generated by the traces tr(w(g1, . . . , gk)), where w ranges through

all (positive) words in k letters whose length is bounded by a bound depending only on d.
Given an embedding ρ : G → GLd, traces of words are no longer enough to tell apart

non G-conjugate tuples, but the induced natural morphism Gk � G → GLk
d � GLd, is a

finite morphism: indeed if two generic k-tuples in G are conjugate in GLd, they must be

conjugate by an element of the normalizer of G in GLd, because they generate a Zariski-

dense subgroup of G. This normalizer, when acting onG, contains the inner automorphisms

as a subgroup of finite index, see [87].

A consequence of Corollary 3.8 below is that there isN ∈ N and C > 0 depending only

on the embedding ρ, such that for every finite subset S ⊂ G(Q),

1

C|S|C ĥρ(S)− C � max
|w|�N

h(tr(ρ(w(S))) � Cĥρ(S)

So with this parametrization of Gk � G, k = |S|, we obtain a height function, which is

comparable to our normalized height ĥρ(S).

Our main theorem regarding ĥρ is the following. It can be seen as an analogue for

reductive groups of the Lehmer conjecture:

Theorem 3.6 (Height gap [15]). There is ε = ε(G, ρ) > 0 such that

ĥρ(S) > ε

for every finite subset S ⊂ G(Q) such that the subgroup 〈S〉 generated by S is not virtually
solvable.

By way of contrast, one can see that the Lehmer conjecture itself is equivalent to the

existence of some ερ > 0 such that

ĥρ(S) >
ερ

[K : Q]
(3.1)
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for every number field K and all finite subsets S ⊂ G(K) generating a non-virtually unipo-

tent subgroup, that is a subgroup whose elements have only roots of unity as eigenvalues (for

those subsets ĥρ(S) = 0 by property (iii) above).

For example, if G is the multiplicative group Gm, and S := {x} a singleton, then

ĥ(S) = h(x), the Weil height of x. Theorem 3.6 does not apply to this situation, because all

subgroups of Gm are abelian, hence solvable.

Similarly the first example given above with Sx ⊂ GL2 also shows that no such uniform

lower bound can be expected when 〈S〉 is virtually solvable. There ĥρ(Sx) was exactly

the Weil height h(x) of the algebraic number x, and hence could be very small (e.g. take

x = 21/n). So the theorem claims in fact a uniform lower bound on the height, rather

than on the height times the degree as the Lehmer conjecture asks. Uniform lower bounds

on heights are related to the so-called Bogomolov property in Diophantine geometry. An

algebraic extension F ofQ of infinite degree is said to have the Bogomolov property if there

is a uniform ε > 0 such that all elements of F with Weil height at most ε are in fact roots of

unity (hence have zero Weil height). See [1, 11] for recent results about this property.

The proof of Theorem 3.6 makes use of some important facts borrowed fromDiophantine

geometry. Most importantly, Zhang’s theorem [93], [11, Thm 4.2.] and Bilu’s theorem [8],

[11, Thm 4.3.1]. Zhang’s theorem says that the points of very small height that lie on a

proper algebraic subvariety of an algebraic torus (Q
×
)r, must in fact lie in a finite union

of even smaller dimensional subsets, unless the subvariety itself is a translate of a subtorus.

In particular torsion points (and even points of small height!) cannot be Zariski-dense in a

subvariety unless this subvariety is very special... For example, there are only finitely many

points of height < 1/100 on the line x + y = 1, see [92] for optimal bounds. These lines

of thought form by now a well-established branch of Diophantine geometry, encompassing

such far-reaching statements as the Manin-Mumford conjecture, the Andre-Oort conjecture,

etc.

This idea carries the key to the proof of the Height gap of Theorem 3.6, because too small

a ĥρ(S) would yield too many points of small height and contradict the Zariski-density of

the group generated by S (after reduction to the case with the Zariski-closure of 〈S〉 is

semisimple).

Zhang’s theorem, as well as many other results in Diophantine geometry (starting with

Szpiro-Ullmo-Zhang [84]) can be established via equidistribution methods. The prototype of

these results is Bilu’s theorem, according to which the Galois orbit of any algebraic number

whose height is close to zero but non zero is almost equidistributed on the unit circle with its

Lebesgue measure. In fact Zhang’s theorem can be deduced from Bilu’s, see [8]. Although

we make use of Bilu’s theorem in the proof of Theorem 3.6, it would be interesting to come

up with a more direct argument proving an equidistribution result for the Galois orbit of S
in the character variety Gk � G, before reaching a contradiction:

Problem. Give a proof of Theorem 3.6 via equidistribution.

3.7. Large eigenvalues. As the reader would have guessed by now, there is a relationship

between our normalized height ĥρ(S) and the Weil height of the eigenvalues of subgroup

elements in 〈S〉. For example it is clear that if λ is an eigenvalue of ρ(g) for some g ∈ Sn,

then |λ|v � ||ρ(g)||v � n||ρ(S)||v for all v ∈ VK and so h(λ) � nĥρ(S). An important

consequence of Theorem 3.6 and the analysis done in its proof is the following converse:

Corollary 3.8 (finding large eigenvalues). There is a constant C > 0 depending only on G
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and ρ such that if S ⊂ G(Q) is a finite set, then there is a positive integer k � C and an
element g ∈ Sk such that for some eigenvalue λ of ρ(g).

h(λ) � 1

|S|C ĥρ(S)

In particular, there is a uniform N1 = N1(d) > 0 such that if two elements a, b ∈
GLd(Q) generate a non-virtually solvable subgroup, then there is an element g expressible

as a word of length at most N1 with letters in a and b and an eigenvalue λ of g with Weil

height h(λ) � 1.
In the proof of the uniform Tits alternative, a crucial step consists in finding in SN , for

some bounded N , an element with a large eigenvalue. The above corollary does just that.

The largeness of the eigenvalue is measured in terms of its height.

An important fact regarding the joint spectral radius of a bounded set of matrices is en-

capsulated in Lemma 3.9 below. It is used many times in order to produce a large eigenvalue,

both in the proof of Theorem 3.6 and of Theorem 2.1.

Let K be a local field, that is either R, C, or a finite extension of the p-adic numbers, or

(in characteristic p) of the field of Laurent series Fp((t)). We choose an absolute value | · |
on K and extend it (such an extension is unique) to an algebraic closure of K. Let S be a

bounded subset of d× d matrices in Md(K), endowed with the operator norm || · || induced
by the choice of some norm on Kd. Define the spectral radius of S to be

R(S) = lim
n→+∞

||Sn||1/n,

where ||Sn|| denotes the maximum of the (operator) norms of the elements in Sn. We also

let Λ(S) be the maximal eigenvalue:

Λ(S) := max
s∈S
{|λ|;λ ∈ Spec{s}},

where Spec(s) is the set of eigenvalues of s. If S = {s} is a singleton, the well-known

spectral radius formula tells us that

R({s}) = Λ({s}).
Obviously Λ(S) � R(S), for all S, but general Λ(S) < R(S) if there are two or more

matrices in S. However, somewhat surprisingly, we have the following converse inequality:

Lemma 3.9 (Spectral radius formula for several matrices). There is c = c(d) > 0 such that
for every bounded subset S ⊂Md(K), there is an integer k � d2 such that

Λ(Sk)1/k � c(d) ·R(S),
moreover c(d) = 1 if K is non-archimedean (i.e. K not R or C).

In particular, if K is non-archimedean (for example a p-adic field), then

R(S) = max
k�d2

Λ(Sk)1/k.

This information is crucial, because it says that in order to find an element in a small power

of S with a large eigenvalue, it is enough to have a good lower bound on R(S). And since
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ĥρ(S) =
1

[K : Q]

∑
v∈VK

nv log
+RKv (S),

with the obvious notation, we understand now why the Height gap theorem 3.6 above is

precisely what is needed in order to find an element with large eigenvalue.

We note in passing that this lemma produces an element in Sk, k � d2, whose individual

powers are already responsible for most of the growth of the full power set Sn. This feature

is reminiscent of one of the key claims in the Gleason-Yamabe solution to Hilbert’s fifth

problem on the structure of locally compact groups. See the so-called Gleason-Yamabe

lemmas [55, Thm II.13], [38, Lemma 5.4].

Problem. Find a good lower bound on c(d) in terms of d.

3.10. A group theoretic consequence. The Grigorchuk group is one of the simplest ex-

ample of a finitely generated infinite periodic group. Periodic means that every element has

finite order. According to a classical theorem of Schur (see e.g. [30, 80]) every finitely gen-

erated periodic linear group is finite. A simple consequence of the Height gap theorem is that

one can always quickly get out of torsion elements unless one belongs to a finite subgroup,

namely we have a quantitative version of Schur’s theorem ([17, Cor 3.6]):

Corollary 3.11 (Escaping torsion elements). Let K be a field and S a finite subset of
GLd(K). If the subgroup generated by S is infinite, then one can find a word of length
at most N1(d) with letters in S ∪ S−1, which has infinite order. Here N1(d) is independent
of S and K.

To see the connection with the Height gap theorem, note that (in characteristic zero)

unless 〈S〉 is virtually unipotent, ĥρ(S) > 0 and hence there is g ∈ Sk and an eigenvalue λ
of g such that h(λ) > 0 by Corollary 3.8, where k is bounded in terms of d only. In particular

this g has infinite order. We also remark proving escape from elements of bounded torsion

is easier. It follows from the Eskin-Mozes-Oh escape from subvarieties lemma, see [33,

Lemma 3.2], or [22, Lemma 3.11], according to which for any proper subvariety V of the

Zariski closure of 〈S〉, one can find a word of bounded length with letters in S lying outside

the subvariety. However the length of the word can only be bounded by a function of the

degree of V , and in the case of V = {g; ge = 1}, this degree increases with e.
It is also worth pointing out that, as in the Growth gap theorem (Theorem 1.2), the

constant N1(d) from the above statement must tend to infinity. The same examples of Grig-

orchuk and de la Harpe can be used to show, and this was done by Bartholdi and de Cornulier

in [3], that for each n, there is a 3-generated infinite linear group all of whose elements lying

in the word ball of radius n are of finite order.

3.12. Does the spectral gap imply a height gap? As we already mentioned, the uniform

Tits alternative (Theorem 2.1) can be derived (see [16, 17]) from the Height gap theorem and

the ping-pong techniques introduced by Tits in his original paper [85]. The uniform spectral

gap estimate for non-amenable linear groups, i.e. Corollary 2.2 is a simple consequence of

Theorem 2.1. It is interesting to wonder whether one can also go backwards and prove the

Height gap theorem assuming the uniform spectral gap for non-amenable linear groups. As

it turns out, the uniform spectral gap is not quite enough to get the Height gap theorem as

stated in Theorem 3.6. But one can recover the weak form of it discussed after the statement

of Theorem 3.6 in (3.1), as follows.
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Claim 3.13. For a finite (symmetric) subset S of G(K), K any number field,

ĥρ(S) �
1

C[K : Q]
log(r−1

S ),

where C > 0 is a constant depending only of G and ρ, and rS = ||λ〈S〉(μS)|| is the spectral
radius of μS on the regular representation of 〈S〉.

To see the claim, set ΦC(g) := e−C[K:Q]hρ(g) for some C > 0 and view it as a func-

tion defined on the group of adèles G := G(AK). We may assume that G = SLd and

ρ is the identity embedding. If C is large enough (depending on d only) a simple vol-

ume computation shows that ΦC belongs to L2(G). Now, h(xy) � h(x) + h(y), so

ΦC(xy) � ΦC(x)ΦC(y), from which one obtains ∀g ∈ G,

〈λG(g)ΦC ,ΦC〉L2(G) � ΦC(g
−1)〈ΦC ,ΦC〉L2(G),

hence integrating over μ
(n)
S , the n-th fold convolution power of the uniform probability mea-

sure supported on S,

||λG(μ(n)
S )|| � E

μ
(n)
S

ΦC(g
−1) = E

μ
(n)
S

ΦC(g)

� e
−C[K:Q]E

μ
(n)
S

(h(g))
� e−C[K:Q]h(Sn),

where we applied the Jensen inequality to go from the first to the second line. The claim then

follows by taking the n-th root and letting n tend to infinity. Note that ||λG(μS))|| = rS ,
because 〈S〉 is a discrete subgroup of G ([5, F.1.11]). This argument is inspired from those

in [72] and [88].

4. Uniform spectral gap and uniform diameter bounds for finite groups of Lie
type

We now present some applications of the Height gap theorem to diameter bounds and spec-

tral gaps for finite groups of Lie type.

4.1. Diameter bounds. Let G be a finite group and S a symmetric generating subset of G.

The diameter diamS(G) is the least integer n such that every element ofG can be written as

a product of at most n elements from S. There is an extensive literature on diameter bounds

for finite groups, from abelian groups to simple groups, including the Rubik’s cube group,

etc. One of the most celebrated conjecture is Babai’s conjecture:

Conjecture 4.2 (Babai’s conjecture). For every finite simple group and every symmetric
generating set S

diamS(G) � C(log |G|)C ,
where C > 0 is an absolute constant (independent of G and S).

For example this conjecture is widely open in the special case of alternating groupsG = An,

the best bounds to date are due to Helfgott and Seress [50] and are in exp((log log |G|)O(1))
for these groups.
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However Babai’s conjecture was recently shown to hold for finite simple groups of Lie

type and bounded rank. Such simple groups can also be described as those admitting a non

trivial linear representation of bounded degree (over some, possibly finite, field).

Theorem 4.3 (Case of groups of Lie type). If K is a field and G � GLd(K) a finite simple
subgroup generated by a finite subset S, then

diamS(G) � C(log |G|)C ,
where C = C(d) > 0 is a constant depending on d but otherwise independent of S, G and
K.

Most approaches towards Babai’s conjecture use the classification of finite simple groups.

We will see in the next section a diameter bound, weaker than the one claimed by Babai’s

conjecture, but whose proof is independent of the classification.

The bound in the above theorem is a direct consequence of the following result applied

repeatedly to the powers of a fixed generating set.

Theorem 4.4 (Product theorem). If K is a field and G � GLd(K) a finite simple subgroup
generated by a finite subset S, then

|SSS| � min{|S|1+ε, |G|}
where ε = ε(d) > 0 is a constant depending on d but otherwise independent of S,G andK.

These results are due to Pyber and Szabó [77, 78] and, independently, to Green, Tao and

the author [22], following work of Helfgott [49], who first solved Babai’s conjecture for the

family of groups SL2(Fp) and SL3(Fp), p prime. While Helfgott’s arguments used clever

ad hoc matrix computations coupled with techniques from additive combinatorics (the sum-

product theorem), the proof of the general case is mainly based on algebraic geometry over

finite fields. It can largely be seen as a derivative of the techniques introduced by Larsen

and Pink [62] in their classification of finite subgroups of algebraic groups, and used in this

context by Hrushovski [53]. See [19, 20, 78] for a discussion of these arguments.

While this represents a significant advance compared to what was known prior to these

developments, the polylogarithmic bound of Theorem 4.3 is most likely not optimal. Indeed

we conjecture:

Conjecture 4.5 (Logarithmic diameter). If K is a field and G � GLd(K) a finite simple
subgroup generated by a finite symmetric set S, then

diamS(G) � C log |G|,
where C = C(d) > 0 is a constant depending on d but otherwise independent of S, G and
K.

The product theorem (Theorem 4.4 above) falls short of proving any exponential growth

at any early stage, because iterating n times the bound |SSS| � |S|1+ε gives only subexpo-

nential growth in exp(Cnα) for some α < 1. In particular it is not optimal for small n and

not sufficient to get logarithmic diameter.

As it turns out, the uniform Tits alternative can be used precisely for this purpose of

establishing exponential growth at an early stage. Coupled with Theorem 4.4 above, used at
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a later stage, it can say something towards this conjecture. Indeed the fact that the uniform

Tits alternative holds over Q allows for its reinterpretation in terms of a series of equality

between a priori unrelated algebraic subvarieties as we pointed out in Paragraph 3.1. The

equality between two algebraic varieties defined over Z implies their equality modulo p for

every large enough prime. This will mean that unless the groupG generated by S has a large

solvable subgroup (of index bounded in terms of d only), one will be able to find two short

words (of length L bounded in terms of d only) with letters in S admitting no relation of

length � �(p) for some function �(p) tending to +∞ as p gets large. In particular this will

give at least 2�(p) elements in SL�(p) ⊂ G.

The question is how large can �(p) be. Applying standard bounds on the effective null-
stellensatz (e.g. those in [69]) one sees that �(p) can be taken as large as c(log p)α, where α
is some positive exponent strictly less than one. This falls short of reaching the range where

the product theorem can be applied successfully to get the desired logarithmic bound, as one

would need to be able to have α = 1. However one can instead play with several primes in

order to turn the nullstellensatz bounds to one’s advantage and obtain:

Theorem 4.6 (Uniform growth at almost all primes). There is a constant A = A(d) � 1
such that, for every ε > 0, except perhaps for a (small yet possibly infinite) set of primes
Pε−bad satisfying |Pε−bad ∩ [1, X]| � Xε, for all X � 1, every symmetric subset S ⊂
GLd(Fp) satisfies |Slog p| � pε/A, unless the subgroup generated by S has a solvable sub-
group of index at most A.

Conjecturally the set of bad primes ought to be empty and uniform growth should take

place at all primes. Recall that according to the prime number theorem, there are roughly

X/ logX primes less than X . So we see that uniform exponential growth does indeed take

place at most primes. However we cannot say for which primes it does.

The proof of the above statement, already as outlined above, follows the same lines as

the main argument in the paper by Gamburd and the author [21], which we will discuss in

the next paragraph. With this we obtain:

Corollary 4.7 (diameter of perfect subgroups ofGLd(Fp)). Given ε > 0, if p is a prime not
in Pε−bad, then for every perfect subgroup G � GLd(Fp) generated by elements of order p

max
S

diamSG � C

ε
log p,

Here C = C(d) > 0 is a constant independent of p.

While this improves (at least for good primes) on the polylogarithmic bound given by

Pyber and Szabó in Theorem 8 of [77], the proof uses their analog of the product theorem

above for perfect groups combined with Theorem 4.6. Finite simple subgroupsGLd(Fp) are
perfect and generated by their elements of order p (unless their order is prime to p, in which

case they are bounded in size by a function of d only). In particular, we can reformulate this

consequence in the following way:

Corollary 4.8 (Logarithmic diameter for almost all primes). Conjecture 4.5 holds for simple
subgroups of GLd(Fp) for a density one set of primes.

What if G � GLd(Fp) is an arbitrary subgroup, not necessarily perfect or generated

by elements of order p ? Well, in that case we can describe what happens regarding the
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diameter by studying the subgroup Gp of G generated of elements of order p. Clearly this

is a characteristic subgroup of G. Moreover G/Gp has order prime to p, and the Frattini

argument coupled with Jordan’s theorem1 says thatG has a subgroup whose index is bounded

in terms of d only of the form AGp, where A is abelian. Now the last term in the derived

series of Gp is a perfect normal group to which Corollary 4.7 applies, while moding out by

this normal subgroup gives a solvable quotient of bounded derived length. This allows to

estimate the diameter of G. Diameters of abelian and solvable groups are typically much

larger than those of simple or perfect groups. See e.g. [58] for a recent paper on the diameter

of abelian groups.

Problem (Function field analogues). Theorem 4.6 and its corollaries above say something

interesting only when p is large. For a fixed p, it would be interesting to derive a statement of

a similar flavor (from the characteristic p case of the uniform Tits alternative) for the quotient

fields Fp[X]/(π), where π varies among the irreducible polynomials of Fp[X].

We finally note that it is plausible that an even stronger phenomenon than the logarithmic

diameter bounds of Corollary 4.7 holds for finite simple groups of bounded rank. Namely it

is likely that

diamS(G) � C
log |G|
log |S|

for every generating subset S. This means that we take into account the size of the generating

set, whereas the previous statement does not distinguish between |S| large or small. This

kind of bound would be optimal.

Related statements occur in the work of Liebeck, Shalev, Nikolov [64] and others, where

one allows to take arbitrary conjugates of S to compute the diameter (or rather width) of

G. For example it is known, thanks to recent work of Gill, Pyber, Short and Szabó [37],

that every element in a finite simple group of Lie type of rank at most d can be written as a

product of only C(d) log |G|
log |S| conjugates of elements from any subset S ⊂ G (of size � 2).

We refer the reader to the recent survey by Martin Liebeck [65] for many beautiful recent

results in this direction.

We finally quote another result, proved by Green, Guralnick and the author [24], which

provides further evidence towards Conjecture 4.5.

Theorem 4.9 (Logarithmic diameter for almost all generating sets). If K is a field and
G � GLd(K) a finite simple subgroup, then

diam{a±1,b±1}(G) � C log |G|,
for all but a proportion � 1/|G|δ of all pairs {a, b} ⊂ G, where C, δ > 0 are certain
constants depending on d but otherwise independent of S, G and K.

4.10. Uniform spectral gap bounds, Ellenberg’s property τ̂ . In what follows, we will

say that the Cayley graph of a finite group G with finite symmetric generating set S is an

ε-expander if

κ(S, �20(G)) > ε,

1Usually Jordan’s theorem [54] is cited as a theorem about subgroups of GLd(C), but Jordan’s original proof,
unlike the more often quoted geometric argument due to Frobenius (see [30]), assumes only that all subgroups

elements are semisimple and nothing on the field.
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where �20(G) is the regular representation of G on functions with zero average, and

κ(S, �20(G)) is the Kazhdan constant defined in (2.1). We refer the reader to the books

[66, 79] and surveys [52, 60] for the background on expanders. Let us only mention that ex-

pander graphs withN vertices have logarithmic diameter (i.e. O(logN)) and that the simple

random walk on them equidistributes after logarithmically many steps.

As it turns out, the Height gap theorem and the uniform Tits alternative can also be used

to prove uniform spectral gap estimates for Cayley graphs of finite simple groups of Lie type.

A very general method, due to Bourgain and Gamburd, allows to establish spectral gaps for

Cayley graphs of finite groups. We refer the reader to [20, 24, 60] for an exposition of this

method. An important requirement for the method to work is to be able to assert that the

probability that the simple random walk on the Cayley graph of G hits any given subgroup

decays exponentially fast at an initial stage (say for c log |G| steps). WhenG = SL2(Fp) and
the Cayley graph has girth � c log p, then this easily achieved as did Bourgain and Gamburd

in their seminal paper [9]. Using the uniform Tits alternative, one can claim that this happens

without any girth condition, at least at almost all primes p. We have:

Theorem 4.11 (Breuillard-Gamburd [21]). For every δ > 0 there is ε > 0 such that, given
any X > 1, for all but at most Xδ primes p � X , all Cayley graphs of SL2(Fp) are
ε-expanders.

We record here the following folklore conjecture, which implies Conjecture 4.5 above:

Conjecture 4.12. Given d � 1, there is ε > 0 such that all Cayley graphs of all finite simple
subgroups of GLd over some field are ε-expanders.

Although this conjecture seems out of reach at the moment even for SL2(Fp)’s and the

entire family of primes p, the following looks more approachable:

Problem: Generalize Theorem 4.11 to higher rank finite simple groups of Lie type.

A related question is that of the spectral gap for finite subsets of compact groups. Fol-

lowing Jordan Ellenberg in [32] we will say that a topologically finitely generated compact

group G has property τ̂ if for every finite subset S of G generating a dense subgroup

κ(S,L2
0(G)) > 0,

where L2
0(G) is the regular representation of G on square integrable functions with zero

average on G. The Kazhdan constant κ(S,L2
0(G)) was defined above in (2.1).

The terminology echoes Lubotzky’s property (τ), which is a property of a finitely gen-

erated group: property (τ) for a finitely generated group Γ means that for some (hence all)

finite generating subsets S of Γ, one has

κ(S,L2
0(Γ̂)) > 0,

where Γ̂ is the profinite completion of Γ. We refer the reader to the forthcoming book [67]

as well as [19] for more on property (τ).
Note that every finitely generated group with Kazhdan’s property (T ) has Lubotzky’s

property (τ). And there are also many other examples. However it surprisingly difficult

to even exhibit one example of an infinite compact group G with Ellenberg’s property (τ̂).
Using Theorem 4.11 it is possible to prove that certain infinite products

∏∞
1 SL2(Fpi) for

a sparse increasing sequence of primes have property τ̂ , thus giving the first examples of

infinite compact groups with this property.
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However difficult it appears to produce examples of compact groups with property (τ̂),
it is conjectured that this property is quite common and should hold in particular for all

semisimple compact real Lie groups and the adèles groups SLn(Ẑ). However it is not even

known for SU(2) and SL2(Zp) and these cases already appear to be very difficult (see [79,

p.58] and [10]). See also Varju’s paper [86, Corollary 4] for the current state of the art

regarding spectral gap bounds for SLn(Ẑ) and other compact groups. For a connection be-

tween property (τ̂) for certain Galois groups and Bogomolov’s property for field extension,

we refer the reader to Ellenberg’s article [32] and to [31].
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Schur-Weyl duality and categorification
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Abstract. In some joint work with Kleshchev in 2008, we discovered a higher level analog of Schur-
Weyl duality, relating parabolic category O for the general linear Lie algebra to certain cyclotomic

Hecke algebras. Meanwhile Rouquier and others were developing a general axiomatic approach to the

study of categorical actions of Lie algebras. In this survey, we recall aspects of these two theories,

then explain some related recent developments due to Losev and Webster involving tensor product
categorifications.
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1. Introduction

The double centralizer property. To set the scene in this introduction, we are going to

briefly recall two classic topics in representation theory, namely:

• Schur-Weyl duality relating the representation theory of the general linear and symmetric

groups;

• Soergel’s functor relating the Bernstein-Gelfand-Gelfand category O for a semisimple

Lie algebra to modules over coinvariant algebras.

First though we formulate some abstract double centralizer property. This applies to both of

the above situations, as well as to the generalizations to be discussed in subsequent sections.

(For the reader not familiar with the notion of a highest weight category, we will recall its

meaning shortly.)

Theorem 1.1. LetM be a highest weight category with a finite weight poset. Assume that the
injective hulls of all its standard objects are projective. Let T be a prinjective generator forM,
that is, a prinjective (= both projective and injective) object such that every indecomposable
prinjective object is isomorphic to a summand of T . Let C := EndM(T )op and C -mod
denote the category of finite dimensional left C-modules. Then the quotient functor

V := HomM(T,−) :M→ C -mod

is fully faithful on projectives.

Proof. Note to start with that if 0→ P → Q→ R→ 0 is a short exact sequence inM with

P projective and Q prinjective, then R has a Δ-flag; see [46, Proposition 2.3]. Now let P

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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be any projective object inM. Since P has a Δ-flag, the assumption onM implies that

its injective hull Q is prinjective. Then we see that the cokernel of the inclusion P ↪→ Q
has a Δ-flag, so its injective hull R is prinjective too. This proves the existence of an exact

sequence 0 → P → Q → R such that Q and R are direct sums of summands of T . Now

argue as in [51, Corollary 1.7].

Remark 1.2. There is also a version of Theorem 1.1 for highest weight categories with infinite

weight posets. For this, one needs to replace T by a family {Td}d∈D of prinjective objects of

M such that every indecomposable prinjective is a summand of at least one and at most finitely

many of the Td’s. Then the algebra C becomes the vector space
⊕

d,d′∈D HomM(Td, Td′)
viewed as a locally unital algebra via the opposite of composition, and C -mod means the

category of locally unital finite dimensional left C-modules.

Schur-Weyl duality. The first situation in which the double centralizer property arises

involves the representation theory of the general linear group GLn(k) and the symmetric

group Sd over an algebraically closed field k. From our categorical perspective, this is only

really interesting in the case that k is of positive characteristic. For simplicity we assume that

n ≥ d; the case n < d is more subtle and is discussed in [39] from a similar point of view to

this introduction.

Let R denote the category of polynomial representations of degree d for the algebraic

group G := GLn(k), that is, the Serre subcategory of its category of rational representations

generated by the dth tensor power V ⊗d of the natural G-module V . It is a highest weight

category with weight poset Λ being the set of all partitions of d, partially ordered by the usual

dominance ordering. This poset indexes a set {L(λ)}λ∈Λ of representatives for the isomor-

phism classes of irreducible objects of R; explicitly, one takes L(λ) to be the irreducible

highest weight module for G of highest weight λ. For λ ∈ Λ, we also have the projective

cover P (λ) of L(λ) inR, and the standard module

Δ(λ) := P (λ)
/ ∑

μ∈Λwithμ �<λ
f∈HomG(P (μ),radP (λ))

im f.

In this context Δ(λ) turns out to be isomorphic to the Weyl module whose character is given

by the Schur polynomial sλ. The statement thatR is a highest weight category means that

each P (λ) has a finite filtration with top section Δ(λ) and other sections of the form Δ(μ)
for μ > λ.

The symmetric group Sd acts on the right on the tensor space T := V ⊗d by permuting

tensors, and this action induces an isomorphism between the group algebra kSd and the

endomorphism algebra C := EndG(T )
op. The module T is a projective module in R, as

more generally is the divided power

Γμ(V ) := {v ∈ V ⊗d | v · g = v for all g ∈ Sμ}
for any n-part composition μ �n d, where Sμ denotes the parabolic subgroup Sμ1×· · ·×Sμn

of Sd. As T is self-dual with respect to the natural duality onR, it is also injective. Then it is

a special feature of this situation that all of the standard modules Δ(λ) embed into T . Hence

the injective hull of each standard module is a summand of T , so projective, and moreover T
is a prinjective generator forR. This verifies the hypotheses of Theorem 1.1. We deduce that

the functor

V := HomG(T,−) : R → kSd -mod
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is fully faithful on projectives.

In Green’s monograph [30], this quotient functor V is called the Schur functor, and it

is used in a systematic way to recover the representation theory of the symmetric group

from that of the general linear group, thereby reversing the flow of information compared

to Schur’s classical work over C. Green’s approach also emphasizes the role of the Schur
algebra S(n, d), which is a certain finite dimensional algebra whose module category is

equivalent toR. From the perspective of the double centralizer property, the Schur algebra

can be defined as the endomorphism algebra

S(n, d) := EndkSd
(T ),

and then the equivalenceR ∼→ S(n, d) -mod can be seen as follows. Let

P :=
⊕
μ�nd

Γμ(V ).

This is a projective generator forR, hence the functor HomG(P,−) defines an equivalence of

categoriesR ∼→ A -mod, where A := EndG(P )
op. Setting Y := VP , it remains to observe

that

A = EndG(P )
op ∼= EndkSd

(Y )op ∼= EndkSd
(Y ∗) ∼= EndkSd

(T ) = S(n, d).

The non-trivial first isomorphism here is defined by applying the functor V; the fact that it

is an isomorphism follows from (indeed, is equivalent to) the double centralizer property.

The second isomorphism is just taking linear duals to turn left modules into right modules.

The final isomorphism follows on checking that Y ∗ ∼= ⊕μ�nd
k(Sμ\Sd) ∼= T as right

kSd-modules, i.e. both Y ∗ and T are direct sums of the same permutation modules.

Soergel’s functor. Everything in the remainder of the article will be defined over the ground

field C. Let g be a finite dimensional semisimple Lie algebra. Fix a Borel subalgebra b
containing a Cartan subalgebra t. Let O0 be the principal block of the BGG category O
attached to this data. Thus O0 consists of all finitely generated g-modules which are locally

finite over b, semisimple over t, and which have the same generalized central character as the

trivial module. The irreducible modules in O0 are parametrized naturally by the Weyl group

W of g. We denote them by {L(w)}w∈W ; explicitly, L(w) is the irreducible highest weight

module of highest weight wρ− ρ where ρ is the half-sum of the positive roots.

The categoryO0 is a highest weight category with weight posetW partially ordered by the

opposite of the usual Bruhat order, i.e. the longest element w0 ∈W is minimal. Its standard

modulesΔ(w) defined according to the general recipe explained above are better known as

Verma modules, and may be denoted instead byM(w). It is well known that the socle of each

Verma module in O0 is isomorphic to L(w0). Moreover the only indecomposable projective

module P (w) that is also injective is the antidominant projective P (w0). This puts us in the

situation of Theorem 1.1 with T := P (w0).
In [50], Soergel proved that the algebra C := Endg(T )

op is canonically isomorphic to the

coinvariant algebra, that is, the quotient of S(t) by the ideal generated by all homogeneous

W -invariant polynomials of strictly positive degree. Equivalently, by a classical theorem of

Borel, C is the cohomology algebra H∗(G/B,C) of the flag variety associated to g. Soergel
also showed that the functor

V := Homg(T,−) : O0 → C-mod
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is fully faithful on projectives, as asserted by Theorem 1.1. Moreover, all of the Soergel
modulesQ(w) := VP (w) admit unique (up to automorphism) gradings making them into self-

dual graded modules over the naturally graded algebra C. Hence, letting P :=
⊕

w∈W P (w)
and Q :=

⊕
w∈W Q(w) graded in this way, we get induced a grading on the endomorphism

algebra

A := Endg(P )
op ∼= EndC(Q)

op,

where the isomorphism comes from the double centralizer property.

In fact, as shown by Beilinson, Ginzburg and Soergel in [4], the graded algebra A is a

Koszul algebra. Since P is a projective generator for O0, the category O0 is equivalent to

the category A -mod. This means that O0 has a natural graded lift, namely, the category

A -grmod of finite dimensional graded left A-modules. This graded category is related

intimately to the Iwahori-Hecke algebra associated to the Weyl group of g and the Kazhdan-

Lusztig conjecture.

Organization of the article. The rest of the article is an attempt to explain some general-

izations of the above examples. The first of these, discussed in section 2, is the Schur-Weyl
duality for higher levels introduced in [13]. This is built around a double centralizer property

as above in which the categoryM is a sum of blocks of parabolic category O for the Lie

algebra gln(C), and the endomorphism algebra C of a suitably chosen prinjective generator

T is some degenerate cyclotomic Hecke algebra. A key feature of this example is that the

categoryM admits a categorical slZ-action in the general sense of Chuang and Rouquier

[24, 47].

In fact the categoryM fits into the axiomatic framework of tensor product categorifi-
cations introduced recently by Losev and Webster [44]. They show that all tensor product

categorifications of integrable highest weight modules satisfy a double centralizer property

in which the algebra C is some cyclotomic quiver Hecke algebra. From this they are able to

deduce a striking uniqueness theorem. We sketch these results in section 3. When applied to

our categoryM, the Losev-Webster uniqueness theorem implies the equivalence ofM with

various other categories which have appeared elsewhere in the literature. Some examples

are discussed in section 4, together with some further generalizations and possible future

directions.

2. Schur-Weyl duality for higher levels

Categorical actions. Throughout, we let I ⊆ Z be some non-empty interval, I+ := I ∪ (I+
1), and slI be the (complex) special linear Lie algebra of I+ × I+ matrices. It is generated

by its matrix units ei := ei,i+1 and fi := ei+1,i for each i ∈ I . Also let VI be the natural

slI -module of column vectors with standard basis {vi}i∈I+ . We denote the weight of vi with

respect to the Cartan subalgebra tI of slI consisting of diagonal matrices by εi ∈ t∗I .
The following is essentially [47, Definition 5.32].

Definition 2.1. Let C be a C-linear abelian category such that all its objects have finite length

and there are enough projectives. A categorical slI -action on C is the data of an endofunctor

F , a right adjoint E to F (with a specified adjunction), and natural transformations x ∈
End(F ) and s ∈ End(F 2) satisfying the axioms (SL1)–(SL4) formulated below. For the

first axiom, we let Fi be the subfunctor of F defined by the generalized i-eigenspace of x, i.e.
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FiM =
∑

k≥0 ker(xM − i)k for each M ∈ C.
(SL1) We have that F =

⊕
i∈I Fi, i.e. FM =

⊕
i∈I FiM for each M ∈ C.

(SL2) For d ≥ 0 the endomorphisms xj := F d−jxF j−1 and sk := F d−k−1sF k−1 of F d

satisfy the relations of the degenerate affine Hecke algebra Hd, i.e. the xj’s commute

like in the polynomial algebra C[x1, . . . , xd], the sj’s satisfy the Coxeter relations

of the simple transpositions in the symmetric group Sd, sjxj+1 = xjsj + 1, and
sjxk = xksj for k �= j, j + 1.

(SL3) The functor F is isomorphic to a right adjoint of E.

For the final axiom, we let c : id→ EF and d : FE → id be the unit and counit of the given

adjunction, respectively. The endomorphisms x and s of F and F 2 induce endomorphisms x′

and s′ of E and E2 too:

x′ : E
cE→ EFE

ExE→ EFE
Ed→ E,

s′ : E2 cE2

→ EFE2 EcFE2

→ E2F 2E2 E2sE2

→ E2F 2E2 E2FdE→ E2FE
E2d→ E2.

Let Ei be the subfunctor of E defined by the generalized i-eigenspace of x′ ∈ End(E). The
axioms so far imply that E =

⊕
i∈I Ei and moreover Fi and Ei are biadjoint, so they are

both exact and send projectives to projectives.

(SL4) Let K0(C) be the split Grothendieck group of the category of projectives in C. The en-

domorphisms fi and ei of [C] := C⊗ZK0(C) induced by Fi andEi, respectively, make

[C] into an integrable representation of slI . Moreover the classes of the indecomposable

projective objects are weight vectors.

There is also a much more general notion of a categorical action of an arbitrary Kac-

Moody algebra g on a category C, which was introduced independently by Rouquier [47] and

Khovanov and Lauda [38]. We will refer to this general notion in later discussion, but are not

going to repeat its definition in full here. It involves a certain 2-category U(g) defined in [47]

by generators and relations, which is closely related to the diagrammatic category introduced

in [38]. In particular, the degenerate affine Hecke algebra appearing in our axiom (SL2) gets

replaced by the quiver Hecke algebra (or Khovanov-Lauda-Rouquier algebra) associated to g.
The equivalence of the general definition with the special version stated above depends on the

isomorphism theorem between affine Hecke algebras and quiver Hecke algebras in type An

from [47, Proposition 3.15] (see also [14]), as well as on [47, Theorem 5.27].

Definition 2.2. Given two categorical slI -actions on categories C1 and C2, a functor G :
C1 → C2 is strongly equivariant if there exists an isomorphism of functors ζ : G◦F ∼→ F ◦G
with

xG ◦ ζ = ζ ◦Gx in Hom(G ◦ F, F ◦G),
sG ◦ Fζ ◦ ζF = Fζ ◦ ζF ◦Gs in Hom(G ◦ F 2, F 2 ◦G).

A strongly equivariant equivalence is a strongly equivariant functor G : C1 → C2 that is also

an equivalence of categories. It is then automatic that [C1] ∼= [C2] as slI -modules.
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First example of a categorical action. In this subsection, we explain our favorite example

of a categorical action; for this the interval I will be Z. Let g := gln(C), t be the Cartan

subalgebra consisting of diagonal matrices, and b be the Borel subalgebra of upper triangular

matrices. Inside t∗, we have the standard coordinate functions δ1, . . . , δn, where δi picks out
the ith diagonal entry of a diagonal matrix. Let (−,−) be the symmetric bilinear form on t∗

defined from (δi, δj) := δi,j . Also set

ρ := −δ2 − 2δ3 − · · · − (n− 1)δn.
We identify the set t∗Z := Zδ1 ⊕ · · · ⊕ Zδn of integral weights with Zn, so that λ ∈ t∗Z is

identified with the n-tuple (λ1, . . . , λn) defined from λi := (λ+ ρ, δi). The Bruhat order ≤
on t∗Z is the partial order generated by the basic relation that λ < μ if μ is obtained from the

n-tuple λ by switching some pair of entries λi and λj for i < j with λi < λj .
Let O be the BGG category of all finitely generated g-modules M that are locally finite

over b and satisfy

M =
⊕
λ∈t∗

Z

Mλ,

where Mλ denotes the λ-weight space with respect to t. The irreducible modules in O are

the modules {L(λ)}λ∈t∗
Z
, where L(λ) is the irreducible highest weight module of highest

weight λ. The categoryO is a highest weight category with weight poset (t∗Z,≤). Its standard
modules are the Verma modules M(λ) := U(g)⊗U(b) Cλ.

In any highest weight category C, projective objects have finiteΔ-flags. Hence there is a

map K0(C) ↪→ K0(CΔ), the right hand side denoting the Grothendieck group of the exact

subcategory of C consisting of objects with a Δ-flag. In category O, all the chains in the

partial order ≤ are all finite, in which case this map is actually an isomorphism. This means

that the classes [M(λ)] of the Verma modules can be interpreted as elements of [O].
Now we define a categorical slZ-action on O. For the endofunctors F and E, we take

the functors F := − ⊗ U and E := − ⊗ U∨, where U is the natural g-module of column

vectors and U∨ is its dual. These are both left and right adjoint to each other in a canonical

way. For the natural transformation x ∈ End(F ), we let xM : M ⊗ U → M ⊗ U be the

endomorphism defined by the action of the Casimir tensor Ω :=
∑n

i,j=1 ei,j ⊗ ej,i. For

s ∈ End(F 2), we let sM :M ⊗U ⊗U →M ⊗U ⊗U be the mapm⊗u⊗ v �→ m⊗ v⊗u.
The axioms (SL1)–(SL4) are checked in [24, §7.4]. The hardest one is (SL4); for this one

shows that the map

[O]→ V ⊗n
Z , [M(λ)] �→ vλ1 ⊗ · · · ⊗ vλn

is an isomorphism of slZ-modules. This follows from a slightly stronger statement, namely,

that FiM(λ) has a Δ-flag with sections M(λ + δj) for all j = 1, . . . , n such that λj = i;
similarly EiM(λ) has a Δ-flag with sections M(λ − δj) for all j = 1, . . . , n such that

λj = i+ 1. On passing to the Grothendieck group, these two descriptions match the actions

of fi and ei on the monomial vλ1 ⊗ · · · ⊗ vλn ∈ V ⊗n
Z .

We have just identified [O] with V ⊗n
Z so that the classes of the Verma modules correspond

to the monomials. The classes of the indecomposable projective modules give another natural

basis for [O]. Under our identification it is known that this basis corresponds to Lusztig’s
canonical basis for V ⊗n

Z . We skip the precise definition of the canonical basis here; it arises

by applying Lusztig’s general construction of tensor product of based modules from [45, Ch.

27] to the n-fold tensor product of the q-analog of the module VZ for quantized enveloping
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algebra UqslZ (then specializing at q = 1). In fact the statement just made is an equivalent

formulation of the Kazhdan-Lusztig conjecture for the Lie algebra g; see e.g. [12, Theorem

4.5] where the dual statement is explained.

Second example of a categorical action. Now take I to be an arbitrary non-empty interval

and fix also a composition ν = (ν1, . . . , νl) of integers with 1 ≤ νi ≤ |I| for each i. Our

next example of a categorical slI -action is going to have complexified Grothendieck group

isomorphic to ∧ν
VI :=

∧ν1
VI ⊗ · · · ⊗

∧νl
VI .

Let us introduce some notation for the obvious monomial basis of this module: set

Λ :=
{
λ = (λi,j)1≤i≤l,1≤j≤νi

∣∣∣ λi,j ∈ I+, λi,1 > · · · > λi,νi for each i
}
,

vλ := (vλ1,1
∧ · · · ∧ vλ1,ν1

)⊗ · · · ⊗ (vλl,1
∧ · · · ∧ vλl,νl

) ∈
∧ν

VI .

Then {vλ | λ ∈ Λ} is a basis for
∧ν

VI . Each of the modules
∧νi VI is minuscule, so all of

its weight spaces are one-dimensional. Hence the map

Λ→ (t∗I)
⊕l, λ �→ (|λ1|, . . . , |λl|) where |λi| :=

νi∑
j=1

ελi,j

is injective. Let ≤ be the usual dominance ordering on t∗I defined from λ ≤ μ if μ− λ is a

sum of simple roots εi − εi+1 (i ∈ I). Then define a partial order ≤ on Λ by λ ≤ μ if and

only if |λ1|+ · · ·+ |λi| ≥ |μ1|+ · · ·+ |μi| for each i = 1, . . . , l, with equality in case i = l.
We refer to this as the reverse dominance ordering.

We identify the set Λ with a subset of the set t∗Z of integral weights from the previous

subsection so that λ ∈ Λ corresponds to the weight λ ∈ t∗Z with

(λ+ ρ, δν1+···+νi−1+j) = λi,j

for each i, j, i.e. it is the tuple (λ1,1, . . . , λ1,ν1 , . . . , λl,1, . . . , λl,νl) ∈ Zn. Then let M
be the Serre subcategory of the category O from the previous subsection generated by the

modules {L(λ)}λ∈Λ. In factM is a sum of blocks of the parabolic category O associated

to the standard parabolic subalgebra with Levi factor glν1(C) ⊕ · · · ⊕ glνl(C). As is well

known,M is again a highest weight category with weight poset Λ partially ordered by the

reverse dominance ordering ≤ introduced in the previous subsection; this order is just the

restriction of the Bruhat order≤ on t∗Z to Λ. The standard moduleΔ(λ) ∈M is the parabolic

Verma module of highest weight λ. The functors Fi and Ei for i ∈ I restrict to well-defined

endofunctors ofM. Hence we can define a categorical slI -action onM with F :=
⊕

i∈I Fi,
E :=

⊕
i∈I Ei, and x and s being the restrictions of the ones on O. For (SL4), one checks

that the map

[M]→
∧ν

VZ, [Δ(λ)] �→ vλ

is an isomorphism of slI -modules.

The natural inclusion M ↪→ O has a left adjoint π : O → M, defined by taking

the largest quotient that belongs to M. As it is left adjoint to an exact functor, π sends

projectives to projectives. In fact it is even the case that the restriction of π to OΔ is exact,
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with π(M(λ)) ∼= Δ(λ) if λ ∈ Λ and π(M(λ)) = 0 otherwise. This means that there is a

commuting diagram of linear maps

[O] [π]−−−−→ [M]⏐⏐� ⏐⏐�
V ⊗n
Z −−−−→ ∧ν

VI ,

where the vertical maps are the isomorphisms introduced above, and the bottom map is an

obvious surjection. The functor π sends the projective cover of L(λ) in O to its projective

cover P (λ) inM if λ ∈ Λ, or to zero otherwise. This parallels the effect of the bottom

map in the above commuting diagram on the canonical bases of V ⊗n
Z and

∧ν
VI . Hence the

basis {[P (λ)]}λ∈Λ for [M] corresponds to the canonical basis {bλ}λ∈Λ of the based module∧ν
VI .

Higher level Schur-Weyl duality. We continue with the notation of the previous subsection,

assuming in addition that the interval I is finite. Set o := min(I)−1 and�i :=
∑

I�j≤i εj ∈
t∗I . The module

∧ν
VI has a unique highest weight in the dominance ordering, namely, the

weight

� :=
l∑

i=1

�o+νi .

We let κ ∈ Λ be the unique element satisfying |κ1| + · · · + |κl| = �, so that vκ spans the

highest weight space of
∧ν

VI . The slI -submodule of
∧ν

VI generated by vκ is a copy of the

irreducible highest weight module V (�). Let

ι : V (�) ↪→
∧ν

VI

be the inclusion. Higher level Schur-Weyl duality categorifies this homomorphism.

Recall that
∧ν

VI is a based module with canonical basis {bλ}λ∈Λ corresponding to the

indecomposable projectives {P (λ)}λ∈Λ inM. By the general theory of based modules, there

is a subset Λ◦ ⊂ Λ such that {bλ}λ∈Λ◦ is the canonical basis of the irreducible submodule

V (�). The best way to describe this set Λ◦ combinatorially is to note that the set Λ that

labels the basis of our based module
∧ν

VI comes equipped with an explicit crystal structure

defined via Kashiwara’s tensor product rule; then Λ◦ is the connected component of this

crystal generated by κ.
The representation theoretic significance of Λ◦ was first noticed in [13]: it is exactly the

set of weights that index the indecomposable projective modules P (λ) ∈ M that are also

injective. Moreover the hypotheses of Theorem 1.1 are all satisfied in the present situation.

For the prinjective generator T , we take

T :=
⊕
d≥0

F dL(κ) ∈M.

Setting C := Endg(T )
op, Theorem 1.1 implies that the the functor

V :M→ C -mod
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is fully faithful on projectives. For this to be good for anything, we of course need to identify

the algebra C explicitly.

To state the main result, let Hf
d be the quotient of the degenerate affine Hecke algebra

Hd by the two-sided ideal generated by f :=
∏l

i=1(x1 − (o+ νi)). This finite dimensional

algebra is known as a degenerate cyclotomic Hecke algebra. It contains a system of mutually

orthogonal idempotents {1i}i∈Cd indexed by words i = i1 . . . id ∈ Cd; these are defined so

that 1i projects any H
f
d -module onto the generalized ij-eigenspace of xj for all j. Then let

Hω
d be the algebra eHf

d e where e is the central idempotent
∑

i∈Id 1i ∈ Hf
d .

Theorem 2.3 (Brundan-Kleshchev). There is a well-defined right action of Hω
d on F dL(κ)

defined so that each of its generators xj and sk act via the natural transformations from (SL2).
This action induces an isomorphism Hω

d
∼→ Endg(F

dL(κ))op. Hence C ∼=⊕d≥0 H
ω
d .

Remark 2.4. Theorem 2.3 was first proved in [13] under the assumption that ν1 ≥ · · · ≥ νl;
this restriction was removed in [8]. The original proof goes via finite W -algebras and a

result of Vust establishing some generalization of classical Schur-Weyl duality for centralizers

in the general linear Lie algebra. Vust’s result itself is quite non-trivial; its proof was

completed in [40] by an invariant theory argument depending on the normality of closures of

conjugacy classes of matrices. As discussed further in Remark 3.5, Losev and Webster have

subsequently found a completely different proof of Theorem 2.3 based on the uniqueness of

minimal categorifications of integrable highest weight modules established in [47].

By works of Ariki [1] and Grojnowski [31], the category

C -mod =
⊕
d≥0

Hω
d -mod

admits a categorical slI -action making it into a minimal categorification of the irreducible

slI -module V (ω). The appropriate functors F andE are the induction and restriction functors

going between Hω
d -mod and Hω

d+1 -mod. The functor V :M→ C -mod is then strongly

equivariant in the sense of Definition 2.2.

The left adjoint to the quotient functor V sends the indecomposable projectives in C -mod
to the ones inM indexed by the set Λ◦. It induces a linear map [C -mod] ↪→ [M] which

corresponds exactly to the inclusion ι : V (ω) ↪→ ∧ν
VI mentioned already above. Thus

the classes of the indecomposable projectives in [C -mod] coincide with the canonical basis

{bλ}λ∈Λ◦ for V (ω). There are also certain Specht modules {S(λ)}λ∈Λ which have an

intrinsic definition in terms of Hω
d . In fact, as show in [13], the Specht module S(λ) is the

image of the parabolic Verma module Δ(λ) under the quotient functor V. Then one can

deduce almost everything known about the representation theory of the degenerate cyclotomic

Hecke algebras Hω
d from that ofM. This is done systematically in [15], leading to another

proof of Ariki’s categorification theorem from [1] for a generic parameter. This argument is

similar to the way that Green recovers the representation theory of the symmetric group from

the general linear group in [30].

The point of the double centralizer property is that it gives a way to recover the categoryM
(up to equivalence) from the algebra C and knowledge of the Young modules Y (λ) := VP (λ)
for each λ ∈ Λ. Indeed if Y is any Young generator for C -mod, that is, a direct sum of

Young modules with each occuring at least once, then the double centralizer property shows

thatM is equivalent to the category A -mod where A := EndC(Y )
op. One application of
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this is given in [13]: it is shown there that a particular Young generator Y may be obtained by

taking a direct sum of all of the so-called permutation modules introduced by Dipper, James

and Mathas in [25] (or rather, their degenerate analogs). For this choice, the algebra A is

the cyclotomic Schur algebra, i.e. the degenerate version of the algebra introduced in [25].

Hence by the double centralizer property the categoryM is equivalent to the category of

finite dimensional modules over the cyclotomic Schur algebra. This argument is similar to

the proof of the equivalence of the categoriesR and S(n, d) -mod from the introduction.

3. Tensor product categorifications

Discussion of the definition. In this section we are going to focus on some results of Losev

and Webster from [44]. These put the Schur-Weyl duality for higher levels discussed above

into a general axiomatic framework. We begin by formulating their definition in a very special

case, namely, for tensor products of minuscule representations of slI for a finite interval

I ⊂ Z. The following is exactly like in [16, Definition 2.9]. Note also that the category

M defined in the previous section is an example, thus establishing the existence of such

structures.

Definition 3.1. Let ν = (ν1, . . . , νl) be a composition of n and I ⊂ Z be a finite interval.

A tensor product categorification of
∧ν

VI means a highest weight categoryM together

with an endofunctor F ofM, a right adjoint E to F (with specified adjunction), and natural

transformations x ∈ End(F ) and s ∈ End(F 2) satisfying the axioms (SL1)–(SL3) from

Definition 2.1 and the axioms (TP1)–(TP2) below.

(TP1) The weight poset Λ is the set of tuples (λ1, . . . , λl) ∈ (t∗I)⊕l such that each λi is a
weight of

∧νi VI , ordered by the reverse dominance ordering λ ≤ μ if and only if

λ1 + · · ·+ λi ≥ μ1 + · · ·+ μi for each i with equality when i = l.

(TP2) The exact functors Fi and Ei send objects with Δ-flags to objects with Δ-flags.

Moreover the linear isomorphism [M]
∼→ ∧ν

VI , [Δ(λ)] �→ vλ intertwines the endo-

morphisms fi and ei of [M] induced by Fi and Ei with the endomorphisms of
∧ν

VI
arising from the actions of the Chevalley generators fi and ei of slI .

In [44], Losev and Webster have introduced a substantially more general notion of tensor

product categorication of V (ν1)⊗· · ·⊗V (νl) for arbitrary integrable highest weight modules

V (ν1), . . . , V (νl) for an arbitrary Kac-Moody algebra g. We are going to explain their

definition somewhat informally. To start with, since they work with an arbitrary g rather

than slI , the axioms (SL1)–(SL3) are replaced by the corresponding axioms for a categorical

g-action, i.e. the natural transformations defining the degenerate affine Hecke algebra action

on F d are replaced by natural transformations defining a quiver Hecke algebra action.

A more significant issue is that the modules V (νi) are no longer assumed to be minuscule,

so their weight spaces are not all one-dimensional. We still have a natural poset Ξ, namely,

the set of l-tuples ξ = (ξ1, . . . , ξl) such that ξi is a weight of the g-module V (νi), ordered
by the reverse dominance ordering as above. The theory of based modules also produces

a couple of natural bases for V (ν1) ⊗ · · · ⊗ V (νl), both indexed by the set Λ that is the

Cartesian product of the underlying highest weight crystals: the monomial basis {vλ}λ∈Λ
arising from the naive tensor product of the canonical bases in each V (νi), and the canonical
basis {bλ}λ∈Λ for V (ν1)⊗ · · · ⊗ V (νl) itself defined via Lusztig’s general construction from
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[45, Ch. 27]. However now there is only a surjection

ρ : Λ� Ξ,

rather than the isomorphism that we exploited in the previous section. This is a shadow of

the problem at a categorical level: the categoryM is no longer going to be a highest weight

category. Rather, it is the following weakening of the notion of highest weight category

introduced by Losev and Webster (building on an earlier notion of standardly stratified algebra

studied by a number of authors in the literature).

Definition 3.2. Let Ξ be an interval-finite poset and ρ : Λ� Ξ be a surjective function with

finite fibers. A standardly stratified category of this type is a C-linear abelian categoryM
together with a given set of representatives {L(λ)}λ∈Λ for its irreducible objects, satisfying

the axioms (SS1)–(SS3) below.

(SS1) All objects ofM are of finite length, there are enough projectives and injectives, and

EndM(L(λ)) ∼= C for each λ.

For ξ ∈ Ξ, letM≤ξ be the Serre subcategory ofM generated by {L(λ)}λ∈Λ,ρ(λ)≤ξ . Define

M<ξ similarly, and let πξ :M≤ξ →Mξ be the quotient ofM≤ξ byM<ξ . The associated
graded category is grM :=

⊕
ξ∈ΞMξ. The standardization functor is Δ :=

⊕
ξ∈ΞΔξ :

grM→M where Δξ :Mξ →M≤ξ is some choice of a left adjoint to πξ.

(SS2) The standardization functor is exact.

Let P (λ) be the projective cover of L(λ) inM andΔ(λ) be the projective cover of L(λ) in
M≤ρ(λ). In other words, Δ(λ) is the largest quotient of P (λ) that belongs toM≤ρ(λ):

Δ(λ) = P (λ)
/ ∑

μ∈Λwithρ(μ) �≤ρ(λ)
f∈HomG(P (μ),P (λ))

im f.

(SS3) Each P (λ) admits a finite Δ-flag with Δ(λ) at the top and lower sections of the form

Δ(μ) for μ ∈ Λ with ρ(μ) > ρ(λ).

Now we can complete our sketch of what it means forM to be a tensor product categori-

fication of V (ν1)⊗ · · · ⊗ V (νl). Of course it should be standardly stratified with ρ : Λ� Ξ
as defined just before Definition 3.2. Moreover grM should admit a categorical action of g⊕l

making it into a minimal categorification of the irreducible g⊕l-module V (ν1)⊗ · · · ⊗ V (νl);
we denote the functors Fi and Ei for the action of the jth copy of g here by jFi and jEi,

respectively. By the general theory of categorifications of integrable highest weight modules,

the isomorphism classes of indecomposable projectives in grM are canonically labelled by

the g⊕l-crystal Λ; this is explained in [41] or follows from the theory of perfect bases from

[5]. Then there are two axioms which give some compatibility between grM andM:

(TP1′) The indecomposable projective object of grM labelled by λ ∈ Λ is isomorphic to

the one arising by taking the image of Δ(λ) under the functor πρ(λ).

(TP2′) For each M ∈ grM, the object FiΔ(M) (resp. EiΔ(M)) admits a filtration with

sectionsΔ(jFiM) (resp. Δ(jEiM)) for j = 1, . . . , l.
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(This formulation of the definition looks slightly different but is equivalent to the one in [44].)

The problem of existence of such general tensor product categorifications was addressed

already in earlier work of Webster [60]. In this, he introduced certain tensor product algebras,
which can naturally be viewed as generalizations of cyclotomic quotients of quiver Hecke

algebras. Then he uses the category of finite dimensional modules over these algebras to

construct arbitrary tensor product categorifications.

The Losev-Webster uniqueness theorem. Having sketched the definition of tensor product

categorification, we can now paraphrase the main result established in [44] as follows. Recall

Definition 2.2 (which has an analog for arbitrary g).

Theorem 3.3 (Losev-Webster). Let V (ν1), . . . , V (νl) be integrable highest weight for some
Kac-Moody algebra g. Any tensor product categorification of V (ν1)⊗ · · · ⊗ V (νl) is unique
up to strongly equivariant equivalence.

Here we restate this in a special case:

Corollary 3.4. Let I ⊂ Z be a finite interval. Any tensor product categorification of the
slI -module

∧ν
VI in the sense of Definition 3.1 is strongly equivariantly equivalent to the

categoryM constructed from parabolic category O in the previous section.

In order to emphasize the similarity between the present situation and the Schur-Weyl

duality for higher levels from the previous section, let us say a few words about the strategy

behind the proof of Theorem 3.3. As we mentioned earlier, the tensor product V (ν1) ⊗
· · · ⊗ V (νl) has a canonical basis {bλ}λ∈Λ parametrized by the Cartesian product Λ of the

underlying highest weight crystals. Kashiwara’s tensor product rule gives the setΛ a canonical

structure of g-crystal. (Building on earlier arguments from [42], Losev and Webster even give

an interpretation of this crystal structure in terms of tensor product categorifications, which is

the key to the proof of property (P1) stated in the next paragraph.) Let κ ∈ Λ be the label of

the highest weight vector of V (ν1)⊗ · · · ⊗ V (νl) of weight ω := ν1 + · · ·+ νl, and let Λ◦

be the connected component of the g-crystal Λ generated by κ. Then the vectors {bλ}λ∈Λ◦
span a g-submodule of V (ν1)⊗ · · · ⊗ V (νl) isomorphic to V (ω).

Now letM be a tensor product categorification of V (ν1) ⊗ · · · ⊗ V (νl). Losev and

Webster show:

(P1) For λ ∈ Λ, the projective object P (λ) is injective if and only if λ ∈ Λ◦. Moreover

T :=
⊕

d≥0 F
dL(κ) is a prinjective generator forM.

(P2) The algebra C := EndM(T )op is the direct sum
⊕

d≥0 H
ω
d of the cyclotomic quiver

Hecke algebras attached to g and the dominant weight ω.

(P3) The double centralizer property holds, i.e. V := HomM(T,−) : M → C -mod is

fully faithful on projectives.

(P4) For λ ∈ Λ the isomorphism type of the C-module Y (λ) := VP (λ) is independent of
the particular choice of the tensor product categorificationM.

(These statements make sense as written only in the case that g is of finite type; for the general

case one needs to modify them in an analogous way to Remark 1.2, taking Td := F dL(κ)
for d ∈ N.) By the double centralizer property (P3), the categoryM can be recovered from

the algebra C and its modules {Y (λ)}λ∈Λ. Hence (P2) and (P4) establish the uniqueness of

M up to equivalence. The strong equivariance follows by some further considerations in a

similar vein.
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Remark 3.5. Here we sketch the Losev-Webster proof of (P2); note in view of [14] that

this generalizes Theorem 2.3 above. By (P1), the left adjoint to the quotient functor V
induces an embedding [C -mod] ↪→ [M] which corresponds to the inclusion V (ω) ↪→
V (ν1)⊗ · · · ⊗ V (νl) at the level of Grothendieck groups. Thus the category of projectives in

C -mod is equivalent to the bottom section of Rouquier’s canonical filtration of the category

of projectives inM from [47, Theorem 5.8]. (Indeed, Rouquier’s filtration parallels Lusztig’s

canonical filtration of the based module V (ν1) ⊗ · · · ⊗ V (νl).) Since EndM(L(κ)) ∼= C,

it follows that this category is a realization of the minimal categorication of V (ω). But it

is also known that the cyclotomic quiver Hecke algebras Hω
d give such a realization with

F := Hω
d+1 ⊗Hω

d
− (e.g. see [34]); in this setting it is obvious that End(F dL(κ))op ∼= Hω

d .

The property (P2) is now clear from the uniqueness of minimal categorifications established

in [47].

Graded lifts. The following theorem should by now come as no surprise. Note this builds

essentially on the base case l = 1, where the identification of the canonical basis with the

basis arising from indecomposable projectives in the minimal categorification of an integrable

highest weight module was established already by Rouquier [48] and Varagnolo and Vasserot

[55] (for symmetric Cartan matrices over C only).

Theorem 3.6 (Webster). Let V (ν1), . . . , V (νl) be integrable highest weight modules for
some Kac-Moody algebra g with a symmetric Cartan matrix. LetM be a tensor product
categorification of V (ν1)⊗· · ·⊗V (νl) (over the ground field C). Identify [M] with V (ν1)⊗
· · · ⊗ V (νl) so that each [Δ(λ)] is identified with the monomial vλ (= the tensor product of
canonical basis vectors in each V (νi)). Then each [P (λ)] coincides with the canonical basis
vector bλ.

This is proved in [58] using the realization ofM given by the tensor product algebras. In

the special case that g is of finite type A and each νi is minuscule, it follows already from

Corollary 3.4 and the Kazhdan-Lusztig conjecture for the general linear Lie algebra, as we

discussed already in the previous section; see also [16, Corollary 5.29] for a more direct

argument in this case along the lines of [58].

The basic idea of Webster’s proof of Theorem 3.6 involves the construction of certain

graded lifts of tensor product categorifications. For Webster, these are no problem since his

tensor product algebras are naturally graded. One can also understand them along similar

lines to Soergel’s definition of the graded lift of category O0 sketched in the introduction.

This depends on the existence of a grading on C arising from the natural grading on quiver

Hecke algebras. The images Y (λ) := VP (λ) all turn out to admit a unique grading (up

to automorphism) with respect to which they are graded-self-dual modules over the graded

algebra C. Then, setting Y :=
⊕

λ∈Λ Y (λ), the graded lift ofM arises from the category

A -grmod where A := EndC(Y )
op.

The point then is that the graded category A -grmod admits a categorical action of the

quantized enveloping algebra Uq(g); see e.g. [16, Definition 5.5] where this definition is

spelled out in the special case that g = slI . The grading shift functor makes its Grothendieck

group into a Z[q, q−1]-module, hence tensoring over Z[q, q−1] with Q(q), we obtain a Q(q)-
vector space. The categorical action of Uq(g) on A -grmod makes this into a Uq(g)-module

isomorphic to the q-analog of V (ν1) ⊗ · · · ⊗ V (νl). The next step is to show that the

category of graded projectives in A -grmod admits a duality which corresponds to Lusztig’s

bar involution on the q-analog of V (ν1) ⊗ · · · ⊗ V (νl). This machinery reduces the proof
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of Theorem 3.6 to verifying that the grading on the algebra A is positive (with A0 being

semisimple); for Webster this is the property that the graded lift ofM is mixed. Finally that

is established by appealing to some geometric construction involving quiver varieties; see [58,

Theorem 6.8].

In the special case that g = slI for a finite interval I and all the weights νi are minuscule,

the grading on the algebra A defined in the previous paragraph makes it into a Koszul algebra
(hence it is mixed). The proof of this can actually be deduced from the Koszulity of blocks

of parabolic category O established already by Beilinson, Ginzburg and Soergel [4] (also

Backelin [2] for the singular-singular case). This is explained by Webster in [60], and

independently by Hu and Mathas in [33]; see also [59] which suggests an entirely different

approach to see the Koszulity via quiver varieties.

4. Some applications and future directions

Level two examples arising from Khovanov’s arc algebra. There is a completely explicit

description of the basic algebra underlying all tensor product categorifications in the sense of

Definition 3.1 in which the level l is two. This arises from Khovanov’s arc algebra, which

was introduced originally in [36, 37] in the course of his work on categorification of the Jones

polynomial. We give a very brief sketch here.

We fix an interval I ⊆ Z and let I+ := I ∪ (I + 1) as before. A weight diagram means a

number line with vertices at each of the integers in the set I+ labelled by one of the symbols

∨, ∧, ◦ or ×; on excluding finitely many of the vertices, we require that no ∨ should appear to

the left of an ∧. Assume that we are given some set Λ of weight diagrams that is closed under

the following swaps of labels of any pair of adjacent vertices:

◦× ↔ ∨∧↔ ∧∨↔ ×◦, ◦∨↔ ∨◦, ◦∧↔ ∧◦, ×∨↔ ∨×, ×∧↔ ∧× .

To the set Λ, we associated in [18] a certain positively graded basic algebra KΛ, which is

some generalization of Khovanov’s arc algebra. In [19] we defined some endofunctors of

KΛ -mod defined by some explicit bimodules (generalizing Khovanov’s geometric bimodules

from [37]), and used these to prove directly that KΛ is Koszul. Then in [20, (3.11)] we

used certain of these functors to define biadjoint endofunctors Fi and Ei of KΛ -mod for

each i ∈ I . Finally in [20, (5.3)–(5.4)] we defined natural transformations Fi → Fi and
Fi ◦ Fj → Fj ◦ Fi which, when suitably signed, satisfy the quiver Hecke algebra relations.

Thus we obtain all of the data needed for a categorical slI -action on KΛ -mod. (In [20] we

considered only the case that I is finite but the constructions there apply in any case.)

Now we specialize to the case that the set I is finite and that Λ consists of all weight

diagrams such that exactly m of the labels are either ∨ or ×, and exactly n of the labels are

either ∧ or ×. Then it is straightforward to check that KΛ -mod is actually a tensor product

categorification of
∧m

VI ⊗
∧n

VI in the sense of Definition 3.1. Applying Corollary 3.4, we

deduce that KΛ -mod is equivalent to the parabolic category O denotedM in section 2 for

ν = (m,n). In this way, one quite easily reproves an equivalence of categories established

originally in [20, 52].

The super Kazhdan-Lusztig conjecture. In Definition 3.1, we assumed that the interval I
was finite. The case I = Z is also interesting. Note for this that the Lie algebra slZ has four

natural families of minuscule representations: the integrable highest weight modules V (ωm)
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indexed by the fundamental dominant weights ωm, the integrable lowest weight modules

V (−ωm), the exterior powers
∧n

VZ where VZ is the natural slZ-module, and the exterior

powers
∧n

WZ where WZ is dual to VZ.

In [16] we proved a version of the Losev-Webster uniqueness theorem for slZ-tensor
product categorifications involving tensor products of the exterior powers

∧n
VZ and

∧n
WZ

(which are neither highest nor lowest weight). To set this up formally, one needs to modify

Definition 3.1 slightly since the poset Λ defined exactly as in (TP1) need no longer have finite

chains; the fix is to replace the Grothendieck group [M] in (TP2) with [MΔ]. In all cases,

projectives have finiteΔ-flags, so that [M] still embeds naturally into [MΔ]. We also proved

that any such tensor product categorification admits a unique (up to equivalence) graded lift,

and this graded lift is Koszul. Both of these results were deduced ultimately as applications

of Corollary 3.4 and the known Koszulity of the graded lifts for finite intervals.

The main example of such slZ-tensor product categorifications comes by considering

parabolic category O for the general linear Lie superalgebra. Using this one can define a

categoryM admitting a categorical slZ-action in a very similar way to the second example

from section 2. This leads to a construction of tensor product categorifications of any number

of the modules of the form
∧n

VZ or
∧n

WZ, with tensor factors appearing in any order. In

particular the (integral part of) full categoryO for glm|n(Z) relative to the standard Borel gives

a tensor product categorification of V ⊗m
Z ⊗W⊗n

Z , while its category of (finite dimensional)

integrable representations gives a tensor product categorification of
∧m

VZ ⊗
∧n

WZ. The

results from the previous paragraph imply at once that these categories all admit Koszul

graded lifts. Moreover the super Kazhdan-Lusztig conjecture formulated originally in [6] and

first proved by Cheng, Lam and Wang in [23] falls out easily from Corollary 3.4. See also [9]

for a recent survey.

The existence of a Koszul graded lift of the category of integrable representations of

glm|n(C) had been proved earlier in [21]. In fact there is an explicit construction of this

category in terms of Khovanov’s arc algebra from the previous subsection: one just applies

the results sketched there to I = Z with Λ consisting of all weights in which exactly m
vertices are labelled × or ∨ and exactly n vertices are labelled ◦ or ∨. This produces another
tensor product categorification of

∧m
VZ ⊗

∧n
WZ. Then the uniqueness of such tensor

product categorifications implies that this is strongly equivariantly equivalent to the category

of representations of glm|n(C). In this way, one can recover the main theorem of [21].

Lowest tensored highest weight modules. There is one more interesting family of exam-

ples coming from Khovanov’s arc algebra. Take the interval I to be Z. Fix also integers

m,n ∈ Z. Let Λ be the set of all bipartitions λ = (λ∨, λ∧). We identify bipartition λ ∈ Λ
with the weight diagram having label ∨ at vertices n+ 1− λ∨1 , n+ 2− λ∨2 , n+ 3− λ∨3 , . . .
and label ∧ at verticesm+ λ∧1 ,m− 1+ λ∧2 ,m− 2+ λ∧3 , . . . (both ∨ and ∧ means ×, neither

means ◦). Then as above we get associated an arc algebra KΛ and the data of a categorical

slZ-action on a suitable category of KΛ-modules. This turns out to be a tensor product

categorification of V (−ωn)⊗ V (ωm), i.e. lowest weight tensored highest weight minuscule

representations of slZ. Actually, there is some further loss of finiteness here: although finitely

generated projective modules still have finiteΔ-flags, the standard modules in this category

have infinite length in general. This means that one needs to modify Definition 3.1 again,

allowing certain direct limits of highest weight categories.

There is another naturally occurring example of such a tensor product categorification of

V (−ωn)⊗ V (ωm). This is given by Deligne’s category Rep(GLδ) where δ := m− n. By
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definition, Deligne’s catgory is the Karoubification of the oriented Brauer category OB(δ)
as defined in [10]. As conjectured in [22], this categorification is expected to be strongly

equivariantly equivalent to one arising from the arc algebra KΛ from the previous paragraph.

In [58], Webster has also introduced categorifications of integrable lowest tensored highest

weight representations associated to arbitrary Kac-Moody algebras. These arise as certain

cyclotomic quotients of the 2-Kac-Moody algebra U(g). Yet more examples, which should of

course be closely related to special cases of Webster’s categories, arise from the cyclotomic

oriented Brauer categories OBf,f ′ defined in [10] and studied further in [17]. These are

attached to a pair f, f ′ of monic polynomials of degree � and produce slZ-tensor product
categorifications of the form V (−ω′)⊗ V (ω) where ω and ω′ are level � dominant weights

defined from f and f ′, respectively.

Other sorts of categorical actions. We end by listing several recent works which hint at the

existence of various undeveloped (or at least underdeveloped) parallel theories of categorical

actions.

In [35], Kang, Kashiwara and Tsuchioka have introduced quiver Hecke superalgebras,
and proved some isomorphism theorems relating them to the affine Sergeev superalgebras and

affine Hecke-Clifford superalgebras which arose in [11, 53]. The quiver Hecke superalgebra

for the trivial quiver with one (odd) vertex is closely related to the spin Hecke algebra of

[57] and the odd nil-Hecke algebra of [28]. There is slowly emerging a parallel theory of

super categorical actions based around these algebras. It seems reasonable to expect that

there should be a version of Rouquier’s canonical filtration in this setting, and results like the

uniqueness of minimal categorifications and more generally of tensor product categorifications.

An interesting example comes from the category O for the Lie superalgebra qn(C); we hope

this new point of view will one day shed light on the Kazhdan-Lusztig conjecture for qn(C)
formulated in [7].

In [3], some new canonical bases have been defined which are related to category O for

the symplectic and orthogonal Lie algebras and the orthosymplectic Lie superalgebras. This

points towards another twisted theory of categorification, in which the role of degenerate

affine Hecke algebras is played by the generalized Wenzl (VW) algebra as suggested in [27].

In [26], Ehrig and Stroppel have also introduced some twisted version of the Khovanov arc

algebra which should control the “level two” part of this picture.

There is also a completely different sort of twisted quiver Hecke algebras related to affine

Hecke algebras of types B and C. These were introduced by Varagnolo and Vasserot in [56],

who used them to prove the Lascoux-Leclerc-Thibon-type conjecture formulated in [29].

Finally we mention very briefly another very rich example of a categorical action. This

arises from the category O in the sense of [32] attached to the rational Cherednik algebras

associated to the complex reflection groups Sn � (Z/�Z)n. In [54], Varagnolo and Vasserot

conjectured this category to be equivalent to a truncation of parabolic category O for the

affine general linear Lie algebra. Independent proofs of this conjecture have recently been

given by Losev [43] and Rouquier, Shan, Varagnolo and Vasserot [49]. Losev’s proof makes

essential use of the theory of categorical actions, which he extends to something he calls a

Schur categorification.
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Boundaries, rigidity of representations, and
Lyapunov exponents
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Abstract. In this paper we discuss some connections between measurable dynamics and rigidity aspects

of group representations and group actions. A new ergodic feature of familiar group boundaries is

introduced, and is used to obtain rigidity results for group representations and to prove simplicity of

Lyapunov exponents for some dynamical systems.
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1. Introduction

Boundary theory is a broad term referring to constructions of auxiliary spaces that are used

to analyze asymptotic properties of spaces and groups, to study representations and group

actions, and for other applications. The topics discussed in this paper revolve around rigidity

phenomena, inspired by Margulis’ superrigidity, and are then connected to the problem of

simplicity of the Lyapunov exponents in classical dynamics. Much of the work on which

this paper is based is yet unpublished. So rather than aiming at outmost generality, we chose

to illustrate the main ideas by presenting key results and to include sketches of their proofs.

Results about representations have natural cocycle versions; and while we focus here on real

Lie groups much of the work can be extended to algebraic groups over more general fields.

Notations. The abbreviation for locally compact secondly countable group is lcsc. We shall

use symbolsG,H , S, and even Γ to denote lcsc groups; with Γ being often discrete countable

group, and G, H mostly used for real Lie groups, or (real points of) algebraic groups over R.

By an action Γ� X of a group Γ on a setX we mean a map Γ×X → X , (g, x) �→ g.x,
so that e.x = x and gh.x = g.(h.x) for every g, h ∈ Γ, x ∈ X . If Γ is a lcsc group, a

Borel Γ-space X is a standard Borel space X with a Γ-action for which Γ ×X → X is a

Borel map. A Lebesgue Γ-space is a Borel Γ-space X with a Borel probability measure m
on X that is quasi-invariant under every g ∈ Γ, i.e. g∗m ∼ m for all g ∈ Γ. A Lebesgue

Γ-space (X,m) is ergodic if the only measurable E ⊂ X with m(g−1E E) = 0 for every

g ∈ Γ satisfies m(E) = 0 or m(E) = 1. The notion of a Lebesgue Γ-space depends only

on the measure class [m] of m; a reference to m will often be omitted from the notation for

Lebesgue Γ-spaces. If a Lebesgue Γ-space X has a probability measure m that is actually

Proceedings of International Congress of Mathematicians, 2014, Seoul
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Γ-invariant, i.e. m(g−1E) = m(E) for every measurable E ⊂ X and g ∈ Γ, we will say that

the action Γ� (X,m) is probability measure preserving (p.m.p.). IfX is a topological space

(in particular a compact metrizable space) and the action map Γ×X → X is continuous, we

say that X is a topological Γ-space (a compact Γ-space). A topological Γ-space X is proper
if for every compact subset Q ⊂ X the set {g ∈ Γ | gQ ∩Q �= ∅} is precompact in Γ. We

shall use the notation XΓ for the set of Γ-fixed points in X .

Let Γ be a lcsc group, X a Lebesgue Γ-space, and V a Borel Γ-space. A measurable

Γ-equivariant function is a Borel function f : X → V such that for every g ∈ Γ, f(g.x) =
g.f(x) for a.e. x ∈ X . We denote by MapΓ(X,V ) the space of equivalence classes of Γ-
equivariant functions, where functions that agree m-a.e. are identified. We shall use the term

Γ-map to describe such a class φ ∈ MapΓ(X,V ). By a Γ-map p : X → Y between Lebesgue

Γ-spaces we mean a Γ-map for which p[μ] = [ν], where [μ] denotes the Γ-invariant measure

class on X and [ν] the one on Y . Given a Lebesgue Γ-space X we denote by AutΓ(X) the
group of invertible self Γ-maps X → X , i.e. measure class preserving bijections X → X ,

defined up to null sets, that commute with Γ.

2. Boundaries

In this section we introduce a version of the concept of a boundary, or rather boundary pair

(Definition 2.3), and discuss the basic properties of this notion. A more detailed discussion

will appear in [4]. In our context a Γ-boundary is a Lebesgue Γ-space, and as such it may

have many realizations on topological Γ-spaces. Furthermore, even as a Lebesgue space a

Γ-boundary may not be unique.

Isometric ergodicity. A Lebesgue Γ-space (X,m) is isometrically ergodic if for any iso-

metric action Γ→ Iso(M,d) on a separable metric space (M,d), any Γ-map f : X →M is

essentially constant; in which case its essential value is a Γ-fixed point. In short,

MapΓ(X,M) = Map(X,MΓ).

Isometric ergodicity implies ergodicity, by taking the two point space M = {0, 1} with the

trivial Γ-action. Isometric ergodicity is a natural strengthening of ergodicity with unitary
coefficients, introduced by Burger and Monod [14], where one considers only Hilbert spaces

M with unitary Γ-representations. For p.m.p. actions Γ� (X,m) both notions are equivalent

to weak-mixing (cf. [23]). However, here we shall be mostly interested in Lebesgue Γ-spaces
that have no invariant probability measure in the relevant measure class.

Next we introduce a relative notion of isometric ergodicity, or equivalently, isometric

ergodicity of Γ-maps between Lebesgue Γ-spaces. We first define a relative notion of a metric

space. Given a Borel map q :M → V between standard Borel spaces, a metric on q is a

Borel function d :M×V M→ [0,∞) whose restriction dv to each fiber Mv = q−1({v})
is a separable metric. A fiber-wise isometric Γ-action on suchM consists of q-compatible

actions Γ�M, Γ� V , so that the maps between the fibers g :Mv →Mg.v are isometries,

i.e.

dg.v(g.x, g.y) = dv(x, y) (x, y ∈Mv, v ∈ V, g ∈ Γ).
Definition 2.1. A map p : A → B between Lebesgue Γ-spaces is relatively isometrically
ergodic if for every fiber-wise isometric Γ-action on M → V as above, and for any q-
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compatible Γ-maps f : A →M, f0 : B → V , there is a compatible Γ-map f1 : B →M
making the following diagram commutative:

A

p

��

f
��M

q

��

B
f0 ��

f1

��

V.

Note that isometric ergodicity relative to the trivial action on a point is just the (absolute)

isometric ergodicity. Let us list without proofs some basic properties of the notion of relatively

isometrically ergodic maps. Some of them are reminiscent of properties of relatively weakly

mixing extensions in the context of p.m.p. actions. In fact, for p.m.p. actions, or more

generally relatively p.m.p. maps between Lebesgue Γ-spaces, relative isometric ergodicity is

equivalent to relative weak mixing. However this remark will play no role in the sequel.

Proposition 2.2.

(i) The property of relative isometric ergodicity is closed under composition of Γ-maps.

(ii) If A→ B → C are Γ-maps, and A→ C is relatively isometrically ergodic, then so is
B → C, but A→ B need not be relatively isometrically ergodic.

(iii) For Lebesgue Γ-spacesA andB, if the projectionA×B → B is relatively isometrically
ergodic then A is (absolutely) isometrically ergodic. This is an "if and only if" in case
B is a p.m.p action, but not in general.

(iv) If Γ is a lattice in a lcsc group G, and p : A→ B is a relatively isometrically ergodic
G-maps between G-spaces, then p : A→ B remains relatively isometrically ergodic if
viewed as a Γ-map between Γ-spaces.

Boundary pairs. Recall the notion of an amenable action, or an amenable Lebesgue Γ-space
in the sense of Zimmer [36]. We shall use the fact that if B is an amenable Lebesgue Γ-space,
then given a metrizable compact Γ-space M , the setMapΓ(B,Prob(M)) is non-empty, i.e.

there exist Γ-map φ : B → Prob(M). More generally, given an affine Γ-action on a convex

weak-* compact set Q ⊂ E∗, where E is a separable Banach space, there exists a Γ-map

φ ∈ MapΓ(B,Q).

Definition 2.3. Let Γ be a lcsc group. A pair (B−, B+) of Lebesgue Γ-spaces forms a

boundary pair if the actions Γ� B− and Γ� B+ are amenable, and the projections

B− ×B+ −→ B−, B− ×B+ −→ B+

are relatively isometrically ergodic. A Lebesgue Γ-space B for which (B,B) is a boundary

pair will be called a Γ-boundary.

Remarks 2.4.

(1) If (B−, B+) is a boundary pair for Γ, then B− × B+ is isometrically ergodic. This

follows by applying Propositions 2.2.(iii) and (i) to maps

B− ×B+ −→ B−, B− ×B+ −→ B+ −→ {∗}.
Therefore a Γ-boundary in the sense of Definition 2.3, is also doubly ergodic with

unitary coefficients, i.e. is a strong Γ-boundary in the sense of Burger-Monod [14].
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(2) Every lcsc group Γ admits boundary/ies in the above sense, see Theorem 2.7 below.

(3) Being a boundary is inherited by lattices: for any lcsc group G any G-boundary B is

also a Γ-boundary for any lattice Γ < G.

(4) Let B1 be a G1-boundary, and B2 be a G2-boundary for some lcsc groups G1, G2.

Then B = B1 ×B2 is a G1 ×G2-boundary.

Some Examples. Most examples of boundaries that are used in rigidity theory turn out to

have the properties stated in Definition 2.3. Let us outline the proofs in two basic cases.

Theorem 2.5. Let G be a connected semi-simple Lie group, P < G be a minimal parabolic
subgroup. Then B = G/P with the Lebesgue measure class is a G-boundary, and is a
Γ-boundary for any lattice Γ < G.

Proof. Since P is amenable, G � G/P is an amenable action (cf. [36]). So it remains to

show that the projection G/P ×G/P −→ G/P is relatively isometrically ergodic. Typical

(here from the measurable point of view) pairs g1P , g2P intersect along a coset of the

centralizer A′ = ZG(A) of a maximal split torus A < P . So as a Lebesgue G-space

G/P ×G/P is the same as G/A′, and the projection corresponds to the map gA′ �→ gP .

The following is a version of Mautner’s Lemma.

Lemma 2.6. The P -space P/A′ is isometrically ergodic.

Proof. There is a natural correspondence between P -equivariant maps P/A′ → M from

the transitive P -action on P/A′, and the P -orbits of A′-fixed points x0 ∈ M . Mautner’s

phenomenon in this context, is the statement that in an isometric action P → Iso(M,d) any
A′-fixed point x0 is fixed also by all elements u ∈ P for which one can find a sequence

an ∈ A′ with a−1
n uan → e. Indeed, using continuity of the homomorphism P → Iso(M,d),

for an A′-fixed x0 we have

d(u.x0, x0) = d(uan.x0, an.x0) = d(a−1
n ua−1

n .x0, x0)→ d(x0, x0) = 0.

There x0 is fixed by any such u. The Lemma is proven because the minimal parabolic P < G
is generated by A′ and elements u as above, so x0 is P -fixed, and the corresponding map is

constant.

The relative isometric ergodicity for the transitive G-actions π : G/A′ → G/P follows

formally from the isometric ergodicity of a.e. stabilizer StabG(gP ) on its fiber π−1({gP}),
but these are isomorphic to the action P � P/A′ which is isometrically ergodic by Mautner’s

Lemma 2.6. This proves that G/P is a G-boundary. This property is inherited by any lattice

Γ < G, so Γ� G/P is also a boundary action.

For products of groups G = G1 × · · · ×Gn one can use the product of Gi-boundaries of

the factors B = B1 × · · · × Bn to obtain a G-boundary (Remark 2.4.(4)). Thus this result

can be extended to products of semi-simple groups over various fields.

Let us now show that any lcsc group Γ has Γ-boundaries. Specifically we shall show that

the Furstenberg-Poisson boundary for a generating spread-out random walk on Γ forms a

boundary pair in the sense of Definition 2.3. This strengthens the result of Kaimanovich [28]

showing ergodicity with unitary coefficients for Γ� B × B̌ below.



Boundaries, rigidity of representations, and Lyapunov exponents 75

Theorem 2.7 (Furstenberg-Poisson boundaries). Let Γ be a lcsc group and μ be a spread-out
generating measure on Γ. Denote by (B, ν) and (B̌, ν̌) the Furstenberg-Poisson boundaries
for (Γ, μ) and (Γ, μ̌). Then (B̌, B) is a boundary pair for Γ and for any of its lattices.
Taking a symmetric spread-out generating μ, the Furstenberg-Poisson boundary B = B̌ is a
Γ-boundary.

Proof. Amenability of the actions Γ � B, Γ � B̌ is well known (Zimmer [36]), so it

remains to prove relative isometric ergodicity. It suffices to treat one of the projections, say

prB : B × B̌ −→ B, prB(x, y) = x.

We shall do so by establishing the following stronger property, whose proof uses a combination

of Martingale Convergence Theorem for the μ̌-random walk (see (2.1) below), and Poincaré

recurrence for a non-invertible p.m.p. skew-product (see (2.2)).

Lemma 2.8. Given a positive ν × ν̌-measure subset E ⊂ B × B̌ and ε > 0 there is g ∈ Γ
and a positive ν-measure subset C ⊂ prB(E) ∩ prB(g−1E) so that for x ∈ C

ν̌(g(Ex)) > 1− ε

where Ex = {y ∈ B̌ | (x, y) ∈ E}.
Proof. Denote by (Ω, μN) the infinite product space (Γ, μ)N. The Furstenberg-Poisson

boundary (B, ν) of (Γ, μ) can be viewed as a quotient bnd : (Ω, μN) → (B, ν), where

bnd(ω) is the limit of the paths of the μ-random walk

bnd(ω) = lim
n→∞

πn(ω), πn(ω) = ω1ω2 · · ·ωn

with the convergence being understood as convergence of values of bounded μ-harmonic

functions (cf. [17, 28, 29]). The μ̌-boundary (B̌, ν̌) can also be viewed as a quotient of

(Ω, μN), using

ˇbnd(ω) = lim
n→∞

π̌n(ω), π̌n(ω) = ω−1
1 ω−1

2 · · ·ω−1
n .

By the Furstenberg-Poisson formula, every measurable set D ⊂ B̌ defines a bounded μ̌-
harmonic function hD : Γ→ [0, 1] by

hD(g) =

∫
B̌

1D(y) dg∗ν̌(y) = ν̌(g−1D).

Furthermore, by the Martingale Convergence Theorem, for μN-a.e. ω ∈ Ω we have

hD(π̌n(ω))→ 1D( ˇbnd(ω)). (2.1)

In particular, the setΩD = {ω ∈ Ω | hD(π̌n(ω))=ν(ωn · · ·ω1D) → 1} satisfies μN(ΩD) =
ν̌(D). Given E ⊂ B × B̌ with ν × ν̌(E) > 0 and ε > 0, consider the measurable sets

E∗ = {(ω, x) ∈ Ω×B | ω ∈ ΩEx},
E∗
N = {(ω, x) ∈ E∗ | ∀n ≥ N, ν̌(ωn · · ·ω1Ex) > 1− ε}.
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We have

μN × ν(E∗) =

∫
B

μN(ΩEx) dν(x) =

∫
B

ν̌(Ex) dν(x) = ν × ν̌(E) > 0.

Since E∗
N increase to E∗, we can find N large enough so that ν × ν̌(E∗

N ) > 0.
The fact that ν is μ-stationary implies that the following skew-product transformation

S : (ω1, ω2, . . . , x) �→ (ω2, ω3, . . . , ω1.x) on Ω×B (2.2)

preserves the probability measure μN × ν. Therefore, Poincaré recurrence implies that we

can find

n > N so that μN × ν(S−n(E∗
N ) ∩ E∗

N ) > 0.

Denote F = S−n(E∗
N ) ∩ E∗

N and let Fω = {x ∈ B | (ω, x) ∈ F}. By Fubini, there is a

positive μN-measure set of ω, for which ν(Fω) > 0. Fix such an ω and set

g = π̌n(ω)
−1 = ωn · · ·ω1, C = Fω.

Then C ⊂ prB(E
∗
N ) ⊂ prB(E) and for every x ∈ C one has ν̌(gEx) > 1− ε.

Let us now complete the proof of the Theorem by showing how the property described in

the Lemma implies relative isometric ergodicity. First consider an arbitrary Borel probability

measure β on a metric space (M,d), and for a small radius ρ > 0 define w(m, ρ) =
β(Ball(m, ρ)). We point out that for β-a.e. m ∈ M one has w(m, ρ) > 0 (this is easier to

see for separable spaces). Note also that β is a Dirac mass δm iff for every ε > 0 there exists

m′ ∈M with w(m′, ε) > 1− ε.
Now consider a fiber-wise isometric Γ-action on some q :M→ V and pair of compatible

Γ-maps f : B × B̌ →M, f0 : B → V . For ν-a.e. x ∈ B, the pushforward of ν̌ by f(x,−)
is a probability measure βx on the fiber q−1({f0(x)}) that we shall denote (Mx, dx). To

construct the required map f1 : B →M we will show that a.e. βx is a Dirac measure and

define f1 by βx = δf1(x). Assuming this is not the case, there exists ε > 0 and a positive

measure set A ⊂ B so that the function

wx(y, ρ) = βx (Balldx(f(x, y), ρ))

satisfies wx(y, ε) < 1− ε for all (x, y) ∈ A× B̌. Since ν̌ × ν-a.e. wx(y, ε) > 0, there exists

a measurable map A→ B̌, x �→ yx, with wx(yx, ε) > 0. Then the set

E = {(x, z) ∈ A× B̌ | z ∈ Balldx(f(x, yx), ε)}
has positive measure, and by Lemma 2.8, there is C ⊂ prB(E) = A and g ∈ Γ so that for

x ∈ C one has g.x ∈ C ⊂ A and

1− ε < ν̌(gBalldx
(f(x, yx), ε)) = ν̌(Balldg.x

(f(g.x, g.yx), ε)) = wg.x(g.yx, ε).

This contradiction completes the proof that (B, B̌) is a Γ-boundary pair.

Let us add a purely geometric example.

Example 2.9. Let M be a compact Riemannian manifold of negative curvature, ∂M̃ the

boundary of the universal cover M̃ of M , and let νPS
o be the Patterson-Sullivan measure

relative to some o ∈ M̃ . Then ∂M̃ with the Patterson-Sullivan class is a Γ-boundary for the

fundamental group Γ = π1(M).
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The relative isometric ergodicity in this context can be shown using an analogue of

Lemma 2.8, whose proof in this case would use Poincaré recurrence of the geodesic flow

on the unit tangent bundle SM with Bowen-Margulis-Sullivan measure, combined with

Lebesgue differentiation instead of Martingale convergence used in the preceding proof.

However, both Example 2.9 and Theorem 2.7, can also be established in a different way using

Theorem 5.6 below. The proof of the latter is inspired by Kaimanovich [28].

3. Characteristic maps

One of the applications of boundaries is a construction of characteristic maps (a.k.a. boundary

maps) associated to representations of the group, or to cocycles of ergodic p.m.p. actions

of the group. In particular, characteristic maps play a key role in higher rank superrigidity

(see [18; 33, Chapters V, VI; 38]). In this section we shall illustrate the use of relative

isometric ergodicity by deducing special properties of characteristic maps in three settings:

for convergence actions, actions on the circle, and linear representations over R. All the

results have natural analogues in the context of measurable cocycles over ergodic p.m.p.

actions, but we shall not state these results here.

Convergence actions. Let G be a lcsc group and M be a compact G-space. For n ≥ 2 we

denote by M (n) the subset of Mn consisting of distinct n-tuples, that is

M (n) = {(mi) ∈Mn | mi �= mj if i �= j ∈ {1, . . . , n}} .
The G-action G � M is a convergence action, if the diagonal G-action on M (3) is proper.

To avoid trivial examples we assume G is not compact and card(M) > 2 (in which case

card(M) = 2ℵ0 ). Subgroups of G that stabilize a point, or an unordered pair of points in M ,

are called elementary.
Examples of convergence actions include (but not restricted to) non-elementary groups of

isometries of proper δ-hyperbolic spaces acting on their Gromov boundary. This includes

Gromov-hyperbolic groups and their non-elementary subgroups, relatively hyperbolic groups

and other examples. In the case of relatively hyperbolic groups peripheral subgroups are

elementary.

Remark 3.1. Any convergence action G � M has a unique minimal G-invariant closed

subset L(G) ⊂M . Given a closed subgroup H < G, both H � M and H � L(H) ⊂M
are convergence actions. So given a group Γ and a homomorphism ρ : Γ → G with

unbounded and non-elementary image in a group with a convergence action G � M , upon

replacing G by ρ(Γ) and M by L(ρ(Γ)), we may assume ρ(Γ) to be dense in G and G � M
to be a minimal convergence action. To avoid trivial situations, one assumes that ρ(Γ) is
non-elementary and not precompact in G.

Theorem 3.2. Let Γ be an lcsc group, (B+, B−) a boundary pair for Γ, G � M a conver-
gence action, and ρ : Γ→ G a homomorphism with ρ(Γ) non-elementary and not precompact
in G. Then there exist Γ-maps φ+ : B+ →M , φ− : B− →M such that the image of

φ�� = φ+ × φ− : B− ×B+ →M2

is essentially contained in M (2) and



78 Uri Bader and Alex Furman

(i) MapΓ(B−,Prob(M)) = {δ ◦ φ−}, MapΓ(B+,Prob(M)) = {δ ◦ φ+}.
(ii) MapΓ(B− ×B+,M) = {φ− ◦ pr−, φ+ ◦ pr+},
(iii) MapΓ(B− ×B+,M

(2)) = {φ��, τ ◦ φ��} where τ(m,m′) = (m′,m).

Sketch of the proof. Let G � Σ be a proper action of G on some locally compact separable

space (e.g. Σ =M (3)). We claim that

MapΓ(B− ×B+,Σ) = ∅.

Indeed, properness implies that the quotient Σ/G is Hausdorff and the stabilizers Ks =
StabG(s), s ∈ Σ, are compact subgroups. Ergodicity of B− ×B+ implies that any Γ-map

Ψ : B− × B+ → Σ essentially ranges into a single G-orbit G.s0 ∼= G/Ks0 . It is easy to

see that there exists a compact subgroup K < G such that Ks0 < K and G/K carries a

G-invariant metric (e.g, K is the stabilizer of a Ks0-invariant positive function in L2(G)).
We obtain a Γ-invariant map B− ×B+ → G/K, which is constant by isometric ergodicity,

and we conclude that ρ(Γ) is contained in a conjugate of K. Thus the existence of such Ψ
contradicts the assumption that ρ(Γ) is not precompact.

By amenability of Γ � B± we may choose Γ-maps Φ± ∈ MapΓ(B±,Prob(M)).
Consider the function Ψ ∈ MapΓ(B− ×B+,Prob(M

3)) defined by

Ψ : (x, y) �→ Φ−(x)× Φ+(y)× Φ−(x) + Φ+(y)

2
∈ Prob(M3).

Since G � M (3) is proper, the action G � Prob(M (3)) is also proper, and using the

above argument with Σ = Prob(M (3)), it follows that Ψ is supported on the big diagonal

Δ12∪Δ23∪Δ31, whereΔij = {(m1,m2,m3) ∈M3 | mi = mj}. This implies that for a.e.

(x, y) the measure Ψ(x, y) is atomic with at most two atoms, and consequently that Φ−(x)
and Φ+(y) must be Dirac measures. We define φ− by Φ−(x) = δφ−(x), and φ+ by Φ+(y) =
δφ+(y). We also conclude that the essential image of any Γ-map B+ → Prob(M) consists of
δ-measure. It follows that such a map is unique: indeed, given Φ′

− : B− → Prob(M) we

may also consider the map

x �→ Φ−(x) + Φ′
−(x)

2

and conclude that a.e Φ′
−(x) = Φ−(x). A similar argument applies to give uniqueness of

y �→ δφ+(y) as an element ofMapΓ(B+,Prob(M)). This proves (i).
Given ψ ∈ MapΓ(B− ×B+,M), consider Ψ = ψ × (φ ◦ pr−)× (φ ◦ pr+) as a Γ-map

B− × B+ → M3. Since Γ � M (3) is a proper action, it follows that Ψ takes values in

M3 \M (3), and more specifically inΔ12 or inΔ13 (becauseΔ23 is impossible), which gives

(ii), while (iii) easily follows from (ii).

Note that this proof used only the amenability ofB−, B+ and isometric ergodicity of their

product, B− ×B+, but did not rely on the relative isometric ergodicity of the projections.

Actions on the circle. Consider an action of some group Γ on a circle S1 by homeomor-

phisms. Up to passing to an index two subgroup, we may assume the action to be orientation

preserving, and obtain a homomorphism Γ→ Homeo+(S
1). Hereafter we shall assume that

the action has no finite orbits. It is well known that in such case Γ has a unique minimal set

K ⊂ S1, and either K = S1, or K is a Cantor set. In the latter case, S1 \K is a countable
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dense set of open arcs; collapsing these arcs one obtains a degree one map h : S1 → S1 that

intertwines the given Γ-action with a minimal Γ-action on the circle.

Given a minimal Γ-action on the circle the following dichotomy holds (see Margulis [34],

Ghys [22]): either ρ(Γ) is equicontinuous, in which case it is conjugate into rotation group

SO(2), or the centralizer Z of ρ(Γ) in Homeo+(S
1) is a finite cyclic group, and the |Z|-to-1

cover g : S1 → S1/Z intertwines the given minimal Γ-action with a minimal and strongly
proximal1 one, where the latter term can be taken to mean that for any proper closed arc

J � S1 and any non-empty open arc U �= ∅ there is g ∈ Γ with gJ ⊂ U . To sum up, any

group action with only infinite orbits is semi-conjugate either to rotations, or to a minimal

and strongly proximal action. We shall focus on the latter class of actions.

Theorem 3.3. Let Γ → Homeo+(S
1) be a minimal and strongly proximal action on the

circle, and let (B−, B+) be a boundary pair for Γ. Then there exist Γ-maps φ+ : B+ → S1,
φ− : B− → S1 such that the image of

φ�� = φ− × φ+ : B− ×B+ → (S1)2

is essentially contained in the space of distinct pairs (S1)(2), and

(i) MapΓ(B−,Prob(S1)) = {δ ◦ φ−}, MapΓ(B+,Prob(S
1)) = {δ ◦ φ+}.

(ii) MapΓ(B− ×B+, S
1) has a canonical cyclic order.

Sketch of the proof. Following Ghys [22] we note that

d(μ1, μ2) = max
{|μ1(J)− μ2(J)| : J ⊂ S1 is an arc

}
,

is a Homeo+(S
1)-invariant metric on the subspace Probc(S

1) of all continuous (i.e. atom-

less) probability measures on S1. This shows that there are no Γ-maps from any isometrically

ergodic Γ-space A to Probc(S
1), because Probc(S

1)Γ = ∅ under the assumption of mini-

mality and strongly proximality of ρ(Γ).
By amenability there exist Φ± ∈ MapΓ(B±,Prob(S1)), and the above argument shows

that they take values in atomic measures. We claim that Φ± = δφ± for some unique

φ± ∈ MapΓ(B±, S1). Indeed, fix w > 0 and let A−(x) = {a ∈ S1 | Φ−(x)({a}) > w}
denote the set of atoms of Φ−(x) of weight ≥ w, and define A+(y) similarly. Then, for

w > 0 small enough, x �→ A−(x) is a Γ-equivariant assignment of non-empty finite subsets

of S1; and by ergodicity the cardinality of A−(x) is a.e. constant k ∈ N. Similarly for

A+(y).
Let us say that (x, y) is a good pair if A−(x) is unlinked with A+(y), i.e. they belong to

disjoint arcs. Since the set of good pairs is Γ-invariant, it is either null or conull in B × B̌
by ergodicity. Choose proper closed arcs I, J � S1 so that E = {x ∈ B | A−(x) ⊂ J} has
ν(E) > 0, and F = {y | A+(y) ⊂ I} has ν̌(F ) > 0. By minimality and strong proximality,

there exists g ∈ Γ with gJ ∩ I = ∅. Then gE × F is a positive measure set of good pairs.

Hence for a.e. (x, y) the sets A−(x) and A+(y) are unlinked.

For a.e. fixed x ∈ B, the complement S1 \A−(x) =
⊔k

i=1 Ui(x) is a disjoint union of k
open arcs Ui(x), where the enumeration is cyclic and x �→ U1(x) can be assumed to be mea-

surable. The Γ-action cyclically permutes these intervals: ρ(g)Ui(x) = Uπx(i)(g.x) by some

1 In general, a Γ-action Γ � M on a compact metrizable M is minimal and strongly proximal if for every

ν ∈ Prob(M) the closure Γ.ν ⊂ Prob(M) contains δM = {δx | x ∈ M}.
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πx ∈ Symk. The fact thatA−(x) is unlinked from a.e. A+(y)means thatA+(y) ∈ Ui(x,y)(x)
for some measurable i : B− × B+ → {1, . . . , k}, while relative isometric ergodicity of

B− × B+ → B− implies that i(x, y) = i(x) is essentially independent of y ∈ B+. Thus

for a.e. x ∈ B−, the closure J(x) = Ui(x)(x) contains a.e. A+(y). By minimality of the

Γ-action on S1, it follows that J(x) = S1 and k = 1. As w > 0 was arbitrary, it follows

that Φ−(x) = δφ−(x) for some φ− ∈ MapΓ(B−, S1). Similarly we get Φ+ = δ ◦ φ+ for a

unique φ+ ∈ MapΓ(B+, S
1).

For a.e. (x, y) ∈ B− × B+ the given orientation of S1 defines a cyclic order on every

triple inMapΓ(B− ×B+, S
1) by evaluation. This order is Γ-invariant, and is therefore a.e.

constant by ergodicity. This shows (ii).

It is possible thatMapΓ(B− ×B+, S
1) = {φ− ◦ pr−, φ+ ◦ pr+}; but short of proving

this we will rely on the cyclic order (ii) that would suffice for our arguments. We note also

that the concept of relative isometric ergodicity allows to improve the argument from [11]

that was based only on double ergodicity. See also [12, §2] for a different argument that gives

the above result in the special case of B being a Furstenberg-Poisson boundary.

Linear representations. Let G be a connected, center-free, simple, non-compact, real Lie

group, P < G a minimal parabolic subgroup, A < P a maximal split torus, and A′ = ZG(A)
its centralizer. Since A′ < P one has a natural G-equivariant projection pr1 : G/A′ → G/P .

The Weyl group of G can be defined as NG(A)/ZG(A) = NG(A
′)/A′ = AutG(G/A′);

and can also be used to parameterize MapG(G/A′, G/P ). If wlong ∈ WeylG denotes the

long element of this Coxeter group, then pr2 = pr1 ◦wlong : G/A′ → G/P is the opposite

projection, so that

pr1× pr2 : G/A′ → G/P ×G/P

is an embedding, whose image is the big G-orbit. For G = PSLd(R), A < P are the

diagonal and the upper triangular subgroups, G/A′ is the space of d-tuples (�1, . . . , �d) of
1-dimensional subspaces that span Rd, WeylG

∼= Symd acts by permutations, wlong is the

order reversing involution j �→ (n+1−j),G/P is the space of flags (E1, . . . , Ed) consisting
of nested vector subspaces Ej < Ej+1 with dim(Ej) = j, and

pr1 : (�1, . . . , �d) �→ (�1, �1 ⊕ �2, . . . , �1 ⊕ · · · ⊕ �d = Rd),

pr2 : (�1, . . . , �d) �→ (�d, �d−1 ⊕ �d, . . . , �1 ⊕ · · · ⊕ �d = Rd).

The image of pr1× pr2 consists of pairs of flags that are in a general position.

If rankR(G) = 1, then one can identify G/A′ with the space of oriented but unparam-

eterized geodesic lines in the symmetric space X of G, G/P with sphere at infinity ∂∞X ,

G/A′ → G/P associating the limit at −∞ of the geodesic, andWeylG
∼= Z/2Z acting by

flipping the orientation/ endpoints of the geodesics. The image of G/A′ in G/P × G/P
consists of all distinct pairs. In this case G � G/P is a convergence action. Zariski dense

subgroups are non-elementary and not precompact in G (conversely, a non-elementary non-

precompact subgroup in a rank oneG is Zariski dense in a possibly smaller rank one subgroup

G′ < G). Hence the following result in the special case of rankR(G) = 1 can also be

deduced from Theorem 3.2.

Theorem 3.4. Let Γ be an lcsc group, (B+, B−) a boundary pair for Γ, G a non-compact
connected simple Lie group, and ρ : Γ → G a homomorphism. Assume that ρ(Γ) is



Boundaries, rigidity of representations, and Lyapunov exponents 81

Zariski dense in G. Then there exist Γ-maps φ− : B− → G/P , φ+ : B+ → G/P and
φ�� : B− ×B+ → G/A′ such that

pr1 ◦φ��(x, y) = φ−(x), pr2 ◦φ��(x, y) = φ+(y) (x ∈ B−, y ∈ B+),

and

(i) MapΓ(B−,Prob(G/P )) = {δ ◦ φ−}, MapΓ(B+,Prob(G/P )) = {δ ◦ φ+},
(ii) MapΓ(B− ×B+, G/P ) = {pr1 ◦w ◦ φ�� | w ∈WeylG},
(iii) MapΓ(B− ×B+, G/A′) = {w ◦ φ�� | w ∈WeylG}.

As we have mentioned the above theorem is aimed at higher rank target groups G, where

WeylG has more than just {e,wlong}. In the forthcoming paper [4] we prove a general version

of Theorem 3.4, which is valid for algebraic groups G defined over an arbitrary local field (in

fact over any spherically complete field). The proof uses the formalism of representations

of ergodic actions, developed in our recent paper [7]. There we show that for every ergodic

Lebesgue Γ-space X there exists an algebraic subgroup H < G and φ ∈ MapΓ(X,G/H)
having the following universal property: for every G-variety V and ψ ∈ MapΓ(X,V ) there
exists a G-algebraic morphism π : G/H → V so that ψ = π ◦ φ a.e. on X (this is closely

related to Zimmer’s notion of algebraic hull, see also [13]). We apply this result to our

setting and let φ+ : B+ → G/H+, φ− : B− → G/H− and φ0 : B+ × B− → G/H0

be the corresponding universal Γ-maps. Theorem 3.4 follows easily once we show that

H+ = H− = P and H0 = A′ up to conjugations. It is precisely this point, where relative

isometric ergodicity of pr± : B− ×B+ → B± is used.

Sketch of the proof. We first explain that the amenability of B+ implies that H+ is amenable.

Indeed, there exists a boundary map B+ → Prob(G/P ) and the ergodicity of B+ implies

that its image is essentially contained in a unique G-orbit, as the G-orbits on Prob(G/P )
are locally closed [38]. We get a map B+ → G.μ " G/Gμ for some μ ∈ Prob(G/P ).
The stabilizer in G of any point of Prob(G/P ) is amenable and algebraic (we work over R).

In particular, V = G/Gμ is algebraic, and by the universal property of H+ there exists a

G-map G/H+ → G/Gμ. Thus, up to conjugation,H+ < Gμ. In particular, H+ is amenable.

Similarly H− is amenable.

Considering the composed map φ : B− × B+ → B+ → G/H+ = V and using the

universal property of φ0 : B− ×B+ → G/H0, we get a G-map π : G/H0 → G/H+ such

that π ◦ φ0 = φ+ ◦ pr+. We assume, as we may (by conjugating), that H0 < H+. Denoting

by R+ the unipotent radical of H+, we obtain the containment H0 < H0R+ < H+, and the

corresponding G-maps G/H0 → G/H0R+ → G/H+. We get the following commutative

diagram

B− ×B+

pr+

��

�� G/H0R+

q

��

B+

φ+
��

ψ
��

G/H+

in which the existence of the map ψ is guaranteed by the isometric ergodicity of pr+. Indeed,

q is fiber-wise Γ-isometric as its fibers are H+/R+-homogeneous spaces and therefore carry

an H+/R+-invariant metric, as the latter group is compact by abelian (since it is reductive

and amenable). By the universal property of φ+, we conclude that q is an isomorphism. We



82 Uri Bader and Alex Furman

therefore obtain H+ = H0R+. Similarly, denoting by R− the unipotent radical of H− we

obtain H− = H0R−.

The composed φ+× φ− : B+×B− → G/H0 → G/H+×G/H− is Γ×Γ-equivariant,
hence the Zariski closure of its essential image is ρ(Γ) × ρ(Γ)-invariant. Since ρ(Γ) is

Zariski dense in G, it follows that the image of G/H0 is Zariski dense in G/H+ ×G/H−.

Equivalently, the set R+H0R− is Zariski dense in G. At this point the proof reduces to the

following algebraic group theoretic lemma.

Lemma 3.5. Let G be a reductive group, H0 < H+, H− < G algebraic subgroups. Assume
that H+ = H0R+, H− = H0R− and R+H0R− is Zariski dense in G, where R+ and R−
are the unipotent radicals of H+ and H− correspondingly. Then H+ and H− are opposite
parabolics in G, and H0 is their intersection.

Finally, by the amenability of H+, H− these parabolics must be minimal in G, H0

conjugate to A′, and the result follows.

4. Applications to rigidity

Let us now demonstrate how boundary theory can be used to obtain restrictions on linear

representations, convergence actions, and actions on the circle. These results are inspired by

the celebrated Margulis’ superrigidity [32, 33], and the developments that followed, including

[15, 21, 38]. Our aim is to illustrate the techniques rather than to obtain most general results,

in particular we do not state the cocycle versions of the results that can be obtained by similar

methods.

Convergence action of a lattice in a product. Consider a homomorphism ρ : Γ → G
whereG � M is a convergence action. In view of Remark 3.1, we may assume ρ(Γ) is dense
in G and G � M is a minimal convergence action, card(M) = 2ℵ0 and G is non-compact.

Theorem 4.1. Let S = S1 × · · · × Sn be a product of lcsc groups, Γ < S a lattice, such that
pri(Γ) is dense in Si for each i ∈ {1, . . . , n}. Assume G � M is a minimal convergence
action, G is not compact, card(M) > 2, and ρ : Γ → G is a continuous homomorphism
with a dense image. Then for some i ∈ {1, . . . , n} there exists a continuous homomorphism
ρ̄ : Si → G such that ρ = ρ̄ ◦ pri.
Sketch of the proof for n = 2. Choose a boundary Bi for each Si, for example using Theo-

rem 2.7, and set B = B1 ×B2. Then B is an S-boundary and a Γ-boundary (Remark 2.4).

By Theorem 3.2 we have a unique Γ-map φ : B →M . Consider the map

Φ : B ×B = B1 ×B2 ×B1 ×B2 −→M2, (x, y, x′, y′) �→ (φ(x, y), φ(x, y′)).

By Theorem 3.2(iii) we have three cases: Φ(B ×B) is contained in the diagonal Δ ⊂M2,

Φ = φ��, or Φ = τ ◦ φ��, where φ�� = φ× φ and τ(m,m′) = (m′,m). In the first case we

see that φ(x, y) is independent of y ∈ B2, and therefore descends to a Γ-map B1 →M . In

the second case, φ is independent of x ∈ B1, and descends to B2 →M . The third case gives

that φ is independent of both parameters, thus its essential image is a Γ-fixed point in M .

This is incompatible with ρ(Γ) being non-elementary. We conclude that for some i ∈ {1, 2},
φ : B1 ×B2 →M factors through Bi. We shall apply the following general lemma, letting

X = Bi, and Λ = pri(Γ), which is dense in T = Si.
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Lemma 4.2. Let T be a lcsc group, Λ < T a dense subgroup, M a compact metrizable
space, G < Homeo(M) a closed subgroup and ρ : Λ→ G a homomorphism. Assume that
there exists a Lebesgue T -space (X,μ), a Λ-map φ : X → M so that the G-action on M
with η = φ∗μ ∈ Prob(M) satisfies the following condition:

(∗) a sequence {gn} in G satisfies gn → e in G if (and only if)∫
M

(h ◦ gn − h) · k dη → 0 (h, k ∈ C(M)) (4.1)

Then ρ : Λ→ G extends to a continuous homomorphism ρ̄ : T → G.
Furthermore, the combination of the following two conditions implies the condition (∗)

defined above:

(∗)1 (gn)∗η → η in weak-* topology =⇒ {gn} is bounded in G,

(∗)2 ∀g ∈ G \ {e}, ∃k, h ∈ C(M) so that
∫
M
(h ◦ g − h) · k dη �= 0.

Proof. Since Λ is dense in T , existence of a continuous extension ρ̄ : T → G is equivalent

to showing that gn = ρ(λn) → e in G for every sequence {λn} in Λ with λn → e in T .

The T -action by pre-composition on L∞(X,μ), equipped with the weak-* topology from

L1(X,μ), is continuous. Take Λ $ λn → e in T , functions h, k ∈ C(M), and define

h̃ ∈ L∞(X,μ), k̃ ∈ L1(X,μ) by h̃ = h ◦ φ, k̃ = k ◦ φ. Then∫
M

(h ◦ ρ(λn)− h) · k dη =
∫
X

(h̃ ◦ λn − h̃) · k̃ dμ→ 0.

Hence (4.1) detects the convergence ρ(λn)→ e in G.

To see that (∗)1 + (∗)2 =⇒ (∗), note that for any sequence {gn} in G with (4.1), there

is weak-* convergence (gn)∗η → η by taking k = 1 and varying h ∈ C(M). Thus {gn} is
precompact in G by (∗)1. Condition (∗)2 implies that e is the only possible limit point for

{gn}. This completes the proof of the Lemma.

To complete the proof of Theorem 4.1 we check conditions (∗)1, (∗)2. In our context

supp(η) =M , because supp(η) is a ρ(Γ)-invariant closed subset of M , while ρ(Γ) is dense
in G and G � M is minimal. This implies (∗)2. For (∗)1 observe that it follows from the

convergence property ofG � M that if gi →∞ inG and (gi)∗η → ξ ∈ Prob(M), then ξ is

supported on one or two points, while supp(η) =M is a continuum. Therefore the conditions

of Lemma are satisfied, and we get a continuous extension ρ̄ : Si → G as claimed.

Weyl groups. The argument showing that the map φ ∈ MapΓ(B,M) factors through one

of the boundaries Bi in the proof of Theorem 4.1, might appear to be ad-hoc. But in fact, it

can be made conceptual as follows. Given a group Γ and a choice of a Γ-boundary, define the

associated generalized Weyl group to be

WΓ,B = AutΓ(B ×B),

the group of measure class preserving automorphisms of B ×B that commute with Γ. For
non-amenable Γ, a Γ-boundary cannot be trivial, so WΓ,B always contains the non-trivial

involution wflip : (x, y) �→ (y, x).
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Example 4.3. For a boundary which is a product of Γ-spaces, B =
∏

i∈I Bi, the generalized

Weyl group contains a subgroup isomorphic to
∏

i∈I Z/2Z obtained by flipping factors of

B ×B "∏i∈I(Bi ×Bi).

Given a Borel Γ-space V ,WΓ,B acts onMapΓ(B×B, V ) by precompositions. For any Γ-
map φ : B → V we obtain a subgroup ofWΓ,B - the stabilizer of φ◦pr+ ∈ MapΓ(B×B, V )
under this action. The subgroups obtained this way are called special subgroups.

It is easy to check that the special subgroups of
∏

i∈I Z/2Z in Example 4.3 are the

subgroups of the form
∏

i∈J Z/2Z for J ⊂ I . In the setting of convergence actions, Theo-

rem 3.2(ii) shows that the action ofWΓ,B onMapΓ(B ×B,M) must factor trough a group

of order two. The kernel of this action is clearly a special subgroup, it is the stabilizer of

φ ◦ pr+, and one deduces that φ :
∏

Bi → M factors through Bi → M for some i ∈ I .
Invoking now Lemma 4.2, one obtains this way an alternative proof of Theorem 4.1.

Considering now a lattice in a product of groups acting on a circle, we may apply a similar

strategy. By Theorem 3.3(ii) the action of WΓ,B on MapΓ(B × B,S1) factors through a

cyclic subgroup. Considering again the subgroup
∏

i∈I Z/2Z and its special subgroups, we

conclude that φ :
∏

Bi → S1 factors through Bi → S1 for some i ∈ I . The extension

Lemma 4.2 applies to G = Homeo+(S
1), and one deduces the following.

Theorem 4.4. Let Γ be an irreducible lattice in a product S = S1 × · · · × Sn of lcsc groups
as in Theorem 4.1. Let ρ : Γ→ Homeo+(S

1) be a minimal strongly proximal action on the
circle. Then, ρ extends to a continuous homomorphism that factors through some Si, namely
ρ̄i : Si → Homeo+(S

1) so that ρ = ρ̄i ◦ pri. Moreover, if ρ̄i(Si) is non-discrete, then it
could be conjugated to PSL2(R) < Homeo+(S

1), so Γ may be assumed to act via fractional
linear transformations.

The addendum about PSL2(R) follows from the general fact that a lcsc group acting

minimally and strongly proximally on the circle is either discrete, or could be conjugated into

PSL2(R). Let us also remark, that under some mild assumptions (e.g. Γ is finitely generated

and projects injectively to the Si-factors) one can prove that if ρ(S) is non-discrete then, up

to finite index and a compact factor, Γ < S is an arithmetic lattice in a finite product of a

real and possible p-adic algebraic groups, one of which is PSL2(R), and Γ acts on the circle

through this factor [10].

Next consider a connected simple Lie group S with rankR(S) ≥ 2. Let B = S/Q where

Q < S is a minimal parabolic. It is an S-boundary by Theorem 2.5. As a Lebesgue S-space,
B ×B = S/Q× S/Q ∼= S/A′, where A′ is the centralizer of a maximal split torus A < Q.

The generalized Weyl groupWS,S/Q, consisting of automorphisms of S/A′ as a Lebesgue

S-space, is easily seen to coincide with the classical Weyl groupWeylS = NS(A)/ZS(A) =
NS(A

′)/A′:
WS,S/Q

∼= WeylS .

Let Γ < S be a lattice. Then B = S/Q is also a Γ-boundary andWΓ,S/Q containsWeylS .
This inclusion is an isomorphism ([9]) and the three notions of special subgroups: ofWΓ,S/Q,

of WS,S/Q, and of WeylS seen as a Coxeter group, all coincide [6]. Since S is assumed

to be simple, the Coxeter group WeylS is irreducible. It is not hard to see that if W is an

irreducible Coxeter group and W ′ < W a proper special subgroup then the action of W on

the coset space W/W ′ is faithful: W ′ contains no nontrivial subgroup which is normal in W .

It follows that for any Borel Γ-space V with V Γ = ∅, the action ofWΓ,S/Q on the orbit of

φ ◦ pr+MapΓ(S/Q× S/Q, V ) for φ ∈ MapΓ(S/Q, V ) is faithful. This allows to deduce

the following result of Ghys [21].
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Theorem 4.5. Let Γ be a lattice in a connected simple Lie group S with rankR(S) ≥ 2. Then
any Γ-action on the circle has a finite orbit.

Indeed, assuming Γ has an action on the circle with only infinite orbits, one could find

a minimal such action by applying a semiconjugation. Since Γ cannot act minimally by

rotations (because Γ/[Γ,Γ] is finite), it would also have a minimal strongly proximal action.

Theorem 3.3(ii) then guarantees that the action of WeylS " WΓ,S/Q on MapΓ(S/Q ×
S/Q, S1) factors through a cyclic quotient, contradicting its faithfulness becauseWeylG is

not cyclic for a higher rank G.

Similarly, we have the following result that might be seen as a generalization of the special

case of Margulis superrigidity stating that any homomorphism from a higher rank lattice Γ
into a rank one group has precompact image.

Theorem 4.6. Let Γ be a lattice in a connected simple Lie group S with rankR(S) ≥ 2. Then
for any homomorphism ρ : Γ→ G where G � M is a non-trivial convergence action, ρ(Γ)
is elementary or precompact in G.

In [6] the basic idea of the last result is developed further for a class of target groups that

includes mapping class groups, automorphism groups of finite dimensional CAT(0) cubical

complexes etc.

Taking the target groupG to be a connected simple real Lie group one can use Theorem 3.4

to obtain the following.

Theorem 4.7. Let Γ be a lcsc group, B a Γ-boundary, G a connected, non-compact, simple
real Lie group, and ρ : Γ→ G a homomorphism with Zariski dense image. Then there exists
a homomorphism

π : WΓ,B −→ WeylG, π(wflip) = wlong,

satisfying that the preimage of a special subgroup ofWeylG is a special subgroup ofWΓ,B .
Furthermore, there is a map φ�� ∈ MapΓ(B ×B,G/A′) satisfying

φ�� ◦ w = π(w) ◦ φ�� (w ∈WΓ,B),

and φ ∈ MapΓ(B,G/P ) such that φ(x) = pr1 ◦φ��(x, y), φ(y) = pr2 ◦φ��(x, y).
We remark that there is a natural notion of a preorder relation onWΓ,B , generalizing the

classical Bruhat order on Coxeter groups, and one can show that the map π considered here is

order preserving. We will not elaborate on this here.

Note that the theorem above could be applied in particular to a lattice Γ in a simple Lie

group S. Then one deduces some cases of Margulis superrigidity, e.g. it follows that a lattice

in SLn(R) cannot have an unbounded representation in SLm(R) if n > m. However, a more

efficient approach to superrigidity phenomena with algebraic targets, one that avoids boundary

theory almost completely, is proposed in [7].

Commensurator superrigidity. Finally, let us show how existence and uniqueness of char-

acteristic maps can be used to prove results analogous to Margulis’ commensurator super-

rigidity [33] (see also [13]). Let S be a lcsc group, and Γ < S be a lattice. Recall that the

commensurator of Γ in S is the subgroup of S given by

CommenS(Γ) = {s ∈ S | Γ ∩ Γs has finite index in Γ, and in Γs} ,
where Γs = {gs = sgs−1 | g ∈ Γ} denotes conjugation.
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Theorem 4.8. Let S be a lcsc group, Γ < S a lattice, Λ a dense subgroup in S such that
Γ < Λ < CommenS(Γ).

(i) Let G � M be a minimal convergence action and ρ : Λ → G be a continuous
homomorphism with a dense image. Then ρ extends to a continuous homomorphism
ρ̄ : S → G.

(ii) Let ρ : Λ → Homeo+(S
1) be such that Λ � S1 acts minimally and strongly proxi-

mally. Then ρ extends to a continuous homomorphism ρ̄ : S → Homeo+(S
1), whose

image is either discrete or is conjugate to PSL2(R) < Homeo+(S
1).

(iii) Let G be a connected, simple, center-free, non-compact, real Lie group, and let ρ :
Λ→ G be a homomorphism with Zariski dense image. Then ρ extends to a continuous
homomorphism ρ̄ : S → G.

In view of Remark 3.1, the assumption of density of ρ(Λ) inG and minimality ofG � M
is not restrictive. Minimality and strong proximality can also be assumed for the circle case,

see the discussion preceding Theorem 3.3. Of course, case (iii) is a special case of the original

Margulis commensurator superrigidity, that was used to give a criterion for arithmeticity of

lattices in semi-simple Lie groups. To this end one needs to consider also algebraic target

groups over C, and overQp where p is a prime (cf. [13]). We include it here just to emphasize

the analogy with the other cases.

Sketch of the proof. The non-degeneracy assumptions on ρ(Λ) are already satisfied by ρ(Γ).
For example in (i), the set L(ρ(Γ)) being stable under replacing Γ by finite index subgroups

is necessarily ρ(Λ)-invariant. As ρ(Λ) is dense in G and G � M is minimal, it follows

that L(ρ(Γ)) =M . Similarly in (ii), one shows that already Γ acts minimally and strongly

proximally on S1. In (iii) ρ(Γ) is Zariski dense, because the identity component of its Zariski

closure is normalized by ρ(Λ) and hence by all of G, but the latter is simple.

Choose an S-boundary B, say using Theorem 2.7. Then B is a boundary for Γ, and for

any finite index subgroup Γ′ < Γ (Remark 2.4). Consider the compact G-space Q where: in

(i) Q = M , in (ii) Q = S1, in (iii) Q = G/P . Then using the above properties of ρ(Γ) we

obtain a characteristic Γ-map

φ ∈ MapΓ(B,Q)

by applying just the first claim in Theorems 3.2, 3.3, 3.4 in cases (i), (ii), (iii), respectively.

For any fixed λ ∈ Λ the group Γ′ = Γ ∩ Γλ−1

has finite index in Γ, and therefore is also

a lattice in S. The measurable map ψ : B → Q defined by ψ(x) = ρ(λ)−1φ(λ.x) is

Γ′-equivariant, because for g ∈ Γ′ one has gλ ∈ Γ, and so

ψ(g.x) = ρ(λ)−1φ(λg.x) = ρ(λ)−1φ(gλλ.x) = ρ(λ−1gλ)φ(λ.x) = ρ(g)ψ(x).

So both φ and ψ are inMapΓ′(B,Q), which means that φ = ψ. Thus

φ(λ.x) = ρ(λ).φ(x)

for a.e. x ∈ B, and this holds for every λ ∈ Λ. Hence the map φ : B → Q is Λ-equivariant.
This allows to show that ρ : Λ→ G extends to a continuous ρ̄ : S → G using, for example,

the extension Lemma 4.2, once conditions (∗)1, (∗)2 have been verified. For convergence

groups this was done in the proof of Theorem 4.1.

Similar arguments apply to the case (ii) of the circle. One shows using minimality and

strong proximality of Γ-action on S1 that η = φ∗ν is a full support continuous measure.
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It easy to see that if (gi)∗η → ξ for some gi → ∞ in Homeo+(S
1) then ξ has atoms and

cannot be η. This proves (∗)1, while (∗)2 follows from the fact that η has full support.

In case (iii) of G � G/P , the measure η is proper meaning that η(V ) = 0 for any

proper algebraic subspace V ⊂ G/P . Then (∗)1 follows from Furstenberg’s lemma about

quasi-projective-transformations ([19]) and (∗)2 is a consequence of properness of η.
Therefore ρ : Λ → G extends to a continuous homomorphism ρ̄ : S → G in all three

cases. In the circle case (ii), there is an additional fact: a lcsc group, e.g. ρ̄(S), with a

minimal and strongly proximal action on the circle is either discrete or could be conjugated to

PSL2(R).

5. An application to Lyapunov exponents

In this section we shall apply boundary theory – Theorem 3.4 – to obtain results about

Lyapunov exponents for some matrix valued functions on a class of p.m.p. systems. In his

first proof of superrigidity Margulis used non-vanishing of Lyapunov exponents for certain

matrix valued functions to construct characteristic maps; our approach ([5]) follows a converse

direction.

The Multiplicative Ergodic Theorem of Oseledets [35] (see also Kaimanovich [27],

Karlsson-Margulis [30]) describes the asymptotic behavior of products of matrix valued

functions along orbits of a p.m.p. system. More precisely, let (X,m, T ) be an invertible,

ergodic, p.m.p. system, and F : X → SLd(R) a measurable map with∫
X

log ‖F (x)‖ dm(x) < +∞. (5.1)

Multiplying F along T -orbits one obtains a measurable cocycle Z×X → SLd(R)

Fn(x) =

⎧⎨⎩ F (Tn−1x) · · ·F (Tx)F (x) if n ≥ 1,
I if n = 0,
F (Tnx)−1 · · ·F (T−1x)−1 if n < 0.

(5.2)

The cocycle equation being Fk+n(x) = Fk(T
nx)Fn(x) for k, n ∈ Z. The Multiplicative

Ergodic Theorem asserts that there exist: a partition d = d1 + · · ·+ ds, constants

γ1 > γ2 > · · · > γs with d1γ1 + · · ·+ dsγs = 0

and a measurable equivariant2 splitting into vector subspaces

Rd = L1(x)⊕ L2(x)⊕ · · · ⊕ Ls(x), dimLj(x) = dj ,

so that for m-a.e. x ∈ X for every v ∈ Lj(x) \ {0} one has

lim
n→∞

1

n
log ‖Fn(x)v‖ = γj , lim

n→∞
1

n
log ‖F−n(x)v‖ = −γj .

Rewriting γ1 > γ2 > · · · > γs with their multiplicities we get the Lyapunov exponents

λ1 ≥ λ2 ≥ · · · ≥ λd, λ1 + · · ·+ λd = 0,

2 satisfying m-a.e. Lj(T
nx) = Fn(x)Lj(x) for 1 ≤ j ≤ s.
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that can be recorded as Λ = diag(λ1, . . . , λd); we refer to this element Λ ∈ sld(R) as

the Lyapunov spectrum of F on (X,m, T ). The Multiplicative Ergodic Theorem can be

restated as the assertion that a.e. sequence {Fn(x)}n∈Z follows with a sub-linear deviation

the sequence {Ux exp(nΛ)V
−1
x }n∈Z for some Ux, Vx ∈ Od(R). More generally, given a

simple real Lie group G and an integrable3 measurable map F : X → G, we define the

Lyapunov spectrum to be the element in the positive Weyl chamber

Λ ∈ a+

of the Cartan subalgebra a of g = Lie(G), so that ux exp(nΛ)v
−1
x represent the asymptotic

behavior of m-a.e. sequences Fn(x) ∈ G, n ∈ Z.
The spectrum Λ of an integrable F : X → G over an ergodic invertible system (X,m, T )

is non-degenerate if Λ �= 0, and is called simple if Λ is a regular element in a+. In the basic

case G = SLd(R), non-degeneracy of the spectrum corresponds to λ1 > 0, and simplicity to

the strict inequalities

λ1 > λ2 > · · · > λd

in which case s = d and dj = dimLj(x) = 1 for all 1 ≤ j ≤ d.
In general, there is no explicit formula for Λ (or even λ1) in terms of F : X → G on

(X,m, T ), and the dependence of the Lyapunov exponents on F and (X,m, T ) is mostly

mysterious. The best studied situation is that of RandomWalks, where (X,m) is the invertible
Bernoulli shift (GZ, μZ) with (Tx)i = xi+1 and F (x) = x1. From the fundamental work of

Furstenberg [17], Guivarc’h-Raugi [25, 26], and Gol’dsheid-Margulis [24], it is known that

if supp(μ) generates a Zariski dense subgroup in G, then the Lyapunov spectrum is simple.

More recently, Avila and Viana [1–3] gave sufficient conditions for simplicity of the Lyapunov

for certain classes of systems that allowed them to prove simplicity of the Lyapunov spectrum

of Kontsevich-Zorich cocycle. Here we shall describe an approach ([5]) that allows to prove

simplicity of the Lyapunov spectrum using boundary theory.

Simplicity of the Lyapunov spectrum. Let (X,m, T ) be an ergodic, invertible, p.m.p.

system and Γ be some auxiliary group, that we assume to be countable discrete for clarity of

presentation, and let

f : X → Γ

be a measurable map. It generates a measurable cocycle Z×X → Γ, denoted fn(x), similarly

to (5.2). Let m̃ denote the (infinite) measure on the space ΓZ obtained by pushing forward

the product m× cΓ of m with the counting measure cΓ on Γ by the map

X × Γ −→ ΓZ, (x, g) �→ (fn(x)g
−1)n∈Z.

This measure describes the distribution of paths (gi) of a stochastic walk with (not necessarily

independent) increments f(Tnx) = gi+1g
−1
i that starts from an arbitrary initial value g0. Let

us write X̃ for the space ΓZ with the measure m̃ or another measure in its measure class. The

measure m̃ (and its class) are preserved by the commuting actions of Z and Γ:

n : (gi) �→ (gi+n), g : (gi) �→ (gig
−1) (n ∈ Z, g ∈ Γ).

Consider the future tail equivalence relation ∼+ on X̃ defined by (gi) ∼+ (g′i) if for some

k ∈ Z one has gi+k = g′i for all i ≥ i0. Let B+ = X̃// ∼+ denote the space of ∼+-ergodic

3 (5.1) holds for some/any embedding G < SLd(R)
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components. To make this more precise, one may replace m̃ by an equivalent probability

measure m̃1, push down m̃1 by the projection ΓZ → ΓN, and take the ergodic components

for the semi-group N acting by the shift. Then B+ is a Lebesgue Γ-space which is a quotient

of X̃ . Similarly, one defines the past tail equivalence relation ∼− and the corresponding

Γ-quotient X̃ → B−. We shall say that the quotients p− : X̃ → B− and p+ : X̃ → B+ are

weakly independent, denoted B− ⊥ B+, if

(p− × p+)[m̃] = p−[m̃]× p+[m̃], (5.3)

where [m̃] denote the measure class of m̃, and the equality is of measure classes.

Example 5.1. Let μ be a generating probability measure on a (countable) group Γ, (X,m, T )
be the Bernoulli system (ΓZ, μZ) with the shift T : (xi) �→ (xi+1), and f : X → Γ given

by f(x) = x1. Then X̃ is the space of paths for random walks and B+ and B− are the

Furstenberg-Poisson boundaries for μ and μ̌ respectively. They are weakly independent

B+ ⊥ B−. Note that the assumption that μ is generating is essential here, for if μ is

supported on a proper subgroup Γ0 < Γ then the non-trivial Γ-space Γ/Γ0 is a common

quotient of X̃ , B+, B−, and B+ �⊥ B−.

Example 5.2. Let M be a closed Riemannian manifold of negative curvature, Γ = π1(M)
the fundamental group, X = SM unit tangent bundle, T the time one geodesic flow on X ,

and m be Lebesgue-Liouville measure, or Bowen-Margulis measure, or any other Gibbs

measure. We define a cocycle fn : X → Γ, n ∈ Z, by

T̃n(σ(x)) = fn(x).σ(T
nx)

where T̃ t is the geodesic flow on the unit tangent bundle SM̃ of the universal cover M̃ , and

σ : SM → SM̃ is the section of the covering map π : SM̃ → SM corresponding to a

measurable choice of a fundamental domain, say a Dirichlet domain. The B− and B+ are

then realized on the geometric boundary ∂M̃ and the measure classes represent those of

stable/unstable foliations. One has weak independence B− ⊥ B+ as a consequence of the

local product structure of the conditional measures on stable/unstable leaves, and the mixing

condition.

Theorem 5.3. Let (X,m, T ) be an invertible ergodic p.m.p. system, f : X → Γ a measur-
able map, so that B− ⊥ B+ in the above sense. Then

(i) Let G be a connected, non-compact, center free, simple, real Lie group and ρ : Γ→ G
a representation with Zariski dense image. Then the map

F : X
f−→ Γ

ρ−→ G

has simple Lyapunov spectrum over (X,m, T ), provided it is integrable.

(ii) Let Γ � (Z, ζ) be an ergodic p.m.p. action, and ρ : Γ × Z → G a Zariski dense
cocycle into G as above. Then the skew-product

(X × Z,m× ζ, Tf ), Tf : (x, z) �→ (Tx, f(x).z) (5.4)

is ergodic, and the map F : X × Z → G, F (x, z) = ρ(f(x), z), has simple Lyapunov
spectrum provided it is integrable.
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Non-degeneracy of the Lyapunov spectrum (λ1 > 0) remains valid if Zariski density condition
on ρ is replaced by the weaker condition that the algebraic hull of ρ is non-amenable.

Let us note some consequences of this result. In the random walk setting (Example

5.1) we recover the results of Guivarc’h-Raugi, Gol’dsheid-Margulis on simplicity of the

Lyapunov spectrum for Zariski dense random walk on a simple Lie group G by applying part

(i) of the theorem to X = GZ, m = μZ with the shift. The addendum about non-degeneracy

of the spectrum is precisely Furstenberg’s condition for λ1 > 0. Part (ii) gives already a new

result:

Corollary 5.4. Let Γ be a (countable) group, Γ � (Z, ζ) an ergodic p.m.p. action, ρ :
Γ× Z → G a Zariski dense cocycle. Let μ be a generating probability measure on Γ with
log ‖ρ(g, z)‖ ∈ L1(μ × ζ), let X = ΓZ, m = μZ, T : (xi) �→ (xi+1), and T : (x, z) �→
(Tx, x1.z). Then the cocycle Fn : X × Z → G given by

Fn(x, z) = ρ(xn · · ·x1, z)

has a simple Lyapunov spectrum. If ρ is only assumed to have non-amenable algebraic hull,
then the spectrum is non-degenerate.

The result about non-degeneracy of the Lyapunov spectrum in this setting is due to

Ledrappier [31].

Corollary 5.5. Let M be a compact negatively curved manifold, T t the geodesic flow on the
unit tangent bundle X = SM to M , m a Gibbs measure on X , and fn : X → Γ = π1(M)
a cocycle as in Example 5.2. Then

(i) Given a Zariski dense representation ρ : Γ→ G in a simple Lie group, the Lyapunov
spectrum of F = ρ ◦ f is simple.

(ii) Given any ergodic p.m.p. action Γ� (Z, ζ) the skew-product X ×f Z is ergodic and
if ρ : Γ × G is a Zariski dense cocycle with log ‖ρ(g,−)‖ ∈ L1(Z), g ∈ Γ, then the
Lyapunov spectrum of Fn(x, z) = ρ(fn(x), z) is simple.

Part (ii) for the case where M is a constant curvature surface, can be restated as asserting

that for an ergodic p.m.p. action SL2(R) � (X,m) and Zariski dense integrable cocycle

ρ : PSL2(R)×X → G the restriction to the diagonal subgroup Fn(x) = ρ(gn, x) for any
hyperbolic g ∈ PSL2(R), has simple Lyapunov spectrum. This was recently obtained by

Eskin-Matheus [16].

Theorem 5.3 can also be used to prove simplicity of the Lyapunov spectrum for the

Kontsevich-Zorich cocycle (in the main stratum).

Outline of the proof. The main observation is that the setting of f : X → Γ and condition

B− ⊥ B+, described above, allow one to use boundary theory.

Theorem 5.6. Let (X,m, T ) and f : X → Γ be as above, and assume that B− ⊥ B+.
Then X̃//Z is isometrically ergodic, projections X̃//Z → B± are relatively isometrically
ergodic, and (B−, B+) is a boundary pair for Γ.

We shall not describe the proof of this result here, but remark that amenability of B±
follows from amenability of N (as in Zimmer’s [36]), and other statements reduce to relative

isometric ergodicity of the maps X̃//Z→ B±. The proof of this key property is motivated by

Kaimanovich [28].
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Observation 5.7. Let V be a Borel Γ-space, and Mapf (X,V ) denote the space of all f -
equivariant maps, i.e. measurable maps φ : X → V satisfying m-a.e. φ(Tx) = f(x).φ(x).
Then there exists a natural bijection between f -equivariant maps and Z-invariant Γ-equivariant
maps X̃ → V , which gives a bijection

Mapf (X,V ) ∼= MapΓ(X̃//Z, V ).

This observation gives the following fact, that was included in the statement of Theo-

rem 5.3.(ii).

Corollary 5.8 (of Theorem 5.6). Let (X,m, T ) and f : X → Γ be such that B− ⊥ B+.
Then for any ergodic p.m.p. action Γ� (Z, ζ) the skew-product (5.4) is ergodic.

Note that for the random walk setting (Example 5.1) this can be deduced from Kakutani’s

random ergodic theorem, and for the geodesic flow setting (Example 5.2) with M being

locally symmetric, it follows from Moore’s ergodicity. However it is new for geodesic flow

on general negatively curved manifolds, and potentially in other situations.

Proof. The claim is that Tf -invariant functions F ∈ L2(X × Z,m × ζ) are a.e. constant.

Such an F can be viewed as a measurable f -equivariant map X → L2(Z, ζ), x �→ F (x,−).
By 5.7 it corresponds to a Γ-map Φ : X̃//Z→ L2(Z, ζ). Since X̃//Z is isometrically ergodic

(Theorem 5.6), Φ is constant φ0 ∈ L2(Z, ζ)Γ. As Γ � (Z, ζ) is ergodic, φ0 is ζ-a.e. a

constant c0, and F is m× ζ-a.e. constant F (x, z) = c0.

Let us outline the proof of Theorem 5.3. We focus on part (i) that refers to the simplicity

of the Lyapunov spectrum of F = ρ ◦ f : X → G where ρ : Γ → G is a Zarsiki dense

representation. The proof of part (ii) that refers to cocycles follows the same outline.

By Theorem 5.6, the pair (B−, B+) constructed from (X,m, T ) and f : X → Γ is a

boundary pair for Γ. Therefore from Theorem 3.4 there exist Γ-maps

φ− : B− −→ G/P, φ+ : B− −→ G/P, φ�� : B− ×B+ −→ G/A′

so that φ− = pr1 ◦φ�� and φ− = pr2 ◦φ��, where G/A′ is viewed as a subset

G/A′ ⊂ G/P ×G/P.

For n ∈ Z denote by F≥n = σ(f ◦ Tn, f ◦ Tn+1, . . . ) the σ-algebra generated by the maps

f ◦ T k : X → Γ, k ≥ n. Similarly define F<n = σ(f ◦ Tn−1, f ◦ Tn−2, . . . ). Then

F≥n ⊂ F≥n−1 and F<n ⊃ F<n−1.

Proposition 5.9. There exists a map ν− : X → Prob(G/P ) with the following properties:

(i) The map x �→ ν−(x) is F≥0-measurable and satisfies

ν−(x) = E
(
F (T−1x)∗ν−(T

−1x) | F≥0

)
.

(ii) For m-a.e. x ∈ X there is weak-* convergence to Dirac measure

δψ−(x) = lim
n→∞

F (T−1x)F (T−2x) · · ·F (T−nx)∗ν−(T
−nx),

where ψ− is an F -equivariant map X → G/P .



92 Uri Bader and Alex Furman

(iii) Form-a.e. x ∈ X the measure ν−(x) is proper, i.e. gives zero mass to proper algebraic
subspaces W � G/P .

There is a F<0-measurable map ν+ : X → Prob(G/P ) and ψ+ ∈ MapF (X,G/P ) with
similar properties with respect to T−1. Moreover, there exists

ψ�� ∈ MapF (X,G/A′), so that ψ− = pr1 ◦ψ��, ψ+ = pr2 ◦ψ��

where pri : G/A′ → G/P are the projections.

Sketch of the proof. The map ψ− ∈ MapF (X,G/P ) is defined by applying the correspon-

dence from 5.7 to the pull-back of φ− ∈ MapΓ(B−, G/P ) via the quotient X̃//Z → B−.

Define ν− to be the conditional expectation (average) of the Dirac measures δψ−(x)

ν−(x) = E
(
δψ−(x) | F≥0

)
.

Property (i) then follows from this definition, and (ii) follows by applying Martingale Conver-

gence Theorem.

We shall not give here the proof of property (iii), but point out that it uses the B− ⊥ B+

assumption as a well as Zariski density of ρ.

The following well known lemma allows one to prove quantitative results (linear growth

of ergodic sums) from qualitative information (consistent growth of ergodic sums).

Lemma 5.10. Let (X,m, T ) be an ergodic p.m.p. system, and h ∈ L1(X,m) such that
h(x) + h(Tx) + · · ·+ h(Tnx)→ +∞ for m-a.e. x ∈ X . Then

∫
h dm > 0.

Contraction of measures on G/P can indicate growth.

Lemma 5.11. Let Q ⊂ Prob(G/P ) be a compact set of proper measures, {νn} a sequence
in Q, and let {an} be a sequence in the Cartan subalgebra a of g = Lie(G), so that

exp(an)∗νn −→ δeP .

Then for any positive root, χ : a→ R one has χ(an)→∞.

Combining these two Lemmas, one may deduce simplicity of the spectrum in the following

very special situation: assume that

• an integrable F : X → G takes values in the Cartan subgroup A = exp(a), so we can

write F (x) = exp(a(x)) for an appropriate function a : X → a,

• some map ν : X → Prob(G/P ), taking values in a compact Q ⊂ Prob(G/P )
consisting of proper measures, satisfies weak-* convergence

F (T−1x)F (T−2x) · · ·F (T−nx)∗ν−(T
−nx) −→ δeP .

Then one has Λ =
∫
a dm, and since χ(Λ) =

∫
χ(a(x)) dm(x) > 0 for every positive root

χ, the spectrum Λ is simple.

Returning to the general case described in Proposition 5.9, one can use the maps ψ�� :
X → G/A′ and ψ− : X → G/P to find a measurable c : X → G so that

c(Tx)F (x)c(x)−1 ∈ A = exp(a), and c(x)ψ−(x) = eP,
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while all ν(x) = c(x)ν−(x) still remain proper measures. To arrive at the special situation

described above we need to control integrability of the A-valued c(Tx)F (x)c(x)−1 and to

ensure uniform properness for ν(x). This can be achieved by passing to an induced system
(in the sense of Kakutani) as follows. There exist compact sets C ⊂ G and Q ⊂ Prob(G/P )
where Q consists of proper measures only, so that the set

X∗ = {x ∈ X | c(x) ∈ C, ν(x) ∈ Q}
has m(X∗) > 0. Let m∗ be the normalized restriction m∗ = m(X∗)−1 ·m|X∗ , denote the

first return time to X∗ by n(x) = inf{n ≥ 1 | Tnx ∈ X∗}, and define

T ∗x = Tn(x)x, F ∗(x) = c(Tn(x)x)Fn(x)(x)c(x)
−1.

From the ergodic theorem
∫
n(x) dm∗(x) = m(X∗)−1, and it follows that the Lyapunov

spectra, Λ of F on (X,m, T ) and Λ∗ of F ∗ on (X∗,m∗, T ∗), are positively proportional

Λ∗ =
1

m(X∗)
· Λ ∈ a+.

But F ∗ on (X∗,m∗, T ∗) satisfies the condition of the special case above, hence Λ∗ is simple,

and therefore so is the original Λ ∈ a+.

Finally the addendum about non-degeneracy of the Lyapunov spectrum when ρ(Γ) is
just assumed to be non-amenable, follows from the simplicity criterion by considering the

Levi decomposition of the Zariski closure of ρ(Γ). This completes the outline of the proof of

Theorem 5.3.
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Abstract. We review some recent advances in modular representation theory of symmetric groups and

related Hecke algebras. We discuss connections with Khovanov-Lauda-Rouquier algebras and gradings

on the blocks of the group algebras FΣn, which these connections reveal; graded categorification and

connections with quantum groups and crystal bases; modular branching rules and the Mullineaux map;
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imaginary Schur-Weyl duality, which connects representation theory of these algebras to the usual Schur

algebras of smaller rank.
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1. Introduction

The classical problem of understanding representation theory of symmetric groups is espe-

cially difficult in positive characteristic. For example, there is no effective algorithm for

computing the dimensions of irreducible modules in that case. In this expository paper, we

review some results on modular representation theory of symmetric groups. Let F be a filed

of characteristic p > 0 and Σn be the symmetric group on n letters.

We discuss connections with Khovanov-Lauda-Rouquier algebras and gradings on the

blocks of FΣn which these connections reveal, graded categorification and connections with

quantum groups and crystal bases, modular branching rules and the Mullineaux map, graded

cellular structure and graded Specht modules, cuspidal systems for affine KLR algebras and

imaginary Schur-Weyl duality which connects representation theory of these algebras to the

usual Schur algebras of smaller rank.

2. Graded isomorphism theorem

2.1. Basic notation. Let I := Z/pZ be identified with the simple subfield of F . We

associate to p the affine Cartan matrix C = (cij)i,j∈I of type A
(1)
p−1 so that cii = 2, cij = −1

if |i− j| = 1 and p �= 2, c0,1 = c1,0 = −2 if p = 2 and cij = 0 otherwise.

The group algebra FΣn will be denoted by Hn. We have the simple transpositions

sr := (r, r + 1) ∈ Σn for r = 1, . . . n− 1, and the Murphy elements:

xt := (1, t) + (2, t) + · · ·+ (t− 1, t) ∈ Hn (1 ≤ t ≤ n).

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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The Murphy elements commute.

Let V be a finite dimensional Hn-module. The eigenvalues of the Murphy elements in

V belong to I , see for example [27, Lemma 7.1.2]. Given a word i = (i1, . . . , in) ∈ In, we

define the i-word space of V as follows:

Vi = {v ∈ V | (xr − ir)
Nv = 0 for N ' 0 and r = 1, . . . , n}.

We have a word space decomposition V =
⊕

i∈In Vi. Using the word space decomposition

of the left regular Hn-module, we get a system of orthogonal idempotents {1i | i ∈ In} in
the group algebra Hn (some of which are zero) such that

∑
i∈In 1i = 1, and 1iV = Vi for

all i ∈ In and all finite dimensional Hn-modules V .

The symmetric group Σn acts on In by place permutations, and let In/Σn be the set of

orbits. Fix an orbit α ∈ In/Σn. Define 1α :=
∑

i∈α 1i ∈ Hn. It is easy to check that 1α is a

central idempotent in Hn. In fact, by [34] or [3, Theorem 1], 1α is either zero or a primitive

central idempotent in Hn. Hence the algebra

Hα := 1αHn

is either zero or a single block of the group algebra Hn. If x ∈ Hn we denote 1αx ∈ Hα

again by x.

2.2. Graded presentation. Define special elements of Hα as follows:

yt :=
∑
i∈α

(xt − ir)1i (1 ≤ t ≤ n), (2.1)

ψr :=
∑
i∈α

(sr + Pr(i))Qr(i)
−11i (1 ≤ r < n), (2.2)

where Pr(i) and Qr(i)
−1 are certain explicit polynomials in F [yr, yr+1] defined in [6]. This

gives us the following elements of Hα:

{1i | i ∈ α} ∪ {y1, . . . , yn} ∪ {ψ1, . . . , ψn−1}. (2.3)

Finally, choose signs εij ∈ ±1 for all i, j ∈ I with |i− j| = 1 so that εijεji = −1, and
define the polynomials in F [u, v]:

Qij(u, v) :=

⎧⎨⎩ 0 if i = j;
1 if cij = 0;
εij(u

−cij − v−cji) if cij < 0.
(2.4)

The following result was first proved in [6, Theorem 1.1], see also [38]:

Theorem 2.1. The algebraHα is generated by the elements (2.3) subject only to the following
relations (for all admissible i = (i1, . . . ), j, r, t):

1i1j = δi,j1i, (2.5)∑
i∈α1i = 1; (2.6)

yr1i = 1iyr; (2.7)

yryt = ytyr; (2.8)
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ψr1i = 1sriψr; (2.9)

(ytψr − ψrysr(t))1i = δir,ir+1
(δt,r+1 − δt,r)1i; (2.10)

ψ2
r1i = Qir,ir+1(yr, yr+1)1i; (2.11)

ψrψt = ψtψr (|r − t| > 1); (2.12)

(ψr+1ψrψr+1 − ψrψr+1ψr)1i = δir,ir+2

Qir,ir+1
(yr+2,yr+1)−Qir,ir+1

(yr,yr+1)

yr+2−yr
1i; (2.13)

y
δi1,0

1 1i = 0. (2.14)

We note that the ratio in (2.13) is always a polynomial in y’s. Theorem 2.1 is saying

that blocks of groups algebras of symmetric groups are isomorphic to certain cyclotomic
Khovanov-Lauda-Rouquier (KLR) algebras [20, 21, 38, 39]. We return to this in Section 7.

The presentation of Hα given in Theorem 2.1 allows us to define a grading on Hα by setting:

deg(1i) := 0, deg(yr1i) := 2, deg(ψr1i) := −cir,ir+1
.

From now on, we will always consider graded Hα-modules, unless otherwise stated.

The irreducible ungraded Hα-modules are gradable in a unique way up to isomorphism and

degree shift, so considering graded modules does divert our attention from the main goal of

understanding irreducible Hn-modules.

2.3. Basics of graded algebra. For any graded algebraH , we denote byH-mod the abelian

category of all finitely generated graded H-modules, with morphisms homH(·, ·) being

degree-preserving module homomorphisms. Denote by H-proj the full subcategory of

finitely generated projective graded H-modules. Set

L := Z[q, q−1].

The Grothendieck group [H-mod] is a L-module via qm[M ] := [qmM ], where qmM
denotes the module obtained by shifting the grading in M up by m, i.e. (qmM)n :=Mn−m.
For n ∈ Z, let HomH(M,N)n := homH(q

nM,N), and set

HomH(M,N) :=
⊕
n∈Z

HomH(M,N)n.

If M is finitely generated, forgetting all gradings, HomH(M,N) is the usual Hom.

For gradedH-modulesM andN we writeM ∼= N to mean thatM andN are isomorphic

as graded modules and M " N to mean that M ∼= qdN for some d ∈ Z. For a finite

dimensional graded vector space V = ⊕d∈ZVn, its graded dimension is

dimq V :=
∑
d∈Z

(dimVd)q
d ∈ L.

Given M,L ∈ H-mod with L irreducible, we write [M : L]q for the corresponding graded
composition multiplicity, i.e. [M : L]q :=

∑
n∈Z adq

d, where ad is the multiplicity of qdL in

a graded composition series of M .

Define the formal character of M ∈ Hα-mod as the formal sum

chq M :=
∑
i∈α

(dimq Mi)i.
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Consider the antiautomorphism

Hα → Hα, h �→ h′, (2.15)

which is identity on the generators (2.3). IfM =
⊕

d∈Z Md ∈ Hα-mod, then the graded dual
M� is the graded Hα-module such that (M�)d :=M∗

−d, for all d ∈ Z, and the Hα-action is

given by (xf)(m) = f(x′m), for all f ∈M�,m ∈M,x ∈ Hα.

For every irreducible Hα-module L, there is a unique choice of the grading shift so that

L� ∼= L [20, Section 3.2]. We always choose the shifts for irreducible Hα-modules in this

way.

2.4. The KLR algebra Aα. We denote by Aα the algebra given by the generators (2.3)

and the relations (2.5)–(2.13). This is the KLR algebra corresponding to C. It is an infinite

dimensional graded algebra with the natural surjection

Aα�Hα. (2.16)

AllHα-modules will be considered as Aα-modules via the functor of inflation infl : Hα-mod
→ Aα-mod. This functor has a left adjoint pr : Aα-mod→ Hα-mod, M �→ Hα ⊗Aα M .

The definition of the graded duality ‘�’ and the formal character chq forHα-modules extends

to Aα-modules.

In the important special case α = nαi, the algebra Anαi is the usual affine nilHecke

algebra. It has a representation on the polynomial space Pn = F [x1, . . . , xn] with each

yt acting as multiplication by xt and each ψr acting as the divided difference operator

f �→ (srf − f)/(yr − yr+1). The module Pn is graded so that deg(xr) = 2. We shift the

degrees and define

P (i(n)) := q−n(n−1)/2Pn. (2.17)

3. Branching and categorification

3.1. More notation. Following [19, §1.1], we have a realization of the Cartan matrix C.

In particular we have the simple roots {αi | i ∈ I}, the fundamental dominant weights

{Λi | i ∈ I}, and the form (·, ·) such that

(αi, αj) = ci,j and (Λi, αj) = δi,j (i, j ∈ I).

Denote Q+ :=
⊕

i∈I Z≥0αi and P :=
⊕

i∈I ZΛi. For α =
∑

i∈I niαi ∈ Q+, we write

ht(α) :=
∑

i∈I ni. We have a bijection

In/Σn
∼−→ {α ∈ Q+ | ht(α) = n}, Σn · (i1, . . . , in) �→ αi1 + · · ·+ αin ,

and from now on we identify the two sets. So we have the algebras Hα for α ∈ Q+.

3.2. Induction and restriction functors. We want to study the induction and restriction

functors between Hn-modules and Hn−1-modules. In particular, we are interested to know

as much as possible about restrictions of irreducible Hn-modules to Hn−1, since this could

help us to understand irreducible Hn-modules by induction.
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It makes sense to refine induction and restriction to blocks. For any α ∈ Q+ of height

n and i ∈ I , there is an obvious graded algebra homomorphism Hα → Hα+αi . It maps the

identity element of Hα to the idempotent

1α,αi =
∑

i∈α+αi, in+1=i

1i ∈ Hα+αi .

Now, define the functors

ei := 1α,αiHα+αi ⊗Hα+αi
− : Hα+αi -mod→ Hα-mod,

fi := Hα+αi1α,αi ⊗Hα − : Hα-mod→ Hα+αi -mod .

For M ∈ Hα-mod, define

εi(M) := max{k | eki �= 0}, ϕi(M) := max{k | fki �= 0}.

3.3. First branching rules. Let L be an irreducible Hα-module. It has been first proved

in [23] (in the ungraded setting) that eiL is either zero or it has a simple socle and head

isomorphic to each other, and similarly for fiL, see also [16] for a more conceptual proof and

a generalization. In particular, eiL and fiL are either zero or indecomposable, which is far

from obvious. Let

ẽiL := soc eiL, f̃iL := soc fiL.

This defines maps

ẽi, f̃i : B → B ( {0},
where B is the set of irreducible Hα-modules for all α ∈ Q+ up to isomorphism and degree

shift. Recall that all algebras and modules are graded, moreover the irreducible modules

are graded canonically so that they are gradedly self-dual. This applies in particular to the

irreducible modules ẽiL, f̃iL.
For n ∈ Z, denote the corresponding quantum integer

[n]q := (qn − q−n)/(q − q−1).

Then one can refine the results on the socle as follows [7, Theorem 4.12]:

Theorem 3.1. Let α ∈ Q+, i ∈ I and L be an irreducible Hα-module. Then:

(i) (eiL)
� ∼= eiL and (fiL)� ∼= fiL.

(ii) eiL and fiL are indecomposable or zero. Moreover:

soc eiL ∼= qεi(L)−1ẽiL, head eiL ∼= q1−εi(L)ẽiL,

soc fiL ∼= qϕi(L)−1f̃iL, head fiL ∼= q1−ϕi(L)f̃iL.

(iii) [eiL : ẽiL]q = [εi(λ)]q and [fiL : f̃iL]q = [ϕi(λ)]q .

(iv) εi(ẽiL) = εi(L) − 1 and εi(N) < εi(L) − 1 for any other composition factor N of
eiL; ϕi(f̃iL) = ϕi(L)− 1 and ϕi(K) < ϕi(L)− 1 for any other composition factor
K of fiL.
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(v) EndHα−αi
(eiL) ∼= F [x]/(xεi(L)), the truncated polynomial algebra with the variable

x of degree 2, and EndHα+αi
(fiL) ∼= F [x]/(xϕi(L)).

(vi) eiL is irreducible if and only if εi(L) = 1.

Ungraded versions of these results were first obtained in [22, 23, 25, 26]. For more

branching rules see §5.4.

3.4. Crystal operators. Let us return to the set B and the operations ẽi, f̃i : B → B ( {0}.
Every elements of [L] ∈ B is an isomorphism class of an irreducible Hα-module L for some

α ∈ Q+. This allows us to define a function

wt : B → P, [L] �→ Λ0 − α.

Moreover, for all i ∈ I , we have functions εi, ϕi : B → Z≥0.

Let g be the affine Kac-Moody Lie algebra corresponding to the Cartan matrix C, i.e.

g = ŝlp(C), see [19, Section 7].

Theorem 3.2. The tuple (B, εi, ϕi, ẽi, f̃i,wt) is the Kashiwara’s crystal associated to the
irreducible g-module V (Λ0) with highest weight Λ0.

This theorem has been first proved by Lascoux, Leclerc and Thibon [32] by comparing the

branching rules from [22] and [23] with the explicit combinatorial description of the crystal

obtained in [36]. A more conceptual proof was found in [15], see also [27]. The remaining

results of this section can be considered as steps towards an ‘explanation’ of the theorem, the

‘real explanation’ coming perhaps from [39] and [42].

3.5. Divided powers. We define divided power analogues of the functors ei, fi. In order to

do this, we exploit the algebras Aα. There is an obvious embedding Aα,β := Aα ⊗ Aβ →
Aα+β mapping 1⊗ 1 �→ 1α,β :=

∑
i∈α, j∈β 1ij . Consider the functors

Indα+β
α,β := Aα+β1α,β ⊗Aα,β

− : Aα,β-mod→ Aα+β-mod, (3.1)

Resα+β
α,β := 1α,βAα+β ⊗Aα+β

− : Aα+β-mod→ Aα,β-mod . (3.2)

Let i ∈ I and n ≥ 1. Recalling the Anαi -module P (i(n)) from (2.17), set

θ
(n)
i := Indα+nαi

α,nαi
(−� P (i(n))) : Aα-mod→ Aα+nαi -mod,

(θ∗i )
(n) := HomA′nαi

(P (i(n)),−) : Aα+nαi -mod→ Aα-mod,

where A′
nαi

:= 1⊗Anαi ⊆ Aα,nαi . Define

e
(n)
i := pr ◦ (θ∗i )(n) ◦ infl : Hα+nαi

-mod→ Hα-mod,

f
(n)
i := qn

2−n(Λ0−α,αi)pr ◦ θ(n)i ◦ infl : Hα-mod→ Hα+nαi -mod .

By [7, Lemma 4.8], eni
∼= [n]!qe

(n)
i , fni

∼= [n]!qf
(n)
i , where [n]!q := [1]q . . . [n]q, the func-

tors e
(n)
i , f

(n)
i are exact, and send finite dimensional (resp. projective) modules to finite

dimensional (resp. projective) modules. Finally, we need the degree shift functors

kni : Hα-mod→ Hα-mod, M �→ qn(Λ−α,αi)M (n ∈ Z).
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Consider the (locally unital) algebra H := ⊕α∈Q+
Hα, the categories

H-mod :=
⊕
α∈Q+

Hα-mod and H-proj :=
⊕
α∈Q+

Hα-proj,

and the Grothendieck groups [H-mod] =
⊕

α∈Q+
[Hα-mod]withL-basisB, and [H-proj] =⊕

α∈Q+
[Hα-proj]. Let

〈., .〉 : H-proj×H-mod→ L, 〈[P ], [M ]〉 := dimq HomH(P,M), (3.3)

be the Cartan pairing. The pairing is sesquilinear, i.e. anti-linear in the first argument and

linear in the second. We have a similar form 〈., .〉 : H-proj×H-proj→ L.
The exact functors e

(n)
i , f

(n)
i and k±1

i induce L-linear endomorphisms E
(n)
i , F

(n)
i and

K±1
i , respectively of [H-mod] and [H-proj].

3.6. LLT categorification. On the other hand, letUq(g) be the quantized enveloping algebra

of g over Q(q) with Chevalley generators E
(n)
i , F

(n)
i ,K±1

i for i ∈ I . Let V (Λ0) be the

irreducible Uq(g)-module with highest weight Λ0 and a fixed highest weight vector v+. The

module V (Λ0) has a unique compatible bar-involution − : V (Λ0) → V (Λ0) such that

v+ = v+.

The Shapovalov form 〈., .〉 is the unique sesquilinear Q(q)-valued form on V (Λ0) such
that 〈vΛ, vΛ〉 = 1 and 〈uv, w〉 = 〈v, τ(u)w〉 for all u ∈ Uq(g) and v, w ∈ V (Λ0), where

τ is anti-linear anti-automorphism defined by τ(Ki) = K−1
i , τ(Ei) = qFiK

−1
i , τ(Fi) =

q−1KiEi.

Let Uq(g)L be the Lusztig’s L-form, i.e. the L-subalgebra of Uq(g) generated by the

quantum divided powers E
(n)
i := En

i /[n]
!
q and F

(n)
i := Fn

i /[n]
!
q for all i ∈ I and n ≥ 1.

Let V (Λ0)L := Uq(g)L · v+ be the standard L-form of V (Λ0), and V (Λ0)
∗
L = {v ∈

V (Λ0) | 〈v, w〉 ∈ L for all w ∈ V (Λ0)L} be the costandard L-form.

The following is the graded version [7, Theorem 4.18] of the categorification theorems

proved by Lascoux-Leclerc-Thibon [32], Ariki [1], and Grojnowsky [15]:

Theorem 3.3. The linear operators Ei, Fi and Ki on the Grothendieck group

[H-proj]Q(q) := [H-proj]⊗L Q(q)

satisfy the defining relations of the Chevalley generators of Uq(g). So [H-proj]Q(q) is a
Uq(g)-module. Moreover:

(i) There is a unique isomorphism δ : V (Λ0)
∼−→ [H-proj]Q(q) of Uq(g)-modules, such

that δ(v+) = [trivH0 ], where trivH0 ∈ H0-proj is the one-dimensional vector space
F considered as a module over H0

∼= F .

(ii) The restriction of δ to V (Λ0)L is an isomorphism δ : V (Λ0)L
∼−→ [H-proj] of

Uq(g)L-modules, which intertwines � with the bar-involution on V (Λ0)L and induces
the isomorphisms on weight spaces V (Λ0)Λ0−α,L

∼−→ [Hα-proj] for all α ∈ Q+.

(iii) The isomorphism δ identifies the Shapovalov form on V (Λ0)L with the Cartan pairing
on [H-proj].

(iv) Let δ∗ : [H-mod]→ V (Λ0)
∗
L be the dual map:

δ∗([M ])(v) := 〈δ(v), [M ]〉 (v ∈ V (Λ0)L).
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Then δ∗ is an isomorphism of Uq(g)L-modules, which intertwines � with the bar-
involution on V (Λ0)

∗
L, and induces the isomorphisms [Hα-mod]

∼−→ V (Λ0)
∗
Λ0−α,L

for all α ∈ Q+.

(v) The following diagram is commutative:

V (Λ0)L
∼−−−−→
δ

[H-proj]

a

⏐⏐� ⏐⏐�b
V (Λ0)

∗
L

∼←−−−−
δ∗

[H-mod],

where a : V (Λ)L ↪→ V (Λ)∗L is the canonical inclusion, and b : [H-proj]→ [H-mod]
is the L-linear map induced by the natural inclusion of H-proj into H-mod. In
particular, b is injective and becomes an isomorphism over Q(q).

We complete this section with a special case of the Chuang-Rouquier result [10] on

derived equivalence of the algebras Hα. Recall from [19] that the (affine) Weyl group W of g
acts on the weights of V (Λ0).

Theorem 3.4. Let α, β ∈ Q+. Then the derived categoriesDb(Hα-mod) andDb(Hβ-mod)
are equivalent if and only if the weights Λ0 − α and Λ0 − β belong to the same W -orbit.

The equivalence in the theorem is induced by a complex of functors, which is built out of

the functors ei and fi using adjunctions, see [10, §6].

4. Combinatorics of partitions and homogeneous representations

4.1. Partitions and nodes. Let Pn be the set of all partitions of n and put P :=
⊔

n≥0 Pn.

If μ ∈ Pn, we write n = |μ|. A partition μ = (μ1, μ2, . . . ) is called p-restricted if

μk − μk+1 < p for all k = 1, 2, . . . . Let RPn be the set of all p-restricted partitions of

n, and put RP :=
⊔

n≥0 RPn. The Young diagram of a partition μ = (μ1, μ2, . . . ) is
{(a, b) ∈ Z>0 × Z>0 | 1 ≤ b ≤ μa}. The elements of this set are the nodes of μ. More

generally, a node is any element of Z>0 × Z>0. We identify partitions with their Young

diagrams, so that a node (a, b) = box in row a and column b. For example,

(3, 2, 2, 1) =

To each node A = (a, b) we associate its residue:

resA := (b− a) (mod p) ∈ I.

An i-node is a node of residue i. Let ci(μ) be the number of i-nodes of μ, and define the

content of μ to be cont(μ) =
∑

i∈I ci(μ)αi ∈ Q+. Denote

Pα := {μ ∈P | cont(μ) = α}, RPα := RP ∩Pα (α ∈ Q+).
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A node A ∈ μ is removable (for μ) if μ \ {A} is a partition. A node B �∈ μ is an addable
node (for μ) if μ ∪ {B} is a partition. We denote μA := μ \ {A}, μB := μ ∪ {B}.

Let i ∈ I , and A1, . . . , An be the addable and removable i-nodes of μ ordered so that Am

is to the left of Am+1 for each m = 1, . . . , n− 1. Consider the sequence (τ1, . . . , τn) where

τr = + if Ar is addable and − if Ar is removable. If there are 1 ≤ r < s ≤ n with τr = +,

τs = − and τr+1 = · · · = τs−1 = 0 then replace τr and τs by 0. Keep doing this until left

with a sequence (σ1, . . . , σn) in which no + appears to the left of a −. This is the reduced
i-signature of μ (it is well-defined).

If (σ1, . . . , σn) is the reduced i-signature of μ, we set

εi(μ) := #{r = 1, . . . , n | σr = −}, ϕi(μ) := #{r = 1, . . . , n | σr = +}.
Let {r1 > · · · > rεi(μ)} = {r | σr = −}, and {a1 < · · · < aϕi(μ)} = {a | σa = +}.
If εi(μ) > 0, set ẽiμ := μAr1

; otherwise set ẽiμ := 0. If ϕi(μ) > 0, set f̃iμ := μAa1 ;

otherwise set f̃iμ := 0. The removable nodes Ar1 , . . . , Arεi(μ)
of μ are called i-normal, and

the addable nodes Aa1 , . . . , Aaϕi(μ)
of μ are called i-conormal.

4.2. Tableaux. Let μ ∈Pn. A μ-tableau T is an insertion of the integers 1, . . . , n into the

nodes of μ, allowing no repeats. The residue sequence of T is

iT = (i1, . . . , in) ∈ In,

where ir is the residue of the node occupied by r in T (1 ≤ r ≤ n). A μ-tableau T is row-strict
(resp. column-strict) if its entries increase from left to right (resp. from top to bottom) along

the rows (resp. columns) of μ. A μ-tableau T is standard if it is row- and column-strict. Let

St(μ) be the set of all standard μ-tableaux.
Let Tμ be the leading μ-tableau, i.e. the tableau in which the numbers 1, 2, . . . , n appear

in order from left to right along the successive rows, working from top row to bottom row.

For example, if μ = (3, 2, 2, 1) then Tμ is

1 2 3

4 5

6 7

8

Set iμ := iT
μ

. The group Σn acts on the set of μ-tableaux by acting on the entries of the

tableaux. For each μ-tableau T, define wT ∈ Σn from wTTμ = T.

Let ≤ be the Bruhat order on Σd. Define the Bruhat order on the set of all μ-tableaux
as follows: S� T if and only if wS ≤ wT. Then the leading μ-tableau Tμ is the unique

minimal element of St(μ).
Let μ ∈P , i ∈ I , and A be a removable i-node of μ. We set

dA(μ) = #
{

addable i-nodes of μ
strictly to the left of A

}
−#

{
removable i-nodes of μ
strictly to the left of A

}
.

Given T ∈ St(μ), the degree of T is defined in [8, §3.5] inductively as follows. If n = 0, we

set deg(T) := 0. Otherwise, let A be the node occupied by n in T. Let T<n ∈ St(μA) be the

tableau obtained by removing A and set

deg(T) := dA(μ) + deg(T<n).
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5. Branching and graded cellular structure

5.1. Crystal combinatorics and irreducible modules. Using the terminology introduced

in Section 4, we can now state the following theorem of Misra and Miwa [36]:

Theorem 5.1. For any partition μ, define wt(μ) := Λ0 − cont(μ). Then the tuple (RP, εi,
ϕi, ẽi, f̃i,wt) is the Kashiwara’s crystal associated to V (Λ0).

Comparing this with Theorem 3.2, we deduce that there is a unique isomorphism of

crystals

(RP, εi, ϕi, ẽi, f̃i,wt)
∼−→ (B, εi, ϕi, ẽi, f̃i,wt). (5.1)

Under this isomorphism, to every μ ∈ RPα, we associate the irreducible Hα-module Dμ,

and

{Dμ | μ ∈ RPα} (5.2)

is a complete and irredundant set of irreducible Hα-modules up to isomorphism and degree

shift.

On the other hand, there is another approach to the classification of irreducible Hα-

modules, based on the theory of Specht modules, and which goes back to James [18]. In

modern terms, this is the approach through cell modules [13]. The graded cellular structure
of Hα, which we present here, has been worked out by Hu and Mathas [17].

5.2. Graded cellular structure. Fix α ∈ Q+ and μ ∈ Pα. Recall the leading standard

tableau Tμ ∈ St(μ) and the corresponding residue sequence iμ. For k = 1, . . . , n, let Ak be

the box occupied with k in Tμ. Observe that Ak is a removable node for the partition μk,
obtained from μ by removing Ak+1, . . . , An. Set dk(μ) := dAk

(μk). Note that deg(Tμ) =
d1(μ) + · · ·+ dn(μ). Define

yμ := y
d1(μ)
1 . . . ydn(μ)

n .

Given T ∈ St(μ), recall the element wT ∈ Σn. Pick any reduced decomposition wT =
sm1 . . . sml

, and set

ψT := ψm1
. . . ψml

∈ Hα. (5.3)

This element in general depends on the choice of the reduced decomposition. Finally, recalling

(2.15), for any standard tableaux S, T ∈ St(μ), we define

ψS,T := ψSyμ1iμ(ψ
T)′.

It is easy to see that deg(ψS,T) = deg(S) + deg(T). The following theorem was proved by

Hu and Mathas [17]:

Theorem 5.2. Let α ∈ Q+. Then {ψS,T | μ ∈Pα, S, T ∈ St(μ)} is a graded cellular basis
of Hα.

The following immediate corollary was originally proved in [7, Theorem 4.20] by a

different method:

Corollary 5.3. Let α ∈ Q+ and i, j ∈ α. Then

dimq 1iHα1j =
∑

μ∈Pα, S,T∈St(μ), iS=i, jT=j

qdeg(S)+deg(T).
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In particular, dimq Hα =
∑

μ∈Pα, S,T∈St(μ)
qdeg(S)+deg(T).

The graded version of the Graham-Lehrer theory [13] can be found in [17]. In particular,

from a graded cellular basis we get graded cell modules {Sμ | μ ∈Pα}. It is shown in [17]

that these are just the graded Specht modules as constructed originally in [8]. On the other

hand, it is noted in [8] that, if we forget the grading, then Sμ is the usual dual Specht module

of [18].

Recall from (5.2) the simpleHα-modulesDμ defined using the crystal isomorphism (5.1).

Theorem 5.4. If μ is p-restricted, then Sμ has a simple head isomorphic to Dμ.

There might be more to this theorem than meets the eye. Firstly, it is the graded aspect:

recall that (Dμ)� ∼= Dμ, and the theorem claims that the natural map Sμ� headSμ ∼= Dμ

is a homogeneous degree zero map. Secondly, it is known from James [18] that the head of Sμ

is simple when μ is p-restricted, and this is more or less how James classifies the irreducible

modules (actually our Dλ is isomorphic to James’ Dλ′ ⊗ sgn). But it is not at all clear that

the James classification agrees with the classification (5.2) coming from the isomorphism

of crystals (5.1). There are several ways of seeing this, none being trivial. One comes from

the fact that the original branching rules are proved in [22] for the modules Dλ in James’

classification, which allows us to identify them with the classification (5.2).

5.3. Mullineux map. Branching rules yield a simple solution to the Mullineux problem

[37]. Tensoring with the sign representation yields a bijection

RP(α)
∼−→ RP(−α), μ �→M(μ),

where M(μ) is defined from

DM(μ) ∼= Dμ ⊗ sgn (μ ∈ RPα).

The problem is to describe M(μ) explicitly in combinatorial terms. The following theorem,

proved in [23], gives an answer to this question:

Theorem 5.5. Let μ ∈ RPn, and ∅ be the empty partition. Pick a sequence i1, . . . , in ∈ I
such that ∅ = ẽi1 . . . ẽinμ. Then M(μ) = f̃−in . . . f̃−i1∅.

Thus a computation of M(μ) is reduced to combinatorics of the crystal graph of The-

orem 5.1 described in §4.1. However, there a faster algorithm originally conjectured by

Mullineux [37]. The Mullineux Conjecture has been first proved in [12] and simpler proofs

were later found in [2] and [9]. We now describe this algorithm or rather its more elegant

version suggested by Xu [43].

The rim of μ is the set of all nodes (i, j) ∈ μ such that that (i+ 1, j + 1) �∈ μ. The p-rim
of μ is the union of the p-segments, which are defined as follows. The first p-segment of μ
consists of the first p nodes of the rim, reading along the rim from bottom-left to top-right.

The next p-segment is obtained by similar reading off the nearest p nodes of the rim, but

starting from the column immediately to the right of the rightmost node of the first p-segment.
And so on. All but the last p-segment contain exactly p nodes, while the last may contain less.

In the following example p = 3, there are two p-segments, and the nodes of the p-rim are
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marked with ∗’s.
*

* *

*

Let let J(μ) be the partition obtained from μ by deleting every node in the p-rim that

is at the rightmost end of a row of μ but that is not the pth node of a p-segment. Let

j(μ) = |μ| − |J(μ)| be the total number of nodes deleted. Now, in Xu’s reformulation [43],

the result is as follows:

Theorem 5.6. M(μ) is the partition λ = (λ1, λ2, . . . ) with λr = j(Jr−1(μ)).

In the example above, we get M((3, 22, 1)) = (2, 16).

5.4. More branching rules. We complete this section with more result on branching.

Theorem 5.7. Let α ∈ Q+, i ∈ I , μ ∈ RPα, A be a removable node of μ such that μA
is p-restricted, and B be an addable node for μ such that μB is p-restricted. Moreover, let
A1, . . . , Aεi(μ) be the i-normal nodes of μ counted from left to right, and B1, . . . , Bϕi(μ) be
the i-conormal nodes for μ counted from right to left.

(i) HomHα−αi
(SμA , eiD

μ) �= 0 if and only if A is i-normal for μ, in which case we have
dimq HomHα−αi

(SμAm , eiD
μ) = qm−1 for all m = 1, . . . , εi(μ).

(ii) HomHα+αi
(SμB

, fiD
μ) �= 0 if and only if B is i-conormal for μ, in which case we

have dimq HomHα+αi
(SμBm

, fiD
μ) = qm−1 for all m = 1, . . . , ϕi(μ).

(iii) DμA appears as a composition factor of eiDμ if and only if A is i-normal for μ, in
which case we have [eiDμ : DμAm ]q = [m]q for all m = 1, . . . , εi(μ).

(iv) DμB

appears as a composition factor of fiDμ if and only if B is i-conormal for μ, in
which case we have [fiDμ : DμBm

]q = [m]q for all m = 1, . . . , ϕi(μ).

This is a graded version of the results [5, 22, 25, 26]. The graded version is deduced using

the graded endomorphism algebra description of Theorem 3.1(v) and the related filtrations of

eiD
μ and fiD

μ obtained in [5] and [26]. The following corollary follows immediately from

Theorem 5.7 on tensoring with sign, cf. [25], and often provides us with some new non-trivial

branching multiplicities:

Corollary 5.8. Let α ∈ Q+, i ∈ I , μ ∈ RPα, and let A1, . . . , Aεi(μ) be the (−i)-normal
nodes of M(μ) labeled from left to right, and B1, . . . , Bϕi(μ) be the (−i)-conormal nodes
for M(μ) labeled from right to left. Then:

(i) [eiD
μ : DM(M(μ)Am )]q = [m]q for all m = 1, . . . , εi(μ) such that M(μ)Am is

p-restricted.

(ii) [fiD
μ : DM(M(μ)Bm )]q = [m]q for all m = 1, . . . , ϕi(μ) such that M(μ)Bm is

p-restricted.
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Let us consider the example where p = 3 and μ = (32, 2, 12). We draw the corresponding

Young diagram with the residues of the boxes written in them.

0 1 2

2 0 1

1 2

0

2

Note that both 2-removable boxes are normal, the removable 1-box is not, and there are

no removable 0-boxes. So e0D
μ = e1D

μ = 0. As for the composition factors of e2D
μ,

Theorem 5.7 shows that [e2D
μ : D(32,2,1)]q = 1 and [e2D

μ : D(32,13)]q = [2]q = q + q−1.

Moreover, since M(μ) = (32, 14) has the leftmost normal 1-node (6, 1) and M(32, 13) =

(3, 2, 14), Corollary 5.8 yields another composition factor D(3,2,14) of multiplicity 1. It is
easy to verify using decomposition matrices in [18] that in this example we have discovered

all composition factors, i.e. [resΣ10

Σ9
] = [D(32,2,1)] + (q + q−1)[D(32,13)] + [D(3,2,14)].

Unfortunately, this technique is not powerful enough to always yield all composition

factors, see [25, Section 1]. So it leads only to a lower bound on the dimensions of irreducible

Hn-modules. A family of irreducible modules for which this lower bound is equal to the

actual dimension is described in the next section.

5.5. Homogeneous representations. Let α ∈ Q+. An irreducible Hα-module is called

homogeneous if it is concentrated in degree zero. To describe the homogeneous represen-

tations, for a partition μ = (μ1 ≥ . · · · ≥ μu > 0) ∈ RPn consider the hook length

χ(μ) := λ1 + u−max{t | λt = λ1}. Then μ is called homogeneous if χ(μ) ≤ p, cf. [24],
where we worked with transposed partitions.

Let μ ∈ RPn be a homogeneous partition. A tableaux T ∈ St(μ) is called p-standard if

a < b whenever a occupies a box (r, s) in T and b occupies a box (r′, s′) with r > r′, s < s′

and r − r′ + s′ − s+ 1 = p. Let Stp(μ) be the set of all p-standard μ-tableaux. The results

of [24, 35] and [31] can be restated as follows:

Theorem 5.9. Let μ ∈ RPα. The irreducibleHα-module Dμ is homogeneous if and only if
μ is a homogeneous partition. In this case, Dμ has a basis {vT | T ∈ Stp(μ)} with the action
of the homogeneous generators of Hα given as follows:

1ivT = δi,iTvT, ytvT = 0, ψrvT =

{
vsrT if srT ∈ Stp(μ);
0 otherwise.

6. Presentations and bases of cell modules

6.1. Garnir tableaux. Let μ ∈Pn. We now explain an explicit presentation of the graded

Specht module Sμ obtained in [29]. First, we need more notation. Let A = (r, s) be a node

of μ. It is called a Garnir node if (r + 1, s) ∈ μ, i.e. A is not at the bottom of its column.

Then the A-Garnir belt BA is

BA := { (r, t) ∈ μ | s ≤ t ≤ μr } ∪ { (r + 1, u) ∈ μ | 1 ≤ u ≤ s } .
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For example, if A = (2, 3) then BA for μ = (7, 7, 4, 1) is highlighted below:

A

The A-Garnir tableau is the μ-tableaux GA defined as follows. Let u = Tμ(r, s) be the entry

of the leading μ-tableau Tμ which occupies the node A = (r, s), and v = Tμ(r + 1, s). To
get GA, insert the numbers u, u+ 1, . . . , v into the nodes of the Garnir belt going from left

bottom to top right, and the other numbers into the same positions as in Tμ. Continuing the

previous example, u = 10, v = 17, and:

Tμ =

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18

19

, GA =

1 2 3 4 5 6 7

8 9 13 14 15 16 17

10 11 12 18

19

Fix a Garnir node A = (r, s) of μ. A brick is a set of p successive nodes in the same row

{(t, u), (t, u+ 1), . . . , (t, u+ p− 1)} ⊆ BA such that res(t, u) = resA. Note that BA is a

disjoint union of the bricks that it contains, together with less than p nodes at the end of row r
which are not contained in a brick and less than p nodes at the beginning of row r + 1 which

are not contained in a brick.

Let k be the number of bricks inBA (possibly zero). We label the bricksBA
1 , B

A
2 , . . . , B

A
k

going from left to right along row r + 1 and then from left to right along row r of GA. For

example, the following picture shows the bricks in the (2, 3)-Garnir belt of μ = (7, 7, 4, 1)
when p = 2:

1 2 3 4 5 6 7

8 9 13 14 15 16 17

10 11 12 18

19

B2 B3

B1

We have k = 3, there are two bricks B2, B3 in row 2 and one brick B1 in row 3. Finally,
(3, 1) and (2, 7) are the nodes in the Garnir belt which are not contained in a brick.

Assume now that k > 0 and let d be the smallest entry in GA which is contained in a brick

in BA. In the example above, n = 11. Define

wA
t =

d+tp−1∏
a=d+tp−p

(a, a+ p) ∈ Σn (1 ≤ t < k). (6.1)

Informally, wA
t is a brick permutation swapping Bt and Bt+1. The elements wA

1 , w
A
2 , . . . ,

wA
k−1 are the Coxeter generators of the brick permutation group

ΣA := 〈wA
1 , w

A
2 , . . . , w

A
k−1〉 ∼= Σk.
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By convention, ΣA is the trivial group if k = 0.
Let GarA be the set of all row-strict μ-tableaux which are obtained from the Garnir

tableau GA by acting with the brick permutation group ΣA on GA. Note that all of the tableaux

in GarA, except for GA, are standard. Moreover, GA is the maximal element of GarA, with

respect to the Bruhat order, and there is a unique minimal tableaux TA in GarA.
Let f be the number of bricks in row r of the Garnir belt BA, and let DA be the set of

minimal length left coset representations of Σf × Σk−f in ΣA ∼= Σk. By definition ΣA is a

subgroup of Σn, so DA is a subset of Σn, and, in particular, its elements act on μ-tableaux.
We have

GarA = {wTA | w ∈ DA}. (6.2)

Continuing the example above, TA is the tableau

TA =

1 2 3 4 5 6 7

8 9 11 12 13 14 17

10 15 16 18

19

and GarA = {TA, wA
2 T

A, GA = wA
1 w

A
2 T

A}.

6.2. Presenting Specht modules. Set τAr := (ψwA
r
+ 1). Any element u ∈ ΣA can be

written as a reduced product u = wA
r1 . . . w

A
ra of simple generators wA

1 , . . . , w
A
k−1 of ΣA.

Then define τAu := τAr1 . . . τ
A
ra .

Suppose that μ ∈Pα and A ∈ μ is a Garnir node. The Garnir element is

gA :=
∑
u∈DA

τAu ψTA1iμ ∈ Hα.

A special case of the main result of [29] is:

Theorem 6.1. Let α ∈ Q+ be of height n and μ ∈Pα. The graded Specht module Sμ has a
homogeneous vector zμ of degree deg(Tμ) such that Sμ is generated as a graded Hα-module
by zμ subject only to the following relations:

(i) 1jz
μ = δj,iμz

μ for all j ∈ α;

(ii) yrz
μ = 0 for all r = 1, . . . , n;

(iii) ψrz
μ = 0 for all 1 ≤ r < n such that r and r + 1 are in the same row of Tμ;

(iv) (homogeneous Garnir relations) gAzμ = 0 for all Garnir nodes A in μ.

In other words, the theorem says that Sμ = qdeg(T
μ)Hα/J

μ
α , where Jμ

α is the homoge-

neous left ideal of Hα generated by the elements (i) 1j − δj,iμ for all j ∈ Iα; (ii) yr for all

r = 1, . . . , n; (iii) ψr for all 1 ≤ r < n such that r and r + 1 are in the same row of Tμ; (iv)

gA for all Garnir nodes A ∈ μ.
We refer the reader to [11] for further developments on this presentation. A homogeneous

basis of Sμ can now be given as follows [8]:

Theorem 6.2. Let α ∈ Q+, μ ∈ Pα and zμ ∈ Sμ be the element from Theorem 6.1. For
T ∈ St(μ), define vT := ψTzμ. Then vT is a homogeneous vector of degree deg(vT) = deg(T),
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and {vT | T ∈ St(μ)} is a basis of Sμ. In particular,

dimq S
μ =

∑
T∈St(μ)

qdeg(T).

7. Representation theory of KLR algebras

We now return to the KLR algebra Aα, defined in §2.4. Graded Hα-modules inflate to graded

Aα-modules via the natural surjection (2.16). In particular, the irreducible modulesDμ inflate

to irreducible Aα-modules. However, representation theory of Aα is more rich and perhaps

more natural than that of Hα. For example, Aα has some important infinite dimensional

modules, which Hα ‘cannot see’.

So it is possible that understanding irreducible Aα-modules is a ‘more manageable’ and

more natural task than understanding irreducible Hα-modules. By the way, irreducible Hα-

modules Dμ can be distinguished among all irreducible Aα-modules by the simple condition

that all words i = (i1, . . . , in) appearing in the formal character of Dμ have the property that

i1 = 0 �= i2, see [33, Proposition 2.4].

One of the interesting ideas, due to Turner [41] and others, is ‘incorporating’ representation

theory of smaller symmetric groups or Schur algebras into representation theory of Σn.

Curiously, this phenomenon is appearing very naturally in representation theory of Aα in

the form of the so-called imaginary Schur-Weyl duality described below. The results of this

section are mainly from [28] and [30]; a different approach is suggested in [40].

7.1. Convex preorders. Recall the Cartan matrix C and the simple roots αi labeled by i ∈ I .
Let I ′ = I \ {0}. As in [19], we have the affine root system Φ and the corresponding finite

root subsystem Φ′ = Φ ∩ Z - span(αi | i ∈ I ′). Denote by Φ′
+ and Φ+ the sets of positive

roots in Φ′ and Φ, respectively. Then Φ+ = Φim
+ ( Φre

+ , where Φim
+ = {nδ | n ∈ Z>0} for

the null-root δ :=
∑

i∈I αi.
A convex preorder on Φ+ is a preorder ) such that the following three conditions hold

for all β, γ ∈ Φ+:

(1) β ) γ or γ ) β;

(2) if β ) γ and β + γ ∈ Φ+, then β ) β + γ ) γ;

(3) β ) γ and γ ) β if and only if β and γ are proportional.

We fix a convex preorder ) on Φ+ such that αi * nδ * α0 for all i ∈ I ′; this is always

possible. (This additional assumption is for convenient only.) Then

{β ∈ Φre
+ | β * δ} = {β + nδ | β ∈ Φ′

+, n ∈ Z≥0},
{β ∈ Φre

+ | β ≺ δ} = {−β + nδ | β ∈ Φ′
+, n ∈ Z>0}.

We have that β ) γ and γ ) β happens for β �= γ if and only if both β and γ are imaginary.

We write β ≺ γ if β ) γ but γ �) β. The following set is totally ordered with respect to ):

Ψ := Φre
+ ∪ {δ}.

Let l := p − 1. An l-multipartition of n is a tuple μ = (μ(1), . . . , μ(l)) of partitions

such that |μ(1)| + · · · + |μ(l)| = n. The set of all l-multipartitions of n is denoted by P l
n,
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and P l := (n≥0P l
n. A root partition of α ∈ Q+ is a pair (M,μ), where M is a tuple

(mρ)ρ∈Ψ of non-negative integers such that
∑

ρ∈Ψmρρ = α, and μ is an l-multipartition

of mδ. Clearly all but finitely many integers mρ are zero, so we can always choose a finite

subset

ρ1 * · · · * ρs * δ * ρ−t * · · · * ρ−1

of Ψ such that mρ = 0 for ρ outside of this subset. Then, denoting mu := mρu , we can write

any root partition of α in the form

(M,μ) = (ρm1
1 , . . . , ρms

s , μ, ρ
m−t

−t , . . . , ρ
m−1

−1 ), (7.1)

where all mu ∈ Z≥0, μ ∈ P l, and
∑s

u=1 muρu + |μ|δ +
∑t

u=1 m−uρ−u = α. We write

Π(α) for the set of all root partitions of α.
Denote by Se the set of all finitary tuples M = (mρ)ρ∈Ψ ∈ ZΨ

≥0 of non-negative integers,

so that a root partition is a pair (M,μ) with M ∈ Se and μ ∈P l
mδ

. The left lexicographic

order on Se is denoted ≤l and the right lexicographic order on Se is denoted ≤r. We will use

the following bilexicographic partial order on Se:

M ≤ N if and only if M ≤l N and M ≥r N.

We will use the following partial order on the set Π(α) of root partitions of α:

(M,μ) ≤ (N, ν) if and only if M < N or M = N and μ = ν.

7.2. Cuspidal systems. Recall from (3.1) and (3.2) the functors Indα,β and Resα,β . For

M ∈ Aα-mod and N ∈ Aβ-mod, denote

M ◦N := Indα,βM �N.

We also write M◦n for M ◦ · · · ◦M (n times).

A cuspidal system (for a fixed convex preorder) is the following data:

• A cuspidal irreducible Aρ-module Lρ assigned to every ρ ∈ Φre
+ , i.e. an irreducible

Aρ-module with the following property: if β, γ ∈ Q+ are non-zero elements such that

ρ = β + γ and Resβ,γLρ �= 0, then β is a sum of roots less than ρ and γ is a sum of

roots greater than ρ.

• An irreducible imaginary Anδ-module L(μ) assigned to every μ ∈ P l
n, i.e. an

irreducible Anδ-module with the following property: if β, γ ∈ Q+ \ Φim
+ are non-zero

elements such that nδ = β + γ and Resβ,γL(μ) �= 0, then β is a sum of real roots

less than δ and γ is a sum of real roots greater than δ. In addition, it is required that

L(λ) �" L(μ) unless λ = μ.

Given a root partition π as in (7.1), set sh(π) :=
∑

ρ∈Φre
+
mρ(mρ− 1)/2 ∈ Z, and define

the corresponding (proper) standard module:

Δ(π) := qsh(π)L◦m1
ρ1 ◦ · · · ◦ L◦ms

ρs ◦ L(μ) ◦ L◦m−t
ρ−t

◦ · · · ◦ Lm−1
ρ−1

. (7.2)

Theorem 7.1. For any convex preorder there exists a cuspidal system, unique up to permuta-
tion of irreducible imaginary modules. Moreover:
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(i) For every root partition π, the standard moduleΔ(π) has irreducible head; denote this
irreducible module L(π).

(ii) {L(π) | π ∈ Π(α)} is a complete and irredundant system of irreducible Aα-modules
up to isomorphism and degree shift.

(iii) For every root partition π, we have L(π)� ∼= L(π).

(iv) For all root partitions π, σ ∈ Π(α), we have that [Δ(π) : L(π)]q = 1, and [Δ(π) :
L(σ)]q �= 0 implies σ ≤ π.

(v) The induced module L◦n
ρ is irreducible for all ρ ∈ Φre

+ and n ∈ Z>0.

7.3. Minuscule representations and imaginary tensor spaces. Theorem 7.1 gives a

‘rough classification’ of irreducible Aα-modules. The main problem is that we did not

give a canonical definition of individual irreducible imaginary modules L(μ). So far, we just

know that the amount of such modules for Anδ is equal to the number of l-multipartitions of

n, and we have labeled them by such multipartitions in an arbitrary way.

To address this problem, we begin with an explicit description of the minuscule repre-

sentations—the irreducible imaginary Aδ-modules. These correspond to l-multipartitions

of 1. There are of course exactly l such multipartitions, namely μ(1), . . . , μ(l), where

μ(i) := (∅, . . . , ∅, (1), ∅, . . . , ∅)
with the partition (1) in the ith position.

Let i ∈ I ′ = {1, 2, . . . , p− 1} (we identify the set I of residues modulo p with integers

0, 1, . . . , p − 1). Consider the hook partition χi = (i, 1p−i) for all i ∈ I ′. For example, if

p = 5, here are the corresponding Young diagram with the residues of the boxes written in

them.

χ1 =

0

4

3

2

1

χ2 =

0 1

4

3

2

χ3 =

0 1 2

4

3

χ4 =
0 1 2 3

4

Note that the partitions χi for i ∈ I ′ are homogenous in the sense of §5.5. In particular,

we have the corresponding homogeneous irreducible Hδ-modules Dχi

defined explicitly in

Theorem 5.9. Define the Aδ-modules

L(μ(i)) := Lδ,i := inflDχi

(i ∈ I ′).

For example, Lδ,1 and Lδ,p−1 are 1-dimensional with characters

chq Lδ,1 = (0, p− 1, p− 2, . . . , 1), chq Lδ,p−1 = (0, 1, 2, . . . , p− 1),
while for p > 3, the module Lδ,p−2 is (p− 2)-dimensional with character

chq Lδ,p−2 =
∑p−3

r=0(0, 1, . . . , r, p− 1, r + 1, . . . , p− 2).
Define the imaginary tensor space of color i ∈ I ′ to be the Anδ-module

Mn,i := L◦n
δ,i .
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Fix for now i ∈ I ′ and suppress i from the indices, so that we have the imaginary tensor

space Mn = Mn,i. The Anδ-module structure on Mn yields an algebra homomorphism

Anδ → EndF (Mn). Define the imaginary Schur algebra Sn as the image of Anδ under this

homomorphism, i.e. Sn = Anδ/AnnAnδ
(Mn). Modules over Anδ which factor through to

Sn are called imaginary modules (of color i). It turns out that this notion agrees with the

notion of an irreducible imaginary module in the sense of cuspidal systems.

Theorem 7.2. Let n ∈ Z>0. Then:

(i) Mn is a projective Sn-module.

(ii) The endomorphism algebra EndAnδ
(Mn)

op = EndSn(Mn)
op is isomorphic to the

group algebra FΣn of the symmetric group Σn (concentrated in degree zero). Thus
Mn can be considered as a right FΣn-module.

(iii) EndFΣn(Mn) = Sn.

In view of the theorem, we have an exact functor

γn : Sn-mod→ FΣn-mod, V �→ HomSn(Mn, V ).

Unless p > n or p = 0, the Sn-module Mn is not a projective generator, and γn is not

an equivalence of categories. To fix this problem, we need to upgrade from the imaginary
Schur-Weyl duality of Theorem 7.2 to an imaginary Howe duality.

7.4. Imaginary How and Ringel dualities. Let xn :=
∑

g∈Σn
g. Define the imaginary

exterior and imaginary divided powers respectively as follows:

Λn :=Mnxn, Zn := {m ∈Mn | mg − sgn(g)m = 0 for all g ∈ Σn}.
For h ∈ Z>0, denote by X(h, n) the set of all compositions of n with h parts:

X(h, n) := {(n1, . . . , nh) ∈ Zh
≥0 | n1 + · · ·+ nh = n}.

The corresponding set of partitions is

X+(h, n) := {(n1, . . . , nh) ∈ X(h, n) | n1 ≥ · · · ≥ nh}.
For a composition ν = (n1, . . . , nh) ∈ X(h, n), we define the functor of imaginary induc-
tion:

Inν := Indn1δ,...,nhδ : An1δ,...,nhδ-mod→ Anδ-mod .

Given imaginary Anbδ-modules Vb for b = 1, . . . , h, the module Inν (V1 � · · ·� Vh) is also
imaginary. Define

Zν := Inν (Zn1 � · · ·� Znh
), Λν := Inν (Λn1 � · · ·� Λnh

).

Now, let Sh,n be the classical Schur algebra, whose representations are the same as

the degree n polynomial representations of the general linear group GLh(F ) [14]. It is

a finite dimensional quasi-hereditary algebra with irreducible, standard, costandard, and

indecomposable tilting modules

Lh(λ), Δh(λ), ∇h(λ), Th(λ) (λ ∈ X+(h, n)).
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Theorem 7.3. We have:

(i) For each ν ∈ X(h, n) the Sn-module Zν is projective. Moreover, for any h ≥ n, the
module Z :=

⊕
ν∈X(h,n) Z

ν is a projective generator for Sn.

(ii) The endomorphism algebra EndSn
(Z)op is isomorphic to the classical Schur algebra

Sh,n concentrated in degree zero. Thus Z can be considered as a right Sh,n-module.

(iii) EndSh,n
(Z) = Sn.

This theorem allows us to use Morita theory and define quasi-inverse equivalences of

categories:

αh,n : Sn-mod→ Sh,n-mod, V �→ HomSn(Z, V ) (7.3)

βh,n : Sh,n-mod→ Sn-mod, W �→ Z ⊗Sh,n
W. (7.4)

Let μ ∈Pn and h ≥ n. We can also consider μ as an element of X+(h, n). Define the

Sn-modules:

L(μ) := βh,n(Lh(μ)), Δ(μ) := βh,n(Δh(μ)),

∇(μ) := βh,n(∇h(μ)), T (μ) := βh,n(Th(μ)).

These definitions turn out to be independent of the choice of h ≥ n. An easy consequence

of the theorem above is that the imaginary Schur algebra Sn is a finite dimensional quasi-

hereditary algebra with irreducible, standard, costandard, and indecomposable tilting modules

L(μ), Δ(μ), ∇(μ), T (μ) labeled by μ ∈ X+(h, n). In particular, inflating the irreducible

modules L(μ) from Sn to Anδ , we get:

Theorem 7.4. The irreducible imaginary Anδ-modules of color i are exactly the modules
{L(λ) | λ ∈Pn} (up to isomorphism).

Moreover:

Theorem 7.5. We have:

(i) Let h ≥ n. The Sn-module
⊕

ν∈X(h,n) Λ
ν is a full tilting module.

(ii) We have isomorphisms of endomorphism algebras

EndSn

(⊕
ν∈X(h,n) Λ

ν
)op ∼= Sh,n and EndSh,n

(⊕
ν∈X(h,n) Λ

ν
) ∼= Sn.

The additional nice property of the constructed Morita equivalence is that imaginary

induction commutes with tensor products:

Theorem 7.6. Let h ≥ n and ν = (n1, . . . , na) ∈ X(a, n). The following functors are
isomorphic:

Inν (βh,n1 −� · · ·� βh,na−) : Sh,n1 -mod× · · · × Sh,na -mod→ Sn-mod,

βh,n(−⊗ · · · ⊗ −) : Sh,n1 -mod× · · · × Sh,na -mod→ Sn-mod .
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7.5. Gelfand-Graev character fragment and imaginary Jacobi-Trudi formula. We can

say quite a bit about the characters of irreducible imaginary modules. An important role in

the paper is played by an analogue of the Gelfand-Graev representation, cf. e.g. [4]. Let

i = (i1, . . . , ip)

be any word appearing in the (explicitly known) formal character of Lδ. Define the corre-

sponding Gelfand-Graev words g(t)
i := it1i

t
2 . . . i

t
p for all t ∈ Z>0. For any composition

μ = (μ1, . . . , μn) ∈ X(n, n) define

gμi := g
(μ1)
i . . . g

(μn)
i

and ci(μ) := ([μ1]
!
q . . . [μn]

!
q)

p ∈ L. If V ∈ Anδ-mod, it is known that

dimq Vgμ
i
= ci(μ)mi,μ(V )

for some mi,μ(V ) ∈ L. We are going to describe mi,μ(V ) for many important imaginary

modules.

There are explicitly defined Gelfand-Graev idempotents γn,i ∈ Anδ . The Gelfand-Graev
module is the projective module Γn,i := q−pn(n−1)/2Anδγn,i.

Theorem 7.7. For any V ∈ Anδ-mod and μ ∈ X(n, n), we have

mi,μ(V ) = dimq HomAnδ
(Γμ1,i ◦ · · · ◦ Γμn,i, V ).

Since we have equivalences of categories (7.3) and (7.4), every finite dimensional graded

Sn-module V can be written as V = βn,n(W ) (up to degree shift). Then we can describe

the Gelfand-Graev fragment of chq V as follows:

Theorem 7.8. Let i be any word appearing in the formal character of Lδ, μ ∈ X(n, n),
W ∈ Sh,n-mod, and V = βn,n(W ) ∈ Sn-mod. Denote by Wμ the usual weight space of
W . Then

dimq Vgμ
i
= ci(μ) dimWμ.

Note that the Gelfand-Graev fragment is described in terms of the formal characters of a

‘smaller rank’ Schur algebra.

The formal characters of the modulesΔ(μ) are important; for example in the case p > n
we haveΔ(μ) = L(μ). An imaginary Jacobi-Trudi formula allows us to compute the formal

characters of the modules Δ(λ) explicitly.
First of all, the characters of the modulesΔ(1n) = Λn = L(1n) are well-understood: let

i = (i1, . . . , ip) be a word appearing in Lδ. Then in is a word of Δ(1n), and Δ(1n) is the
homogeneous irreducible module associated to the connected component of in in the word

graph, see [31].

Let μ = (μ1, . . . , μa) ∈Pn. Denote by ◦ the quantum shuffle product, see e.g. [20, §2].

Then chqΔ(1
k) ◦ chqΔ(1l) = chqΔ(1

l) ◦ chqΔ(1k) for all k, l ∈ Z>0. So we can use

the quantum shuffle product to make sense of the following determinant as an element of

A 〈I〉nδ:
D(μ) := det

(
chqΔ(1

μr−r+s)
)
1≤r,s≤a

.
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where chqΔ(1
0) is interpreted as (multiplicative) identity, and chqΔ(1

m) is interpreted as

(multiplicative) zero if m < 0. For example, for μ = (3, 1, 1):

D((3, 1, 1)) =det

⎛⎝chqΔ(13) chqΔ(1
4) chqΔ(1

5)
1 chqΔ(1) chqΔ(1

2)
0 1 chqΔ(1)

⎞⎠
=chqΔ(1

3) ◦ chqΔ(1) ◦ chqΔ(1) + chqΔ(1
5)

− chqΔ(14) ◦ chqΔ(1)− chqΔ(13) ◦ chqΔ(12).

Theorem 7.9. Let μtr be the partition transpose to μ. Then chqΔ(μ) = D(μtr).

For example, let p = 2. Then I ′ = {1}. The i = 1. In this case the character of Lδ is

(0, 1), and the character of Δ(1n) is (0, 1, 0, 1, . . . , 0, 1). So

D((1, 1)) = det

(
iδ i2δ
1 iδ

)
= iδ ◦ iδ − i2δ = (0101) + (q + q−1)2(0011).

7.6. Classification of imaginary irreducible modules. In Theorem 7.4, we have classified

the irreducible imaginary representations of Anδ of color i. Since we now want to distinguish

between the imaginary representations of different colors, we will use the notation Li(μ) for
these irreducible imaginary representations of color i corresponding to a partition μ.

Theorem 7.10. For an l-multipartition λ = (λ(1), . . . , λ(l)) of n, define

L(λ) := L1(λ
(1)) ◦ · · · ◦ Ll(λ

(l)).

Then {L(λ) | λ ∈ P l
n} is a complete and irredundant system of imaginary irreducible

Anδ-modules.
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Abstract. We survey some results on tensor products of irreducible Harish-Chandra bimodules. It turns

out that such tensor products are semisimple in suitable Serre quotient categories. We explain how to

identify the resulting semisimple tensor categories and describe some applications to representation

theory.
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1. Introduction

The notion of tensor category is ubiquitous in representation theory. A classical example is

the theory of Tannakian categories (see [17, 58]) which shows that a linear algebraic group

can be recovered from the tensor category of its finite dimensional representations. The tensor

product in a Tannakian category is commutative in a very strong sense. In this note we will be

interested in tensor categories for which the tensor product is not assumed to be commutative.

One reason for the relevance of such categories to representation theory is very simple: the

category of bimodules over an arbitrary algebra A is a tensor category with tensor product

given by tensoring over A and this tensor product is non-commutative in general.

A classical notion in the representation theory of a complex semisimple Lie algebra g is

that of Harish-Chandra bimodules. These objects were introduced by Harish-Chandra [24] in

order to reduce some questions of continuous representation theory of complex semisimple

groups (considered as real Lie groups) to pure algebra. A number of deep results on Harish-

Chandra bimodules are known, see e.g. [7, 26, 61]. In this note we will be interested in just

one aspect of the theory, namely, in the structure of the tensor category of Harish-Chandra

bimodules. Some significant steps towards a complete description of this category were made

in [61], however due to non-semisimplicity this description is necessarily quite complicated.

It turns out that the classical notion of associated variety (see e.g. [27, 65]) provides us with

a kind of filtration on this category; moreover one can define an “associated graded” category

with respect to this filtration which is much simpler than the original category but still carries

an important information about the category of Harish-Chandra bimodules. Thus one defines

certain interesting semisimple subquotients of the tensor category Harish-Chandra bimodules

associated with various nilpotent orbits in g which we call cell categories, see Section 3.4.

The idea of this definition can be traced back to the work of Joseph [29] and the name is

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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justified by the connection with the theory of Kazhdan-Lusztig cells [31]. A nice property of

the cell categories is that they are multi-fusion in a sense of [21]. The known results from the

theory of multi-fusion categories turned out to be powerful enough to identify these categories

with some categories constructed from some finite groups. This is interesting in its own

right but also gives a better understanding of some notions of representation theory such as

Lusztig’s quotients and Lusztig’s subgroups.

One can hope to apply the ideas above in the following way. The Harish-Chandra

bimodules act on various categories of g−modules via tensoring over the universal enveloping

algebra of g. We can exploit this action restricted to the semisimple subquotients as above in

order to obtain interesting information about such categories of g−modules. One example

of such application is the theory of finite W−algebras where this strategy allowed to obtain

the information on the number of finite dimensional simple modules, see Section 4. It was

suggested by Bezrukavnikov that similar approach might work for Harish-Chandra modules,

see Section 4.3.

The cell categories described above can be realized via truncated convolution of some

perverse sheaves on the flag variety associated with g. One advantage of this description is a

greater flexibility. For example we can replace the complex semisimple Lie algebra g by a

semisimple algebraic group G defined over a field of arbitrary characteristic. Moreover, using

the tensor categorical construction of the Drinfeld center one connects the cell categories with

the theory of character sheaves on G, see [6, 11, 45]. We describe briefly these developments

in Section 5.

This paper is organized as follows. In Section 2 we review briefly some notions of the

theory of tensor categories. In Section 3 we introduce the Harish-Chandra bimodules and

define the cell categories. In Section 4 we explain how to use Whittaker modules and Premet’s

W−algebras in order to establish some basic properties of the cell categories. Conversely

we show that the actions of the cell categories can be used in order to get an information

about finite dimensional representations of W−algebras. Finally in Section 5 we describe the

interaction of the cell categories and some classes of sheaves on algebraic varieties associated

with g.
My understanding of the subject described in this note was deeply influenced by collab-

orations with Roman Bezrukavnikov, Pavel Etingof, Michael Finkelberg, Ivan Losev, and

Dmitri Nikshych. It is my great pleasure to express my sincere gratitude and appreciation to

them. Thanks are also due to Jonathan Brundan, Victor Ginzburg, and Ivan Losev for useful

comments on a preliminary version of this paper.

2. Multi-fusion categories

2.1. Monoidal categories. For the purposes of this note a monoidal category is a quadruple

(C,⊗, a,1) where C is a category, ⊗ : C × C → C is a bifunctor (called tensor product), a is

a natural isomorphism aX,Y,Z : (X ⊗ Y )⊗ Z " X ⊗ (Y ⊗ Z) (so a is called associativity
constraint), 1 ∈ C is an object (called unit object) such that the following axioms hold:

1. Pentagon axiom: the following diagram commutes for all W,X, Y, Z ∈ C:
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((W ⊗X)⊗ Y )⊗ Z

aW,X,Y ⊗idZ��
aW⊗X,Y,Z ��

(W ⊗ (X ⊗ Y ))⊗ Z

aW,X⊗Y,Z

��

(W ⊗X)⊗ (Y ⊗ Z)

aW,X,Y⊗Z

��
W ⊗ ((X ⊗ Y )⊗ Z)

idW⊗aX,Y,Z �� W ⊗ (X ⊗ (Y ⊗ Z))

2. Unit axiom: both functors 1⊗? and ?⊗ 1 are isomorphic to the identity functor.

It is well known that this definition of monoidal category reduces to the traditional one

(see e.g. [46]) if we fix an isomorphism 1⊗ 1 " 1.
Further one defines natural notions of tensor functors and tensor equivalences, see e.g. [46].

From a practical point of view tensor equivalent monoidal categories are indistinguishable.

A basic example of monoidal category is category of R−bimodules over a ring (with

unity) R. In this case the tensor product is tensor product ⊗R over R, the unit object is

R considered as a bimodule, and the associativity constraint is the obvious one. A closely

related example is a category of endofunctors of a category with tensor product given by the

composition. Also modules over a commuative ring form a monoidal category, most familiar

example being the category of vector spaces over a field k.
Here is another more abstract example.

Example 2.1 ([59]). Let A be a group and let S be an abelian group, both written multiplica-

tively. We consider the category where the objects are elements of A and the morphisms

are given by Hom(g, h) = ∅ if g �= h and Hom(g, g) = S for any g. We have a bifunctor

g⊗h = gh and α⊗β = αβ for objects g, h ∈ A and morphisms α, β ∈ S. The associativity

constraint amounts to a morphism ωg,h,k ∈ Hom(ghk, ghk) = S for any three elements

g, h, k ∈ A. One verifies that the pentagon axiom reduces to the equation ∂ω = 1 which says

that ω is a 3-cocycle on A with values in S. Moreover, any 2-cochain ψ determines a tensor

structure on the identity functor between tensor categories with associativity constraints

given by 3-cocycles ω and ω · ∂ψ. We see that monoidal structures on our category are

parameterized by the cohomology group H3(A,S).

We explain now that nontrivial associativity constraints do appear in tensor categories of

bimodules.

Example 2.2. Let R be an algebra over a field k with trivial center. Recall that R−bimodule

M is invertible if there exists a R−bimodule N such that M ⊗R N " N ⊗R M " R.

The invertible bimodules form a tensor category with respect to ⊗R (morphisms being the

isomorphisms of bimodules). This category is equivalent to the category of type described in

Example 2.1. The group of automorphisms of any object is k×, so the associativity constraint

determines a class ω ∈ H3(Pic(R), k×) where Pic(R) is the group of isomorphism classes

of invertible R−bimodules (this is the non-commutative Picard group of R). This class is

often nontrivial. Indeed for any automorphism φ of R we can define invertible bimodule Rφ

as follows: Rφ = R as a vector space and the action is given by (a, b) · c := acφ(b). The
bimodule Rφ is isomorphic to R if and only if φ is inner, so we get a well known embedding
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Out(R) ⊂ Pic(R). Now assume that φ is outer automorphism such that φ2 is inner, that is

φ2(x) = gxg−1 for some invertible element g ∈ R and all x ∈ R; thus φ generates subgroup

Z/2Z ⊂ Out(R) ⊂ Pic(R). It is easy to see that then φ(g) = ±g; we leave it to the reader to

check that the restriction of the class ω to Z/2Z is nontrivial if and only if φ(g) = −g. Here

is an example when this is the case:

R = C〈g, x, y〉/(xy−yx−1, g2−1, gx+xg, gy+yg), φ(g) = −g, φ(x) = −y, φ(y) = x.

Remark 2.3. For a commutative algebraR one defines the category of invertibleR−modules

similarly to Example 2.2. Since we have canonicallyM ⊗RN " N ⊗RM , this category has

an additional structure of symmetric tensor category. This implies that the cohomology class

representing the associativity constraint (see Example 2.1) is always trivial, see [19, Section

7].

A crucially important technical assumption on a monoidal category C is that of rigidity.
We recall that for an object X ∈ C its right dual is an object X∗ ∈ C together with evaluation
and coevaluation morphisms evX : X∗ ⊗X → 1 and coevX : 1→ X ⊗X∗ such that the

composition

X
coevX⊗idX−−−−−−−→ (X ⊗X∗)⊗X

aX,X∗,X−−−−−→ X ⊗ (X∗ ⊗X)
idX⊗evX−−−−−→ X

equals the identity morphism and the composition

X∗ idX∗⊗coevX−−−−−−−→ X∗ ⊗ (X ⊗X∗)
a−1
X,X∗,X−−−−−→ (X∗ ⊗X)⊗X∗ evX⊗idX∗−−−−−−→ X∗

equals the identity morphism. Similarly, a left dual of X is ∗X ∈ C such that X is right dual

of ∗X . A monoidal category C is rigid if any object of C has both left and right duals.

Example 2.4. A vector space considered as an object of the monoidal category of vector

spaces has left or right dual if and only if it is finite dimensional. A bimodule over an algebra

A has a right dual if and only if it is finitely generated projective when considered as a left

A−module. The category considered in Example 2.1 is always rigid.

2.2. Semisimplicity. We will fix an algebraically closed field k of characteristic zero. We

recall that a k−linear category C is called semisimple if there is a collection {Li}i∈J of

objects of C such that

(i) dimk Hom(Li, Lj) = δij =

{
1 if i = j;
0 if i �= j.

(ii) any object of C is isomorphic to a finite direct sum of the objects Li and any direct sum

(including the empty one) is contained in C.
For example if A as a k−linear abelian category with finite dimensional spaces of

morphisms the category of semisimple objects in A (that is the full subcategory consisting of

direct sums of simple objects) is semisimple.

Clearly the isomorphism classes of the objects Li are uniquely determined by the category

C. These objects are simple objects of C (note that zero object is not simple).

For a semisimple category C let K(C) be its Grothendieck group; this is a free abelian

group with basis [Li]i∈J . For any M ∈ C we have its class:

[M ] :=
∑
i∈J

dimk Hom(Li,M)[Li] ∈ K(C).
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We say that a semisimple category is finite if the isomorphism classes of simple objects

form a finite set.

Definition 2.5. A multi-fusion category over k is a k−linear rigid monoidal category which

is finite semisimple. A fusion category is a multi-fusion category such that the unit object is

simple.

Let 1 = ⊕i∈I1i be the decomposition of the unit object of a multi-fusion category into

the sum of simple objects. One shows that the objects 1i are “orthogonal idempotents”,

that is 1i ⊗ 1j " δij1i. For any simple object L ∈ C there are unique i, j ∈ I such that

1i ⊗ L = L = L⊗ 1j . We say that a multi-fusion category C is indecomposable if for any

pair i, j ∈ I there exists a simple L with L = 1i ⊗ L⊗ 1j . One shows that any multi-fusion

category naturally decomposes into a unique direct sum of indecomposable ones.

The Grothendieck group of a multi-fusion category has a natural structure of a ring via

[M ] · [N ] = [M ⊗N ]. The Grothendieck ring K(C) of a multi-fusion category C together

with its basis consisting of the classes of simple objects is a based ring in the sense of [39].

Remark 2.6. The Grothendieck ring K(C) of a multi-fusion category C together with its

basis determines the tensor product and the unit object in C uniquely up to isomorphism.

Thus the only part of information describing C and not contained in K(C) is the associativity

constraint.

Example 2.7.
(i) Let A be a finite group. Consider a fusion category where simple objects Lg are labeled

by g ∈ A and Lg ⊗ Lh " Lgh. Similarly to Example 2.1 the possible associativity

constraints in this category are classified byH3(A, k×). We will denote such a category

with associativity constraint given by ω ∈ H3(A, k×) by VecωA; we set VecA = Vecω0

A

where ω0 is the neutral element of H3(A, k×). The Grothendieck ring K(VecωA) is the
group ring Z[A] with a basis {g}g∈A.

(ii) Let R be a finite dimensional semisimple k−algebra, e.g. R = k ⊕ k. Then the

category of finite dimensional R−bimodules with tensor product ⊗R is a multi-fusion

category. Its Grothendieck ring is the ring of matrices over Z with a basis consisting of

matrix units.

(iii) Let A be a finite group and Y is a finite set on which A acts. Consider the category

CohA(Y × Y ) of finite dimensional A−equivariant vector bundles on the set Y ×
Y . This category has a natural convolution tensor product defined as follows. Let

pij : Y × Y × Y → Y × Y, i, j ∈ {1, 2, 3} be the various projections; then for

F1, F2 ∈ CohA(Y × Y ) we set F1 ∗ F2 = p13∗(p∗12(F1) ⊗ p∗23(F2)) (here pij∗ and

p∗ij are the functors of direct and inverse image and ⊗ is the pointwise tensor product).

Then the bifunctor ∗ has a natural associativity constraint and thus CohA(Y × Y ) is a
multi-fusion category. In the special case of trivial A we get example (ii) above; in the

case when Y consists of one point we get the category Rep(A) of representation of A;

if the action of A on Y is free and transitive we get category VecA from (i).

2.3. Module categories and dual categories. Let C be a monoidal category and letM be

a category. We say that C acts onM if we are give a tensor functor from C to the category of

endofunctors ofM. Equivalently, we have a bifunctor C ×M →M, (X,M) �→ X ⊗M
endowed with the natural associativity isomorphism (X⊗Y )⊗M " X⊗(Y ⊗M) such that
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the counterpart of the pentagon axiom holds and the functor 1⊗? :M→M is isomorphic

to the identity functor. Thus in such situation we often say thatM is a module category over

C. Further one defines module functors between module categories and, in particular, the

equivalences of module categories, see [52].

Convention. In the case when both categories C andM are k−linear we will consider only

k−linear actions. If C is a multi-fusion category all module categories over C are assumed to

be finite semisimple and non-zero.

Example 2.8.
(i) Let Y be a finite set with an action of a finite groupA. Then the categoryM = Coh(Y )

of finite dimensional vector bundles on Y has an obvious structure of module category

over VecA. It is easy to recover the A−set Y fromM: the set Y is just the set of

isomorphism classes of simple objects in M and the action of A is recovered by

considering the action of simple objects of VecA on simple objects ofM.

(ii) We can generalize the example above to the category VecωA from Example 2.7 (i). Pick

a cocycle ω̃ representing ω. Let B ⊂ A be a subgroup and let ψ be a 2-cochain on B
such that ∂ψ = ω̃|B . Then ψ determines an multiplication morphismRB⊗RB → RB

where RB = ⊕g∈BLg; moreover this morphism makes RB into associative algebra
in the category VecωA. LetM =M(B,ψ) be the category of right RB−modules in

the category VecωA; then the left tensoring with object of VecωA makesM into module

category over VecωA. Note that the simple objects ofM are naturally labeled by the

cosets A/B; moreover the action of simple objects of VecωA on simple objects of

M is the same as the action of A on A/B. Thus we consider the module category

M(B,ψ) as a cohomologically twisted version of the action of A on A/B. More

generally one can consider a direct sum of module categories of the formM(B,ψ);
this is a twisted version of the action of A on a finite set. We will use for such module

categories the notationM = Coh(Y ) where it is understood that the “set” Y carries the

cohomological information describing the module categoryM (thus Y is completely

determined when a finite collection of pairs (B,ψ) as above is specified). We refer

the reader to [13, 4.2] for the notion of “A-set of centrally extended points” which is

a formalization of the cohomological data above in the special case when ω̃ is trivial.

Such notions are important since it is known that any module category over VecωA is

equivalent as a module category to Coh(Y ) where Y is such cohomologically twisted

A−set, see [53, Example 2.1].

LetM be a module category over an indecomposable multi-fusion category C. Then one

defines the dual category C∗M to be the category of all endofunctors ofM which commute

with the action of C, see [52, 4.2]. The category C∗M has a natural monoidal structure where

the tensor product is given by the composition of functors. It is known that the category C∗M
is again an indecomposable multi-fusion category, see [21, Theorem 2.18] (this result fails if

k is allowed to have positive characteristic).

Example 2.9. Let C = VecA and letM be as in Example 2.8 (i). In this case the category C∗M
is precisely the category CohA(Y ×Y ) from Example 2.7 (iii). Thus using module categories

from Example 2.8 (ii) we get a cohomologically twisted version of the category CohA(Y ×Y ).
We will use similar notation (VecωA)

∗
M = CohA,ω(Y × Y ) where it is understood that the

A−set Y is cohomologically twisted as in Example 2.8 (ii). We note that the that direct
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summands {1i}i∈I in the decomposition of the unit object 1 ∈ CohA(Y × Y ) are precisely

the projection functors from the module categoryM to its indecomposable direct summands;

in particular the set I is in natural bijection with the set of such summands.

The category C∗M consists of endofunctors ofM; thus it acts in an obvious way onM.

The following result justifies the terminology:

Theorem 2.10 (see Remark 2.19 in [21]). Let C be an indecomposable multi-fusion category
and letM be a module category over C. Then C∗M is also indecomposable multi-fusion and
the natural functor C → (C∗M)∗M is an equivalence of tensor categories.

Let F : C → D be a tensor functor between indecomposable multi-fusion categories. We

say that F is injective if it is fully faithful and surjective if it is dominant, that is any object

of D is contained in F (X) for suitable X ∈ C. Now letM be a module category over D.

ThenM can be considered as a module category over C and we have a natural dual tensor

functor F ∗ : D∗
M → C∗M. It is shown in [21, 5.7] that this duality interchanges injective and

surjective functors.

Example 2.11. Let A
f−→ Ā be a surjective homomorphism of finite groups and let ω̃ be a

3-cocycle representing class ω ∈ H3(Ā, k×) such that f∗(ω) is zero element of H3(A, k×).
Then any 2-cochain ψ such that ∂ψ = f∗(ω̃) defines a tensor structure on the functor

F : VecA → VecωĀ sending Lg to Lf(g). The functor F is surjective. Conversely, it is easy to

see that any surjective tensor functor VecA → C where C is a fusion category is isomorphic

to the one of this form.

It is easy to see that the category C∗M is fusion if and only if the module categoryM is

not a nontrivial direct sum of module categories over C, that isM is indecomposable over C.
We have the following consequence of the discussion above:

Corollary 2.12 (see Lemma 3.1 in [37]). LetM be a module category over VecA and let C
be a full multi-fusion subcategory of (VecA)∗M such thatM is indecomposable over C. Then
there exists a surjective functor F : VecA → VecωĀ such that the action of VecA onM factors
through F and such that C = (VecωĀ)

∗
M ⊂ (VecA)∗M.

Proof. LetG : C → (VecA)
∗
M be the embedding functor; clearly it is injective. Then the dual

functor G∗ : ((VecA)∗M)∗M → C∗M is surjective. By Theorem 2.10 we have ((VecA)
∗
M)∗M =

VecA and the category C∗M is fusion. By Example 2.11 the result follows.

The module categories over a fixed indecomposable multi-fusion category C form a

2-category, where the morphisms are the module functors and 2-morphisms are the natural

transformations of the module functors. This 2-category is semisimple in the following sense:

for any module categoriesM1 andM2 the category of module functors FunC(M1,M2)
fromM1 toM2 is finite semisimple, see [21, Theorem 2.18]). It is clear that the composition

of functors makes FunC(M1,M2) into a module category over FunC(M1,M1) = C∗M1
.

One shows that the 2-functor FunC(M, ?) is a 2-equivalence of 2-categories of module

categories over C and over C∗M, see [53, Proposition 2.3] or [50]. For example this means that

there is one to one correspondence between the module categories over CohA,ω(Y × Y ) and
over VecωA; moreover to compute the module functors between the module categories over

CohA,ω(Y × Y ) we can compute the module functors between the corresponding module

categories over VecωA.
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Example 2.13. LetM1 = M(B1, ψ1) andM2 = M(B2, ψ2) be the module categories

over C = VecA as in Example 2.8 (ii). Assume that ψ1 and ψ2 are both trivial. Then

the category FunC(M1,M2) identifies with the category CohB1(A/B2) of B1−equivariant

vector bundles on the B1−set A/B2, see e.g. [53, Proposition 3.2].

In general it is difficult to find a number of simple objects in the category FunC(M1,M2).
Here is a special case when this is possible to do. Let 1 = ⊕i∈I1i be the decomposition

of the unit object of C into simple summands. Let C ⊗ 1i be the full subcategory of C
consisting of objects X such that X ⊗ 1i " X . It is clear that C ⊗ 1i is stable under the left

multiplications by objects from C. Thus C ⊗ 1i is a module category over C. Note that for

any module categoryM over C the Grothendieck group K(M) is naturally a module over

the Grothendieck ring K(C).
Lemma 2.14 (Lemma 3.4 in [37]). LetM be a module category over a multi-fusion category
C. Then the number of simple objects in the category FunC(C ⊗ 1i,M) equals the dimension
of HomK(C)(K(C ⊗ 1i),K(M)).

2.4. Drinfeld center. One of the most important constructions in the theory of tensor catego-

ries is the construction of Drinfeld center, see [30, 47]. One definition in the spirit of Section

2.3 is as follows. A monoidal category C acts on itself by left and right multiplications, so

C is a bimodule category over itself. Then the Drinfeld center Z(C) of C is the category

of endofunctors of C commuting with these actions. The composition makes Z(C) into a

monoidal category, but we have more structure here: Z(C) is naturally a braided tensor

category, see [30, 47]. It is easy to see ([53, 2.3]) that our definition is equivalent to the

classical one: the objects of Z(C) are pairs (X,φ) where X is an object of C and φ is an

isomorphism of functors X⊗? "?⊗X satisfying some natural conditions, see [30, 47, 51].

We have a natural forgetful functor Z(C)→ C sending (X,φ) to X . The right adjoint of this

functor (if it exists) is called the induction functor.
It is known that the Drinfeld center of an indecomposable multi-fusion category is a fusion

category, see [21, Theorem 2.15] or [51]; in particular the induction functor exists in this case.

Another important property is the Morita invariance: for a module categoryM we have a

natural tensor equivalence Z(C∗M) " Z(C), see [53, Corollary 2.6] or [51].

Example 2.15. Recall that CohA,ω(Y × Y ) is (VecωA)
∗
M for suitableM. Thus we get a

somewhat surprising result: Z(CohA,ω(Y × Y )) does not depend on Y and is equivalent to

Z(VecωA).

3. Harish-Chandra bimodules

3.1. Basic definitions. Let g be a complex semisimple Lie algebra. Let U(g) be the univer-

sal enveloping algebra of g and let Z(g) ⊂ U(g) be the center of U(g). Recall that a central
character is a homomorphism χ : Z(g)→ C. For a central character χ we have two sided

ideal U(g)Ker (χ) ⊂ U(g) and we will set Uχ := U(g)/U(g)Ker(χ).
Recall that for a U(g)−bimodule M one defines an adjoint g−action by the formula

ad(x)m := xm−mx; we will denote by Mad the space M with this action of g.

Definition 3.1. A U(g)−bimodule M is called ad(g)-algebraic if Mad can be decom-

posed into a direct sum of finite dimensional g−modules. We say that an ad(g)-algebraic
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U(g)−bimoduleM is Harish-Chandra bimodule if it is finitely generated as U(g)−bimodule.

Remark 3.2. The definitions of Harish-Chandra bimodules in the literature (see e.g. [25, 26,

61]) differ slightly from each other with ad(g)−algebraicity being the crucial part.

Example 3.3. Consider U(g) as U(g)−bimodule. Then the Poincaré-Birkhoff-Witt (or

PBW) filtration on U(g) is stable under the adjoint action. Hence U(g) is a Harish-Chandra

bimodule. Since U(g)⊗ U(g) is Noetherian any subquotient of Harish-Chandra bimodule is

again Harish-Chandra bimodule. Hence I and U(g)/I are Harish-Chandra bimodules for any

two sided ideal I ⊂ U(g). In particular Uχ is a Harish-Chandra bimodule.

Remark 3.4. Assume that g is a complexification of the Lie algebra of a real semisimple

Lie group GR with a maximal compact subgroup K. It was shown by Harish-Chandra that

the study of continuous representations of GR to a large extent reduces to the study of so

called (g,K)−modules (or Harish-Chandra modules). We recall that a (g,K)−module is a

finitely generated U(g)−module endowed with compatible locally finite action of K, see e.g.

[65, 2.1(a)]; thus this is a purely algebraic object. The notion of Harish-Chandra bimodule

is a special case of this when we take in the place of GR a complex simply connected Lie

group with Lie algebra g considered as a real Lie group (so the complexified Lie algebra is

isomorphic to g⊕ g).

The following well known result is of crucial importance for this note:

Lemma 3.5. If M and N are Harish-Chandra bimodules, then so is M ⊗U(g) N .

Proof. It is immediate from definitions that the canonical surjection M ⊗N →M ⊗U(g) N
commutes with the adjoint action. Hence M ⊗U(g) N is ad(g)−algebraic.

Let M0 ⊂M be a finite dimensional ad(g)−invariant subspace of M generating M as

U(g)−bimodule. It is easy to see that M0 generates M as left U(g)−module and as right

U(g)−module. LetN0 ⊂ N be a similar subspace ofN . Then the image ofM0⊗N0 clearly

generates M ⊗U(g) N .

Let H denote the category of Harish-Chandra bimodules (where the morphisms are

homomorphisms of bimodules). The tensor product over U(g) with the obvious associativ-

ity isomorphisms makes H a tensor category with the unit object U(g), see Example 3.3.

However this category has some unpleasant properties: the endomorphism algebra of U(g)
identifies with Z(g), so the Hom−spaces are infinite dimensional in general.

Remark 3.6. It is easy to see that for anyK as in Remark 3.4 the tensor productM ⊗U(g)N
of a Harish-Chandra bimodule M and (g,K)−module N is again (g,K)−module. In

other words, the category of Harish-Chandra bimodules acts naturally on the category of

(g,K)−modules.

3.2. Irreducible Harish-Chandra bimodules. For a central character χ letHχ be the full

subcategory ofH consisting of bimodules M such that MKer (χ) = 0 (in other words, the

right action of Z(g) on M factorizes through χ). A very precise description of categoryHχ

was given by Bernstein and Gelfand in [7]. This description is based on the category O of

g−modules introduced by Bernstein, Gelfand and Gelfand in [8]. We refer the reader to [25]

for the basic definitions and results on the category O.

Recall that for any weight λ one defines the Verma module M(λ) ∈ O. The center Z(g)
acts on M(λ) via central character χλ. It follows from Harish-Chandra’s theorem (see e.g.
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[25, 1.10]) that any central character arises in this way; moreover χλ = χμ if and only if

there exists an element w of the Weyl group W such that w(λ+ ρ)− ρ = μ where ρ is the

sum of the fundamental weights. Thus for any central character χ there exists a dominant
(see [25, 3.5]) weight λ such that χ = χλ. From now on we will restrict ourselves to the case

of regular integral central characters χ (this means that χ = χλ where λ is a highest weight

of a finite dimensional representation of g). For example Z(g) acts on the trivial g−module

via the regular integral character χ0.

Theorem 3.7 (Theorem 5.9 in [7]). Assume that the weight λ is regular, integral, and
dominant. The functor M �→M ⊗U(g) M(λ) is an equivalence of the categoryHχ and the
subcategory of O consisting of modules with integral weights.

As a consequence we see that any object of the categoryHχ has finite length (this holds

with no restrictions on χ, see e.g. [26, Satz 6.30]). Also the simple objects in the category

Hχ are labeled by the integral weights (see [7, Proposition 5.4] for the general case).

Now we consider the left action of Z(g). For two central characters χ1 and χ2 let χ1Hχ2

be the category of Harish-Chandra bimodules M such that Ker (χ1)M = MKer (χ2) = 0.
We also set H(χ) := χHχ. It is clear that for M ∈ χ1Hχ2 and N ∈ χ3Hχ4 we have

M ⊗U(g) N ∈ χ1Hχ4 andM ⊗U(g) N = 0 unless χ2 = χ3. In particular, the categoryH(χ)
is a tensor category with unit object Uχ.

For a regular integral χ2 Theorem 3.7 implies that the category χ1Hχ2 is nonzero if and

only if χ1 is integral. Moreover one shows using Theorem 3.7 that the categoriesH(χ) are
tensor equivalent for various regular integral χ. Furthermore, we have

Corollary 3.8. Let χ = χλ where λ is regular, integral, and dominant. The simple objects of
H(χ) are naturally labeled by the elements of W : for any w ∈W there exists Mw ∈ H(χ)
such that Mw ⊗U(g) M(λ) is the irreducible g−module with highest weight w(λ+ ρ)− ρ.

3.3. Associated varieties. In this section we identify g∗ and g via the Killing form. Let G
be the complex connected adjoint algebraic group with the Lie algebra g. An element x ∈ g
is nilpotent if ad(x) : g→ g is nilpotent. Let N ⊂ g be the nilpotent cone, that is the set of

all nilpotent elements. ClearlyN is a closed G−invariant subvariety of g. It is a classical fact

(see [32]) that N is a finite union of G−orbits, N = (O. The G−orbits appearing in N are

called nilpotent orbits. For a nilpotent orbit O let Ō ⊂ N be its Zariski closure; clearly Ō is

a union of nilpotent orbits.

The associated varieties (see e.g. [65]) provide a convenient measure of “size” of a

Harish-Chandra bimodule. Let M be a Harish-Chandra bimodule. Then there exists a finite

dimensional ad(g)−invariant subspace M0 ⊂ M generating M as a left U(g)−module.

Then the PBW filtration on U(g) induces a compatible filtration onM (note that this filtration

is ad(g)−invariant, so it is compatible with both left and right U(g)−actions). The associated

graded grM with respect to this filtration is a left module over grU(g) = S(g). Let V (M)
be the support of this module in g " g∗ = Spec(S(g)). The following properties of V (M)
are easy to verify (see e.g. [65]):

(1) V (M) is independent of the choice of M0;

(2) V (M) is invariant under the adjoint action of G;

(3) for an exact sequence 0→M1 → N →M2 → 0 we have V (N) = V (M1)∪V (M2);

(4) V (M1 ⊗U(g) M2) ⊂ V (M1) ∩ V (M2);
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(5) for M ∈ Hχ we have V (M) ⊂ N .

The following result of Joseph is fundamental:

Theorem 3.9 ([27], see also [14, 65]). Assume that M ∈ H is irreducible. Then V (M) = Ō
for some nilpotent orbit O.

Assume that M ∈ H(χ) where χ is regular integral. It follows from the results of

[1, 2, 27] that V (M) = Ō where O is special nilpotent orbit in the sense of Lusztig, (all the

nilpotent orbits are special in type A; however this is not the case in other types); and all

special nilpotent orbits can be obtained in this way.

The theory of associated varieties is closely related with the theory of Kazhdan-Lusztig

cells, see [31]. Namely let us introduce the following equivalence relation on the Weyl group

W : u ∼ v if V (Mu) = V (Mv). Then W is partitioned into equivalence classes labeled by

the special nilpotent orbits. It follows from the results of [1, 2, 27] that this partition coincides

with the partition of W into two sided cells as defined in [31]. In particular the set of two

sided cells is in natural bijection with the set of special nilpotent orbits.

3.4. Cell categories. Let χ be a regular integral central character and let O be a nilpotent

orbit. We define full subcategories H(χ)≤Ō and H(χ)<Ō as follows: M ∈ H(χ)≤Ō (re-

spectively, M ∈ H(χ)<Ō) if and only if V (M) ⊂ Ō (respectively, V (M) ⊂ Ō − O). It

follows easily from the properties of associated varieties thatH(χ)≤Ō andH(χ)<Ō are Serre

subcategories ofH(χ); alsoH(χ)≤Ō is closed under the tensor product and the tensor product

of bimodules fromH(χ)<Ō andH(χ)≤Ō is contained inH(χ)<Ō.

We define H̃(χ)O to be the Serre quotient category H(χ)≤Ō/H(χ)<Ō (note that the

category H̃(χ)O is nonzero if and only if the nilpotent orbit O is special). Let H(χ)O ⊂
H̃(χ)O be the full subcategory consisting of the semisimple objects in H̃(χ)O. The tensor

product ⊗U(g) descends to a well defined tensor product functor ⊗ on the category H̃(χ)O
endowed with the associativity constraint.

Theorem 3.10 (see [11, 34, 37]). The restriction of ⊗ to H(χ)O ⊂ H̃(χ)O takes values in
the subcategoryH(χ)O. Moreover, the categoryH(χ)O is an indecomposable multi-fusion
category.

We will explain some ideas of the proof of Theorem 3.10 in Section 4. In the same time

we will give a precise description of the cell category H(χ)O as a multi-fusion category.

For now we will explain that the category H(χ)O does contain the unit object. We recall

(see e.g. [26, 1.9]) that a two sided ideal I ⊂ U(g) is primitive if it is the annihilator

of an irreducible g−module. It follows from Schur’s lema that for a primitive ideal I the

intersection I ∩ Z(g) = Ker (χ) for some central character χ; let Prχ be the set of all such

primitive ideals (this set is finite; it is explicitly known in all cases thanks to the deep work of

Joseph [28]).

Let I ∈ Prχ. It was proved by Joseph [27] that V (U(g)/I) = Ō for some special

nilpotent orbit O (this result is closely related with Theorem 3.9, see [65, Corollary 4.7]). It is

also known that for any ideal I ′ ⊃ I, I ′ �= I the dimension of V (U(g))/I ′) is strictly smaller

than the dimension of V (U(g))/I), see [15, 3.6]. Therefore U(g)/I contains a unique simple

sub-bimodule MI ; moreover V (U(g)/I) = V (MI) = Ō and V ((U(g)/I)/MI) ⊂ Ō−O.

In other words U(g)/I "MI in the category H̃(χ)O; in particular U(g)/I ∈ H(χ)O. Also

for two distinct I, J ∈ Prχ with V (U(g)/I) = V (U(g)/J) = Ō we have U(g)/I ⊗U(g)
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U(g)/J = U(g)/(I + J) whence V (U(g)/I ⊗U(g) U(g)/J) ⊂ Ō − O. Equivalently

U(g)/I ⊗U(g) U(g)/J =MI ⊗MJ = 0 in the categoryH(χ)O.
It is well known that for a simple Harish-Chandra bimodule M ∈ χ1Hχ2 there exist

I ∈ Prχ1 and J ∈ Prχ2 such that I is the annihilator ofM considered as a leftU(g)−module

and J is the annihilator of M considered as a right U(g)−module; moreover V (M) =
V (U(g)/I) = V (U(g)/J), see e.g. [26, 7.7, 17.8]. Clearly U(g)/I ⊗U(g) M = M ⊗U(g)

U(g)/J =M . Let Prχ(Ō) ⊂ Prχ consists of I with V (U(g)/I) = Ō. It follows from the

above that

1 =
⊕

I∈Prχ(Ō)

U(g)/I =
⊕

I∈Prχ(Ō)

MI

is the unit object of H(χ)O. Again there is an important connection with the theory of

Kazhdan-Lusztig cells [31]: it follows from the results of [1, 2, 38] that two elements

u, v ∈W are in the same left cell if and only if there exists 1i such that Mu ⊗ 1i "Mu and

Mv ⊗ 1i "Mv . In particular the set Prχ is in bijection with the set of left cells in W .

4. Actions of cell categories

4.1. Whittaker modules. Let e ∈ g be a nilpotent element. By the Jacobson-Morozov

theorem we can pick h, f ∈ g such that e, f, h is an sl2−triple, that is [h, e] = 2e, [h, f ] =
−2f, [e, f ] = h. Then g decomposes into eigenspaces for ad(h):

g =
⊕
i∈Z

g(i), g(i) = {x ∈ g|[h, x] = ix}.

In particular e ∈ g(2) and f ∈ g(−2). Using the Killing form (, ) on g one defines a skew-

symmetric bilinear form x, y �→ (e, [x, y]) on the space g(−1); it turns out that this form is

non-degenerate. Pick a lagrangian subspace l ⊂ g(−1) and set m = ml = l ⊕⊕i≤−2 g(i).
Then ξ(x) = (x, e) is a Lie algebra homomorphism m→ C. Let mξ be the Lie subalgebra of

U(g) spanned by x− ξ(x), x ∈ m.

Definition 4.1 ([49]). We say that g−module is Whittaker if the action of mξ on it is locally

nilpotent.

Let Wh be the category of Whittaker modules (this is a full Serre subcategory of category

of g−modules). We have a functor from Wh to vector spaces

M �→ {m ∈M |xm = ξ(x)m, ∀x ∈ m}.
Let U(g, e) be the algebra of endomorphisms of this functor; thus the functor above upgrades

to a functor Sk : Wh→ U(g, e)−mod. An important result proved by Skryabin [60] (see

also [22] and [33]) is that this functor is an equivalence of categories. Thus we call Sk the

Skryabin equivalence.

Remark 4.2. The algebras U(g, e) are finite W−algebras introduced by Premet [55]. We

refer the reader to [35] for a nice survey of their properties.

A particularly important property of algebras U(g, e) is that they do not depend on the

choice of lagrangian subspace l (more precisely the algebras defined using different choices

of l are canonically isomorphic), see [22]. In particular, the centralizer Q of e, h, f in G acts

naturally on U(g, e), see [35, 2.6].
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4.2. Irreducible finite dimensional representations of finite W−algebras. Let M ∈ H
andN ∈Wh. For x ∈ g andm⊗n ∈M⊗U(g)N we have x(m⊗n) = ad(x)m⊗n+m⊗xn.
The subalgebra m consists of nilpotent elements, so ad(x) is locally nilpotent for any x ∈ m.

Hence M ⊗U(g) N ∈ Wh, in other words the tensor category H acts on the category Wh.

Let χWh be the full subcategory of M ∈Wh such that Z(g) acts on M through the central

character χ. Clearly the action above restrict to an action ofH(χ) on χWh.

We will be interested in the set Y = Y (χ) of isomorphism classes of irreducible modules

M in χWh such that Sk(M) is finite dimensional. Since Sk is an equivalence, Y is also the

set of irreducible finite dimensional representations of W−algebra U(g, e). For any M ∈ Y
its annihilator is a primitive ideal of U(g); thus we get a map Annχ : Y → Prχ. It was

proved by Premet [56] that any ideal I in the image of this map is contained in Prχ(Ō)
where O = Ge is the nilpotent orbit containing e. Moreover, it was conjectured by Premet

and proved by Losev [33] (see also [23, 56, 57]) that any I ∈ Prχ(Ō) is in the image of

this map. Recall that the group Q acts on the algebra U(g, e). Thus we get an action of

Q on the set Y . One shows that the unit component Q0 ⊂ Q acts trivially, so we get an

action of the component group C(e) = Q/Q0 on Y (it is well known that the group C(e)
is isomorphic to the component group of the centralizer of e in G or, equivalently, C(e) is
equivariant fundamental group of the orbit O). It was proved by Losev [34] that each fiber

of the map Annχ is exactly one C(e)−orbit in Y . We will seek for a precise description

of these orbits. Actually there is a little bit more information here. Let M ∈ Y and let

QM ⊂ Q be its stabilizer in the group Q. Then QM acts projectively on Sk(M), so we have

a cohomology class in H2(QM ,C×) describing this action. The data of the set Y together

with Q−action and 2-cocycles above (which should be compatible in an obvious way) can be

described as the data of “Q−set of centrally extended points”, see Example 2.8 (ii). Recall

that in the special case when the group Q is finite, precisely the same data describe a structure

of module category over VecQ on the category Coh(Y ), see Example 2.8 (ii). In general,

Coh(Y ) acquires the structure of module category over VecA for any finite subgroup A ⊂ Q.

Let χWhf ⊂ χWh be the full subcategory consisting of semisimple N such that Sk(N)
is finite dimensional. It was proved by Losev [34] that for M ∈ H(χ)≤O and N ∈ χWhf

we have M ⊗U(g) N ∈ χWhf . Moreover, M ⊗U(g) N = 0 for M ∈ H(χ)<O. Thus the

category H(χ)O acts on χWhf . On the other hand the group Q acts on the category χWhf

(or rather on the equivalent category of U(g, e)−modules) via twisting: an element g ∈ Q
sends a U(g, e)−module to itself with the action of U(g, e) twisted by an automorphism

g. One shows that these two actions commute. We pick a finite subgroup A ⊂ Q which

surjects on C(e) = Q/Q0 and restrict the above action of Q to A. Then the category χWhf

is a module category over fusion category VecA (note that χWhf " Coh(Y ), and this is the

same structure of the module category as in the previous paragraph). Since any M ∈ H(χ)O
produces a functor M⊗U(g)? :

χWhf → χWhf commuting with the action of VecA we get a

canonical tensor functor

H(χ)O → FunVecA(
χWhf , χWhf ) = (VecA)

∗
χWhf = CohA(Y × Y ),

see Example 2.9.

Theorem 4.3. ([34, 37]) The functorH(χ)O → CohA(Y × Y ) is fully faithful.

Remark 4.4. An important tool in the proof of Theorem 4.3 is the notion of Harish-Chandra

bimodules for W−algebras introduced by Ginzburg [23] and Losev [34]. It is possible to

replace the group Q by the finite group A since the action of Q on U(g, e) has the following



134 Victor Ostrik

property: there is embedding of the Lie algebra q ofQ to U(g, e) (considered as a Lie algebra)

such that the differential of Q−action on U(g, e) coincides with the adjoint action of q, see
[34, 1.1(1)].

One consequence of Theorem 4.3 is the fact that the category H(χ)O closed under the

tensor product, see [34, Corollary 1.3.2]. This is a crucial step in the proof of Theorem 3.10.

Moreover one shows that the module category χWhf over H(χ)O is indecomposable, see

[37, Theorem 5.1]. Thus we can apply Corollary 2.12 and get the following

Corollary 4.5. There is a quotient Ā of A and ω ∈ H3(Ā,C×) such that the action of V ecA
on χWhf factors through tensor functor VecA → VecωĀ and the action on χWhf induces
tensor equivalenceH(χ)O " CohA,ω(Y × Y ).

It turns out that the quotient map A→ Ā always factorizes through A→ Q→ Q/Q0 =
C(e). Thus Ā is naturally a quotient of the group C(e). It was shown in [37] that Ā coincides

with the Lusztig’s quotient of C(e) which was introduced by Lusztig [38, Section 13]. Also it

was shown in [37] (see also [10]) that the class ω is trivial in almost all cases. However it is

not trivial in the case case of nilpotent orbits corresponding to so called exceptional two sided

cells, see [54].

It follows from the results in Section 5.2 below that the rational Grothendieck ring

K(H(χ)O) ⊗ Q is naturally a quotient of the group algebra Q[W ]. Thus for any module

categoryM overH(χ)O the rational Grothendieck groupK(M)⊗Q is naturallyW−module.

In the special caseM = H(χ)O ⊗ 1i we obtain the constructible representations of W ,

see [38, 5.29]; these representations are explicitly known. On the other hand let Spr be

the Springer representation of W × C(e) (this is top rational cohomology of the Springer
fiber associated with e ∈ O with the natural action of C(e) and the action of W defined by

Springer [63]). It was proved by Dodd [18] that there is W × C(e)−equivariant embedding

K(Coh(Y ))⊗Q ⊂ Spr. Using this result together with some results by Lusztig on Springer

representation [44] and Lemma 2.14 the module category Coh(Y ) over VecωĀ was explicitly

determined in all cases in [37]. We recall that the indecomposable summands of Coh(Y ) are
naturally labeled by the simple summands 1i of 1 ∈ H(χ)O, see Example 2.9. Moreover,

each such summand is of the formM(Bi, ψi), see Example 2.8 (ii). It was shown in [37] that

we have C(e)−equivariant isomorphismQ[Ā/Bi] " HomW (K(H(χ)O⊗1i)⊗Q, Spr(O));
moreover this determines the subgroups Bi ⊂ Ā uniquely up to conjugacy. It turned out

that the subgroups Bi precisely coincide with Lusztig’s subgroups [39, Proposition 3.8]

associated to various left cells in W (recall that the summands 1i are labeled by the left

cells contained in the two sided cell corresponding to O, see Section 3.4). Note that the map

Annχ : Y → Prχ(Ō) has the following interpretation: for any M ∈ Y there is a unique 1i
such that 1i ⊗M "M and Annχ(M) is precisely the primitive ideal I such that 1i =MI ,

see Section 3.4. This implies that the fiber of the map Annχ over I ∈ Prχ(O) such that

1i =MI is precisely C(e)−set Ā/Bi.

Now let us assume that the two sided cell corresponding to the orbit O is not exceptional

(so the class ω is trivial). It follows from the computations described above that there is

one class ψ ∈ H2(Ā,C×) such that the classes ψi are just inverse images of ψ under the

embeddings Bi ⊂ Ā, see [37, Theorem 7.4]. Equivalently, the class describing the projective

action of QM on M ∈ Y is the inverse image of ψ under the map QM ⊂ Q→ C(e)→ Ā.

The recent results of Losev imply that the class ψ is always trivial. To prove this we can

assume that g is simple. The result certainly holds if H2(Ā,C×) = 0. It follows from the

classification of the nilpotent orbits that if H2(Ā,C×) �= 0 then either g is classical or g is
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exceptional and Ā is the symmetric group on four or five letters. In both cases there exists

a 1-dimensional U(g, e)−module fixed by the action of Q: for the classical g this is [36,

Theorem 1.2] and for the exceptional g one can use the generalized Miura transform (see

[35, 2.2]) since e must be even in this case. Thus we obtain the desired triviality of ψ since a

projective 1-dimensional representation is equivalent to an actual representation.

Remark 4.6.
(i) There is a conjectural extension of the picture above to the case of non-integral central

characters χ, see [37, 7.6] The computations suggest that in this case non-trivial

2-cocycles will arise quite often.

(ii) The results above give a description of the set Y (we note that for the Lie algebras of

type A such a description is due to Brundan and Kleshchev [16]). An immediate next

question is what are dimensions of the spaces Sk(M),M ∈ Y , or, equivalently, what

are dimensions of the irreducible representations of W−algebras. A complete answer

to this question is given in a recent paper [36]; remarkably in the same time some old

questions about the Goldie ranks of the primitive ideals are resolved in loc. cit.

4.3. Harish-Chandra modules. It would be interesting to investigate whether the ideas

above apply to the categoriesHK of (g,K)−modules as in Remark 3.4. Recall that we have

a Cartan decomposition g = k⊕ p where k is the complexified Lie algebra ofK. For a finitely

generated (g,K)−module M one defines its associated variety V (M) ⊂ p, see [65]. Let
χHK be the full subcategory ofHK consisting of modules M such that Z(g) acts on M via

central character χ. Then for M ∈ χHK we have V (M) ⊂ p ∩N , see [65, Corollary 5.13].

Clearly the category H(χ) acts on χHK via ⊗U(g). Let us fix a nilpotent orbit O and

consider the Serre subcategories χHK
≤O and χHK

<O consisting of M ∈ χHK with V (M) ⊂
p∩ Ō and V (M) ⊂ p∩ (Ō−O). We can form the quotient category χH̃K

O = χHK
≤O/

χHK
<O;

then ⊗U(g) gives us a bifunctor ⊗ : H(χ)O × χH̃K
O → χH̃K

O . Let χHK
O ⊂ χH̃K

O be the full

subcategory of semisimple objects.

Conjecture 4.7. For M ∈ H(χ)O and N ∈ χHK
O we have M ⊗N ∈ χHK

O .

Conjecture 4.7 would imply that χHK
O is a module category overH(χ)O. By Corollary

4.5 we have a tensor equivalenceH(χ)O = CohA,ω(Y × Y ) and by the results of Section 2.3

we have a classification of all indecomposable module categories over CohA,ω(Y × Y ). It
would be very interesting to decompose the category χHK

O and to identify the indecomposable

summands in terms of this classification.

5. Sheaves

Let F be an algebraically closed field of arbitrary characteristic. In this Section we will

consider consider various classes of sheaves on algebraic varieties over F : D−modules

(F is of characteristic zero), constructible sheaves in the classical topology (F = C), and

constructible l−adic sheaves (l is invertible in F ). The corresponding categories of sheaves

are k−linear where k = F , k is arbitrary of characteristic zero, and k = Q̄l respectively.

Recall that the theories of such sheaves are parallel up to some extent. Thus we will not

specify the kind of sheaves we deal with below unless this is necessary; the results are parallel

in all three setups.
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5.1. Convolution and Hecke algebra. Let G be a semisimple algebraic group over F of

the same Dynkin type as g. Let B be the flag variety of G. We recall that B is a projective

variety which is a homogeneous space for G; furthermore the Bruhat decomposition gives

a canonical bijection between G−orbits on B × B and the Weyl group W . Let Db
G(B × B)

be the suitable G−equivariant derived category of sheaves on B × B, see e.g. [11, 2.2]. The

category Db
G(B × B) contains a natural abelian subcategory P consisting of D−modules

or perverse sheaves. The simple objects in the category P are the intersection cohomology

complexes of closures of G−orbits on B×B. This gives a natural bijection w → Iw between

W and the isomorphism classes of simple objects in P .

The category Db
G(B × B) has a natural monoidal structure with respect to tensor product

given by convolution, see e.g. [11, 2.4] (this construction is parallel to Example 2.7 (iii)). It

follows from the Decomposition Theorem [4] that the convolution Iu ∗ Iv is isomorphic to a

direct sum of shifted Iw:

Iu ∗ Iv "
⊕

w∈W,i∈Z
nwu,v(i)Iw[i]

where the multiplicities nwu,v(i) ∈ Z≥0. Let K(P) be the algebra over Z[t, t−1] which

encodes the multiplicities nwu,v(i) above: the algebra has a basis cw and

cu · cv =
∑

w∈W,i∈Z
nwu,v(i)cwt

i.

It is a classical result that the algebra K(P) together with its basis {cw} identifies with the

Hecke algebra together with the Kazhdan-Lusztig basis, see e.g. [64, 2.5]. In particular, the

multiplicities nwu,v(i) are computable in principle.

Lusztig defined (see [39]) the asymptotic Hecke algebra J in the following way: for

w ∈W let a(w) = max{i ∈ Z|nwu,v(i) �= 0 for someu, v ∈W}. Let J be a free Z−module

with basis tw, w ∈ W endowed with multiplication tutv =
∑

w∈W nwu,v(a(w))tw. It was

shown by Lusztig that this multiplication is associative and has a unit. Moreover there is a

canonical isomorphism of associative algebras Q[W ] " J ⊗Q, see [39, 3.2]. Furthermore,

for any subset T ⊂W let JT be the abelian subgroup of J spanned by tu, u ∈ T . It is easy

to see that there is a finest partition W = (C such that the decomposition J =
⊕

C JC is a

direct sum of algebras. This partition is known to coincide with partition of W into two sided

Kazhdan-Lusztig cells, see [39, 3.1]. It is also known that the function a takes a constant

value on any two sided cell C; we will denote this value by a(C).
The constructions above was categorified in [43]. Namely, for any two sided cell C let

JC ⊂ P be the full subcategory consisting of direct sums Iw, w ∈ C. The category JC has a

monoidal structure given by the truncated convolution •, see [43]. For example

Iu • Iv "
⊕
w∈C

nwu,v(a(C))Iw.

Hence the assignment Iw �→ tw induces isomorphism of based rings K(JC) " JC . It

was shown in [10] (see also [45]) that the category JC is rigid. As a consequenceJC is an

indecomposable multi-fusion category.

5.2. D−modules and Harish-Chandra bimodules. In this section we assume that F is

of characteristic zero. The Beilinson-Bernstein theorem [3] is a fundamental result in rep-

resentation theory of g. It states that the category of U(g)−modules with the trivial central
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character χ = χ0 is equivalent to the category of D−modules on B. As a consequence one

deduces that the category of Harish-Chandra bimodulesH(χ0) is equivalent to the category

of D−modules P . However the Beilinson-Bernstein equivalence is not a tensor equivalence.

Luckily it was shown in [5] that a composition of the Beilinson-Bernstein equivalence and a

long intertwining functor has a natural structure of tensor functor. Using a suitable truncation

of this functor the following result was shown in [11, Corollary 4.5(b)]:

Theorem 5.1. Let C be the two-sided cell corresponding to a special nilpotent orbit O (see
Section 3.3). Then there is a natural tensor equivalenceH(χ0)O " JC .

Theorem 5.1 gives a useful information on the Grothendieck ring K(H(χ)O) (we recall

that for a regular integral character χ the category H(χ)O is tensor equivalent to H(χ0)O,
see Section 3.2). In particular we get a homomorphism Q[W ] " J ⊗ Q → JC ⊗ Q =
K(JC) ⊗ Q = K(H(χ0)O) ⊗ Q alluded to in Section 4.2. In particular, we can consider

K(JC ⊗ 1i)⊗Q as W−modules; these W− representations are precisely the constructible

representations discussed in loc. cit.
Conversely Theorem 5.1 combined with Corollary 4.5 gives an explicit description of

JC as CohĀ(Y × Y ) for the D−module version of the category JC . This implies similar

description of JC for other categories of sheaves under the assumption that the ground field

F has characteristic 0. It was shown in [10] (see also [54] for the case of exceptional two

sided cells) that the same description holds over a field F of arbitrary characteristic.

Remark 5.2. Theorem 5.1 was inspired by closely related results of Joseph [29]. Also a

similar and related connection between Kazhdan-Lusztig cells and Harish-Chandra bimodules

is contained in the work of Mazorchuk and Stroppel [48].

5.3. Drinfeld center and character sheaves. Lusztig introduced a very important class of

character sheaves on the group G, see [40]. We recall the definition in the special case of

unipotent character sheaves. Let

X = {(b, b′, g) ∈ B × B ×G|gb = b′}

we have two projections f : X → B×B, f(b, b′, g) = (b, b′) and π : X → G, π(b, b′, g) = g.
Note that groupG acts on itself by conjugations and onX via h · (b, b′, g) = (hb, hb′, hgh−1)
and both maps f, π areG−equivariant. Thus we have a functor Γ : Db

G(B×B)→ Db
G(G),Γ

= π!f
∗. It follows from the Decomposition Theorem that Γ(Iw), w ∈W is isomorphic to a

direct sum of shifted simple G−equivariant sheaves on G; a simple G−equivariant sheaf is
called a unipotent character sheaf if it appears in such decomposition (possibly with some

shift). Let U be the set of isomorphism classes of unipotent character sheaves on G; clearly

this is a finite set.

One observes that the functor Γ above has formal properties similar to the induction functor

from the monoidal category Db
G(B × B) to its Drinfeld center, see Section 2.4. Moreover, it

is possible to identify a suitable version of the Drinfeld center of G−equivariant sheaves on
B × B with suitable category of character sheaves. This was done in [11] using the abelian

tensor category of Harish-Chandra bimodules and in [6] using suitable infinity categories.

Furthermore applying a suitably truncated version of the same idea to the categories JC , the

following result was proved in [11] (for the field F of characteristic zero) and in [45] (for the

field F of arbitrary characteristic):
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Theorem 5.3. There is a partition U = (CUC such that the Drinfeld center of the category
JC is naturally equivalent to the category of sheaves on G which are direct sums of objects
from UC . In particular we have a bijection

UC ↔ {simple objects of the Drinfeld center ofJC}.
The sets UC were defined by Lusztig in [41, Section 16]. Recall that the category JC is

tensor equivalent to CohĀ,ω(Y × Y ). Hence the Drinfeld center of JC is equivalent to the

Drinfeld center of VecωĀ, see Example 2.15. The resulting bijection between UC and simple

objects of Z(VecωĀ) conjecturally coincides with Lusztig’s one from [42, 17.8.3] which gives

us a new approach to Lusztig’s classification of character sheaves. On the other hand in [54]

character sheaves were used in order to determine the associativity constraint in the categories

JC for exceptional cells C.

5.4. Some generalizations. Many constructions described in this paper extend to the case

when the Weyl group W is replaced by an arbitrary Coxeter group. An important special case

of the affine Weyl groups was considered in [9, 13] following conjectures made by Lusztig.

In this case the counterparts of the cell categories are in one to one correspondence with all

nilpotent orbits of g and are of the form CohQ(Y ×Y )where the reductive groupQ is the same

as in Section 4.1 (note that the resulting categories are typically not multi-fusion categories

since they have infinitely many simple objects). The set Y has a natural interpretation in

terms of non-restricted representations of g over fields of positive characteristic, see [12].

Using recent deep results by Elias and Williamson [20] on Soergel bimodules [62] Lusztig

defined in [45, Section 10] the counterparts of the cell categories for an arbitrary Coxeter

group W (note that these categories sometimes are not even tensor categories since they lack

the unit object; however this is not very serious). It would be very interesting to identify

the resulting categories. For example in the case of the dihedral group of order 10 one finds

a cell category which contains a fusion subcategory with two simple objects 1, X and the

tensor product X ⊗ X = 1 ⊕ X . This implies that the cell category is not of the form

CohA,ω(Y × Y ) in this case.
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On some recent developments in the theory of
buildings

Bertrand Rémy

Abstract. Buildings are cell complexes with so remarkable symmetry properties that many groups

from important families act on them. We present some examples of results in Lie theory and geometric

group theory obtained thanks to these highly transitive actions. The chosen examples are related to

classical and less classical (often non-linear) group-theoretic situations.
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Keywords. Algebraic, discrete, profinite group, rigidity, linearity, simplicity, building, Bruhat-Tits’

theory, Kac-Moody theory.

1. Introduction

Buildings are cell complexes with distinguished subcomplexes, called apartments, requested

to satisfy strong incidence properties. The notion was invented by J. Tits about 50 years ago

and quickly became useful in many group-theoretic situations [75]. By their very definition,

buildings are expected to have many symmetries, and this is indeed the case quite often.

Buildings are relevant to Lie theory since the geometry of apartments is described by means

of Coxeter groups: apartments are so to speak generalized tilings, where a usual (spherical,

Euclidean or hyperbolic) reflection group may be replaced by a more general Coxeter group.

One consequence of the existence of sufficiently large automorphism groups is the fact that

many buildings admit group actions with very strong transitivity properties, leading to a

better understanding of the groups under consideration.

The beginning of the development of the theory is closely related to the theory of al-

gebraic groups, more precisely to Borel-Tits’ theory of isotropic reductive groups over ar-

bitrary fields and to Bruhat-Tits’ theory of reductive groups over non-archimedean valued

fields. In the former theory the involved buildings are spherical (i.e., the apartments are

spherical tilings) and the group action reflects the existence, for the rational points of the al-

gebraic group, of a strong combinatorial structure called Tits system (or BN-pair). Roughly

speaking, such a structure formalizes the existence of a Bruhat decomposition indexed by a

Coxeter group (called the Weyl group of the Tits system) and, among other things, leads to

a uniform way of proving projective simplicity of rational points of classical groups. In the

latter theory, the involved buildings are Euclidean (i.e., the apartments are Euclidean tilings)

and the Weyl group of the Tits system is an affine Coxeter group. The group action on the

building is a crucial tool to understand the subtle structure of the rational points of the alge-
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braic group. For instance, by passing to cell stabilizers, Bruhat-Tits buildings parametrize

remarkable compact open subgroups obtained from forms of the group over the valuation

ring of the local ground field.

These two situations (spherical and Euclidean buildings), which are related to algebraic

groups (via Borel-Tits and Bruhat-Tits’ theory), will be called classical in the sequel of the

report.

What is probably less well known is the fact that some buildings in which apartments are

modeled on neither spherical nor affine tilings have recently led to interesting group-theoretic

situations. One strong connection with geometric group theory is given by the existence, for

any building, of a distance such that the resulting metric space is complete, contractible

and non-positively curved in some suitable sense due to M. Gromov. In this case, the gen-

eral theme is to study isometry groups of non-classical buildings by analogy with classical

Lie-theoretic situations. In this analogy, buildings are seen as analogues of non-compact

Riemannian symmetric spaces and their automorphism groups are seen as generalizations of

semisimple Lie groups.

From that viewpoint, Kac-Moody theory is very useful even though it may not be so clear

at first glance. This theory is usually presented as an infinite-dimensional generalization of

semisimple Lie algebras, with applications in representation theory. It turns out that there

exist some constructions of groups integrating (possibly in a loose sense) Kac-Moody Lie

algebras. For these groups, nice structures from algebraic geometry are usually lost, but the

combinatorial structures such as Tits systems stay available and can be translated in terms of

strongly transitive group actions on (usually exotic) buildings. The notion of a ground field

still makes sense and the possibility to work over a finite ground field leads to intriguing

finitely generated groups or non-discrete locally profinite groups, according to the version

of Kac-Moody groups chosen to begin with. These groups shall be compared to arithmetic

groups and to non-archimedean Lie groups in positive characteristic, respectively.

Of course, not all exotic buildings with interesting isometry groups come from Kac-

Moody theory. In dimension 2 for instance, products of arbitrary semi-homogeneous trees

provide a much wider class; among groups acting properly discontinuously and cocompactly

on these spaces, M. Burger and Sh. Mozes could exhibit the first simple torsion-free finitely

presented groups. Still, one of the main ideas of this report is that Kac-Moody groups shall

be investigated thoroughly since they are at good distance from the classical situation of Lie

groups and their discrete subgroups. In some sense, it is a class of (discrete and profinite)

groups which are new in the sense that striking new phenomena occur but on which we still

have a very useful Lie-theoretic control (e.g. via infinite root systems).

The structure of this report is as follows. In the first section we recall some basic facts

in building theory; we give some examples of results for both classical and non-classical

buildings. The second section is dedicated to Euclidean buildings via two themes: compact-

ifications of buildings (joint works with Y. Guivarc’h, and with A. Thuillier and A. Werner)

and cohomology of arithmetic groups; we present two techniques of compactification, one

of them using a promising relationship with non-archimedean analytic geometry. The third

section deals with applications of Kac-Moody theory to the construction of interesting dis-

crete, or non-discrete locally compact, groups (joint work with P.-E. Caprace); we explain

for instance that these groups provide infinitely many quasi-isometry classes of finitely pre-

sented simple groups. It also mentions pro-p groups arising from Kac-Moody theory (joint

work with I. Capdeboscq).
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2. Building theory

In this section, we introduce the main subject matter of this report, namely the notion of

a building. We briefly present two well-known families of buildings, that of spherical and

of Euclidean buildings, and explain quickly how they are related to the theory of algebraic

groups. We also mention other examples of buildings providing interesting spaces for geo-

metric group theory.

2.1. Definition of a building. A general reference for buildings is [1]. In order to provide

a definition, we first have to introduce the notion of a Coxeter complex.

• A Coxeter group, say W , is a group admitting a presentation: W = 〈s ∈ S |
(st)Ms,t = 1〉 whereM = [Ms,t]s, t ∈ S is a Coxeter matrix (i.e., symmetric with 1’s

on the diagonal and other entries in N� 2 ∪ {∞}).
• For any Coxeter system (W,S) there is a natural simplicial complexΣ on the maximal

simplices of which W acts simply transitively: Σ is called the Coxeter complex of

(W,S).

Example 2.1. Let us go the other way round and start with a Euclidean or hyperbolic poly-

tope whose dihedral angles are integral submultiples of π. Then, by a theorem of Poincaré’s

[53, IV.H.11], the group W generated by the reflections in the codimension 1 faces of the

fundamental tile, is a discrete subgroup of the full isometry group of the ambient space. In

fact, W is a Coxeter group and the tiling is a useful geometric realization of its Coxeter

complex Σ.

The reason why we introduced Coxeter complexes is that they are so to speak generalized

tilings on which the distinguished slices of a building are modeled. We freely use the previ-

ous notation W and Σ.

Definition 2.2. A building of type (W,S) is a cellular complex, covered by subcomplexes

all isomorphic to Σ, called the apartments, such that:

(i) any two cells, called the facets, are contained in a suitable apartment;

(ii) given any two apartments A and A′, there is a cellular isomorphism A " A′ fixing
A ∩A′.

The group W is called the Weyl group of the building. When W is a Euclidean reflection

group [13, V §3], one says that the building is affine or, equivalently here, Euclidean.

Example 2.3. A tree all of whose vertices have valency � 2 (resp. a product of such

trees) is a building with W equal to the infinite dihedral group D∞ (resp. with W equal to

D∞ ×D∞).

The above examples of trees are elementary, but they are the only ones with infinite

Weyl group which can be reasonably drawn. They are elementary examples but it is enough

to consider them in order to see one difficulty in producing interesting group-theoretic situ-

ations from buildings. Indeed, take a tree T in which any two distinct vertices have distinct

valencies. Then Aut(T ) = {1}, which shows that one has to make further assumptions on a

building in order to obtain sufficiently transitive group actions.



146 Bertrand Rémy

Let us finish with some motivation of metric nature for the axioms. Assume that the

Coxeter complex Σ of the Weyl group W admits an interesting W -invariant distance. This

implies that each apartment carries a good metric structure, and one would like to show that

this metric can be seen as being induced from a metric on the building itself. The first axiom

precisely says that for any two arbitrary points in the building a distance can be computed

(by choosing an apartment containing them) and the second axiom (up to some work to

define suitable retractions onto apartments) can be used to show that the distance computed

this way doesn’t actually depend on the choice of the apartment containing the points. We

will see in 2.3 that this fits very well with nice non-positive curvature properties for Coxeter

complexes associated with infinite Weyl groups.

2.2. Spherical and Euclidean buildings. A building with a finite Weyl group is called

spherical: this is because in that case the apartments are spherical tilings. The two families

of affine and spherical buildings are very classical because they are closely related to the

theory of algebraic groups.

First of all, it is well-known that if one starts with a reductive algebraic group, say G,

over an arbitrary ground field, say k, then up to some isotropy condition on G with respect

to k (namely, the existence of a non-central k-split torus) the group of rational points G(k)
admits a remarkable combinatorial structure called a Tits system (or also a BN-pair) [13, IV
§2]. This is the main result of Borel-Tits’ theory [10] and it can be reformulated as the fact

that there exists a well-defined spherical building on which G(k) acts strongly transitively,
i.e. transitively on the inclusions of a chamber (i.e. a maximal facet) in an apartment.

Now, if the field k is endowed with a non-archimedean absolute value, under the above

isotropy assumption (and further hypotheses on k when it is not locally compact), a sim-

ilar statement says that there exists a well-defined Euclidean building on which G(k) acts
strongly transitively. This is one of the main results of Bruhat-Tits’ theory but it doesn’t ex-

haust the whole theory of reductive groups over valued fields [76] since one of the main tools

(and objects of study at the same time) is given by forms of the group G over the valuation

ring k◦ of k: see [19] for the building-theoretic part and [20] for the group scheme part of

this deep theory.

In the spherical case, the theory of buildings may appear as a reformulation of some

results proved by algebraic group-theoretic means. This is true for the statement formulated

before, but quite not completely in the sense that the possibility to see the spherical building

of a semisimple Lie group as the boundary at infinity of the associated symmetric space is a

key step to prove Mostow’s strong rigidity in differential geometry [55].

Moreover the structure of a Tits system with a finite Weyl group provides a uniform

way to prove the projective simplicity of rational points of (suitable) simple isotropic alge-

braic groups, and reappeared recently in the theory of pseudo-reductive groups. The latter

groups are algebraic groups whose study was initiated by J. Tits [81] and thoroughly made

by B. Conrad, O. Gabber and G. Prasad [34]; a better understanding of these groups led

to great progress in the theory of arbitrary algebraic groups in positive characteristic, with

applications in number theory.

The theory of Euclidean buildings has a non-simplicial generalization which was already

considered in Bruhat-Tits’ work (it corresponds to the case when the valuation of the ground

field k is not discrete). For geometric purposes, it was extended by B. Kleiner and B. Leeb

in order to prove a strengthening of strong rigidity [48] stated by M. Gromov and called

the rigidity of quasi-isometries. The non-simplicial buildings here are higher-dimensional
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analogues of real trees. In Thurston’s approach to Teichmüller theory, the latter trees appear

as degenerations (technically speaking: asymptotic cones) of hyperbolic spaces; therefore it

is quite natural to see group actions on these (so to speak, branching everywhere) Euclidean

buildings appear at the boundary of some compactifications of representations spaces [57].

We will see in 3.2 that these buildings also appear naturally when combining Bruhat-Tits’

theory and V. Berkovich’s approach to non-archimedean analytic geometry.

The classification of spherical buildings, initially formulated in J. Tits’ lecture notes [74],

has been simplified and extended by J. Tits and R. Weiss in the book [82]. The classification

of Euclidean buildings was done by J. Tits too [77]; as for Mostow rigidity, the proof is

based on the fact that the boundary at infinity of an affine building is a spherical building.

This classification was then completed by R. Weiss in the book [83]. Loosely speaking, in

higher rank a spherical or a Euclidean building is related to some (possibly twisted, or even

suitably generalized) algebraic group.

2.3. Some more buildings. During the last decades, some buildings of non-classical type

(i.e. neither of spherical nor of Euclidean type) have become more and more interesting

to study from various perspectives. For instance, the possibility to construct buildings in

which the apartments are isomorphic to tilings in real hyperbolic spaces was the opportunity

to obtain interesting contractible spaces of negative curvature for geometric group theory.

These spaces led to important instances of Mostow rigidity [14] and quasi-isometric rigidity

[15] in the setting of singular spaces.

Let us consider now the natural question of classifying buildings. As mentioned in 2.2,

the classification of classical buildings is achieved in higher rank. Up to using the notion

of a boundary at infinity [16, §II.8], it eventually amounts to classifying the spherical ones.

In the classification of the latter buildings there are two key ingredients, namely the longest

element in the (finite) Weyl group and a property, called the Moufang property, ensuring that

the building has sufficiently many automorphisms [1, §7]. One important step consists in

proving that a spherical building of rank � 3 automatically enjoys the Moufang property.

When dealing with buildings with infinite Weyl group, say W , the Moufang property

often has to be taken as a hypothesis, and of course the existence of a longest element in

W completely fails. In the attempt to classify non-affine buildings with infinite Weyl group,

J. Tits had the idea to propose the hypothesis, as a substitute for the longest element in W ,

that the building under consideration admit a second twin building related to the previous one

by a suitable opposition relation between the chambers [80]. The most important examples

of Moufang twin buildings are provided by Kac-Moody groups as presented in 4.1, but there

are other examples [2].

From the point of view of geometric group theory, an important reason why buildings

sometimes play an interesting role as test spaces is probably the following result, due to

G. Moussong and M. Davis [35].

Theorem 2.4. Any building X admits a distance for which X is a complete, geodesic,
CAT(0)-space.

The CAT(0)-property is an important non-positive curvature property: roughly speak-

ing, assuming that the space is geodesic (i.e. that any two points are always connected by a

geodesic segment), it says that geodesic triangles are at least as thin as in the Euclidean plane;

a CAT(0)-space is automatically contractible. This property is fundamental in the sense that

it is formulated in an elementary way but it has very deep consequences [16, Part II]. For
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instance, it implies that an isometric group action with a bounded orbit (e.g. because the

group is compact) has a fixed point: it is a generalization of the so-called Bruhat-Tits fixed

point lemma. This result was initially used for Galois actions in a context of descent of the

ground field for algebraic groups, but it has today a much broader spectrum of applications.

In view of 2.2, it is natural to see buildings with infinite Weyl groups as generalizations of

Riemannian symmetric spaces. More generally, this can be done for all CAT(0)-spaces, but
it follows from remarkable papers by P.-E. Caprace and N. Monod that buildings (together

with symmetric spaces) often play a prominent role in a metric space situation that might

seem more general at first glance (see [27] for structure theory and [26] for discrete group

actions). The main properties of semisimple Lie groups and of their discrete subgroups

become therefore challenging questions for more general, sufficiently large, isometry groups

of non-classical buildings with infinite Weyl groups. Among these questions, we have of

course the problem of simplicity of isometry groups and the problem of rigidity of their

natural actions (loosely speaking, a group action on a metric space is said to be rigid if

there is no non-degenerate action of the group on reasonably different metric spaces). An

additional question is, in some sense, a more basic one which detects to what extent the

situation under consideration is new: it consists in deciding whether the isometry group of a

metric space (or some subgroup of it) is linear or not, i.e. is a matrix group for some suitable

dimension and field. There exist very useful sufficient conditions for linearity concerning

groups acting onCAT(0) cell complexes [44], and some simplicity results for automorphism

groups of exotic buildings [43]. In Section 4, the three questions of linearity, rigidity and

simplicity are discussed for groups acting on Kac-Moody buildings.

3. Classical buildings

Let us go back to classical buildings for a while, and more precisely to Euclidean ones. The

latter spaces are often presented as non-archimedean analogues of Riemannian symmetric

spaces of the non-compact type associated to real semisimple Lie groups (of positive rank).

This leads to natural questions, usually more precise than the questions mentioned in 2.3

(where the analogy is looser since it compares symmetric spaces and arbitrary buildings

with infinite Weyl groups). This section discusses compactifications of Bruhat-Tits buildings

and cohomology of arithmetic groups in positive characteristic. The first point will be the

opportunity to mention a new approach to Bruhat-Tits’ theory that uses non-archimedean

analytic geometry in the sense of V. Berkovich.

3.1. Group-theoretic compactifications. There are many reasons to wish to compactify

equivariantly symmetric spaces and Bruhat-Tits buildings associated to semisimple groups.

Some of them are related to the computation of the cohomology of discrete subgroups of

Lie groups, some other reasons are related to random walks on Lie groups and related ge-

ometries. We refer to the books [41] and [8] for more details and discuss here a partial

compactification procedure that has the advantage to be generalized to arbitrary buildings.

The starting point of this procedure is the (maybe surprising at first glance) fact that for

any locally group H , the set SH of closed subgroups in H has a natural topology which is

compact [12, §5]: it is called the Chabauty topology (hint: identify closed subgroups with

homothety classes of measures on the ambient group satisfying suitable invariance properties

for the action of their support). The idea to use this fact in order to compactify Riemannian
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symmetric spaces (with underlying real Lie groups) is due to Y. Guivarc’h. It was generalized

to the case of Bruhat-Tits buildings (with underlying non-archimedean Lie groups) in [42].

Let k be a locally compact local field, archimedean or not to begin with, and let G be

a (simply connected) semisimple algebraic group over k. We let X be the symmetric space

associated to G(k) in the case when k is archimedean, or the Bruhat-Tits building of G(k)
if k is totally disconnected (2.2). In the first case, we have X = G(k)/K where K is a

maximal compact subgroup; in the second case, the G(k)-action on X admits any chamber

as fundamental domain and the vertices in the closure of a given chamber parametrize the

conjugacy classes of maximal compact subgroups (this follows from the Bruhat-Tits fixed

point lemma of 2.3). It is a classical fact that the root system of a semisimple Lie group

can be seen as a finite set of half-spaces in any maximal flat subspace A of X: see [4] in

the real case; it is so by construction in the non-archimedean case, where A turns out to be

an apartment [76]. Up to making a better choice in the second case, a maximal compact

subgroup K in G(k) always admits a fundamental domain given by a closed Weyl chamber

in A, whose codimension 1 faces are called here sector panels; this is the geometric version

of the Cartan decomposition of G(k).
Now we restrict our attention to the case when k is non-archimedean and let {vn}n�1

be a sequence of vertices in some closed Weyl chamber, say Q. By passing to stabilizers

in G(k) we obtain a sequence of maximal compact subgroups {Kvn}n�1. If we further

assume that for each sector panel Π of Q, the distance dX(vn,Π) has a (possibly infinite)

limit as n→ +∞, then {Kvn}n�1 converges in SG(k). The limit group D is Zariski dense

in some parabolic k-subgroupQ fixing a face of the chamber ∂∞Q in the spherical building

at infinity ofX . MoreoverD can be written as a semi-direct productK �Ru(Q)(k), where

K is an explicit maximal compact subgroup of some reductive Levi factor of Q and Ru(Q)
is the unipotent radical of Q. This convergence, proved by measure-theoretic means in the

vein of ideas due to H. Furstenberg, is true in the archimedean case with vertices replaced by

arbitrary points. It is the key fact to define a compact space V
gp

X with a natural G(k)-action
in any of the two cases.

Definition 3.1. The group-theoretic compactification of X is the closure of the set of max-

imal compact subgroups in SG(k). In other words, it is the closure of the image of the

G(k)-equivariant map x �→ StabG(k)(x) from X to SG(k), which has to be restricted to the

set VX of vertices in X when X is a building (i.e., when k is ultrametric).

The next step then is to understand the geometry of V
gp

X in Lie-theoretic terms. It turns

out that, as in [72] for symmetric spaces, the group-theoretic compactification of the Bruhat-

Tits building of the maximal semisimple quotient of each parabolic k-subgroup ofG appears

in the boundary [42, Theorem 16].

Theorem 3.2. For any proper parabolic k-subgroup Q with radical R(Q), the group-
theoretic compactification of the Bruhat-Tits building of Q/R(Q) lies in the boundary of
V

gp

X . We let P be a minimal parabolic k-subgroup of G and we set D∅ = K � Ru(P )(k),
where K is the maximal compact subgroup of some reductive Levi factor of P . Then the
conjugacy class of D∅ is G(k)-equivariantly homeomorphic to the maximal Furstenberg
boundary F of G(k), and it is the only closed G(k)-orbit in V

gp

X . In fact, for any closed
subgroup D ∈ V

gp

X there is a sequence {gn}n�1 in G(k) such that lim
n→+∞

gnDgn
−1 exists

and belongs to F .

We have thus a description of a compactification of the set vertices of a Bruhat-Tits
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building which looks like the description of the compactification of a moduli space, together

with some basic statements on the dynamics of the group action on the boundary (the theory

of Furstenberg boundaries is presented for instance in [51]).

Before explaining in 3.2 what can be done to compactify the full building X instead of

VX , let us finish by saying that V
gp

X can be used to give a geometric classification (up to

finite index) of remarkable closed subgroups inG(k): the boundary of V
gp

X , seen as a subset

of SG(k), as well as the family of the normalizers of the groups in this boundary, can be

characterized by means of dynamical notions (distality and amenability).

Remark 3.3. The results mentioned here are contained in [42] but many of them were

generalized since then to arbitrary locally finite buildings by P.-E. Caprace and J. Lécureux

[25]. Moreover J. Lécureux proved that the group action on the boundary is amenable,

leading to positive answers to the Baum-Connes conjecture for interesting classes of groups

[50].

3.2. Compactifications using analytic geometry. This subsection presents joint work with

A. Thuillier and A. Werner.

There are two main problems with the compactification procedure described in 3.1. The

first one is that V
gp

X is only a compactification of the set of vertices in X . The second one

is the fact that, if one has in mind the compactifications of symmetric spaces as defined

by I. Satake [72] or by H. Furstenberg [40], the outcome should be a (finite) family of

compact spaces. The group-theoretic compactification corresponds to the maximal Satake-

Furstenberg one. The main idea in the papers [69] and [70], which allows one to overcome

these two difficulties, is to combine Bruhat-Tits’ theory of semisimple groups over valued

fields and Berkovich’s theory of analytic spaces over complete non-archimedean fields.

Berkovich geometry [6] is a version of analytic geometry over complete non-archimedean

valued fields in which the spaces have nice local connectivity properties. This is surprising

because local fields have a totally disconnected topology, but this good local behaviour is due

to the fact that many points (of analytic nature) are added to the points given by algebraic

considerations. In algebraic geometry the building blocks are algebraic spectra Spec(A)
consisting of prime ideals of commutative rings A endowed with the Zariski topology, while

in Berkovich geometry they are analytic spectra M (A) of Banach k-algebras, consisting of

multiplicative bounded seminorms A → R+. More precisely, let A be a Banach ring i.e., a

commutative unit ring endowed with a Banach norm ‖ · ‖A that is submultiplicative. The

analytic spectrum of A is the set M (A) of multiplicative seminorms A → R�0 which are

bounded with respect to ‖ · ‖A; this space is endowed with the coarsest topology making

the evaluation maps x �→ x(f) continuous (f ∈ A) and we henceforth use the notation

| f(x) | for x(f). At last, to each variety V over k is attached a Berkovich analytic space

over k, which is denoted by V an. Loosely speaking, the good local connectivity properties

of Berkovich analytic spaces come from the fact that the class of maps x �→ f(x) is replaced
by the wider class of maps x �→| f(x) |. Recall that Spec(A) is in one-to-one correspon-

dence with the set of equivalence classes of ring homomorphisms from A to an arbitrary

field, where two maps are identified if they factorize through a common third map, and note

that an algebraic map x �→ f(x) can be composed with many absolute values coming from

huge extensions of k.
If we go back to the compactification problem, we shall merely say that a crucial property

is the fact that the attachment V �→ V an is functorial and satisfies:
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(i) if V is affine with coordinate ring k[V ], then V an consists of all the multiplicative

seminorms k[V ]→ R+ extending the absolute value of k;

(ii) if V is projective, then V an is compact.

Another key ingredient is a partially functorial behavior of the Bruhat-Tits building with

respect to field extensions [66] combined with the possibility to work with any complete

extension of k. In some sense, this implies the possibility to see any point (possibly in the

relative interior of a cell) in X as a good vertex in the huger Bruhat-Tits building of G over

some non-archimedean extension of k. By adapting faithfully flat descent in this context,

one obtains the possibility to attach to each point x ∈ X a Berkovich analytic subgroup Gx

(defined over k as an analytic space), and the assignment x �→ Gx is injective (in particular it

takes distinct values for any two distinct points, even if they lie in the same cell). Finally, the

following result [69, 2.1] is the main step to obtain an analytic filling of the group-theoretic

compactification V
gp

X of 3.1.

Theorem 3.4. LetX be the building associated to a simply connected semisimple algebraic
group G over a local field k.

(i) For any x ∈ X , there is an analytic subgroup Gx of Gan defined over k such that for
any non-archimedean extension K/k, we have: Gx(K) = StabG(K)(x).

(ii) For any x ∈ X , there is a unique point ϑ(x) ∈ Gan such that:
Gx = {g ∈ Gan : |f(g) |� |f(ϑ(x)) | for any f ∈ k[G]}.

(iii) The resulting map x �→ ϑ(x) is a G(k)-equivariant embedding of X into Gan with
closed image.

This result gives a map X → Gan and then, in order to obtain equivariant compactifica-

tions ofX , it suffices to compose it with analytifications of algebraic maps fromG to proper

varieties (e.g., the maps to flag varieties G → G/P where P is a parabolic k-subgroup of

G). The desired compactifications are the closures of the image of X under these maps.

When P varies over all the conjugacy classes of parabolic k-subgroups of G, one obtains all

the expected analogues of the Satake-Furstenberg compactifications.

Remark 3.5. Together with the asymptotic cones [16, I.5] of symmetric spaces and Eu-

clidean buildings alluded to in 2.3, the Bruhat-Tits buildings of G over non-archimedean

extensions of k with dense valuations are other examples of non-simplicial Euclidean build-

ings that appear naturally.

The paper [69] also contains a Lie-theoretic description of the boundary structure of these

compactifications and some extensions, from Bruhat-Tits’ theory, of useful decompositions

of the rational points G(k). The paper [70] describes a variant of this compactification

procedure which uses highest-weight theory and is closer in spirit to I. Satake’s original

ideas.

Remark 3.6. WhenG is split over k, the idea to combine Bruhat-Tits’ theory and Berkovich

geometry can be found already in [5, §5].

3.3. Cohomological and related questions. Non-compact Riemannian symmetric spaces

and Bruhat-Tits buildings are contractible spaces acted upon properly by the Lie groups

they are associated with. These actions are therefore very useful to compute or estimate the
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cohomology of discrete subgroups of reductive Lie groups. Using this action and suitable

compactifications, A. Borel and J.-P. Serre proved, among other things, that arithmetic and

even S-arithmetic groups in characteristic 0 are of type F∞ [9]. Recall that a group Γ is

said to be of type Fm if it admits a free action on a contractible CW-complex whose m-

skeleton has finitely many Γ-orbits; it is said to be of type F∞ if it is of type Fn for any n.
These conditions are related to other more algebraic finiteness properties stated in terms of

resolutions [18, VIII]. The finiteness length of Γ is the largest m such that Γ is of type Fm,

i.e. admits a classifying space with finite m-skeleton.

In the case when the global ground field leading to the arithmetic groups under consid-

eration is not of characteristic 0, things get much more complicated for cohomology. For

instance in characteristic p > 0, finite generation is not always true for arithmetic groups,

and finitely generated lattices needn’t be virtually torsion-free either. Still, combined efforts

by K.-U. Bux, R. Köhl, S. Witzel and K. Wortman led to the following result.

Theorem 3.7. LetK be a global function field, let S be a finite set of places ofK and let OS

be the ring of S-integers in K. Let G be a connected, absolutely almost simple, K-isotropic
K-group. For each v ∈ S let rv be the rank of G over the completion Kv of K with respect
to v. Then the finiteness length of the S-arithmetic groupG(OS) is equal to (

∑
v∈S rv)− 1.

It was proved in [24] that (
∑

v∈S rv) − 1 is an upper bound for the finiteness length of

G(OS) and equality was proved in [23]. The nice feature of many results in this vein is the

mixture of classical techniques such as reduction theory in positive characteristic [45], K.

Brown’s criterion from algebraic topology [17] and the use of recent tools from geometric

group theory such as singular Morse theory [7].

Note that, so far in this report, the fact that for a simple group G, the Bruhat-Tits build-

ing is a simplicial complex, has not been exploited yet (in general a Bruhat-Tits building is a

polysimplicial complex). Examples of works where this geometric fact is used are given by

the papers [59] and [60] which provide a key step towards an almost complete answer to the

congruence subgroup problem. We will see in 4.3 that this can also be used to develop a sin-

gular version of Hodge theory in order to obtain some vanishing results for the cohomology

of automorphism groups of exotic buildings.

Remark 3.8. In this section, most applications of Bruhat-Tits’ theory that are presented

(except [59] and [60]) mainly deal with the building-theoretic aspect of it and not with the

delicate theory of forms of reductive algebraic groups over the valuation ring of the valued

ground field. The volume formula proved by G. Prasad [58], which eventually leads to the

classification of fake projective planes [61], is an example of a result that needs, among other

things, Bruhat-Tits’ theory at the latter level of subtlety.

4. Kac-Moody theory and exotic buildings

In this section, we are interested in families of non-classical buildings admitting sufficiently

large groups of automorphisms, and being therefore good candidates for the comparison with

symmetric spaces and Bruhat-Tits buildings associated to semisimple Lie groups. The main

source of such buildings comes from an algebraic machinery which was not a priori designed
for these purposes, namely Kac-Moody theory. We explain here why the analogy is indeed

fruitful. In fact, Kac-Moody groups provide a good balance between persistence of classical
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results from the theory of arithmetic groups and appearance of new phenomena. This is

true in the framework of discrete groups, as well as in that of non-discrete locally compact

groups. Moreover it is likely that this theory is also the source of many interesting profinite

groups. As mentioned before, the three main questions organizing the study of Kac-Moody

groups are those about linearity, rigidity and simplicity (but they are not the only ones).

4.1. Kac-Moody theory. Roughly speaking, Kac-Moody Lie algebras are infinite-dimen-

sional generalizations of complex semisimple Lie algebras [47] and Kac-Moody groups

integrate these Lie algebras over Z, thus providing infinite-dimensional generalizations of

Chevalley schemes [36]. Our goal in this section is to introduce the two versions of Kac-

Moody groups, namely the minimal (possibly twisted) Kac-Moody groups and the complete

ones; they are both presented and compared in J. Tits’ Bourbaki talk [79].

Combinatorial Kac-Moody objects. The starting point to define all these objects is a

generalized Cartan matrix; i.e. an integral matrix A = [As,t]s,t∈S satisfying: As,s = 2,
As,t � 0 when s �= t and As,t = 0 ⇔ At,s = 0. It is more accurate to start with a

Kac-Moody root datum, namely a 5-tuple D =
(
S,A,Λ, (cs)s∈S , (hs)s∈S

)
, where A is a

generalized Cartan matrix indexed by a finite set S and where Λ is a free Z-module (with

Z-dual Λ∨); the elements cs of Λ and hs of Λ∨ are requested to satisfy cs(ht) = Ats for all

s, t ∈ S. One defines then a complex Lie algebra gD by a presentation generalizing Serre’s

presentation of finite-dimensional semisimple Lie algebras, involving (hs)s∈S and the usual

generators (es)s∈S , (fs)s∈S so that in particular Ces ⊕Chs ⊕Cfs " sl2(C).
Using the free abelian group Q =

⊕
s∈S Zαs on the symbols αs, one defines a Q-

gradation on gD in which the degrees with non-trivial corresponding spaces belong to Q+ ∪
Q−, whereQ+ =

∑
s∈S Nαs andQ

− = −Q+. The latter non-zero degrees are called roots
and if (cs)s∈S is free over Z, they have the usual interpretation in terms of weight spaces.

The height of a root α =
∑

s∈S nsαs is the integer ht(α) =
∑

s∈S ns. There is a natural

action on the lattice Q by a Coxeter group W generated by involutions denoted again by

s ∈ S; it is defined by setting s.at = at −Astas. A root is called real if it is in the W -orbit

of a simple root, i.e. some αs; otherwise, it is said to be imaginary. The set of roots (resp.

real roots, imaginary roots) is denoted by Δ (resp. Δre, Δim).

Minimal Kac-Moody groups. Using the divided powers 1
n!e

n
s and 1

n!f
n
s of the canonical

generators es and fs and of their Weyl group conjugates, J. Tits defined a certain Z-form UD
of the universal enveloping algebra UgD. The ring UD has a filtration indexed by Q; some

subrings as well as their completions with respect to some subsemigroups of Q are used to

construct Kac-Moody groups. For the adjoint action on UgD, the real root spaces have a

locally nilpotent action which can be exponentiated to produce 1-parameter unipotent sub-

groups in the automorphism group of the Z-form UD for suitable restrictions of parameters

and elements in gD. By and large, the minimal Kac-Moody group functor GD is an amalga-

mation of a split torus with character group Λ and of a quotient of the subgroup generated

by these 1-parameter subgroups [78]. To each real root γ ∈ Δre is attached a subgroup

functor Uγ , which is isomorphic to the 1-dimensional additive group functor, but there is no

subgroup associated to imaginary roots in minimal Kac-Moody groups. Non-split versions

of minimal Kac-Moody groups can also constructed [63].

Example 4.1. The functor which sends a field k to the group SLn+1(k[t, t
−1]) is a minimal
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Kac-Moody group functor of affine type Ãn.

Complete Kac-Moody groups. More generally, minimal Kac-Moody groups generalize

groups of the form G(k[t, t−1]) where k is a field and G is a k-isotropic semisimple group.

Accordingly, complete Kac-Moody groups generalize groups like G
(
k((t))

)
. We present

here a construction due to G. Rousseau [67] which provides group functors defined over Z;

the functors have a structure of ind-scheme generalizing constructions due to O. Mathieu

[54] or Sh. Kumar [49] over the complex numbers.

For suitable affine group schemes over fields in characteristic 0, the algebra of invariant

distributions [37, II §4 n◦6] can be identified with the universal enveloping algebra of the

Lie algebra of the group. Moreover Z-forms of this algebra can be used to define, by duality,

Z-forms of the rings of regular functions: this eventually leads to group schemes over Z
extending the initial groups overC. For a Kac-Moody root datumD, G. Rousseau associates

to any closed set of roots Ψ, a pro-unipotent group scheme Uma
Ψ defined over Z [67, 3.1].

With this approach, imaginary roots do lead to root groups (which seems to be a promising

property for this version of Kac-Moody groups) and all the groups Uma
Ψ have a filtration

described thanks to the root system. At last, if k is a finite field of characteristic p, the
groups Uma

Ψ (k) are pro-p.

Remark 4.2. L. Carbone and H. Garland also defined a representation theoretic completion

Gcgλ
D (k) of GD(k) for each dominant weight λ [33].

Connection with building theory. We can now go back to the main subject matter of this

report, i.e. building theory. One crucial fact about minimal Kac-Moody groups is that any

such group GD(k) over some field k enjoys a combinatorial structure refining that of a Tits

system [13, IV §2], and called a twin BN-pair. As a consequence, there is a pairX± of twin

buildings as mentioned in 2.3 such that GD(k) acts strongly transitively on each of them.

The apartments are explicitly described thanks to the Weyl group W of D and the buildings

X± are locally finite if and only if the ground field k is finite (if so, the full isometry groups

Iso(X±) are then locally compact for the compact open topology). Similarly, the complete

group Gma+
D (k) has a natural strongly transitive action on a single building which is closely

related to the twin buildingsX± [67, Corollaire 3.18]. In the latter case, a chamber stabilizer

is isomorphic to the semi-direct product of a finite-dimensional split torus and of the pro-

unipotent group scheme Uma
Ψ associated to Ψ = Δ+ (where Δ+ is the set of all positive

roots).

Remark 4.3. When k is finite, there is another more elementary completion Ggeom
D (k) ob-

tained by taking the closure of the image of GD(k) in the isometry group Iso(X±) [68,

1.B].

4.2. Non-linearity, simplicity and rigidity. This subsection presents joint work with P.-

E. Caprace.

We can now consider our three main questions: non-linearity, simplicity and rigidity,

when dealing with minimal Kac-Moody groups over finite fields. The point is that these

groups are, by definition, finitely generated groups which generalize arithmetic groups in

positive characteristic like SLn+1(Fq[t, t
−1]). Therefore the general theme is to try to an-

swer the following question.

(∗) To what extent is a finitely generated Kac-Moody group close to a discrete subgroup
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in a non-archimedean semisimple Lie group?

In what follows, Λ denotes a minimal Kac-Moody group GD(Fq) over some finite field of

characteristic p.

Lattice property. The first result supporting the analogy of (∗) was proved independently

in [32] and [62].

Theorem 4.4. Assume that the Weyl group W of Λ is infinite and denote by W (t) =∑
w∈W t�(w) its growth series. If W ( 1q ) <∞, then the group Λ is a lattice of X+ ×X−; it

is never cocompact.

The statement means that the homogeneous space
(
Isom(X+) × Isom(X−)

)
/Λ carries an

invariant measure of finite total volume. The proof relies on a simple measure-theoretic

formula and an explicit description of a fundamental domain for the diagonal Λ-action on

X+ ×X−. The fundamental domain is given by the product of a chamber and of a suitably

chosen apartment of opposite sign. This can be seen by combinatorial arguments relevant to

Tits systems (it is an analogue of the geometric interpretation of the Cartan decomposition

mentioned in 3.1).

Normal subgroup property. The previous theorem suggests to try to prove the main results

of the theory of discrete subgroups of Lie groups in the case of finitely generated Kac-Moody

groups. A particularly well adapted part of this theory is G. Margulis’ work on lattices in Lie

groups [51] because many proofs there rely on measure-theoretic techniques (which can be

more easily adapted to non-linear groups than arguments from pure algebraic group theory).

One striking result in this field is a strong dichotomy called the normal subgroup property

for higher-rank lattices. More precisely, one says that a group Γ has the normal subgroup
property if for any N � Γ either N is finite and central in Γ, or N has finite index in Γ. Here

is the result for Kac-Moody groups.

Theorem 4.5. If the finitely generated Kac-Moody group Λ is a lattice of X+ ×X−, then it
has the normal subgroup property.

The proof is mainly a consequence of deep results due to Y. Shalom [73] and to U. Bader and

Y. Shalom [3]. The idea is to follow Margulis’ strategy: to sum up, we can assume that we

are in a situation whereN �Λ < Isom(X−)× Isom(X+) for a center-free Λ; hence we have

to prove that Λ/N is finite, i.e. is compact for the discrete topology! This apparently naive

remark is a crucial trick because being compact here is equivalent to being amenable and

having Kazhdan’s property (T). Then the idea is to use a criterion due to Y. Shalom (resp.

U. Bader and Y. Shalom) which says that in order to prove property (T) (resp. amenabil-

ity) for the discrete quotient group Λ/N , it is enough to check it on the topological quo-

tients pr±(Λ)/pr±(N), where pr± is the natural projection from Isom(X−) × Isom(X+)
to Isom(X±). Checking the latter points is easier because the involved topological groups

have more structure: indeed, pr±(Λ) acts strongly transitively on the building X± since so

does Λ. In fact, using Tits system arguments, one can see that the each topological quo-

tient pr±(Λ)/pr±(N) is compact. The paper [73] considers cocompact irreducible lattices

in direct products, but the cocompactness assumption can relaxed to a weaker integrability

condition involving an induction cocycle, which is checked in [65] thanks to combinatorial

arguments.
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Simplicity. The general strategy to prove simplicity of suitable (i.e. non-affine, irreducible)

Kac-Moody lattices owes a lot to M. Burger and Sh. Mozes’ seminal works [21] and [22].

Among other things, these papers prove the existence of finitely presented torsion free sim-

ple groups; these groups are constructed as lattices acting on products of two trees with a

compact fundamental domain (in fact, the groups can be chosen to act transitively on the

vertices of the square complex). The general idea is first to see the discrete groups under

consideration as analogues of lattices in Lie groups in order to rule out infinite quotients,

and then to exploit decisive differences with linear groups in order to rule out finite quotients

too.

The first step, exploiting the analogy with lattices in Lie groups, is of course what was

mentioned before in the Kac-Moody case. The point is to obtain the normal subgroup prop-

erty without relying on any algebraic group structure on the ambient topological group. This

structure is replaced by the fact that the latter topological group is the direct product of

isometry groups of trees or buildings. The second step, where one has to stand by non-linear

phenomena, is so far specific to each of the two situations: uniform lattices in products of

trees in [22], or non-uniform lattices for products of (usually higher-dimensional) buildings

in the Kac-Moody case. In the case of products of trees, this step relies on the possibility of

obtaining some non-residual finiteness criteria involving transitivity conditions on the local

actions (around each vertex) for the projection of the lattice on each of the two trees; this part

was eventually improved by the possibility to embed explicitly well-known non-residually

finite groups into suitable cocompact lattices of products of trees. In the Kac-Moody case,

the arguments are relevant to Coxeter groups. This is where non-affineness of theWeyl group

has to be exploited crucially: a strengthening of Tits’ alternative for Coxeter groups implies

that Coxeter complexes Σ of non-affine Coxeter groups contain lots of hyperbolic triples of

roots (seen as half-spaces of Σ), i.e. with empty pairwise intersections. Combining this with

a trick on infinite root systems and some defining relations for Kac-Moody groups leads to

the following wide source of infinite finitely generated simple groups [29, §4].

Theorem 4.6. Let Λ be a Kac-Moody group defined over the finite field Fq . Assume that the
Weyl group W is infinite and irreducible, and that W ( 1q ) < ∞. Then Λ is simple (modulo
its finite center) whenever the buildingsX± are not Euclidean and Λ is generated by its root
subgroups.

Remark 4.7. The assumption on generation by root groups is mild since the initial group Λ
can be replaced by its finite index subgroup generated by the root groups, but the assumption

excluding affine Weyl groups is crucial: indeed, groups of the form G(Fq[t, t
−1]), where G

is a semisimple group over Fq , are affine Kac-Moody groups and admit lots of (congruence)

quotients.

Remark 4.8. Of course, the question of abstract simplicity for complete Kac-Moody groups

makes sense too. Topological simplicity can be proved easily in this case by using Tits

system arguments and the fact complete Kac-Moody groups over Fq are locally pro-p [64].

Using a beautiful mixture of dynamical and Lie-theoretic arguments, T. Marquis proved the

(much better) abstract simplicity of the same groups [52].

Infinitely many quasi-isometry classes of simple groups. The wide choice of buildings

admitting simple lattices is a very useful fact in geometric group theory. Recall that, after

M. Gromov, it is natural to attach to each group Γ with finite symmetric generating set

S = S−1 its Cayley graph, i.e. the graph in which the vertices are the elements of Γ, which
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are declared to be adjacent if and only if they differ from the right by an element of S. This is
the starting point to see these groups as metric spaces. One important notion in this context is

that of quasi-isometry between metric spaces, that is almost bi-Lipschitz equivalence except

that additive constant are allowed. More precisely, two metric spaces (X, dX) and (Y, dY )
are said to be quasi-isometric to one another if there is a map f : X → Y such that there

exist C � 1 and D � 0 satisfying for each x, x′ ∈ X:

1

C
· dX(x, x′)−D � dY (f(x), f(x

′)) � C · dX(x, x′) +D

and such that for any y ∈ Y there exists x ∈ X such that dY (y, f(x)) � D. The first

condition says that f is a quasi-isometric embedding and the second condition is a coarse

metric surjectivity assumption.

Now let G be a locally compact group admitting a finitely generated lattice Γ; then G
admits a compact generating subset, say Σ̂. We denote by dΣ̂ the word metric associated

with Σ̂ and we fix a finite generating set Σ for Γ, leading to an associated word metric dΣ.
The lattice Γ is called undistorted in G if dΣ is quasi-isometric to the restriction of dΣ̂ to Γ.
This amounts to saying that the inclusion of Γ in G is a quasi-isometric embedding from the

metric space (Γ, dΣ) to the metric space (G, dΣ̂).
It is proved in [30] that any Kac-Moody lattice Λ < Aut(X+) × Aut(X−) is undis-

torted, and the most important consequence of this statement in geometric group theory is

the following.

Theorem 4.9. There exist infinitely many pairwise non-quasi-isometric finitely presented
simple groups.

Note that since any two trees are bi-Lipschitz equivalent, all uniform lattices of products of

trees lie in the same quasi-isometry class.

4.3. Cohomological and related questions. It was mentioned in 3.3 that buildings, being

simplicial complexes, are particularly well adapted to cohomology computation. Techniques

from Hodge theory can be pushed quite far in this singular context [56]. Another approach,

introduced by J. Dymara and T. Januszkiewicz, uses representation theoretic techniques as

stated in [11] in the classical case, and leads to important results. The result below is a

special case of [38, Theorem E].

Theorem 4.10. Let Λ be a minimal Kac-Moody group over Fq , defined by a generalized
Cartan matrix A of size n×n. Letm < n be an integer such that all the principal submatri-
ces of sizem×m of A are Cartan matrices (i.e. are of finite type). Then for 1 � k � m− 1
and q >> 1, the continuous cohomology groups Hk

ct

(
Aut(X±), ρ

)
vanish for any unitary

representation ρ.

Degree 1 is of particular interest since H1
ct(G, ρ) = {0} for any unitary representation ρ is

equivalent to Kazhdan’s property (T) for G [46, Chap. 4]. When Λ is 2-spherical (i.e. when

we havem � 2 above) Theorem 4.10 implies property (T) for the full automorphism groups

Aut(X±) with q >> 1, hence for their product, and finally for any lattice in this product [51,

III]. As a consequence, many Kac-Moody lattices have property (T) and this can be used

to prove a super-rigidity result for isometric actions of higher-rank Kac-Moody groups on

negatively curved metric spaces [29, §7].
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Finite generation of maximal pro-p subgroups. Let us finish by mentioning another po-

tential source of original results in a new group-theoretic framework. More precisely, if we

now consider complete Kac-Moody groups as in 4.1 over finite fields, then we obtain lo-

cally pro-p groups (whatever the completion procedure, in fact). Moreover it follows from

the Bruhat-Tits fixed point lemma that maximal pro-p subgroups in a given complete Kac-

Moody group over Fq are all conjugate to one another [64]; they are finite index subgroups

of chamber stabilizers for their natural action on the associated building.

Let Gma+
D (Fq) be the algebraic completion of the minimal Kac-Moody group GD(Fq).

Let A be the generalized Cartan matrix of the Kac-Moody root datum D defining the group

functor GD. Let Uma+ be a pro-p Sylow subgroup of Gma+
D (Fq). The following theorem

[28, Theorem 2.2] shows that the maximal pro-p subgroups in complete Kac-Moody groups

over finite fields of characteristic p have an interesting behavior, which still deserves deeper

investigation.

Theorem 4.11. Assume that the characteristic p of Fq is greater than the absolute value
of any off-diagonal coefficient of the generalized Cartan matrix A. Then Uma+ is finitely
generated as a pro-p group.

Remark 4.12. An argument initially due to L. Carbone, M. Ershov and G. Ritter [31],

combining a Frattini sugbroup argument and a Tits system argument, implies the projective

simplicity of complete Kac-Moody groups over finite fields for many types A. It can be

generalized to all types but still leads to a weaker result than Marquis’s theorem [52] because

of the assumption on the size of p with respect to the coefficients of A.

The connection with cohomology is as follows: under the assumptions of the theorem, it can

be proved that the following more precise statements hold.

(i) The Frattini subgroup Φ(Uma+) of Uma+ is equal to the abstract derived group

[Uma+, Uma+].

(ii) We have: Φ(Uma+) = 〈Uγ : γ non-simple positive real root〉.
(iii) We have also: H1(U

ma+,Z/pZ) " (Z/pZ)size(A)·[Fq :Z/pZ].

The connection between the Frattini subgroup and homology is that we haveH1(V,Z/pZ) ∼=
V/Φ(V ) for any pro-p group V [71, Lemma 6.8.6]; moreover dimZ/pZH1(V,Z/pZ) is the
minimal size of a topologically generating set for V . The latter point suggests to com-

pute higher homology groups for pro-p Sylow subgroups of complete locally compact Kac-

Moody groups. The next interesting result would be to be able to decide under which condi-

tions these groups are finitely presentable as pro-p groups. This is related toH2(U
ma+,Z/pZ).

Of course the question of simplicity doesn’t make sense for pro-p groups, but discussing

linearity of these pro-p Sylow subgroups definitely makes sense. One hope would be to

disprove linearity for as many examples as possible. There are only partial results in this

direction so far [28, §4].

Remark 4.13. By studying full pro-p completions of suitably chosen subgroups of mini-

mal Kac-Moody group over finite fields, M. Ershov could exhibit some examples of Golod-

Shafarevich groups with property (T), which leads to the existence of infinite torsion residu-

ally finite non-amenable groups [39].
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Some qualitative properties of branching
multiplicities

Nicolas Ressayre

Abstract. Let G be a connected reductive subgroup of a complex connected reductive group Ĝ. We

consider the multiplicities cG,Ĝ as a function from the set of pairs of dominant weights to the set of

integers. We recall that this function is piecewise quasipolynomial. Its support is a finitely generated

semigroup ; we describe an irredundant list of inequalities determining the cone generated. The relation

with the projection of coadjoint orbits for the Lie algebras of the compact forms of G and Ĝ is also

recalled.

We also consider the multiplicities for the fusion products for G. More precisely, we explain how the

small quantum cohomology rings of homogeneous spaces G/P allow to parametrize an irredundant

set of inequalities determining the multiplicative eigenvalue problem for the compact form K of G.

Mathematics Subject Classification (2010). 14L24, 14N15, 14N35, 22C99.

Keywords. Branching multiplicities, additive and multiplicative eigenvalue problems, (quantum)

Schubert calculus.

1. Introduction

Let G be a connected reductive subgroup of a complex connected reductive group Ĝ. The

branching problem consists in

decomposing irreducible representations of Ĝ as sum of irreducible G-modules.

Fix maximal tori T ⊂ T̂ and Borel subgroups B ⊃ T and B̂ ⊃ T̂ of G and Ĝ. Let X(T )
denote the group of characters of T and let X(T )+ denote the set of dominant characters.

For ν ∈X(T )+, VG(ν) denotes the irreducible representation of highest weight ν. Similarly

we use notation X(T̂ ), X(T̂ )+, VĜ(ν̂) relatively to Ĝ. For any G-module V , the subspace

of G-fixed vectors is denoted by V G. For ν ∈X(T )+ and ν̂ ∈X(T̂ )+, set

cG,Ĝ(ν, ν̂) = dim(VG(ν) ⊗ VĜ(ν̂))
G. (1.1)

The branching problem is equivalent to the knowledge of these coefficients since

VĜ(ν̂) = ∑
ν∈X(T )+

cGĜ(ν, ν̂)VG(ν)
∗, (1.2)

where VG(ν)∗ is the dual of VG(ν).
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ForG diagonally embedded in Ĝ = G×G, VĜ(ν̂) is the tensor product of two irreducible

representations of G and the coefficient cG,Ĝ(ν, ν̂) are the multiplicities for the decomposi-

tion of VĜ(ν̂) as a sum of irreducible G-modules. If G = GLn(C), X(T )+ identifies with

the set of non-increasing sequences ν = (ν1 ≥ ⋅ ⋅ ⋅ ≥ νn) of n integers and the coefficients are

the Littlewood-Richardson coefficients cνλμ. For Ĝ = GLn(C) and G = T̂ , the multiplicities

cG,Ĝ(ν, ν̂) are the Kostka coefficients given by the Weyl character formula. In this note, we

recall some qualitive results on the function

cGĜ ∶ X(T )+ ×X(T̂ )+ 
→ Z≥0

(ν, ν̂) �→ cGĜ(ν, ν̂).

More precisely:

(i) There exists a polyhedral convex cone Q≥0LR(G, Ĝ) outside which the multiplicities

are zero. A multiplicity corresponding to a point in this cone can also vanish, but it

becomes nonzero after scalar multiplication.

(ii) The cone Q≥0LR(G, Ĝ) is the support of some fan called GIT-fan and the function

cGĜ is quasipolynomial on each cone of the fan.

(iii) In Section 3, we give an explicit description of the irredundant list of linear inequalities

of the cone Q≥0LR(G, Ĝ). These inequalities are parametrized by pairs of Schubert

classes for some G and Ĝ homogeneous spaces that satisfy some cohomological con-

dition. This condition is expressed by the Belkale-Kumar product.

(iv) We also present a description for coefficients on the boundary of the cone

Q≥0LR(G, Ĝ): they are equal to similar coefficients for Levi subgroups of G and Ĝ.

(v) The support LR(G, Ĝ) of the function cGĜ is a finitely generated semigroup gener-

ating a group ZLR(G, Ĝ). We present some results comparing LR(G, Ĝ) with the

set ZLR(G, Ĝ) ∩Q≥0LR(G, Ĝ) of integral points in the cone. This problem, called

the question of saturation is far from being completely solved and we present some

conjectures.

(vi) We present the PRV conjecture and its recent generalizations. These statement allow

to produce easily points in the semigroup LR(G, Ĝ).

Consider the case of the tensor product decomposition, that is when G is diagonally em-

bedded in Ĝ = G×G. LetK a maximal compact subgroup ofG and k its Lie algebra. It turns
out that the cone Q≥0LR(G, Ĝ) identifies with the set of triples (O1,O2,O3) of adjoint K-

orbits in k such that the setO1 +O2 +O3 of sums contains 0. This spectral problem admits a

multiplicative analogue: describe the set of triples (O1,O2,O3) of conjugacy classes in K
such that O1 ⋅ O2 ⋅ O3 contains the unit e of K. By a result of Meinrenken-Woodward, these

triples are described by a convex polytope. Here, we describe recent results that give explic-

itly the minimal list of linear inequalities characterizing this polytope. These inequalities

are parametrized by triples of Schubert classes satisfying some conditions expressed using

the quantum cohomology. If the additive case is related to tensor product decomposition,

the multiplication problem is equivalent to the description of the asymptotic support of the

fusion product. In this context, the question of saturation can also be asked: the only known

result due to Belkale is in type A.



Some qualitative properties of branching multiplicities 167

2. Quasipolynomiality and GIT-fan

2.1. A brief review on Geometric Invariant Theory. Consider a complex irreducible pro-

jective variety X acting on by a reductive group G. The set of G-linearized line bundles on

X is a group (for the tenor product) denoted by PicG(X). For L ∈ PicG(X), let H0(X,L)
denote the G-module of regular sections of L and let H0(X,L)G denote the subspace of

G-invariant sections. We consider the following set of semi-stable points for L:
Xss(L) = {x ∈X : ∃n > 0 and τ ∈ H0(X,L⊗n)G such that τ(x) ≠ 0} . (2.1)

Note that this definition of Xss(L) is NOT standard. Indeed, it is usually agreed that the

open subset defined by the non vanishing of τ is affine. Our definition coincides with the

usual one if L is ample. A line bundle L over X is said to be semi-ample if a positive power

of L is base point free.

2.2. The GIT-fan. To simplify, we assume that the rank of the Picard group of X , and

hence that of PicG(X) are finite. Otherwise one has to consider the Neron-Severi group

(see [22]). Since Xss(L) = Xss(L⊗n) for any n > 0, the definition of Xss(L) extends

to the case when L ∈ PicG(X)Q. Following [22], we say that two points L1 and L2 in

PicG(X)Q are GIT-equivalent if and only if Xss(L1) = Xss(L2). A point L ∈ PicG(X)Q
is said to be G-effective if Xss(L) is not empty. Let C+(X) denote the cone of PicG(X)Q
generated by the points L ⊗ 1 where L ∈ PicG(X) is semi-ample. Let CG,+(X) denote the

cone of PicG(X)Q generated by the points L ⊗ 1 where L ∈ PicG(X) is semi-ample and

G-effective. Then C+(X) and CG,+(X) are convex. A sub-cone of C+(X) is said to be

polyhedral in C+(X) if it is the intersection of C+(X) with finitely many rational and closed

half spaces of PicG(X)Q. The geometry of the GIT-classes is described by the following

result.

Theorem 2.1. The cone CG,+(X) is polyhedral in C+(X). There are finitely many GIT-
classes. Each GIT-class is the relative interior of some convex cone polyhedral in C+(X).
The closures of the GIT-classes in C+(X) form a fan, called the GIT-fan.

Let C1 and C2 be two GIT-classes and fix L1 ∈ C1 and L2 ∈ C2. Then Xss(L1) is
contained in Xss(L2) if and only if C1 contains C2 if and only if C2 is a face of C1.

The points L ⊗ 1 for ample L ∈ PicG(X) generate an open convex cone C++(X) in

C+(X). Theorem 2.1 when C+(X) is replaced by C++(X) is proved in [59] following

[22, 70]. The proofs in [59] can be applied without changing to get Theorem 2.1.

2.3. Application to branching coefficients. We now explain the geometric interpretation

of the branching coefficients allowed by Borel-Weil theorem. LetX = G/B × Ĝ/B̂. For any

pair (ν, ν̂) in X(T ) ×X(T̂ ), there exists a unique (G × Ĝ)-linearized line bundle L(ν, ν̂)
on X such that T × T̂ acts on the base-point of X with weight −(ν, ν̂). Then L(ν, ν̂) is

semi-ample if and only if ν and ν̂ are dominant. In this case, H0(X,L(ν, ν̂)) is a G ×
Ĝ-module isomorphic to VG(ν)∗ ⊗ VĜ(ν̂)∗. In particular cG,Ĝ(ν, ν̂) is the dimension of

H0(X,L(ν, ν̂))G where G acts diagonally.

Consider the morphism θ ∶ X(T × T̂ )Q 
→ PicG(X)Q that maps (ν, ν̂) on L(ν, ν̂)
endowed with the diagonal G-action. The pullback θ−1(C+(X)) is the cone X(T × T̂ )+Q
generated by dominant weights, and θ−1(CG,+(X)) is

Q≥0LR(G, Ĝ) ∶= {ν, ν̂) ∈X(T × T̂ )+Q ∶ ∃n > 0 cG,Ĝ(nν,nν̂) ≠ 0}.
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The pullback in Q≥0LR(G, Ĝ) of a GIT-class in PicG(X)Q is called a GIT-class.

Quasipolynomiality. Let g and ĝ denote the Lie algebras of G and Ĝ. It turns out that

Q≥0LR(G, Ĝ) has nonempty interior inX(T × T̂ )Q if and only if no ideal of g is an ideal of

ĝ. Under this assumption, the GIT-classes C of nonempty interior in X(T × T̂ )+Q are called

the GIT-chambers. Their closures C are the maximal cones of the GIT-fan.

Theorem 2.2. Let C be a GIT-chamber. There exists a cofinite lattice ΛC of X(T × T̂ ) and
a collection of polynomial functions fl indexed by l ∈X(T × T̂ )/ΛC such that

cG,Ĝ(ν, ν̂) = fl(ν, ν̂),

for any (ν, ν̂) ∈ C ∩X(T × T̂ ) congruent to l modulo ΛC .

Meinrenken-Sjamaar proved Theorem 2.2 in [49] using symplectic geometry. A proof

using the Riemann-Roch theorem for singular varieties can be found in [40]. Examples

of GIT-fans and quasipolynomial functions can be found in [1, 19, 38, 40, 56]. Another

example is given in Section 3.4.

3. The cone Q≥0LR(G,Ĝ)

Theorems 2.1 or 5.1 imply that Q≥0LR(G, Ĝ) is a closed convex polyhedral cone in X(T ×
T̂ )Q. The aim of this section is to describe this cone by an explicit list of inequalities.

3.1. Spectral interpretation. LetK and K̂ be two maximal compact subgroups of G and

Ĝ such thatK ⊂ K̂. Let k and k̂ denote the Lie algebras ofK and K̂. Consider the projection

p ∶ k̂ 
→ k orthogonal for the Cartan-Killing form of k̂. We are interested in the projections

of adjoint orbits of k̂.
Up to changing T , we may assume thatH =K ∩T is a Cartan subgroup ofK. Consider

the Lie algebra h of H . Any root α of (G,T ) induces (by derivation) a linear form (still

denoted by α) on the Lie algebra Lie(T ) of T . The Lie algebra Lie(H) ofH identifies with

the real Lie sub-algebra of ξ ∈ Lie(T ) such that α(ξ) ∈
√
−1R for any root α. Consider

the group X∗(T ) of one parameter subgroups of T and its paring ⟨⋅, ⋅⟩ with X(T ). The

dominant chamber in X∗(T )R ∶=X∗(T ) ⊗R is

X∗(T )+R = {λ ∈X∗(T )R ∶ ⟨λ,α⟩ ≥ 0 for any simple root α}.

By derivation, X∗(T ) identifies with a sub-lattice of Lie(T ), and hence, X∗(T )R identi-

fies with
√
−1Lie(H). Any adjoint K-orbit in k contains a unique element belonging to√

−1X∗(T )+R; for any λ ∈X∗(T )+R, we denote byOλ the adjointK-orbit containing
√
−1λ.

Similarly, we define the adjoint K̂-orbit Oλ̂ for any λ̂ ∈ X∗(T̂ )+R. Let w0 be the longest

element of the Weyl group of G. Set

C(K, K̂) = {(λ, λ̂) ∈X∗(T )+R ×X∗(T̂ )+R ∶ O−w0λ ⊂ p(Oλ̂)}.

The Kirwan convexity theorem (see [32]) in symplectic geometry shows that C(K, K̂) is a

closed polyhedral cone.
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Fix a W -invariant scalar product (⋅, ⋅)T on X∗(T )R. Then, for λ ∈ X∗(T )R, (λ, ⋅)T
is a linear form on X∗(T )R and it corresponds to a point in X∗(T )R for the pairing ⟨⋅, ⋅⟩.
Similarly (⋅, ⋅)T̂ is fixed on X∗(T̂ )Q.

Theorem 3.1. Let (λ, λ̂) ∈ X∗(T × T̂ )+Q. Then (λ, λ̂) ∈ C(K, K̂) if and only if ((λ, ⋅)T ,
(λ̂, ⋅)T̂ ) ∈ Q≥0LR(G, Ĝ).

As it was pointed out by Guillemin-Sternberg [24], Heckman’s work [26] implies Theo-

rem 3.1. This result is also a consequence of Kempf-Ness’ theorem [29].

Example 3.2. If G is diagonally embedded in Ĝ = G×G then the branching problem is the

problem of decomposition of tensor products of 2 irreducible representations ofG. The cone

Q≥0LR(G, Ĝ) is denoted by Q≥0LR(G3). The cone C(K, K̂) =∶ C(K3) identifies with the

set of triples (O1,O2,O3) of adjoint orbits in k such that O1 +O2 +O3 contains 0. A good

survey on this case is [39].

3.2. Belkale-Kumar Schubert calculus. It is known since A. Klyachko [34] that the in-

equalities that characterize the cone Q≥0LR(G, Ĝ) are related to the cohomology of flag

varieties, that is to Schubert calculus. In 2006, Belkale-Kumar [7] defined a new product

on the cohomology groups of flag varieties that is useful to parametrize irredundantly the

inequalities of Q≥0LR(G, Ĝ).
Let P be a parabolic subgroup of G containing B. Let W and WP denote respectively

the Weyl groups of G and P . The Weyl group W is generated by the simple reflections sα
indexed by the simple roots α. The corresponding length function is denoted by l. Let WP

be the set of minimal length representative in the cosets of W /WP . For any w ∈ WP , let

Xw be the corresponding Schubert variety (that is, the closure of BwP /P ) and let σw ∈
H2(dim(G/P )−l(w))(G/P,C) be its cohomology class. The structure coefficients cw3

w1w2
of

the cup product are written as

σw1 .σw2 = ∑
w3∈WP

cw3
w1w2

σw3 , ∀w1,w2 ∈WP . (3.1)

Let L be the Levi subgroup of P containing T and let Z be the neutral component of the

center of L. Under the action of Z, the tangent space TP /PG/P of G/P at the base point

P /P decomposes as

TP /PG/P = ⊕
χ∈X(Z)

T χ, (3.2)

where Z acts on T χ with weight χ. By [2], each T χ is an irreducible L-module. For any

w ∈ WP , the tangent space Tw ∶= TP /Pw−1Xw of the variety w−1Xw at the smooth point

P /P also decomposes

Tw = ⊕
χ∈X(Z)

T χ
w , (3.3)

where T χ
w = T χ ∩ Tw. The weights of T in Tw are the opposite of the elements of the

inversion set

Φ(w) = {α ∈ Φ+ ∶ wα ∈ −Φ+},
whereΦ+ is the set of positive roots ofG relatively toB. It is contained in the setΦ(G/P ) of
positive roots that are not roots of L. Ifw ∈W thenw ∈WP if and only ifΦ(w) is contained
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in Φ(G/P ). For χ ∈ X(Z), denote Φ(w,χ) the set of α ∈ Φ(w) whose the restriction to

Z is −χ. Similarly, define Φ(G/P,χ). Since σw has degree 2(♯Φ(G/P ) − ♯Φ(w)) in the

graded algebra H∗(G/P ), if cw3
w1w2

≠ 0 then

♯Φ(w1) + ♯Φ(w2) = ♯Φ(G/P ) + ♯Φ(w3), (3.4)

that is

∑
χ∈X(Z)

( ♯Φ(w1, χ) + ♯Φ(w2, χ) = ) = ∑
χ∈X(Z)

( ♯Φ(G/P ) + ♯Φ(w3)). (3.5)

The Belkale-Kumar product requires the equality (3.5) to hold term by term. More precisely,

the structure constants c̃w3
w1w2

of the Belkale-Kumar product ⊙,

σw1⊙σw2 = ∑
w3∈WP

c̃w3
w1w2

σw3 (3.6)

can be defined as follows (see [65, Proposition 2.4]):

c̃w3
w1w2

= { cw3
w1w2

if ∀χ ∈X(Z) ♯Φ(w1, χ) + ♯Φ(w2, χ) = ♯Φ(G/P ) + ♯Φ(w3),
0 otherwise.

(3.7)

Theorem 3.3 ([7]). The product ⊙ onH∗(G/P,C) is commutative, associative and satisfies
Poincaré duality.

Denote by p the Lie algebra of P and consider the convex cone C in X(Z)Q generated

by the weights of Z acting on p. It is a closed strictly convex polyhedral cone in X(Z)Q.
Consider the partial order ≽ on X(Z)Q defined by α≽β if and only if α − β belongs to C.

Then

T ≽α ∶= ⊕β≽αT β (3.8)

is P -stable. Observe that the tangent bundle T G/P of G/P identifies with the fiber product

G ×P TP /PG/P . Since T ≽α is P -stable, it induces a G-homogeneous sub-bundle T ≽αG/P
of the tangent bundle T G/P . This family of G-sub-bundles is decreasing: if α≽β then

T ≽αG/P is a sub-bundle of T ≽βG/P . It is also integrable in the sense that

[T ≽αG/P,T ≽βG/P ] ⊂ T ≽α+βG/P. (3.9)

This allows us to define a filtration (“Ãă la Hodge”) of the De Rham complex and hence of

the algebra H∗(G/P,C) indexed by the group X(Z). We consider the associated graded

algebra.

Theorem 3.4 ([57]). The X(Z)-graded algebra GrH∗(G/P,C) associated to the X(Z)-
filtration is isomorphic to the Belkale-Kumar algebra (H∗(G/P,C),⊙).

Sketch of proof. The key point to prove the isomorphism is that the subspaces of the fil-

tration of H∗(G/P,C) are spanned by the Schubert classes (σw)w∈WP that it contains. To

obtain this result, we use Kostant’s harmonic forms [37].
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3.3. A description of Q≥0LR(G,Ĝ). Let λ be a one parameter subgroup of T . The set

of g ∈ G such that limt→0 λ(t)gλ(t−1) exists in G is a parabolic subgroup of G denoted by

P (λ). Since λ is also a one parameter subgroup of Ĝ we have a parabolic subgroup P̂ (λ)
and an embedding φλ ∶ G/P (λ) 
→ Ĝ/P̂ (λ). The comorphism φ∗λ in cohomology induces

a morphism (see [65]) φ⊙λ ∶ (H∗(Ĝ/P̂ (λ),C),⊙) 
→ (H∗(G/P (λ),C),⊙).

A description of Q≥0LR(G,Ĝ). An indivisible dominant λ ∈X∗(T ) is said to be special
if the set of weights χ of T acting on ĝ/g such that ⟨χ,λ⟩ = 0 spans an hyperplane ofX(T )Q.

Theorem 3.5. Assume that no ideal of g is an ideal of ĝ. Let (ν, ν̂) ∈ X(T × T̂ )+Q. Then
(ν, ν̂) belongs to Q≥0LR(G, Ĝ) if and only if

⟨wλ, ν⟩ + ⟨ŵλ, ν̂⟩ ≤ 0 (3.10)

for any special λ ∈X∗(T ), for any w ∈WP (λ) and ŵ ∈ Ŵ P̂ (λ) such that

φ⊙λ(σŵ) ⊙ σw = σe. (3.11)

Moreover, this system of inequalities is irredundant.

Sketch of proof. Consider the action ofG onX = G/B×Ĝ/B̂. As explained in Section 2.3,

it remains to determine CG,+(X).
Let L be a semi-ample G-linearized line bundle on X . Let x be a point in X and λ ∶

C∗ 
→ G be a one parameter subgroup. Since X is complete, limt→0 λ(t)x exists; let z
denote this limit. The image of λ fixes z, and hence, acts via λ on the fiber Lz . There exists

an integer denoted by μL(x,λ) such that for all t ∈ C∗ and z̃ ∈ Lz we have:

λ(t).z̃ = t−μ
L(x,λ)z̃.

The integers μL(x,λ) are used in [53] to give a numerical criterion (namely the Hilbert-

Mumford criterion) for stability with respect to an ample L. With definition (2.1) of semi-

stability, the Hilbert-Mumford theorem admits the following direct generalization.

Lemma 3.6 (See e.g. [60, Lemma 2]). Recall that L is semi-ample. Then, x is semi-stable
for L if and only if μL(x,λ) ≤ 0 for any one parameter subgroup λ of G.

Assume now that λ is a dominant one parameter subgroup of T . Fix an irreducible

component C of the fixed point set Xλ of λ in X . Denote by C+ the Białinicky-Birula cell

of points x ∈ X such that limt→0 λ(t)x ∈ C. Let L ∈ C+(X). The integer μL(x,λ) does

not depend on x in C+; let μL(C,λ) denote this integer. A key observation is the following

lemma.

Lemma 3.7. If G.C+ is dense in X and Xss(L) is not empty then μL(C,λ) ≤ 0.

Proof. SinceXss(L) is open, it intersectsG.C+. SinceXss(L) isG-stable, it intersects C+.

Let x ∈ C+ ∩Xss(L). By Lemma 3.6, μL(C,λ) = μL(x,λ) ≤ 0.
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The subvariety C+ is P (λ)-stable and one can form the fibered product G ×P (λ) C+.

Consider the morphism
η ∶ G ×P (λ) C+ 
→ X

[g ∶ x] �→ gx.

There exists (w, ŵ) ∈ WP (λ) × Ŵ P̂ (λ) such that C+ = P (λ)w−1B/B × P̂ (λ)w−1B̂/B̂.

Using Kleiman’s transversality theorem, one can prove that η is dominant if and only if

φ∗λ(σŵ).σw ≠ 0. (3.12)

Since

μL(ν,ν̂)(C,λ) = ⟨wλ, ν⟩ + ⟨ŵλ, ν̂⟩,
this proves that inequalities (3.10) in the theorem are satisfied by points in Q≥0LR(G, Ĝ).

If we believe the theorem, we just obtained a redundant family of inequalities. We now

explain how to prove that the inequalities corresponding to pairs (w, ŵ) satisfying condi-

tion (3.11) are sufficient to characterize the cone. We check that η is birational if and only

if φ∗λ(σŵ).σw = σe. One can prove that the stronger condition (3.11) is equivalent to the

existence of an open G-stable subset Ω in X that intersects C such that the restriction of η
to G ×P (λ) (C+ ∩ Ω) is an isomorphism onto Ω. In this case, the pair (C,λ) is said to be

well covering. The point is that, given L ∈ C+(X) − CG,+(X), Kempf’s theorey of instabily

allows to construct a well covering pair (C,λ) such that μL(C,λ) > 0. Note that Ω can be

choosen to be the open Hesselink strata (see [33]).

Fix a well covering pair (C,λ), where λ ∈ X∗(T ) is dominant and indivisible. Let

F(C,λ) denote the set of L ∈ CG,+(X) such that μL(C,λ) = 0; it is a face of CG,+(X).
Let L ∈ F(C,λ) and x ∈ Xss(L) ∩ C+. Let n > 0 and σ ∈ H0(X,L⊗n)G such

that σ(x) ≠ 0. Set z = limt→0 λ(t)x. From μL(x,λ) = 0, one can deduce that σ(z) =
limt→0 λ(t)σ(x) belongs to the pointed fiber Lz − {z}. In particular z is semi-stable. It

follows that the neutral component G○
z of the isotropy of z acts trivialy on Lz . In λ is not

special, this implies that L belongs to a codimension 2 linear subspace of PicG(X)Q. In

particular, F(C) has not codimension one and the inequality μL(C,λ) can be removed.

The last step is to prove the irredundancy. Fix a well covering pair (C,λ) with some

special λ. We have to prove that F(C,λ) has codimension one. Consider the restriction

morphism

ρ ∶ PicG(X)Q 
→ PicG
λ

(C)Q.
An explicit computation shows that ρ is surjective. Moreover, by induction, the dimension of

CGλ,+(C) is equal to dim(PicG(X)Q)−1. LetM ∈ PicG
λ

(C) such thatH0(C,M)Gλ ≠ 0.
It would be sufficient to prove that there exists L ∈ PicG(X) such that H0(X,L)G ≠ 0 and

ρ(L) = M. This is not true directly but it is true after a little modification of M. Let

L ∈ PicG(X) such that ρ(L) =M. Fix a nonzero regular Gλ-invariant section τ ofM. Let

η and Ω ⊂ X be as above. Let E1, . . . ,Ek be the codimension one irreducible components

ofX−Ω. Using the inverse of η one can prove that L∣Ω admits a nonzeroG-invariant section

σ. Then, σ does not necessarily extend to a section of L on X; but it certainly extends to a

section of L⊗dO(∑iEi) for d big enough. Since noEi containsC, L⊗dO(∑iEi) belongs
to F(C,λ).

By this method, one can produce a family of points in F(C,λ) that generates a codi-

mension one cone. The irredundancy follows.
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3.4. The case of Q≥0LR(G3). We assume that G is semi-simple and simply connected

and we consider the cone Q≥0LR(G3). The set of non-trivial weights of T acting on ĝ/g is

Φ. There are rk(G) special one parameter subgroups of T ; for any simple root α exactly

one λα is proportional to the fundamental coweight �α∨ . The parabolic subgroup P (λα) is
the maximal parabolic subgroup Pα containing B associated to α.

Theorem 3.8. Let (ν1, ν2, ν3) ∈ (X∗(T )+Q)3. Then (ν1, ν2, ν3) ∈ Q≥0LR(G3) if and only if

3

∑
i=1

⟨wi�α∨ , νi⟩ ≤ 0 (3.13)

for any simple root α and any w1,w2,w3 ∈WPα such that

σw1⊙σw2⊙σw3 = σe. (3.14)

Moreover, this list of inequalities is irredundant.

Theorem 3.8 without the irredundancy is the main result of [7].

The Horn case. LetHn(C) be the space of Hermitian matrices of size n. For A ∈ Hn(C),
we denote by λ(A) = (λ1 ≥ ⋯ ≥ λn) ∈ Rn the spectrum of A. For G = GLn(C) diagonally
embedded in Ĝ = G ×G, Section 3.1 implies that the cone R≥0LR(G, Ĝ) identifies with

HornR(n) = {(λ(A), λ(B), λ(C)) ∈ R3n ∶ A,B,C ∈ Hn(C) s.t.
A +B +C = 0 } .

After an easy reduction, we can apply Theorem 3.8 (with SLn(C) ⊂ SLn(C)×SLn(C))
to obtain a description of HornR(n). The homogeneous spaces G/Pα are the Grassmannian

variety G(r, n) of r-dimensional subspaces of Cn. The Schubert classes (σI)I∈S(r,n) of

G(r, n) are indexed by the set S(r, n) of subsets of {1,⋯, n}with r elements. SinceG(r, n)
is cominuscule, the product ⊙ coincinde with the ordinary one.

Theorem 3.9. Let (λ,μ, ν) be a triple of non-increasing sequences of n real numbers. Then
(λ,μ, ν) ∈ HornR(n) if and only if

∑
i

λi +∑
j

μj +∑
k

νk = 0 (3.15)

and

∑
i∈I

λi + ∑
j∈J

μj + ∑
k∈K

νk ≤ 0, (3.16)

for any r ∈ {1,⋯, n − 1}, for any I, J,K ∈ S(r, n) such that

σI .σJ .σK = σe. (3.17)

Moreover, this list of inequalities is irredundant.

Example 3.10 (Q≥0LR(SL3(C)3)). The symmetric group S3 acts on Q≥0LR(G3) by per-

muting the three copies of G. Since (V1 ⊗ V2 ⊗ V3)G and (V ∗
1 ⊗ V ∗

2 ⊗ V ∗
3 )G have the

same dimension the group Z/2Z also acts on Q≥0LR(G3). Finally, we get an action of
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S3 × Z/2Z. For SL3(C), we use the base of fundamental weights to identify X(T )+ with

Z2
≥0 and Q≥0LR(SL3(C)3) with a cone in Z6. Let (ν1, ν2, ν3) be three dominant weights

corresponding to (x1, x2, y1, y2, z1, z2) ∈ Z6
≥0. If x1 + y1 + z1 + 2(x2 + y2 + z2) is not a

multiple of 3, then cSL3(ν1, ν2, ν3) = 0 (to check this, one can consider the action of the

center of SL3(C)). Assume now that 3 divides x1 + y1 + z1 + 2(x2 + y2 + z2) and set

δ = 1
3
(x1 + y1 − z2 + 2(x2 + y2 − z1). Then cSL3(ν1, ν2, ν3) is equal to the Littlewood-

Richardson coefficient cz1+z2+δ≥x2δ≥δ
x1+x2≥x2, y1+y2≥y2 .

There are two Grassmannians homogeneous under SL3(C), P2 and its dual. In P2, the

identity [P1].[P1].[P2] = [pt] gives the inequality x1 − x2 + y1 − y2 + z1 + 2z2 ≥ 0 and the

relation [P2].[P2].[pt] = [pt] gives the inequality x1 + 2x2 + y1 + 2y2 − 2z1 − z2 ≥ 0. Using

the action of S3 × Z/2Z, we get 12 inequalities. Adding the inequalities of dominance, we

get that Q≥0LR(SL3(C)3) has 18 facets.

Consider the point b = (1,1,1,1,1,1) ∈ Q≥0LR(SL3(C)3). The cones generated by

b and one of the 18 facets of Q≥0LR(SL3(C)3) are the maximal cones of the GIT-fans.

Assuming that 3 divides x1+y1+z1+2(x2+y2+z2), the Littlewood-Richardson coefficient

cz1+z2+δ≥x2δ≥δ
x1+x2≥x2, y1+y2≥y2 is given on the cones corresponding to the inequalities x1 ≥ 0, x1 − x2 +
y1 − y2 + z1 + 2z2 ≥ 0 and x1 + 2x2 + y1 + 2y2 − 2z1 − z2 ≥ 0 respectively by the polynomials

1 + x1, 1 + 1
3
(x1 − x2 + y1 − y2 + z1 + 2z2) and 1 + 1

3
(x1 + 2x2 + y1 + 2y2 − 2z1 − z2).

Theorem 3.9 has a rich and long story starting with H. Weyl [71] who proved, in 1912,

inequalities (3.16) for G/Pα = Pn−1. In 1998, A. Klyachko [34] made an important step

proving the theorem is true (without the irredundancy) if condition (3.17) is replaced by

σI .σJ .σK = dσe, for some positive integer d. (3.18)

In 2000, Belkale [4] proved that Klyachko’s condition (3.18) can be replaced by condi-

tion (3.17). The irredundancy was first proved by Knutson-Tao-Woodward in [36] using the

Honeycomb model for Littlewood-Richardson coefficients.

Let us now explain Horn’s contribution. For I = {i1 < ⋯ < ir} ∈ S(r, n), set τ I =
(ir − r, . . . , i1 − 1) and I∨ = {n + 1 − ir < ⋅ ⋅ ⋅ < n + 1 − i1}. In 1962, Horn conjectured that

Theorem 3.9 is true if one replaces condition (3.17) by

(τ I , τJ , τK − (n − r)r) ∈ Horn(r), (3.19)

where (n − r)r = (n − r, . . . , n − r) in Rr. By the classical Lesieur’s result (see [43]),

σI .σJ .σK = dσe is equivalent to cτ
K∨

τIτJ = d. In particular, Klyachko’s condition is equivalent

to

cτ
K∨

τIτJ > 0, (3.20)

whereas condition (3.19) is equivalent to

∃k > 0 ckτ
K∨

kτI kτJ > 0. (3.21)

The equivalence between conditions (3.20) and (3.21) is called saturation (see Section 5) and

was first proved by Knutson-Tao in [35].

Horn’s conjecture has the advantage to be inductive and elementary (without cohomol-

ogy or representation theory). Theorem 3.9 has the advantage to give the minimal list of

inequalities. In [63], we get the two advantages by giving an inductive algorithm to decide

if a given Littlewood-Richardson coefficient is equal to one or not.
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3.5. Some inequalities for nonzero Kronecker coefficients.. If α = (α1 ≥ α2 ≥ ⋯ ≥ αe ≥
0) is a partition, we set ∣α∣ = ∑i αi in such a way α is a partition of ∣α∣. Consider the

symmetric group Sn on n letters. The irreducible representations of Sn are parametrized by

the partitions of n, see e.g. [45, I. 7] . Let [α] denote the representation of S∣α∣ corresponding
to α. The Kronecker coefficients gαβ γ , depending on three partitions α, β, and γ of the same

integer n, are defined by

[α] ⊗ [β] = ∑
γ

gαβ γ[γ]. (3.22)

The length l(α) of the partition α is the number of nonzero parts αi.

Theorem 3.11 (see [64]). Let e and f be two positive integers and j ∈ {2, . . . , f +1}. Let α,
β, and γ be three partitions of the same integer n such that

l(α) ≤ e + 1, l(β) ≤ f + 1, and l(γ) ≤ e + f + 1. (3.23)

Let 0 < r < e, 0 < s < f , I ∈ S(r, e), J ∈ S(s, f) and K ∈ S(r + s, e + f) such that

cτ
K

τI τJ = 1. (3.24)

If gαβ γ ≠ 0 then

n +∑
i∈I

αi+1 − α1 + ∑
j∈J

βj+1 − β1 ≥ ∑
k∈K

γk+1 − γ1. (3.25)

Sketch of proof. Given a complex vector space V and a partitionα such that l(α) ≤ dim(V ),
let SαV denote the irreducibleGL(V )-representation of highest weight α. Fix two complex

vector spaces V1, V2 of dimension e + 1 and f + 1. The Schur-Weyl duality implies that

Sγ(V1 ⊗ V2) =⊕
αβ

gαβγS
αV1 ⊗ SβV2.

We consider the action de G = GL(V1) × GL(V2) on the product X of the manifolds of

complete flags in V1 and V2 and some partial flag manifold on V1⊗V2. The coefficient gαβ γ

is the dimension of the space of G-invariant sections of some line bundle on X . Then, we

use techniques similar to those used to prove Theorem 3.5.

3.6. Relations between cones Q≥0LR(G3) for various G. In this section, G is assumed

to be simple, simply connected and of simply-laced type. Consider an automorphism σ
of the Dynkin diagram of G. It induces an automorphism, still denoted by σ, of G that

stabilizes a maximal torus T , a Borel subgroup B and a compact form K of G. The fixed

point set Gσ is a simple group with maximal torus T σ , Borel subgroup Bσ and compact

form Kσ . The inclusion T σ ⊂ T induces an immersion X∗(T σ)R ⊂ X∗(T )R satisfying

X∗(T σ)+R =X∗(T σ)R∩ ⊂X∗(T )+R.

Theorem 3.12. We have

C((Kσ)3) = C(K3) ∩X∗(T σ)3R.
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Sketch of proof. The proof uses Theorem 3.5 and compares conditions (3.11) inG andGσ-

homogeneous spaces. Beyond this general principle, the proof is case by case according to

the following complete list:

(i) (SL2n(C),Sp2n(C)), n ≥ 2;
(ii) (SL2n+1(C),SO2n+1(C)), n ≥ 2;
(iii) (Spin2n(C),Spin2n−1(C)), n ≥ 4;
(iv) (Spin8(C),G2);
(v) (E6, F4).

The two first cases was proved in [8] (see also [68] for a simplification in some key argu-

ment). Case (iii) is proved in Braley’s thesis [12]. The two reamaning cases are proved in

Lee’s thesis [42].

Remark 3.13. As a consequence of Theorem 3.12, it is proved in [63] that condition (3.11)

in Theorem 3.5 in the cohomology of symplectic and odd orthogonal Grassmannians are

equivalent to similar conditions for ordinary Grassmannians.

4. Reduction for coefficients on the boundary

In this section, we are intersted in the coefficients cG,Ĝ(ν, ν̂) when (ν, ν̂) belongs to the

boundary of LR(G, Ĝ). Indeed, such multiplicities are equal to analogous numbers for

Levi subgroups of G and Ĝ. The results could be obtained by applying results of type

“quantification commutes with reduction” in symplectic geometry (see [25]). Our proof is

more direct. Indeed, it remains to prove that two spaces have the same dimension: we find

an explicit and natural isomorphism.

Theorem 4.1. Let X = G/P × Ĝ/P̂ be a flag manifold for the group G × Ĝ. Let λ be a
one-parameter subgroup of G and C be an irreducible component of the fixed point set Xλ

of λ in X . Let Gλ be the centralizer of the image of λ in G. We assume that (C,λ) is
a well covering pair . Let L be a G-linearized line bundle on X generated by its global
sections such that λ acts trivially on the restriction L∣C . Then the restriction map induces an
isomorphism

H0(X,L)G 
→H0(C,L∣C)G
λ

,

between the spaces of invariant sections of L and L∣C .

Sketch of proof. Consider the closure C+ of the Białynicki-Birula cell C+. The morphism

η ∶ G ×P (λ) C+ 
→ X
[g ∶ x] �→ gx

that is proper and birational, induces a G-equivariant isomorphism

H0(X,L) ≃H0(G ×P (λ) C+, η∗(L)).

In particular

H0(X,L)G ≃H0(G ×P (λ) C+, η∗(L))G ≃H0(C+,L∣C+)
P (λ).
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On the other hand, since λ acts trivially on L∣C , [60, Lemma 5] proves that

H0(C+,L∣C+)P (λ) ≃H0(C,L∣C)G
λ

. (4.1)

Then we have to prove that

H0(C+,L∣C+)
P (λ) ≃H0(C+,L∣C+)P (λ);

that is, that any regular P (λ)-invariant section σ of L on C+ extends to C+. Using the

SL2-theory, one can checks that such a section has no pole along the divisors of C+−C. We

conclude that such a section extends to C+ by normality of C+ that is a Schubert variety.

Let F be a face of Q≥0LR(G, Ĝ). Assume that F is regular, that is that it contains pairs

(ν, ν̂) of regular dominant weights. If S is a torus inG andH is a subgroup ofG containing

S, HS denotes the centralizer of S in H . By [61], the regular face F corresponds to a pair

(S, ŵ) where S is a subtorus of T and ŵ ∈ Ŵ such that

ĜS ∩ ŵB̂ŵ−1 = B̂S , (4.2)

and the span of F is the set of pairs (ν, ν̂) ∈ (X(T ) ×X(T̂ )) ⊗Q such that

ν∣S + ŵν̂∣S = 0 ∈X(S) ⊗Q. (4.3)

Corollary 4.2. Let (ν, ν̂) ∈ X(T )+ ×X(T̂ )+ be a pair of dominant weights. Assume that
(ν, ν̂) belongs to the span of F (equivalently that it satisfies condition (4.3)). Then

cν ν̂(G, Ĝ) = cν ŵν̂(GS , ĜS).

Sketch of proof. The corollary is obtained by applying Theorem 4.1 withX = G/B × Ĝ/B̂
and C = GSB/B × ĜSŵB̂/B̂.

Several particular cases of Theorems 4.1 and its corollary was known before. If G = T
is a maximal torus of G = GLn(C), our theorem is equivalent to [30, Theorem 5.8]. If

Ĝ = G×G (or more generally Ĝ = Gs for some integer s ≥ 2) andG is diagonally embedded

in Ĝ then cν ν̂(G, Ĝ) (resp. cν ŵν̂(GS , ĜS)) are tensor product multiplicities for the group

G (resp. GS). This case was recently proved independently by Derksen and Weyman in

[21, Theorem 7.4] and King, Tollu and Toumazet in [31, Theorem 1.4] if G = GLn(C) and
for any reductive group by Roth in [66]. If ν is regular then Theorem 4.1 can be obtained

applying [14, Theorem 3] and [60]. Similar reductions can be found in [13, 46, 50].

Remark 4.3. In Section 3.4, we seen that the multiplicities corresponding to the points in the

boundary of the cone Q≥0LR(SL3(C)3) are equal to one. This agrees with Corollary 4.2,

since the tensor product of two irreducible SL2(C)-modules is multiplicity free.
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5. The question of saturation

5.1. The branching semigroup. Consider the set LR(G, Ĝ) of pairs (ν, ν̂) of dominant

weights such that cG,Ĝ(ν, ν̂) ≠ 0.

Theorem 5.1 (Brion-Knop (see [23])). The set LR(G, Ĝ) is a finitely generated semigroup
in X(T )+ ×X(T̂ )+.

Proof. Start with Frobenius’ decomposition of C[Ĝ] as a Ĝ × Ĝ-module:

C[Ĝ] = ⊕
ν̂∈X(T̂ )+

VĜ(ν̂) ⊗ VĜ(ν̂)
∗.

Let U and Û− denote the unipotent radicals of B and B̂−. Consider the algebra

C[Ĝ]U×Û
−

= ⊕
ν̂∈X(T̂ )+

VĜ(ν̂)
U ⊗ (VĜ(ν̂)

∗)Û
−

.

Observe that T̂ acts on the line (VĜ(ν̂)∗)Û
−

by the weight −ν̂ and that VG(ν) is a submodule

of VĜ(ν̂) if and only if VĜ(ν̂)U contains a T -eigenvector of weight ν. Then (ν, ν̂) belongs
to LR(G, Ĝ) if and only if (ν,−ν̂) is a weight of T × T̂ acting on the algebra C[Ĝ]U×Û− .
This implies that LR(G, Ĝ) is a semigroup.

To prove that LR(G, Ĝ) is finitely generated it is sufficient to prove that C[Ĝ]U×Û− is.

Recall that C[G]U is finitely generated. But

C[Ĝ]U×Û
−

= (C[G]U ⊗C[Ĝ]Û
−

)G.

Since C[G]U and C[Ĝ]Û− are finitely generated and G is reductive the Hilbert theorem

implies that C[Ĝ]U×Û− is finitely generated.

The subgroup of X(T × T̂ ) generated by LR(G, Ĝ) is denoted by ZLR(G, Ĝ). We

already described the cone Q≥0LR(G, Ĝ). The following statement describes the group

ZLR(G, Ĝ).

Proposition 5.2 (see [17, 55]). Assume that no ideal of g is an ideal of ĝ. Let Ẑ denote the
center of Ĝ.

Then the group ZLR(G, Ĝ) is the set of pairs (ν, ν̂) ∈X(T × T̂ ) such that

ν(t).ν̂(t) = 1

for any t ∈ Ẑ ∩G.

The semigroup is said to be saturated if it can be recovered from the knowledge of the

coneQ≥0LR(G, Ĝ) and the group ZLR(G, Ĝ):

Definition 5.3. The semigroup LR(G, Ĝ) is said to be saturated if

LR(G, Ĝ) = Q≥0LR(G, Ĝ) ∩ZLR(G, Ĝ). (5.1)
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5.2. The case of tensor product decomposition. In this section, we review results on the

saturation of LR(G3) for G is simple and simply connected. Observe that ZLR(G, Ĝ) is

the set (ν1, ν2, ν3) ∈X∗(T )3 such that ν1 + ν2 + ν3 belongs to the root lattice ΛR.

Theorem 5.4 (Knutson-Tao). The semigroup LR(G3) is saturated for G = SLn(C).
The first proof [35] of Theorem 5.4 due to Knutson and Tao uses a combinatorial model

for Littlewood-Richardson coefficients called honeycombs. Belkale reproved [5] this theo-

rem using intersection theory. Derksen and Weyman reproved [20] this result using repre-

sentations of quivers and Kapovich and Millson obtained a proof [28] using the geometry of

Bruhat-Tits buildings.

The best known uniform generalization of Theorem 5.4 to any simple group G is

Theorem 5.5 (Kapovich-Millson [28]). Let ν1, ν2, and ν3 be three dominant weights of the
simple group G. Let k be the square of the least common multiple of the coefficients of the
highest root of G written in terms of simple roots.

If (VG(Nν1) ⊗ VG(Nν2) ⊗ VG(Nν3))G ≠ {0} for some positive integer N and ν1 +
ν2 + ν3 ∈ ΛR, then (VG(kν1) ⊗ VG(kν2) ⊗ VG(kν3))G ≠ {0}.

Observe that for G = SLn(C), k = 1. Belkale and Kumar [9] and Sam [67] obtained

better constants than k for classical groups.

Two important conjectures in the topic are still open. The first one asserts that ten-

sor product decompositions for simply-laced groups satisfy the saturation property. It was

checked by explicit computations for G = Spin8(C) in [27]. Observe that, for G of type

E8, the constant k in Theorem 5.5 is equal to 3600. The second conjecture asserts that

Theorem 5.5 is satisfied with k = 1 for any G if the weights νi are regular.

5.3. Other examples. IfG = T̂ , (ν, ν̂) belongs to the group ZLR(G, Ĝ) if and only if ν̂−ν
belongs to the root lattice Λ̂R. The multiplicities cG,Ĝ(ν, ν̂) are given by the character of

VĜ(ν̂). The saturation is well known in this case.

Others examples of semigroups have been determined explicitly in [55]. A consequence

of these computations is the following list of examples of saturated semigroups.

Theorem 5.6. For (G, Ĝ) = (Spin2n−1(C),Spin2n(C)), (SL3(C),G2), (G2,Spin7(C)),
(Spin9(C), F4), (F4,E6), (Sp4(C),SL4(C)), (Sp6(C),SL6(C)), (Sp8(C),SL8(C)) and
(Sp10(C),SL10(C)) the semigroup LR(G, Ĝ) is saturated.

6. PRV

6.1. The classical case. Recall that X(T )+ is a fundamental domain for the action of W
onX(T ) ; for any ν ∈X(T ), we denote by ν the unique dominant element in the orbitW.ν.
Parthasarathy-Ranga Rao-Varadarajan conjectured in the sixties [54] (a weaker version of)

the following

PRV conjecture. Let VG(μ) and VG(ν) be two irreducible G-modules with highest weights

μ and ν respectively. Then, for any w ∈ W , the irreducible G-module VG(μ +wν) with

extremal weight μ +wν, occurs with multiplicity at least one in VG(μ) ⊗ VG(ν).

This conjecture was proved independently by S. Kumar in [41] and O. Mathieu in [47].
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6.2. A double generalization. The homogeneous space Ĝ/G is said to be spherical if it
contains an open B̂-orbit. It is said to be spherical of minimal rank if there exists a T -fixed

point in Ĝ/B̂ whose the G-orbit is open. This condition is very strong and was classified in

[62]. The pairs (G, Ĝ) such that Ĝ/G is spherical of minimal rank reduces to the following

list (G,G × G), (Sp2n(C),SL2n(C)), (Spin2n−1(C),Spin2n(C)), (G2,Spin7(C)) and

(F4,E6).
Let ρ ∶ X(T̂ ) 
→ X(T ) be the restriction morphism. Let Δ (resp Δ̂) denote the set of

simple roots of G and Ĝ. By [62, Lemma 4.6], ρ(Δ̂) = Δ. Moreover, for any α ∈ Δ, we

have the following alternative:

(i) there exists a unique α̂0 ∈ Δ̂ such that ρ(α̂0) = α; or
(ii) there exist exactly two simple roots α̂1 and α̂2 in Δ̂ such that ρ(α̂1) = ρ(α̂2) = α.

The set of simple roots satisfying the second assertion is denoted by Δ2. For α ∈ Δ2,

let Ŵα denote the subgroup of Ŵ generated by sα̂1 and sα̂2 . Then Ŵα is isomorphic to

Z/2Z ×Z/2Z.

Theorem 6.1 ([51, 52]). Fix two connected reductive groupsG ⊂ Ĝ such that Ĝ/G is spher-
ical of minimal rank. Let α ∈Δ2 and ŵ ∈ Ŵ .

Let ν̂ be a dominant weight of Ĝ. Let ŵ1 ∈ Ŵαŵ be such that ⟨ρ(ŵ1ν̂), α⟩ is maximal.
Fix an integer k such that 0 ≤ k ≤ min(⟨ρ(sα̂1ŵ1ν̂), α̂∨1⟩, ⟨ρ(sα̂2ŵ1ν̂), α̂∨2⟩). Then, if

ν = ρ(ŵ1ν̂) − kα is dominant, the irreducible G-module VG(ν) occurs with multiplicity at
least one in VĜ(ν̂).

For Ĝ = G ×G and k extremal in the interval, Theorem 6.1 implies the PRV conjecture.

Sketch of proof. Denote the Ĝ-linearized line bundle Lν̂ on Ĝ/B̂ such that H0(Ĝ/B̂,Lν̂)
is isomorphic to VĜ(ν̂)∗. Set v̂ = sα̂1ŵ ∈ Ŵ , X○(v̂) = G.v̂B̂/B̂. Let X(v̂) denote the

closure of X○(v̂). By [15, Corollary 8], the restriction map

H0(Ĝ/B̂,Lν̂) 
→H0(X(v̂),Lν̂)

is surjective. Then, it is sufficient to prove the existence of a section σ ∈H0(X(v̂),Lν̂) that
is an eigenvector of weight −ν for B−.

We first construct a section τ ∈H0(X(v̂),L⊗nν̂ ) that is an eigenvector of weight −nν for

B−, for some positive integer n. Consider X = G/B− × Ĝ/B̂, the neutral component S ⊂ T
of the kernel of α, the centralizer GS of S in G, the fixed point set XS of S in X and the

irreducible component C of XS containing (B−/B−, v̂B̂/B̂). Let Lν ⊗Lν̂ be the (G× Ĝ)-
linearized line bundle on X such that H0(X,Lν ⊗ Lν̂) ≃ VG(ν) ⊗ VĜ(ν̂)∗. Actually, GS

is isomorphic to (P)SL2(C) and C is isomorphic to (P1)3. We can deduce that C contains

points semi-stable for the action of GS relatively to Lν ⊗ Lν̂ . Then, a Luna’s theorem (see

[44, Corollary 2 and Remark 1] shows that C contains points semi-stable for the action of

G. The existence of τ and n follows.

Secondly, we prove that dim(H0(X○(v̂),Lν̂)(B
−)−ν ) = 1. Observe that the stabilizer

Gv̂B̂/hB contains T . Then, Forbenius’ theorem allows to embed H0(X○(v̂),Lν̂)(B
−)−ν in

VG(ν̂)(T )ρ(v̂ν̂) . Since ρ(v̂ν̂) belongs to ν + Zα this space has dimension at most one (it

is, once again, a consequence of the SL2-theory). From the existence of τ , we deduce that

H0(X○(v̂),Lν̂)(B
−)−ν and VG(ν̂)(T )ρ(v̂ν̂) have dimension one.



Some qualitative properties of branching multiplicities 181

Finally, fix a nonzero element σ ∈ H0(X○(v̂),Lν̂)(B
−)−ν . By unicity σ⊗n and the re-

striction τ∣X○(v̂) must coincide (up to scalar multiplication). In particular, σ⊗n extends to a

section of L⊗nν̂ on X(v̂). Since X(v̂) is normal (see [16, Theorem 1]), σ itself extends to a

section of Lν̂ on X(v̂). This ends the proof.

It is natural to ask if the LR(Sp2n(C),SL2n(C)) is saturated for any n.

7. The multiplicative Horn problem

In this section, we assume that G is simple and simply-connected.

7.1. The Meinrenken-Woodward polytope. Recall from Section 3.1 that C(K3) identi-

fies with the set of triples (O1,O2,O3) of adjoint orbits in k such thatO1+O2+O3 contains

0. We now consider a multiplicative analogous of C(K3). Let O1 and O2 be two conjugacy

classes in K. Then the product O1 ⋅ O2 = {k1k2 ∶ k1 ∈ O1 and k2 ∈ O2} is stable by

conjugacy.

What conjugacy classes are contained in O1 ⋅ O2? (†)

Let θ be the longest root of G. The fundamental alcove in X∗(T )R is

A∗ = {λ ∈X∗(T )R ∶ {
⟨λ,α⟩ ≥ 0 ∀α ∈Δ
⟨λ, θ⟩ ≤ 1 }.

Consider the exponential map

exp ∶ Lie(H) 
→ H
μ �→ exp(μ).

Any conjugacy class in K contains a unique element of the form exp(
√
−1λ) for some

λ ∈ A∗ (see e.g. [11, Chapter IX. §5]); we denote by OK
λ the conjugacy class containing

exp(
√
−1λ).

To answer the question (†) we want to describe the set

PK = {(λ1, λ2, λ3) ∈ A3
∗ ∶ OK

λ1
⋅ OK

λ2
⋅ OK

λ3
∋ e},

where e is the unit element ofK. According to the convexity theorem proved byMeinrenken-

Woodward [48], PK is a convex polytope of nonempty interior inA. The aim of this section

is to describe the minimal list of inequalities that characterize PK .

7.2. The fusion product. Let g̃ = g⊗C((z)) ⊕Cc be the affine Lie algebra with c central

in g̃ and

[x⊗ f, y ⊗ g] = [x, y] ⊗ fg + (x, y)Resz=0(gdf)c,
for x, y ∈ g and f, g ∈ C((z)). Set g̃+ = g ⊗ zC[[z]]. Fix a positive integer and set

X(T )+� = {ν ∈ X(T )+ ∶ ⟨ν, θ∨⟩ ≤ �}. For any ν ∈ X(T )+� , there exists a unique g̃-module

Vg̃(ν, �) such that c acts on by multiplication by � and the subspace of Vg̃(ν, �) annihilated
by g̃+ is isomorphic to Vg(ν) as a g-module.
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Consider now the projective line P1 with four distinct marked points {0, p1, p2, p3}. Set
U = P1 − {0} and consider the ring O(U) of regular functions on U identified with C[z−1].
Then g ⊗ O(U) is a sub-algebra of g̃ and acts on Vg̃(0, �). For each point pi, consider the
evaluation map evi ∶ O(U) 
→ C at pi and the associated morphism (still denoted evi)
from g⊗O(U) to g. Fix three weights ν1, ν2, ν3 ∈X(T )+� . Consider the action of g⊗O(U)
on Vg̃(0, �) ⊗ Vg(ν1) ⊗ Vg(ν2) ⊗ Vg(ν3) given by

ξ.(v0 ⊗ v1 ⊗ v2 ⊗ v3) = (ξv0) ⊗ v1 ⊗ v2 ⊗ v3 + v0 ⊗ (ev1(ξ)v1) ⊗ v2 ⊗ v3

+v0 ⊗ v1 ⊗ (ev2(ξ)v2) ⊗ v3

+v0 ⊗ v1 ⊗ v2 ⊗ (ev3(ξ)v3).

The space of conformal blocks V †
P1(ν1, ν2, ν3) can be defined (see [3, Corollary 3.5]) as

the space of g⊗O(U)-invariant linear forms on Vg̃(0, �) ⊗ Vg(ν1) ⊗ Vg(ν2) ⊗ Vg(ν3). It is
finite dimensional and the fusion multiplicities are

N �(ν1, ν2, ν3) = dim(V †
P1(ν1, ν2, ν3)).

The fusion product ⊛� on ⊕ν∈X(T )+

ZV (ν) is defined by

V (ν1) ⊛� V (ν2) = ∑
ν3∈X(T )+



N �(ν1, ν2, ν3)V (−w0ν3),

for any ν1, ν2 ∈X(T )+� . The product ⊛� is associative and commutative (see e.g. [3]).

The fundamental alcove in X∗(T )Q is

A∗
Q = {λ ∈X∗(T )Q ∶ {

⟨λ,α∨⟩ ≥ 0 ∀α ∈Δ
⟨λ, θ∨⟩ ≤ 1 }.

The multiplicative analogous to Q≥0LR(G3) is

P⊛ = {(ν1, ν2, ν3) ∈ (A∗
Q)3 ∶

�ν1, �ν2, �ν3 ∈X(T )+� and N �(ν1, ν2, ν3) ≠ 0,
for some positive �.

}.

Theorem 7.1 (see [69]). Let (ν1, ν2, ν3) ∈ (A∗
Q)3. Then (ν1, ν2, ν3) ∈ P⊛ if and only if

((ν1, ⋅)T , (ν2, ⋅)T ), (ν3, ⋅)T ) ∈ PK .

7.3. Relation with Q≥0LR(G3). The fusion multiplicities are related to the tensor product

multiplicities by

lim
�→∞

N �(ν1, ν2, ν3) = cG3(ν1, ν2, ν3). (7.1)

A trivial consequence for the cones is the following.

Proposition 7.2. The cone in X∗(T 3)R generated by P⊛ is Q≥0LR(G3).

7.4. Quantum Belkale-Kumar Schubert calculus. Fix a simple root α and consider the

associated maximal parabolic subgroup Pα containing B. Let Lα be its Levi-subgroup con-

taining T . The Picard group Pic(G/Pα) identifies with H2(G/Pα,Z) = Zσsα . We denote

by σ∗sα the element of Hom(H2(G/Pα,Z),Z) mapping σsα to 1.
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Let γ ∶ P1 
→ G/Pα be a curve. Identifying the group Pic(P1) to Z (by mapping

ample line bundles on positive integers), the pullback of line bundles induces an element

of Hom(H2(G/Pα,Z),Z) called the degree of γ and denoted by d(γ). By construction

d(γ) ∈ Z≥0σ
∗
sα .

Let ρ and ρLα denote the half sum of positive roots of G and Lα respectively. Set

nα = ⟨α∨,2(ρ − ρLα)⟩. (7.2)

Fix a nonnegative integer d. LetM0,3(G/P, d) be the moduli space of stable maps of degree

dσ∗sα with 3 marked points into G/Pα. It is a projective variety and

dim(M0,3(G/P, d)) = dim(G/Pα) + dnα.

It comes equipped with 3 evaluation maps evi ∶ M0,3(G/P, d) 
→ G/Pα. The Gromov-

Witten invariant associated to three Schubert classes (corresponding to wi ∈ WPα ) and a

degree d = dσ∗sα is then the intersection number

GW (w1,w2,w3;d) = ∫
M0,3(G/P,d)

ev∗1(σw1) ⋅ ev∗2(σw2) ⋅ ev∗3(σw3).

Introduce a variable q and consider the group

QH∗(G/Pα,Z) ∶=H∗(G/P,Z) ⊗Z[q]
=⊕w∈WPα Z[q]σw.

The Z[q]-linear quantum product ⋆ onQH∗(G/Pα,Z) is defined by, for anyw1,w2 ∈WPα ,

σw1 ⋆ σw2 = ∑GW (w1,w2,w3;d)qdσ∨w3
,

where the sum runs over w3 ∈WPα and over nonnegative integers d.

The grading on H∗(G/Pα,Z) extends to the quantum setting by setting deg(q) = 2nα.
In particular GW (w1,w2,w3;d) ≠ 0 implies

l(w1) + l(w2) + l(w3) + dnα = 2dim(G/Pα). (7.3)

Condition (7.3) can be rewritten like

♯Φ(w1) + ♯Φ(w2) + ♯Φ(w3) + dnα = 2 ♯Φ(G/Pα). (7.4)

Set h = dα∨. Since 2(ρ − ρLα) = ∑β∈Φ(G/P ) β, condition (7.4) can be rewritten like

∑
χ∈X∗(Z)

(
3

∑
i=1

♯Φ(wi, χ) + ∑
β∈Φ(G/P,χ)

⟨h, β⟩) = 2 ∑
χ∈X∗(Z)

♯Φ(G/P,χ). (7.5)

The Belkale-Kumar quantum product requires the equality (7.5) to hold term by term.

More precisely, set

σw1 ⍟ σw2 = ∑
w3 ∈WP

d ∈ Z≥0

G̃W (w1,w2,w3;d)qdσ∨w3
, (7.6)
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where G̃W (w1,w2,w3;d) = GW (w1,w2,w3;d) if

∀χ ∈X(Z) ∑
i

♯Φ(wi, χ) + ∑
β∈Φ(G/Pα,χ)

d⟨α∨, β⟩ = 2 ♯Φ(G/P,χ), (7.7)

and G̃W (w1,w2,w3;d) = 0 otherwise.

Theorem 7.3 (Belkale-Kumar [10]). The product ⍟ is associative.

7.5. Descriptions of PK . Let �α denote the fundamental weight associated to α. To any

(w1,w2,w3) ∈ (WPα)3 and any d ∈ Z≥0, we associate the following linear inequality on

points (λ1, λ2, λ3) in X∗(T )R:

Iα(w1,w2,w3;d) ⟨w1�α, λ1⟩ + ⟨w2�α, λ2⟩ + ⟨w3�α, λ3⟩ ≤ d.

Here, comes a first description of PK .

Theorem 7.4 (Teleman-Woodward, see [69]). Let (λ1, λ2, λ3) ∈ A3
∗. Then (λ1, λ2, λ3) ∈

PK if and only if inequality Iα(w1,w2,w3;d) is fulfilled for any simple root α, any nonneg-
ative integer d and any w1,w2,w3 ∈WPα such that

GW (w1,w2,w3;d) = 1 (7.8)

in G/Pα.

Recently, Theorem 7.4 was improved as follows.

Theorem 7.5 (Belkale-Kumar [10], R. [58]). Let (λ1, λ2, λ3) ∈ A3
∗. Then (λ1, λ2, λ3) ∈ PK

if and only if inequality Iα(w1,w2,w3;d) is fulfilled for any simple root α, any nonnegative
integer d and any (w1,w2,w3) such that, in QH∗(G/Pα),

G̃W (w1,w2,w3;d) = 1. (7.9)

Now, Theorem 7.5 is optimal.

Theorem 7.6 (Belkale-Kumar [10]). The list of inequalities given by Theorem 7.5 is irre-
dundant.

Remark 7.7. ForG classical, condition (7.9) can be checked using works of Bertram, Buch,

Kresch and Tamvakis or the software qcalc [18]. Explicit lists of inequalities can be down-

loaded on the homepage of the author. For example, the polype PSp12
has 43136 facets and

20839 vertices.

In this multiplicative context, the question of saturation can be asked for the fusion prod-

uct multiplicities by analogy with Section 5. The only known result is in type A:

Theorem 7.8 ([6]). Let G = SLn(C), � be a positive integer and ν1, ν2 and ν3 be three
dominant weights in X(T )+� . We assume that ν1 + ν2 + ν3 belongs to the root lattice ΛR.

Then N �(ν1, ν2, ν3) ≠ 0 if and only if there exists a positive integer k such that
Nk�(kν1, kν2, kν3) ≠ 0.
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1. Introduction

Affine Hecke algebras are very important in representation theory and have been studied

extensively over the past few decades, along with their degenerate version introduced by

Drinfeld and Lusztig. About twenty years ago, Cherednik introduced the notion of dou-

ble affine Hecke algebra, abbreviated as DAHA, which he used to prove the Macdonald’s

constant term conjecture for Macdonald polynomials. This algebra also admits degenerate

versions, the rational one, which is also called Cherednik algebra, having been introduced

by Etingof and Ginzburg in 2002.

A rational DAHA is defined for any complex reflection group W . Its representation the-

ory yields a new approach to the representation theory of the Hecke algebra of W . Remark-

ably, this representation theory is also similar to the representation theory of semi-simple Lie

algebras. In particular, it admits a highest weight category which is analogous to the BGG

category O. Highest weight representations are infinite dimensional in general, but they ad-

mit a character. An important question is to determine the characters of simple modules.

One of the most important family of rational DAHA’s is the cyclotomic one. One reason

is that their representation theory is closely related to the representation theory of cyclotomic

Hecke algebras, which are relevant in group theory. Another reason is that their highest

weight category is closely related to the representation theory of affine Kac-Moody algebras.

This was one important motivation for the development of categorical representations (in

representation theory).

Categorical representations of Kac-Moody algebras is a relatively young subject that

arises in Representation theory and in Knot theory. The first formal definition appeared in

a paper of Chuang and Rouquier. The general case was treated independently by Rouquier
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and by Khovanov and Lauda. The ideas leading to categorical representations were around

for some two decades. One of the most remarkable application is the work of Ariki, inspired

by a conjecture of Lascoux-Leclerc-Thibon, on cyclotomic Hecke algebras. It was observed

there that the module category of cyclotomic Hecke algebras has endofunctors that on the

level of the Grothendieck group give actions of Kac-Moody Lie algebras of (affine) type A.

This structure appears at several other places in Representation theory, such as the rep-

resentations of symmetric groups, of the general linear groups or of Lie algebras of type A.

An important fact is that the endofunctors come equipped with some natural transformations

which satisfy the relations of a new algebra called quiver-Hecke algebra.

Our aim is not to give a general introduction to the subject. There are a lot of them

available in the literature, both on DAHA’s and on categorical representations. We’ll simply

focus on some recent results concerning the representation theory of these algebras.

2. Double affine Hecke algebras

2.1. Rational double affine Hecke algebras.

2.1.1. Definition. A complex reflection group W is a group acting on a finite dimensional

complex vector space h that is generated by complex reflections, i.e., non-trivial elements

that fix a complex hyperplane in h pointwise.

Given a complex reflection group W , let S be its set of complex reflections. For each

s ∈ S let αs ∈ h∗ be a generator of Im(s|h∗ − 1), and α∨
s be the generator of Im(s|h − 1)

such that (αs, α
∨
s ) = 2. Let c : S → C, s �→ cs be a W -invariant function.

Definition 2.1 ([18]). The rational DAHA, abbreviated RDAHA, associated withW, h and c
is the quotientHc(W ) of the algebraCW�T (h⊕h∗) by the ideal generated by the relations

[x, x′] = [y, y′] = 0 and [y, x] = (y, x) −∑s∈S cs (y, αs)(α
∨
s , x), for all x, x

′ ∈ h∗ and

y, y′ ∈ h.

The algebra Hc(W ) may as well be defined as the subalgebra of EndC(C[h]) gener-

ated by the action of w ∈ W , the multiplication by all elements of h∗ ⊂ C[h], and the

Dunkl-Opdam operators ∂y +
∑

s∈S cs (y, αs)α
−1
s (s − 1) where y ∈ h. The (faithful)

representation of Hc(W ) on C[h] is called the polynomial representation.

2.1.2. The highest weight category Oc(W ). The algebra Hc(W ) contains commutative

subalgebras C[h] and C[h∗]. We define the category Oc(W ) to be the category of Hc(W )-
modules which are finitely generated over C[h] and locally nilpotent under the action of h.
It is discussed in details in [21]. This is an analogue of the BGG category O for semisimple

Lie algebras.

The algebra Hc(W ) admits a triangular decomposition. More precisely, the multiplica-

tion yields an isomorphism Hc(W ) " C[h] ⊗ C[W ] ⊗ C[h∗]. The most important objects

in the category Oc(W ) are the standard modules Δc(τ) = Ind
Hc(W )
W⊗C[h∗] τ , where τ is an

irreducible representation of W with the zero action of h, and their irreducible quotients

Lc(τ).
It is easy to see thatOc(W ) contains all finite dimensional modules and that the standard

module Δc(triv) is isomorphic to the polynomial representation, where triv is the trivial

one-dimensional representation of W .
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Definition 2.2. A highest weight category is a pair (C,Λ) where C artinian abelian cat-

egory with enough projectives and injectives, such that the endomorphism algebra of the

irreducible objects are one dimensional, and Λ is an interval-finite poset indexing a set of

pairwise non-isomorphic irreducible object {L(λ) ; λ ∈ Λ} of C.
Further, the following axioms hold. Let P (λ) be the projective cover ofL(λ) in C. Define

the standard object Δ(λ) to be the largest quotient of P (λ) such that [Δ(λ) : L(μ)] = δλ,μ
for μ �< λ. Then P (λ) has a finite filtration with top section isomorphic to Δ(λ) and other

sections of the form Δ(μ) with μ > λ.

The BGG category O for semisimple Lie algebras is an highest weight category. The

category Oc(W ) is also an an highest weight category.

Let Ht(W ) be the Hecke algebra of W at the parameter t = exp(2πic), see [7] for a

definition. According to [21], there is a functor KZc : Oc(W ) → Ht(W )-mod, which is

a quotient functor in the general sense of Gabriel. This functor has many good properties.

In particular, by [41], this functor determines the highest weight category Oc(W ) up to an

equivalence.

More precisely, let R be a commutative local C-algebra which is a domain and let C be a

highest weight category over R. LetH be a finite projective R-algebra. An R-linear functor

F : C → H-mod is a highest weight cover if it is a quotient functor which is fully faithful

on projective modules. It is a d-faithful highest weight cover if it is a quotient functor which

induces an isomorphism ExtiC(M,N) → ExtiH(FM,FN) for all i � d and all M,N ∈ C
admitting a finite filtration whose sections are standard modules.

For any R-algebra R′ and any R-linear category C, let C ⊗RR′ be the R′-linear category
with the same objects as C and with HomC⊗RR′(M,N) = HomC(M,N) ⊗R R′ for each
objects M,N .

Now, let K be the fraction field of R. We have the following.

Theorem 2.3 ([40]). Assume that the K-algebra H ⊗R K is split semisimple and that
Fi : Ci → H-mod is a 1-faithful highest weight cover for i = 1, 2. Then the category Ci⊗RK
is semisimple and the functor Fi ⊗R K induces a bijection Irr(Ci ⊗R K) " Irr(H ⊗R K).
Let�i be the partial orders on Irr(H⊗RK) induced by the poset of Ci. If�1 is a refinement
of �2, then there is an equivalence of highest weight categories C1 " C2.

2.1.3. Support of modules in Oc(W ). The functorKZc is not generally a category equiv-

alence, since the restriction from h to hreg kills any object of Oc(W ) supported on h \ hreg ,
the union of all reflecting hyperplanes of W . The support of an irreducible object is always

a W -orbit of an intersection of reflecting hyperplanes by [20]. So it has, up to conjugacy,

a parabolic subgroup W ′ attached to it by taking the stabilizer of a generic point in the in-

tersection of these hyperplanes. Despite there usually being no non-trivial homomorphism

Hc(W
′) → Hc(W ), Bezrukavnikov and Etingof have constructed in [2] an induction func-

tor and a restriction functor between the categories Oc(W ) and Oc(W
′), for each x ∈ h

with stabilizer W ′. Up to isomorphism, these functors are independent of the choice of the

element x. Therefore, it is important to know the support of representations in Oc(W ).
A module is supported at 0 if and only if it is finite dimensional. The values of the

parameter c for which the module Lc(triv) is finite dimensional has been determined in [52]

by geometric methods (with some restrictions on W and c), see Section 2.2.4 below. More

generally, the support of Lc(triv) has been completely determined by Etingof in [16], using

the Macdonald-Mehta integral for Weyl groups.
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Example 2.4. The complex reflection groups have been classified in [57]. One infinite fam-

ily appears, labelled G(d, p, n), where d, e, n are positive integers such that p divides d.
The subfamily G(d, 1, n) takes an important place. We have G(d, 1, n) = Sn � (Z/d)n,
the wreath product of the symmetric group Sn and the cyclic group Z/d. We’ll abbrevi-

ate Hc(d, n) = Hc(G(d, 1, n)) and Oc(d, n) = Oc(G(d, 1, n)). The algebra’s Hc(d, n) are
called the cyclotomic RDAHA, and abbreviated CRDAHA. The Hecke algebraHt(G(d, 1, n))
at the parameter t = exp(2πic) associated with Hc(d, n) is an important algebra in rep-

resentation theory. It is called the cyclotomic Hecke algebra. We’ll write Ht(d, n) =
Ht(G(d, 1, n)), hence the KZ-functor is a functor KZc : Oc(d, n)→ Ht(d, n)-mod.

To each tuple of integers e, s1, . . . , sd with e > 0, one associates the level d Fock space of
multicharge s = (s1, . . . , sd). It is a semisimple ŝle-module F (s) defined in a combinatorial

way and equipped with a (dual) canonical basis, defined also in a combinatorial manner, see

[50] and Section 4.2. The dimension of the support of all simple object inOc(d, n) has been
characterized in [48] via the representation theory of F (s), using categorical representations,

answering positively to a conjecture of Etingof in [17]. See Section 4.2.

2.2. Affine and double affine Hecke algebras.

2.2.1. Cartan data and braid groups. ACartan datum consists of a finite-rank free abelian

group X whose dual lattice is denoted X∨, a finite set of vectors Φ = {α1, . . . , αn} ⊂ X
called simple roots and a finite set of vectors Φ∨ = {α∨

1 , . . . , α
∨
n} ⊂ X∨ called simple

coroots. Set I = {1, . . . , n}. The I × I matrix A with entries aij = (αj , α
∨
i ) is assumed to

be a generalized Cartan matrix.
Let α ∈ X and α∨ ∈ X∨ satisfy (α, α∨) = 2. The linear automorphism sα,α∨(λ) =

λ − (λ, α∨)α of X is a reflection. If α∨ is implicitly associated to α we write sα for both

sα,α∨ and sα∨,α. When α = αi and α∨ = α∨
i are a simple root and the corresponding

coroot, we write si = sαi . The si are called the simple reflections.
We’ll assume that the Cartan datum is non-degenerate, i.e., the simple roots are linearly

independent. The Weyl groupW is the group of automorphisms ofX (and ofX∨) generated
by the simple reflections si. The sets of roots and coroots are R =

⋃
iW (αi), R

∨ =⋃
iW (α∨

i ). The root and coroot lattices are Q = ZΦ ⊂ X and Q∨ = ZΦ∨ ⊂ X∨. The
set of positive roots is R+ = R ∩Q+, where Q+ = NΦ. For each element α =

∑
i∈I ai αi

in Q+, let |α| =
∑

i∈I ai be the height of α. The dominant weights are the elements of the

cone X+ = {λ ∈ X ; (λ, α∨
i ) � 0 for all i}.

The Cartan datum is finite if W is a finite group, or equivalently, R is a finite set. The

finite Cartan data classify connected reductive algebraic groups G over any algebraically

closed field. Then X is the character group X∗(T ) of a maximal torus T in G, called the

weight lattice of G, and X∨ is the group X∗(T ) of one-parameter subgroups of T , called

the coweight lattice of G. An element ωi ∈ R ⊗ X is called a i-th fundamental weights if

we have (ωi, α
∨
j ) = δi,j for all j.

The Cartan datum is affine if its Cartan matrix A is singular, and for every proper subset

J ⊂ I , the Cartan datum (X, (αi)i∈J , X∨, (α∨
i )i∈J) is finite. This definition implies that the

nullspace of A is one-dimensional. Since X is non-degenerate, then {λ ∈ Q ; (λ, α∨
i ) = 0

for all i} is a sublattice of rank 1. It has a unique generator δ ∈ Q+, called the nullroot. The
affine Cartan matrices are classified in [23] and [37].

The Weyl group W is a Coxeter group with defining relations s2i = 1 and sjsjsi · · · =
sjsisj · · · (mij factors on each side) where if aijaji = 0, 1, 2, 3 then mij = 2, 3, 4, 6 re-
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spectively, and if aijaji � 4 there is no relation between si, sj . The length l(w) of w ∈ W
is the minimal l such that w = si1 · · · sil . Such an expression is called a reduced fac-
torization. The braid group B(W ) is the group with generators Ti and the braid relations

TjTjTi · · · = TjTiTj · · · (mij factors on each side). If w = si1 · · · sil is a reduced fac-

torization, we set Tw = Ti1 . . . Til . There is a canonical homomorphism B(W ) → W ,

Ti �→ si.
The affine Weyl group is the semidirect product W �X . We use multiplicative notation

for the group X , denoting λ ∈ X by xλ. So W �X is generated by its subgroups W and

X with the additional relations six
λsi = xsi(λ). For any finite Cartan datum X with Weyl

group W and set of simple roots {αi}, there is an affine Cartan datum with weight lattice

X̃ = X ⊕Z δ, Weyl group W̃ =W �Q∨ and set of simple roots Φ̃ = {α̃0, . . . , α̃n}. Here,

we set α̃0 = δ − θ where θ the highest root in R, and α̃i = αi if i �= 0. Let α̃∨
0 , . . . , α̃

∨
n

be the affine simple coroots in the dual lattice X̃∨. The canonical pairing X̃ × X̃∨ → Z
is such that (δ, α̃∨

i ) = 0 for all i. There is also an affine Cartan datum with weight lattice

Xaff = X̃ ⊕ Z ω̃0, Weyl group W̃ and set of simple roots Φ̃ such that (ω̃0, α̃
∨
i ) = δi,0.

2.2.2. Affine and double affine Hecke algebras. Consider a non-degenerate Cartan datum

with weight lattice X , Weyl group W and root system R. To simplify, we’ll assume that

α∨
i /∈ 2X∨ for each i. Fix a commutative ground ring A and a W -invariant function t :

R→ A×. We abbreviate ti = tαi .

Definition 2.5. The affine Hecke algebraHt(W,X) is the A-algebra generated by elements

Ti satisfying the braid relations of B(W ), the quadratic relations (Ti − ti)(Ti + t−1
i ) = 0,

and elements xλ, with λ ∈ X, satisfying the relations of the group algebra AX and the

relation

Tix
λ − xsi(λ)Ti = (ti − t−1

i )(xλ − xsi(λ))(1− xαi)−1.

The subalgebra ofHt(W,X) generated by the elements Ti is isomorphic to the ordinary

Hecke algebra Ht(W ). The induced representation Ind
Ht(W,X)
Ht(W ) (triv) is called the polyno-

mial representation.

Definition 2.6. Let W be finite. The double affine Hecke algebra associated with X is the

A-algebraHt(W̃ , X̃).

2.2.3. Geometric realization of double affine Hecke algebras. Let G be a universal
Chevalley group, i.e.,G is a connected, simple and simply connected algebraic group overC.
Let (X,R,X∨, R∨) be the root datum of G. Consider the corresponding affine Cartan data

with Weyl group W̃ and weight lattices X̃ or Xaff . The affine Hecke algebra Ht(W̃ ,Xaff)

associated with Xaff contains Ht(W̃ , X̃) as a subalgebra, and we have a semidirect de-

composition Ht(W̃ ,Xaff) = A[x±ω0 ] � Ht(W̃ , X̃). Thus, the representation theory of

Ht(W̃ , X̃) may be deduced from the representation theory of Ht(W̃ ,Xaff) by Clifford the-

ory. The element q = xδ inHt(W̃ ,Xaff) is central.
Set F = C((�)) and O = C[[�]]. Let G(F) be the loop group of G (this is an infinite-

dimensional group ind-scheme whose set of C-points is equal to the set of F-points of G).

Since G is simply connected, the isomorphism classes of central extensions of G(F) by Gm

are naturally in bijection with the W -invariant even, negative-definite symmetric bilinear

forms X∨ × X∨ → Z, see e.g., [39]. Let G̃ be the central extension associated with the

minimal such pairing. The multiplicative group Gm acts naturally on G(F) by ‘rotation of
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the loop’ and this action lifts to G̃. We denote the corresponding semi-direct product by

Gaff . The weight lattice of Gaff is Xaff , the weight lattice of G̃ is X̃ .

The affine flag manifold B is an ind-scheme equal to the fpqc quotient Gaff/I , where

I ⊂ G is the Iwahori subgroup. The set of C-points of B is canonically identified with

the set of all conjugates of the Lie algebra i of I , under the adjoint action of Gaff on its

Lie algebra. For each b ∈ B, let bnil denote its pro-nilpotent radical. Set N = {(x, b) ∈
inil × B ; x ∈ bnil}, an ind-coherent ind-scheme, see [53]. The ind-scheme N admits a

natural action of Gaff ×Gm, where Gm acts by dilatations on inil.
LetKI×Gm(N ) be the Grothendieck group of the abelian category of I×Gm-equivariant

coherent sheaves onN . From now on, we assume that the function t onR is constant, i.e., the

Hecke algebra depends on a single parameter t. Set A = Z[t−1, t]. Using correspondences

on N we prove the following, see [19, 53].

Theorem 2.7. There is anA-algebra structure onKI×Gm(N ), andHt(W̃ ,Xaff) is isomor-
phic to KI×Gm(N ) as A-algebras.

Consider the tori T̃ = Spec(CX̃) and Taff = Spec(CXaff) in G̃ and Gaff . A character

χ : A[Xaff ] → C is a triple (s, τ, ζ) where ζ = χ(t), τ = χ(q) and s is an element of T̃ .

The pair (s, τ) can be viewed as an element of the group Taff . It acts on the ind-scheme B
by left multiplication. Let Bs,τ be the fixed points subset.

For each x ∈ gaff , the affine Springer fiber Bx is the ind-scheme Bx = {b ∈ B ; x ∈
bnil}. Set Bs,τx = Bs,τ ∩ Bx

Let G(s, τ, x) ⊂ Gaff be the subgroup of elements commuting with x and (s, τ), and let

A(s, τ, x) be the group of connected components of G(s, τ, x). An element of G̃ is called

semisimple if it is conjugate to an element of T̃ . Let Στ,ζ be the set of triples (s, x, π)

where s ∈ G̃ is semisimple, x ∈ gaff is topologically nilpotent in the sense of [32] with

ad(s,τ)(x) = ζ−1x, and π is an irreducible representation ofA(s, τ, x)which is a constituent

of the natural representation of A(s, τ, x) inH∗(Bs,τx ,C). Two triples in Στ,ζ are equivalent
if they are conjugated by an element of Gaff .

The A-algebra Ht(W̃ ,Xaff) has a triangular decomposition Ht(W̃ ,Xaff) " AXaff ⊗A

Ht(W )⊗AAX∨
aff . LetOτ,ζ(W̃ ,Xaff) be the category of all finitely generated modules over

C which are locally finite over CXaff and such that q, t act by scalar multiplication by τ , ζ.
Using the theorem above, we get the following.

Theorem 2.8 ([53]). Assume that τ is not a root of 1 and that τk �= ζ2m for each k,m >

0. The isomorphism classes of simple objects in Oτ,ζ(W̃ ,Xaff) are in bijection with the
equivalence classes of triples (s, x, π) in Στ,ζ .

Remark 2.9.

(a) Theorem 2.7 is an affine version of the Kazhdan-Lusztig classification of the simple

modules of affine Hecke algebras in [31], see also Ginzburg’s proof in [10].

(b) Let τZ ⊂ C× be the subgroup generated by τ . By [5], there is a bijection from the set

of all τZ �G(F)-conjugacy classes in G(F) containing a point in G(O) onto the set

M(G) of isomorphism classes of topologically trivial semistable principalG-bundles
over the elliptic curve E = C×/τZ. We deduce that the set of equivalence classes in

Στ,ζ can be described in terms of isomorphism classes of Higgs bundles over E, see

[4] for details.
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(c) The theorem above admits a global version which yields a representation of an ana-

logue of the double affine Hecke algebra in the cohomology groups of some fibers of

the Hitchin map associated with a smooth projective curve C, see [60]. These fibers

are closed subschemes of the moduli space of parabolic Higgs bundles over C. If

C = P1, equipped with its natural Gm-action, the algebra above is closely related to

the graded version ofHt(W̃ ,Xaff) introduced by Cherednik, see Section 2.2.4 below.

2.2.4. Application to finite dimensional representations. Fix a Cartan datum with weight

lattice X, Weyl group W , root system R and set of simple roots Φ = {αi}. Fix a commu-

tative ground ring A. We’ll assume that α∨
i /∈ 2X∨ for each i. Let κ : R → A× be a

W -invariant function. We abbreviate κi = καi .

The affine Hecke algebra Ht(W,X) admits a graded version, which is the A-algebra

H′
κ(W,X) generated by elements σw, with ∈ W , satisfying the relations of the group alge-

bra AW and elements ξλ, with λ ∈ X , satisfying the relations of the group algebra AX and

the relation σiξ
λ − ξsi(λ)σi = κi(α

∨
i , λ).

The induced representation Ind
H′κ(W,X)
AW (triv) is called the polynomial representation.

It is faithful, which permits to view H′
κ(W,X) as a subalgebra of the semi-direct product

AW �D(T )rat, whereD(T )rat is the ring of differential operators with rational coefficients

on the torus T associated with the lattice X , see [34].

Assume that the Cartan datum is of finite type. By [34] the irreducible representations of

the affine Hecke algebraHt(W,X) may be described in terms of irreducible representations

of graded affine Hecke algebras associated with root subsystems of R. Similarly, by [52] the

irreducible representations of the double affine Hecke algebra Ht(W̃ , X̃) may be described

in terms of irreducible representations of some graded double affine Hecke algebras.

Assume also that the Cartan datum is associated with a universal Chevalley group G.

According to Cherednik, there is an exact fully faithful functor which embeds the category

of finite dimensionalHc(W )-modules into the category of finite dimensionalH′
κ(W̃ , X̃) for

a good choice of the parameters, see e.g., [52, sec. 2.3]. By [2, sec. 5.4], all finite dimensional

representations ofH′
κ(W̃ , X̃)may indeed be described in terms of representations of rational

DAHA’s associated with root subsystems of maximal rank via a version of the Borel-de

Siebenthal algorithm.

Using this, it is proved in [52] that Hc(W ) acts on the homology groups H∗(Bs,τx ,C),
whenever the affine Springer fiber Bx has a finite dimensional cohomology, yielding a clas-

sification of all finite dimensional modules which are quotient of the polynomial representa-

tion.

3. Quiver-Hecke algebras

3.1. Quantum groups.

3.1.1. Definition. Fix a non-degenerate Cartan datum (X,Φ, X∨,Φ∨) with a symmetriz-
able generalized Cartan matrix A = (ai,j)i,j∈I , i.e., there exist non-zero integers di such
that di aij = dj aji for all i, j. The integers di are unique up to an overall common factor.

They can be assumed positive. Then di is the length of the root αi. Note that the generalized

Cartan matrix of finite and affine type are all symmetrizable.
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Assume that for each i ∈ I , there exists ωi ∈ X, a fundamental weight, such that

(ωi, α
∨
j ) = δi,j for all j ∈ I . Let q be an indeterminate and set qi = qdi . For m,n ∈ N we

set [n]i = (qni − q−n
i )/(qi − q−1

i ), [n]i! =
∏n

k=1[k]! and
[
m
n

]
i
= [m]i!/[m− n]i![n]i!.

Definition 3.1. The quantum group associated with (X,Φ, X∨,Φ∨) is the associative alge-

bra Uq over Q(q) with 1 generated by ei, fi, i ∈ I , and lh, h ∈ X∨, satisfying the following

relations

l0 = 1, lhlh′ = lh+h′ ,

lheil−h = q(h,αi)ei, lhfil−h = q−(h,αi)fi,

eifj − fjei = δi,j(ki − k−1
i )(qi − q−1

i ) where ki = ldiα∨i ,∑1−ai,j

r=0

[
1−aij

r

]
i
e
1−aij−r
i eje

r
i = 0 if i �= j,∑1−ai,j

r=0

[
1−aij

r

]
i
e
1−aij−r
i eje

r
i = 0 if i �= j.

LetU+
q , U−

q be the subalgebra ofUq generated by ei’s, fi’s respectively, and letU0
q be the

subalgebra of Uq generated by lh with h ∈ X∨. Then we have a triangular decomposition

Uq = U−
q ⊗ U0

q ⊗ U+
q , and the weight space decomposition U−

q =
⊕

α∈Q+
U−
q,α where

U−
q,α = {x ∈ U−

q ; lhx l−h = q−(h,α)x for any h ∈ X∨}.
Fort each λ ∈ X there exists a unique irreducible highest weight module Lq(λ) with

highest weight λ, i.e., a Uq-module Lq(λ) = M with a weight space decomposition M =⊕
μ∈X Mμ, where Mμ = {v ∈ M ; lhv = q(h,μ)v for all h ∈ X∨}, such that there is a

non-zero vector vλ ∈Mλ with eivλ = 0 for all i ∈ I and M = Uq vλ.

Let A = Z[q, q−1] and set e
(n)
i = eni /[n]i!, f

(n)
i = fni /[n]i! for all n ∈ N. We define

the A-form UA to be the A-subalgebra of UA generated by e
(n)
i , f

(n)
i , lh with i ∈ I , n ∈ N

and h ∈ X∨. We define the A-form LA(λ) to be the A-submodule of Lq(λ) given by

LA(λ) = UAvλ.
According to Lusztig and Kashiwara, see [35], [28], the quantum group U−

q admits a

canonical basis, which is an A-basisB of the A-module U−
A = UA∩U−

q such that, for each

integrable dominant weight λ ∈ X+ the set {b vλ ; b vλ �= 0} is an A-basis of LA(λ).

3.2. Quiver-Hecke algebras.

3.2.1. Definition. Fix a symmetrizable generalized Cartan matrix A = (ai,j)i,j∈I and a

commutative graded ring k =
⊕

n∈Z kn such that k0 is a field and kn = 0 if n < 0. Let

ci,j,p,q ∈ k be of degree −2di(aij + p) − 2djq. Assume that ci,j,−ai,j ,0 is invertible. For

i, j ∈ I let Qi,j ∈ k[u, v] be such that Qij(u, v) = Qji(v, u), Qij(u, v) = 0 if i = j and

Qij(u, v) =
∑

p,q�0 ci,j,p,q u
pvq if i �= j.

Definition 3.2 ([32, 42]). The quiver-Hecke algebra of degree n � 0 associated with A and

(Qi,j)i,j∈I is the associative algebra R(n) over k generated by e(i), xk, σl with i ∈ In,
k ∈ [1, n], l ∈ [1, n) satisfying the following defining relations

e(i) e(i′) = δi,i′ e(i),
∑

i e(i) = 1,

xk xl = xl xk, xk e(i) = e(i)xk,

σl e(i) = e(sli)σl, σk σl = σl σk if |k − l| > 1,

σ2
l e(i) = Qil,il+1

(xl, xl+1) e(i),
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(σkxl − xsk(l)σk) e(i) =

⎧⎪⎨⎪⎩
−e(i) if l = k, ik = ik+1,

e(i) if l = k + 1, ik = ik+1,

0 otherwise,

(σk+1 σk σk+1 − σk σk+1 σk) e(i) =

{
ak(i) e(i) if ik = ik+2,

0 otherwise,

where ak(i) = (Qik,ik+1
(xk, xk+1) − Qik+2,ik+1

(xk+2, xk+1))/(xk − xk+2). The algebra

R(n) admits a Z-grading given by deg e(i) = 0, deg xke(i) = 2dik and deg σle(i) =
−dik aik,ik+1

.

Now, fix a non-degenerate Cartan datum (X,Φ, X∨,Φ∨)with generalized Cartan matrix

A. Fix a dominant integral weight λ ∈ X+. Given i ∈ I , set s = (λ, α∨
i ) and fix a monic

polynomial aλi (u) =
∑s

r=0 ci,r u
s−r in k[u] of degree s such that the element ci,r ∈ k has

the degree 2rdi.

Definition 3.3. The cyclotomic quiver-Hecke algebra of degree n � 0 associated withR(n),
the weight λ ∈ X+ and the polynomials aλi is the quotient Rλ(n) of the Z-graded algebra

R(n) by the homogeneous two-sided ideal generated by the elements aλi1(x1)e(i) for all

i ∈ In.

Let proj(R(n)), proj(Rλ(n)) be the categories of finitely generated projective graded

modules over R(n), Rλ(n) respectively. Let [proj(R(n))], [proj(Rλ(n))] be their

Grothendieck groups. They are A-modules, where the action of q is given by the grade

shift functor. There are natural embeddings R(m)⊗R(n) ⊂ R(m+ n). The induction and

restriction functors equip the A-module [proj(R)] =
⊕

n�0[proj(R(n))] with the structure

of a bialgebra.

Theorem 3.4 ([32]). The A-module [proj(R)] is isomorphic to U−
A as a bialgebra.

Composing the induction and restriction functors with the functor

proj(R(n))→ proj(Rλ(n)), M �→ Rλ(n)⊗R(n) M,

Kang and Kashiwara proved the following, see also [58].

Theorem 3.5 ([24]). There is a natural structure of UA-module on

[proj(Rλ)] =
⊕
n�0

[proj(Rλ(n))]

such that it is isomorphic to LA(λ).

Remark 3.6. For each α ∈ Q+ of height n we write Iα = {i = (i1, . . . , in) ∈ In ;∑n
k=1 αik = α}, e(α) = ∑i∈Iα e(i), R(α) = e(α)R(n) e(α) and R(α)λ = e(α)R(n)λ

e(α). Then, the isomorphisms in Theorems 3.4, 3.5 map [proj(R(α))] and [proj(R(α)λ)] to
the weight subspaces U−

A,α = U−
A ∩ U−

q,α and LA(λ)λ−α = LA(λ) ∩ Lq(λ)λ−α.
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3.2.2. Geometric realization of quiver-Hecke algebras. Let Γ = (I,Ω) be a locally finite

quiver without loops, with a vertex set I and an oriented edge set Ω. For each arrow h ∈ Ω
let h′, h′′ denote the incoming and outgoing vertex. For i, j ∈ Ω with i �= j, let Ωij = {h ∈
Ω ; h′ = i, h′′ = j} and hij = �Ωij . The matrix A given by aii = 2 and aij = −hij − hji
is a symmetric generalized Cartan matrix, and any symmetric generalized Cartan matrix can

be realized in this way via a quiver.

Fix a finite dimensional I-graded C-vector space V =
⊕

i∈I Vi. A representation of Γ
in V is an element of EV =

⊕
h∈ΩHom(Vh′ , Vh′′). The groups GV =

∏
i∈I GL(Vi) and

TΩ = (Gm)
Ω act on the space of representationsEV by (g, t)·(xh)h∈Ω = (th gh′′ xh g

−1
h′ )h∈Ω.

We’ll abbreviate E = EV .

For i = (i1, . . . , im) ∈ In, the variety of complete flags of type i is a C-scheme whose

set of C-points is the set Fi of tuples φ = (0 = φ0 ⊂ φ1 ⊂ · · · ⊂ φm = V ) where φk is

an I-graded subspace such that dim(φk/φk−1) = αik for k ∈ [1,m]. The group GV acts

transitively on Fi and TΩ acts trivially.

For x ∈ E, a flag φ ∈ Fi is x-stable if xh(φk ∩ Vh′) ⊂ φk−1 ∩ Vh′′ for each h ∈ Ω,

k ∈ [1,m]. Let F̃i be the set of pairs (x, φ) ∈ E × Fi such that φ is x-stable. The group

GV × TΩ acts diagonally on F̃i. Let πi : F̃i → E be the obvious projection. We write

L(i) = Rπi !(CF̃i
[2 dim F̃i]), a semisimple complex in the bounded GV × TΩ-equivariant

derived categoryDb
GV ×TΩ

(E) of sheaves ofC-vector spaces onE. SetL(n) =⊕i∈In L(i).
TheZ-graded moduleExt(L(n),L(n)) =⊕i Ext

i(L(n),L(n)) is aZ-graded k-algebra
for the Yoneda multiplication. We call it the Yoneda algebra of L(n). Here the extension

groups are computed in the triangulated category Db
GV ×TΩ

(E).
Now, take k = H∗

TΩ
(•,C) as the base ring. We have k = C[χh ; h ∈ Ω], where χh is

the equivariant Chern class of the 1-dimensional representation of the h-th factor C× in TΩ.

Set Qij(u, v) =
∏

h∈Ωij
(v − u + χh)

∏
h∈Ωji

(u − v + χh) if i �= j and Qij(u, v) = 0 if

i = j. LetR(n) be the quiver-Hecke algebra of degree n � 0 associated with the generalized

Cartan matrix A and the matrix (Qi,j)i,j∈I .

Theorem 3.7 ([42, 55]). There is a Z-graded k-algebra isomorphism

R(n) " Ext(L(n),L(n))
which identifies the idempotent e(i) with the projection to the direct summand L(i) ⊂ L(n).

Now, set k = C, viewed as the quotient of C[χh ; h ∈ Ω] by the maximal ideal generated

by all elements χh. Fix a non-degenerate Cartan datum (X,Φ, X∨,Φ∨) with generalized

Cartan matrix equal to the matrix A above. Let λ ∈ X+ be a dominant weight and Uq ,

R(n), R(n)λ be the corresponding quantum group, quiver-Hecke algebra and cyclotomic

quiver-Hecke algebra. Using the previous theorem and Lusztig’s geometric realization of

the canonical bases, see [35], we obtain the following refinement of Theorem 3.4, 3.5.

Corollary 3.8.
(a) There is a bialgebra isomorphism [proj(R)] " U−

A which identifies the canonical
basis in the right hand side with the set of projective indecomposable self-dual modules
in the left hand side.

(b) There is a UA-module isomorphism [proj(Rλ)] " LA(λ) which identifies the canon-
ical basis in the right hand side with the set of projective indecomposable self-dual
modules in the left hand side.
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Remark 3.9.
(a) The construction above can be generalized to allow quiver with loops, arbitrary partial

flags of a quiver representation, or sheaves of vector spaces over a field of positive

characteristic, see [25, 36, 49] for details. Taking a more general version of flags in

representations of the quiver yields a more general version of quiver-Hecke algebras

called weighted KLR algebras by Webster in [59].

(b) If the polynomial Qij(u, v) satisfies the conditions in Section 3.2.1, but does not sat-

isfy the conditions in Section 3.2.2, then Corollary 3.8 may not hold, see [26] for

details.

(c) It is not known how to construct the canonical basis of U−
q using quiver-Hecke al-

gebras when the Cartan matrix A is not symmetric. However, one can construct the

canonical basis of U−
q for any non symmetric A of finite or affine type by mimicking

the construction in [35]. More precisely, let Γ be a quiver with a compatible automor-
phism γ, i.e., a pair of automorphisms γ : I → I , γ : Ω→ Ω such that γ(h)′ = γ(h′),
γ(h)′′ = γ(h′′) for each h ∈ Ω. Assume that γ is of finite order � and that h′, h′′ are
not in the same γ-orbit for each h.

Put [I] = I/γ, and for each i ∈ I let [i] ∈ [I] be its γ-orbit. Let h[i],[j] be the number

of γ-orbits in the set Ω[i],[j] = {h ∈ Ω ; h′ ∈ [i], h′′ ∈ [j]}. Put d[i] = �[i]. The

matrix A given by a[i],[i] = 2 and a[i],[j] = −(hij + hji)/d[i] is a symmetrizable

generalized Cartan matrix, and any generalized Cartan matrix of finite or affine type

can be realized in this way. Let Uq be the corresponding quantum group.

For any element α =
∑

i∈I ai αi in Q+ such that aγ(i) = ai for all i, the quiver-

Hecke algebraR(α) admits a natural action of γ. This yields a periodic functor on the

category proj(R(α)), with the terminology of [35, chap. 11]. Let K(proj(R(α)) be
the corresponding twisted Grothendieck group, as defined in [35, sec. 11.1.5].

Let O ⊂ C be the subring consisting of all Z-linear combinations of �-th roots of

1. There is a bialgebra isomorphism K(proj(R)) " U−
A ⊗Z O which identifies the

canonical basis of U− with the set of projective indecomposable self-dual modules in

K(proj(R)) = ⊕αK(proj(R(α)). A similar construction gives a realization of the

canonical basis of all integrable simple modules of Uq .

3.2.3. Affine Hecke algebras of type A : Ariki’s theorem. Consider the Cartan datum

of type An−1 with weight lattice X =
⊕n

i=1 Z εi " Zn and simple roots given by αi =
εi − εi+1 with i ∈ [1, n). The Weyl group is the symmetric group W = Sn.

Set A = Z[t−1, t]. The affine Hecke algebra of GL(n) is the A-algebra HA
t (n) =

Ht(W,X) which is generated by elements T1, . . . , Tn−1 satisfying the braid relations of

B(Sn), the quadratic relations (Ti − t)(Ti + t−1) = 0, and commuting elements X±1
1 , . . . ,

X±1
n satisfying the relation TiXiTi = Xi+1, TiXj = XjTi if i ∈ [1, n) and j �= i, i+ 1.

Fix an element ζ ∈ C× such that ζ2 �= 1. Set HA
ζ (n) = HA

t (n)⊗AC, where χ : A→ C
is the character such that t �→ ζ. The group Z acts on C× by Z $ n : i �→ iζ2n. Let I be a

Z-invariant subset in C×.

Let mod(HA
ζ (n)) be the category of all finitely generated HA

ζ (n)-modules. Let

modfdI (H
A
ζ (n)) be the full subcategory of all finite dimensional modules of type I , i.e., the

finite dimensional modules M such that M =
⊕

i∈In Mi where Mi = {v ∈ M ; (Xk −
ik)

rv = 0 for any k and for some r ' 0}. Let [modfdI (HA
ζ (n))] be the Grothendieck group
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ofmodfdI (H
A
ζ (n)), and set [modfdI (H

A
ζ )] =

⊕
n�0[mod

fd
I (H

A
ζ (n))]. The group [mod

fd
I (H

A
ζ )]

is a bialgebra where the product and coproduct are given by the induction and restriction with

respect to the obvious inclusion HA
ζ (m)⊗HA

ζ (n) ⊂ HA
ζ (m+ n).

We can view I as a quiver without loops, with vertex set I and with an arrow i → iζ2

for each i ∈ C×. Let Uq be the quantum group associated with this quiver and let U be

its specialization at q = 1. We define U−, L(λ) in the obvious way. The following was

observed by Grojnowski. It follows from the Kazhdan-Lusztig and Ginzburg works [32],

[10].

Theorem 3.10 ([22]). The group [modfdI (H
A
ζ )] is isomorphic to U− as a bialgebra. Under

this isomorphism, the classes of the simple modules is identified with the dual canonical
basis of U−.

If J is another Z-invariant subset in C× such that I ∩ J = ∅, then the induction yields

an equivalence of categories modfdI∪J(H
A
ζ (n)) " modfdI (H

A
ζ (n))×modfdJ (H

A
ζ (n)). Hence

it is enough to assume that I is a Z-orbit. Then, the Cartan datum associated with the quiver

I above, see Section 3.2.2, is either of type A∞ or of type A
(1)
e for some integer e > 0. We

deduce that U ⊗Z C is either the enveloping algebra of gl∞, if ζ is not a root of 1, or the

enveloping algebra of the affine Kac-Moody algebra ŝle, if ζ is a e-th primitive root of 1.

The Hecke algebra of the complex reflection groupG(d, 1, n)with parameters ζ, u1, . . . ,

ud is isomorphic to the quotient HA,u
ζ (n) of the affine Hecke algebra HA

ζ (n) by the cyclo-
tomic relation (X1 − u1) · · · (X1 − ud) = 0.

Let modfdI (H
A,u
ζ (n)) be the category of all finite dimensional HA,u

ζ (n)-modules of

type I . Let [modfdI (H
A,u
ζ (n))] be the Grothendieck group of modfdI (H

A,u
ζ (n)), and set

[modfdI (H
A,u
ζ )] =

⊕
n�0[mod

fd
I (H

A,u
ζ (n))].

Assume that up = t2sp , with sp ∈ Z for each p ∈ [1, d]. Let λ = ∑d
p=1 ωup

, where ωi

is the i-th fundamental weight of the Cartan datum associated with I . Let HA,λ
ζ (n) denote

the corresponding cyclotomic Hecke algebra. Composing the induction and restriction with

the functor modfd(HA,λ
ζ ) → modfd(HA

ζ ) induced by the obvious surjective algebra homo-

morphism HA
ζ → HA,λ

ζ , Ariki has obtained the following, yielding a proof of a conjecture

of Lascoux-Leclerc-Thibon.

Theorem 3.11 ([1]). There is a natural structure of U -module on [modfdI (H
A,λ
ζ )] such that

[modfdI (H
A,λ
ζ )] is isomorphic to the dual of the integrable highest weight U -module L(λ)

with highest weight λ. Under this isomorphism, the classes of the simple modules is identified
with the dual canonical basis of L(λ).

Let R(n), Rλ(n) be the quiver-Hecke algebra and the cyclotomic quiver-Hecke algebra

of degree n associated with the Cartan datum of the quiver I and the dominant integral

weight λ.
Now, we specialize χh to 0 for all h ∈ Ω. Let mod0(R(n)) be the category of finitely

generated modules over R(n) such that xke(i) acts locally nilpotently for each k ∈ [1, n]
and i ∈ In.

The relation between Theorems 3.10, 3.11 and Theorems 3.4, 3.5 is the following. It is

a consequence of the theory of intertwiners of affine Hecke algebras developed in [34] to

prove that affine Hecke algebras and their graded versions are Morita equivalent, see Section

2.2.4.
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Theorem 3.12 ([9, 42]). For each λ, n the following hold

(a) there is an equivalence of categories modI(HA
ζ (n)) " mod0(R(n)),

(b) there is an algebra isomorphism HA,λ
ζ (n) " Rλ(n).

Remark 3.13.

(a) Historically, Theorems 3.10, 3.11 have been proved before Theorems 3.4, 3.5 and have

been one of the major motivation for the discovery of quiver-Hecke algebras.

(b) For each λ as above, Dipper-James-Mathas have defined in [12] some cyclotomic ζ-
Schur algebras SA,λζ (n) with a Schur functor S

A,λ
ζ (n)→ HA,λ

ζ (n) which is a highest

weight cover in the sense of Section 2.1.2, see also [38], [41]. Theorem 3.11 has been

extended conjecturally by Yvonne in [61] in the following way.

Assume that ζ is a e-th primitive root of 1. Then, there should be a natural structure

of U -module on [modfdI (S
A,λ
ζ )] =

⊕
n�0[mod

fd
I (S

A,λ
ζ (n))] such that [modfdI (S

A,λ
ζ )]

is isomorphic to the level d Fock space F (s) of multicharge s = (s1, . . . , sd). Un-

der this isomorphism, the classes of the simple modules is identified with the dual

canonical basis of F (s). For d = 1 this conjecture was formulated previously by

Lascoux-Leclerc-Thibon and proved in [51]. For arbitrary d it follows from the results

in Section 4.2 below.

3.2.4. Affine Hecke algebras of types B, C : the conjecture of Enomoto-Kashiwara. Fix

a non-degenerate Cartan datum with a symmetric generalized Cartan matrixA = (ai,j)i,j∈I .
Fix an involution θ of the set I such that aθ(i),θ(j) = aij for all i, j ∈ I .

Definition 3.14 ([15]). Let Bθ be the associative Q(q)-algebra with 1 generated by ei, fi,
i ∈ I , satisfying the usual Serre relations and by commuting invertible elements li, i ∈ I ,
satisfying the relations lθ(i) = li and

ljeil
−1
j = qaij+aiθ(j)ei, ljfil

−1
j = q−aij−aiθ(j)fi, eifj = q−ai,jfjei + δij + δθ(i),j li.

Lemma 3.15 ([15]). For each dominant integral weight λ =
∑

i∈I λi ωi in X+, there is a
unique irreducible Bθ-module Vθ(λ) generated by a vector vλ such that {v ∈ Vθ(λ) ; eiv =
0} = Q(q) vλ and livλ = qλi+λθ(i)vλ for all i ∈ I.

Now, set A = Z[t±1
0 , t±1

1 , t±1
2 ]. The affine Hecke algebra of type Cn is the A-algebra

HC
t (n) which is generated by elements T0, . . . , Tn−1 satisfying the braid relations of type

Bn, i.e., the elements Ti, . . . , Tn−1 satisfy the braid relations of B(Sn) and T0T1T0T1 =
T1T0T1T0, the quadratic relations (T0 − t0)(T0 + t−1

1 ) = 0 and (Ti − t2)(Ti + t−1
2 ) = 0 if

i �= 0, and commuting elements X±1
1 , . . . , X±1

n satisfying the relations T0X
−1
1 −X1T0 =

(t−1
1 − t0)X1 + t0t

−1
1 − 1, TiXiTi = Xi+1 and TiXj = XjTi if i �= 0, j �= i, i+ 1.

Fix ζ0, ζ1, ζ2 ∈ C× with ζ22 �= 1. Set HC
ζ (n) = HC

t (n) ⊗A C, where χ : A → C is

the character such that ti �→ ζi for i = 0, 1, 2. The semi-direct product {1,−1}� Z acts on

C× by (ε, n) : i �→ iεζ2n2 . Let I be a {1,−1} � Z invariant subset in C×. As above, we

may assume that I is a {1,−1}� Z-orbit. Let modI(H
C
ζ (n)) be the category of all finitely

generated HC
ζ (n)-modules and let modfdI (H

C
ζ (n)) be the full subcategory of all finite di-

mensional modules of type I (as above). Let [modfdI (H
C
ζ (n))] be the Grothendieck group of

modfdI (H
C
ζ (n)), and set [modfdI (H

C
ζ )] =

⊕
n�0[mod

fd
I (H

C
ζ (n))]. The group [modfdI (H

C
ζ )]
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is a module over the bialgebra [modfdI (H
A
ζ )]. The product and coproduct are given by the in-

duction and restriction with respect to the obvious inclusionHC
ζ (m)⊗HA

ζ (n) ⊂ HA
ζ (m+n).

Now, recall the following standard definition.

Definition 3.16 ([13]). A quiver with involution (or symmetric quiver) is a pair (Γ, θ), where

Γ is a quiver and θ is an involution of Γ, i.e., θ consists of a pair of involutions of the sets

I,Ω such that θ(h)′′ = θ(h′), θ(h)′ = θ(h′′) for each h ∈ Ω.

We can view the subset I ⊂ C× as a quiver with involution without loops, with vertex

set I , with an arrow i → i ζ2 for each i ∈ C× and with the involution θ : i �→ i−1.

Assume that A is the generalized Cartan matrix associated with I , see Section 3.2.2, and set

λi = δi,ζ1 + δi,−ζ0 . The following was conjectured in [15] and proved in [56].

Theorem 3.17 ([56]). Assume that 1,−1 /∈ I . Then, the Bθ-module Vθ(λ) has a canonical
basis, the vector space [modfdI (H

B,λ
ζ )] ⊗Z Q is isomorphic to a specialization of Vθ(λ) at

q = 1, and the classes of the simple modules are identified with the dual canonical basis of
Vθ(λ) at q = 1.

Remark 3.18.
(a) An analogous construction in type D has been given in [29]. The corresponding con-

jectures are proved in [46].

(b) If 1 ∈ I or−1 ∈ I then [modfdI (H
B,λ
ζ )]⊗ZQ is no longer irreducible as a Bθ-module.

3.2.5. Quiver-Hecke algebras of types B, C. The main ingredient in the proof of Theorem

3.17 is a Z-graded algebra which is an analogue, for affine Hecke algebras of type B,C, of
quiver-Hecke algebras.

The Weyl group of type C is the semidirect productW = Sn� {−1, 1}n. For k ∈ [1, n]
let εk ∈W be −1 placed at the k-th spot.

Fix a set I with an involution θ. The group W acts on a tuple i = (i1−n, . . . , in−1, in)
of I2n in the obvious way : the reflection sl ∈ Sn switches the entries il, il+1 and the entries

i1−l, i−l, while εk switches the entries ik, i1−k. This action preserves the subset Iθ,n =
{i ∈ I2n ; θ(ik) = i1−k for all k}. The group W also acts on algebra P = k[x1, . . . , xn] so
that sl switches xl and xl+1, while εk switches xk and −xk.

Now, fix ζ2 ∈ C× \ {−1, 1}. Let I ⊂ C× be a {1,−1} � Z invariant subset. We view

it as a quiver with involution without loops, with vertex set I , with an arrow i → i ζ22 for

each i ∈ C×, and with the involution given by θ : i �→ i−1, compare Section 3.2.4. Assume

that A is the generalized Cartan matrix associated with I , see Section 3.2.2. Fix a dominant

integral weight λ =
∑

i∈I λi ωi in X+.

Definition 3.19. The quiver-Hecke algebra of degree n associated with Γ, θ, λ is the subal-

gebra R(n)θ,λ ⊂ Endk(
⊕

i∈Iθ,n Pe(i)) generated by the linear operators e(i), xk, σl with

i ∈ Iθ,n, k ∈ [1, n], l ∈ [0, n) such that xk(fe(i)) = xkfe(i) and

σ0(fe(i)) =

⎧⎪⎨⎪⎩
(2x1)

−1(ε1f − f) e(i) if i1 = i0,

(x1)
λi0 ε1f e(ε1i) if il = ζ22 il+1,

0 otherwise,

σl(fe(i)) =

⎧⎪⎨⎪⎩
(xl+1 − xl)

−1(slf − f) e(i) if il = il+1,

(xl+1 − xl)f e(sli) if il = ζ22 il+1,

0 otherwise,
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where l �= 0. The k-algebra R(n)θ,λ is Z-graded, the grading being given by deg e(i) = 0,
deg xke(i) = 2dik , deg σ0e(i) = λi0 + λi1 − 2δi1,i0 and deg σle(i) = −dik aik,ik+1

.

The algebra R(n)θ,λ has a presentation similar to the one in [56]. It also admits a ge-

ometric realization. More precisely, fix σ ∈ {−1, 1}. For any representation x ∈ EV of

Γ, let x◦ be the representation on the I-graded vector space V ◦ such that V ◦
i = V ∗

θ(i) and

x◦h = σ x∗θ(h).

Definition 3.20 ([13]). A σ-orthogonal (resp. a σ-symplectic) representation of (Γ, θ) in V
is the datum of a representation x ∈ EV with an isomorphism x → x◦ such that the un-

derlying isomorphism V → V ◦ defines a symmetric (resp. antisymmetric) non-degenerate

bilinear form V × V → C.

Then, the Z-graded algebra R(n)θ,λ is isomorphic to the Yoneda algebra of a complex

of sheaves on the space Eθ,λ
V consisting of 1-symplectic representations of Γ which admit a

λ-framing in the sense of [56, sec. 4.4].

The relation between R(n)θ,λ and affine Hecke algebras is the following. Fix elements

ζ0, ζ1 ∈ C×. Let HC
ζ (n) be the corresponding affine Hecke algebra of type Cn. Set λi =

δi,ζ1 + δi,−ζ0 .

We specialize χh to 0 for all h ∈ Ω. Let mod0(R(n)θ,λ) be the category of finitely

generated modules over R(n)θ,λ such that xke(i) acts locally nilpotently for each k ∈ [1, n]
and i ∈ Iθ,n. We have the following analogue of Theorem 3.12.

Theorem 3.21 ([56]). There is an equivalence of categories

modI(H
C
ζ (n)) " mod0(R(n)θ,λ).

Remark 3.22.
(a) Elements of the 2-exotic nilpotent cone in [30] can be identified with nilpotent λ-

framed 1-symplectic representations as above. Theorem 3.21 and the geometric re-

alization of R(n)θ,λ yield another proof of Kato’s theorem which parametrizes the

simple HC
ζ (n)-modules via the 2-exotic nilpotent cone.

(b) In [56] the Z-graded algebra R(n)θ,λ is realized as the Yoneda algebra of a complex

of sheaves on the space of (−1)-orthogonal representations of (Γ, θ)with a λ-framing.

The space of (−1)-orthogonal representations of (Γ, θ) is also used in [14] and yields

a geometric construction of some simple HC
ζ (n)-modules.

4. Categorical representations and rational DAHA’s

4.1. Definition. Fix a non-degenerate Cartan datum (X,Φ, X∨,Φ∨) with a symmetrizable

generalized Cartan matrix. Let Uq be the quantum group associated with (X,Φ, X∨,Φ∨).
Let {ci,j,p,q} be a family of indeterminates with i �= j ∈ I and p, q ∈ [0,−aij) such

that ci,j,p,q = cj,i,q,p. Set k = Z[ci,j,p,q][c
−1
i,j,−ai,j ,0

] and consider the polynomials given by

Qij(u, v) =
∑

p,q�0 ci,j,p,q u
pvq if i �= j, and Qij(u, v) = 0 if i = j. Let R(n) be the

quiver-Hecke k-algebra associated with Qij(u, v).
Finally, let Z be a noetherian commutative k-algebra and C be a Z-linear category whose

Hom’s are finitely generated Z-modules. We’ll abbreviate R(n) for the Z-algebra Z ⊗k

R(n).
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Definition 4.1. An integrable representation of U on C is the datum of a decomposition

C = ⊕μ∈X Cμ, an adjoint pair of Z-linear functors (Fi, Ei) with Ei : Cμ → Cμ+αi , Fi :
Cμ → Cμ−αi and elements xi ∈ End(Fi), σij ∈ Hom(FiFj , FjFi) satisfying the following

conditions

(a) Ei is isomorphic to a left adjoint of Fi,

(b) Ei, Fi are locally nilpotent,

(c) the relations of the quiver-Hecke algebra R(n) hold for xi and σij ,

(d) given μ ∈ X , there are isomorphisms of functors (EiFi)|Cμ " (FiEi)|Cμ ⊕ Id
(μ,α∨i )
Cμ

if (μ, α∨
i ) � 0, and (FiEi)|Cμ

" (EiFi)|Cμ
⊕ Id−(μ,α∨i )

Cμ
if (μ, α∨

i ) � 0.

An integrable representation of U on C yields a representation of U on the Grothendieck

group [C] of C. We’ll say that the representation of U on C categorifies the representation of

U on [C].
Now, fix a dominant integral weight λ ∈ X+. Let cir be a family of indeterminates with

i ∈ I and r ∈ (0, s], where s = (λ, α∨
i ). Set Z = k[cir] and ci0 = 1. Consider the monic

polynomial in Z[u] given by aλi (u) =
∑n

r=0 cir u
s−r. Let R(n)λ be the cyclotomic quiver-

Hecke Z-algebra associated with the quiver-Hecke Z-algebra R(n), the dominant weight λ
and the polynomials aλi .

Let proj0(Rλ(n)) be the Z-linear category of finitely generated projective modules over

Rλ(n). We abbreviate L(λ) =⊕n�0 proj
0(Rλ(n)). Then it is proved in[24],[27],[58] that

the induction and restriction yield functors Ei, Fi on L(λ) which satisfy the axioms above.

Hence, Theorem 3.5 can be rephrased as follows.

Theorem 4.2. The induction and restriction functors yield a categorification of the inte-
grable U -module L(λ) on L(λ).

We have the following unicity result.

Theorem 4.3 ([42]). Given an integrable categorical representation of U on a Z-linear
category C which is idempotent-closed, and an object M ∈ Cλ such that End(M) = Z and
Ei(M) = 0 for all i, there is a fully faithful functor L(λ)⊗Zλ

Z → C taking the module Zλ

over Rλ(0) " Zλ to M .

Remark 4.4.

(a) If C is indeed an abelian category, then the notion of a categorical representation on C
can be formulated in a simpler way, see e.g., [43].

(b) Using the A-algebra UA instead of the ring U , and using a Z-graded category (i.e., a

category enriched in Z-graded modules) instead of the abelian category C, we define

in a similar way a notion of categorification of the integrable UA-module LA(λ) such
that the action of q is given by the grade shift functor.

(c) A proof of the bi-adjointness of the functors Ei, Fi is given in [27, 58].

In the next section we consider two remarkable applications of categorical representa-

tions for RDAHA’s.
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4.2. Categorical representations and CRDAHA’s. We fix the integer d � 1 and we allow

n to vary in N. Consider the categories Oc(d, n)’s introduced in Section 2.1.3. Since the set

S/W has exactly d elements, we can view the parameter c of the algebra Hc(d, n) as a

d-tuple. We’ll assume that this parameter c is integral, which means that the parameter

t = exp(2iπc) of the cyclotomic Hecke algebra Ht(d, n) is a tuple (q, q1, . . . , qd) where q
is a primitive e-th root of 1 and qp = qsp for some integers e, s1, . . . sd with e > 0. Here

(q1, . . . , qd) is determined modulo the diagonal action of C×.

Let F (s) be Fock space of multicharge s = (s1, . . . , sd), which was introduced in Sec-

tion 2.1.3. It is a level d integrable module over the affine Kac-Moody algebra of ŝle which

can be defined as follows.

Set N = s1 + · · ·+ sd. Let � ∈ [0, d) be the residue class of N modulo d. Let L(ω�) be

the �-th fundamental module of the Lie algebra ĝld, i.e., the simple integrable module with

highest weight the �-th fundamental weight ω�. Recall that ĝld is a central extension of the

Lie algebra gld[�,�−1]. The assignment � �→ �e yields a Lie algebra endomorphism of

ĝld which multiplies the central element by e. Pulling back L(ω�) by this endomorphism we

get a level e integrable representation of ĝld on L(ω�), which is no longer simple but only

semisimple. This level e representation admits a commuting level d action of the affine Kac-

Moody algebra of ŝle. The Fock space F (s) is the weight space of L(ω�) associated with

some weight γs of the level e action of ŝld ⊂ ĝld which depends on the d-tuple s. Hence, it

is a level d module of ŝle.

Theorem 4.5 ([45]). The induction and restriction functors yield a categorification of the
integrable module F (s) on

⊕
n�0Oc(d, n).

The next step is to identify the simple modules inOc(d, n) with some canonical basis in
F (s) and to compute their dimension, for which a conjecture was formulated in [41]. This

follows from theorem 4.7 below.

Another remarkable example of categorical representation, inspired by [6, 11], is the

following. Assume that s1, . . . , sd are non negative. We can consider the parabolic category
O of the affine Lie algebra ĝlN , denoted by O(s)ĝlN , which consists of modules of level

−e − N in the usual category O of ĝlN which are integrable with respect to the parabolic

subalgebra associated with the blocks decomposition N = s1 + · · ·+ sd.

Theorem 4.6 ([54]). The Kazdhan-Lusztig fusion product of ĝlN -modules yields a categor-
ical representation of ŝle on O(s)ĝlN .

The categorical representations of ŝle on
⊕

n�0Oc(d, n) andO(s)ĝlN are different : the

first one categorify an integrable module of level d and the second one an integrable module

of level 0. However, using them one proves the following (see also [33] for a closely related

result), which was conjectured in [55].

Theorem 4.7 ([44]). Assume that sp � n for each p ∈ [1, d]. Then there is a fully faithful
exact functor Oc(d, n) ⊂ O(s)ĝlN .

Note that this theorem implies that the category Oc(d, n) is Koszul by [47], and it de-

scribes its Koszul dual via the level-rank duality of I. Frenkel.

Another remarkable application of categorical representations is the following. Let H be

the Heisenberg algebra. It is an infinite dimensional Lie algebra. The inclusion of the center
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C ⊂ gld yields an inclusion H ⊂ ĝld. The Lie algebra H acts on F (s). This action lifts to

an action of H on the category
⊕

n�0Oc(d, n). Using the latter and the level-rank duality,

which yields an explicit description of the decomposition of L(ω�) as a ŝld×H× ŝle-module

of level (e, de, d), one proves the theorem below which was conjecture by Etingof [17].

Since the parameter c is a d-uple of complex numbers, it can be identified with a weight

of ŝld. One defines a Lie subalgebra a ⊂ ŝld which is generated by the weight vectors of

ŝld which are integral with respect to the weight c, see [17] for details. Let La be the a-
submodule of the fundamental module L(ω0) of ĝld which is generated by the sum of all

extremal weight subspaces of L(ω0). Let δ be the smallest positive imaginary root.

Theorem 4.8 ([48]). The number of isomorphism classes of finite dimensional irreducible
Hc(d, n)-modules is equal to the dimension of the weight subspace of La associated with
the weight ω0 − nδ.

The Etingof conjecture is more general and yields indeed a characterization of the whole

filtration of the category Oc(d, n) by the dimension of the support of the modules, see [48]

for the proof. It extends also to a larger family of algebras than theHc(d, n)’s, see [3]. These
algebras are not associated in any natural way to Hecke algebras any more. They are called

symplectic reflection algebras and have been introduced in [18].
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Random matrices, log-gases and Hölder regularity
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Abstract. The Wigner-Dyson-Gaudin-Mehta conjecture asserts that the local eigenvalue statistics of

large real and complex Hermitian matrices with independent, identically distributed entries are univer-

sal in a sense that they depend only on the symmetry class of the matrix and otherwise are independent

of the details of the distribution. We present the recent solution to this half-century old conjecture.

We explain how stochastic tools, such as the Dyson Brownian motion, and PDE ideas, such as De

Giorgi-Nash-Moser regularity theory, were combined in the solution. We also show related results

for log-gases that represent a universal model for strongly correlated systems. Finally, in the spirit

of Wigner’s original vision, we discuss the extensions of these universality results to more realistic

physical systems such as random band matrices.
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1. Introduction

Large complex systems with many degrees of freedom often exhibit remarkably simple uni-

versal patterns. The Gauss law describes the fluctuations of large sums of independent or

weakly dependent random variables irrespective of their distribution. The Poisson point pro-

cess is the universal model for many independent events in space or time. Both laws are

ubiquitous in Nature thanks to their large domain of attraction but they cannot accurately

model strong correlations. Can one find a universality for correlated systems?

Since correlations appear in many forms, this seems an impossible task. Nevertheless

this is exactly what E. Wigner has accomplished when he discovered a universal pattern in

the spectrum of heavy nuclei. Spectral measurement data for various nuclei clearly show

that the density of energy levels depends on the actual nucleus. But Wigner asked a different

question: he looked at the energy gaps, i.e. the difference of consecutive energy levels. He

discovered that their statistics, after rescaling with the local density, showed a very similar

pattern for different nuclei.

Wigner’s revolutionary insight was that this coincidence does not stem from some par-

ticular property of the specific physical system but it has a profound mathematical origin.

General quantum mechanics postulates that energy levels are eigenvalues of a certain hermi-

tian matrix (or operator) H = (hij), the Hamiltonian of the system. The matrix elements

hij represent quantum transition rates between two states labelled by i and j. While hij’s
are specific to the system, the gap statistics largely depend only on the basic symmetry class

of H , as long as hij’s are chosen somewhat generically.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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To illustrate this mechanism, consider a 2× 2 hermitian matrix

H =

(
a b
b̄ d

)
, a, d ∈ R, b ∈ C.

The difference (or gap) of the two eigenvalues is λ2 − λ1 =
[
(a − d)2 + 4|b|2]1/2. If

the matrix elements are drawn independently from some continuous distribution, then the

probability that the gap is very small;

P(|λ2 − λ1| ≤ ε), ε� 1,

is of order ε2 for real symmetric matrices (b ∈ R) and it is of order ε3 for complex hermitian

matrices (b ∈ C). The exponent of ε is thus determined by the symmetry class of H .

Very surprisingly, for large N × N matrices the entire distribution of the gap becomes

universal as N →∞ and not only its asymptotics in the ε� 1 regime. Based upon a more

precise calculation with Gaussian matrix elements, Wigner predicted that this universal law

is given by a simple formula (called the Wigner surmise). For the real symmetric case it is

P
(
λ̃j − λ̃j−1 = s+ ds

)
≈ πs

2
exp
(− π

4
s2
)
ds, (1.1)

where λ̃j =  λj denote the eigenvalues λj rescaled by the density of eigenvalues  near

λj . This law is characteristically different from the gap distribution of the Poisson point

process which is the exponential distribution, e−sds. The prefactor s in (1.1) indicates a

level repulsion for the point process λ̃j , in particular the eigenvalues are strongly correlated

(eigenvalues are often called (energy) levels in random matrix theory). Similar formulas

hold for the joint statistics of several consecutive gaps.

Comparing measurement data from various experiments, Wigner concluded that the en-

ergy gap distribution of complicated quantum systems is essentially universal; it depends

only on the basic symmetries of model (such as time-reversal invariance). This thesis has

never been rigorously proved for any realistic physical system but experimental data and

extensive numerics leave no doubt on its correctness (see [50] for an overview).

Once universality is expected, explicit formulas for the statistics can be computed from

the most convenient model within the universality class. The simplest representatives of

these universality classes are N × N random matrices with independent (up to symmetry),

identically distributed Gaussian entries. These are called the Gaussian orthogonal ensemble
(GOE) and the Gaussian unitary ensemble (GUE) in case of real symmetric and complex

Hermitian matrices, respectively. Wigner’s bold vision was to neglect all details of the ac-

tual Hamiltonian operator and replace it with a large random Gaussian matrix of the same

symmetry class. As far as the gap statistics are concerned, this simple-minded model very

accurately reproduced the behavior of large complex quantum systems!

Since Wigner’s discovery random matrix statistics are found everywhere in physics and

beyond, wherever nontrivial correlations prevail. Random matrix theory (RMT) is present

in chaotic quantum systems in physics, in principal component analysis in statistics, in com-

munication theory and even in number theory. In particular, the zeros of the Riemann zeta

function on the critical line are expected to follow RMT statistics due to a spectacular result

of Montgomery [54].

In retrospect, Wigner’s idea should have received even more attention. For centuries,

the primary territory of probability theory was to model uncorrelated or weakly correlated
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systems. The surprising ubiquity of random matrix statistics is a strong evidence that it plays

a similar fundamental role for correlated systems as Gaussian distribution and Poisson point

process play for uncorrelated systems. RMT seems to provide essentially the only universal

and generally computable pattern for complicated correlated systems.

A few years after Wigner’s seminal paper [75], Gaudin [41] discovered another remark-

able property of this new point process: the correlation functions have an exact determinantal

structure, at least if the distributions of the matrix elements are Gaussian. The algebraic iden-

tities within the determinantal form opened up the route to obtain explicit formulas for local

correlation functions. For example, in the complex Hermitian case (GUE) the n-point corre-

lation function p(n) of the rescaled eigenvalues λ̃i in the bulk is given by the determinant of

the celebrated sine-kernel:

p(n)(λ̃1, λ̃2, . . . , λ̃n) = det
[
K(λ̃i, λ̃j)

]n
i,j=1

, K(x, y) :=
sinπ(x− y)

π(x− y)
. (1.2)

(The same determinantal expression with a different but closely related kernel function K
holds for the real symmetric case.) As a consequence, the gap distribution is given by a

Fredholm determinant involving Hermite polynomials. In fact, Hermite polynomials were

first introduced in the context of random matrices by Mehta and Gaudin [52] earlier. Dyson

and Mehta [19, 21, 51] have later extended this exact calculation to correlation functions

and to other symmetry classes. When compared with the exact formula, the Wigner surmise

(1.1), based upon a simple 2 × 2 matrix model, turned out to be quite accurate. While

the determinantal structure is present only in Gaussian Wigner matrices, the paradigm of

spectral universality predicts that the formulas for the local eigenvalue statistics obtained in

the Gaussian case hold for general distributions as well.

2. Random matrix ensembles and log-gases

We consider N × N hermitian matrices H with matrix elements having mean zero and

variance 1/N , i.e.

Ehij = 0, E|hij |2 = 1

N
i, j = 1, 2, . . . , N. (2.1)

The matrix elements hij are real or complex independent random variables subject to the

symmetry constraint hij = hji. These ensembles of random matrices are called (standard)
Wigner matrices. The normalization (2.1) is introduced for definiteness.

An important special case of Wigner matrices is the Gaussian case (GOE or GUE), when

hij’s have Gaussian distribution. In this case the matrix ensemble can also be given by the

probability law

P (H)dH = Z−1e−
β
4N TrH2

dH, (2.2)

where dH =
∏

i<j dhijdh̄ij
∏

i dhii is the standard Lebesgue measure on real symmetric

or complex hermitian N ×N matrices and Z = ZN is the normalization. The parameter β
is chosen to be β = 1 for GOE and β = 2 for GUE to ensure the normalization (2.1).

The representation (2.2) shows that the Gaussian ensembles enjoy an invariance property;

the distribution P (H) is invariant under a base transformation, H → UHU∗, where U is
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orthogonal (in case of GOE) or unitary (in case of GUE). In fact, invariance property is not

restricted to the Gaussian case; one may directly generalize (2.2) to

P (H)dH = Z−1e−
β
2N TrV (H)dH, (2.3)

where V : R → R is an arbitrary function with sufficient growth at infinity to ensure the

normalizability of the measure. The ensembles of the form (2.3) are called invariant matrix
ensembles.

Wigner ensembles and invariant ensembles represent two natural but quite different ways

to equip the space of N × N matrices with a probability measure. These two families are

essentially disjoint; only the Gaussian ensembles belong to their intersection.

Let λ = (λ1, λ2, . . . , λN ) denote the eigenvalues of H in increasing order. Since eigen-

values are complicated functions of the matrix elements, there is no explicit formula to ex-

press the probability distribution of λ induced by a general Wigner ensemble. However,

quite remarkably, for invariant ensembles (2.3) the joint probability density of the eigenval-

ues is explicitly given by

μ
(N)
β,V (λ) = C

∏
1≤i<j≤N

(λj − λi)
β

N∏
j=1

e−
β
2NV (λj) (2.4)

with a normalization constant C. This formula may directly be obtained from (2.3) by di-

agonalizing H = UΛU∗ and integrating out the matrix of eigenvectors U ∈ O(N) or

U ∈ U(N) with respect to the Haar measure.

From statistical physics point of view, we may consider the distribution (2.4) as a Gibbs

measure for a gas of N point particles on R. We may write

μ
(N)
β,V (λ) = C e−βNH(λ), H(λ) :=

N∑
k=1

1

2
V (λk)− 1

N

∑
1≤i<j≤N

log(λj − λi), (2.5)

where, according to the Gibbs formalism, H(λ) is the Hamiltonian (energy function) of

the gas and the parameter β plays the role of the inverse temperature. The Vandermonde

determinant in (2.4) translates into a logarithmic pair interaction between the particles. We

may completely ignore the original random matrix ensemble behind (2.4) and consider (2.5)

more generally for any parameter β > 0, not only for the specific values β = 1, 2. The

Gibbs measure (2.5) is often called β-log-gas or β-ensemble.
Eigenvalue distributions of Wigner ensembles and β-log-gases are quite different mathe-

matical entities despite their connection via (2.4) in the special Gaussian case, V (λ) = 1
2λ

2

and β = 1, 2. Wigner ensembles are parametrized by the value β = 1, 2 and by the distribu-

tion of the single matrix elements, while log-gases are parametrized by β and the potential

function V . The central thesis of universality asserts that the gap statistics of both families

of ensembles depend only on the parameter β and are otherwise independent of any other

details of the models.

For Wigner matrices this thesis is generally referred to as the universality conjecture of
random matrices and we will call it the Wigner-Dyson-Gaudin-Mehta conjecture. It was

first formulated in Mehta’s treatise on random matrices [50] in 1967 and has remained a key

question in the subject ever since. In this article we review the recent progress that has led

to the proof of this conjecture and the analogous conjecture for log gases. For more details,

the reader is referred to the lecture notes [22].
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3. Random band matrices and Anderson model

As mentioned in the introduction, Wigner’s vision extends the thesis of universality far be-

yond the models we just introduced. We now present an extension that was an important

source of motivation in the development of the subject.

Viewed as a quantum mechanical Hamilton operator, a Wigner matrix H represents a

mean-field system; the quantum transition rates hij between any two quantum states, labelled

by i and j, are comparable in size. The quantum states of more realistic physical models have

a spatial structure and typically quantum transition occurs between nearby states only.

The spatial structure is essential to understand the metal-insulator transition which is the

fundamental phase transition of disordered quantum systems modelled by a random Hamil-

ton operator H . According to the physical theory, in the metallic phase the eigenfunctions

are delocalized, the quantum time evolution eitH is diffusive and the local eigenvalue statis-

tics coincide with the ones from the GUE/GOE random matrix theory (1.2). The localization
length, which is the characteristic lengthscale of the physically relevant quantities (such as

eigenfunctions or propagators), is practically infinite. In contrast, in the insulator phase, the
eigenfunctions are localized with a localization length � independent of the system size, the

time evolution remains bounded for all times and the local eigenvalue statistics are Poisson.

In the mathematics literature these two phases are usually called delocalized and localized
regimes, respectively, and they are primarily characterized by the spectral type (absolutely

continuous vs. pure point) of the corresponding infinite volume operator.

The basic model for the metal-insulator transition is the celebrated Anderson model in

solid state physics [3]. The Anderson Hamiltonian is given by −Δ + V (x) on the Hilbert

space �2(Zd), where Δ is the lattice Laplacian and V (x) is a real valued random potential

field such that {V (x) : x ∈ Zd} are independent and identically distributed centered

random variables with variance σ2 := E|V (x)|2. The Anderson model has been extensively

studied mathematically. In nutshell, the high disorder regime is relatively well understood

since the seminal work of Frőhlich and Spencer [39] for localization (an alternative proof is

given by Aizenman and Molchanov [1]), complemented by the work of Minami [53] proving

the local Poissonian spectral statistics. In contrast, in the low disorder regime, starting from

three spatial dimension and away from the spectral edges, the eigenfunctions are conjectured

to be delocalized but no rigorous proof exists (extended states conjecture).
Random band matrices are another popular model for the metal-insulator transition [68].

For definiteness, let the state space be a finite box Λ := [1, L]d ⊂ Zd of the d-dimensional

integer lattice equipped with periodic boundary condition. We consider hermitian matrices

H = (hij)i,j∈Λ whose rows and columns are labelled by the elements of Λ and whose

matrix elements are independent. Given a parameter W ≤ L/2, called the band width, we

assume that the matrix elements hij vanish beyond a distance |i − j| ≥ W , i.e. we replace

(2.1) with the condition

Ehij = 0, ∀i, j ∈ Λ; and hij = 0 for |i− j| ≥W. (3.1)

(| · | denotes the periodic distance on Λ). These are called random band matrices. We often

assume a translation invariant profile for the variances, i.e. that

σ2
ij := E|hij |2 = 1

W d
f
( |i− j|

W

)
(3.2)

with some compactly supported function f ≥ 0 on Rd with
∫
Rd f = 1. Notice that the
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normalization is chosen such that∑
j∈Λ

σ2
ij = 1, ∀i ∈ Λ. (3.3)

If the band width is maximal, W = L/2„ and f is constant on [− 1
2 ,

1
2 ]
d, then we re-

cover the Wigner matrices (2.1). Wigner matrices are always in the delocalized regime as it

was shown that all eigenfunctions are extended with very high probability [31]. The other

extreme is when W remains bounded even as the matrix size |Λ| = Ld goes to infinity.

This system behaves very similarly to the Anderson model. In particular, in d = 1 it ex-

hibits Anderson localization even if W grows slowly with L as W � L1/8 [60]. Therefore

random band matrices with an intermediate band width, 1 � W � L, serve as a model

to study the metal-insulator transition. The fundamental conjecture in d = 1 is that the

transition occurs at W = L1/2. This conjecture is supported by supersymmetric (SUSY)

functional integration techniques [40] which are intriguingly elegant but notoriously hard to

justify with full mathematical rigour. Nevertheless, very recently sine-kernel local statistics

(1.2) were proven for a Gaussian band matrix with a specifically chosen block structure [65]

using SUSY approach. The details have been worked out for W ≥ L1−ε with some small

ε > 0. In a related problem (correlation function of the characteristic polynomial of H at

two different energies) the result even holds down to the critical band width W ≥ L1/2+ε

[64], but still only for a specific block structure and Gaussian distribution.

For more general band matrices the universality of the local statistics have not yet been

proven, but it was shown in d = 1 that the localization length is at least W 5/4, indicating

band matrices with band width at least W ' L4/5 are in the delocalized regime [29].

4. Universality on three levels

We consider an ensemble ofN (unordered) random points λ = (λ1, λ2, . . . , λN ) on the real

line, either given by eigenvalues of hermitian random matrices or points of a log-gas. We

always choose the normalization such that all points lie in a bounded interval, independent

of N , with a very high probability. The typical spacing between the points is therefore of

order 1/N .

The statistics of λ are characterized by the n-point functions p
(n)
N . They are defined by

the following relation that holds for any function O of n variables:

E

(
N

n

)−1 ∗∑
O(λi1 ,λi2 , . . . , λin) (4.1)

=

∫
Rn

p
(n)
N (x1, x2, . . . , xn)O(x1, . . . , xn)dx1 . . . dxn.

Here the star indicates that the summation runs over all n-tuples of distinct integers, (i1, i2,
. . . , in) with 1 ≤ ij ≤ N . The correlation function for n = 1 is called the density. Typically
we fix n and consider the limit of the correlation functions p

(n)
N as N → ∞ to obtain the

limiting statistics.

We may consider the limiting statistics of the points on three scales. For definiteness

we illustrate these scales for Wigner matrices; similar results hold for the log-gases and for

random band matrices, but the latter only under more restrictive conditions.
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4.1. Macroscopic scale. The largest scale corresponds to observable functions O in (4.1)

that are unscaled with N . For Wigner matrices (2.1) the limiting density is given by the

celebrated semicircle law [75]

 sc(x) :=
1

2π

√
(4− x2)+ (4.2)

in the form of a weak limit:

E
1

N

∑
i

O(λi) =

∫
R

p
(1)
N (x)O(x)dx→

∫
R

 sc(x)O(x)dx, as N →∞, (4.3)

that holds for any continuous, compactly supported function O. In fact, the semicircle law

also holds not only in expectation but also as a convergence in probability for the empirical

density:

P
(∣∣∣ 1

N

∑
i

O(λi)−
∫
R

 sc(x)O(x)dx
∣∣∣ ≥ ε

)
→ 0 (4.4)

for any ε > 0 as N →∞.

These results are the simplest form of spectral universality; they assert that the eigen-

value density on macroscopic scales is independent of the specific distribution of the matrix

elements. In fact, this result also holds for generalized Wigner matrices whose matrix el-

ements are still centered and independent, but their distributions may vary. The semicircle

law (4.3) holds as long as the row sums of the variances is constant, i.e.∑
j

σ2
ij = 1, σij := E|hij |2, (4.5)

for any i. If (4.5) does not hold but the variances have a macroscopic profile in a sense that

σ2
ij = S

( i
N
,
j

N

)
with some fixed function S on [0, 1]× [0, 1], then the limiting density still exists and can be

computed from S, but it is not given by the semicircle law any more [2]. These results show

that the limiting density is determined by variances of the matrix elements alone and not by

their full distribution.

4.2. Mesoscopic scales. We now consider an N -dependent scaling parameter η = ηN > 0
and a fixed point E in the support of the limiting density, |E| < 2 (real numbers E in the

context of location in the spectrum are often called energy due to the physical meaning of the

spectrum). The regime 1/N � η � 1 corresponds to mesoscopic scales; on these scales the

fluctuation of the empirical density around the semicircle density profile is still negligible,

but the effects of individual points are not yet visible.

We rescale the observable around E in a window of size η and consider

E
1

Nη

∑
i

O
(λi − E

η

)
=

∫
R

p
(1)
N (E + xη)O(x)dx. (4.6)

If η → 0 as N → ∞, then formally (4.3) would indicate that the limit of (4.6) is

 sc(E)
∫
O(x)dx. This is indeed correct, with some technical assumptions even in the
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stronger sense (4.4), as long as 1/N � η � 1. This is called the local semicircle law
in the bulk of the spectrum. The first result down to the optimal scale η ' 1/N (modulo

logN factors) was given in [31] followed by several improvements and generalizations, see

[27] for a summary. In particular, local semicircle law has also been extended to the spectral

edge, |E| = 2, where the optimal scale is η ' N−2/3 reflecting the fact that the eigenvalue

spacing near the edge is of order N−2/3.

Local semicircle laws imply, among others, that the points λj are very close to their

classical location denoted by γj and defined as the j-th quantile of the limiting density:∫ γj

−∞
 sc(x)dx =

j

N
. (4.7)

More precisely, we have for any j (including the extreme eigenvalues near the spectral edge)

that

|λj − γj | 	 |γj+1 − γj | (4.8)

with a very high probability, where 	 indicates logarithmic factors [37]. The property (4.8)

is called rigidity and it asserts that the fluctuation of the points is essentially on the scale of

the local gap |γj+1 − γj |. In particular, for points in the bulk spectrum, their fluctuation is

only slightly larger than 1/N .

Local semicircle law also holds for random band matrices with (3.2), however the local

density is controlled only down to scales η ' W−1, see [27] for a summary and also [66].

The regime η �W−1 is mathematically unexplored and there is no optimal rigidity result.

While the density on mesoscopic scales behaves exactly as on the macroscopic scale, the

density-density correlation exhibits a new universality. For two random variables, X,Y , let

〈X;Y 〉 = EXY − EX EY denote their covariance. Consider two energies E2 ≥ E1 and a

scale η such that N−1/7 � η � E2 − E1 � 1. Then for Wigner matrices the covariance

decays with a universal power-law [7, 25, 26]〈
1

Nη

∑
i

O
(λi − E1

η

)
;
1

Nη

∑
i

O
(λi − E2

η

)〉
∼ −[N(E2 − E1)

]−2
(4.9)

(for Gaussian case the result extends to η ' 1/N [6]). Higher order moments satisfy the

Wick theorem asymptotically, i.e. the local densities at different energies converge to a

Gaussian variables with a non-trivial covariance structure [25, 26].

Similar result holds for band matrices with (3.2) in d dimensions, but the power law

decay in (4.9) undergoes a phase transition. For W−d/7 � η � (W/L)2 the asymptotics

(4.9) holds with the mean-field exponent −2, while for (W/L)2 � η � 1 the power in

the right hand side becomes −2 + d
2 for d = 1, 2, 3 and it is logarithmic for d = 4. In

higher dimensions, d ≥ 5, the universality breaks down. This feature is closely related to

the quantum diffusion phenomenon for the unitary time evolution [23, 24]. In the physics

literature these asymptotics are called the Altshuler-Shklovskii formulas and recently they

have been rigorosly proved [25, 26].

4.3. Microscopic scale. The most intriguing regime for universality is the microscopic

scale where the scaling parameter η in the observable is chosen comparable with the typ-

ical local eigenvalue spacing. In particular, individual eigenvalues are observed. This is the

regime for the gap distribution in Wigner’s surmise, and the original conjecture of Mehta

[50] on random matrix universality also pertains microscopic scales.
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Before we formulate the precise results, we make two remarks to explain why there will

be different universality theorems.

First, for the local statistics we need to distinguish the bulk spectrum where η ∼ 1/N and

the edge spectrum where η ∼ N−2/3. Not only the scaling but also the explicit formulas are

different in these two regimes. The correlation functions are asymptotically determinantal

(Pfaffian) in both cases, but in the bulk they are given by the Dyson sine kernel (1.2) and

its real symmetric counterpart, while at the edge they are given by the Airy kernel [72,

73]. In all cases the explicit formulas have been computed in the corresponding Gaussian

model which is computationally the most accessible case via orthogonal polynomials. The

significance of orthogonal polynomials in randommatrices has first been realized by Gaudin,

Mehta and Dyson [21, 41, 52]. Their approach was later generalized and combined with

the Riemann-Hilbert method to yield explicit asymptotic calculations for broader classes of

invariant ensembles, see [5, 14, 17, 18, 38, 49, 57, 58] for the extensive literature in the

β = 2 case and [16, 47, 62] for the more complicated β = 1, 4 case. Our universality results

show that the local statistics for a general Wigner matrix or invariant ensemble (or even more

generally a β-log-gas) coincide with those of the corresponding Gaussian model. Therefore

all explicit asymptotic calculations apart from the simplest Gaussian case become redundant.

Second, there is a subtle difference between the universality of n-point local correlation
functions around a fixed energyE and the universality of n consecutive points λj+1, λj+2, . . .
λj+n for some fixed label j. The former asks for identifying the limit

E
1

(Nη)n

∗∑
O
(λi1 − E

η
,
λi2 − E

η
, . . . ,

λin − E

η

)
(4.10)

=

∫
Rn

p
(n)
N (E + x1η,E + x2η, . . . , E + xnη)O(x1, . . . , xn)dx1 . . . dxn

for any smooth, compactly supported observable O, i.e. identifying the weak limit of the

rescaled correlation functions p
(n)
N (E + x1η,E + x2η, . . .) in the variables x1, . . . , xn, The

latter asks for the joint distribution of λj+1, λj+2, . . . λj+n with an appropriate rescaling.

The rigidity (4.8) locates the j-th eigenvalue λj around a fixed energy E = γj but only

with a precision slightly larger than 1/N . In fact, for the Gaussian ensembles it is known

[42, 56] that λj − γj is Gaussian and it fluctuates on scale
√
logN/N therefore there is no

direct translation between the two types of universality results. In particular, the universality

of n consecutive gaps which was originally advocated by Wigner, i.e. the limit of

EO
(λj+1 − λj

η
,
λj+2 − λj+1

η
, . . . ,

λj+n − λj+n−1

η

)
(4.11)

=

∫
Rn

g
(j)
N (x1, x2, . . . , xn)O(x1, . . . , xn)dx1 . . . dxn,

with the natural scaling η = 1/N , cannot be concluded from the fixed energy universality

(4.10).

Given the historical importance of the Wigner surmise, it is somewhat surprising that

gap universality with a fixed label did not receive much attention until very recently. The

first results on the Wigner-Dyson-Gaudin-Mehta universality proved (4.10) in the sense of

average energy, i.e. after taking average in the parameter E in a small interval of size

N−1+ε. Since N−1+ε is above the rigidity scale, average energy universality easily implies

average label gap universality, i.e. the averaged version of (4.11) after averaging the label j
in an interval of size Nε.
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Our more recent understanding shows that there is a profound difference between the

weaker “averaged” results versus the stronger “fixed” ones. Obviously, “fixed” results

are necessary for the precise statistics of individual points hence for fully characterizing

the limiting process. At first sight, removing the local averaging may only seem a fine

technical point; it merely requires to exclude the pathological case that a certain energy

E (or a certain label j) might behave very differently than a typical one. Physicists have

never worried about this situation since there is no apparent reason for such pathology (in

fact Mehta’s original version of the conjecture did not specify the precise formulation of

universality). Mathematically, however, it turned out surprisingly involved to exclude the

worst case scenarios and we needed to develop a completely new approach. Finally, we

point out that, unlike their averaged counterparts, the fixed energy and the fixed label results

are not equivalent, in fact each required a separate proof.

5. Universality of local statistics: the main results

5.1. Wigner ensembles. Our main results hold for a larger class of ensembles than the

standard Wigner matrices, which we will call generalized Wigner matrices.

Definition 5.1 ([36]). The real symmetric or complex Hermitian matrix ensemble H with

centred and independent matrix elements hij = hji, i ≤ j, is called generalized Wigner
matrix if the variances σ2

ij = E|hij |2 satisfy:

(A) For any j fixed
N∑
i=1

σ2
ij = 1 . (5.1)

(B) There exist two positive constants, C1 and C2, independent of N such that

C1

N
≤ σ2

ij ≤
C2

N
. (5.2)

For Hermitian ensembles, we additionally require that for each i, j the 2 × 2 covariance

matrix is bounded by C/N in matrix sense, i.e.

Σij : =

(
E(Rehij)

2 E(Rehij)(Imhij)
E(Rehij)(Imhij) E(Imhij)

2

)
≥ C

N
.

The following theorem settles the average energy version of the Wigner-Dyson-Gaudin-

Mehta conjecture for generalized Wigner matrices. It is formulated under the weakest mo-

ment assumptions. The same result under somewhat more restrictive assumptions were al-

ready obtained in [32, 33]; see also [69] for the complex hermitian case and for a quite

restricted class of real symmetric matrices. More details on the history can be found in [22].

Theorem 5.2 (Universality with averaged energy [28, Theorem 7.2]). Suppose that H =
(hij) is a complex Hermitian (respectively, real symmetric) generalized Wigner matrix. Sup-
pose that for some constants ε > 0, C > 0,

E
∣∣∣√Nhij

∣∣∣4+ε

≤ C. (5.3)



Random matrices, log-gases and Hölder regularity 223

Let n ∈ N and O : Rn → R be a test function (i.e. compactly supported and continuous).
Fix |E0| < 2 and ξ > 0, then with bN = N−1+ξ we have

lim
N→∞

∫ E0+bN

E0−bN

dE

2bN

∫
Rn

dα1 · · · dαnO(α1, . . . , αn)

× 1

 sc(E)n

(
p
(n)
N − p

(n)
G,N

)(
E +

α1

N sc(E)
, . . . , E +

αn
N sc(E)

)
= 0 . (5.4)

Here  sc is the semicircle law defined in (4.2), p(n)N is the n-point correlation function of the
eigenvalue distribution ofH (4.1), and p(n)G,N is the n-point correlation function of anN×N
GUE (respectively, GOE) matrix.

The additional rescaling in (5.4) with  sc(E) is not essential, it just reflects the choice of

variables under which the Gaussian correlation function is given exactly by the sine kernel

(1.2) and not by some trivially rescaled version of it.

We remark that our method also provides an effective speed of convergence in (5.4). We

also point out that the condition (5.2) can be relaxed, see Corollary 8.3 [27]. For example,

the lower bound can be changed to N−9/8+ε. Alternatively, under an additional symmetry

condition on the law of the matrix elements, the upper bound can be relaxed to N−8/9−ε.

For the next result, we introduce the notation [[A,B]] := {A,A + 1, . . . , B} for any

integers A < B. A relatively straightforward consequence of Theorem 5.2 is the average

gap universality:

Corollary 5.3 (Gap universality with averaged label). Let H be as in Theorem 5.2 and O
be a test function of n variables. Fix small positive constants ξ, α > 0. Then for any integer
j0 ∈ [[αN, (1− α)N ]] we have

lim
N→∞

1

2N ξ

∑
|j−j0|≤Nξ

[
E−EG

]
O
(
N(λj−λj+1), N(λj−λj+2), . . . , N(λj−λj+n)

)
= 0.

(5.5)

Here λj’s are the ordered eigenvalues. E and EG denote the expectation with respect to the
Wigner ensemble H and the Gaussian (GOE or GUE) ensemble, respectively.

We remark that, similarly to the explicit formulas for the correlation functions (1.2), for

Gaussian (GOE or GUE) ensembles there are explicit expressions for the gap distribution

even without local averaging. They are given in terms of a Fredholm determinant of the

corresponding kernel K, see [14, 16, 62].

Now we present our results for fixed energy:

Theorem 5.4 (Universality at fixed energy [11]). Theorem 5.2 holds under the same condi-
tions without averaging, i.e. for any E with |E| < 2 we have

lim
N→∞

∫
Rn

dα1 · · · dαnO(α1, . . . , αn)

× 1

 sc(E)n

(
p
(n)
N − p

(n)
G,N

)(
E +

α1

N sc(E)
, . . . , E +

αn
N sc(E)

)
= 0 . (5.6)
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We remark that the fixed energy result (5.6) for the β = 2 (complex Hermitian) case

was already known before, see [30, 70] for special cases and [34] for the general case. The

β = 2 case is exceptional since the Harish-Chandra/Itzykson/Zuber identity allows one to

compute correlation functions for Wigner matrices with a tiny Gaussian component. This

method relies on an algebraic identity and cannot be generalized to other symmetry classes.

Finally, the gap universality with fixed label asserts that (5.5) holds without averaging.

Theorem 5.5 (Gap universality with fixed label [35, Theorem 2.2]). Assuming subexponen-
tial decay of the matrix elements instead of (5.3), Corollary 5.3 holds without averaging:

lim
N→∞

[
E− EG

]
O
(
N(λj − λj+1), N(λj − λj+2), . . . , N(λj − λj+n)

)
= 0, (5.7)

for any j ∈ [[αN, (1− α)N ]] with a fixed α > 0.
More generally, for any k,m ∈ [[αN, (1− α)N ]] we have

lim
N→∞

∣∣∣EO((N k)(λk − λk+1), (N k)(λk − λk+2), . . . , (N k)(λk − λk+n)
)

(5.8)

− EGO
(
(N m)(λm − λm+1), . . . , (N m)(λm − λm+n)

)∣∣∣ = 0,

where the local density  k is defined by  k :=  sc(γk) with γk from (4.7).

The second part (5.8) of this theorem asserts that the gap distribution is not only indepen-

dent of the specific Wigner ensemble, but it is also universal throughout the bulk spectrum.

This is the counterpart of the statement that the appropriately rescaled correlation functions

(5.6) have a limit that is independent of E, see (1.2).

Prior to our work, universality for a single gap was only achieved in the special case

of the Gaussian unitary ensemble (GUE) in [71], which statement then easily implies the

same results for complex Hermitian Wigner matrices satisfying the four moment matching

condition.

5.2. Log-gases. In the case of invariant ensembles, it is well-known that for V satisfying

certain mild conditions the sequence of one-point correlation functions, or densities, associ-

ated with μ = μ
(N)
β,V from (2.5) has a limit as N → ∞ and the limiting equilibrium density

 V (s) can be obtained as the unique minimizer of the functional

I(ν) =

∫
R

V (t)ν(t)dt−
∫
R

∫
R

log |t− s|ν(s)ν(t)dtds.

We assume that  =  V is supported on a single compact interval, [A,B] and  ∈ C2(A,B).
Moreover, we assume that V is regular in the sense that  is strictly positive on (A,B) and
vanishes as a square root at the endpoints, i.e.

 (t) = sA
√
t−A (1 +O (t−A)) , t→ A+, (5.9)

for some constant sA > 0 and a similar condition holds at the upper edge.

It is known that these conditions are satisfied if, for example, V is strictly convex. In this

case  V satisfies the equation

1

2
V ′(t) =

∫
R

 V (s)ds

t− s
(5.10)
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for any t ∈ (A,B). For the Gaussian case, V (x) = x2/2, the equilibrium density is given

by the semicircle law,  V =  sc, see (4.2).

The following result was proven in Corollary 2.2 of [8] for convex real analytic potential

V , it was generalized in Theorem 1.2 of [9] for the non-convex case and further generalized

for arbitrary C4 potential in Theorem 2.5 of [10].

Theorem 5.6 (Universality with averaged energy). Assume V ∈ C4(R), regular and let
β > 0. Consider the β-ensemble μV = μ

(N)
β,V given in (2.5) with correlation functions p(n)V,N

defined analogously to (4.1). For the Gaussian case, V (x) = x2/2, the correlation functions
are denoted by p(n)G,N . Let E0 ∈ (A,B) lie in the interior of the support of  and similarly let
E′

0 ∈ (−2, 2) be inside the support of  sc. Then for bN = N−1+ξ with some ξ > 0 we have

lim
N→∞

∫
dα1 · · · dαnO(α1, . . . , αn) (5.11)

×
[∫ E0+bN

E0−bN

dE

2bN

1

 (E)n
p
(n)
V,N

(
E +

α1

N (E)
, . . . , E +

αn
N (E)

)
−
∫ E′0+bN

E′0−bN

dE′

2bN

1

 sc(E′)n
p
(n)
G,N

(
E′ +

α1

N sc(E′)
, . . . , E′ +

αn
N sc(E′)

)]
= 0 ,

i.e. the correlation functions of μ(N)
β,V averaged aroundE0 asymptotically coincide with those

of the Gaussian case. In particular, they are independent of E0.

Theorem 5.6 immediately implies gap universality with averaged label, exactly in the

same way as Corollary 5.3 was deduced from Theorem 5.2; we refrain from stating it explic-

itly. The following two theorems show that these results hold without averaging.

Theorem 5.7 (Universality at fixed energy [11]). Consider the setup of Theorem 5.6 and
we additionally assume that β ≥ 1. Then (5.11) holds without averaging, i.e. for any
E ∈ (A,B) and E′ ∈ (−2, 2) we have

lim
N→∞

∫
dα1 · · · dαnO(α1, . . . , αn) (5.12)

×
[

1

 (E)n
p
(n)
V,N

(
E +

α1

N (E)
, . . . , E +

αn
N (E)

)
− 1

 sc(E′)n
p
(n)
G,N

(
E′ +

α1

N sc(E′)
, . . . , E′ +

αn
N sc(E′)

)]
= 0 .

Prior to our work and with a different method, the same result was also proven in [63]

for analytic potentials and for any β > 0 even if the support of  has several intervals. An

extension of the method to V ∈ C5 is anticipated in [63].

To formulate the result for the gap universality with a fixed label, we define the quantiles

γj,V of the density  V by
j

N
=

∫ γj,V

A

 V (x)dx, (5.13)

similarly to (4.7). We set

 Vj :=  V (γj,V ), and  j :=  sc(γj) (5.14)
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to be the limiting densities at the j-th quantiles. Let EμV and EG denote the expectation

w.r.t. the measure μV and its Gaussian counterpart for V (λ) = 1
2λ

2.

Theorem 5.8 (Gap universality with fixed label [35, Theorem 2.3]). Consider the setup of
Theorem 5.6 and we also assume β ≥ 1. Set some α > 0, then

lim
N→∞

∣∣∣∣∣EμV O
(
(N Vk )(λk − λk+1), (N Vk )(λk − λk+2), . . . , (N Vk )(λk − λk+n)

)
− EμGO

(
(N m)(λm − λm+1), . . . , (N m)(λm − λm+n)

)∣∣∣∣∣ = 0 (5.15)

for any k,m ∈ [[αN, (1 − α)N ]]. In particular, the distribution of the rescaled gaps w.r.t.
μV does not depend on the index k in the bulk.

We point out that Theorem 5.6 holds for any β > 0, but Theorems 5.7 and 5.8 require

β ≥ 1. This is only a technical restriction related to a certain condition in the De Giorgi-

Nash-Moser regularity theory that is the backbone of our proof. Indeed, a year after our

work was completed, an alternative proof of (5.15) was given for any β > 0 but with a

higher regularity assumption on V and with an additional hypothesis that can be effectively

checked only for convex V , see [4].

5.3. Universalities at the edge. We stated our results for the bulk of the spectrum. Similar

results hold at the edge; in this case the “averaged” results are meaningless. For complete-

ness, we give the universality results for both ensembles.

Theorem 5.9 (Universality at the edge for Wigner matrices [10]). Let H be a generalized
Wigner ensemble with subexponentially decaying matrix elements. Fix n ∈ N, κ < 1/4 and
a test function O of n variables. Then for any Λ ⊂ [[1, Nκ]] with |Λ| = n, we have∣∣∣∣[E− EG

]
O

((
N2/3j1/3(λj − γj)

)
j∈Λ

)∣∣∣∣ ≤ N−χ,

with some χ > 0, where EG is expectation w.r.t. the standard GOE or GUE ensemble
depending on the symmetry class of H and γj’s are semicircle quantiles.

Edge universality for Wigner matrices was first proved in [67] assuming symmetry of

the distribution of the matrix elements and finiteness of all their moments. The symmetry

condition was completely eliminated [37] and the optimal moment condition was obtained

in [48]. All these works heavily rely on the fact that the variances of the matrix elements are

identical. The main point of Theorem 5.9 is to consider generalized Wigner matrices, i.e.,

matrices with non-constant variances. In fact, it was shown in [37] that the edge statistics for

any generalized Wigner matrix are universal in the sense that they coincide with those of a

generalized Gaussian Wigner matrix with the same variances, but it was not shown that the

statistics are independent of the variances themselves. Theorem 5.9 provides this missing

step and thus it proves the edge universality in the broadest sense.

Theorem 5.10 (Universality at the edge for log-gases [10]). Let β ≥ 1 and V (resp. Ṽ ) be
in C4(R), regular such that the equilibrium density  V (resp.  Ṽ ) is supported on a single
interval [A,B] (resp. [Ã, B̃]). Without loss of generality we assume that for both densities
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(5.9) holds with A = 0 and with the same constant sA. Fix n ∈ N, κ < 2/5. Then for any
Λ ⊂ [[1, Nκ]] with |Λ| = n, we have∣∣∣∣(EμV − EμṼ )O

((
N2/3j1/3(λj − γj)

)
j∈Λ

)∣∣∣∣ ≤ N−χ (5.16)

with some χ > 0. Here γj are the quantiles w.r.t. the density  V (5.13).

The first results on edge universality for invariant ensembles concerned the classical

values of β = 1, 2, 4. The case β = 2 and real analytic V was solved in [15, 17]. The

β = 1, 4 cases are considerably harder than β = 2. For β = 1, 4 universality was first

proved for polynomial potentials in [15], then for the real analytic case for β = 1 in [59, 61],

which also give an alternative proof for β = 2. Finally, independently of our work with a

completely different method, edge universality for any β > 0 and convex polynomial V was

recently proved in [46].

6. Outline of the proof strategy

6.1. “Averaged” results: Dyson Brownian motion. The proof of Theorem 5.2 follows a

three-step strategy that was first introduced in [30] and further developed in [32].

Step 1. Local semicircle law and rigidity of eigenvalues. The main tool is the resolvent of

H at a spectral parameter z = E + iη with η ' 1/N ;

mN (z) :=
1

N
Tr

1

H − z
=

1

N

∑
j

1

λj − z
,

which is of the form of (4.6) with O(x) = (x − i)−1. Using the Schur decomposition

formula we may write

mN (z) =
1

N

N∑
j=1

1

hjj − z −∑a,b �=j hjaG
(j)
ab (z)hbj

,

where G(j)(z) = (H(j) − z)−1 is the resolvent of the (N − 1)× (N − 1) minor H(j) of H

after removing the j-th row and column. SinceG
(j)
ab (z) and hjahbj are independent, we may

use concentration results to replace the double sum in the denominator by its expectation

over the matrix elements in the j-th row and column. Neglecting the fluctuation, we recover

m
(j)
N (z), the normalized trace of the resolvent of H(j). Since m

(j)
N (z) and mN (z) are close,

we obtain the following self-consistent equation

mN (z) = − 1

z +mN (z)
+ error. (6.1)

If the error is neglected, then the solution of the resulting quadratic equation is exactly the

Stieltjes transform

msc(z) :=

∫
R

1

x− z
 sc(x)dx
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of the Wigner semicircle law  sc(x). This allows us to conclude thatmN (z) is close tomsc,

and a careful analysis yields

|mN (z)−msc(z)| 	 1

Nη
. (6.2)

This is the local semicircle law in resolvent form, from which the limit of (4.6) and the

rigidity property (4.8) can be concluded.

Step 2. Universality for Gaussian divisible ensembles: The Gaussian divisible ensembles

are matrices of the form

Ht = e−t/2H +
√
1− e−tU,

where H is a Wigner matrix and U is an independent GUE/GOE matrix. The parametriza-

tion of Ht reflects that, in the sense of distribution, it is most conveniently obtained by an

Ornstein-Uhlenbeck process:

dHt =
1√
N
dBt − 1

2
Htdt, (6.3)

where Bt is a matrix-valued Brownian motion of the appropriate symmetry class. Dyson

observed [20] that the corresponding process λt of the eigenvalues of Ht remarkably satis-

fies a system of stochastic differential equations (SDE), called the Dyson Brownian Motion
(DBM):

dλj =
1√
N
dBj +

[
− 1

2
λj +

1

N

∑
k �=j

1

λk − λj

]
dt, (6.4)

written for β = 2, whereBj’s are independent standard real Brownian motions. The key idea

is to study the relaxation of the flow (6.4) to its equilibrium measure which is the distribution

of the GUE eigenvalues. It turns out that, tested against observables involving only differ-
ences of eigenvalues, the convergence is extremely fast. Combined with the rigidity bound

that guarantees a strong apriori control on the initial state, we obtain that the gap statistics

are already in local equilibrium (hence universal) after a very short time t = N−1+ε, see

[32, 33].

This method substantially improves Johansson’s result [44] which showed universality

only with a substantial Gaussian component (essentially for t > 0 independent of N ) and

only for the β = 2 symmetry class. In fact, the first restriction can be relaxed by using our

optimal rigidity bound [30, 34], but the second one cannot be removed since the proof relies

on the Harish-Chandra/Itzykson/Zuber formula. The analysis of the DBM is much more

robust, in particular it applies to any symmetry class. However, it yields only an averaged

result (5.5) (from which (5.4) can be deduced), while [30, 34] gives the fixed energy results

(5.6) but only for β = 2.

Step 3. Approximation by Gaussian divisible ensembles: It is a simple density argument in

the space of matrix ensembles which shows that for any probability distribution of the matrix

elements there exists a Gaussian divisible distribution with a small Gaussian component,

as in Step 2, such that the two associated Wigner ensembles have asymptotically identical

local eigenvalue statistics. The first implementation of this approximation scheme was via

a reverse heat flow argument [30]; it was later replaced by the Green function comparison
theorem [36] motivated by the four moment matching condition of [69]. This comparison
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argument is very robust: it works even without averaging and for arbitrary observables not

only for those of difference type.

The proof of Theorem 5.6 follows a somewhat similar path but with essential differences.

Rigidity estimates still hold on the smallest scale, but their derivation cannot use resolvents

since there is no matrix behind a general log-gas. Instead of (6.1) we use the loop equation

from [45] or [62], but extended to smooth potentials. There is no analogue of the Gaus-

sian divisible ensemble for log-gases, but an enhanced version of the DBM underlying the

invariant measure μV can still be analyzed.

In summary, the DBM plays the fundamental role behind the “averaged” universality

result for both models.

6.2. “Fixed” results: Hölder regularity and homogenization. For definiteness, we will

present some ideas to prove Theorem 5.8, the proof of Theorems 5.4, 5.5, 5.7 and the results

at the edge require additional steps.

Step 1. Comparison of local Gibbs measures. The basic mechanism for universality is that

the microscopic structure of the measure μV defined in (2.4) is insensitive of the potential

V , it is essentially determined by the Vandermonde determinant, i.e. the log-interaction in

(2.5). In the first step we localize the problem by freezing (conditioning on) all particles at a

distance 1 � K � N away from the fixed index j of the gap λj − λj+1 we want to study.

Thus the corresponding local Gibbs measure is defined on an interval I = [j−K, j+K] and
it still retains the Vandermonde structure. On this mesoscopic scale the potential is locally

constant, hence its effect is trivial, so the key question is to show that λj − λj+1 is largely

insensitive to the boundary effects we just introduced by localization. This is a question

about the long range correlation structure of the Gibbs measure.

The main difficulty is that the log-gas is a strongly correlated system in contrast to the

customary setup in statistical physics where correlations often decay very fast. In fact, the

covariance between two points decays only logarithmically

〈λi;λj〉√〈λi;λi〉〈λj ;λj〉 ∼ 1

log |i− j| , 1� |i− j| � N. (6.5)

One key observation is that the correlation decay between a gap λi − λi+1 and a point λj is

faster, it is |i− j|−1, practically the discrete derivative of (6.5).

Step 2. Random walk representation of the covariance. In a more general setup, consider a

Gibbs measure ω(dx) = e−βH(x)dx on finitely many points labelled by I and with a strictly

convex Hamiltonian,H′′(x) ≥ c > 0. Then the covariance w.r.t. ω can be expressed as

〈F (x);G(x)〉ω = 1

2

∫ ∞

0

ds

∫
dω(x)Ex

[ ∇G(x(s)) · U(s,x(·))∇F (x)], (6.6)

see [43, 55]. Here Ex is the expectation for the (random) paths x(·) starting from x(0) = x
and solving the canonical SDE for the measure ω:

dx(s) = dB(s)− β∇H(x(s))ds, (6.7)

and U(s) = U(s,x(·)) is the fundamental solution to the linear system of equations

∂sU(s) = −U(s)A(s), A(s) := βH′′(x(s)) (6.8)
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with U(0) = Id. Notice that the coefficient matrix A(s), and thus the fundamental solution,

depend on the random path. The SDE (6.7) is the generalization of the DBM, (6.4). Formula

(6.6) turns the problem of computing the covariance 〈F ;G〉 into a time-dependent question

to understand the fundamental solution U of the parabolic equation (6.8).

In particular, if G is a function of a single gap, G(x) = O(xj − xj+1) with some fixed

j, and F represents the boundary effects, then (6.6) becomes

1

2

∫ ∞

0

ds

∫
dω(x)

∑
i∈I

Ex

[
O′(xj − xj+1)

(Ui,j(s)− Ui,j+1(s)
)
∂iF (x)

]
. (6.9)

The key technical step is to show that for a typical path x(·) the solution U(s) is Hölder-

regular in a sense that Ui,j(s)−Ui,j+1(s) is small if j is away from the boundary of I and s
is not too small.

Step 3. Hölder-regularity of the solution to (6.8). For any fixed realization of the path x(·),
we will view the equation (6.8) as a finite dimensional version of a parabolic equation. The

coefficient matrix, the Hessian of the local Gibbs measure, is computed explicitly. It can be

written as A = B +W , whereW ≥ 0 is diagonal, B is a symmetric matrix with quadratic

form

〈u,B(s)u〉 = 1

2

∑
i,j∈I

Bij(s)(ui − uj)
2, Bij(s) :=

β

(xi(s)− xj(s))2
.

After rescaling the problem so that the gap is of order one, for a typical path and large i− j
we have

Bij(s) ∼ 1

(i− j)2
(6.10)

by rigidity. We also have a lower bound for any i �= j

Bij(s) 

1

(i− j)2
, (6.11)

at least with a very high probability. If a matching upper bound were true for any i �= j, then
(6.8) would be the discrete analogue of the general equation

∂tu(t, x) =

∫
K(t, x, y)[u(t, y)− u(t, x)]dy, t > 0, x, y ∈ Rd (6.12)

considered by Caffarelli-Chan-Vasseur in [12], where the kernel K is symmetric and has a

specific short distance singularity

C1|x− y|−d−s ≤ K(t, x, y) ≤ C2|x− y|−d−s (6.13)

for some s ∈ (0, 2) and positive constants C1, C2. Roughly speaking, the integral operator

K corresponds to the behavior of the operator |p|s, where p = −i∇. The main result of [12]

asserts that for any t0 > 0, the solution u(t, x) is ε-Hölder continuous, u ∈ Cε((t0,∞),Rd),
for some positive exponent ε that depends only on t0, C1, C2. This is a version of the

celebrated De Giorgi-Nash-Moser regularity result for a non-local operator.

Our equation (6.8) is of this type with d = s = 1, but it is discrete and in a finite interval

I with a potential term. The key difference, however, is that the coefficient Bij(t) can be
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singular in the sense that Bij(t)|i− j|2 is not uniformly bounded when i, j are close to each

other. Thus the analogue of the uniform upper bound (6.13) does not even hold for a fixed t.
We first need to regularize the singularity of Bij on a very tiny scale. Even after that we can

control the regularized B reg

ij only in a certain average sense:

sup
0≤s≤σ

sup
0≤M≤K

1

1 + s

∫ s

0

1

M

∑
i∈I : |i−Z|≤M

B reg

i,i+1(s)ds ≤ CKρ (6.14)

with high probability, for some small exponent ρ and for any fixed Z away from the edges of

I . This estimate essentially says that the space-time maximal function ofB reg

i,i+1(t) at a fixed

space-time point (Z, 0) is bounded byKρ. Our main generalization of the result in [12] is to

show that the weak upper bound (6.14) at a few space-time points together with (6.10) and

(6.11) (holding up to a factor Kξ) are sufficient for proving a discrete version of the Hölder

continuity at the point (Z, 0). More precisely, there exists an ε > 0 such that for any fixed

1� σ � K the solution to (6.8) satisfies

sup
|j−Z|+|j′−Z|≤σ1−α

|Ui,j(σ)− Ui,j′(σ)| ≤ CKξσ−1−εα (6.15)

with any α ∈ [0, 1/3] if we can guarantee that ρ and ξ are sufficiently small. The exponent

ε plays the role of the Hölder regularity exponent. Notice that Ui,j(σ) decays as σ−1, hence

(6.15) provides an additional decay for the discrete derivative. In particular, this guarantees

that the ds integration in (6.9) is finite. With several further technical steps, this proves

Theorem 5.8.

Step 4. Homogenization. The proofs of Theorems 5.5, 5.7 require an additional information

about the fundamental solution of (6.8). Since in the |i− j| ' 1 regime we have Bij(s) ∼
|i− j|−2, it is reasonable to expect that the large time and large scale behavior of U is given

by the

Uij(t) ≈
(
e−t|p|

)
ij
=

t

t2 + (i− j)2
, |i− j| ' 1, t' 1, (6.16)

where we computed the heat kernel of |p| = √−Δ explicitly. This result, combined with a

coupling argument, yields that

λi(t)− λ̃i(t) =
(
e−t|p|λ(0)

)
i
−
(
e−t|p|λ̃(0)

)
i
+ error, (6.17)

where λ and λ̃ are two solutions of the SDE (6.7) with the same Brownian motion B(s) but
with two different initial conditions. In the applications, λ(0) will be GUE/GOE eigenvalues

and λ̃(0) will be the eigenvalues of a general Wigner matrix. Formula (6.17) allows us to

express a single Wigner eigenvalue λi(t) in terms of the corresponding Gaussian eigenvalue

λ̃i(t) and in terms of averaged quantities involving many eigenvalues. Since averaged quan-

tities can be computed much easier and Gaussian computations can be performed by explicit

formulas, we obtain nontrivial information about λi(t). Finally, approximation ideas similar

to Step 3. in Section 6.1 can relate general Wigner eigenvalues to Wigner eigenvalues with

some Gaussian component such as λi(t). In particular, these ideas can prove the logarithmic

correlation decay (6.5) for any Wigner matrix.

In summary, the detailed analysis of the parabolic equation (6.8) with singular coeffi-

cients given by the Dyson Brownian motion play the crucial role behind all “fixed” univer-

sality results for both Wigner matrices and log-gases.
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Acknowledgement. The author is partially supported by SFB-TR 12 Grant of the German

Research Council and by ERC Advanced Grant, RANMAT 338804. Most results in this

paper were obtained in collaboration with Horng-Tzer Yau, Benjamin Schlein, Jun Yin, Antti

Knowles and Paul Bourgade and in some work, also with Jose Ramirez and Sandrine Péche.

This article reports the joint progress with these authors.

References

[1] Aizenman, M. and Molchanov, S., Localization at large disorder and at extreme ener-
gies, an elementary derivation, Commun. Math. Phys. 157 (1993), 245–278.
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Brunn-Minkowski inequality
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Abstract. The Brunn-Minkowski inequality gives a lower bound on the Lebesgue measure of a sumset

in terms of the measures of the individual sets. This inequality plays a crucial role in the theory of con-

vex bodies and has many interactions with isoperimetry and functional analysis. Stability of optimizers

of this inequality in one dimension is a consequence of classical results in additive combinatorics. In

this note we describe how optimal transportation and analytic tools can be used to obtain quantitative

stability results in higher dimension.
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1. Introduction

Geometric and functional inequalities naturally appear in several problems in the calculus of

variations, partial differential equations, geometry, etc. Among the most classical inequal-

ities, we recall the isoperimetric (Isop) inequality, Sobolev (Sob) and Gagliardo-Nirenberg

(GN) inequalities, and the Brunn-Minkowski (BM) inequality.
Although different, all these inequalities are intimately related. Indeed it is well-known

that the following chain of implications holds:

(BM) ⇒ (Isop) ⇒ (Sob) ⇒ (GN). (1.1)

Let us introduce briefly all these inequalities and describe this connection.

The Brunn-Minkowski inequality deals with sum of sets: given A,B nonempty subsets

of Rn one defines A + B := {a + b : a ∈ A, b ∈ B}. Then (BM) gives a sharp lower

bound on the measure of A+B in terms of the measures of A and B: more precisely,

(BM) |A+B|1/n ≥ |A|1/n + |B|1/n.
The isoperimetric inequality, instead, deals with boundary measure and volume: if E ⊂ Rn

is a smooth bounded set, its volume |E| is controlled by the perimeter P (E):

(Isop) P (E) ≥ C(n)|E|(n−1)/n,

where C(n) > 0 is an explicit dimensional constant.

Sobolev inequalities are a “generalization” of isoperimetric inequalities but they concern
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functions instead of sets: they say that the gradient of a function in some Lp norm controls

some Lq norm of the function itself. More precisely, for any u ∈ C∞
c (Rn) and p < n,

(Sob) ‖∇u‖Lp(Rn) ≥ C(n, p)‖u‖Lq(Rn),

where q := np
n−p > p, and C(n, p) > 0 is an explicit constant depending only on n and p.

Finally, Gagliardo-Nirenberg inequalities control a Lq norm of a function with a weaker Lr

norm of the function and the Lp norm of its gradient:

(GN) ‖∇u‖θLp(Rn)‖u‖1−θ
Lr(Rn) ≥ C(n, p, r)‖u‖Lq(Rn),

where θ = θ(n, p, r) ∈ (0, 1), q = q(n, p, r) ∈
(
r, np

n−p

)
, and C(n, p, r) > 0 are explicit

constants depending only on n, p, and r.
We now explain the chain of implications (1.1).

• (BM)⇒ (Isop). We apply (BM) to A = E and B = Bε(0) for some small ε > 0. Then

|E +Bε(0)|1/n ≥ |E|1/n + |Bε(0)|1/n = |E|1/n + ε |B1(0)|1/n. (1.2)

On the other hand E + Bε(0) coincides with the ε-neighborhood of E, hence its volume is

approximately

|E +Bε(0)| = |E|+ ε P (E) + o(ε).

Inserting the above expression in (1.2), a Taylor expansion gives

|E|1/n + ε
1

n

P (E)

|E|(n−1)/n
+ o(ε) =

(
|E|+ ε P (E) + o(ε)

)1/n
≥ |E|1/n + ε |B1(0)|1/n,

that is
1

n

P (E)

|E|(n−1)/n
+

o(ε)

ε
≥ |B1(0)|1/n,

and letting ε→ 0 we obtain

1

n

P (E)

|E|(n−1)/n
≥ |B1(0)|1/n

as desired.

• (Isop) ⇒ (Sob). The basic idea is that the perimeter of a set corresponds to the mass of

the gradient of the indicator function of a set E: more precisely, if 1E denotes the indicator

function of a set E, that is,

1E(x) =

{
1 if x ∈ E
0 if x �∈ E,

then

P (E) =

∫
Rn

|∇1E |.

This formula is not rigorous since∇1E is zero a.e. (both inside and outsideE) while it gives

a “Dirac mass” on the boundary of E, but it can be made precise with the notions of sets of

finite perimeter and of BV functions [28].
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Now, to relate sets and functions, one applies the layer-cake formula: assuming for sim-

plicity u ≥ 0, u can be written as

u(x) =

∫ ∞

0

1{u>t}(x) dt, (1.3)

from which one deduces, by differentiation,

∇u =
∫ ∞

0

∇1{u>t} dt.

Although not completely obvious it is possible to show that the above identity still holds

when taking the moduli on the gradients, that is

|∇u| =
∫ ∞

0

|∇1{u>t}| dt,

so integrating this identity on Rn we obtain∫
Rn

|∇u| =
∫ ∞

0

(∫
Rn

|∇1{u>t}|
)
dt =

∫ ∞

0

P ({u > t}) dt

(see [28, Theorem 13.1] for a rigorous proof of the above identity, usually called co-area

formula). Applying now (Isop) to the sets {u > t} one obtains∫
Rn

|∇u| ≥ C(n)

∫ ∞

0

|{u > t}|(n−1/n) dt = C(n)

∫ ∞

0

‖1{u>t}‖L(n−1/n)(Rn) dt. (1.4)

Recalling now that the norm of the integral is less than the integral of the norm, from (1.3)

we get

‖u‖L(n−1/n)(Rn) =

∥∥∥∥∫ ∞

0

1{u>t}(x) dt

∥∥∥∥
L(n−1/n)(Rn)

≤
∫ ∞

0

‖1{u>t}‖L(n−1/n)(Rn) dt,

that combined with (1.4) proves (Sob) when p = 1.
To prove the general case p ∈ [1, n), it suffices to apply first (Sob) with p = 1 to the

function v := |u|γ with γ := p(n−1)
n−p , and then use Hölder inequality: indeed, recalling that

q = np
n−p , setting s :=

np−p
n−p we get

‖u‖Lq(Rn) =
∥∥|u|s∥∥1/s

Ln/(n−1)(Rn)
≤ C(n)1/s

∥∥|∇|u|s|∥∥1/s
L1(Rn)

≤ (sC(n))1/s
∥∥|∇u| |u|s−1

∥∥1/s
L1(Rn)

≤ (sC(n))1/s‖∇u‖1/sLp(Rn)‖u‖1−1/s
Lq(Rn),

as desired.

• (Sob) ⇒ (GN). As in the last step of the previous argument, also this implication is a

consequence of Hölder inequality: more precisely, given any choice of numbers r < q < s
one applies Hölder inequality to get

‖u‖Lq(Rn) ≤ ‖u‖θLs(Rn)‖u‖1−θ
Lr(Rn), for some θ = θ(r, q, s) ∈ (0, 1),
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and then chooses s := np
n−p to control ‖u‖Ls(Rn) with ‖∇u‖Lp(Rn) using (Sob).

The discussion above shows how it is possible to derive some inequalities from others,

and that Brunn-Minkowski is at the basis of all of them. However, it is interesting to point

out that, although one inequality may imply another one, the constants we obtained from the

proofs may not be sharp. More precisely, in the discussion above (BM) implied (Isop) with

the sharp constant, and (Isop) implied (Sob) for p = 1 with sharp constant again, but all the

other implications (based on Hölder inequality) are non-sharp.

The issue of the sharpness of a constant, as well as the characterization of minimizers,

is a classical and important question which is by now well understood (at least for the class

of inequalities we are considering). More recently, a lot of attention has been given to the

stability issue:

Suppose that a function almost attains the equality in one of the previous in-
equalities. Can we prove, if possible in some quantitative way, that such a
function is close (in some suitable sense) to one of the minimizers?

In the latest years several results have been obtained in this direction, showing stability

for isoperimetric inequalities [12, 13, 17, 22, 27], the Brunn-Minkowski inequality on convex

sets [23], Sobolev [11, 15, 24] and Gagliardo-Nirenberg inequalities [3, 15]. We notice

that, apart from their own interest, this kind of results have applications in the study of

geometric problems (see for instance [9, 20, 21]) and can be used to obtain quantitative rates

of convergence for diffusion equations (see for instance [3]).

The aim of this note is to describe recent results on the stability of the Brunn-Minkowski

inequality [18, 19, 23]. As we shall see, the study of this problem involves an interplay

between linear structure, analysis, and affine-invariant geometry of Euclidean spaces.

2. Sumsets and the Brunn-Minkowski inequality

Let A ⊂ Rn be a Borel set with |A| > 0. We define its semi-sum as

A+A

2
:=

{
a+ a′

2
: a, a′ ∈ A

}
.

Obviously A+A
2 ⊃ A, hence ∣∣∣∣A+A

2

∣∣∣∣ ≥ |A|.
In addition it is not difficult to show that equality holds if and only if “A is convex”: more

precisely, a necessary and sufficient condition for equality is

|co(A) \A| = 0,

where co(A) denote the convex hull of A.

This result is a particular case of a more general inequality: the Brunn-Minkowski in-
equality. Although we already introduced it in the previous section we restate it here since,

for convenience, we will write it in an equivalent form with a semisum instead of a sum of

sets.
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Given A,B ⊂ Rn Borel sets, with |A|, |B| > 0, we define

A+B

2
:=

{
a+ b

2
: a ∈ A, b ∈ B

}
.

As we already mentioned in the introduction, the Brunn-Minkowski inequality gives a con-

trol from below on the measure of A+B in terms of the measures of A and B:∣∣∣∣A+B

2

∣∣∣∣1/n ≥ |A|1/n + |B|1/n2
. (2.1)

In addition, equality holds if and only if “A and B are homothetic convex sets”, that is, there

exist α, β > 0, v, w ∈ Rn, and K convex, such that

A ⊂ αK + v, |(αK + v) \A| = 0,

B ⊂ βK + w, |(βK + w) \B| = 0.

The main question we are interested in is the following: Are these results stable?
For instance, assume that ∣∣∣∣A+A

2

∣∣∣∣ = |A|+ ε

with ε � |A|. Is it true that A is close to its convex hull? Moreover, can we quantify the

closeness in terms of ε?
This same kind of question can also be asked for the Brunn-Minkowski inequality: as-

sume that (2.1) is almost an equality. Is it true that both A and B are almost convex, and that

actually they are close to the same convex set?

Let us notice that the latter question has two statements in it: we are wondering if:

- The error in the Brunn-Minkowski inequality controls how far A and B are from their

convex hulls (Convexity).
- The error in the Brunn-Minkowski inequality controls the difference between the

shapes of A and B (Homothety).

The aim of this note is to address the questions raised above. We will proceed by steps

as follows: in Section 3 we will focus only on the (Homothety) issue. More precisely,

we assume that A and B are already convex and we prove that, if equality almost holds in

(2.1), then A and B have almost the same shape. Then, in Section 4 we will focus on the

(Convexity) issue in the simpler caseA = B, and we shall prove thatA is close to its convex

hull. Finally, in Section 5 we will deal with the general case.

3. Stability on convex sets

Let A,B be bounded convex set with 0 < λ ≤ |A|, |B| ≤ Λ, and

δ(A,B) :=

∣∣∣∣A+B

2

∣∣∣∣1/n − |A|1/n + |B|1/n2
.
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It follows from (2.1) that δ(A,B) ≥ 0, and we would like to show that δ(A,B) controls

some kind of “distance” between the shape of A and the one of B.

In order to compare A and B, we first want them to have the same volume. Hence, we

renormalize A so that it has the same measure of B: if γ := |B|1/n
|A|1/n then

|γA| = |B|.
We then define a “distance”1 between A and B as follows:

d(A,B) := min
x∈Rn

|BΔ(x+ γA)|,

where

EΔF := (E \ F ) ∪ (F \ E).
The following result has been obtained in [22, Section 4] (see also [23]):

Theorem 3.1. Let A,B be bounded convex set with 0 < λ ≤ |A|, |B| ≤ Λ. There exists
C = C(n, λ,Λ) such that

d(A,B) ≤ C δ(A,B)1/2.

As observed in [22, Section 4], the exponent 1/2 is optimal and the constantC is explicit.

Sketch of the proof. Notice that Theorem 3.1 contains as a corollary the validity of the Brunn-

Minkowski inequality on convex sets, as it implies in particular that δ(A,B) ≥ 0. Hence,

as a general principle, in order to hope for a stability estimate to hold, we should at least be

able to prove the easier inequality δ ≥ 0.
Thus, we will first show how optimal transportation can be used to prove the Brunn-

Minkowski inequality, and then we will explain how the same proof can be exploited to

obtain the desired stability result. We notice that a proof of (2.1) using optimal transportation

was first given in [29]. Here we follow the argument given in [23] since (as we shall see in

Step 2 below) it is particularly suitable to be used to obtain a stability estimate.

Step 1: A proof of (2.1) via optimal transportation. We notice that this part of the proof

does not require A and B to be convex. Hence, we consider A,B ⊂ Rn Borel with

|A|, |B| > 0, and we define the probability measures

μ :=
1A(x)

|A| dx, ν :=
1B(y)

|B| dy.

Since μ is absolutely continuous with respect to the Lebesgue measure, Brenier’s Theorem

[1] ensures the existence of a convex function ϕ : Rn → R whose gradient T := ∇ϕ sends

μ onto ν:
T#μ = ν, i.e., μ(T−1(E)) = ν(E) for all E Borel.

It is easy to check that T satisfies (at least formally) the following properties:

1 Notice that d is not properly a distance since it is not symmetric. Still, it is a natural geometric quantity which

measures, up to translations, the L1-closeness between γA and B: indeed, observe that an equivalent formulation

for d is

d(A,B) := min
x∈Rn

1

2
‖1B − 1x+γA‖L1(Rn).
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(i) T (A) = B;

(ii) det(∇T ) = |B|/|A| = γn.

Indeed, (i) is a consequence of the fact that μ lives on A and ν on B.

For (ii) we observe that if χ : Rn → R denotes a test function, the condition T#μ = ν
gives ∫

Rn

χ(T (x))
1A(x)

|A| dx =

∫
Rn

χ(y)
1B(y)

|B| dy.

Now, assuming in addition that T is a diffeomorphism, we can set y = T (x) and use the

change of variable formula to obtain that the second integral is equal to∫
Rn

χ(T (x))
1B(T (x))

|B|
∣∣det(∇T (x))∣∣ dx.

Hence, since T (A) = B, setting χ̂ := χ ◦ T we obtain

1

|A|
∫
A

χ̂(x) dx =
1

|B|
∫
B

χ̂(x)
∣∣det(∇T (x))∣∣ dx,

so (ii) follows by the arbitrariness of χ̂ (or equivalently of χ).

We now define
Id+ T

2
(A) :=

{
a+ T (a)

2
: a ∈ A

}
.

Then it follows by (i) that
Id+ T

2
(A) ⊂ A+B

2
,

from which we deduce that∣∣∣∣A+B

2

∣∣∣∣ ≥ ∣∣∣∣Id+ T

2
(A)

∣∣∣∣ = ∫
A

det

(
Id+∇T

2

)
=

1

2n

∫
A

det(Id+∇T ).
(3.1)

Up to now we never used that T is the gradient of a convex function. We now exploit this:

since T = ∇ϕ with ϕ convex, the eigenvalues λ1, . . . , λn of D2ϕ = ∇T are nonnegative.

Thus, using the inequality between AM-GM (arithmetic mean and geometric mean), one can

prove that

det(Id+∇T ) =
n∏
i=1

(1 + λi) ≥
(
1 +

( n∏
i=1

λi

)1/n)n
(2)
=
(
1 + (|B|/|A|)1/n

)n
.

Combining this inequality with (3.1) we finally obtain∣∣∣∣A+B

2

∣∣∣∣ ≥ 1

2n

∫
A

(
1 + (|B|/|A|)1/n

)n
=

( |A|1/n + |B|1/n
2

)n
,
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as desired. Notice that this argument is formal since a priori the transport map is not smooth,

but there are two possible ways of fixing this: if A and B are general Borel set, then the

above proof can be made rigorous by using some fine results on BV functions and sets of

finite perimeter, see [22]; if instead one only wants to prove the result when A and B are

convex, then one can rely on [2] to say that the map T is actually smooth.

Step 2: The quantitative estimate. In the previous step we proved that δ(A,B) ≥ 0 for

any Borel sets A,B. We now want to control d(A,B) with δ(A,B) when A and B are

convex. The first observation is that, by the proof above (using the same notation), we have

2nδ ≥
∫
A

[ n∏
i=1

(1 + λi)−
(
1 +
( n∏
i=1

λi

)1/n)n]
.

Notice that before we used AM-GM to say that the integrand in the right hand side was

nonnegative. Also, recall that equality holds in AM-GM if and only if all numbers are equal.

Hence, by an improved version of AM-GM which quantifies the closeness of the numbers

in terms of the error (see [22, Lemma 2.5]), we obtain a precise quantitative form of the

following rough statement:

δ � 1 ⇒ λi(x) " λj(x) ∀ i, j, for mostx ∈ A.

Since
∏n

i=1 λi(x) = |B|/|A| (by (ii)), we also deduce that

λi(x) " γ ∀ i, for mostx ∈ A,

where γ = (|B|/|A|)1/n. Using now that ∇T = D2ϕ is a symmetric matrix, from the fact

that all its eigenvalues are close to γ we deduce that

∇T (x) " γ Id for mostx ∈ A,

To be more precise, by carefully performing the above estimates, one can prove that∫
A

|∇T − γ Id| ≤ C δ(A,B)1/2.

We now want to use the estimate above on ∇(T − γ x) to obtain a bound on T − γ x. For
this, we wish to apply a trace inequality of the form

C

∫
A

|∇f | ≥ inf
c∈R

∫
∂A

|f − c| dσ ∀ f ∈ C∞(Rn),

where σ denotes the surface measure on ∂A. Since A is convex its boundary is Lipschitz, so

the above trace inequality holds and we can show that, up to a translation,

C δ(A,B)1/2 ≥
∫
∂A

|T (x)− γ x| dσ.

In particular, since T (x) ∈ B for x ∈ A, we deduce that

C δ(A,B)1/2 ≥
∫
∂A

dist(x,B/γ) dσ. (3.2)
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A simple geometric argument then shows that

C

∫
∂A

dist(x,B/γ) dσ ≥ |A \ (B/γ)| (3.3)

(see [23, Proof of Theorem 1, Step 4]). Since |A| = |B/γ| one observes that

|A \ (B/γ)| = |(B/γ) \A| = 1

2
|AΔ(B/γ)|,

so the desired result follows from (3.2) and (3.3).

4. Stability when A = B

As we already mentioned before, the quantitative estimate in the proof of Theorem 3.1 works

only if A and B are convex. There are several technical reasons why we need this assump-

tion, but there is also a simple way to see why one cannot hope to use the above proof to

solve the (Convexity) issue that we raised at the end of Section 2.

Indeed, assume that A = B. In that case the map T in the proof of Theorem 3.1 is

simply the identity map, that is T (x) = x, and the argument given in the first part of the

proof is completely “empty”, in the sense that it does not introduce any new information. In

particular, the proof by optimal transportation does not help in showing that δ(A,A) controls
the distance between A and its convex hull. Hence a completely new strategy is needed to

address this issue.

4.1. The case n = 1. Already in the one dimensional case the problem is far from being

trivial. Up to rescale A we can always assume that |A| = 1. Define

δ1(A) := |A+A| − 2|A|.

It is easy to see that δ1(A) cannot control in general |co(A) \A|: indeed take

A := [0, 1/2] ∪ [L,L+ 1/2]

with L' 1. Then
A+A = [0, 1] ∪ [L,L+ 1] ∪ [2L, 2L+ 1],

which implies that δ1(A) = 1(= |A|) while |co(A) \ A| = L − 1/2 is arbitrarily large.

Luckily, as shown by the following theorem, this is essentially the only thing that can go

wrong.

Theorem 4.1. Let A ⊂ R be a measurable set with |A| = 1, and denote by co(A) its convex
hull. If δ1(A) < 1 then

|co(A) \A| ≤ δ1(A).

This theorem can be obtained as a corollary of a result of G. Freiman [25] about the

structure of additive subsets of Z. (See [26] or [31, Theorem 5.11] for a statement and a

proof.) However, it turns out that to prove of Theorem 4.1 one only needs weaker results.

For convenience of the reader, instead of relying on deep and intricate combinatorial results,
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we will give an elementary proof of Theorem 4.1. Our proof is based on the simple obser-

vation that a subset of R can be discretized to a subset of Z starting at 0 and ending at a

prime number p. This may look strange from an analytic point of view, but it considerably

simplifies the combinatorial aspects.

Sketch of the proof of Theorem 4.1. The proof consists of three steps:

- first, one proves a Brunn-Minkowski type inequality in Zp = Z/pZ;
- then, we show a simple case of the so-called Freiman’s 3k − 3 Theorem;

- finally, an approximation argument proves the theorem on R.

We give here a sketch of the proof, referring to [18, Section 2] for more details. Note

that, in the discrete setting, |A| will always denote the cardinality of the set A.

Step 1: Cauchy-Davenport inequality. If ∅ �= A,B ⊂ Zp with p prime, then |A + B| ≥
min{|A|+ |B| − 1, p}.

The proof is by induction on the size of |B|, the case |B| = 1 being trivial. To perform

the induction, it is useful to define the e-transform of A and B: given e ∈ A−B, define

A(e) := A ∪ (B + e), B(e) := B ∩ (A− e).

Notice that

A(e) +B(e) ⊂ A+B, |A(e)|+ |B(e)| = |A|+ |B| (4.1)

We now consider two cases:

Case 1: there exists e ∈ A−B such that |Be| < |B|. Then by the inductive step

|A(e) +B(e)| ≥ min{|A(e)|+ |B(e)| − 1, p},

and we conclude by (4.1).

Case 2: |Be| = |B| for any e ∈ A − B. This means that B(e) = B for any e ∈ A − B,

which implies that B + e ⊂ A for any e ∈ A−B, that is A+B −B ⊂ A. Thus B −B is

contained inside to the subgroup Sym1(A) := {h ∈ Zp : A + h = A}. Since |B| > 1 and

the only subgroups of Zp are {0} and Zp, this means that Sym1(A) = Zp. This implies that

A = Zp, so the result is trivially true since |A+B| ≥ |A| = p.

Step 2: Freiman’s 3k−3 Theorem. LetA be a finite nonempty subset ofZwithmin(A) =
0 andmax(A) = p, with p prime. Assume that |A+A|−2|A| < |A|−3. Then |{0, . . . , p}\
A| ≤ |A+A| − 2|A|+ 1.

Before proving this result, we notice that in Step 3 we will apply it to sets with very

high cardinality. Hence, if we forget about the terms −3 and +1, the above statement says

the following: if δ1(A) < |A| then |{0, . . . , p} \ A| ≤ δ1(A). Notice that this statement

is exactly what we wanted, if one thinks that {0, . . . , p} is the “convex hull” of A in this

discrete setting.

To prove this step, let φp : Z→ Zp denote the canonical quotient map. We have{
A+A ⊃ A ∪ (A+ p)
φp(A) = φp(A+ p)

⇒ |φp(A+A)| ≤ |A+A| − |A|,

hence

|φp(A+A)| < 2|A| − 3 = 2|φp(A)| − 1
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(observe that |φp(A)| = |A| − 1). Thus, by Step 1,

|φp(A+A)| = p,

which implies

p ≤ |A+A| − |A|,
as desired.

Step 3: The discretization argument. We now prove the theorem. We first notice that, by

approximation, it suffices to prove the result when A is compact.

Without loss of generality assume co(A) = [0,M ]. We then approximate A with sets

Ak of the form

Ak :=
⋃

j : Ik,j∩A �=∅
Ik,j , Ik,j :=

[
jM

pk + 1
,
(j + 1)M

pk + 1

]
,

where pk is a sequence of prime numbers with pk → +∞. Then, we define

Bk := {j ∈ Z : Ik,j ⊂ Ak} ⊂ Z.

Thanks to the assumption δ1(A) < |A| it is easy to check that Bk satisfies the assumptions

of Step 2 for k large enough. Hence, it follows by Step 2 that

|{0, . . . , pk} \Bk| ≤ |Bk +Bk| − 2|Bk|+ 1,

that rewritten in terms of Ak gives

|[0,M ] \Ak| ≤ δ1(Ak) +
1

pk + 1
.

Letting k →∞ concludes the proof.

4.2. The case n ≥ 2. Let us define the deficit of A as

δ(A) :=

∣∣ 1
2 (A+A)

∣∣
|A| − 1 = |A+A|

|2A| − 1.

In the previous section we showed how to obtain a precise stability result in one dimension

by translating it into a problem on Z. The main result in [18] is a quantitative stability

result in arbitrary dimension, showing that a power of δ(A) dominates the measure of the

difference between A and its convex hull co(A).

Theorem 4.2. Let n ≥ 2. There exist computable dimensional constants δn, cn > 0 such
that if A ⊂ Rn is a measurable set of positive measure with δ(A) ≤ δn, then

δ(A)αn ≥ cn
| co(A) \A|

|A| , αn :=
1

8 · 16n−2n!(n− 1)! .

Sketch of the proof. Let Hk denote the k-dimensional Hausdorff measure on Rn, denote by

(y, t) ∈ Rn−1 × R a point in Rn, and let π : Rn → Rn−1 be the canonical projection

π(y, t) := y. Given E ⊂ Rn and y ∈ Rn−1, we use the notation

Ey := E ∩ π−1(y).
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We say that E is t-convex if Ey is a segment for every y ∈ π(E).
Our proof is by induction on n, the case n = 1 being true by Theorem 4.1. As a prelimi-

nary observation we notice that if L : Rn → Rn is an affine transformation with detL = 1,
then δ(A) = δ(L(A)) and | co(A) \ A| = | co(L(A)) \ L(A)|. Hence it is enough to prove

the theorem for L(A). This simple remark will be extremely useful, as it will allow us to

reduce to the case when A is bounded (see Step 3 below).

Step 1. The first argument consists in combining Theorem 4.1 with a Fubini’s type argu-

ment to show that, for most y ∈ π(A), the set Ay ⊂ {y} × R is close to its convex hull.

Since this part is elementary and also it will be useful to explain one of the main differences

with the case A �= B, we detail it.

By Fubini

δ(A) =
∣∣ 1
2 (A+A)

∣∣− |A| = ∫
Rn−1

H1
((

1
2 (A+A)

)
y

)
−H1(Ay) dy,

hence, since 1
2 (Ay +Ay) ⊂

(
1
2 (A+A)

)
y
, we deduce

δ(A) ≥
∫
Rn−1

H1
(

1
2 (Ay +Ay)

)
−H1(Ay) dy.

We now distinguish between two cases, depending whether we can apply Theorem 4.1 or

not:

- y is good ifH1
(
1
2 (Ay +Ay)

)−H1(Ay) ≤ H1(Ay)/2.

- y is bad ifH1
(
1
2 (Ay +Ay)

)−H1(Ay) ≥ H1(Ay)/2.

Notice that if y is “good” we can apply Theorem 4.1 to Ay , while in the “bad” case

H1
(
1
2 (Ay +Ay)

)−H1(Ay)

trivially controlsH1(Ay), therefore

δ(A) ≥
∫
y good

H1
(
co(Ay) \Ay

)
dy +

∫
y bad

H1
(
Ay

)
/2 dy.

From this estimate we deduce that A is (quantitatively) close to the t-convex set

A′ :=
⋃

y good

co(Ay).

Now, applying the inductive hypothesis with n−1, an argument similar to the one above

shows that

Es0 := {y ∈ Rn−1 : H1(Ay) > s0}
is close to its convex hull for some small s0 > 0. Using this fact we prove that, for s0 small

enough, A is close to the t-convex set

A∗ :=
⋃

y∈Es0

co(Ay).
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Step 2. Define co(Ay) = {y} × [a(y), b(y)]. A careful analysis based on the assumption

that δ(A) is small shows that the midpoint c(y) := (a(y) + b(y))/2 of A∗
y have bounded

second differences as a function of y: more precisely,

|c(y′) + c(y′′)− 2c(y)| ≤ 6 ∀ y, y′, y′′ ∈ Es0 , y =
y′ + y′′

2
.

Step 3. As mentioned before, it is enough to prove the result for L(A) instead of A, where

L : Rn → Rn is a measure preserving affine transformation. We show here that we can find

a map L such that L(A∗) is bounded.
Using the above bound for c, we prove that c is at bounded distance from an affine

function �. In addition, since π(A∗) = Es0 and Es0 is close to its convex hull (by Step 1), a

classical result in convex geometry (called John’s Lemma) states that we can find a measure

preserving affine transformation T : Rn−1 → Rn−1 such that T (co(Es0)) is bounded.

Hence, up to applying the affine measure-preserving transformation

L(y, t) := (Ty, t− �(Ty)),

A∗ is bounded.

Step 4. We want to show that A∗ is close to a convex set. For this, we need to prove a

statement of the following form (the exact form of the statement proved in [18] is more

involved):

Assume that

f(y′) + f(y′′)

2
≤ f(y) + γ ∀ y, y′, y′′ ∈ E, y =

y′ + y′′

2
, |f | ≤ 1, | co(E) \ E| ≤ γ

for some E ⊂ Rn−1, γ � 1. Then there exist C,α > 0 such that∫
E

|f − F | ≤ Cγα, for some function F : Rn−1 → R concave.

Recalling that co(Ay) = {y} × [a(y), b(y)], the above statement applied to f = b and

f = −a shows that A∗ (hence also A) is quantitatively close to a convex set.

Step 5. By a simple geometric argument we prove that the convex set obtained in Step 4

can be assumed to be the convex hull of A, concluding the proof.

5. Stability when A �= B

As in the case A = B, when n = 1 a sharp stability result holds as a consequence of

classical theorems in additive combinatorics (an elementary proof of this result can be given

using Kemperman’s theorem [7, 8]):

Theorem 5.1. Let A,B ⊂ R be measurable sets. If |A + B| < |A| + |B| + δ for some
δ ≤ min{|A|, |B|}, then there exist two intervals I, J ⊂ R such that A ⊂ I , B ⊂ J ,
|I \A| ≤ δ, and |J \B| ≤ δ.
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Concerning the higher dimensional case, in [5, 6] M. Christ proved a qualitative stability

result for (2.1), namely, if |A+B|1/n is close to |A|1/n + |B|1/n then A and B are close to

homothetic convex sets.

The main result in [19] is a quantitative version of Christ’s result. After dilatingA andB
appropriately, we can assume |A| = |B| = 1 while replacing the semisum (A + B)/2 by a

convex combination S := tA+(1− t)B with t ∈ (0, 1). It follows by (2.1) that |S| = 1+ δ
for some δ ≥ 0. Since our proof is by induction on the dimension, it will be convenient to

allow the measures of |A| and |B| not to be exactly equal, but just close in terms of δ. The
main result of [19] shows that the measure of the difference between the sets A and B and

their convex hull is bounded by a power δε, confirming a conjecture of Christ [5].

Theorem 5.2. Let A,B be measurable subsets of Rn with n ≥ 2, and define S := tA +
(1− t)B for some t ∈ [τ, 1− τ ], 0 < τ ≤ 1/2. There are computable dimensional constants
Nn and computable functions Mn(τ), εn(τ) > 0 such that if∣∣|A| − 1∣∣+ ∣∣|B| − 1∣∣+ ∣∣|S| − 1∣∣ ≤ δ (5.1)

for some δ ≤ e−Mn(τ), then there exists a convex set K ⊂ Rn such that, up to a translation,

A,B ⊂ K and |K \A|+ |K \B| ≤ τ−Nnδεn(τ).

Explicitly, we may take

Mn(τ) =
23

n+2

n3n | log τ |3n
τ3n

, εn(τ) =
τ3

n

23n+1n3n | log τ |3n .

Sketch of the proof. For convenience we reintroduce some of the notation, although identical

to the one in the proof of Theorem 4.2.

LetHk denote k-dimensional Hausdorffmeasure onRn, denote by x = (y, s) ∈ Rn−1×
R a point in Rn, and π : Rn → Rn−1 and π̄ : Rn → R denote the canonical projections,

i.e.,

π(y, s) := y and π̄(y, s) := s.

Given a compact set E ⊂ Rn, y ∈ Rn−1, and λ > 0, we use the notation

Ey := E ∩ π−1(y) ⊂ {y} × R, E(s) := E ∩ π̄−1(s) ⊂ Rn−1 × {s},

E(λ) := {y ∈ Rn−1 : H1(Ey) > λ
}
.

Following Christ [6], we consider different symmetrizations:

We define the Schwarz symmetrization E∗ of E as follows. For each t ∈ R,

- If Hn−1
(
E(s)

)
> 0, then E∗(s) is the closed disk centered at 0 ∈ Rn−1 with the

same measure.

- IfHn−1
(
E(s)

)
= 0, then E∗(s) is empty.

We define the Steiner symmetrizationE� ofE so that for each y ∈ Rn−1, the setE�
y is empty

if H1(Ey) = 0; otherwise it is the closed interval of length H1(Ey) centered at 0 ∈ R. Fi-

nally, we define E� := (E�)∗.
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The proof of Theorem 5.2 is very elaborate, combining the techniques of M. Christ with

those developed by the present authors in [18] (where we proved Theorem 5.2 in the special

case A = B and t = 1/2), as well as several new ideas. Before describing the proof, we

begin by showing one of the differences with respect to the case A = B.

Let us try to repeat Step 1 in the proof of Theorem 4.2: arguing in the very same way as

we did there, one would obtain∣∣ 1
2 (A+B)

∣∣− |A|+ |B|
2

=

∫
Rn−1

H1
((

1
2 (A+B)

)
y

)
− H1(Ay)+H1(By)

2 dy

≥
∫
Rn−1

H1
(

1
2 (Ay +By)

)
− H1(Ay)+H1(By)

2 dy

≥ 0.

However the above inequality is false when n ≥ 2, as one can immediately check by taking

A = B1(0) and B = {0}, so that 1
2 (A+B) = B1/2(0). The mistake in the above argument

is the following: in the last inequality we applied the one dimensional Brunn-Minkowski

inequality

H1
(

1
2 (Ay +By)

)
− H1(Ay)+H1(By)

2 ≥ 0,

but the latter is true only when both Ay and By are nonempty (since the semisum of any set

with the empty set is the empty set).

As we shall see, this is just the first of several new issues that arise in the stability proof

when A �= B. We now give a detailed description of the proof of the theorem.

Case 1: A = A� and B = B�. First we prove the theorem in the special case A = A�

and B = B�. In this case we have that

Ay = {y} × [−a(y), a(y)] and By = {y} × [−b(y), b(y)],

for some functions a, b : Rn−1 → R+, and it is easy to show that a and b satisfy the “3-point

concavity inequality”

ta(y′) + (1− t)b(y′′) ≤ [ta+ (1− t)b](y) + δ1/4 (5.2)

whenever y′, y′′, and y := ty′+(1− t)y′′ belong to a large subset F of π(A)∩π(B). From
this 3-point inequality and an elementary argument we show that a satisfies the “4-point

concavity inequality”

a(y1) + a(y2) ≤ a(y′12) + a(y′′12) +
2

t
δ1/4 (5.3)

with y′12 := t′y1 + (1− t′)y2, y′′12 := t′′y1 + (1− t′′)y2, t′ :=
1

2−t , t
′′ := 1− t′, provided

all four points belong to F . (The analogous inequality for b involves a different set of four

points.)

Using this inequality and a variant of the argument in Step 4 of the proof of Theorem

4.2, we deduce that a is quantitatively close in L1 to a concave function.

Once we know that a (and analogously b) is L1-close to a concave function, we deduce

that both A and B are L1-close to convex sets KA and KB respectively, and we would like
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to say that these convex sets are nearly the same. This is demonstrated by first showing that

S is close to tKA + (1− t)KB , then applying Theorem 3.1 to deduce that KA and KB are

almost homothetic, and then constructing a convex set K close to A and B and containing

both of them.

This concludes the proof of Theorem 4.2 in the case A = A� and B = B�.

Case 2: The general case. We now consider the general case, which we prove in several

steps, culminating in induction on dimension.

Step 1. This first step is very close to the argument used by M. Christ in [6], although our

analysis is more elaborate since we have to quantify every estimate.

Given A, B, and S, as in the theorem, we consider their symmetrizations A�, B�, and

S�, and apply Case 1 above to deduce that A� and B� are close to the same convex set.

This information combined with a lemma of Christ allows us to deduce that functions y �→
H1(Ay) and y �→ H1(By) are almost equipartitioned (that is, the measure of their level

sets A(λ) and B(λ) are very close). This fact combined with a Fubini argument yields that,

for most levels λ, A(λ) and B(λ) are almost optimal for the (n − 1)-dimensional Brunn-

Minkowski inequality. Thus, by the inductive step, we can find a level λ̄ ∼ δζ (ζ > 0)
such that we can apply the inductive hypothesis to A(λ̄) and B(λ̄). Consequently, after

removing sets of small measure both from A and B and translating in y, we deduce that

π(A), π(B) ⊂ Rn−1 are close to the same convex set.

Step 2. This step is the analogue of Step 1 in the proof of Theorem 4.2: we apply a Fubini

argument and Theorem 5.1 to most of the sets Ay and By for y ∈ A(λ̄) ∩ B(λ̄) to deduce

that they are close to their convex hulls. Note, however, that to apply Fubini and Theorem

5.1 it is crucial that, thanks to Step 1, we found a set in Rn−1 onto which both A and B
project almost fully. Indeed, as we already mentioned at the beginning of the proof, to say

that H1(Ay + By) ≥ H1(Ay) +H1(By) it is necessary to know that both Ay and By are

nonempty, as otherwise the inequality would be false.

Step 3. To understand the properties of the barycenter ofAy andBy (in analogy with Step 2

in the proof of Theorem 4.2), we consider the “upper” (resp. “lower”) profile ofA andB, that

is the functions a+(y) := max{t ∈ R : t ∈ Ay} (resp. a−(y) := min{t ∈ R : t ∈ Ay})
and b+(y) := max{t ∈ R : t ∈ By} (resp. b−(y) := min{t ∈ R : t ∈ By}). With

this notation we obtain a 3-point concavity inequality as in (5.2) for a+ and b+ (and the

analogous one but with opposite signs for a− and b−). This inequality allows us to say that

the barycenter of Ay satisfies the 4-point inequality (5.3) both from above and from below,

and from this information we can deduce that, as a function of y, the barycenter of Ay (resp.

By) is at bounded distance from a linear function. It follows that the barycenters of S̄y are at

bounded distance from a linear function for a set S̄ which is almost of full measure inside S.
Then a variation of Step 3 in the proof of Theorem 4.2 allows us to show that, after an affine

measure preserving transformation, S̄ is universally bounded, that is, bounded in diameter

by a constant of the form Cnτ
−Mn where Cn and Mn are dimensional constants.

Step 4. By a relatively easy argument we find sets A∼ and B∼ of the form

A∼ =
⋃
y∈F
{y} × [aA(y), bA(y)] B∼ =

⋃
y∈F
{y} × [aB(y), bB(y)]
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which are close to A and B, respectively, and are universally bounded.

Step 5. This is a crucial step: we want to show that A∼ and B∼ are close to convex sets.

As in the case A = A� and B = B�, we would like to deduce that bA and bB (resp. aA and

aB) are L1-close to concave (resp. convex) functions.

The main issue for proving this is to show first that the level sets of bA and bB are close

to their convex hulls. To deduce this we wish to prove that most slices of A∼ and B∼

are nearly optimal in the Brunn-Minkowski inequality in dimension n − 1 and invoke the

inductive hypothesis. We achieve this by introducing a new inductive proof of the Brunn-

Minkowski inequality, based on combining the validity of Brunn-Minkowski in dimension

n− 1 with 1-dimensional optimal transport.

An examination of this new proof of the Brunn-Minkowski inequality in the situation

near equality shows that if A and B are almost optimal for the Brunn-Minkowski inequality

in dimension n, then for most levels s, the slicesA(s) andB(T (s)) have comparable (n−1)-
measure, where T is the 1-dimensional optimal transport map, and this pair of sets is almost

optimal for the Brunn-Minkowski inequality in dimension n− 1. In particular, we can apply

the inductive hypothesis to deduce that most (n − 1)-dimensional slices are close to their

convex hulls.

In this way, we end up proving that A∼ and B∼ are close to convex sets, as desired.

Step 6. Since A∼ and B∼ are close to A and B respectively, as in the case A = A� and

B = B� we find a convex set K close to A and B and containing both of them.

Step 7. Tracking down the exponents in the proof, we provide an explicit lower (resp. up-

per) bound on εn(τ) (resp. Mn(τ)), which concludes the proof of the theorem.

6. Concluding remarks

In this note we have seen three substantially different methods to obtain stability results:

the proof of Theorem 3.1 relies on optimal transportation techniques, the one of Theorem

4.1 is based on additive combinatorics’ arguments, while Theorems 4.2 and 5.2 involve an

interplay between measure theory, analysis, and affine-invariant geometry. While Theorem

4.1 is sharp, Theorems 3.1, 4.2, and 5.2 still leave space for improvements.

First of all, in the statement of Theorem 3.1 it would be interesting to find a sharp depen-

dence on the constant C with respect to the parameters n, λ, and Λ: if for instance λ and Λ
are comparable (that is, A and B have comparable volumes) then the proof in [23] provides

the estimate of the formC(n) ≈ An for some universal constantA > 1, while [22] improves

it to a polynomial bound C(n) ≈ n17/2. As later shown in [30], a careful examination of

the methods presented in [22, 23] permits to improve the constant and get a (still non-sharp)

bound C(n) ≈ n7/2.

Concerning Theorems 4.2 and 5.2, there are even more fundament questions. For in-

stance, notice that the exponents αn and βn(τ) depend on the dimension, and it looks very

plausible to us that they are both non-sharp. An important question in this direction would

be to improve our exponents and, if possible, understand what the sharp exponents should

be.

Let us conclude by pointing out that improving the exponent in a stability estimate is
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not a merely academic question. For instance, the exponent in the stability estimate for

the Gagliardo-Nirenberg inequality used in [3] is related to the rate of convergence to the

stationary states for solutions of the critical Keller-Segel equation, so a better exponent would

give a faster rate. Even more surprisingly, the results in [9] rely in a crucial way on the

sharpness of the exponent in the stability estimate for the isoperimetric inequality found in

[22, 27].

It is our belief that this line of research will continue growing in the next years, producing

new and powerful stability results.
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Abstract. The Q-curvature has been playing a central role in conformal geometry since its discovery

by T. Branson. It has natural analogy in CR geometry, however, the CR Q-curvature vanishes on the

boundary of a strictly pseudoconvex domain in Cn+1 with a natural choice of contact form. This

fact enables us to define a “secondary” Q-curvature, which we call Q-prime curvature (it was first

introduced by J. Case and P. Yang in the case n = 1). The integral of the Q-prime curvature, the

total Q-prime curvature, is a CR invariant of the boundary. When n = 1, it agrees with the Burns-

Epstein invariant, which is a Chern-Simons type invariant in CR geometry. For all n ≥ 1, it has
non-trivial variation under the deformation of domains. Combining the variational formula with the

deformation complex of CR structures, we show that the totalQ-prime curvature takes local maximum

at the standard CR sphere in a formal sense.

This talk is a report in collaboration with Rod Gover, Yoshihiko Matsumoto, Taiji Marugame and Bent

Ørsted.
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1. Introduction

In 1979, C. Fefferman [10] proposed a program of studying the analysis and geometry of

strictly pseudoconvex domains in Cn+1, which is called “Parabolic invariant theory”. The

basic idea is to consider the asymptotic expansions of the Bergman and Szegö kernels as

analogies of the heat kernel on Riemannian manifolds and develop invariant theory that

leads to index theorems. Since then there has been a series of works that completes the local

theory of the asymptotic expansion; see [21] for an overview. The main tool is the ambient

metric, a Ricci-flat Lorentz-Kähler metric defined on the canonical bundle of the domain;

all local invariants of the CR structure on the boundary of the domain can be expressed

as invariant polynomials in the jets of the curvature of the ambient metric. However, the

connection of the local formula to the global invariants has not been understood. In this talk,

as a continuation of the program, we will give a construction of global CR invariants which

we call total Q and Q-prime curvatures.

The concept of Q-curvature was first introduced by T. Branson in his study of the func-

tional determinant of conformally invariant differential operators. In conformal geometry,

it is a volume form valued local Riemannian invariant Q(g) defined on even dimensional

Riemannian manifolds (M, g). WhileQ is not a local conformal invariant, its de Rham class

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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is conformally invariant, i.e., the integral Q =
∫
Q over M is a global conformal invariant,

which is called the total Q-curvature. The total Q-curvature got much attention by the semi-

nal work of Graham-Zworski [18] on the scattering theory of conformally compact Einstein

manifolds (X, g+). The Q-curvature on the boundary at infinity M = ∂X can be expressed

in terms of scattering-matrix, and Q is characterized as a coefficient in the volume renor-

malization of (X, g+). This approach has natural connection with AdS/CFT correspondence

in string theory and gives new insights in conformal geometry. A nice overview of these

progress is given in the lecture notes by Juhl [3].

The Q-curvature in CR geometry was first introduced in [20] in the description of the

Szegö kernel for domains in C2; the general definition was given later in [15]. See also the

results on the Szegö kernel along this line [4, 22]. However, it also turned out that the totalQ-

curvature always vanishes for the boundaries of strictly pseudoconvex domains in Cn+1. A

breakthrough was made recently by Case-Yang [9]; they defined a “secondary” Q-curvature

Q′ on 3-dimensional CR manifolds and called it Q-prime curvature. It is shown that the

integral Q
′
=
∫
Q′, the total Q-prime curvature, agrees with the Burns-Epstein invariant

[5], which is a secondary invariant in 3-dimensional CR geometry analogous to the Chern-

Simons invariant of conformal 4-manifolds. The generalization of Q′ to higher dimensions

was given by [23]. When n ≥ 2, Q
′
is different from the secondary characteristic number

defined by Burns-Epstein [6]. The crucial property of Q
′
is its variational formula under the

deformation of domains, which enables us to study Q
′
as a functional on the moduli space

of CR structures. In particular, we show that the critical points are exactly the boundaries

of the domains with smooth solution to a Dirichlet problem for the complex Monge-Ampère

equation (it can be also characterized as the vanishing of obstruction function, which is a

local CR invariant of the boundary).

We can find an intimate relation between the variational formula of Q
′
and the deforma-

tion complex of CR structures as an application of representation theory. In the parabolic in-

variant theory, CR manifolds are seen as geometric structures modeled on the homogeneous

space G/P , where G = SU(n + 1, 1) and P is a parabolic subgroup. The invariant theory

of P gives much information of the geometry. The deformation complex of CR structures is

the resolution of the adjoint representation g by the complex of CR invariant (or equivalently

G-invariant) differential operators acting on the bundles induced from irreducible representa-

tions of P ; this is known as an example of (generalized) Bernstein-Gelfand-Gelfand complex

[7]. The Hessian of Q
′
at the sphere S2n+1 = G/P gives a CR invariant, self-adjoint, dif-

ferential operator L between two bundles in the deformation complex and the CR invariance

property of L forces the operator to be semidefinite. Moreover, the kernel of L can be de-

scribed by using the operators in the complex. Thus we can read geometric information

from the Hessian. As a result we conclude that Q
′
takes local maximum at the standard CR

sphere in a formal sense; see Theorem 3.7. We also apply the same procedure to the total

Q-curvature for partially integrable CR manifolds (which may not be embeddable). In this

generalized setting, the total Q-curvature is non-trivial and the Hessian has an interesting

connection to the integrability condition.

The computation of the Hessian of Q
′
is an analogy of that of Q in conformal geometry

given in Møller-Ørsted [28]. In the conformal case, the deformation complex is simpler and

it is easy to describe the kernel of the Hessian. We include an overview of the conformal Q
in the next section, which should help to understand the more involved structure of CR Q
and Q′.
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2. Q-curvature in conformal geometry

We start with a quick review of Q-curvature in the conformal geometry with an intention to

explain the relation between the total Q and the deformation complex. Many deep results in

geometric analysis of Q-curvature are not mentioned; the article by Alice Chang [1] gives a

clear overview in this direction.

2.1. Dimensions 2 and 4. The Q-curvature is defined as a generalization of the scalar

curvature on surfaces to higher even dimensions in the context of conformal geometry.

Given a Riemannian manifold (M, g) of dimension n, let Scal be the scalar curvature and

Δ = −gab∇a∇b = −∇a∇a be the Laplacian (we use the Einstein summation convention).

If we denote by Ŝcal and Δ̂ the ones for the scaled metric ĝ = e2Υg for Υ ∈ C∞(M), then,
for n = 2, we have

Ŝcal = e−2Υ(Scal+2ΔΥ), Δ̂ = e−2ΥΔ.

The factor e−2Υ can be considered as the scaling of the volume form d volg . So setting

Q2 =
1

2
Scal ·d volg, P2f = Δf · d volg,

we may write the transformation rules as

Q̂2 = Q2 + P2Υ, P̂2 = P2.

If M is compact, then
∫
M

P2Υ = 0 and thus
∫
M

Q2 is a conformal invariant. In fact, it is

topological as the Gauss-Bonnet theorem gives
∫
M

Q2 = 2πχ(M).
On a conformal manifold (M, [g]) of even dimension n, the Q-curvature Qn and con-

formally invariant differential operator Pn are defined as the pair of objects that generalize

these properties. Namely, Qn is a volume form valued local invariant of metric g such that

Q̂n = Qn + PnΥ

with a conformally invariant differential operator

Pn : C
∞(M)→ C∞(M,∧nT ∗M),

which is self-adjoint and Pn1 = 0. The last two properties of Pn ensure that the integral

Qn =

∫
M

Qn

is a global invariant of a conformal manifold (M, [g]), which is called the totalQ-curvature.
As we see below, when n ≥ 4,Qn gives an interesting invariant which is not just topological.

In the case n = 4, we can define Q4 and P4 by explicit formulas:

Q4 =

(
1

6
ΔScal−1

2
RicabRicab+

1

6
Scal2

)
d vol,

P4f =

(
Δ2f +∇a(2Ric

ab−2
3
Scal gab)∇bf

)
d vol,
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where Ricab is the Ricci tensor. We may also write Q4 as

Q4 = 2Pfaff4−1
4
|Weyl |2d vol+1

6
ΔScal ·d vol,

wherePfaffn is the Pfaffian, which integrates to (−2π)n/2χ(M), and |Weyl |2 is the squared
norm of the Weyl curvature Weylabcd, the trace-free part of Riemannian curvature Rabcd.

Hence the total Q-curvature satisfies

Q4 = 8π2χ(M)− 1

4

∫
M

|Weyl |2d vol .

Since |Weyl |2d vol is independent of the scale, the second term is conformally invariant

itself. In particular, we see that

Q4 ≤ 8π2χ(M)

and the equality holds if and only if [g] is conformally flat.

2.2. The ambient metric. To constructQn and Pn in higher dimensions, we use the ambi-

ent metric of Fefferman and Graham [13]. To motivate the definition of the ambient metric,

we first recall the Möbius transformations of the standard sphere and associated metrics.

Let G = SO(n+ 1, 1) be the orthogonal group for the quadratic form

B(ζ) = −ζ20 + ζ21 + · · ·+ ζ2n+1, (ζ0, . . . , ζn+1) ∈ Rn+2.

Then G preserves the light cone N = {ζ ∈ Rn+2 \ {0} : B(ζ) = 0} and the hyperboloid

H = {ζ ∈ Rn+2 : B(ζ) = −1}. The projectivization of N can be identified with the unit

sphere Sn = {x ∈ Rn+1 : |x|2 = 1} by
Sn $ x �→ R(1, x) ∈ N/R∗ ⊂ Pn+1

andH can be identified with the unit ball Bn+1 = {x ∈ Rn+1 : |x|2 < 1} by

C $ (ζ0, ζ ′) �→ ζ ′

1 + ζ0
∈ Bn+1.

The action of G on Rn+2 can be also seen as the isometries of the Lorentzian metric:

g̃ = −dζ20 + dζ21 + · · ·+ dζ2n+1.

Since g̃ induces the Poincaré metric g+ onH ∼= Bn+1,

g+ = 4
dx2

1 + · · ·+ dx2
n+1

(1− |x|2)2 ,

we see that the action of G on Bn+1 gives the isometries of g+.

On the other hand, g̃ induces a degenerate two tensor onN . For each section of π : N →
N/R∗ ∼= Sn, the pullback of g̃ gives a Riemannian metric which is conformal to the standard

metric g0 on Sn. Thus (upper half of) N can be identified with the metric bundle over

(Sn, [g0]); hence G acts as conformal maps of Sn.

To sum up, we have three spaces of different dimensions on which G acts as automor-

phisms:
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• Lorentzian space (Rn+2, g̃);

• Poincaré ball (Bn+1, g+);

• Conformal sphere (Sn, [g0]).

Fefferman-Graham [13] generalized these correspondences to a curved conformal mani-

fold (M, [g]). They call g̃ and g+, respectively, the ambient metric and the Poincaré-Einstein
metric. We first recall the construction of the ambient metric. Let M̃ = R+ ×M × (−1, 1)
and choose a local coordinate system (t, x, ρ). For each scale g ∈ [g], the trivial R+-bundle

M = R+ ×M can be identified with the metric bundle by (t, x) �→ t2g(x) ∈ S2T ∗M

and we embedM into M̃ =M× (−1, 1) as a hypersurface ρ = 0. On M̃ , we consider a

Lorentzian metric of the form

g̃ = 2tdt dρ+ 2ρdt dt+ t2gab(x, ρ)dx
adxb,

where g(x, ρ) = gab(x, ρ)dx
adxb is a family of Riemannian metrics on M with parameter

ρ such that g( · , 0) = g. To fix g̃, we impose the Einstein equation along ρ = 0:

Ric(g̃) =

{
O(ρ∞) n odd,

O+(ρn/2−1) n even.
(2.1)

Here f = O+(ρl) means that each component of f is O(ρl) and ρ−lf |TM in the frame

dt, dxa is of the form (
0 0
0 φab

)
with gabφab = 0.

The ambient metric g̃ is defined as the solution to the equation (2.1), which exists uniquely

modulo O(ρ∞) for odd n and modulo O+(ρn/2) for even n. For even n, we set

cn
(
(−ρ)1−n/2Ric(g̃)

)|TM =

(
0 0
0 Oab

)
, cn = 2n−3(n/2− 1)!2.

The tensorOab is called the obstruction tensor and is shown to be a local conformal invariant

in the sense that Ôab = e(2−n)ΥOab under the change of scale ĝ = e2Υg that gives the initial

data on ρ = 0. We can show that Ric(g̃) = O(ρ∞) admits a smooth solution if and only if

Oab = 0, as its name suggests.

While this definition of g̃ depends on a choice of scale g, the ambient metric is deter-

mined by the conformal class [g] in the following sense: if g̃ and g̃′ are ambient metrics

determined by g, g′ ∈ [g], then there is a diffeomorphism Φ(t, x, ρ) = (t′, x′, ρ′) such that

Φ(λt, x, ρ) = (λt′, x′, ρ′) for λ > 0, Φ(M) =M, and Φ∗g̃′ = g̃ modulo O(ρ∞) for odd n
and modulo O+(ρn/2) for even n.

The Poincaré-Einstein metric g+ on X = M × (0, 1) $ (x, r) is then defined by the

pullback of g̃ by the embedding X ↪→ M̃ , (x, r) �→ (1/r, x,−r2/2). In the coordinate

system (x, r), we have

g+ =
dr2 + hab(x, r)dx

adxb

r2
, (2.2)

where hab(x, r) = gab(x,−r2/2). We call r the defining function normalized by the scale

h( · , 0) = g ∈ [g]. The equation (2.1) then implies

Ric(g+) + ng+ =

{
O(r∞) n odd,

c−1
n Oabr

n−2 +O(rn−1) n even.
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Alternatively, one may define Poincaré-Einstein metric to be the solution to this equation of

the form (2.2).

2.3. Total Q-curvature and volume renormalization. Nowwe are ready to defineQn and

Pn. For a conformal manifold (M, [g]) of even-dimension n, we take the ambient metric g̃.

Let Δ̃ = −∇̃A∇̃A be the (wave) Laplacian; here ∇̃ is the Levi-Civita connection of g̃ and

the index A runs through 0, 1, . . . , n+ 1. The Q-curvature and the invariant operator Pn for

the scale g ∈ [g] are given by

Qn = −(Δ̃n/2 log t)
∣∣
t=1,ρ=0

d volg,

Pnf = (Δ̃n/2f)
∣∣
t=1,ρ=0

d volg .

Here f ∈ C∞(M) is identified with a function on M̃ that is free of (t, ρ). It is shown that

Pn is independent of the choice of the scale g ∈ [g] and the pairQn, Pn satisfies the required

properties [15]. (See also §3.2 for the original definition by T. Branson.)

To study Qn, it is useful to give its characterization in terms of the Poincaré-Einstein

metric g+. The complete Riemannian manifold (X, g+) has infinite volume; we define its

finite part by considering the volume expansion of the subdomains {r > ε}:∫
r>ε

d volg+ = a0ε
−n+a2ε

−n+2 + · · ·

+

{
an−1ε

−1 + V + o(1) n odd,

an−2ε
−2 − L log ε+ V + o(1) n even.

Here r is a defining function of M normalized by a scale g ∈ [g] and aj , V, L are constants.

The constant term V (g+, g) is called the renormalized volume of g+ with respect to the scale

g.

Theorem 2.1 (Graham-Zworski [18]). For odd n, V is independent of the choice of a scale
g ∈ [g]. For even n = 2m, L is independent of the choice of a scale g. Moreover, one has

Qn = (−1)m2n−1m!(m− 1)!L.
The proof is based on the scattering theory ofΔ+, the Laplacian of g+. A simpler proof

using the Dirichlet problem for Δ+ was later given by Fefferman-Graham [12].

For even n, V (g+, g) is not conformally invariant. In fact, the variation of the scale gives

d

dt

∣∣∣
t=0

V (g+, e
2tΥg) =

∫
M

Υvn(g)d volg,

where vn(g) is a local invariant of g called the holographic anomaly. It appears in the

expansion of the volume form:

vol(h(·, r))
vol(g)

= 1 + v2r
2 + v4r

4 + · · · .

It is not difficult to see L =
∫
M

vn(g)d volg . So vn has a similar property to Qn, while the

transformation law of vn under the scaling is not easy to write down. In dimension 4, one
has

Q4 = 16v4 +
1

6
ΔScal .
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General relation between Qn and vj has been studied extensively by Juhl and Fefferman-

Graham; see [3] and [14].

We next study the variation of Qn under the deformation of conformal structures. Let

gt be a one parameter family of Riemannian metrics on M that preserves the volume form.

Then it has an expansion

gtab = gab + tψab +O(t2)

with gabψab = 0. We shall denote the total Q-curvature for the conformal structure [gt] by
Qn(g

t).

Theorem 2.2 ([17]). The first variation of the total Q-curvature is given by

d

dt

∣∣∣
t=0

Qn(g
t) = (−1)n/2

∫
M

Oabψ
ab d volg,

where Oab is the obstruction tensor for g = g0.

The critical points of the functional Qn on the space of conformal structures are charac-

terized by Oab = 0. At a critical point, the second variation is given by

d2

dt2

∣∣∣
t=0

Qn(g
t) =

∫
M

Ln(ψ)abψ
ab d volg,

where Ln is a conformally invariant differential operator of order n:

Ln(ψ)ab = (−1)n/2 d

dt

∣∣∣
t=0
Oab(g

t).

By analyzing the eigenvalues of Ln, one obtain the following rigidity of the conformal

sphere.

Theorem 2.3 (Møller-Ørsted [28]). The totalQ-curvature has a local maximum at the stan-
dard conformal sphere (Sn, [g0]), n ≥ 4. Namely, there exists a neighborhood U of g0 in
the space of Riemannian metrics on Sn such that

Qn(g) ≤ Qn(g0) for all g ∈ U

and the equality holds if and only if (Sn, [g]) is conformally equivalent to (Sn, [g0]).

The proof is based on an analysis of Ln using representation theory. To formulate it, let

us recall the deformation complex of conformal structures. Let D0 be the conformal Killing

map

D0 : Γ(T
∗M)→ Γ(S2

0T
∗M)

defined by

D0(fa) = trace-free part of ∇(afb),

where S2
0T

∗M denote the bundle of symmetric trace-free 2-tensors. Let

D1 : Γ(S
2
0T

∗M)→ Γ(⊗4T ∗M)

be the linearization of the Weyl curvature:

D1(ϕab) = projection to 0 part of∇abϕcd.
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Here 0 denotes the space of trace-free 4-tensor with symmetry given by the Young diagram

. Then we have ImD0 = kerD1 and these maps can be extended to a complex, which is

known as the deformation complex. On S6, it is given by (thick long arrow omitted)

L6

�D0� 0

D1�
0

�
��

�
��

+

0

−

0D−
2

D+
2 �

��

�
�� 0

0� �

Here, we only write the symmetries of the tensor bundles in terms of the Young di-

agram; the superscripts ± denote the self-dual/anti-self-dual parts. If we properly put a

density weight on each bundle, this becomes a complex of G-invariant differential opera-

tors. (Recall that G = SO(n + 1, 1), which acts on Sn as conformal maps.) For general

dimensions, the deformation complex has length n + 1, like the de Rham complex. The de

Rham and deformation complexes are examples of generalized Bernstein-Gelfand-Gelfand

(BGG) complexes in the parabolic geometry modeled on G/P . Each BGG complex gives

a resolution of a finite dimensional irreducible representation of G; the de Rham complex

(resp. deformation complex) corresponds to the trivial representation R (resp. the adjoint

representation g). See [7].

The Hessian Ln gives a G-invariant operator from 0 on the left to 0 on the right.

Such an operator is unique up to a constant multiple and turns out to be a semi-definite,

self-adjoint, operator with kernel ImD0. Since ImD0 = kerD1 is the tangent space to the

submanifold consisting of flat conformal structures on Sn, we get an infinitesimal version

of the theorem. This analysis can be applied to many other conformal functionals, e.g., the

determinant of Yamabe Laplacian; this recovers an earlier result of K. Okikiolu.

3. CR geometry

Now we turn to the CR case. Many of the results outlined in Section 2 have natural analogs

in CR/complex setting. However, we here put weight on the parts that are specific to the CR

case and will omit many of the fundamental results, for which we refer to [19] and [16]. To

simplify the exposition, we only consider the case of strictly pseudoconvex domains Cn+1

and the CR structure on the boundary. More general formulation is given in [23], in which

Lee’s pseudo-Einstein condition plays essential role.

3.1. The ambient metric for strictly pseudoconvex domains. LetΩ ⊂ Cn+1 be a bounded

strictly pseudoconvex domain with smooth boundary M = ∂Ω. The CR structure on M is

given by T 1,0 = T 1,0Cn+1 ∩ CTM , a rank n complex subbundle of CTM . It is integrable
in the sense that

[Γ(T 1,0),Γ(T 1,0)] ⊂ Γ(T 1,0).

Take a C∞ defining function ρ of Ω which is positive in Ω, i.e., ρ ∈ C∞(Cn+1), Ω = {ρ >
0} and dρ �= 0 on M . Then we can define three hermitian metrics:
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• The Levi metric: for each p ∈M , a hermitian form on T 1,0
p is given by

Lρ(Z,W ) = −∂∂ρ(Z,W ), Z,W ∈ T 1,0
p ,

which is positive by the definition the strictly pseudoconvexity of Ω.

• Complete Kähler metric: on the domain Ω, the real (1, 1)-form

g+[ρ] = −
√−1∂∂ log ρ

gives a complete Kähler metric near the boundary.

• Lorentz-Kähler metric: let ρ� : C∗ × Cn+1 → R be the function ρ�(z0, z) =
|z0|2ρ(z), (z0, z) ∈ C∗ × Cn+1. Then

g̃[ρ] = −√−1∂∂ρ�
gives a Lorentz-Kähler metric on C∗ × Cn+1 near the hypersurface ρ� = 0.

In the case ρ(z) = 1− |z|2, Ω is the unit ball B2n+2 ⊂ Cn+1,

(g+[ρ])ij = ρ(z)−1δij − ρ(z)−2zizj

is the complex hyperbolic metric (or the Bergman metric) and

g̃[ρ] =
√−1(− dζ0 ∧ dζ0 + dζ1 ∧ dζ1 + · · ·+ dζn+1 ∧ dζn+1

)
is a flat Lorentz-Kähler metric, where ζ is the coordinate system given by

ζ0 = z0, ζj = z0zj , j = 1, . . . , n+ 1.

As in the conformal case, the special unitary group G = SU(n + 1, 1) for this metric acts

on Cn+2 as linear transformations in ζ and induces isometries on (B2n+2, g+) and CR dif-

feomorphisms on S2n+1 = ∂B2n+2, i.e., the diffeomorphisms that preserve the subbundle

T 1,0.

For a general strictly pseudoconvex domain, we fix the defining function ρ by imposing

a complex Monge-Ampère equation:

Jz[ρ] = 1 on Ω,

where

Jz[ρ] = (−1)n+1 det

(
ρ ∂jρ
∂kρ ∂jkρ

)
j,k=1,...,n+1

.

The unique existence of the solution has been proved by S. Y. Cheng and S. T. Yau. For such

ρ, one has
Ric[g+] = −(n+ 1)g+ on ρ > 0,

Ric[ g̃ ] = 0 on ρ� > 0.

However, in general, the exact solution has weak singularity at the boundary. We thus use

the best approximate solution r ∈ C∞(Cn+1) constructed by Fefferman [11]. Recall that

there is a smooth defining function r such that

Jz[r] = 1 + η rn+2 (3.1)
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for an η ∈ C∞(Cn+1). Such an r is unique modulo O(rn+3) and is called Fefferman’s
defining function of Ω. It is also important to note that

O = η|M ∈ C∞(M)

is independent of the choice r and is called the obstruction function, as O = 0 if and only

if the Cheng-Yau solution is smooth up to the boundary. We define the ambient metric to be

g̃[r], which is not Ricci-flat but Ric[ g̃ ] = O(rn) holds.
The operator Jz depends on the choice of coordinates z and so does r. However, there

is a simple transformation rule under the coordinate changes. If ẑ = Φ(z) is another holo-

morphic coordinate system,

r̂ = e−2Reϕ(z)r

gives Fefferman’s solution in ẑ, where ϕ(z) = (detΦ′(z))1/(n+2) is the power of holomor-

phic Jacobian. Thus the map

Φ� : (z0, z) �→ (ẑ0, ẑ) = (z0ϕ(z),Φ(z))

gives an isometry between g̃[r] and g̃[ r̂ ]. In other word, we can say that the ambient metric

is naturally defined on an (n+ 2)-nd root of the canonical bundle.

In the following, we regard the domain Ω ⊂ Cn+1 as a complex manifold and con-

sider the family of Fefferman’s defining functions, each of them corresponds to a choice of

coordinates. For any defining functions r and r̂ in the family, we have

r̂ = eΥr Ω mod O(rn+3)

for a pluriharmonic function Υ on Ω. If we define a contact form by

θ[r] =
i

2
(∂ − ∂)r

∣∣
TM

,

then we have

θ̂ = eΥθ on M.

Therefore the family of defining functions (or corresponding contact forms) can be seen as

an analogy of conformal structure. Important fact here is that the scaling is parametrized

not by C∞(M) but by the boundary values of pluriharmonic functions, which are called CR
pluriharmonic functions.

3.2. Q-prime curvature. We use the ambient metric g̃ = g̃[r] to construct CR invariant

differential operators. Let Δ̃ be the Laplacian of g̃. Then, for an integer 2m ∈ [−n, 0] and a

function f ∈ C∞(Ω), (
Δ̃n+2m+1|z0|2mf

)∣∣∣
{1}×M

∈ C∞(M)

is shown to depend only on the boundary value of f and gives a differential operator

Pn+2m+1 : C
∞(M)→ C∞(M).

While this definition depends on the choice of r, we can say that this is CR invariant in the

sense that if r̂ = eΥr for a pluriharmonic function Υ, then

P̂n+2m+1(e
mΥf) = e(−n−m−1)ΥPn+2m+1f.
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We will use the density notation and write this transformation law as

Pn+2m+1 : E(m)→ E(−n−m− 1).
The case m = 0 has special importance as we have E(−n− 1) = Γ(∧2n+1T ∗M) so that

Pn+1 : C
∞(M)→ Γ(∧2n+1T ∗M).

Now we recall Branson’s idea of defining Q-curvature from these invariant operators.

Consider the 0th order term of Pn+1 for higher dimensions CN+1 and take the “limit as

N → n” after factoring out (N − n). This gives a formal definition of Q-curvature:

Qn+1 = lim
N→n

1

N − n

(
Δ̃n+1|z0|2(n−N)

)∣∣∣
{1}×M2N+1

.

We can justify this limit by considering Taylor expansion in N − n:

|z0|2(n−N) =

∞∑
k=0

(N − n)k

k!
(− log |z0|2)k.

Applying Δ̃n+1 on C∗ × Cn+1 to the both sides gives

(
Δ̃n+1|z0|2(n−N)

)|{1}×M =
∞∑
k=0

(N − n)k

k
Q(k),

where

Q(k) = Δ̃n+1(− log |z0|2)k
∣∣
{1}×M

.

While the expansion does not have clear meaning, the coefficients Q(k) are standard quanti-

ties defined onM of dimension 2n+1. Clearly,Q(0) = 0. In the conformal case, the second

term Q(1) gives the Q-curvature, where log |z0|2 is replaced by log t2. However, Q(1) = 0
because log |z0|2 is pluriharmonic and g̃ is Kähler. Hence the leading term of the expansion

is Q(2), which we define to be the Q-prime curvature and denote by Q′.
The definition of Q′ depends on the choice of r and is not a CR invariant. If r̂ = eΥr,

where Υ is pluriharmonic, then

Q̂′ = Q′ + 2P ′Υ+ Pn+1(Υ
2).

Here P ′ is a differential operator defined on the space of CR pluriharmonic functions by

P ′f = −Δ̃n+1(f̃ log |z0|2)
∣∣
{1}×M

,

which we call the P -prime operator. Here f̃ denotes the pluriharmonic extension of f .
Again, P ′ is not a CR invariant operator but satisfies the transformation law:

P̂ ′f = P ′f + Pn+1(Υf).

A crucial fact is that P ′ and Pn+1 are formally self-adjoint and P ′1 = Pn+11 = 0. It follows

that the total Q-prime curvature

Q
′
(M) =

∫
M

Q′θ ∧ (dθ)n

is a CR invariant of M , i.e., it is independent of the choice of r.



268 Kengo Hirachi

3.3. Explicit formulas in dimensions 3 and 5. In the case M has dimension 3, we can

explicitly write down P ′ andQ′ in terms of Tanaka-Webster connection∇ (analogous to the

Levi-Civita connection, for each choice of a contact form or the Levi metric, one can define

a canonical connection of TM ). With respect to the contact form θ = θ[r] for r given as

above, we have

P ′f = Δ2
bf − Re∇1(Scal∇1f − 2

√−1A11∇1f), (3.2)

Q′ =
1

2
Δb Scal+

1

4
Scal2−|A|2. (3.3)

HereΔb is the sub-Laplacian, and Scal, A11 are respectively the scalar curvature and torsion

of the connection; |A|2 = A11A
11 is the squared norm of the torsion. We are still using the

Einstein convention but, since T 1,0 has rank one, we only have index 1.
These formulas were first given by J. Case and P. Yang prior to the general definition in

the previous subsection. Their aim was to give a CR analogue of Gursky’s sphere theorem

in 4-dimensional conformal geometry. While we cannot go into the details, let us recall their

main theorem.

Theorem 3.1 (Case-Yang [9]). Let (M,H, J) be a compact 3-dimensional CR manifold
with a pseudo-Einstein contact form. Assume that P3 is nonnegative and that CR Yamabe
constant is nonnegative. Then

Q
′
(J) ≤ Q

′
(J0)

and the equality holds if and only if (M,H, J) is CR equivalent to the standard sphere
(S3, H0, J0).

This is a deep result of geometric analysis; the proof is based on the CR positive mass

theorem of J.-H. Cheng, A. Malchiodi, and P. Yang.

From the explicit formula of Q′ in 3-dimensions, we can see that Q
′
agrees with the

Burns-Epstein invariant μ(M), [5], up to a universal constant:

Q
′
(M) = −4π2μ(M).

From this fact we can also obtain the renormalized Gauss-Bennet formula for Ω ⊂ C2:∫
Ω

c2(B) = χ(Ω)− 1

4π2
Q
′
(M), (3.4)

where c2 is the second Chern form for the Bochner tensor B of g+, the trace-free part of the

Kähler curvature tensor of g+.

For higher dimensions, such equality does not hold in general. To state it precisely,

let us recall a result of T. Marugame [26], which improved the renormalized Gauss-Bonnet

formula of Burns-Epstein [6]. For Ω ⊂ Cn+1, he found a transgression formula that gives

an invariant polynomial Π(R,A) in the curvature R and torsion A of the Webster-Tanaka

connection for θ such that∫
Ω

cn+1(B) = χ(Ω)−
∫
M

Π · θ ∧ (dθ)n,

where cn+1(B) is the (n + 1)-st Chern form for the Bochner tensor of g+ on Ω. When

n = 2, we have

−(4π)3Π =
1

27
Scal3−4RacbdA

abAcd +
1

3
|S|2 Scal .
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Here |S|2 is the squared norm of the Chern-Moser tensor Sacbd, which is the trace-free

part of the Tanaka–Webster curvature Racbd. The lower indices a, b (resp. c, d) run through

1, 2, . . . , n (resp. 1, 2, . . . , n) and correspond to (T 1,0)∗ (resp. (T 1,0)∗). Analogous to the

Weyl curvature in the conformal case, Sabcd = 0 if and only if M is spherical, i.e., locally
CR equivalent the sphere. With this Π, we can write Q

′
as

Q
′
= −

∫
M

(
(4π)3Π+

1

3
|S|2 Scal+4|∇A|2

)
θ ∧ (dθ)2.

Thus we obtain the following

Theorem 3.2 ([24]). Let Ω ⊂ C3 be a strictly pseudoconvex domain. If the scalar curvature
of the Webster-Tanaka connection for θ[r] is positive almost everywhere, then

(4π)3Q
′ ≤ χ(Ω)−

∫
Ω

c3(B).

The equality holds only if M = ∂Ω is spherical.

Note that the assumption on Ω holds for domains that are sufficiently close to the ball in

C3. So there are many examples for which −(4π)3Q′
and
∫
M
Π are different.

3.4. Volume renormalization and variational formula. We next consider the volume

renormalization of strictly pseudoconvex domains. While M has odd dimensions, CR ge-

ometry is analogous to even dimensional conformal geometry. Hence the situation is a little

bit complicated. As before, let g+ = −√−1∂∂ log r be the complete Kähler metric on Ω
defined from Fefferman’s defining function r.

Theorem 3.3 ([23, 24]). Let Ω ⊂ Cn+1 be a strictly pseudoconvex domain and r be Feffer-
man’s defining function. Then the integrals over the subdomains {r > ε} admit expansions
as ε→ +0:∫

r>ε

|d log r|2g+d volg+ = a0ε
−n−1 + · · ·+ anε

−1 + knQ
′
log ε+O(1), (3.5)∫

r>ε

d volg+ = b0ε
−n−1 + · · ·+ bnε

−1 + k′nQ
′
+ o(1), (3.6)

where aj , bj are constants given by integrals over M = ∂Ω of some local invariants of the
CR structure of M and θ = θ[r], and kn, k

′
n are non-zero universal constants depending

only on the dimension.

The first formula is an analogy of the even dimensional conformal case, while the second

formula says that the renormalized volume is a CR invariant, which corresponds to the odd

dimensional conformal case.

Using (3.5), we can compute the variation of Q
′
under the perturbation of domains. Let

{Ωt}t∈R be a smooth family of strictly pseudoconvex domains in Cn+1 in the sense that

there is a C∞ function ρt(z) of (t, z) ∈ R× Cn+1 such that Ωt = {z ∈ Cn+1 : ρt(z) > 0}
and dzρt �= 0 on ∂Ωt. Solving the Monge-Ampère equation for each t, one may assume that

ρt is Fefferman’s defining function for each fixed t. On the boundary Mt = ∂Ωt, θt = θ[ρt]
gives a natural contact form.
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Theorem 3.4 ([24]). Let {Ωt}t∈R be a smooth family of strictly pseudoconvex domains in
Cn+1. Then the total Q′-curvature Q

′
(Mt) of Mt satisfies

d

dt

∣∣∣
t=0

Q
′
(Mt) = 2

∫
M0

ρ̇O θ0 ∧ (dθ0)n, (3.7)

where ρ̇(z) = dρt/dt|t=0 and O is the obstruction function of ρ0.

3.5. Q-curvature for partially integrable CR structures. As we have seen, the Q-curv-

ature vanishes for the boundary of a domain in Cn+1. However, if we consider abstract CR

structure which may not be embeddable, the total Q-curvature becomes non-trivial and has

natural variational formula. We here recall a result of Y. Matsumoto [27].

Let θ be a contact form on a manifold M of dimension 2n + 1, that is, θ is a real one

form satisfying θ ∧ (dθ)n �= 0. An abstract CR structure is a complex structure J on the

contact distribution H = ker θ ⊂ TM ; we denote the ±√−1-eigenspace decomposition by

CH = T 1,0 ⊕ T 0,1. We assume that J is partially integrable in the sense that

[Γ(T 1,0),Γ(T 1,0)] ⊂ Γ(T 1,0 ⊕ T 0,1).

This enables us to define the Levi metric Lθ on H by dθ(X, JY ); we assume that it is

positive definite. A choice of contact form θ gives a decomposition of cotangent bundle

CT ∗M = Cθ ⊕ (T 1,0)∗ ⊕ (T 0,1)∗ such that the corresponding coframe θ, θa, θa gives

dθ =
√−1habθa ∧ θb.

Let (M,H, J) be a partially integrable CR manifold with a contact form θ. An asymp-
totically complex hyperbolic (ACH) metric is a Riemannian metric on M × (0, 1) with the

following asymptotic expansion

g+ =
1

4ρ2
dρ2 +

1

ρ2
θ2 +O(ρ−1), g+|H =

Lθ

ρ
+O(1).

Here θ and Lθ are identified with their pullbacks by the projection M × (0, 1) → M . We

also assume that g+ is smooth in the sense that ρ2g+ is C∞ on M × [0, 1).
As in the case of Poincare-Einstein metric, we consider the best approximate solution to

the Einstein equation. It is shown that there is a smooth ACH metric that satisfies

Ric(r+) +
1

2
(n+ 2)g+ = ρnE (3.8)

for a symmetric 2-tensor E which is C∞ on M × [0, 1) and

E|ρ=0 = 2Re(Oabθ
a ⊗ θb) mod θ, dρ.

The obstruction tensor in this setting is defined to be

Oab ∈ Γ(S2(T 1,0M)∗).

It is CR invariant, i.e., Ôαβ = e−nΥOαβ holds under the scaling θ̂ = eΥθ. If Oαβ = 0, we

can find a smooth ACHmetric that satisfies Einstein equation moduloO(ρ∞). It is important

to note that Oαβ = 0 if T 1,0 is integrable.
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Fixing a smooth ACH metric g+ satisfying (3.8), we now define Q-curvature for θ on

(M,H, J). LetΔ+ be the Laplacian of g+. Then there are functionsA,B ∈ C∞(M×[0, 1))
such that

Δ+(log ρ+A+Bρn+1 log ρ) = n+ 1 +O(ρ∞).

The Q-curvature is now defined by

B|ρ=0 =
(−1)n

n!(n+ 1)!
Q.

One can show that Q satisfies the required transformation law

Q̂ = Q+ Pn+1Υ, θ̂ = eΥθ,

where Υ ∈ C∞(M) and Pn+1 is a self-adjoint CR invariant differential operator of order

2n+ 2 without constant term. It follows that

Q =

∫
M

Qθ ∧ (dθ)n

is a CR invariant. For integrable CR structures, this definition ofQ agrees with the one given

in [15] via the ambient metric (in this case, we can also say that CR Q is the pushforward of

the conformal Q of the Fefferman space S1 ×M ).

To state the variational formula of Q, we recall the deformation of (partially integrable)

CR structures. Take a frame Za of T 1,0 and set Za = Za ∈ T 0,1. Then we may define

another CR structure Ĵ by the frame of T̂ 0,1,

Ẑa = Za + ϕa
bZb.

It is partially integrable if ϕab is symmetric, where the index b is lowered by using the

Levi metric hab. Thus partially integrable CR structure nearby T 1,0 is parametrized by a

symmetric two tensor ϕab ∈ Γ(S2(T 0,1)∗).

Theorem 3.5 (Matsumoto [27]). Let {Jt}t∈R be a one parameter family of partially inte-
grable CR structures parameterized by ϕ(t)

ab
. Then the totalQ-curvatureQ(Jt) of (M,H, Jt)

satisfies
d

dt

∣∣∣
t=0

Q(Jt) = (−1)ncn
∫
ReOabϕ̇

abθ ∧ (dθ)n

with a universal constant cn > 0. Here Oab is the obstruction tensor for (M,H, J0) in the
scale θ and ϕ̇ab = dϕ

(t)

ab
/dt|t=0.

In particular, if all Jt are integrable, we have Oab = 0 and Q(Jt) is constant.

3.6. Deformation complex of CR structures. We have obtained the variational formulas

of Q and Q
′
. To derive geometric consequences from them, we shall recall the deformation

complex of CR structures.

We will use the Young diagram to denote the symmetries of tensor bundle. The symmet-

ric product of (T 0,1)∗ is now denoted by (T 0,1)∗. The integrability of J is equivalent to
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the vanishing of the Nijenhuis tensorNabc, which has the symmetry ; the linearization of

Nabc gives the map

D−
1 : Γ

(
(T 0,1)∗

)
→ Γ

(
(T 0,1)∗

)
, D−

1 ϕab = ∇[cϕb]a.

Let E = C∞(S2n+1,C) and define

D−
0 : E → Γ

(
(T 0,1)∗

)
, D−

0 f = ∇abf,

D+
0 : E → Γ

(
(T 1,0)∗

)
, D+

0 f = ∇abf.

These maps give a complex

E D−0−−−→ Γ
(

(T 0,1)∗
)

D−1−−−→ Γ
(

(T 0,1)∗
)
.

This is the beginning of Kuranishi’s deformation complex of CR structures in the form later

improved by Akahori-Garfield-Lee [2]. The cohomology of this complex describes the mod-

uli of the deformations of isolated singularities. In this setting, CR manifolds that bound the

same singularity are identified; this equivalence is given infinitesimally by the image ofD−
0 .

To study the deformation of partially integrable CR structures, we need the full deforma-

tion complex which is given as the BGG complex of the adjoint representation su(n+ 1, 1).
The Kuranishi complex is contained in the BGG complex as an edge. On the 5-dimensional

sphere S5 ⊂ C3, the deformation complex is given by

E
D+

0

D−
0

����

			


D+
1

R−
1

R+
1

D−
1

����

			


����

			


R

�
�
�
�
���



�

�
�
�
�
���




�

�

R

			


����

			


����

����

			

E

Here we have simplified the notation by omitting Γ and (T 1,0)∗ or (T 0,1)∗; the overline

means that (T 0,1)∗ is omitted. R denotes space of the sections of the trace-free tensors

ϕabcd with symmetry ⊗ and R−
1 is given by

R−
1 (ϕab) = trace-free part of ∇cdϕab.

Each arrow is a CR invariant differential operator if we properly put density weight on

each bundle. Moreover, it is known that there is exactly one CR invariant operator for each

arrow. (Recall that G = SU(n+ 1, 1) acts on S2n+1 as CR automorphisms. Hence, in this

setting, CR invariant operators are G-invariant operators and vice versa.)
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For higher dimensions, we have a diagram of length 2n + 2. It is similar to the type

decomposition of the de Rham complex, but it has more maps in the middle. The part we

need here is the following:

E
D+

0

D−
0

����

			


D+
1

R−
1

R+
1

D−
1

����

			


����

			


R

���

		


���

		


���

		


· · ·

· · ·

· · ·

		


���

		


���

		


���

R

			


����

			


����

����

			

E

If we write f = u+
√−1v for real valued u and v, thenD−

0

√−1v is infinitesimally given by

a pullback of the CR structure by a contact diffeomorphism, while D−
0 u is the first variation

of Kuranishi wiggle (perturbations of S2n+1 within Cn+1).

We set Q = CT/(T 1,0 ⊕ T 0,1) and denote the space of sections of Q by E(1). For each
choice of a contact form we have an identification E(1) ∼= E . In the deformation complex,

the first E is E(1) and the last one is E(−n−2) = Γ(Q−n−2). The symmetric two tensor on

the left side has weight ⊗ Q and the one on the right side has weight ⊗ Q−n;

we set

E (1) = Γ( ⊗Q) and E (−n) = Γ( ⊗Q−n).

Take a family of partially integrable CR structures Jt given by ϕ
(t)
ab (the conjugate of

ϕ
(t)

ab
) and set

ϕ̇ab =
d

dt

∣∣∣
t=0

ϕ
(t)
ab ∈ E (1).

Then the first variation of Oab(Jt) at t = 0 gives a CR invariant operator of order 2n+ 2:

Ln+1 : E (1)→ E (−n).

For the obstruction function O, we take its variation under an integrable deformation ϕ
(t)
ab

such that

d

dt

∣∣∣
t=0

ϕ
(t)
ab = D+

0 f ∈ E (1) for f ∈ E(1).

Then the first variation of O(Jt) gives a CR invariant operator of order 2n+ 6:

Ln+3 : E(1)→ E(−n− 2).
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These are the operators sending the bundles on the left to the ones on the right with the same

Young diagrams:

Ln+3

�

Ln+1

�

E
D+

0

D−
0

����

			


D+
1

R−
1

����

			


����

· · ·

R

���

		


���

		


· · ·

· · ·

		


���

		


���
R

			


����

			


···
����

			

E

Moreover, Ln+3 and Ln+1 are intertwiners between G-modules E(1) → E(−n − 2) and

E (1) → E (−n); such maps are unique up to a constant multiple and the eigenvalues of

these maps can be explicitly computed by using representation theory.

Theorem 3.6 ([25]).

(1) On the standard sphere S2n+1 the operator Ln+3 : E(1) → E(−n − 2) is semi-
negative and

kerLn+3 = kerD+
0 + kerD−

0 .

(2) On the standard sphere S2n+1, n ≥ 2, the operator Ln+1 : E (1) → E (−n) is
semi-negative and

kerLn+1 = kerD+
1 + kerR−

1 .

As a direct consequence, we have

Theorem 3.7 ([25]).

(1) Let Ωt = {ρt > 0} be a smooth family of strictly pseudoconvex domains in Cn+1 such
that Ω0 is the unit ball. If ρ̇ = dρt/dt|t=0 satisfies ρ̇|S2n+1 �∈ kerD+

0 + kerD−
0 , then

d2

dt2

∣∣∣
t=0

Q
′
(∂Ωt) < 0.

(2) Let {Jt}t∈R be a family of partially integrable CR structures such that J0 is the
standard one on S2n+1, and ϕ̇ab be the first variation of Jt at t = 0. If ϕ̇ab �∈
kerD+

1 + kerR−
1 , then

d2

dt2

∣∣∣
t=0

Q(Jt) < 0.

We shall explain the geometric meaning of the condition on the direction of the defor-

mations. If n ≥ 2, we have

kerD+
0 + kerD−

0 = kerR−
1 D

+
0
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and the composition R−
1 D

+
0 is the linearization of the Chern-Moser tensor Sabcd. Thus

ρ̇|S2n+1 ∈ kerD+
0 + kerD−

0 means that the family is spherical to the first order. The in-

equality states that if the family deformation is not trivial, then Q
′
takes local maximum

value at the standard sphere along the family.

The similar argument can be applied to the case n = 1; then R−
1 is a 4-th order operator

and Chern-Moser tensor has 6 indices S111111. It is also not difficult to derive Theorem 3.6

(1), n = 1, by a direct computation as was done in Burns-Epstein [5]. J. H. Cheng and J.

Lee further showed the following stronger result:

Theorem 3.8 (Cheng-Lee [8]). For the CR structures on S3 near the standard one, the
Burns-Epstein invariant takes minimal value only for the standard sphere.

Since μ = −(2π)2Q′
, this theorem is consistent with the theorem above. To prove the

local minimality from the semi-positivity of the Hessian, they developed a slice theorem of

the moduli space of CR structures on S3.

The geometric meaning of Theorem 3.6 (2) is still not clear; but it gives a insight to

the partially integrable CR structures. The subspace kerD+
1 is the direction of integrable

CR structures and kerR−
2 is the direction with Sabcd = 0 (in the partially integrable case,

Sabcd = 0 may not mean that the surface is spherical). Thus the vanishing of total Q does

not characterize integrable CR structures — contrary to our initial hypothesis. However, this

theorem suggests the existence of a natural class of partially integrable CR structures for

which Q vanishes identically.
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Abstract. The classical theory of weighted norm inequalities provides a characterization of admissible

weights such that the Hilbert transform or other singular operators act boundedly from the weighted

space Lp(w) to itself. This lecture surveys two lines of recent development: proving sharp quantitative

forms of the classical mapping properties (the A2 theorem), and characterizing the admissible pairs of

weights when the operator acts from one L2(u) space to another Lp(v) (the two-weight problem).
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1. Introduction

A fundamental object in Harmonic Analysis for more than a hundred years is the Hilbert

transform

Hf(x) = p. v.

∫ ∞

−∞

f(y)dy

x− y
= lim

ε→0

(∫ x−ε

−∞
+

∫ ∞

x+ε

)f(y)dy
x− y

. (1.1)

(The usual normalization involving the factor 1/π is irrelevant for the present discussion.) It

appeared, in its periodic version, in the work of D. Hilbert in 1905 [13, see in particular Eqs.

(7∗) and (5)], and the basic Lp inequalities

‖Hf‖Lp(R) ≤ cp‖f‖Lp(R), 1 < p <∞, (1.2)

both in the periodic case and as stated, were first established by M. Riesz in 1928 [47]. Ever

since, obtaining analogues of the norm bound (1.2) for different variants and generalizations

of the Hilbert transform has been among the central themes in Harmonic Analysis. It was

already in same paper of M. Riesz [47, §23] that the correspondingLp bounds for the discrete

analogue of (1.1),

Hdf(k) =
∑
j∈Z
j �=k

f(j)

k − j
, (1.3)

were also proven, namely the estimate

‖Hdf‖�p(Z) ≤ c′p‖f‖�p(Z), 1 < p <∞. (1.4)
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A unified framework, which captures both the continuous and the discrete cases, is to con-

sider the Hilbert transform with respect to a (Radon) measure μ:

H(f dμ)(x) =

∫
f(y) dμ(y)

x− y
, x /∈ spt f. (1.5)

(The existence of principal value, as in (1.1), is a subtle issue in general, and we content

ourselves by requiring that H is some linear operator that satisfies (1.5), although this does

not specify it uniquely.) Both classical estimates (1.2) and (1.4) are then special cases of

‖H(f dμ)‖Lp(μ) ≤ C‖f‖Lp(μ), (1.6)

where we have stopped keeping track of the parameter-dependence of the constants.

Our main emphasis in this lecture is on generalizations of (1.6) involving different mea-
sures rather than just one fixed μ. The reader can easily count three occurrences of μ in (2.4),

and we could, in principle, try to replace each of them by an independent object, arriving at

the question of characterizing the estimate

‖H(f dμ)‖Lp(ω) ≤ C‖f‖Lp(λ). (1.7)

The reason that this “three-weight problem” is rarely mentioned is that a little argument,

essentially due to E. Sawyer [49], reveals that only two of these measures deserve to be

genuinely independent, in that the essence of the matter is fully captured by the situation in

which λ and μ are mutually absolutely continuous:

Lemma 1.1. Without loss of generality, we may assume that λ� μ� λ in (1.7).

Roughly speaking, the point is that the singular part of λ is both harmless and useless,

since it does not affect the left side of (1.7), while the singular part of μ is essentially for-

bidden, since it cannot be controlled by the right side of (1.7). A more precise formulation

of the reduction and the argument will be formulated in Section 3. Once this reduction is in

force, a useful dual weight trick reduces matters to just two measures altogether:

Proposition 1.2. For λ � μ � λ (which we may assume by Lemma 1.1), the bound (1.7)

is equivalent to
‖H(f dσ)‖Lp(ω) ≤ C‖f‖Lp(σ), (1.8)

where

dσ = φ dμ = φp dλ, φ =
(dμ
dλ

)1/(p−1)

,

and dμ/dλ is the Radon–Nikodým derivative.

Proof. Let φ be a fixed measurable function that is finite and strictly positive everywhere.

The identity f = f ′φ establishes a bijective and isometric correspondence between f ∈
Lp(dλ) and f ′ ∈ Lp(φp dλ). Making the substitution f = f ′φ in (1.7), we find that this

bound is equivalent to

‖H(f ′φ dμ)‖Lp(ω) ≤ C‖f ′‖Lp(φp dλ).

Requiring that φ dμ = φp dλ leads to the choice of φ specified in the statement of the

Proposition. Note that this is everywhere finite and strictly positive by the condition that μ
and λ are mutually absolutely continuous.
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Three main lines of investigation related to the bound (1.7) are the following:

1. Classical weighted inequalities correspond to dμ = dx, dω = dλ = w dx; thus

dσ = w−1/(p−1)dx.

2. The “geometric theory” corresponds to the same measure dμ = dω = dλ in all three

positions.

3. The full two-weight theory addresses arbitrary pairs of measures in (1.8).

The aim of this lecture is to present some recent advances particularly in the first and the

third research directions above. The geometric theory, which involves one fixed measure

throughout, is usually not regarded as an instance of the “weighted theory”, but it is also

discussed at some length due to its proximity in terms of techniques.

We begin in Section 2 by providing a more detailed historical perspective for the three

research domains defined above. We stop in Section 3 to give a proof of the basic reduction

stated in Lemma 1.1. The recent advances on our two main topics are discussed in the

next two sections: classical weighted inequalities in Section 4 and the two-weight theory in

Section 5. We conclude with a list of open problems in Section 6.

Throughout the presentation, the emphasis of our discussion stays with the Hilbert trans-

form. We will make occasional remarks about results that hold for more general Calderón–

Zygmund operators, but avoid most of the details (including the definition of these operators)

in this direction. When discussing the most general set-up in terms of measures — the two-

weight theory — the present knowledge is essentially restricted to the Hilbert transform in

any case.

2. Three historical lines of study

The main instances of (1.7) for us are the following:

2.1. Classical weighted inequalities. These correspond to computing the Hilbert trans-

form (or another integral operator) with respect to the plain Lebesgue measure dμ = dx,
and evaluating the norms of both the ‘input’ f and the ‘output’ H(f dx) with respect to one
other independent measure dλ = dω. Recalling that dλ and dμ = dx can be taken to be

absolutely continuous by Lemma 1.1, we have in this case that dλ = dω = w dx, where the

weight w is finite and strictly positive. Thus the bound (1.7) then reads as

‖H(f dx)‖Lp(w dx) ≤ C‖f‖Lp(w dx) (2.1)

or, in the dual weight formulation (1.8), as

‖H(f w1−p′dx)‖Lp(w dx) ≤ C‖f‖Lp(w1−p′ dx)

The classical (1970s) theory of R. Hunt, B. Muckenhoupt and R. Wheeden [15] provides

a characterization of the admissible weights for (2.1) in terms of the celebratedAp condition,

the finiteness of the weight characteristic

[w]Ap
:= sup

I⊂R

( 1

|I|
∫
I

w dx
)( 1

|I|
∫
I

w1−p′ dx
)p−1

, (2.2)
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where here and below, supI⊂R refers to a supremum over all intervals I ⊂ R. The impor-

tance of this condition (2.2) is in its universality. Prior to [15], Muckenhoupt had shown

its necessity and sufficiency for the analogue of (2.1) with the Hardy–Littlewood maximal

operator, namely

‖M(f dx)‖Lp(w) ≤ C‖f‖Lp(w), M(f dμ) := sup
I⊂R

1

|I|
∫
I

|f | dμ, (2.3)

and shortly after R. R. Coifman and C. Fefferman proved that the same characterization

persists for the class of all Calderón–Zygmund operators.

A more recent (2000s) trend has been the quantification of the sharp dependence of the

operator norm C in (2.1) and related estimates on the weight characteristic [w]Ap . This will

be discussed in Section 4.

2.2. “Geometric” theory: results with one arbitrary measure. Here we have in mind

the bound (1.6) (i.e., (1.7) with λ = ω = μ), and we extend the defining formula (1.5) by

allowing the domain of integration (which we purposely left unspecified in (1.5)) to be a

subset of C instead of R. Clearly, formula (1.5) makes perfect sense for complex numbers

x �= y as well. Here and below, our main emphasis is on the case p = 2.
Over the last quarter of the twentieth century, several authors contributed to the problem

of classifying the measures μ on C for which the L2 estimate

‖H(f dμ)‖L2(μ) ≤ C‖f‖L2(μ), (2.4)

is valid. This quest was pioneered by the works of A.-P. Calderón [5] resp. R. R. Coif-

man, A. McIntosh and Y. Meyer [6], who proved the admissibility of μ = H1|Γ, the one-

dimensional Hausdorff measure restricted to a Lipshitz graph Γ = {(t, A(t)) : t ∈ R} with

small resp. arbitrary Lipschitz constant ‖A′‖∞. After the first proof of this result, several

alternative arguments were found. In particular, the “geometric proof” by M. S. Melnikov

and J. Verdera [33] allowed to extend the positive result to chord-arc curves Γ. This pa-

per highlighted the role of the curvature of a measure in these questions, a theme that was

further elaborated by the same authors and P. Mattila [32]. Assuming that μ = H1|E is

Ahlfors–David (AD) 1-regular, which means

cr ≤ μ(D(x, r)) ≤ Cr ∀x ∈ sptμ, ∀r ∈ (0, diam(sptμ)), (2.5)

Mattila et al. [32] showed that (2.4) holds, if and only if E is contained in an AD-1-regular
curve. Note that (2.5) makes sptμ, equipped with the Euclidean distance and the measure

μ, into a space of homogeneous type, and the work of Mattila et al. [32] was essentially the

ultimate stretch of the homogeneous theory of singular integrals in this set of problems.

In order to go beyond, F. Nazarov, S. Treil and A. Volberg [38] on the one hand, and

X. Tolsa [52], independently, on the other, set the foundations for what is now known as

non-homogeneous harmonic analysis. They showed that for measures μ satisfying only the

upper half of (2.5), i.e.

μ(D(x, r)) ≤ Cr ∀x ∈ C, ∀r > 0, (2.6)

the bound (2.4) is equivalent to the curvature condition of [32, 33], namely∫∫∫
D×D×D

dμ(x) dμ(y) dμ(z)

R(x, y, z)2
≤ Cμ(D) ∀ disks D ⊂ C,
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where R(x, y, z) is the radius of the circle through x, y and z (interpreted as∞ if the points

are collinear), or further to the testing condition

‖1QH(1Q dμ)‖L2(μ) ≤ Cμ(Q)1/2 ∀ squares Q ⊂ C. (2.7)

The method of Nazarov et al. [38] was particularly important for the further development

of the weighted theory, including most of the recent main results discussed in this lecture.

It introduced the powerful method of random dyadic decompositions, which has become a

cornerstone of non-homogeneous harmonic analysis; as a general tool, it allowed to treat not

only the Hilbert transform but a whole class of next generation Calderón–Zygmund operators

with respect to non-homogeneous measures [39].

As for the linear growth assumption (2.6) present in both [38, 52], this had been known

as a necessary condition for (2.4) for some time (see G. David [9, Prop. III.1.4]) provided
that the measure is non-atomic (i.e., μ({x}) = 0 for all x) to begin with. The removal of this

side-condition, by coping with possible atoms, was another major step from Tolsa [53], who

showed that the equivalence of (2.4) and (2.7) persists without any a priori assumptions.

As Tolsa pointed out [53, p. 197], “when μ is doubling there are few differences between

the case μ continuous [i.e., non-atomic] and the case μ non-continuous”, whereas what he

proves in [53] “cannot be derived easily from other known results for non-doubling measures

without atoms.” There is an interesting parallelism between this and some rather recent

(2013) developments that we discuss below.

The subsequent work of Nazarov, Treil, Volberg and Tolsa on this topic led to the solution

of a number of celebrated long-standing problems in Complex Analysis. This important line

of development has been surveyed in the 2006 ICM lecture by Tolsa [54], and we shall

not repeat it here. Instead, we mention M. Lacey, E. Sawyer and I. Uriarte-Tuero’s [28]

more recent related resolution of K. Astala’s [2, Question 4.4] on the distortion of Hausdorff

measures by quasiconformal maps: A key ingredient of [28] was a bound analogous to

the classical (2.1) for the Beurling–Ahlfors transform, also known as the two-dimensional

Hilbert transform,

Bf(z) = − p. v.
∫
C

f(ζ) dζ1 dζ2
π(z − ζ)2

, (2.8)

but with a restriction 1E dx1 dx2 in place of dx and a weight w = 1Ew /∈ A2. These seem-

ingly innocent changes were enough to leave this problem outside the classical framework;

its solution was an important prelude to the extensive collaboration of the same trio on the

two-weight problem (see Section 5). Altogether, the geometric theory here outlined had a

major influence for the core topics of our present discussion in Sections 4 and 5.

2.3. Full two-weight inequalities. We finally discuss the general problem that, after the

reduction of Lemma 1.1, can be formulated as (1.8). Many of the two-weight questions were

already posed, and some of them solved, during the 1970s. However, there is a noteworthy

difference between the classical and the recent theory: in the former one, although weighted

norms were considered, the operators themselves were always evaluated with respect to the

Lebesgue measure only, i.e., the measure dμ in (1.7) was always taken to be dx. Because

of this, and Lemma 1.1 or its analogues in other situations, measures other than Lebesgue’s

with a weight seldom occurred in the theory, and the classical two-weight problem took the

form

‖H(f dx)‖Lp(u dx) ≤ C‖f‖Lp(v dx), (2.9)
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that is

dμ = dx, dω = u dx, dλ = v dx, dσ = v−1/(p−1)dx =: ṽ dx (2.10)

in the language of (1.7) and (1.8). As Muckenhoupt notes in his 1979 survey [34, p. 70],

replacing weighted measures by general ones “has not been particularly popular in the liter-

ature because in some cases it can be shown that only absolutely continuous measures can

be used, and in other cases the results are just complicated but trivial consequences.” How-

ever, as we already witnessed in §2.2, and shall see in other situations below, interesting and

nontrivial results with singular measures take place as soon as we also allow a new measure

inside the operator, i.e., in place of dμ in (1.7).

The success of the Ap condition in the one-weight situation has encouraged attempts to

build a two-weight theory around suitable generalizations of this condition. It was already

known to Muckenhoupt and Wheeden [35] that (2.9) implies a two-weight analogue of (2.2),

[ω, σ]Ap
:= sup

I⊂R

ω(I)

|I|
(σ(I)
|I|
)p−1

= sup
I⊂R

( 1

|I|
∫
I

u dx
)( 1

|I|
∫
I

ṽ dx
)p−1

<∞
(2.11)

and indeed a strengthening of this condition involving a “Poisson-type” (at least for p = 2)
tail:

∗[ω, σ]Ap := sup
I⊂R

(∫
R

dω(x)

(|I|+ |x− cI |)p
)
σ(I)p−1 <∞. (2.12)

(Restricting the integral over R to just I essentially reduces (2.12) to (2.11).) Simple exam-

ples show that (2.11) is not sufficient for (2.9); see [36, p. 1], which also presents a more

substantial counterexample, to be discussed shortly.

One of the early positive results, a prototype for a substantial line of further research, is

implicit in the work of C. Neugebauer [42]: he showed that “bumping up” the Ap condition

by a power r > 1,

[u, ṽ]Ap,r := sup
I⊂R

( 1

|I|
∫
I

ur dx
)( 1

|I|
∫
I

ṽ rdx
)p−1

<∞, (2.13)

is sufficient (and necessary) for the existence of w ∈ Ap with c−1u ≤ w ≤ cv, and therefore

sufficient for (2.9) by the one-weight theory. A considerable effort has been devoted to

finding minimal bump conditions of this type (on the scale of Orlicz or more general Banach

function spaces), which still suffice for the estimate (2.9) and its analogue for more general

Calderón–Zygmund operators. Our main focus, however, is in a different line of research

aimed at characterizing (2.9), or the more general (1.8).

Part of the interest in this problem, especially for p = 2, came from its connection

to D. Sarason’s question on the boundedness of products of Toeplitz operators TfTḡ on H2,

the analytic subspace of L2. The Toeplitz operator with symbol f is defined as Tf = P ◦Mf ,

whereMf is the pointwise multiplication by f and P is the orthogonal projection of L2 onto

H2. As is well known, P is essentially the same as the Hilbert transform, and precisely

given by

P =
1

2
(I + P0 + iH),



Advances in weighted norm inequalities 285

where P0, the projection onto constants, vanishes on L2(R) and has rank one on L2(T),
where these operators are usually considered. If f and g are analytic, then TfTḡ =Mf ◦P ◦
Mḡ is bounded onH2 if and only if it is bounded from L2 toH2 (since L2/H2 is invariant

for Mḡ and annihilated by P ), and this operator factorizes as

Mf ◦ P ◦Mḡ : L
2 Mḡ−→ L2(|g|−2)

P−→ H2(|f |2) Mf−→ H2,

where the multiplication operators are isometric between the indicated function spaces. Thus

the boundedness of TfTḡ on H2 is equivalent to the boundedness of P : L2(|g|−2) →
H2(|f |2), or equivalently, of P : L2(|g|−2)→ L2(|f |2), since it automatically maps into

the analytic part. This factorization and its consequences were observed by D. Cruz-Uribe

[7].

In the world of Toeplitz operators, D. Sarason had made a conjecture that, translated to

the language of the Hilbert transform, corresponds to the characterization of (1.8) by the

“double-Poisson” version of (2.12), namely

∗[ω, σ]∗A2
:= sup

I⊂R

(∫
R

dω(x)

(|I|+ |x− cI |)2
)(∫

R

dσ(x)

(|I|+ |x− cI |)2
)
<∞. (2.14)

F. Nazarov [36] disproved the conjecture that, “as Sarason himself once confessed, appeared

‘just as a wild guess’.” [36, p. 2]

It was probably soon after Nazarov’s counterexample that the hopes of any simple “Ap

style” characterization of the two-weight problem were abandoned for good, and the activity

around the testing paradigm began to catch fire. An obvious necessary condition for (1.8)

(or indeed any other inequality) to hold for all relevant functions f , is that it should hold

for any more restricted selection of f ∈ F . As (1.8) is easily (at least formally, using the

unweighted duality H∗ = −H) seen to be equivalent to its dual version,

‖H(g dw)‖Lp′ (σ) ≤ C‖g‖Lp′ (w), (2.15)

a similar remark on restriction to g ∈ F can be made for this dual inequality. The point

of the testing paradigm is to look for a minimal set of testing functions F , so that the full

estimate (1.8) is already implied by its (and its dual version’s) specialization to all f, g ∈ F .

A particularly popular choice is to use the family F = {1I : I ⊂ R interval} of indicators

of all finite intervals (or cubes in higher dimensional analogues).

This philosophy has two independent contemporaneous historical origins in the 1980s.

On the one hand, E. Sawyer obtained several characterizations of this type for two-weight

inequalities involving a positive operator (such as the maximal operator [49], or fractional

and Poisson integrals [50]) in place of the Hilbert transform in (1.8). On the other hand,

for singular operators, but in the unweighted case, the T (1) theorem of G. David and J. L.

Journé takes exactly this form, especially when using its local formulation: a weakly defined

operator T with a Calderón–Zygmund kernel acts boundedly on the unweightedL2(R) if and
only if ‖T (1I)‖L2 ≤ C|I|1/2 and ‖T ∗(1I)‖L2(I) ≤ C|I|1/2 for all intervals I ⊂ R. It seems

that the connection of these two theories was not recognized until F. Nazarov, S. Treil and

A. Volberg united them in the context of the two-weight problem. This line of development

will be discussed in more detail in Section 5.
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3. Why not three weights? — Proof of Lemma 1.1

We reformulate and prove Lemma 1.1 more precisely as follows:

Lemma 3.1. Let μ = μc + μs and λ = λc + λs, where λc � μc � λc while μs and λ,
resp. λs and μ are mutually singular. Then (1.7) holds as stated, if and only if it holds with
(λ, μ) replaced by (λc, μc) and in addition:

(1) μs = 0 or ω = 0,

(2) both μs and ω are nonzero multiples of some δx1 , and H(dδx1)(x1) = 0.

Note that for ω = 0, the whole estimate (1.7) is vacuous, whereas the condition 2 above

is not really a condition to verify but a matter of definition (the general formula (1.1) does

not specify the Hilbert transform of a measure on the support of this measure). Thus the

essence of the matter is indeed in the bound (1.7) with the absolutely continuous parts λc
and μc.

Proof. It is immediate that (1.7) is equivalent to

‖H(f dμ)‖Lp(ω) ≤ C‖f‖Lp(λc). (3.1)

Namely, if we substitute 1� sptλs
f in place of f in (1.7), the left side is unchanged (as we

only altered f in a set of μ-measure zero), and the right side becomes ‖f‖Lp(λc). Conversely,

since ‖f‖Lp(λc) ≤ ‖f‖Lp(λ), it is clear that (3.1) implies (1.7). So we may assume for the

rest of the proof that λ = λc, and it remains to prove that we may also replace μ by μc. With

similar substitutions, it is easy to see that (1.7) is equivalent to the two bounds

‖H(f dμc)‖Lp(ω) ≤ C‖f‖Lp(λ)

and

‖H(f dμs)‖L2(ω) = 0. (3.2)

where the first one, with λ = λc, is precisely (1.7) with the absolutely continuous parts of

the measures, and it remain to prove that (3.2) is equivalent to having condition 1 or 2 of

Lemma 3.1.

Now assume (3.2). For a nonnegative f that is not μs-a.e. equal to zero, we have that

H(f dμs)(x) =

∫
f(y) dμs(y)

x− y

is strictly positive on the right of spt f , and strictly negative on the left of spt f . This

would give a nonzero contribution to ‖H(f dμs)‖Lp(ω), unless ω gives a zero measure for

the infinite half-lines both on the right and the left of spt f . By choosing different parts

of sptμs as spt f , we find that ω(R) = 0 whenever diam(sptμs) > 0. Thus the only

nontrivial case is when sptμs = {x1} is a singleton. In this case, (3.2) requires that ω must

vanish both on the left and the right of x1, so that ω itself is a multiple of δx1 , and then (3.2)

is equivalent to the requirement that

H(δx1)(x1) = 0,

which is condition 2 of Lemma 3.1. Altogether we checked that (3.2) implies that either

condition 1 or 2 is valid. Conversely, it is immediate that either of these conditions implies

(3.2).
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4. Sharp weighted inequalities

4.1. The A2 conjecture and theorem. The size of the constants in the classical weighted

inequalities seems to have been first addressed by S. Buckley [4], who proved that C(2.3) ≤
cp[w]

1/(p−1)
Ap

, where the dependence on [w]Ap is best possible, and posed the similar question

for C(2.1) and related bounds.

Buckley’s problem for singular integrals gained new momentum from the work of

K. Astala, T. Iwaniec and E. Saksman [1], who were interested in the particular case of

the Beurling–Ahlfors transform (2.8). This operator is fundamental in Complex Analysis,

since it intertwines between the two derivatives byB◦∂z̄ = ∂z . Motivated by the conditional

corollary below, Astala et al. posed the following conjecture:

Conjecture 4.1 ([1]). ‖Bf‖Lp(w) ≤ cp[w]Ap
‖f‖Lp(w) for all p ∈ [2,∞).

Corollary 4.2 ([1]). Conditionally on the conjecture, the following implication holds for all
q ∈ (1, 2): If f ∈ W 1,q

loc (Ω) satisfies |∂z̄f | ≤ (q − 1)|∂zf | pointwise on a domain Ω ⊂ C,
then f ∈W 1,2

loc (Ω).

Unconditionally, they were able to show a similar implication assuming that

f ∈W 1,q+ε
loc (Ω)

instead; on the other, f ∈ W 1,q−ε
loc (Ω) was shown to be insufficient for the conclusion. Thus

Conjecture 4.1 was critical to the sharp version of this self-improvement result.

The conjecture was subsequently confirmed by S. Petermichl and A. Volberg [46]. While

this was enough for the goal of proving Corollary 4.2, the question then arose whether a

similar bound could be established for other operators as well. This came to be known under

the name “A2 conjecture”, due to the critical role of the exponent p = 2 resulting from

the quantitative version of a classical extrapolation theorem of J. L. Rubio de Francia [48]

established by O. Dragičević, L. Grafakos, M. C. Pereyra and S. Petermichl [10]:

Theorem 4.3 ([10]). Suppose that an operator T , linear or not, satisfies ‖Tf‖L2(w) ≤
c[w]A2‖f‖L2(w) for all f ∈ L2(w) and all w ∈ A2. Then it also satisfies

‖Tf‖Lp(w) ≤ cp[w]
max(1,1/(p−1))
Ap

‖f‖Lp(w)

for all f ∈ Lp(w), all w ∈ Ap and all p ∈ (1,∞).
The A2 conjecture for the Hilbert transform,

‖H(f dx)‖L2(w) ≤ c[w]A2‖f‖L2(w), (4.1)

was confirmed by Petermichl [45], based on a dyadic model whose reincarnations were cen-

tral in the subsequent developments as well. A dyadic system of intervals is a collection

D =
⋃

k∈ZDk, where

• each Dk is a partition of R into intervals of length 2−k, and

• each Dk+1 is a refinement of the previous Dk.
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For each such D, the Haar functions

hI :=
1√|I| (1Ileft − 1Iright), I ∈ D,

(where Ileft and Iright are the left and right halves of I) form an orthonormal basis of L2(R),
so that f =

∑
K∈D hK〈hK , f〉. Petermichl’s dyadic model was a “shift” of this series,

namely

SDf =
∑
K∈D

AK , SKf = (hKleft
− hKright

)〈hK , f〉. (4.2)

Her key identity, which reduced the proof of (4.1) to its dyadic version

‖SD(f)‖L2(w) ≤ c[w]A2‖f‖L2(w), (4.3)

was the averaging formula, already in [44],

H = cEDSD, (4.4)

where ED is an appropriate average over all translated and dilated dyadic systems. It should

be noted that proving (4.3) was still a highly nontrivial task at the time.

The averaging formula (4.4) was crucially based on the translation and dilation invari-

ance of the Hilbert transform, and a similar strategy was successfully applied to a few other

distinguished classical operators involving invariances and symmetries. It was therefore not

obvious that the result could be pushed to the generality of all Calderón–Zygmund operators,

which nevertheless turned out to be the case:

Theorem 4.4 (The A2 theorem, [17]). The estimate (4.1) remains valid for any Calderón–
Zygmund operator in place if H .

The proof was also based on an extension of (4.4): for a general Calderón–Zygmund

operator T with kernel regularity α ∈ (0, 1], there is a representation

T = cED

∞∑
m,n=0

2−α(m+n)/2Sm,n
D , (4.5)

where the shifts Sm,n
D have the form

Sm,n
D f =

∑
K∈D

Sm,n
K , Sm,n

K f =
∑

I,J⊆K
|I|/|K|=2−m

|J|/|K|=2−n

sKIJhI〈hJ , f〉,

and the coefficients sKIJ satisfy bounds which ensure that |Sm,n
K f | ≤ 1

|K|
∫
K
|f | dx; if

T1 �= 0 or T ∗1 �= 0, one needs to incorporate additional dyadic paraproducts in S0,0
D .

These general shifts were already identified in the prior work of M. Lacey, S. Petermichl and

M. C. Reguera [25], who also considered the bound (4.3). However, the representation of

all Calderón–Zygmund operators in terms of these shifts derived its inspiration from another

direction, the non-homogeneous techniques of Nazarov, Treil and Volberg [38] on the geo-

metric one-measure theory (§2.2). For the role of non-homogeneous analysis in this context,
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it is perhaps worth stressing that although the classical Ap weights are doubling (i.e., satisfy∫
2I
w dx ≤ C

∫
I
w dx), using this property for any sharp weighted bound is essentially out

of question, since this would introduce unfavourable dependence on the weight via the dou-

bling constant C = C(w). In order to complete the proof of Theorem 4.4 via the Dyadic

Representation Theorem stated in (4.5), it was also necessary to have a good dependence of

the constant c(4.5) on the shift complexity (m,n), which was another contribution of [17].

4.2. Further developments. After the first proof of Theorem 4.4, the A2 conjecture has

been reconfirmed, extended and simplified by several alternative arguments. (See [16] for an

account of these developments.) These culminated in the ultimate dyadic model discovered

by A. Lerner [30]:

Theorem 4.5 (Lerner’s dyadic domination theorem [30]). For an arbitrary Banach function
space X and a Calderón–Zygmund operator T , we have

‖Tf‖X ≤ c sup
D,S
‖AS |f |‖X , ASf =

∑
S∈S

1S
|S|
∫
S

f dx,

where the supremum is over all dyadic systemsD and their sparse subcollections S: for each
S ∈ S , there is E(S) ⊆ S such that |E(S)| ≥ 1

2 |S|, and the sets E(S), for S ∈ S , are
pairwise disjoint.

In particular, this applies to X = L2(w) and reduces the proof of the A2 theorem to

the case of the very basic dyadic model operators AS . This was a substantial simplification,

since a great deal of effort in the earlier contributions was always spent on keeping track of

the dependence on the shift complexity parameters, which was now completely eliminated

from applications of Theorem 4.5. The A2 theorem for the operators AS was already known

to follow from an elegant few-lines argument of D. Cruz-Uribe, J. M. Martell and C. Pérez

[8] that predated Theorem 4.4; at the time, it was unknown (and perhaps unimaginable) that

these simple objects could be used to recover all Calderón–Zygmund operators.

The Dyadic Domination Theorem 4.5 now seems to be the most efficient route to the A2

theorem and several related estimates. In particular, it has become a new standard tool in

the part of the two-weight theory based on the bump paradigm (see §2.3); we refer to some

of its applications in [20, 30, 37]. Nevertheless, also the original Dyadic Representation

Theorem (4.5) may still have its independent interest as a structure theorem for singular

integrals. In this spirit, T. Orponen [43] has shown that the representation (4.5) only exists

for Calderón–Zygmund operators, whereas H. Martikainen [31] has extended and applied

variants of (4.5) to bi-parameter singular integrals.

5. Two-weight theory with testing conditions

5.1. Towards a “testing” characterization. Building on the line of ideas from their work

in the non-homogeneous one-measure bounds for the Hilbert transform (§2.2), F. Nazarov,

S. Treil and A. Volberg set the foundations for the modern theory of the two-weight problem

[40, 55]. The continuation of this endeavour was subsequently taken over by another trio of

M. Lacey, E. Sawyer and I. Uriarte-Tuero [29], eventually joined by C.-Y. Shen [26].

Until very recently, all available results took the following generic form:
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Theorem 5.1 ([22, 26, 40, 55]). Let σ and ω be two Radon measures on R. Subject to an
additional side condition, the Hilbert transform satisfies the norm inequality

‖H(f dσ)‖L2(ω) ≤ C‖f‖L2(σ), (5.1)

if and only if it satisfies the testing conditions

‖1IH(1I dσ)‖L2(ω) ≤ Cσ(I)1/2, ‖1IH(1I dω)‖L2(σ) ≤ Cω(I)1/2, ∀ I ⊂ R, (5.2)

and the weights satisfy the double-Poisson A2 condition (2.14).

The side condition refers to an a priori assumption needed for a particular proof of (5.1),

but not verifiably necessary for this inequality. Of course, Theorem 5.1 has a mathematical

content only after the specification of an admissible side condition.

A rather classical-style side condition was used in Volberg’s book [55, Theorem 15.1]:

the doubling property of both measures,

σ(2I) ≤ Cσ(I), ω(2I) ≤ Cω(I) ∀ intervals I ⊂ R. (5.3)

The subsequent developments were guided by Volberg’s comment after the statement of the

theorem: “We hope that (5.3) is superfluous.” This was achieved only gradually by the

replacement of (5.3) by increasingly more general side conditions.

An influential side condition was the pivotal property introduced by Nazarov, Treil and

Volberg in an unpublished paper [40] that, according to its arXiv website, “was written in

2005 and subsequently lost.” The pivotal property is the uniform estimate

∞∑
i=1

(∫
I

|Ii| dσ(x)
(|Ii|+ |x− cIi |)2

)2
ω(Ii) ≤ Cσ(I), (5.4)

required to hold whenever the Ii are disjoint dyadic subintervals of the arbitrary interval

I ⊂ R, as well as the “dual” condition with the roles of σ and ω interchanged.

It was speculated in [40] that (5.4) “might turn out to be a necessary condition” for (5.1).

This conjecture was disproved by Lacey, Sawyer and Uriarte-Tuero [29], who exhibited a

more general energy hypothesis, proved its sufficiency for (5.1), and constructed an elabo-

rate example of measures for which the energy hypothesis holds but the pivotal condition

does not. Nevertheless, the pivotal condition not only played an important role in guiding

the further development, but it also resurfaced as a useful necessary condition in the charac-

terization of a two-weight inequality for the g-function, by M. Lacey and K. Li [24].

The energy hypothesis involves the following “energy”: (A semiphysical motivation for

the terminology is provided in [29, Remark 2.16].)

E(I, ω)2 :=
1

ω(I)

∫
I

(x− 〈id〉ωI
|I|

)2
dω(x), 〈id〉ωI =

1

ω(I)

∫
I

x dω(x), (5.5)

which always satisfies E(I, ω) ≤ 1, but can be much smaller if ω is highly concentrated on

I . Now, Lacey et al. [29] observed that a weakening of (5.4), namely

∞∑
i=1

(∫
I

|Ii| dσ(x)
(|Ii|+ |x− cIi |)2

)2
E(Ii, ω)

2ω(Ii) ≤ Cσ(I), (5.6)
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is already implied by the assumptions (5.2) and (2.14) of Theorem 5.1, whereas a hybrid
condition between (5.4) and (5.6),

∞∑
i=1

(∫
I

|Ii| dσ(x)
(|Ii|+ |x− cIi |)2

)2
E(Ii, ω)

2(1−ε)ω(Ii) ≤ Cσ(I), (5.7)

is an admissible side condition for any ε > 0. (The actual energy hypothesis of [29] is a

more technical “optimal” version of this hybrid condition.)

Finally, Lacey, Sawyer, Shen and Uriarte-Tuero [22, 26] were able to prove Theorem 5.1

with only the size condition

ω({x})σ({x}) = 0 ∀x, (5.8)

i.e., that the measures ω and σ are not allowed to have common point masses. More precisely,

all four authors [26] first reduced the estimate (5.1) to a certain “local” version, and Lacey

[22] completed the argument by settling the remaining local bound. Their result may be very

legitimately considered a solution of the classical two-weight problem, given that (5.8) is

manifestly satisfied be measures that are continuous with respect to Lebesgue measure. It

also has important consequences, like the following:

5.2. Application to Carleson measures for “model spaces”. As will be elaborated below,

the results discussed in this section have certain components that are rather specific to the

one-dimensional situation. This restriction has been only partially overcome in the following

extension of the result of Lacey et al. [22, 26] just mentioned, where one of the two measures

is required to be one-dimensional. The theorem is due to M. Lacey, E. Sawyer, C.-Y. Shen,

I. Uriarte-Tuero and B. Wick [27]:

Theorem 5.2 ([27]). Let (H, ∂H) ∈ {(R2
+,R), (D,T)}, where D is the unit disk and T the

unit circle in C. Let σ be a Radon measure on ∂H and ω on H̄, without common point
masses. Then the Hilbert transform satisfies the norm bound (5.1), if and only if analogues
of the testing conditions (5.12) and the double-Poisson A2 condition (2.14) are valid.

We refer to [27] for a precise formulation of these “analogues”; let us only mention that

the “intervals” on ∂H will be usual intervals or arcs, and those on H should be appropriate

Carleson regions.

In the same paper [27], Lacey et al. provide the following application of Theorem 5.2;

we follow the exposition from [27] and its forerunner by F. Nazarov and A. Volberg [41]:

For an inner function ϑ ∈ H∞(D) (which means that |ϑ(z)| = 1 for a.e. z ∈ T), the model
space is defined as

Kϑ := H2(D)/ ϑH2(D).

By Beurling’s theorem, these spaces describe all invariant subspaces of the adjoint of the

shift operator f �→ zf in H2(D).
The connection to the Hilbert transform comes from the unitary equivalenceU : L2(σ)→

Kϑ, where σ is a suitable measure supported on T ∩ {ϑ = 1}, and U is concretely given by

U : f ∈ L2(σ) �→ Uf = (1− ϑ)H(f dσ) ∈ Kϑ.

A measure μ on D̄ is called a Carleson measure for Kϑ if Kϑ ↪→ L2(μ), i.e. if

‖g‖L2(μ) ≤ C‖g‖Kϑ
. (5.9)
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Writing g = Uf = (1− ϑ)H(f dσ) with f ∈ L2(σ), (5.9) is equivalent to

‖H(f dσ)‖L2(ω) ≤ C‖f‖L2(σ), dω = |1− ϑ|2 dμ, (5.10)

where the measures ω on D̄ and σ on T ∩ {ϑ = 1} do not have a common point mass. Thus

Theorem 5.2 applies to give a characterization of (5.10), and therefore of (5.9).

5.3. Unconditional characterization. From the point-of-view of the general two-measure
formulation of the problem, the assumption (5.8) imposed by Lacey et al. [22, 26] is still a

side condition; in particular, it fails to contain the classical example of the discrete Hilbert

transform (1.3). This is not just a failure of the proof, but of the theorem; namely, the

Poisson A2 condition (2.14), even the classical version (2.11), is too strong in general: it

already excludes the possibility of common point masses by observing that

ω({x})σ({x})p−1 ≤ lim
I�x
|I|→0

ω(I)σ(I)p−1 ≤ lim
I�x
|I|→0

[ω, σ]Ap · |I|p = 0.

Indeed, the condition (5.8) hardly appears in the work of Lacey et al. [22, 26]; it is only

used to prove the necessity of the Poisson A2 condition (2.14), and the difficult part of the

sufficiency of (2.14) and (5.12) never makes a reference to (5.8), which is only used via

(2.14). So the question of an unconditional characterization of (5.1) was partly a question

of finding a weaker substitute for the classical A2 condition. A conjecture was proposed by

Lacey [21, Conjecture 1.12] (the conjecture is only found in the first arXiv version of this

paper) and proven (although in a somewhat different form) by the present author [18]:

Theorem 5.3 ([18]). Let σ and ω be two Radon measures on R. Then the following are
equivalent:

(1) The Hilbert transform satisfies the norm inequality (5.1).

(2) It satisfies the testing conditions (5.2) and the following weakening of the Poisson A2

conditions (2.12):

sup
I⊃R

∫
Ic

dω(x)

(x− cI)2
· σ(I) <∞, sup

I⊂R

∫
Ic

dσ(x)

(x− cI)2
· ω(I) <∞. (5.11)

(3) It satisfies the global testing conditions

‖H(1I dσ)‖L2(ω) ≤ Cσ(I)1/2, ‖H(1I dω)‖L2(σ) ≤ Cω(I)1/2. (5.12)

Although the equivalence of (2) and (3) is much less deep than the equivalence of (1) to

these two, it is interesting that the condition (3) seems to have remained unrecorded before

even in the absence of point masses. Incidentally, A2 conditions similar to (5.11) had al-

ready appeared in the work of Y. Belov, T. Mengestie and K. Seip [3, Eq. (1.5)] on discrete

Hilbert transforms on sparse sequences in the plane. Even in the absence of point masses,

this condition may be more feasible to check in concrete cases than the double-Poisson A2

condition (2.14).

5.4. Outline of proof. In the last part of this section, we give an outline of the proof of the

main direction (2)⇒ (1) of Theorem 5.3. Many of its components derive from the proofs of

the earlier results discussed in this lecture, and we make some indications of this history.
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Step I: The probabilistic reduction. This part of the proof goes back to Nazarov, Treil and

Volberg [38]. We consider the bilinear form

B(f, g) :=

∫
H(f dσ) · g dω = −

∫
H(g dω) · f dσ,

and the goal is to prove that |B(f, g)| ≤ C‖f‖L2(σ)‖g‖L2(w).

For this purpose, we expand f and g (which may be taken compactly supported with

vanishing σ and ω-integrals, respectively) in terms of the dyadic martingale differences

Δσ
I f :=

∑
u∈{left,right}

Eσ
Iuf − Eσ

I f, Eσ
I f := 1I〈f〉σI :=

1I
σ(I)

∫
I

f dσ.

as

f =
∑
I∈D

Δσ
I f, (5.13)

and similarly with g in terms of Δω
J . As in the Section 4, D is going to be a random shift of

the standard dyadic intervals.

An interval I ∈ D is called bad if it is relatively close to the boundary of a much bigger

interval, more precisely, if dist(I, ∂J) < |I|γ |J |1−γ for some J ∈ D with |J | > 2r|I|,
where γ ∈ (0, 1) (small) and r ∈ Z+ (large) are auxiliary numbers. For a random choice

of the dyadic system, we have the probability bound PD(I is bad) ≤ cγ2
−rγ =: ε, which

can be taken as small as we like by adjusting the parameter r. Using independence and

orthogonality, it then follows that

E‖fbad‖2L2(σ) := E
∥∥∥∑
I∈D
I bad

Δσ
I f
∥∥∥2
L2(σ)

= E
∑
I∈D
I bad

‖Δσ
I f‖2L2(σ) ≤ ε‖f‖2L2(σ).

By a standard absorption argument (“‖H‖ ≤ C + ε‖H‖”), we find that it is enough to

estimate B(fgood, ggood), where fgood is defined by summing only over the good intervals

in (5.13). We henceforth assume without loss of generality that f = fgood and g = ggood.

Step II: Non-homogeneous T (1) argument. This is still a straightforward adaptation of

the work of Nazarov et al. [38] on the case that ω = σ = μ. We need to redo the argu-

ment, since the new A2 condition (5.11) replaces the conditions on measures used in earlier

contributions, but it turns out that this does not present any major obstacles.

In this step, in the expansion

B(f, g) =
∑

I,J∈D
B(Δσ

I f,Δ
ω
Jg)

we estimate all terms with I ∩ J = ∅, or 2−r ≤ |I|/|J | ≤ 2r.
There remains the case that one of the intervals is deeply contained in the other: I � J ,

by which we mean I ⊂ J and |I| < 2−r|J |, or J � I . By symmetry, we deal with the

first case only. Here observe that Δw
J g is piecewise constant on the two halves of J , and we

denote the one that contains I by JI . The part 1J\JI
Δw

J g can still be estimated in the same

way as the disjoint terms, so that altogether this step reduces the consideration to

Bbelow(f, g) :=
∑
J

∑
I�J

B(Δσ
I f, 1JI

)〈Δω
Jg〉ωJI

. (5.14)



294 Tuomas Hytönen

In more classical T (1) contexts, this term would lead to a paraproduct, and we would already

be a good way through the proof. In the two-weight situation at hand, it is only here that the

difficulties begin, and the new innovations of Nazarov, Treil and Volberg [40, 55] and Lacey,

Sawyer and Uriarte-Tuero [29] are needed.

Step III: Organization under stopping intervals. Without loss of generality, all dyadic

intervals entering the decomposition (5.13), and its analogue for g, are contained in a maxi-

mal I0 ∈ D. We choose a collection S of stopping intervals inductively so that I0 ∈ S and

then, if S is minimal among the intervals in S already chosen, we also take into S all the

maximal subintervals S′ ⊂ S that satisfy at least one of the following:

1.
1

ω(S′)

∫
S′
|g| dω > 4

1

ω(S)

∫
S

|g| dω, or

2.
1

ω(S′)

∫
S′
|H(1S dω)|2 dσ > 4

1

ω(S)

∫
S

|H(1S dω)|2 dσ

Here (1) is a typical stopping condition related to the construction of what is often called the

principal cubes. For ω = σ, (2) is not untypical of proofs of so-called local T (b) theorems.
Lacey et al. [26] used variants of (2) which referred to the Hilbert transform more indirectly

via the energy condition (5.6).

The stopping intervals satisfy the Carleson condition:∑
S∈S
S⊆Q

w(S) ≤ 2w(Q), thus
∑
S∈S

w(S) · |〈g〉wS |2 ≤ C‖g‖2L2(w).

Indeed, ensuring that some suitable stopping intervals have this property was the key appli-

cation of the side conditions in the forerunner Theorem 5.1 (see e.g. [55, Theorem 20.1]).

Once the stopping intervals are chosen, we organize all other intervals “under” them

through the following definitions:

πI := min{S ∈ S : S ⊇ I}, π̃I := min{S ∈ S : S � I},
Pσ
S f :=

∑
I:πI=S

Δσ
I f, P̃σ

S f :=
∑

I:π̃I=S

Δσ
I f

We then reorganize the term Bbelow(f, g) from (5.14) as

Bbelow(f, g) =
∑
J

∑
I�J

· · · =
∑

S,S′∈S
S⊆S′

∑
J:πJ=S′

∑
I:π̃I=S
I�J

· · · ,

where we observed that the inner sum is empty unless S ⊆ S′. The part with S′ = S gives∑
S∈S Bbelow(P̃

σ
S f, P

ω
S g) which, after estimating some “error terms”, can be reduced to the

local form
Blocal(f, g) :=

∑
S∈S

Bbelow(P
σ
S f, P

w
S g). (5.15)

where both f and g are localized in the same part of the stopping tree.

On the other hand, the part with S � S′ gives the tail form

Btail(f, g) :=
∑
S∈S

B
(
P̃σ
S f,

∑
S′∈S
S′�S

∑
J:πJ=S′

1JI
〈Δω

Jg〉ωJI

)
=
∑
S∈S

B(P̃σ
S f,Φ

ω
Sg), (5.16)
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where (using a basic telescoping identity for the martingale differences)

Φω
Sg =

∑
J�S

1JI
〈Δω

Jg〉ωJI
=
∑
J�S

1J\JS
〈g〉ωJ

satisfies |Φω
Sg| ≤ 1ScMω

d g, and Mω
d g := supJ∈D 1J〈|g|〉wJ is the dyadic maximal operator,

bounded on L2(ω).

Step IV: The tail form. This involves the bilinear form on P̃σ
S f , whose martingale differ-

ences live “deep inside” S, and Φω
Sg, which is supported in Sc. It is for such situations that

the fundamental “monotonicity lemma” of Lacey et al. was designed:

Lemma 5.4 ([26]). Let φ be supported on J ∈ D with
∫
φ dσ = 0, and ψ on (3J)c. For a

certain dyadic martingale transform φ̃ of φ, we have the bounds

|B(φ, ψ)| ≤ B(φ̃, |ψ|) �
∫

xφ̃(x) dσ(x)

∫
(3J)c

|ψ(x)|dω(x)
(x− cJ)2

. (5.17)

This lemma is used for the estimation of the tails forms as follows: First, we split P̃σ
S f

into parts supported on appropriate Whitney subintervals K ⊂ 3K ⊂ S, to ensure that the

support condition of Lemma 5.4 is satisfied by φ = 1K P̃σ
S f and ψ = Φω

Sg with J = K.

After the first domination in (5.17), we can then freely estimate back and forth between the

two rightmost quantities in (5.17). The last form has two important features: the functions

φ and ψ are decoupled, and the action on |ψ| is a positive operator; indeed, up to scaling,

the Poisson integral with a “hole” in 3J . We note that the first factor on the right of (5.17),

which for φ̃ = P̃ σ
S f becomes (“id” is the identity function id(x) = x)∫

id ·P̃σ
S f dσ ≤ ‖P̃σ

S id ‖L2(σ)‖P̃σ
S f‖L2(σ) ≤ ‖1S(id−〈id〉σS)‖L2(σ)‖P̃σ

S f‖L2(σ),

is responsible for the emergence of the “energy” (5.5) in these considerations.

The strategy of Lacey et al. [26] to the tail form was to estimate the right side of

(5.17) up by the full Poisson integral of Mw
d g, and to observe that the required bound

|Btail(f, g)| ≤ C‖f‖L2(σ)‖g‖L2(ω) then follows from an appropriate two-weight inequal-

ity for the Poisson integral. Now, an interval-testing characterization for this was already

established by Sawyer [50]. However, one still has to check that the resulting Poisson test-

ing conditions actually hold in the case under consideration, whereas the assumptions (5.2)

“test” the Hilbert transform, not the Poisson integral. It is here that the reverse estimate

in (5.17) is needed: in the testing conditions, the Poisson integral is again dominated by

the Hilbert transform so that the assumptions (5.2) may be exploited. It is this two-sided

domination of a singular integral by a positive operator, and vice versa, that seems to be the

feature of the entire proof that is most specific to the one-dimensional Hilbert transform, and

most difficult to extend to other operators.

In estimating the Poisson testing conditions, not only the Hilbert testing (5.2) but also

the double-Poisson A2 condition (2.14) was needed in [26]. Thus this argument cannot be

simply repeated in the setting of Theorem 5.3, and it is necessary to proceed more carefully,

without forgetting the hole that is available in (5.17). For this purpose, the key technical

novelty of [18] was an interval-testing characterization of a (dyadic model of) the two-weight

boundedness of the “holed” Poisson integral. Since the operator is smaller than the full

Poisson integral, also the characterizing conditions are weaker, and can be verified (after an

application of (5.17)) from the assumptions (5.2) and the new A2 condition (5.11).
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Step V: The local form. After easy reductions, the local form boils down to estimating

BQ(f, g) =
∑

(I,J)∈Q
B(Δσ

I f, 1S\J)〈Δw
J(1)g〉wJ

for a particular collectionQ of pairs of intervals (I, J) such that I � J . In the case of (5.8),

this was the last remaining step missing from the work of Lacey et al. [26], which was only

settled in a sequel paper by Lacey alone [22].

His proof was based on an iteration scheme inspired by the proof of Carleson’s theorem

on Fourier series: Rather than attempting a proof for the single particular Q of ultimate

interest, Lacey defines a class of admissible collectionsQ and equips them with an auxiliary

quantity size(Q) with the following properties:

• Every admissible Q satisfies

‖BQ‖ := sup
|BQ(f, g)|

‖f‖L2(σ)‖g‖L2(w)
≤ Cε size(Q) + c sup ‖BQ′‖,

where the supremum is over all admissible Q′ ⊂ Q with size(Q′) ≤ ε · size(Q). By

absorption, this implies that

‖BQ‖ ≤ Cε

1− cε
size(Q).

• For all admissible collections, size(Q) is estimated by the constants in (5.2).

The final outcome is as desired, but this seems only approachable via the auxiliary quantity

size(Q) on which one can iterate; figuring out a suitable notion of this “size” is a key insight

of Lacey’s argument.

As for Theorem 5.3, it suffices to inspect Lacey’s proof [22] and observe that the as-

sumption (5.8), either directly or via (2.14), makes no appearance in this reasoning, so that

it can be simply borrowed as a black box. And this is the last step to complete the proof of

Theorem 5.3.

6. Some open problems

The following list is necessarily highly incomplete.

6.1. The A2 theorem for rough kernels. The A2 Theorem 4.4 is now known for “all

Calderón–Zygmund operators”. The most common definition of these operators involves

kernels with Hölder regularity of some exponent α ∈ (0, 1], and this was the case already

covered in [17]. Subsequent proofs have extended the class of admissible kernels , so that

it is now known (see [19]) to be enough to have a modulus of continuity with a logarithmic

strengthening of the classical Dini condition,∫ 1

0

ω(t) log
1

t

dt

t
<∞. (6.1)

However, whether this condition is optimal, is open.
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More generally, for any class of operators T for which the qualitative estimate

‖Tf‖L2(w) ≤ cw‖f‖L2(w) ∀w ∈ A2 (6.2)

is known, one may wonder about the optimal form of the quantitative bound cw ≤ cφ([w]A2
).

A case of particular interest consists of the rough homogeneous singular integrals

TΩf(x) = p. v.

∫
Rd

Ω(y)

|y|d f(x− y) dy, (6.3)

where

Ω(λy) = Ω(y) ∀λ > 0, Ω ∈ L∞(Rd),

∫
Sd−1

Ω(u) dσ(u) = 0,

so that the kernel of T has pointwise bounds and cancellation, but no regularity. The qual-

itative bound (6.2) for these operators is due to X. Duoandikoexea [12]. They also map

TΩ : L1 → L1,∞ (see S. Hofmann [14]), which seems to be an essential feature of the

methods so far used in the proofs of the A2 theorem. So it is reasonable to ask: Do these

operators satisfy the A2 Theorem 4.4; is it true that

‖TΩf‖L2(w) ≤ c‖Ω‖∞ · [w]A2 · ‖f‖L2(w) ? (6.4)

If not, what is the optimal bound of the form cw ≤ cφ([w]A2) in (6.2)?

6.2. Powers of the Beurling–Ahlfors operator. Aswe have explained above, it was around

the Beurling–Ahlfors operator that the A2 conjecture first caught fire. While this is now a

theorem, and a much more general one than originally conjectured, there are still interesting

questions around the very point of origin. The integer powersBm ofB are singular integrals

of the form (6.3) (see [11, p. 493]) with

Ωm(e
iφ) := ΩBm(eiφ) =

(−1)m
π

·m · e−i2mφ.

Of course, this kernel is smooth, but using the smoothness in an estimate produces an un-

favourable dependence onm, due to its presence in the exponent. The modulus of continuity

ω of Ωm satisfies ω(t) ≤ cmmin(1,mt), for which the integral (6.1) is cm(1 + logm)2.
Via the existing A2 theorems, this gives the bound

‖Bmf‖L2(w) ≤ c ·m · (1 + logm)2 · [w]A2
· ‖f‖L2(w).

It would be interesting to eliminate the logarithmic factor, giving a bound simultaneously

linear in both m and [w]A2
. This would be a consequence of a positive answer to (6.4), or

it could possibly be based on an analysis specific to the Beurling–Ahlfors operator, just like

the original paper [46]. Note that it follows from extrapolation and the sharp unweighted Lp

bounds for Bm, due to O. Dragičević, S. Petermichl and A. Volberg [11, Theorem 3], that

‖Bmf‖L2(w) ≤ cm[w]A2‖f‖L2(w) would be optimal in m at least on the scale of power

functions: m cannot be replaced by m1−ε for any ε > 0.
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6.3. Unconditional characterizations for two-weight inequalities beyond Hilbert trans-
form in d = 1, p = 2. Although substantial parts of the proof of the two-weight Theorems

5.2 and 5.3 use general techniques that immediately extend to other Calderón–Zygmund op-

erators, the central Monotonicity Lemma 5.4, at the present state of knowledge, does not

have fully satisfactory counterparts in more complicated situations, and limits the existing

characterizations for other operators to conditional versions under additional assumptions;

see [23, 51].

Accordingly, it is an open problem to obtain unconditional testing characterizations for

the two-weight inequalities of any of the following:

• The Hilbert transform for two measures with arbitrary supports in C; in particular,

neither of them required to be one-dimensional.

• Any other distinguished special operator like the Beurling–Ahlfors transform.

• General Calderón–Zygmund operators.

In another direction, the existing two-weight characterizations for singular operators are

very much restricted to the L2 setting; characterizations of the Lp inequality (1.8) for p �= 2
are completely open even for the one-dimensional Hilbert transform.

In the unweighted case, simple scaling arguments show that the Hilbert transform can

never map one Lp space to a different Lq , but this reasoning breaks down in the two-weight

world, and there is no a priori reason to exclude the possibility of even more general bounds

‖H(f dσ)‖Lq(ω) ≤ C‖f‖Lp(σ).

It seems likely that if one is able to develop any two-weight theory for p �= 2 at all, moving

to p �= q should be an order of magnitude easier.
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The flecnode polynomial: a central object in
incidence geometry

Nets Hawk Katz

Abstract. Recently there has been a lot of progress in point/line incidence theory in three dimension

real affine spaces. Generally, this progress all happens where the lines and points lie in a ruled surface.

Conversely, in many related problems we are yet unable to touch, we are just outside the threshold

where the ruled condition can be enforced. This puts the celebrated flecnode polynomial of Cayley and

Salmon at the center of the action.
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1. Introduction

Incidence geometry as we shall understand it in this lecture is the study of configuration of

points and lines in real Euclidean space, largely with a view towards bounding the number

of incidences, that is pairs of points and lines where the point lies on the line. The study

of incidence geometry has a long history. One of its high points is the Szemerédi-Trotter

theorem [10]:

Theorem 1.1. A set of m distinct lines and n distinct points in the Euclidean plane has at
most

O(n
2
3m

2
3 + n+m)

incidences.

One thing that is remarkable about this result, published in 1983, is that except for con-

stants, it is entirely sharp. More delicate incidence questions, for instance those involving

incidences between configurations of points and lines which were in some way forced to

be higher dimensional, for a long time eluded sharp treatments. The subject has undergone

a revolution recently, however, in which sharp results for many problems became possible.

The revolution was started by the following result of Ze’ev Dvir in 2008. [1] (Strictly speak-

ing, in this lecture we view Dvir’s result as outside of incidence theory because it is over

finite fields.)

Theorem 1.2. Let q be a power of a prime and Fq be the finite field of q elements. Let
E ⊂ Fn

q be a set of points containing a line in every direction. Then

|E| 
n qn.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Here, absolute values denote the cardinality of sets of points, and the notation 
n means

that we may be concealing a constant depending on n, but certainly not on q. Dvir’s proof

was obtained by studying a polynomial vanishing on the set of points. It easily solved in

the affirmative a conjecture of Tom Wolff’s that had been considered quite hard. (It was

the finite field Kakeya problem and was intended as an analog for the real Kakeya problem

which arises in geometric measure theory and harmonic analysis.) Previously the behavior of

polynomials had not been used much in incidence geometry and a number of breakthroughs

occurred once it was realized that this is possible.

A lot was accomplished in two papers by myself and Larry Guth. [6, 7] We settled the

Joints conjecture in R3. Three lines are said to form a joint at a point p if the lines are all

incident to p and not coplanar.

Theorem 1.3 (Joints problem (Guth-K.)). A set of N lines in R3 forms at most O(N
3
2 )

distinct joints.

We settled a conjecture of Bourgain intended to serve as an analog in incidence geometry

for the Kakeya problem.

Theorem 1.4 (Bourgain problem (Guth-K.)). Let E be a set of points in R3 and let L be a
set of N2 lines so that no more than N lines of L lie in any common plane and so that each
line of L is incident to at least N points of E. Then

|E| 
 N3.

We obtained a near-solution to a famous problem of Erdös on distinct distances between

points in the plane.

Theorem 1.5 (Erdős distance result (Guth-K.)). Let E be a set of N points in R2. Let D be
the set of distances between any two of the points of E then

|D| 
 N

logN
.

We make some remarks on what Theorems 1.3, 1.4, and 1.5 have in common. Each

of theorems 1.3 and 1.4 is clearly a result about Euclidean lines in three dimensions. A

completely general set of lines in three dimensions might lie in a plane, in which case, no

incidence result better than Theorem 1.1 is possible. That is why each of Theorems 1.3

and 1.4 contain hypotheses preventing too many lines from lying in a plane. In the case of

Theorem 1.3, this hypothesis is that each triple of lines forming a joint is noncoplanar. In

the case of Theorem 1.4, things are more explicit. No more than N lines are allowed to lie

in a plane. Theorem 1.5 appears to be different. It doesn’t mention lines in three dimensions

at all. But the proof is obtained through what’s now called the Elekes-Sharir framework.

(Blame me. I named it thus because I learned about it from a particular paper of Elekes

and Sharir. [2]) This framework is a kind of realization of the Erlangen program. Instead of

studying Theorem 1.5 in the Euclidean plane where it is stated, we study in the groups of

rigid motions which is three dimensional. In fact, it contains Zariski dense open sets which

can be viewed as R3. It turns out that proving Theorem 1.5 precisely amounts to solving

an incidence problem between points and lines in R3 in which the lines are restricted from

being too much in a two-dimensional set.

Theorems 1.3 and 1.4 were discovered before Theorem 1.5 and may each be viewed as

special cases of the incidence result underlying Theorem 1.5. Their proofs provided essential
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clues for discovering the proof of Theorem 1.5. It is hard to imagine the bigger result coming

first. In the last few years, incidence geometry has become much more crowded and many

people are working on and refining the new polynomial methods. The proof of Theorem

1.3 has been so simplified that one can obtain it without even using Bezout’s lemma. But in

some sense, these simplifications are merely cosmetic and serve to obscure the unity of the

three theorems. The proof of Theorem 1.5 has essentially two parts. One part is topological.

Roughly it serves to show that if the set of points we are investigating does not lie in the

zero set of too low degree a polynomial, one gets a kind of three dimensional improvement

of Theorem 1.1. While our paper was the first to really do this so that three dimensionality

is expressed in terms of polynomials, and this method is now referred to as polynomial

partitioning, it is very much in the spirit of the pre-existing theory of incidence geometry

and of the decomposition method which provided the original proof of Theorem 1.1. The

second part of the proof is about what to do when the points in question are in the zero set

of a fairly low degree polynomial. Both Theorems 1.3 and 1.4 are special cases of this part.

They are sufficiently easy special cases that they can be resolved quite simply. But what all

results in point line incidence theory in R3 which we can do because the points lie in the

zero set of a low degree polynomial have in common is this: if there are too many incidences,

then most of the offending lines lie in an algebraic ruled surface (of fairly low degree). It is

this commonality which I hope to emphasize in the current lecture.

A number of criticisms can be levelled against the current lecture. The most serious is

that it doesn’t contain any actual proofs. However, it does contain sketches which can be

turned into actual proofs, at least by me, and which express the way I thought about the

results with Guth when I was working with him on them. A number of standard uniformity

arguments are entirely sloughed over and the algebraic arguments contain slightly excessive

assumptions of genericity which have to be justified. Nonetheless, for that perfect reader

who catches the zeitgeist, this is supposed to provide a short sweet introduction to the sub-

ject, emphasizing major ideas and removing annoying details. A few open problems are

mentioned where they’re related to the subject of the lecture. I can’t claim any originality in

posing them. A lot of ideas about the frontier were in the air at an IPAM program in Spring

2014. I thank profusely any participant I may have inadvertently stolen from.

2. The Cayley Salmon theorem

In this section, we prove the main result which allows the theory of ruled surfaces to enter

incidence geometry. This is the theorem of Cayley and Salmon which says that any algebraic

surface in C3 contain enough lines must have a ruled component. More precisely it says:

Theorem 2.1 (Cayley-Salmon theorem). Let p(x, y, z) be a polynomial of degree d on C3.
Then there is a polynomial Flec(p)(x, y, z) of degree no more than 11d−24 which vanishes
at a point w = (x, y, z) of the zero set of p only if there is a line containing w so that p
restricted to the line vanishes to third order at w. If Flec(p) vanishes at all points of the
zero set of p then the zero set is ruled. (That is, through each point of the zero set, there is a
line contained in the zero set.)

Recently, there has been a lot of confusion about the Cayley Salmon theorem. As of-

ten happens when people are confused, Terry Tao in the goodness of his heart, posted an

elementary proof of the theorem on his blog, to much acclaim [11]. One thing a bit odd
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about this is that Salmon also posted an elementary proof. This happened in 1862 [9], so he

put his proof in an analytic geometry textbook. This book is now past the expiration of its

copyright, but unfortunately amazon still charges around twenty bucks, to produce a copy by

print-on-demand. This seems off-putting to people. The Tao blog admits that the theorem

dates to at least 1915. (Probably this date comes from the most common reprint of the 5th

edition.) One of the motives for this lecture is to defend Salmon’s honor and explain his

original proof.

There are a number of reasons why Salmon’s proof is difficult to parse for modern read-

ers. One is that Salmon’s notation is not so good as Tao’s. Another is that Salmon was not

restricting his attention to ruled surfaces. He was interested in having similar statements for

surfaces ruled by other classes of curves than arbitrary lines. The idea was that he assumed

his surface had the desired property. Then he derived a differential equation which the sur-

face had to satisfy. Then he observed that this differential equation had first integrals and

that these imply that any surface satisfying his equation also has the desired ruling.

We begin with the first step. We follow the notation of article 437 of Salmon’s book

where the argument is explained. We assume that a surface is ruled. Then locally (at least

away from singular points), it can be written as a one parameter family of lines. We write

the equations of these lines

z = c1x+ c3, y = c2x+ c4.

We view c2, c3, and c4 as arbitrary functions of c1. Of course, this doesn’t work entirely in

general. The projection of our family of lines into the xz plane might have constant slope.

But we change coordinates so that this is true locally. Then we view the surface as being

locally a graph,

z = f(x, y).

Of course, a change of variables may be required and f is not a polynomial. It is an algebraic

function obtained implicitly from the equation

p(x, y, z) = 0.

At a regular point, we can use the implicit function theorem to solve this for some choice of

the z-direction. Now, however, we find a third order partial differential equation satisfied by

f from the parametrized description of our surface as a family of lines.

We shall be concerned for the moment with the behavior of f along a single line. Like

Salmon, we adopt the traditional notation for partial derivatives. We let the first derivatives

be

p =
∂f

∂x
(x, c2x+ c4); q =

∂f

∂y
(x, c2x+ c4).

Here we’ve emphasized that these partials are being evaluated along one line, where the line

is parametrized by x. We omit this same dependence on the variables in describing the rest

of Salmon’s notation. We let the second derivatives be

r =
∂2f

∂x2
; s =

∂2f

∂x∂y
; t =

∂2f

∂y2
,

and finally

α =
∂3f

∂x3
; β =

∂3f

∂x2∂y
; γ =

∂3f

∂x∂y2
; δ =

∂3f

∂y3
.
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Now we write down what it means that an individual line lies in our surface. We have

c1x+ c3 = f(x, c2x+ c4).

We differentiate this equation in x, in effect differentiating along the line and we obtain

Salmon’s equations

p+mq = c1; m = c2,

from the chain rule. Note that the second equation is in place to say that m is constant along

the line. Thus we are free to keep differentiating along the line as long as we make sure that

we follow the chain rule, producing a c2, now called m, every time we introduce a partial of

f with respect to y. A second derivative produces

r + 2sm+ tm2 = 0.

This is not yet a differential equation for f because it still involves m, one of the constants

of the line. But we take a third derivative:

α+ 3βm+ 3γm2 + δm3 = 0.

We solve the quadratic equation, obtain two solutions

m =
−2s±√4s2 − 4rt

2r
.

Plugging each value of m that we obtain into the cubic equation and multiplying the two

equations together, we get an equation which is rational in α, β, γ, δ, r, s, and t. This is the

PDE which we assert guarantees that a surface is ruled. (We don’t have to know the constants

c1, c2, c3, c4 in order to interpret the differential equation. All the partials are evaluated at

the same place.) What the equation says precisely is that one of the two complex directions

in which the quadratic form associated to the second derivative vanishes also annihilates the

third derivative. In other words, over the complex numbers, the surface has a line tangent

to it at third order. Now what remains is for us to see is that the fact that this equation is

satisfied actually implies that the surface contains a line at its generic point.

So once again, we have a surface z = f(x, y) which satisfies our differential equation.

Rather than write it out in all its horror, we go backwards by a reversible step and observe

that at a generic point, we have a once differentiable function m(x, y) satisfying

r + 2sm+ tm2 = 0, (2.1)

and

α+ 3βm+ 3γm2 + δm3 = 0, (2.2)

where now the derivatives r, s, t, α.β, γ, δ are viewed as being evaluated on x, y rather than

on a line. In the case of planes and quadrics, the function m can be found by hand. In all

other cases, it is produced for us because we have a unique line vanishing to third order at the

generic point. Now as before, we can parametrize the line at a given (x, y) by c1, c2, c3, c4,
where always c2 = m. It is enough to show that c1, c3, and c4 are also just functions of m.

If this is the case, then it is the same line tangent line vanishing to third order on the points

of each level set ofm on the surface which implies that the level sets are in fact contained in
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the lines and that the surface is ruled by these lines. Now, we can easily write down each of

c1, c3, and c4 in terms of x, y and m. Namely

c1 = p+mq,

c3 = z − c1x,

and

c4 = y −mx.

Our goal now is simply to show each of these three functions is a function of m. We will

do this by showing that the gradient of each one is a multiple of the gradient of m. Thus the

level curves are also level curves of c1, c3, and c4.
We begin with a preliminary calculation. We will differentiate equation (2.1) first with

respect to x and then with respect to y. With respect to x, we get

α+ 2βm+ γm2 + 2s
∂m

∂x
+ 2tm

∂m

∂x
= 0.

Then differentiating with respect to y, we get

β + 2γm+ δm2 + 2s
∂m

∂y
+ 2tm

∂m

∂y
= 0.

Adding the first equation to m multiplied by the second equation and dividing by 2s+ 2tm
[we leave as an exercise to the reader to work the excluded case where 2s+2tm is identically

zero], we obtain
∂m

∂x
+m

∂m

∂y
= 0.

Now we compare the gradients of c1, c3, and c4. We calculate

∇c1 = (α+mβ +
∂m

∂x
q, β +mγ +

∂m

∂y
q).

Taking the dot product of this with (1,m) and using equation (2.1), we say that ∇c1 points

in the same direction as∇c2. Further we calculate

∇c3 = (p− c1, q)− x∇c1.
By dotting with (1,m), we see, using the fact that∇c1 is already in the direction of∇m and

using the definition of c1 as p +mq, we see also that ∇c3 is in the same direction as ∇m.

Finally, we calculate

∇c4 = (−m, 1)− x∇m,

which is immediately seen to be in the direction of ∇m. This, in effect, is Salmon’s argu-

ment. He refers to the equations

c1 = ψ(m); c3 = φ(m); c4 = χ(m),

with ψ, φ, and χ as unknown functions ofm as the first integrals of his differential equations

for surfaces. Part of the reason this proof of Salmon’s is difficult to parse is that he claims it

in much greater generality for any surface ruled by curves of constant complexity. Basically,
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if the curves come from a family with a fixed number of parameters and we assume that all

parameters are a function of one of the parameters as we did for lines then the differential

equation obtained by reducing away all parameters of the curves must imply that the surface

is ruled by such curves.

Once this is done, arriving at Theorem (2.1) is merely a matter of keeping track in the case

of a surface p(x, y, z) = 0 of the polynomial obtained from checking whether the vectors in

the tangent space to a point in whose direction lines vanish to second order have the property

that these lines actually vanish to third order. From the point of view of reduction theory,

this is precisely analogous to the process of eliminatingm from the equations (2.1) and (2.2)

which we have discussed. This yields a polynomial of degree 11d − 24 as discussed in

Article 588 of Salmon.

3. On intersections between lines

In this section, we describe the applications of Theorem 2.1 to real incidence geometry. We

remark that it is easy to express surprise that the theorem is applicable at all. After all, the

theorem is stated over the complex numbers. Still the reals are a subfield and it is possible

to exploit this. An important and basic tool is the following variant of Bezout’s lemma.

Lemma 3.1. Let p(x, y, z) and q(x, y, z) be two complex polynomials of three variables of
degree m and n respectively. Suppose that p and q vanish simultaneously on more than mn
complex lines. Then p and q have a nontrivial common factor. If p and q are both real, then
their common factor must be real.

It may be viewed as a drawback of the flecnode polynomial for investigating real geom-

etry that it is possible to find real polynomials p(x, y, z) for which Flec(p)(x, y, z) = 0 but

nonetheless the real surface p(x, y, z) = 0 contains no lines. An obvious example is the unit

two sphere given by

p(x, y, z) = x2 + y2 + z2 − 1.
When we view the zero set of p as a complex surface, it is ruled (and in fact doubly ruled),

but over the reals it contains no lines. However, this is not the way that we ever use Theorem

2.1. We don’t assert that a surface contains many lines by showing its flecnode polynomial

vanishes identically. Instead, we start with a surface containing many lines and conclude

that it has a ruling. Indeed when the lines are real, it is often possible to show that the ruling

is real. But it isn’t really important. We are interested in intersections between these lines

that we already know about and the presence of the ruling allows us to show that some lines

don’t intersect, even if the ruling is complex.

To wit, we state the following corollary of Theorem 2.1 and Lemma 3.1

Corollary 3.2. Let p(x, y, z) be an irreducible polynomial of degree d. Suppose the surface
p(x, y, z) = 0 contains more than 11d2−24d complex lines. Then the surface must be ruled
over the complex numbers.

The proof of Corollary 3.2 is simple. If a line l is in the zero set of p, then at each point

of the line l, there is a line going through the point namely l on which p vanishes to order

at least three. Thus l is in the zero set of Flec(p). Applying Lemma 3.1, we conclude that

p and Flec(p) have a nontrivial common factor, and since p is assumed irreducible, it must
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be that p is that factor. Thus Flec(p) vanishes on the zero set of p and we conclude from

Theorem 2.1 that the zero set of p is ruled over the complex numbers.

This raises something of an open problem. (It is probably not a very serious one.) The

corollary above is written in a form that is rather easily usable by incidence geometers. If an

irreducible algebraic surface of low degree contains too many lines then it is ruled. It might

be useful to have such results for other curves and in higher dimensions. The result for curves

inside surfaces in R3 is probably already contained in Salmon’s Article 431. In general, if

one finds a polynomial of sufficiently low degree in Rn whose zero set contains enough

l dimensional surfaces of a certain class, does this imply that many of those l dimensional

surfaces lie in a surface of dimension l+1 or greater ruled by the l dimensional surfaces. [We

can’t require something of dimension greater than l+1 because an l+1 dimensional surface

ruled by the l dimensional ones already contains infinitely many.] A number of special cases

are in the literature (see e.g. [5], [8]) but maybe somebody who is good at calculus should

write a general theorem and greatly demystify the subject. A fun exercise might be to see

whether the higher dimensional joints problem is related to ruled surfaces in the way we’re

about to show the regular joints problem is.

In order to utilize Corollary 3.2, we should ask how can we find a low degree polynomial

that vanishes on a set of lines. One approach is simply to use surface-fitting.

Lemma 3.3 (curve-fitting). Let Q be a set of N3 points in R3. Then there is a polynomial
of degree O(N) vanishing on the points of Q. Let L be a set of N2 lines then there is a
polynomial of degree O(N) vanishing on all the lines of L.

The proof of the first part of the Lemma is just that the general polynomial of degree

O(N) has more than N3 coefficients. The system of linear equations on the coefficients

which says that the polynomial p vanishes on all the points of Q is underdetermined. To

prove the second part, just pick KN points on each line, where K is constant which is large

compared to the implicit constant in theO(N) of the first part. Now a polynomial which has

degree O(K
1
3N) vanishes on all these points. Since O(K

1
3N) is smaller than KN by the

fundamental theorem of algebra, the polynomial must vanish on all the lines.

To apply Corollary 3.2, it should be clear that Lemma 3.3 is useless. The reason is that

this fitting applies to all sets of lines, whereas we are trying to find structure in a set of lines.

Luckily we have a technique for finding lower degree polynomials that vanish on sets of

lines when those lines have unusually many intersections.

Lemma 3.4 (Degree reduction). Let L1 and L2 be sets of at most N lines. Suppose each
line l of L2 intersects at least QN

1
2 lines l′ of L1 with Q > 0 a large real number. Then

there is a polynomial of degree O(N
1
2

Q ) which vanishes on all the lines of L2.

To prove this, we make a random selection L3 of lines from L1 so that each line is chosen

independently with probability ∼ 1
Q2 . Then with high probability there are ∼ N

Q2 lines of

L3. Moreover with high probability, each line of L2 intersects ∼ N
1
2

Q lines of L3. But

there is a polynomial p of degree ∼ N
1
2

Q which vanishes on all the lines of L2. The reader

may check that by setting the constants correctly, we can make the degree of the polynomial

slightly lower than the number of lines of L3 each line of L2 intersects. Thus all the lines of

L2 are in the zero set of p.
A version of the Lemma above was first used in the proof of Theorem 1.3. These days,

people gleefully tell me that no one ever uses degree reduction to prove the joints theorem.
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There are simplifications. (See [3]). Isn’t it far better just to say, “let us consider the poly-

nomial of lowest degree vanishing on all significant lines" and not to worry at all about what

that degree is. But it is a remarkable fact that the joints theorem only works (to within a

constant) in the regime where we have significant degree reduction, that is where most of the

lines are arranged in ruled surfaces. Similarly, we didn’t even need to use degree reduction

to prove Theorem 1.4. If the set E contains only N3

Q points, just curve-fitting guarantees that

the lines are in the zero set of a polynomial of degree N

Q
1
3
and with Q sufficiently large, this

already guarantees that the lines are mostly arranged in ruled surfaces. Why should we care

that the degree is really N
Q . (See [4] for a partial answer.)

We used Lemma 3.4 in conjunction with Corollary 3.2 in proving the following result

which played a role in the proof of Theorem 1.5.

Theorem 3.5. Let L be a set of N2 lines. Suppose at most O(N) of the lines of L lie in a
common plane and that at mostO(N) lines lie in a common doubly ruled surface (parabolic
hyperboloid or regulus). Then letting P be the set of points contained in at least two lines
then |P | = O(N3).

We briefly sketch the proof of Theorem 3.5. Assume that |P | = QN3 with Q large.

The worst case is that there are ∼ N2 lines each meeting QN lines. (Situations where the

intersections are concentrated on fewer lines end up being easier to handle since with a work

this corresponds to having fewer lines account for all the intersections.) Then using degree

reduction, we find a polynomial p of degree O(NQ ) which vanishes on these N2 lines. We

factor p into irreducible components (over the complex numbers) p1 . . . pd. Each line is in

the zero set of one of the components. Each zero-set having its share of lines is, in fact,

ruled. If a component is a plane or regulus, it has O(N) lines, less than its share. We end

up concluding that most lines lie in ruled components, and as before, if we show these lines

aren’t involved in most of the intersections, then we end up with an easier problem.

A line not lying in some ruled surface of degree k, will only intersect that ruled surface

in at most k points, so it emerges that most of the intersections we have to worry about come

from within an irreducible ruled surface. How often can lines in a non-planar, non-regulus

ruled surface intersect? We say that a point in an irreducible ruled surface is exceptional if

it intersects an infinite number of lines contained in the surface. We say a line in the ruled

surface is exceptional if it meets an infinite number of lines contained in the surface. An

irreducible ruled surface contains at most one exceptional point and two exceptional lines.

Thus we have at most O(N) exceptional lines in the whole story, which contribute at most

O(N3) intersections which is harmless. Nonexceptional lines in a ruled surface of degree

d (in Salmon’s language: generators) meet exactly d − 2 other generators of the surface.

Again, this gives every line at most O(N) intersections. We conclude that there cannot be

more than O(N3) points of intersection.
The same ideas prove Theorem 1.3. To prove the joints theorem, we must take account

of the fact that we have removed the restriction on the number of lines in a regulus and the

number of lines in a plane. However a joint cannot come exclusively from the lines in a

plane or from the lines in a regulus. Each line outside a plane or regulus can intersect the

plane or regulus at most once or twice respectively. The bounds on internal intersections in

other ruled components control the number of internal joints there.

At the time we proved Theorems 1.3 and 1.4, we were not aware of the Cayley-Salmon

polynomial Flec(p). We thought these theorems revolved around the gradient and second

fundamental forms respectively. But this was short-sighted on our part. Regardless of which
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polynomial we use, these results are dramatic only in the ruled regime. This creates rather

big problems in operating just outside these regimes. A question frequently posed by Guth

(see [5] ) asks: suppose we have a set of N lines making almost N
3
2 joints. Must a large set

of lines (say of size almost N
1
2 be coplanar? We have no good algebraic way of addressing

this question yet because we are just outside the range where degree reduction works. We

know no special algebraic properties of the lines.

4. Elekes-Sharir framework and polynomial partitioning

Theorem 3.5 plays a role in the proof of theorem 1.5, but is not the whole of the proof. We

now briefly review the Elekes-Sharir framework which explains how incidences between

points and lines in space give information about distances between points in the plane.

Given E a set of N points and D the set of distances, we may define Q ⊂ E4 to be the

set of distance quadruplets, namely (e1, e2, e3, e4) is a distance quadruplet if the distance

between e1 and e2 is the same as the distance between e3 and e4. A simple application of

the Cauchy Schwarz inequality shows that

|Q| ≥ |E|
4

|D| .

Thus to prove Theorem 1.5, it suffices to prove

|Q| = O(N3 logN).

Now the ancients had a more descriptive term for distance quadruplets. They referred to

them as pairs of congruent line segments. And one thing they knew is that whenever two line

segments are congruent there is a rigid motion between them. The space of rigid motions

is three dimensional. It consists of all rotations around a center and all translations. If we

restrict to non-translations, a good coordinate system is given by the center of the rotation in

Cartesian coordinates, together with the cotangent of half the angle of rotation.

Given two points of E, say e1 and e3, we let le1e3 be the set of rigid motions taking e1
to e3. This is a one dimensional set and in the coordinate system described in the paragraph

above, it is a line. We see that (e1, e2, e3, e4) form a distance quadruple precisely when le1e3
and le2e4 intersect. We are back to incidence theory. It is fortunate that with L the set of N2

lines in rigid motion space of the form le1e3 , we have no more than O(N) in a regulus and

no more than O(N) in a plane. Then Theorem 3.5 tells us, that there are at most O(N3)
points of intersection of two lines from L. Unfortunately, this is not enough.

Consider a point where k lines of L meet. This contributes k2 distance quadruplets. We

need to keep the number of distance quadruplets below N3 logN . If too many of the points

where at least two lines meet have many lines meeting there then we’re sunk. We let Pk be

the set of points where between k and 2k lines of L meet. As long as we can prove that

|Pk| = O(
N3

k2
),

by dyadically decomposing, we obtain the desired bound. However this is a tricky business.

There is no purely algebraic argument. (The estimate doesn’t hold in finite fields.) To take

care of this, we use some topology.



The flecnode polynomial: a central object in incidence geometry 313

Using the polynomial ham sandwich theorem, we obtain the following polynomial par-

titioning lemma which has proved quite useful.

Lemma 4.1. Let F be a set of M points in R3. Then for any s, a power of 2, there is a real
polynomial p(x, y, z) of degree O(s

1
3 ) so that the complement of the zero set of p in R3 has

at most s connected components with points of F and each connected component contains
at most M

s points.

It is important to note that Lemma 4.1 does not guarantee us that most of the points aren’t

in the zero set of the polynomial. As it turns out, we will be very happy if they are.

We proceed now to sketch a proof that indeed we have the estimate

|Pk| = O(
N3

k2
).

We suppose not. Then there are QN3

k2 such points withQ large. Note thatQ is certainly never

larger than k2 simply by Theorem 3.5. Better a priori estimates are possible. We would like

to subdivide this set of points into components of size at most k. By Lemma 4.1, there is a

polynomial p of degree Q
1
3 N
k which does this. We divide into two cases. In the first case,

most of the points of Pk are in the complement of the zero set of p. In the second case, most

of the points of Pk are on the zero set.

In the first case, we obtain upper and lower bounds on the number of incidences between

components and lines. We say a line and a component are incident, if there is a point on the

interior of the component which lies on the line. Let I be the number of such incidences.

Since we are in the case where most points are in the interior, many components have ∼ k
points. Each point has k lines through it. Since any two points have at most one line in

common, there is not too much double counting and we get ∼ k2 lines incident to each cell.

We conclude

I 
 QN3

k
.

On the other hand, each line can switch components only by crossing the zero set of the

polynomial. Each line does this at most as many times as the degree of p plus one. Since

there are only N2 lines, we conclude

I 	 Q
1
3N3

k
.

We have arrived at a contradiction.

Thus, we are in the second case. Most of the points are in the zero set of the polyno-

mial. There are QN3

k2 of these points each incident to k lines. This gives, on average, QN
k

incidences per line. Since the polynomial has degree Q
1
3 N
k , this means that average lines

are in the zero set of the polynomial. As usual, the worst case is that most of the N2 lines

are average. (Because if in fact most of the incidence are created by fewer lines, we can

basically redo the argument with a larger Q and smaller N .) If we are in the setting where

the lines are all average, once again, we are in the domain where the lines are structured into

ruled surfaces, and we can use this structure much as before. Thus we have completed our

sketch of the argument for Theorem 1.5.

We make a brief remark about the partitioning part of this argument. Contrary to algebra

which works best in the complex numbers, polynomial partitioning seems to work best in
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the reals. This allows one to prove incidence theorems in the reals much more easily than

in the complex numbers. As an open problem, we suggest considering a set of points in C3

no more than half of which is in the zero set of any low degree polynomial. (For instance,

degree lower than Q
1
3 N
k , as above.) Can one make arguments giving results analogous to the

case above with most points in the complement of the zero set?
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[7] , On the Erdős distinct distances problem in the plane.

[8] J.M. Landsberg, Is a linear space contained in a submanifold - On the number of
the derivatives needed to tell, Journal für die reine und angewandte Mathematik, 508
(1999), 53–60.

[9] G. Salmon, A treatise on the analytic geometry of three dimensions, vol.2, 1st. edition,
1862, Longmans, Green and co.

[10] E. Szemerédi and W. Trotter, Extremal problems in discrete geometry, Combinatorica,

3 (1983), 381–392.

[11] T. Tao, The Cayley-Salmon theorem via classical differential geometry,
http://terrytao.wordpress.com/2014/03/28/the-cayley-salmon-theorem-via-classical-

differential-geometry.

Departement of Mathematics, Caltech, 253-37, Pasadena, CA 91125, USA

E-mail: nets@caltech.edu



Harmonic analysis and the geometry of fractals
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Abstract. Singular and oscillatory integral estimates such as maximal theorems and restriction esti-

mates for measures on hypersurfaces have long been a central topic in harmonic analysis. We discuss

the recent work by the author and her collaborators on the analogues of such results for singular mea-

sures supported on fractal sets. The common thread is the use of ideas from additive combinatorics.

In particular, the additive-combinatorial notion of “pseudorandomness” for fractals turns out to be an

appropriate substitute for the curvature of manifolds.
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1. Introduction

A recurring theme in Euclidean harmonic analysis is the connection between Fourier-analytic

properties of measures and geometric characteristics of their supports. The best known clas-

sical results of this type concern estimates on singular and oscillatory integrals associated

with surface measures on submanifolds of Rd, with ranges of exponents depending on geo-

metric features of the submanifold in question such as its dimension, smoothness and curva-

ture.

Our focus here is on more recent lines of research that dispense with the regularity as-

sumptions. Instead of surface measures on smooth manifolds, we will be concerned with

fractal measures supported on sets of possibly non-integer dimension. This includes in par-

ticular the case of ambient dimension 1, where there are no non-trivial lower-dimensional

submanifolds but many interesting fractal sets. It turns out that the dichotomy between flat-

ness and curvature for manifolds in higher dimensions has useful analogues in dimension

one. Specifically, “random” fractals (in a sense that will be made precise later) often behave

like curved hypersurfaces such as spheres, whereas fractals exhibiting arithmetic structure

(e.g. the middle-third Cantor set) behave like flat surfaces.

The goal of this paper is to provide an exposition of the recent work by the author and

her collaborators on three specific questions of this type: restriction estimates, differen-

tiation estimates, and Szemerédi-type results. In the context of fractal sets, the first two

lines of investigation can be dated back to Mockenhaupt’s restriction theorem [37] (see also

Mitsis [36]) and the work of Aversa and Preiss [1, 2]. However, our work was also influ-

enced by ideas from additive combinatorics (see [53]), where the study of “randomness” and

“arithmetic structure” in sets of integers was a key part of recent major advances such as

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Gowers’s “quantitative” proof of Szemerédi’s theorem [16] and the Green-Tao theorem on

arithmetic progressions in the primes [18]. In the last section, we present Szemerédi-type

results for fractal sets, motivated by number-theoretic results from additive combinatorics

but also drawing on harmonic analytic techniques.

2. Fractal sets and Fourier decay

Throughout this article, we will refer to certain types of fractal sets of non-integer dimension.

We now provide the pertinent definitions and examples.

For a set E ⊂ Rd, we will use dimH(E) to denote its Hausdorff dimension. The fol-

lowing characterization of the Hausdorff dimension, provided by Frostman’s lemma, will

suffice for our purposes instead of a definition; we refer the reader to [13, 35, 56] for more

background. LetM(E) be the set of all probability measures supported on E. We will say

that a measure μ ∈ M(E) obeys the ball condition with exponent α if there is a constant

C(α) such that

μ(B(x, ε)) ≤ C(α)εα for all x ∈ Rd, ε > 0, (2.1)

where B(x, ε) denotes the open ball of radius ε centered at x.

Lemma 2.1. (Frostman) Let E ⊂ Rd be a compact set. Then

dimH(E) = sup {α ∈ [0, d] : ∃μ ∈M(E) s.t. (2.1) holds for some C(α) > 0} (2.2)

If E is a smooth submanifold of Rd, then its Hausdorff dimension coincides with its

topological dimension: for instance, the sphere Sd−1 ⊂ Rd has Hausdorff dimension d− 1.
However, there are also many sets whose Hausdorff dimension is non-integer. The following

basic examples will be important in the sequel.

Example 2.2. (Self-similar Cantor sets) Construct a set E ⊂ [0, 1] via the following itera-

tion. Fix integers N, t such that 1 < t < N . Divide [0, 1] into N intervals of equal length,

and choose t of them. This is our first iteration E1 of the Cantor set.

E1 =
⋃
a∈A

[
a

N
,
a+ 1

N

]
where A is a subset of {0, 1, . . . , N − 1} of cardinality t. We now iterate the construction

in a self-similar manner, dividing each interval of E1 into N congruent subintervals and

choosing k of them according to the same pattern, etc. We thus get a decreasing sequence of

sets E1, E2, . . . , where En consists of tn intervals of length N−n:

En =
⋃

a1,...,an∈A

[
n∑
i=1

ai
N i

,
n∑
i=1

ai
N i

+
1

Nn

]

Let E =
⋂∞

n=1 En, then E is a compact set of Lebesgue measure 0. If N = 3, t = 2 and

A = {0, 2}, then E is the usual middle-thirds Cantor set. It is easy to see that

dimH(E) =
log t

logN
. (2.3)
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Furthermore, the measure μ ∈ M(E) constructed as the weak limit of the absolutely con-

tinuous measures with densities

φn =
1

|En|1En =
Nn

tn
1En (2.4)

obeys (2.1) with this value of α. (We use 1X to denote the characteristic function of a set

X .) We will refer to such μ as the “natural” measure on E.

Example 2.3. (Generalized Cantor sets) We modify the procedure from Example 2.2. As

before, we start by dividing [0, 1] into N congruent intervals and choosing t of them to form

E1. Suppose that we have constructed En, consisting of tn intervals Ij of lengthN−n each.

We subdivide each Ij into N congruent intervals and choose t of these; however, this does

not need to be the same choice as for E1 or any other preceding steps, nor do we have to use

the same pattern for all intervals of En. This again produces a decreasing sequence of sets

converging to a compact set E of Hausdorff dimension α = (log t)/(logN), and a natural

probability measure μ = w − limφn on E, where φn are defined as in (2.4). However,

such sets and measures are no longer self-similar, and can display a much wider range of

behaviours than those from Example 2.2. Of particular importance will be “random” and

“quasirandom” Cantor sets, where the choices of intervals at each step are made through

some randomized procedure within specified constraints. An example of this is given in

[31], Section 6.

Further modifications are possible. For instance, instead of keeping the values of N
and t fixed, one could repeat the last construction with a slowly increasing sequence of Nn

and tn such that log tn
logNn

→ α as n → ∞; this produces Cantor sets of arbitrary dimension

0 ≤ α ≤ 1, not just of the form log t
logN with t,N integer.

Analytic properties of fractal sets and measures (such as those described above) depend

very strongly on their arithmetic structure, in a manner that is reminiscent of the relation

between the geometry of a submanifold of Rd and its Fourier-analytic properties. One in-

dicator of the arithmetic structure, or lack thereof, of a measure μ on Rd is the decay of its

Fourier transform. Let

μ̂(ξ) =

∫
e−2πiξ·xdμ(x).

We will be interested in pointwise estimates of the form

|μ̂(ξ)| ≤ C(β)(1 + |ξ|)−β/2 for all ξ ∈ Rd. (2.5)

The relation between Hausdorff dimension and estimates such as (2.5) is as follows. Let

E ⊂ Rd be compact. It is well known that

dimH(E) = sup{β ∈ [0, d] : ∃μ ∈M(E) s.t. Iβ(μ) <∞}, (2.6)

where

Iβ(μ) =

∫
Rd

|μ̂(ξ)|2 |ξ|−(d−β)dξ (2.7)

Thus for any β < dimH(E), there are measures supported onE that obey (2.5) “on average.”

On the other hand, (2.5) cannpt hold with β > dimH(E).
We will say that a measure μ is a Salemmeasure if it obeys (2.5) for all β < dimH(suppμ).

(As indicated above, this is the best possible range of β except possibly for the endpoint.)
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An easy example is provided by the Lebesgue measure on the sphere Sd−1 ⊂ Rd, or more

generally on a bounded (d− 1)-dimensional smooth manifold with non-vanishing Gaussian

curvature. In this case, the estimate (2.5) with β = d−1 follows from well known stationary

phase estimates. It is more difficult to produce Salem measures with supports of non-integer

dimension. The first such construction was given by Salem in [44]; for other examples, see

Kaufman [24], Kahane [23], Bluhm [4, 5].

The property of being a Salem measure (and indeed any pointwise estimate such as

(2.5) with β > 0) is deeper than average decay as in (2.6), and indicative of the level of

the arithmetic structure of the measure in question. Roughly speaking, “random” fractal

measures often obey (2.5), whereas “structured” ones do not. For example, the self-similar

Cantor measure μ in Example 2.2 has the Fourier transform

μ̂(ξ) =

∞∏
j=1

(
1

|A|
∑
a∈A

e2πiaξ/N
j

)

and, since A ⊂ Z, we have μ̂(N j) = μ̂(1) for all j ∈ N, so that (2.5) does not hold for any

β > 0. On the other hand, the more general construction in Example 2.3 can be randomized

so that μ obeys (2.5) for all β < dimH(E) (see [31]). We will see that those measures that

obey (2.5) for some β > 0, and those that do not, behave very differently from the harmonic

analytic point of view.

3. Restriction estimates

We define the Fourier transform of a function f : Rd → C by

f̂(ξ) =

∫
f(x)e−2πix·ξdx.

This maps the Schwartz space of functions S to itself. By the Hausdorff-Young inequality,

the Fourier transform extends to a bounded operator from Lp(Rd) to Lp′(Rd) if 1 ≤ p ≤ 2
and 1

p +
1
p′ = 1.

Let μ be a finite, compactly supported measure of Rd. We are particularly interested

in the case when μ is a singular measure, supported on a set E ⊂ Rd of d-dimensional

Lebesgue measure 0. We also write f̂dμ(ξ) =
∫
f(x)e−2πix·ξdμ(x).

Question 3.1. (Restriction problem) For what values of p, q do we have an estimate

‖f̂dμ‖Lp(Rd) ≤ C‖f‖Lq(Rd,dμ), f ∈ S? (3.1)

Here and below, C and other similar constants may depend on the dimension d, the

measure μ, and the exponents p, q, but not on f . Whenever we use the notation Lp(X)
without indicating the measure, the latter is assumed to be the Lebesgue measure on X .

The restriction problem takes its name from the dual formulation, which we state now.

Question 3.2. (Restriction problem, dual version) For what values of p′, q′ do we have an
estimate

‖f̂‖Lq′ (Rd,dμ) ≤ C‖f‖Lp′ (Rd), f ∈ S? (3.2)
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It is not difficult to see that (3.1) and (3.2) are equivalent if p, p′ and q, q′ are pairs of

dual exponents: 1
p +

1
p′ =

1
q +

1
q′ = 1. Informally, Question 3.2 can be stated in terms of

restricting the Fourier transform of an Lp′ function f to the set E. This is trivial if p′ = 1
and q′ = ∞, since then f̂ is continuous and bounded everywhere. On the other hand, no

such result is possible if p′ = 2. This is because the Fourier transform maps L2 onto L2, so

that we are not able to say anything about the behaviour of f̂ on a set of measure 0. For the

intermediate values of p′ ∈ (1, 2) (or, equivalently, for p > 2 in (3.1)), the answer depends

on the geometric and arithmetic pproperties of μ, as we will see in the rest of this section.

We now specialize to q = 2, in which case we have the following theorem.

Theorem 3.3. Let μ be a compactly supported positive measure on Rd such that for some
α, β ∈ (0, d) we have

μ(B(x, r)) ≤ C1r
α for all x ∈ Rd and r > 0, (3.3)

|μ̂(ξ)| ≤ C2(1 + |ξ|)−β/2 for all ξ ∈ Rd. (3.4)

Then for all p such that

p ≥ pd,α,β :=
2(2d− 2α+ β)

β
(3.5)

there is a C(p) > 0 such that

‖f̂dμ‖Lp(Rd) ≤ C(p)‖f‖L2(dμ) (3.6)

for all f ∈ L2(dμ).

The classical Stein-Thomas theorem [48, 49, 54, 55] asserts this in the prototype case

when μ is the surface measure on the unit sphere Sd−1 in Rd, so that α = β = d − 1.
First proved by Stein for a smaller range of p (1967, unpublished), it was then extended to

q > 2d+2
d−1 by Tomas [54, 55], and finally the endpoint estimate was proved by Stein [48].

We note here that the Stein-Tomas theorem exploits the curvature of Sd−1 via the esti-

mate (3.4), and that the same result holds (for the same reasons) for more general (d − 1)-
dimensional hypersurfaces in Rd with non-vanishing Gaussian curvature. On the other hand,

it is easy to see that there can be no estimates such as (3.6) (or more generally, such as (3.1))

with p < ∞ if E is contained in a hyperplane. For manifolds whose Gaussian curvature

vanishes at some points, such as cones or polynomial surfaces of higher order, there is a

range of nontrivial restriction estimates with exponents depending on the geometry of the

manifold.

In the case of the sphere (and more generally, hypersurfaces with non-vanishing Gaussian

curvature), the range of exponents in (3.5) is known to be optimal, in the sense that (3.6) fails

for all p < 2d+2
d−1 . This is seen from the so-called Knapp example, where (3.6) is tested on

characteristic functions of small spherical caps (see e.g. [49, 56]).

Theorem 3.3 as stated above, with exponents as above except for the endpoint, was

proved by Mockenhaupt [37] (see also Mitsis [36]), and the endpoint estimate is due to Bak

and Seeger [3]. Mockenhaupt’s argument follows closely Tomas’s proof of the non-endpoint

Tomas-Stein theorem for the sphere. The point of Mockenhaupt’s work is that estimates such

as (3.6) can also hold for less regular measures obeying (3.3) and (3.4), including fractal mea-

sures with α, β not necessarily integer. This shifts the emphasis from properties generally
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associated with differentiable manifolds, such as smoothness and curvature, to arithmetic

properties that may hold for more general measures.

The question of the optimality of the estimate (3.6) for fractal sets appears to be more

complicated than for hypersurfaces. The question of sharpness of the exponent in Theorem

3.3 for measures on R was only settled recently in [11, 19].

Theorem 3.4. Let 0 < β ≤ α < 1. Then there is a probability measure μ on [0, 1] sup-
ported on a set E of dimension α and obeying (3.3) and (3.4), and a sequence of functions
{f�}�∈N on [0, 1] (characteristic functions of finite unions of intervals), such that the restric-
tion estimate (3.6) fails for the sequence {f�} and for every 1 ≤ p < p1,α,β , in the sense
that

‖f̂�dμ‖Lp(R)

‖f�‖L2(dμ)
→∞ as �→∞. (3.7)

This is due to Hambrook and the author [19] in a slightly weaker form (which already

demonstrates that the dependence of p on α, β in (3.5) cannot be improved for Salem mea-

sures), and to Chen [11] as stated.

The main idea, due to [19], is that, while Salem sets behave like random sets overall,

they may nonetheless contain much smaller sets that are highly structured. Specifically, we

construct a set E of dimension α = log t
logn via a randomized Cantor iteration as in Example

2.3, following the procedure from [31] to ensure that (3.4) holds for all β < α. At the same

time, we also modify the construction so that each iteration En contains a much smaller

subset Fn, where Fn is constructed as in Example 2.2 with A an arithmetic progression.

This can be done without destroying the estimate (3.4) as long as |A| ≤ √t. If A has the

maximal allowed size
√
t, the set F =

⋂
Fn is a highly structured Cantor set of dimension

α/2. In the language of additive combinatorics, the endpoints of each finite iteration Fn lie

in a generalized arithmetic progression of the lowest possible dimension. The functions fn
are then defined as the characteristic functions of Fn. The construction in [11] follows the

main steps of that in [19], but with N, t varying between different stages of the iteration,

allowing more flexibility with dimensions and exponents.

In a sense, this may be viewed as a one-dimensional analogue of Knapp’s counterexam-

ple. The latter is based on the fact that an “almost flat” spherical cap is contained in the

curved sphere, or equivalently, that the sphere is tangent to a flat hyperplane. Here, the set E
may be thought of as random but nonetheless “tangent” to the arithmetically structured set

F .

We also note that our lower bound on ‖f̂�dμ‖p relies on arithmetic arguments, specifi-

cally on counting solutions to linear equations in the set of endpoints of the Cantor intervals

in the construction. This idea appears to be new in this setting, but has been used extensively

in recent work on restriction estimates in finite fields, see e.g. [21, 33, 38].

Theorem 3.4 shows that the range of p in (3.5) cannot, in this generality, be improved.

It remains unknown, however, whether such improvements might be possible for some mea-

sures μ, and if so, how such measures might be characterized.

In this regard, we first note that a measure μ ∈ M(Rd) supported on a set of dimension

α0 cannot obey (3.6) for any p < 2d/α0, even if the L2 norm on the right side is replaced

by the stronger L∞ norm. This can be seen by letting f ≡ 1 and considering the energy

integral (2.7) (see [19] for details).

Question 3.5. Is there a measure μ ∈ M(Rd) supported on a set of dimension α0, obeying
(3.3) and (3.4) with α and β arbitrarily close to α0, such that (3.6) holds for (some or all)
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exponents in the intermediate range

2d

α0
≤ p <

4d− 2α0

α0
? (3.8)

If so, what properties of μ determine the range of such exponents?

Chen [10] provides an example of a measure supported on a set E ⊂ R of dimension

1/2 for which the restriction estimate (3.6) holds for the maximal possible range p ≥ 4.
Chen’s example is based on Körner’s construction in [30] of fractal measures whose k-
fold convolutions, for an appropriate k, are absolutely continuous; in particular, the 1/2-

dimensional example just mentioned depends on the existence of a measure μ supported on

a set of dimension 1/2 such that μ∗μ has anL∞ density. However, Körner’s measures do not

appear to obey (3.3) and (3.4) with α, β near α0, and it is not clear whether the construction

can be modified to ensure these properties.

Another open question concerns restriction estimates beyond the Stein-Tomas range.

Question 3.6. Let μ ∈ M(R) be a Salem measure of dimension α0 ∈ (0, 1), obeying
the assumptions of Theorem 3.3 with α, β arbitrarily close to α0. Are there any restriction
estimates of the form

‖f̂dμ‖Lp(Rd) ≤ C(p)‖f‖L∞(dμ) (3.9)

for all f ∈ L∞(dμ), where p < 4d−2α0

α0
?

In the case when μ is the normalized surface measure on Sd−1, Stein [48] conjectured

that

‖f̂dμ(ξ)‖Lp(Rd) ≤ C(d, p)‖f‖L∞(Sd−1,dμ), (3.10)

for all p > 2d
d−1 . This is known for d = 2 (due to Fefferman and Stein [14]). It remains

open for all d > 2, but partial results are available (see e.g. [52, 56] for an overview of the

subject, and [8] for the current best result for the sphere). The range of q as above, suggested

by stationary phase formulas, is known to be optimal.

We do not know whether fractal measures as in Question 3.6 admit any estimates such

as (3.9) with p < 4d−2α0

α0
. In the case of a sphere, such estimates require sophisticated

geometric input related to the Kakeya problem. It is unclear how such arguments might

translate to the setting of fractal sets.

4. Maximal functions and differentiation theorems

One of the most basic results in analysis is the Hardy-Littlewood maximal theorem.

Theorem 4.1. Given f ∈ L1(Rd), define its Hardy-Littlewood maximal function by

Mf(x) = sup
r>0

1

|B(x, r)|
∫
B(x,r)

|f(y)|dy, (4.1)

where B(x, r) = {y : |x− y| ≤ r}. Then
‖Mf‖p ≤ Cp,d‖f‖p

for all 1 < p ≤ ∞. Moreover, M is of weak type (1,1):

|{x : Mf(x) > λ}| ≤ Cλ−1‖f‖1.
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This easily implies the Lebesgue differentiation theorem: if f ∈ L1(Rd), then for almost

all x we have

lim
r→0

1

|B(x, r)|
∫
B(x,r)

f(y)dy = f(x). (4.2)

In particular, if f = χE is the characteristic function of a measurable set E, (4.2) states that

for almost all x ∈ E

lim
r→0

|E ∩B(x, r)|
|B(x, r)| = 1, (4.3)

which is the Lebesgue theorem on density points.

We will be interested in analogues of Theorem 4.1 and its corollaries (4.2), (4.3) where

the averages on balls B(x, r) are replaced by averages with respect to singular measures

supported on lower-dimensional sets. In general, such averages can be quite badly behaved,

as can be seen from the consideration of Kakeya and Nikodym type examples (see e.g.

[49, 56]). However, non-trivial maximal estimates can hold for certain types of singular

measures. In the case of hypersurfaces and, more generally, manifolds in Rd, the main

issues are smoothness and curvature. A classic result of this type is the spherical maximal
theorem, due to E.M. Stein [47] for d ≥ 3 and Bourgain [6] for d = 2.

Theorem 4.2. Define the spherical maximal operator in Rd by

MSf(x) = sup
t>0

∫
Sd−1

|f(x− ty)|dσ(y), (4.4)

where σ is the normalized Lebesgue measure on Sd−1. Then

‖MSf(x)‖Lp(Rd) ≤ C‖f‖Lp(Rd), p > d
d−1 , (4.5)

and this range of p is optimal.

There is a vast literature on maximal and averaging operators over families of smooth

lower-dimensional submanifolds of Rd, see e.g. [22, 39–41, 45, 46, 50]. The situation is

somewhat similar to restriction estimates in that results of this type, including Stein’s proof

of the spherical maximal theorem for d ≥ 3, exploit curvature via Fourier decay estimates

such as (2.5) for the surface measure on the manifold. Such decay estimates are weaker for

manifolds with flat directions, which is reflected in a weaker range of exponents in maximal

and averaging estimates. We also note that the argument used to deduce (4.2) and (4.3) from

Theorem 4.1 is very general and applies to more general averages. In particular, Theorem

4.2 implies the analogues of (4.2) and (4.3) for spherical averages, for f ∈ Lp(Rd) with

p > d
d−1 .

We are interested in analogues of Theorem 4.1 and its corollaries for singular measures

supported on fractal sets. For μ ∈M(Rd), define the maximal operator associated with it:

Mf(x) := sup
r>0

∫
|f(x+ ry)| dμ(y). (4.6)

In dimensions d ≥ 2, a theorem of Rubio de Francia [43] asserts that if μ obeys the

Fourier decay condition (2.5) with β > 1, then M is bounded on Lp(Rd) for p > (β +
1)/β. This in particular implies Theorem 4.2 for d ≥ 3, and provides its analogue for

Salem measures of dimension strictly greater than 1. However, it does not apply to singular

measures on R, since it is not possible for such measures to obey (2.5) with β > 1.
In [32], we prove the following.
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Theorem 4.3. (a) There is a measure μ ∈ ([1, 2]), supported on a setE of Lebesgue measure
0 (but Hausdorff dimension 1) such that M is bounded on Lp(R) for all p > 1.

(b) For any 0 < ε < 1
3 , there is a measure μ ∈ ([1, 2]), supported on a setE of Hausdorff

dimension 1− ε. such that M is bounded on Lp(R) for p > 1+ε
1−ε .

As a corollary, we have a differentiation theorem for the measures constructed in [32]:

lim
r→0

∣∣∣∣∫ f(x+ ry)dμ(y)− f(x)

∣∣∣∣ = 0 for a.e. x ∈ R (4.7)

for f ∈ Lp(R) with the same range of p as in Theorem 4.3. This answers a question of

Aversa and Preiss [1], [2]. Note that we require μ to be supported on [1, 2] rather than [0, 1];
the purpose of this is to exclude the trivial solution μ = δ0. An argument due to Preiss,

included in [32], shows that M cannot be bounded on L1(R), and (4.7) cannot hold for all

f ∈ L1(R), if μ is singular with respect to the Lebesgue measure.

Question 4.4. What is the optimal range of ε and p for which there exists a measure μ ∈
M([1, 2]) with dimH(suppμ) = 1 − ε, such that M is bounded on Lp(R), or that (4.7)
holds for all f ∈ Lp(R)?

The range of ε and p in Theorem 4.3 is an artifact of the construction, and is likely not

optimal. On the other hand, it is easy to see that if dimH(suppμ) = α, then (4.7) cannot

hold for f ∈ Lp(R) (hence M cannot be bounded on Lp(R)) if p < 1/α.
While the Lp-boundedness of M implies a differentiation theorem on Lp, there is no

converse implication, so that at least in principle it is possible that the range of p, ε for

differentiation theorem might be wider than for maximal theorems. We also note that, while

singular measures cannot differentiate all L1(R) functions as pointed out above, there might

be differentiation theorems of this type on spaces such as L logL.
The measures in [32] are constructed via a randomized Cantor iteration, similar to Ex-

ample 2.3 but with variable numbers of intervals at different stages of the construction. Thus,

again, randomness of fractal sets is a substitute for curvature. However, unlike with restric-

tion estimates, the random behaviour of μ is not mediated via Fourier estimates such as

(2.5). Instead, we work in the “physical space” and use randomization to ensure the corre-

lation condition (4.8) below. This is somewhat similar to Bourgain’s argument in [6], where

the crucial geometrical input concerns intersections of pairs of thin annuli.

Specifically, let En ⊂ [1, 2] be the n-th iteration of the Cantor construction, φn =
1

|En|1En , and σn = φn+1 − φn. The correlation condition we require asserts that, for an

appropriate range of n depending on p and ε, and for “most” choices of translation and

dilation parameters c�, r�, we have∣∣∣∣∣
∫ k∏

�=1

σn

(z − c�
r�

)
dz

∣∣∣∣∣ ≤ C(k, n) (4.8)

with C(k, n) decayig exponentially in n. Heuristically, σn are highly oscillating random

functions with
∫
σn = 0, so that affine copies of σkn with generic translation and scaling

parameters should be close to orthogonal, leading to massive cancellations in the integral in

(4.8).

The condition (4.8) is reminiscent of higher-order uniformity conditions in additive com-

binatorics (cf. [16, 18]). A calculation from [16] shows that, at least if ε is small enough,
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(4.8) implies that μ obeys a Fourier decay estimate (2.5) for some (not necessarily optimal)

β > 0; this, however, is not used in the proof of the maximal theorem. At the same time,

(4.8) is perfectly compatible with μ being a Salem measure, and it is not difficult to modify

the construction in [32] along the lines of [31] to ensure that μ also has that property.

Question 4.5. Give an explicit, deterministic example of a measure μ ∈M([1, 2]), singular
with respect to the Lebesgue measure, sich that M is bounded on Lp(R) for some p <∞.

The construction in [32] is random and produces no explicit examples. By the arguments

in [32], it would suffice to produce an explicit Cantor iteration for which an appropriate

version of (4.8) holds. There are many “pseudorandom” arithmetic sets known in number

theory that correlate poorly with their translates, and the hope would be that such sets might

be used as a basis for the Cantor iteration. The main obstacle appears to be that the copies of

σn in (4.8) are not only translated but also dilated, and this makes the correlation condition

very difficult to verify for any such explicit sets.

5. Arithmetic patterns in fractal sets

We now turn to Szemerédi-type problems for fractal sets. The general question, vaguely for-

mulated, is as follows: ifE ⊂ Rd has sufficiently large Hausdorff dimension, must it contain

certain specified geometric configurations? If not, what additional assumptions on E are

sufficient to guarantee that? This could be viewed as continuous analogues of Szemerédi’s

theorem on arithmetic progressions in sets of integers of positive upper asymptotic density

[51], or of its multidimensional variants [15].

It follows easily from the Lebesgue density theorem (4.3) that any setE ⊂ Rd of positive

Lebesgue measure contains a similar copy of any finite set F . Erdős [12] conjectured that

given any infinite sequence {an} ⊂ R, there exists a set E of positive measure which does

not contain any non-trivial affine copy of it. Falconer [13] proved this for sequences that

decay sufficiently slowly; see also [7, 20, 28, 29] for other related results and examples. The

question remains open for faster decaying sequences, such as the geometric sequence {2−n}.
Our focus here is on finding finite configurations in sets E ⊂ Rg of d-dimensional

Lebesgue measure 0, but Hausdorff dimension close to d. The simplest question of this type

is: given a triple F = {x, y, z} of distinct points in R, is it true that any set E ⊂ R of

dimension α sufficiently close to 1 must contain an affine copy of F ? Without additional

assumptions on E, the answer is negative, even if α = 1. This is due to Keleti [25], who also

constructs sets that avoid all “parallelograms” {x, x+y, x+z, x+y+z}, with y, z �= 0 [25],

and sets that avoid all affine copies of infinitely many 3-point configurations [26]. Similar

results are known in higher dimensions: for instance, Maga [34] proved that, given a triple

F = {x, y, z} of distinct points in R2, there exists a compact set in R2 with Hausdorff

dimension 2 which does not contain any similar copy of F .

Additive combinatorics suggests that sets E that are “pseudorandom” in an appropriate

sense should be better behaved with regard to Szemerédi-type phenomena than generic sets

of the same size. For example, Szemerédi-type results are available for sets of integers

of zero asymptotic density if additional randomness or pseudorandomness conditions are

assumed, see e.g. [17, 18, 27]. The nature of such conditions depends on the context and

especially on the type of configurations being sought. For 3-term arithmetic progressions

in sets of integers, the relevant criterion is linear uniformity, expressed in terms of Fourier



Harmonic analysis and the geometry of fractals 325

analytic estimates [42]; higher order uniformity norms [16] can be used to guarantee the

existence of longer arithmetic progressions.

It turns out that Fourier decay estimates of the form (2.5) for fractal measures can indeed

serve as analogues of the additive-combinatorial notion of linear uniformity. The following

theorem is due to myself and Pramanik [31].

Theorem 5.1. Let E ⊆ [0, 1] be a closed set. Assume that there is a measure μ ∈ M(E)
such that:

μ(B(x, ε)) ≤ C1ε
α for all 0 < ε ≤ 1 (5.1)

|μ̂(ξ)| ≤ C2(1 + |ξ|)−β/2 (5.2)

with 0 < α < 1 and 2/3 < β ≤ 1. If α > 1 − ε0(C1, C2, β), then E contains a 3-term
arithmetic progression.

While Theorem 5.1 is stated and proved in [31] only for arithmetic progressions, the

same proof works for any fixed 3-point configuration {x, y, z}. In many cases of interest

including Salem measures, (5.2) is satisfied with β arbitrarily close to α. The proof in [31]

shows that the dependence of ε0 on β can be dropped from the statement of the theorem if β
is bounded from below away from 2/3, e.g. β > 4/5, so that in such cases the ε0 in Theorem

5.1 depends only on C1, C2.

More recently, in a joint work with Chan and Pramanik [9], we proved a multidimen-

sional analogue of Theorem 5.1. Roughly speaking, we consider certain types of “admissi-

ble” finite configurations defined by appropriate systems of matrices. If E ⊂ Rd supports a

probability measure obeying (5.1) and (5.2) with α > d − ε0, where ε0 = ε0(C1, C2, β) is
small enough depending on the configuration in question, then E must contain that config-

uration. We omit the precise statement, since the definition of admissible configurations is

quite lengthy and technical. Instead, we mention a few corollaries of the main theorem of

[9].

Corollary 5.2. Suppose that E ⊂ R2 supports a probability measure obeying (5.1) and
(5.2), with α > 2− ε0.

(a) Let d = 2, and let a, b, c be three distinct points in the plane. If ε0 is small enough
depending on the configuration a, b, c, thenE must contain three distinct points x, y, z
such that the triangle xyz is a similar (possibly rotated) copy of the triangle abc.

(b) Let a, b, c be three distinct colinear points in Rd. If ε0 is small enough depending on
a, b, c, then E must contain three distinct points x, y, z that form a similar image of
the triple a, b, c.

Maga’s result [34] shows that (a) fails without the assumption (5.2), even if E has Haus-

dorff dimension 2.

Corollary 5.3. Let E ⊂ Rd be as in Corollary 5.2, with ε0 small enough. Then E contains
a parallelogram {x, x+ y, x+ z, x+ y + z}, where the four points are all distinct.

Again, this should be compared to a result of Maga [34], which shows that the result is

false without the Fourier decay assumption. More complicated examples are also possible,

see [9] for details.

Question 5.4. Is there an analogue of Theorem 5.1 for k-term arithmetic progressions with
k ≥ 4? If so, what are the appropriate higher order uniformity conditions on μ?
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Question 5.5. The main theorem of [9] provides a class of finite configurations in Rd that
are “controlled” (in the sense of e.g. [16]) by the Fourier transform. Can this class be
extended? (The constraints on the various parameters in [9] are unlikely to be optimal.)
Is there a characterization of those configurations that are not controlled by the Fourier
transform?

Acknowledgements. The author was supported in part by an NSERC Discovery Grant.

References

[1] Aversa, V. and Preiss, D., Hearts density theorems, Real Analysis Exchange, 13(1)
(1987), 28–32.

[2] , Sistemi di derivazione invarianti per affinita, preprint, Complesso Universi-

tario di Monte S. Angelo, Napoli, 1995.

[3] Bak, J.-G. and Seeger, A., Extensions of the Stein-Tomas theorem, Math. Res. Lett., 18
(2011), no. 4, 767–781.

[4] Bluhm, C., Random recursive construction of Salem sets, Ark. Mat., 34 (1996), 51–63.

[5] , On a theorem of Kaufman: Cantor-type construction of linear fractal Salem
sets, Ark. Mat., 36 (1998), 307–316.

[6] Bourgain, J., Averages in the plane over convex curves and maximal operators, J. Anal-

yse Math., 47 (1986), 69–85.

[7] , Construction of sets of positive measure not containing an affine image of a
given infinite structure, Israel J. Math., 60 (1987), 333–344.

[8] Bourgain, J. and Guth, L., Bounds on oscillatory integral operators based on multilin-
ear esstimates, Geom. Funct. Anal., 21 (2011), 1239–1295.

[9] Chan, V., Łaba, I., and Pramanik, M., Finite configurations in sparse sets, J. Anal.

Math., to appear.

[10] Chen, X., A Fourier restriction theorem based on convolution powers, Proc. Amer.

Math. Soc., to appear.

[11] , Sets of Salem type and sharpness of the L2-Fourier restriction theorem, Trans.

Amer. Math. Soc., to appear.
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Mean field equations, hyperelliptic curves and
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Abstract. In this paper, we survey some recent joint works with C. L. Chai and C. L. Wang [3, 17],

in which we have developed a theory to connect the mean field equation, Green function and Lame

equation. In this theory, we have constructed a family of hyperelliptic curves and a premodular form

of degree 1
2
n(n + 1) and proved that the nonlinear elliptic PDE on a flat torus Eτ has a solution iff

τ is a zero of this premodular form. As a consequence, we show that the Green function of Eτ has

either three critical points or five critical points. Furthermore, Ω5 = {[τ ] | G has five critical points}
is simply-connected.
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Keywords. Mean field equation, Liouville equation, Green function, hyperelliptic curve, modular

form.

1. Mean field equations and the Green function

Let E = Eτ = C/Λτ be a two-dimensional flat torus, where Λτ = Z + Zτ , τ ∈ C and

Imτ > 0. In this lecture, we follow the conventional notations: ω1 = 1, ω2 = τ and

ω3 = 1 + τ . Consider the following equation

Δu+ eu = ρδ0 in E, (1.1)

where ρ > 0, Δ =
∑2

i=1
∂2

∂x2
i
and δ0 stands for the Dirac measure on E at the lattice point

0. We want to study how the geometry of E is related to equation (1.1).

From the analytic point of view, we could study the geometry ofE via the Green function

G: ⎧⎨⎩ G = −δ0 + 1

|E| on E,∫
E
G = 0.

(1.2)

It is easy to see that G is an even function, i.e. G(−z) = G(z). Let ωi/2, i = 1, 2, 3, be the

three half periods. By the evenness, we have

G
(
−z + ωi

2

)
= G

(
z − ωi

2

)
= G

(
z +

ωi
2

)
,

where the last identity is due to the double period of G. Thus, G is also an even function
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with respect to any half period, which implies

∇G
(ωi
2

)
= 0, 1 ≤ i ≤ 3,

that is, the Green function G always has three critical points at their three half periods. The

connection of (1.1) with the Green function is the following theorem.

Theorem 1.1. Equation (1.1) with ρ = 8π has one solution if and only if the Green function
has non-half period critical points.

We refer the proof of Theorem 1.1 to [8, 15]. An immediate question is that doesG have

critical points rather than the three half periods? For example, ifE is a rectangle, i.e., τ ∈ iR,

then we can prove that G has exactly three critical points. However, if τ = 1
2 +

√
3
2 i = e

π
3 i,

then G has at least an extra pair of critical points at ± 1+τ
3 . A deep result is about the exact

number of critical points G might have.

Theorem 1.2. For any torus E, the Green function G has either three critical points or five
critical points.

In order to find critical points ofG, we have to know the analytic express ofG. Let ℘(z),
ζ(z) and ϑ1(z) be the Weierstrass ℘-function, zeta function and the Jacobi theta fucntion:

℘(z) =
1

z2
+

∑
ω∈Λτ\{0}

(
1

(z − ω)2
− 1

ω2

)
,

ζ(z) = −
∫ z

℘, and

ϑ1(z) = −i
+∞∑

n=−∞
(−1)nq(n+ 1

2 )
2

e(2n+1)πiz,

where q = eπiτ . The zeta function ζ(z) is an odd meromorphic function in C, satisfying

the following quasi-periodic condition:

ζ(z + ωi; τ) = ζ(z; τ) + ηi(τ).

These quasi-period ηi(τ) is holomorphic in τ ∈ H = {τ ∈ C | Imτ > 0}, and satisfies the

classic Legendre relation:

η1ω2 − η2ω1 = 2πi.

See [4, 24]. The Green function G(z; τ) can be expressed in terms of ϑ1:

G(z; τ) = − 1

2π
log |ϑ1(z)|+ 1

2b
x2
2 + C(τ), (1.3)

where τ = a + bi, z = x1 + x2i and C(τ) is a constant which matches the condition∫
E
G(z; τ)dz = 0. By using the formula (log ϑ1(z)) = ζ(z) − η1z and the Legendre

relation, we have

−4πGz(z) = ζ(z)− tη1 − sη2, (1.4)

if z = tω1 + sω2. Here Gz =
1
2 (

∂
∂x1
− i ∂

∂x2
)G. From (1.4), a critical point z = tω1 + sω2

of G is a solution to

ζ(tω1 + sω2) = tη1 + sη2. (1.5)
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Clearly, if z is a half period or equivalently, a 2-torsion point, then (1.5) holds always. At the

first sight, equation (1.5) looks naive. However, the proof of Theorem 1.2 is not so simple.

In [15], we actually apply the nonlinear PDE (1.1) to solve the two-dimensional equation

(1.5). To explain the idea of the proof, we note that (1.1) is known to be an integrable system

in the literature through the Liouville theorem. The Liouville theorem for (1.1) is the claim:

For any smooth solution u(z) of (1.1) with ρ = 8nπ, there is a meromorphic function f(z)
in C such that

u(z) = log
8|f ′(z)|2

(1 + |f(z)|2)2 , z ∈ E. (1.6)

Furthermore, under some normalization, f(z) satisfies

f(z + ωj) = e2iθjf(z), z ∈ E (1.7)

for two real constants θj . The function f(z) is called a developing map for the solution.

Please see [3, 15–17] for a complete account. In the following, we will survey the theory

developed in [3, 15] to explore the connection among (1.3), the Green function and the clas-

sic Lame equation. We start with the question how to recover f(z) by u. By differentiating

(1.6), we obtain

uzz − 1

2
u2
z =

f ′′′

f ′
− 3

2

(
f ′′

f

)2

, (1.8)

where the right hand side is the Schwartz derivative of f , denoted by S(f). Since u is smooth

except at lattice points, the function uzz − 1
2u

2
z is meromorphic with the only pole of order

2 at 0. Therefore, (1.8) implies

S(f) = −2(η(η + 1)℘(z) +B), (1.9)

where B is a complex constant and η = ρ/(8π) = n. We note that the complex constant B
depends on u, thus, it is not known a priori. Classically, η and B are known as the index and

the accessary parameter of the Lame equation:

y′′(z) = (n(n+ 1)℘(z) +B)y. (1.10)

It has been known since 19th century that for any two linearly independent solutions y1 and

y2 of (1.10), the ratio g(z) = y2(z)
y1(z)

satisfies

S(g) = −2(η(η + 1)℘(z) +B).

Therefore (1.9) indicates that any developing map f(z) of a solution to (1.1) is a ratio of two

linearly independent solutions of the Lame equation (1.10), although B is unknown. This

connection plays a fundamentally important role in [3, 4, 17].

The striking consequence of this integrability is the simple observation: If f(z) is a

developing map of u(z), satisfying (1.7), then eλf(z) also satisfies (1.7) for any λ ∈ R.

Thus (1.6) gives

uλ(z) = log
8e2λ|f ′(z)|2

(1 + e2λ|f(z)|2)2
is also a solution of (1.1) with ρ = 8πn, i. e., once (1.1) with ρ = 8πn has one solution,

then it has one parameter family of solutions. When n = 1, as λ→ ±∞, uλ blow up at the



334 Chang-Shou Lin

zero q (or the pole −q) of f . By the method from PDE, we can prove that q is a non-half

period critical point of G. We could further prove among this family solutions uλ, there is

a unique even solution to (1.1). From the integrability, we conclude that those is a one-to-

one correspondence between the non-half period critical points and even solutions to (1.1).

Therefore, Theorem 1.2 is equivalent to the following uniqueness theorem for equation (1.1)

with ρ ∈ (0, 8π].
Theorem 1.3. For any ρ ∈ (0, 8π], equation (1.1) has at most one even function. If ρ ∈
(0, 8π), then any solution of (1.1) must be even.

We remark that for ρ ∈ (0, 8π), equation (1.1) has at least one solution. Hence Theorem

1.3 says that for ρ ∈ (0, 8π), equation (1.1) has a unique solution. However, for ρ = 8π, (1.3)
might have no solutions, but if it has a solution, then there is only one family of solutions. We

use the classical Bol-Alexander inequality and the symmetrization to show the uniqueness

part if ρ ≥ 4π. For the complete proof, see [15, 17].

It is not really surprised that (1.1) is closely related to the geometry of E. Equation (1.1)

is originated from the prescribed curvature problem in conformal geometry. In general, for

any compact Riemann surface (M, g) we may consider the following equation:

 u+ eu − 2K = 4π

n∑
j=1

αj δQj on M, (1.11)

where K(x) is the Gaussian curvature of the given metric g at x ∈M , Qj ∈M are distinct

points, and αj > −1 are constants. For any solution u(x) to (1.11), equation (1.11) is

equivalent to saying that the Gaussian curvature of the new metric g̃ := evg (where 2v =
u − log 2) has constant Gaussian curvature K̃ = 1 outside those Qj’s. Since (1.11) has

singular source at Qj , the conformal metric eug degenerates at Qj and is called a metric on

M with conic singularity at those Qj’s.

Equation (1.11) belongs to a general class of equations, the so-called mean field equa-
tions:

Δu+ ρ

(
heu∫
heu

− 1

|M |
)
= 4π

n∑
j=1

αj

(
δQj −

1

|M |
)

on M, (1.12)

where h(x) is a positive C1 function on M . Equation (1.12) arises not only from geometry,

but also from many applications in physics. For example, it also comes from the statistical

physics as the mean field limits of the Euler flow, hence the name. Recently it was shown

to be related to the self-dual condensation of the Chern-Simons-Higgs model. We refer the

readers to [1, 5–9, 18–20, 22, 23] and the references therein for the recent development on

this subject.

2. Mean field equations and modular forms

Fix (s, t) ∈ [0, 1]× [0, 1]. We denote the function in (1.5) by Z(s,t)(τ):

Z(s, t; τ) := Z(s,t)(τ) = ℘(sω1 + tω2; τ)− sη1(τ)− tη2(τ). (2.1)

Since ℘(·; τ), η1(τ) and η2(τ) are holomorphic in τ , Z(s,t)(τ) is holomorphic in the

upper half plane H. Indeed, Z(s,t)(τ) is a “pre-modular” form, that is, Z(s,t)(τ) is a mod-

ular form of degree 1 with respect to Γ(N) provided that (s, t) is a N -torsion point, i.e.
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(Ns,Nt) ∈ N, here

Γ(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ ( a b
c d

)
≡
(
1 0
0 1

)
mod N

}
.

Historically, Z(s,t)(τ) was introduced first by Hecke in 1926 [13], where the modularity of

Z(s,t)(τ)was proved. The connection of the Hecke form and the Lame equation was founded

in [2, 10, 11]. Later on, it was also due to Hecke thatZ(s,t) is identical to the Eisenstein series

of degree 1. By the quasi-period of ζ(z), Z(s,t)(τ) ≡ 0 if (s, t) is a 2-torsion point. Suppose

that (s, t) is not a 2-torsion point, then Z(s,t) has a zero at τ if and only if G(z; τ) has five

critical points.

For τ ∈ H, we denote by [τ ] either one point inM = SL2(Z)\H or the orbit of τ under

the action of SL2(Z). Let

Ω5 = {[τ ] | G(z; τ) has five critical points} and Ω3 =M \ Ω5.

Obviously, Ω3 is the set of [τ ] such that G(z; τ) has only three critical points.

Theorem 2.1. The followings hold.

(i) the set Ω5 is open and simply connected.

(ii) ∂Ω5 = {[τ ] | one of half periods is a degenerate critical point of G(z; τ)}. Further-
more, ∂Ω5 ≈ S1, where S1 is the one-dimensional circle.

(iii) M \ Ω5 = {[τ ] | G(z, τ) has only three critical points and all of them are non-
degenerate critical points ofG(z; τ)}. Furthermore,M \Ω5 is also simply connected.

To study the Hecke form Z(s, t; τ), we consider τ ∈ F :

F =

{
τ ∈ H

∣∣ 0 ≤ Imτ ≤ 1, |τ − 1

2
| ≥ 1

2

}
. (2.2)

Geometrically, F is a fundamental domain for Γ0(2), where Γ0(2) = {( a b
c d

)

∈ SL2(Z) | c ≡ 0 mod 2}. It was proved that equation (1.1) with ρ = 8π has no solution

if τ ∈ ∂F . Obviously this statement is equivalent to the following: For any (s, t) is not a

2-torsion point,

Z(s,t)(τ) �= 0 ∀ τ ∈ ∂F. (2.3)

Hence if Z(s,t)(τ) does not tend to 0 as τ →∞, 0, 1 for a set of (s, t), then by the argument

principle, Z(s,t)(τ) has the same number of zeros in F for this set of (s, t), counting with the

multiplicities. This is a simple, but important application of nonlinear PDE (1.1) to the Hecke

form Z(s, t; τ). As discussed above, we have to study the asymptotic behavior of Z(s, t; τ)
at the three cusps of F , 0, 1,∞. For this purpose, we use the following q-expansion of Z:

Z(t,s)(τ) =2πis− πi
1 + e2πiz

1− e2πiz

− 2πi
∞∑
n=1

(
e2πizqn

1− e2πizqn
− e−2πizqn

1− e−2πizqn

)
, (2.4)



336 Chang-Shou Lin

where z = tω1 + sω2 and q = eπiτ .
For any fixed s ∈ [0, 1), (2.4) implies that

lim
τ→∞

Z(t,s)(τ) =

{
2πi(s− 1

2 ) if s �= 0,

π cotπt if s = 0.
(2.5)

Note that if (s, t) is not a 2-torsion point, then Z(t,s)(τ) uniformly tend to its limit in any

compact set of [0, 1]× [0, 1] \ {(0, 0), ( 12 , 0), (0, 12 ), ( 12 , 12 )} as τ → +∞.

To compute the limit as τ → 0, we observe that under the involution τ �→ Sτ := −1/τ ,
ζ(z;−1/τ) = τζ(zτ ; τ),

η1(−1/τ) = τη2(τ),

η2(−1/τ) = −τη1(τ).
Therefore

Zt,s(−1/τ) = τZ−s,t(τ), (2.6)

and for t ∈ (0, 1),

Zt,s(τ) =
−1
τ

Z−s,t(−1/τ) = 2πi

τ

(
1
2 − t+ o(1)

)
(2.7)

as τ → 0. For t = 0, a contribution −π cotπs/τ appears as the dominant term instead. For

other t, the value is determined by periodicity.

It is also easy to see that under the translation τ �→ Tτ := τ + 1,

ζ(z; τ + 1) = ζ(z; τ),

η1(τ + 1) = η1(τ),

η2(τ + 1) = η1(τ) + η2(τ).

Thus

Zt,s(τ + 1) = Zt+s,t(τ), (2.8)

and for t+ s ∈ (0, 1),

Zt,s(τ) = Zt+s,s(τ − 1) = 2πi

τ − 1
(
1
2 − (t+ s) + o(1)

)
(2.9)

as τ → 1. For t + s = 0, the dominant term is replaced by −π cotπ(t + s)/(τ − 1). For

general t+ s, the value is again determined by periodicity.

We summarize the above computations as the following lemma.

Lemma 2.2. Z(s,t)(τ) uniformly tends to a non-zero complex number as τ → 0, 1 or∞ in
any compact set (s, t) of [0, 1]× [0, 1]\the lines {s = 0, 1} ∪ {t = 0, 1} ∪ {s+ t = 1/2}.

For the proof of Theorem 2.1, we need another lemma.

Lemma 2.3. For any τ ∈ H,

(i) ζ( 34ω1 +
1
4ω2)) �= 3

4η1 +
1
4η2.

(ii) ζ( 16ω1 +
1
6ω2)) �= 1

6η1 +
1
6η2.
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(iii) ζ( 26ω1 +
3
6ω2)) �= 2

6η1 +
3
6η2.

Proof. We will use the addition formula

℘′(z)

℘(z)− ℘(u)
= ζ(z + u) + ζ(z − u)− 2ζ(z).

For (i), we choose z = 1
4 (3ω1 + ω2) =

1
2ω1 +

1
4ω3 and u = 1

4ω3. Then ζ(z − u) =
ζ( 12ω1) =

1
2η1 and ζ(z + u) = ζ(ω1 +

1
2ω2) = η1 +

1
2η2. Hence

ζ( 34ω1 +
1
4ω2))− ( 34η1 + 1

4η2) = ζ(z)− 1
2 (ζ(z + u) + ζ(z − u))

= −1
2

℘′( 34ω1 +
1
4ω2)

℘( 34ω1 +
1
4ω2)− ℘( 14ω3)

�= 0.

This proves (i).

For (ii), we choose z = 1
6 (ω1 + ω2) =

1
6ω3 and u = 1

3ω3. Then

0 �= ℘′(z)

℘(z)− ℘(u)
= ζ( 12ω3) + ζ(− 1

6ω3)− 2ζ( 16ω3)

= −3(ζ( 16ω1 +
1
6ω2)− 1

6η1 − 1
6η2).

This proves (ii).

For (iii), we choose z = 1
3ω1 +

1
2ω2 and u = 1

3ω1. Then ℘
′(z) �= 0 and

0 �= ζ( 23ω1 +
1
2ω2) + ζ( 12ω2)− 2ζ( 13ω1 +

1
2ω2)

= ζ(− 1
3ω1 − 1

2ω2) + (η1 + η2) +
1
2η2 − 2ζ( 13ω1 +

1
2ω2)

= −3(ζ( 13ω1 +
1
2ω2)− 1

3η1 − 1
2η2).

This proves (iii).

Nowwe are in the position to prove Theorem 2.1. SinceZ(t,s)(τ) = 0 iffZ(1−s,1−t)(τ) =

0, we might assume (t, s) ∈ [0, 1]× [0, 12 ] in the following proof.

Theorem 2.4. Suppose that (t, s) ∈ [0, 1] × [0, 12 ]\{(0, 0), ( 12 , 0), (0, 12 ), ( 12 , 12 )}. Then
Zt,s(τ) = 0 has a solution τ ∈ H if and only if that

(t, s) ∈  := {(t, s) | 0 < t, s < 1
2 , t+ s > 1

2}.
Moreover, the solution τ ∈ F is unique for any (t, s) ∈  .

Proof. We separate the proof into three steps.

Step 1. We will show that Zt,s(τ) has no solutions if (t, s) �∈  .

Indeed, if s, t, t+ s �= 1
2 , then (2.5), (2.7) and (2.9) imply that

Zt,s(τ) �→ 0 as τ →∞, 0, 1

respectively. Furthermore, the pole order at τ = 0, 1 is unchanged among such (t, s)’s.
Thus an extended version of the argument principle shows that the number of zero of

Zt,s(τ) is constant in the region

 1 := {(t, s) | t > 0, s > 0, t+ s < 1
2}.
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By Lemma (2.3) (ii), Z1/6,1/6(τ) has no solutions. Since ( 16 ,
1
6 ) ∈  1, this implies that

Zt,s(τ) has no solutions for any (t, s) ∈  1.

Similarly Zt,s(τ) has no solutions for (t, s) ∈ �, where

� := {(t, s) | 1
2 < t < 1 and 0 < s < 1

2}.

This follows from Lemma (2.3) (i) and the fact that ( 34 ,
1
4 ) ∈ �.

Step 2. Zt,s(τ) has no solutions if (t, s) �∈  .

Indeed, it follows easily form the argument principle that the points (t, s) such that

Zt,s(τ) has only finite solutions form an open set. In particular, by Step 1, for (t, s) ∈
 1 ∪ �, the function Zt,s(τ) either has no solutions or has infinite solutions (which corre-

sponds to the trivial case t, s ∈ 1
2Z and Zt,s ≡ 0).

Step 3. In order to conclude the proof of the theorem, by the same reasoning as in Step 1

we only need to establish the existence and uniqueness of solution Zt,s(τ) = 0 in τ ∈ F for

one special point (t, s) ∈  . For this purpose we take (t, s) = ( 13 ,
1
3 ) ∈  .

By an easy symmetry argument (c.f. [15]), Z 1
3 ,

1
3
(τ) = 0 for τ = ρ := eπi/3. Conversely

we will prove that ρ ∈ F is the unique zero of Z 1
3 ,

1
3
and it is a simple zero. The following

argument motivated by [2, 13] is the only place where the theory of modular forms is used.

Define

Z(3)(τ) =
∏′

Z k1
3 ,

k2
3
(τ),

where the product is over all pairs (k1, k2) with 0 ≤ k1, k2 ≤ 2 and with gcd(k1, k2, 3) = 1.
In this case it simply means (k1, k2) �= (0, 0). There are 8 factors in the product and in fact

Z(3) is a modular function of weight 8 with respect to the full modular group SL(2,Z). The
counting formula for the zeros of Z(3) then reads as

ν∞(Z(3)) +
1

2
νi(Z(3)) +

1

3
νρ(Z(3)) +

∑
p �=∞,i,ρ

νp(Z(3)) =
8

12
.

Since Z 1
3 ,

1
3
(ρ) = Z 2

3 ,
2
3
(ρ) = 0, we have νρ(Z(3)) ≥ 2. The counting formula then implies

that all the other terms vanish and τ = ρ is a simple (and unique) zero for Z 1
3 ,

1
3
(τ) (as well

as for Z 2
3 ,

2
3
(τ)).

The proof of the theorem is complete.

Corollary 2.5. The set Ω̃5 = {τ ∈ F | G(z; τ) has five critical points} is an unbounded
simply connected domain.

Proof. Let Ω̃5 be the lifting of Ω5 in F . The theorem establishes a continuous map φ :
(s, t) �→ τ from  onto Ω̃5. The map φ is one to one due to the uniqueness theorem of

extra pair (non half-period points) of critical points of the Green function G proved in [15].

Being the continuous image of a simply connected domain under a one to one continuous

function φ on R2, Ω̃3 must also be a simply connected domain. (This is the classic result on

“Invariance of Domain” proved in algebraic topology. In the current case it follows easily

from the inverse function theorem since φ is differentiable.)

It is also proven in [15] that the domain Ω̃5 contains the vertical line 1
2 + ib for b ≥ b1

where b1 ∈ (1/2,
√
3/2), hence it is unbounded.

The corresponding statement for Ω5 follows from the obvious Z3 identification.
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Clearly, Corollary 2.5 implies (i) of Theorem 2.1. For other parts of Theorem 2.1, we

refer [17]. Indeed, in [17] we have also discussed the minimality or the degeneracy of critical

points of G. In particular, we can prove the following deep result:

While deforming τ , G could bifurcate its critical points only at the

half periods.
(2.10)

3. Hyperellptic curves and their modular forms

As we discussed in Section 1, equation (1.1) is originated from the curvature problem in

two-dimensional space. There is another relation with the d-dimensional complex Monge-

Ampere equaiton:

det

(
∂2ω

∂zi∂zi

)
= e−w on (E \ {0})d, (3.1)

the d-th Cartesian product of E \ {0}. For any solution u to (1.1), the function

ω(z1, · · · , zn) = −
d∑

i=1

ui(zi) + d log 4 (3.2)

satisfies (3.1) with a logarithmic singularity along the normal crossing divisor D = Ed \
(E \ {0})d. In particular, bubbling solutions to (3.1) give examples of bubbling solutions to

the complex Monge-Ampere equation (3.1). Those bubbling behaviors of (3.1) have never

been studied in the literature.

The above discussions indicate the fundamental importance to study the concentration

phenomena of bubbling solutions to (1.1) in details. Indeed, this is the heart inside the

connection between (1.1) and the Green function G(z; τ) which we want to explore more.

Suppose taht {uk} is a sequence of blow-up solutions to (1.1) with ρ = ρk, ρk → 8πn,
n ∈ N. Then the blow-up set {a1, · · · , an} of uk must satisfies

n∇G(ai) =
n∑

j=1, �=i

∇G(ai − aj), i = 1, · · · , n. (3.3)

See [5] for a proof. For n = 1, (3.3) is the equation for critical points of G. Like the case

n = 1, (3.3) is not a system of algebraic equations.

Theorem 3.1. Let a = (a1, · · · , an) ∈ (E \ {0})n be a solution to (3.3), then either
{a1, · · · , an} ∩ {−a1, · · · ,−an} = ∅ or {a1, · · · , an} = {−a1, · · · ,−an}. Moreover,
(3.3) is equivalent to

n∑
j=1

∇G(aj) = 0, (3.4)

and the following holomorphic system

n∑
j=1, �=i

(ζ(ai − aj) + ζ(aj)− ζ(ai)) = 0, i = 1, · · · , n. (3.5)
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For equation (3.5), we could introduce a hyper-elliptic curve Y n(τ) for each τ as follows.

Let

Yn = { (a1, · · · , an) | ai ∈ E \ {0} for all i, ai − aj �= 0 for all i �= j,

and (a1, · · · , an) satisfies (3.5) },

and Ȳn be the closure of Yn in SymnE = En/Sn, the n-th symmetric product of E. Then

Ȳn = Yn ∪ {(0, · · · , 0)}

The hyper-ellipticity comes from the map B : Yn → C

a −→ B(a) = (2n− 1)
n∑
i=1

℘(ai), (3.6)

which is two to one from Xn ⊂ Yn → C, where

Xn = {(a1, · · · , an) ∈ Yn | {a1, ·, an} ∩ {−a1, · · · ,−an} = ∅}.

Furthermore, Yn \Xn consists of 2n + 1 points (counting with multiplicities), and each of

them is called a branch point of Yn’s. Thus,Xn = Y n. Furthermore, it can be parameterized

by

Yn " {(B,C) | C2 = ln(B)},
where ln(B) is a polynomial of degree 2n + 1 and B is given by (3.6). For the details of

the above statements, we refer the readers to [3]. Those branch points correspond to the

zeros of ln(B) under this parametrization. Therefore, Theorem 3.1 says that (a1, · · · , an) is
a solution of (3.3) iff a ∈ Yn and satisfies (3.4). We remark that any branch point a of Yn
automatically satisfies (3.4). Thus, (3.3) has 2n + 1 solutions at least. A solution a of (3.3)

is called non-trivial if a is not a branch point of Yn(τ). Then we have the following result.

See [3] for the proof.

Theorem 3.2. Equation (1.1) with ρ = 8πn has a solution iff (3.3) has a nontrivial solution.

Remark 3.3. Let us take the example n = 2. We recall the additional formula

1

2

℘′(z)− ℘′(u)

℘(z)− ℘(u)
= ζ(z + u)− ζ(z)− ζ(u) (3.7)

provided that ℘(z) �= ℘(u), i.e. z �= ±u.
If a = (a1, a2) ∈ Y2 is not a branch point, then (3.5) is equivalent to

℘′(a1) + ℘′(a2) = 0, a1 �= a2. (3.8)

Thus a nontrivial solution a of (3.3) is equivalent to both ai are not half periods, and satisfy

℘′(a1) + ℘′(a2) = 0, ∇G(a1) +∇G(a2) = 0 and a1 �= a2. (3.9)

Hence Theorem 3.2 says that equation (1.1) with ρ = 16π has a solution iff (3.9) has a

solution.
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If (a1, a2) is a branch point, then either both ai are half periods or (a1, a2) = (q,−q)
such that

q is not a half period and ζ(2q)− 2ζ(q) = 0. (3.10)

By (3.7), we can deduce that (3.10) is equivalent to ℘′′(q) = 0, i.e. ℘(q) = ±√g2/3. We

denote q± to be ℘(q±) = ±
√
g2/3. Hence (wi

2 ,
wj

2 ), i �= j, and (q±,−q±) are five saddle

points of Y2(τ). From the information, we could reconstruct the polynomial l2(B), which is

the defining function of Y2. Because the five zeros of l2(B) are those corresponding branch

points. Hence the five zeros of l2(B) are −3ek, k = 1, 2, 3, and ±√12g2. Therefore,

l2(B) = (B2 − 12g2)(B3 − g2B + 27g3).

For (3.3) with n ≥ 2, we want to study the solution structure during the process of

doforming τ . We conjecture:

In the deforming process, equation (3.3) could bifurcate its

solutions only at the trivial solutions.
(3.11)

For n = 1, it is identical to (2.10) in Section 2. For our purpose, we will construct a

“pre-modular” form Zn(σ; τ) of degree
n(n+1)

2 , which is naturally associated with Y n(τ)

and σ =
n∑
i=1

ai, (a1, · · · , an) ∈ Yn. When n = 1, Z1(σ; τ) is the old Heche form. The

function Zn(σ; τ) is called pre-modular because Zn(σ; τ) is a modular form with respect to

Γ(N) if σ is N -torsion point. The most important property of Zn(σ; τ) is the following:

a = (a1, · · · , an) is a non-trivial solution of (3.3) with E = Eτ

iff τ is a zero of Zn(σ; τ) where σ =
n∑
i=1

ai.
(3.12)

Our conjecture about Zn is

Suppose σ is not a 2-torsion point. Then any zero τ of Zn(σ; τ)

is simple.
(3.13)

Obviously, (3.13) implies (3.11). For N = 2, 3, the premodular form Zn(σ; τ) was

explicitly constructed by S. Dahmen [10, 11]

Z2(σ; τ) = Z3 − 3℘Z − ℘′,

and

Z3(σ; τ) = Z6 − 15℘Z4 − 20℘′Z3 + (
27

4
g2 − 45℘2)Z2 − 12℘′℘Z − 5

4
(℘′)2,

where Z = the Hecke formZ(σ; τ), ℘ = ℘(σ; τ) and ℘′ = ℘′(σ; τ). The construction of Z2

and Z3 are based on the addition formula and a classical cubic formula. See [10]. However,

for n ≥ 4, his method can not work and it requires more techniques from algebraic geometry

such as cubic theorem and other methods. For details, we refer the readers to [17].
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Liouville equations from a variational point of view

Andrea Malchiodi

Abstract. After discussing the role of Liouville equations in both Conformal Geometry and Math-

ematical Physics, we will explore some of their variational features. In particular we will show the

role of the Moser-Trudinger inequality, as well as of some of its improved versions, in characterizing

the Euler-Lagrange energy levels of the problems under interest. This description reduces the study of

PDEs of Liouville type to topological properties of explicit finite-dimensional objects.
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1. Introduction

Liouville equations are of elliptic type and involve exponential nonlinear terms. They play

a prominent role in the study of problems in Conformal Geometry and in Mathematical

Physics.

In Conformal Geometry they rule the transformation law for Gaussian curvature: con-

sidering a compact Riemannian surface (Σ, g) with Gaussian curvature Kg and a conformal

metric on Σ written as g̃ = e2wg, Kg transforms according to the law

−Δgw +Kg = Kg̃e
2w. (1.1)

Here Kg̃ stands for the Gaussian curvature of the new metric g̃.
Natural questions associated to (1.1) are the classicalUniformization Problem, namely to

get constant Gaussian curvature from an arbitrary surface, or the Kazdan-Warner or Niren-
berg problem, which consists in prescribing Kg̃ as a given function on Σ. There is indeed

also natural higher-order counterpart of (1.1) in four dimensions (in fact, in all even dimen-

sions), which concerns the prescription ofQ-curvature: we will discuss this specific problem

in Section 2.

Liouville equations also appear in models from Mathematical Physics, for example in

the description of mean field vorticity in steady flows ([12, 20]), Chern-Simons vortices in

superconductivity or Electroweak theory ([55, 59]). On compact surfaces (the torus would

for example model a periodic system in the plane) one is led to study equations of the form

−Δgu = ρ

(
h(x)e2u´

Σ
h(x)e2udVg

− a(x)

)
, (1.2)

which include (1.1) as well. Here ρ is a positive parameter, a, h : Σ → R two smooth

functions, with h(x) strictly positive on Σ.
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Solutions to (1.2) can be found as critical points of the Euler-Lagrange energy Iρ :
W 1,2(Σ)→ R defined by

Iρ(u) =

ˆ
Σ

|∇gu|2dVg + 2ρ

ˆ
Σ

a(x)u dVg − ρ log

ˆ
Σ

h(x)e2udVg. (1.3)

We recall that in two dimensions the Sobolev space W 1,2(Σ) embeds into every Lp space:

however the embedding can be pushed up to exponential class. Indeed one has the well-

known Moser-Trudinger inequality ([48, 57])

log

ˆ
Σ

e2(u−u)dVg ≤ 1

4π

ˆ
Σ

|∇gu|2dVg + CΣ,g, (1.4)

where u =
ffl
Σ
u dVg stands for the average of u on Σ. The latter inequality makes indeed the

energy Iρ well defined, and actually also Frechet-differentiable with continuous derivative.

Using (1.4) and Poincaré’s inequality, together with the Direct Methods of the Calculus

of Variations, one finds immediately existence of minimizers of Iρ for ρ sufficiently small.

Proposition 1.1. If ρ < 4π Iρ is coercive (i.e. Iρ(u) → +∞ as ‖u‖ → +∞) and admits a
minimizer, which is a solution of (1.9).

If ρ = 4π then Iρ is still lower bounded but coercivity is lost, and hence minimizers might

not exist. This case is analysed in [28, 51], where the asymptotic behaviour of miniminzers

of Iρn , ρn ↗ 4π, is studied.

We are mainly interested here in cases for which a lower bound on the Euler-Lagrange energy

is not available (ρ > 4π in (1.2)), and to describe some general methods to attack the problem

under these circumstances. We will see in particular the role of some improved versions of

(1.4) in terms of the distribution over the surface of the conformal volume e2u. There are

two well-known results in this spirit from the 70’s. The first, due to J.Moser ([49]), asserts

that on the standard sphere one gains a better constant on antipodally symmetric functions,

namely

log

ˆ
S2

e2(u−u)dVgS2 ≤
1

8π

ˆ
S2

|∇gS2u|2dVgS2 + CS2 for every u even.

The second is due to T.Aubin, [2], who proved that for every positive ε there exists Cε > 0
such that

log

ˆ
S2

e2(u−u)dVgS2 ≤
1 + ε

8π

ˆ
S2

|∇gS2u|2dVgS2 + Cε for every u balanced.

A function defined on S2 is said to be balanced provided
´
S2 e

2uxidVgS2 = 0 for all

i = 1, 2, 3, where xi stands for the restriction of the i-th coordinate of R3 to S2. Such a

result was extended to arbitrary surfaces by W.Chen and C.Li in [22] provided the confor-

mal volume e2u is sufficiently spread over Σ, in a proper quantitative way. The argument

relies on localizing the Moser-Trudinger inequality near each set supporting a finite part of

the volume. We will see in Section 2 (specifically, for the Q-curvature equation, which pos-

sesses analogous variational features) how to exploit this kind of improved inequalities in

order to characterize the volume accumulation for functions with low Euler-Lagrange en-

ergy. More precisely, if the parameter ρ is between the k-th and the (k + 1)-th multiple
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of the threshold energy, 4π, and if Iρ(u) is largely negative, then one can show that e2u,
normalized in L1(Σ), concentrates near at most k points of Σ. From a distributional point

of view, this means that the normalization of e2u resembles one of the following probability

measures

Σk =

⎧⎨⎩
k∑

j=1

tjδxj :
k∑

j=1

tj = 1, xj ∈ Σ
⎫⎬⎭ , (1.5)

where δxj stands for the Dirac delta at xj . It turns out that one could also construct test

functions modelled on this set for which the Euler-Lagrange energy is arbitrarily low (if ρ
is still in the above range). Somehow, it is possible to construct maps going back and forth

from Σk to the low energy levels of Iρ. This fact together with a topological information

on Σk, namely its non-contractibility, makes it possible to use min-max methods to prove

existence of solutions to (1.2) for generic values of ρ on any surface.

Remark 1.2. Another approach to the study of (1.9) relies on computing the Leray-Schauder

degree of the equation (see [23, 24, 39]). In some cases the degrees of different solutions

might cancel and a Morse-theoretical approach would give more precise information on their

structure. For more details and a comparison of the two approaches we refer to [44]. See

also [26] for some multiplicity results.

We turn next to a singular version of (1.2), namely

−Δgu = ρ
(
h(x)e2u − a(x)

)− 2π m∑
j=1

αjδpj . (1.6)

Here ρ is again a positive parameter and a, h : Σ→ R two smooth functions with h(x) > 0
for every x ∈ Σ. The pj’s are given points of Σ and αj are real numbers.

In Chern-Simons theory singular sources as in (1.6) represent vortices in the physical

system, namely points where the material described in the model would have null conduc-

tivity. In this case the numbers αj would be integer, and would stand for the vanishing order

of the scalar field. Singularities in the form of Dirac masses also appear in fluid dynamics,

see for example [58].

In Conformal Geometry instead, (1.6) represents a singular version of (1.1), in which one

prescribes a conical geometry at the points pj . Precisely, if one could solve (1.6), the conical

angle at pj would be given by 2π(1 + αj), so in this geometric context it is interesting to

consider any αj > −1. Negative values of α correspond to standard cones, while positive

α’s endowΣwith an orbifold structure. In general, the formal sum α :=
∑

j αjpj is referred
to as a divisor, and encodes the singular structure of the desired conformal metric.

Problem (1.6) presents in general more difficulties compared to (1.2), as there are well-

known (Kazdan-Warner type) obstructions to the existence of solutions. On the sphere these

obstructions are based on integrations by parts arguments, (see also [42]), but there are more

recent examples on surfaces of positive genus as well, see [13].

To attack the existence problem it is convenient to desingularize the equation, consider-

ing the Green’s function of the Laplacian with pole at p ∈ Σ, namely the solution to

−ΔgGp(x) = δp − 1

|Σ| on Σ, with

ˆ
Σ

Gp(x) dVg = 0. (1.7)
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Making the substitution

u �→ u+ 2π

m∑
j=1

αjGpj (x), h(x) �→ h̃(x) = h(x)e−2π
∑m

j=1 αjGpj
(x) (1.8)

(1.2) becomes equivalent to

−Δgu = ρ
(
h̃(x)e2u − ã(x)

)
on Σ. (1.9)

Here ã(x) is a smooth function on Σ, while h̃ is such that

h̃ > 0 on Σ \ ∪j{pj}; h̃(x) " γjd(x, pj)
2αj near pj (1.10)

for some constant γj > 0, where d(·, ·) stands for the distance induced by g. The singular

behaviour of h̃ is determined by the asymptotic profile of the Green’s function near the

poles Gpj (x) " 1
2π log

1
d(x,pj)

. Although completely equivalent to the original problem,

the advantage of (1.9) consists in inheriting a variational structure: in fact its solutions are

critical points of the energy

Ĩρ(u) =

ˆ
Σ

|∇gu|2dVg + 2ρ

ˆ
Σ

ã(x)u dVg − ρ log

ˆ
Σ

h̃(x)e2udVg. (1.11)

Even for a singular coefficient h̃, there is a variant of (1.4) from [21] and [56] (see also [18]).

Proposition 1.3 ([21, 56]). Let αj > −1 for all j, and let h̃ : Σ→ R be as in (1.10). Then
one has

log

ˆ
Σ

h̃(x)e2(u−u)dVg ≤ 1

4πmin{1, 1 + minj αj}
ˆ
Σ

|∇u|2 + Ch̃,g (1.12)

for all u ∈W 1,2(Σ).

As one can see, the constant in (1.12) is determined by the most singular behaviour of

h̃ near the points pj . As for (1.4), it is still possible to localize inequality (1.12) near each

region containing some portion of the total volume. The local constant will then be 1
4π if this

region only contains points with negative weights αj : it will instead be equal to 1
4π(1+αj)

if

the region is localized near a point pj with negative αj , see [14] for details.

When all weights are negative, following this reasoning one is induced to assign to any

given point q ∈ Σ a weighted cardinality as follows:

τ(q) =

{
1 + αj if q = pj for some j = 1, . . . ,m;
1 otherwise.

The cardinality of any finite set of (pairwise distinct) points on Σ can be defined extending

τ by additivity. As we will see in Section 3, this weighted cardinality enables to describe

functions with low energy Ĩρ, in the sense that their (normalized) conformal volume will be

distributionally close to an element belonging to the set of probability measures

Σρ,α =

⎧⎨⎩∑
qj∈J

tjδqj :
∑
qj∈J

tj = 1, tj ≥ 0, qj ∈ Σ 4π τ(J) < ρ

⎫⎬⎭ . (1.13)
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We will see that the non-contractibility of Σρ,α, as a topological space endowed with the

weak topology of distributions, will give a sufficient condition for the existence of solutions

to (1.9).

When some coefficient αj is positive instead, if e2u concentrates near pj one would

expect an improvement of the local Moser-Trudinger constant by the fact that h̃ vanishes

at pj with a certain rate. On the other hand, there is no sign of this improvement from

(1.12) in such a case. We will see that indeed one can take a better constant provided some

information on the microscopic structure of the conformal volume is available. In particular

this information relies on evaluating a certain number (depending on αj) of angular moments
of the volume measure near pj , see [4, 45]. There is indication that the non-contractibility

of Σρ,α for arbitrarily signed coefficients could still lead to existence for (1.9).

2. Conformal metrics with constant Q-curvature

Q-curvature is a scalar quantity introduced by Thomas Branson in [9] which recently at-

tracted a lot of attention as it appears in several contexts. These include functional determi-

nants, compactification of locally conformally flat manifolds, scattering theory for Poincaré-

Einstein metrics, ambient metrics, volume renormalization: we refer to the survey paper

[15], where other geometric applications are discussed (see also [16, 17, 35]).

On a four dimensional manifold (M, g), with Ricci tensor Ricg and scalar curvature Rg

the Q-curvature is defined by

Qg = − 1

12

(
ΔgRg −R2

g + 3|Ricg|2
)
. (2.1)

Under a conformal change of metric g̃ = e2wg Q transforms according to the formula

Pgw + 2Qg = 2Qg̃e
4w, (2.2)

where Pg is the Paneitz operator

Pg(ϕ) = Δ2
gϕ+ divg

(
2

3
Rgg − 2Ricg

)
dϕ; ϕ ∈ C∞(M),

introduced in [52] to derive conformally covariant versions of Maxwell’s equations.

In addition to the similarity with (1.1),Q-curvature shares other analogies with the Gaus-

sian curvature, like appearing in a Gauss-Bonnet type formula. Indeed, if Wg denotes the

Weyl tensor of g one has

ˆ
M

(
Qg +

|Wg|2
8

)
dVg = 4π2χ(M). (2.3)

As Wg is pointwise conformally covariant, it follows that the total Q-curvature of M

qP :=

ˆ
M

QgdVg, (2.4)

is a global conformal invariant.
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Similarly to the uniformization problem, in four dimensions one might ask whether it

would be possible to find conformal metrics with constant Q-curvature. Writing g̃ = e2wg,
by (2.2) the question amounts to finding a solution of the equation

Pgw + 2Qg = 2Qe4w, (2.5)

whereQ is a real constant. Problem (2.5) is variational, and solutions can be found as critical

points of the following functional

II(u) = 〈Pgu, u〉+ 4

ˆ
M

QgudVg − qP log

ˆ
M

e4udVg; u ∈W 2,2(M). (2.6)

Here W 2,2(M) is the space of real-valued functions on M which are of class L2 together

with their first and second derivatives, and the symbol 〈Pgu, v〉 stands for

〈Pgu, v〉 =
ˆ
M

(
ΔguΔgv +

2

3
Rg∇gu · ∇gv − 2(Ricg∇gu,∇gv)

)
dVg. (2.7)

The last term in the functional II is controlled by means of the Adams inequality (see [1, 19])

log

ˆ
M

e4(u−u)dVg ≤ 1

8π2
〈Pgu, u〉+ C, Pg ≥ 0, u ∈W 2,2(M). (2.8)

When Pg is not positive-definite one can still treat the logarithmic term by a minor modifi-

cation of the proof in [19].

Problem (2.5) was solved in [19] when Pg ≥ 0 and qP < 8π2. Under these assumptions,

by (2.8) the functional II is bounded from below and coercive, so one has an analogue of

Proposition 1.1. The result in [19] has also been extended in [10] to higher-dimensional

cases (regarding the so-called GJMS operators, [34]) in [9] using a geometric flow.

We describe next the following theorem, which relaxes the assumptions in [19] and al-

lows to consider generic manifolds (see also [50] for a higher-dimensional version).

Theorem 2.1 ([30]). Suppose ker Pg = {constants}, and assume that qP �= 8kπ2 for
k = 1, 2, . . . . Then (M, g) admits a conformal metric with constant Q-curvature.

The assumptions in Theorem 2.1 are conformally invariant and by their general character

they apply to a large class of four manifolds. One of the main differences between (1.1)

and (2.5) is that in four dimensions the integral of Qg , which we denoted by qP , could

be arbitrarily large (as for example on products of negatively-curved surfaces). As it was

discussed for Iρ, here if either qP > 8π2 or if Pg has some negative eigenvalue, then II
becomes unbounded from below.

For brevity we only treat here the case of non-negative Pg’s, as the main difficulty and

peculiarity of the problem is caused by the condition qP > 8π2 (referring to [30] for details

when negative eigenvalues are present). To see the lack of lower bounds on II one can fix a

point x ∈M and consider a test function of the following form

ϕλ,x(y) " 1

4
log

(
2λ

1 + λ2d(y, x)2

)
; y ∈M.

It turns out that for λ→ +∞ one has that II(ϕλ,x)→ −∞.

In the next two subsections we will sketch the main ideas for the proof of Theorem 2.1.

We first describe how the distribution over M of e4u affects the multiplicative constant in

(2.8), and then how to derive existence via a min-max scheme based on the four-dimensional

counterpart of (1.5).
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2.1. Effects of volume distribution. As we anticipated in the introduction, spreading of

conformal volume leads to improvements of the Moser-Trudinger inequality. Here is a rig-

orous statement for (2.8).

Lemma 2.2. For a fixed integer �, let Ω1, . . . ,Ω�+1 be subsets of M satisfying d(Ωi,Ωj) ≥
δ0 for i �= j, where δ0 is a positive real number, and let γ0 ∈

(
0, 1

�+1

)
. Then, for any ε̃ > 0

there exists a constant C = C(�, ε̃, δ0, γ0) such that

log

ˆ
M

e4(u−u)dVg ≤ C +
1

8(�+ 1)π2 − ε̃
〈Pgu, u〉

for all the functions u ∈W 2,2(M) satisfying
´
Ωi

e4udVg´
M

e4udVg
≥ γ0, ∀ i ∈ {1, . . . , �+ 1}. (2.9)

The original version of the above lemma was given for two dimensions in [22] for � = 1.
The main idea of the proof consists in constructing cut-off functions gi which are identically

equal to 1 on Ωi and which have mutually disjoint supports. Then one applies (2.8) to giu
and sums over i. The main term in 〈Pggiu, giu〉 is given by

´
M

g2i (Δu)2dVg , while the

remaining ones can be treated via interpolation inequalities.

A consequence of the above lemma is that if qP < 8(k + 1)π2 for some natural k and if

u satisfies (2.9), then II(u) stays bounded from below. Since we can choose δ0 and the Ωi’s

arbitrarily, this suggests that if II(u) is sufficiently low, then e4u should concentrate near

at most k points of M . Using a covering argument this idea can indeed be made rigorous,

yielding the following characterization of low-energy functions.

Lemma 2.3. Assuming Pg ≥ 0 and qP ∈ (8kπ2, 8(k + 1)π2) with k ≥ 1, the following
property holds. For any ε > 0 and any r > 0 there exists a large positive L = L(ε, r) such
that for every u ∈W 2,2(M) with II(u) ≤ −L there exist k points p1,u, . . . , pk,u ∈M such
that ˆ

M\∪k
i=1Br(pi,u)

e4udVg < ε. (2.10)

As we saw in the Introduction, if we impose the normalization
´
M

e4udVg = 1, the fact

that almost all conformal volume is contained in k small balls in M suggests to consider the

following set of probability measures on M .

Mk =

{
k∑

i=1

tiδxi
: xi ∈M, ti ∈ [0, 1],

k∑
i=1

ti = 1

}
.

More precisely, (exponentials of) functions with low energy will approach elements in Mk

in the sense of measures.

Endowing naturally Mk with the weak topology of distributions, we obtain a finite-

dimensional object: for k = 1 M1 is homeomorphic to M , but for larger k’s this will be

a stratified set, namely union of open manifolds of different dimensions, whose maximal

one is 5k − 1. While it is difficult in general to obtain a full description of the topology of

Mk, it will be enough for us to use the following characterization.
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Lemma 2.4. IfM is a compact closed manifold, for any k ≥ 1 the setMk is non-contractible.

Using Lemma 2.3 one can construct a natural continuous map from large negative sub-

levels of II into Mk, as it is described in the next result.

Proposition 2.5. For k ≥ 1 there exists a large L > 0 and a continuous map Ψ from the
sublevel {II ≤ −L} into Mk which acts non-trivially on the homology groups of {II ≤
−L}.

2.2. The min-max scheme. In order to proceed we need some preliminary notation. For

δ > 0 small, consider a smooth non-decreasing cut-off function χδ : R+ → R satisfying the

following properties

χδ(t) = t for t ∈ [0, δ];
χδ(t) = 2δ for t ≥ 2δ; (2.11)

χδ(t) ∈ [δ, 2δ] for t ∈ [δ, 2δ].

Then, given σ ∈ Mk

(
σ =

∑k
i=1 tiδxi

)
and λ > 0, we define the function ϕλ,σ : M → R

as

ϕλ,σ(y) =
1

4
log

k∑
i=1

ti

(
2λ

1 + λ2χ2
δ (di(y))

)4

; y ∈M, (2.12)

where di(y) = d(y, xi), y ∈ M ; the cut-off χδ has been introduced for regularity reasons.

We have then the following result.

Proposition 2.6. Let ϕλ,σ be defined as in (2.12). Then, as λ→ +∞ one has the following
properties

(i) e4ϕλ,σ ⇀ σ weakly in the sense of distributions;

(ii) II(ϕλ,σ)→ −∞ uniformly for σ ∈Mk.

Moreover, if Ψ is given in Proposition 2.5, the map σ �→ ϕλ,σ �→ Ψ(ϕλ,σ) converges to the
identity on Mk as λ tends to infinity.

We next describe the variational scheme yielding existence of solutions to (2.5). Let

M̂k denote the (contractible) topological cone over Mk, which can be realized as M̂k =
Mk × [0, 1], with Mk × {0} collapsed to a single point. Choose first L be so large that

Proposition 2.5 applies, and then let λ be so large that II(ϕλ,σ) ≤ −4L for all σ ∈ Mk,

which is possible by Proposition 2.6. Fixing this number λ, we define the following class of

maps

Πλ =
{
θ : M̂k →W 2,2(M) : θ is continuous, θ(· × {1}) = ϕλ,· on Mk

}
. (2.13)

We have the following properties.

Lemma 2.7. The set Πλ is non-empty and moreover, letting

Πλ = inf
θ∈Πλ

sup
m∈M̂k

II(θ(m)), one has Πλ > −2L. (2.14)

As a consequence, the functional II possesses a Palais-Smale sequence at level Πλ.
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To check that Πλ is non empty, it is sufficient to consider the map θ(s, σ) = sϕλ,σ ,

which is well defined on M̂k, s ∈ [0, 1]. The inequality in (2.14) follows by a contradiction

argument. If there would be an admissible map in Πλ for which the energy is always below

−2L, then its image would belong to the domain of Ψ. We would obtain then a retraction of

the cone M̂k onto its base, which (letting the height vary from the vertex to the base) would

realize a homotopy between the identity map on Σk and a constant map. This is indeed

impossible since Σk is non contractible.

A Palais-Smale sequence at level c is a sequence (un)n such that II(un) → c and

such that II ′(un) → 0 as n → +∞. To produce it one considers any map in Πλ with

sup
m∈M̂k

II(θ(m)) sufficiently close to Πλ and let it evolve via the gradient flow of II ,
keeping its boundary fixed. By (2.14) the maximum value of II on the evolved set, which

still belongs to Πλ, cannot decrease below Πλ, so the gradient of II along the evolution has

to become small somewhere along the flow. In this reasoning, it is crucial to have a gap
in energy between the maximal energy at the interior of M̂k and at its boundary, which is

guaranteed by the (2.14), see for example [54] for further details.

If Palais-Smale sequences are bounded, then it is easy to see that they must converge to

a solution of (2.5). Unfortunately boundedness of Palais-Smale sequences is still an open

problem, but this issue can be bypassed using an argument due to M.Struwe in [53]. For t in
a neighbourhood of 1 we define the functional IIt :W

2,2(M)→ R by

IIt(u) = 〈Pgu, u〉+ 4t

ˆ
M

QgdVg − 4tqP log
ˆ
M

e4udVg, u ∈W 2,2(M),

whose critical points give rise to solutions of

Pgu+ 2tQg = 2tqP e
4u in M. (2.15)

Running the above variational scheme for t close to 1 one finds a min-max value as in Lemma

2.7, which we callΠt, and a corresponding Palais-Smale sequence. One can easily show that
Πt

t is non-increasing, and hence a.e. differentiable, in [1− t, 1 + t] provided t is sufficiently

small. One has then the following result, which can be proved as in [27].

Lemma 2.8. Let Λ ⊂ [1 − t, 1 + t] be the (dense) set of t’s for which the function Πt

t is
differentiable. Then, for t ∈ Λ, IIt possesses a bounded Palais-Smale sequence (ul)l at
level Πt.

By the last lemma and the comments we made before it one can then deduce existence of

solutions utl to (2.15) for a sequence tl → 1. To show that then utl converges to a solution of

(2.5) one can use the following result from [32, 43] (together with some standard regularity

theory), where it is proved that compactness holds provided qP stay bounded away from

8π2N. The proof relies on blow-up analysis of solutions, and has previous two-dimensional

counterparts in [11, 39, 40].

Theorem 2.9 ([43]). Suppose ker Pg = {constants} and that (ul)l is a sequence of solu-
tions of

Pgul + 2Ql = 2qle
4ul in M, (2.16)

satisfying
´
M

e4uldVg = 1, where ql =
´
M

QldVg , and whereQl → Q0 in C0(M). Assume
also that k0 :=

´
M

Q0dVg �= 8kπ2 for k = 1, 2, . . . . Then (ul)l is bounded in Cα(M) for
any α ∈ (0, 1).
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It is an interesting open problem to study the case when qP is an integer multiple of 8π2.

Some results in this direction can be found in [38].

3. Singular Liouville equations

We showed in the Introduction how to desingularize equation (1.6) and to transform it into

(1.9), which has variational structure, with Euler-Lagrange energy Ĩρ (see (1.11)). Simi-

larly to Lemma 2.2, one has the following result when portions of the conformal volume

accumulate near both regular and singular points, see [14].

Lemma 3.1. Suppose αj < 0 for all j. Let n ∈ N and let I ⊆ {1, . . . ,m} with n +
card (I) > 0. Assume there exists r > 0, δ0, γ0 > 0 and pairwise distinct points {q1, . . . , qn}
⊆ Σ \ {p1, . . . , pm} such that:

• for any {a, b} ⊆ {q1, . . . , qn ∪ (∪i∈Ipi)} with a �= b d(Br(a), Br(b)) ≥ 4δ0;

• for any a ∈ {q1, . . . , qm} one has d(pi, Br(a)) ≥ 4δ0 for any i ∈ {1, . . . ,m} \ I .
Then, for any ε̃ > 0 there exists a constant C := C(Σ, g, n, I, r, δ0, γ0, ε̃) such that

log

ˆ
Σ

h̃e2(u−u) dVg ≤ 1

4π
(
n+

∑
i∈I(1 + αi)− ε̃

)ˆ
Σ

|∇gu|2 dVg + C (3.1)

for all u ∈W 1,2(Σ) satisfying
´
Br(a)

h̃e2u dVg´
Σ
h̃e2u dVg

≥ γ0; a ∈ {q1, . . . , qn ∪ (∪i∈Ipi)}.

With this version of the improved inequality, it is possible to argue as for Lemma 2.3, but

due to the different local Moser-Trudinger constant in presence of a weight, singular points

play a separate role. Precisely, if all the weights are negative, one can show that conformal

volumes of functions with low energy are close in the distributional sense to the set Σρ,α

introduced in (1.13).

We say that ρ > 0 is a singular value for problem (1.9) if

ρ = 4πn+ 4π
∑
i∈I

(1 + αi) (3.2)

for some n ∈ N and I ⊆ {1, . . . ,m} (possibly empty) satisfying n+ card (I) > 0. The set

of singular values will be denoted byS = S (α). It appears when studying the compactness

properties of solutions to (1.9). As it was proven in [5], [6], [7], solutions stay compact when

ρ �∈ S, and this allows to apply min-max theory to Ĩρ analogously to as it was done in the

previous section.

Theorem 3.2 ([14]). Suppose that αj < 0 for all j, and that ρ ∈ R \ S. Then, if the set
Σρ,α is not contractible, problem (1.9) admits a solution.

We expect the same theorem to hold also for general values of the α’s, namely when some

(or all) of them are positive. The case of positive α’s is somehow more delicate since, as

it was already noticed, there is no local improvement in the Moser-Trudinger constant from

(1.12). We will see in the next subsection how some new kind of improved inequality might

play a role in this problem.



Liouville equations from a variational point of view 355

3.1. A new improved inequality. We illustrate an example in which one can derive differ-

ent improved inequalities in presence of positive α’s. Instead of looking at compact surfaces,

we consider the following model problem in the unit ball B of R2 (which however contains

the peculiarity of the problem){
−Δu = ρ h̃e2u´

B
h̃e2udx

in B

u = 0 on ∂B.
(3.3)

We assume that there is only one singular point at the origin with weight α > 0, and that

h̃ has still the same asymptotics as in (1.10). Also this problem is variational, with Euler-

Lagrange energy given by

Ĩρ,B(u) =

ˆ
B

|∇gu|2dx− ρ log

ˆ
B

h̃(x)e2udx. (3.4)

Notice that a denominator appears in the right-hand side of (3.3) since, differently from the

case of compact surfaces, here we are fixing Dirichlet boundary data and we cannot translate

solutions by suitable constants in order to normalize it.

Under radial symmetry, it was proved in [31] that the best constant in (1.12) is 1
4π(1+α)

even for positive α’s (see also [47] for a Zk-symmetric version). One can indeed substitute

the radiality assumption, which is quite stringent, with a constraint of finite codimension in

W 1,2
0 (B). This consists in looking at suitable angular moments of the right-hand side of

(3.3). To introduce this condition we define the probability measure on B

f̃u :=
h̃e2u´

B
h̃e2udx

,

and from this the probability measure on the unit circle

μu(A) =

ˆ
Ã

f̃udx; A ⊆ S1, Ã = ∪t∈(0,1]tA. (3.5)

Using complex notation, we then let

Fk(f̃u) =

(ˆ
S1

z dμu,

ˆ
S1

z2dμu, . . . ,

ˆ
S1

zkdμu

)
, (3.6)

map the probability measures on S1 into Ck. One has then the following result.

Proposition 3.3 ([4, 45]). For α > 0, let kα denote the smaller integer greater or equal to
α, let k ∈ {1, . . . , kα} and let Fk denote the map in (3.6). Then for any ε > 0 there exists a
constant C = C(ε, k, α) such that

log

ˆ
B

h̃(x)e2udx ≤ 1 + ε

4π(1 + k)

ˆ
B

|∇u|2dx+ C,

whenever Fk(f̃u) = 0.

We notice that the main feature of the last proposition is that the assumptions are scaling

invariant, and hence they might apply also to functions u which are arbitrarily concentrated

near the singularity. As a corollary we obtain a lower bound on Ĩρ,B provided a sufficient

number of angular moments vanishes.
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Corollary 3.4. Suppose that ρ ∈ (4kπ, 4(k+1)π)∩ (4π, 4π(1+α)) for some k ∈ N. Then
there exists a constant L = L(ρ, k, α) such that

Ĩρ,B ≥ −L for all u such that Fk(f̃u) = 0.

3.2. An application. As an application of the previous result we would like to illustrate the

following theorem.

Theorem 3.5 ([4, 45]). Suppose α > 0, and that ρ ∈ (4π, 4π(1+α)) \ 4πN. Then problem
(3.3) is solvable.

Remark 3.6. When h̃(x) = |x|2α, one can show using Pohozaev-type identities that (3.3)

has no solutions if ρ ≥ 4π(1 + α), see [4]. Therefore the upper bound on ρ in the previous

theorem is optimal.

To prove Theorem 3.5 one can still use a min-max scheme as in the previous section.

Consider first the circle

γ := ∂B1/2

centred at the origin of R2. For k ∈ N, similarly to (1.5) one can consider the family of unit

measures supported on at most k points of γ

γk =

⎧⎨⎩
k∑

j=1

tjδxj :

k∑
j=1

tj = 1, xj ∈ γ

⎫⎬⎭ . (3.7)

While for two-dimensional surfaces (or four-dimensional manifolds) it is in general difficult

to describe the topology of these formal combinations of Dirac masses, for a circle there is a

complete characterization.

Proposition 3.7 ([4]). For k ≥ 1, there exists a homeomorphism Sk from the sphere S2k−1

onto γk.

Also, as for Proposition 2.6, one has the following result.

Proposition 3.8. There exists a family of functions ϕ̃λ,σ , σ ∈ γk, which have the following
properties as λ→ +∞

(i) h̃(x)e2ϕ̃λ,σ ⇀ σ weakly in the sense of distributions;

(ii) Ĩρ,B(ϕ̃λ,σ)→ −∞ uniformly for σ ∈ γk.

We next introduce a min-max scheme suitable for this problem. Let ρ ∈ (4kπ, 4(k +
1)π) ∩ (4π, 4π(1 + α)), and let L be as in Corollary 3.4. Choose then λ̃ > 0 so large that

Ĩρ,B(ϕ̃λ̃,σ) < −4L for every σ ∈ γk, which is possible by Proposition 3.8. If B2k stands

for the unit ball of R2k and if Sk is as in Proposition 3.7, consider the class of maps

Πλ̃ =
{
θ : B

2k →W 1,2
0 (B) : θ continuous, θ(y) = ϕλ̃,Sk(y)

for y ∈ ∂B2k
}
. (3.8)

Similarly to Lemma 2.7 we have the following result.
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Lemma 3.9. The set Πλ̃ is non-empty and moreover, letting

Πλ̃ = inf
θ∈Πλ̃

sup
z∈B2k

Ĩρ,B(θ(m)), one has Πλ̃ > −2L. (3.9)

Moreover, Ĩρ,B possesses a Palais-Smale sequence at level Πλ̃.

To show inequality (3.9) one can argue by contradiction and assume the existence of an

admissible map θ̃ in Πλ̃ for which the supremum of the energy stays below −2L.
On the other hand, by Proposition 3.7 and the properties of ϕ̃λ̃,σ one can prove that

the topological degree deg(Fk, B
2k, 0) is equal to 1. This implies that Fk vanishes some-

where on θ̃(B2k), and therefore Corollary 3.4 would contradict the above upper bound on

the energy (−2L).
For a degree-theoretical approach to (1.6) we refer to [25]. It would be also interesting

to explore the case in which ρ belongs to the critical set S, see [41] for a specific problem

on the flat torus. When one prescribes constant Gaussian curvature in presence of conical

singularities, deriving general non-existence results is also an interesting open question, see

[33, 42].

We also mention a natural system of Liouville equations, the Toda system, related to (1.6)

and motivated from the study of non-abelian Chern-Simons vortices. Its variational structure

is only partially explored, see [8, 46] and the references therein, and many questions remain

open for systems of this type.
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Abstract. We survey the techniques used in our recent resolution of the Kadison–Singer problem and

proof of existence of Ramanujan Graphs of every degree: mixed characteristic polynomials and the

method of interlacing families of polynomials. To demonstrate the method of interlacing families of

polynomials, we give a simple proof of Bourgain and Tzafriri’s restricted invertibility principle in the

isotropic case.
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1. Introduction

In a recent pair of papers [30, 31], we prove the existence of infinite families of bipartite Ra-

manujan graphs of every degree and we affirmatively resolve the Kadison–Singer Problem.

The techniques that we use in the papers are closely related. In both we must show that cer-

tain families of matrices contain particular matrices of small norm. In both cases, we prove

this through a new technique that we call the method of interlacing families of polynomials.
In the present survey, we review this technique and the polynomials that we analyze with it,

the mixed characteristic polynomials.
We begin by defining Ramanujan Graphs, explaining the Kadison–Singer Problem, and

explaining how these problems are related. In particular, we connect the two by demonstrat-

ing how they are both related to the problem of sparsifying graphs.

1.1. Ramanujan graphs. Let G be an undirected graph with vertex set V and edge set E.

The adjacency matrix of G is the symmetric matrix A whose rows and columns are indexed

by vertices in V with entries

A(a, b) =

{
1 if (a, b) ∈ E

0 otherwise.

Since A is symmetric it has |V | real eigenvalues, which we will also refer to as the eigenval-
ues of G.

Consider a function f : V → R. Multiplication by A corresponds to the operator that

replaces the value of f at a given vertex with the sum of the values at its neighbors in G. In

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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this way, A is related to random walks and diffusion on G. It is well known that the speed

of the convergence of these processes is determined by the eigenvalues of A and related

matrices.

We will restrict our attention to graphs that are connected and d-regular. When |V | is
finite, it is easy to check that every such graph has an eigenvalue of d corresponding to the

eigenvector of all 1’s. Furthermore, in the case that G is bipartite, one can check that the

eigenvalues of A are symmetric about the origin. Thus every finite bipartite d-regular graph
must also have an eigenvalue of −d. Because these eigenvalues are unavoidable (they are an

artifact of being finite), they are often referred to as the trivial eigenvalues.
The graphs on which random walks mix the fastest are those whose non-trivial eigenval-

ues are as small as possible. An infinite family of connected d-regular graphs all of whose

non-trivial eigenvalues are at most α for some constant α < d is called a family of expander
graphs. Constructing d-regular expanders with a small number of vertices (relative to d)
is easy: for example, the complete graph on d + 1 vertices has all non-trivial eigenvalues

−1 and the complete bipartite graph with 2d vertices has all non-trivial eigenvalues 0. The
interesting problem is to construct d-regular expanders with an arbitrarily large number of

vertices. Margulis [32] was the first to find an explicit construction of such an infinite family.

Expander graphs have proved to be incredibly useful in a variety of contexts. We refer

the reader who is interested in learning more about expander graphs, with a focus on their

applications in computer science, to the survey of Hoory, Linial, and Wigderson [25]. Many

applications of expanders depend upon the magnitudes of their non-trivial eigenvalues. A

theorem of Alon and Boppana provides a bound on how small the non-trivial eigenvalues

can be.

Theorem 1.1 ([3, 35]). For every integer d ≥ 3 and every ε > 0, there exists an n0 so
that every d-regular graph G with more than n0 vertices has a non-trivial eigenvalue that is
greater than 2

√
d− 1− ε.

The number 2
√
d− 1 in Theorem 1.1 has a meaning: it is the spectral radius of the infi-

nite d−regular tree, whose spectrum is the closed interval [−2√d− 1, 2√d− 1] (it has no

trivial eigenvalues because it is not finite) [25]. Since Theorem 1.1 says that no infinite fam-

ily of d-regular graphs can have eigenvalues that are asymptotically smaller than 2
√
d− 1,

we may view this infinite tree as being the “ideal” expander. A natural question is whether

there exist infinite families of finite d-regular graphs whose eigenvalues are actually as small

as those of the tree.

Lubotzky, Phillips and Sarnak [29] and Margulis [33] were the first to construct infinite

families of such graphs. Their constructions were Cayley graphs, and they exploited the

algebraic properties of the underlying groups to prove that all of the nontrivial eigenvalues

of their graphs have absolute value at most 2
√
d− 1. Their proofs required the proof of the

Ramanujan Conjecture, and so they named the graphs they obtained Ramanujan graphs. As

of 2013, all known infinite families of Ramanujan graphs were obtained via constructions

similar to [29, 33]. As a result, all known families of Ramanujan graphs had degree pk + 1
for p a prime and k a positive integer.

The main theorem of [30] is that there exist infinite families of d-regular bipartite Ra-

manujan graphs for every integer d ≥ 3. This is achieved by proving a variant of a conjecture

of Bilu and Linial [9], which implies that every d−regular Ramanujan graph has a 2−cover

which is also Ramanujan, immediately establishing the existence of an infinite sequence. In

contrast to previous results, the proof is completely elementary, and we will sketch most of
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it in this survey.

Bilu and Linial’s conjecture is a purely linear algebraic statement about signings of ad-

jacency matrices. To define a signing, recall that we can write the adjacency matrix of any

graph G = (V,E) as

A =
∑

(a,b)∈E
A(a,b),

where A(a,b) is the adjacency matrix of a single edge (a, b). Then, a signing is any matrix of

the form ∑
(a,b)∈E

s(a,b)A(a,b),

where s(a,b) ∈ {−1,+1} are signs. A graph with m edges has exactly 2m signings.

Bilu and Linial conjectured that every d−regular adjacency matrix A has a signing As

with ‖As‖ ≤ 2
√
d− 1. We prove the following weaker statement, which is equivalent to

their conjecture in the bipartite case, as in this case the eigenvalues are symmetric about zero.

Theorem 1.2. Every d−regular adjacency matrix A has a signing As with

λmax(As) ≤ 2
√
d− 1.

This is a statement about the existence of a certain sum of rank two matrices of type

s(a,b)A(a,b), but it it useful to rewrite it as a statement about a sum of rank one matrices by

making the substitution

s(a,b)A(a,b) = (ea + s(a,b)eb)(ea + s(a,b)eb)
T − eae

T
a − ebe

T
b ,

where ea is the standard basis vector with a 1 in position a. For a d−regular graph, we now

have

As =
∑

(a,b)∈E
s(a,b)A(a,b) =

∑
(a,b)∈E

(ea + s(a,b)eb)(ea + s(a,b)eb)
T − dI. (1.1)

So, Theorem 1.2 is equivalent to the statement that there is a choice of s(a,b) for which

λmax

⎛⎝ ∑
(a,b)∈E

(ea + s(a,b)eb)(ea + s(a,b)eb)
T

⎞⎠ ≤ d+ 2
√
d− 1.

The existence of such a choice can be written in probabilistic terms by defining for each

(a, b) ∈ E a random vector

r(a,b) :=

{
(ea + eb) with probability 1/2 and

(ea − eb) with probability 1/2.
(1.2)

Notice that

E
∑

(a,b)∈E
r(a,b)r

T
(a,b) = dI. (1.3)

Thus, Theorem 1.2 is equivalent to the statement that for every d−regular G = (V,E),

λmax

⎛⎝ ∑
(a,b)∈E

r(a,b)r
T
(a,b)

⎞⎠ ≤ λmax

⎛⎝E
∑

(a,b)∈E
r(a,b)r

T
(a,b)

⎞⎠+ 2
√
d− 1 (1.4)
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with positive probability.

Such a sum may be analyzed using tools of random matrix theory, but this approach

does not give the sharp bound we require, and it is known that it cannot in general as there

are graphs for which the desired signing is exponentially rare (consider a union of disjoint

cliques on d vertices).

The main subject of this survey is an approach that succeeds in proving (1.4) exactly.

The methodology also succeeds in resolving several other important questions about sums

of independent random rank one matrices, including Weaver’s conjecture and thereby the

Kadison–Singer problem. We review these first and describe their connection to Ramanujan

graphs before proceeding to describe the actual technique. The proof of (1.4) and Theorem

1.2 will be sketched in Section 5.1.

1.2. Sparse approximations of graphs. Spielman and Teng [39] observed that one can

view an expander graph as an approximation of a complete graph, and asked if one could find

analogous approximations of arbitrary graphs. In this context, it is more natural to consider

the class of general weighted graphs rather than just unweighted d−regular graphs, and to

study the Laplacian matrix instead of the adjacency matrix. Recall that the Laplacian of a

weighted graph G = (V,E,w) may be defined as the following sum of rank one matrices

over the edges:

LG =
∑

(a,b)∈E
w(a,b)(ea − eb)(ea − eb)

T .

In the unweighted d−regular case, it is easy to see that L = dI−A, so the eigenvalues of the

Laplacian are just d minus the eigenvalues of the adjacency matrix. The Laplacian matrix

of a graph always has an eigenvalue of 0; this is a trivial eigenvalue, and the corresponding

eigenvectors are the constant vectors.

Following Spielman and Teng, we say that two graphsG andH on the same vertex set V
are spectral approximations of each other if their Laplacian quadratic forms multiplicatively

approximate each other:

κ1 · xTLHx ≤ xTLGx ≤ κ2 · xTLHx ∀x ∈ RV ,

for some approximation factors κ1, κ2 > 0. We will write this as

κ1 · LH ) LG ) κ2 · LH ,

where A ) B means that B −A is positive semidefinite, i.e., xT (B −A)x ≥ 0 for every x.
The complete graph on n vertices, Kn, is the graph with an edge of weight 1 between

every pair of vertices. All of the eigenvalues of LKn other than 0 are equal to n. If G is

a d-regular non-bipartite Ramanujan graph, then 0 is the trivial eigenvalue of its Laplacian

matrix, LG, and all of the other eigenvalues ofLG are between d−2√d− 1 and d+2√d− 1.
After a simple rescaling, this allows us to conclude that

(1− 2√d− 1/d)LKn ) (n/d)LG ) (1 + 2
√
d− 1/d)LKn .

So, (n/d)LG is a good approximation of LKn .

Batson, Spielman and Srivastava proved that every weighted graph has an approximation

that is almost this good.
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Theorem 1.3 ([7]). For every d > 1 and every weighted graphG = (V,E,w) on n vertices,
there exists a weighted graph H = (V, F, w̃) with 2d(n− 1)3 edges that satisfies:(

1− 1√
d

)2

LG ) LH )
(
1 +

1√
d

)2

LG. (1.5)

However, their proof had very little to do with graphs. In fact, they derived their re-

sult from the following theorem about sparse weighted approximations of sums of rank one

matrices.

Theorem 1.4 ([7]). Let v1, v2, . . . , vm be vectors in Rn with∑
i

viv
T
i = V.

For every ε ∈ (0, 1), there exist non-negative real numbers si with

|{i : si �= 0}| ≤ ⌈n/ε2⌉
so that

(1− ε)2V )
∑
i

siviv
T
i ) (1 + ε)2V. (1.6)

Taking V to be a Laplacian matrix written as a sum of outer products and setting ε =
1/
√
d immediately yields Theorem 1.3.

Theorem 1.4 is very general and turned out to be useful in a variety of areas including

graph theory, numerical linear algebra, and metric geometry (see, for instance, the survey of

Naor [34]). One of its limitations is that it provides no guarantees on the weights si that it
produces, which can vary wildly. So it is natural to ask: is there a version of Theorem 1.4 in

which all the weights are the same?

This may seem like a minor technical point, but it is actually a fundamental difference.

In particular, Gil Kalai observed that the statement of Theorem 1.4 with V = I is similar to

Weaver’s Conjecture, which was known to imply a positive solution to the Kadison–Singer

Problem. It turns out that the natural unweighted variant of it is essentially the same as

Weaver’s conjecture. We discuss the Kadison–Singer problem and this connection in the

next section.

1.3. The Kadison-Singer problem and Weaver’s conjecture. In 1959, Kadison and

Singer [26] asked the following fundamental question: does every pure state on the abelian

von Neumann algebra D(�2) of diagonal operators on �2 have a unique extension to a pure

state on B(�2), the von Neumann algebra of all bounded operators on �2? In their original

paper, they suggested an approach to resolving this question: they showed that the answer is

yes if every operator in B(�2) can be ‘paved’ by a constant number of operators which are

strictly smaller in the operator norm. Beginning with the work of Anderson [4–6], this was

shown to be equivalent to several combinatorial questions about decomposing finitematrices

into a small number of strictly smaller pieces.

Among these questions is Akemann and Anderson’s “projection paving conjecture” [2],

which Nik Weaver [44] later showed was equivalent to the following discrepancy-theoretic

conjecture that he called KS2.
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Conjecture 1.5. There exist positive constants α and ε so that for every n and d and every
set of vectors v1, . . . , vn ∈ Cd such that ‖vi‖ ≤ α for all i and∑

i

viv
∗
i = I,

there exists a partition of {1, . . . , n} into two sets S1 and S2 so that for each j ∈ {1, 2}∥∥∥∑
i∈Sj

viv
∗
i

∥∥∥ < 1− ε. (1.7)

To see the similarity between this conjecture and Theorem 1.4, observe that for any

partition S1 ∪ S2: ∑
i∈S1

viv
∗
i +

∑
i∈S2

viv
∗
i = I,

so that condition (1.7) is equivalent to

εI )
∑
i∈S1

viv
∗
i ) (1− ε)I.

Thus, choosing a subset of the weights si to be non-zero in Theorem 1.4 is similar to choos-

ing the set S1. The difference is that Conjecture 1.5 assumes a bound on the lengths of the

vectors vi and in return requires the stronger conclusion that all of the si are either 0 or 1. It
is easy to see that long vectors are an obstacle to the existence of a good partition; an extreme

example is provided by considering an orthonormal basis e1, . . . , en. Weaver’s conjecture

asserts that this is the only obstacle.

Overcoming this seemingly small difference turns out to require substantial new ma-

chinery beyond the techniques used in the proof of Theorem 1.4. However, much of this

machinery is built on two key ideas which are contained in [7]. The first is the use of “bar-

rier functions” to bound the roots of polynomials, which is discussed in Section 3.2. The

second, which was presented purely for motivational purposes in [7], is the examination of

expected characteristic polynomials.

As in the case of Ramanujan graphs, Weaver’s conjecture can be written in terms of sums

of independent random rank one matrices. Given vectors v1, . . . , vm ∈ Cd, define for each i
the random vector ri ∈ C2d

ri =

(
vi
0d

)
with probability 1/2 and

(
0d
vi

)
with probability 1/2, (1.8)

where 0d ∈ Cd is the zero vector. Then it is easy to see that every realization of r1, . . . , rm
corresponds to a partition S1 ∪ S2 = [m] in the natural way, and that∑

i

rir
∗
i =

(∑
i∈S1

viv
∗
i 0

0
∑

i∈S2
viv

∗
i

)
.

Moreover, the norm of this matrix is the maximum of the norms of the matrices in the upper-

left and lower-right blocks. Thus, Weaver’s conjecture is equivalent to the statement that

when the ‖vi‖ ≤ α, the following holds with positive probability:

λmax

(
m∑
i=1

rir
∗
i

)
≤ 1− ε (1.9)
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Once again, it is possible to apply tools of randommatrix theory to analyze this sum. This

gives a proof of the conjecture with α = 1/ log n, essentially recovering a result of Bourgain

and Tzafriri [14], which was essentially the best partial solution to Kadison–Singer until

recently.

The main result of [31] is the following strong form of Weaver’s conjecture.

Theorem 1.6. Let v1, . . . , vm ∈ Cd satisfy
∑

i viv
∗
i = I and ‖vi‖2 ≤ α for all i. Then,

there exists a partition of {1, . . . ,m} into sets S1 and S2 so that for j ∈ {1, 2},∥∥∥∥∥∥
∑
i∈Sj

viv
∗
i

∥∥∥∥∥∥ ≤ (1 +
√
2α)2

2
. (1.10)

We will sketch the proof of Theorem 1.6, which is closely related to the proof of Theorem

1.2, in Sections 4 and 5.2.

1.4. Sums of independent rank one random matrices. As witnessed by equations (1.1)

and (1.9), the common thread in the problems described above is that they can all be resolved

by showing that a certain sum of independent random rank one matrices has small eigenval-

ues with nonzero probability. Prior to this line of work, there were already well-developed

tools in random matrix theory for reasoning about such sums, generally called Matrix Cher-

noff Bounds [1, 37, 42]. As mentioned earlier, these provide bounds that are worse than

those we require by a factor that is logarithmic in the dimension. However, they hold with

high probability rather than the merely positive probability that we obtain.

Our approach to analyzing the eigenvalues of sums of independent rank one random

matrices rests on the following connection between possible values of any particular eigen-

value, and the corresponding root of its expected characteristic polynomial. We will use

λ1 ≥ λ2, . . . ,≥ λn ∈ R to denote the eigenvalues of a Hermitian matrix as well as the roots

of a real-rooted polynomial.

Theorem 1.7 (Comparison with Expected Polynomial). Suppose r1, . . . , rm ∈ Cn are in-
dependent random vectors. Then, for every k,

λk

(
m∑
i=1

rir
∗
i

)
≤ λk

(
Eχ

[
m∑
i=1

rir
∗
i

]
(x)

)
,

with positive probability, and the same is true with ≥ instead of ≤.

In the special case when the ri are identically distributed with Erir∗i = I , there is short

proof of Theorem 1.7 that only requires univariate interlacing. We present this proof as

Lemma 3.2 and and use it to establish a variant of Bourgain and Tzafriri’s restricted invert-

ibility theorem. In Section 4 we prove the theorem in full generality using tools from the

theory of real stable polynomials. This yields mixed characteristic polynomials, which are

then analyzed in Sections 5.1 and 5.2 to prove the existence of infinite families of Bipartite

Ramanujan Graphs as well as Weaver’s Conjecture

2. Interlacing polynomials

A defining characteristic of the proofs in [30] and [31] is that they analyze matrices solely

through their characteristic polynomials. This is perhaps a counterintuitive way to proceed;
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on the surface, we are losing information by considering characteristic polynomials, which

only know about eigenvalues and not eigenvectors. However, the structure we gain far out-

weighs the losses in two ways: the characteristic polynomials satisfy a number of algebraic

identities which make calculating their averages tractable, and they are amenable to a set of

analytic tools that do not naturally apply to matrices.

As hinted at earlier, we study the roots of averages of polynomials. In general, averaging

polynomials coefficient-wise can do unpredictable things to the roots. For instance, the

average of (x − 1)(x − 2) and (x − 3)(x − 4), which are both real-rooted quadratics, is

x2 − 5x + 7, which has complex roots 2.5 ± √3i. Even when the roots of the average are

real, there is in general no simple relationship between the roots of two polynomials and the

roots of their average.

The main insight is that there are nonetheless many situations where averaging the co-

efficients of polynomials also has the effect of averaging each of the roots individually, and

that it is possible to identify and exploit these situations. The key to doing this systematically

is the classical notion of interlacing.

Definition 2.1 (Interlacing). Let f be a degree n polynomial with real roots {αi}, and let g
be degree n or n− 1 with real roots {βi} (ignoring βn in the degree n− 1 case). We say that

g interlaces f if their roots alternate, i.e.,

βn ≤ αn ≤ βn−1 ≤ . . . β1 ≤ α1,

and the largest root belongs to f .
If there is a single g which interlaces a family of polynomials f1, . . . , fm, we say that

they have a common interlacing.

It is an easy exercise to show that f1, . . . , fm of degree n have a common interlacing iff

there are closed intervals In ≤ In−1 ≤ . . . I1 (where ≤ means to the left of) such that the

ith roots of all the fj are contained in Ii. It is also easy to see that a set of polynomials has a

common interlacing iff every pair of them has a common interlacing (this may be viewed as

Helly’s theorem on the real line).

We now state our main theorem about averages of polynomials with common interlac-

ings.

Theorem 2.2 (Lemma 4.1 in [30]). Suppose f1, . . . , fm are real-rooted of degree n with
positive leading coefficients. Let λk(fj) denote the kth largest root of fj and let μ be any
distribution on [m]. If f1, . . . , fm have a common interlacing, then for all k = 1, . . . , n

min
j

λk(fj) ≤ λk(Ej∼μfj) ≤ max
j

λk(fj).

The proof of this theorem is a three line exercise, which essentially amounts to applying

the intermediate value theorem inside each interval Ii.
An important feature of common interlacings is that their existence is equivalent to cer-

tain real-rootedness statements. Often, this characterization gives us a systematic way to

argue that common interlacings exist. The following seems to have been discovered a num-

ber of times. It appears as Theorem 2.1 of Dedieu [16], (essentially) as Theorem 2′ of

Fell [17], and as (a special case of) Theorem 3.6 of Chudnovsky and Seymour [15]. The

proof of it included below assumes that the roots of a polynomial are continuous functions

of its coefficients (which may be shown using elementary complex analysis).
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Theorem 2.3. If f1, . . . , fm are degree n polynomials and all of their convex combinations∑m
i=1 μifi have real roots, then they have a common interlacing.

Proof. Since common interlacing is a pairwise condition, it suffices to handle the case of

two polynomials f0 and f1. Let

ft := (1− t)f0 + tf1

with t ∈ [0, 1]. Assume without loss of generality that f0 and f1 have no common roots (if

they do, divide them out and put them back in at the end). As t varies from 0 to 1, the roots

of ft define n continuous curves in the complex plane C1, . . . , Cn, each beginning at a root

of f0 and ending at a root of f1. By our assumption the curves must all lie in the real line.

Observe that no curve can cross a root of either f0 or f1 in the middle: if ft(r) = 0 for some

t ∈ (0, 1) and f0(r) = 0, then immediately we also have ft(r) = tf1(r) = 0, contradicting
the no common roots assumption. Thus, each curve defines a closed interval containing

exactly one root of f0 and one root of f1, and these intervals do not overlap except possibly

at their endpoints, establishing the existence of a common interlacing.

It is worth mentioning that the converse of Theorem 2.3 is true as well, but we will not

use this fact.

While interlacing and real-rootedness are entirely univariate notions as discussed above,

the most powerful ways to apply them arise by viewing them as restrictions of multivariate

phenomena. There are two important generalizations of real-rootedness to more than one

variable: real stability and hyperbolicity.

We were inspired by the development of the theory of real stability in the works of Borcea

and Brändén, including [10–12]. Their results center primarily around characterizations

of stable polynomials, including closure properties (that is, operations that preserve real

stability of polynomials) and showing that properties of various mathematical structures an

be related to the stability of some “generating polynomial” of that structure.

There is an isomorphism between real stable polynomials and hyperbolic polynomials,
a concept that originated in a series of papers by Gårding [18] in his investigation of par-

tial differential equations. The theory of hyperbolic polynomials was developed further in

the optimization community (see the survey of Renegar [36]). However, it was not until

Gurvits’s use of hyperbolic polynomials in his proof of the van der Waerden conjecture [21],

that their combinatorial power was revealed.

While it is well known that the concepts of real stability and hyperbolicity are essentially

equivalent (one can translate easily between the two), various features of the way each prop-

erty is defined have led to a natural separation of results: algebraic closure properties and

characterization in real stability and analytic properties such as convexity in hyperbolicity.

The “method of interlacing polynomials” discussed in this survey, is in many ways a recipe

for mixing the ideas from these two communities into a single proof technique.

The method of interlacing polynomials consists of two somewhat distinct parts. The

first is to show that a given collection of polynomials forms what we call an interlacing
family, which is broadly speaking any class of polynomials for which the roots of its average

can be related to those of the individual polynomials. This falls naturally into the realm of

results regarding real stable polynomials as it often reduces to that showing various linear

combinations of polynomials are real-rooted. The second part is to bound one of the roots of

the expected polynomial under some distribution. This is more of an analytic task, for which

the convexity properties studied in the context of hyperbolicity are relevant. For instance,
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in [31], the analysis of the largest root is based on understanding the evolution of the root

surfaces defined by a multivariate polynomial as certain differential operators are applied to

it, and draws on the same convexity properties that are at the core of hyperbolic polynomials.

3. Restricted invertibility

The purpose of this section is to give the simplest possible demonstration of the method of

interlacing families of polynomials. It will be completely elementary and self-contained,

relying only on classical facts about univariate polynomials, and should be accessible to

an undergraduate. Nonetheless, it is structurally almost identical to the proof of Weaver’s

conjecture and contains most of the same conceptual components in a primitive form.

Bourgain and Tzafriri’s restricted invertibility theorem [13] states that any square ma-

trix B with unit length columns and small operator norm contains a large column submatrix

BS which is well-invertible on its span. That is, the least singular value of the submatrix,

σ|S|(BS), is large. This may be seen as a robust, quantitative version of the fact that any

matrix contains an invertible submatrix of size equal to its rank. The theorem was general-

ized to arbitrary rectangular B by Vershynin [43], and further sharpened in [38, 45]. We will

give a proof of the following theorem from [38], which corresponds to the important case

BBT = I , when the columns of B are isotropic.

Theorem 3.1. Suppose v1, . . . , vm ∈ Cn are vectors with
∑m

i=1 viv
T
i = In. Then for every

k < n there is a subset S ⊂ [m] of size k with

λk

(∑
i∈S

viv
T
i

)
≥
(
1−
√

k

n

)2
n

m
.

The proof of this theorem has two parts. The first part is the special case of Theorem 1.7

in which r1, . . . , rn are independent and identically distributed (i.i.d.) and Erir∗i = cI . It

reduces the problem of showing the existence of a good subset to that of analyzing the roots

of the expected characteristic polynomial.

Lemma 3.2. Suppose r1, . . . , rk are i.i.d. copies of a finitely supported random vector r
with Err∗ = cI . Then, with positive probability,

λk

(
k∑

i=1

rir
∗
i

)
≥ λk

(
Eχ

[
k∑

i=1

rir
∗
i

])
.

The second part is the calculation of the expected polynomial and the derivation of a

bound on its roots.

Lemma 3.3. Suppose r1, . . . , rk are i.i.d. copies of a random vector r with Err∗ = I . Then,

Eχ

[
k∑

i=1

rir
∗
i

]
(x) = (1−D)kxn = xn−k(1−D)nxk.

Moreover,

λk
(
(1−D)nxk

) ≥ (1−√k

n

)2

n.
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3.1. Interlacing and (1 − D) operators. Let us begin with the first part. To relate the

expected characteristic polynomial to its summands, we will inductively apply Theorem 2.2,

which requires the existence of certain common interlacings. These will be established by

a combination of two ingredients. The first is the following classical fact, which says that

rank-one updates naturally cause interlacing.

Lemma 3.4 (Cauchy’s Interlacing Theorem). If A is a symmetric matrix and v is a vector
then χ [A] (x) interlaces χ [A+ vv∗] (x).

One can easily derive this from the matrix determinant lemma:

Lemma 3.5. If A is an invertible matrix and u, v are vectors, then

det (A+ uv∗) = det (A) (1 + v∗A−1u)

The second ingredient is the following correspondence between isotropic random rank

one updates and differential operators.

Lemma 3.6. Suppose r is a random vector with Err∗ = cI for some constant c ≥ 0. Then
for every matrix A, we have

Eχ [A+ rr∗] (x) = (I − cD)χ [A] (x),

where D denotes differentiation with respect to x.

Proof. Using Lemma 3.5, we obtain

E det(xI −A− rr∗) = E det(xI −A)(1− r∗(xI −A)−1r)

= det(xI −A)(1− Tr [(Err∗)(xI −A)−1
]
)

= det(xI −A)
(
1− cTr(xI −A)−1

)
Letting λ1, . . . , λn denote the eigenvalues of A, this quantity becomes

n∏
i=1

(x− λi)

(
1− c

n∑
i=1

1

x− λi

)
= χ(A)(x)− c

n∑
i=1

∏
j �=i

(x− λj) = (1− cD)χ(A)(x),

as desired.

The purpose of Lemma 3.6 is twofold. First, it allows us to easily calculate expected

characteristic polynomials, which a priori could be intractably complicated sums. Second,

the operators (1 − cD) have other nice properties which witness that the expected polyno-

mials we generate have real roots and common interlacings.

Lemma 3.7 (Properties of Differential Operators).

(1) If f has real roots then so does (I − cD)f .

(2) If f1, . . . , fm have a common interlacing, then so do (I − cD)f1, . . . , (1− cD)fm.

Proof. For part (1), assume that f and f ′ have no common roots (otherwise, these are also

common roots of f and f − cf ′ which are clearly real). Consider the rational function

f(x)− cf ′(x)

f(x)
= 1− c

f ′(x)

f(x)
= 1− c

n∑
i=1

1

x− λi
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where λi are the roots of f . Inspecting the poles of this function and applying the interme-

diate value theorem shows that f − cf ′ has the same number of zeros as f , all distinct from
those of f .

For part (2), Theorem 2.2 tells us that all convex combinations
∑m

i=1 μifi have real roots.
By part (1) it follows that all

(1− cD)
m∑
i=1

μifi =
m∑
i=1

μi(1− cD)fi

also have real roots. By Theorem 2.3, this means that the (1 − cD)fi must have a common

interlacing.

With these facts in hand, we can easily complete the proof of Lemma 3.2.

Proof. Assume r is uniformly distributed on some set v1, . . . , vm ∈ Cn. We need to show

that there is a choice of indices j1, . . . , jk ∈ [m] for which

λk

(
k∑

i=1

vjiv
∗
ji

)
≥ λk

(
Eχ

[
k∑

i=1

rir
∗
i

])
.

For any partial assignment j1, . . . , j� of the indices, consider the “conditional expectation”

polynomial:

qj1,...,j(x) := Er+1,...,rkχ

[
�∑

i=1

vjiv
∗
ji +

k∑
i=�+1

rir
∗
i

]
.

Since the ri are independent, and Eri = (1/m)I , applying Lemma 3.6 k − � times reveals

that:

qj1,...,j(x) = (1− (1/m)D)k−�χ

[
�∑

i=1

vjiv
∗
ji

]
(x).

We will show that there exists a j�+1 ∈ [m] such that

λk(qj1,...,j+1
) ≥ λk(qj1,...,j), (3.1)

which by induction will complete the proof. Consider the matrix

A =
�∑

i=1

vjiv
∗
ji ,

By Lemma 3.4, χ[A] interlaces χ[A+ vj+1
v∗j+1

] for every j�+1 ∈ [m]. Lemma 3.7 tells us

(1− (1/m)D) operators preserve common interlacing, so the polynomials

(1− (1/m)D)k−(�+1)χ(A+ vj+1
v∗j+1

) = qj1,...,j,j+1
(x)

must also have a common interlacing. Thus, some j�+1 ∈ [m] must satisfy (3.1), as desired.
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3.2. Laguerre polynomials and the univariate barrier argument. We now move on to

the second part, Lemma 3.3, in which we prove a bound on the kth root of the expected

polynomial, which after rescaling by a factor of m is just:

Eχ

[
m ·

k∑
i=1

rir
∗
i

]
(x) = (1−D)kxn.

We begin by observing that (1 − D)kxn = xn−k(1 − D)nxk. This may be verified by

term-by-term calculation, or by appealing to the correspondence between (1−D) operators
and random isotropic rank one updates established in Lemma 3.6 as follows. Let G be an

n-by-k matrix of random, independently distributed, N(0, 1) entries. The covariance matrix

of each column is the n-dimensional identity matrix, and the covariance of each row is the

k-dimensional identity. So,

(1−D)kxn = EGχ(GG∗)(x)

= EGx
n−kχ(G∗G)(x)

= xn−k(1−D)nxk.

Thus, we would like to lower bound the least root of (1−D)nxk. The easiest way to do

this is to observe that it is a constant multiple of a known polynomial, namely an associated
Laguerre polynomial L(n−k)

k (x). These are classical orthogonal polynomials and a lot is

known about the locations of their roots; in particular, they are known to be contained in the

interval [n(1−√k/n)2, n(1 +
√
k/n)2] (see, for instance, [27]).

In order to keep the presentation self-contained, and also because it is a key tool in the

proof of Kadison–Singer and more generally in the analysis of expected characteristic poly-

nomials, we now give a direct proof of Lemma 3.3 based on the “barrier method” introduced

in [7]. The basic idea is to study the effect of each (1 − D) operator on the roots of a

polynomial f via the associated rational function

Φf (b) := −f ′(b)

f(b)
= −∂ log f(b)

∂b
=

n∑
i=1

1

λi − b
, (3.2)

which we will refer to as the lower barrier function. The poles of this function are the roots

λ1, . . . , λn of f , and we remark that it is the same up to a multiplicative factor of (−1/n)
as the Stieltjes transform of the discrete measure supported on these roots. It is immediate

from the above expression that Φf (b) is positive, monotone increasing, and convex for b is

strictly less than the roots of f , and that it tends to infinity as b approaches the smallest root

of f from below.

We now use the inverse ofΦf to define a robust lower bound for the roots of a polynomial

f :
sminϕ(f) := min{x ∈ R : Φf (x) = ϕ},

where ϕ > 0 is a sensitivity parameter. Since Φf (b) → 0 as b → −∞, it is immediate

that we always have sminϕ(f) ≤ λmin(f). The number ϕ controls the tradeoff between

how accurate a lower bound sminϕ is an how smoothly it varies — in particular the extreme

cases are smin∞(f) = λmin(f), which is not always well-behaved, and smin0(f) = −∞,

which doesn’t even depend on f . This quantity was implicitly introduced and used in [7]
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and explicitly defined in [41], where it was called the ‘soft spectral edge’; for an intuitive

discussion of its behavior in terms of an electrical repulsion model, we refer the reader to the

latter paper.

We also remark that the inverse Stieltjes transform was used by Voiculescu in his de-

velopment of Free Probability theory to study the limiting spectral distributions of certain

random matrix ensembles as the dimension tends to infinity. We view the use of smin as a

non-asymptotic analogue of that idea, except that we use it to reason about the edge of the

spectrum rather than the bulk.

The following lemma tells us that sminϕ(f) grows in a smooth and predictable way

when we apply a (1−D) operator to f . It is similar to Lemma 3.4 of [7], which was written

in the language of random rank one updates of matrices.

Lemma 3.8. If f has real roots and ϕ > 0, then

sminϕ((1−D)f) ≥ sminϕ(f) +
1

1 + ϕ
.

Proof. Let b = sminϕ(f). To prove the claim it suffices to find a δ ≥ (1 + ϕ)−1 such that

b + δ is below the roots of f and Φ(1−D)f (b + δ) ≤ ϕ. We begin by writing the barrier

function of (1−D) in terms of the barrier function of f :

Φ(1−D)f = − (f − f ′)′

f − f ′
= − (f(1 + Φf ))

′

f(1 + Φf )
= −f ′

f
− Φ′

f

1 + Φf
= Φf −

Φ′
f

1 + Φf
. (3.3)

This identity tells us that for any δ ≥ 0:

Φ(1−D)f (b+ δ) = Φf (b+ δ)− Φ′
f (b+ δ)

1 + Φf (b+ δ)
,

which is at most ϕ = Φf (b) whenever

Φ′
f (b+ δ)

1 + Φf (b+ δ)
≥ Φf (b+ δ)− Φf (b).

This is in turn equivalent to

Φ′
f (b+ δ)

Φf (b+ δ)− Φf (b)
− Φf (b+ δ) ≥ 1.

Expanding each Φf as a sum of terms as in (3.2) and applying Cauchy-Schwartz appropri-

ately reveals1 that the left-hand side of this inequality it at least

1/δ − Φf (b)

This is at least 1 for all δ ≤ (1 + ϕ)−1.

We conclude that Φ(1−D)f (b + δ) is bounded by ϕ for all δ ∈ [0, (1 + ϕ)−1], which

implies in particular that b+ δ is below the roots of (1−D)f .

1The simple but slightly cumbersome calculation appears as Claim 3.6 of [7]; we have chosen to omit it here for

the sake of brevity.
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Applying the lemma n times immediately yields the following bound on our polynomial

of interest:

λk
(
(1−D)nxk

) ≥ sminϕ
(
(1−D)nxk

)
≥ sminϕ(x

k) +
n

1 + ϕ

= − k

ϕ
+

n

1 + ϕ
since Φxk(b) = −k/b.

Setting ϕ =
√
k√

n−
√
k

yields Lemma 3.3, completing the proof of Theorem 3.1. We

remark that we have, as a byproduct, derived a sharp bound on the least root of an associated

Laguerre polynomial.

In Lemma 5.2 we use a multivariate version of the analogous bound for the largest root

of the associated Laguerre polynomial. A crucial aspect of the proof of the upper bound on

the largest root is that it essentially depends only on the convexity and monotonicity of the

barrier function. For a real-rooted polynomial f , we define the upper barrier function as

Φf (b) = f ′(b)/f(b) and

smaxϕ(f) := max{x ∈ R : Φf (x) = ϕ}.
Lemma 3.9. If f has real roots and ϕ > 0, then

smaxϕ((1−D)f) ≤ smaxϕ(f) +
1

1− ϕ
.

Proof. Let b = smaxϕ(f). As before, we may derive

Φ(1−D)f = Φf − (DΦf )/(1− Φf ).

So, to show that

smaxϕ((1−D)f) ≤ b+ δ,

it suffices to prove that

Φf (b)− Φf (b+ δ) ≥ −DΦ
f (b+ δ)

1− Φf (b+ d)
.

As Φf (b) is monotone decreasing for b above the roots of f , DΦf (b + δ) is negative. As

Φf (b) is convex for the same b,

Φf (b)− Φf (b+ δ) ≥ δ(−DΦf (b+ δ)).

Thus, we only require

δ ≥ 1

1− Φf (b+ d)
.

As Φf (b) is monotone decreasing, this is satisfied for δ = 1/(1− ϕ).

Setting ϕ =
√
k√

n+
√
k
, we obtain our upper bound the largest root of an associated La-

guerre polynomial.

Lemma 3.10. The largest root of (1−D)nxk is at most n(1 +
√
k/n)2.
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4. Mixed characteristic polynomials

The argument given in the previous section is a special case of a more general principle:

that the expected characteristic polynomials of certain random matrices can be expressed in

terms of differential operators, which can then be used to establish the existence of common

interlacings as well as to analyze the roots of the expected polynomials themselves. In the

isotropic case of Bourgain–Tzafriri, this entire chain of reasoning can be carried out by

considering univariate polynomials only. Morally, this is because the covariance matrices

of all of the random vectors involved are multiples of the identity (which trivially commute

with each other), and all of the characteristic polynomials involved are simple univariate

linear transformations of each other (of type (I − cD)).
On the other hand, the proofs of Kadison-Singer and existence of Ramanujan graphs in-

volve analyzing sums of independent rank one matrices which come from non-identically
distributed distributions whose covariance matrices do not commute. This leads to a much

more general family of expected polynomials which we call mixed characteristic polyno-
mials. The special structure of these polynomials is revealed crisply when we view them

as restrictions of certain multivariate polynomials. Their qualitative and quantitative prop-

erties are, correspondingly, established using multivariate differential operators and barrier

functions, which are analyzed using tools from the theory of real stable polynomials.

In the remainder of this section we will sketch a proof of Theorem 1.7. The proof hinges

on the following central identity, which describes the general correspondence between sums

of independent random rank one matrices and (multivariate) differential operators.

Theorem 4.1. Let r1, . . . , rm be independent random column vectors in Cd. For each i, let
Ai = Erir∗i . Then,

Eχ

[
m∑
i=1

rir
∗
i

]
(x) =

(
m∏
i=1

1− ∂zi

)
det

(
xI +

m∑
i=1

ziAi

)∣∣∣
z1=···=zm=0

. (4.1)

In particular, the expected characteristic polynomial of a sum of independent rank one

Hermitian random matrices is a function of the covariance matrices Ai. We call this polyno-

mial themixed characteristic polynomial ofA1,. . . ,Am, and denote it by μ [A1,. . . ,Am] (x).
The name mixed characteristic polynomial is inspired by the fact that the expected determi-

nant of this matrix is called the mixed discriminant. Notice that when A1 = A2 = . . . =
Am = I , it is just a multiple of an associated Laguerre polynomial as in Section 3.

Theorem 4.1 may be proved fairly easily by inductively applying an identity similar to

Lemma 3.6 or by appealing to the Cauchy-Binet formula; we refer the reader to [31] for a

short proof. We remark that it and all of the other results in this section depend crucially on

the fact that the rir
∗
i are rank one, and fail rather spectacularly for rank 2 or higher matrices.

The most important consequence of Theorem 4.1 is that mixed characteristic polynomi-

als always have real roots. To prove this, we will need to consider a multivariate generaliza-

tion of real-rootedness called real stability.

Definition 4.2. A multivariate polynomial f ∈ R[z1, . . . , zm] is real stable if it has no roots

with all coordinates strictly in the upper half plane, i.e., if

Im(zi) > 0 ∀i ⇒ f(z1, . . . , zm) �= 0.

Notice that stability is the same thing as real rootedness in the univariate case, since

complex roots occur in conjugate pairs.



Ramanujan graphs and the solution of the Kadison–Singer problem 379

A natural and relevant example of real stable polynomials is the following:

Lemma 4.3 ([10]). If A1, . . . , Am are positive semidefinite matrices, then

f(z1, . . . , zm) = det

(
m∑
i=1

ziAi

)
is real stable.

One reason real stability is such a useful notion for us is that it has remarkable clo-

sure properties which are extremely well-understood In particular, Borcea and Brändén have

completely characterized the linear operators preserving real stability [12]. What this means

heuristically is that proofs of stability can often be reduced to a formal exercise: to prove

that a particular polynomial is stable, one must simply write it as a composition of known

stability-preserving operations.

To prove that mixed characteristic polynomials are real stable, we will only require the

following elementary closure properties.

Lemma 4.4 (Closure Properties). If f(z1, . . . , zm) is real stable, then so are

(1− ∂zi)f for every i

and
f(α, z2, . . . , zm) for every α ∈ R.

The first part was essentially established by Lieb and Sokal in [28]. It follows easily by

considering a univariate restriction to zi and studying the associated rational function, as in

the the (entirely univariate) proof of Lemma 3.7. The second part is trivial for α strictly in

the upper half plane, and may be extended to the real line by appealing to Hurwitz’s theorem.

Combining these properties with Theorem 4.1 instantly establishes the following impor-

tant fact.

Theorem 4.5. If A1, . . . , Am are positive semidefinite, then μ [A1, . . . , Am] (x) is real-
rooted.

We are now in a position to prove Theorem 1.7. As in Lemma 3.2, we will do this

inductively by showing that the relevant “conditional expectation” polynomials have com-

mon interlacings. However, instead of explicitly finding these common interlacings using

Cauchy’s theorem, we will guarantee their existence implicitly using Theorem 4.5.

Proof of Theorem 1.7. For any partial assignment v1, . . . , v� of r1, . . . , r�, consider the con-

ditional expected polynomial

qv1,...,v(x) := Eχ

[
�∑

i=1

viv
∗
i +

m∑
i=�+1

rir
∗
i

]
(x) .

Suppose r�+1 is supported on w1, . . . , wN . Then, for all convex coefficients
∑N

i=1 μi =
1, μi ≥ 0, the convex combination

N∑
i=1

μiqv1,...,v,wi(x)
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is itself a mixed characteristic polynomial, namely

μ

[
v1v

∗
1 , . . . , v�v

∗
� ,

N∑
i=1

μiwiw
∗
i ,Er�+2r

∗
�+2, . . . ,Ermr∗m

]
(x) ,

which has real roots by Theorem 4.5. This establishes that the qv1,...,v,wi(x) have a common

interlacing, which by Theorem 2.2 implies that for every k there exists an i ∈ [N ] for which

λk (qv1,...,vm,wi
(x)) ≤ λk (qv1,...,vm(x)) ,

completing the induction.

The above proof highlights the added flexibility of allowing the ri to have different dis-

tributions: by taking some of these distributions to be deterministic, we can encode any con-

ditioning and more generally any addition of a positive semidefinite matrix while remaining

in the class of mixed characteristic polynomials.

5. Analysis of expected polynomials

In this section, we describe two situations in which we are able to bound the largest roots

of mixed characteristic polynomials. The first is very specific: we observe that the expected

characteristic polynomial of a random signing of an adjacency matrix of a graph is equal, up

to a shift, to the matching polynomial of the graph. The zeros of this polynomial have been

studied for decades and elementary combinatorial arguments due to Heilmann and Lieb [23]

can be used to give a sharp bound on its largest root. The main consequence of this bound is

the existence of infinite families of bipartite Ramanujan graphs of every degree.

The second situation is almost completely general. We show that given any collection of

matrices satisfying
∑m

i=1 Ai = I , the mixed characteristic polynomial μ [A1, . . . , Am] (x)

has roots bounded by (1 +
√
maxi Tr(Ai))

2. This is achieved by a direct multivariate gen-

eralization of the barrier function argument that we used in Section 3 to upper bound the

roots of associated Laguerre polynomials. The main consequence of this bound is a proof of

Weaver’s conjecture and thereby a positive solution to the Kadison–Singer problem.

5.1. Matching polynomials. We are now ready to prove the bound (1.4) and thereby The-

orem 1.2. For any d−regular graph G = (V,E), let the random vectors {r(a,b)}(a,b)∈E be

defined as in (1.2). Applying Theorem 1.7 with k = 1 and subtracting d from both sides, we

find that:

λmax

⎛⎝ ∑
(a,b)∈E

r(a,b)r
∗
(a,b) − dI

⎞⎠ = λmax

⎛⎝ ∑
(a,b)∈E

r(a,b)r
∗
(a,b)

⎞⎠− d

≤ λmax

⎛⎝Eχ

⎡⎣ ∑
(a,b)∈E

r(a,b)r
∗
(a,b)

⎤⎦ (x)
⎞⎠− d

= λmax

⎛⎝Eχ

⎡⎣ ∑
(a,b)∈E

r(a,b)r
∗
(a,b) − dI

⎤⎦ (x)
⎞⎠ ,



Ramanujan graphs and the solution of the Kadison–Singer problem 381

with positive probability. Switching back to signed adjacency matrices by applying (1.1),

we conclude that

λmax(As) ≤ λmax (Eχ [As] (x)) (5.1)

with positive probability for a uniformly random signing As.

We now observe that this expected characteristic polynomial is equal to the matching
polynomial of the graph. A matching is a graph in which every vertex has degree at most one.

The matching polynomial is a generating function which counts the number of matchings

that are subgraphs of a graph; for a graph on n vertices, it is defined as

μG(x) :=

�n/2�∑
i=0

(−1)ixn−2imi,

where mi is the number of subgraphs of G with i edges that are matchings.

Godsil and Gutman [20] showed that the matching polynomial of a graph is equal to the

expected characteristic polynomial of a random signing of its adjacency matrix:

Eχ [As] (x) = μG(x). (5.2)

This identity may be proved easily by expanding χ [As] (x) = det(xI − As) as a sum of

permutations and observing that the only terms that do not vanish are the permutations with

all orbits of size two, which correspond to the matchings.

About a decade before this, Heilmann and Lieb [23] studied the matching polynomial in

the context of monomer-dimer systems in statistical physics. In that paper, they showed that

μG(x) always has all real roots (a fact which we have also just proved by writing it as a shift

of a mixed characteristic polynomial), and that

λmax(μG(x)) ≤ 2
√
d− 1 (5.3)

for a graph with maximum degree d. They proved this bound by finding certain simple

combinatorial recurrences satisfied by μG(x), induced by edge and vertex deletions. The ap-

pearance of the number 2
√
d− 1 is not a coincidence; Godsil [19] later showed using similar

recurrences that μG(x) divides the characteristic polynomial of a certain tree associated with

G, which is an induced subgraph of the infinite d−regular tree.

Combining (5.1), (5.2), and (5.3) yields Theorem 1.2. There is also a generalization of

this theorem which proves the existence of “irregular” Ramanujan graphs, which were not

previously known to exist; we refer the interested reader to [30] for details.

5.2. The multivariate barrier argument. The tight bound of 2
√
d− 1 obtained above

relies heavily on the fact that the random vectors r(a,b) of interest come from a graph and

have combinatorial structure. Remarkably, it turns out that we can prove a bound that is

almost as sharp by completely ignoring this structure and relying only on the much weaker

property that the rr∗ are rank one matrices of bounded trace. This type of generic bound

is precisely what one needs to control the roots of the quite general mixed characteristic

polynomials which arise in the proof of Weaver’s conjecture, and thereby prove Kadison–

Singer.

Theorem 5.1. Suppose A1, . . . , Am are positive semidefinite matrices with
∑m

i=1 Ai = I
and Tr(Ai) ≤ ε. Then,

λmax (μ [A1, . . . , Am] (x)) ≤ (1 +
√
ε)2. (5.4)
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At a high level, the proof of this theorem is very similar to that of Lemma 3.10: we

express μ [A1, . . . , Am] (x) as a product of differential operators applied to some nice initial

polynomial, and show that each differential operator perturbs the roots in a predictable way.

The difference is that the differential operators and roots are now multivariate rather than

univariate.

To deal with this issue, we begin by defining a notion of multivariate upper bound: we

say that b ∈ Rm is above the roots of a real stable polynomial f(z1, . . . , zm) if f(z) > 0 for

all z ≥ b coordinate-wise. It is best to think of an “upper bound” for the roots of f as a set

rather than as a single point — the set of all points above the roots of f .
As we did in the univariate case, we soften this notion by studying certain rational func-

tions associated with f which interact naturally with the (1−∂zj ) operators we are interested

in. For each coordinate j, define the multivariate barrier function

Φf
j (z1, . . . , zm) =

∂zjf(z1, . . . , zm)

f(z1, . . . , zm)
,

and notice that

Φf
j (z1, . . . , zm) =

d∑
i=1

1

zj − λi
,

where λ1, . . . , λd are the roots of the univariate restriction obtained by fixing all the coordi-

nates other than zj .
For a sensitivity parameter ϕ < 1, we define a ϕ-robust upper bound on f(z1, . . . , zm)

to be any point b above the roots of f with Φf
j (b) ≤ ϕ for all j. We denote the set of all

such robust upper bounds by−−−→smaxϕ(f). The following multivariate analogue of Lemma 3.9

holds for −−−→smax. It says that applying an (1 − ∂zj ) operator simply moves the set of robust

upper bounds in direction j by a small amount.

Lemma 5.2. If f(z1, . . . , zm) is real stable and ϕ < 1, then

−−−→smaxϕ
(
(1− ∂zj )f

) ⊇ −−−→smaxϕ(f) +
1

1− ϕ
· ej ,

where ej is the elementary basis vector in direction j.

The proof of this lemma is syntactically almost identical to that of Lemma 3.9, except

that it is less obvious that the barrier functions Φf
j are monotone and convex in the coordi-

nate directions. In [31] we prove this by appealing to a powerful representation theorem of

Helton and Vinnikov [24], which says that bivariate restrictions of real stable polynomials

can always be written as determinants of positive semidefinite matrices, which are easy to

analyze. Later, elementary proofs of this fact were given by James Renegar (using tools

from the theory of hyperbolic polynomials [8]) and Terence Tao (using a combination of

elementary calculus and complex analysis, along with Bezout’s theorem).

With Lemma 5.2 in hand, one can prove Theorem 5.1 by an induction similar to the one

we used in Lemma 3.3. We refer the reader to [31] for details.

Applying Theorems 1.7 and 5.1 to the random vectors defined in (1.8) immediately yields

Theorem 1.6.
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6. Ramanujan graphs and Weaver’s conjecture

We conclude by showing how the generic bound derived above may be used to analyze the

random signings that occur in the proof of Theorem 1.2. This turns out to be very instructive

and is quite natural, since when G = (V,E) is d−regular, (1.3) tells us that

E
∑

(a,b)∈E

r(a,b)r
∗
(a,b)

d
= I.

Thus, each vector has the same norm ‖r(a,b)‖2 = 2/d, and applying Theorems 1.7 and 5.1

shows that ∑
(a,b)∈E

r(a,b)r
∗
(a,b) ≤ d

(
1 +

√
2

d

)2

= d+ 2 + 2
√
2d

with positive probability. This bound has asymptotically the same dependence on d as the

correct bound established using matching polynomials. Moreover, it immediately proves

that the dependence on ε in Theorem 5.1 cannot be improved: if it could, the above argu-

ment would imply the existence of signings with largest eigenvalue o(
√
d), contradicting the

Alon–Boppana bound. Thus, the matrices arising in the study of Ramanujan graphs witness

the sharpness of our bounds on mixed characteristic polynomials. 2
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Carleson measures and elliptic boundary value
problems

Jill Pipher

Abstract. In this article, we highlight the role of Carleson measures in elliptic boundary value prob-

lems, and discuss some recent results in this theory. The focus here is on the Dirichlet problem, with

measurable data, for second order elliptic operators in divergence form. We illustrate, through selected

examples, the various ways Carleson measures arise in characterizing those classes of operators for

which Dirichlet problems are solvable with classical non-tangential maximal function estimates.
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1. Introduction

Measures of Carleson type were introduced by L. Carleson in [9] and [10] to solve a problem

in analytic interpolation, via a formulation that exploited the duality between Carleson mea-

sures and non-tangential maximal functions (defined below). Carleson measures have since

become one of the most important tools in harmonic analysis, playing a fundamental role in

the study of singular integral operators in particular, through their connection with BMO,

the John-Nirenberg space of functions of bounded mean oscillation. We aim to describe,

through some specific examples, the ubiquitous role of measures of this type in the theory

of boundary value problems, especially with regard to sharp regularity of “elliptic” measure,

the probability measure arising in the Dirichlet problem for second order divergence form

elliptic operators. Perhaps the first connection between Carleson measures and boundary

value problems was observed by C. Feffeman in [18], namely that every BMO function on

Rn has a harmonic extension to the upper half space Rn+1
+ which satisfies a certain Carleson

measure condition. This established an important link between solutions to boundary value

problems for the Laplacian and the function space BMO. It may be surprising to see the

extent to which this link exists for operators other than the Laplacian, and in the context of

more general domains.

In order to define Carleson measures, we introduce the geometric notion of a Carleson

region above a cube. If Q ⊂ Rn is a cube with side length l(Q) set TQ = {(x, t) ∈ Rn+1
+ :

x ∈ I, 0 < t < l(Q)}, a cube sitting above its boundary face Q. (The notation TQ comes

from an equivalent formulation involving “tents” over cubes.)

Definition 1.1. The measure dμ is a Carleson measure in the upper half space Rn+1
+ if there

exists a constant C such for all cubes Q ⊂ Rn, μ(T (Q)) < C|Q|, where |Q| denotes the

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Lebesgue measure of the cube Q.

The classical theory of harmonic functions in the upper half space, or the ball, considers

solutions to the Dirichlet problem with measurable, specifically Lp, data. Given a function

f ∈ Lp(Rn), the convolution of f and the Poisson kernel is an absolutely convergent integral

when 1 < p <∞, giving meaning to the harmonic extension u(x, t) of an Lp function. And

the sense in which this extension u converges to its boundary values is “non-tangential”.

That is, for every x0 ∈ Rn, one can define a non-tangential approach region to x0, Γa(x0) =
{(x, t) : |x − x0| < at}. Then if u(x, t) is the Poisson extension of f ∈ Lp(Rn), for
almost every x0, u(x, t) → f(x0) as (x, t) ∈ Γa(x0) approaches x0. Moreover, one has

a non-tangential maximal function estimate, specified below, which yields solvability and

uniqueness of this Lp Dirichlet problem.

The result of C. Fefferman about harmonic functions, which proved to be a powerful tool

in harmonic function theory, is this: if u(x, t) is the Poisson extension of f ∈ BMO, then

dμ = t|∇u|2dxdt is a Carleson measure in the upper half space Rn+1
+ . The converse also

holds for functions that are not too large at∞.

In the last several decades, there have been many significant developments in the theory

of boundary value problems with data in Lp spaces, for harmonic (or poly-harmonic) func-

tions defined in very general domains, and for solutions to second order divergence form (and

higher order) elliptic operators with non-smooth coefficients. We will highlight a selection

of these developments in which the role of Carleson measures has been decisive.

For simplicity of notation, we will formulate the results in the upper half plane, Rn+1
+ ,

but in fact these results are more naturally formulated on Lipschitz domains - see the cited

references for this generality. In some cases, the perturbation results hold in more general

(chord-arc) domains: [41–43].

2. Definitions and background

A divergence form elliptic operator

L := − divA(x)∇,
defined inRn+1, whereA is a (possibly non-symmetric) (n+1)×(n+1)matrix of bounded

real coefficients, satisfies the uniform ellipticity condition

λ|ξ|2 ≤ 〈A(x)ξ, ξ〉 :=
n+1∑
i,j=1

Aij(x)ξjξi, ‖A‖L∞(Rn) ≤ λ−1, (2.1)

for some λ > 0, and for all ξ ∈ Rn+1, x ∈ Rn. As usual, the divergence form equation is

interpreted in the weak sense, i.e., we say that Lu = 0 in a domain Ω if u ∈W 1,2
loc (Ω) and∫

A∇u · ∇Ψ = 0 ,

for all Ψ ∈ C∞
0 (Ω).

For notational simplicity, Ω will henceforth be the half-space Rn+1
+ := {(x, t) ∈ Rn ×

(0,∞)} even though the results are more naturally formulated on Lipschitz domains. See

the cited references for this generality.
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The solvability of the Dirichlet problem for L with data in Lp(dx) is a function of a

precise relationship between the elliptic measure ω associated to L and Lebesgue measure.

The elliptic measure associated to L is analogous to the harmonic measure: it is the

representing measure for solutions to L with continuous data on the boundary.

Definition 2.2. A non-negative Borel measure ω defined on Rn is said to belong to the class

A∞ if there are positive constants C and θ such that for every cube Q, and every Borel set

F ⊂ Q, we have

ω(F ) ≤ C

( |F |
|Q|
)θ

ω(Q). (2.3)

A real variable argument shows that a measure, ω, belongs to A∞(dx) if and only if it

is absolutely continuous with respect to Lebesgue measure and there is an exponent q > 1
such that the Radon-Nikodym derivative k := dω/dx satisfies(

−
∫
Q

k(x)qdx

)1/q

≤ C−
∫
Q

k(x) dx , (2.4)

uniformly for every cube Q. This property is called a reverse-Hölder estimate of order q.
If ω is the elliptic measure associated to an operator L, then the existence of such a q > 1

is, in turn, equivalent to the solvability of the Dirichlet problem for L with boundary data

f ∈ Lp (for p dual to q), in the sense of non-tangential convergence and non-tangential

estimates on the boundary. These non-tangential estimates are expressed in terms of Lp

bounds on two classical operators associated to solutions: the square function

Sα(u)(x) :=

(∫∫
|x−y|<αt

|∇u(y, t)|2 dydt
tn−1

)1/2

, (2.5)

and the non-tangential maximal function

Nα
∗ (u)(x) := sup

(y,t):|x−y|<αt

|u(y, t)| (2.6)

Precisely, the elliptic measure satisfies a reverse Hölder estimate of order q if and only if the

following Lp Dirichlet problem is solvable, for p dual to the exponent q:⎧⎪⎨⎪⎩
Lu = 0 in Rn+1

+

limt→0 u(·, t) = f in Lp(Rn) and n.t.

‖N∗(u)‖Lp(Rn) < C‖f‖p.
(Dp)

Here, the notation “u → f n.t.” means that lim(y,t)→(x,0) u(y, t) = f(x), for a.e. x ∈ Rn,

where the limit runs over (y, t) ∈ Γ(x) := {(y, t) ∈ Rn+1
+ : |y − x| < t}. The constant C

depends only on ellipticity and dimension.

We will usually suppress the dependence on the aperture α, since the choice of aperture

does not affect the range of available Lp estimates.

Solutions to L are said to satisfy De Giorgi-Nash-Moser bounds when the following

local Hölder continuity estimates hold. Assume that Lu = 0 in Rn+1
+ in the weak sense and
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B2R(X) ⊂ Rn+1
+ , X ∈ Rn+1

+ , R > 0. Then

|u(Y )− u(Z)| ≤ C

( |Y − Z|
R

)μ⎛⎜⎝ ∫
B2R(X)

|u|2 dx

|B2R(X)

⎞⎟⎠
1
2

, for all Y, Z ∈ BR(X),

(2.7)

for some constants μ > 0 and C > 0. In particular, one can show that for any p > 0

|u(Y )| ≤ C

⎛⎜⎝ ∫
B2R(X)

|u|p dx

|B2R(X)

⎞⎟⎠
1
p

, for all Y, Z ∈ BR(X). (2.8)

The De Giorgi-Nash-Moser bounds always hold when the coefficients of the underlying

equation are real [14, 40, 44], and the constants depend quantitatively only upon elliptic-

ity and dimension. We will assume that for the complex equations considered later on (t-
independent coefficients ), that solutions satisfy the De Giorgi-Nash-Moser bounds, which

may not in general obtain ([25, 39]).

3. Perturbations of elliptic operators

In this section, we briefly discuss some background which will motivate certain topics treated

later, and for which Carleson measure estimates have played a decisive role.

In the upper half space, the Dirichlet problem is uniquely solvable for the Laplacian when

the boundary data belongs to Lp(dx), 1 < p < ∞, in the sense that the Poisson extension

u(x, t) of f satisfies the estimate ‖N(u)‖p ≤ C‖f‖p. The same holds for solutions to

L := − divA(x)∇, when coefficients of A are smooth, or even just C1 ([20]). However,

without some regularity assumptions, the elliptic measure associated to L may be singular

with respect to Lebesgue measure ([7])), and no estimate of this type will hold.

Many interesting examples of elliptic operators in divergence form arise as pullbacks of

the Laplacian from a change of variable. From the viewpoint of complex function theory,

it is natural to consider boundary behavior of harmonic functions in domains other than the

ball or the upper half space. One approach to solving boundary value problems for harmonic

functions in, say, a domain above a graph, is to invoke a change variables, mapping the

harmonic function v to a solution u of a new divergence form elliptic operator, L. Thus, if

the domain were bounded by a smooth curve, an appropriate change of variables results in a

real symmetric divergence form operator with smooth coefficients. But if the boundary of the

domain is not regular, the resulting operator has non-smooth coefficients, and the problem

has not become easier. For a variety of reasons, including scale invariance and naturally

arising geometric constructions, attention focused on the class of Lipschitz domains. In

[12], Dahlberg showed that harmonic measure on any Lipschitz domain belonged to A∞
with respect to the surface measure on the boundary. In fact, he showed that the L2 Dirichlet

problem,D2, was solvable, but thatDp was not uniformly solvable on all Lipschitz domains

when p < 2. More recently, the theory has developed to include a body of results for non-

graph domains described by geometric conditions (non-tangentially accessible, chord-arc,

Reifenberg flat.).
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Consider the following example of a particularly straightforward change of variables.

The domain is the region above a graph t = φ(x), where φ(x) is Lipschitz. The change of

variables, (x, t) → (x, t− φ(x)), “flattens” it to the upper half space. Under this change of

variable, from the Lipschitz domain to Rn+1
+ , harmonic functions are mapped to solutions

of a symmetric elliptic divergence form operator L whose coefficients involve the Jacobian

of this transformation and are therefore merely bounded and measurable. However, the

coefficients have one redeeming feature: they are independent of the transverse variable t.
Jerison and Kenig (JK) discovered how to put Dahlberg’s result in a larger context when they

showed that D2 was solvable in Rn+1
+ for all elliptic symmetric t-independent operators.

Their well known result was based on an L2 identity (a “Rellich” identity) which decisively

used these three properties of the (real) operator L: symmetry, ellipticity, t-independence of

the coefficients. Specifically, if Lu = 0, and #e is the unit normal at the boundary of Rn+1
+ ,

then

div(A∇u.∇u#e) = 2 div(Dn+1(u)A∇u). (3.1)

Integrating this identity and applying the divergence theorem results in a boundary identity

that can be used to show that the normal and tangential derivatives of a solution are compa-

rable in L2 norm. This boundary identity scales to show that the elliptic measure is not only

absolutely continuous but satisfies a reverse Hölder condition of order two. Therefore, the

Dirichlet problem with data in L2 is solvable.

Many subsequent advances in the theory of boundary value problems for real symmetric

elliptic equations and systems were based on variants of this Rellich identity.

The theory of perturbations of elliptic operators arose from several separate points of

view. One source was T. Kato’s interest in the analyticity of square roots of complex sec-

ond order divergence form elliptic operators, which led to a question about analyticity of

small L∞ perturbations of self-adjoint elliptic operators. There is extensive literature on

this subject which we are not going to delve into in this article. (See [4] for the solution to

Kato’s conjecture.) Another, and related, source of interest, stemmed from the the discov-

ery that independence in the t variable in Rn+1
+ (or similarly, of the radial variable in the

unit ball) endows the elliptic measure ω with good properties. One may then try to relax

this condition and understand more precisely the relationship between the smoothness that

is required in the t direction and good estimates for elliptic measure. This was the approach

taken in [13, 19, 30, 34], and see also [2, 3, 26] for later developments in perturbation the-

ory. Dahlberg, [13], imposed a “vanishing” condition on the Carleson discrepancy between

the coefficients and proved strong results about preservation of reverse Hölder estimates for

the elliptic measure. An entirely new approach to the vanishing Carleson condition was

taken in [2] that provided major extensions of the perturbation theory to complex coefficient

operators.

Consider an operator L1 := − divA(x, t)∇, in Rn+1
+ , regarded as a perturbation of

L0 := − divA(x, 0)∇, and suppose one asks for some quantitative conditions on |A(x, t)−
A(x, 0)| that yield good estimates for the elliptic measure ωL1 . More generally, one can for-

mulate the question as follows: what are the optimal conditions on the difference of the coef-

ficients such that the perturbation L1 of a “good” operator L0, not necessarily t-independent,
also satisfies good estimates for solvability of a boundary value problem. In [19], optimal

conditions were found.

Theorem 3.2. Let L0 = divA0∇ and L1 = divA1∇ and define the disagreement function
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a(x, t) by

a(x, t) = sup{|A0(y, s)−A1(y, s)| : |y − x| < t, t/2 < s < 2t}. (3.3)

If a2(x, t)t−1dxdt is a Carleson measure, then ωL0
∈ A∞ implies ωL1

∈ A∞.

4. Linking A∞ to Carleson measure estimates

Prior to the approach taken in [32], the regularity of elliptic measure for an operator L was

essentially derived either from a Rellich identity, or as a consequence of the perturbation

theory. There were two obvious classes of operators of interest where these L2-identities

were not valid: operators with complex coefficients and operators with non-symmetric co-

efficients. In the case of operators with complex coefficients, one of the most compelling

outstanding questions was the Kato conjecture. This decades-old problem was finally re-

solved in the series of papers [4, 5, 24]. The solution of the Kato conjecture is a long story,

summarized well in C. Kenig’s review [31]. We will only mention that the solution also

relied on a critical use of Carleson measures. The situation regarding (non-symmetric) t-
independent operators is discussed in the next section.

In [32], it was shown that the elliptic measure associated to adivergence form operator

L := − divA(x)∇, belongs to the class A∞ if and only if every bounded solution could

(locally) be approximated arbitrarily well by a continuous function whose gradient satis-

fied a Carleson measure condition. This criteria was dubbed “ε-approximability”, and was

immediately applied to t-independent operators in dimension two.

Definition 4.1. Let u ∈ L∞(Rn+1
+ ), with ‖u‖∞ ≤ 1. Given ε > 0, we say that u is

ε-approximable if for every cube Q0 ⊂ Rn, there is a ϕ = ϕQ0 ∈W 1,1(TQ0) such that

‖u− ϕ‖L∞(TQ0
) < ε , (4.2)

and

sup
Q⊂Q0

1

|Q|
∫∫

TQ

|∇ϕ(x, t)| dxdt ≤ Cε , (4.3)

where Cε depends also upon dimension and ellipticity, but not on Q0.

To motivate this definition, we recall that harmonic functions in the upper half space

possess the property of ε-approximability ([21, 45]). Although bounded harmonic func-

tions in Rn+1
+ satisfy an L2-Carleson measure condition, the (technically more desirable)

L1-Carleson condition fails to hold. It turns out that the approximation property is a good

substitute for certain applications. In [11], Dahlberg showed that ε-approximability holds for

bounded harmonic functions on Lipschitz domains as well. His proof used the previously

established equivalence inLp-norm between the square function and the non-tangential max-

imal function on LIpschitz domains.

Theorem 4.4 ([32]). Let L := − divA(x)∇, be an elliptic divergence form operator, not
necessarily symmetric, with bounded measurable coefficients, defined in Rn+1

+ . Then there
exists an ε, depending on the ellipticity constant of L such that if every solution to Lu = 0
in Rn+1

+ with |u| ≤ 1 is ε-approximable then ω belongs to A∞.
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We will now sketch the main steps in the proof in [32] of this result, and then describe a

recent modification of these ideas that yields a much stronger statement. The references give

details, including certain technicalities, that we shall not describe in detail here.

The A∞ class has many equivalent characterizations, and it will be convenient to work

with this one:

Given any η > 0, there exists a δ > 0 such that for any cube Q ⊂ Rn and any E ⊂ Q,
we have that |E|/|Q| < η whenever ω(E)/ω(Q) < δ.

The main idea in the proof of Theorem 4.4 is as follows. Fix a cube Q of side length

r, and suppose that E is a set whose elliptic measure, ω(E), is small. Let φ denote the

ε-approximation of u. If E has sufficiently small measure, it will be shown that a trun-

cated L1-version of the square function of φ is large. That is, the r-truncated Ar(φ)(x) :=(∫∫
|x−y|<t<r

|∇φ(y, t)|dydttn

)1/2
will be be larger than some prescribed value k = k(ε).

The desired conclusion will follow from the Carleson measure estimate by integrating:

|E|k2 <
∫
E

A2
r(φ)(x)dx <

∫
Q

A2
r(φ)(x)dx <

∫∫
TQ

|∇ϕ(x, t)| dxdt

By the Carleson measure property, this latter expression is bounded by a constant Cε times

|Q|. and thus |E|/|Q| < η where η ≈ 1/k2.
In order to show that A(φ) is large on sets of small elliptic measure, a solution u to

Lu = 0 was constructed with the property that u that oscillates by at least some fixed value a

large number of times in cones over points x ∈ E. Because u can be approximated arbitrarily

well by φ, this entailed that φ also oscillates a large number of times. This lower bound on

oscillation translated, via interior estimates, into an estimate from below for ∇φ in disjoint

layers of a truncated cone over x.
There are several constructions that drive this proof, the first of which is Christ’s con-

struction of dyadic grids on spaces of homogeneous type. Thus Q ⊂ Rn possesses a dyadic
grid adapted to ω, which is a collection of subsets {Ij,l} of Q ⊂ Rn such that for each fixed

j ≥ 0,

(1) Rn =
⋃

l Ij,l, and Ij,l1 ∩ Ij,l2 = ∅ if l1 �= l2.

(2) Each Ij,l contains B(2−j , xl), and is contained in an M -fold dilate B(M2−j , xl),
where B(2−j , xl) denotes the ball of radius 2−j about the point xl ∈ Rn .

(3) If Ij,l ∩ Ij′,l �= ∅ then either Ij,l ⊂ Ij′,l or Ij′,l ⊂ Ij,l. Moreover, there exists a

CM < 1 such that ω(Ij,l) < CMω(Ij′,l)whenever Ij,l ⊂ Ij′,l.

(4) Any open setO can be decomposed asO =
⋃
Ij,l where the Ij,l are non-overlapping.

For each Ij,l in this decomposition, there exists a point pj,l such that the distance from

pj,l to Ij,l is comparable to diam(Ij,l).

Definition 4.5. Let ε be small and given. If E ⊂ Q, a good ε-cover of E of length k is a

collection of nested open sets {Oi}ki=1 with E ⊂ Ok ⊂ Ok−1... ⊂ O0 ⊂ Q where each

Oi =
⋃
Si
l such that

(1) each Si
l belongs to the dyadic grid, and

(2) for all 0 < i < k, ω(Oi ∩ Si−1
l ) < εω(Si−1

l ).
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Note that a good ε-cover has the property that each Si
j is properly contained in some

Si−1
l , as well as the further nesting property that for k > i > m > 0, ω(Sm

j ∩ Oi) <

εi−mω(Sm
j ).

Lemma 4.6 ([32]). Given ε > 0, there exists a δ > 0 such that if ω(E) < δ, then E has a
good ε-cover of length k where k →∞ as ω(E)→ 0.

The good ε-cover of length k is used to construct the boundary data f which will give

rise to a bounded, oscillating solution u to L. Set:

f =
k∑

i=0

(−1)iXOi . (4.7)

and let u be the solution to Lu = 0, with u(x, 0) = f .
Note that f ≤ 1, and so 0 ≤ u ≤ 1. For each point x ∈ E, we find a sequence of points,

Xm = (xm, tm) in the cone Γ(x) with the property that, for 0 < m < k even, u(Xm) > c1,
and for 0 < m < k odd, u(Xm) < c2 and c1 − c2 > c(ε). To define these Xm, collect the

dyadic grid cubes Sm
l ⊂ Om that contain the given point x. Let l(S) denote the side length

of S. The point Xm, when m is even, is essentially any point in the top half of the Carleson

region over Sm
l . When m is odd, the point Xm = (xm, tm) will also be in this Carleson

region, but tm will be closer to the boundary, that is, t ≈ ηl(Sm
l ). (In order to make sure

that these points Xm descend in the cone, i.e., have the property that tm < ρtm−1 for some

ρ < 1, we may have to skip a finite number of levels m. Details are in [32].)

We give a rough sketch of these estimates. Recall the integral representation of solutions:

u(x, t) =
∫
K(x, t; y, 0)f(y)dω(y).

Fix an even m. We can then write u(Xm) = u1(Xm) + u2(Xm) where u1(x, 0) =
f1(x) :=

∑m
i=0 XOi

.. Moreover, since u > 0, we have that, for some c1 depending only

ellipticity,

u(Xm) >

∫
K(xm, tm; y, 0)f(y)dω(y) ≥ c

1

ω(Sm
l )

∫
Sm
l

f(y)dω(y).

Because m is even, the function f1 = 1 on Sm
l , and so u1 > c′1. By the nesting property

of the cover,

1

ω(Sm
l )

∫
Sm
l

f2(y)dω(y) <
1

ω(Sm
l )

k∑
i=m+1

ω(Oi ∩ Sm
l ) < 2ε,

and thus u(Xm) > c′1 − 2ε > c1. Whenm is odd, the boundary function f is split similarly,

and a more technical analysis is needed to show that the main term is indeed given by f1,
which vanishes on the dyadic cube Sm

l . Since (xm, tm) was chosen so that tm ≈ l(Sm
l ), the

Hölder decay of the solution near the boundary where it vanishes will be used to show that

u(xm, tm) < c2 < c1 − ε, if ε and η are chosen appropriately.

In conclusion, one can extract from this construction a sequence of points {xm, tm}km=0∈
Γ(x) such that |u(xm, tm)−u(xm−1, tm−1)| > ε, and such that tm < ρtm−1. One can then

derive a lower bound for the L1-square function A(u), and likewise for A(φ) where φ is the

approximate to u.

This approximation theorem, and its proof, yielded several applications to specific classes

of operators ([15, 22, 35, 37]): [22] is explained in more detail in the next section. Since one
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cannot expect the actual solution to L to satisfy an L1-Carleson condition (as the approx-

imate does), this program left open the question of the role of classical Carleson measure

estimates for solutions.

In [16], it was shown that the A∞ propoerty of elliptic measure is equivalent to the

existence of Carleson measure estimates for solutions with boundary data in BMO. The

result was proven in Lipschitz domains (and will likely hold for chord-arc domains as well).

Theorem 4.8 ([16]). Let L := − divA(x)∇, be an elliptic divergence form operator, not
necessarily symmetric, with bounded measurable coefficients, defined in Rn+1

+ . Then ω ∈
A∞ if and only if, for every solution u to Lu = 0 with boundary data f ∈ BMO, we have
the Carleson measure estimate:

sup
Q

1

|Q|
∫∫

TQ

t|∇u(x, t)|2 dxdt ≤ C||f ||2BMO, (4.9)

The proof of Theorem 4.8 used a dual formulation of the A∞ condition:

Given any η > 0, there exists a δ > 0 such that for any cube Q ⊂ Rn and any
E ⊂ Q, we have that ω(E)/ω(Q) < η whenever |E|/|Q| < δ.

To verify this condition, a construction of [28] was invoked to produce, for any such E,

a BMO function f ≥ XE with small BMO norm. An upper estimate on ω(E)/ω(Q) in
terms of the (small) Carleson measure bound on f required a lemma in [34]. See [16] for

details.

In turn, this left open the question of whether the A∞ property of elliptic measure could

be characterized by the existence of Carleson measure conditions for solutions to bounded

data, as opposed to data in the larger class, BMO.

The solution u, with boundary data f as in (4.7), has only A(u) large on the set E ⊂ Q
when ω(E) is small, but not necessarily S(u) large as well. To see why, suppose Q has side

length 1, and cut the cone into dyadic layers: Γj(x) = {(y, t) ∈ Γ(x) : 2−j < t < 2−j+1} .
We write

S(u)(x) =
∑
j

∫
Γj(x)

t1−n|∇u|2dydt

Each piece
∫
Γj(x)

t1−n|∇u|2dydt is a scaled average of the gradient of u which, by a

Poincaré estimate, can be bounded from below by the oscillation of u over this dyadic layer

of the cone. However, this construction doesn’t yield any information about the oscillation of

u on such dyadic regions because there is no control on the distance between the the points

{xm, tm}km=0 ∈ Γ(x) that belong to different levels Om.

The linking of A∞ to Carleson measure estimates for L∞ functions, is the subject of

[33]. Essentially, one can use the same cover, and define a new function f as follows. Each

Om is a union of dyadic intervals Sm
l , and each Sm

l has a (bounded) number of immediate

dyadic subintervals. For each Sm
l choose one of its dyadic children and call it S̃m

l . If m is

even, define fm to take the value 1 on
⋃

l(S
m
l \ S̃m

l ) and 0 elsewhere. Ifm is odd, we define

fm to “zero out” the values of fm−1: fm = −1 where fm = 1 and is ) elsewhere. Now set

f =
∑k

m=0 fm and let u be the solution to Lu = 0with boundary data f . On each even level

m, f takes on both the values 0 and 1 on dyadic children. Thus, arguments modeled on those

of [32] will yield the following: for some C, c > 0, and every x ∈ E, there are sequences

{xm, tm}km=0 with ctm−1 < tm < Ctm−1 for which |u(xm, tm)− u(xm−1, tm−1)| > ε.
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From this construction, it can be concluded that if solutions to L with bounded data

satisfy classical Carleson measure estimates, then the elliptic measure associated to L is

A∞, and thus the Dirichlet problem with data in Lp is uniquely solvable for some p > 1.
As a corolloary, we see that solutions with BMO data posses C. Fefferman-type Carleson

estimates if and only if solutions with L∞ data posses these Carleson estimates.

Theorem 4.10 ([33]). Let L := − divA(x)∇, be an elliptic divergence form operator,
not necessarily symmetric, with bounded measurable coefficients, defined in Rn+1

+ . Then
ω ∈ A∞ if and only if, for every solution u to Lu = 0 with boundary data f ≤ 1, we have
the Carleson measure estimate:

sup
Q

1

|Q|
∫∫

TQ

t|∇u(x, t)|2 dxdt ≤ C. (4.11)

5. Application to time-independent operators

The ε-approximability theorem of [32] was established by showing the equivalence in Lp

norm between the the non-tangential maximal function and the square function, and invoking

a stopping time construction due to Dahlberg ([11]). Examples were given to demonstrate

that, for p→∞, there exists elliptic operators in this class for which Dp is not solvable.. In

other words, no stronger conclusion than A∞ of the elliptic measure can be concluded from

ε-approximability. A more precise study of these counterexamples was undertaken in [1],

where it was shown that the boundary equation method and the Lax-Milgram method may

construct different solutions, thus underscoring the differences between the symmetric and

the non-symmetric situation.

As an application of the consequences of norm equivalence between non- tangential

maximal function and the square function, [32] contained a proof that two-dimensional t-
independent divergence form non-symmetric elliptic operators had elliptic measure belong-

ing toA∞. This was a first step in establishing regularity of elliptic measure without recourse

to L2 identities of Rellich type. Although the proof only worked in R2, it worked under a

surprisingly flexible condition on the matrix.

Theorem 5.1 ([32]). Let L := − divA(x)∇ be an elliptic operator in R2 with bounded
measurable coefficients. Suppose that there exists a fixed unit vector #e such that A(x, t) =
A((x; , t)  #e). Then the elliptic measure ωL belongs to A∞ in a domain in any Lipschitz
domain in R2.

At this point, we note that the development of the theory of non-symmetric operators has

had several motivations. First of all, the boundary value problem for general non-symmetric

elliptic operators cannot be solved in L2, and Lp solvability requires a different approach

than that of Rellich identities. Second, the well-posedness results for equations with real

non-symmetric coefficients and associated estimates on solutions are the first step towards

understanding operators with complex coefficients in the non-Hermitian case, a case of in-

terest for Kato’s analyticity program. Finally, many problems arising in homogenization

theory have non-symmetric coefficients [6]. Solving the Dirichlet problem with data in Lp

is the first step in the study of the uniform bounds, independent of the scaling parameter in

homogenization theory, in the absence of symmetry ([6]).
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It is therefore desirable to develop approaches to solving Lp boundary value problems

that are neither perturbative nor rely on symmetry of the matrices. However, the proof of

Theorem 5.1 did not generalize to higher dimensions, as it relied on a special change of

variable to put the matrix of coefficients in upper triangular form. It took almost fifteen

years, and the development of the tools used to solve Kato’s conjecture (the square root

estimates), to be able to prove this result in all dimensions.

Theorem 5.2 ([22]). Let L be a divergence form elliptic operator as above, with t-indepen-
dent coefficients. Then there is a p < ∞ such that the Dirichlet problem Dp is well-posed;
equivalently, for each cubeQ ⊂ Rn, the L-harmonic measure ωL ∈ A∞(Q), with constants
that are uniform in Q.

The proof in [22] proceeded, as in two dimensions, by establishing A∞ of the elliptic

measure as consequence of ε-approximability of bounded solutions. The boundedness in

norm of the non-tangential maximal function by the square function had previously been

established (globally) in [2] so the main contribution of [22] was the converse, which had

the immediate corollary:

Corollary 5.3 ([22]). Under the same hypotheses as in Theorem 5.2, for a bounded solution
u, we have the Carleson measure estimate

sup
Q

1

|Q|
∫∫

TQ

|∇u(x, t)|2tdtdx ≤ C ‖u‖L∞(Ω) , (5.4)

where C depends only upon dimension and ellipticity.

Theorem 4.10 implies that this Carleson measure estimate alone is now sufficient to

conclude A∞, somehwat simplifying the proof of A∞ for this class of elliptic measures.

In [32], it was shown that the equivalence between non-tangential maximal functions and

square functions implied A∞, for that equivalence was necessary to prove ε-approximation

of bounded solutions. We see now that only half of this information is required, namely the

bounds on the square function in terms of the non-tangential maximal function.

Remark 5.5. Most of the discussion in this article has centered on the Dirichlet problem.

Over the years, there has been a parallel development for boundary value problems such as

the Neumann and the regularity problems for second order operators, and for higher order

operators and elliptic systems. There is a vast literature on the solvabilty of these (even

more) challenging problems, which is beyond the scope of the present article.

Acknowledgements. The main topics treated in this article are the result of many fruitful

collaborations over the years. In particular, I would like to acknowledge the impact of recent

collaborations with M. Dindos, C. Kenig, S. Hofmann, S. Mayboroda, and T. Toro.

References

[1] A.Axelsson, Non-unique solutions to boundary value problems for nonsymmetric di-
vergence form equations, Trans. Amer. Math. Soc., 362 (2010), no. 2, 661–672.

[2] P. Auscher and A. Axelsson, Weighted maximal regularity estimates and solvability of
non-smooth elliptic systems, to appear, Invent. Math.



398 Jill Pipher

[3] M. Alfonseca, P. Auscher, A. Axelsson, S. Hofmann, and S. Kim, Analyticity of layer
potentials and L2 Solvability of boundary value problems for divergence form elliptic
equations with complex L∞ coefficients, Advances in Math, 226 (2011), 4533–4606.

[4] P. Auscher, S. Hofmann, M. Lacey, A. McIntosh, and P. Tchamitchian, The solution
of the Kato Square Root Problem for Second Order Elliptic operators on Rn, Ann. of

Math., 156 (2002), 633–654.

[5] P. Auscher, S. Hofmann, J. Lewis, and P. Tchamitchian, Extrapolation of Carleson
measures and the analyticity of Kato’s square-root operators, Acta Math., 187 (2001),

no. 2, 161–190.

[6] A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic analysis for periodic
structures, Studies in Mathematics and its Applications, 5., North-Holland Publishing

Co., Amsterdam-New York, 1978.

[7] Luis A. Caffarelli, Eugene B. Fabes, and Carlos E. Kenig, Completely singular elliptic-
harmonic measures, Indiana Univ. Math. J., 30 (1981), no. 6, 917-924.

[8] L. Caffarelli, E. Fabes, Mortola, and S. Salsa, Boundary behavior of nonnegative solu-
tions of elliptic operators in divergence form, Indiana Univ. Math. J., 30 (1981), no. 4,

621–640.

[9] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math.,

80 (1958), 921–930.

[10] , Interpolation by bounded analytic functions and the corona problem, Ann. of

Math., 76 (1962), 547–559.

[11] B.E.J. Dahlberg, Approximation of harmonic functions, Ann. Inst. Fourier (Grenoble),

30 (1980) 97–107.

[12] , Estimates of harmonic measure, Arch. Rational Mech. Anal., 65 (1977), 275–

288.

[13] , On the absolute continuity of elliptic measure, American Journal of Mathe-

matics, 108 (1986), 1119–1138.

[14] E. De Giorgi, Sulla differenziabilità e l’analiticità delle estremali degli integrali multi-
pli regolari, Mem. Accad. Sci. Torino., Cl. Sci. Fis. Mat. Nat., 3 (1957), 25–43.

[15] M. Dindoš, S. Petermichl, and J. Pipher, The Lp Dirichlet problem for second order
elliptic operators and a p-adapted square function, J. of Funct. Anal., 249 (2007),

372–392

[16] , C. Kenig, and J. Pipher, BMO solvability and the A∞ condition for elliptic
operators, J. Geom. Anal., 21 (2011), no. 1, 78–95.

[17] E. Fabes, D. Jerison, and C.Kenig, Necessary and sufficient conditions for absolute
continuity of elliptic-harmonic measure, Ann. of Math., (2) 119 (1984), no. 1, 121–

141.



Carleson measures and elliptic boundary value problems 399

[18] C. Fefferman, Characterizations of bounded mean oscillation,Bulletin of the American

Mathematical Society, 77 (1971), no. 4, 587–588.

[19] R. Fefferman, C. Kenig., and J. Pipher, The theory of weights and the Dirichlet problem
for elliptic equations, Ann. Math., 134 (1991), 65–124.

[20] E. Fabes, M. Jodeit, and N. Riviere, Potential techniques for boundary value problems
on C1 domains, Acta Math., 141 (1978), 165–186.

[21] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.

[22] S. Hofmann, C.Kenig, S.Mayboroda, and J. Pipher, Square function/Non-tangential
maximal function estimates and the Dirichlet problem for non-symmetric elliptic op-
erators, to appear in JAMS.

[23] S. Hofmann, C. Kenig, S. Mayboroda, and J. Pipher, The Regularity problem for sec-
ond order elliptic operators with complex-valued bounded measurable coefficients,
preprint.

[24] S. Hofmann, M. Lacey, and A. McIntosh, The solution of the Kato problem for diver-
gence form elliptic operators with Gaussian heat kernel bounds, Annals of Math., 156
(2002), pp. 623–631.

[25] S. Hofmann, S. Mayboroda, and A.McIntosh, Second order elliptic operators with
complex bounded measurable coefficients in Lp, Sobolev and Hardy spaces, Ann. Sci.

Éc. Norm. Supér., (4) 44 (2011), no. 5, 723–800.

[26] S. Hofmann, S. Mayboroda, and M. Mourgoglou, Lp and endpoint solvability results
for divergence form elliptic equations with complex L∞ coefficients, preprint.

[27] S. Hofmann and A. McIntosh, The solution of the Kato problem in two dimensions,

Proceedings of the conference on harmonic analysis and PDE held at El Escorial, June

2000, Publ. Mat. Vol., (2002), 143–160.

[28] P. Jones and J.-L. Journé, Weak Convergence in H1(Rn), Proc. AMS, V. 120, No. 1,

(2009), 137–138.

[29] (with Jerison, D. S.) An identity with applications to harmonic measure, Bull. AMS,

Vol. 2, No. 3 (1980), 447–451.

[30] D. Jerison and C. Kenig, The Dirichlet problem in nonsmooth domains, Ann. of Math.

(2), 113 (1981), no. 2, 367–382.

[31] C. Kenig, MathSciNet Review.

[32] C. Kenig, H. Koch, H. J. Pipher, and T. Toro, A new approach to absolute continuity
of elliptic measure, with applications to non-symmetric equations, Adv. Math., 153
(2000), no. 2, 231–298.

[33] C. Kenig, B. Kirchheim, J. Pipher, and T. Toro, preprint.

[34] C. Kenig and J. Pipher, The Neumann problem for elliptic equations with nonsmooth
coefficients, Invent. Math., 113 (1993), no. 3, 447–509.



400 Jill Pipher

[35] , The Dirichlet problem for elliptic equations with drift terms, Publ. Mat., 45
(2001), no. 1, 199–217.

[36] , The Neumann problem for elliptic equations with nonsmooth coefficients. II,
A celebration of John F. Nash, Jr. Duke Math. J., 81 (1995), no. 1, 227–250.

[37] C. Kenig and D. Rule, The regularity and Neumann problem for non-symmetric elliptic
operators, Trans. Amer. Math. Soc., 361 (2009), 125–160.

[38] C. Kenig and T. Toro, Harmonic measure on locally at domains, Duke Math. J, 87
(1997), no. 3, 509–551.

[39] V. G.Maz’ya, S. A.Nazarov, and B. A. Plamenevskiı̆, Absence of a De Giorgi-type
theorem for strongly elliptic equations with complex coefficients, Boundary value prob-

lems of mathematical physics and related questions in the theory of functions, 14.,

Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 115 (1982), 156–

168, 309.

[40] J.Moser, On Harnack’s theorem for elliptic differential operators, Comm. Pure and

Appl. Math., 14 (1961), 577–591.

[41] E. Milakis and T. Toro, Divergence form operators in Reifenberg flat domains, Mathe-

matische Zeitschrift., 264 (1) (2010), 15–41.

[42] E. Milakis, J. Pipher, and T. Toro, Harmonic analysis on chord-arc domains, Journal
of Geometric Analysis, 23 (4), 2091–2157, 2, 2013.

[43] , Perturbation of elliptic operators in chord arc domains, Contemporary Math-

ematics (Amer. Math. Soc.), 612 (2014).

[44] J. Nash, Continuity of the solutions of parabolic and elliptic equations, Amer. J. Math.,

80 (1957), 931–954.

[45] N. Varopoulos, A remark on BMO and bounded harmonic functions, Princeton Univ.

Press, Princeton, NJ, 1970.

Department of Mathematics, Brown University, Box 1917, Providence, RI 02912, USA

E-mail: jpipher@math.brown.edu



Roth’s theorem: an application of approximate
groups

Tom Sanders

Abstract. We discuss Roth’s theorem on arithmetic progressions through the lens of approximate

groups.

Mathematics Subject Classification (2010). 11B25.

Keywords. Approximate groups, Roth’s theorem, additive combinatorics, Bourgain systems.

1. Introduction

Our starting point is the following question.

Do the primes contain infinitely many arithmetic progressions? That is to say,
are there infinitely many distinct primes p1, p2, p3 such that p1 + p3 = 2p2?

There are two common ways of establishing existence: algebraic constructions, and

counting. It turns out that with the primes it is the second approach which is the most fruitful,

but to make sense of counting primes we need to settle a few things. In particular, we shall

need a range over which to count and a natural choice is the interval [N ] := {1, . . . , N}. The
number of primes in this interval is denoted π(N) and the Prime Number Theorem asserts

that

π(N) ∼ N

logN
as N →∞.

To be clear, throughout the paper we shall be interested in the case N → ∞, and all the

counting we do will be rough rather than exact.

In general, given a set A ⊂ [N ] we define

TN (A) :=
∑

x1,x2,x3�N
x1+x3=2x2

1A(x1)1A(x2)1A(x3);

this is the number of arithmetic progressions in A where we do care about order so (x +
2d, x+ d, x) is, in general, a different progression to (x, x+ d, x+2d). We should note two

things immediately: first, this count includes the so called ‘trivial progressions’ of the form

(x, x, x); and secondly, by arithmetic progression we shall (almost) always mean three-term

arithmetic progression.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Writing PN for the set of primes in the interval [N ] van der Corput [68] answered the

question above by proving the following asymptotic.

TN (PN ) ∼ 2
∏
p>2

(
1− 1

(p− 1)2
)
· 1

log3 N
· TN ([N ]). (1.1)

We should take a moment both to explain the statement and also why it answers the question.

The asymptotic on the right has three parts:

• (Total count) TN ([N ]) is the total number of arithmetic progressions in the interval

[N ], so

TN ([N ]) =
∑
x�N

∑
1−x
2 �d�N−x

2

1 =
∑
x�N

(
N

2
+O(1)

)
=

N2

2
+O(N).

• (Random sets) log−3 N is the proportion of the total number of progressions in [N ]
we would expect to have if PN were a random subset of [N ] of size π(N). Letting

A be a random subset of [N ] of size π(N) is roughly the same as letting A be a

random set chosen by letting each x ∈ [N ] be inA independently and with probability

log−1 N . In this case we have

ETN (A) =
∑

x1,x2,x3�N
x1+x3=2x2

E1A(x1)1A(x2)1A(x3)

=
1

log3 N
· (TN ([N ])−N) +

1

logN
·N ∼ 1

log3 N
· TN ([N ])

by linearity of expectation.

• (Local factors) 2
∏

p>2

(
1− 1

(p−1)2

)
measures the deviation of PN from being ran-

dom for so called local reasons – that is reasons (mod p) for small primes p. The

probabilistic model for the primes due to Cramér (see [25] for a discussion) tells us

to expect the count of progressions to be rescaled by a local factor βp for each prime

p, and that factor is the ratio of the number of (modular) arithmetic progressions in

the residues Rp := {x : (x, p) = 1} divided by the expected number of arithmetic

progressions in a random set of size |Rp|. These factors can be easily computed and

we have β2 = 2 and βp = 1− (p−1)−2 for all other p leading to the claimed product.

It follows from these remarks that (1.1) becomes

TN (PN ) ∼ 0.66 . . .
N2

log3 N
.

Now to see how this answers the question at the start of the introduction we note that if

the primes contained finitely many non-trivial arithmetic progressions then we would have

TN (PN ) = |PN |+O(1) 	 N contradicting the above asymptotic for sufficiently large N .
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2. Roth’s theorem

Although van der Corput answered the question of whether the primes contain infinitely

many arithmetic progressions, there is an underlying question which remains.

Do the primes contain infinitely many arithmetic progressions simply because
there are ‘lots’ of primes?

As it stands this question is a little vague; to make sense of it we make a definition.

r3(N) := max{A ⊂ [N ] : A contains no non-trivial progressions}.

Now, suppose that we could show that

r3(N) � π(N)− ω(N) (2.1)

for some function ω with ω(N)→∞ asN →∞. If the primes contained only finitely many

non-trivial arithmetic progressions then we could remove them and take the intersection

with a sufficiently large interval to get a set of size π(N) − O(1) containing no non-trivial

arithmetic progressions. This would tell us that r3(N) � π(N)− O(1) contradicting (2.1).

It follows that if we could prove this conjecture then we would know that the primes contain

arithmetic progressions simply because there are many primes.

Nothing like (2.1) is known and, indeed, it is not even obvious that r3(N) = o(N).
One way of establishing an upper bound on r3(N) is to show that sufficiently large sets

are guaranteed to contain non-trivial arithmetic progressions. It turns out that this will be a

fruitful, although equivalent, way of looking at the problem.

To get a flavour of the sort of result one might start with we have the following for which

is is useful to introduce a definition: the density of a set A ⊂ [N ] is defined to be |A|/N .

Proposition 2.1. Suppose that A ⊂ [N ] has density α > 0. Then

TN (A) = Ω((2α− 1)TN ([N ])).

This result only has content when α > 1/2. In this case, if N is sufficiently large – say

N � C(2α − 1)−1 for some large absolute constant C > 0 – then |A| < TN (A) and we

conclude that A contains a non-trivial arithmetic progression.

We shall return to Proposition 2.1 later, but of more interest to us will be a bound of the

form Ωα(TN ([N ])). This is the content of Roth’s theorem [42, 43] (technically coupled with

an averaging argument due to Varnavides [69]).

Theorem 2.2 (Roth’s theorem). Suppose that A ⊂ [N ] has density α > 0. Then

TN (A) = exp(− exp(O(α−1)))TN ([N ]).

Suppose that A ⊂ [N ] has size r3(N) and contains no non-trivial arithmetic progres-

sions. Then TN (A) = |A| = αN and inserting the bound for TN (A) from the above

theorem we can rearrange to get

r3(N) = |A| = O

(
N

log logN

)
.
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This bound was improved independently by Heath-Brown [34] and Szemerédi [65] who

showed that

r3(N) = O

(
N

logcN

)
for some absolute c > 0. It seems that c = 1/20 was the first explicitly recorded value

and then this was pushed up to around 1/4 by Szemerédi. By a rather different approach

Bourgain in two successive papers [7] and [8] improved c first to 1/2− o(1) and then 2/3−
o(1). Finally, the best known bound is of the form

r3(N) = O

(
N

log1−o(1) N

)
;

it comes from the following theorem from [50].

Theorem 2.3 (Roth’s theorem, better bounds). Suppose that A ⊂ [N ] has density α > 0.
Then

TN (A) � exp(−O(α−1+o(1)))TN ([N ]).

3. Why arithmetic progressions?

An arithmetic progression can be seen as a solution to the linear equation x + z = 2y and

there are certainly other equations we could have chosen; with the primes firmly in mind

then, we shall look at three other equations.

Do the primes contain infinitely many non-trivial solutions to x + y + z =
w? That is to say are there infinitely many quadruples p1, p2, p3, p4 of distinct
primes such that p1 + p2 + p3 = p4?

It turns out that the answer is yes. Indeed, by essentially the same argument as was used

by van der Corput one can show that the number of such quadruples is asymptotically

c
N3

log4 N
(3.1)

for some absolute constant c > 0 (which can be computed).

That being said, in this case the primes do not contain infinitely many such quadruples

for reasons of size alone. Indeed, suppose that A = { 13N +1, . . . , N}. Then |A| ∼ 2
3N , but

for any x, y, z ∈ A we have x+ y + z > N and so certainly x+ y + z �∈ A. It follows that

there are large subsets of [N ] not containing any solutions to x+ y + z = w.

The reason that this example exists is because the equation x+y+z = w is not translation
invariant, in contrast to x+ z = 2y.

Do the primes contain infinitely many non-trivial solutions to x+ y = z + w?

Here, again, van der Corput’s method can be used to get an asymptotic of the same form

as (3.1). However, a simple argument using the Cauchy-Schwarz inequality shows that if
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A ⊂ [N ] has density α > 0 then the number of quadruples (x, y, z, w) ∈ A4 such that

x+ y = z + w is

∑
x+y=z+w

1A(x)1A(y)1A(z)1A(w) =
∑
t

( ∑
x+y=t

1A(x)1A(y)

)2

� 1

2N

(∑
t

∑
x+y=t

1A(x)1A(y)

)2

= α4N3/2.

It follows that if α > CN−1/4 for a large absolute constant C > 0 then A contains a non-

trivial quadruple of the required form – the primes certainly have greater density than this

and so certainly contain non-trivial solutions to this equation simply because there are lots

of primes.

The final sort of equation we want to consider is somewhere between the two above.

Do the primes contain infinitely many non-trivial solutions to x+ y+ z = 3w?

Here, again, van der Corput’s method can be used to get an asymptotic of the same form as

(3.1). The equation is also translation invariant, but nothing as simple as the argument we

just used works to show that any sufficiently large set contains a solution. Bloom, however,

in [5] showed that if A ⊂ [N ] has density α > 0 then∑
x,y,z,w�N :x+y+z=3w

1A(z)1A(y)1A(z)1A(w) = exp(−α−1/2 + o(1))N3

and it follows that the primes do contain infinitely many solutions to x+ y+ z = 3w simply

because there are lots of them. It is worth remarking that versions of this equation with more

summands have been considered by Schoen and Shkredov in [56], and they are able to get

yet stronger bounds.

The problem of the behaviour of general linear equations (in place of those considered

above) is a hard one although the examples we considered give some indication of the sort

of things which can happen.

Ruzsa began the investigation with a single linear equation in [46, 47] and there has

been considerable work since then although there are still many open questions. (See, for

example, [9, 35, 51, 53].) Finally, the question of multiple linear equations can be even

harder and includes results such as Szermerédi’s theorem [63, 64], but we shall not discuss

this here.

4. Lower bounds and graphs

So far we have largely focused our discussion on upper bounds for r3(N), but it is instructive
to also ask about lower bounds. That is to say, we are interested in constructing large sets

A ⊂ [N ] free of arithmetic progressions. A natural idea is to take a probabilistic approach.

It turns out that this yields rather small sets: in particular if we pick x ∈ [N ] to lie in A
independently with probability α then by linearity of expectation we have

E(2|A| − TN (A)) = αN − α3(TN ([N ])−N).
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It follows that we can pick α ∼ N−1/2 such that the right hand side is at least αN/2 and

hence there is a choice of A such that |A| − (TN (A) − |A|) has size at least αN/2. The

number TN (A) − |A| is the number of non-trivial progressions in A and so we can delete

one element from each non-trivial progression in A from A, and end up with a set free of

arithmetic progressions and of size αN/2 = Ω(
√
N).

In light of the random construction one might guess that r3(N) = O(
√
N). It turns out

that this is not true. Indeed, it turns out that r3(N) = N1−o(1) as a result of a construction

of Behrend [3] improving on work of Salem and Spencer[49]. The basic idea is that a

strictly convex body contains no three points in a line, and therefore contains no arithmetic

progressions. A high-dimensional strictly convex body is then fattened up and embedded

into [N ] in a way which preserves this lack of progressions; the body chosen is a sphere. In

particular, if we write

Sr := {(x1, . . . , xd) ∈ [M ]d : x2
1 + · · ·+ x2

d = r}

then by averaging there is some r � dM2 such that |Sr| � Md/dM2. We now consider the

map

Sr → [N ]; (x1, . . . , xd) �→ x1 + (2M)x2 + · · ·+ (2M)d−1xd. (4.1)

This is well-defined provided (2M)d 
 N , and it is injective and preserves the lack of arith-

metic progressions in Sr. It follows that there is a set of size N1−2/d/d2d in [N ] containing
no non-trivial arithmetic progressions. Optimising for d we then have that

r3(N) = Ω

(
N√

logN exp(
√
2 log 2 logN)

)
.

Remarkably this bound has remained almost static for nearly 70 years. There was a recent

improvement by Elkin [14] for which there is an appealing exposition by Green and Wolf

[33], but it seems possible that this lower bound for r3(N) represents something like the

truth.

The embedding in (4.1) can seem a little unnatural at first, but it turns out that high-

dimensional spheres also appear naturally without this embedding as an example for a graph

theoretic result which implies Roth’s theorem.

Theorem 4.1 (Triangle removal lemma). There is an increasing function ε : (0, 1]→ (0, 1]
with ε(δ) → 0 as δ → 0, such that if G is a graph on N vertices containing δN3 triangles
then there is a set of ε(δ)N2 edges which can be removed to make the graph triangle-free.

This result is due to Ruzsa and Szemerédi [48], and the question of the dependence of

the function ε on δ is unknown. For a long time the dependence was of the form

ε(δ) = log−Ω(1)
∗ δ−1 (4.2)

(where log∗M is the number of times one has to take logs to get M below 2) and it was a

significant breakthrough when Fox [15] proved that

ε(δ) = exp(−O(log∗ δ−1)).

The reason this is so important is that all previous proofs of the triangle removal lemma

had used something called the regularity lemma which provably [21] requires bounds of the



Roth’s theorem: an application of approximate groups 407

shape given in (4.2). There is an enormous amount more to be said about this topic, and we

do not have time to do so here. The interested reader is directed to the survey [11].

Bounds for the triangle removal lemma translate easily to bounds for Roth’s theorem

and the Behrend construction above also provides something close to the best known lower

bound on the function ε(δ). (The extra strength in the best known lower bound comes from

not needed to use the embedding (4.1).)

If one believes that Behrend’s construction is close to the best for Roth’s theorem then

one might be tempted to believe that it is also best possible for the triangle removal lemma,

suggesting that Roth’s theorem has nothing to do with arithmetic at all! It may simply be

that the best bounds for Roth’s theorem follow from those for the triangle removal lemma.

To close this section it is worth mentioning a wonderful problem which sits somewhere

between the triangle removal lemma and Roth’s theorem.

Suppose thatA ⊂ [N ]2 contains no three points in an axis-aligned right-angled
triangle, that is no three distinct points (x, y), (x+ d, y), (x, y+ d). How large
can |A| be?

Ajtai and Szemerédi in [1] showed that |A| = o(N2), and then Vu [70] and Solymosi [60]

gave some explicit dependencies. After this it was a huge breakthrough when Shkredov in

[58, 59] showed that

|A| = O

(
N2

(log logN)Ω(1)

)
.

Shkredov’s result implies Roth’s theorem, although with slightly weaker bounds than Roth

himself showed. Nevertheless, improving the bounds in Shkredov’s result seems like it

would be of considerable interest.

5. Other groups and the model setting

At the end of the last section we discussed generalisations of Roth’s theorem which apply

not just to the integers but more generally to graphs. There is an intermediate generalisation

to finite Abelian groups which it will be helpful for us to consider here; suppose that G is

such.

An arithmetic progression in G is exactly what one expects: it is a triple x, y, z ∈ G
such that x + z = 2y and we count them in a similar way to before. although it will be

helpful to normalise our counting gadget slightly differently:

TG(A) := Ex,d∈G1A(x)1A(x+ d)1A(x+ 2d).

It turns out that there is an analogue of Roth’s theorem in this setting due to Lev [39].

Theorem 5.1. Suppose thatG is a finite Abelian group and A ⊂ G has density α > 0. Then

TG(A) = exp(−α−O(1)).

With the additional assumption thatG has odd order, this result was proved byMeshulam

[40] somewhat earlier. If G = (Z/2Z)n then we have TG(A) = α2 for all A ⊂ G of

density α since (x, y, x) is an arithmetic progression for all pairs (x, y). In light of this it
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seems that 2-torsion should make things easier, but it turns out that there are some additional

technicalities in the proof. An illuminating model case is G := (Z/4Z)n.
In the paper [28], Green discusses the finite field philosophy for this area of mathematics.

This is the powerful idea that problems for the integers can be well modelled by considering

them in suitably chosen groups where the order of every (non-identity) element is the same

(and small). For Roth’s theorem the natural group is G := (Z/3Z)n. An arithmetic progres-

sion in G is then just a line, and Meshulam’s argument from [40] applied to this group is

particularly clean.

Theorem 5.2 (Roth-Mehulam Theorem). Suppose that A ⊂ G := (Z/3Z)n has density
α > 0. Then

TG(A) = exp(−O(α−1)).

This result should be compared with Theorem 2.3, and we shall discuss the proof later

in §6.

It was a highly significant breakthrough when Bateman and Katz [2] improved Theorem

5.2 establishing the following.

Theorem 5.3. Suppose that A ⊂ G := (Z/3Z)n has density α > 0. Then

TG(A) = exp(−O(α−1+Ω(1))).

We do not have the space to discuss their arguments here, but they involve a rather careful

analysis of the structure of the Fourier spectrum. These methods have since been extended

by Schoen and Shkredov a series of papers beginning with [57].

As a final remark for this section it is possible to ask about Roth’s theorem in non-Abelian

groups too. Here one has to decide what one might mean by an arithmetic progression: is

it a triple (x, y, z) such that xz = y2, or such that z = yx−1y? It is possible to work with

both; the first is not translation invariant in contrast to the second. The interested reader is

directed to the papers [38] and [61].

6. The Roth-Meshulam theorem

Suppose thatG is a finite Abelian group of odd order. The main tool for estimating counts of

arithmetic progressions is the Fourier transform. The reason for this can be seen by noting

that

TG(A) = 〈12·A, 1A ∗ 1A〉L2(G) (6.1)

where ∗ denotes convolution and in this instance is defined by

1A ∗ 1A(x) = Ey∈G1A(y)1A(x− y);

and 2 · A := {2a : a ∈ A}. The fact that G has odd order is not essential, but it makes it

slightly easier to write down this expression for TG(A).
The Fourier transform is the (essentially unique) representation of L2(G) which simul-

taneously diagonalises all convolution operators. Concretely, we write Ĝ for the dual group

of G, that is the group of homomorphisms (characters) G→ S1 := {z ∈ Z : |z| = 1}, and
for f ∈ L1(G) define the Fourier transform of f to be

f̂(γ) := Ex∈Gf(x)γ(x) for all γ ∈ Ĝ.
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Then

TG(A) =
∑
γ∈Ĝ

1̂A(γ)
21̂A(2γ);

the operator f �→ 1A ∗ f in (6.1) has been diagonalised.

As an example of the utility of the Fourier transform we pause to prove Proposition 2.1

for finite Abelian groups.

Proposition 6.1. Suppose that G is a finite Abelian group of odd order and A ⊂ G has
density α > 0. Then

TG(A) � (2α− 1)α2.

Proof. It is a short calculation to check that 1̂A(1) = αwhere 1 denotes the constant function
on G taking the value 1. Then

TG(A) = α3 +
∑
γ �≡1

1̂A(γ)
21̂A(2γ).

By the triangle inequality (or Hausdorff-Young if you prefer) |1̂A(2γ)| � E1A = α. It

follows that

TG(A) � α3 − α
∑
γ �≡1

|1̂A(γ)|2.

On the other hand by Parseval’s theorem we have∑
γ

|1̂A(γ)|2 = Ex∈G1A(x)
2 = α.

We conclude that

TG(A) � α3 − α(α− α2) = (2α− 1)α2,

as required.

Rather similar arguments are at the heart of the proof of the Roth-Meshulam theorem

which we now sketch. Once we have discussed approximate groups we shall return to this

sketch and flesh it out in that more general setting. To start with we recall the Roth-Meshulam

theorem.

Theorem 6.2 (Roth-Meshulam, Theorem 5.2). Suppose that A ⊂ G := (Z/3Z)n has den-
sity α > 0. Then

TG(A) = exp(−O(α−1)).

The argument is based around the following key lemma.

Lemma 6.3 (Iteration lemma). Suppose that A ⊂ G has density α > 0. Then at least one
of the following holds.

(1) TG(A) > α3/2;

(2) there is a character γ on G such that

‖1A ∗ μker γ‖L∞(G) � α(1 + Ω(α)).
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To understand this lemma it is helpful to note that 1A ∗ μker γ(x) is the relative density

of A ∩ (x + ker γ) in the coset x + ker γ. In words, then, the lemma states that either A
has many arithmetic progressions – we are in the first case – or else A has increased relative

density on a coset of ker γ.
Given this lemma it is helpful to sketch quickly how we arrive at a proof of the Roth-

Meshulam theorem. The idea is to repeatedly apply the lemma, terminating when we are in

the first case; when in the second the density increases and this cannot happen without limit.

Of course this strategy can only work if the lemma also holds for G replaced by a coset

of ker γ. This can be done because arithmetic progressions are translation invariant – the

number of arithmetic progressions in A∩ (x+ker γ) is the same as in (A−x)∩ker γ. This
is the only place we use the translation invariance of arithmetic progressions, but as we have

remarked before it is essential.

Every time we iterate in the above argument the density goes from α to α(1+Ω(α)); this
can happen at most O(α−1) times. It remains to estimate the size of the subgroup we have

ended up with. Since (Z/3Z)n has exponent 3, the characters take only three values and

the kernel of a character therefore has index 3. It follows that the iteration terminates with

a subgroup of index 3O(α−1) and the result follows from this once all the parts are pieced

together.

Pretty much all arguments regarding these sorts of problems are iterative in this way, and

it is not hard to port such arguments from the model setting so we shall not dwell on this

further. What is harder to extend from the model setting to the integers is the proof of the

iteration lemma. This, in turn, splits into three parts, and while some of them may seem

laboured, they are are set out this way because they generalise in different ways.

Given a function f : G → C we define the Gowers uniformity norm of order 2 of f
by

‖f‖4U2 := Ex0,x1,x2∈Gf(x1)f(x1 + x0)f(x2)f(x2 + x0).

This is a bonafide norm, and was defined by Gowers as part of a wider family in the cele-

brated work [22, 23]. We shall return to this hierarchy later, but for now we use this definition

to record the first ingredient in Lemma 6.3.

Lemma 6.4. Suppose that A ⊂ G has density α > 0. Then at least one of the following
holds.

(1) TG(A) > α3/2;

(2) ‖1A − α‖4U2 = Ω(α5).

This is a simple application of the Cauchy-Schwarz inequality in a way which is very

common for the field. We record it because it lets us separate out the so-called U2-inverse

theorem which we shall want to discuss later.

Lemma 6.5 (U2-inverse theorem). Suppose that A ⊂ G has density α > 0 and ‖1A −
α‖4U2 � ε2α3. Then there is a character γ such that |(1A − α)∧(γ)| � εα.

The proof of this is a simple application of Fourier inversion.

Finally,

Lemma 6.6. Suppose that A ⊂ G has density α > 0 and γ is a character such that |(1A −
α)∧(γ)| � εα. Then

‖1A ∗ μker γ‖L∞(G) � α(1 + Ω(ε)).
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All three of these lemmas apply to any finite Abelian group, and they easily dovetail to

give Lemma 6.3. That being said, the lemma cannot always be effectively iterated because

the kernel of the character may be small. Indeed, if G = Z/pZ for p a prime then ker γ is

trivial. It turns out, however, that the hypothesis of Lemma 6.6 also give rise to a density

increment on something which is roughly – approximately – like a subgroup, and much

larger than a genuine subgroup might be. These approximate (sub-)groups are the topic of

the next section.

7. Approximate groups

Approximate groups are an area of study which has received considerable attention over the

last five years, and the interested reader might like to consult the survey [29] of Green.

In a nutshell, approximate groups are groups in which the closure axiom has been relaxed

to a sort of ‘approximate’ closure. To start with suppose that G is an Abelian group and B
is a non-empty symmetric subset of G. Then B is a subgroup of G if and only if it is

closed under addition. We can write this using additive notation as B + B = B where

B+B := {b+ b′ : b, b′ ∈ B}. One might then reasonably ask what happens if we relax this

to

|B +B| � (1 + ε)|B|, (7.1)

for some small ε. As it happens, if ε < 1/2 then a result of Freı̆man [17] (also appearing as

[67, Exercise 2.6.5]) tells us that B +B is a subgroup.

At first one might be rather satisfied with this state of affairs: sets satisfying a sort of

approximate closure axiom can be completed into a subgroup without enlarging them too

much. One reason for being a little less enthusiastic is indicated by Lemma 6.6. If these were

the only approximate subgroups, then we should know that they were all close to bonafide

subgroups, but our problem with Lemma 6.6 was precisely that there might not be any large

(non-trivial) subgroups. If all approximate subgroups are close to bonafide subgroups then

there would be groups with no large approximate subgroups.

Bourgain in [7] has an ingenious solution to the limitations of (7.1): he introduced an

asymmetry in the group operation and considers pairs of symmetric sets (B,B′) such that

|B +B′| � (1 + ε)|B|.

Of course for this to add any generality we need B′ to be somewhat smaller than B, but this

is possible and leads to a genuinely new class of structure.

Our prototype for approximate groups then will be nested intervals. We write I ⊂ Z for

a symmetric interval about 0 of lengthN ; I ′ for the same of lengthN ′; and so on for I ′′ etc.
We think of N ′′ � N ′ � N . Then

|I + I ′| � |I|(1 +O(N ′/N)) ≈ |I| etc.

We shall make further use of intervals when we describe Roth’s proof of his theorem in the

framework of §6, but for now we shall turn to more general approximate groups.

Following [31] which attempts to abstract some of the important ideas of Bourgain from

[7], we define a Bourgain system to be a vector B = (Bρ)ρ∈(0,2] of subsets of G satisfying

the following axioms.
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(1) (Symmetric neighbourhoods of the identity) For all ρ ∈ (0, 2] the setBρ is a symmetric

set containing the identity, that is to say 0G ∈ Bρ and −Bρ = Bρ;

(2) (Nesting/Sub-additivity) For all ρ, ρ′ > 0 with ρ+ρ′ � 2 we have Bρ+Bρ′ ⊂ Bρ+ρ′ ;

(3) (Growth) For every ρ ∈ (0, 1]we have thatB2ρ can be covered by at most 2d translates

of Bρ.

We say that the system is d-dimensional and has size |B1|.
A Bourgain system may be thought of as providing a base for a topology around the

identity. In this light the symmetry axiom may be seen as asking that inversion is continuous,

and the sub-additivity axiommay be seen as asking that multiplication is continuous. Finally,

the growth condition asks for a sort of local compactness.

Example 7.1 (Intervals). Given an integer N we can write Bρ := {x ∈ Z : |x| � ρN}.
Then B is an O(1)-dimensional Bourgain system of size 2N .

The example of intervals generalises in two directions, both of which are rather useful.

Example 7.2 (Balls in Zd). Let B := (Bρ)ρ∈(0,2] where Bρ is the ball of radius ρ in Zd

(considered as a subset of Rd in any norm). It is easy to check the various axioms of a
Bourgain system hold.

Example 7.3 (Bohr sets). For z ∈ S1 put ‖z‖ := (2π)−1| arg z|, where arg is taken as
mapping into (−π, π]. If Γ ⊂ Ĝ and δ ∈ (0, 1] then we put

B(Γ, δ) := {x ∈ G : ‖γ(x)‖ � δ for all γ ∈ Γ},

and call such a set a Bohr set; the set Γ is called the frequency set and the parameter δ is
called the width.

It turns out that the system (B(Γ, ρδ))ρ is a Bourgain system of density at least δ|Γ| and
dimension 2|Γ|. This can be shown by an averaging argument which can be found in [67,
Lemma 4.20].

With Example 7.2 we can check directly that there is an absolute constant c > 0 such

that ∣∣∣∣ |Bρ+ρ′ |
|Bρ| − 1

∣∣∣∣ = O(dη) for all |ρ′| � cρ/d. (7.2)

On the other hand, this need not be the case with Bohr sets as can be seen by considering

Bohr sets in groups of bounded exponent. Fortunately Bourgain recovered the situation in

[7] by showing that (7.2) holds almost all the time for all Bourgain systems – he called the

radii ρ for which (7.2) holds regular.
That ends our introduction to approximate groups and Bourgain systems which has been

rather quick and dirty. The main idea is that these are structures which support sufficient

harmonic analysis that certain arguments can be pushed through as we shall see in §9. That

being said the reader may wish to consult the papers [30, 32] or [24] for some different

perspectives and more thorough discussions.
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8. Freı̆man’s theorem and another question

The reader only interested in Roth’s theorem can skip this section, but for those with a little

more time it is worth making a couple of additional remarks. Had we relaxed (7.1) further in

the last section asking only that |B + B| � K|B| for some possibly larger value of K then

it would turn out that B is necessarily close to a Bourgain system. Indeed, in that case we

have the following remarkable result of Freı̆man.

Theorem 8.1 (Freı̆man’s theorem). Suppose that G is an Abelian group and A ⊂ G is finite
with |A + A| � K|A|. Then there is an OK(1)-dimensional Bourgain system B of size
ΩK(|A|) such that |A ∩B1| = ΩK(|B1|).

As it happens one can be rather more precise: it turns out that the Bourgain system is

of a particular type called a generalised arithmetic progression; and there are reasonable

dependencies available for the implied constants, particularly following the work of Schoen

[52] and Croot and Sisask [13].

It is also worth saying that Freı̆man’s theorem is a tremendously important and powerful

result, and our few short remarks cannot do it justice. The interested reader is directed

towards [4, 18, 19, 26] for more information and applications.

Having established his result Freı̆man himself proved the following theorem in [16]

which is closer to the sort of question we are considering in this paper.

Theorem 8.2. Suppose that A ⊂ Z is finite and contains no non-trivial arithmetic progres-
sions. Then |A+A|

|A| →∞ as |A| → ∞.

This result immediately implies that r3(N) = o(N) since if A ⊂ [N ] has density α > 0
and no non-trivial arithmetic progressions then

2α−1 � |A+A|
|A| → ∞ as |A| → ∞.

In fact Ruzsa, in [45], showed that there is a sort of converse so that bounds for r3(N) can
be used to get a rate of growth for the ratio:

|A+A|
|A| = Ω

(
r3(|A|)
|A|

)−1/4

.

Although one can get fairly good bounds for this ratio by inserting our best bounds for Roth’s

theorem, Henriot [36] has shown the following further improvement by direct argument and

Freı̆man’s theorem. |A+A|
|A| = Ω(log1−o(1) |A|). (8.1)

Finally Henriot’s result also gives the best known bound for a lovely problem considered by

Stanchescu [62].

Suppose that A ⊂ Z2 contains no three co-linear points. How small can the
ratio |A+A|/|A| be?

Three points in arithmetic progression certainly form a line and so such a set A is certainly

free of non-trivial arithmetic progressions. Moreover, Henriot’s arguments are actually set
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in the full generality of Abelian groups and so, in particular, tell us that (8.1) holds in this

setting too.

Remarkably, nothing better than the bound following immediately from Henriot’s work

is known here, despite the fact that if A has no co-linear triples then not only does it avoid

the equation x+ y = 2z, but it also avoids

tx+ sy = (t+ s)z

for any s, t ∈ N! It is worth noting that, again, it is the sphere of Behrend’s construction

which provides the best know construction. (See [62] for details of this.)

9. A proof of Roth’s theorem

We now return to the framework of the argument in §6 and consider it through the lens of

§7 by transferring it to intervals. Suppose that I , I ′, I ′′, and I ′′′ are symmetric intervals of

integers around 0 and having sizesN ' N ′ ' N ′′ ' N ′′′ respectively. We shall make use

of the Fourier transform on Z defined on functions f ∈ �1(Z) by

f̂(θ) :=
∑
z∈Z

f(z)γ(z) for all γ ∈ Ẑ.

Perhaps we should remark that Ẑ ∼= R/Z; every character γ : Z → S1 has the form

z �→ exp(2πizθ) for some θ ∈ T.
Although we have defined the Fourier transform for Z, we shall think of it as applied to

the intervals I , I ′, etc. To this end, it is useful record the fact that μI denotes the uniform

measure on I and the (a) natural version of the Fourier transform on I is given by taking

f ∈ L1(μI) to

f̂dμI(θ) = Ex∈If(x)γ(x).

Now, turning to the arguments of §6, it was Lemma 6.6 which showed us how to go from

a large Fourier coefficient to a density increment on a subgroup, which had the main weak-

ness as regards extending the Roth-Meshulam theorem from groups of bounded exponent to

cyclic groups. We have the following.

Lemma 9.1. Suppose thatA ⊂ I has density α > 0 and γ : Z→ S1 is a character such that
|((1A − α)dμI)

∧(γ)| � εα. Then there is an arithmetic progression P of length Ω(
√
N ′)

such that
‖1A ∗ μP ‖L∞(I) � α(1 + Ω(ε))−O(N ′/N).

The proof of this lemma is relatively simple and follows Lemma 6.6 but with the addition

of the pigeonhole principle. Ultimately we shall return again and discuss something even

stronger here, but for now we examine the other parts of §6.

Our next task is to formulate a version of the U2-norm for approximate groups and at

the same time it will be useful to define a version of the related U1-(semi-)norm which we

also now define. The U2-norm is one of a hierarchy of (semi-)norms introduced by Gowers

in cite [23], the first of which is defined on functions f : G→ C by

‖f‖2U1 := Ex,y∈Gf(x)f(x+ y).
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It is easy to check that for a set A′ ⊂ G of density α′ we always have ‖1A − α′‖U1 = 0; in
the setting of approximate groups this need not be the case.

Given f : I → C we define

‖f‖2U1(I,I′) := Ex0∈I′Ex1∈If(x1)f(x1 + x0)

and

‖f‖4U2(I,I′) := Ex0∈I′Ex1,x2∈If(x1)f(x1 + x0)f(x2)f(x2 + x0).

In addition we shall require an analogue of TG which captures the approximate group struc-

ture – it is not enough to use TN . To this end put

TI,I′,I′′(A) :=Ey∈I〈12·(A∩(y+I′′)), 1A∩(y+I′) ∗ (1A∩(y+I′)dμy+I′)〉L2(2y+2I′′)

=Ey∈IEz∈2y+2I′′12·(A∩(y+I′′))(z)

× Ex∈y+I′1A∩(y+I′)(x)1A∩y+I′)(z − x).

(9.1)

This is a complicated expression, but it is natural and it is worth taking a moment to examine

the parts. If G were a finite group and A′ ⊂ G then we would be considering

TG(A
′) = 〈12·A′ , 1A′ ∗ 1A′〉L2(G).

For us the set A is contained in I which we think of as ‘compact’ and so it is natural to

normalise convolution as an expectation. That means that

1A′ ∗ 1A′ = Ez∈G1A′(z)1A′(· − z) �→ 1A ∗ (1AdμI) = Ez∈I1A(z)1A(· − z).

(In fact we do not quite do this, and we shall explain why in a moment.) The sensible domain

of definition of 1A ∗ (1AdμI) is then any smaller interval I ′. Indeed, we have

1I ∗ (1IdμI)(x) = 1 +O(N ′/N) for all x ∈ I ′

which should be compared with

1G ∗ 1G(x) = 1 for all x ∈ G.

Of course 2 · A is actually naturally defined on 2 · I and we should like it to be defined on

2 · I ′. Now, 2 · (A ∩ I ′) is defined on 2 · I ′, but the former might be empty. This is why

we introduce the additional averaging over y ∈ I in (9.1). It gives us elements y such that

A∩ (y+ I ′) and A∩ (2y+2I ′) are both large. (Actually, it does not quite do this, but if the

U1-norm is small then it does.)

Some of that may seem rather obscure and technical so perhaps it is time to record some

lemmas.

Lemma 9.2 (Analogue of Lemma 6.4). Suppose that A ⊂ I has density α > 0. Then at
least one of the following holds.

(1) TI,I′,I′′(A) > α3/2;

(2) Ey∈I‖1A∩(y+I) − α‖4U2(y+I′,2y+2I′′) = Ω(α5)−O(N ′′/N ′)−O(N ′/N);

(3) ‖1A − α‖U1(I,I′) = Ω(α3)−O(N ′′/N ′)−O(N ′/N).
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The proof of this is really just the Cauchy-Schwarz inequality again, but with a few extra

ingredients to take care of the fact we are in an approximate group.

Lemma 9.3 (U2-inverse theorem for intervals/approximate groups). Suppose that A ⊂ I
has density α > 0 and

Ey∈I‖1A∩(y+I′) − α‖4U2(y+I′,2y+2I′′) � ε2α3.

Then there is a character γ : Z→ S1 and a translate y ∈ I such that

|((1A∩(y+I′′′) − α)dμy+I′′′)
∧(γ)| � εα−O(N ′/N)−O(N ′′/N ′)−O(N ′′′/N ′′).

With a little tweaking to deal with the fact that α is not the relative density of A in

y + I ′′′ (as seems to be required in Lemma 9.1), and what to do in the event that the U1-

norm is large (this is even easier than when the U2-norm is large), these results combine to

give the following iteration lemma.

Lemma 9.4 (Iteration lemma). Suppose that A ⊂ I has density α > 0. Then at least one of
the following holds.

(1) TI,I′,I′′(A) > α3/2;

(2) there is an arithmetic progressions P of size Ω(
√
N ′′′) such that

‖1A ∗ μP ‖L∞(G) � α(1 + Ω(α))−O(N ′/N)−O(N ′′/N ′)−O(N ′′′/N ′′).

As is typical when dealing with approximate groups, one choses N ′ = o(α2N), N ′′ =
o(α2N ′), etc. and conclude that we have an iteration as before which terminates after

O(α−1) steps. At each stage we have N �→ NΩ(1), and so we end up concluding that

A contains a non-trivial arithmetic progression provided N− exp(O(α−1)) ' 1. This leads to
Roth’s theorem.

Before closing this section we note that while we are interested in bounds, there are sev-

eral other proofs of Roth’s theorem with different strengths. We direct the reader’s attention

to the papers [12, 66] and [20] for some examples. The last of these, in particular, covers

the ergodic theoretic proof of Roth’s theorem which leads to an enormously powerful theory

which we do not have time to discuss here.

10. Improvements to Roth’s theorem

In the previous section we gave an account of Roth’s proof of Roth’s theorem which was cer-

tainly not expressed in the language used by Roth and which appears to introduce a number

of technicalities which are not visible in Roth’s original work. We did this for three reasons:

first, it is natural within the framework of approximate groups; secondly, it provides a good

model framework in which to practice the arguments typical of approximate groups; finally

it makes discussion of improvements much simpler.

We shall begin with Bourgain’s improvement the the bounds in Roth’s theorem from

[7]. He noted that in Lemma 9.1, instead of passing to a long arithmetic progression, one

can actually pass to the level set of the character which is much larger. Suppose that B =
(Bρ)ρ∈(0,2] is a d-dimensional Bourgain system, then we (almost) have the following.
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Lemma 10.1. Suppose that A ⊂ B1 has density α > 0 and γ : Z→ S1 is a character such
that |((1A − α)dμB1)

∧(γ)| � εα. Then there is a Bourgain system B′ = (B′
ρ)ρ∈(0,2] of size

δ−O(d)|B| and dimension d+ 1 such that

‖1A ∗ μB′1‖L∞(I) � α(1 + Ω(ε))−O(δ).

The advantage of our more complicated discussion in the previous section is that almost

exactly the same arguments as worked there apply to more general Bourgain systems, and

gives an iteration lemma analogous to Lemma 9.4.

Lemma 10.2 (Iteration lemma). Suppose that A ⊂ B1 has density α > 0. Then at least one
of the following holds.

(1) TB1,Bδ,Bδ′ (A) > α3/2;

(2) there is a Bourgain system B′ of dimension d+ 1 and size (δδ′δ′′)O(d)|B1| such that

‖1A ∗ μB′1‖L∞(G) � α(1 + Ω(α))−O(δ + δ′δ−1 + δ′′δ′−1).

We pick δ = o(α2), δ′ = o(α2δ), and δ′′ = o(α2δ′) and we have an iteration which, as

before, can only proceed O(α−1) times. To conclude we end up with a Bourgain system of

size

αO(1+2+3+···+O(α−1))N = α−O(α−2)N,

and hence TN (A) = α−O(α−2)N2 which leads to Bourgain’s bound.

Bourgain’s argument improves on Roth’s by making the cost of each iteration less. An-

other natural idea is to try to reduce the number of iterations. The obvious place to do this

is with the use of the U2-inverse theorem. Instead of finding just one character at which the

Fourier transform is large, we can see if we can make use of all of them.

This is exactly what Heath-Brown and Szemerédi did in their papers [34] and [65], and

to describe it it is useful to return to the setting of G a finite Abelian group and A ⊂ G of

density α. Suppose that TG(A) � α3/2. Then∑
γ:|1̂A(2γ)|=Ω(α2)

|1̂A(γ)|3 = Ω(α3).

If we let B be the Bohr set (see Example 7.3 for details) with frequency set

Γ := {γ : |1̂A(2γ)| = Ω(α2)},
(and a suitably small width parameter) then it turns out that we can arrange things so that

‖1A ∗ μB‖L∞(G) � α(1 + Ω(1)).

This is a very large density increment for A; indeed it is so large that it can only be done

O(logα−1) times (assuming, as is the case, that the above argument can be run relative to a

Bourgain system). The Bohr setB is a Bourgain system of dimensionO(|Γ|) and to estimate

|Γ| we can use Parseval’s theorem:

|Γ|(Ω(α2))2 �
∑
γ∈Γ
|1̂A(2γ)|2 �

∑
γ

|1̂A(γ)|2 = α
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(provided G has odd order so that multiplication by 2 is an injection on Ĝ). It follows that

|Γ| = O(α−3). Unfortunately this means that the resulting Bourgain system has density

αO(α−3) which means that already after one iteration we have a worse estimate that Bour-

gain’s argument.

One can do a little better than the bound from Parseval’s theorem by applying a result

called Chang’s theorem [10].

Theorem 10.3 (Chang’s theorem). Suppose that A ⊂ G has density α > 0 and ε ∈ (0, 1] is
a parameter. Then there is a set Γ of size O(ε−2 logα−1) such that

{γ : |1̂A(γ)| � εα} ⊂ {
∑
γ∈Γ

σγγ : σ ∈ {−1, 0, 1}Γ}.

This is a tremendously useful result, foreshadowed in the work of Bourgain, particu-

larly [6], and popularised by Green. It is essentially equivalent to something called Rudin’s

inequality (see [44]).

Using this result and Bourgain’s framework one can recover a bound almost as good

Bourgain’s original bound in [7] but using O(logα−1) iterations. Unfortunately Chang’s

theorem is best possible (see [27, 41]), so it seems as if we are stuck.

It turns out, however, if we manipulate the setA a little before using the Fourier transform

then we can do better and arrive at Theorem 2.3. In particular, a rather nice combinatorial

trick of Katz and Koester [37] (discovered independently and a little later by Schoen [52]

and used to great effect by him and others in such work as [54, 55, 57]) can be used to make

these manipulations.

Specifically our aim is to transform the set A into two sets L and S where L is thick,

S is not too thin, and L + S ⊂ A − 2.A. The main idea is to construct such sets L and S
iteratively using the ‘Katz-Koester transformation’. Suppose that L and S have density λ
and σ respectively and L+ S ⊂ A+ A. Unless A is ‘quite structured’ one expects there to

be very few x for which

1L ∗ 1−A(x) � α/2;

on the other hand, by averaging, there are many x ∈ G such that

1−S ∗ 1A(x) � σα/2.

It follows that unless A is ‘quite structured’ one may find an x ∈ G such that

1L ∗ 1−A(x) � α/2 and 1−S ∗ 1A(x) � σα/2.

Now, if we put

L′ := L ∪ (x+A) and S′ := S ∩ (A− x),

then we have

μG(L
′) � μG(L) + μG(x+A)− 1L ∗ 1−A(x) � λ+ α/2 and μG(S

′) � ασ/2,

and also

L′ + S′ ⊂ (L+ S′) ∪ ((x+A) + S′) ⊂ (L+ S) ∪ (x+A+A− x) ⊂ A+A.

We see that unless A is quite structured we have a new pair (L′, S′) whose sumset is con-

tained in A + A, but for which L′ is somewhat larger (than L) while S′ is not too much
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smaller (than S). In particular the density of L has increased by α/2 while the denisty of S
has reduced by at most a factor of α/2. The first sort of increment can only happen O(α−1)

times after which the resulting set L has density Ω(1) and the set S has density αO(α−1) as

we claimed.

With the sets S and L which have S + L ⊂ A+A and hence essentially (S + L) ∩ (2 ·
A) = ∅ we can proceed with a Fourier argument (in Bourgain systems). Chang’s theorem

is particularly strong with thin sets and so can be applied to S, and this coupled with the

Croot-Sisask lemma [13] are the main two remaining ingredients.
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Abstract. This survey reviews some of the recent work on semilinear wave equations, in particular the

wave map equation. We discuss global wellposedness, as well as the construction of special solutions

and their stability.
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1. Introduction

In this article we shall survey some recent developments concerning the long-term dynamics

of semi-linear wave equations. These results concern the well-known wave maps system,

which is a geometric equation, as well as the semi-linear wave equation with a power non-

linearity. We begin with the basic variational formulation of these models.

1.1. Lagrangians. Consider the Lagrangian

L(u, ∂tu) :=
ˆ
R1+d

t,x

1

2

(− u2
t + |∇u|2

)
(t, x) dtdx (1.1)

Substitute u = u0 + εv. Then

L(u, ∂tu) = L(u0, ∂tu0) + ε

ˆ
R1+d

t,x

(�u0)(t, x)v(t, x) dtdx+O(ε2)

where � = ∂tt − Δ. Thus u0 is a critical point of L if and only if �u0 = 0, the latter

being the free wave equation on the flat Minkowski space R1+d
t,x . The wave equation is also

a Hamiltonian equation with conserved energy

E(u, ∂tu) =
1

2

ˆ
Rd

(|ut|2 + |∇u|2) dx
Amongst other things, the Lagrangian formulation has the following significance:

• By Nöther’s theorem underlying symmetries of the Lagrangian, more precisely 1-
parameter groups of symmetries, yield continuity equations or conservation laws.
The conservation of energy, momentum, angular momentum are a result of time-

translation, space-translation, and rotation invariance of the Lagrangian, respectively.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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• The Lagrangian formulation has a universal character, and is both flexible and versa-

tile.

To illustrate the latter point, let (M, g) be a Riemannian manifold, and u : R1+d
t,x →M a

smooth map. What does it mean for u to satisfy a wave equation?

While it is very non-obvious how to define such an object on the level of the equation, it

is easy by modifying (1.1):

L(u, ∂tu) =
ˆ
R1+d

t,x

1

2
(−|∂tu|2g +

d∑
j=1

|∂ju|2g
)
dtdx

The critical points L′(u, ∂tu) = 0 satisfy a manifold-valued wave equation. If M ⊂ RN is

imbedded, this equation is

�u ⊥ TuM or �u = A(u)(∂u, ∂u),

A being the second fundamental form. This is the extrinsic formulation. For example, if

M = Sn−1, then

�u = u(|∂tu|2 − |∇u|2) (1.2)

This gives rise to a nonlinear wave equation in a canonical way, the nonlinearity exhibits a so-

called null-form structure. Harmonic maps are time-independent solutions. The nonlinearity

appears naturally, and is given by the geometry of the target.

There is also an intrinsic formulation of the wave map system, namely

Dα∂αu = ηαβDβ∂αu = 0,

where Dα is the covariant derivative on the pull-back bundle. This refers to the pull-back of

the connection defined on M to the Minkowski space R1+d
t,x using the wave map u itself. In

coordinates we obtain

−uitt +Δui + Γijk(u)∂αu
j∂αuk = 0 (1.3)

with η = (−1, 1, 1, . . . , 1) being the flat Minkowski metric. Note the following points:

• There is a formal similarity between (1.3) and the geodesic equation. This similar-

ity yields the following conclusion concerning solutions: u = γ ◦ ϕ is a wave map

provided �ϕ = 0 and γ is a geodesic in M .

• Energy conservation for wave maps:

E(u, ∂tu) =

ˆ
Rd

(|∂tu|2g + d∑
j=1

|∂ju|2g
)
dx

is constant in time.

Of central importance is the Cauchy problem, which we may now state in the following

way for the extrinsic formulation:

�u = A(u)(∂αu, ∂αu), (u(0), ∂tu(0)) = (u0, u1)
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with smooth data, where u0 is a fixed map into the manifold M , and u1 a vector-field in the

pull-back tangent bundle. One typically also imposes a compact support assumption. For u0

this means that outside of some compact set u0 equals a fixed point p ∈ M , whereas for u1

this requirement is just the usual vanishing condition.

The most basic question concerning the Cauchy problem is the following one: Does
there exist a smooth local or global-in-time solution? In addition, we would like the solution

to be robust in a suitable sense. This precise meaning of this is captured by well-posedness

theory.

A very condensed answer to this question reads as follows:

• One has local existence for all data as above, and global well-posedness for small

data. These results are not sensitive to the geometry of the target (such as positive

vs. negative curvature).

• For large data, the question about global-in-time wellposedness is much more in-

volved, and does depend crucially on the geometry of the target manifold and the

dimension of the underlying Minkowski space.

Another Lagrangian relevant to this survey is the following one, which does not involve

any curvature but rather a directly inserted nonlinearity:

L(u, ∂tu) :=
ˆ
R1+d

t,x

{1
2

(− u2
t + |∇u|2

)
(t, x) +

k

p+ 1
|u(t, x)|p+1

}
dtdx (1.4)

where k ∈ R is some constant. The critical points of this Lagrangian are given by the

semi-linear wave equation

utt −Δu+ k|u|p−1u = 0

on R1+d
t,x . The sign of k is essential at least for large data. This is reflected in the conserved

energy

E =

ˆ
Rd

{1
2

(
u2
t + |∇u|2

)
(t, x) +

k

p+ 1
|u(t, x)|p+1

}
dx

If k > 0 then the energy is positive definite, whereas for k < 0 it is indefinite. In the

latter case, which is referred to us the focusing equation, the dynamics is incomparably more

complicated than for the defocusing equation (k > 0).

1.2. Symmetries and solvability. The wave equation is invariant under the Poincaré group.

This group is the symmetry group of special relativity and is generated by the Lorentz trans-

forms and rigid motions of R3.

However, conformal invariance is also essential for the understanding of these equations.

Of particular importance to the well-posedness problem is the dilation symmetry. If u(t, x)
is a wave map, then so is u(λt, λx) ∀λ > 0. Suppose the data belong to the Sobolev space

Ḣs × Ḣs−1(Rd). The unique s for which this space remains invariant under the natural

scaling is s = d
2 . On the other hand, the energy remains invariant under the following

scaling: u(t, x) �→ λ
d−2
2 u(λt, λx) same as Ḣ1×L2(Rd). The interplay between the natural

scaling of the wave-map equation, on the one hand, and the scaling of the energy, on the

other hand, is essential for the solution theory.

• Subcritical case d = 1. The natural scaling is associated with less regularity than that

of the conserved energy. We therefore expect global existence. The logic being that

the local time of existence only depends on the energy of the data, which is preserved.
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• Critical case d = 2. The conserved energy exactly keeps the balance with the natural

scaling of the equation. The geometry of the target plays the decisive role. For exam-

ple, for the sphere S2 large data may exhibit finite-time blowup (singularity formation),

whereas for the hyperbolic plane H2 as a target we have global existence. These re-

sults are the culmination of many years’ worth of developments, carried out by numer-

ous researchers, see Klainerman, Selberg [41, 42], Tataru [74], Tao [70, 71], Krieger,

Schlag, Tataru [47], Krieger, Schlag [46], Rodnianski, Sterbenz [61], Raphael, Rodni-

anski [59], Sterbenz, Tataru [67, 68], Tao [72].

• Supercritical case d ≥ 3. For this, as well as energy supercritical equations in gen-

eral, the dynamics is poorly understood. Self-similar blowup of the form Q(r/t) for
the sphere as target was observed in the 1980s by Shatah [62]. Negatively curved

manifolds in high dimensions admit the same type of phenomenon, see [13]. Don-

ninger [21] established the stability of the Shatah-type blowup relative to suitable

norms.

From a mathematical perspective, the study of nonlinear Hamiltonian evolution equa-

tions focuses on the following problems, broadly stated:

• Wellposedness: Existence and uniqueness of solutions, the continuous dependence

of these solutions on the data, and the persistence of regularity. At first, one needs to

understand these properties locally in time.

• Global behavior: Does finite time break down occur? In the usual classical interpre-

tation, this question means the following: does there exist a finite time T∗ so that a

smooth solution exists for all 0 < t < T∗, but it is impossible to extend the solu-

tion smoothly beyond T∗. Typically, for semi-linear equations this property can be

shown to reduce to the question whether or not some norm, such as L∞ or a suitable

space-time norm, becomes unbounded in finite time.

If finite-time breakdown does not occur, then we have global existence: smooth solu-

tions exist for all times for smooth data. In some instances, such as energy subcritical

equations, this property can be deduced from two ingredients: (i) the local time of

existence only depends on the size of the data as expressed by an “energy norm” (ii)

this norm is dominated by a conserved quantity, typically the energy.

However, such a time-stepping scenario does not admit any conclusion about the na-

ture of the long-term dynamics. Other methods are required in order to determine

that.

• Blow up dynamics: If the solution breaks down in finite time, can one describe the

mechanism by which it does so? For example, via energy concentration at the tip of a

light cone? Often, symmetries (in a wider sense) play a crucial role in the process of

singularity formation.

• Scattering to a free wave: If the solution exists for all times t ≥ 0, does it approach

a free wave? In more formal notation, suppose we are given a solution u(t) to a

nonlinear equation �u = N(u), and we assume that u lies in a suitable space X .

Does there then exist v ∈ X with � v = 0 and such that (#u− #v)(t)→ 0 as t→∞
in X? Here #u = (u, ∂tu). If scattering occurs, then we have local energy decay.
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Of great importance are equations that admit special “soliton” solutions. This refers to

standing waves in a wide sense, stationary solutions not depending on time being included.

For wave maps, these would be given by harmonic maps.

• Special solutions: If a global solution does not approach a free wave, does it scatter

to something else? A stationary nonzero solution, for example? Focusing equations

often exhibit nonlinear bound states.

• Stability theory: If special solutions exist such as stationary or time-periodic ones, are

they orbitally stable? Are they asymptotically stable?

• Multi-bump solutions: Is it possible to construct solutions which asymptotically split

into moving “solitons” plus radiation? Lorentz invariance dictates the dynamics of

the single solitons.

• Resolution into multi-bumps: Do all solutions decompose in this fashion (as in linear

asymptotic completeness)? To rephrase the question: suppose solutions exist for all

times t ≥ 0. Is it then true that they either scatter to a free wave, or decompose

into (moving) standing waves (solitons)? For the latter, the symmetries are essential:

for the wave equation the movement would be determined by Lorentz symmetries,

whereas for the Schrödinger equation Galilean symmetries determine the movement.

Each soliton would consume a fixed quantum of energy, thus limiting the number of

these (moving) standing waves.

For the remainder of this survey, we shall describe some of the answers to these questions

that are known today for the wave map system and scalar semi-linear equations, respectively.

But first, we present an indispensable tool in the study of wave equations, namely the point-

wise decay of free waves.

1.3. Dispersion. In R3, the Cauchy problem �u = 0, u(0) = 0, ∂tu(0) = g ∈ C∞(R3)
has the unique smooth solution

u(t, x) = t

 
tS2

g(x+ y)σ(dy)

If g is supported on the unit ball B(0, 1), then the solution u(t, x) is supported on
∣∣|t| −

|x|∣∣ ≤ 1. This is a manifestation of Huygens’ principle.

Since the energy is conserved and is spread out evenly over a volume of size t2, we

expect point-wise decay at the rate t−1. The technical estimate in R3 reads as follows:

‖u(t, ·)‖∞ ≤ Ct−1‖Dg‖1 (1.5)

In dimension = d the decay is t−
d−1
2 . Generally speaking, (1.5) is not suitable for nonlinear

problems, since L1(Rd) is not invariant under the nonlinear flow. Rather, one uses the

following energy based variant

‖u‖Lp
tL

q
x(R3) 	 ‖(u(0), u̇(0))‖Ḣ1×L2(R3) + ‖�u‖L1

tL
2
x(R

3)

where 1
p+

1
q ≤ 1

2 ,
1
p+

3
q =

1
2 . These are Strichartz estimateswhich play a fundamental role

in the study of nonlinear problems. Examples of these estimates are given by L∞
t L6

x(R
1+3),

L8
t,x(R

1+3). In principle, L2
tL

∞
x (R

1+3) also belongs to this class although this particular

endpoint fails, see Keel, Tao [32].
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2. Global well-posedness for wave maps

In this section, we give an overview of the known results on the Cauchy problem for the

wave-map system. We begin with solutions obeying special rotational symmetry.

2.1. Equivariant solutions. Let M ⊂ Rd+1 for d ≥ 2 be a surface of revolution. This

means that there exists a line in Rd+1 so that rotations about this axis leave M invariant.

Denote such rotations by R, and we identify the group of these symmetries with SO(d).
We call a smooth map u : R1+d → M a k-equivariant map, where k ≥ 1 is some integer

provided

u ◦R = Rk ◦ u
for any such R ∈ SO(d). The understanding here is that R on the left-hand side acts on the

domain Rd by rotation about the origin.

Under this symmetry, u = u(t, r) where r = |x| which simplifies matters considerably.

For d = 2 with φ being arc-length along a generator, the wave map equation now reads as

follows:

φtt − φrr − 1

r
φr +

1

r2
f(φ) = 0 (2.1)

with the conserved energy

E(#φ) =
ˆ ∞

0

(
φ2
t (t, r) + φ2

r(t, r) +
g(φ(t, r))2

r2

)
r dr (2.2)

The function g is defined by the metric on M which is of the form

ds2 = dφ2 + g2(φ)ds2S2 .

The function f in (2.1) is f = gg′. For example, for M = S2 we obtain f(φ) = 1
2 sin(2φ).

Notice that unlike the full wave map system (2.1) does not contain any derivatives in the

nonlinearity, further highlighting the semi-linear nature of these equations.

A special case are geodesically convex targets, i.e., those for which f(φ) > 0 for φ > 0.
The one-sheeted hyperboloid is an example of such a surface.

Theorem 2.1. For geodesically convex targetsM , the equation (2.1) has smooth global solu-
tions for all smooth data. In other words, the equivariant wave map system fromR1+2

t,x →M
is globally well-posed.

This result goes back to the pioneering work of Christodoulou, Tahvildar-Zadeh, and

Shatah from the 1990s, see [14, 15, 65, 66]. See the book by Shatah, Struwe [63] for an

exposition of this work. As we shall see below, Theorem 2.1 does not hold for general

targets such as the sphere for which singularities may form in finite time. So a geometric

condition on the target such as that of being geodesically convex, is of intrinsic importance

for a global regularity result. We remark that Theorem 2.1 deals with the energy critical case,

which is d = 2. As noted above, this case stands out as being of special analytical as well

as geometric interest; the latter being evidenced by the geometrical properties of the target

M entering into the analysis. This is not to say that the wave map equations in dimensions

d ≥ 3 are not of interest. These supercritical equations are much less understood. From the

equivariant formulation Shatah observed in the 1980s that there exists self-similar blowup

solutions [62]. We shall now describe how the dynamics of equivariant wave maps exterior

to a ball in R3 can be completely characterized in the energy class.
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2.2. Exterior wave maps. We now consider wave maps exterior to the unit ball B(0, 1).
By this we mean a smooth equivariant map u : R3 \B(0, 1)→ S3 satisfying the wave maps

equation on r > 1 and a Dirichlet condition at r = 1; in other words, for all times we have

u(t, 1) = p ∈ S3, a fixed point on the sphere.

In the equivariant formulation, we thus have an equation

ψtt − ψrr − 2

r
ψr +

sin(2ψ)

r2
= 0 (2.3)

with ψ(t, 1) = 0 for all times t ≥ 0. The conserved energy is

E(ψ, ψt) =

ˆ ∞

1

1

2

(
ψ2
t + ψ2

r + 2
sin2(ψ)

r2
)
r2 dr (2.4)

Any ψ(t, r) of finite energy and continuous dependence on t ∈ I := (t0, t1) must satisfy

ψ(t,∞) = nπ for all t ∈ I where n ≥ 0 is fixed. This integer n plays the role of the degree

in this context.

The natural space to place the solution into for n = 0 is the energy space

H := (Ḣ1
0 × L2)((1,∞))

with norm

‖(ψ, ψ̇)‖2H :=

ˆ ∞

1

(r2ψ2
r(r) + ψ̇2(r)) dr (2.5)

Here Ḣ1
0 ((1,∞)) is the completion of the smooth functions on (1,∞) with compact support

under the first norm on the right-hand side of (2.5).

The exterior equation (2.3) was proposed by Bizon, Chmaj, and Maliborski [10] as a

model in which to study the problem of relaxation to the ground states given by the various

equivariant harmonic maps. In the physics literature, this model was introduced in [5] as an

easier alternative to the Skyrmion equation. Numerical simulations described in [10] indicate

that in each equivariance class and topological class given by the boundary value nπ at r =
∞ every solution scatters to the unique harmonic map that lies in this class. The existence

of these harmonic maps follows from a phase-plane analysis. The conjecture from [10] was

verified by Lawrie and the author in [50] for the zero degree class, and then by Kenig, Lawrie

and the author [33] in full generality.

Theorem 2.2. For any smooth energy data in the class of degree n there exists a unique
global and smooth evolution to (2.3) which scatters to the unique harmonic map in that
degree class.

The existence of a global smooth solutions is easy, since the removal of a ball around the

origin renders the equation subcritical. The difficult part is to describe the asymptotic state

of the solution. For degree zero solutions the scattering amounts to the property that viewed

on any fixed compact set, the energy of the solution on the set tends to zero. In other words,

the solutions tends to zero. For higher degrees, it means that the solution asymptotically

tends to the unique harmonic map of that degree class.

The methods employed are those that fall under the name “concentration compactness”,

as developed in the works of Kenig, Merle [34, 35] and Duyckaerts, Kenig, Merle [22–26].
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For the zero degree class, a variant of the Kenig, Merle argument in which the compact

element is excluded via a virial identity based rigidity argument, suffices. But for the higher

degrees this does not suffice, since the virial identity is not available. To circumvent this road

block, one uses the exterior energy estimate method of [25].

2.3. Small data theory. We shall now briefly describe the by now classical global-in-time
results on non-equivariant wave maps for small data. These were preceded by the local-

in-time wellposedness obtained by Klainerman, Machedon [36–39] and Klainerman, Sel-

berg [41, 42] in the 1990s. These local results improved dramatically on the easy energy

methods which required much regularity on the data since the nonlinearity was controlled

by Sobolev embedding. More specifically, these authors were able to reduce the regularity

requirement to Hs ×Hs−1(Rd) with s > d
2 for local wellposedness.

The latter condition goes all the way down to the critical scaling d
2 , but does not achieve

this endpoint. The argument relies on the contraction principle in a suitably chosen space.

This turns out not to be energy and Strichartz spaces, but rather the Xs,b spaces which

take the geometry of the characteristic variety of the wave equation into account, which is

the light-cone. This is crucial in order to capture the cancellations exhibited by the highly

structured nonlinearity of the wavemap system. In fact, the right-hand side of (1.2) contains

the term |∂tu|2 − |∇u|2 which is the Minkowski metric applied to the space-time gradient

∇t,xu. The relevance of this lies with the fact that the Minkowski metric vanishes on null-

vectors, which are characterized by lying in a light-cone.

On the level of the wave equation, this means that the nonlinearity cancels self-interactions

of plane waves. Without this property, it would not be possible to lower the regularity all the

way down to s > d
2 , which is called subcritical regularity.

After these important developments the focus shifted to the difficult question of well-

posedness at the critical level s = d
2 . The interest of this question hinges on the scaling

invariance of the equation. Indeed, in contrast to any wellposedness theory at the subcritical

level, wellposedness at the critical level is automatically global in time simply by rescaling

the solution.

The key breakthroughs here were achieved by Tataru [74] and Tao [70, 71] about 15

years ago. In Tataru’s work the regularity is expressed in terms of the Besov regularity

Ḃ1
2, d2
× Ḃ1

2, d2−1
which is precisely at the scaling critical level. But it is stronger than the

Sobolev regularity Ḣ
d
2 × Ḣ

d
2−1. In technical terms, Tataru solved the division problem,

but not the summation problem (which refers to the summation over the dyadic frequency

scales). Tao resolved the summation problem for the sphere as target by means of the im-

portant device of a gauge transform. Without going into too many details, this amounts to

removing “dangerous” interactions in the nonlinearity by exploiting a freedom in the choice

of coordinates (or the choice of a frame). In dimensions 5 and higher, Tao observed that

Strichartz theory suffices to close the argument due to the stronger dispersion in those cases.

In particular, the null form structure of the nonlinearity is not crucial. However, in low di-

mensions, especially in dimension d = 2 for which dispersion is very weak, much more

technical heavy lifting is needed and the nullform becomes essential.

An important hallmark of Tao’s work is the fact that the global wellposedness is not
achieved by means of a contraction argument at the critical regularity. Rather, it is based

on the device of frequency envelope. While one assume smallness of the data in the critical

norm, the data are also assumed to have slightly more regularity than the critical level. The

subcritical wellposedness theory then gives the local existence of a solution. The key is now
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to show that this slightly higher degree of regularity is preserved by the flow; in this way

the subcritical wellposedness theory allows one to solve globally in time. The Tataru, Tao

theory was extended to more general target manifolds than the sphere, see Krieger [43, 44],

Tataru [77, 78], Klainerman, Rodnianski [40]. Nahmod, Stepanov, Uhlenbeck [55] obtain

a small data theorem in spatial dimensions d ≥ 4 for targets given by compact groups or

symmetric spaces.

Our current understanding is that small data wellposedness holds for all Riemannian

manifolds as targets satisfying reasonable assumptions.

Shatah, Struwe [64] made the important observation that the Coulomb gauge can be used

in dimensions d ≥ 4 to obtain global regularity for small data. That particular gauge is nat-

ural form the theory of harmonic maps and exploits the formalism of a moving orthonormal

frame. The Coulomb gauge refers to the choice of such frame which “twists” the least; in

more technical terms, the Dirichlet energy is minimized by such a frame.

These developments set the stage for the next step, namely determining the different

possible types of dynamics for large data wave maps. In the following two sections we will

describe the two main phenomena that may appear in the energy critical setting, namely

finite-time blowup on the one hand, vs. global regularity on the other hand. The energy

supercritical wave map system is still very poorly understood.

2.4. Blowup for wave maps. In [47] Krieger, Tataru, and the author exhibited regularity

breakdown for equivariant wave maps u : R2+1 → S2 of co-rotation index 1 with certain

H1+ regular initial data. More precisely, the data (u, ut) are of class H1+δ × Hδ for

some δ > 0. By a theorem of Struwe [69] such data result in unique local solutions of the

same regularity until possible breakdown occurs via an energy-concentration scenario. More

precisely, Struwe’s result shows that if the solution is indeedC∞–smooth before breakdown,

such a scenario can only happen by the bubbling off of a harmonic map [69]: specifically,

let Q(r) : R2 → S2 be an equivariant harmonic map, which can be constructed for every

co-rotation index k ∈ Z (for example, for k = 1 one may use stereographic projection).

We shall identify Q(r) with the longitudinal angle, as above. Then according to [69], if an

equivariant wave map u of co-rotation index k = 1, again identified with the longitudinal

angle, with smooth initial data at some time t0 > 0 breaks down at time T = 0, then energy

focuses at the origin, and there is a decomposition

u(t, r) = Q(λ(t)r) + ε(t, r), Q(r) a co-rotation k = 1 index equivariant harmonic map

where there is a sequence of times ti → 0, ti < 0, i = 1, 2, . . ., with λ(ti)|ti| → ∞,

such that the rescaled functions u(ti,
r

λ(ti)
) converge to Q(r) locally in the strong energy

topology.

We now describe the theorem of Krieger, Tataru and the author which constructs this

type of non self-similar blowup for energy critical wave maps. We let Q(r) represent the

standard harmonic map of co-rotation k = 1, i.e., Q(r) = 2 arctan r. Recall that in the

equivariant formulation the energy is

E(u) =
ˆ
R2

[1
2
(u2

t + u2
r) +

sin2(u)

2r2

]
r dr

The local energy relative to the origin is defined as

Eloc(u) =
ˆ
r<t

[1
2
(u2

t + u2
r) +

sin2(u)

2r2

]
r dr
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It is well-known that for equivariant wave-maps singularities can only develop at the origin

and this happens at time zero if and only if

lim inf
t→0

Eloc(u)(t) > 0

One of the main features of the following theorem is that we need to “renormalize” the

profile Q(rλ(t)) by means of a large perturbation (denoted ue below). While this usage

of the term “renormalize” may be at odds with the physics literature, it is quite common

in applied mathematics and perturbation theory. What we mean here is that we can apply

perturbative arguments only after a non-perturbative step that changes Q to Q + ue, see
Theorem 2.3. We find it convenient to solve backwards in time, with blow-up as t → 0+.

The equivariant formulation of the wave map equation from R1+2
t,x → S2 is

−utt + urr +
ur
r
=
sin(2u)

2r2
(2.6)

Theorem 2.3. Let ν > 1
2 be arbitrary and t0 > 0 be sufficiently small. Define λ(t) = t−1−ν

and fix a large integer N . Then there exists a function ue satisfying

ue ∈ Cν+1/2−({t0 > t > 0, |x| ≤ t}), Eloc(ue)(t) 	 (tλ(t))−2 | log t|2 as t→ 0

and a blow-up solution u to (2.6) in [0, t0] which has the form

u(t, r) = Q(λ(t)r) + ue(t, r) + ε(t, r), 0 ≤ r ≤ t

where ε decays at t = 0; more precisely,

ε ∈ tNH1+ν−
loc (R2), εt ∈ tN−1Hν−

loc (R
2), Eloc(ε)(t) 	 tN as t→ 0

with spatial norms that are uniformly controlled as t → 0. Also, u(t, 0) = 0 for all 0 <
t < t0. The solution u(t, r) extends as an H1+ν− solution to all of R2 and the energy of u
concentrates in the cuspidal region 0 ≤ r 	 1

λ(t) leading to blow-up at r = t = 0.

A somewhat surprising feature of our theorem is that the blow-up rate is prescribed as

λ(t) = t−1−ν . This is in stark contrast to the usual modulation theoretic approach where the

rate function is used to achieve orthogonality to all unstable modes of the linearized problem.

Heuristically speaking, there are two types of instabilities which typically arise in linearized

problems: those due to symmetries of the nonlinear equation (typically leading to algebraic

growth of the linear evolution) and those that produce exponential growth in the linear flow

(due to some kind of discrete spectrum). For example, the latter arises in the recent work on

“center-stable manifolds” for orbitally unstable equations (see the discussion of scalar semi

linear Hamiltonian equations below), whereas for the former see [45]. Both types can lead

to blow up.

In the case of Theorem 2.3 ones does not have any discrete spectrum in the linearized

equation, but rather a zero-energy resonance which is due to the scaling symmetry. Intu-

itively speaking, it is unclear at this point which role the resonance plays in the formation of

the blow-up, since the approach of [47] is based on a crucial non-perturbative component,

namely the elliptic profile modifier produces a large perturbation of the basic profile Q. The

perturbative component of our proof then deals with the removal of errors produced by the

elliptic profile modifier (it is essential that these errors decay rapidly in time).
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The restriction ν > 1
2 is a technical one and can be relaxed to ν > 0 which is optimal

by Struwe’s aforementioned bubbling off theorem. For this see [12]. Due to the continuum

of allowed blowup rates in Theorem 2.3 the solutions constructed are expected to be highly

unstable; in fact, their stability should be associated to a finite codimension condition.

In contrast to these unstable solutions, Rodnianski, Sterbenz [60] and Raphael, Rodnian-

ski [59] studied the problem of finding stable blowup regimes. The following theorem is the

main result from [59]. The affine Sobolev space relative to the harmonic map Q is defined

as.

H2
a = H2 +Q. (2.7)

For a pair of functions (ε(y), σ(y)), we let

‖(ε, σ)‖2H =

ˆ [
σ2 + (∂yε)

2 +
ε2

y2

]
(2.8)

define the energy space. The k-equivariant formulation of the wave map problem R1+2
t,r →

S2 is {
∂2
t u− ∂2

ru− ∂ru
r + k2 f(u)r2 = 0,

u|t=0 = u0, (∂tu)|t=0 = v0
with f = gg′ (2.9)

The main theorem in [59] also makes a reference to the equivariant (in a suitable sense)

Yang-Mills equation, which we however we skip here. In effect, it amounts to the previous

equation with k = 2.

Theorem 2.4 (Stable blow up dynamics of co-rotational WaveMaps). Let k ≥ 1. LetH2
a de-

note the affine Sobolev space from above.There exists a setO of initial data which is open in
H2

a and a universal constant ck > 0 such that the following holds true. For all (u0, v0) ∈ O,
the corresponding solution to (2.9) blows up in finite time 0 < T = T (u0, v0) < +∞
according to the following universal scenario:

(i) Sharp description of the blow up speed : There exists λ(t) ∈ C1([0, T ),R∗
+) such that:

u(t, λ(t)y)→ Q in H1
r,loc as t→ T (2.10)

with the following asymptotics:

λ(t) = ck(1 + o(1))
T − t

| log(T − t)| 1
2k−2

as t→ T for k ≥ 2, (2.11)

λ(t) = (T − t)e−
√

| log(T−t)|+O(1) as t→ T for k = 1. (2.12)

Moreover,

b(t) := −λt(t) = λ(t)

T − t
(1 + o(1))→ 0 as t→ T

(ii) Quantization of the focused energy: Let H be the energy space (2.8), then there exist
(u∗, v∗) ∈ H such that the following holds true. Pick a smooth cut off function χ with
χ(y) = 1 for y ≤ 1 and let χ 1

b(t)
(y) = χ(b(t)y), then:

lim
t→T

∥∥∥∥u(t, r)− (χ 1
b(t)

Q
)
(

r

λ(t)
)− u∗, ∂t

[
u(t, r)−

(
χ 1

b(t)
Q
)
(

r

λ(t)
)− v∗

]∥∥∥∥
H
= 0.

(2.13)
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Moreover, one has the following quantization of the focused energy:

E0 = E(u, ∂tu) = E(Q, 0) + E(u∗, v∗). (2.14)

This theorem thus gives a complete description of a stable blow up regime for all homo-

topy numbers k ≥ 1. Stable blow up solutions in O decompose into a singular part with a

universal structure and a regular part which has a strong limit in the scale invariant space.

Moreover, the amount of energy which is focused by the singular part is a universal amount

independent of the Cauchy data.

2.5. Characterization of blowup for equivariant wave maps. We now describe large

data asymptotic behavior of equivariant wave maps taking values in S2. The setting is 1-
equivariant (co-rotational), so u takes the special form u(t, r, φ) = (ψ(t, r), φ) in polar

coordinates, where ψ measures the angle from the north pole. This angle then satisfies the

equivariant wave map equation

ψtt − ψrr − 1

r
ψr +

sin(2ψ)

2r2
= 0, (ψ, ψ̇)(0) = (ψ0, ψ1),

Struwe’s bubbling theorem [69] states: If a solution, ψ(t, r), with smooth initial data #ψ(0) =
(ψ(0), ψ̇(0)), breaks down at t = 1, then the energy concentrates at the origin and there is a

sequence of times tj ↗ 1 and scales λj > 0 with λj � 1− tj so that the rescaled sequence

of wave maps

#ψj(t, r) :=
(
ψ(tj + λjt, λjr), λjψ̇ (tj + λjt, λjr)

)
converges locally to ±Q(r/λ0) in the space-time norm H1

loc((−1, 1) × R2; S2) for some

λ0 > 0. An important consequence is that any wave map that blows up must concentrate at

least the energy of Q at the blow-up point.

Struwe’s result gives a local characterization of blow-up behavior. To obtain a global

picture, one needs to take into account the topological structure carried by an S2-valued
wave map – in particular, each co-rotational wave map of finite energy has a fixed topological

integer degree. Indeed, for the energy E(ψ, ψ̇) to be finite for a solution #ψ means that we

must have ψ(t, 0) = mπ and ψ(t,∞) = nπ. These integers are fixed by continuity and thus

determine a homotopy class, or topological degree. Letting m = 0, n is the degree and Hn

are all finite energy data of degree n, i.e.,

Hn := {(ψ0, ψ1) | E(ψ0, ψ1) <∞, ψ0(0) = 0, and ψ0(∞) = nπ}.

2.5.1. Degree 0 initial data. An immediate consequence of Struwe’s theorem is that a

degree 0 solution #ψ(t) ∈ H0 is global-in-time if E(#ψ(0)) < 2E(Q). Indeed, a wave map in

H0 with energy below 2E(Q) stays away from the south pole and hence cannot converge to

a degree 1 rescaled harmonic map. E(Q) is the minimal energy in H1, so any map which

sends r = 0 to the north pole uses at least the energy of Q to reach the south pole. One the

other hand, since blow-up is a local phenomenon, one can modify the solutions constructed

in the previous section outside the light cone to obtain a blow-up solution in H0 which has

energy E(#ψ) = 2E(Q) + δ for any δ > 0. Thus the energy 2E(Q) forms a threshold for data

in H0 under which every solution is global and above which blow-up may occur. In [17],

Côte, Kenig, Lawrie and the author addressed the global dymanics of subthresold solutions
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inH0 by showing that in fact every solution with energy below 2E(Q) must scatter to a free

wave.

Theorem 2.5 (Global Existence and Scattering in H0 below 2E(Q)). For any smooth data
#ψ(0) ∈ H0 with E(#ψ(0)) < 2E(Q), there exists a unique global evolution #ψ ∈ C0(R;H0).
Moreover, #ψ(t) scatters to zero in the sense that the energy of #ψ(t) on any arbitrary, but
fixed compact region vanishes as t→∞. In other words, one has

#ψ(t) = #ϕL(t) + oH(1) as t→∞ (2.15)

where #ϕL ∈ H solves the linearized equation, i.e.,

ϕtt − ϕrr − 1

r
ϕr +

1

r2
ϕ = 0 (2.16)

The proof follows the concentration compactness/rigidity method of Kenig and Merle,

[34, 35]. The key ingredient in the proof is a rigidity statement: any equivariant wave maps

with a pre-compact trajectory (modulo symmetries) must be a harmonic map. Before [17],

Cote, Kenig and Merle [19] proved scattering in H0 for energies below E(Q) + δ for small

δ. We also note that Theorem 2.5 can be deduced from the more general work of Sterbenz

and Tataru [67, 68] by restricting to the equivariant setting inH0.

2.5.2. Degree 1 initial data. Next consider initial data inH1. The harmonic mapQ uniquely

minimizes the energy in this degree class and thus there cannot be an energy threshold inH1

under which blow-up is excluded – indeed the blow up solutions from [47] described in the

previous section can have energy E(Q) + δ for any δ > 0. Note also that solutions in H1

cannot scatter to free waves – nontrivial degree is a topological obstruction to scattering.

The question of characterizing the possible dynamics in H1 is then one of determining

the role thatQ plays in asymptotic situations. In this regard there is an energy threshold under

which this question of characterizing dynamics is most natural inH1, namely 3E(Q). Indeed,
consider a degree one wave map #ψ(t) that blows up at t = 1. The result of Struwe [69]

extracts the blow up profile ±Qλn := ±Q(·/λn) along a sequence of times tn → 1. If
#ψ has E < 3E(Q) the profile must be +Q(·/λn), and since Q ∈ H1 as well, we infer

that ψ(tn) − Qλn ∈ H0. Since this object converges locally to zero, the energy of the

difference is roughly the difference of the energies, at least for large n. Hence, if ψ(t)
has energy below 3E(Q) the difference ψ(tn) − Qλn is degree zero and has energy below

2E(Q). More complicated dynamics are thus excluded by the degree zero scattering result,

i.e., Theorem 2.5. The situation is similar in the case that the solution ψ(t) ∈ H1 is global

in time.

Theorem 2.6 ([17, 18]). Let #ψ(0) := (ψ0, ψ1) ∈ H1 be smooth, finite energy degree 1 data
with energy E(#ψ) < 3E(Q).
(1) Finite time blowup: If the solution ψ(t) blows up at, say, t = 1, then there exists a

continuous function, λ : [0, 1)→ (0,∞) with λ(t) = o(1− t), a map #ϕ = (ϕ0, ϕ1) ∈
H0 with E(#ϕ) = E(#ψ)− E(Q, 0), and a decomposition

#ψ(t) = #ϕ+ (Q (·/λ(t)) , 0) + oH0
(1) as t→ 1



438 Wilhelm Schlag

(2) Global solutions: If the solution #ψ(t) ∈ H1 exists globally in time then there exists
a continuous function, λ : [0,∞) → (0,∞) with λ(t) = o(t) as t → ∞, a solution
#ϕL(t) ∈ H0 to the linear wave equation (2.16), and

#ψ(t) = #ϕL(t) + (Q (·/λ(t)) , 0) + oH0
(1) as t→∞

We remark that Duyckaerts, Kenig, and Merle in [22, 23, 25] established analogous clas-

sification results for �u = u5 in Ḣ1×L2(R3) with W (x) = (1+ |x|2/3)− 1
2 instead of Q.

The techniques developed there motivated the proof of Theorem 2.6 as certain elements of

their ideology, in particular concentration compactness techniques, are essential. The proof

also relies explicitly on several classical results in the field of equivariant wave maps. In

particular, crucial roles are played by the vanishing of the kinetic energy proved by Shatah,

Tahvildar-Zadeh [65], and Struwe’s bubbling theorem, [69], in the finite time blow-up result.

A fundamental role in the degree 1 argument is played by a property of the linear wave

equation. To be specific, consider �u = 0, u(0) = f ∈ Ḣ1(Rd), ut(0) = g ∈ L2(Rd)
for radial functions f, g. Then Duyckaerts, Kenig, and Merle showed the following: If the

dimension d is odd, there exists c > 0 such that for all t ≥ 0 or all t ≤ 0 one has

Eext(#u(t)) ≥ cE(f, g) (2.17)

In even dimensions this property fails, see [20]. To be precise, in dimensions d =
2, 6, 10, . . . (2.17) holds for data (0, g), but fails in general for data (f, 0). On the other

hand, for dimensions d = 4, 8, 12, . . . (2.17) holds for data (f, 0) but fails in general for data

(0, g).
The proof of both the positive and negative results is based on the Fourier representation,

which in our radial context becomes a Bessel transform. The dimension d is then reflected in

the phase of the Bessel asymptotics. Due to the monotonicity of the energy over the regions

{|x| ≥ t} the key calculation is that of the asymptotic exterior energy as t→±∞.

For the Theorem 2.6 we need the d = 4 result rather than d = 2 due to the repulsive
ψ
r2 -potential coming from

sin(2ψ)
2r2 . Crucially, the result from [20] for (f, 0) suffices for the

argument because of the classical theory of Christodoulou, Tahvildar-Zadeh, and Shatah [14,

15, 65, 66] about equivariant wave maps; see also the book by Shatah, Struwe [63]. Amongst

other things, these authors showed that at the blowup t = 1 one has vanishing kinetic energy:

lim
t→1

1

1− t

ˆ 1

t

ˆ t

0

|ψ̇(t, r)|2 rdr dt = 0

One has a similar averaged vanishing in the case of a global solution. This vanishing (modulo

many other arguments) then allows us to work with the more restrictive form of (2.17) for

data (f, 0).

2.5.3. Characterization of dynamics at higher energies. Recently, a more general ver-

sion of Theorem 2.6 has been established by Côte [16] which holds for data of arbitrary

degree and energy.

Theorem 2.7 ([16]). Let #ψ(t) be a finite energy wave map with maximal forward time of
existence T+(#ψ). Then there exist a sequence of times tn ↑ T+(#ψ), an integer J ≥ 0, J
sequences of scales λJ,n � · · · � λ2,n � λ1,n and J harmonic maps Q1, . . . , QJ such
that

QJ(0) = ψ(0), Qj+1(∞) = Qj(0) for j = 1, . . . , J − 1,
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and that one of the following holds:

(1) If T+(#ψ) = +∞, denote � = limr→∞ ψ(t, r) = Q1(∞). Then λ1,n � tn and there
exists a solution #φL(t) to the linearized wave equation (2.16) such that

#ψ(tn) =

J∑
j=1

(Qj (·/λj,n)−Qj(∞), 0) + (�, 0) + #φL(tn) + on(1),

(2) If T+(#ψ) < +∞, then λ1,n � T+(#ψ) − tn and there exists a function #φ ∈ H0 such
that φ(0) = limt↑T+(�ψ) ψ(t, T

+(#ψ)− t) and Q1(∞) = φ(0) and

#ψ(tn) =
J∑

j=1

(Qj (·/λj,n)−Qj(∞), 0) + #φ+ on(1) in H0,

Note that the energy of the of the wave map #ψ together with the orthogonality of the

scales λj,n gives an upper bound on the number of large profiles J . An analogous result for

the semi-linear equation �u = u5 was proved in [23] and the proof of this result along with

the proof of Theorem 2.6 provide a rough blueprint for the proof of Theorem 2.7. There are

several key differences however, with perhaps the most significant being a generalization of

Struwe’s bubbling result proved in [16], which allows one to extract a bubble at each scale

that carries a nontrivial amount of energy. The proof also relies on a generalization of the

degree zero scattering theory, which states that any solution inH0 which stays bounded away

from the south pole scatters to a free wave.

2.6. Large data global regularity. In contrast to the sphere as a target, for negatively

curved manifolds as targets one has global existence of smooth solutions for smooth data

of any size. This result is the culmination of many years’ worth of effort, and was achieved

in varying forms by three different groups. Sterbenz, Tataru [67, 68] proved the following

very satisfactory result.

Theorem 2.8. Consider the wave map equation for functions u : R1+2
t,x → M where M

is a Riemannian manifold. Let E0 be the infimum of all possible energies of nonconstant
harmonic maps R2 → M . Given smooth data u0 : R2 → M and u1 : R2 → TM so that
the energy satisfies E(u0, u1) < E0, there exists a unique global smooth evolution of the
wave map u.

In particular, if M is of negative curvature then it does not admit nontrivial harmonic

maps by a result of Eels and Simpson, so we do indeed have the global regularity for all

data. By different methods Tao [72] proved the global regularity theorem for hyperbolic

spaces as targets, and Krieger and the author [46] obtained this result for the hyperbolic

plane. The method of [46] is different from the aforementioned works since it relies on the

concentration-compactness ideas of Bahouri, Gerard [4] and Kenig, Merle [34, 35]. To be

more specific, one obtains both implicit space-time bounds which yield scattering for the

derivative components in a suitable gauge, purely in terms of the energy, as well as a type

of profile decomposition for sequences of wave maps with bounded energy. The key new

aspect of the work [46] is that the Bahouri-Gérard approach to the profile decomposition,
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which depends crucially on the property that factors of widely separated frequency interact

only weakly in the nonlinearity, needs to be replaced by a suitable form of a “covariant"

Bahouri-Gérard approach. More precisely, the wave maps nonlinearity features certain low-

high frequency interactions in the nonlinearity which cannot be shown to be negligible. In

order to still be able to obtain a profile decomposition (precisely, one does so for the deriva-

tive components in the Coulomb gauge), one needs to replace the free wave propagator by

suitable magnetic potential wave operators of the form

�A = �+ 2iAα∂
α

with �A operating on (essentially) unit frequency functions, while Aα is of extremely low

frequency. The precise theorem obtained in [46] then reads as follows.

Theorem 2.9. There exists a function K : (0,∞) → (0,∞) with the following property:
Let M be a hyperbolic Riemann surface. Suppose (u0,u1) : R2 → M × TM are smooth
and u0 = const, u1 = 0 outside of some compact set. Then the wave map evolution u of
these data as a map R1+2 →M exists globally as a smooth function and, moreover, for any
1
p +

1
2q ≤ 1

4 with 2 ≤ q <∞, γ = 1− 1
p − 2

q ,

2∑
α=0

‖(−Δ)− γ
2 ∂αu‖Lp

tL
q
x
≤ Cq K(E) (2.18)

Moreover, in the case when M ↪→ RN is a compact Riemann surface, one has scattering:

max
α=0,1,2

‖∂αu(t)− ∂αS(t)(f, g)‖L2
x
→ 0 as t→ ±∞

where S(t)(f, g) = cos(t|∇|)f + sin(t|∇|)
|∇| g and suitable (f, g) ∈ (Ḣ1 × L2)(R2;RN ).

Alternatively, if M is non-compact, then lifting u to a map R1+2 → H2 with derivative
components φjα with respect to a suitable global frame, one has

max
α=0,1,2

‖φjα(t)− ∂αS(t)(f
j , gj)‖L2

x
→ 0 as t→ ±∞

where (f j , gj) ∈ (Ḣ1 × L2)(R2;R). Finally, denoting the derivative components of the
Wave Map with respect to the Coulomb Gauge by ψα, α = 0, 1, 2, then given a sequence
of Wave Maps of bounded energy un : R2+1 → H2, with corresponding components ψn,α,
there is an inductive procedure to construct concentration profiles, so that the ψn,α can be
represented as sum of the suitably modulated concentration profiles, up to an error which
can be made small in a suitable sense.

For a review of this work see Tao’s Bulletin article [73].

2.7. Wave maps from curved Minkowski space. One can also consider the wave maps

equation on a curved domain. Let (N , h) be a Riemannian manifold of dimension d. Denote

by (Ñ , η) the Lorentzian manifold Ñ = R × N , with the metric η represented in local

coordinates by η = (ηαβ) = diag(−1, hij). Let (M, g) be a complete Riemannian manifold

without boundary of dimension n and consider maps u : Ñ → M. Here wave maps are

formal critical points of the Lagrangian

L(u, du) = 1

2

ˆ
Ñ
〈du, du〉T∗Ñ⊗u∗TM dvolη.
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The differential, du, of the map u is a section of the vector bundle (T ∗Ñ ⊗ u∗TM, η ⊗
u∗g), where u∗TM is the pullback of TM by u and u∗g is the pullback metric. In local

coordinates (t, x) on Ñ and u = (u1, . . . , un) onM this becomes

L(u, du) = 1

2

ˆ
Ñ
ηαβ(t, x)gij(u(t, x))∂αu

i(t, x)∂βu
j(t, x)

√
|h| dt dx.

In this intrinsic formulation critical points satisfy

�ηu
k := −∂ttuk +Δhu

k = −ηαβΓkij(u)∂αui∂βuj , (2.19)

whereΔh is the Laplace-Beltami operator onN . One can also consider the extrinsic formu-

lation in which case the equation for u is given by

�ηu ⊥ TuM or �ηu = −ηαβS(u)(∂αu, ∂βu). (2.20)

Here S is the second fundamental form of the embeddingM ↪→ Rm.

It is apparent from the left-hand sides of (2.19) and (2.20) that one must first understand

the dynamics of the free wave equation

�ηu = 0 (2.21)

before considering the nonlinear wave maps equation. In general, (2.21) can present ex-

tremely challenging analytical aspects. For example, the presence of trapped geodesics can

lead to the loss of a dispersive estimate such as (1.5). There are also difficulties from a purely

technical point of view as important tools from harmonic analysis used to study dispersive

equations on flat backgrounds, such as the Fourier transform, do not extend easily to the

global geometric setting.

In light of these difficulties, we highlight two natural starting places where global-in-

time dispersive estimates for the free equation (2.21) have been established: (1) N is a

small, asymptotically flat perturbation of Euclidean space, Rd; and (2) N is d-dimensional

real hyperbolic space, Hd.

2.7.1. Small asymptotically flat perturbations of Euclidean space. First consider the

free wave equation (2.21) on a small, asymptotically flat perturbation of Euclidean space.

The smallness assumption is used to avoid issues such as the trapping of bi-characteristic

rays and also to handle the dynamics of low frequencies – in general one can expect sig-

nificant departures from the Euclidean theory at the level of the low frequencies since these

see the global geometry of N . For N as in (1), global Strichartz estimates without loss

are established by Metcalfe and Tataru in [52] for linear variable coefficient equations such

as (2.21). Using a time dependent FBI transform and a delicate analysis of the evolution in

phase space, the authors construct an outgoing parametrix that satisfies global-in-time dis-

persive estimates. These estimates are paired with a localized energy estimate to control the

errors generated in the parametrix construction. See also [79] for a similar analysis of the

Schrödinger evolution on curved space as well as [76] and the references therein for more

background on phase space transforms and the microlocal framework in which these objects

are considered.

Now consider the wave map equation (2.19) or (2.20) whereN is a small, asymptotically

flat perturbation of Euclidean space, Rd with d = 4 andM a smooth manifold with bounded
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geometry. Using the Shatah-Struwe approach from [64], the small data global theory in the

critical spaceH2×H1 is established in [48]. The idea is to use the method of moving frames

to derive a wave equation for the u∗TN -valued 1-form, du, with the Coulomb gauge as the

choice of frame on u∗TN . In the global geometric setting, the resulting equation for du is

an equation of 1-forms,

�(du) = d(ηαβAαduβ) + δ(−A ∧ du) (2.22)

where d is the exterior derivative on Ñ , δ is its adjoint, � = dδ+δd, andA is the connection

form associated to the Coulomb gauge. The components of du satisfy a system of variable

coefficient nonlinear wave equations for which the Metcalfe-Tataru Strichartz estimates can

be used to obtain a-priori estimates in the case of small initial data. Here the Coloumb frame

is crucial to estimate the right-hand side of (2.22) since the components ofA satisfy a system

of variable coefficient elliptic equations which are then used to estimate A in terms of du;
see for example the classic work [80].

2.7.2. Hyperbolic space. If N is d-dimensional real hyperbolic space Hd, the free wave

equation on N = Hd is an appealing object due to the geometric significance of Hd, but

also from a technical standpoint because of the existence of the Helgason-Fourier transform;

see [28, 29]. In addition to this technical advantage, the negative curvature of Hd suggests

that there should be better dispersion for solutions to (2.21) on Hd than for their Euclidean

counterparts. Intuitively, the exponential volume growth of concentric spheres gives more

room for a wave to spread out into. This is indeed the case, and Strichartz estimates for

an improved range of admissible exponents have recently been established for the linear

Schrödinger equation on Hd in [1, 31] and for the linear wave and Klein-Gordon equations

in [2, 53, 54]; see also [3, 6–9, 58, 75]. Moreover, in [30] a Bahouri-Gerard type profile

decomposition was developed for the Schrödinger equation on Hd.

Next, consider the wave maps equation on the domain N = R × Hd. Since Hd is

rotationally symmetric one can consider equivariant wave maps as in the Euclidean case

when the target manifoldM is also rotationally symmetric. Restricting to the energy critical

dimension, d = 2, the usual 1-equivariant formulation is

ψtt − ψrr − coth r ψr +
g(ψ)g′(ψ)

sinh2 r
= 0, (2.23)

where (ψ, θ) are geodesic polar coordinates on the target surfaceM, and g determines the

metric, ds2 = dψ2 + g2(ψ)dθ2.
Despite the relative simplicity of the equivariant model, this problem exhibits markedly

different phenomena than its Euclidean counterpart. The cases of two model targetsM = S2

andM = H2 are considered in [49].

When the target is S2, there exists a family of equivariant harmonic mapsQλ : H2 → S2,
indexed by a parameter λ ≥ 0 that measures how far the image of each harmonic map wraps

around the sphere, i.e., Qλ(r)→ 2 arctan(λ) as r →∞ and have energies

E(Qλ)→ 0 as λ→ 0, and E(Qλ)→ Eeuc(Qeuc) as λ→ 1

where Qeuc is the unique nontrivial co-rotational Euclidean harmonic map from R2 to S2,
given by stereographic projection and Eeuc(Qeuc) is its energy. The Qλ are asymptotically

stable for values of λ smaller than a threshold that is large enough to allow for maps that
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wrap more than halfway around the sphere. However, as λ → ∞, asymptotic stability via

a perturbative argument based on Strichartz estimates is precluded by the existence of gap
eigenvalues in the spectrum of the operator obtained by linearization aboutQλ. On the other

hand, a Struwe-type bubbling argument as in [69] suggests that any solution #ψ(t) to (2.23)

that blows up in finite time must bubble off a Euclidean harmonic map Qeuc, and therefore

must have enough energy to wrap completely around the sphere. Indeed finite time blow-up

via energy concentration is a local phenomena and the global geometry of the domain plays

little role. This gives evidence towards a conjecture that in fact every Qλ is stable – as small

perturbations of Qλ will not have enough energy to bubble off a Qeuc – but for large λ, the
stability manifests nonlinearly.

When the target is H2, there exists a continuous family of asymptotically stable equiv-

ariant harmonic maps Pλ : H2 → H2 indexed by a parameter λ ∈ (0, 1) with Pλ(r) →
2arctanh(λ) as r →∞ and

E(Pλ)→ 0 as λ→ 0, and E(Pλ)→∞ as λ→ 1.

This stands in sharp contrast to the corresponding problem on Euclidean space, where all

finite energy solutions scatter to zero as time tends to infinity. The presence of the nontrivial

stable, stationary solutions together with the lack of scaling symmetry and the defocusing

nature of the nonlinearity make this an interesting setting to study the large data dynamics.

In particular one may expect that any solution ψ(t, r) with ψ(t, r)→ 2arctanh(λ) as r →∞
scatters to Pλ as t→∞ – in other words, solution resolution.

3. Scalar semi-linear equations

In the section we present a very small selection of recent results on a much-studied family

of problems, namely semilinear equations of the form

�u+ f(u) = 0

where f(u) is a suitable power nonlinearity. We will in fact consider only a very special

model equation, which is however representative of the kind of phenomena we wish describe.

3.1. The defocusing cubic Klein-Gordon equation. In R1+3
t,x consider the cubic defocus-

ing Klein-Gordon equation

�u+ u+ u3 = 0, (u(0), u̇(0)) = (f, g) ∈ H := H1 × L2(R3) (3.1)

with conserved energy

E(u, u̇) =

ˆ
R3

(1
2
|u̇|2 + 1

2
|∇u|2 + 1

2
|u|2 + 1

4
|u|4
)
dx

With S(t) denoting the linear propagator of �+ 1 we have

#u(t) = (u, u̇)(t) = S(t)(f, g)−
ˆ t

0

S(t− s)(0, u3(s)) ds (3.2)
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By contraction mapping for small times T one obtains local wellposedness for H data.

The means that there is a unique solution (u, u̇) ∈ C([0, T ];H1) × C([0, T ];L2) which

satisfies (3.1) in the Duhamel sense. Note that T depends only on the H-size of data. From

energy conservation we obtain global existence by time-stepping. By Strichartz estimates,

one can easily show that the solution in fact scatters to a free wave (solution of the Klein-

Gordon equation without the nonlinearity) in the norm of H for all small data. For large

data, the classical approach to proving scattering proceeds by means of Morawetz estimates,

see Ginibre,Velo [27]. Alternatively, a general and elegant method is based on induction in

energy, which was first introduced by Bourgain [11]. The modern blueprint of this method

is due to Kenig and Merle [34, 35], a key component of which is the powerful concentration

compactness decomposition of Bahouri, Gérard [4], see also Merle,Vega [51]. See [56,

Capter 2] for the implementation of this method in the context of (3.1).

3.2. The focusing cubic Klein-Gordon equation. The dynamics of the focusing equation

�u+ u− u3 = 0, (u(0), u̇(0)) = (f, g) ∈ H := H1 × L2(R3) (3.3)

has been know for a long time to be very different from that of the defocusing equation. Note

the conserved energy is indefinite,

E(u, u̇) =

ˆ
R3

(1
2
|u̇|2 + 1

2
|∇u|2 + 1

2
|u|2 − 1

4
|u|4
)
dx

While small data again lead to global existence and scattering, large data may lead to blowup.

Indeed, setting u = u(t) (no spatial dependence) leads to an ODE which blows up in finite

time. Truncation of the corresponding data by means of a smooth bump function which

equals 1 on a large enough ball yields finite energy data that blow up in finite time. Equa-

tion (3.3) also admit time-independent solutions, which solve the elliptic PDE

−Δϕ+ ϕ− ϕ3 = 0

which is the equation of a critical point of the stationary energy

J(ϕ)

ˆ
R3

(1
2
|∇ϕ|2 + 1

2
|ϕ|2 − 1

4
|ϕ|4
)
dx

Amongst all nonzero solutions of this equation there exists a class which minimizes J(ϕ).
This class is of the form {±Q(· + y) | y ∈ R3} where Q > 0 is radial, exponentially

decaying. It is also unique with this property. Many years ago, Payne and Sattinger [57]

gave a characterization of all possible dynamics below the energy E(Q, 0). In the regime of

energies above E(Q, 0) one has the following description of the dynamics for radial data,

due to Nakanishi and the author [56].

Theorem 3.1. Let E(u0, u1) < E(Q, 0)+ε2, (u0, u1) ∈ Hrad. Then for t ≥ 0 the solutions
to (3.3) exhibit the following trichotomy:

(1) finite time blowup

(2) global existence and scattering to 0

(3) global existence and scattering to Q: u(t) = Q + v(t) + oH1(1) as t → ∞, and
u̇(t) = v̇(t) + oL2(1) as t→∞, �v + v = 0, (v, v̇) ∈ H.
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All nine combinations of this trichotomy occur as t→ ±∞.

Similar results can be established in the nonradial case (where Lorentz symmetries come

into play), as well as several other nonlinear unstable Hamiltonian wave equations, see [56].

This theorem is not perturbative. In fact, a key step is to exclude almost homoclinic orbits

emanating near ±Q and returning to these equilibria. This is based on an indirect argument

using the hyperbolic dynamics near these points (which are a result of the unique negative

eigenvalue of the linearized equation), together with the virial functional. The scattering

statement is again obtained via concentration compactness arguments. The question of what

happens for even larger energies is wide open. For the dissipative version of (3.3) one may

obtain similar results, in fact a more complete picture of the dynamics emerges in that case,

see the forthcoming work of Burq, Raugel, and the author.
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1. Introduction

The goal of this article is to survey a few of the applications of the moment method (and

its variants) to the study of the spectral properties of random matrices, particularly, local

eigenvalue statistics at the spectral edges.

Section 2 is a brief introduction to the moment method, which we understand as the variety

of ways to extract the properties of a measure μ from integrals of the form∫
ξm dμ(ξ) . (1.1)

Examples, selected from the narrow part of random matrix theory in which the author feels

competent, are intended to illustrate two theses. First, the moment method can be applied be-

yond the framework of weak convergence of a sequence of probability measures. Second, it

is often convenient to replace the monomials ξm in (1.1) with a better-conditioned sequence,

such as the sequence of orthogonal polynomials with respect to a measure μ∞ which is an

approximation to μ.

In Section 3 we review some applications to the local eigenvalue statistics at the spectral

edges, starting from the work of Soshnikov [64]. Tracy and Widom [70, 71] and Forrester

[25] introduced the Airy point processes (see Section 3.1) and showed that they describe

the limiting distribution of the largest eigenvalues for special families of large Hermitian

random matrices with independent entries (the Gaussian invariant ensembles). Soshnikov

[64] extended these results toWigner matrices (Hermitian randommatrices with independent

entries and no invariance assumptions). In the terminology of Ibragimov and Linnik [37,

Chapter VI], the result of [64] is a limit theorem of collective character; it is one of the

Proceedings of International Congress of Mathematicians, 2014, Seoul
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instances of the ubiquity (universality) of the Airy point processes within and outside random

matrix theory (as surveyed, for example, by Johansson [38], Tracy and Widom [72], and

Borodin and Gorin [9]).

In Section 3.2, we considerWigner processes, a class of matrix-valued random processes.

Informally, a random matrix H(x) is attached to every point x of an underlying space X.

The statistical properties of the eigenvalues of every H(x) are described by the theory of

Wigner matrices; the joint distribution of the eigenvalues of a tuple (H(xr))
k
r=1 leads to

limiting objects which depend on the geometry of X (which arises from the correlations of

the matrix elements of H) in a non-trivial way. The moment method allows to derive limit

theorems of collective character (such as Theorem 3.4) pertaining to the spectral edges of

H(x) (the result of [64] corresponds to a singleton, #X = 1).
In Section 3.3, we turn to the spectral edges of random band matrices. A random band

matrix is (3.14) a random N ×N Hermitian matrix with non-zero entries in a band of width

W about the main diagonal. When W is small, a band matrix inherits the structure of the

integer lattice Z; when W is large, it is similar to a Wigner matrix. The threshold at which

the local eigenvalue statistics in the bulk of the spectrum exhibit a crossover is described

by precise conjectures (see Fyodorov and Mirlin [33, 34], Spencer [67, 68]). The moment

method allows to prove the counterpart of these conjectures for the spectral edges (the result

of [64] corresponds to the special case W = N ).

The content of Section 2 is mostly known. The modified moment method of Section 2.4 is

a version of self-energy renormalisation in perturbation theory (see Spencer [67]), related

to the arguments of Bai and Yin [4]. Orthogonal polynomials were explicitly used in this

context in the work of Li and Solé [44], and further in [58] (where more references may

be found). Some observations are incorporated from [21]. The content of Section 3.2 is an

extension of [62], whereas Section 3.3 is based on [60]. The proofs of the results stated in

both of these sections build on the combinatorial arguments of [21].

2. Preliminaries and generalities

The moment method is the collection of techniques inferring the properties of a measure μ
on the k-dimensional space Rk from the moments

s(m1, · · · ,mk;μ) =

∫
Rk

ξm1
1 · · · ξmk

k dμ(ξ) (m1, · · · ,mk = 0, 1, 2, · · · ) . (2.1)

Introduced by Chebyshev as a means to establish Gaussian approximation for the distribu-

tion of a sum of independent random variables, the moment method achieved its first major

success with the proof, given by Markov [46], of Lyapunov’s Central Limit Theorem and its

extension to sums of weakly dependent random variables. Some of the more recent applica-

tions are surveyed by Diaconis [13].

2.1. Convergence of probability measures. In the traditional setting of the moment method,

one considers a sequence of probability measures (μN )N≥1 on Rk. Suppose that the limit

s(m1, · · · ,mk) = lim
N→∞

s(m1, · · · ,mk;μN ) (2.2)

exists for every m1, · · · ,mk ≥ 0. Then the sequence (μN )N≥1 is tight, i.e. precompact in

weak topology (defined by bounded continuous functions), and every one of its limit points
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μ satisfies

s(m1, · · · ,mk;μ) = s(m1, · · · ,mk) (m1, · · · ,mk ≥ 0) . (2.3)

If, for example,

s(m1, · · · ,mk) ≤
k∏

r=1

(Cmr)
mr (m1, · · · ,mk ≥ 0) , (2.4)

the moment problem (2.3) is determinate, i.e. there is a unique measure μ∞ on Rk satisfy-

ing (2.3); in this case the convergence of moments (2.2) implies that μN → μ∞ in weak

topology; cf. Feller [23, §VIII.6].

Hardy’s sufficient condition (2.4) may be somewhat relaxed; we refer to the addenda to

the second chapter of the book [1] of Akhiezer for various sufficient criteria for determinacy

in the case k = 1, and to the survey of Berg [5] for some extensions to k ≥ 1.

2.1.1. Random measures. Suppose (μN )N≥1 is a sequence of random measures on R�

(i.e. random variables taking values in the space of Borel probability measures). We denote

ξ = (ξ1, · · · , ξ�), m = (m1, · · · ,m�), and ξm = ξm1
1 · · · ξm

� ; thus ξmr
r = ξ

mr,1

r,1 · · · ξmr,

r,� .

If

E

∫
Rk

k∏
r=1

[dμN (ξr)ξ
mr
r ]→ E

∫
Rk

k∏
r=1

[dμ∞(ξr)ξ
mr
r ] (k ≥ 1) (2.5)

for some random measure μ∞ on R�, and the moment problem for every moment measure

Eμ⊗k
∞ is determinate, then

Eμ⊗k
N

weak−→ Eμ⊗k
∞ (k ≥ 1) . (2.6)

If, for every Borel set K ∈ B(R�), the moment problem for the distribution of μ∞(K) is
determinate, then (2.6) implies that μN → μ∞ (weakly in distribution). Finally, if μ∞ is

deterministic (i.e. its distribution is supported on one deterministic measure), it is sufficient

to verify (2.6) for k = 1, 2. See further Zessin [78].

2.2. Example: Wigner’s law. The application (going back to Chebyshev) of the moment

method to sums of independent random variables is based on the identity⎡⎣ N∑
j=1

Xj

⎤⎦m =
∑

m1+···+mN=m

m!

m1! · · ·mN !

N∏
j=1

X
mj

j (2.7)

expressing powers of a sum of numbers as a sum over partitions. Similarly, the application

(going back to Wigner) of the moment method to random matrix theory is based on the

relation

trHm =
∑

p=(u0,u1,··· ,um−1,um=u0)

m−1∏
j=0

H(uj , uj+1)

=
∑
p

∏
1≤u≤v≤N

H(u, v)#{(uj ,uj+1)=(u,v)}H(u, v)
#{(uj ,uj+1)=(v,u)}

expressing traces of powers of an Hermitian matrix H = (H(u, v))Nu,v=1 as a sum over

paths.



454 Sasha Sodin

Let
(
GN = (VN , EN )

)
N≥1

be a sequence of graphs, so that GN is κN -regular (meaning

that every vertex is adjacent to exactly κN edges), and the connectivity κN tends to infinity:

lim
N→∞

#VN =∞, lim
N→∞

κN =∞ . (2.8)

For every N , consider a random matrix H(N) = (H(u, v))u,v∈VN
with rows and columns

indexed by the elements of VN , so that (H(u, v))u,v∈VN
are independent up to the constraint

H(v, u) = H(u, v); the diagonal entries {H(u, u)}u are sampled from a distribution Ldiag

on R satisfying

EH(u, u) = 0 , EH(u, u)2 <∞ ; (2.9)

the off-diagonal entries {H(u, v)}(u,v)∈EN
are sampled from a distribution Loff-diag on C

satisfying

EH(u, v) = 0 , E|H(u, v)|2 = 1 ; (2.10)

and all the other entries H(u, v) are set to zero.

Let ξ
(N)
1 ≥ ξ

(N)
2 ≥ · · · ξ(N)

#VN
be the eigenvalues of H(N), and let

μN =
1

#VN

#VN∑
j=1

δ

(
ξ − ξ

(N)
j

2
√
κN − 1

)
.

(The scaling is natural since, for instance, the �2 norm of every column of theN ×N matrix

is of order
√
κN .)

Theorem (Wigner’s law). In the setting of this paragraph (i.e. assuming (2.8), (2.9), (2.10)),
the sequence of random measures (μN )N converges (weakly, in distribution) as N →∞ to
the (deterministic) semicircle measure σWig with density

dσWig

dξ
=
2

π

√
(1− ξ2)+ . (2.11)

Wigner considered [75–77] the case when GN is the complete graph on N vertices

(Wigner matrices), and the entries satisfy some additional assumptions, the important of

them being that all moments are finite. Wigner’s argument is based on the moment method.

Bogachev, Molchanov, and Pastur [6] observed (in the context of random band matrices)

that a similar argument can be applied as long as (2.8) is satisfied. The first argument for

Wigner matrices without additional restrictions on the distribution of the entries was given

by Pastur [51], using the Stieltjes transform method introduced by Marchenko and Pastur

[47, 48] (see Pastur [52] and the book of Pastur and Shcherbina [53] for some of the further

applications of the method). Khorunzhiy, Molchanov, and Pastur [39] applied the Stielt-

jes transform method to prove Wigner’s law for random band matrices; their argument is

applicable in the setting described here.

Let us outline a proof of Wigner’s law in the form stated above, following [6] (and incor-

porating Markov’s truncation argument [46]). We refer for details to the book of Anderson,

Guionnet, and Zeitouni [3, Chapter 2.1], where similar arguments are also applied to ques-

tions such as the Central Limit Theorem for linear statistics φ(ξ
(N)
1 ) + · · ·+ φ(ξ

(N)
#VN

).

Proof of Wigner’s law. Due to (2.8), (2.9) and (2.10) one can find a sequence δN → +0 so

that

E|H(u, v)|2�|H(u,v)|≥δN
√
κN
≤ δN .
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Consider the matrix H
(N)
� with truncated matrix elements

H�(u, v) =

{
H(u, v) , |H(u, v)| ≤ √κN
0 , |H(u, v)| > √κN

.

Then

P {H�(u, v) �= H(u, v)} ≤ δNκ−1
N ,

whence, bounding rank by the number of non-zero matrix elements and applying the Cheby-

shev inequality,

P
{
rank(H

(N)
� −H(N)) ≥ δ

1/2
N #VN

}
≤ δ

1/2
N .

For any ξ ∈ R, the interlacing property of rank-one perturbation yields∣∣μN (−∞, ξ]− μ�,N (−∞, ξ]
∣∣ ≤ #V −1

N rank(H
(N)
� −H(N)) , (2.12)

therefore it is sufficient to establish the result for H
(N)
� in place of H(N). For large N , the

elements of H
(N)
� enjoy the following estimates:

|EH�(u, v)| ≤ δNκ
− 1

2

N ; (2.13)∣∣E|H�(u, v)|2 − 1
∣∣ ≤ δN ((u, v) ∈ EN ) ; E|H�(u, u)|2 ≤ const ; (2.14)

E |H�(u, v)|k ≤ 2δNκ
k−2
2

N (k ≥ 3) . (2.15)

Next, consider the expansion

s(m1, · · · ,mk;Eμ
⊗k
�,N ) = E

k∏
r=1

∫
ξmrdμ�,N (ξ)

= E
1

(#VN )k

k∏
r=1

tr

(
H

(N)
�

2
√
κN − 1

)mr

=
∑ 1

(#VN )k
E

k∏
r=1

mr−1∏
j=0

H�(ur,j , ur,j+1)

2
√
κN − 1

,

(2.16)

where the sum is over k-tuples of closed paths⎧⎪⎪⎪⎨⎪⎪⎪⎩
u1,0, u1,1, · · · , u1,m1−1, u1,m1

u2,0, u2,1, · · · , u2,m2−1, u2,m2

· · ·
uk,0, uk,1, · · · , uk,mk−1, uk,mk

[u1,m1 = u1,0, · · · , uk,mk
= uk,0]

in the augmented (multi-)graph G+
N = (VN , E+

N ), E
+
N = EN

⋃ {(u, u) | u ∈ VN}. Two

such k-tuples are called isomorphic if one is obtained from one another by a permutation of

the vertices VN . For example, the pair (1 3 1 , 2 1 4 2) is isomorphic to (7 4 7 , 1 7 2 1).
According to (2.13), (2.14) and (2.15), the contribution of an isomorphism class consist-

ing of k-tuples spanning a graph g with v vertices and e edges, of which e2 are traversed

exactly twice, is bounded by κv−k
N (δN )

e−e2(κN/const)−e.
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The graph g has at most k connected components, whence

v− e ≤ k , (2.17)

with equality for graphs which are vertex-disjoint unions of k trees. For fixed m1, · · · ,mk,

the number of isomorphism classes remains bounded as N → ∞, therefore the limit of

(2.16) is given by the contribution of vertex-disjoint k-tuples of paths corresponding to

graphs with

v− e = k , e2 = e . (2.18)

Figure 2.1. The tree-like path 1 2 3 2 4 5 6 5 7 5 4 8 9 8 10 8 4 2 1 with v = 10 and e = e2 = 9 (left) and

the non-backtracking path 1 2 3 4 5 6 7 8 4 5 6 7 8 4 3 2 1 with v = 8 and e = e2 = 8 (right). Among

the two, only the first one contributes to the semi-circle limit.

Every path in such a k-tuple is tree-like (see Figure 2.1, left); each isomorphism class

contributes 2−
∑

p mp (due to (2.14)), and the number of classes is given by a product of

Catalan numbers:

k∏
r=1

{
2

mr+2

(
mr

mr/2

)
, mr is even

0 , mp is odd
=

k∏
r=1

[
2mrs(mr;σWig)

]
.

Thus

lim
N→∞

s(m1, · · · ,mk;Eμ
⊗k
�,N ) = s(m1, · · · ,mk;σ

⊗k
Wig) . (2.19)

Applying the relation (2.19) with k = 1, 2, we conclude (cf. Section 2.1.1) that μ�,N con-

verge to σWig weakly in distribution, and thus (by (2.12)) so do μN .

2.3. Some quantitative aspects. Whenever the moment convergence (2.2) is a consequence

of the stronger property

s(m1, · · · ,mk;μN ) = s(m1, · · · ,mk;μ∞) (N ≥ N0(m1, · · · ,mk)) , (2.20)

the arguments quoted in Section 2.1 can be recast in quantitative form. This is illustrated by

the following inequality due to Sonin [63]. Let γ be the Gaussian measure,

dγ

dξ
=

1√
2π

exp(−ξ2/2) (ξ ∈ R) ,

and assume that

s(m;μN ) = s(m; γ)

[
=

{
0, m is odd

m!

(m
2 )!2

m
2
, m is even

]
(N ≥ N0(m)) . (2.21)
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Then

sup
ξ∈R
|μN (ξ)− γ(ξ)| ≤

√
π

m− 1 (N ≥ max
m′≤m

N0(m
′)) . (2.22)

Measures μN of random matrix origin for which (2.21) holds may be found in the survey of

Diaconis [13]. Inequalities of the form (2.22) may be also derived for other measures μ∞
(see Akhiezer [1, Section II.5.4] for the general framework of Chebyshev–Markov–Stieltjes

inequalities, and Krawtchouk [40] for additional examples).

Similar inequalities can be derived for k > 1. On the other hand, already in the setting of

the Central Limit Theorem for sums of independent random variables, (2.21) is not valid (un-

less the addends are Gaussian themselves); the correct relation s(m;μN ) ≈ s(m; γ), even
with the optimal dependence of the error term onm andN , yields a poor bound on the rate of

convergence of μN to γ (the sharp Berry –Esseen bound, see Feller [23, §XVI.5], was proved

by the Fourier-analytic approach). The reason is that monomials form an ill-conditioned ba-

sis; see Gautschi [35] for a discussion of computational aspects (and of remedies similar to

the one discussed in the next section).

2.4. A modification of the moment method. The following modification makes the mo-

ment method better conditioned. Let (μN )N≥1 be a sequence of probability measures on

R, and suppose μ∞ is a candidate for the weak limit of the sequence (μN )N≥1. Let Pn(ξ)
(n = 0, 1, 2, · · · ) be the orthogonal polynomials with respect to μ∞:

degPn = n ,

∫
Pn(ξ)Pn′(ξ)dμ∞(ξ) = δnn′ .

Also set

s̃(n;μ;μ∞) =

∫ ∞

−∞
Pn(ξ)dμ(ξ) . (2.23)

Then the convergence of moments

lim
N→∞

s(m;μN ) = s(m;μ∞) (m ≥ 0) (2.24)

is equivalent to

lim
N→∞

s̃(n;μN ;μ∞) = δn0 (n ≥ 0) . (2.25)

Thus (2.25) implies that μN → μ∞, provided that the moment problem for μ∞ is determi-

nate.

While the modification of the moment method advertised here seems to have no general

counterpart in dimension k > 1, in the special case when μ∞ is the k-th power of a one-

dimensional measure with orthogonal polynomials Pn we define:

s̃(n1, · · · , nk;μ;μ∞) =
∫
Rk

k∏
r=1

Pnr (ξr) dμ(ξ) .

2.4.1. A random matrix example. If X1, · · · , Xn are independent random variables with

zero mean, unit variance, and finite moments, one may give a combinatorial interpretation to

E
1√
n!
Hen

[
X1 + · · ·+XN√

N

]
, (2.26)
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where

Hen(ξ) = (−1)neξ2/2 dn

dξn
e−ξ2/2

are the Hermite polynomials; the three-term recurrent relation

Hen+1(ξ) = ξHen(ξ)− nHen−1(ξ)

eliminates the asymptotically leading terms of the moments (2.7) of X1 + · · · +XN . Here

we focus on a different example, pertaining to random matrices of the form considered in

Section 2.2.

Denote

P (κ)
n (ξ) = Un(ξ)− 1

κ− 1Un−2(ξ) ,

where

Un(cos θ) =
sin((n+ 1)θ)

sin θ

are the Chebyshev polynomials of the second kind (orthogonal with respect to σWig), and

U−1 ≡ U−2 ≡ 0. Let G = (V,E) be a regular graph of connectivity κ, and let H be an

#V ×#V Hermitian matrix, such that

|H(u, v)| = �(u,v)∈E , (u, v ∈ V ) . (2.27)

The three-term recurrent relation

P
(κ)
n+1(ξ) = 2ξP (κ)

n (ξ)− (1 + (κ− 1)−1
�n=1)P

(κ)
n−1(ξ)

for P
(κ)
n leads to

Proposition 2.1 (cf. [58, Lemma 2.7], [21, Claim II.1.2]). For any Hermitian matrix H
satisfying (2.27),

P (κ)
n

[
H

2
√
κ− 1

]
(u, v) =

∑ n∏
j=1

H(uj , uj+1)√
κ− 1 , (2.28)

where the sum is over paths u0, u1, · · · , un−1, un inG from u0 = u to un = v which satisfy
the non-backtracking condition uj �= uj+2 (0 ≤ j ≤ n− 2).

Consider a sequence of random matrices H(N) associated to a sequence of graphs GN

with κN → ∞ as in Section 2.2; let us assume that the entries of H satisfy the unimodality

assumptions (2.27). A non-backtracking path can not be tree-like (see Figure 2.1), therefore

the modified moments tend to zero; this provides an alternative proof to Wigner’s law in the

form of Section 2.2 under the additional assumptions (2.27).

The generalisation of Propostion 2.1 to matrices which do not satisfy (2.27) is somewhat

technical, and we do not present it here. In the context of Wigner (and sample covariance)

matrices, it is described in [21, Part III]; for the (more involved) case of band matrices we

refer to the work of Erdős and Knowles [17].
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2.4.2. Advantages of modified moments. Although the convergence of modified moments

(2.25) is equivalent to the convergence of moments (2.24), quantitative forms of the former

yield better estimates on the rate of convergence μN → μ∞. As an illustration, we recall

a variant of the Erdős–Turán inequality [20] proved in [22]. Consider again the semi-circle

measure σWig with density (2.11).

Proposition 2.2 ([22, Proposition 5]). Let μ be a probability measure on R. Then, for any
ξ ∈ R and any n0 ≥ 1,

|μ(−∞, ξ]− σWig(−∞, ξ]| ≤ C

{
ρ(ξ;n0)

n0
+
√
ρ(ξ;n0)

n0∑
n=1

|s̃(n;μ;σWig)|
n

}
,

where C > 0 is a numerical constant, and ρ(ξ;n0) = max(1− |ξ|, n−2
0 ).

The original Erdős–Turán inequality provides a bound of similar structure for the mea-

sure with density dμ∞/dξ = π−1
(
(1− ξ2)+

)−1/2
(in this case, ρ(ξ;n0) should be set to

1.)1

2.5. Convergence of rescaled probability measures. The rescaling Rξ0
η [μ] of a measure

μ on Rk about ξ0 ∈ Rk by η > 0 is defined by

Rξ0
η [μ](K) = μ(η(K − ξ0))

(
K ∈ B(Rk)

)
. (2.29)

In a class of questions outside the narrow framework of Section 2.1, one is interested in vague

limits (weak limits with respect to the topology defined by compactly supported continuous

functions) of (
ε−1
N Rξ0

ηN [μN ]
)
N≥1

, (2.30)

where (μN )N≥1 is a sequence of probability measures on Rk, ξ0 ∈ Rk, and two sequences

εN , ηN → +0 determine the scaling of μN on the value (5) and variable (↔) axes, respec-

tively.

2.5.1. Edges (corners) of the support. Moments allow to study the rescaling of μN about a

point ξ0 which is close to the corners of the cube supporting μN . Variants of this observation

were used, for example, by Sinai and Soshnikov [56, 57].

Assume that we are given a sequence (μN )N≥1 of probability measures on Rk, two

sequences εN , ηN → +0 which determine the scaling (2.30), and 2k continuous functions

φε : (α0,∞)k → R+ (ε ∈ {−1, 1}k) which will describe the limiting Laplace transform at

the 2k corners of the cube.

Proposition 2.3. Suppose

ε−k
N s(m1,N , · · · ,mk,N ;μN )−

∑
ε∈{−1,1}k

k∏
r=1

εmr
r φε(α1, · · · , αk) −→ 0 (N →∞)

for any sequence (m1,N , · · · ,mk,N )N≥1 for which

lim
N→∞

ηNmr,N = αr > α0 (1 ≤ r ≤ k).

1 A similar inequality for the Gaussian measure, combined with a careful estimate of the modified moments

(2.26), could perhaps yield a proof of the Berry–Esseen theorem along the lines suggested by Chebyshev.
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Then, for any ε ∈ {−1, 1}k, the sequence (ε−1
N Rε

ηN [μN ])N≥1 converges vaguely to a mea-
sure νε which is uniquely determined by the equations∫

exp(α1λ1 + · · ·+ αkλk)dν
ε(ε1λ1, · · · , εkλk) = φε(α1, · · · , αk) (α ∈ (α0,∞)k) .

Remark 2.4. Convergence actually holds in the stronger topology defined by continuous

functions supported (for some R > 0) in

k∏
r=1

{
(−R,∞) , εr = 1

(−∞, R) , εr = −1
.

The counterparts of Proposition 2.3 for modified moments depend on the structure of

the limiting measure μ∞. For the case μ∞ = σ⊗k
Wig such a statement was proved in [60,

Section 6]. It is somewhat technical, and we do not reproduce it here; instead of the Laplace

transform, the limiting measures νε are characterised in terms of the transform∫
Rk

k∏
r=1

sinαr
√−λr√−λr

dνε(ε1λ1, · · · , εkλk) (2.31)

(which becomes convergent after a certain regularisation). The system of functions λ �→
sinα

√
−λ√

−λ
forms a continuous analogue of orthogonal polynomials (as introduced by Krein,

see Denisov [12]) with respect to the measure 2
√
2

π

√−λ− (obtained by rescaling σWig about

ξ0 = 1).
Uniqueness theorems for the transform (2.31) were proved (in dimension k = 1) in the

1950-s by Levitan [42], Levitan and Meiman [43], and Vul [73] (listed in order of increasing

generality); the argument in [60] builds on [42].

One advantage of the approach based on modified moments is that, for a measure sup-

ported on several intervals, it allows to consider the rescaling about edges (corners) which

are not maximally distant from the origin, and even internal edges. In the context of random

matrices, this was exploited in [21].

2.5.2. Interior points of the support. If ξ0 is an interior point of the support of μ∞, it

seems impossible to extract any information regarding the measures ε−1
N Rξ0

ηN [μN ] from the

asymptotics of the moments of μN . The modified moments s̃ carry such information. For

example, Proposition 2.2 shows that if one can find a sequence (n0(N))N≥1 so that

lim
N→∞

εNn0(N) = +∞ , lim
N→∞

n0(N)

n0(N)∑
n=1

|s̃(n;μN ;σWig)|
n

= 0 , (2.32)

then

ε−1
N Rξ0

εN [μN ]
vague−→
N→∞

1

π

√
1− ξ20 mes (−1 < ξ0 < 1) (2.33)

(where mes is the Lebesgue measure on the real line).

Let us briefly comment on the shorter scales εN , for which (2.32) fails. The challenge is

to give meaning to the expansion

μN [ξ
′, ξ′′] ∼

∑
n≥0

s̃(n;μN ;μ∞)

∫ ξ′′

ξ′
Pn(ξ)dμ∞(ξ) (2.34)
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when |ξ′−ξ′′| is small. For μ∞ = σWig, a regularisation procedure suggested in [61] allows

to establish (2.33) (and even to determine the subleading asymptotic terms) in the cases when

(2.32) is violated due to divergent contribution to

s̃(n;μN ;σWig) =

∫ ∞

−∞
Un(ξ)dμN (ξ)

coming from the neighbourhood of ξ = ±1. It would be interesting to find a way to con-

sider even shorter scales εN , for which the limit of ε−1
N Rξ0

εN [μN ] is distinct from that of

ε−1
N Rξ0

εN [μ∞]. In the random matrix applications, such a method would allow to study the

local eigenvalue statistics in the bulk of the spectrum via modified moments (in particular, in

problems where alternative methods are not currently available).

3. Spectral edges of random matrices

3.1. Wigner matrices. The application of the moment method to local eigenvalues statis-

tics originates in the work of Soshnikov [64] on universality for Wigner matrices. Let us

recall the result of [64], after some preliminaries.

As before, we consider a sequence (H(N))N≥1 of Wigner matrices, i.e. random Hermi-

tian matrices such that the diagonal entries of every H(N) are sampled from a probability

distribution Ldiag satisfying (2.9), and the off-diagonal entries are sampled from a probability

distribution Loff-diag satisfying (2.10); the eigenvalues of H(N) are denoted

ξ
(N)
1 ≥ ξ

(N)
2 ≥ · · · ≥ ξ

(N)
N .

Consider the random point process (i.e. a random collection or points, or, equivalently, a

random integer-valued measure)

Λ(N) =
N∑
j=1

δ
(
λ−N1/6

[
ξ
(N)
j − 2

√
N
])

(3.1)

(the scaling is natural in view of the square-root singularity of σWig at 1).
Two special cases, the Gaussian Orthogonal Ensemble (GOE), and the Gaussian Unitary

Ensemble (GUE) [as well as the Gaussian Symplectic Ensemble (GSE, not discussed here)],

enjoy an invariance property which allows to apply the method of orthogonal polynomials

(see Mehta [49]). The limits of Λ(N) for GOE and GUE, called the Airy1 (Ai1) and the Airy2
(Ai2) point processes, respectively, were found by Tracy and Widom [70, 71] and Forrester

[25]. The correlation functions, which are (by definition) the densities

ρβ,k(λ1, · · · , λk) = d

d mesk
EAi⊗k

β |λ1<···<λk

of the off-diagonal parts of the moment measures EAi⊗k
β , are expressed via determinants

involving the Airy function Ai:

ρ2,k(λ1, · · · , λk) = det
k×k

(A(λp, λr))
k
p,r=1 , (3.2)
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ρ1,k(λ1, · · · , λk) =
√

det
2k×2k

(A1(λp, λr))kp,r=1 , (3.3)

where

A(λ, λ′) =

∫ ∞

0

Ai(λ+ u)Ai(λ′ + u)du , A1(λ, λ
′) =

(
A(λ, λ′) DA(λ, λ′)
JA(λ, λ′) A(λ, λ′)

)
,

DA(λ, λ′) =
∂

∂λ′
A(λ, λ′) , JA(λ, λ′) = −

∫ ∞

λ

A(λ′′, λ′)dλ′′ − 1

2
sign(λ− λ′) .

Theorem 3.1 (Soshnikov [64]). Let (H(N))N≥1 be a sequence of Wigner matrices satisfying
the additional assumptions

H(u, v)
distr
= −H(u, v) ; (symmetry) (3.4)

E|H(u, v)|2k ≤ (Ck)k (subgaussian tails) (3.5)

on Ldiag and Loff-diag. If Loff-diag is supported on the real line, the point processes Λ(N)

converge (in the topology of Remark 2.4) to Ai1; otherwise, Λ(N) → Ai2.

Remark 3.2. Lee and Yin [41] have shown that the theorem remains valid if (3.4) and (3.5)

are replaced with the assumption

lim
R→∞

R4 P {|H(1, 2)| ≥ R} = 0 , (3.6)

which they have shown to be necessary and sufficient. Their argument makes use of the

methods developed in the works of Erdős, Bourgade, Knowles, Schlein, Yau, and Yin on

universality in the bulk for Wigner matrices, cf. Erdős [15].

Remark 3.3. The work of Soshnikov was followed by numerous other applications of the

moment method to local eigenvalue statistics in random matrix theory (see Soshnikov [65],

Péché [54]) as well as outside it (see Okounkov [50]).

The strategy of [64] is to compute the asymptotics of moments and to show, using a ver-

sion of Proposition 2.3, that the limit of Λ(N) exists and does not depend on the distribution

of the entries. Thus the theorem is reduced to its special case appertaining to the Gaussian

invariant ensembles.

3.1.1. An argument based on modified moments. In [21], modified moments were used

to re-prove Soshnikov’s theorem quoted above (the method was also applied to sample co-

variance matrices, to re-prove the results of Soshnikov [65] and Péché [54] on the largest

eigenvalues, and to prove a new result on the smallest ones). Let us outline the argument

of [21] (incorporating modifications from [60]), which serves as the basis for the extensions

described later in this section.

Let us assume that the diagonal entries H(u, u) are identically zero, and that the off-

diagonal entries H(u, v) are randomly chosen signs ±1. Then Proposition 2.1 identifies

E
k∏

r=1

trP (N−1)
nr

(
H(N)

2
√
N − 2

)
(3.7)
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as (N − 2)−
∑

nr/2 times the number of k-tuples of closed non-backtracking paths in the

complete graph on N vertices, in which every edge is traversed an even number of times

(in total). Such k-tuples are divided in topological equivalence classes (k-diagrams of Sec-

tion 3.2.1 below). For nr 6 N1/3, the contribution of every equivalence class can be asymp-

totically evaluated.

In the regime nr 6 N1/3, (3.7) captures the asymptotics of the transform (2.31) of the

moment measures of Λ(N). The combinatorial classification yields a convergent series for

this transform. This allows to describe the vague limit of Λ(N). A more general argument

making use of an extension of Proposition 2.1 allows to show that the same limit appears for

any sequence of matrices satisfying the assumptions of Soshnikov’s theorem (with Loff-diag

supported on the real line) in particular, for the GOE for which the answer is already identi-

fied as the Airy1 point process Ai1.

In the remainder of this section we describe (without proofs) two results which may be seen

as generalisations of [64].

3.2. Wigner processes. Instead of a single Wigner matrix H(N), let us consider a family

H(N)(x) = (H(x;u, v))1≤u≤v≤N of Wigner matrices depending on a parameter x ∈ X;

then we are interested in the eigenvalues

ξ
(N)
1 (x) ≥ ξ

(N)
2 (x) ≥ · · · ≥ ξ

(N)
N (x)

as a random process on X.

Let us assume that (x �→ H(x;u, u))1≤u≤N are independent copies of a random process

diag : X→ R,

E diag(x) = 0 , E diag(x)2 <∞ ,

and that (x �→ H(x;u, v))1≤u<v≤N are independent copies of off−diag : X→ C,

E off−diag(x) = 0 , E |off−diag(x)|2 = 1 .

The process off−diag(x) equips X with the L2 metric

ρ(x,x′) =

√
1

2
E|off−diag(x)− off−diag(x′)|2 .

The local properties of the eigenvalues rescaled about x0 ∈ X depend on the behaviour of ρ
near x0, which may be captured by the tangent cone Tx0X to X at x0 (the tangent cone to a

metric space was introduced by Gromov [36, Section 7]).

Moment-based methods allow to obtain rigorous results at the spectral edges. Here we

focus on the special case in which X = Rd and

ρ(x,x′)2 = ‖x− x′‖p + o(‖x‖p + ‖x′‖p) (x,x′ → 0) (3.8)

for some 1 ≤ p ≤ 2, which includes, for example, the Ornstein–Uhlenbeck sheet. In this

case the tangent cone at the origin is the space Xd
p = (Rd,

√‖ · ‖p).
Theorem 3.4. Let d ∈ N and 1 ≤ p ≤ 2. Let X = Rd, and suppose the processes diag(x)
and off−diag(x) have symmetric distribution (3.4) and subgaussian tails (3.5) at every point
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x ∈ Rd, and that the covariance of off−diag(x) has the asymptotics (3.8) near the origin.
Then the processes

Λ(N)(x) =

N∑
j=1

δ
(
λ−N1/6

[
ξ
(N)
j (xN1/3)− 2

√
N
])

converge (as N →∞, in the sense of finite-dimensional distributions) to a limiting process

ADβ [X
d
p](x) =

∞∑
j=1

δ(λ− λj(x)) (x ∈ Rd)

taking values in sequences λ1(x) ≥ λ2(x) ≥ · · · , where β = 1 if off−diag(0) is real-valued,
and β = 2— otherwise.

The level of generality chosen here is motivated in particular by the following result

proved in [62]: the process ADβ [X
2
1] also describes the edge scaling limit of corners of

time-dependent random matrices (for a discussion of these, see Borodin [7, 8]).

Proposition 3.5. For β ∈ {1, 2}, the process ADβ [X
d
p] boasts the following properties:

(1) There exists a modification of ADβ [X
d
p](x) in which every λj(x) is a continuous func-

tion of x ∈ Rd.

(2) At a fixed x ∈ Rd,ADβ [X
d
p](x) is equal in distribution to the Airyβ point process Aiβ .

(3) The distribution of ADβ [X
d
p](x) at a k-tuple of points (xq)kq=1 in Rd depends only on

β and on the distances ‖xq − xr‖p (1 ≤ q < r ≤ k).

The last item implies that the distribution of the restriction of ADβ [X
d
p] to a geodesic in

�pd does not depend on the choice of geodesic (and neither on p and d), and thus coincides in

distribution with ADβ [X
1].

We note that AD2[X
1] admits a concise determinantal description. Indeed, the β = 2

Dyson Brownian motion satisfies the assumptions of Theorem 3.4; thus its edge scaling limit

is described by the process AD2[X
1]. On the other hand, Macêdo [45] and Forrester, Nagao,

and Honner [29] (see further Forrester [26, 7.1.5]) found this limit directly. This process,

the moment measures of which are given by determinants, appeared again in the work of

Prähofer and Spohn [55] on models of random growth (see the lecture notes of Johansson

[38] for further limit theorems in which it appears); Corwin and Hammond [11] studied its

properties, and coined the term ‘Airy line ensemble’. Thus the distribution of the restriction

of AD2[X
d
p] to any geodesic in �dp is given by the Airy line ensemble.

3.2.1. Construction of the processes ADβ. With the exception of the case β = 2, d = 1,
the process P = ADβ [X

d
p] does not seem to be described by determinantal formulæ. The

construction presented here is motivated by the combinatorial arguments of Soshnikov [64]

and further by the work of Okounkov [50], and makes use of the results of [21].

Let P(x) (x ∈ Rd) be a random process which takes values in point configurations

on the line (i.e. locally finite sums of δ-functions). That is, for every x ∈ Rd the random

variable P(x) is a point process on R. Denote

ρ̃P,k(x1, · · · ,xk) = E
k∏

r=1

P(xr) (x1, · · · ,xk ∈ Rd) (3.9)
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be the moment measures of P, and

R̃P,k(x1, · · · ,xk;α1, · · · , αk) =
∫ k∏

r=1

sinαr
√−λr√−λr

dρ̃P,k(x1, · · · ,xk;λ1, · · · , λk)

in our case, (the divergent integral can be regularised, cf. [60, Section 6]; the transform

appears from the asymptotics of orthogonal polynomials, cf. (2.31)). Then, let

R̃#
P,k(x̄;α) =

∑
I⊂{1,··· ,k}

R̃P,#I(x̄|I , α|I)R̃P,k−#I(x̄|Ic , α|Ic) , (3.10)

where x̄ = (x1, · · · ,xk) ∈ (Rd)k, and x̄|I = (xr)r∈I . (The sum over partitions has

to do with the contribution of the two spectral edges to the asymptotics.) We define ADβ

via a formula (3.12) for R̃#
ADβ [Xd

p],k
(uniqueness follows from the considerations of [60,

Section 6]).

Let us consider the collection of k-tuples of non-backtracking walks for which every edge

of the spanned graph g (cf. Section 2.2) is traversed exactly twice, and every vertex in g
has degree at most three. Such k-tuples can be divided into topological equivalence classes

(k-diagrams). For example, for k = 1, the paths 1 2 3 4 5 6 7 8 4 5 6 7 8 4 3 2 1 on Figure 2.1

(right) and the path 8 7 2 3 9 2 3 9 2 7 8 belong to the same equivalence class, schematically

depicted on Figure 3.1 (left). The formal definition is given in [21, 60].

Figure 3.1. Three 1-diagrams. The diagram on the left corresponds to the projective plane with s = 1
(left). The two diagrams in the centre and on the right correspond to surfaces with s = 2; the one is

the centre is the torus.

Different k-diagrams correspond to homotopically distinct ways to glue k disks with a

marked point on the boundary. The result of such a gluing is a two-dimensional manifold.

Thus to every k-diagram one can associate a number s, which is related to the Euler char-

acteristic χ of the manifold by the formula s = 2k − χ; for k = 1 the number s is the

non-oriented genus. The multi-graph associated to a diagram with a certain value of s (see

Figures 3.1 and 3.2) has 2s vertices and 3s − k edges. The number Dk(s) of k-diagrams

with a given value of s satisfies the estimates ([21, Proposition II.3.3])

(s/C)s+k−1

(k − 1)! ≤ Dk(s) ≤ (Cs)s+k−1

(k − 1)! ; (3.11)

the upper bound guarantees that the series (3.12) which we derive below converges.

Next, we associate to a k-diagram D and to α ∈ (0,∞)k a (3s − 2k)-dimensional

polytope ΔD(α) in R3s−k, as follows. The variables w(e) are labeled by the edges e of D;

the polytope is defined by the inequalities⎧⎨⎩
w(e) ≥ 0 (e ∈ Edges(D))∑
e

cr(e)w(e) = αr (1 ≤ r ≤ k)
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Figure 3.2. Three 2-diagrams: s = 2 (left), s = 3 (centre, right). The leftmost diagram, corresponding

to a sphere glued from two disks, is often responsible for fluctuations of linear eigenvalue statistics on

global and mesoscopic scales.

where cr(e) ∈ {0, 1, 2} is the number of times the edge e is traversed by the p-th path in the

diagram. For example, the polytope associated with the rightmost 2-diagram of Figure 3.2

is given by ⎧⎪⎨⎪⎩
w(I), w(II), · · · , w(VII) ≥ 0

2w(I) + 2w(II) + 2w(III) + 2w(IV) + w(V) + w(VI) = α1

w(V) + w(VI) + 2w(VII) = α2 .

Let D1(k) be the collection of all k-diagrams, and let D2(k) ⊂ D1(k) be the sub-

collection of diagrams in which every edge is traversed once in one direction and once in

another one (such as Figure 3.1, centre, and Figure 3.2, left; these diagrams correspond to

gluings preserving orientation). Now we can finally write the series for R̃#:

R̃#
ADβ ,k

(x̄;α)

=
∑

D∈Dβ

∫
ΔD(α)

exp

⎧⎨⎩− ∑
e∈Edges(D)

‖xr+(e) − xr−(e)‖pw(e)
⎫⎬⎭ d mes3s−2k(w) , (3.12)

where k ≥ r+(e) ≥ r−(e) ≥ 1 are the indices of the two paths traversing e in D.

For example, when X is a singleton, all the terms in the exponent vanish, and (3.12)

yields an expression for the Airy point process in terms of volumes of the polytopesΔD(α),
which may be compared to the one given by Okounkov [50, §2.5.4].

3.3. Band matrices. In this section, we discuss an extension of Soshnikov’s theorem to a

class of matrices of the form considered in Section 2.2. First, we recall a conjecture, based on

the Thouless criterion [69]. Then we discuss a particular case, the spectral edges of random

band matrices, in which the conjecture can be proved. Finally, we comment on mesoscopic

scales.

3.3.1. Thouless criterion. The Thouless criterion [69], originally introduced in the context

of Anderson localisation, can be applied to predict the behaviour of local eigenvalue statis-

tics; cf. Fyodorov and Mirlin [33, 34]. Consider a sequence of matrices H(N) associated

with a sequence of graphs GN = (VN , EN ) as in Section 2.2. Then the measures

μN =
1

#VN

N∑
j=1

δ

(
ξ − ξ

(N)
j

2
√
2WN

)
converge to the semi-circle measure σWig.
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Let ξ0 ∈ R, and let ηN > 0 be chosen so that the sequence of (random) measures

#VNRξ0
ηN [EμN ] = E

#VN∑
j=1

δ

(
λ− 1

ηN

[
ξ
(N)
j

2
√
2WN − 1

− ξ0

])

will have a non-trivial vague limit (cf. Section 2.5). Thus chosen, ηN measures the mean

spacing between eigenvalues, whereas

(spacing/DOS) (ξ0) = η2N#VN

measures the mean spacing in units of the density of states. Let us compare the inverse of

this quantity with the mixing time Tmix of the random walk on GN .2 In many cases the

following seems to be correct: the eigenvalue statistics of H(N) near ξ0 are described by

random matrix theory if and only if

Tmix(GN )� 1

(spacing/DOS)(1)
. (3.13)

This interpretation of the Thouless criterion is based on the assumption that the semi-classical

approximation is valid up to the scales governing the local eigenvalue statistics; we refer to

the reviews of Spencer [66, 67] for a discussion of various aspects of Thouless scaling and

its mathematical justification, and to the work of Spencer and Wang [74] for some rigorous

results. Here we focus our attention on the particular case of

3.3.2. Random band matrices. Denote ‖u − v‖N = min�∈Z |u − v − �N |. A (one-

dimensional) random band matrix of bandwidth W is for us a random Hermitian N × N
matrix H(N) = (H(u, v))1≤u,v≤N such that⎧⎪⎨⎪⎩

H(u, v) = 0 , ‖u− v‖N > W ,

H(u, v) ∼ Loff-diag , 1 ≤ ‖u− v‖N ≤W ,

H(u, u) ∼ Ldiag ,

(3.14)

where Ldiag and Loff-diag satisfy the normalisation conditions (2.9) and (2.10), respectively.

In the setting of Section 2.2, it corresponds to the graph GN = (VN , EN ),

VN = {1, · · · , N} , (u, v) ∈ EN ⇐⇒ 1 ≤ ‖u− v‖N ≤WN , (3.15)

More general band matrices are discussed, for example, in [17, 39, 67].

For −1 < ξ0 < 1 (the bulk of the spectrum),

(spacing/DOS) (ξ0) 6 1

N
, Tmix 6 N2

W 2
,

therefore the criterion (3.13) suggests the following: the eigenvalue statistics of H(N) near

ξ0 are described by random matrix theory if and only if W ' √N . This prediction is sup-

ported by the detailed super-symmetric analysis performed by Fyodorov and Mirlin [33,34].

Mathematical justification remains a major challenge, cf. Spencer [67, 68] and references

therein.

2 equivalently, the ratio of the mixing time and the density of states, which is interpreted as the energy-dependent

mixing time, is compared to the usual inverse eigenvalue spacing ηN .
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3.3.3. Spectral edges. The (modified) moment method allows to confirm the criterion (3.13)

at the spectral edges of random band matrices.

Theorem 3.6 (cf. [60, Theorem 1.1]). Let (H(N))N≥1 be a sequence of random band ma-
trices satisfying the unimodality assumptions (2.27). If the bandwidth WN of H(N) satisfies

lim
N→∞

WN

N5/6
=∞ , (3.16)

then
N∑
j=1

δ

(
λ− N2/3

√
2WN

[
ξ
(N)
j − 2

√
2WN

])
→ Aiβ ,

where β = 1 if suppLoff-diag ⊂ R, and β = 2 otherwise.

The threshold N5/6 in (3.16) is sharp, see [60, Theorem 1.2]. The same [60, Theo-

rem 1.2] implies that

ηN 6 min(W
2/5
N N−1, N−2/3) ,

therefore

(spacing/DOS)(1) 6 min(W
4/5
N N−1, N−1/3) ,

and (3.16) is consistent with (3.13).

The unimodality conditions (2.27) simplify the analysis (cf. Proposition 2.1); we expect

that they can be relaxed using the methods of [21, Part III] and [17].

3.3.4. Mesoscopic scales. On mesoscopic scales 1' εN ' 1/#VN , the following coun-

terpart of the Thouless criterion goes back to the (physical) work of Altshuler and Shklovskii

[2]. Let ηN be such that the sequence (ε−1
N RηN [EμN ])N has a non-trivial vague limit. If

εNη−2
N ' Tmix , (3.17)

the fluctuations of linear eigenvalue statistics should be described by a log-correlated Gaus-

sian field, whereas when (3.17) is violated, one expects a more regular field depending on

the geometry of the underlying lattice. We refer to the works of Fyodorov, Le Doussal,

and Rosso [32] and of Fyodorov and Keating [30] for a discussion of the significance of

log-correlated fields within and outside random matrix theory, and to the work of Fyodorov,

Khoruzhenko, and Simm [31] for results pertaining to the Gaussian Unitary Ensemble.

Erdős and Knowles proved a series of results pertaining to mesoscopic statistics for a

wide class of d-dimensional band matrices. In the works [16,17], they developed a moment-

based approach which allowed them to control the quantum dynamics associated for time

scales t ≤ W
d/3−δ
N . In [18, 19], they gave mathematical justification to the criterion (3.17)

in the range εN ≥ W
−d/3+δ
N . It would be interesting to extend the results of [16, 17] and

[18, 19] to the full mesoscopic range.

4. Some further questions

Other limiting measures. The spectral measures in this article converge to the semicircle

distribution μ∞ = σWig. The modified moment method described here has been also ap-

plied to the Kesten–McKaymeasure (the orthogonality measure forP
(κ)
n ), the Godsil–Mohar
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measure (its bipartite analogue), and the Marchenko–Pastur measure (the infinite connectiv-

ity limit of the Godsil–Mohar measure); see e.g. [58,59]. It would be interesting to adapt the

method to situations in which the recurrent relation has less explicit form.

β-ensembles. The (convincing, although so far unrigorous) ghost and shadows formalism

introduced by Edelman [14] strongly suggests that the construction (3.12) should have an

extension to general β > 0. See Forrester [26] and [27] for background on β-ensembles, and

Borodin and Gorin [10] for a recent result pertaining to the spectral statistics of submatrices

of β-Jacobi random matrices.

Time-dependent invariant ensembles. It seems plausible that, for general (non-Gaussian)

invariant ensembles undergoing Dyson-type evolution, the spectral statistics near a soft edge

should be described by the processes ADβ of Section 3.2.1. Currently, there seem to be no

proved results of this form (even for the case β = 2 in which determinantal formalæ for

finite matrix size are given by the Eynard–Mehta theorem [49, Chapter 23]).

Beyond random matrices. Motivated by the proof of the Baik–Deift–Johansson conjecture

given by Okounkov [50], one may look for the appearance of (3.12) outside random matrix

theory, particularly, in the context of random growth models, for a discussion of the subtle

connection between which and random matrix theory we refer to the lecture notes of Ferrari

[24].

Bulk of the spectrum. We are not aware of any derivation (rigorous or not) of the local

eigenvalue statistics in the bulk of the spectrum using any version of the moment method.

Even for the test case of the Gaussian Unitary Ensemble (tractable by other means), per-

turbative methods such as Chebyshev expansions have not been of use beyond the scales

εN ' N−1+δ . For random band matrices the expansion (2.34) has been only regularised

for εN 'W−1+δ (see [61]).
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Abstract. The concept of freeness was introduced by Voiculescu in the context of operator algebras.

Later it was observed that it is also relevant for large random matrices. We will show how the com-

bination of various free probability results with a linearization trick allows to address successfully the

problem of determining the asymptotic eigenvalue distribution of general selfadjoint polynomials in

independent random matrices.
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1. Introduction

Free probability theory was introduced by Voiculescu around 1983 in order to attack the

isomorphism problem of von Neumann algebras of free groups. Voiculescu isolated a struc-

ture showing up in this context which he named “freeness”. His fundamental insight was to

separate this concept from its operator algebraic origin and investigate it for its own sake.

Furthermore, he promoted the point of view that freeness should be seen as an (though non-

commutative) analogue of the classical probabilistic concept of “independence” for random

variables. Hence freeness is also called “free independence” and the whole subject became

to be known as “free probability theory”.

The theory was lifted to a new level when Voiculescu discovered in 1991 that the free-

ness property is also present for many classes of random matrices, in the asymptotic regime

when the size of the matrices tends to infinity. This insight, bringing together the apriori en-

tirely different theories of operator algebras and of random matrices, had quite some impact

in both directions. Modelling operator algebras by random matrices resulted in some of the

deepest results about operator algebras of the last decades; whereas tools developed in oper-

ator algebras and free probability theory could now be applied to random matrix problems,

yielding in particular new ways to calculate the asymptotic eigenvalue distribution of many

random matrices. Since random matrices are also widely used in applied fields, like wireless

communications or statistics, free probability is now also quite common in those subjects.

Whereas Voiculescu’s original approach to free probability is quite analytic and operator

algebraic in nature, I provided another, more combinatorial, approach. This rests on the

notion of “free cumulants” and is intimately connected with the lattice of “non-crossing

partitions”.
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In this lecture we will give an introduction to free probability theory, with focus on its

random matrix and combinatorial side. Freeness will be motivated not by its initial occur-

rence in operator algebras, but by its random matrix connection. The main result we are

aiming at is also a very general random matrix problem, namely how to calculate the dis-

tribution of selfadjoint polynomials in independent random matrices. Whereas there exists

a vast amount of literature on solving this problem for various special cases, often in an ad

hoc way, we will see that free probability gives a conceptual way to attack this problem in

full generality.

For more information on other aspects of the subject one might consult the earlier ICM

contributions of Voiculescu [47], Haagerup [21], and Shlyakhtenko [34] (for the operator

algebraic aspects of free probability) or of Biane [14] (for applications to the asymptotics of

representations of symmetric groups). Extensions of the theory to rectangular matrices can

be found in [11], and to “second order freeness” (describing fluctuations of randommatrices)

in [16]. The monographs [23, 27, 30, 51] give general introductions to free probability; [30]

has its main emphasis on the combinatorial side of the subject. The applied side of free

probability is addressed, for example, in [17, 31, 40].

2. Motivation of freeness via random matrices

In this chapter we want to motivate the definition of freeness on the basis of randommatrices.

2.1. Asymptotic eigenvalue distribution of random matrices. We are interested in com-

puting the eigenvalue distribution of N × N random matrices as N → ∞. Here and in

the following we will only consider selfadjoint random matrices. This guarantees that the

eigenvalues are real and strong analytical tools are available to deal with such situations. For

non-selfadjoint matrices the eigenvalues are in general complex and the situation, especially

in the case of non-normal matrices, is more complicated. We will make some remarks on

this situation at the very end of our lecture, in Sect. 9.

The typical feature for many basic random matrix ensembles is the almost sure con-

vergence to some limiting eigenvalue distribution. Furthermore, quite often this limiting

distribution can be effectively calculated.

Example 2.1. We consider an N × N Gaussian random matrix. This is a selfadjoint ma-

trix XN = 1√
N
(xij)

N
i,j=1 such that the entries {xij}i≥j are independent and identically

distributed complex (real for i = j) Gaussian random variables with mean E[xij ] = 0 and

variance E[xij x̄ij ] = 1.
The following figure shows typical histograms of the eigenvalues of Gaussian random

matrices, for different values of N .

One sees that, whereas for smallN there is no clear structure, for largeN the eigenvalue

histogram is approaching a smooth curve. Actually, this curve is deterministic, it is (almost

surely) always the same, independent of the actual realized matrix from the ensemble. What

we see here, is one of the first and most famous results of random matrix theory: for such

matrices we have almost sure convergence to Wigner’s semicircle law, given by the densitiy

ρ(t) = 1
2π

√
4− t2. In Figure 2.2 we compare one realization of a 4000 × 4000 Gaussian

random matrix with the semicircle.

Example 2.2. An other important class of random matrices areWishart matrices; those are
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Figure 2.1. Histogram of the N eigenvalues for a realization of an N ×N Gaussian random matrix;

for N= 5, 100, 1000

of the form XN = ANA∗
N , where AN is an N × M matrix with independent Gaussian

entries. If we keep the ratio M/N fixed, its eigenvalue distribution converges almost surely

to the Marchenko-Pastur distribution; see Figure 2.2.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

Figure 2.2. Comparision between the histogram of one realization of a random matrix and the analytic

form of the density in theN → ∞ limit; left: 4000× 4000 Gaussian random matrix versus semicircle

distribution; right: Wishart random matrix with N = 3000, M = 12000 versus the corresponding

Marchenko-Pastur distribution

2.2. Polynomials in several random matrices. Instead of looking at one-matrix ensem-

bles we are now interested in the case of several matrices. Let us consider two sequencesXN

and YN of selfadjoint N ×N matrices such that both sequences have an asymptotic eigen-

value distribution forN →∞. We are interested in the asymptotic eigenvalue distribution of

sequences p(XN , YN ) for some non-trivial functions p of two non-commuting variables. We

will restrict to the simplest class of functions, namely p will be a (non-commutative) poly-

nomial. As mentioned before, we are only dealing with selfadjoint matrices, thus p should

be a selfadjoint polynomial in order to ensure that also p(XN , YN ) is selfadjoint.
In general, the distribution of p(XN , YN ) will depend on the relation between the eigen-

spaces of XN and of YN . However, by the concentration of measure phenomenon, we ex-

pect that for largeN this relation between the eigenspaces concentrates on typical or generic
positions, and that then the asymptotic eigenvalue distribution of p(XN , YN ) depends in a

deterministic way only on the asymptotic eigenvalue distribution of XN and on the asymp-

totic eigenvalue distribution of YN . Free probability theory replaces this vague notion of

generic position by the mathematical precise concept of freeness and provides general tools

for calculating the asymptotic distribution of p(XN , YN ) out of the asymptotic distribution
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of XN and the asymptotic distribution of YN .

One can convince oneself easily of the almost sure convergence to a deterministic limit

by simulations. Two examples are shown in Figure 2.3. Actually, usually it is also not too

hard to prove this almost sure convergence by appropriate variance estimates. However, what

is not clear at all is the calculation of the form of this limit shape in general. In some cases,

like the left example of Figure 2.3, this was known, but in others, like the right example of

Figure 2.3, no solution was known.

Our goal is to get a conceptual way of understanding the asymptotic eigenvalue distribu-

tions in general and also to find an algorithm for calculating the corresponding asymptotic

eigenvalue distributions.
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Figure 2.3. Histogram for a generic realization of a 3000 × 3000 random matrix p(X,Y ), where

X and Y are independent Gaussian and, respectively, Wishart random matrices: p(X,Y ) = X + Y
(left); p(X,Y ) = XY + Y X +X2 (right). In the left case, the asymptotic eigenvalue distribution is

relatively easy to calculate; in the right case, no such solution was known, this case will be reconsidered

in Figure 8.1.

2.3. The moment method. There are different methods to analyze limit distributions of

random matrices. One technique, analytical in nature, is the so called resolvent method. The

main idea of this method is to derive an equation for the resolvent of the limit distribution.

The advantage of this method is that there is a powerful complex analysis machinery to deal

with such equations. This method also allows to look at eigenvalue distributions without

finite moments. Its drawback, however, is that one cannot deal uniformly with all polyno-

mials in X and Y ; one has to treat each p(X,Y ) separately. On the other side, there is a

more combinatorical technique, the so-called moment method, for calculating the limit dis-

tribution. This has the advantage that it allows, in principle, to deal in a uniform way with all

polynomials in X and Y . In the following we will first concentrate on the moment method

in order to motivate the concept of freeness. Later we will then come back to more analytic

questions.

By tr(A)we denote the normalized trace of anN×N matrixA. If we want to understand

the eigenvalue distribution of a selfadjoint matrix A, it suffices to know the trace tr(Ak) of
all powers of A: because of the invariance of the trace under conjugation with unitaries,

we have for k ∈ N that 1
N

(
λk1 + · · · + λkN

)
= tr(Ak), where λi are the eigenvalues of A.

Therefore, instead of studying the eigenvalue distribution of a matrix A directly, the moment

method looks at traces of powers, tr(Ak).
Consider now our sequences of random matrices XN and YN , each of which is assumed
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to have almost surely an asymptotic eigenvalue distribution. We want to understand, in the

limit N → ∞, the eigenvalue distribution of p(XN , YN ), not just for one p, but for all

non-commutative polynomials. By the moment method, this asks for the investigation of the

limit N → ∞ of tr
(
p(XN , YN )

k
)
for all k ∈ N and all polynomials p. Then it is clear that

the basic objects which we have to understand in this approach are the asymptotic mixed
moments

lim
N→∞

tr(Xn1

N Y m1

N · · ·Xnk

N Y mk

N ) (k ∈ N; n1, . . . , nk,m1, . . . ,mk ∈ N). (2.1)

Thus our fundamental problem is the following. If XN and YN each have an asymptotic

eigenvalue distribution, and if XN and YN are in generic position, do the asymptotic mixed

moments (2.1) exist? If so, can we express them in a deterministic way in terms of the

individual moments(
lim

N→∞
tr(Xk

N )
)
k∈N

and
(
lim

N→∞
tr(Y k

N )
)
k∈N

?

In order to get an idea how this might look like in a generic situation, we will consider the

simplest case of two such random matrices.

2.4. The example of two independent Gaussian random matrices. Consider, for exam-

ple,N ×N random matricesXN and YN such thatXN and YN have asymptotic eigenvalue

distributions for N → ∞, XN and YN are independent (i.e., the entries of XN are inde-

pendent from the entries of YN ) and YN is an unitarily invariant ensemble (i.e., the joint

distribution of its entries does not change under unitary conjugation and thus, for any uni-

tary N ×N -matrix UN , UNYNU∗
N is equivalent to the original ensemble YN in all relevant

aspects). But then we can use this UN to rotate the eigenspaces of YN against those of XN

into a generic position, thus for typical realizations of XN and YN the eigenspaces should

be in a generic position.

The simplest example of two such random matrix ensembles are two independent Gaus-

sian random matrices XN and YN . In this case one can calculate everything concretely:

in the limit N → ∞, tr(Xn1

N Y m1

N · · ·Xnk

N Y mk

N ) is almost surely given by the number of

non-crossing (aka planar) pairings of the word

X ·X · · ·X︸ ︷︷ ︸
n1-times

·Y · Y · · ·Y︸ ︷︷ ︸
m1-times

· · ·X ·X · · ·X︸ ︷︷ ︸
nk-times

·Y · Y · · ·Y︸ ︷︷ ︸
mk-times

,

in two letters X and Y , such that no X is paired with a Y . A pairing is a decomposition of

the word into pairs of letters; if we connect the two letters from each pair by a line, drawn

in the half-plane below the word, then “non-crossing” means that we can do this without

getting crossings between lines for different pairs.

For example, we have limN→∞ tr(XNXNYNYNXNYNYNXN ) = 2 because there are

two such non-crossing pairings:

XXY Y XY Y X
XXY Y XY Y X

After some contemplation, one realizes that the above combinatorial description of the

limit of tr(Xn1

N Y m1

N · · ·Xnk

N Y mk

N ) implies that the trace of a corresponding product of cen-

tered powers,
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lim
N→∞

tr
((

Xn1

N − lim
M→∞

tr(Xn1

M ) · 1) · (Y m1

N − lim
M→∞

tr(Y m1

M ) · 1) · · ·
· · · (Xnk

M − lim
M→∞

tr(Xnk

M ) · 1) · (Y mk

N − lim
M→∞

tr(Y mk

M ) · 1)) (2.2)

is given by the number of non-crossing pairings as above, but with the additional property

that each group of Xni must be connected by at least one pair to some other group Xnj

(with i �= j) and, in the same way, each group of Y ’s must be connected to some other group

of Y ’s. However, since the groups ofX’s and the groups of Y ’s are alternating, it is obvious

that if we want to connect the groups in this way we will necessarily get crossings between

some pairs. Thus there are actually no pairings of the required form and we have that the

term (2.2) is equal to zero.

One might wonder what advantage is gained by trading the explicit formula for mixed

moments (2.1) of independent Gaussian randommatrices for the implicit relations (2.2)? The

drawback of the explicit formula is that the asymptotic formula for tr(Xn1

N Y m1

N · · ·Xnk

N Y mk

N )
will be different for different random matrix ensembles (and in many cases an explicit for-

mula fails to exist). However, the vanishing of (2.2) remains valid for many matrix ensem-

bles. The vanishing of (2.2) gives a precise meaning to our idea that the random matrices

should be in generic position; it constitutes Voiculescu’s definition of asymptotic freeness.

Definition 2.3. Two sequences of matrices (XN )N∈N and (YN )N∈N are asymptotically free
if we have the vanishing of (2.2) for all k ≥ 1 and all n1,m1, . . . ,nk,mk ≥ 1.

Provided with this definition, the intuition that unitarily invariant randommatrices should

give rise to generic situations becomes now a rigorous theorem. This basic observation was

proved by Voiculescu in 1991.

Theorem 2.4 (Voiculescu [44]). Consider N ×N random matrices XN and YN such that:
both XN and YN have almost surely an asymptotic eigenvalue distribution for N → ∞;
XN and YN are independent; YN is a unitarily invariant ensemble. Then, XN and YN are
almost surely asymptotically free.

Extensions of this statement to other classes of random matrices can, for example, be

found in [2, 19, 27].

We are now ready to give, in the next chapter, a more abstract definition of freeness. We

will also see how it allows to deduce mixed moments from the individual moments.

3. Free probability and non-crossing partitions

3.1. Freeness. The starting point of free probability was the definition of freeness, given

by Voiculescu in 1983. However, this happened in the context of operator algebras, related

to the isomorphism problem of free group factors. A few years later, in 1991, Voiculescu

discovered the relation between random matrices and free probability, as outlined in the

last chapter. These connections between operator algebras and random matrices led, among

others, to deep results on free group factors. In 1994, I developped a combinatorial theory

of freeness, based on free cumulants; many consequences of this approach were worked out

together with Nica, see [28, 30]. In the following we concentrate on this combinatorial way

of understanding freeness.
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Definition 3.1. A pair (A, ϕ) consisting of a unital algebra A and a linear functional ϕ :
A → C with ϕ(1) = 1 is called a non-commutative probability space. Often the adjective

“non-commutative” is just dropped. Elements from A are addressed as (non-commutative)
random variables, the numbers ϕ(ai(1) · · · ai(n)) for such random variables a1, . . . , ak ∈ A
are calledmoments, the collection of all moments is called the joint distribution of a1, . . . , ak.

Definition 3.2. Let (A, ϕ) be a non-commutative probability space and let I be an index set.

1) Let, for each i ∈ I , Ai ⊂ A, be a unital subalgebra. The subalgebras (Ai)i∈I
are called free or freely independent, if ϕ(a1 · · · ak) = 0 whenever we have: k is

a positive integer; aj ∈ Ai(j) (with i(j) ∈ I) for all j = 1, . . . , k; ϕ(aj) = 0
for all j = 1, . . . , k; and neighboring elements are from different subalgebras, i.e.,

i(1) �= i(2), i(2) �= i(3), . . . , i(k − 1) �= i(k).

2) Let, for each i ∈ I , xi ∈ A. The random variables (xi)i∈I are called free or freely
independent, if their generated unital subalgebras are free, i.e., if (Ai)i∈I are free,

where, for each i ∈ I , Ai is the unital subalgebra of A which is generated by xi. In

the same way, subsets (Xi)i∈I of A are free, if their generated unital subalgebras are

so.

Freeness between x and y is, by definition, an infinite set of equations relating various

moments in x and y. However, one should notice that freeness between x and y is actually a

rule for calculating mixed moments in x and y from the moments of x and the moments of

y. In this sense, freeness is analogous to the concept of independence for classical random

variables. Hence freeness is also called free independence. Free probability theory investi-

gates these freeness relations abstractly, inspired by the philosophy that freeness should be

considered and treated as a non-commutative analogue of the classical notion of indepen-

dence.

The following examples show some calculations of mixed moments. That this works

also in general should be clear.

Example 3.3. Let us calculate, for m,n ≥ 1, the mixed moment ϕ(xnym) of some free

random variables x and y. By the definition of freeness it follows that ϕ[(xn−ϕ(xn)1)(ym−
ϕ(ym)1)] = 0. This gives

ϕ(xnym)− ϕ(xn · 1)ϕ(ym)− ϕ(xn)ϕ(1 · ym) + ϕ(xn)ϕ(ym)ϕ(1 · 1) = 0,

and hence ϕ(xnym) = ϕ(xn) · ϕ(ym).
The above is the same result as for independent classical random variables. However, this

is misleading. Free independence is a different rule from classical independence; free inde-

pendence occurs typically for non-commuting random variables, like operators on Hilbert

spaces or (random) matrices.

Example 3.4. Let x and y be some free random variables. By definition of freeness we get

ϕ[(x− ϕ(x)1) · (y − ϕ(y)1) · (x− ϕ(x)1) · (y − ϕ(y)1)] = 0,

which results after some elementary, but lengthy calculations and many cancellations in

ϕ(xyxy) = ϕ(xx) · ϕ(y) · ϕ(y) + ϕ(x) · ϕ(x) · ϕ(yy)− ϕ(x) · ϕ(y) · ϕ(x) · ϕ(y). (3.1)
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We see that this result is different from the one for independent classical (and thus com-

muting) random variables. It is important to note that freeness plays a similar role in the

non-commutative world as independence plays in the classical world, but that freeness is not

a generalization of independence: independent random variables can be free only in very

trivial situations. Freeness is a theory for genuinely non-commuting random variables.

3.2. Understanding the freeness rule: the idea of cumulants. The main idea in this sec-

tion is to write moments in terms of other quantities, which we call free cumulants. We will

see that freeness is much easier to describe on the level of free cumulants, namely by the van-

ishing of mixed cumulants. There is also a nice relation between moments and cumulants,

given by summing over non-crossing or planar partitions.

Definition 3.5.

1) A partition of {1, . . . , n} is a decomposition π = {V1, . . . , Vr} of {1, . . . , n} into

subsets Vi with

Vi �= ∅, Vi ∩ Vj = ∅ (i �= j),
⋃
i

Vi = {1, . . . , n}.

The Vi are called the blocks of π. The set of all such partitions is denoted by P(n).
2) A partition π is non-crossing if we do not have p1 < q1 < p2 < q2 such that p1, p2

are in a same block, q1, q2 are in a same block, but those two blocks are different. By

NC(n) we will denote the set of all non-crossing partions of {1, . . . , n}.
Let us remark that NC(n) is actually a lattice with respect to refinement order.

Definition 3.6. For a unital linear functional ϕ : A → C we define the free cumulants
κn : An → C (for all n ≥ 1) as multi-linear functionals by the moment-cumulant relation

ϕ(a1 · · · an) =
∑

π∈NC(n)

κπ(a1, . . . , an).

Here, κπ is a product of cumulants: one term for each block of π, and the arguments are given

by the elements corresponding to the respective blocks. This, as well as the fact that these

equations define the free cumulants uniquely, will be illustrated by the following examples.

This definition is motivated by a similar formula for classical cumulants. The only differ-

ence is that in the classical case non-crossing partitionsNC(n) are replaced by all partitions

P(n).
Example 3.7. Let us calculate some examples for cumulants for small n.

For n = 1 there exists only one partition, , so that the first moment and the first cumulant

are the same: ϕ(a1) = κ1(a1).
For n = 2 there are two partitions, and , and both are non-crossing. By the moment-

cumulant formula we get ϕ(a1a2) = κ2(a1, a2) + κ1(a1)κ1(a2), and thus κ2 is nothing but

the covariance κ2(a1, a2) = ϕ(a1a2)− ϕ(a1)ϕ(a2).
In the same recursive way, we are able to compute the third cumulant. There are five

partitions of the set of three elements:
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Still, they are all non-crossing and the moment-cumulant formula gives

ϕ(a1a2a3) = κ3(a1, a2, a3) + κ1(a1)κ2(a2, a3)

+ κ2(a1, a2)κ1(a3) + κ2(a1, a3)κ1(a2) + κ1(a1)κ1(a2)κ1(a3)

and hence

κ3(a1, a2, a3) = ϕ(a1a2a3)− ϕ(a1)ϕ(a2a3)− ϕ(a1a2)ϕ(a3)

− ϕ(a1a3)ϕ(a2) + 2ϕ(a1)ϕ(a2)ϕ(a3).

The first difference to the classical theory occurs now for n = 4; there are 15 partitions

of the set of four elements, but one is crossing and there are only 14 non-crossing partitions:

Hence the moment-cumulant formula yields

ϕ(a1a2a3a4) = κ4(a1, a2, a3, a4) + κ1(a1)κ3(a2, a3, a4) + κ1(a2)κ3(a1, a3, a4)

+ κ1(a3)κ3(a1, a2, a4) + κ3(a1, a2, a3)κ1(a4) + κ2(a1, a2)κ2(a3, a4)

+ κ2(a1, a4)κ2(a2, a3) + κ1(a1)κ1(a2)κ2(a3, a4) + κ1(a1)κ2(a2, a3)κ1(a4)

+ κ2(a1, a2)κ1(a3)κ1(a4) + κ1(a1)κ2(a2, a4)κ1(a3) + κ2(a1, a4)κ1(a2)κ1(a3)

+ κ2(a1, a3)κ1(a2)κ1(a4) + κ1(a1)κ1(a2)κ1(a3)κ1(a4).

As before, this can be resolved for κ4 in terms of moments.

The reader should by now be convinced that one can actually rewrite the moment-

cumulant equations also the other way round as cumulant-moment equations. More pre-

cisely, this can be achieved by a Möbius inversion on the poset of non-crossing partitions

resulting in

κn(a1, . . . , an) =
∑

π∈NC(n)

ϕπ(a1, . . . , an)μ(π, 1n),

where ϕπ is a product of moments according to the block structure of π and μ is the Möbius

function of NC(n).
Whereas κ1, κ2, and κ3 are the same as the corresponding classical cumulants, the free

cumulant κ4 and all the higher ones are different from their classical counterparts.

3.3. Freeness corresponds to vanishing of mixed cumulants. The following theorem

shows that freeness is much easier to describe on the level of cumulants than on the level

of moments. This characterization is at the basis of most calculations with free cumulants.

Theorem 3.8 (Speicher [36]). The fact that x and y are free is equivalent to the fact that
κn(a1, . . . , an) = 0 whenever: n ≥ 2, ai ∈ {x, y} for all i, and there are at least two
indices i, j such that ai = x and aj = y.

A corresponding statement is also true for more than two random variables: freeness is

equivalent to the vanishing of mixed cumulants.
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Example 3.9. If x and y are free, then we have

ϕ(xyxy) = κ1(x)κ1(x)κ2(y, y) + κ2(x, x)κ1(y)κ1(y) + κ1(x)κ1(y)κ1(x)κ1(y),

corresponding to the three non-crossing partitions of xyxy which connect x only with x and

y only with y:

x y x y x y x y x y x y

Rewriting the cumulants in terms of moments recovers of course the formula (3.1).

This description of freeness in terms of free cumulants is related to the planar approx-

imations in random matrix theory. In a sense some aspects of this theory of freeness were

anticipated (but mostly neglected) in the physics community in the paper [18].

4. Sum of free variables: free convolution

Let x, y be two free random variables. Then, by freeness, the moments of x+y are uniquely

determined by the moments of x and the moments of y. But is there an effective way to

calculate the distribution of x+ y if we know the distribution of x and the distribution of y?

4.1. Free convolution. We usually consider this question in a context where we have some

more analytic structure. Formally, a good frame for this is a C∗-probability space (A, ϕ),
where A is a C∗-algebra (i.e., a norm-closed ∗-subalgebra of the algebra of bounded oper-

ators on a Hilbert space) and ϕ is a state, i.e. it is positive in the sense ϕ(aa∗) ≥ 0 for all

a ∈ A. Concretely this means that our random variables can be realized as bounded opera-

tors on a Hilbert space and ϕ can be written as a vector state ϕ(a) = 〈aξ, ξ〉 for some unit

vector ξ in the Hilbert space.

In such a situation the distribution of a selfadjoint random variable x can be identified

with a compactly supported probability measure μx on R, via

ϕ(xn) =

∫
R

tndμx(t) for all n ∈ N. (4.1)

Then we say that the distribution of x + y, if x and y are free, is the free convolution of

the distribution μx of x and the distribution μy of y and denote this by μx+y = μx � μy .
By considering unbounded selfadjoint operators (and replacing moments of x by bounded

functions of x in (4.1)) one can extend this free convolution also to a binary operation on

arbitrary probability measures on R, see [12].

In principle, freeness determines μx � μy in terms of μx and μy , but the concrete nature

of this connection on the level of moments is not apriori clear. However, by Theorem 3.8,

there is an easy rule on the level of free cumulants: if x and y are free then we have for all

n ≥ 1 that κn(x + y, x + y, . . . , x + y) = κn(x, x, . . . , x) + κn(y, y, . . . , y), because all

mixed cumulants in x and y vanish.

Thus, the description of the free convolution has now been shifted to understanding the

relation between moments and cumulants. A main step for this understanding is the fact that

the combinatorial relation between moments and cumulants can also be rewritten easily as a

relation between corresponding formal power series.
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4.2. Relation between moments and free cumulants. We denote the n-th moment of x
by mn := ϕ(xn) and the n-th free cumulant of x by κn := κn(x, x, . . . , x). Then, the

combinatorical relation between them is given by the moment-cumulant formula

mn =
∑

π∈NC(n)

κπ, (4.2)

where κπ = κ|V1| · · ·κ|Vs| for π = {V1, . . . , Vs}. The next theorem shows that this combi-

natorial relation can be rewritten into a functional relation between the corresponding formal

power series.

Theorem 4.1 (Speicher [36]). Consider formal power seriesM(z) = 1+
∑∞

n=1 mnz
n and

C(z) = 1 +
∑∞

n=1 κnz
n. Then the relation (4.2) between the coefficients is equivalent to

the relation M(z) = C[zM(z)].

The main step in the proof of this is to observe that a non-crossing partition can be de-

scribed by its first block (i.e., the block containing the point 1) and by the non-crossing

partitions of the points between the legs of the first block. This leads to the following recur-

sive relation between free cumulants and moments:

mn =
n∑

s=1

∑
i1,...,is≥0

i1+···+is+s=n

κsmi1 · · ·mis .

An early instance of the functional relation in Theorem 4.1 appeared also in the work of

Beissinger [6], for the special problem of counting non-crossing partitions by decomposing

them into irreducible components.

Remark 4.2. Classical cumulants ck are combinatorially defined by the analogous for-

mula mn =
∑

π∈P(n) cπ . In terms of exponential generating power series M̃(z) = 1 +∑∞
n=1

mn

n! z
n and C̃(z) =

∑∞
n=1

cn
n! z

n this is equivalent to C̃(z) = log M̃(z).

4.3. The Cauchy transform. For a selfadjoint random variable x, with corresponding prob-

ability measure μx according to Eq. (4.1), we define the Cauchy transform G by

G(z) := ϕ

(
1

z − x

)
=

∫
R

1

z − t
dμx(t).

If μx is compactly supported we can expand this into a formal power series:

G(z) =
∞∑
n=0

ϕ(xn)

zn+1
=

M
(
1
z

)
z

.

Therefore, on a formal level M(z) and G(z) contain the same information. However, G(z)
has many advantages over M(z). Namely, the Cauchy transform is an analytic function

G : C+ → C− and we can recover μx from G by using the Stieltjes inversion formula:

dμx(t) = − 1
π
lim
ε→0
7G(t+ iε)dt.

Here,7 denotes the imaginary part and the convergence in this equation is weak convergence

of probability measures; the right hand side is, for any ε > 0, the density of a probability

measure.
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4.4. The R-transform. Voiculescu showed in [42] the existence of the free cumulants of a

random variable by general arguments, but without having a combinatorial interpretation for

them. There he defined the following variant of the cumulant generating series C(z).

Definition 4.3. For a random variable x ∈ A we define its R-transform by

R(z) =
∞∑
n=1

κn(x, . . . , x)z
n−1.

Then by a simple application of our last theorem we get the following result. The original

proof of Voiculescu was much more analytical.

Theorem 4.4 (Speicher [36], Voiculescu [42]).

1) For a random variable we have the relation 1
G(z) + R[G(z)] = z between its Cauchy

and R-transform.

2) If x and y are free, then we have Rx+y(z) = Rx(z) +Ry(z).

4.5. The R-transform as an analytic object. In the last sections we considered the R-

transform only as a formal power series. But for more advanced investigations as well as for

explicit calculations it is necessary to study the analytic properties of this object. It is easy to

see that for bounded selfadjoint random variables the R-transform can be established as an

analytic function via power series expansions around the point infinity in the complex plane.

But there are some problems with the analytic properties of the R-transform. One problem

is that the R-transform can, in contrast to the Cauchy transform, in general not be defined

on all of the upper complex half-plane, but only in some truncated cones (which depend on

the considered variable). Another problem is that the equation 1
G(z) + R[G(z)] = z does

in general not allow explicit solutions and there is no good numerical algorithm for dealing

with this. Therefore one is in need of other tools, which allow to compute free convolutions

in a more efficient way.

4.6. An alternative to the R-transform: subordination. Let x and y be free. Put w :=
Rx+y(z) + 1/z, then

Gx+y(w) = z = Gx[Rx(z) + 1/z] = Gx[w −Ry(z)] = Gx[w −Ry[Gx+y(w)]].

Thus, with ω(z) := z − Ry[Gx+y(z)]], we have the subordination Gx+y(z) = Gx

(
ω(z)

)
.

Though the above manipulations were just on a formal level, it turns out that this subordina-

tion function ω is, for selfadjoint x and y in a C∗-probability space, always a nice analytic

object and amenable to robust calculation algorithms. The subordination property has first

been proved in [45] by Voiculescu under a genericity assumption, and in full generality by

Biane [13].

It was noted, and for the first time explicitly formulated in [15], that the subordination

property is equivalent to the R-transform approach, but has better analytic properties. A

particularly nice feature is that the subordination function can be recovered by fixed point

arguments, as shown in [7].

Theorem 4.5 (Belinschi, Bercovici [7]). Let (A, ϕ) be a C∗-probability space and let x =
x∗ and y = y∗ inA be free. Put F (z) := 1

G(z) . Then there exists an analytic map ω : C+ →
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C+ (depending both on x and y) such that

Fx+y(z) = Fx
(
ω(z)

)
and Gx+y(z) = Gx

(
ω(z)

)
.

The subordination function ω(z) is given as the unique fixed point in the upper half-plane of
the map fz : C+ → C+, given by

fz(w) = Fy(Fx(w)− w + z)− (Fx(w)− w).

5. Polynomials in several random matrices

Our original problem was to calculate the asymptotic eigenvalue distribution of selfadjoint

polynomials in several independent random matrices in generic position. We have now a

conceptual grasp on this problem by relating it to free probability theory via the basic result

of Voiculescu which tells us that our random matrices become almost surely asymptoticially

free. This allows us to reduce our random matrix problem to the problem of polynomials

in free variables: If the random matrices X1, . . . , Xk are asymptotically freely independent,

then the eigenvalue distribution of a polynomial p(X1, . . . , Xk) is asymptotically given by

the distribution of p(x1, . . . , xk), where x1, . . . , xk are freely independent variables, and the

distribution of xi is the asymptotic distribution of Xi.

So now the question is: Can we calculate the distribution of polynomials in free vari-

ables? We have seen that free convolution gives effective analytic tools for dealing with

the simplest polynomial, the sum of two matrices. By using this, we calculated for exam-

ple the form of the limiting eigenvalue distribution for the sum of an independent Gaussian

and Wishart matrix in the left figure of Figure 2.3. But what can we say for more general

polynomials, like the one considered in the right figure of Figure 2.3.

For this problem, both from the random matrix and the free probability side, there is a

long list of contributions which provide solutions for special choices of the polynomial p. In
the context of free probability, Voiculescu solved it in [42] and [43] for the cases of p(x, y) =
x+y and p(x, y) = xy2x (corresponding to the additive and multiplicative free convolution)

with the introduction of the R- and S-transform, respectively. Nica and Speicher could give

in [29] a solution for the problem of the free commutator, p(x, y) = i(xy − yx).
In the random matrix context, this problem was addressed for various polynomials – and

usually, also for specific choices of the distributions of theX
(N)
i – by many authors, starting

with the work of Marchenko-Pastur [26]. For a more extensive list of contributions in this

context we refer to the books [3, 17, 20, 40]. Some of those situations were also treated by

operator-valued free probability tools, see in particular [10, 33, 38].

All those investigations were specific for the considered polynomial and up to now there

has not existed a master algorithm which would work for all polynomials.

Actually, there is no hope to calculate effectively general polynomials in freely indepen-

dent variables within the frame of free probability theory as presented up to now. However,

there is a possible way to deal with such a general situation, by the use of a linearization

trick. This trick will be the main topic of the next chapter.
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6. The linearization trick

The idea of this trick is: in order to understand general polynomials in non-commuting

variables, it suffices to understand matrices of linear polynomials in those variables. Such

linearization ideas seem to be around in many different communities. In the context of op-

erator algebras, Voiculescu used such a linearization philosophy as one motivation for his

work on operator-valued free probability [46]. A seminal concrete form is due to Haagerup

and Thorbjørnsen [22], who used such techniques to study the largest eigenvalue of polyno-

mials in independent Gaussian random matrices. In 2011, based on the Schur complement,

Anderson [1] developped a selfadjoint version of the linearization trick, which turns out to

be the right tool in our context. We present this version of Anderson in the following.

Definition 6.1. Consider a polynomial p in several non-commuting variables. A lineariza-
tion of p is an N ×N matrix (with N ∈ N) of the form

p̂ =

(
0 u
v Q

)
,

where:

• u, v,Q are matrices of appropriate sizes: u is 1 × (N − 1); v is (N − 1) × 1; and Q
is (N − 1)× (N − 1).

• Q is invertible and we have p = −uQ−1v.

• The entries of p̂ are polynomials in the variables, each of degree ≤ 1.

A linearization is of course not uniquely determined by the above requirements. The

crucial fact is that such linearizations always exist. Furthermore, they can be chosen in such

a way that they preserve selfadjointness.

Theorem 6.2 (Anderson [1]). For each p there exists a linearization p̂ (with an explicit
algorithm for finding those). Moreover if p is selfadjoint, then this p̂ is also selfadjoint.

Example 6.3. We consider the selfadjoint non-commutative polynomial p = xy+ yx+ x2.

Then a selfadjoint linearization of p is the matrix

p̂ =

⎛⎝ 0 x x
2 + y

x 0 −1
x
2 + y −1 0

⎞⎠ , (6.1)

because we have(
x x

2 + y
)( 0 −1
−1 0

)−1(
x

x
2 + y

)
= −(xy + yx+ x2).

At this point it might not be clear what this linearization trick has to do with our problem.

What we are interested in is the distribution of p, which can be recovered from the Cauchy

transform of p, which is given by taking expectations of resolvents of p. Thus we need

control of inverses of z − p. How can the linearization p̂ give information on those?

For z ∈ C we put b =
(
z 0
0 0

)
and then it follows

b− p̂ =

(
z −u
−v −Q

)
=

(
1 uQ−1

0 1

)(
z − p 0
0 −Q

)(
1 0

Q−1v 1

)
.
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One should now note that matrices of the form
(
1 0
a 1

)
are always invertible with

(
1 0
a 1

)−1
=(

1 0
−a 1

)
. Thus the above calculation shows that z − p is invertible if and only if b − p̂ is

invertible. Moreover, the inverses are related as follows:

(b− p̂)−1 =

(
1 0

−Q−1v 1

)(
(z − p)−1 0

0 −Q−1

)(
1 −uQ−1

0 1

)
=

(
(z − p)−1 · · ·
· · · · · ·

)
,

and so we can get Gp(z) = ϕ((z − p)−1) as the (1,1)-entry of the matrix-valued Cauchy-

transform

Gp̂(b) = id⊗ ϕ((b− p̂)−1) =

(
ϕ((z − p)−1) · · ·

· · · · · ·
)
.

We consider again the polynomial p = xy + yx+ x2 of our last example. Its selfadjoint

linearization can be written in the form

p̂ =

⎛⎝0 0 0
0 0 −1
0 −1 0

⎞⎠⊗ 1 +
⎛⎝0 1 1

2
1 0 0
1
2 0 0

⎞⎠⊗ x+

⎛⎝0 0 1
0 0 0
1 0 0

⎞⎠⊗ y.

It is a linear polynomial in free variables, but with matrix-valued coefficients, and we need

to calculate its matrix-valued Cauchy transform Gp̂(b) = id ⊗ ϕ((b − p̂)−1). This leads to

the question if there exists a suitable matrix-valued version of free probability theory, with

respect to the matrix-valued conditional expectation E = id⊗ ϕ.

7. Operator-valued extension of free probability

7.1. Basic definitions. An operator-valued generalization of free probability theory was

provided by Voiculescu from the very beginning in [41, 46]. The idea is that we replace our

expectations, which yield numbers in C, by conditional expectations, which take values in

a fixed subalgebra B. This is the analogue of taking conditional expectations with respect

to sub-σ-algebras in classical probability. Let us also remark that the concept of (operator-

valued) freeness is distinguished on a conceptual level by symmetry considerations. In the

same way as the classical de Finetti theorem equates conditionally independent and identi-

cally distributed random variables with random variables whose joint distribution is invariant

under permutations, a recent non-commutative version by Köstler and myself [25] shows that

in the non-commutative world one gets a corresponding statement by replacing “condition-

ally independent” by “free with amalgamation” and “permutations” by “quantum permuta-

tions”. This has triggered quite some investigations on more general quantum symmetries

and its relations to de Finetti theorems, see [4, 5, 32, 52].

Definition 7.1.

1) Let B ⊂ A be a unital subalgebra. A linear map E : A → B is a conditional
expectation if E[b] = b for all b ∈ B and E[b1ab2] = b1E[a]b2 for all a ∈ A and

b1, b2 ∈ B.
2) An operator-valued probability space consists of B ⊂ A and a conditional expectation

E : A → B. If in addition A is a C∗-algebra, B is a C∗-subalgebra of A, and E is

completely positive, then we have an operator-valued C∗-probability space.
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Example 7.2. Let (A, ϕ) be a non-commutative probability space. Put

M2(A) :=
{(

a b
c d

)
| a, b, c, d ∈ A

}
and consider ψ := tr⊗ ϕ and E := id⊗ ϕ, i.e.:

ψ

[(
a b
c d

)]
=

ϕ(a) + ϕ(d)

2
, E

[(
a b
c d

)]
=

(
ϕ(a) ϕ(b)
ϕ(c) ϕ(d)

)
.

Then (M2(A), ψ) is a non-commutative probability space, and (M2(A), E) is an M2(C)-
valued probability space.

Of course, we should also have a notion of distribution and freeness in the operator-

valued sense.

Definition 7.3. Consider an operator-valued probability space (A, E : A → B).
(1) The operator-valued distribution of a ∈ A is given by all operator-valued moments

E[ab1ab2 · · · bn−1a] ∈ B (n ∈ N, b1, . . . , bn−1 ∈ B).
(2) Random variables xi ∈ A (i ∈ I) are free with respect to E or free (with amalga-

mation) over B if E[a1 · · · an] = 0 whenever ai ∈ B〈xj(i)〉 are polynomials in some

xj(i) with coefficients from B, E[ai] = 0 for all i, and j(1) �= j(2) �= · · · �= j(n).

Remark 7.4. Polynomials in x with coefficients from B are linear combinations of expres-

sions of the form b0xb1xb2 · · · bn−1xbn. It is important to note that the “scalars” b ∈ B do

not commute in general with the random variables x ∈ A.

One can see that operator-valued freeness works mostly like ordinary freeness, one only

has to take care of the order of the variables. This means in all expressions they have to

appear in their original order.

Example 7.5.
1) Note that in scalar-valued free probability one has the rule

ϕ(x1yx2) = ϕ(x1x2)ϕ(y) if {x1, x2} and y are free.

By iteration, this leads to a simple factorization of all “non-crossing” moments in

free variables. For example, if x1, . . . , x5 are free, then we have for the moment

corresponding to
x1x2x3x3x2x4x5x5x2x1

the factorization

ϕ(x1x2x3x3x2x4x5x5x2x1) = ϕ(x1x1) · ϕ(x2x2x2) · ϕ(x3x3) · ϕ(x4) · ϕ(x5x5).

This is actually the same as for independent classical random variables. The difference

between classical and free shows up only for “crossing moments”.
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In the operator-valued setting one has the same factorizations of all non-crossing mo-

ments in free variables; but now one has to respect the order of the variables, the

final expression is of a nested form, corresponding to the nesting of the non-crossing

partition. Here is the operator-valued version of the above example.

E[x1x2x3x3x2x4x5x5x2x1]

= E
[
x1 · E

[
x2 · E[x3x3] · x2 · E[x4] · E[x5x5] · x2

] · x1

]
2) For “crossing” moments one also has analogous formulas as in the scalar-valued case.

But again one has to take care to respect the order of the variables. For example, the

formula

ϕ(x1x2x1x2) = ϕ(x1x1)ϕ(x2)ϕ(x2) + ϕ(x1)ϕ(x1)ϕ(x2x2)

− ϕ(x1)ϕ(x2)ϕ(x1)ϕ(x2)

for free x1 and x2 has now to be written as

E[x1x2x1x2] = E
[
x1E[x2]x1

] · E[x2] + E[x1] · E
[
x2E[x1]x2

]
− E[x1] · E[x2] · E[x1] · E[x2].

We see that, unlike in the scalar-valued theory, the freeness property in the operator-

valued case uses the full nested structure of non-crossing partitions.

7.2. Freeness and matrices. It is an easy but crucial fact that freeness is compatible with

going over to matrices. For example if {a1, b1, c1, d1} and {a2, b2, c2, d2} are free in (A, ϕ),
then

(
a1 b1
c1 d1

)
and

(
a2 b2
c2 d2

)
are in general not free in the scalar-valued probability space

(M2(A), tr ⊗ ϕ), but they are free with amalgamation over M2(C) in the operator-valued

probability space (M2(A), id⊗ ϕ).

Example 7.6. Let {a1, b1, c1, d1} and {a2, b2, c2, d2} be free in (A, ϕ), consider

X1 :=

(
a1 b1
c1 d1

)
and X2 :=

(
a2 b2
c2 d2

)
.

Then

X1X2 =

(
a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

)
and for ψ = tr⊗ ϕ

ψ(X1X2) =
(
ϕ(a1)ϕ(a2) + ϕ(b1)ϕ(c2) + ϕ(c1)ϕ(b2) + ϕ(d1)ϕ(d2)

)
/2

�= (ϕ(a1) + ϕ(d1))(ϕ(a2) + ϕ(d2))/4

= ψ(X1) · ψ(X2),

but for E = id⊗ ϕ

E(X1X2) =

(
ϕ(a1a2 + b1c2) ϕ(a1b2 + b1d2)
ϕ(c1a2 + d1c2) ϕ(c1b2 + d1d2)

)
=

(
ϕ(a1) ϕ(b1)
ϕ(c1) ϕ(d1)

)(
ϕ(a2) ϕ(b2)
ϕ(c2) ϕ(d2)

)
= E(X1) · E(X2).

Note that there is no comparable classical statement. Matrices of independent random

variables do not show any reasonable structure, not even in an “operator-valued” or “condi-

tional” sense.
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7.3. Operator-valued free cumulants. In [37] it was shown that the combinatorial de-

scription of free probability theory in terms of free cumulants can also be extended to the

operator-valued setting.

Definition 7.7. Consider E : A → B. We define the free cumulants κBn : An → B by

E[a1 · · · an] =
∑

π∈NC(n)

κBπ [a1, . . . , an].

The arguments of κBπ are distributed according to the blocks of π. But now the cumulants

are also nested inside each other according to the nesting of the blocks of π.

Example 7.8. We consider π =
{{1, 10}, {2, 5, 9}, {3, 4}, {6}, {7, 8}} ∈ NC(10) :

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

For this we have

κBπ [a1, . . . , a10] = κB2

(
a1 · κB3

(
a2 · κB2 (a3, a4), a5 · κB1 (a6) · κB2 (a7, a8), a9

)
, a10

)
.

7.4. Operator-valued Cauchy and R-transform. Now we consider operator-valued ana-

logues of the Cauchy and R-transform. Again, those were introduced by Voiculescu, but

without having the combinatorial meaning for the coefficients of the R-transform.

Definition 7.9. For a ∈ A, we define its operator-valued Cauchy transform

Ga(b) := E[
1

b− a
] =
∑
n≥0

E[b−1(ab−1)n]

and operator-valued R-transform

Ra(b) : =
∑
n≥0

κBn+1(ab, ab, . . . , ab, a) = κB1 (a) + κB2 (ab, a) + κB3 (ab, ab, a) + · · ·

As in the scalar-valued case we get as a relation between those two:

bG(b) = 1 +R(G(b)) ·G(b) or equivalently G(b) =
1

b−R(G(b))
.

If one reconsiders the combinatorial proof of these statements from the scalar-valued case,

one notices that it respects the nesting of the blocks, so it works also in the operator-valued

case.

If one treats these concepts on the level of formal power series one gets all the main

results as in the scalar-valued case, see [13, 37, 46, 48].

Theorem 7.10. If x and y are free over B, then: mixed B-valued cumulants in x and y
vanish; it holds that Rx+y(b) = Rx(b) + Ry(b); we have the subordination Gx+y(z) =
Gx(ω(z)).
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7.5. Free analysis. In the last section we introduced the operator-valued R-transform and

Cauchy transform on the level of formal power series. In order to use them in an efficient

way, we want to look at these objects in a more analytical way. This leads to the theory

of “free analysis”. This subject aims at developping a non-commutative generalization of

holomorphic functions in the setting of operator-valued variables (or in the setting of sev-

eral variables with the highest degree of non-commutativity). Free analysis was started by

Voiculescu in the context of free probability around 2000 [48–50]; it builds on the seminal

work of J.L. Taylor [39]. Similar ideas are also used in work of Helton, Vinnikov and collab-

orators around non-commutative convexity, linear matrix inequalities, or descriptor systems

in electrical engineering, see, e.g., [24].

7.6. Subordination in the operator-valued case. Even more as in the scalar-valued the-

ory it is hard to deal with the operator-valued R-transform in an analytical way. Also, the

operator-valued equation G(b) = 1
b−R(G(b)) has hardly ever explicit solutions and, from the

numerical point of view, it becomes quite intractable: instead of one algebraic equation we

have now a system of algebraic equations. However, there is also a subordination version

for the operator-valued case which was treated by Biane [13] and, more conceptually, by

Voiculescu [48].

The following theorem shows that the analytic properties of the subordination function

in the operator-valued situation are as nice as in the scalar-valued case.

Theorem 7.11 (Belinschi, Mai, Speicher [8]). Let (A, E : A → B) be an operator-valued
C∗-probability space and let x and y be selfadjoint operator-valued random variables in A
which are free over B. Then there exists a Fréchet analytic map ω : H+(B) → H+(B) so
that

Gx+y(b) = Gx(ω(b)) for all b ∈ H+(B).
Moreover, if b ∈ H+(B), then ω(b) is the unique fixed point of the map

fb : H
+(B)→ H+(B), fb(w) = hy(hx(w) + b) + b,

and
ω(b) = lim

n→∞
f◦nb (w) for any w ∈ H+(B).

Here, H+(B) := {b ∈ B | (b− b∗)/(2i) > 0} denotes the operator-valued upper halfplane
of B, h(b) := 1

G(b) − b, and f◦nb is the n-th composition power of fb

A similar description for the product of free variables in the operator-valued setting was

shown by Belinschi, Speicher, Treilhard, and Vargas in [10].

8. Polynomials of independent random matrices and polynomials in free vari-
ables

Now we are able to solve the problem of calculating the distribution of a polynomial p
in free variables (and thus also the limiting eigenvalue distribution of the polynomial in

asymptotically free random matrices). The idea is to linearize the polynomial and to use

operator-valued convolution for the linearization p̂. We only present this for our running

example. The general case works in the same way.
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Example 8.1. A linearization p̂ of p = xy + yx+ x2 was given in Eq. (6.1) As we pointed

out there, this means that the Cauchy transform Gp(z) is given as the (1,1)-entry of the

M3(C)-valued Cauchy transform of p̂:

Gp̂(b) = id⊗ ϕ
[
(b− p̂)−1

]
=

⎛⎝Gp(z) · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

⎞⎠ for b =

⎛⎝z 0 0
0 0 0
0 0 0

⎞⎠ .

But now we can write p̂ as p̂ = x̂+ ŷ with selfadjoint

x̂ =

⎛⎝0 x x
2

x 0 0
x
2 0 0

⎞⎠ and ŷ =

⎛⎝0 0 y
0 0 −1
y −1 0

⎞⎠ .

According to Sect. 7.2, x̂ and ŷ are free over M3(C). Furthermore, the distribution of x
determines the operator-valued distribution of x̂ and the distribution of y determines the

operator-valued distribution of ŷ. This gives us the operator-valued Cauchy transforms of

x̂ and of ŷ as inputs and we can use our results on operator-valued free convolution, in the

form of Theorem 7.11, to calculate the operator-valued Cauchy transform of x̂ + ŷ in the

subordination form Gp̂(b) = Gx̂(ω(b)), where ω(b) is the unique fixed point in the upper

half plane H+(M3(C)) of the iteration

w �→ Gŷ(b+Gx̂(w)
−1 − w)−1 − (Gx̂(w)

−1 − w).

There are no explicit solutions of those fixed point equations in M3(C), but a numerical

implementation relying on iterations is straightforward. One point to note is that b as defined
above is not in the open set H+(M3(C)), but lies on its boundary. Thus, in order to be in the

frame as needed in Theorem 7.11, one has to move inside the upper halfplane, by replacing

b =

⎛⎝z 0 0
0 0 0
0 0 0

⎞⎠ by

⎛⎝z 0 0
0 iε 0
0 0 iε

⎞⎠
and send ε > 0 to zero at the end.
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Figure 8.1. Comparision between result of our algorithm for p(x, y) = xy+yx+x2 (x semicircular,

y Marchenko-Pastur) and histogram of eigenvalue distribution of 4000×4000 random matrix p(X,Y )
(where X and Y are independent Gaussian and, respectively, Wishart random matrices)
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9. Further questions and outlook

There are some canonical questions arising from this approach.

Firstly, our approach gives in principle a system of equations for the Cauchy transform

of the wanted distribution. Whereas we can provide an efficient numerical fixed point algo-

rithm for solving those equations, one would also like to derive qualitative properties of the

solutions from this description. This will be pursued in the future. Prominent questions in

this context are about the existence of atoms and regularity properties of the density of the

distribution. One should note that, by other approaches, Shlyakhtenko and Skoufranis made

in [35] some progress on such questions.

Secondly, we concentrated here only on selfadjoint polynomials of selfadjoint variables,

to ensure that we are dealing with selfadjoint operators. Then the spectrum is a subset of the

real line and thus the Cauchy transform contains all relevant information. In joint work with

Belinschi and Sniady [9] we are presently extending our ideas to non-selfadjoint polynomi-

als, yielding non-normal operators. Then the spectral distribution of the operators has to be

replaced by the so-called Brown measure. By combining hermitian reduction ideas with the

linearization trick and our subordination results one can then also extend our approach to

this situation. An example for such a calculation is shown in Figure 9.1.

(a) (b)

Figure 9.1. (a) : histogram of eigenvalues of p(XN , Yn, Zn), where XN , YN , ZN are independent

non-selfadjoint Gaussian 1000 × 1000 random matrices; averaged over 100 realizations; (b) : Brown

measure, calculated by our algorithm, of the operator p(x, y, z) = xyz − 2yzx + zxy, where x, y, z
are free semicircular elements

Our methods should also work for more general classes of functions in non-commuting

variables. In joint work withMai, we are presently investigating the class of non-commutative

rational functions.
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The h-principle and turbulence

László Székelyhidi Jr.

Abstract. It is well known since the pioneering work of Scheffer and Shnirelman that weak solutions

of the incompressible Euler equations exhibit a wild behaviour, which is very different from that of

classical solutions. Nevertheless, weak solutions in three space dimensions have been studied in con-

nection with a long-standing conjecture of Lars Onsager from 1949 concerning anomalous dissipation

and, more generally, because of their possible relevance to the K41 theory of turbulence.

In recent joint work with Camillo De Lellis we established a connection between the theory of weak

solutions of the Euler equations and the Nash-Kuiper theorem on rough isometric immersions. Through

this connection we interpret the wild behaviour of weak solutions of Euler as an instance of Gromov’s

h-principle. In this lecture we explain this connection and outline recent progress towards Onsager’s

conjecture.

Mathematics Subject Classification (2010). Primary 35D30; Secondary 76F05, 34A60, 53B20.

Keywords. Euler equations, anomalous dissipation, h-principle, Onsager’s conjecture.

1. Introduction

1.1. Gromov’s h-principle and the local-to-global principle. The homotopy principle

was introduced by M. Gromov [37] as a general principle encompassing a wide range of

existence problems in differential geometry. Roughly speaking, the h-principle applies to

situations where the problem of existence of a certain object in differential geometry can be

reduced to a purely topological question and thus treated with homotopic-theoretic methods.

To quote Gromov [38]:

The infinitesimal structure of a medium, abiding by this principle does not effect
the global geometry but only the topological behaviour of the medium.

In a sense the h-principle replaces the classical local-to-global principle, where global

behaviour is directly affected by infinitesimal laws. A paradigm example where the inter-

action of both principles can be seen is that of isometric embeddings. To fix ideas, let us

consider embeddings of the standard 2-sphere S2 into R3, i.e. maps

u : S2 ↪→ R3.

A continuous map u is said to be isometric if it preserves the length of curves:

�(u ◦ γ) = �(γ) for all rectifiable curves γ ⊂ S2. (1.1)

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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If u is continuously differentiable, i.e. u ∈ C1(S2;R3), this condition is equivalent to pre-

serving the metric, which in local coordinates amounts to the system of partial differential

equations

∂iu · ∂ju = gij i, j = 1, 2, (1.2)

with gij being the metric on S2. The equivalence of (1.1) and (1.2) is a first simple instance

of the local-to-global principle: the length of a curve (a global quantity) can be obtained

from the metric (an infinitesimal quantity) by integrating. If u is merely Lipschitz, the system

(1.2) still makes sense almost everywhere, since by Rademacher’s theorem u is differentiable

almost everywhere. However, in this case (1.2) a.e. is not equivalent to (1.1) – see below.

It is easy to construct Lipschitz isometric embeddings of S2 which are not equivalent

to the standard embedding: consider reflecting a spherical cap cut out by a plane slicing the

standard sphere. More generally, one can imagine a sphere made out of paper, and crumpling

it. This process will necessarily create creases, meaning that the associated embedding is

only Lipschitz but not C1. Nevertheless, such maps will still easily satisfy both (1.1) and

also (1.2) almost everywhere. More generally, the class of isometric embeddings very much

depends on the regularity assumption on u:

Theorem 1.1.
(i) Rigidity. [39, §32] If u ∈ C2 is isometric, then u is equal to the standard embedding

of S2 ⊂ R3, modulo rigid motion.

(ii) h-principle. [43, 49] Any short embedding can be uniformly approximated by isomet-
ric embeddings of class C1.

(iii) Lipschitz maps. [37, p218] There exist u ∈ Lip such that (1.2) is satisfied almost
everywhere, but (1.1) fails: certain curves on S2 get mapped to a single point.

A short embedding is simply one that shrinks the length of curves, i.e. �(u ◦ γ) ≤ �(γ)
for all rectifiable curves γ ⊂ S2.

The rigidity statement (i) is a prominent example of the local-to-global principle in ge-

ometry: a local, differential condition leads to a strong restriction of the global behaviour.

The theorem of Nash-Kuiper in (ii) signifies the failure of this local-to-global principle if u
is not sufficiently differentiable, whereas (iii) shows that for Lipschitz maps satisfying (1.2)

almost everywhere even the simple local-to-global principle on the length of curves fails.

1.2. Unexpected solutions. The differential geometric local-to-global principle may be

viewed as an analogue of Hadamard’s principle of well-posedness for partial differential

equations, in the following sense. Partial differential equations and systems arising from

classical physics usually comprise a formally determined system and, given appropriate

boundary and initial conditions, one expects a well-defined unique solution. This is at vari-

ance with many of the problems in differential geometry, where either due to a large invari-

ance group or by looking at the number of variables versus number of equations one does

not expect uniqueness [32, Introduction]. Quoting once more from [38]:

The class of infinitesimal laws subjugated by the homotopy principle is wide, but
it does not include most partial differential equations (expressing infinitesimal
laws) of physics with a few exceptions in favour of this principle leading to un-
expected solutions. In fact, the presence of the h-principle would invalidate the
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very idea of a physical law as it yields very limited global information effected
by the infinitesimal data.

Nevertheless, there are certainly problems arising from classical physics where non-

uniqueness is expected. A prominent example is nonlinear elasticity, where non-uniqueness

may arise from a bifurcation such as in Euler buckling or from the appearance of microstruc-

tures [3, 46].

Let us recall the basic setting. A three-dimensional elastic material is described by a

reference configuration Ω ⊂ R3 and a deformation

u : Ω ⊂ R3 → R3.

The basic assumption in nonlinear elasticity is that the material minimizes the bulk elastic

energy, which in its simplest form (e.g. ignoring thermal effects) is

E(u) =

∫
Ω

W (Du(x)) dx.

Here W : R3×3 → [0,∞] is the stored energy density function of the material in question.

Looking at deformations with zero bulk elastic energy one is led to consider the differential

inclusion

Du(x) ∈ K a.e. x ∈ Ω (1.3)

subject to appropriate boundary conditions, where K := {W = 0}. In other words K
denotes the possible zero-energy deformations of the material at the microscopic level. For

ordinary materials one can take K = SO(3) and one simply observes a regular crystalline

structure on the microscopic scale. On the other hand for materials forming microstructures,

such as shape memory alloys, K will typically consist of several copies of SO(3), each
copy representing one phase in the underlying solid-solid phase transformation. The “local-

to-global” question in this context can be formulated as follows:

To what extent does the microstructure of the material affect the macroscopic
behaviour?

Here are two typical results.

Theorem 1.2.
(i) Rigidity. [35, 51] If K = SO(3), any solution of (1.3) is affine.

(ii) Liquid-like behaviour. [30, 48] If

K = SO(3)

(
α2 0 0
0 α−1 0
0 0 α−1

)
∪ SO(3)

(
α−1 0 0
0 α2 0
0 0 α−1

)
∪ SO(3)

(
α−1 0 0
0 α−1 0
0 0 α2

)
then there exists δ > 0 such that for any F ∈ R3×3 with detF = 1 and |F − Id| < δ
there exist Lipschitz maps u : Ω→ R3 with Du ∈ K a.e. and u(x) = Fx on ∂Ω.

Observe that, whereas in case (i) one has a kind of local-to-global principle at work

(the microscopic rigid crystalline structure leading to macroscopic rigidity), in case (ii) the

macroscopic behaviour does not reflect any of the microscopic constraints.
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1.3. Convex integration. The construction leading to Theorem 1.2 (ii) follows techniques

developed in [47], which in turn were motivated by the construction of Nash-Kuiper for

Theorem 1.1 (ii) and Gromov’s convex integration [37]. The same techniques also apply

to the differential inclusion (1.3) with K = O(3) (the set of linear isometries in R3) -

this amounts to constructing Lipschitz maps Ω ⊂ R3 → R3 satisfying the weak isometry

condition (1.2) almost everywhere. In terms of the analysis a key point in such constructions

is to note that the stark difference between (i) and (ii) in Theorem 1.2 cannot be seen on

the linearization of the corresponding system of equations, which will be formally elliptic in

both cases. To use the flexibility provided by sets K as in (ii) or for K = O(3) one needs

large jumps in the gradient ∇u.
The basic idea of the constructions can be explained on the following simple example:

consider one-dimensional inclusion problem

u(x) ∈ {−1, 1} for a.e. x ∈ [0, 1]. (1.4)

Let

X :=
{
u ∈ L∞(0, 1) : |u| ≤ 1 a.e.

}
.

ThenX is a bounded subset of L∞(0, 1) and hence the weak* topology of L∞ is metrizable

on X . In this way X becomes a compact metric space, and using Baire category arguments

one can easily prove that a typical function in X satisfies (1.4). Indeed, such a statement

is closely related to the Krein-Milman theorem, since X is compact and convex in L∞

endowed with the weak* topology.

Baire category arguments for differential inclusions have a long history, see [11, 22] for

ordinary differential inclusions and [13, 21, 42] for partial differential inclusions. We also

refer to the survey [12]. Note that the Lipschitz solutions produced by such methods are in

general highly non-smooth, c.f. [42, Proposition 3.35].

The Nash-Kuiper theorem (Theorem 1.1 (ii) above) seems not to be accessible by Baire

category arguments. Although the mappings obtained are still highly irregular, a construc-

tive scheme with estimates on the C0 and C1 norms is necessary. Let us recall the basic

idea. For simplicity, let (M, g) be a smooth compact Riemannian manifold and we consider

embeddings u : M ↪→ Rn+2 - this was the case dealt with by Nash in [49], the case of

embeddings u : M ↪→ Rn+1 requires a modification [43]. Given a strictly short map uq ,
q ∈ N, a better approximation will be obtained with the perturbation

uq+1(x) = uq(x) +
aq(x)

λq+1

(
sin(λq+1x · νq)ηq(x) + cos(λq+1x · νq)ζq(x)

)
, (1.5)

where aq is an amplitude, λq+1 a (large) frequency, νq is a coordinate direction (with respect

to a suitable local parametrization of the manifold) and ηq, ζq are normal vectorfields to the

embedded image uq(M). A short calculation gives

∂iuq+1 · ∂juq+1 = ∂iuq · ∂juq + a2qν
i
qν

j
q +O(λ−1

q+1),

so that, choosing the frequency λq+1 sufficiently large, one can achieve a correction to the

metric by a2q(x)ν
i
qν

j
q plus a small error. On the other hand a decomposition of the metric

error as

(gij − ∂iuq∂juq)(x) =

n∗∑
k=1

akq (x)ν
i
kν

j
k (1.6)
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allows one to choose νq and aq at each step q ∈ N suitably to achieve an iterative correction

of the error. The final map will have the form

u(x) =

∞∑
q=0

1

λq
wq(x, λqx),

where each wq = uq − uq−1 is one such spiral. Ensuring that the final map is C1 then just

requires controlling the amplitudes δ
1/2
q := supx |wq| so that

∑
q δ

1/2
q < ∞. Such control

is possible since the amplitude supx |wq| ∼ supx |aq| only depends on the metric error at

step q (and not the frequency λq). We refer to the lecture notes [54] for a detailed expository

proof.

Recently the construction of Nash (more precisely the construction of Kuiper, where the

spiral from (1.5) needs to be replaced by a corrugation) has been visualized for the flat 2-

torus in [6], where beautiful pictures showing the fractal nature of the construction have been

presented.

On the analytic side the Nash-Kuiper construction has been revisited in [5, 19], where

sharper estimates on the approximating sequence have been obtained. In particular, it can be

shown that one can additionally ensure

δ1/2q 	 λ
− 1

1+2n∗
q , (1.7)

where n∗ is a number depending on the dimension n. Such an estimate immediately leads

to an improved regularity:

Theorem 1.3 ([5, 19]). The Nash-Kuiper theorem remains valid for isometric embeddings
of class C1,θ with θ < 1

1+2n∗
.

In this note we argue that, although the h-principle contradicts the deterministic be-

haviour that one expects in partial differential equations arising from classical physics, it

nevertheless seems to be of relevance in problems where a statistical description is best

suited – and in such cases a suitable notion of weak (i.e. irregular) solution has to be used.

For microstructures in solid-solid phase transitions the statistical description is given by gra-

dient Young measures generated by approximate solutions of (1.3). For the incompressible

Euler equations, such a statistical description is provided by the Kolmogorov theory of ho-

mogeneous turbulence - see Section 3 below.

2. The Euler equations

2.1. Classical solutions. The incompressible Euler equations describe the motion of a per-

fect incompressible fluid. Written down by L. Euler over 250 years ago, these are the contin-

uum equations corresponding to the conservation of momentum and mass of arbitrary fluid

regions. In Eulerian variables they can be written as

∂tv + (v · ∇)v +∇p = 0,

div v = 0,
(E)

where v = v(x, t) is the velocity and p = p(x, t) is the pressure. In this note we will focus

on the 3-dimensional case with periodic boundary conditions; In other words we take the

spatial domain to be the flat 3-dimensional torus T3.
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A classical solution on a given time interval [0, T ] is defined to be a pair (v, p) ∈ C1(T3×
[0, T ]). It is a well-known fact that, if (v, p) is a classical solution, then the energy is also

conserved: ∫
T3

|v(x, t)|2 dx =
∫
T3

|v(x, 0)|2 dx for all t > 0. (2.1)

This can be obtained by multiplying the first equation in (E) by v itself, integrating in x, and
using the fact that ∫

T3

v · [(v · ∇)v] dx = −
∫
T3

∇v : (v ⊗ v) dx = 0 (2.2)

(we use here the common notation A : B =
∑

ij AijBij). Apart from the energy conserva-

tion, and despite the rich geometric structure underlying these equations (see e.g. [16] and

references therein), little is known about smooth solutions except (i) local well-posedness

(i.e. existence and uniqueness for short time) in Hölder spaces C1,α, α > 0 [44] or Sobolev

spaces Hs, s > 5/2 [31, 41] and (ii) the celebrated blow-up criterion of Beale-Kato-Majda

[4] and its geometrically refined variants, see e.g. [18].

2.2. Weak solutions. Although distributions were not yet developed in the 1920s, it was

certainly recognized already at that time that one needs a notion of solution that allows dis-

continuities in the vorticity (vortex patches) and in the velocity (vortex sheets). Accordingly,

weak solutions of (E) are defined in [44] as a pair (v, p) ∈ C(T3 × [0, T ]) such that, for any

simply connected region U ⊂ T3 with C1 boundary and any t ∈ (0, T ),∫
U

v(x, t) dx−
∫
U

v(x, 0) dx+

∫ t

0

∫
∂U

v(v · #n) + p dAds =0,∫
∂U

v · #n dA(x) =0,
(W)

where #n is the unit outward normal to U . It is easy to see that if (v, p) ∈ C1 is a solution of

(W) then it is a classical solution of (E). Indeed, the derivation of (E) proceeds precisely this

way: from the principles of continuum mechanics and the conservation laws of momentum

and mass applied to arbitrary fluid regions U one obtains (W), and if in addition (v, p) ∈ C1,

the divergence theorem and a standard localization argument leads to (E).

This definition still includes the pressure. On the other hand it is well known (see

e.g. [57]) that the pressure can be recovered (uniquely, upto an additive constant) from (E)

via the equation

−Δp = div div (v ⊗ v).

Therefore one can eliminate the pressure from the equation by projecting the first equation

of (E) onto divergence-free fields. One obtains∫ T

0

∫
T3

∂tϕ · v +∇ϕ : v ⊗ v dxdt+

∫
T3

ϕ(x, 0) · v0(x) dx = 0 (D)

for all ϕ ∈ C∞(T3 × [0, T );R3) with divϕ = 0. Accordingly, the weakest possible notion

of solution of (E) is given by a vectorfield v ∈ L2(T3 × (0, T )) with div v = 0 in the sense

of distributions such that (D) holds.

Solutions of (D) in general exhibit a wild behaviour very different from classical solu-

tions. Here we just list two results and refer to [26] for a more comprehensive survey.
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Theorem 2.1.
(i) [24, 52, 53] There exist infinitely many non-trivial weak solutions v ∈ L∞(T3 × R)

of (D) which have compact support in time.

(ii) [23] Given any continuous strictly positive function ē ∈ C(T3 × [0, T ]) there exist
infinitely many weak solutions v ∈ L∞(T3 × [0, T ]) of (D) with

1
2 |v(x, t)|2 = ē(x, t) for a.e. (x, t).

Part (i) was proved first by V. Scheffer [52] in two dimensions for v ∈ L2
loc(R

2 × R),
A. Shnirelman [53] subsequently gave a different proof for v ∈ L2(T2 × R). The statement

for arbitrary dimension d ≥ 2 for bounded velocities was obtained in [24] using a reformula-

tion of (D) as a differential inclusion analogous to (1.3) for Lipschitz maps and by applying

a modification of Baire category arguments. A refinement of those techniques then leads to

the statement in part (ii), see [23]. Note also that in (ii) no statement is made concerning

the initial data and thus (ii) is really a statement about non-conservation of the energy rather

than about non-uniqueness. For statements concerning non-uniqueness of the initial-value

problem we again refer to [23, 26].

2.3. Measure-valued solutions. A stumbling block in obtaining a satisfactory existence

theory of weak solutions is the lack of sufficiently strong a priori estimates. To overcome

this difficulty, two “very weak” notions have been proposed in the literature, both based

on considering weakly convergent sequences of Leray solutions of Navier-Stokes with van-

ishing viscosity: dissipative solutions of P. L. Lions [45] and measure-valued solutions of

R. DiPerna and A. Majda [29]. The latter are based on the notion of Young measure and

can be described as follows: Given a sequence of velocity fields vk(x, t), it is known from

classical Young measure theory (see e.g. [2, 46, 58]) that there exists a subsequence (not

relabeled) and a parametrized probability measure νx,t on R3 such that for all bounded con-

tinuous functions f ,

f(vk(x, t))
∗
⇀ 〈νx,t, f〉 weakly* in L∞(T3 × (0, T )), (2.3)

where 〈·, ·〉 denotes the duality bracket for C∗
0 (R

3) = M(R3). One can interpret the

measure νx,t as the probability distribution of the velocity field at the point x at time t
when the sequence (vk) exhibits faster and faster oscillations as k → ∞. Since the only

known a priori estimate on solutions of the Euler equations is the energy bound, i.e. vk ∈
L∞(0, T ;L2(T3)), concentrations could occur for unbounded f , in particular for the en-

ergy density f(v) = 1
2 |v|2. DiPerna and Majda addressed this issue in [29], providing a

framework in which both oscillations and concentrations can be described. Following [1]

the generalized Young measure can be written as a triple (ν, λ, ν∞), where ν = νx,t is a

parametrized probability measure on R3 as before (the oscillation measure), λ is a Radon

measure on T3 × (0, T ) (the concentration measure) and ν∞ = ν∞x,t is a parametrized prob-

ability measure on S2 defined λ-a.e. (the concentration-angle measure). Then (2.3) can be

replaced by

f(vk)dxdt
∗
⇀ 〈ν, f〉dxdt+ 〈ν∞, f∞〉λ (2.4)

in the sense of measures for every f : R3 → R that possesses an L2-recession function f∞

(i.e. such that f∞(θ) = lims→∞ s−2f(sθ) exists and is continuous). Note that for bounded

f the formula in (2.4) reduces to (2.3) because f∞ = 0 in this case.
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In particular (ν, λ, ν∞) is able to record oscillations and concentrations in the quadratic

term v ⊗ v of the Euler equations (D). Denote by id the identity map ξ �→ ξ and set

σ(ξ) = ξ ⊗ ξ, ξ ∈ R3. Noting that σ∞ = σ, a measure-valued solution of the Euler

equations is defined to be a generalized Young measure (ν, λ, ν∞) such that div 〈ν, id〉 = 0
in the sense of distributions and∫ T

0

∫
T3

∂tφ · 〈ν, id〉+∇φ : 〈ν, σ〉 dxdt+
∫∫

T3×(0,T )

∇φ : 〈ν∞, σ〉λ(dxdt)

= −
∫
T3

φ(x, 0)v0(x) dx

(M)

for all ϕ ∈ C∞
c (T3 × [0, T );R3) with divϕ = 0 .

Observe that (M) is simply a constraint on the first and second moments of the general-

ized Young measure, i.e. on

v = 〈νx,t, id〉, v ⊗ v = 〈νx,t, σ〉+ 〈ν∞x,t, σ〉λ(dxdt).
In particular a measure-valued solution merely gives information on one-point statistics, in
the sense that there is no information about the correlation between the “statistics” of vj at

different points (x, t) and (x′, t′). Moreover there are no microscopic constraints, that is,

constraints on the distributions of the probability measures. This is very different from other

contexts where Young measures have been used, such as conservation laws in one space

dimension [28, 56], where the Young measures satisfy additional microscopic constraints in

the form of commutativity relations (for instance as a consequence of the div-curl lemma

applied to the generating sequence).

Consequently, although the existence of measure-valued solutions for arbitrary initial

data is guaranteed [29], there is a huge scope for unnatural non-uniqueness. As it turns out,

this same form of non-uniqueness is also present in the a priori stronger notion of distribu-

tional solutions:

Theorem 2.2 ([55]). Given a measure-valued solution of (M) there exists a sequence of
weak solutions vk ∈ L2(T3× (0, T )) of (D) generating this measure-valued solution, in the
sense that (2.4) holds.

Thus, solutions of (D) and solutions of (M) are on the same level in terms of their “wild”

behaviour. We also emphasize that the construction of solutions as in Theorems 2.1 and 2.2 is

based on techniques used to prove Theorem 1.2 (ii): The construction starts by reformulating

the Euler equations as a differential inclusion, similar to (1.3), and involves Baire category

techniques. We refer to [24] for more details on this comparison.

3. Turbulence and Onsager’s conjecture

3.1. Anomalous dissipation and the 5/3 law. One of the fundamental problems in the

theory of turbulence is to find a satisfactory mathematical framework linking the basic con-

tinuum equations of fluid motion to the highly chaotic, apparently random behaviour of fully

developed turbulent flows. Consider the incompressible Navier-Stokes equations

∂tv + v · ∇v +∇p = νΔv,

div v = 0,
(3.1)
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describing the motion of an incompressible viscous fluid, where ν is the viscosity, which, af-

ter appropriate non-dimensionalizing, equals 1/Re, the reciprocal of the Reynolds number.

As ν becomes smaller (equivalently, the Reynolds number becomes larger), the observed

motion becomes more and more complex, at some stage becoming chaotic. The statistical

theory of turbulence, whose foundations were laid by Kolmogorov in 1941, aims to describe

universal patterns in this chaotic, turbulent flow sufficiently far away from the domain bound-

aries, by postulating that generic flows can be seen as realizations of random fields, and by

using the symmetry and scaling properties of the Navier-Stokes equations.

One of the cornerstones of the theory is the famous Kolmogorov-Obukhov 5/3 law. It

states that the energy spectrum E(k), defined to be the kinetic energy per unit mass and unit

wavenumber, behaves like a power law

E(k) ∼ k−5/3. (3.2)

This power law, which is supposed to be valid in a certain intermediate range of wavenum-

bers k - called the inertial range -, away from the large scales (affected by the boundaries

of the domain and external forces) and away from the very small scales (affected by dissi-

pation), agrees remarkably well with experiment and numerical simulation. Closely related

to the 5/3 law is the idea of an energy cascade, originally due to Richardson: The energy

is introduced at large scales, through nonlinear interaction cascades to smaller and smaller

scales until it is dissipated by the viscosity in the very small scales [36]. Indeed, a key hy-

pothesis of the K41 theory is that the mean rate of energy dissipation ε is strictly positive

and independent of ν in the infinite Reynolds number limit (ν → 0). This effect in turbulent

flows is known as anomalous dissipation.
The phenomenological explanation for the energy cascade starts with the decomposition

of a “turbulent” velocity field v into a mean value on a given length scale �q and a turbulent

fluctuation:

v = vq + w (3.3)

where vq = v̄ is the “coarse-grained”, or mean velocity and w is the fluctuation. It is well-

known that then vq satisfies an equation of the form

∂tvq + div (vq ⊗ vq) +∇pq = νΔvq − divRq

div vq = 0 ,
(3.4)

where Rq is the Reynolds stress, equal to

Rq = v ⊗ v − v ⊗ v = w ⊗ w. (3.5)

Assuming that ν � �2q , the term νΔvq is negligible and can be dropped, and then by multi-

plying (3.4) by vq and integrating, one obtains the (coarse-grained) energy balance

d

dt

∫
|vq|2 dx =

∫
∇vq : Rq dx.

The significance of this is that the energy transfer rate on length scale �q is proportional to

|∇vq : Rq|. By interpreting the 5/3-law (3.2) as a decay rate on the Fourier coefficients of v
one obtains

|vq − v| 	 �1/3q , |∇vq| 	 �−2/3
q , and |Rq| 	 �2/3q . (3.6)

The latter estimate makes use of the “commutator” structure of the expression (3.5) (see also

below). The interpretation is that the 5/3 laws gives the precise decay rate on the energy

spectrum that is consistent with an energy cascade.
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3.2. The conjecture of Onsager. Extending the inertial range to infinitely small scales (i.e.

k → ∞) corresponds in a certain sense to the limit ν → 0, when (3.1) becomes the in-

compressible Euler equations (E). Onsager suggested [50] (see also [34]) the possibility

of anomalous dissipation in weak solutions of the Euler equations as a consequence of the

energy cascade. We quote from [50]:

It is of some interest to note that in principle, turbulent dissipation as described
could take place just as readily without the final assistance by viscosity. In the
absence of viscosity, the standard proof of the conservation of energy does not
apply, because the velocity field does not remain differentiable! In fact it is
possible to show that the velocity field in such “ideal” turbulence cannot obey
any LIPSCHITZ condition of the form

|#v(#r′ + #r)− #v(#r′)| < (const.)rn,

for any order n greater than 1/3; otherwise the energy is conserved.

Thus, although the K41 theory and the theory of turbulence in general is a statistical theory,

concerned with ensemble averages of solutions of the Navier-Stokes equations, the sugges-

tion of Onsager turns this into a “pure PDE” question: For weak solutions (v, p) of (W)

with

|v(x, t)− v(y, t)| ≤ C|x− y|θ (3.7)

(with constant C independent of x, y, t) the conjecture is:

(a) If θ > 1/3, the energy is conserved, i.e. (2.1) holds;

(b) For θ < 1/3 the energy may not be conserved.

Note that, though Onsager’s definition of “weak solution” is, strictly speaking, different from

the one given above, it can be easily shown that the two concepts are equivalent.

The first part of the conjecture, i.e. assertion (a), has been shown by Eyink in [33] and

by Constantin, E and Titi in [17]. The proof amounts to giving a rigorous justification of the

formal computation (2.2) and in [17] this is done via a suitable regularization of the equation

and a commutator estimate (whereas Onsager’s original argument is based on convergence

of Fourier series). We sketch the argument. Given a weak solution v satisfying (3.7) with

θ > 1/3, mollify v on length scale � > 0, so that v� = v ∗ ψ�. The regularized velocity

solves an equation of the type

∂tv� + div (v� ⊗ v�) +∇p� = −divR�

div v� = 0 ,
(3.8)

where R� is given by

R� = (v ⊗ v)� − v� ⊗ v�. (3.9)

Since v� is smooth, one readily deduces the energy balance∫
T3

|v�(x, t)|2 dx−
∫
T3

|v�(x, 0)|2 dx = 2

∫ t

0

∫
T3

∇v� : R� dxds. (3.10)

On the other hand, from (3.7) one deduces the estimates

‖∇v�‖C0 	 �θ−1, ‖R�‖C0 	 �2θ,
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so that, provided θ > 1/3, the right hand side in (3.10) converges to zero as �→ 0. In fact a

more careful estimate (see [17]) allows one to carry out the same argument with the weaker

condition ∫ T

0

∫
T3

|v(x+ y, t)− v(x, t)|3 dxdt = o(|y|) (3.11)

rather than the uniform-in-time Hölder regularity in (3.7).

Concerning the second part of the conjecture, i.e. statement (b), the first example of a

continuous solution of the Euler equations dissipating energy was obtained by C. De Lellis

and the author in [27]. This was followed by a construction of Hölder continuous solutions

as in (3.7) with θ < 1/10 in [25] and subsequently with θ < 1/5 by P. Isett in [40] and

shortly after in [9]. The statement is as follows.

Theorem 3.1 ([9, 27, 40]). Given any smooth strictly positive function e ∈ C∞([0, 1]) and
any θ < 1/5, there exists a solution (v, p) ∈ C(T3× [0, 1]) of (W) such that (3.7) holds and

1

2

∫
T3

|v(x, t)|2 dx = e(t) for all t ∈ [0, 1].

Note that, in comparison with Theorem 2.1, in the statement above only the x-integral of
the energy can be specified and there is no statement concerning the non-uniqueness. For a

corresponding result concerning the non-uniqueness we refer to [20].

If one relaxes the condition on uniform-in-time Hölder continuity, better results are avail-

able. In [7] T. Buckmaster showed that for any θ < 1/3 there exists a solution (v, p) ∈
C(T3× (0, 1)) of (W) with compact support in time with the property that, for almost every

time t there exists a number C = C(t) such that

|v(x+ y, t)− v(x, t)| ≤ C(t)|x− y|θ for all x, y ∈ T3.

In very recent joint work [10] this was refined so that in addition∫ T

0

[v(·, t)]θ <∞,

where [v(·, t)]θ denotes the Hölder seminorm in x:

[f ]θ = sup
x �=y

f(x)− f(y)

|x− y|θ .

In these works we are not able to prescribe the energy as in Theorem 3.1, although obviously

the energy is not conserved. Hence, comparing with condition (3.11) we see that the gap

towards a full proof of Onsager’s conjecture remains essentially only at the level of time

integrability.

The techniques in all these results are based on the scheme of [27] which aims to adapt

the construction of Nash explained above. In the rest of this note we sketch the main ideas.

4. The Nash iteration for Euler

In this section we show the key ideas leading to the proof of Theorem 3.1. Although the

basic scheme follows the one introduced in [27], the presentation here uses crucial ideas that

were introduced subsequently in the PhD Theses of T. Buckmaster [8] and of P. Isett [40].
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The construction of continuous and Hölder-continuous solutions of (W) follows the basic

strategy of Nash in the sense that at each step of the iteration, a highly oscillatory correction

as the spiral in (1.5) is added. Note that both (E) and the equation of isometries (1.2) is

quadratic – the oscillatory perturbation is chosen in such a way as to minimize the lineariza-

tion, making the quadratic part of leading order. In turn, a finite-dimensional decomposition

of the error (c.f. (1.6)) is used to control the quadratic part. There are, however, two impor-

tant differences:

• The linearization of (1.2) is controlled easily by using the extra codimension(s) in the

Nash proof. For Euler, the linearization of (E) leads to a transport equation, which is

very difficult to control over long times and leads to a kind of CFL condition; Indeed,

the special role of time and advection in the iteration for (E) was only fully understood

in [40], see also [9]. This issue is still the main stumbling block in the full resolution

of Onsager’s conjecture.

• The exponent 1/3 of Onsager’s conjecture requires a sufficiently good correction of

the error at each single step, whereas in the Nash iteration several steps (n∗ steps)

are required – this leads to the exponent (1 + 2n∗)−1 in Theorem 1.3. This, how-

ever, means that one-dimensional oscillations, as used in the Nash-Kuiper scheme

and, more generally, in convex integration, cannot be used for Euler. Thus, instead

of convex integration, we use Beltrami flows, a special family of periodic stationary

flows, as the replacement of (1.5) (compare (1.6) with (4.24)).

4.1. The Euler-Reynolds system and characteristic scales. The main idea is to realize

that the Nash-Kuiper construction can be viewed as the “reconstruction” of the cascade out-

lined in Section 3.1 scale-by-scale. At each step q ∈ N we construct a triple (vq, pq, R̊q)
solving the Euler-Reynolds system (see [27, Definition 2.1]):

∂tvq + div (vq ⊗ vq) +∇pq = div R̊q,

div vq = 0 ,
(4.1)

where (vq, pq) is an approximate solution and R̊q is a traceless symmetric 3× 3 tensor. The

size of the perturbation

wq := vq − vq−1

will be measured by two parameters:

amplitude: δ1/2
q , frequency: λq,

where, along the iteration, we will have δq → 0 and λq → ∞ at a rate that is (at least)

exponential. For the sake of definiteness and for comparison with the Littlewood-Paley

approach to turbulence (see [14, 15]) we may think

λq ∼ aq for some a > 1,

(although in the actual proofs a slightly super-exponential growth is required). Here and in

what follows, A 	 B means that A ≤ cB for some universal constant c, and A ∼ B if

A 	 B and B 	 A. Then, up to controllable errors, wq will be a function with Fourier-

support localized at frequencies comparable to λq (in other words a single Littlewood-Paley

piece). The more precise formulation is that, denoting the sup-norm by ‖ · ‖0,
‖wq‖0 	 δ

1/2
q , (4.2)
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‖∇wq‖0 	 δ
1/2
q λq , (4.3)

and similarly,

‖pq − pq−1‖0 	 δq , (4.4)

‖∇(pq − pq−1)‖0 	 δqλq . (4.5)

In constructing the iteration, the new perturbation wq+1 will be chosen so as to balance the

previous Reynolds error R̊q , in the sense that (cf. equation (3.5)) we have ‖wq+1⊗wq+1‖0 ∼
‖R̊q‖0. This is formalized as

‖R̊q‖0 	 δq+1 , (4.6)

‖∇R̊q‖0 	 δq+1λq , (4.7)

Wemight think ofwq as a mathematical realization of the concept of eddy in phenomeno-

logical descriptions of turbulence, c.f. [36, Ch 7]. Then, corresponding to eddies of “scale

q” we have the following characteristic scales:

• Eddy length scale: �q ∼ 1
λq

;

• Eddy velocity scale: uq ∼ δ
1/2
q ;

• Eddy time scale: tq =
�q
uq
∼ 1

δ
1/2
q λq

.

To see that this is consistent with our estimates above, observe that from (4.6)

(∂t + vq · ∇)vq = div R̊q −∇pq,
so that

‖(∂t + vq · ∇)vq‖0 	 (δq+1 + δq)λq 	 δqλq,

which agrees with
uq

tq
. Similarly, we will also impose the estimate

‖(∂t + vq · ∇)R̊q‖0 	 δq+1δ
1/2
q λq . (4.8)

The idea to control the transport derivative (∂t + vq · ∇) instead of the pure time derivative

∂t of (vq, pq, Rq) was introduced to the scheme by P. Isett in [40].

On the one hand (4.2), (4.4) and (4.6) will imply the convergence of the sequence vq to a

continuous weak solution of the Euler equations. On the other hand the precise dependence

of λq on δq will determine the critical Hölder regularity, similarly to the Nash-Kuiper scheme

and Theorem 1.3 above. Finally, control on the energy will be ensured by∣∣∣∣e(t)(1− δq+1)−
∫
|vq|2(x, t) dx

∣∣∣∣ ≤ 1

4
δq+1e(t) . (4.9)

4.2. Conditions on the fluctuation. We define

ρq(t) =
1

3(2π)3

(
e(t)(1− δq+1)−

∫
|vq|2(x, t) dx

)
and

Rq(x, t) = ρq(t)Id− R̊q(x, t).
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It is not difficult to check that (4.9) ensures ρq(t) ∼ δq+1e(t), so that ‖Rq‖0 ∼ δq+1 (c.f.

with (4.6)) and ∣∣∣∣Rq(x, t)

δq+1
− Id

∣∣∣∣ = O(1).

Since ρq is a function of time only, we can write the Euler-Reynolds system (4.1) as

∂tvq + div (vq ⊗ vq) +∇pq = −divRq,

in analogy with (3.4) (with ν = 0). Our aim is to choose the next perturbation wq+1 in such

a way as to model the fluctuation w in (3.3) leading to the Reynolds stress. Following the

idea of Nash and the spiral from (1.5) we make the ansatz

wq+1(x, t) =W
(
vq(x, t), Rq(x, t), λq+1x, λq+1t

)
+ wcorrector(x, t). (4.10)

The corrector wcorrector is added to ensure that divwq+1 = 0, but for the sake of not overbur-

dening this exposition with technicalities, we will assume it to be negligible subsequently.

The key point is how to choose the function W =W (v,R, ξ, τ).
We make the following assumptions on W :

(H1) ξ �→W (v,R, ξ, τ) is 2π-periodic with vanishing average, i.e.

〈W 〉 := 1

(2π)3

∫
T3

W (v,R, ξ, τ) dξ = 0; (4.11)

(H2) The average stress is given by R, i.e.

〈W ⊗W 〉 := R (4.12)

for all R in a suitable cone containing the identity matrix;

(H3) The “cell problem” is satisfied:

∂τW + v · ∇ξW + div ξ(W ⊗W ) +∇ξP = 0,

div ξW = 0 ,
(4.13)

where P = P (v,R, ξ, τ) is a suitable pressure;

(H4) W is smooth in all its variables and satisfies the estimates

|W | 	 |R|1/2, |∂vW | 	 |R|1/2, |∂RW | 	 |R|−1/2. (4.14)

Observe that (4.11)-(4.12) correspond to (3.3)-(3.5), (4.13) arises from plugging the ansatz

(4.10) into Euler, and (4.14) are estimates consistent with (4.12).

As a consequence of (H1)-(H2) we obtain∫
T3

|vq+1|2 dx ∼
∫
T3

|vq|2 dx+
∫
T3

〈|W |2〉 dx =
∫
T3

|vq|2 dx+ 3(2π)3ρq(t),

so that (4.9) can be ensured inductively. The main issue is therefore to show that indeed,

δq → 0 with q → 0 (so that the scheme converges) and to obtain a relationship between δq
and λq . This requires estimating the new “Reynolds stress” R̊q+1.
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4.3. Estimating the new Reynolds stress. Assuming the existence of a function W satis-

fying (H1)-(H4) above, we can use the ansatz from (4.10) to obtain an estimate on the new

“Reynolds stress” R̊q+1. Indeed, since vq+1 = vq + wq+1, formally we have

R̊q+1 = div−1
[
∂tvq+1 + div (vq+1 ⊗ vq+1) +∇pq+1

]
= div−1

[
∂twq+1 + vq · ∇wq+1

]
(4.15)

+ div−1
[
div (wq+1 ⊗ wq+1 −Rq) +∇(pq+1 − pq)

]
(4.16)

+ div−1
[
wq+1 · ∇vq

]
(4.17)

= R̊
(1)
q+1 + R̊

(2)
q+1 + R̊

(3)
q+1 , (4.18)

where div−1, an operator of order −1, is a right inverse of

div : C∞(R3;S3×3
0 )→ C∞(R3;R3).

Here S3×3
0 is the set of symmetric 3× 3 matrices with vanishing trace.

Consider first the term (4.17) (and remember that we ignore the corrector wcorrector). Re-

calling condition (H1) on W , we can expand ξ �→ W (v,R, ξ, τ) in a Fourier-series and

write

R̊
(3)
q+1 = div−1

[
W · ∇vq

]
= div−1

∑
k∈Z3,k �=0

ak(x, t)e
iλq+1k·x, (4.19)

where, using (H2)

‖ak‖0 	 ‖W‖0‖∇vq‖0 	 ‖Rq‖1/20 ‖∇vq‖0.
Since ak depends on vq and Rq , which, owing to our inductive estimates are localized in

frequency space to frequencies ∼ λq , and since we assume λq+1 ' λq , one may hope for

an estimate from (4.19) of the type∥∥div−1
[
ak(x, t)e

iλq+1k·x]∥∥
0
	 1

λq+1
‖ak‖0, (4.20)

provided k �= 0 (since in that case |k| ≥ 1, there is no issue about small divisors). This

estimate can be made rigorous in Hölder spaces using stationary phase arguments, essentially

using integration by parts and Schauder estimates (see [27]). For the sake of simplicity in

the presentation, let us assume that (4.20) is correct. Using our inductive estimates we then

obtain

‖R̊(3)
q+1‖0 	

δ
1/2
q+1δ

1/2
q λq

λq+1
.

Next, consider (4.15)-(4.16). Here one needs to differentiateW in x and t, and one needs

to differentiate between “slow” and “fast” derivatives. For instance

∂tW = ∂vW∂tvq + ∂RW∂tRq︸ ︷︷ ︸
slow

+λq+1∂τW︸ ︷︷ ︸
fast

.

However, owing to condition (H3) (the “cell problem”) the fast derivatives in R̊
(1)
q+1 + R̊

(2)
q+1

vanish identically. Hence, by some abuse of notation, we may replace (4.15) and (4.16) by

R̊
(1)
q+1 = div−1

[
(∂t + vq · ∇)slowW

]
, (4.21)



518 László Székelyhidi Jr.

R̊
(2)
q+1 = div−1

[
div slow(W ⊗W −Rq)

]
. (4.22)

Observe that the expression in (4.21) is linear in W , hence the same stationary phase argu-

ment as above applies. We calculate:

(∂t + vq · ∇)slowW = ∂vW (∂t + vq · ∇)vq + ∂RW (∂t + vq · ∇)Rq

so that, writing as before,

R̊
(1)
q+1 = div−1

∑
k∈Z3,k �=0

bk(x, t)e
iλq+1k·x ,

where, using (H4), we have

‖bk‖0 	 ‖Rq‖1/20 ‖(∂t + vq · ∇)vq‖0 + ‖Rq‖−1/2
0 ‖(∂t + vq · ∇)Rq‖0.

From the inductive estimates on vq and Rq in Section 4.1 we then deduce

‖R̊(1)
q+1‖0 	 1

λq+1

(
δ
1/2
q+1δqλq + δ

1/2
q+1δ

1/2
q λq

)
	

δ
1/2
q+1δ

1/2
q λq

λq+1
.

Finally, observe that in (4.22) we have 〈W ⊗W 〉 = Rq because of condition (H2), so that

once more, in the expansion of W as a Fourier-series in ξ there is no term k = 0. Hence the

same stationary phase estimate can be applied once more. Writing

R̊
(2)
q+1 = div−1

∑
k∈Z3,k �=0

ck(x, t)e
iλq+1k·x

and using (H4) we have the estimate

‖ck‖0 	 ‖W‖0‖∂vW‖0‖∇vq‖0 + ‖W‖0‖∂RW‖0‖∇Rq‖0
	 ‖Rq‖0‖∇vq‖0 + ‖∇Rq‖0,

so that

‖R̊(2)
q+1‖0 	 1

λq+1

(
δq+1δ

1/2
q λq + δq+1λq

)
	 δq+1λq

λq+1
.

Summarizing, we obtain

‖R̊q+1‖0 	
δ
1/2
q+1δ

1/2
q λq

λq+1
. (4.23)

Of course, this is just one of the inductive estimates in Section 4.1, similar estimates should

be obtained for all the other quantities (4.2)-(4.8). However, this estimate already implies
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a relationship between δq and λq . Indeed, comparing (4.6) and (4.23), the inductive step

requires

δq+2 ∼
δ
1/2
q+1δ

1/2
q λq

λq+1
.

Assuming λq ∼ aq , this would lead to

δ1/2q ∼ a−
1
3 q ∼ λ

− 1
3

q ,

which, comparing with (4.2)-(4.3), precisely gives exponent 1/3 as the critical Hölder reg-
ularity. Unfortunately, there are several assumptions made in the derivation above. Most

importantly, we have assumed the existence of W with properties (H1)-(H4).

4.4. Beltrami flows. Apart from technical issues that we opt to ignore here, the main prob-

lem with the calculations above in Subsection 4.3 is that we don’t know the existence of a

function W satisfying (H1)-(H4).

Our approach starts with a family of Beltrami flows. These are a special class of station-

ary flows in T3 based on the identity div (W ⊗W ) =W × curlW − 1
2∇|W |2. In particular

any eigenspace of the curl operator, i.e. solution space of the system

curlW = λ0W

divW = 0

leads to a linear space of stationary flows. These can be written as∑
|k|=λ0

akBke
ik·ξ

for normalized complex vectors Bk ∈ C3 satisfying k · Bk = 0 and ik × Bk = λ0Bk, and

arbitrary coefficients ak ∈ C. Choosing B−k = −Bk and a−k = ak ensures that W is

real-valued. A calculation then shows

〈W ⊗W 〉 = 1

2

∑
|k|=λ0

|ak|2
(
Id− k ⊗ k

|k|2
)
. (4.24)

This identity, which is very similar to the Nash decomposition of the metric error in (1.6),

allows one to choose coefficients ak depending smoothly on R so that condition (H2) is

satisfied - this will work at least in a neighbourhood of the identity matrix, and then by

scaling in a cone containing Id, see Lemma 3.2 in [27] and also [40] for a geometric proof.

In this way we can satisfy conditions (H1)-(H4) for v = 0, but the transport part of the cell

problem (i.e. the term ∂τ + v · ∇ξ) poses problems.

In [25, 27] a “phase function” φk(v, τ) was introduced to deal with the transport in the

cell problem. By considering W of the form∑
|k|=λ0

ak(R)φk(v, τ)Bke
ik·ξ (4.25)

the cell problem in (H3) leads to the equation

∂τφk + i(v · k)φk = 0.
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However, the exact solution φk(v, τ) = e−i(v·k)τ is incompatible with requirement (H4)

because |∂vφk| ∼ |τ | is unbounded. Instead, an approximation is used such that

∂τφk + i(v · k)φk = O
(
μ−1
q

)
, |∂vφk| 	 μq

for some parameter μq . This leads to the following corrections to (H3) and (H4): (4.13) is

only satisfied approximately:

∂τW + v · ∇ξW + div ξ(W ⊗W ) +∇ξP = O(μ−1
q )

and in (4.14) the second inequality is replaced by

|∂vW | 	 μq|R|1/2.
Carrying out the calculations in Section 4.3 with these corrections leads to

‖R̊q+1‖0 	
δ
1/2
q+1δ

1/2
q λq

λq+1
+

δ
1/2
q+1μq

λq+1
+

δ
1/2
q+1δ

1/2
q λq

μq

instead of (4.23). After optimizing in μq and comparing with the inductive estimate as in

Section 4.3 one arrives at the Hölder exponent θ < 1/10.
One can obtain an improvement on this estimate by realizing that it is better to make an

error in the quadratic term of (4.13) rather than the linear transport term. This was one key

new idea in [40] and, following [9] leads to the modified ansatz (c.f. (4.10))

wq+1(x, t) =W
(
Rq(x, t), λq+1Φq(x, t)

)
+ wcorrector(x, t), (4.26)

where Φq(x, t) is the inverse flow of vq , i.e. the solution of

∂tΦq + vq · ∇Φq = 0,

Φq(x, 0) = x.

Notice that such an ansatz automatically satisfies the transport part of the cell problem. On

the other hand there will be an error to the Beltrami flow due to the deformation matrixDΦq .

Furthermore, as vq converges to a Hölder continuous flow and ‖∇vq‖0 →∞ as q →∞, one

only has control over DΦq for very short times. To handle this problem we need to apply

temporal cut-off functions. Accordingly, the perturbation wq+1 takes the form

wq+1 =
∑
j

χj(t)
∑

|k|=λ0

akj(Rq)Bke
iλq+1k·Φq(x,t).

Here (χj)j is a partition of unity of the time interval [0, 1] such that for each j the function

χj is supported on an interval of length ∼ μ−1
q and |∂tχ| 	 μq for some parameter μq . The

calculations of Section 4.3 with this perturbation lead to

‖R̊q+1‖0 	
δ
1/2
q+1δ

1/2
q λq

λq+1
+

δ
1/2
q+1μq

λq+1
+

δq+1δ
1/2
q λq

μq

instead of (4.23). Once again optimizing in μq and comparing with the inductive estimate as

in Section 4.3 one arrives at the Hölder exponent θ < 1/5.
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Pure Appl. Math. 55, 11 (2002), 1461–1506.

[36] Frisch, U., Turbulence, Cambridge University Press, Cambridge, 1995.

[37] Gromov, M., Partial differential relations, vol. 9 of Ergebnisse der Mathematik und

ihrer Grenzgebiete, Springer Verlag, Berlin, 1986.

[38] , Local and global in geometry, IHES preprint (1999), 1–11.

[39] Hilbert, D., and Cohn-Vossen, S., Geometry and the Imagination, American Mathe-

matical Society, 1999.

[40] Isett, P., Hölder continuous Euler flows with compact support in time, PhD thesis,

Princeton University, 2013.

[41] Kato, T., Nonstationary flows of viscous and ideal fluids in R3, J. Functional Analysis

9, (1972), 296–305.

[42] Kirchheim, B., Rigidity and Geometry of Microstructures, Habilitation Thesis, Univ.

Leipzig, 2003.

[43] Kuiper, N. H., On C1-isometric imbeddings. I, II, Nederl. Akad. Wetensch. Indag.

Math. 17, (1955), 545–556, 683–689.

[44] Lichtenstein, L., Grundlagen der Hydromechanik, Springer Verlag, 1929.

[45] Lions, P.-L., Mathematical Topics in Fluid Mechanics: Volume 1: Incompressible
Models, Oxford University Press on Demand, June 1996.

[46] Müller, S., Variational models for microstructure and phase transitions, Calculus of

Variations and Geometric Evolution Problems, Le ctures given at the 2nd Session of

the Centre Internazionale Matematico Estivo, Cetaro, 1996.

[47] Müller, S., and Sverak, V., Unexpected solutions of first and second order partial
differential equations, In Proceedings of the International Congress of Mathematicians,

Vol. II (Berlin, 1998) (1998), pp. 691–702 (electronic).

[48] , Convex integration with constraints and applications to phase transitions and
partial differential equations, J. Eur. Math. Soc. 1, 4 (1999), 393–422.

[49] Nash, J., C1 isometric imbeddings, Ann. of Math. (2) 60, 3 (1954), 383–396.

[50] Onsager, L., Statistical hydrodynamics, Nuovo Cim 6, Supplemento, 2 (Convegno

Internazionale di Meccanica Statistica) (1949), 279–287.

[51] Reshetnyak, Y. G., Stability theorems in geometry and analysis, Springer, 1994.

[52] Scheffer, V., An inviscid flow with compact support in space-time, J. Geom. Anal. 3, 4
(1993), 343–401.



524 László Székelyhidi Jr.

[53] Shnirelman, A. I., On the nonuniqueness of weak solution of the Euler equation,
Comm. Pure Appl. Math. 50, 12 (1997), 1261–1286.

[54] Székelyhidi, Jr, L., From Isometric Embeddings to Turbulence, In HCDTE Lecture

Notes. Part II. Nonlinear Hyperbolic PDEs, Dispersive and Transport Equations, Amer-

ican Institute of Mathematical Sciences, 2014, pp. 1–66.

[55] Székelyhidi, Jr, L., and Wiedemann, E., Young Measures Generated by Ideal Incom-
pressible Fluid Flows, Arch. Ration. Mech. Anal. 206, 1 (2012), 333–366.

[56] Tartar, L., The compensated compactness method applied to systems of conservation
laws, Systems of nonlinear partial differential equations. Dordrecht, 1977, 263–285.

[57] Temam, R., Navier-Stokes equations, vol. 2 of Studies in Mathematics and its Appli-

cations, North Holland, Amsterdam, 1984.

[58] Young, L. C., Lecture on the Calculus of Variations and Optimal Control Theory,
American Mathematical Society, 1980.

Mathematisches Institut, Universität Leipzig, D-04109, Germany

E-mail: szekelyhidi@math.uni-leipzig.de



�� ������������������
���������������������!"��
��





Linear response, or else

Viviane Baladi

Abstract. Consider a smooth one-parameter family t �→ ft of dynamical systems ft, with |t| < ε.
Assume that for all t (or for many t close to t = 0) the map ft admits a unique physical invariant

probability measure μt. We say that linear response holds if t �→ μt is differentiable at t = 0 (possibly

in the sense of Whitney), and if its derivative can be expressed as a function of f0, μ0, and ∂tft|t=0.

The goal of this note is to present to a general mathematical audience recent results and open problems

in the theory of linear response for chaotic dynamical systems, possibly with bifurcations.
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Keywords. Linear response, transfer operator, Ruelle operator, physical measure, SRB measure, bi-

furcations, differentiable dynamical system, unimodal maps, expanding interval maps, hyperbolic dy-

namical systems.

1. Introduction

A discrete-time dynamical system is a self-map f : M → M on a space M . To any point

x ∈ M is then associated its (future) orbit {fn(x) | n ∈ Z+} where f0(x) = x, and
fn(x) = fn−1(f(x)), for n ≥ 1, represents the state of the system at time n, given the “ini-

tial condition” x. (If f is invertible, one can also consider the past orbit {f−n(x) | n ∈ Z+}.)
In this text, we shall always assume that M is a compact differentiable manifold (possibly

with boundary), with the Borel σ-algebra, endowed with a Riemannian structure and thus

normalised Lebesgue measure. Many natural dynamical systems are “chaotic” (in particu-

lar, a small error in the initial condition will grow exponentially with time) and best under-

stood via ergodic theory. The ergodic approach often starts with finding a “natural” invariant

probability measure μ (a probability measure is invariant if μ(f−1(E)) = μ(E) for every
Borel set). Lebesgue measure is not always invariant, although there are important excep-

tions such as the angle-doubling map x �→ 2x modulo 1 on the circle, hyperbolic linear

toral automorphisms such as the “cat map” A0 defined in (3.2) below, or symplectic diffeo-

morphisms. However, many interesting dynamical systems which do not preserve Lebesgue

admit a “physical” invariant probability measure: The ergodic basin of an f -invariant prob-
ability measure μ is the set of those initial conditions for which time averages converge to

the space average for every continuous function ϕ :M → C, i.e., the set

{x ∈M | lim
n→∞

1

n

n−1∑
k=0

ϕ(fk(x)) =

∫
ϕdμ , ∀ϕ ∈ C0}.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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An invariant probability measure μ is called physical if its ergodic basin has positive Lebesgue

measure.

If μ is f -invariant and absolutely continuous with respect to Lebesgue then, if it is in

addition ergodic, it is a physical measure because of the Birkhoff ergodic theorem. It was

one of the breakthrough discoveries of the 60’s, by Anosov and others, that many natural

dynamical systems (in particular smooth hyperbolic attractors) admit finitely many physical

measures, while in general they do not admit any absolutely continuous invariant measure.

Physical measures are sometimes called SRB 1 measures after Sinai, Ruelle, and Bowen,

who studied them in the sixties [65].

Instead of a single discrete-time dynamical system f , let us now consider a one-parameter

family t �→ ft of dynamical systems on the same spaceM , where t ∈ [−, ε, ε], for ε > 0. We

assume that the map t �→ ft is “smooth” (i.e., Ck for some 1 < k ≤ ∞), taking a suitable

topology in the image, e.g., that of C� diffeomorphisms, or (piecewise) C� endomorphisms

of M , for some � > 1. We can view ft as a perturbation of the dynamics f := f0. Let us

assume that there exists a closed set Λ, containing 0 as an accumulation point, such that the

map ft admits a unique physical measure for every t ∈ Λ. (We shall give examples where

this assumption holds below.) The question we are interested in is: Does the map t �→ μt
inherit any of the smoothness of t �→ ft at the point t = 0? In particular, is t �→ μt is

differentiable at t = 0 (possibly by requiring k and � large enough)?

As such, the question is not well defined, because we must be more precise regarding

both the domain Λ and the range {μt | t ∈ Λ} of the map t �→ μt. If Λ contains a neigh-

bourhood U of 0, then differentiability is understood in the usual sense, and differentiability

properties usually hold throughout U . However, if Λ does not contain 2 any neighbourhood

of 0, “differentiability” of t �→ μt on Λ should be understood in the sense of the Whitney

extension theorem, as was pointed out by Ruelle [49]. In other words, the map t �→ μt is

called Cm at 0 ∈ Λ for a real number m > 0 if this map admits a Cm extension from Λ to

an open neighbourhood of 0. If 0 ≤ m < 1 this is just continuity or Hölder continuity on a

metric set. For m = 1, e.g., then “μt is C
1 in the sense of Whitney on Λ at t = 0” means

that there exists a continuous function μ
(1)
s , defined for s ∈ Λ, so that

μs = μ0 + sμ(1)
s +Rs , with Rs = o(|s|) , ∀s ∈ Λ .

In order to give a precise meaning to = o(|s|), we need to be more specific regarding the

topology used in the range. Even if μt has a density with respect to Lebesgue, theL1 norm of

this density can be too strong to get differentiability. What is often suitable is a distributional

norm, i.e., the topology of the dual of Cr for some r ≥ 0 (r = 0 corresponds to viewing μt
as a Radon measure). In other words, the question is the differentiability of

t �→
∫

ϕdμt .

where the “observable” ϕ belongs to Cr(M). In some cases (Cr(M))∗ can be replaced by

a space of anisotropic distributions (see §3.1).

We emphasize that considering a strict subset Λ0 ⊂ Λ containing 0 as an accumulation

point may change the class of Whitney-Cm maps at 0: A given map μt defined on Λ could

1The notions of SRB and physical measures do not always coincide, see [65]. In the present expository note, we

shall ignore this fact.

2One could also decide to restrict Λ even if it originally contains a neighbourhood of 0.
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be (Whitney) Cm at 0 ∈ Λ0, but not (Whitney) Cm at 0 ∈ Λ. It seems fair to take a

“large enough” Λ, for example by requiring 0 to be a Lebesgue density point in Λ (i.e.,

limr→0 m(Λ ∩ [−r, r])/(2r) = 1), or at least 0 not to be a point of dispersion in Λ (i.e.,

limr→0 m(Λ ∩ [−r, r])/(2r) > 0).
We shall focus on 0 < m ≤ 1. (Higher differentiability results, including formulas, can

be obtained [47] if one makes stronger smoothness assumptions on the individual dynamical

systems x �→ ft(x) and on the map t �→ ft.) If we can prove, under some assumptions on

the family ft, on the set Λ, and on k, �, and r, that the map t �→ μt is differentiable at 0 ∈ Λ,
then it is natural to ask if there is a formula for

∂t

∫
ϕdμt|t=0

in terms of f0, μ0, ϕ, and the vector field v0 := ∂tft|t=0. If such a formula exists, it is

called the linear response formula (it gives the response to first order of the system in terms

of the first order of the perturbation). We shall assume that the perturbation takes place in

the image point, i.e., there exists vector fields Xs so that

vs := ∂tft|t=s = Xs ◦ fs , ∀s, t ∈ [−ε, ε] . (1.1)

(If each fs is invertible, the above is just a definion of Xs.) The mathematical study of

linear response has been initiated by Ruelle. In § 3.1, we shall present his pioneering result

[44] on smooth hyperbolic systems (Axiom A attractors). Let us just mention now the key

linear response formula he obtained in [44] for smooth hyperbolic attractors ft and smoooth

observables ϕ:

∂t

∫
ϕρt dx|t=0 =

∞∑
j=0

∫
〈X0, grad(ϕ ◦ f j0 )〉 dμ0 , (1.2)

where the sum is exponentially converging. In [46], Ruelle had shown how to derive (1.2)

from heuristic arguments, which suggested to consider the following susceptibility function
associated to ft and ϕ:

Φt(z) =
∞∑
j=0

∫
zj〈X0, grad(ϕ ◦ f j0 )〉 dμ0 . (1.3)

Under very weak assumptions, the power seriesΦt(z) (often denotedΦt(e
iω)) has a nonzero

radius of convergence. If the radius of convergence is ≤ 1 and the series in the right-hand-

side of (1.2) does not converge, Ruelle [48, (∗∗)] suggested that the value at z = 1 could

sometimes be obtained by analytic continuation, possibly giving the linear response formula.

However, caution is necessary, as it was discovered since then (see Section 4.2 below) that

linear response fails [7] in cases where a meromorphic continuation was known to exist [49],

(see also the presentation of the results of [8] in Section 4.1.)

Before we sketch the contents of this note, we make two simple but essential remarks

on (1.2). First note that the higher-dimensional version of the Leibniz expression (Xρ)′ =
X ′ρ+Xρ′ reads

ρ divX + 〈X, grad ρ〉 .
Second, defining the transfer operator associated to an invertible 3 dynamical system ft

3See (2.1) for the noninvertible version.
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(acting, e.g., on L∞ or L1) by

Ltϕ(x) = ϕ(f−1
t (x))

| detDft(f
−1
t (x))| ,

we have
∫ Lt(ϕ) dx =

∫
ϕdx, for all ϕ (since the dual of Lt preserves Lebesgue mea-

sure, this is the change of variable formula in an integral). If the transfer operator has a

nonnegative fixed point Ltρt = ρt ∈ L1, then μt = ρt dx is an absolutely continuous invari-

ant probability measure for ft and thus (if ergodic) a physical measure. In this case, if the

eigenvalue 1 for Lt is simple and isolated, Ruelle’s formula (1.2) and integration by parts

give,

∂t

∫
ϕρt dx|t=0 =

∞∑
j=0

∫
〈X0, grad(ϕ ◦ f j0 )〉ρ0 dx

= −
∞∑
j=0

∫
ϕ ◦ f j0 (ρ0 divX0 + 〈X0, grad ρ0〉) dx

= −
∞∑
j=0

∫
ϕLj0(ρ0 divX0 + 〈X0, grad ρ0〉) dx

= −
∫

ϕ(1− L0)
−1(ρ0 divX0 + 〈X0, grad ρ0〉) dx . (1.4)

Note that the residue of (1 − zL0)
−1(ρ0 divX0 + 〈X0, grad ρ0〉) dx at z = 1 vanishes,

because Lebesgue measure is the fixed point of L∗0, and the manifold is boundaryless, so that∫
(ρ0 divX0 + 〈X0, grad ρ0〉)dx = 0, by integration by parts. The “metaformula” (1.4) for

linear response in the last line can be guessed by applying perturbation theory to the fixed

point ρt of the operator Lt. We shall see in § 3.1 instances where the above is a rigorous

argument, even in cases where μt is not absolutely continuous with respect to Lebesgue
(then, μt is a distribution, enjoying smoothness along unstable directions), and in Section 4

instances where the computation above is invalid, even in cases where μt is in fact absolutely
continuous with respect to Lebesgue. We emphasize that the tricky point is that the resolvent

(1 − zL0)
−1 is evaluated at an expression involving differentiation of ρ0: While ρ0 itself

often belongs to a space on which L0 has nice spectral properties, this is not always true for

its derivative.

The note is organised as follows: In § 2, we give a complete proof of linear response in

the baby toy model of smooth locally expanding circle maps. Section 3 contains an account

of two nontrivial occurrences of linear response in chaotic dynamics: The breakthrough [44]

of Ruelle for smooth hyperbolic systems is presented in § 3.1, while Dolgopyat’s result [20]

in a (not necessarily structurally stable) partially hyperbolic case is stated in § 3.2. The next

section, which contains both recent results and open problems, is devoted to situations where

linear response is violated: We consider first the toy model of piecewise expanding interval

maps, presenting in § 4.1 our results [9, 10] with Smania, and those with Marmi–Sauzin

[8]. Then, we focus on the – more difficult – smooth, nonuniformly expanding, unimodal

interval maps, discussing in § 4.2 the work of Ruelle [51], together with our work with

Smania [11, 12], and our recent paper with Benedicks and Schnellmann [7]. Finally, § 4.3

contains a brief account of the techniques of proofs in [7].
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The survey published by Nonlinearity in 2008 [6] contains a broad viewed account of

the results, open problems, and conjectures at the time, with an emphasis on the role played

by critical points (or more generally homoclinic tangencies) in the breakdown of linear re-

sponse. That survey is thus complementary to the present more introductory presentation.

(In view of the page limitation for this contribution, we sometimes do not give fully ex-

plicit statements and definitions, the reader is invited to consult the quoted references for

clarification.)

We refer to Ruelle’s articles [46, 48, 52] for motivation, applications to physics, and more

conjectures. See also the interesting approach of Hairer andMajda [25], including references

of applications to climate-change. In the present note, we do not discuss linear response for

continuous time dynamics [17, 50], or for dynamical systems in infinite dimensions (such as

coupled map lattices [27, 28]).

2. The toy model of expanding circle maps

In this section we present a proof of linear response in the (baby) toy model of smooth

expanding circle maps. The result and proof are well known (and simpler than the analogous

arguments in [9, 24]), but we are not aware of any reference.

Let M = S1 be the unit circle, and let f : S1 → S1 be a C2 map which is λ-locally
expanding, i.e., there exists λ > 1 so that |f ′(x)| ≥ λ for all x. It is known [38] that

such an f admits a unique absolutely continuous invariant probability measure μ = ρ dx.
This measure is mixing and therefore ergodic. So a C2 locally expanding map f admits a

unique physical measure. In fact, ρ is C1, and it is everywhere strictly positive. The transfer

operator 4

Lϕ(x) =
∑

f0(y)=x

ϕ(y)

|f ′0(y)|
(2.1)

is bounded on C1(S1). It is known (see [4], e.g., for the relevant references to Ruelle and

others) that ρ is a fixed point ofL, that the eigenvalue 1 ofL (acting onC1(S1)) has algebraic
multiplicity equal to one, and that the rest of the spectrum of L is contained in a disc of

radius strictly smaller than one. (Thus, L acting on C1(S1) has a spectral gap.) Note that the

eigenvector of L∗ for the eigenvalue 1 is just normalised Lebesgue measure (by the change

of variable formula).

Fix λ > 1, and consider a C2 path t �→ ft for t ∈ (−ε, ε), where each ft is now C3 and

locally λ-expanding (then, Lt acts on C2, and ρt ∈ C2). Assume that ‖ft − fs‖C3(S1,S1) =
O(|t−s|). Then, using the fact that Lt (acting on C2(S1) or C1(S1)) satisfies the following

Lasota-Yorke (or Doeblin-Fortet) 5 inequalities

‖Lktϕ‖Cj ≤ Cξk‖ϕ‖Cj + Ck‖ϕ‖Cj−1 , ∀ϕ , ∀k ≥ 1 , j = 1, 2 , (2.2)

(with uniform 0 < ξ < 1 and C ≥ 1), together with 6

‖(Lt − L0)ϕ‖C1 = O(|t|)‖ϕ‖C2 ,

one obtains strong stochastic stability:

4The number of terms in the sum is a constant finite integer ≥ 2, the degree of the map.

5What is essential here is the compact embedding of Cj – the strong norm – in Cj−1 – the weak norm.

6See Step 1 in the proof of Theorem 2.2 for a stronger claim.
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Theorem 2.1 (Strong stochastic stability, [14]). There exists C > 0 so that

‖ρt − ρs‖C1 ≤ C|t− s| , ∀ t, s ∈ (−ε, ε) .
In addition, for any t there exists τ < 1, so that, for all s close enough to t, the spectrum
of Ls, acting on C1(S1) or C2(S1), outside of the disc of radius τ consists exactly in the
simple eigenvalue 1.

The above result implies that t �→ μt is Lipschitz, taking the C1 topology of the density

ρt of μt in the image.

Assume now further (this does not reduce much generality) that vt = ∂sfs|s=t can be

written as vt = Xt ◦ ft with Xt ∈ C2. Then, we have linear response:

Theorem 2.2 (Linear response formula). Viewing ρt ∈ C2 as aC1 function, the map t �→ ρt
is differentiable, and we have

∂sρs|s=t = −(1− Lt)−1((Xtρt)
′) , ∀t ∈ (−ε, ε) .

Note that Xtρt is C2 by assumption. Since integration by parts on the boundaryless

manifold S1 gives
∫
(Xtρt)

′ dx = 0, the residue of the simple pole at z = 1 of the resolvent

(z − Lt)−1 (acting on C1(S1)) vanishes at (Xtρt)
′.

We now prove Theorem 2.2, assuming Theorem 2.1:

Proof of Theorem 2.2. The proof consists in three steps, to be proved at the end:

Step 1: Considering Lt as a bounded operator from C2(S1) to C1(S1), we claim that the

map t �→ Lt is differentiable, and that, for every t ∈ (−ε, ε), we have

Mt(ϕ) := ∂sLs(ϕ)|s=t = −X ′
tLt(ϕ)−XtLt

(
ϕ′

f ′

)
+XtLt

(
ϕf ′′

(f ′)2

)
.

(This step will use vt = Xt ◦ ft.)
Step 2: Let Πt(ϕ) = ρt ·

∫
ϕdx be the rank one projector for the eigenvalue 1 of Lt acting

on C1(S1). Then, for every t ∈ (−ε, ε), we have

∂sρs|s=t = (1− Lt)−1(1−Πt)Mt(ρt) .

(Note that ρt ∈ C2, butMt is an operator from C2(S1) to C1(S1).)

Step 3: For every t ∈ (−ε, ε), we have

(1− Lt)−1[(1−Πt)Mt(ρt)] = −(1− Lt)−1((Xtρt)
′) .

Theorem 2.2 follows from putting together Steps 2 and 3. To conclude, we justify the

three steps:

Proof of Step 1. We must show that the operators defined for s �= t by

Rt,s :=
Lt − Ls
t− s

−Mt

satisfy lims→t ‖Rt,s‖C2(S1)→C1(S1) = 0. We start by observing that the number of branches

of fs (which is just its degree) does not depend on s. So for any fixed t and any x, each
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inverse branch for f−1
s (x), for s close enough to t, can be paired with a well-defined nearby

inverse branch f−1
t (x). For two such paired branches, we get, since ϕ ∈ C2, each fs is C3,

and t �→ ft is C
2, that

ϕ(f−1
t (x)

|f ′t(f−1
t (x))| −

ϕ(f−1
s (x)

|f ′s(f−1
s (x))|

= O(t2)− (t− s)X ′
t(x)

ϕ(f−1
t (x)

|f ′t(f−1
t (x))|

− (t− s)Xt(x)

[
ϕ′(f−1

t (x)

f ′t(f
−1
t (x)|f ′t(f−1

t (x)| −
ϕ(f−1

t (x)f ′′t (f
−1
t (x)

(f ′t(f
−1
t (x)))2|f ′t(f−1

t (x)|

]
.

Proof of Step 2. Fix t. By Theorem 2.1, we can find a positively oriented closed curve γ in

the complex plane so that, for any s close to t, the simple eigenvalue 1 of Ls is contained in

the domain bounded by γ, and no other element of the spectrum of Ls acting on C2(S1) lies
in this domain. Step 2 then uses classical perturbation theory for isolated simple eigenvalues

of bounded linear operators on Banach spaces (see [29], e.g., see also [36] for the use of

similar ideas to get spectral stability), which tells us that, for any ϕ ∈ C2 so that Πs(ϕ) =∫
ϕdx = 1, we have

ρs =
1

2iπ

∮
γ

(z − Ls)−1ϕ(z) dz . (2.3)

(We used that
∫
ρs dx = 1 for all s and L∗s(dx) = dx.) Next, for z ∈ γ, we have the identity

(z − Lt)−1 − (z − Ls)−1 = (z − Lt)−1(Lt − Ls)(z − Ls)−1 ,

where we view (z − Ls)−1 as acting on C2(S1), the difference (Lt − Ls) as an operator

from C2(S1) to C1, and (z − Lt)−1 as acting on C1(S1). Letting s tend to t, and recalling

Step 1, we have proved

∂s(z − Ls)−1|s=t = (z − Lt)−1Mt(z − Lt)−1 .

Finally, taking (as we may) ϕ = ρt ∈ C2 in (2.3),

∂sρs|s=t =
1

2iπ

∮
γ

(z − Lt)−1Mt(z − Lt)−1ρt(z) dz

=
1

2iπ

∮
γ

(z − Lt)−1Mt(ρt(z))

z − 1 dz .

An easy residue computation completes Step 2.

Proof of Step 3. It suffices to showMtρt −ΠtMtρt = −(Xtρt)
′. Step 1 implies

Mtρt = −X ′
tρt −XtLt

(
ρ′t
f ′t
− ρtf

′′
t

(f ′t)
2

)
.

Now we use that ρ′t = (Ltρt)′ ∈ C1 and

(Ltϕ)′(x) =
∑

ft(y)=x

ϕ′(y)

|f ′t(y)|
1

f ′t(y)
−
∑

ft(y)=x

ϕ(y)f ′′t (y)

|f ′t(y)|(f ′t(y))2
,
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to see that

Lt
(
ρ′t
f ′t
− ρtf

′′
t

(f ′t)
2

)
= ρ′t .

We have shown thatMtρt = −(Xtρt)
′, so that

∫ Mtρt dx = 0 and ΠtMtρt = 0, ending
the proof of Step 3, and thus of the theorem.

3. Linear response

3.1. Smooth hyperbolic dynamics (structural stability). AC1 diffeomorphism f :M →
M is called Anosov if there exist a Df -invariant continuous splitting TM = Eu ⊕ Es of

the tangent bundle and constants C > 0 and λ > 1 so that, for any x ∈ M , all n ≥ 1, all
v ∈ Es(x), and all w ∈ Eu(x),

‖Dfnx (v)‖ ≤ Cλ−n‖v‖ , ‖Df−n
x (w)‖ ≤ Cλ−n‖w‖ . (3.1)

Thus, Anosov diffeomorphisms are generalizations of the linear hyperbolic map

A0 =

(
1 1
1 2

)
(3.2)

on the two-torus. Indeed (we refer to [30], e.g., for the basics of hyperbolic dynamics), a

small smooth perturbation of A0 is an Anosov diffeomorphism. Anosov diffeomorphisms

f admit (finitely many) SRB measures as soon as they are C1+ε, and the SRB measure is

unique if the diffeomorphism is transitive.7 For Axiom A diffeomorphisms, hyperbolicity (i.e.,

the existence of the continuous splitting Eu ⊕ Es) is assumed only at TxM for points x in

the nonwandering set Ω; in addition, periodic orbits are assumed to be dense in Ω. Smale’s

horseshoe is a famous Axiom A diffeomorphism, but SRB measures exist in general only

for Axiom A attractors, such as the solenoid. (Anosov diffeomorphisms are special cases

of Axiom A attractors.) An important property of Axiom A diffeomorphisms is structural
stability: If f0 is an Axiom A diffeomorphism, and ft is close to f0 (in the C1 topology),

then ft is also Axiom A, and, in addition f0 is topologically conjugated to ft, i.e., there is a

one-parameter family 8 of homeomorphisms ht so that ft = ht ◦ f0 ◦ h−1
t .

Linear response holds for smooth hyperbolic systems: After pioneering results of de

la Llave et al. [40] and Katok et al. [31], Ruelle proved the following landmark theorem

([44, 45], see also [26]):

Theorem 3.1 (Linear response for smooth hyperbolic systems). Let M be a compact Rie-
mann manifold. Let t �→ ft be a C3 map from (−ε, ε) to C3 diffeomorphisms ft :M →M .
Assume that each ft is a topologically mixing Axiom A attractor, and let μt be its unique
SRB probability measure. Then for any ϕ ∈ C2, the map t �→ ∫

ϕdμt is differentiable on
(−ε, ε). In addition, setting Xt = ∂fs|s=t ◦ f−1

t , we have

∂s

∫
ϕdμs|s=t =

∞∑
j=0

〈grad(ϕ ◦ f jt ), Xt〉 dμt , (3.3)

7Transitivity is automatic if f is volume preserving. It is conjectured that all Anosov diffeomorphisms on

connected compact manifolds are transitive.

8The map t �→ ht is smooth and its derivative αt solves the twisted cohomological equation (4.4), see also [6]

and references therein.
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where the series converges (exponentially).

In this situation, one shows that the susceptibility function (1.3) is holomorphic in a disc

of radius strictly bigger than one.

Ruelle exploited symbolic dynamics in [44, 45]. For a more modern approach, using

anisotropic Banach spaces, see the work of Gouëzel and Liverani ([23, Thm 2.8] for Anosov,

and [24, Prop. 8.1] for Axiom A). The modern approach is much simpler, since the transfer

operators Lt of the diffeomorphisms ft all have a uniform spectral gap on the same Banach

space B of anisotropic distributions, which contains, not only the SRB measure μt, but also
its “derivative.” The “metaformula” (1.4) can then be easily justified rigorously.

3.2. Mild bifurcations. In § 4 we shall see examples where the breakdown of structural

stability (the presence of bifurcations in the family ft) is mirrored by a breakdown of lin-

ear response. However, structural stability is not necessary to obtain linear response – and

neither is the spectral gap 9 of the transfer operator Lt. We briefly describe a result of

Dolgopyat [20] on a class of partially hyperbolic maps. We consider partially hyperbolic

diffeomorphisms f : M → M on a smooth compact manifold M , i.e., we assume the tan-

gent bundle is decomposed into invariant bundles Ec ⊕ Eu ⊕ Es, where Eu and Es are

both nontrivial and enjoy (3.1). A partially hyperbolic diffeomorphism f is called an Anosov
element of a standard abelian Anosov action if the central bundle Ec of f is tangent to the

orbits of a C∞ action gt of Rd so that fgt = gtf (see [32, 33]). Assume further that f
admits a unique physical (SRB) measure μ, whose basin has total Lebesgue measure. The

action is called rapidly mixing if for any m ≥ 1 there exists C ≥ 1 and a (gt-admissible)

class of smooth functions F so that, for all subsets S in a suitable class of unstable leaves of

f , any ϕ ∈ F , and for any smooth probability density ψ on S, we have∣∣∣∣∫
S

(ϕ ◦ fn)(x)ψ(x) dx−
∫

ϕdμ

∣∣∣∣ ≤ C‖ϕ‖F‖ψ‖n−m .

We refer to [20] for precise definitions of the objects above and of u-Gibbs states, we just

recall here that SRB measures are u-Gibbs states. Dolgopyat’s result follows:

Theorem 3.2 (Linear response for rapidly mixing abelian Anosov actions [20]). Let f be
a C∞ Anosov element of a standard abelian Anosov action so that f has a unique SRB
measure and is rapidly mixing. Then, for any C∞ one-parameter family of diffeomorphisms
t �→ ft through f0 = f , choosing for each t a u-Gibbs state νt for ft (which can be the SRB
measure if it exists), we have that

∫
ϕdνt is differentiable at t = 0 for any ϕ ∈ C∞, and the

linear response formula (3.3) holds. (See [20, p. 405] for the linear response formula.)

Besides giving a new proof in the Anosov case, applications of Theorem 3.2 include:

• time-one maps f of Anosov flows, which are generically rapidly mixing;

• toral extensions f of Anosov diffeomorphisms F defined by

f(x, y) = (F (x), y + ω(x)) , x ∈M , y ∈ Td , ω ∈ C∞(M,Td) ,

which are generically rapidly mixing (under a diophantine condition).

It seems important here that structural stability may only break down in the central direc-

tion. This allows Dolgopyat to use rapid mixing to prove that most orbits can be shadowed,

a key feature of his argument.

9See the work of Hairer and Majda [25].
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4. Or else

The results stated in § 3.1 gave at the time some hope [49] that linear response could hold

(at least in the sense of Whitney) for a variety of nonuniformly hyperbolic systems. In

the present section we shall state some results obtained since 2007 which indicate that the

situation is not so simple. We would like to mention that numerical experiments and physical

arguments already gave a hint that something could go wrong (see [21], e.g., for fractal

transport, see [35]).

4.1. Piecewise expanding interval maps. Piecewise expanding maps can be viewed as

a toy model for the smooth unimodal maps to be discussed in § 4.2. The setting is the

following: We let I = [−1, 1] be a compact interval, and consider continuous maps f : I →
I with f(−1) = f(1) = −1, and so that f |[−1,0] and f |[0,1] are C2, with infx �=c |f ′(x)| ≥
λ > 1. Such a map is called a piecewise expanding unimodal map (for λ). Lasota and Yorke

[39] proved in the 70’s that such a map posesses a unique absolutely continuous invariant

probability measure μ = ρ dx, which is always ergodic. In fact, the density ρ is of bounded

variation. If μ is mixing, we have exponential decay of correlations for smooth observables,

which can be proved by using the spectral gap of the transfer operator Lt defined by (2.1)

acting on the Banach space BV of functions of bounded variation, see e.g. [4]. We set

c = c0 = 0, and we put ck = fk(c) for k ≥ 1.
Consider now a C1 path t �→ ft, with each ft a piecewise expanding unimodal map.

Assume in addition that f0 = f is topologically mixing on [c2, c1] (then μ = μ0 is mixing),

that c1 < 1, and that c is not a periodic point of f0 (this implies that f0 is stably mixing,

i.e., small perturbations of f0 remain mixing). Then, applying [39], each ft admits a unique

SRB measure μt = ρt dx (and each transfer operator Lt has a spectral gap on BV , the

corresponding estimates are in fact uniform). Keller [34] proved that the map

t �→ ρt ∈ L1(dx)

is Hölder for every exponent η < 1. In fact, Keller showed

‖ρt − ρs‖L1 ≤ C|t− s|| log |t− s|| . (4.1)

From now on, we assume that each ft is piecewise C3, that the map t �→ ft is C
2, and that

v = ∂tft|t=0 = X ◦ f . An example is given by taking the tent maps

ft(x) = a+ t− (a+ t+ 1)x , if x ∈ [0, 1] ,
ft(x) = a+ t+ (a+ t+ 1)x , if x ∈ [−1, 0] , (4.2)

choosing 0 < a < 1 so that 0 is not periodic for fa and so that fa is mixing (note that

X0(x) = (a+ 1)−1(x+ 1)). Observe that structural stability is strongly violated here: ft is
topologically conjugated to fs only if s = t [18]. In other words, the family ft of tent maps

undergoes strong bifurcations.

A piecewise expanding map is called Markov if c is preperiodic, that is, if there exists

j ≥ 2 so that cj is a periodic point: fp(cj) = cj for some p ≥ 1. (In this case, one

can show that the invariant density is piecewise smooth, and the susceptibility function is

meromorphic.) A Markov map is mixing if its transition matrix is aperiodic, stable mixing

then allows to construct easily mixing tent maps.

It turns out that Keller’s upper bound (4.1) is optimal, linear response fails:
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Theorem 4.1 (Mazzolena [42], Baladi [5]). There exist a Markov piecewise expanding in-
terval map f0, a path ft through f0, with a C∞ observable ϕ, a constant C > 0, and a
sequence tn → 0, so that∣∣∣∣∫ ϕdμtn −

∫
ϕdμ0

∣∣∣∣ ≥ C|tn|| log |tn|| , ∀n .

Setting v = v0 = ∂tft|t=0, and assuming v = X ◦ f , we introduce

J (f, v) =
∞∑
j=0

v(f j(c))

(f j)′(c1)
=

∞∑
j=0

X(f j(c1))

(f j)′(c1)
. (4.3)

If J (f0, v0) = 0 (a codimension-one condition on the perturbation v or X), we say that

the path ft is horizontal (at t = 0). This condition was first studied for smooth unimodal

maps [3, 60]. In the setting of piecewise expanding unimodal maps, Smania and I proved

the following result:

Theorem 4.2 (Horizontality and tangency to the topological class [9, 10]). A path ft is called
tangent to the topological class of f0 (at t = 0) if there exist a path f̃t so that ft−f̃t = O(t2)
and homeomorphisms ht so that f̃t ◦ ht = ht ◦ f0. Then:

• The path ft is horizontal (at t = 0) if and only if there is a continuous solution α to
the twisted cohomological equation

v(x) = X ◦ f(x) = α ◦ f(x)− f ′(x)α(x) , x �= c . (4.4)

• The path ft is horizontal (at t = 0) if and only if it is tangent to the topological class
of f0 (at t = 0).

Note that the family of tent maps given in (4.2) is not horizontal.
We already mentioned that ρt ∈ BV . Any function g of bounded variation can be

decomposed as two functions of bounded variation g = gsing + greg , where the regular

component greg is a continuous function of bounded variation, while the singular component

gsing is an at most countable sum of jumps (i.e., Heaviside functions). In the particular case

of the invariant density ρt of a piecewise expanding unimodal map, we proved [5] that (ρregt )′

is of bounded variation, while the jumps of ρsingt are located along the postcritical orbit ck,
with exponentially decaying weights, so that (ρsingt )′ is an exponentially decaying sum of

Dirac masses along the postcritical orbit. The fact that the derivative of ρ0 does not belong
to a space on which the transfer operator has a spectral gap is the glitch which disrupts the
spectral perturbation mechanism described in Section 2 (in Section 3.1 the derivative of the

distribution corresponding to the SRB measure did belong to a good space of anisotropic

distributions). Note also that ρsing0 is intimately related to the postcritical orbit of f0, which

is itself connected to the bifurcation structure of ft at f0. (We refer also to [6].)

Our main result with Smania on piecewise expanding maps reads as follows:

Theorem 4.3 (Horizontality and linear response [9]).

• If the path ft is horizontal (at t = 0) then the map t �→ μt ∈ C(I)∗ is differentiable
at t = 0 (as a Radon measure), and we have the linear response formula:

∂tμt|t=0 = −α(ρsing)′ − (1− L0)
−1(X ′ρsing + (Xρreg)′) dx . (4.5)
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• If the path ft is not horizontal (at t = 0), then, if in addition |f ′(c−)| = |f ′(c+)| or
infj d(f

j(c), c) > 0, we have:

If the postcritical orbit {ck} is not 10 dense in [c2, c1], then there exist ϕ ∈ C∞ and
K > 0 so that for any sequence tn → 0 so that the postcritical orbit of each ftn is
infinite, ∣∣∣∣∫ ϕdμtn −

∫
ϕdμ0

∣∣∣∣ ≥ K|tn|| log |tn|| , ∀n . (4.6)

If the postcritical orbit is dense in [c2, c1], then there exist ϕ ∈ C∞ and sequences
tn → 0 so that

lim
n→∞

∣∣∫ ϕdμtn −
∫
ϕdμ0

∣∣
|tn| =∞ . (4.7)

We end this section with some of our results on the susceptibility function (recall (1.3))

Ψϕ(z) =

∞∑
j=0

∫
zj(∂x(ϕ ◦ f j0 )(x))X0(x) dμ0(x)

of piecewise expanding unimodal maps (for λ > 1), the most recent of which were obtained

with Marmi and Sauzin (using work of Breuer and Simon [16]):

Theorem 4.4 ([5, 8]). There exists a nonzero function U(z), holomorphic in |z| > λ−1, and,
for every non constant ϕ ∈ C0 so that

∫
ϕdμ0 = 0, there exists a nonzero function Vϕ(z),

holomorphic in |z| > λ−1, so that the following holds: Put

σϕ(z) =

∞∑
j=0

ϕ(cj+1)z
j

(this function is holomorphic in the open unit disc), and set

Ψhol(z) = −
∫

ϕ(x)(1− zL0)
−1(X ′ρsing + (Xρreg)′)(x) dx .

Then:

• There exists τ ∈ (0, 1) so that Ψhol(z) is holomorphic in the disc |z| < τ−1.

• The susceptibility function satisfies

Ψϕ(z) = σϕ(z)U(z) + Vϕ(z) + Ψhol(z) ,

where the function U(z) vanishes at z = 1 if and only if J (f, v) = 0, and in that case,
we have

∂t

∫
ϕdμt|t=0 = Vϕ(1) + Ψhol(1) .

10Generically the postcritical orbit is dense, see the references to Bruin in [56].
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• If {ck} is dense in [c2, c1] andϕ �= 0, then the unit circle is a (strong) natural boundary
for σϕ(z) (and thus for Ψϕ(z)). If 11 limn→∞

1
n

∑n
k=1 ϕ̃(ck) =

∫
ϕ̃ dμ0 for every

ϕ̃ ∈ C0, then for every ω ∈ R

lim
z
NT→ eiω

(z − eiω)σϕ(z) = 0 ,

where zNT→ eiω means that |z| < 1 tends to eiω nontangentially (e.g., radially).

In particular, if the path ft is horizontal (at t = 0) and the postcritical orbit is generic,

then

∂t

∫
ϕdμt|t=0 = lim

z
NT→ 1

Ψϕ(z) .

The law of the iterated logarithm (LIL), a property stronger than Birkhoff genericity,

also holds generically for the postcritical orbit of piecewise expanding maps [57]. If the

postcritical orbit satisfies (an eiω twisted upper bound version of) the LIL, then more can be

said about σϕ and Ψϕ, see [8, Thm. 5].

Inspired by Breuer–Simon, we introduced in [8] renacent right-limits, a simple construc-

tion for candidates for a generalised (Borel monogenic [15], e.g.) continuation outside of the

unit disc of power series having the unit circle as a natural boundary. In the case of Poincaré

simple pole series, Sauzin and Tiozzo [55] showed that this construction gives the (unique)

generalised continuation. However, for the susceptibility function of piecewise expanding

maps, there are [8] uncountably many such candidates (even in the horizontal case). This

may indicate that there is no reasonable way to extend Φϕ(z) outside of the unit circle. The

analogous problem is more delicate for smooth unimodal maps discussed in § 4.2 below,

mainly because the natural boundary for the susceptibility function is expected to lie strictly

inside the open unit disc — we refer to [8] for open questions and conjectures.

4.2. Smooth unimodal maps. We now consider the more difficult case of differentiable
maps f : I → I , where I = [0, 1] is again a compact interval, and c = 1/2 is now a

critical point in the usual sense: f ′(c) = 0. The map f is still assumed unimodal, with

f(−1) = f(1) = −1, and f ′(x) > 0 for −1 ≤ x < c, while f ′(x) < 0 for c < x ≤ 1. We

denote ck = fk(c) for k ≥ 1 as before. For convenience, we assume that f is topologically

mixing and C3, with negative Schwarzian derivative (see [18]). Finally, we suppose that

f ′′(c) < 0. Of course, f is not uniformly expanding since f ′(c) = 0. One way to guarantee

enough (nonuniform) expansion is via the Collet–Eckmann condition: The map f is Collet–
Eckmann (CE) if there exists λc > 1 and H0 ≥ 1 so that

|(fk)′(c1)| ≥ λkc , ∀k ≥ H0 .

If f is CE, then it admits a (unique) absolutely continuous (SRB) invariant probability mea-

sure μ = ρ dx (which is ergodic). We refer to [18] for more about the CE condition, noting

here only that the invariant density ρ is not bounded in the current setting — in fact, ρ con-

tains a finite, or infinite exponentially decaying, sum of “spikes”√
|x− fk(c)|

−1

11This assumption of Birkhoff genericity of the postcritical orbit is generic [56].
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along the postcritical orbit. Thus, ρ ∈ Lp for all 1 ≤ p < 2, but ρ /∈ L2. If f is CE and

topologically mixing on [c2, c1], then Keller and Nowicki [37] and, independently, Young

[63], proved that a spectral gap holds for a suitably defined transfer operator (acting on a

“tower”), giving exponential decay of correlations.

We consider again a C2 path t �→ ft, t ∈ (−ε, ε), say, of C4 unimodal maps as above,

through f = ft0 (with t0 not necessarily equal to 0) which will be assumed to be (at least)

CE. We let v = vt0 = ∂tft|t=t0 and assume that v = X ◦ f . Noting that J (f, v) from (4.3)

is well defined because of the CE condition, we say that the path ft is horizontal at t = t0 if

J (f, v) = 0.
The fully horizontal case (i.e., J (ft, vt) = 0 for all t in a neighbourhood of t0) happens

when ft is topologically conjugated to ft0 for all t, so that ft stays in the topological class

of ft0 . Then, if ft0 is Collet-Eckmann, all the ft are Collet-Eckmann (although it is not

obvious from the definition, the CE property is a topological invariant [43]) and admit an

SRB measure. In this fully horizontal case, viewing ρt as a distribution of sufficiently high

order, first Ruelle [51] and then Smania and myself [11, 12] obtained linear response, with

a linear response formula. (In [11], we even obtain analyticity of the SRB measure.) More

precisely, Ruelle [51] considered the analytic case under the Misiurewicz 12 assumption that

infk |fkt0(c) − c| > 0; Smania and myself considered on the one hand [11] a fully holo-

morphic setting (where the powerful machinery of Mañé-Sad-Sullivan [41] applies), and on

the other hand [12] a finitely differentiable setting under a (generic) Benedicks-Carleson-

type assumption of topological slow recurrence. The strategy in [12] involves proving the

existence of a continuous solution α to the twisted cohomological equation (4.4) if f is

Benedicks-Carleson and X corresponds to a horizontal path ft.
Although the horizontal case is far from trivial (in the present nonuniformly expanding

setting, one of the hurdles is to obtain uniform bounds on the constant λc(t) for CE parame-

ters t close to t0), it is much more interesting to explore transversal paths t �→ ft (undergoing
topological bifurcations). The archetypal such situation is given by the so-called logistic (or

quadratic) family

ft(x) = tx (1− x) .

A famous theorem of Jacobson says that the set of CE parameters in the logistic family has

strictly positive Lebesgue measure (see [18], e.g.). Since the set Λ of CE parameters does

not contain any interval, regularity of the map t �→ μt for t in Λ can be considered only

in the sense of Whitney. Continuity of the map t �→ μt, for t ranging in some appropriate

subset of Λ (and for the weak ∗ topology in the image) was obtained by Tsujii [61] (see also

Rychlik-Sorets [54]) in the 90’s.

A map f is called Misiurewicz-Thurston if there exist j ≥ 2 and p ≥ 1 so that fp(cj) =
cj and |(fp)′(cj)| > 1 (in other words, the critical point is preperiodic, towards a repelling

periodic orbit, this implies that the map has a finite Markov partition). Clearly, Misiurewicz-

Thurston implies Misiurewicz and thus Collet-Eckmann. There are only countably many

Misiurewicz-Thurston parameters.

For the quadratic family, e.g., Thunberg proved [59, Thm C] that there are superstable pa-

rameters sn of periods pn, with sn → t, for a Collet-Eckmann parameter t, so that νsn → ν,

where νsn = 1
pn

∑pn−1
k=0 δfk

sn
(c), and ν is the sum of atoms on a repelling periodic orbit of

ft. Other sequences tn → t of superstable parameters have the property that νtn → μt,
the absolutely continuous invariant measure of ft. Starting from Thunberg’s result, Dobbs

12Misiurewicz is nongeneric. It implies Collet-Eckmann.
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and Todd [19] have constructed sequences of both renormalisable and non-renormalisable

Collet-Eckmann maps ft′n , converging to a Collet-Eckmann map ft, but such that the SRB

measures do not converge. Such counter-examples can be constructed while requiring that

ft and all maps ft′n are Misiurewicz-Thurston. These examples show that continuity of the

SRB measure cannot hold on the set of all Collet–Eckmann (or even Misiurewicz-Thurston)

parameters: Some uniformity in the constants is needed (already when defining the “appro-

priate subsets” of [61]).

The main result of our joint work [7] with Benedicks and Schnellmann (which also con-

tains parallel statements on more general transversal familes of smooth unimodal maps)

follows:

Theorem 4.5 (Hölder continuity of the SRB measure in the logistic family [7]). Consider
the quadratic family ft(x) = tx(1 − x) on I = [0, 1], and let Λ ⊂ (2, 4] be the set of
Collet-Eckmann parameters t.

• There exists Δ ⊂ Λ, of full Lebesgue measure in Λ, so that for every t0 ∈ Δ, and for
every Γ > 4, there existsΔt0 ⊂ Δ, with t0 a Lebesgue density point ofΔt0 , and there
exists a constant C so that, for any ϕ ∈ C1/2(I), for any sequence tn → t0, so that
tn ∈ Δt0 for all n, we have∣∣∣∣∫ ϕ(x)dμtn −

∫
ϕ(x)dμt0

∣∣∣∣ ≤ C |ϕ|C1/2 |t0 − tn|1/2| log |t0 − tn||Γ , (4.8)

where ‖ϕ‖C1/2 denotes the 1/2-Hölder norm of ϕ.

• If ft0 is Misiurewicz-Thurston, then there exists ϕ ∈ C∞, a constant C > 1, and a
sequence tn → t0, with tn ∈ Λ for all n, so that

1

C
|tn − t0|1/2 ≤

∣∣∣∣∫ ϕ(x)dμtn −
∫

ϕ(x)dμt0

∣∣∣∣ ≤ C|tn − t0|1/2 . (4.9)

The exponent 1/2 appearing in the theorem is directly related to the nondegeneracy as-

sumption f ′′(c) �= 0, which of course holds true for the quadratic family. Note also that

using a C∞ (instead of C1/2) observable does not seem to allow better upper bounds in

(4.8). It is unclear if the logarithmic factor in (4.8) is an artefact of the proof or can be

discarded.

The proof of the claim (4.9) of the theorem gives a sequence tn of Misiurewicz-Thurston

parameters, but the continuity result of Tsujii [61] easily yields sequences of nonMisiurewicz-

Thurston (but CE) parameters tn. We do not know whether t0 is a Lebesgue density point of

the set of sequences giving (4.9). Note that in the toy model from § 4.1, the first analogous

construction of counter-examples (Theorem 4.1) was limited to a handful of preperiodic pa-

rameters (sequences of maps having preperiodic critical points converging to a map ft0 with

a preperiodic critical point), while the currently known set of examples (see (4.6) and (4.7))

are much more general, although not fully satisfactory yet. One important open problem is

to describe precisely the set of sequences tn → t0 giving rise to violation of linear response

for the generic piecewise expanding unimodal maps with dense postcritical orbits in (4.7).

This may give useful insight for smooth unimodal maps, both about the largest possible set

of sequences giving (4.9), and about relaxing the Misiurewicz-Thurston assumption on ft0 .
(Note however that there is a quantitative difference with respect to the piecewise expanding



540 Viviane Baladi

case [9], where the modulus of continuity in the transversal case was | log |t− t0|||t− t0|, so
that violation of linear response arose from the logarithmic factor alone.)

We suggested in [7] the following weakening of the linear response problem: Consider

a one-parameter family ft of (say, smooth unimodal maps) through ft0 and, for each ε > 0,
a random perturbation of ft with unique invariant measure μεt like in [58], e.g. Then for

each positive ε, it should not be very difficult to see that the map t → μεt is differentiable

at t0 (for essentially any topology in the image). Taking a weak topology in the image, like

Radon measures, or distributions of positive order, does the limit as ε→ 0 of this derivative

exist? How is it related with the perturbation? with the susceptibility function or some of its

generalised continuations (e.g. in the sense of [8])?

More open questions are listed in [6] and [7, 12]. In particular, the results in [7] give

hope that linear response or its breakdown (see [6] and [53]) can be studied for (the two-

dimensional) Hénon family, which is transversal, and where continuity of the SRB measure

in the weak-∗ topology was proved by Alves et al. [1, 2] in the sense of Whitney on suitable

parameter sets. In [6, (17), (19)], we also give candidates for the notion of horizontality for

piecewise expanding maps in higher dimensions and piecewise hyperbolic maps.

4.3. About the proofs. The main tool in the proof of Theorem 4.5 is a tower construction:
We wish to compare the SRB measure of ft0 to that of ft for small t − t0. Just like in

[12], we use transfer operators L̂t acting on towers, with a projection Πt from the tower to

L1(I) so that ΠtL̂t = LtΠt, where Lt is the usual transfer operator, and Πtρ̂t = ρt with

μt = ρt dx (here, ρ̂t is the fixed point of L̂t, and ρt is the invariant density of ft). In [12], we

adapted the tower construction from [13] (introduced in [13] to study random perturbations,

for which this version is better suited than the otherwise ubiquitous Young towers [64]). This

construction allows in particular to work with Banach spaces of continuous functions. An-

other idea imported from [12] is the use of operators L̂t,M acting on truncated towers, where

the truncation levelM must be chosen carefully depending on t− t0. Roughly speaking, the

idea is that ft is comparable to ft0 for M iterates (corresponding to the M lowest levels of

the respective towers), this is the notion of an admissible pair (M, t). Denoting by ρ̂t,M the

maximal eigenvector of L̂t,M , the starting point for both upper and lower bounds is (like in

[12]) the decomposition

ρt − ρt0 =
[
Πt(ρ̂t − ρ̂t,M ) + Πt0(ρ̂t0,M − ρ̂t0)

]
(4.10)

+ [Πt(ρ̂t,M − ρ̂t0,M )] + [(Πt −Πt0)(ρ̂t0,M )] ,

for admissible pairs. The idea is then to get upper bounds on the first two terms by using

perturbation theory à la Keller-Liverani [36], and to control the last (dominant) term by

explicit computations on Πt − Π (which represents the “spike displacement,” i.e., the effect

of the replacement of 1/
√
|x− fkt0(c)| by 1/

√
|x− fkt (c)| in the invariant density).

We now move to the differences between [12] and [7]: Using a tower with exponentially

decaying levels as in [13] or [12] would provide at best an upper modulus of continuity

|t− t0|η for η < 1/2, and would not yield any lower bound. For this reason, we use instead

“fat towers” with polynomially decaying sizes in [7], working with polynomially recurrent

maps. In order to construct the corresponding parameter set, we use recent results of Gao

and Shen [22].

Applying directly the results of Keller-Liverani [36] would only bound the contributions

of the first and second terms of (4.10) by |t−t0|η for η < 1/2. In order to estimate the second
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term, we prove that L̂t,M −L̂t0,M acting on the maximal eigenvector isO(| log |t− t0||Γ|t−
t0|1/2) in the strong 13 norm; in the Misiurewicz-Thurston case we get get a better O(|t −
t0|1/2) control). It is usually not possible to obtain strong norm bounds when bifurcations

are present [14, 36], and this remarkable feature here is due to our choice of admissible

pairs (combined with the fact that the towers for ft and ft0 are identical up to level M ). To

estimate the first term, we enhance the Keller-Liverani argument, using again that it suffices

to estimate the perturbation for the operators acting on the maximal eigenvector.

The changes just described are already needed to obtain the exponent 1/2 in the upper

bound (4.8). To get lower bound in (4.9), we use that the tower associated to a Misiurewicz-

Thurston map ft0 can be required to have levels with sizes bounded from below, and that

the truncation level can be chosen to be slightly larger. Finally, working with Banach norms

based on L1 as in [12] would give that the first two terms in (4.10) are ≤ C|t − t0|1/2,
while the third is ≥ C−1|t − t0|1/2 for some large constant C > 1. However, introducing
Banach-Sobolev norms based on Lp for p > 1 instead, we are able to control the constants

and show that the last term dominates the other two.

Acknowledgements. The toy model in Section 2 was presented at a minicourse at the Dy-

namical Systems Days in Antofagasta, Chile, December 2007.
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Metric stability of the planetary N-body problem

Luigi Chierchia and Gabriella Pinzari

Abstract. The “solution” of the N-body problem (NBP) has challenged astronomers and mathemati-

cians for centuries. In particular, the “metric stability” (i.e., stability in a suitable measure theoretical

sense) of the planetary NBP is a formidable achievement in this subject completing an intricate path

paved by mathematical milestones (by Newton, Weierstrass, Lindstedt, Poincarè, Birkhoff, Siegel,

Kolmogorov, Moser, Arnold, Herman,...). In 1963 V.I. Arnold gave the following formulation of the

metric stabiliy of the planetary problem:

If the masses of n planets are sufficiently small in comparison with the mass of the central body, the

motion is conditionally periodic for the majority of initial conditions for which the eccentricities and

inclinations of the Kepler ellipses are small.

Arnold gave a proof of this statement in a particular case (2 planets in a plane) and outlined a strategy

(turned out to be controversial) for the general case. Only in 2004 J. Féjoz, completing work by M.R.

Herman, published the first proof of Arnold’s statement following a different approach using a “first

order KAM theory” (developed by Rüssmann, Herman et al., and based on weaker non-degeneracy

conditions) and removing certain secular degeneracies by the aid of an auxiliary fictitious system.

Arnold’s more direct and powerful strategy – including proof of torsion, Birkhoff normal forms, ex-

plicit measure estimates – has been completed in 2011 by the authors introducing new symplectic

coordinates, which allow, after a proper symplectic reduction of the phase space, a direct check of

classical non–degeneracy conditions.

Mathematics Subject Classification (2010). 70H08, 70K43, 70F10, 70H12, 70K45, 70F15, 70E55,

34C20, 34C27, 34C29, 34D10.

Keywords. Planetary system, N–body problem, metric stability, Quasi–periodic motions, symplectic

invariants. Deprit’s reduction of the nodes, Birkhoff normal forms, KAM tori.

1. Introduction

On July 5th, 1687 Sir Isaac Newton published his Philosophiae Naturalis Principia Mathe-

matica, one of the most influential book in the history of modern science. The main impulse

for its publication came from Edmond Halley, who urged Newton to write the mathematical

solution of the two–body (Kepler) problem.

In general, the N–body problem (NBP) consists in determining the motion of N ≥ 2
point–masses (i.e., ideal bodies with no physical dimensions identified with points in the

Euclidean three–dimensional space) interacting only through Newton’s law of gravitational

attraction.

After his complete mathematical description of the general solution for the two body

case, Newton immediately turned to the three–body problem (Sun, Earth and Moon) but got

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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discouraged, describing it as a “head–aching problem”. The immense difficulty in trying to

obtain explicitly the general solution of the NBP (something that, later, was proved to be im-

possible) drove, then, mathematicians to focus on the issue of convergence of formal power

series for solutions of the planetary problem, the smallness expansion parameter being the

mass ratio between planets and Sun. Many eminent personalities in the mid 1800’s, such as

Weierstrass and Dirichlet (who claimed to have a proof, which was never found), were con-

vinced that the series were convergent. The question become a major mathematical issue and

King Oscar II of Sweden and Norway, enlightened ruler, issued, in 1885, a prize for solv-

ing the problem or, in absence of a complete solution, for the best contribution. The prize

was finally awarded on the occasion of the king’s 60th birthday (21 January, 1889) to Henri

Poincaré1, who came to the belief (albeit not to the proof) that the series were divergent. The

convergence problem was exported into a more general (and less degenerate) setting, namely,

perturbation theory for non–degenerate nearly–integrable Hamiltonian systems. The break-

through came in 1954 at the Amsterdam ICM, where N.N. Kolmogorov announced and gave

a sketchy proof of his theorem on the preservation of (maximal) quasi–periodic motions2

in nearly–integrable systems. In his amazing 6–page long article [22] Kolmogorov set the

foundation of KAM (Kolmogorov–Arnold–Moser) theory, outlining a (super–exponentially)

convergent perturbation theory for real–analytic systems, able to deal with the small divisor

problems arising in the formal solutions of quasi–periodic motions: one of the crucial (and

ingenious) idea was to fix the frequencies of the final motions rather than initial data.3 With

additions by Moser and Arnold, Kolmogorov’s strategy could be used to show, indirectly,4

convergence of the formal (Lindstedt) series for “general” solutions, where “general” means

that the phase space region corresponding to (linearly) stable quasi–periodic motions tends

to fill a Cantor set of asymptotic measure density equal to one (as the smallness parameter

goes to zero). Thus, a way of rephrasing the main outcome of KAM theory is that ana-

lytic nearly–integrable (non–degenerate) Hamiltonian systems are asymptotically metrically

stable.

However, in view of the strong degeneracies of the Kepler problem (i.e., of the integrable

limit of the planetary NBP), the main hypothesis of Kolmogorov’s theorem did not apply

to the planetary problem. Besides the real–analyticity assumption, the main hypothesis of

Kolmogorov’s theorem is that the limit integrable Hamiltonian depends only on d action

variables, d being the number of degrees of freedom (:= half of phase–space dimension) and

that its gradient map is a local diffeomorphism. In the planetary problem the integrable limit

depends only on n actions while the number of degrees of freedom (after reducing the total

linear momentum; see below) is 3n.
In 1963 Arnold, 26, took up the question of extending Kolmogorov’s theorem to sys-

tems modeling the main features of the planetary problem, namely, Hamiltonian systems

with n+m degrees of freedom, whose integrable limit depends only on n action variables5

1At first Poincarè submitted a contribution containing a serious mistake, which he amended in a feverish effort:

the outcome was the famous 270 page memoir [25], by now, regarded as the birth of modern theory of dynamical

systems and chaos; compare [3].

2In general, a “quasi–periodic” (or “conditionally periodic”) orbit with (rationally independent) frequencies

(ω1, ..., ωd) = ω ∈ Rd is a trajectory conjugated to a linear flow, θ → θ + ωt on a d dimensional torus; if d
equals the number of degrees of freedom (i.e., half dimension of the pahse space), the quasi–periodic orbit is called

maximal.

3For generalities on KAM theory, see, e.g., [2] or [6].

4Direct proofs of convergence of Lindstedt series came much later; see [8, 16, 19].

5Such systems are sometimes called “properly–degenerate”.
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(which, in the planetary problem, are the square roots of the semimajor axes of the decou-

pled 2BP planet–Sun). This implies that the n conjugated angles (the mean anomalies of

the 2BP’s, in the planetary problem) are fast angles, bringing naturally in play averaging

theory, according to which the leading dynamics is governed by the average of the Hamil-

tonian over the fast angles; the resulting Hamiltonian is thus the sum of the integrable limit

and the average over the fast angles of the perturbation function (the “secular Hamiltonian”).

Now, what happens in the planetary problem is that the secular Hamiltonian has an elliptic

equilibrium in the origin of the remaining 2m symplectic variables, corresponding physi-

cally to circular orbits revolving in the same plane. Arnold formulated and gave a detailed

proof of a generalization of Kolmogorov’s theorem working for properly–degenerate sys-

tems with secular Hamiltonian possessing an elliptic equilibrium; he called such theorem

the “Fundamental Theorem”. The non–degeneracy hypotheses involve, now, not only the

integrable limit (which, as in Kolmogorov’s theorem, is assumed to define through the gra-

dient map an n–diffeomorphism), but also the Birkhoff normal form6 (“BNF” for short) of

the secular 2m variables, and in particular the first order Birkhoff invariants (the eigenval-

ues associated to the elliptic equilibrium) and the second order invariants, which may be

viewed as an (m × m) matrix. The “full” torsion (or “twist”) hypothesis is guaranteed if

such matrix is non–singular. After giving the (long and beautiful) proof of his Fundamental

Theorem, Arnold checks the torsion hypothesis in the simpler non–trivial case, namely, 2

planets constrained on a plane. He then discusses how to generalize first to the planar case

with n planets, and, from there, to the spacial general case.7

However, various serious problems prevented, for long time, to carry over Arnold’s strat-

egy. In first place, the standard hypotheses for constructing the BNF is that the first order

Birkhoff invariants are non–resonant (i.e., do not have vanishing non–trivial integer coeffi-

cient linear combinations) up to a certain order. But indeed, besides a well know resonance

related to rotation invariance, which Arnold was aware of, a second rather mysterious res-

onance was discovered by Herman in the 1990’s, namely, that the sum of the first order

Birkhoff invariants, in the general spatial case, vanishes identically; such resonance is now

known as “Herman resonance”. A second and more important problem is related to the tor-

sion hypothesis. Indeed, in the full 6n dimensional phase space, the planetary Hamiltonian

has an identically vanishing torsion (a fact, proved only recently in [12], ignored by Arnold

and only suspected by Herman, compare [20]). Finally, there is a rather vague suggestion by

Arnold to check non–degeneracies “bifurcating” from the planar problem, i.e., viewing the

planar problem as a limit of the spacial one, which is a fact hard to justify analytically.

Herman’s approach is rather different. After convincing himself that in the spatial case

there might be a serious torsion problem, he turned to a different KAM technique, based

on a different and somewhat weaker non–degeneracy condition, a condition which involves

only the first order Birkhoff invariants and the gradient map of the limiting integrable Hamil-

tonian. Such condition is that the first order Birkhoff invariants – which are parameterized

by the semimajor axes – do not lie identically in a fixed plane (“non–planarity” condition).

However, as mentioned above, this is not true in the planetary problem since the invari-

ants lie in the intersection of two planes corresponding to the rotational and the Herman’s

resonances. To overcome this problem, following a trick introduced by Poincaré, Herman

modifies the planetary Hamiltonian by adding a term proportional to a function Poisson–

6For generalities on Birkhoff normal form theory, see [21]; for a Birkhoff normal form theory adapted to the

NBP, see Proposition B.1 below.

7In Appendix C we report verbatim, some of Arnold’s claims and suggestions as given in [1].
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commuting with the planetary Hamiltonian; he manages to do that so that the modified

Hamiltonian is non–degenerate (i.e., the modified Birkhoff invariants are non–planar). Now,

by an abstract argument, two Poisson–commuting Hamiltonians have the same Lagrangian

transitive invariant tori, therefore the invariant tori gotten by applying the weaker KAM the-

ory to the modified Hamiltonian are invariant also for the planetary problem.8 This scheme

was worked out, clarified and published by Jacques Féjoz in [17]; see also [18].

Finally, in 2011, the original strategy of Arnold has been reconsidered, from a different

point of view, in the paper9 [11], where, thanks to new symplectic coordinates (called RPS

for RegularizedPlanetarySymplectic), it is proven that in a “partially reduced setting” the

planetary problem has indeed non–vanishing torsion. Recall that the “natural” phase space

(after linear momentum reduction) of the planetary (1+n)–body problem is 6n–dimensional

and that standard symplectic coordinates are given by Poincaré variables; this setting has

been used by Arnold (with minor modifications) and by Herman and Féjoz. In this setting

the planetary Hamiltonian is still rotation invariant and admits, therefore, besides energy,

other three global analytic integrals, which are the three components of the total angular

momentum. Now, while in three dimensions it is customary to use the celebrated Jacobi’s

classical reduction of the nodes10 in higher dimensions the reduction of the nodes is not

so popular, even though it was knonw since the early 1980’s thanks to the work of Deprit

[15]. In [11], (an action–angle version of) Deprit variables replace Delaunay variables and,

after a Poincaré regularization, one is lead to the new RPS variables. A main feature of

these variables is that one symplectic couple of the secular cartesian variables (related to the

inclination of the total angular momentum), say (pn, qn) are both cyclic coordinates (i.e.,

invariants), which means that the planetary Hamiltonian in such coordinates does not depend

on this couple of variables. The significance of this fact is that the phase space is foliated by

(6n − 2)–dimensional symplectic submanifold {(pn, qn) = const} on which the planetary

Hamiltonian has the same form. In this partially reduced11 setting the original Arnold’s

strategy can be carried out, torsion explicitely checked and all its dynamical consequences

drawn: All this will be described below.

2. The classical Hamiltonian of the planetary NBP

In this section (and in Appendix A) we review the classical Hamiltonian description of the

planetary NBP due, essentially, to Delaunay and Poincaré.

Newton’s equations for 1 + n bodies (point masses), which interact only through gravi-

tational attraction, are given by:

8However, besides not having information about the normal form around the tori of the original Hamiltonian

(which is intrinsic in this first order KAM theory), this abstract argument does not allow to read back the KAM

structure in the unmodified setting.

9This paper is based on the PhD thesis [23].

10For a symplectic description of Jacobi’s reduction of the nodes, see [4].

11Indeed, in these (6n − 2)–symplectic submanifold, the planetary Hamiltonian still admits an energy–

commuting integral, namely the Euclidean length of the total angular momentum. It is possible (and done in [11])

to further reduce to a fully rotationally reduced (6n−4)–dimensional phase space, however in such totally reduced

setting many symmetries and nice feature shared by Poincaré and RPS variables (such as D’Alembert rules, parities

in the secular variables, etc.) are lost and the symplectic description becomes somewhat more clumsy.



Metric stability of the planetary N-body problem 551

ü(i) =
∑

0≤j≤n
j 
=i

mj
u(j) − u(i)

|u(i) − u(j)|3 , i = 0, 1, ..., n , (2.1)

where u(i) =
(
u
(i)
1 , u

(i)
2 , u

(i)
3

) ∈ R3 are the cartesian coordinates of the ith body of mass

mi > 0, |u| = √u · u =
√∑

i u
2
i is the standard Euclidean norm, “dots” over functions

denote time derivatives, and the gravitational constant has been set to one (which is possible

by rescaling time t). These equations are equivalent to the (standard) Hamilton equations

associated to the Hamiltonian function12

ĤN :=

n∑
i=0

|U (i)|2
2mi

−
∑

0≤i<j≤n

mimj

|u(i) − u(j)| ,

where (U (i), u(i)) are standard symplectic variables (U (i) = miu̇
(i) is the momentum con-

jugated to u(i)) and the phase space is the “collisionless” open domain in R6(n+1) given

by

M̂ := {U (i), u(i) ∈ R3 : u(i) �= u(j) , 0 ≤ i �= j ≤ n} (2.2)

endowed with the standard symplectic form

n∑
i=0

dU (i) ∧ du(i) :=
∑

0≤i≤n
1≤k≤3

dU
(i)
k ∧ du

(i)
k . (2.3)

Exploiting the invariance of Newton’s equation by change of inertial frames, or, equivalently,

the existence of the vector–valued integral13 given by the total linear momentum
∑n

i=0 U
(i),

Poincaré showed how to make a “symplectic reduction” lowering by three units the number

of degrees of freedom. Indeed, the dynamics generated by ĤN on M̂ is equivalent to the

dynamics on

M :=
{
(X,x) = (X(1), ..., X(n), x(1), ..., x(n)) ∈ R6n : 0 �= x(i) �= x(j) , ∀ i �= j

}
,

(endowed with the standard symplectic form
∑n

i=1 dX
(i) ∧ dx(i)) by the Hamiltonian

Hplt(X,x) :=

n∑
i=1

|X(i)|2
2Mi

− Mim̄i

|x(i)| + μ
∑

1≤i<j≤n

X(i) ·X(j)

m0
− mimj

|x(i) − x(j)|

=: H(0)
plt(X,x) + μH(1)

plt(X,x) , (2.4)

where the mass of the Sun is14 m0 = m0 and the mass of the planets are mi = μmi

(1 ≤ i ≤ n), μ being a small parameter, while Mi :=
m0mi

m0+μmi
and m̄i := m0 + μmi. In

such descriptionM corresponds to the (symplectic) submanifold of M̂ of zero total linear

12I.e., the equations U̇
(i)
j = −∂

u
(i)
j

ĤN , u̇
(i)
j = ∂

U
(i)
j

ĤN , 0 ≤ i ≤ n, 1 ≤ j ≤ 3; for general information on

Hamiltonian systems, see, e.g., [2].

13Recall that F (X,x) is an integral forH(X,x) if {F,H} = 0 where {F,G} = FX ·Gx −Fx ·GX denotes

the (standard) Poisson bracket; in particular an integral F for H is constant for the H flow, i.e., F ◦ φt
H ≡ const.,

where φt
H denotes the Hamiltonian flow generated by H.

14Note the different character: upright for unscaled and italic for rescaled masses.
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momentum and zero total center of mass and x(i) = u(i) − u(0), for i ≥ 1, are heliocentric

coordinates; full details are given in Appendix A.

Obviously, in such variables, there is no more a conserved total linear momentum,15

however, the system is still invariant under rotations and the total angular momentum

C = (C1,C2,C3) :=
n∑
i=1

C(i) , C(i) := x(i) ×X(i) , (2.5)

is still a (vector–valued) integral for Hplt. The integrals Ci, however, do not commute (i.e.,

their Poisson brackets do not vanish16) but, for example, |C| and C3 are two commuting,

independent integrals, a remark that will be crucial in what follows.

Next, by regularizing the Delaunay action–angle coordinates for the n decoupled two–

body problems with Hamiltonian H(0)
plt in a neighborhood of co–circular and co–planar mo-

tions, Poincaré brings out in a neat way the nearly–integrable structure of planetary NBP. The

real–analytic symplectic variables doing the job are usually known as Poincaré variables: in

such variables the HamiltonianHplt(X,x) takes the form

Hp(Λ, λ, z) = hk(Λ) + μfp(Λ, λ, z) , (Λ, λ) ∈ Rn
+ × Tn , z := (η, p, ξ, q) ∈ R4n (2.6)

where the “Kepler” unperturbed term hk is given by

hk(Λ) := −
n∑
i=1

M3
i m̄

2
i

2Λ2
i

, Λi :=Mi

√
m̄iai, (2.7)

ai being the semimajor axis of the instantaneous two–body system formed by the ith planet

and the Sun; as phase space, we consider a collisionless domain around the “secular origin”

z = 0 (which corresponds to co–planar, co–circular motions) of the form

(Λ, λ, z) = (Λ, λ,η, p, ξ, q) ∈M6n
p := A× Tn ×B4n (2.8)

endowed with the symplectic form

n∑
i=1

dΛi ∧ λi +

n∑
i=1

ηi ∧ dξi +

n∑
i=1

dpi ∧ dqi; A is a set

of “well separated” semimajor axes

A :=
{
Λ : aj < aj < aj for 1 ≤ j ≤ n

}
(2.9)

where a1, · · · , an, a1, · · · , an, are positive numbers verifying aj < aj < aj+1 for any

1 ≤ j ≤ n, an+1 :=∞, and B4n is a 4n–dimensional ball around the secular origin z = 0.
A complete description of Delaunay and Poincaré variables is given in Appendix A.

Here, let us point out that the Hamiltonian (2.4) retains rotation and reflection invari-

ance and, in particular, invariance by rotation with respect the k(3)–axis and invariance by

reflection with respect to the coordinate planes. This implies that the perturbation fp in (2.6)

satisfies (classical) symmetry relations known as d’Alembert rules, which are given by the

following transformations:

15In particular,
∑n

i=1 X
(i) is not an integral for Hplt

16Indeed, {C1,C2} = C3, {C2,C3} = C1 and{C3,C1} = C2.
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(η, ξ, p, q)→ (−ξ,−η, q, p) , (Λ, λ)→

(
Λ, π2 − λ

)
(η, ξ, p, q)→ (η, ξ,−p,−q) , (Λ, λ)→ (Λ, λ)
(η, ξ, p, q)→ (−η, ξ, p,−q) , (Λ, λ)→ (Λ, π − λ)
(η, ξ, p, q)→ (η,−ξ,−p, q) , (Λ, λ)→ (Λ,−λ)
(Λ, λ, z)→ (Λ, λ1 + g, . . . , λn + g,Sgz)

(2.10)

where, for any g ∈ T, Sg acts as synchronous clock–wise rotation by the angle g in the

symplectic zi–planes:

Sg : z→ Sgz =
(
Sgz1, ...,Sgz2n

)
, Sg :=

(
cos g sin g
− sin g cos g

)
; (2.11)

compare (3.26)–(3.31) in [12]. By such symmetries, in particular, the averaged perturbation

fav
p (Λ, z) :=

1

(2π)n

∫
Tn

fp(Λ, λ, z)dλ , (2.12)

which is called the secular Hamiltonian, is even in z around the origin z = 0 and its expan-

sion in powers of z has the form

fav
p = C0(Λ) +Qh(Λ) · η

2 + ξ2

2
+Qv(Λ) · p

2 + q2

2
+ O(|z|4) , (2.13)

where Qh, Qv are suitable quadratic forms and Q · u2 denotes the 2–index contraction∑
i,j Qijuiuj (Qij , ui denoting, respectively, the entries of Q, u). This shows that z = 0 is

an elliptic equilibrium for the secular dynamics (i.e, the dynamics generated by fav
p ). The

explicit expression of such quadratic forms can be found, e.g. , in (36), (37) of [17] (revised

version).

The truncated averaged Hamiltonian

Hav

p (Λ, λ, z) := hk + μ
(
C0(Λ) +Qh(Λ) · η

2 + ξ2

2
+Qv(Λ) · p

2 + q2

2

)
is integrable, with 3n commuting integrals given by

Λi , ρi =
ηi

2 + ξi
2

2
, ri =

pi
2 + qi

2

2
, (1 ≤ i ≤ n) .

The general trajectory of this system fills a 3n–dimensional torus with n fast frequencies

∂Λihk(Λi) and 2n slow frequencies given by

μΩ = μ(σ, ς) = μ(σ1, · · · , σn, ς1, · · · , ςn) , (2.14)

σi and ςi being the real eigenvalues of Qh(Λ) and Qv(Λ), respectively. Such tori corre-

spond to n nearly co–planar and co–circular planets rotating around the Sun with Keplerian

frequencies ∂Λi
hk(Λi) and with small eccentricities and inclinations slightly and slowly os-

cillating with frequencies μσ and μς .

A fundamental problem in the planetary NBP concerns the perturbative analysis of the

integrable dynamics governed by Hav

p , when the full planetary Hamiltonian Hp is consid-

ered. The main technical tool is Kolmogorov’s 1954 Theorem [22] (which, incidentally, was
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clearly motivated by Celestial Mechanics) on the persistence under perturbation of quasi–

periodic motions for nearly–integrable system with real–analytic Hamiltonian in action–

angle variables given by

Hμ(I, ϕ) := h(I) + μf(I, ϕ) , (I, ϕ) ∈ Rd × Td. (2.15)

Kolmogorv’s Theorem, however, holds in a neighborhoods of points I0 where the integrable

Hamiltonian is non–degenerate in the sense that deth′′(I0) �= 0, where h′′ denotes the Hes-

sian matrix of h (equivalently, the frequency map I → h′(I) is a local diffeomorphism).

This condition is strongly violated by the planetary Hamiltonian since for μ = 0 the inte-

grable (Keplerian) limit depends only on n action variables (the Λ’s), while the number of

degrees of freedom is d = 3n. A nearly–integrable system with Hamiltonian as in (2.15) for

which h does not depend upon all the actions I1,...,Id is called properly–degenerate.17

In the next section we recall Arnold’s statement on the planetary NBP and outline his

strategy of proof based on a generalization of Kolmogorov’s theory to properly–degenerate

system.

3. Arnold’s theorem on the planetary NBP (1963)

In the 1963 paper [1] Arnold – probably in his deeper contribution to KAM theory and

Celestial Mechanics – formulated his main result as follows ([1, p. 127]):

Theorem 3.1. If the masses, eccentricities and inclinations of the planets are sufficiently
small, then for the majority of initial conditions the true motion is conditionally periodic
and differs little from Lagrangian motion18 with suitable initial conditions throughout an
infinite interval of time −∞ < t < +∞.

Proper degeneracies and Arnold’s “Fundamental Theorem”. As mentioned above, Kol-

mogorov opened the route to a rigorous proof of existence of (maximal) quasi–periodic

trajectories in Hamiltonian systems, but the planetary system violates drastically the main

hypotheses of his theorem. This was a main challenge for his young and brilliant student

Vladimir Igorevich Arnold, who at 26 gave a major impulse and draw the path which, even-

tually, would lead to a complete solution of the metric stability problem for the NBP.

One of the main steps – a result that in [1] Arnold called “The Fundamental Theorem” – is

to extend Kolmogorov’s Theorem to properly–degenerate systems, and, more specifically,

to properly–degenerate systems with “secular” elliptic equilibria (or, more precisely, elliptic

lower dimensional tori).

Let us proceed to formulate Arnold’s Fundamental Theorem.

LetM denote the phase spaceM :=
{
(I, ϕ, p, q) : (I, ϕ) ∈ V × Tn and (p, q) ∈ B

}
17In general, maximal quasi–periodic solutions (i.e., quasi–periodic solutions with d rationally–independent fre-

quencies) for properly–degenerate systems do not exist: trivially, any unperturbed properly–degenerate system on

a 2d dimensional phase space with d ≥ 2 will have motions with frequencies not rationally independent over Zd.

But they may exist under further conditions on the perturbation f , as we shall see.

18Arnold defines the “Lagrangian motions”, at p. 127 as follows: the Lagrangian motion is conditionally periodic

and to the n “rapid” frequencies of the Kepler motion are added n (in the planar problem) or 2n− 1 (in the space

problem) “slow” frequencies of the secular motions. This dynamics corresponds, essentially, to the above “truncated

integrable planetary dynamics”. The missing frequency in the space problem is because one of the spatial secular

frequency, say, ςn vanishes identically; compare Eq. (3.3) below.
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where V is an open bounded region in Rn and B is a ball around the origin in R2m;M is

equipped with the standard symplectic form

dI ∧ dϕ+ dp ∧ dq =

n∑
i=1

dIi ∧ dϕi +
m∑
i=1

dpi ∧ dqi .

Let, also, Hμ be a real–analytic Hamiltonian onM of the form Hμ(I, ϕ, p, q) := h(I) +
μf(I, ϕ, p, q), and denote by fav the average of f over the “fast angles” ϕ: fav(I, p, q) :=∫
Tn

f(I, ϕ, p, q)
dϕ

(2π)n
.

Theorem 3.2 (“The Fundamental Theorem”; [1]). Assume that fav is of the form

fav = f0(I) +
m∑
j=1

Ωj(I)rj +
1

2
τ(I)r · r + o4 , rj :=

p2j + q2j
2

, (3.1)

where τ is a symmetric (m ×m)–matrix and lim(p,q)→0 |o4|/|(p, q)|4 = 0. Assume, also,
that I0 ∈ V is such that

deth′′(I0) �= 0 (∗) ; det τ(I0) �= 0 (∗∗) . (3.2)

Then, in any neighborhood of {I0} × Td × {(0, 0)} ⊆ M there exists a positive measure
set of phase points belonging to analytic “KAM tori” spanned by maximal quasi–periodic
solutions with n+m rationally–independent (Diophantine19) frequencies, provided μ is small
enough.

Let us make some remarks.

(i) The function fav in (3.1) is said to be in Birkhoff normal form (with respect to the

variables p, q) up to order 4 (compare [21] and Appendix B below). Actually, Arnold

requires that fav is in Birkhoff normal form up to order 6 (instead of 4); but such con-

dition can be relaxed and (3.1) is sufficient: compare [9], where Arnold’s Fundamental

Theorem is revisited and various improvements obtained.

(ii) Condition (3.2)–(∗) is immediately seen to be satisfied in the general planetary prob-

lem; the correspondence with the planetary Hamiltonian in Poincaré variables (2.6)

being the following: m = 2n, I = Λ, ϕ = λ, z = (p, q), h = hk, f = fp.

(iii) Condition (3.2)–(∗∗) is a “twist” or “torsion” condition on the secular Hamiltonian.

It is actually possible to develop a weaker KAM theory where no torsion is required.

This theory is due to Rüssmann [27], Herman and Féjoz [17], where fav is assumed

to be in Birkhoff normal form up to order 2, fav = f0(I) +
∑m

j=1 Ωj(I)rj + o2, and
the secular frequency map I → Ω(I) is assumed to be non–planar, meaning that no

neighborhood of I0 is mapped into an hyperplane.

(iv) The ingenious idea of Arnold in order to remove the proper degeneracy of the system

goes roughly as follows. Instead of h(I), consider ĥ(I, r) := h(I) + μfav
2 (I, r) as

a new unperturbed part viewed as a function of the actions (I, r), fav
2 (I, r) being the

19A vector ω ∈ Rd is Diophantine if there exist positive constants γ and c such that |ω · k| ≥ γ/|k|c, ∀ k ∈
Zd\{0}.
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truncation of fav in (3.1) up to degree two in the variables r. By averaging theory, the

original Hamiltonian can be symplectically conjugated to a new “effective” nearly–

integrable system h̃(I, r) + μaf̂(I, r, ϕ, ψ) ((ϕ, ψ) ∈ Tn × Tm) with a ∈ N large

enough and h̃ close to ĥ: this is the starting point for constructing Kolmogorov (n+m–

dimensional) tori (note that the full torsion condition mentioned in the introduction

corresponds to the Kolmogorov non–degeneracy of ĥ).

(v) The elliptic secular equilibrium (p, q) = 0 plays a fundamental rôle in this construc-

tion. The density of the tori is closer and closer to one as soon as the variables (p, q)
(eccentricities and inclinations, in the planetary problem) approach the origin; see

also Theorem 5.3 below. Arnold however noticed that, at least in the case of the planar

three–body problem, a stronger result holds: fav is integrable and one can replace

fav
2 with fav in the definition of ĥ (see the previous item); this yields a more global

and astronomically relevant result. Indeed, the density of the tori depends only on

μ and not on eccentricities and inclinations. The independence of the Kolmogorov

tori from eccentricities (in such cases inclinations are not independent quantities20)

has been proved also for the spatial three–body case and the planar general case [24]

(notwithstanding the fact that fav is no longer integrable).

(vi) Actually, the torsion assumption (3.2)–(∗∗) implies stronger results:

− It is possible to give explicit and accurate bounds on the measure of the “Kol-

mogorov set”, i.e., the set covered by the closure of quasi–periodic motions ([9]).

− The quasi–periodic motions found belong to a smooth family of non–degenerate

Kolmogorov tori, which means, essentially, that the dynamics can be linearized in a

neighborhood of each torus.

− The above Kolmogorov tori are cumulation sets for periodic orbits with longer and

longer periods. Thus the measure of the closure of periodic orbits tends to fill a set of

full measure as the distance from the secular origin z = 0 tends to zero, showing that

a “metric asymptotic” version of Poincaré’s conjecture about the density of periodic

orbits in phase space holds in the general planetary NBP around co–planar and co–

circular motions; see [7].

On the basis of Theorem 3.2, Arnold’s strategy is to compute the Birkhoff normal form

(3.1) of the secular Hamiltonian fav
p in (2.12) and to check the non–vanishing of the torsion

(3.2)–(∗∗), a program which he carried out completely only in the planar three–body case

(n = 2).

The planar three–body case (Arnold, 1963). In the planar case the Poincaré variables

become simply (Λ, λ, z) := (Λ, λ,η, ξ) ∈ Rn
+ × Tn × R2n, with the Λ’s as in (2.7) and

λi = �i + gi ,

{
ηi =

√
2(Λi − Γi) cos gi

ξi = −
√
2(Λi − Γi) sin gi ,

where, referring to the instantaneous ith two–body system planet–Sun, �i is the mean

anomaly, gi the argument of the perihelion and Γi the absolute value of the ith angular

20In the spatial three–body problem completely reduced by rotations, the mutual inclination is a function of

eccentricities.
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momentum (compare Appendix A for more details). The planetary, planar Hamiltonian, is

given by

Hp,pln(Λ, λ, z) = hk(Λ) + μfp,pln(Λ, λ, z) , z := (η, ξ) ∈ R2n

with 1
(2π)n

∫
Tnfp,pln =: f

av
p,pln = C0(Λ) +Qh(Λ) · η

2+ξ2

2 + O(|z|4). In Eq. (3.4.31), p.138

of [1], Arnold computed the first and second order Birkhoff invariants for n = 2 finding, in

the asymptotics a1 � a2:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ω1 = −3

4
m1m2

(a1
a2

)2 1

a2Λ1

(
1 + O

(a1
a2

))
Ω2 = −3

4
m2

2

1

a2Λ2

(
1 + O

(a1
a2

)2)
τ = m1m2

a21
a32

(
3

4Λ2
1

− 9
4Λ1Λ2

− 9
4Λ1Λ2

− 3
Λ2

2

)
(1 + O(a

−5/4
2 )) ,

which shows that the Ωj’s are non resonant up to any finite order (in a suitable Λ–domain),

so that the planetary, planar Hamiltonian can be put in Birkhoff normal form up to order 4

and that the second order Birkhoff invariants are non–degenerate in the sense that21

det τ = −(m1m2)
2 117

16

a41
a62(Λ1Λ2)2

(1 + o(1)) = −117
16

1

m2
0

a31
a72

(1 + o(1)) �= 0.

This allow to apply Theorem 3.2 and to prove Arnold’s planetary theorem in the planar

three–body (n = 2) case.
An extension of this method to the spatial three–body problem, exploiting Jacobi’s re-

duction of the nodes and its symplectic realization, is due to P. Robutel [26].

Obstacles to the generalization of Arnold’s project: Secular degeneracies. In the gen-

eral spatial case it is customary to call σi the eigenvalues ofQh(Λ) and ςi the eigenvalues of

and Qv(Λ), so that Ω = (σ, ς); compare (2.14).

It turns out that such invariants satisfy identically the following two secular resonances

ςn = 0 ,

n∑
i=1

(σi + ςi) = 0 (3.3)

and, actually, it can be shown that these are the only exact resonances identically satisfied by

the first order Birkhoff invariants; compare [17, Prop. 78 at p. 1575].

The first resonance was well known to Arnold, while the second one was apparently

discovered by M. Herman in the 1990’s and is now known as Herman resonance.

Both resonances violate Birkhoff’s non–resonance condition (compare Eq. (B.1) below)

but do not violate a more special Birkhoff condition sufficient for rotational invariant sys-

tems, as explained in Appendix B (compare, in particular Eq. (B.3)).

There is, however, a much more serious problem for Arnold’s approach, namely, a strong

degeneracy of the second order Birkhoff invariance, still a reflection of rotational invariance.

Indeed, the torsion matrix τ is degenerate, as clarified in [12], where it is proven that τ is

21In [1] the τij are defined as 1/2 of the ones defined here.
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equivalent to a matrix of the form (
τ̄ 0
0 0

)
(3.4)

τ̄ being a matrix of order (2n− 1).

4. Proofs of Arnold’s theorem

Herman-Fejóz proof (2004). In 2004 J. Fejóz [17] published the first complete proof of

a general version of Arnold’s planetary theorem: this proof completed a long project car-

ried out by M. Herman. In order to avoid fourth order computations, Herman (also because

seemed to suspect the degeneracy of the matrix of the second order Birkhoff invariant; com-

pare the Remark towards the end of p. 24 of [20]), turned to a weaker KAM theory, which

makes use of a “first order KAM condition” based on the non–planarity of the frequency

map. But, the resonances (3.3) show that the frequency map lies in the intersection of two

planes, violating the non–planarity condition. To overcome this problem Herman and Féjoz

use a trick by Poincarè, consisting in modifying the Hamiltonian by adding a commuting

Hamiltonian, so as to remove the degeneracy. By a Lagrangian intersection theory argu-

ment, if two Hamiltonian commute and T is a Lagrangian invariant transitive torus for one

of them, then T is invariant (but not necessarly transitive) also for the other Hamiltonian;

compare [17, Lemma 82, p. 1578]. Thus, the KAM tori constructed for the modified Hamil-

tonian are indeed invariant tori also for the original system. Now, the expression of the

vertical component of the total angular momentum C3 has a particular simple expression in

Poincaré variables: indeed, C3 =
∑n

j=1

(
Λj − 1

2 (η
2
j +ξ2j +p2j +q2j )

)
, so that the modified

Hamiltonian Hδ := Hp(Λ, λ, z) + δC3 is easily seen to have a non–planar frequency map

(first order Birlhoff invariants), and the above abstract remark applies.

Herman’s KAM theory (as given in [17]) works in the C∞ category, so that the tori

obtained in [17] are proven to be C∞, on the other hand, since the planetary Hamiltonian

flow is real–analytic, it is natural to expect that also their maximal quasi–periodic solutions

(and the tori they span) are real–analytic. This is proven in [13], where Rüßmann first–order

KAM theory [27] is extended to properly–degenerate systems.

Completion of Arnold’s project (2011). In [11] Arnold’s original strategy is reconsidered

and full torsion of the planetary problem is proved by introducing new symplectic variables

(called rps–variables standing for Regularized Planetary Symplectic variables), which al-

low for a symplectic partial reduction of rotations eliminating one degree of freedom (i.e.,

lowering by two units the dimension of the phase space). In such reduced setting the first

resonance in (3.3) disappears (but not the second one) and the question about the torsion is

reduced to study the determinant of τ̄ in (3.4), which, in fact, is shown to be non–singular;

compare [11, §8] and [12] (where a precise connection is made between the Poincaré and

the rps–variables compare also Theorem 5.1 below).

In the next section we shall review the main ideas and techniques discussed in [11].
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5. A new symplectic view of the planetary phase space and completion of
Arnold’s project

We start by describing the new set of symplectic variables, which allow to have a new insight

on the symplectic structure of the phase space of the planetary model, or, more in general,

of any rotational invariant model.

The idea is to start with action–angle variables having, among the actions, two inde-

pendent commuting integrals related to rotations, for example, the Euclidean length of the

total angular momentum C and its vertical component C3, and then (imitating Poincaré) to

regularize around co–circular and co–planar configurations.

The variables that do the job are a “planetary” action–angle version of certain variables

introduced by A. Deprit in22 1983 [15].

The Regularized planetary symplectic (RPS) variables. Let n ≥ 2, 1 ≤ i ≤ n, and con-

sider the “partial angular momenta” S(i) :=
∑i

j=1 C
(j), (note that S(n) =

∑n
j=1 C

(j) =: C)

and define the “Deprit nodes”⎧⎨⎩ νi := S(i) × C(i) , 2 ≤ i ≤ n
ν1 := ν2
νn+1 := k(3) × C =: ν̄ ;

(recall the definition of the “individual” and total angular momenta in (2.5)).

The Deprit action–angle variables (Λ,Γ,Ψ, �, γ, ψ) are defined as follows. Let Pi denote
the coordinates of the ith instantaneous perihelion (relatively to the instantaneous planet–

Sun 2–body system), let (k(1), k(2), k(3)) be the standard orthonormal basis in R3, and, for

u, v ∈ R3 lying in the plane orthogonal to a non–vanishing vector w, denote by αw(u, v)
the positively oriented angle (mod 2π) between u and v (orientation follows the “right hand

rule”, the thumb being w).

The Deprit variables Λ, Γ and � are in common with the Delaunay variables (compare

(A.4) in Appendix A), while

γi := αC(i)(νi, Pi), Ψi :=

{ |S(i+1)| , 1 ≤ i ≤ n− 1
C3 := C · k(3) i = n,

ψi :=

{
αS(i+1)(νi+2, νi+1) 1 ≤ i ≤ n− 1
ζ := αk(3)(k(1), ν̄) i = n.

Define also G := |C| = |S(n)|.
The “Deprit inclinations” ιi are defined through the relations

cos ιi :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C(i+1) · S(i+1)

|C(i+1)||S(i+1)| , 1 ≤ i ≤ n− 1 ,

C · k(3)
|C| , i = n .

Similarly to the case of the Delaunay variables, the Deprit action–angle variables are not

defined when the Deprit nodes νi vanish or the eccentricitiy ei /∈ (0, 1), but on the do-

22See also [10] and [11].
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main where they are well defined they yield a real–analytic set of symplectic variables, i.e.,∑n
i=1 dX

(i) ∧ dx(i) =
∑n

i=1 dΛi ∧ d�i+ dΓi ∧ dγi+ dΨi ∧ dψi; for a proof, see [10] or §3

of [11].

The rps variables are given by23 (Λ, λ, z) := (Λ, λ, η, ξ, p, q) with (again) the Λ’s as in

(2.7) and, for 1 ≤ i ≤ n,

λi = �i + γi + ψn
i−1 ,

{
ηi =

√
2(Λi − Γi) cos

(
γi + ψn

i−1

)
ξi = −

√
2(Λi − Γi) sin

(
γi + ψn

i−1

)
{

pi =
√
2(Γi+1 +Ψi−1 −Ψi) cosψ

n
i

qi = −
√
2(Γi+1 +Ψi−1 −Ψi) sinψ

n
i

where Ψ0 := Γ1, Γn+1 := 0, ψ0 := 0, ψn
i :=

∑
i≤j≤n ψj . On the domain of definition, the

rps variables are symplectic:

n∑
i=1

dΛi ∧ d�i + dΓi ∧ dγi + dΨi ∧ dψi =
n∑
i=1

dΛi ∧ dλi + dηi ∧ dξi + dpi ∧ dqi ;

for a proof, see [23] or [11, §4].

As phase space, consider a set of the same form as in (2.8), (2.9), namely

(Λ, λ, z) ∈M6n
rps := A× Tn ×B4n (5.1)

with B a 4n–dimensional ball around the origin (origin, which corresponds, as in Poincaré

variables, to planar co–circular motions).

Poincaré and rps variables are intimately connected: If we denote by

φrpsp : (Λ, λ, z)→ (Λ, λ, z) (5.2)

the symplectic trasformation between rps and Poincaré variables, then the following result

holds.

Theorem 5.1 ([12]). The symplectic map φrps
p in (5.2) has the form

λ = λ+ ϕ(Λ, z) z = Z(Λ, z)
where ϕ(Λ, 0) = 0 and, for any fixed Λ, the map Z(Λ, ·) is 1:1, symplectic (i.e., it preserves
the two form dη∧dξ+dp∧dq) and its projections verify, for a suitable V = V(Λ) ∈ SO(n),

ΠηZ = η +O3 , ΠξZ = ξ +O3 , ΠpZ = Vp+O3 , ΠqZ = Vq +O3 .

where O3 = O(|z|3).

Partial reduction of rotations. Recalling that Γn+1 = 0,Ψn−1 = |S(n)| = |C|,Ψn = C3,

ψn = αk(3)(k(1), k3 × C) one sees that{
pn =

√
2(|C| − C3) cosψn

qn = −
√
2(|C| − C3) sinψn ,

23Beware of notations: we use upright characters for Poincaré variables (Λ, λ, z) := (Λ, λ, η, p, ξ, q) and

standard italic for rps variables (Λ, λ, z) := (Λ, λ, η, ξ, p, q).
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showing that the conjugated variables pn and qn are both integrals and hence both cyclic for

the planetary Hamiltonian, which, therefore, in such variables, will have the form

Hrps(Λ, λ, z̄) = hk(Λ) + μfrps(Λ, λ, z̄) , (5.3)

where z̄ denotes the set of variables

z̄ := (η, ξ, p̄, q̄) :=
(
(η1, . . . , ηn), (ξ1, . . . , ξn), (p1, . . . , pn−1), (q1, . . . , qn−1)

)
.

In other words, the phase spaceM6n
rps in (5.1) is foliated by (6n−2)–dimensional invari-

ant manifolds

M6n−2
pn,qn :=M6n

rps |pn,qn=const , (5.4)

and since the restriction of the standard symplectic form on such manifolds is simply dΛ ∧
dλ + dη ∧ dξ + dp̄ ∧ dq̄, such submanifolds are symplectic and the planetary flow is the

standard Hamiltonian flow generated by Hrps in (5.3). The submanifolds depend upon a

particular orientation of the total angular momentum: in particular, M6n−2
0 correspond to

the total angular momentum parallel to the vertical k3–axis. Notice, also, that the analytic

expression of the planetary HamiltonianHrps is the same on each submanifold.

In view of these observations, it is enough to study the planetary flow of Hrps on, say,

the vertical submanifoldM6n−2
0 .

Planetary Birkhoff normal forms and torsion. The rps variables share with Poincaré vari-

ables classical D’Alembert symmetries, i.e., Hrps is invariant under the transformations

(2.10), S being as in (2.11); compare also Remark 3.3 of [12].

This implies that the averaged perturbation fav
rps :=

1

(2π)n

∫
Tn

frps dλ also enjoys

D’Alembert rules and thus has an expansion analogue to (2.13), but independent of (pn, qn):

fav
rps(Λ, z̄) = C0(Λ) +Qh(Λ) · η

2 + ξ2

2
+ Q̄v(Λ) · p̄

2 + q̄2

2
+ O(|z̄|4) (5.5)

with Qh of order n and Q̄v of order (n− 1). Notice that the matrix Qh in (5.5) is the same

as in (2.13), since, when p = (p̄, pn) = 0 and q = (q̄, qn) = 0, Poincaré and rps variables

coincide.

Using Theorem 5.1, one can also show thatQv :=

(
Q̄v 0
0 0

)
is conjugated (by a unitary

matrix) to Qv in (2.13), so that the eigenvalues ς̄i of Q̄v coincide with (ς1, ..., ςn−1), as one
naively would expect.

In view of the remark after (3.3), and of rotation–invariant Birkhoff theory,24 one sees

that one can construct, in an open neighborhood of co–planar and co–circular motions, the

Birkhoff normal form of fav
rps at any finite order.

More precisely, for ε > 0 small enough, denoting

Pε := A× Tn ×B4n−2
ε , B4n−2

ε := {z̄ ∈ R4n−2 : |z̄| < ε} ,
an ε–neighborhood of the co–circular, co–planar region, one can find a real–analytic sym-

plectic transformation φμ : (Λ, λ̆, z̆) ∈ Pε → (Λ, λ, z̄) ∈ Pε such that H̆ := Hrps ◦ φμ =

24According to which the only forbidden frequencies for constructing the Birkhoff normal form are generated by

those integer vectors k such that
∑

ki = 0; compare Proposition B.2, Appendix B below.
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hk(Λ) + μf(Λ, λ̆, z̆) with

f̆av(Λ, z̆) :=
1

(2π)n

∫
Tn

f dλ̆ = C0(Λ) + Ω · R̆ +
1

2
τ̄ R̆ · R̆ + P̆(Λ, z̆)

where ⎧⎪⎪⎨⎪⎪⎩
Ω = (σ, ς̄)

z̆ := (η̆, ξ̆, p̆, q̆) , R̆ = (ρ̆, r̆) , P̆(Λ, z̆) = O(|z̆|6) ,
ρ̆ = (ρ̆1, · · · , ρ̆n) , r̆ = (r̆1, · · · , r̆n−1) ,

ρ̆i :=
η̆2
i+ξ̆2i
2 , r̆i =

p̆2i+q̆2i
2

With straightforward (but not trivial!) computations, one can then show full torsion for

the planetary problem.

More precisely, one finds (compare Proposition 8.1 of [11]):

Theorem 5.2. For n ≥ 2 and 0 < δ� < 1 there exist μ̄ > 0, 0 < a1 < a1 < · · · < an < an
such that, on the set A defined in (2.9) and for 0 < μ < μ̄, the matrix τ̄ is non–singular:
[i.e., double point should be added] det τ̄ = dn(1 + δn), where |δn| < δ� and

dn := (−1)n−1 3

5

(45
16

1

m2
0

)n−1 m2

m1m0
a1

( a1
an

)3 ∏
2≤k≤n

( 1
ak

)4
.

Kolmogorov tori for the planetary problem. At this point one can apply to the planetary

Hamiltonian in normalized variables H̆(Λ, λ̆, z̆) Arnold’s Theorem 3.2 above completing

Arnold’s project on the planetary N–body problem.

Indeed, by using the refinements of Theorem 3.2 as given in [9], from Theorem 5.2 there

follows

Theorem 5.3. There exists positive constants ε∗, c∗ and C∗ such that the following holds.
If 0 < ε < ε∗ and 0 < μ < ε6/(log ε−1)c∗ then each symplectic submanifoldM6n−2

pn,qn (5.4)

contains a positive measure Hrps –invariant Kolmogorov set Kpn,qn , which is actually the
suspension of the same Kolmogorov set K ⊆ Pε, which is H̆–invariant.
Furthermore, K is formed by the union of (3n− 1)–dimensional Lagrangian, real–analytic
tori on which the H̆–motion is analytically conjugated to linear Diophantine quasi–periodic
motions with frequencies (ω1, ω2) ∈ Rn × R2n−1 with ω1 = O(1) and ω2 = O(μ).

Finally, K satisfies the bound25 measPε ≥ measK ≥
(
1− C∗

√
ε
)
measPε.

Conley-Zehnder stable periodic orbits. The tori T ∈ K form a (Whitney) smooth family

of non–degenerate Kolmogorov tori, which means the following. The tori in K can be pa-

rameterized by their frequency ω ∈ R3n−1 (i.e., T = Tω) and there exists a real–analytic

symplectic diffeomorphism ν : (y, x) ∈ Bm × Tm → ν(y, x;ω) ∈ Pε, m := 3n − 1,
uniformly Lipschitz in ω (actually C∞ in the sense of Whitney) such that, for each ω

• H̆ ◦ ν = E + ω · y +Q; (Kolmogorov’s normal form)

• E ∈ R (the energy of the torus); ω ∈ Rm is a Diophantine vector;

• Q = O(|y|2) and det
∫
Tm

∂yyQ(0, x) dx �= 0 , (non–degeneracy)

25In particular, measK � ε4n−2 � measPε.
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• Tω = ν(0,Tm).

Now, in the first paragraph of [14] Conley and Zehnder, putting together KAM theory (and in

particular exploiting Kolmogorv’s normal form for KAM tori) together with Birkhoff–Lewis

fixed–point theorem show that long–period periodic orbits cumulate densely on Kolmogorov

tori so that, in particular, the Lebesgue measure of the closure of the periodic orbits can be

bounded below by the measure of the Kolmogorov set. Notwithstanding the proper degen-

eracy, this remark applies also in the present situation and as a consequence of Theorem 5.3

and of the fact that the tori in K are non–degenerate Kolmogorov tori it follows ([7]) that in

the planetary model the measure of the closure of the periodic orbits in Pε can be bounded

below by a constant times ε4n−2.

A. Details on the classical Hamiltonian structure

Inertial manifold. Equations (2.1) are invariant by change of “inertial frames”, i.e., by

change of variables of the form u(i) → u(i) − (a+ ct) with fixed a, c ∈ R3. This allows to

restrict the attention to the manifold of “initial data” given by

n∑
i=0

miu
(i)(0) = 0 ,

n∑
i=0

miu̇
(i)(0) = 0 ; (A.1)

indeed, just replace the coordinates u(i) by u(i) − (a+ ct) with

a := m−1
tot

n∑
i=0

miu
(i)(0) and c := m−1

tot

n∑
i=0

miu̇
(i)(0) , mtot :=

n∑
i=0

mi .

The total linear momentum Mtot :=
∑n

i=0miu̇
(i) does not change along the flow of (2.1),

i.e., Ṁtot = 0 along trajectories; therefore, by (A.1), Mtot(t) vanishes for all times. But,

then, also the position of the total center of mass B(t) :=
∑n

i=0miu
(i)(t) is constant (Ḃ =

0) and, again by (A.1), B(t) ≡ 0. In other words, the manifold of initial data (A.1) is

invariant under the flow generated by (2.1).

The Linear momentum reduction. In view of the invariance properties discussed above,

in the variables (U (i), u(i)) ∈ M̂, (recall (2.2) and that U (i) := miu̇
(i)), it is enough to

consider the submanifold M̂0 := {(U, u) ∈ M̂ :
n∑
i=0

miu
(i) = 0 =

n∑
i=0

U (i)}, which

corresponds to the manifold described in (A.1).

The submanifold M̂0 is symplectic, i.e., the restriction of the form (2.3) to M̂0 is again

a symplectic form; indeed:
( n∑
i=0

dU (i) ∧ du(i)
)∣∣∣
M̂0

=
n∑
i=1

m0 +mi

m0
dU (i) ∧ du(i).

Poincaré’s symplectic reduction (“reduction of the linear momentum”) goes as follows.

Let φhe : (R, r)→ (U, u) be the linear transformation given by

φhe :

{
u(0) = r(0) , u(i) = r(0) + r(i) , (i = 1, ..., n)
U (0) = R(0) −∑n

i=1 R
(i) , U (i) = R(i) , (i = 1, ..., n) ;

(A.2)
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such transformation is symplectic, i.e.,
∑n

i=0 dU
(i)∧du(i) =

∑n
i=0 dR

(i)∧dr(i). recall that
this means, in particular, that in the new variables the Hamiltonian flow is again standard:

more precisely, one has that φtĤ
N

◦ φhe = φhe ◦ φtĤ
N
◦φ.

Lettingmtot :=
∑n

i=0mi one sees that, in the new variables, M̂0 reads

{
(R, r) ∈ R6(n+1) : R(0) = 0, r(0) = −m−1

tot

n∑
i=1

mir
(i) , 0 �= r(i) �= r(j) ∀ 1 ≤ i �= j ≤ n

}
.

The restriction of the 2–form (2.3) to M̂0 is simply

n∑
i=1

dR(i) ∧ dr(i) and

H
N := ĤN ◦ φhe|M0 =

n∑
i=1

|R(i)|2
2 m0mi

m0+mi

− m0mi

|r(i)| +
∑

1≤i<j≤n

R(i) ·R(j)

m0
− mimj

|r(i) − r(j)| .

The dynamics generated by ĤN on M̂0 is equivalent to the dynamics generated by the

Hamiltonian (R, r) ∈ R6n → HN(R, r) on

M0 :=
{
(R, r) = (R(1), ..., R(n), r(1), ..., r(n)) ∈ R6n : 0 �= r(i) �= r(j) , ∀i �= j

}
with respect to the standard symplectic form

∑n
i=1 dR

(i) ∧ dr(i); to recover the full dy-

namics on M̂0 from the dynamics onM0 one will simply set R(0)(t) ≡ 0 and r(0)(t) :=

−m−1
tot

n∑
i=1

mir
(i)(t).

Since we are interested in the planetary case, we perform the trivial rescaling by a small

positive parameter μ:

m0 := m0 , mi = μmi (i ≥ 1) , X(i) :=
R(i)

μ
, x(i) := r(i) ,

Hplt(X,x) :=
1

μ
HN(μX, x) ,

a transformation which leaves unchanged Hamilton’s equations.

Delaunay and Poincaré variables. The Hamiltonian H(0)
plt in (2.4) governes the motion of

n decoupled two–body problems with Hamiltonian

h
(i)
2B =

|X(i)|2
2Mi

− Mim̄i

|x(i)| , (X(i), x(i)) ∈ R3 × R3
∗ := R3 × (R3\{0}) .

Such two–body sytems are, as well known, integrable. The explicit “symplectic integration”

is done by means of the Delaunay variables, whose construction we, now, briefly, recall (for

full details and proofs, see, e.g., [5]).

Assume that h
(i)
2B(X

(i), x(i)) < 0 so that the Hamiltonian flow φt
h
(i)
2B

(X(i), x(i)) evolves

on a Keplerian ellipse Ei and assume that the eccentricity ei ∈ (0, 1).
Let ai, Pi denote, respectively, the semimajor axis and the perihelion of Ei.
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Let C(i) denote the ith angular momentum C(i) := x(i) × y(i).
Let us, also, introduce the “Delaunay nodes”

ν̄i := k(3) × C(i) 1 ≤ i ≤ n , (A.3)

where (k(1), k(2), k(3)) is the standard orthonormal basis in R3. Finally, for u, v ∈ R3

lying in the plane orthogonal to a non–vanishing vector w, let αw(u, v) denote the positively

oriented angle (mod 2π) between u and v (orientation follows the “right hand rule”).

The Delaunay action–angle variables (Λi,Γi,Θi, �i, gi, θi) are, then, defined as{
Λi :=Mi

√
m̄iai

�i := mean anomaly of x(i) on Ei
,

{
Γi := |C(i)| = Λi

√
1− e2i

gi := αC(i)(ν̄i, Pi){
Θi := C(i) · k(3)
θi := αk(3)(k(1), ν̄i)

(A.4)

Notice that the Delaunay variables are defined on an open set of full measure of the

Cartesian phase space R3n × R3n
∗ , namely, on the set where ei ∈ (0, 1) and the nodes ν̄i

in (A.3) are well defined; on such set the “Delaunay inclinations” ii defined through the

relations

cos ii :=
C(i) · k(3)
|C(i)| =

Θi

Γi
, (A.5)

are well defined and we choose the branch of cos−1 so that ii ∈ (0, π).
The Delaunay variables become singular when C(i) is vertical (the Delaunay node is no

more defined) and in the circular limit (the perihelion is not unique). In these cases different

variables have to been used (see below).

On the set where the Delaunay variables are well posed, they define a symplectic set of

action–angle variables, i.e.,
∑n

i=1 dX
(i)∧dx(i) =

∑n
i=1 dΛi∧d�i+dΓi∧dgi+dΘi∧dθi,

for a proof, see §3.2 of [5].

In Delaunay action–angle variables ((Λ,Γ,Θ), (�, g, θ)) the Hamiltonian H(0)
plt takes the

form (2.7). We shall restrict our attention to the collisionless phase space

Mplt :=
{
Λi > Γi > Θi > 0 ,

Λi

Mi
√
m̄i
�= Λj

Mj
√
m̄j

, ∀ i �= j
}
× T3n ,

endowed with the standard symplectic form
∑n

i=1 dΛi ∧ d�i + dΓi ∧ dgi + dΘi ∧ dθi.

Notice that the 6n–dimensional phase spaceMplt is foliated by 3n–dimensional H(0)
plt–

invariant tori {Λ,Γ,Θ} × T3, which, in turn, are foliated by n–dimensional tori {Λ} × Tn,

expressing geometrically the degeneracy of the integrable Keplerian limit of the (1 + n)–
body problem.

A regularization of the Delaunay variables in their singular limit was introduced by

Poincaré, in such a way that the set of action–angle variables ((Γ,Θ), (g, θ)) is mapped onto

cartesian variables regular near the origin, which corresponds to co–circular and co–planar

motions, while the angles conjugated to Λi, which remains invariant, are suitably shifted.

More precisely, the Poincaré variables are given by (Λ, λ, z) := (Λ, λ,η, ξ, p, q) ∈ Rn
+×

Tn × R4n, with the Λ’s as in (A.4) and

λi = �i + gi + θi,

{
ηi =

√
2(Λi − Γi) cos (θi + gi)

ξi = −
√
2(Λi − Γi) sin (θi + gi)

,

{
pi =

√
2(Γi −Θi) cos θi

qi = −
√
2(Γi −Θi) sin θi
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Notice that ei = 0 corresponds to ηi = 0 = ξi, while ii = 0 corresponds to pi = 0 = qi;
compare (A.4) and (A.5).

On the domain of definition, the Poincaré variables are symplectic

n∑
i=1

dΛi ∧ d�i + dΓi ∧ dgi + dΘi ∧ dθi =
n∑
i=1

dΛi ∧ dλi + dηi ∧ dξi + dpi ∧ dqi ;

for a proof, see Appendix C of [4].

B. Birkhoff normal forms

In this appendix we recall a few known and less known facts about the general theory of

Birkhoff normal forms.

Consider as phase space a 2m ball B2m
δ around the origin in R2m and a real–analytic

Hamiltonian of the form H(w) = c0 +Ω · r + o(|w|2) where{
w = (u1, . . . , um, v1, . . . , vm) ∈ R2m ,

r = (r1, . . . , rm) , rj =
u2
j+v2

j

2 .

the symplectic form being
∑

dui ∧ dvi. The components Ωj of Ω are called the first order

Birkhoff invariants. The following is a classical result due to G.D. Birkhoff.

Proposition B.1. Assume that the first order Birkhoff invariants Ωj verify, for some a > 0
and integer s,

|Ω · k| ≥ a > 0, ∀ k ∈ Zm : 0 < |k|1 :=
m∑
j=1

|kj | ≤ 2s . (B.1)

Then, there exists 0 < δ′ ≤ δ and a symplectic transformation φ̆ : w̆ ∈ B2m
δ′ → w ∈ B2m

δ

which puts H into Birkhoff normal form up to the order 2s, i.e.,

H ◦ φ̆ = c0 +Ω · r̆ +
∑

2≤h≤s

Ph(r̆) + o(|w̆|2s)] , (B.2)

where Ph are homogeneous polynomials in r̆j = |w̆j |2/2 := (ŭ2
j + v̆2j )/2 of degree h.

Less known is that the hypotheses of this proposition may be loosened in the case of rotation

invariant Hamiltonians: this fact, for example, has been used neither in [1] nor in [17].

First, let us generalize the class of Hamiltonian functions so as to include the secular

Hamiltonian (2.13): let us consider an open, bounded, connected set U ⊆ Rn and consider

the phase space D := U × Tn × B2m
δ , endowed with the standard symplectic form dI ∧

dϕ+ du ∧ dv.
We say that a Hamiltonian H(I, ϕ, w) on D is rotation invariant if H ◦ Rg = H for any

g ∈ T, where Rg is a symplectic rotation by an angle g ∈ T on D, i.e., a symplectic map of

the formRg : (I, ϕ, w)→ (I ′, ϕ′, w′) with I ′i = Ii, ϕ
′
i = ϕi + g, w′ = Sgw, with Sg

definined in (2.11).
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Now, consider a ϕ–independent real–analytic Hamiltonian H : (I, ϕ, w) ∈ D →
H(I, w) ∈ R of the form H(I, w) = c0(I) + Ω(I) · r + o(|w|2; I), by f = o(|w|2; I)
we mean that f = f(I, w) and |f |/|w|2 → 0 as w → 0.

Then, it can be proven the following

Proposition B.2. Assume that H is rotation–invariant and that the first order Birkhoff in-
variants Ωj verify, for all I ∈ U , for some a > 0 and integer s

|Ω · k| ≥ a > 0, ∀ 0 �= k ∈ Zm :

n∑
i=1

ki = 0 and |k|1 ≤ 2s . (B.3)

Then, there exists 0 < δ′ ≤ δ and a symplectic transformation φ̆ : (I, ϕ̆, w̆) ∈ D̆ :=
U ×Tn×B2m

δ′ → (I, ϕ, w) ∈ D which putsH into Birkhoff normal form up to the order 2s
as in (B.2) with the coefficients of Ph and the reminder depending also on I . Furthermore,
φ̆ leaves the I–variables fixed, acts as a ϕ̆–independent shift on ϕ̆, is ϕ̆–independent on the
remaining variables and is such that

φ̆ ◦ Rg = Rg ◦ φ̆ . (B.4)

The proof of Proposition B.2 may be found in §7.2 in [11].

C. Arnold’s statements (from [1])

• Conditionally periodic motions in the many–body problem have been found. If the

masses of n “planets” are sufficiently small in comparison with the mass of the central

body, the motion is conditionally periodic for the majority of initial conditions for

which the eccentricities and inclinations of the Kepler ellipses are small. Further, the

major semiaxis perpetually remain close to their original values and the eccentricities

and inclinations remain small. [1, p. 87]

• With the help of the fundamental theorem26 of Chapter IV , we investigate in this

chapter the class of “planetary” motions in the three–body and many–body problems.

We show that, for the majority of initial conditions under which the instantaneous

orbits of the planets are close to circles lying in a single plane, perturbation of the

planets on one another produces, in the course of an infinite interval of time, little

change on these orbits provided the masses of the planets are sufficiently small.

In particular, it follows from our results that in the n-body problem there exists a set

of initial conditions having a positive Lebesgue measure and such that, if the initial

positions and velocities of the bodies belong to this set, the distances of the bodies

from each other will remain perpetually bounded. [1, p.125]

• At p. 127 one finds Theorem 3.1 reported at the beginning of § 3 above.

• As mentioned in the introduction, Arnold provides a full detailed proof, checking

the non–degeneracy conditions of his fundamental theorem, only for the two–planet

model (n = 2) in the planar regime. As for generalizations, he states:

26I.e., Theorem 3.2 above.
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• The plane problem of n > 2 planets. The arguments of §2 and 3 easily carry over

to the case of more than two planets. [· · · ] We shall not dwell on the details of the

calculations which lead to the results of §1, 4. [1, p. 139]

• Finally, for the spatial general case:

The rather lengthy calculations involved in the solution of (3.5.9), the construction of

variables satisfying conditions 1)–4), and the verification of non–degeneracy condi-

tions analogous to the arguments of § 4 will not be discussed here. [1, p. 142]
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Abstract. We are interested in finding a dense part of the space of C1-diffeomorphisms which de-

composes into open subsets corresponding to different dynamical behaviors: we discuss results and

questions in this direction.

In particular we present recent results towards a conjecture by J. Palis: any system can be approximated

either by one which is hyperbolic (and whose dynamics is well understood) or by one which exhibits a

homoclinic bifurcation (a simple local configuration involving one or two periodic orbits).
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1. Introduction

A differentiable transformation - a diffeomorphism or a flow - on a manifold defines a dy-

namical systems: our goal is to describe the long time behavior of its orbits. In some cases,

the dynamics, though rich, can be satisfactorily understood: the hyperbolic systems intro-

duced by Anosov and Smale [5, 78] break down into finitely many transitive pieces, can be

coded by a finite alphabet, admit physical measures which represent the orbit of Lebesgue-

almost every point, are structurally stable...

The dynamics of a particular system may be quite particular and too complicated. One

will instead consider a large class of systems on a fixed compact connected smooth manifold

M without boundary. For instance:

– the spaces of Cr diffeomorphisms Diffr(M) or vector fields X r(M), for r ≥ 1,

– the subspace Diffrω(M) of those preserving a volume or symplectic form ω,

– the spaces of Cr Hamiltonians H : M → R (when M is symplectic), and of Cr+1

Riemannian metrics on M (defining the geodesic flows on TM ), etc.

This approach (present in [79]) allows to study typical dynamics in the class, but also their

stability, i.e. how properties change when the system is replaced by a system nearby. For

finite-dimensional classes of systems (like polynomial automorphisms of C2 with fixed de-

gree, or directional flows on flat surfaces with fixed genus) one can consider sets of pa-

rameters with full Lebesgue measure; for larger classes, one can introduce (non-degenerate)

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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parametrized families of systems, as in [64]. Working on a Baire space (mainly Diff1(M))
we intend here to describe dense subsets of systems that are Gδ (i.e. Baire-generic) or ulti-

mately even open.

The main difficulty is to perturb the system while controlling the dynamics. Weaker

topologies offer more flexibility under perturbations, but less control on the dynamics. In

practice one works in the C1-topology: for smoother systems, new dynamical properties

appear as Pesin theory [18, 65], KAM (see [87] and section 2.4), robust homoclinic tangen-

cies on surfaces [54, 57], . . . but few is known about perturbations in higher topology (even

about the existence of periodic orbits), see for instance [70]. However, producing C1-open

sets, one also describes part of the smoother systems and presumably gives insights for more

regular dynamics.

After initial works focused on hyperbolicity, three main problems have emerged.

1.1. Density of hyperbolicity. Smale has explicitly stated [80] the following problem for

the class ofCr-endomorphisms of the interval (which has been solved affirmatively [47]) and

for the class of one-dimensional complex polynomials with fixed degree (still unknown).

Problem 1 (Smale). In which class of systems is hyperbolicity dense?

In the space of diffeomorphisms Diffr(M), r ≥ 1, the (open) subset of hyperbolic sys-

tems is dense when dim(M) = 1, but this is not the case for any manifold. Open sets U of

non-hyperbolic diffeomorphisms have been obtained as follow:

– When dim(M) ≥ 3, Abraham and Smale have built [4] in a non-empty open set U a

dense family of diffeomorphisms with a heterodimensional cycle.

– When dim(M) = 2 and r ≥ 2, Newhouse has built [57] in a non-empty open set U a

dense family of diffeomorphisms with a homoclinic tangency.

These notions are defined below. Surprisingly the case r = 1 and dim(M) = 2 is still

unknown and has a particular importance for our study.

For f ∈ Diffr(M) and any point p in a hyperbolic periodic orbit (or more generally in a

hyperbolic set), the stable and unstable sets W s(p) and Wu(p) (i.e. the sets of z ∈M such

that d(fn(p), fn(z)) → 0 as n goes to +∞ and −∞ respectively) are immersed submani-

folds with transversal intersection at p.

Definition 1.1 (Homoclinic bifurcation). A homoclinic tangency is a non-transverse inter-

section z ∈ Wu(p) ∩W s(p) associated to a hyperbolic periodic point p. A heterodimen-
sional cycle is a pair of intersections z ∈ Wu(p) ∩ W s(q) and z′ ∈ Wu(q) ∩ W s(p)
associated to hyperbolic points p, q such that the dimension ofW s(p) is strictly smaller than

the one of W s(q). See figure 1.1.

In both of these configurations the point z is non-wandering and admits a unit tangent

vector whose norm decreases to 0 under forward and backward iterations.

1.2. Obstructions to hyperbolicity. Palis has conjectured [59–62] a positive answer to the

following problem in the class Diffr(M), r ≥ 1.

Problem 2 (Palis’ conjecture). Approximate any system in a class by one which is hyperbolic
or which exhibits a homoclinic tangency or a heterodimensional cycle.
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Figure 1.1. Homoclinic tangency and heterodimensional cycle.

The question is to obtain a complete list of simple obstructions to the hyperbolicity. With

Mañé’s work on stability [53], one knows [6, 43] that a diffeomorphism is non-hyperbolic if

and only if it can beC1-approximated by a diffeomorphism having a non-hyperbolic periodic

point. Two reasons justify that people now look for homoclinic bifurcations rather than weak

periodic orbits.

Cascade of bifurcations, robustness. The existence of non-hyperbolic periodic points or ho-

moclinic bifurcations associated to periodic orbits are one-codimensional configurations and

do not occur for open sets of systems. Replacing the periodic orbits by transitive hyperbolic

sets in definition 1.1, one may obtain open sets of homoclinic bifurcations and get robust ob-

structions to hyperbolicity: this happens for homoclinic tangencies of C2 diffeomorphisms

of surface [57] and to some extend in higher dimension [63]; this also happens in some cases

for homoclinic bifurcations in the space ofC1 diffeomorphisms when dim(M) ≥ 3 [21, 22].
Indeed for a hyperbolic set, the “dimension” of its stable set can be larger than the dimension

of its stable leaves.

These homoclinic bifurcations are thus in general not isolated and as pointed out by

Bonatti and Díaz, one can strengthen problem 2 by requiring the homoclinic tangencies and

heterodimensional cycles to be robust.

Dynamical consequences. The unfolding of these bifurcations involve rich dynamics: homo-

clinic tangencies generate locally generic sets of diffeomorphisms displaying infinitely many

attracting or repelling periodic orbits [57] (which is known as the Newhouse phenomenon).
Heterodimensional cycles generate robustly isolated transitive and non-hyperbolic sets [19,

37].

Pujals and Sambarino have solved Palis conjecture for C1 diffeomorphisms on sur-

faces [72]. In higher dimensions some partial results have been obtained, for instance [32,

68, 69, 84]. The following one has been proved in [34].

Theorem 1.2. In Diff1(M) any diffeomorphism can be approximated by one which

– either exhibits a homoclinic tangency or a heterodimensional cycle,

– or is essentially hyperbolic: there exist finitely many hyperbolic attractors (respectively
repellers) whose basin is (open and) dense in M .

In some cases, the dynamics break down into only finitely many pieces, even after pertur-

bation: these systems, called tame are easier to study and may help to test some conjectures.

Using Mañé’s work, a non-hyperbolic tame dynamics can be perturbed to create two close

periodic points with different stable dimensions. The tameness implies that they belong to a
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same piece, hence may be connected in a heterodimensional cycle. Consequently the Palis

conjecture holds in this case for theC1-topology. This includes in particular the conservative

dynamics (see section 2.4).

1.3. Decomposition of the dynamical space. [13, 34, 79] propose to generalize problem 2

by decomposing (an open and dense subset of) the considered space of systems into regions

which display different dynamical properties.

Problem 3. Identify new dynamics which allow to split a class of systems.

With Pujals, we suggest [34] to focus on two kinds of dynamical properties:

– Mechanisms. Wemean simple dynamical configurations which are non isolated (maybe

even robust) and which generate rich dynamical behaviors.

– Phenomena. That is any dynamical property which provides a global description of

the system and holds on a large subset of systems.

A mechanism may generate a phenomenon: for instance the homoclinic tangencies generate

the Newhouse phenomenon for C2 surface diffeomorphisms. It may also be an obstruction:

one of the first dichotomy was obtained by Newhouse for symplectomorphisms (hyperbol-

icity or existence of an elliptic periodic orbit, see theorem 2.13). This mechanism - the exis-

tence of an elliptic periodic point - is robust, hence provides an obstruction to hyperbolicity

also for higher topologies.

Another example of dichotomymechanism/phenomenon is in the following result (which

answers a weak version of Palis conjecture). It is proved in [31]; the surface and 3-dimen-

sional cases were obtained before in [24] and [72]:

Theorem 1.3. The space Diff1(M) contains a dense subsetMS ∪ I which is the union of
two disjoint open sets:

– MS is the set of Morse-Smale diffeomorphisms, i.e. whose dynamics is hyperbolic
and has only finitely many periodic orbits. Any other orbit accumulates in the future
(resp. in the past) towards one of these periodic orbits.

– I is the set of diffeomorphisms f which have a transverse homoclinic orbit: there ex-
ists a hyperbolic periodic point p whose stable and unstable manifolds have a trans-
verse intersection point different from p.
In particular, there exists a compact setA ⊂M and an iterate fn such that fn(A)=A
and the restriction of fn to A is topologically conjugate to the shift on {0, 1}Z. Hence
there exists infinitely many periodic orbits.

The global dynamics for f ∈MS is very simple, robust under perturbation, and similar

to the time-one map of the gradient flow of a Morse function. Moreover the topological

entropy (which measures the “complexity” of the system) vanishes.

In the second case, the transverse homoclinic intersection, which is a very simple and

robust configuration, implies a very rich behavior, as discovered by Poincaré and Birkhoff,

and the topological entropy is non zero. The dynamics however is not described outside a

local region of M .

Contents. We first discuss generic properties that are consequences of connecting lemmas

for pseudo-orbits. We then present results which led to theorems 1.2 and 1.3 above and
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to other dichotomies inside Diff1(M), see also [33]. We present several questions which

emerged during the last years, and among them some conjectures by Bonatti [13]. All these

results and questions together constitute a panorama of the main dynamics which appear in

the space of C1-diffeomorphisms.

Many of the following results were obtained in collaboration with colleagues (and friends),

and in particular with C. Bonatti and E. Pujals. This subject would have been very different

without your viewpoints, thank you!

I am also grateful to F. Béguin, R. Potrie, E. Pujals, M. Sambarino, A. Wilkinson and X.

Wang for their comments on the text.

2. Decomposition of the dynamics

We say that a dynamical property isC1-generic if it holds on a dense Gδ subset ofDiff
1(M).

These properties have been studied in many works, see [33]. We describe here properties

shared either by all or by all C1-generic diffeomorphisms f and that are related to the con-

necting lemma for pseudo-orbits stated below.

2.1. Chain-recurrence. An open set U ⊂M is attracting if f(U) ⊂ U . It decomposes the

dynamics into the invariant disjoint compact setsA+ = ∩nfn(U) andA− = ∩nfn(M \U).
The orbits in the complement M \ (A+ ∪A−) are strongly non-recurrent. By repeating this

process one decomposes [28] the dynamics into pieces which can be also obtained with the

notion of pseudo-orbits as follows.

For ε > 0, a ε-pseudo-orbit is a sequence (xn)n∈Z such that d(f(xn), xn+1) < ε for

each n. We denote x 8 y if for each ε > 0 there exists a ε-pseudo-orbit (xn) and m ≥ 1
such that x0 = x and xm = y.

Definition 2.1. The chain-recurrent set is the (invariant) setR(f) = {x, x 8 x}.
The chain-recurrent set is compact and contains the set of periodic point Per(f). The other

classical notions of recurrence - the non-wandering setΩ(f), the limit set L(f), the recurrent
set Rec(f) - are all contained inR(f) and contain Per(f).

On R(f) we define the equivalence relation x 98 y whenever there exists a periodic

ε-pseudo-orbit which contains x, y for each ε > 0.

Definition 2.2. The chain-recurrent classes of f are the equivalence classes of 98.
They are pairwise disjoint invariant compact subsets of the chain-recurrent set.

A chain-recurrence class Λ is a quasi-attractor if it admits a basis of attracting neighbor-

hoods. (It is an attractor if Λ = ∩n∈Nfn(U) for some neighborhood U .)

Definition 2.3. Let K be an invariant compact set.

– K is chain-transitive if for any x, y ∈ K and ε > 0 there exists a periodic ε-pseudo-
orbit in K which contains x, y.

– K is transitive if for any non-empty open sets U, V of K, there exists n ≥ 1 such that

fn(U) ∩ V �= ∅.
– K is topologically mixing if for any non-empty open sets U, V of K, there exists

n0 ≥ 1 such that fn(U) ∩ V �= ∅ for each n ≥ n0.



576 Sylvain Crovisier

The chain-recurrence classes are the chain-transitive sets which are maximal for the inclu-

sion.

Definition 2.4. The homoclinic class H(O) of a hyperbolic periodic orbit O is the closure

of the transverse intersections between W s(O) and Wu(O).
The homoclinic classes satisfy three interesting properties (see [3, 55]):

– H(O) contains a dense set of periodic orbits O′ that are homoclinically related to O,

i.e. such that Wu(O) and W s(O′) (resp. Wu(O′) and W s(O)) have a transverse

intersection point.

– H(O) is transitive (hence contained in a chain-recurrence class): there exists a unique

� ≥ 1 (called the period of H(O)) and a subset A ⊂ H(O) such that f �(A) = A,

H(O) = A ∪ f(A) · · · ∪ f �−1(A) and f i(A) ∩ A has empty interior in H(O) when

0 < i < �; moreover A is topologically mixing for f �.

– For any diffeomorphism g that is C1-close to f , the orbit O has a continuation Og

(given by the implicit function theorem), which gives a notion of continuationH(Og)
of a homoclinic class.

For general diffeomorphisms, two homoclinic classes may intersect and not coincide.

2.2. Closing and connecting lemmas in the C1-topology. In Diff1(M) it is possible to

perturb one orbit in order to create periodic points (Pugh’s closing lemma [67]) or to connect

invariant manifolds of hyperbolic periodic points (Hayashi’s connecting lemma [44]). With

Bonatti, we have extended [14] these technics to pseudo-orbits and obtained:

Theorem 2.5 (Connecting lemma for pseudo-orbits). Let us consider x, y ∈M and assume
the following non-resonance condition:

∀n ≥ 1, ∀v ∈ TM \ {0}, Dfn.v �= v.

If x 8 y, there exists g, C1-close to f , such that gn(x) = y for some n ≥ 1.
If x ∈ R(f), there exists g, C1-close to f , such that x is periodic for g.

The perturbation can not be local: one needs to “close all the jumps” of a pseudo-orbit.

For that purpose we had to build a section of the dynamics:

Lemma 2.6 (Topological towers). There exists C > 0 (which only depends on dim(M))
such that for any f ∈ Diff1(M), any N ≥ 1 and any (not necessarily invariant) compact
set K that does not contain any i-periodic point, 1 ≤ i ≤ C.N , there exists U ⊂ M open
such that

– U is disjoint from f i(U) for 1 ≤ i ≤ N ,

– K is contained in the union of the C.N first iterates of U .

The perturbations in the closing and connecting lemmas may introduce shortcuts in the

pseudo-orbits: for instance theorem 2.5 does not describe the regions which are visited by

the orbit x, g(x), . . . , gn(x). Mañé [51] has shown that one can control the distribution of

the periodic orbits in the closing lemma:
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Theorem 2.7 (Ergodic closing lemma). There exists a dense Gδ subset G of Diff1(M) such
that for any f ∈ G and any ergodic probability μ, there exists a sequence of periodic orbits
which converge to μ for the weak-∗ topology.

The next result [30] gives a topological control on the support of the orbits.

Theorem 2.8 (Global connecting lemma). There exists a dense Gδ subset G of Diff1(M)
such that any f ∈ G has the following properties:

– For any points x1, . . . , xk satisfying xi 8 xi+1 for each 1 ≤ i < k, and for any δ > 0
there exists an orbit of f which intersects each ball B(xi, δ).

– For any chain-transitive set K and any δ > 0, there exists a periodic orbit O which is
δ-close to K for the Hausdorff topology.

Extension to other classes of systems. We stress that the perturbations are supported in

a union of small disjoint balls. This makes difficult the extension of these methods to

classes of systems which do not allow local perturbation. For the geodesic flow, Contr-

eras has shown [29] that one can modify the tangent dynamics above periodic orbits by

C2-perturbations, but the following problem is still open:

Problem 4. Prove a closing lemma for the geodesic flow (space of C2 metrics).

2.3. Decomposition of C1-generic diffeomorphisms. For C1-generic diffeomorphisms

we have better information on the chain-recurrence classes.

a- Chain-recurrence classes. As a consequence of the connecting and closing lemmas,

we obtain for any C1-generic diffeomorphism f :

– The periodic points are (hyperbolic and) dense in the chain-recurrent set:

Per(f) = L(f) = Rec(f) = Ω(f) = R(f).

– Any chain-recurrence class is limit of a sequence of periodic orbits for the Hausdorff

topology.

– Each chain-recurrence class containing a periodic orbit O coincides with the homo-

clinic class H(O). Any two homoclinic classes are thus disjoint or equal.

b- Periodic orbits. For C1-generic diffeomorphisms, the periodic orbits inside a homo-

clinic class H(O) have a nice structure (see [2, 21, 27]):

– Any two periodic orbits in H(O) with same stable dimension are homoclinically re-

lated.

– Any two periodic orbits in H(O) with different stable dimension belong to a robust

heterodimensional cycle.

– The set of stable dimensions of periodic points of H(O) is an interval of N.

– For any two periodic orbits O1,O2 in H(O) and any θ ∈ [0, 1], there exist periodic

orbits in H(O) which are arbitrarily close (for the weak-∗ topology on finite Borel

measures) to the barycenter θ · O1 + (1− θ) · O2.

More about the tangent dynamics above periodic orbits appear in [12, 16, 42, 77].
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c- Isolated and tame classes. It is equivalent for a chain-recurrence class Λ to be isolated

(i.e. Λ is open in R(f)) and to coincide with the maximal invariant set ∩n∈Zfn(U) in one

of its neighborhoods U . A stronger property is:

Definition 2.9. A chain-recurrence class Λ is tame if the maximal invariant set Λg :=
∩n∈Zgn(U) in a neighborhood U is a chain-recurrent class for any g C1-close to f . A

diffeomorphism is tame if all its chain-recurrence classes are tame.

If f is C1-generic, an isolated chain-recurrence class is a tame homoclinic class. Conse-

quently f is tame if and only if it has finitely many chain-recurrence classes.

The chain-recurrence classes of hyperbolic diffeomorphisms are always isolated (this is

part of Smale’s spectral theorem). There are robust examples of isolated chain-recurrence

classes containing periodic points of different stable dimensions (hence not hyperbolic), see

section 3.3. As already noticed at the end of section 1.2, the tame classes of C1-generic

diffeomorphisms are easier to study. See [23].

Robust transitivity. Let Λ be a tame class of f , C1-generic. One may wonder if Λg is still

transitive or even a homoclinic class for g C1-close to f . A counter example appears in [17],

but it uses the fact that it is not a quasi-attractor for f nor for f−1. One can thus ask:

Is any perturbation of C1-generic transitive diffeomorphism still transitive ?
With Abdenur we have answered this question affirmatively assuming the diffeomorphism is

partially hyperbolic with a one-dimensional center bundle.

Topological mixing. A variation of the connecting lemma gives [3] for C1-generic diffeo-

morphisms that any isolated homoclinic class H(O) decomposes into disjoint compact sets

A ∪ f(A) ∪ · · · ∪ f �−1(A) where � is the period of the class.

In particular one gets the following dichotomy:

Corollary 2.10. There exist two disjoint open sets U1,U2 whose union is dense in Diff1(M)
and which satisfy:

– U1 is the set of diffeomorphisms having a non-empty attracting set U �=M .

– the diffeomorphisms in a dense Gδ subset of U2 are topologically mixing.

d- Non-isolated classes, aperiodic classes. Homoclinic classes with robust homoclinic

tangencies may create non-isolated homoclinic classes (accumulated by sinks) for generic

diffeomorphisms: Newhouse has proved that this occurs on surfaces for the C2-topology,

and in higher dimension for the C1-topology [58].

Bonatti and Díaz have shown [20] that in some cases these sinks may be turned into

non trivial classes: hence a non-isolated homoclinic class ejects, after perturbation, new

homoclinic classes with similar properties. This phenomenon is further studied in [16] and

called virality. Such a C1-generic diffeomorphism present infinite sequences of distinct non-

isolated homoclinic classes, whose limit is a chain-recurrence class disjoint from Per(f).

Definition 2.11. The chain-recurrence classes which do not contain any periodic point are

called aperiodic classes.

Few is known about the dynamics of aperiodic classes: the aperiodic classes obtained in [20]

are odometers, but Bonatti and Shinohara are developing a perturbation tool which would

allow to build non transitive or non uniquely ergodic aperiodic classes.

Some questions remain about non-isolated classes (see also conjectures in [13]):
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Is any aperiodic class accumulated by non-isolated (viral) homoclinic classes?
Is any non-isolated homoclinic class accumulated by aperiodic classes?
One may answer negatively to the second question with examples of C1-generic diffeo-

morphisms having no aperiodic classes and infinitely many homoclinic classes. Indeed,

Potrie [66] has built a non-isolated homoclinic class admitting a neighborhood where the

other chain-recurrence classes are contained in countably many surfaces. These are homo-

clinic classes if hyperbolicity is C1-dense on surfaces.

e- Quasi-attractors. Theorem 2.5 gives C1-generically:

– A chain-recurrence class is a quasi-attractor, once it is Lyapunov stable: there exists a

basis of neighborhoods U such that f(U) ⊂ U .

– There exists a dense Gδ subset X ⊂ M such that for any x ∈ X , the limit set of the

forward orbit (fn(x))n≥0 is a quasi-attractor.

Attractors may not exist: [25] gives an example of a C1-generic diffeomorphism with

a quasi-attractor Λ which is unique and non-isolated. This quasi-attractor is essential: its

basin, i.e. the set of points x such that fn(x) accumulate on a subset of Λ as n → +∞,

is dense in a non-empty open set. Also the basin of a quasi-attractor may be small: the

aperiodic classes described in [20] are quasi-attractors; each basin is reduced to the class

itself and has empty interior.

One may ask the following for C1-generic diffeomorphisms (see also [13]):

Is the union of the basins of essential attractors dense in M?
For quasi-attractors is it equivalent to be essential and to be a homoclinic class?
On attractors, does there exist a physical measure? (an ergodic probability where the for-

ward orbit of Lebesgue-almost every point in the basin equidistributes.)

2.4. Conservative dynamics - ergodicity. Conservative systems are chain-transitive. The

connecting lemma for pseudo-orbits gives (see [3, 8, 14]):

Theorem 2.12. There exists a dense Gδ subset G ⊂ Diff1
ω(M) such that any diffeomorphism

f ∈ G is topologically mixing.

The same statement is false in Diffrω(M) when ω is a volume form and r is large: by

KAM, there may exist a robust one-codimensional invariant torus (see [87]).

As already noticed, the C1 Palis conjecture holds in this setting (see [31, 56]):

Theorem 2.13. In Diff1
ω(M), any diffeomorphism can be approximated by f which is hy-

perbolic or which satisfies the following robust property:

– (symplectic case) f has a periodic point with a simple eigenvalue of modulus 1.

– (volume case, dim(M) ≥ 3) there exists a robust heterodimensional cycle.

One can compare to the following [14, 38, 46, 76] (see definitions in section 3.1):

Theorem 2.14. In Diff1
ω(M), any diffeomorphism can be approximated by one with a com-

pletely elliptic periodic point (eigenvalues are simple, of modulus 1), or:

– (symplectic case) by one which is partially hyperbolic and robustly transitive,

– (volume case) by one which has a (non-trivial) dominated splitting.
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The existence of a completely elliptic periodic point is an obstruction to robust transitiv-

ity [7] and in the symplectic case, the robust transitivity is characterized by partial hyperbol-

icity. In the volume-preserving case, Dolgopyat and Wilkinson conjectured [38]:

Conjecture 2.15. In the volume preserving case, the sets of robustly transitive diffeomor-
phisms and of those having a dominated splitting have the same closure in Diff1

ω(M).

A stronger notion of undecomposability involves the ergodicity of the volume:

Problem 5. Is ergodicity dense (hence Baire-generic) in Diff1
ω(M)?

The C1-generic systems in Diff1
ω(M) with positive metric entropy are ergodic (this is

proved in [9] for the symplectic and in [10] for the volume preserving cases). However

C1-generic systems with zero metric entropy also occur [11].

There exists (non-empty) C1-open sets of ergodic diffeomorphisms in Diffrω(M) when

r > 1: these diffeomorphisms (which include the hyperbolic systems) are called stably
ergodic and were studied intensively (see [85]). Note that it is not known if they exist also

in Diff1
ω(M). Pugh and Shub have conjectured that stable ergodicity is dense in the space of

Cr partially hyperbolic diffeomorphisms.

In parallel to conjecture 2.15, with Avila and Wilkinson we proposed [10]:

Conjecture 2.16. For r > 1, the sets of stably ergodic diffeomorphisms and of those having
a dominated splitting have the same C1-closure in Diffrω(M).

In this direction we obtained [10]:

Theorem 2.17. In the space of volume-preserving diffeomorphisms Diffrω(M), r > 1, those
having a partially hyperbolic splitting Es⊕Ec⊕Eu into non-trivial bundles are contained
in the closure of the set of stably ergodic diffeomorphisms.

3. Notions of weak hyperbolicity

Let K be an invariant set for f ∈ Diff1(M). We recall the classical notion:

Definition 3.1. K is (uniformly) hyperbolic if there exists an invariant continuous splitting

TK = Es ⊕ Eu and N ≥ 1 such that ‖DfN|Es‖ ≤ 1/2 and ‖Df−N
|Eu ‖ ≤ 1/2 (i.e., Es and

Eu are uniformly contracted by f and f−1 respectively on K).

A diffeomorphism is hyperbolic if each chain-recurrence class is hyperbolic.

It is well-known that hyperbolic sets satisfy several important properties: they can be

continued for diffeomorphisms C1-close, each of their points has stable and unstable mani-

folds, their pseudo-orbits are shadowed by orbits,... We present now several weaker notions

of hyperbolicity which sometimes keep these properties and will appear in the next sections.

3.1. Tangent dynamics - partial hyperbolicity. Pesin theory describes systems where the

uniformity in definition 3.1 is relaxed: Oseledets theorem associates to any ergodic prob-

ability μ its Lyapunov exponents λ1 ≤ · · · ≤ λdim(M) which are the possible limits of

log(‖Dfn(x).u‖)/n as n → ∞ for any u ∈ TxM and a.e. x ∈ M . When each λi is

non-zero, μ is non-uniformly hyperbolic.
Here is another way to relax hyperbolicity which allows vanishing exponents.
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Definition 3.2. An invariant splitting TKM = E ⊕ F by linear sub-bundles above K is

dominated if there is N ≥ 1 such that ‖DfN (x).u‖ ≤ 1/2‖DfN (x).v‖ for each x ∈ K
and each unit vectors u ∈ Ex and v ∈ Fx.

This definition extends to splittings into a larger number of invariant bundles. The finest
dominated splitting is the (unique) one which maximizes this number.

Definition 3.3. A dominated splitting TKM = Es ⊕ Ec ⊕ Eu is partially hyperbolic if

Es (resp. Eu) is uniformly contracted by f (resp. f−1) and if one of the bundles Es, Eu is

non-trivial.

Dominated splittings and partial hyperbolicity extend to the closure ofK and to invariant

sets in a neighborhood ofK for diffeomorphismsC1-close. Moreover any point of a partially

hyperbolic set has unique (strong) stable and unstable manifolds tangent to Es and Eu, that

we denote by W ss(x) and Wuu(x).
Hirsch, Pugh and Shub have built [45] a weak notion of center manifold:

Theorem 3.4. If K has a dominated splitting TKM = E1 ⊕ F ⊕ E2, there exists a locally

invariant plaque family tangent to F , i.e. a mapW : F →M satisfying:

– Each induced mapWx : Fx → M is an embedding, depends continuously on x ∈ K
for the C1-topology,Wx(0) = x, and the image is tangent to Fx at x.

– There exists ρ > 0 such thatWx(B(0, ρ)) is sent by f inWf(x) for each x.

The image of Wx (still denoted Wx) is a plaque. The plaque family is in general not

unique; the union of two different plaques may not be a sub manifold.

One can sometimes obtain the following stability along the plaques (see [34]):

Definition 3.5. The plaque familyW is trapped if f(Wx) ⊂ Wf(x) for each x ∈ K.

F is thin-trapped if “inside a plaque family W”, there exist plaque families which are

trapped and whose plaques have arbitrarily small diameters.

3.2. Dynamics along one-dimensional center directions. Let K be a chain-transitive set

with a dominated splitting E1 ⊕ F ⊕ E2, dim(F ) = 1. Pesin theory does not describe

the local dynamics along the direction F when the Lyapunov exponents along F vanish.

These dynamics are studied in [72] when E1 or E2 is degenerated. When they are not, we

introduced the next notion [31, 32]:

Definition 3.6. A center model for K is a compact metric space K̂ and continuous maps

f̂ : K̂ × [0, 1]→ K̂ × [0,+∞), π : K̂ × [0,+∞)→M such that:

– f̂ is a local homeomorphism near K̂ × {0},
– for each x, there is x′ satisfying f̂({x} × [0, 1]) ⊂ {x′} × [0,+∞),
– π(K̂ × {0}) = K and π semi conjugates f̂ and f ,

– each t �→ π(x, t) is a C1-embedding which depends continuously on x for the C1-

topology and the image is tangent to Fπ(x,t).

From theorem 3.4, K admits a center model: K̂ is the unit tangent bundle associated to Ec,

hence π is two-to-one on K̂ × {0}.
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Using pseudo-orbits, the local dynamics of center models can be classified into four

different types: K̂ ×{0} is a quasi-attractor or not, for f̂ or for f̂−1. This allows us to prove

that one of the following (not exclusive) cases occurs for the local dynamics along a locally

invariant plaque familyW tangent to F :

Thin-trapped. The bundle F is thin-trapped.

If E2 is uniformly contracted by f−1, a weak shadowing lemma implies that the un-

stable set of K meets the stable set of a periodic orbit whose chain-recurrence class is

non-trivial. See [33, Prop. 10.20], [32, Prop. 4.5].

Chain-recurrent. In any neighborhood U of K, there exist x ∈ K, a non trivial curve I
with fn(I) ⊂ Wfn(x), for n ∈ Z, and a chain-transitive set Λ ⊃ K ∪ I .

If U is small, any periodic orbit O ⊂ U , whose exponent along F is close to 0 and

having a point close to the middle of I , belongs to the chain-recurrence class of K.

See [36, corollary 4.4].

Semi chain-unstable. There exists a locally invariant half plaque family W+. It is thin-
trapped by f−1; for any x ∈ K and z ∈ W+

x we have x 8 z.

If E1, E2 are uniformly contracted by f, f−1 respectively, f is C1-generic and K is

not twisted, it is contained in a homoclinic class. See [32, Prop. 4.4].

The twisted geometry above is very particular. For the definition, one extends continu-

ously F in a neighborhood of K. Locally, it is trivial, hence orientable.

Definition 3.7. A partially hyperbolic setK with a one-dimensional center bundle is twisted
if for any x, y ∈ K close, one can connect Wuu

loc (x) to W ss
loc(y) and Wuu

loc (y) to W ss
loc(x) by

two curves tangent to F having the same orientation. (Figure 3.1.)

Using Pugh’s and Mañé’s closing lemma arguments, when K does not contain periodic

point and is twisted, one can find [32, prop. 3.2] a C1-perturbation g having a periodic orbit

O close to K such that W ss(O) and Wuu(O) intersect.

Figure 3.1. Two close points in a twisted set.

3.3. Chain hyperbolicity. The following notion is introduced in [34]:

Definition 3.8. A homoclinic class H(O) is chain-hyperbolic if it has a dominated splitting

TH(O)M = Ecs ⊕ Ecu and plaque familiesWcs,Wcu such that:

(i) Wcs (resp. Wcu) is tangent to Ecs (resp. Ecu) and trapped by f (resp. f−1);
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(ii) there exists p ∈ O such thatWcs
p ⊂W s(p) andWcu

p ⊂Wu(p).

Wcs (resp. Wcu) are called center-stable (resp. center-unstable) plaque families.

Properties. At large scale, chain-hyperbolicity looks similar to hyperbolicity and both no-

tions share several properties:

– Robustness. If H(O) is a chain-recurrence class and Ecs, Ecu are thin-trapped by f
and f−1, its continuation H(Og) is chain-hyperbolic for g C1-close.

– Strong periodic points. H(O) contains a dense set P of periodic points p satisfy-

ing definition 3.8(ii) and whose exponents are bounded away from 0. They have a

hyperbolic continuation for g in a uniform neighborhood of f .

– Invariant manifolds. For any x ∈ H(O) and y ∈ Wcs
x , one has y 8 x. A transverse

intersection of center stable and center unstable plaques still belongs to H(O).
Examples. By deforming a hyperbolic diffeomorphism near a periodic point, one can build

robust examples of non-hyperbolic isolated chain-hyperbolic classes, see [26]. One can also

build examples from skew product maps.

Remark. Other constructions of robustly transitive sets exist. The center bundle may be

parabolic [17], or tangent to a foliation with compact or non-compact leaves [21].

4. Dynamics far from homoclinic tangencies...

If x is a homoclinic tangency for a hyperbolic periodic orbit with stable dimension ds, there
is no dominated splitting E ⊕ F with dim(E) = ds on the orbit of x. We discuss now the

converse and consider the diffeomorphisms f that can not be approximated by homoclinic

tangencies: f ∈ Diff1(M) \ Tang where Tang denotes the collection of diffeomorphisms

which exhibit a homoclinic tangency.

Theorems 4.3 and 4.4 below imply that these dynamics are partially hyperbolic:

Theorem 4.1. There exists an open and dense subset U ⊂ Diff1(M) \ Tang such that any
f ∈ U has at most finitely many sinks and sources and any of its other chain-recurrence
classes Λ has a partially hyperbolic splitting:

TΛM = Es ⊕ Ec
1 ⊕ · · · ⊕ Ec

� ⊕ Eu,

where Es (resp. Eu) is non trivial, uniformly contracted (resp. expanded) and where each
Ec
i is one-dimensional.

The decomposition of the center into one-dimensional sub-bundles limits the patholog-

ical behaviors. In particular, these systems admit symbolic extensions and any continuous

map ϕ : M → R has an equilibrium state (see [36, 50]).

4.1. Existence of weak periodic points inside the class. Improving a technics of [72],

Wen [83] and Gourmelon [41] have shown:

Theorem 4.2. For any diffeomorphism f ∈ Diff1(M) \ Tang and any ds ≥ 1, the de-
composition into stable and unstable spaces, above the hyperbolic periodic orbit with stable
dimension ds, is a dominated splitting.
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With results of section 2.3(a) this implies that for C1-generic diffeomorphisms far from

the homoclinic tangencies, any chain-recurrence class Λ (but maybe finitely many sinks and

sources) has a non-trivial dominated splitting E ⊕ F .

Assuming that E is not uniformly contracted, we have to build a sequence of periodic

orbit with smaller stable dimension which accumulates onΛ, so thatE can be further decom-

posed. Such periodic orbits exist in a neighborhood of Λ (essentially from Mañé’s ergodic

closing lemma), but the difficulty is to approximate the whole class Λ in Hausdorff topol-

ogy. There is an easy case: Λ contains periodic points with at least one Lyapunov exponent

along E which is positive or close to zero. Indeed in this case Λ is a homoclinic class which

contains a dense set of such periodic points and E can be decomposed.

These periodic orbits in Λ are obtained under weak hyperbolicity by shadowing: either

from non-uniform hyperbolicity (Liao’s “selecting lemma” [48, 49, 84]) or from topologi-

cal hyperbolicity when the Lyapunov exponents vanish (using center models). Such weak

hyperbolicity fails only when Λ has a partially hyperbolic splitting Es ⊕ Ec ⊕ Eu with

dim(Ec) = 1, Es ⊕ Ec ⊂ E and such that the Lyapunov exponent along Ec of any invari-

ant probability on Λ vanishes (Λ is aperiodic).

The stable dimensions of periodic points of Λ is an interval in N and one gets the follow-

ing statement proved in [36] (already obtained in [40] for minimal sets):

Theorem 4.3. There is a dense Gδ set G ⊂ Diff1(M) \ Tang such that for f ∈ G:
Any aperiodic class Λ is partially hyperbolic: TΛM = Es ⊕ Ec ⊕ Eu, dim(Ec) = 1, and
the center Lyapunov exponent of any invariant probability on Λ vanishes.
Any homoclinic classes H(O) is partially hyperbolic:

– TH(O)M=Es ⊕ Ec
1 ⊕ · · · ⊕ Ec

� ⊕ Eu,

– each Ec
i is one-dimensional and H(O) contains (weak) periodic orbits whose Lya-

punov exponent along Ec
i is arbitrarily close to 0;

– eitherEs⊕Ec
1 (resp. Ec

� ⊕Eu) is thin-trapped by f (resp. f−1) or there is p ∈ H(O)
periodic whose stable (resp. unstable) space is Es

p (resp. Eu
p ).

The last item follows from section 3.2: there exist periodic points whose stable space

contains Ec
1, so the semi chain-unstable case does not occur. If the chain-recurrent one

holds, there is a (weak) periodic point p whose stable space is Es
p.

4.2. Extreme bundles. The fact that the uniforms bundles Es, Eu in theorem 4.3 are non

trivial comes from the next result obtained with Pujals and Sambarino [35]. It generalizes

Mañé’s argument for interval endomorphisms [52] and previous works [34, 72, 73]. This

completes the statement of theorem 4.1.

Theorem 4.4. For any f ∈ Diff2(M) and any invariant compact set K with a dominated
splitting TKM = E ⊕ F , dim(F ) = 1 such that:

– each periodic point in K has an unstable space containing F ,

– there is no periodic closed curve in K \ Per(f) tangent to F ,

then F is uniformly expanded.

An important tool of the proof is the construction of “semi-geometrical” Markov rectan-

gles, that are laminated charts by curves tangent to F .
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4.3. Dichotomy Morse-Smale / homoclinic intersections. For proving theorem 1.3, it is

enough to take a C1-generic diffeomorphism f far from homoclinic tangencies whose ho-

moclinic classes are reduced to isolated periodic orbits (even after perturbation). One has to

consider an aperiodic class.

Any aperiodic class is partially hyperbolic with one-dimensional center and section 3.2

applies. It can not be twisted since a transverse homoclinic intersection would appear after

perturbation. The three types can be ruled out since they would give the existence of a

non-trivial homoclinic class. Hence there is no aperiodic class and theorem 1.3 follows.

4.4. Quasi-attractors. Using the technics of the section 3.2, one gets more information on

quasi-attractors for generic diffeomorphisms in Diff1(M) \ Tang:
– Quasi-attractors are homoclinic classes H(O), see [86].

– Considering the splitting TH(O)M = Es⊕Ec
1⊕· · ·⊕Ec

�⊕Eu, there exists a periodic

orbit in H(O) whose unstable dimension is equal to dim(Eu), see [34, theorem 4].

– Quasi-attractors are essential attractors (proved byBonatti,Gan,Li, D.Yang).

– If moreover f can not be approximated by diffeomorphisms with a heterodimensional

cycle, the number of quasi-attractors is finite, see [34].

By studying the geometry of invariant compact sets saturated by the strong unstable

leaves, we proved recently with Sambarino and Potrie the finiteness of the quasi-attractors

for C1-generic systems in the class of diffeomorphisms whose chain-recurrences classes are

partially hyperbolic with a one-dimensional center bundle. This class offers an ideal setting

to study the uniqueness of physical measures and equilibrium states (see [75, 82] for smooth

diffeomorphisms and [74] for C1-generic hyperbolic diffeomorphisms).

4.5. Obstruction to the Newhouse phenomenon. A hyperbolic periodic orbit O is sec-
tionally dissipative if its two largest Lyapunov exponents λ1, λ2 (counted with multiplicity)

satisfy λ1 + λ2 < 0. If such an orbit has a homoclinic tangency, one can obtain a sink by

C1-small perturbation. Theorem 4.4 implies that the converse holds C1-generically:

Corollary 4.5. For any open set V ⊂ Diff1(M), the next properties are equivalent:

– Baire-generic diffeomorphisms in V have infinitely many sinks,

– densely in V there exist diffeomorphisms exhibiting homoclinic tangencies associated
to sectionally dissipative periodic points.

One can expect to characterize the absence of Newhouse phenomenon:

Conjecture 4.6. There exist two disjoint open sets U1,U2 whose union is dense inDiff1(M)
and which satisfy the following properties:

– Baire-generic diffeomorphisms in U1 have infinitely many sinks;

– the diffeomorphisms f ∈ U2 are volume hyperbolic: each chain-recurrence class Λ,
which is not a sink, has a dominated splitting TΛ = E⊕F where F is non-trivial and
| det(DfN|F )| > 1 on Λ for some N ≥ 1.
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5. ... and far from heterodimensional cycles

Theorem 1.2 is now a consequence of the following (from [34]):

Theorem 5.1. There exists a dense Gδ subset G ⊂ Diff1(M) such that for any f ∈ G, any
quasi-attractor which is partially hyperbolic with a one-dimensional center bundle is either
hyperbolic or contains a (robust) heterodimensional cycle.

In this section one considers a quasi-attractor with a partially hyperbolic splitting Es ⊕
Ec⊕Eu, dim(Ec) = 1, for f C1-generic. By section 4.4 it is a homoclinic classH(O). One

can assume that all the periodic points inH(O) have stable dimension equal to dim(Es)+1
and, from theorem 4.3, that Es ⊕ Ec is thin-trapped.

Indeed, by the results of section 2.3(b), the conclusion of the theorem 5.1 holds if H(O)
contains two periodic points with different stable dimension and by section 4.4 it always

contains periodic points of stable dimension dim(Es) + 1.

5.1. Strong homoclinic intersections. Let us assume that there exist diffeomorphisms g
that are C1-close to f and satisfy the following property.

Definition 5.2. H(Og) has a strong homoclinic intersection if there exist periodic points

p, q homoclinically related to Og such that (W ss(p) \ {p}) ∩Wu(q) �= ∅.
An invariant set K with a partially hyperbolic splitting Ess ⊕F has a strong connection

if it contains a point x such that (W ss(x) \ {x}) ∩K �= ∅.
By theorem 4.3, if H(O) is not hyperbolic it contains weak periodic points. A strong

homoclinic intersection, for a diffeomorphism close, can be moved on these weak points.

This gives a robust heterodimensional cycle by C1-perturbation.

The non-existence of strong connection allows to reduce the dimension of the ambient

manifold: the following is a consequence [15] of Whitney’s extension theorem and of a

graph transform argument.

Theorem 5.3. Any invariant set K with a partially hyperbolic splitting Ess ⊕ F and no
strong connection is contained in a C1 submanifold Σ tangent to F which is locally invari-
ant: Σ ∩ f(Σ) is a neighborhood of K in Σ.

When H(O) is contained in a locally invariant submanifold Σ tangent to Ec ⊕ Eu,

theorem 4.4 implies that Ec is uniformly contracted. Hence we are reduced to the case

where a strong connection exists, i.e. H(O) contains x �= y such that W ss(x) =W ss(y).
In a homoclinic class the periodic points are dense, hence one can consider px, py pe-

riodic close to x, y respectively so that Wu
loc(px) and Wu

loc(py) are close to the local un-

stable manifolds of x, y. One can hope that the projections of the unstable manifolds of

x, y by strong stable holonomy are “topologically transverse”. This implies that there exists

x′ ∈ Wu
loc(px), y

′ ∈ Wu
loc(py) such that W ss(x′) = W ss(y′). Since H(O) is a quasi-

attractor, x′, y′ are still in the class. Other more degenerated cases may occur and have to be

handled by other arguments.

We now have to deal with the following problem:

Reduced problem. Assume that H(O) contains periodic points px, py homoclinically re-

lated to O and x �=y such that x∈Wuu(px), y∈Wuu(py), W
ss(x) = W ss(y). Does there

exist g near f such that H(Og) has a strong homoclinic intersection?
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5.2. Pointwise continuation of chain-hyperbolic classes. The classH(O) is chain-hyper-
bolic and the results of section 3.3 apply. The points px, py may be taken in the set of strong

periodic points P and for any diffeomorphism g in a neighborhood U of f , the continua-

tions of the points of P are well-defined and dense in H(Og). This allows to introduce the

following notion, similar to the branched holomorphic motion considered by Dujardin and

Lyubich in [39] for holomorphic families of polynomial automorphisms of C2.

Definition 5.4. For any g, g′ ∈ U , one says that x ∈ H(Og) and x′ ∈ H(Og′) have the

same continuation if there exists a sequence (pn) in P such that (pn,g) converges to x and

(pn,g′) converges to x
′.

A point of H(Og) may have several continuations in H(Og′). However in our setting

the center-unstable bundle of the chain-hyperbolic structure is uniformly expanded. Conse-

quently for any point x in the unstable manifold of a point px ∈ P , its continuation - denoted

by xg - is unique and depends continuously in g.
In the setting of the reduced problem above, the continuations xg, yg belong to the same

center stable plaques for any g ∈ U and we are led to ask:

Does there exist g near f such that W ss(xg) �=W ss(yg)?
IndeedWcs

x \W ss(x) has two connected components; if there exists g+, g− such that yg+
and yg− belong to the continuations of different components of Wcs

x \ W ss(x), by con-

sidering qx, qy ∈ P close enough to x, y and an arc (gt) in U between g+ and g−, one

finds a diffeomorphism g such that W ss(qx,g) and Wu(qy,g) intersect. This gives a strong

homoclinic intersection as required.

5.3. How to remove a strong connection. We are still in the (simplest) setting of the re-

duced problem above and look for g ∈ U such that the strong connection between x and y is

broken.

The idea is to modify f in a ball B(f−1(x), r) so that Wu(px,g) intersects a given

component of Wcs
xf
\ W ss(xf ). The distance d(xg, g(f

−1(x))) is arbitrarily small with

respect to the size r of the support of the perturbation. If the positive orbit of y does not

return “too fast” in the support of the perturbation, using the weak hyperbolicity, one shows

that the distances d(y, yg) and d(W ss
loc(y),W

ss
loc(yg)) are small also and the connection is

broken (figure 5.1). A different argument is performed when the returns of the positive orbit

of y near x are fast. See [33, 34].

6. Panorama of the dynamics in Diff1(M)

We end this text by summing up several questions and conjectures which allow to structure

the space of C1-diffeomorphisms. Most of them already appear in [13, 33].

6.1. Global dynamics. As noticed in [21, section 1.3], all the examples of C1-generic non-

hyperbolic systems involve heterodimensional cycles (this becomes false in higher topolo-

gies). This justifies:

Conjecture 6.1 (Bonatti-Díaz hyperbolicity conjecture). Any diffeomorphism can be ap-
proximated in Diff1(M) by one which is hyperbolic or exhibits a robust heterodimensional
cycle.
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Figure 5.1. A broken strong connection.

Motivated by the results of sections 4.5 and 4.4 we expect a positive answer to following

conjecture made by Bonatti in [13].

Conjecture 6.2 (Bonatti’s finiteness conjecture). In Diff1(M) \Tang, there exists an (open
and) dense subset of tame diffeomorphisms.

However there exists robust examples of transitive dynamics in Tang and a positive

answer to the previous conjecture would not give a dichotomy.

Problem 6. Characterize non-tame dynamics: find a robust mechanism which generates
non-tame dynamics and whose union with tame systems is dense in Diff1(M).

Note that both conjectures imply the C1 Palis conjecture and that the first one implies a

positive answer to Smale problem for C1-diffeomorphisms on surfaces.

A last example: the universal dynamics. Let us mention that there exists a non-empty

open set U of diffeomorphisms having a homoclinic class with no dominated splitting, such

that the volume is contracted above one periodic orbit and is expanded above another one.

This implies [20] that the dynamics of the C1-generic diffeomorphisms f in U are universal:
any diffeomorphism g of the unit ball B(0, 1) ⊂ Rdim(M) may be approximated by the

restriction of some iterates fn to some balls B ⊂ M . A similar property holds for C∞-

diffeomorphisms on surfaces [81].

Assuming that the two conjectures above hold, one can decompose the space Diff1(M)
into disjoint regions with increasing complexity, as pictured on figure 6.1.

6.2. Local dynamics. The previous conjectures do not control where the homoclinic bifur-

cations occur. We state now more precise questions which allow to break the conjectures

into three steps.

Let f be a C1-generic and non-hyperbolic diffeomorphism.

I. Localization. One knows that one of the chain-recurrence classes is non-hyperbolic. We

expect that this is the case for at least one homoclinic class:

Ia. Does f exhibit a non-hyperbolic homoclinic class?

Ib. If f is not tame, does it have a non-isolated homoclinic class?
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Morse-Smale

hyperbolic

not tame
(critical + heterodimensional)

universal

o
th
er
?

critical tame
(critical + heterodimensional)

tame heterodimensional
(not critical)

Figure 6.1. Structure of the dynamical space Diff1(M).

II. Local dichotomies. LetH(O) be a non-hyperbolic homoclinic classH(O). Strengthen-
ing Palis conjecture, one may look for homoclinic bifurcations inside the class H(O)
(rather than in a neighborhood).

IIa. Does Og belong to a heterodimensional cycle for some g close?

IIb. If H(O) is not tame, does Og has a homoclinic tangency for some g close?

III. Robustness. At last, we are aimed to stabilize the homoclinic bifurcation. This is pos-

sible for heterodimensional cycles as shown in [21]. Let us assume that Og has a

homoclinic tangency for some g close to f .

Does O belong to a hyperbolic set with robust homoclinic tangencies?

(The same question for heterodimensional cycles has been answered in [21].)

These intermediate questions have been discussed in the case of Smale’s problem for

surface diffeomorphisms [1]. Moreira has shown [54] that robust tangencies do not occur

for C1-diffeomorphisms on surface, solving the step III in this case. A possible approach for

the two first steps is to control the lack of dominated splitting by considering the critical set

introduced by Pujals and F. Rodriguez-Hertz [71].

6.3. Tangent dynamics. Some of the previous questions may be addressed by a better

understanding of the weak hyperbolicity on each chain-recurrence class. Considering the

known examples, the case of tame diffeomorphisms or of diffeomorphisms far from the

homoclinic tangencies [23, 36], and the results [15, 16, 35], we formulate the following con-

jectures. Recent discussions with X. Wang seem to bring a partial answer towards the first

one.

Conjecture 6.3. Let H(O) be a non-hyperbolic homoclinic class for a C1-generic f , and
Es ⊕ Ec

1 ⊕ · · · ⊕ Ec
� ⊕ Eu the finest dominated splitting such that Es (resp. Eu) is the

maximal uniformly contracted (resp. expanded) sub-bundle.
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Then, the minimal stable dimension k of the periodic points satisfies

dim(Es) ≤ k < dim(Es ⊕ Ec
1).

Moreover, when dim(Ec
1) ≥ 2 and dim(Es) < k two cases are possible:

– On a periodic orbit, the sum of all the Lyapunov exponents inside Ec
1 is positive. Then

k = dim(Es)+1 and the class is contained in a locally invariant submanifold tangent
to Ec

1 ⊕ · · · ⊕ Ec
� ⊕ Eu (and is not isolated).

– For any ergodic probability, the sum of the dim(Es ⊕ Ec
1) − k + 1 larger Lyapunov

exponents inside Ec
1 is negative. (The volume along Ec

1 is contracted.)

The next conjectures implies that for an aperiodic class with a dominated splittingE⊕F ,

either E is uniformly contracted or F is uniformly expanded.

Conjecture 6.4. Let Λ be an aperiodic class for a C1-generic f , and Es ⊕ Ec ⊕ Eu the
dominated splitting such that Es (resp. Eu) is the maximal uniformly contracted (resp.
expanded) sub-bundle. Then Ec has dimension larger or equal to 2 and does not admit a
finer dominated splitting.
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Weak KAM Theory: the connection between
Aubry-Mather theory and viscosity solutions of
the Hamilton-Jacobi equation

Albert Fathi

Abstract. The goal of this lecture is to explain to the general mathematical audience the connection

that was discovered in the last 20 or so years between the Aubry-Mather theory of Lagrangian systems,

due independently to Aubry and Mather in low dimension, and to Mather in higher dimension, and the

theory of viscosity solutions of the Hamilton-Jacobi equation, due to Crandall and Lions, and more

precisely the existence of global viscosity solutions due to Lions, Papanicolaou, and Varhadan.
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1. Introduction

This lecture is not intended for specialists, but rather for the general mathematical audience.

Lagrangian Dynamical Systems have their origin in classical physics, especially in celestial

mechanics. The Hamilton-Jacobi method is a way to obtain trajectories of a Lagrangian

system through solutions of the Hamilton-Jacobi equation. However, solutions of this equa-

tion easily develop singularities. Therefore for a long time, only local results were obtained.

Since the 1950’s, several major developments both on the dynamical side, and the PDE side

have taken place. In the 1980’s, on the dynamical side there was the famous Aubry-Mather

theory for twist maps, discovered independently by S. Aubry [2] and J.N. Mather [20], and

its generalization to higher dimension by J.N. Mather [21, 22] in the framework of classical

Lagrangian systems. On the PDE side, there was the viscosity theory of the Hamilton-Jacobi

equation, due to M. Crandall and P.L. Lions [8], which introduces weak solutions for this

equation, together with the existence of global solutions for the stationary Hamilton-Jacobi

equation on the torus obtained by P.L. Lions, G. Papanicolaou, and S.R.S. Varadhan [18]. In

1996, the author found the connection between these apparently unrelated results: the Aubry

and the Mather sets can be obtained from the global weak (=viscosity) solutions. Moreover,

these sets serve as natural uniqueness sets for the stationary Hamilton-Jacobi equation, see

[13]. Independently, a little bit later Weinan E [11] found the connection for twist maps,

with some partial ideas for higher dimensions, and L.C. Evans and D. Gomes [12] showed

how to obtain Mather measures from the PDE point of view.

In this introduction, we quickly explain some of these results.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Although all results are valid for Tonelli Hamiltonians defined on the cotangent space

T ∗M of a compact manifold, in this introduction, we will stick to the case where M =
Tk = Rk/Zk.

A Tonelli Hamiltonian H on Tk is a function H : Tk × Rk → R, (x, p) �→ H(x, p),
where x ∈ Tk and p ∈ Rk, which satisfies the following conditions:

(i) The Hamiltonian H is Cr, with r ≥ 2.

(ii) (Strict convexity in the momentum) The second derivative ∂2H/∂p2(x, p) is positive
definite, as a quadratic form, for every (x, p) ∈ Tk × Rk.

(iii) (Superlinearity)H(x, p)/‖p‖ tends to+∞, uniformly in x ∈ Tk, as ‖p‖ tends to+∞,

where ‖ · ‖ is the Euclidean norm.

In fact, it is more accurate to consider H as a function on the cotangent bundle Tk × (Rk)∗,
where (Rk)∗ is the vector space dual to Rk. To avoid complications, in this introduction, we

identify (Rk)∗ to Rk in the usual way (using the canonical scalar product).

There is a flow φ∗t associated to the Hamiltonian. This flow is given by the ODE

ẋ =
∂H

∂p
(x, p)

ṗ = −∂H

∂x
(x, p).

(1.1)

It is easy to see that the Hamiltonian H is constant along solutions of the ODE. Since the

level sets of the function H are compact by the superlinearity condition (iii), this flow φ∗t is

defined for all t ∈ R, and therefore is a genuine dynamical system.

The following theorem is due to John Mather [21, 22] with a contribution by Mário Jorge

Dias Carneiro [9].

Theorem 1.1. There exists a convex superlinear function α : Rk → R such that for every
P ∈ Rk, we can find a non-empty compact subset Ã∗(P ) ⊂ Tk × Rk, called the Aubry set
of H for P , satisfying:

1) The set Ã∗(P ) is non-empty and compact.

2) The set Ã∗(P ) is invariant by the flow φ∗t .

3) The set Ã∗(P ) is a graph on the base Tk, i.e. the restriction of the projection π :
Tk × Rk → Tk to Ã∗(P ) is injective.

4) The set Ã∗(P ) is included in the level set {(x, p) ∈ Tk × Rk | H(x, p) = α(P )}.
John Mather [21, 22] gave also a characterization of the probability measures invariant

by φ∗t whose support is included in the Aubry set Ã∗(P ).

Theorem 1.2. For every P ∈ Rk, and every Borel probability measure μ̃ on Tk×Rk which
is invariant by the flow φ∗t , we have

−α(P ) ≤
∫
Tk×Rk

∂H

∂p
(x, p)[p− P ]−H(x, p) dμ̃(x, p),

with equality if and only if μ̃(Ã∗(P )) = 1, i.e. the support of μ̃ is contained in Ã∗(P ).



Weak KAM Theory 599

Part 4) Theorem 1.1 is the contribution of Mário Jorge Dias Carneiro. It leads us to a

connection with the Hamilton-Jacobi equation. In fact, there is a well-known way to obtain

invariant sets which are both graphs on the base and contained in a level set ofH . It is given

by the Hamilton-Jacobi theorem.

Theorem 1.3 (Hamilton-Jacobi). Let u : Tk → R be a C2function. If P ∈ Rk, the graph

Graph(P +∇u) = {(x, P +∇u(x)) | x ∈ Tk}
is invariant under the Hamiltonian flow ofH if and only ifH is constant onGraph(P+∇u).
i.e. if and only if u is a solution of the (stationary) Hamilton-Jacobi equation

H(x, P +∇u(x)) = c, for every x ∈ Tk,

where c is a constant independent of x.

Therefore, it is tempting to try to obtain the Aubry-Mather sets from invariant graphs.

This cannot be done with u smooth, since this would give too many invariant tori in general

Hamiltonian systems, see the explanations in the next section.

In fact, Crandall and Lions [8] developed a notion of weak PDE solution for the Hamilton-

Jacobi equation, called viscosity solution. The following global existence theorem was ob-

tained by Lions, Papanicolaou, and Varadhan [18].

Theorem 1.4. Suppose that H : Tk × Rk → R is continuous and satisfies the superlin-
earity condition (iii) above. For every P , there exists a unique constant H̄(P ) such that the
Hamilton-Jacobi equation

H(x, P +∇u(x)) = H̄(P ) (1.2)

admits a global weak (viscosity) solution u : Tk → R.

The solutions obtained in this last theorem are automatically Lipschitz due to the super-

linearity of H . Of course, if we add a constant to a solution of equation (1.2) we still obtain

a solution. However, it should be emphasized that there may be a pair of solutions whose

difference is not a constant.

Theorem 1.4 above was obtained in 1987, and Mather’s work [21] was essentially com-

pleted by 1990. John Mather visited the author at the University of Florida in Gainesville in

the fall of 1988, and explained that he had obtained some results on existence of Aubry sets

for Lagrangians in higher dimension, i.e. beyond twist maps.

In 1996, the author obtained the following result, see [13].

Theorem 1.5 (Weak Hamilton-Jacobi). The function α of Mather, and the function H̄ of
Lions-Papanicolaou-Varadhan are equal. Moreover, if u : Tk → R is a weak (=viscosity)
solution of

H(x, P +∇u(x)) = H̄(P ) = α(P ), (1.3)

then the graph

Graph(P +∇u) = {(x,∇u(x)) | for x ∈ Tk, such that u has a derivative at x}
satisfies the following properties:

1) Its closure Graph(P +∇u) is compact, and projects onto the whole of Tk.
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2) For every t > 0, we have φ∗−t

(
Graph(P +∇u)) ⊂ Graph(P +∇u).

Therefore, the subset Ĩ∗(P +u) =
⋂

t≥0 φ
∗
−t

(
Graph(P +∇u)) is compact non-empty and

invariant under φ∗t , for every t ∈ R, and the closure Graph(P +∇u) is contained in the
unstable subset Wu(P + Ĩ∗(u)) defined by

Wu(Ĩ∗(P + u)) = {(x, p) ∈ Tk × Rk | φ∗t (x, p)→ Ĩ∗(u), as t→ −∞}.
Moreover, the Aubry set Ã∗(P ) for H is equal to the intersection of the sets Ĩ∗(P + u),
where the intersection is taken on all weak (viscosity) solutions of equation (1.3).

In fact, denoting by Ã∗
H(P ), and αH , the Aubry sets and the α function for the Hamilto-

nianH , it is not difficult to see that αH(P ) = αHP
(0), and also that Ã∗

H(P ) can be obtained

from Ã∗
HP

(0), where HP is the Tonelli Hamiltonian defined by HP (x, p) = H(x, P + p).
Therefore we will later on only give the proof of Theorem 1.5 for the case P = 0.

It is the author’s strong belief that the real discoverer of the above theorem should have

been Ricardo Mañé. His untimely death in 1995 prevented him from discovering this theo-

rem as can be attested by his last work [19].

The reader should also be aware that what we are covering is just the beginning of weak

KAM theory. It is 18 years old. It does not do justice to the marvelous contributions done by

others in this subject since 1996. The author strongly apologizes to all these mathematicians

who have carried the theory way beyond the author’s imagination or wildest dream.

2. Motivation

Some motivation for Aubry-Mather, and hence for weak KAM theory, came from celestial

mechanics, and problems related to more general classical mechanical systems studied by

Lagrangian or Hamiltonian methods.

We will give a (very partial) description of this motivation. There are also some historical

comments. The reader should not take them seriously. They are here for the sake of a good

story. The author does not claim that this historical account is accurate.

Although celestial mechanics is about the motion of several bodies in R3 with different

masses, we will use a simplified model, and start with the motion of a free particle of mass

m in the Euclidean space Rk (if k = 3n, this is also the motion of n particles in R3, all with

same massm). The trajectory γ : R→ Rk of such a particle satisfies γ̈(t) = 0, for all t ∈ R.

Therefore γ(t) = x+tv, where x = γ(0) is the initial position and v is the initial speed. The

speed of the trajectory is the time derivative γ̇, in particular v = γ̇(0). It is better to convert

the second order ODE given by γ̈(t) = 0 to a first order ODE on the configuration space

Rk × Rk taking into account both position and speed. A point in Rk × Rk will be denoted

by (x, v), where x ∈ Rk is the position component and v ∈ Rk is the speed component. The

speed curve of γ is Γ(t) = (γ(t), γ̇(t)). This curve takes values in Rk ×Rk and satisfies the

first order ODE

Γ̇(t) = X0(Γ(t)),

where the vector field X0 on Rk × Rk is given by X0(x, v) = (v, 0). Conversely, any

solution of this ODE is a possible speed curve of a free particle of mass m. The solutions of

the ODE yield a flow φ0
t on Rk × Rk, defined by

φ0
t (x, v) = (x+ tv, v).
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Observe that the sets Rk×{v}, v ∈ Rk give a decomposition of Rk×Rk into subsets which

are invariant by the flow φ0
t . We will address the following problem: if we perturb this

system a little bit can we still see such a pattern, i.e. a (partial) decomposition, into invariant

subsets?

To make things more precise, we add a smooth (at least C2) potential V : Rk → R to our

mechanical system. To avoid problems caused by non-compactness, we will assume that V
is Zk periodic, i.e. it satisfies V (x + z) = V (x), for all x ∈ Rk, and all z ∈ Zk. Therefore

V is defined on Tk = Rk/Zk. The equation of motion is now given by the Newton equation

mγ̈(t) = −∇V (γ(t)).
Again this defines a first order ODE on Tk × Rk using the vector field

X(x, v) =
(
v,− 1

m
∇V [γ(t)]).

This ODE has a flow on Tk × Rk which we will denote by φt. The orbits of our flow are

precisely the speed curves of possible motions of a particle in the potential V .

Before proceeding further, it is convenient to recall the Lagrangian and Hamiltonian

aspects of a classical mechanical system since they will play a major role in the theory. The

Lagrangian L : Tk × Rk is defined by

L(x, v) =
1

2
m‖v‖2 − V (x),

where ‖·‖ is the usual Euclidean norm on Rk. Using this Lagrangian, the Newton equation

becomes
d

dt

[
∂L

∂v
(γ(t), γ̇(t))

]
=

∂L

∂x
(γ(t), γ̇(t)). (2.1)

The equation above is the Euler-Lagrange equation associated to the Lagrangian L. It shows

that the trajectories are extremal curves for the Lagrangian, as we now explain. A Lagrangian

like L is used to define the action L(γ) of the curve γ : [a, b]→ Tk by

L(γ) =

∫ b

a

L(γ(s), γ̇(s)) ds.

A curve γ : [a, b] → Tk is called a minimizer (for L) if for every curve δ : [a, b] → Tk,

with δ(a) = γ(a), δ(b) = γ(b), we have L(δ) ≥ L(γ). These curves play a particular role

in Aubry-Mather theory. They have to be found among the curves which are critical points

for the action functional L. These critical points are called extremals. More precisely, a

curve γ : [a, b] → Tk is called an extremal for L, if the functional L on the space of curves

δ : [a, b]→ Tk, with δ(a) = γ(a), δ(b) = γ(b), has a vanishing derivativeDγL at γ. By the

classical theory of Calculus of Variations, this is the case if and only if γ satisfies the Euler-

Lagrange equation (2.1). Therefore the possible trajectories of our particle for the potential

V are precisely the extremals for L.
For the Hamiltonian aspects, one has to introduce the dual variable p = mv. In fact, this

dual variable should be understood as an element of the dual space (Rk)∗, which means that

p should be considered as the linear form 〈p, ·〉 on Rk. A better way to think of p is to define

it by p = ∂L/∂v(x, v). The Hamiltonian H : Tk × (Rk)∗ is then defined by

H(x, p) =
1

2m
‖p‖2 + V (x).



602 Albert Fathi

It is not difficult to see that H is also given by

H(x, p) = max
v∈Rk

p(v)− L(x, v).

The Legendre transform L : Tk × Rk → Tk × (Rk)∗ is a diffeomorphism defined by

L(x, v) = (x,
∂L

∂v
(x, v)).

If one uses the Legendre transform to transport the flow φt to the flow φ∗t = LφtL−1 on

Tk × (Rk)∗, using the Euler-Lagrange equation and the definition of H , it is not difficult to

see that φ∗t is the flow of the ODE (1.1).

ẋ =
∂H

∂p
(x, p)

ṗ = −∂H

∂x
(x, p).

This means that φ∗t is the Hamiltonian flow associated to H .

Since we are now interested in perturbing the motion of the free particle, we will denote

by φVt , LV , HV , . . . the objects associated to the potential V . Of course, for V = 0, we get

back the flow φ0
t , or rather the induced flow on the quotient Tk×Rk. In that case L0(x, v) =

‖v‖2/2, and H0(x, p) = ‖p‖2/2, the flow φ0
t is the geodesic flow of the flat canonical

metric on Tk, and φ∗t
0 is the geodesic flow on the cotangent bundle. The decomposition into

invariant sets for the flow φ∗t
0 is given by {(x, p) | p = P}, P ∈ Rk. Notice that this is the

graph of the solution u = 0 of the Hamilton-Jacobi equation

H0(x, P + dxu) =
1

2
‖P‖2.

One could try to understand the persistence or non-persistence of the invariant sets by trying

to solve for V small the Hamilton-Jacobi equation

HV (x, P + dxu) = c(P ).

Unfortunately, it is almost impossible to find a C1 solution of such an equation for a given

V , and all P . In fact, as we now see in the simple example of a pendulum, there must be

some condition on P to be able to do that.

Example 2.1. We consider the function Vε(t) = ε cos 2πt on the 1-dimensional torus T =
R/Z. The Hamiltonian Hε(x, p) = 1/2p2 + ε cos 2πt has levels which are 1-dimensional.

The Hamiltonian flow φεt is the flow of the ODE

ẋ = p

ṗ = −2πε sin(2πx).

Therefore the flow φεt has exactly two fixed points (0, 0) and (1/2, 0). There are also two

orbits homoclinic to the fixed point (0, 0) (i.e. converging to the fixed point when t→ ±∞).

The union of the fixed point (0, 0) and its two homoclinic orbits is the level Hε = ε, see the

figure below. The other orbits of the Hamiltonian flow are periodic. A level set Hε = c is
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Hε = ε

Hε = 0

Hε = 2ε

Hε = 2ε

Figure 1. The pendulum.

just one orbit if c < ε, and a pair of orbits if c > ε. The level set for c = ε is given by the

equation
1

2
p2 + ε cos 2πx = ε.

Hence the region {(x, p) | Hε(x, p) ≤ ε} is enclosed between the two graphs p = ±√ε(2−
2 cos 2πx)1/2. The area Aε of {(x, p) | Hε(x, p) ≤ ε} rescales as Aε =

√
εA1, where

A1 > 0 is the area of {(x, p) | p2 + 2 cos 2πx ≤ 2}. Suppose that for a given P ∈ R, we

can find, for some c ∈ R, a C1 solution u : T→ R of

Hε(x, P + u′(x)) = c. (2.2)

This implies that the level set Hε = c, which is a subset of T × R, projects onto the whole

of T. Therefore c ≥ ε, and the area between the curve p = P + u′(x), and the curve p = 0
is an absolute value larger than Aε/2., i.e. |

∫
T
P + u′(x) dx| ≥ Aε/2. But

∫
T
u′(x) dx = 0,

since u′ is the derivative of a C1 function on T. If follows that |P | ≥ √εA1/2. In particular,

the set p = 0 does not deform to an invariant set for ε as small as we want.

Note that φ∗t
Vε still remembers part of the set p = 0. In fact, the points in p = 0 are

fixed points for φ∗t
0, and the flow φ∗t

Vε must also have fixed points, because the fixed points

of φ∗t
Vε are precisely the critical points of HVε

, and by superlinearity the function HVε
must

have critical points (at least a minimum) on T× R.

Another fact that can be readily seen on Figure 1, is that for |P | ≥ ε, the Hamilton-Jacobi

equation (2.2) has a solution. This solution is C∞ for |P | > ε. But it is only C1 for |P | = ε,
in which case the derivative u′ is only piecewise C1 because its graph has a corner at x = 0.

In fact, there are always problems with resonances. This goes back to the work of Henri

Poincaré [24] on the three body problem. To explain this in our case, we come back to

the flow φ0
t defined on the tangent bundle of Tk. The invariant sets are given by Tv =

{(x, v) | x ∈ Tk}, v ∈ Rk. If the coordinates of v are all rational, then the motion on Tv
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is periodic. It can be shown that perturbing the system destroys most of the Tv’s. However

necessarily some periodic orbits must still exist. In fact, the periodic orbits on Tv are all

in the same homotopy class, and they minimize, in that homotopy class, the action for the

Lagrangian L0(x, v) = ‖v‖2/2. If we perturb the Lagrangian L0 to a Tonelli Lagrangian L,
by the direct method in the Calculus of Variations, there are minimizers of the L-action in

this homotopy class. For a long time, it was believed that most of the Tv’s would disappear

under a general perturbation except maybe for some periodic orbits. It came as a surprise,

when A.N. Kolmogorov [17] announced the stability property for Tv , for v far away from

the rational vectors, at least for analytic perturbations. This was extended by V.I. Arnold [1],

and also by J. Moser [23] to cover differentiable perturbations in the Cr topology. This is the

now famous KAM theory. In fact, not only do the Tv persist for some v′s, but they persist for

more and more v’s as the size of the perturbation becomes smaller and smaller, for example

in the C∞ topology. The set of v’s for which this is possible tends to a set of full Lebesgue

measure as the perturbation vanishes.

It turns out that the KAM method proves more than what we just said. Fix a v0 ∈ Rk

to which the KAM theorem applies. The invariant set Tv0 for φ0
t is a torus and on that torus

φ0
t is the linear flow (t, x) �→ (x + tv0). For V small enough, KAM theory finds a smooth

imbedding map iV,v0 : Tv0 → Tk × Rk such that:

1) the image iV,v0(Tv0) is invariant under φ
V
t ;

2) the imbedding iV,v0 is a conjugation between the linear flow φ0
t |Tv0 and the restriction

of φVt to the image iV,v0(Tv0).

So not only does the set persist (with a deformation) but the dynamics remain the same. The

imbedding iV,v0 is the identity for V = 0, and it depends continuously on V . Moreover, we

have:

3) the image LV (iV,v0(Tv0)) of iV,v0(Tv0) by the Legendre transform, which is invari-

ant under φ∗t
V , is a Lagrangian graph on the base. This means that we can find

PV,v0 ∈ Rk, and a smooth function uV,v0 : Tk → R such that LV (iV,v0(Tv0)) =
Graph(PV,v0 + duV,v0) = {(x, PV,v0 + dxuV,v0) | x ∈ Tk}.

Since this graph Graph(PV,v0 + duV,v0) is invariant by φ∗t
V , by the Hamilton-Jacobi

theorem the function uV,v0 solves the equation HV (x, PV,v0 + dxuV,v0) = cV,v0 , for some

constant cV,v0 . Hence, although the KAM theory is rooted in Dynamical Systems and tries

to find a part of the dynamics that is conjugated to a simple linear dynamic on the torus, it

nevertheless produces smooth solutions to the Hamilton-Jacobi equation.

Of course, it remained to understand what happens to the invariant tori when they dis-

appear. In 1982, independently, Aubry [2] and Mather [20] studied twist maps on the

annulus (they can be thought as giving examples of a discretization of Tonelli Hamiltoni-

ans on T2). They showed that the invariant circles of the standard twist diffeomorphism

(x, r) �→ (x + r, r) of T × [0, 1] never completely disappear. In fact, periodic orbits persist

for r rational, and for r irrational there exists either an invariant Cantor subset or an invari-

ant curve. In all cases, the invariant sets are Lipschitz graphs on (part of) the base T. It is

important to note that these results are not only perturbative, but that they also hold for all

area preserving twist maps of T× [0, 1].
Around 1989, John Mather extended the existence of these sets to Tonelli Hamiltonians

in higher dimension [21, 22].
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3. The general setting

We will consider the more general setting of a Hamiltonian H : T ∗M → R defined on the

cotangent space T ∗M of the compact connected manifold without boundary M . We will

denote by (x, p) a point in T ∗M , where x ∈M , and p ∈ T ∗
xM .

The Hamiltonian H is said to be Tonelli, if it satisfies conditions (i), (ii), and (iii) of

the Introduction. Only condition (iii) needs an explanation. We replace the Euclidean norm

on Rk, by any family of norms ‖·‖x, x ∈ M , on the fibers of TM → M , coming from

a Riemannian metric on M . Note that, by the compactness of M , any two such families

are uniformly equivalent, i.e. their ratio is uniformly bounded away from 0 and from +∞.

Therefore condition (iii) is

(iii) (Superlinearity) H(x, p)/‖p‖x → +∞, uniformly in x ∈M , as ‖p‖x → +∞.

The Hamiltonian flow φ∗t is still defined on T ∗M . In local coordinates inM it is still the flow

of the ODE (1.1). The flow is complete because H is constant on orbits, and has compact

level sets by superlinearity.

We introduce the Lagrangian L : TM → R, defined on the tangent bundle TM of M ,

by

L(x, v) = sup
p∈T∗xM

p(v)−H(x, p). (3.1)

SinceH is superlinear, this sup is always attained. Moreover, since the function p �→ p(v)−
H(x, p) is C1 and strictly convex, this sup is achieved at the only p at which its derivative

vanishes, namely the only p, where v = ∂H/∂p(x, p).
The Lagrangian L is as differentiable as H is, and it satisfies the Tonelli properties (i),

(ii), (iii) of the introduction. The Legendre transform L : TM → T ∗M is defined by

L(x, v) = (x, ∂L
∂v

(x, v)
)
. (3.2)

Using the Tonelli properties, it can be shown that L : TM → T ∗M is a global Cr−1

diffeomorphism. Moreover, its inverse is given by

L−1(x, p) =
(
x,

∂H

∂p
(x, p)

)
. (3.3)

Definition (3.1) of the Lagrangian yields the Fenchel inequality

p(v) ≤ L(x, v) +H(x, p). (3.4)

Furthermore, there is equality in the Fenchel inequality if and only if (x, p) = L(x, v), which

is equivalent to p = ∂L/∂v(x, v), and also to v = ∂H/∂p(x, p).
Since for any given p ∈ T ∗

xM , we can find a v ∈ TxM , for which the Fenchel inequality

is an equality, we obtain

H(x, p) = sup
v∈TxM

p(v)− L(x, v). (3.5)

The Lagrangian L is used to define the action L(γ) of the curve γ : [a, b]→M by

L(γ) =

∫ b

a

L(γ(s), γ̇(s)) ds.
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The notion of minimizer and extremal for L are the same as in §2 above. By the classical

theory of Calculus of Variations, the curve γ : [a, b] → M is an extremal if and only if it

satisfies, in local coordinates on M , the Euler-Lagrange equation

d

dt

[
∂L

∂v
(γ(t), γ̇(t))

]
=

∂L

∂x
(γ(t), γ̇(t)). (3.6)

If we carry out the derivation with respect to t in this last equation, we get

∂2L

∂v2
(γ(t), γ̇(t))(γ̈(t), ·) = ∂L

∂x
(γ(t), γ̇(t))(·)− ∂2L

∂x∂v
(γ(t), γ̇(t))(γ̇(t), ·),

where the dot · means that we consider maps on the linear space TxM . Since L is Tonelli,

the bilinear form ∂2L/∂v2(γ(t), γ̇(t)) is invertible. Therefore we can solve for γ̈(t), and
obtain γ̈(t) = X(γ(t), γ̈(t)), where X is a vector field U → Rk, with U is a coordinate

patch in M , and k = dim(M). The solutions of this second order ODE are exactly the

extremals, a concept which does not depend on the choice of a coordinate system. Hence,

these local second order ODE’s define a global second order ODE onM . Taking into account

not only position, but also speed, it becomes a first order ODE on TM , which is called the

Euler-Lagrange ODE, and its flow φt is called the Euler Lagrange flow. We give in the next

proposition the well-known properties of the Euler Lagrange flow.

Proposition 3.1. If γ : [a, b] → M is an extremal for the Lagrangian L, then its speed
curve t �→ (γ(t), γ̇(t)) is a piece of an orbit of the Euler-Lagrange flow φt, i.e., we have
(γ(t), γ̇(t)) = φt−t0(γ(t0), γ̇(t0)), for all t0, t ∈ [a, b].

Conversely, denoting by π : TM → M is the canonical projection, for every (x, v) ∈
TM , the curve γ(x,v)(t) = πφt(x, v) is an extremal, whose speed curve satisfies
(γ(x,v)(t), γ̇(x,v)(t)) = φt(x, v).

We now come to the relation between the Euler-Lagrange flow and the Hamiltonian flow.

Proposition 3.2. The Legendre transform L : TM → T ∗M is a conjugacy between the
Euler-Lagrange flow φt and the Hamiltonian flow φ∗t . This means that φ∗t = LφtL−1. In
particular, the flow φt is complete, since this is the case for φ∗t .

An important property of Tonelli Lagrangians is existence and regularity of minimizers.

Theorem 3.3 (Tonelli [5, 7, 14, 21]). Suppose that L is a Cr Tonelli Lagrangian on the
compact manifold M . For every x, y ∈ M , for every a, b ∈ R, with a < b, we can find
a minimizer γ : [a, b] → M , with γ(a) = x, and γ(b) = y. Moreover, any minimizer
is automatically a Cr extremal. In particular, its speed curve is a piece of an orbit of the
Euler-Lagrange flow.

We now define ht(x, y) as the minimal action of a curve from x to y in the time t > 0.

ht(x, y) = inf
γ

∫ b

a

L(γ(s), γ̇(s)) ds, (3.7)

where the infimum is taken over all piecewise C1 curves γ : [a, b] → M , with b − a = t,
γ(a) = x, and γ(b) = y. Since L, in our setting, does not depend on time, the action

of a curve γ : [a, b] → M is the same as the action of any of its shifted in time curves
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γσ : [a + σ, b + σ] → M,γσ(s) = γ(s − σ), with σ ∈ R. Therefore, if a0, b0 are fixed

with b0 − a0 = t, to define ht(x, y) we could have taken the infimum over all curves γ :
[a0, b0]→M , with γ(a0) = x, and γ(b0) = y. Moreover, by Tonelli’s theorem the infimum

is always achieved on a Cr curve, if L is Cr, r ≥ 2. Hence we could have restricted the

curves to obtain the infimum to Cr curves (even to C∞ by density, although the minimizer

may not be C∞ if the Lagrangian L is not C∞).

Here are the elementary properties of ht

Lemma 3.4. If L is a Cr Tonelli Lagrangian, and d is a distance on M obtained from a
Riemannian metric, we have:

1) For every x, y, and every a, b ∈ R with b − a = t, there exists a Cr minimizer
γ : [a, b]→M , with γ(a) = x, γ(b) = y such that ht(x, y) =

∫ b
a
L(γ(s), γ̇(s)) ds.

2) There exists a finite constant A such that ht(x, x) ≤ At, for every x ∈M.

3) There exists a finite constantB such that hd(x,y)(x, y) ≤ Bd(x, y), for every x, y ∈M,
with x �= y.

4) For every x, y ∈M , and every t, t′ > 0, we have

ht+t′(x, y) = inf
z∈M

ht(x, z) + ht′(z, y).

5) For every K ≥ 0, we can find a finite constant C(K) such that

ht(x, y) ≥ Kd(x, y) + C(K)t, for all x, y ∈M .

Proof. Part 1) is a consequence of Tonelli’s theorem 3.3 above.

To prove Part 2), we use the constant path s �→ x, to obtain

ht(x, x) ≤ tL(x, 0) ≤ At, with A = max
x∈M

L(x, 0).

We now prove part 3). By the compactness ofM , we can find a geodesic γ : [0, d(x, y)]→M
parametrized by arc-length (i.e. ‖γ̇(s)‖γ(s)=1 everywhere), with γ(0)=x, and γ(d(x, y))=
y. If we set

B = sup{L(x, v) | x ∈M, v ∈ TxM, ‖v‖x ≤ 1},
we see that hd(x,y)(x, y) ≤ L(γ) ≤ Bd(x, y).
Part 4) follows from the fact that to go from x to y in time t+ t′, we have first to go in time

t to some point z ∈ M then we go from z to y in time t′, and, moreover, the action for the

concatenated path is the sum of the action of the path from x to z and of the action of the

path from z to y.
For part 5), fix K ≥ 0. We first prove that there exists a finite constant C(K) such that

L(x, v) ≥ K‖v‖x + C(K), (3.8)

By the superlinearity of L, we know that (L(x, v) − K‖v‖x)/‖v‖x tends uniformly to

+∞ as ‖v‖x → +∞. By the compactness of M , it follows that the constant C(K) =
infTM L(x, v) − K‖v‖x is finite. Therefore, the inequality (3.8) holds with this C(K).



608 Albert Fathi

Given a curve γ : [a, b]→M , if we apply (3.8) with x = γ(s), and v = γ̇(s), and integrate

on [a, b], we obtain

L(γ) ≥ K

∫ b

a

‖γ̇(s)‖γ(s) ds+ C(K)(b− a).

But the Riemannian length
∫ b
a
‖γ̇(s)‖γ(s) ds of γ is ≥ d(γ(a), γ(b)). Hence

L(γ) ≥ Kd(γ(a), γ(b)) + C(K)(b− a).

Taking the infimum on all paths γ : [0, t] → M , with γ(0) = x, γ(t) = y finishes the proof

of part 5).

We now come to the most important property of ht. This is what started weak KAM

theory. This property has been discovered independently by many people. When the author

himself discovered it back in 1996, he explained it to Michel Herman in his office in Paris.

After hearing it, Michel Herman opened the drawer of his desk, got out a copy of the paper of

W.H. Fleming [16] published in 1969, which contained an equivalent form of this statement.

This is the oldest instance that the author knows of the following lemma.

Lemma 3.5 (Fleming, [16]). For every t0 > 0, the family of functions ht : M ×M → R,
t ≥ t0 is equi-Lipschitzian.

For the proof of Fleming’s lemma see §8 below. In fact, more is true: the family ht :
M×M → R, t ≥ t0 is equi-semiconcave. Again this fact has been well-known for sometime

now in the theory of viscosity solutions [6]. For a proof, in our setting, of this extension of

Fleming’s lemma see the appendices of [15].

4. The Lax-Oleinik semi-group, and its fixed points

Rather than introducing the theory of viscosity solutions, we are going to give its evolution

semi-group, i.e. the semi-group obtained by solving (in the viscosity sense) the equation

∂U

∂t
(t, x) +H

(
x,

∂U

∂x
(t, x)

)
= 0,

on [0,+∞[×M with given initial condition u : M → R, for t = 0. This semi-group T−
t ,

called the Lax-Oleinik semi-group, acts on the space C0(M,R) of real-valued continuous

functions on M . It can be expressed directly in that case using the functions ht, t > 0, by

T−
t u(x) = inf

y∈M
u(y) + ht(y, x). (4.1)

This definition is valid for t > 0, of course T−
0 is the identity. Notice that by Fleming’s

lemma 3.5, not only is T−
t u continuous for t > 0, but for every t0 > 0 the whole family

T−
t u, for t ≥ t0, u ∈ C0(M,R) is equi-Lipschitzian. By the Ascoli-Arzelá theorem, this

suggests that the image of T−
t is “almost” relatively compact. In fact, to be able to apply the

Ascoli-Arzelá theorem, we would also need uniform boundedness. This is not the case but

as we will see, we can easily overcome this small difficulty.

We first give the properties of T−
t .
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Proposition 4.1. The Lax-Oleinik satisfies the following properties:

1) For every u ∈ C0(M,R), and every c ∈ R, we have T−
t (c+ u) = c+ T−

t (u), for all
t ∈ [0,+∞[.

2) For every u, v ∈ C0(M,R), with u ≤ v, we have T−
t u ≤ T−

t v, for all t ∈ [0,+∞[.
3) For every u, v ∈ C0(M,R), we have ‖T−

t u−T−
t v‖0 ≤ ‖u−v‖0, for all t ∈ [0,+∞[,

where ‖·‖0 is the sup (or C0) norm on C0(M,R).

4) The family T−
t , t ≥ 0 is a semi-group, i.e. for every u ∈ C0(M,R), we have T−

t+t′u =

T−
t [T

−
t′ (u)].

5) For every given u ∈ C0(M,R), the curve t �→ T−
t u is continuous for the sup norm

topology on C0(M,R).

6) For every t0 > 0, the family T−
t u, t ≥ t0, u ∈ C0(M,R) is equi-Lipschitz.

Proof. Parts 1) and 2) are obvious from the definition of the semi-group T−
t .

To show part 3), we observe that −‖u− v‖0 + v ≤ u ≤ v + ‖u− v‖0. Therefore using

2) and 1), we obtain −‖u− v‖0 + T−
t v ≤ T−

t u ≤ T−
t v + ‖u− v‖0, which implies part 3).

Part 4) is a consequence of part 4) of Lemma 3.4.

It remains to prove part 5). We first consider the case where u : M → R is Lipschitz.

We prove that ‖T−
t u − u‖0 → 0, when t → 0. By part 2) of Lemma 3.4 and the definition

of T−
t , we obtain

T−
t u(x) ≤ u(x) + ht(x, x) ≤ u(x) +At.

Hence T−
t u − u ≤ At. If we denote by K a Lipschitz constant for u, we have u(y) +

Kd(y, x) ≥ u(x), combining with part 5) of Lemma 3.4, we get

u(y) + ht(y, x) ≥ u(y) +Kd(y, x) + C(K)t ≥ u(x) + C(K)t.

Taking the infimum over y ∈ M , we conclude that T−
t u(x) ≥ u(x) + C(K)t. Hence

u− T−
t u ≤ −C(K)t. Combining the two inequalities yields

‖T−
t u− u‖0 ≤ tmax(A,−C(k)).

Therefore ‖T−
t u− u‖0 → 0, when t→ 0.

If u ∈ C0(M,R), we can find a sequence of C1 functions un : M → R such that

‖un−u‖0 → 0, as n→ +∞. Since a C1 function on the compact manifoldM is Lipschitz,

we have ‖T−
t un − un‖0 → 0, as t→ 0, for every n. Since ‖T−

t un − T−
t u‖0 ≤ ‖un − u‖0,

for every t > 0, it is not difficult to conclude that ‖T−
t u− u‖0 → 0, when t → 0. To show

the continuity of t→ T−
t u on [0,+∞[, we use the semi-group property 4), and 2), to obtain

that for t′ ≥ t, we have ‖T−
t′ u− T−

t u‖0 = ‖T−
t (T

−
t′−tu)− T−

t u‖0 ≤ ‖T−
t′−tu− u‖0. This

can be rewritten as ‖T−
t′ u−T−

t u‖0 ≤ ‖T−
|t′−t|u−u‖0, which is valid also in the case t ≥ t′.

Therefore the continuity of t→ T−
t u at 0 implies the continuity on [0,+∞[.

We are now in a position to prove the existence of global weak solutions of the Hamilton-

Jacobi equation.

Theorem 4.2 (Weak KAM Solution). We can find c ∈ R, and a function u ∈ C0(M,R) such
that u = T−

t u+ct, for every t > 0. Necessarily u is Lipschitz, and c = − limt→+∞ T−
t v/t,

for every v ∈ C0(M,R).
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Proof. We define LipK(M,R) as the subset of Lipschitz functions in C0(M,R) with Lips-

chitz constant ≤ K. This subset is closed and convex in C0(M,R). Moreover, if we fix a

base point x0 ∈M , by the Arzelà-Ascoli theorem, the closed convex subset Lipx0

K (M,R) =
{u ∈ LipK(M,R) | u(x0) = 0} is compact. Fix t0 > 0, by part 6) of Proposition 4.1,

there exists a constant K(t0) such that for every t ≥ t0, the image of T−
t is contained in

LipK(t0)(M,R). Therefore, for t ≥ t0, we can define the continuous non-linear operator

T̂−
t : C0(M,R)→ Lipx0

K(t0)
(M,R) by u �→ T−

t u−T−
t u(x0). Since T̂

−
t sends the compact

convex subset Lipx0

K(t0)
(M,R) to itself, by the Schauder-Tykhonov theorem [10, Theorem

2.2, pages 414-415], the map T̂−
t has a fixed point. We now show that we can find a common

fixed point for the family T̂−
t , t > 0. We first note that T̂−

t , t > 0, is a semi-group. In fact

T̂−
t′ (T̂

−
t u) = T−

t′ T̂
−
t u− T−

t′ T̂
−
t u(x0). Since

T−
t′ T̂

−
t u = T−

t′ (T
−
t u− T−

t u(x0)) = T−
t′ (T

−
t u)− T−

t u(x0)

= T−
t′+tu− T−

t u(x0),

we obtain

T̂−
t′ T̂

−
t u = T−

t′+tu− T−
t u(x0)− [T−

t′+tu(x0)− T−
t u(x0)] = T−

t′+tu− T−
t′+tu(x0)

= T̂−
t′+tu.

This semi-group property implies that Fix(T̂−
1/2n+1) ⊂ Fix(T̂−

1/2n), for every integer n ≥ 1,

where Fix(T̂−
t ) is the set of fixed points of T̂−

t in C0(M,R). Since, for t > 0, the non-

empty set Fix(T̂−
t ) is closed and contained in Lipx0

K(t)(M,R), it is compact. Therefore the

non-increasing sequence Fix(T̂−
1/2n), n ≥ 1, has a non-empty intersection. If u is in this

intersection, it is fixed by every T̂−
1/2n . By the semi-group property we obtain u = T̂−

t u,

for every t in the dense set of rational numbers of the form p/2n, p ∈ N, n ≥ 1. But

t �→ T̂−
t u is continuous by part 5) of Proposition 4.1. Hence u = T̂−

t u, for every t ≥ 0.
Therefore, we obtained a u ∈ C0(M,R) such that u = T−

t u + ct, for every t ≥ 0, where

ct = −T−
t u(x0) ∈ R. Since

T−
t′ u = T−

t′ [T
−
t u+ ct] = T−

t′ T
−
t u+ ct = T−

t′+tu+ ct,

we infer

u = T−
t′ u+ ct′ = T−

t′+tu+ ct + ct′ .

This implies that ct′+t = ct′ + ct. The continuity of t �→ ct = u − T−
t u implies ct = tc,

where c = c1. This finishes the proof of the existence of u and c.
Note that u is necessarily Lipschitz, since T−

t u is Lipschitz for t > 0. To prove the

last claim of the theorem on c, we first observe that T−
t u/t = u/t − c. Since the function

u is bounded on the compact set M , we do get limt→+∞ T−
t u/t = −c. By part 3) of

Proposition 4.1, for any v ∈ C0(M,R), we have ‖T−
t v/t − T−

t u/t‖0 ≤ ‖v − u‖0/t → 0,
as t→ +∞.

Definition 4.3 (Critical value). We will denote by c(H), or c(L) the only constant c for

which we can find a weak KAM solution, i.e. the only constant c for which we can find a

function u : M → R, with u = T−
t u+ c, for every t > 0. This constant is called the Mañé

critical value.
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5. Domination and calibration

The proof of the following proposition is straightforward from the definitions.

Proposition 5.1 (Characterization of subsolutions). Let u : M → R be a function, and
c ∈ R. The following are equivalent

1) for every t > 0, we have u ≤ Ttu+ ct;

2) for every t > 0, and every x, y ∈M , we have u(y)− u(x) ≤ ht(x, y) + ct;

3) for every continuous, piecewise C1 curve γ : [a, b]→M , we have

u(γ(b))− u(γ(a)) ≤
∫ b

a

L(γ(s), γ̇(s)) ds+ c(b− a). (5.1)

It is convenient to introduce the following definition.

Definition 5.2 (Domination). If u : M → R is a function, and c ∈ R, we say that u is

dominated by L+ c, which we denote by u ≺ L+ c, if it satisfies inequality (5.1) above, for

every piecewise C1 curve γ : [a, b]→M .

Lemma 5.3. There is a constant B such that any function u :M → R, dominated by L+ c,
is Lipschitz with Lipschitz constant ≤ B + c.

Proof. By the domination condition u(y)− u(x) ≤ hd(x,y)(x, y) + cd(x, y). Therefore, we

obtain u(y)− u(x) ≤ (B + c)d(x, y), with B given by part 3) of Lemma 3.4.

Recall that by Rademacher’s theorem, Lipschitz functions are differentiable a.e.

Lemma 5.4. Let u : M → R be dominated by L + c. If the derivative dxu exists at some
given x ∈ M , then H(x, dxu) ≤ c. In particular, the function u is an almost everywhere
subsolution of the Hamilton-Jacobi equation H(x, dxu) = c.

Proof. Suppose dxu exists at x ∈ M . For a given v ∈ TxM , let γ : [0, 1] → M be a C1

curve with γ(0) = x, γ̇(0) = v. Applying (5.1) to the curve γ|[0, t], for every t ∈ [0, 1], we

obtain

u(γ(t))− u(γ(0)) ≤
∫ t

0

L(γ(s), γ̇(s)) ds+ ct.

Dividing by t > 0 and letting t→ 0, we get dγ(0)u(γ̇(0)) ≤ L(γ(0), γ̇(0))+c. By the choice

of γ, we conclude that dxu(v)−L(x, v) ≤ c. ButH(x, dxu) = supv∈TxM dxu(v)−L(x, v).
Hence H(x, dxu) ≤ c.

It should not come as a surprise that curves satisfying the equality in (5.1) enjoy special

properties. It is convenient to give them a name.

Definition 5.5 (Calibrated curve). Suppose that u :M → R is dominated by L+ c. A curve

γ : [a, b]→M is said to be (u, L, c)-calibrated if

u(γ(b))− u(γ(a)) =

∫ b

a

L(γ(s), γ̇(s)) ds+ c(b− a).
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Recall that for t ∈ R, and γ : [a, b] → M , the curve γt : [a + t, b + t] → M is defined

by γt(s) = γ(s− t). Since L does not depend on time, we have L(γt) = L(γ).

Proposition 5.6. If u ≺ L + c, then any (u, L, c)-calibrated curve γ : [a, b] → M is a
minimizer. In particular, it is as smooth as L. Moreover, for every [a′, b′] ⊂ [a, b], the
restriction γ|[a′, b′] is also (u, L, c)-calibrated, and so is the curve γt for all t ∈ R.

Proof. If δ : [a, b]→M is a curve with δ(a) = γ(a), δ(b) = γ(b), we have

L(γ) + c(b− a) = u(γ(b))− u(γ(a)) = u(δ(b))− u(δ(a)) ≤ L(δ) + c(b− a).

Therefore L(γ) ≤ L(δ), and γ is a minimizer. The regularity of γ is given by Tonelli’s

theorem.

We next use the domination u ≺ L+ c to obtain

u(γ(a′))− u(γ(a)) ≤
∫ a′

a

L(γ(s), γ̇(s)) ds+ c(a′ − a)

u(γ(b′))− u(γ(a′)) ≤
∫ b′

a′
L(γ(s), γ̇(s)) ds+ c(b′ − a′)

u(γ(b))− u(γ(b′)) ≤
∫ b

b′
L(γ(s), γ̇(s)) ds+ c(b− b′).

(5.2)

If we add these three inequalities, we obtain

u(γ(b))− u(γ(a)) ≤
∫ b

a

L(γ(s), γ̇(s)) ds+ c(b− a),

which is an equality. Therefore the three inequalities in (5.2) are equalities. The middle

equality means that γ|[a′, b′] is (u, L, c)-calibrated. The last part follows from γt(a + t) =
γ(a), γt(b+ t) = γ(b), and L(γt) = L(γ).

We now extend the notion of calibration to non-compact curves. For a curve γ : I →M
defined on the not-necessarily compact interval I ⊂ R, we say that γ is (u, L, c)-calibrated
if the restriction γ|[a, b] is (u, L, c)-calibrated for every compact subinterval [a, b] ⊂ R. By

Proposition 5.6 above this definition coincides with Definition 5.5 when I is compact.

Although a dominated function is differentiable almost everywhere, it might not be ob-

vious to explicitly find a point where the derivative exists. The following lemma provides

such points.

Lemma 5.7. Assume that u : M → R is L + c dominated, and let γ : [a, b] → M be
(u, L, c)-calibrated. We have:

1) If dγ(t)u exists at some t ∈ [a, b], then

H(γ(t), dγ(t)u) = c, and dγ(t)u = ∂L/∂v(γ(t), γ̇(t)).

2) If t ∈]a, b[, then the derivative dγ(t)u does indeed exist.
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Proof. We prove 1) for t ∈ [a, b[. The argument can be slightly modified to obtain the proof

for t ∈]a, b]. By Proposition 5.6, for t+ ε ≤ b, we have

u(γ(t+ ε))− u(γ(t)) =

∫ t+ε

t

L(γ(s), γ̇(s)) ds+ cε.

Dividing by ε > 0 and letting ε → 0, we obtain dγ(t)u(γ̇(t)) = L(γ(t), γ̇(t)) + c. By

(3.5), this implies H(γ(t), dγ(t)u) ≥ dγ(t)u(γ̇(t)) − L(γ(t), γ̇(t)) = c. But by Lemma

5.4, we also know that H(γ(t), dγ(t)u) ≤ c. Therefore, we get c = H(γ(t), dγ(t)u) =
dγ(t)u(γ̇(t))−L(γ(t), γ̇(t)). This proves the first part of 1), but also the second one because

the last equality shows that we have equality in the Fenchel inequality H(γ(t), dγ(t)u) +
L(γ(t), γ̇(t)) ≥ dγ(t)u(γ̇(t)).

To prove part 2), we will construct two C1 functions ψ, θ : V → R, defined on the

neighborhood V of x = γ(t), and such that

ψ(y) ≤ u(y)− u(x) ≤ θ(y),

on V , with equality at x. We leave it to the reader to show that dxθ = dxψ, and that this

common derivative is also the derivative of u at x. We will construct θ, since the argument

for ψ is analogous. Let us first choose a domain U of a smooth chart ϕ : U → Rk of the

manifold M , with x = γ(t) ∈ U , we can find a′ < t < b′ such that γ([a′, b′]) ⊂ U . To

simplify notations we use ϕ to identify U with its image in Rk. For y close enough to x the

path γy : [a
′, t]→ Rk defined by

γy(s) = γ(s) +
s− a′

t− a′
(y − x),

will have an image contained in U, and therefore can be considered as a path in M . Note

that γy starts at γ(a′), and ends at y. Hence by u ≺ L+ c, we obtain

u(y)− u(γ(a′)) ≤
∫ t

a′
L(γy(s), γ̇y(s)) ds+ c(t− a′)

Moreover for y = x, we have γx = γ, and the inequality above is an equality. Therefore

subtracting the equality at x from the inequality at y, we get

u(y)− u(x) ≤
∫ t

a′
L(γy(s), γ̇y(s))− L(γ(s), γ̇(s)) ds.

We can now define θ(y) for y close to x by

θ(y) =

∫ t

a′
L(γy(s), γ̇y(s))− L(γ(s), γ̇(s)) ds

=

∫ t

a′
L

(
γ(s) +

s− a

t− a
(y − x), γ̇(s) +

1

t− a
(y − x)

)
− L(γ(s), γ̇(s)) ds.

From the last expression, it is clear that θ is as smooth as L. Moreover, we have u(y) −
u(x) ≤ θ(y), and θ(x) = 0 as required.
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For (x, v) ∈ TM , let us recall that γ(x,v) is the curve defined by γ(x,v)(t) = πφt(x, v),
see Proposition 3.1. It satisfies (γ(x,v)(t), γ̇(x,v)(t)) = φt(x, v).

If u : M → R is dominated by L + c, for a, b ∈ R, with a < b, we define the sets

G̃a,b(u), and G̃b(u) by
G̃a,b(u) = {(x, v) ∈ TM | γ(x,v) is (u, L, c)-calibrated on [a, b]},
G̃b(u) = {(x, v) ∈ TM | γ(x,v) is (u, L, c)-calibrated on ]−∞, b]}.

(5.3)

Of course, the sets G̃a,b(u) depend not only on u, but also on c, and a better notation would

be G̃a,b(u, c). However, we will only use them later with u a weak KAM solution, and

c = c(H).

Proposition 5.8. Suppose u :M → R is dominated by L+c. Given a < b, the set G̃a,b(u) is
compact. Moreover, any (u, L, c)-calibrated curve γ : [a, b]→M is of the form γ(x,v)|[a, b],
for some (x, v) ∈ G̃a,b(u).
Proof. We first observe that G̃a,b(u) is closed in TM . We have (x, v) ∈ G̃a,b(u) if and only

if

u ◦ π(φb(x, v))− u ◦ π(φa(x, v)) =
∫ b

a

Lφs(x, v) ds+ c(b− a).

It follows that G̃a,b(u) is closed in TM , since both sides of the equality above are continuous

as functions of (x, v) ∈ TM .

We now prove the compactness of G̃a,b(u). By part 1) of Proposition 5.6, we know

that γ(x,v)|[a, b] is a minimizer. Therefore by Lemma 8.1, we can find a finite constant

κb−a such that ‖γ̇(x,v)(a))‖γ(x,v)(a) ≤ κb−a, for every (x, v) ∈ G̃a,b(u). Since (x, v) =

φ−a(γ(x,v)(a), γ̇(x,v)(a)), the compactness of G̃a,b(u) follows.

If γ : [a, b] → M is (u, L, c)-calibrated it is a minimizer. Hence its speed curve

satisfies (γ(t), γ̇(t)) = φt−a(γ(a), γ̇(a)). Therefore γ = γ(x,v)|[a, b], where (x, v) =
φ−a(γ(a), γ̇(a)).

Proposition 5.9. Suppose u ≺ L+ c, for a′ ≤ a ≤ b ≤ b′, and t ∈ R, we have

1) G̃b(u) = ∩a<bG̃a,b(u), G̃a′,b′(u) ⊂ G̃a,b(u), and G̃b′(u) ⊂ G̃b(u).
2) φ−tG̃a,b(u) = G̃a+t,b+t(u), and φ−tG̃b(u) = G̃b+t(u).

3) L[G̃b(u)] ⊂ Graph (du), for b > 0.

4) H ◦ L[G̃0(u)] = c, and L[G̃0(u)] ⊂ Graph (du), where

Graph (du) = {(x, dxu) | for x ∈M at which dxu exists}. (5.4)

Proof. A curve γ :] − ∞, b] → M is (u, L, c)-calibrated if and only if its restriction to

any compact interval [a, b], a < b is (u, L, c)-calibrated. This proves the first equality. The

inclusions follow from Proposition 5.6. We prove the equality φ−tG̃a,b(u) = G̃a+t,b+t(u).

The equality φ−tG̃b(u) = G̃b+t(u) follows from this last one by taking intersections over

a < b. We have (x, v) ∈ φ−tG̃a,b(u) if and only if φt(x, v) ∈ G̃a,b(u). This is equivalent to
γφt(x,v) is (u, L, c)-calibrated on [a, b]. This last condition is equivalent to γ(x,v) is (u, L, c)-

calibrated on [a+ t, b+ t], since γφt(x,v)(s) = γ(x,v)(s+ t). Hence (x, v) ∈ φ−tG̃a,b(u) if
and only if (x, v) ∈ G̃a+t,b+t(u).
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We now prove parts 3) and 4). If (x, v) ∈ G̃b(u), b > 0, by Lemma 5.7, since (x, v) =
(γ(x,v)(0), γ̇(x,v)(0)), the function u has a derivative at γ(x,v)(0) = x, which satisfies

H(x, dxu) = c, and dxu = ∂L/∂v(x, v).

Hence L(x, v) = (x, dxu) ∈ Graph (du), and H ◦ L(x, v) = c. To finish the proof,

we note that φ−bG̃0(u) = G̃b(u), for b > 0. Therefore L[φ−bG̃0] ⊂ Graph (du), and

HL[φ−bG̃0] = c. If we let b→ 0, we obtain L[G̃0(u)] ⊂ Graph (du).

Proposition 5.10. Let u :M → R be a weak KAM solution, then

π(G̃0(u)) =M, and L[G̃0(u)] = Graph (du).

Moreover H(x, dxu) = c(H) at every point x ∈M where dxu exists.

Proof. We first prove that π−1(x)∩G̃0(u) is not empty, for every x ∈M . Since G̃0(u) is the
decreasing intersection of the compact sets G̃[−t,0](u), t > 0, see Proposition 5.9, it suffices

to show that for a given x ∈M , and a given t > 0, we have π−1(x)∩ G̃[−t,0](u) �= ∅. Since,
the function u is a weak KAM solution, we have u(x) = infy∈M u(y) + ht(y, x) + c(H)t.
By the compactness of M and the continuity of both u and ht, we can find y ∈M such that

u(x) = u(y) + ht(y, x) + c(H)t. By part 1) of Lemma 3.4, we can find γ : [−t, 0] → M ,

with γ(−t) = y, γ(0) = x, and

ht(y, x) =

∫ 0

−t

L(γ(s), γ̇(s)) ds.

Hence

u(γ(0))− u(γ(−t)) =
∫ 0

−t

L(γ(s), γ̇(s)) ds+ c(H)t,

and γ is (u, L, c(H))-calibrated. This implies (x, γ̇(0)) = (γ(0), γ̇(0)) ∈ G̃[−t,0](u). There-

fore π−1(x) ∩ G̃[−t,0](u) �= ∅, as was to be shown.

From the previous Proposition 5.9, we already know that the compact set L[G̃0(u)] is
contained in the closure Graph (du). To finish the proof, it suffices to show that (x, dxu) ∈
L[G̃0(u)], for every x at which dxu exists. Fix such an x. By the first part of the proposition,

we can find v ∈ TxM with (x, v) ∈ G̃0(u). Therefore, the curve γ(x,v) is (u, L, c)-calibrated
on ] − ∞, 0], with (γ(x,v)(0), γ̇(x,v)(0)) = (x, v). By Lemma 5.7, we have (x, dxu) =
L(x, v).
Corollary 5.11. A C1 weak KAM solution is a solution of the Hamilton-Jacobi equation
H(x, dxu) = c(H).

We will prove the converse of Corollary 5.11 in §9.

6. The weak Hamilton-Jacobi theorem

Theorem 6.1 (Weak Hamilton-Jacobi theorem). If u : M → R is a weak KAM solution,
then

φ∗−t(Graph(du)) ⊂ Graph (du),
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for every t > 0. Therefore the intersection

Ĩ∗(u) = ∩t≥0φ
∗
−t[Graph(du)] = ∩t≥0φ

∗
−t[Graph(du)] (6.1)

is a non-empty compact φ∗t -invariant set, contained in Graph(du). This implies that Ĩ∗(u)
is a (partial) graph on the base M .

If we set Ĩ(u) = L−1[Ĩ∗(u)], then this last set is non-empty, compact, φt-invariant, and
is also a graph on the base M . Moreover, we have

Ĩ(u) = {(x, v) ∈ TM | γ(x,v) is (u, L, c(H))-calibrated on ]−∞,+∞[}. (6.2)

Both sets Ĩ(u), Ĩ∗(u) are called the Aubry set of the weak KAM solution u.

Proof. By Propositions 5.9 and 5.10, for t > 0, we know that φ−tG̃0 = G̃t is decreasing,

L[G̃0(u)] = Graph (du), and G̃t ⊂ Graph(du). Since the diffeomorphism L conjugates

φt and φ∗t , we obtain φ∗−t(Graph(du)) ⊂ Graph (du), for every t > 0. This implies

(6.1). The non-emptiness follows from the fact that one of the intersections in (6.1) is a

decreasing intersection of compact sets. The graph property follows from the inclusion

Ĩ∗(u) ⊂ Graph (du).
To prove (6.2), using again the conjugacy property of L, we obtain that Ĩ(u) is the

decreasing intersection of φ−t(L−1[Graph(du)]) = φ−tG̃0 = G̃t, t > 0. Hence a point

(x, v) is in Ĩ(u) if and only if it is in G̃t(u), for every t > 0. By definition of G̃t(u), this
means that γ(x,v) is (u, L, c(H))-calibrated on ] − ∞, t], for every t > 0, or equivalently
γ(x,v) is (u, L, c(H))-calibrated on ]−∞,+∞[.

7. Mather measures, Aubry and Mather sets

Let μ̃ be a Borel probability measure on TM . Since L is bounded below the integral∫
TM

Ldμ̃ ∈ R ∪ {+∞} always makes sense. Moreover, if u : M → R is a continuous

function then u ◦ π is continuous bounded on TM , therefore u ◦ π is μ̃-integrable.

Theorem 7.1. Suppose that μ̃ is a Borel probability measure on TM which is invariant
under the Euler-Lagrange flow φt, then∫

TM

Ldμ̃ ≥ −c(H).

Moreover, there are such invariant measures μ̃ which realize the equality.
In fact, if u : M → R is a weak KAM solution then an invariant measure μ̃ satisfies∫

TM
Ldμ̃ = −c(H) if and only if the support supp(μ̃) of μ̃ is contained in the Aubry set

Ĩ(u) of u.
Proof. If L is not μ̃ integrable then

∫
TM

Ldμ̃ = +∞, and there is nothing to prove. There-

fore we can assume that L is integrable for μ̃.
Fix a weak KAM solution u. For (x, v) ∈ TM , expressing the domination condition

u ≺ L+ c(H) along the curve γ(x,v)(s) = πφs(x, v) yields

u ◦ π(φt′(x, v))− u ◦ π(φt(x, v)) ≤
∫ t′

t

L(φs(x, v)) ds+ c(H)(t′ − t), (7.1)
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for all t, t′ ∈ R, with t ≤ t′, and all (x, v) ∈ TM . If we integrate this inequality with respect

to the measure μ̃, we obtain∫
TM

uπφt′ dμ̃−
∫
TM

uπφt dμ̃ ≤
∫
TM

∫ t′

t

Lφs ds dμ̃+ c(H)(t′ − t).

By the φs-invariance of μ̃, the left hand side above is 0. Moreover, using Fubini theorem

together with the φs-invariance on the right hand side, we find that the inequality above is

0 ≤ (t′ − t)

∫
TM

Ldμ̃+ c(H)(t′ − t). (7.2)

This of course implies
∫
TM

Ldμ̃ ≥ −c(H).
We have

∫
TM

Ldμ̃ = −c(H), if and only if (7.2) is an equality. But this last inequality

was obtained by integration of (7.1), therefore (7.2) is an equality if and only if (7.1) is an

equality for μ̃-almost every (x, v) ∈ TM . Since both sides of (7.1) are continuous in (x, v),
we conclude that

∫
TM

Ldμ̃ = −c(H) if and only if (7.1) is an equality on the support on

supp(μ̃). By (6.2) this last condition is equivalent to supp(μ̃) ⊂ Ĩ(u).
Since the compact set Ĩ(u) is non-empty and invariant by the flow, we can find an in-

variant measure μ̃ with supp(μ̃) ⊂ Ĩ(u). Therefore ∫
TM

Ldμ̃ = −c(H).

Definition 7.2 (Mather measures, Mather set). A Mather measure (for the Lagrangian L)
is a Borel probability φs-invariant measure μ̃ satisfying

∫
TM

Ldμ̃ = −c(H). The Mather

set M̃ (of the Lagrangian L) is the closure of
⋃

μ̃ supp μ̃, where the union is taken over all

Mather measures μ̃.

By Theorem 7.1, the Mather set is not empty. The Aubry set Ĩ(u) depends on the choice

of the weak KAM solution. The way to make it independent of choice is the following

definition.

Definition 7.3 (Aubry set). The Aubry set Ã of the Lagrangian L (resp. Ã∗ of the Hamil-

tonian H) is
⋂

u Ĩ(u) (resp.
⋂

u Ĩ∗(u)), where the intersection is taken over all weak KAM

solutions u :M → R.

Note that we use here the notation Ã∗ instead of the notation Ã∗(0) used in the Intro-

duction §1.

Corollary 7.4. The Aubry sets Ã and Ã∗ are not empty. In fact, we have M̃ ⊂ Ã, and
L(Ã) = Ã∗. Both the Mather set and the Aubry sets are graphs on the base M , since
Ã∗ ⊂ Graph(du), for any weak KAM solution u :M → R.

The results obtained in this section finishes the proof of Theorem 1.5 for the case P = 0.
As explained in the introduction, the case for a a general P ∈ Rk follows from this one.

8. Proof of Fleming’s lemma

It will be helpful to consider the energy E : TM → R, defined by E = H ◦ L. Since H is

superlinear, and L is a homeomorphism, for everyK ∈ R, the set {(x, v) | E(x, v) ≤ K} is
compact. Moreover, since L conjugates the Lagrangian flow φt to the Hamiltonian φ∗t , the
energy is constant along speed curves of extremals.
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Lemma 8.1. Given t0 > 0, there exists a finite constant κt0 , such that every minimizer
γ : [a, b]→M , with b− a ≥ t0, satisfies ‖γ̇(s)‖γ(s) ≤ κt0 , for every s ∈ [a, b].
Proof. Call δ : [a, b] → M a geodesic, parametrized proportionally to arc-length, with

δ(a) = γ(a), δ(b) = γ(b), and whose length is d(γ(a), γ(b)). The speed ‖δ̇(s)‖δ(s) of the

geodesic is constant for s ∈ [a, b]. The length of γ is therefore (b − a)‖δ̇(s)‖δ(s), for any
s ∈ [a, b]. This implies

(b− a)‖δ̇(s)‖δ(s) = d(γ(a), γ(b)) ≤ diam(M).

Hence ‖δ̇(s)‖δ(s) ≤ diam(M)/t0. If we set C1
t0 = sup{L(x, v) | ‖v‖x ≤ diam(M)/t0},

we see that the action of δ is bounded by (b − a)C1
t0 . Since γ is a minimizer, we obtain∫ b

a
L(γ(s), γ̇(s)) ds ≤ (b − a)C1

t0 . This implies that there exists s0 ∈ [a, b] such that

L(γ(s0), γ̇(s0)) ≤ C1
t0 . By the superlinearity of L, the constant

C2
t0 = sup{‖v‖x | L(x, v) ≤ C1

t0}

is finite. Since the energy is constant along the speed curve of an extremal, we get

E(γ(s), γ̇(s)) = E(γ(s0), γ̇(s0)) ≤ C3
t0 ,

where C3
t0 = sup{E(x, v) | ‖v‖x ≤ C2

t0}. Hence, for every s ∈ [a, b], we have

‖γ̇(s0)‖γ(s0)≤ κt0 ,

where κt0 = sup{‖v‖x | E(x, v) ≤ C3
r0}.

Lemma 8.2. If t0 > 0, and a finite β ≥ 1 are given, we can find a constant Kt0,β such that

|ht(x, y)− ht′(x, y)| ≤ Kt0,β |t− t′|,

for every x, y ∈M , and t, t′ ≥ t0, with max(t/t′, t′/t) ≤ β.

Proof. By Tonelli’s theorem, we can find a minimizer γ : [0, t′] → M , with γ(0) = x, and
γ(t′) = y. Since γ is a minimizer

ht′(x, y) =

∫ t′

0

L(γ(s), γ̇(s)) ds.

Note that by Lemma 8.1 above we have ‖γ̇(s)‖γ(s) ≤ κt0 , for every s ∈ [0, t′]. If we define

γ̃ : [0, t]→M by γ̃(s) = γ(t′t−1s). Since γ̃(0) = x, and γ̃(t) = y, we get

ht(x, y) ≤
∫ t

0

L(γ̃(s), ˙̃γ(s)) ds

≤
∫ t

0

L(γ(t′t−1s), t′t−1γ̇(t′t−1s)) ds

=

∫ t′

0

L(γ(s′), t′t−1γ̇(s′))tt′−1 ds′.
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where the last line was obtained by the change of variable s′ = t′t−1s. Therefore, we have

ht(x, y)− ht′(x, y) ≤
∫ t′

0

L(γ(s), t′t−1γ̇(s))tt′−1 − L(γ(s), γ̇(s)) ds. (8.1)

Since L is at least C1, we can find a Lipschitz constant Kt0,β of the map (x, v, α) �→
L(x, α−1v)α, on the compact set {(x, v, α) | (x, v) ∈ TM, ‖v‖x ≤ κt0 , β

−1 ≤ α ≤ β}.
This fact together with inequality (8.1) yield

ht(x, y)− ht′(x, y) ≤
∫ t′

0

Kt0,β |tt′−1 − 1| ds = Kt0,β |t− t′|.

By symmetry this finishes the proof.

Proof of Fleming’s lemma 3.5. Assume t ≥ t0. By part 3) and 4) of Lemma 3.4, we have

ht+d(x,x′)+d(y,y′)(x
′, y′) ≤ hd(x′,x)(x

′, x) + ht(x, y) + hd(y,y′)(y, y
′)

≤ ht(x, y) +B(d(x′, x) + d(y, y′)).
(8.2)

If we set t′ = t+d(x, x′)+d(y, y′), we have t, t′ ≥ t0, t/t
′ ≤ 1, and t′/t = 1+(d(x′, x)+

d(y, y′))/t ≤ 1 + 2diam(M)t−1
0 . By Lemma 8.2 with β = 1 + 2diam(M)t−1

0 , we get

ht(x
′, y′) ≤ ht+d(x,x′)+d(y,y′)(x

′, y′) +Kt0,β(d(x
′, x) + d(y, y′)).

Combining with the inequality (8.2), we obtain

ht(x
′, y′)− ht(x, y) ≤ (B +Kt0,β)(d(x

′, x) + d(y, y′)).

By symmetry this finishes the proof of Fleming’s Lemma.

9. A C1 solution of the Hamilton-Jacobi equation is a weak KAM solution

In this section, we assume that u :M → R is a C1 solution of the Hamilton-Jacobi equation

H(x, dxu) = c (for every x ∈ M ). We first prove that u ≺ L + c. Assume γ : [a, b] →
M is a C1 curve, together with the Hamilton-Jacobi equation, the Fenchel inequality gives

dγ(s)u(γ̇(s)) ≤ L(γ(s), γ̇(s)) +H(γ(s), dγ(s)u) = L(γ(s), γ̇(s)) + c. Integrating on [a, b]
yields u(γ(b)) − u(γ(b)) ≤ L(γ) + c(b − a). Therefore, by Proposition 5.1, we have

u ≤ T−
t u + ct, for every t ≥ 0. To show the opposite inequality, we prove the following

lemma.

Lemma 9.1. For every x ∈M , there exists a curve γx :]−∞,+∞[→M , which is (u, L, c)-
calibrated.

Proof. Since the Legendre transform L is a homeomorphism, we can define a continuous

vector fieldXu onM byXu(x) = ∂H/∂p(x, dxu). By the equality case in Fenchel equality,

and the fact that H(x, dxu) = c, we have

dxu(Xu(x)) = L(x,Xu(x)) + c, for every x ∈M . (9.1)
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Since Xu is continuous, we can apply the Cauchy-Peano theorem to find a solution γx of

Xu with γx(0) = X . Moreover, by compactness of M , we can assume that the solution γx
of Xu is defined on the whole of R. Using (9.1) along γx, we obtain

dγx(s)u(γ̇x(s)) = L(γx(s), γ̇x(s)) + c, for every x ∈M .

It remains now to integrate this equality on an arbitrary compact interval [a, b] to see that γx
is (u, L, c)-calibrated on R.

We now show that u ≥ T−
t u + ct, for every t ≥ 0. Fix x ∈ M , and pick γx given by

Lemma 9.1. For t > 0, we have

u(x)− u(γx(−t)) =
∫ 0

−t

L(γx(s), γ̇x(s)) ds+ ct ≥ ht(γx(−t), x) + ct.

Therefore u(x) ≥ u(γx(−t)) + ht(γx(−t), x) + ct ≥ T−
t u(x) + ct.
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The low-density limit of the Lorentz gas: periodic,
aperiodic and random

Jens Marklof

Abstract. The Lorentz gas is one of the simplest, most widely used models to study the transport

properties of rarified gases in matter. It describes the dynamics of a cloud of non-interacting point

particles in an infinite array of fixed spherical scatterers. More than one hundred years after its concep-

tion, it is still a major challenge to understand the nature of the kinetic transport equation that governs

the macroscopic particle dynamics in the limit of low scatterer density (the Boltzmann-Grad limit).

Lorentz suggested that this equation should be the linear Boltzmann equation. This was confirmed

in three celebrated papers by Gallavotti, Spohn, and Boldrighini, Bunimovich and Sinai, under the

assumption that the distribution of scatterers is sufficiently disordered. In the case of strongly corre-

lated scatterer configurations (such as crystals or quasicrystals), we now understand why the linear

Boltzmann equation fails and what to substitute it with. A particularly striking feature of the periodic

Lorentz gas is a heavy tail for the distribution of free path lengths, with a diverging second moment,

and superdiffusive transport in the limit of large times.

Mathematics Subject Classification (2010). Primary 82C40; Secondary 35Q20, 37A17, 37D50,

60G55, 52C23.

Keywords. Boltzmann equation, Boltzmann-Grad limit, homogeneous flow, Lorentz gas, quasicrystal,

Ratner’s theorem, superdiffusion.

1. Introduction

The Lorentz gas describes the time evolution of a cloud of non-interacting point particles in

an infinitely extended array of fixed scatterers. In the simplest setting of zero external force

fields, each particle moves with constant velocity along a straight line until it hits a sphere of

radius r, where it is scattered elastically. Besides specular reflection (as in Lorentz’ original

setting), we will also allow more general spherically symmetric scattering maps, for example

those resulting from muffin-tin Coulomb potentials. The scatterers are centered at the points

of a locally finite subset P ⊂ Rd, which is fixed once and for all. The configuration space

of the Lorentz gas is thus Kr = Rd \ (P + Bdr ) where Bdr is the open ball in Rd of radius

r, centered at the origin. The phase space of the Lorentz gas is T(Kr), the tangent bundle

of Kr. We use the convention that, for q ∈ ∂Kr, the tangent vector v points away from

the scatterer.1 Given initial data (q,v) ∈ T(Kr) at time t = 0, we denote position and

velocity at time t ∈ R by (q(t),v(t)). For notational reasons it is convenient to also define

the dynamics inside the scatterer by (q(t),v(t)) = (q,v) for every (q,v) ∈ T(Rd)\T(Kr).
With this, the phase space is T(Rd) = Rd × Rd. The Liouville measure of our dynamics is

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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q0

Figure 1.1. The Lorentz gas for a periodic scatterer configuration P = Z2, with three distinct particle

trajectories starting at the point q0.

the Lebesgue measure dq dv. Since we have assumed that the scattering map is elastic, the

particle speed ‖v‖ is a constant of motion. We may therefore restrict the dynamics, without

loss of generality, to the unit tangent bundle T1(Rd) = Rd × Sd−1
1 , where the Liouville

measure is now the Lebesgue measure restricted to ‖v‖ = 1. We assume thatP has constant

density n > 0, i.e. for any bounded D ⊂ Rd with volRd(D) > 0 and volRd(∂D) = 0 (volRd

denotes the Lebesgue measure in Rd and ∂D the boundary of D) we have

lim
R→∞

#(P ∩RD)
volRd(RD) = n. (1.1)

By a trivial rescaling of length units, we may assume in the following that n = 1.
In the present setting, the Boltzmann-Grad limit is defined as the limit of low scatterer

density. Density refers here to the volume density, i.e., the relative volume vdr
d occupied

by the scatterers, rather than their number density n = 1. The constant vd = volRd(Bd1) =
πd/2/Γ(d+2

2 ) is the volume of the d-dimensional unit ball. For a fixed scatterer configu-

ration P the Boltzmann-Grad limit corresponds therefore to taking r → 0. To capture the

dynamics of the Lorentz gas in this limit, we measure length and time in units of the mean

free path length,2 which is asymptotic to v−1
d−1r

d−1 (as r → 0). To this end we introduce the

macroscopic coordinates

(Q(t),V (t)) = (rd−1q(r−(d−1)t),v(r−(d−1)t)) ∈ T1(Rd). (1.2)

The mean free path length is now given by the r-independent quantity ξ = v−1
d−1. The

1 We ignore the case when scatterers overlap. This configuration will be statistically insignificant in the limit

r → 0 for P with constant density.

2 The mean free path length is defined as the average distance travelled between collisions.
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evolution of an initial macroscopic particle density f ∈ T1(Rd) is defined by the linear

operator

[Lt
rf ](Q,V ) := f(Q(−t),V (−t)) (1.3)

where (Q(−t),V (−t)) are the macroscopic particle coordinates corresponding to the data

(Q(0),V (0)) = (Q,V ) at time t = 0.
The question is: For a given scatterer configuration P , does Lt

r have a (weak) limit as

r → 0? That is, for every t > 0 is there

Lt : L1(T1(Rd))→ L1(T1(Rd)) (1.4)

such that, for every f ∈ L1(T1(Rd)) and bounded A ⊂ T1(Rd) with boundary of zero

Lebesgue measure,

lim
r→0

∫
A
Lt
rf(Q,V ) dQ dV =

∫
A
Ltf(Q,V ) dQ dV ? (1.5)

Using Boltzmann’s heuristics, Lorentz [25] predicted in 1905 that the answer to this ques-

tion should be “yes” and that the particle density ft := Ltf at time t satisfies the linear
Boltzmann equation (also referred to as the kinetic Lorentz equation)

(∂t + V · ∂Q)ft(Q,V ) =

∫
Rd

[ft(Q,V ′)− ft(Q,V )]σ(V ,V ′) dV ′, (1.6)

where σ(V ,V ′) is the differential cross section of a single scatterer (see Section 2). Lorentz’

heuristic derivation was, over sixty years later, confirmed rigorously for random scatterer

configurations P by Gallavotti [20] and Spohn [41], where the convergence in (1.5) is estab-

lished for the ensemble average. Boldrighini, Bunimovich and Sinai [10] proved a stronger

result by showing that for a fixed realisation of a Poisson process the limit (1.5) exists almost

surely (cf. Section 5). One can in fact show that, for initial data (Q0,V 0) randomly dis-

tributed in T1(Rd) according to an absolutely continuous probability measure Λ, the curve

t �→ (Q(t),V (t)) converges in distribution to a random flight process, where the free flight

times are independent identically distributed random variables with an exponential distri-

bution. Eq. (1.6) is precisely the Fokker-Planck-Kolmogorov equation of the limit process

(cf. Section 5).

In his 2006 ICM address [22] (cf. also [23]), Golse pointed out that, due to the heavy tail

of the free path length distribution [11, 21, 30], the linear Boltzmann equation fails in the

case P = Zd. The main objective of this paper is to illustrate the deeper reason behind this

failure not only for general periodic scatterer configurations, see Section 6 and [14, 27–30],

but as well for aperiodic point sets with strong long-range correlations, cf. Sections 7, 8 and

[31, 32, 45]. We will uncover a new class of random flight processes that emerge in the

Boltzmann-Grad limit (Sections 2, 3) and whose transport equations generalise the linear

Boltzmann equation (1.6) in a natural way (Section 4).

A major open question in the field is whether the dynamics in the Lorentz gas converges,

in the limit of large times t, to Brownian motion. The first seminal result in this direction

was the proof of a central limit theorem for the two-dimensional periodic Lorentz gas with

finite horizon3 by Bunimovich and Sinai [12]. For general invariance principles, see Mel-

bourne and Nicol [35] and references therein. In the case of the infinite-horizon periodic

3 Finite horizon means that the free path length has an upper bound. This requires a suitable choice of scatterer

configuration P (e.g. a triangular lattice) and sufficiently large scatterer radius r.
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vin

b θ

s vout

Figure 2.1. Scattering in the unit ball.

Lorentz gas, again in dimension d = 2 and with fixed radius r > 0, Bleher [6] conjectured

a superdiffusive central limit theorem with a
√
t log t normalisation, rather than the standard√

t in the finite horizon case. Bleher’s conjecture was first proved by Szász and Varjú [42]

for the discrete-time billiard map, and by Dolgopyat and Chernov [19] for the billiard flow.4

It is currently unknown how to extend these results to higher dimensions d ≥ 3 or to aperi-

odic scatterer configurations [4, 5, 15, 17, 18, 24, 36, 43]. The problem becomes tractable,

however, if we pass to the low-density limit r → 0: If P is a typical realisation of a Poisson

process, then the limiting random flight process satisfies a central limit theorem with
√
t

scaling, in any dimension d ≥ 2. This follows from standard techniques in the theory of

Markov processes [37] as pointed out by Spohn [41]. If P is a Euclidean lattice, then the

limiting random flight process satisfies a superdiffusive central limit theorem with
√
t log t

normalisation, again in any dimension d ≥ 2. See Section 9 and [34] for further details.

2. Intercollision flights

We begin by defining the scattering map, which we assume is spherically symmetric, pre-

serves angular momentum and is the same for each scatterer. Let us choose a coordinate

frame so that the incoming velocity is aligned with the first coordinate axis (cf. Figure 2.1),

vin = e1 := (1, 0, . . . , 0). (2.1)

(All vectors are represented as row vectors.) The impact parameter b is the orthogonal

projection of the point of impact onto the plane orthogonal to vin, measured in units of r.
In the present frame, b = (0,w) with w ∈ Bd−1

1 . (We will also refer to w as impact

parameter.) When w �= 0, the outgoing velocity is

vout = vin cos θ + (0, ŵ) sin θ, (2.2)

4 Superdiffusive central limit theorems have also been established for compact planar billiards, such as the sta-

dium [3] and billiards with cusps [2].
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where the angle θ is called the scattering angle and ŵ := w−1w with w := ‖w‖. For

w = 0 we simply assume vout = −vin. By the assumed spherical symmetry, θ = θ(w) is
only a function of the length w ∈ [0, 1[ of the impact parameter w. Equation (2.2) can be

expressed as

vout = vinS(w)
−1, (2.3)

with the matrix

S(w) = exp

(
0 −θ(w)ŵ

θ(w) tŵ 0d−1

)
∈ SO(d). (2.4)

The exit parameter is defined as the orthogonal projection of the point of exit onto the plane

orthogonal to vout, and is given by

s = −wvin sin θ + (0,w) cos θ = (0,w)S(w)−1. (2.5)

The differential scattering cross section σ(vin,vout) is defined by the relation

σ(vin,vout) dvout = dw. (2.6)

Note that in the present setting σ(vin,vout) = σ(vout,vin).
For simplicity, we assume throughout this paper that one of the following conditions

holds:5

(A) θ ∈ C1([0, 1[ ) is strictly decreasing with θ(0) = π and θ(w) > 0.

(B) θ ∈ C1([0, 1[ ) is strictly increasing with θ(0) = −π and θ(w) < 0.

This hypothesis is satisfied for many scattering maps, e.g. specular reflection6 or the scat-

tering in the muffin-tin Coulomb potential V (q) = αmax(‖q‖−1−1, 0)withα /∈ {−2E, 0},
where E denotes the total energy, cf. [29].

An inductive argument shows that there is a sequence (wn)n∈N in Bd−1
1 , so that the

impact parameter bn, exit velocity vn and exit parameter sn at the nth collision are given by

the frame-independent formulas

vn = e1R
−1
n , bn = (0,wn)R

−1
n−1 sn = (0,wn)R

−1
n (2.7)

where

Rn := R(v0)S(w1) · · ·S(wn). (2.8)

HereR : Sd−1
1 → SO(d) is smooth up to finitely many singular points, such that vR(v) = e1

for all v ∈ Sd−1
1 . For an example see footnote 3 on p. 1968 of [28].

We can now express position and velocity at time t > 0 as7

q(t) = qν(t) + (t− τν(t))v(t) +O(rν(t)), v(t) = vν(t), (2.9)

where

τn :=
n∑

j=1

tj , τ0 := 0, (2.10)

5 All results extend in fact to more general scattering maps, see [29] for details.

6 Here θ(w) = π − 2 arcsin(w) and thus condition (A) holds.

7 TheO(rν(t))-error is simply due to the fact that we have not included the jumps of position at each scattering.

In the case of specular reflections, all formulas are exact.
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b

v−

θ

v+

Figure 2.2. Illustration of a scattering map satisfying Hypothesis (A).

is the time to the nth collision, tj is the jth intercollision time,

ν(t) := max{n ∈ Z≥0 : τn ≤ t} (2.11)

is the number of collisions within time t,

qn :=
n∑

j=1

tjvj−1 (2.12)

is the particle location at the nth collision8 and

vn = R(v0)S(w1) · · ·S(wn)e1 (2.13)

is the velocity after the nth collision as calculated in (2.7).

In the macroscopic coordinates (1.2), the above translates to

Q(t) = QV(t) + (t− TV(t))V (t) +O(rdV(t)), V (t) = V V(t) (2.14)

where Qn = rd−1qn, V n = vn, Tn = rd−1τn and

V(t) := ν(r−(d−1)t) = max{n ∈ Z≥0 : Tn ≤ t}. (2.15)

3. A refined Stosszahlansatz

We will now investigate the particle trajectory corresponding to random initial conditions

(Q0,V 0) and outline a strategy to establish the convergence to a random flight process in

8 Again, this is up to an error of order O(rn).
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Figure 3.1. Intercollision flight in the Lorentz gas between the nth and (n + 1)st collision. The

exclusion zone is a cylinder of radius r with spherical caps.
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wn+1
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forbidden scatterer

particle trajectory

exclusion zone

Figure 3.2. The intercollision flight in Fig. 3.1 after applying the linear mapRnD(r)with r very small.

The exclusion zone is now approximately a cylinder with flat caps.

the Boltzmann-Grad limit.9 We will, for now, keep the scatterer configuration P general,

and discuss in later sections examples of P which allow a rigorous treatment.

Let us focus on the nth and (n+ 1)st collision and consider a parallel beam of particles

with given velocity vn−1 that hit a scatterer located at yn with a certain intensity distribution

λ in the impact parameter wn (Figure 3.1).10 The task is now to calculate the probability

of hitting the next scatterer in a small time interval around tn+1 with impact parameter

9 We assume here that (Q0,V 0) is distributed according to a fixed, absolutely continuous probability measure

Λ on T1(Rd). One can, of course also prepare the initial particle cloud on smaller scales. For example take

(q0,v0) = (r−(d−1)Q0,V 0) random with respect to a fixed absolutely continuous Λ. In the case of the periodic

and the quasicrystal Lorentz gas [28, 29, 32] we are even able to consider more singular Λ: Fix q0 and only take

v0 random according to an absolutely continuous measure on the unit sphere. In this case, we have convergence

for every q0, with the same limit distribution for almost every q0.

10 The measure λ will of course depend on the history of the particle beam, and in particular on r, but let us
assume here for the sake of argument that λ is a fixed Borel probability measure on Bd−1

1 . A key part of the

paper [29] deals with the problem of r-dependent measures in the setting of the periodic Lorentz gas, by obtaining

uniform estimates over families of λ.
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near wn+1. Recall that we expect tn+1 to be of order r−(d−1), and it is natural to set

Tn = rd−1tn. We now first shift our coordinate system by −yn − r(sn + vn
√
1− ‖sn‖2)

so the left center of the cylinder is now at the origin, then rotate our coordinate system by

Rn ∈ SO(d), so that the outgoing velocity vn becomes e1, cf. (2.7), and finally apply the

linear transformation given by the matrix

D(r) =

(
rd−1 0
t0 r−11d−1

)
(3.1)

which rescales the length units along and perpendicular to the cylinder. Note that the caps of

the cylinder become flat as r → 0, cf. Fig. 3.2. In particular

r
(
sn + vn

√
1− ‖sn‖2

)
RnD(r) = r

(
(0,wn) + (1,0)

√
1− ‖wn‖2

)
D(r)

= (0,wn) +O(rd).
(3.2)

The rotation matrix Rn is, by (2.8), given by Rn = Rn−1S(wn) where Rn−1 is fixed

(since vn−1 is assumed fixed in this discussion). For wn random according to λ, we are

interested in the probability that the particle hits the next scatterer at a time Tn+1 in the

interval A = ]ξ, ξ + dξ[ and with impact parameter wn+1 in some box B ⊂ Bd−1
1 . This

probability is, for small r, approximately11 equal to the probability that the random point set

Θ̃r(yn) = (P − yn)Rn−1S(wn)D(r)− (0,wn) (3.3)

does not intersect the cylinder Z(ξ) =]0, ξ[×Bd−1
1 and has (at least12 ) one point in the box

A×B. Our general objective is therefore to try to prove that there is a random point process13

Θ(y) in Rd and a random variable h ∈ Bd−1
1 distributed according to λ such that, for every

fixed y ∈ P ,

Θ̃r(y) −−−→
r→0

Θ̃(y) := Θ(y)− (0,h) (3.4)

in finite-dimensional distribution. This means that for any k ∈ N, A1, . . . ,Ak ⊂ Rd

bounded with boundary of measure zero and n1, . . . , nk ∈ Z≥0, we have

lim
r→0

P
(
#(Θ̃r(y) ∩ Ai) = ni ∀i) = P

(
#(Θ̃(y) ∩ Ai) = ni ∀i

)
. (3.5)

It is crucial thatΘ(y) and h are independent, and thatΘ(y) is independent of the choice

of λ andRn. We conclude that, if the convergence in (3.4) indeed holds in finite-dimensional

distribution (as we are dealing with only two test sets, Z(ξ) and A×B, convergence in two-

dimensional distribution is in fact sufficient) then the probability that the particle hits the

next scatterer at a time Tn+1 ∈ A and with impact parameter wn+1 ∈ B, is in the limit

r → 0 given by

P
(
Θ̃(yn) ∩ Z(ξ) = ∅, #(Θ̃(yn) ∩ (A×B)) = 1

)
. (3.6)

In some instances, Θ(y) will not depend on the scatterer location y, for example when P is

a realisation of a Poisson process or a Euclidean lattice, as we shall see below. If Θ(y) does

11 This approximation is justified, if the limit distribution is continuous in ξ.
12 We assume that, in the limit r → 0, the probability of having one point in a small set is approximately the

same as the probability of having one ore more points. As in footnote 11, this is justified, if the limit distribution is

continuous in ξ.
13 Throughout this paper, we will represent random point processes as random point sets.
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depend on the scatterer location, the hope is that this dependence is “mild,” in the sense that

there exists a probability space (Σ,F ,�) and a map

ι : P → Σ, y �→ ι(y), (3.7)

so that Θ(y) depends only on the value of ι(y). We will call ι(y) the colour of y, and
consider the colourised scatterer configuration,

{(y, ι(y)) : y ∈ P} ⊂ Rd × Σ. (3.8)

We assume furthermore that the colour in (3.8) is distributed according to the probability

measure� on Σ, in the sense that (cf. (1.1)) for any bounded D ⊂ Rd with volRd(D) > 0,
volRd(∂D) = 0 and any measurable set B ⊂ Σ with�(∂B) = 0,

lim
R→∞

#{y ∈ P ∩RD : ι(y) ∈ B}
volRd(RD) =�(B). (3.9)

Let us define Ω := Σ × Bd−1
1 as the product space of colour and impact parameters, with

probability measure � = � × v−1
d−1 volRd−1 . Instead of (3.4), we must now consider the

convergence for the corresponding colourised point processes. Once we understand the

colourised limit, we can compute the limit distribution for the probability of emerging from

a scatterer with a given colour and exit parameter ωn, and hitting the next scatterer at time

Tn ∈ ]ξ, ξ + dξ[ with colour and impact parameter ωn+1 ∈ B ⊂ Ω. We denote this proba-

bility by ∫
B

k(ωn, ξ, ω) dξ �(dω), (3.10)

which defines the transition kernel k(ω′, ξ, ω). The conclusion of the above heuristics is

now that the particle trajectory

Ξr : t �→ (Q(t),V (t)), (3.11)

with random initial condition (Q0,V 0) distributed according to some absolutely continu-

ous measure Λ on T1(Rd), converges in the Boltzmann-Grad limit to the continuous-time

random flight process Ξ(t) in T1(Rd) defined as follows.

Consider the sequences of random variables ξ = (ξn)n∈N and η = (ηn)n∈N defined by

the Markov chain

n �→ (ξn, ηn) (3.12)

with state space R>0 × Ω and transition probability (n ≥ 2)

P((ξn, ηn) ∈ A | ξn−1, ηn−1) =

∫
A

k(ηn−1, ξ, ω) dξ �(dω), (3.13)

where the transition kernel k(ω′, ξ, ω) is defined by (3.10). The initial distribution is

P((ξ1, η1) ∈ A) =

∫
A

K(ξ, ω) dξ �(dω), (3.14)

where

K(ξ, ω) :=
1

ξ

∫ ∞

ξ

∫
Ω

k(ω′, ξ′, ω)�(dω′) dξ′. (3.15)
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The time-reversibility of the underlying microscopic dynamics (for every fixed r > 0) im-

plies that the transition kernel k is symmetric, i.e.

k(ω, ξ, ω′) = k(ω′, ξ, ω). (3.16)

Because the transition probability (3.13) is independent of ξn−1, the chain n �→ ηn is also

Markovian, with transition probability

P(ηn ∈ A | ηn−1) =

∫
A

∫ ∞

0

k(ηn−1, ξ, ω) dξ �(dω). (3.17)

The stationary measure for this Markov chain is �, and the distribution of free path lengths

with respect to this measure is defined as

Ψ0(ξ) :=

∫
Ω

∫
Ω

k(ω′, ξ, ω)�(dω)�(dω′). (3.18)

Let us write ηn = (χn,hn), where χn ∈ Σ is the colour and hn ∈ Bd−1
1 the impact

parameter. In analogy with the deterministic setting (2.9)–(2.15), we define the random

variables

T BG
n :=

n∑
j=1

ξj , T BG
0 := 0, (3.19)

VBG(t) := max{n ∈ Z≥0 : T BG
n ≤ t}, (3.20)

QBG
n := Q0 +

n∑
j=1

ξjV
BG
j−1, V BG

n := R(V 0)S(h1) · · ·S(hn)e1, (3.21)

QBG(t) := QBG
VBG(t) + (t− T BG

VBG(t))V
BG(t), V BG(t) := V BG

VBG(t). (3.22)

The notation “BG” stands for Boltzmann-Grad limit and is used to differentiate from the

deterministic counterparts (2.9)–(2.15). Note that none of the above depend explicitly on

colour. The hidden variable “colour” is needed to make (3.12) a Markov chain. The random

flight process Ξ is thus defined as

t �→ Ξ(t) :=
(
QBG(t),V BG(t)

)
. (3.23)

The convergence of the random process Ξr in (3.11) to Ξ answers in particular our question

(1.5), since the former implies the convergence in (1.5) with Lt defined by∫
A
Ltf(Q,V ) dQ dV = P(Ξ(t) ∈ A). (3.24)

Here f = Λ′ is the Radon–Nikodym derivative of Λ.

4. A generalised Boltzmann equation

This limiting process Ξ(t) defined in (3.23) is in general not a continuous-time Markov

process,14 but can be turned into one by extending the state space as follows. We define the

14 A consequence of this fact is that the family of operators Lt in (3.24) does not form a semigroup, i.e., LtLs =
Lt+s does not hold for all s, t > 0.



The low-density limit of the Lorentz gas 633

time until the next scattering by

TBG(t) := T BG
VBG(t)+1 − t, (4.1)

the colour of the next scatterer by

χBG(t) := χVBG(t)+1, (4.2)

and the exit velocity of the next scattering by

V BG
+ (t) := V BG

VBG(t)+1. (4.3)

The process

t �→ Ξ̃(t) :=
(
QBG(t),V BG(t), TBG(t), χBG(t),V BG

+ (t)
)

(4.4)

is now aMarkov process with state spaceT1(Rd)×R>0×Σ×Sd−1
1 and backward equation15⎧⎪⎨⎪⎩

(∂t + V · ∂Q − ∂ξ)ft(Q,V , ξ, χ,V +) = [Cft](Q,V , ξ, χ,V +)

lim
t→0

ft(Q,V , ξ, χ,V +) = Λ′(Q,V )K(ξ, ω)σ(V ,V +),
(4.5)

with K(ξ, ω) as in (3.15) and the collision operator C is defined by

[Cf ](Q,V , ξ, χ,V +)

= σ(V ,V +)

∫
Sd−1
1

∫
Σ

f(Q,V ′, 0, χ′,V ) k(ω′, ξ, ω) d�(χ′) dV ′, (4.6)

where

ω′ := (χ′, s(V ′,V )R(V )), ω := (χ, b(V ,V +)R(V )). (4.7)

A stationary solution of eq. (4.5) is given by

ft(Q,V , ξ, χ,V +) = K(ξ, ω)σ(V ,V +), (4.8)

which corresponds to Λ = Liouville measure. To see this, note that the left hand side of the

first line in (4.5) is

σ(V ,V +) ξ
−1
∫
Ω

k(ω′, ξ, ω) d�(ω′). (4.9)

Furthermore, we have

ξK(0, ω′) =

∫ ∞

0

∫
Ω

k(ω′′, ξ, ω′) dξ d�(ω′′) =

∫ ∞

0

∫
Ω

k(ω′, ξ, ω′′) dξ d�(ω′′) = 1.

The right hand side of the first line in (4.5) therefore equals, in view of (2.6),

σ(V ,V +)

∫
Sd−1
1

∫
Σ

σ(V ′,V )K(0, ω′) k(ω′, ξ, ω) d�(χ′) dV ′

15 This equation is also known as Fokker-Planck-Kolmogorov equation.
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= σ(V ,V +) ξ
−1
∫
Sd−1
1

∫
Σ

k(ω′, ξ, ω) d�(ω′), (4.10)

which equals (4.9) This shows that (4.8) is indeed a stationary solution of (4.5).

Let us now illustrate the above programme with a number of examples, where all or part

of the heuristics can be made rigorous. The principal questions we would like to answer, for

a given scatterer configuration P , are: Does the limit (1.5) exist? What is the limit process
Θ(y)? What is the transition kernel k(ω′, ξ, ω)?

We begin with the classic setting where P is a typical realisation of a Poisson process

and will show how the generalised linear Boltzmann equation (4.5) reduces to the original.

5. Random scatterer configuration

The Poisson processΘ = ΘPoisson inRd with intensity n = 1 is characterised by the property

that for any collection of bounded, pairwise disjoint Borel sets A1, . . . ,Ak and integers

n1, . . . , nk ≥ 0,

P(#(Θ ∩ Ai) = ni ∀i) =
k∏

i=1

(volRd(Ai))
ni

ni!
e− vol

Rd
(Ai). (5.1)

We will assume in this section that P is a fixed realisation of a Poisson process. In a seminal

paper, Boldrighini, Bunimovich and Sinai [10] have shown that the limit (1.5) exists almost

surely and is given by the linear Boltzmann equation (1.6).

Theorem 5.1 (Boldrighini, Bunimovich and Sinai, 1983 [10]). The convergence in (1.5)

holds for a typical realisation P of a Poisson process, and ft = Ltf satisfies the linear
Boltzmann equation (1.6).

This result was previously proved by Gallavotti [20] on average for randomP = ΘPoisson,

and by Spohn [41] for more general random scatterer configurations and scattering poten-

tials.

In the present setting, the limit process Ξ(t) is in fact already a continuous time Markov

process and the extension to Ξ̃(t) is not necessary. Nevertheless it is instructive to see how

the backward equation (4.5) reduces to the linear Boltzmann equation (1.6).

A review of the arguments used in [10] shows that the convergence (3.4) holds in finite-

dimensional distribution for almost all P with limit Θ(y) = ΘPoisson and thus, by the trans-

lation invariance of the Poisson process, Θ̃(y) = ΘPoisson. The limiting point process is

evidently independent of y, and we may paint all scatterers in the same colour. That is, Σ
is the space of one element. We can thus identify Ω with Bd−1

1 and set �(dw) = v−1
d−1dw.

The Poisson distribution yields in (3.6) the transition kernel

k(ω′, ξ, ω) = ξ
−1
e−ξ/ξ, K(ξ, ω) = ξ

−1
e−ξ/ξ. (5.2)

The ansatz

ft(Q,V , ξ, χ,V +) = gt(Q,V )σ(V ,V +) ξ
−1
e−ξ/ξ (5.3)

in the backward equation (4.5) of Ξ̃(t) shows that, after a separation of variables, the function

gt(Q,V ) is a solution of the linear Boltzmann equation (1.6). More directly, one can show

that Ξ(t) is Markov, and that the linear Boltzmann equation is the backward equation of

Ξ(t).
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6. Periodic scatterer configuration

The opposite extreme of a random scatterer configuration is a perfectly periodic point set

P . We assume in this section that P is a Euclidean lattice L of covolume one. More gen-

eral periodic scatterer configurations are considered as a special case in the framework of

quasicrystals, cf. Section 8.

Theorem 6.1 (Marklof and Strömbergsson, 2008 [29]). The convergence in (1.5) holds for
every Euclidean lattice P = L of covolume one, where Lt is independent of the choice of L.

The main result of [29] is in fact more general: It extends to the convergence in distribu-

tion of the random process Ξr in (3.11) to Ξ. The proof of Theorem 6.1 turns the heuristics

of Section 3 into a rigorous argument. Let us describe some of the key objects.

Every Euclidean lattice of covolume one can be written as L = ZdM for some M ∈
SL(d,R). Since the stabiliser of Zd under right multiplication by G = SL(d,R) is the

subgroup Γ = SL(d,Z), one can show that there is a bijection

Γ\G ∼−→ {Euclidean lattices of covolume one}
ΓM �→ ZdM.

(6.1)

It is a well known fact that any fundamental domain of Γ = SL(d,Z) has finite Haar measure

inG = SL(d,R). This implies that there is a unique probability measure μ on Γ\G invariant

under the natural G-action (which is multiplication from the right). We define a random

point process in Rd by setting Θlattice = ZdM with M random in Γ\G according to μ and

the above identification (6.1) of Γ\G and the space of lattices. We will call Θlattice a random
lattice.

The following theorem says that, for any fixed P = L the convergence in (3.4) holds

with Θ = Θlattice. Note that by translational invariance of L, all point processes in (3.4) are

independent of y, and we will write in the following Θ̃r instead of Θ̃r(y).

Theorem 6.2 ([28]). Let λ be an absolutely continuous probability measure on Bd−1
1 , let

A1, . . . ,Ak ⊂ Rd bounded with boundary of measure zero and n1, . . . , nk ∈ Z≥0. Then

lim
r→0

P
(
#(Θ̃r ∩ Ai) = ni ∀i

)
= P
(
#((Θlattice − (0,h)) ∩ Ai) = ni ∀i

)
. (6.2)

This theorem is a consequence of equidistribution of large spheres on Γ\G:

Theorem 6.3 ([28]). For any M ∈ Γ\G, any bounded continuous f : Bd−1
1 × Γ\G → R

and any absolutely continuous probability measure λ on Bd−1
1 ,

lim
r→0

∫
Bd−1

1

f(w,MS(w)D(r)) dλ(w) =

∫
Bd−1

1

∫
Γ\G

f(w,M) dμ(M) dλ(w). (6.3)

Theorem 6.2 is derived from Theorem 6.3 by choosing in (6.3) as test function f the

characteristic function of the set{
(w,M) ∈ Bd−1

1 × Γ\G : #
(
(ZdM − (0,w) ∩ Ai

)
= ni ∀i

}
. (6.4)

This choice does of course not produce a continuous f , but one can show that (6.4) has

boundary of measure zero in Bd−1
1 × Γ\G, and thus the characteristic function can be ap-

proximated sufficiently well by continuous functions. Details of this technical argument can

be found in [28], Sections 5 and 6.
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Since the limit process Θlattice is independent of y there is no need for colour (as in the

Poisson setting), and we again identify Ω with Bd−1
1 , and set �(dw) = v−1

d−1dw. In order to

work out the transition kernel k(w′, ξ,w) in (3.10), set X = Γ\G and define the subspace

X(y) = {M ∈ X : y ∈ ZdM} (6.5)

of those lattices (of covolume one) that contain a given y ∈ Rd. In [28] we construct a

probability measure νy on X(y) so that

dμ(M) = dνy(M) dy. (6.6)

With this, we can infer that

k(w′, ξ,w) = ξ
−1

νy
({

M ∈ X(y) : ZdM ∩ (Z(ξ) + (0,w′)) = ∅}) (6.7)

where y = (ξ,w′ −w). For an explicit description of the νy-measure of the above set, see

[30], Section 2.2. In dimension d = 2, when B1
1 = ]−1, 1[ , eq. (6.7) can be used to calculate

an explicit formula for the transition kernel. We have [27]

k(w′, ξ,w) =
12

π2
Υ

(
1 +

ξ−1 −max(|w|, |w′|)− 1
|w −w′|

)
(6.8)

with

Υ(x) =

⎧⎪⎨⎪⎩
0 if x ≤ 0

x if 0 < x < 1

1 if x ≥ 1.

(6.9)

For independent derivations of Formula (6.8) that do not employ eq. (6.7) but a more direct

approach based on Farey dissections, see Bykovskii and Ustinov [13] and Caglioti and Golse

[14].

There are no such formulas in higher dimension, although (6.7) can be used to extract

information to obtain asymptotics for ξ → 0 and ξ →∞, cf. [30]. We have in particular

1− 2d−1ξ
−1

ξ

ζ(d)ξ
≤ k(w′, ξ,w) ≤ 1

ζ(d)ξ
, (6.10)

and so for small ξ this implies k(w′, ξ,w) = (ζ(d)ξ)−1 + O(ξ). Here ζ(d) is the Riemann

zeta function and ζ(d)−1 is the relative density of primitive lattice points in Zd. Compare

(6.10) with the result for the Poisson process (Section 5):

kPoisson(w
′, ξ,w) = ξ

−1
e−ξ/ξ = ξ

−1 − ξ
−2

ξ +O(ξ2). (6.11)

The asymptotics of k(w′, ξ,w) for large ξ is more complicated to state, see [30]. We will

here focus on tail asymptotics for the distribution of free path lengths [30]. For any ξ > 0,
we have

Ψ0(ξ) =
1

ξζ(d)
+O(ξ), (6.12)

and for ξ →∞

Ψ0(ξ) =
Ad

ξ3
+O

(
ξ−3− 2

d

)⎧⎪⎨⎪⎩
1 if d = 2

log ξ if d = 3

1 if d ≥ 4

(6.13)
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with the constant

Ad =
22−d

d(d+ 1)ζ(d)
. (6.14)

These asymptotics sharpen earlier upper and lower bounds by Bourgain, Golse andWennberg

[11, 21]. Note that (6.13) implies that the density Ψ0(ξ) has no second moment. In dimen-

sion d = 2 there is an explicit formula for Ψ0(ξ) conjectured by Dahlqvist [16], and proved

by Boca and Zaharescu [7]. This formula of course also follows directly from the expression

for the transition kernel (6.8), cf. [27].

7. Several lattices

The previous two examples, random and periodic, could be analysed without the need to

introduce colour. We will now describe a first example where the extension of Ξ(t) to a

Markov process Ξ̃(t) (as outlined in Section 4) requires finitely many colours.

We consider a scattering configuration given by the union of N distinct affine Euclidean

lattices,

P =

N⋃
i=1

Li (7.1)

where each Li has covolume n−1
i . We will assume that the lattices are pairwise incommen-

surable in the sense that for any i �= j, c > 0 and a ∈ Rd, the intersection Li ∩ (cLj +a) is
contained in some affine linear subspace of dimension strictly less than d.16 This ensures in

particular that the density of P is n = n1 + . . . + nN . As before, we stipulate without loss

of generality that n = 1.
To describe the random point processes and corresponding collision kernels, we require,

in addition to a random lattice Θlattice in the previous section, the notion of a random affine
lattice. This is defined as Θaffine = (Zd + α)M where α is a random variable uniformly

distributed in Td = Zd\Rd and M is distributed with respect to Haar measure μ on Γ\G
as before. Note that Θaffine is well defined, since Td and the Lebesgue measure on Td are

invariant under the natural Γ action (by right multiplication). We denote byΘ
(1)
affine, . . . ,Θ

(N)
affine

independent copies of Θaffine, which are furthermore independent of Θlattice.

For y ∈ Lj for some j, and y /∈ Li for all i �= j, we define the point process Θunion(y)
by

Θunion(y) = n
−1/d
j Θlattice ∪

⋃
i�=j

(
n
−1/d
i Θ

(i)
affine

)
. (7.2)

In the following theorem, we say y ∈ P is generic, if y ∈ Lj is not rationally related to

the other lattices Li (i �= j) in a sense made precise in [31] (see the discussion after [31,

Thm. 1]). The set of non-generic y in P is contained in a finite union of affine subspaces of

dimension < d, and hence has zero relative density.

Theorem 7.1 ([31]). Let λ be an absolutely continuous probability measure on Bd−1
1 , let

A1, . . . , Ak ⊂ Rd bounded with boundary of measure zero and n1, . . . , nk ∈ Z≥0. Then,

16 This condition is not essential in the proof of convergence, but ensures that the limit distributions have a

particularly simple form. The case when all N lattices are commensurable is a special case of the setting discussed

in Section 8.
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for generic y ∈ P ,

lim
r→0

P(#(Θ̃r(y) ∩ Ai) = ni ∀i) = P
(
#((Θunion(y)− (0,h)) ∩ Ai) = ni ∀i

)
. (7.3)

The current setting requires N colours. In the notation of Section 3, we set Σ =
{1, . . . , N}, ι(y) = i if y ∈ Li, and define � as the probability measure on Σ so that

�({i}) = ni. We prove in [31] that the probability of emerging from a generic (as defined

above) scatterer with a given colour j′ and random exit parameter w′ (distributed according

to a fixed, absolutely continuous Borel probability measure λ on Bd−1
1 ), and hitting the next

scatterer at time Tn ∈ ]ξ, ξ + dξ[ with colour j and impact parameter w ∈ B ⊂ Bd−1
1 con-

verges in the Boltzmann-Grad limit to (3.10). If the lattices are incommensurable as assumed

above, the transition kernel in (3.10) is given by

k((w′, j), ξ, (w, j)) = k(1)(w′, njξ,w)
N∏
i=1
i �=j

∫ ∞

niξ

Ψ(ξ′) dξ′, (7.4)

and for j′ �= j,

k((w′, j′), ξ, (w, j)) = ξ K(1)(nj′ξ,w
′)K(1)(njξ,w)

N∏
i=1
i �=j′,j

∫ ∞

niξ

Ψ(ξ′) dξ′, (7.5)

where k(1)(w′, ξ,w) is the transition kernel for a single lattice in (6.7), K(1)(ξ,w) the

corresponding integrated kernel in (3.15) for a single lattice, and

Ψ(ξ) :=
1

vd−1

∫
Bd−1

1

K(1)(ξ,w) dw. (7.6)

The above formulas and (6.13) imply the following tail estimate for the distribution of

free path lengths:

Ψ0(ξ) =
N(N + 1)AN

d σN−1

2Nn1 · · ·nN ξ−(N+2) ×

⎧⎪⎨⎪⎩
(
1 +O(ξ−1)

)
if d = 2(

1 +O(ξ−
2
3 log ξ)

)
if d = 3(

1 +O(ξ−
2
d )
)

if d ≥ 4.

(7.7)

The proof of the above results follows the same strategy as in the single-lattice case stud-

ied in Section 6. The principal difference is that the equidistribution in the space of lattices

stated in Theorem 6.3 has to be generalised to the equidistribution in products: Consider the

subgroup Γ̂ = Γ1 × · · · × ΓN in SL(d,R)N , where each Γi is a lattice in SL(d,R). We

denote by μΓ̂ the unique SL(d,R)N invariant probability measure on Γ̂\ SL(d,R)N , and by

ϕ the diagonal embedding of SL(d,R) in SL(d,R)N , i.e. ϕ(M) = (M, . . . ,M). Recall that

two lattices Γ and Γ′ in SL(d,R) are said to be commensurable if their intersection Γ∩Γ′ is
also a lattice; otherwise Γ and Γ′ are incommensurable.

Theorem 7.2 ([31]). Let Γ1, . . . ,ΓN ∈ SL(d,R) be pairwise incommensurable lattices,
and M ∈ SL(d,R). Let λ be a Borel probability measure on Bd−1

1 , absolutely continuous
with respect to Lebesgue measure, and let f : Bd−1

1 × Γ̂\ SL(d,R)N → R be bounded
continuous. Then
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lim
r→0

∫
Bd−1

1

f
(
w, ϕ(MS(w)D(r))

)
dλ(w)

=

∫
Bd−1

1 ×Γ̂\ SL(d,R)N
f(w, g) dλ(w) dμΓ̂(g). (7.8)

The key ingredient in the proof of this statement is Ratner’s measure classification theo-

rem [38] via a theorem of Shah on the equidistribution of translates of unipotent orbits [40,

Thm. 1.4]. Theorem 6.3 corresponds to the special case N = 1. For N = 2 the proof is

simpler than forN ≥ 3, see [26]. Theorem 7.2 is in fact an oversimplification—the proof of

convergence to the transition kernel k(ω′, ξ, ω) in fact requires a variant of Theorem 7.2 for

products of spaces of affine lattices, cf. [31, Thm. 10].

The paper [31] proves the convergence to k(ω′, ξ, ω) for a random exit parameter with

fixed probability measure λ. What is still missing is a proof of the analogue of Theorem 5.1

(for random scatterer configurations P) or Theorem 6.1 (where P is a single lattice). It is

likely that the proof will follow the same line of arguments as in the periodic setting [29].

8. Quasicrystals

The third class of examples for scattering configurations P that lead to a generalised Boltz-

mann equation—and the second that requires colour—are quasicrystals. We restrict our

attention to quasicrystals constructed by the cut-and-project method, following closely the

presentation in [32]. Examples include many classic quasicrystals (such as the vertex set of a

Penrose tiling) as well as locally finite periodic point sets. In contrast to the previous section,

cut-and-project scatterer configurations generally require a continuous spectrum of colours.

A cut-and-project set P ⊂ Rd is defined as follows, cf. [1]. For m ≥ 0, n = d+m, let

π : Rn → Rd, πint : R
n → Rm (8.1)

be the orthogonal projections ofRn = Rd×Rm onto the first and second factor, respectively.

Rd will be called the physical space, and Rm the internal space. Let L ⊂ Rn be a lattice of

full rank. The closure

A := πint(L) ⊂ Rm (8.2)

is an abelian subgroup, and we denote by A0 the connected component of A containing

0. A0 is a linear subspace of Rm of dimension m1. We find vectors a1, . . . ,am2 (m =
m1 +m2) so that

A = A0 ⊕ Zπ(a1)⊕ . . .⊕ Zπ(am2). (8.3)

The Haar measure of A is denoted by μA and normalised so that μA
∣∣
A0 is the standard

Lebesgue measure on A0. For V := Rd ×A0, we note that L ∩ V is a full rank lattice in V .
ForW ⊂ A with non-empty interior, we call

P = P(W,L) = {π(�) : � ∈ L, πint(�) ∈ W} (8.4)

a cut-and-project set. W is called the window set. If the boundary of the window set has

μA-measure zero, we say P(W,L) is regular. We will furthermore assume that W and L
are chosen so that the map

πW : {� ∈ L : πint(�) ∈ W} → P (8.5)
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is bijective. This is to avoid coincidences in P . It follows from Weyl equidistribution that

such P have density

n =
μA(W)

volRd(V/(L ∩ V)) . (8.6)

Furthermore, for y ∈ P there is � ∈ L such that � = π(y) and

P(W,L)− y = P(W − yint,L), yint := πint(�). (8.7)

This suggests to define the colour chart ι : P → Σ :=W with ι(y) = yint. The aim is now

to describe the “closure” (in a suitable sense) of the orbit of P under the SL(d,R)-action
and construct a probability measure on it. This will yield, as we shall see, our limit random

process Θ(y) in (3.4).

Set G = SL(n,R), Γ = SL(n,Z) and define the embedding (for any g ∈ G)

ϕg : SL(d,R) ↪→ G, A �→ g

(
A 0d×m

0m×d 1m

)
g−1. (8.8)

Since SL(d,R) is generated by unipotent subgroups, Ratner’s theorems [38, 39] imply that

there is a (unique) closed connected subgroup Hg ≤ G such that:

(i) Γ ∩Hg is a lattice in Hg .

(ii) ϕg(SL(d,R)) ⊂ Hg .

(iii) The closure of Γ\Γϕg(SL(d,R)) is Γ\ΓHg .

We will call Hg a Ratner subgroup. We denote the unique Hg-invariant probability mea-

sure on Γ\ΓHg by μHg = μg . Note that Γ\ΓHg is isomorphic to the homogeneous space

(Γ ∩Hg)\Hg .

Pick g ∈ G, δ > 0 such that L = δ1/nZng. Then one can show [32, Prop. 3.5] that

πint(δ
1/nZnhg) ⊂ A for all h ∈ Hg , and πint(δ

1/nZnhg) = A for μg-almost all h ∈ Hg .

The image of the map

Γ\ΓHg → {point sets in Rd}, h �→ P(W − yint, δ
1/nZnhg) (8.9)

defines a space of cut-and-project sets, and the push-forward of μg equips it with a probabil-

ity measure. We have thus defined a random point processΘquasi(y) inRd, which is SL(d,R)
invariant, and whose typical realisation is a cut-and-project set with windowW − yint and

internal space A. This process is precisely the limit process we are looking for:

Theorem 8.1 ([32]). Let λ be an absolutely continuous probability measure on Bd−1
1 , let

A1, . . . ,Ak ⊂ Rd bounded with boundary of measure zero and n1, . . . , nk ∈ Z≥0. Then,
for every y ∈ P(W,L),

lim
r→0

P(#(Θ̃r(y) ∩ Ai) = ni ∀i) = P
(
#((Θquasi(y)− (0,h)) ∩ Ai) = ni ∀i

)
. (8.10)

This statement is (as in previous sections) a consequence of equidistribution. The fol-

lowing equidistribution theorems generalise Theorem 6.3 stated earlier, and are used in the

proof of Theorem 8.1. As in the case of Theorem 7.2, they are a consequence of Ratner’s

measure classification theorems [38], and in particular follow from a theorem of Shah [40,

Thm. 1.4] on the equidistribution of translates of unipotent orbits.
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Theorem 8.2 ([32]). Fix g ∈ G, M ∈ SL(d,R). For any bounded continuous f : Bd−1
1 ×

Γ\ΓHg → R and any absolutely continuous probability measure λ on Bd−1
1 ,

lim
r→0

∫
Bd−1

1

f(w, ϕg(MS(w)D(r))) dλ(w) =

∫
Bd−1

1

∫
Γ\ΓHg

f(w, h) dμg(h) dλ(w).

(8.11)

What are the subgroups Hg that can arise in the above construction? For almost every

lattice L in the space of lattices, we have Hg = G. Furthermore, if m < d, then for every
L with the property that π|L is injective, we have Hg = G [32, Prop. 2.1]. A interesting

class of examples when m ≥ d and Hg �= G are cut-and-project sets constructed from

algebraic number fields. The Penrose tilings fall into this class. Let us briefly sketch how

such quasicrystals can be obtained as cut-and-project sets. Let K be a totally real number

field of degree N ≥ 2 over Q, OK the ring of integers of K, and π1 = id, π2, . . . , πN the

distinct embeddings K ↪→ R. We also use πi to denote the component-wise embeddings

πi : K
d ↪→ Rd, x �→ (πi(x1), . . . , πi(xd)), (8.12)

and similarly for the entry-wise embeddings of d× d matrices,

πi : Md(K) ↪→ Md(R). (8.13)

Now consider the lattice

L = {(x, π2(x), . . . , πN (x)) : x ∈ Od
K} (8.14)

inRNd. This is a lattice of full rank. The dimension of the internal space ism = (N−1)d. It
is a fact of “basic” number theory [44] that A := πint(L) = Rm, so that V = RNd. Choose

g ∈ G and δ > 0 so that L = δ1/NdZNdg. Then [32, Sect. 2.2.1.] shows that

Hg = g SL(d,R)Ng−1, Γ ∩Hg = g SL(d,OK)g
−1, (8.15)

where SL(d,OK) is a Hilbert modular group.

A further example of a cut-and-project set is to take the union of finite translates of a

given cut-and-project set. This is explained in [32, Sect. 2.3]. Let us here discuss the special

case of periodic Delone sets, i.e., the union finite translates of a given lattice L0 of full

rank in Rd. An example of such a set is the honeycomb lattice, which in the context of

the Boltzmann-Grad limit of the Lorentz gas was recently studied by Boca et al. [8, 9] with

different techniques. The scatterer configuration P we are now interested in is the union of

m copies of the same lattice L0 translated by t1, . . . , tm ∈ Rd,

P =
m⋃
j=1

(tj + L0). (8.16)

We assume that the tj are chosen in such a way that the above union is disjoint. Let us now

show that P can be realised as a cut-and-project set P(L,W). Let

L = (L0 × {0}) +
m∑
j=1

Z (tj , ej) ⊂ Rn, (8.17)
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where 0 ∈ Rm and e1, . . . , em are the standard basis vectors in Rm. The set L is evidently

a lattice of full rank in Rn. Note that

πint(L) =
m∑
j=1

Z ej = Zm, (8.18)

and therefore the closure of this set is A = Zm with connected component A0 = {0}. It

follows that for the window set

W =
m⋃
j=1

{ej} ⊂ A (8.19)

we indeed have

P(L,W) =
m⋃
j=1

(tj + L0). (8.20)

Let us now determine Hg in this setting. Take g0 ∈ SL(d,R) so that L0 = n
−1/d
0 Zdg0,

where n0 is the density of L0. Set

T =

⎛⎜⎝ t1
...

tm

⎞⎟⎠ ∈ Mm×d(R). (8.21)

We then have L = n
−1/n
0 Zng, for

g = n
1/n
0

(
n
−1/d
0 g0 0
T 1m

)
∈ SL(n,R). (8.22)

Suppose a1, . . . ,ad is a basis of L0 so that the vectors a1, . . . ,ad, t1, . . . , tm are linearly

independent over Q. Then

Hg =

{(
h 0
u 1m

)
: h ∈ SL(d,R), u ∈ Mm×d(R)

}
. (8.23)

The Ratner subgroups that appear in the case of rational translates tj are discussed in [32,

Sect. 2.3.1].

Theorem 8.1 gives a complete description of the limit processes Θ(y) that may arise in

the case of cut-and-project sets (as defined above). This answers in particular a question on

the distribution of free path lengths raised by Wennberg [45], see [32] for details. We do not

have a comprehensive solution to the remaining “Does the limit (1.5) exist?” and “What is
the transition kernel k(ω′, ξ, ω)?” yet, but plan to address these in a forthcoming paper [33].

9. Superdiffusion

One of the central challenges in non-equilibrium statistical mechanics is to establish whether

the dynamics of a test particle converges, in the limit of large times and after a suitable

rescaling of length units, to Brownian motion. The first important step in the proof of such
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an invariance principle is the central limit theorem for the displacementQ(t)−Q0, suitably

normalised by a factor σ(t). If σ(t) 6 √t, we say the dynamics is diffusive. If σ(t)/
√
t→ 0

or σ(t)/
√
t → ∞ as t → ∞, the dynamics is called subdiffusive or superdiffusive, respec-

tively. In the case of fixed scatterer radius r, most results are restricted to the periodic setting

and dimension d = 2, recall Section 1. In the case of the Boltzmann-Grad limit with a ran-

dom scatterer configuration, we have a central limit theorem with standard
√
t normalisation:

Theorem 9.1. LetQBG(t) denote the position variable of the random flight process Ξ(t) for
a Poisson scatterer configuration (cf. Section 5). Then there exists a constant σd > 0 such
that, for any bounded continuous f : Rd → R and any17 (Q0,V 0) ∈ T1(Rd),

lim
t→∞

E f

(
QBG(t)−Q0

σd
√
t

)
=

1

(2π)d/2

∫
Rd

f(x) e−
1
2‖x‖

2

dx. (9.1)

This theorem follows from standard techniques in the theory of Markov processes [37],

as pointed out by Spohn [41]. On the other hand, the Boltzmann-Grad limit of a periodic

Lorentz gas satisfies a superdiffusive central limit theorem with
√
t log t normalisation:

Theorem 9.2 (Marklof and Tóth, 2014 [34]). Let QBG(t) denote the position variable of
the random flight process Ξ(t) for a periodic scatterer configuration (cf. Section 6). Then,
for any bounded continuous f : Rd → R and any18 (Q0,V 0) ∈ T1(Rd),

lim
t→∞

E f

(
QBG(t)−Q0

Σd

√
t log t

)
=

1

(2π)d/2

∫
Rd

f(x) e−
1
2‖x‖

2

dx (9.2)

with Σ2
d :=

Ad

2dξ
.

Recall that Ad is the constant in the tail asymptotics of the free path lengths (6.13).

This means in particular that Σd is independent of the choice of scattering map (within the

admissible class). Although the superdiffusive scaling is intimately related to the fact that

the second moment of the distribution of free path lengths diverges, the proof of Theorem

9.2 requires further information on the transition kernel k(ω′, ξ, ω). The main ingredients

of our proof are (a) exponential decay of correlations in the sequence of random variables

(ηn,V n)n∈N and (b) the Lindeberg central limit theorem for the independent random vari-

ables (ξn|η)n∈N conditioned on η = (ηn)n∈N. For full details, see [34].
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17 Because we have already passed to the Boltzmann-Grad limit, we may here consider the random process

QBG(t) either with fixed initial data (as stated) or with random initial data distributed according to Λ (as assumed

in all previous sections).

18 Cf. footnote 17.
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Abstract. In this survey we will describe results that relate qualitative properties of dynamical systems

(and bifurcations of dynamical systems) to geometrical properties of invariant sets of these systems;

fractal dimensions of hyperbolic invariant sets have a key role in such results. We conclude with a

discussion of some results on geometrical properties of the classical Markov and Lagrange spectra of

diophantine approximations and of dynamical variations of them, which can be proved using tech-

niques of fractal geometry developed primarily in the context of dynamical bifurcations mentioned

above.
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1. Introduction

Homoclinic bifurcations are perhaps the most important mechanism that creates complicated

dynamical systems from simple ones. This phenomenon, studied since Poincaré, happens

when an element of a family of diffeomorphisms presents a hyperbolic periodic point whose

stable and unstable manifolds have a non-transverse intersection.

The first interesting case is the study of homoclinic explosions in surfaces: We consider

one-parameter families (ϕμ), μ ∈ (−1, 1) of diffeomorphisms of a surface for which ϕμ is

uniformly hyperbolic for μ < 0, and ϕ0 presents a quadratic homoclinic tangency associ-

ated to a hyperbolic periodic point (which may belong to a horseshoe - a compact, locally

maximal, hyperbolic invariant set of saddle type). It unfolds for μ > 0 creating locally two

transverse intersections between the stable and unstable manifolds of (the continuation of)

the periodic point. A main question is what happens for (most) positive values of μ. The

following figure depicts such a situation for μ = 0.
Regular Cantor sets on the line play a fundamental role in dynamical systems and notably

also in some problems in number theory. They are defined by expansive maps and have some

kind of self-similarity property: small parts of them are diffeomorphic to big parts with

uniformly bounded distortion (see a precise definition in the next section). In both settings,

dynamics and number theory, a key question is whether the arithmetic difference of two such

sets has non-empty interior.

A horseshoe Λ in a surface is locally diffeomorphic to the cartesian product of two reg-

ular Cantor sets: the so-called stable and unstable Cantor sets Ks and Ku of Λ, given by

intersections of Λ with local stable and unstable manifolds of some points of the horseshoe.

The Hausdorff dimension of Λ, which is equal to the sum of the Hausdorff dimensions ofKs

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Figure 1.1.

andKu, plays a fundamental role in several results on homoclinic bifurcations associated to

Λ. In what follows, we will denote Hausdorff dimensions by HD.

>From the dynamics side, in 1983, J. Palis and F. Takens ([26], [27]) proved the follow-

ing theorem about homoclinic bifurcations associated to a hyperbolic set:

Theorem 1.1. Let (ϕμ), μ ∈ (−1, 1) be a family of diffeomorphisms of a surface presenting
a homoclinic explosion at μ = 0 associated to a periodic point belonging to a horseshoe Λ.
Assume that HD(Λ) < 1. Then

lim
δ→0

m(H ∩ [0, δ])
δ

= 1,

where H := {μ > 0 | ϕμ is persistently hyperbolic}.
A central fact used in the proof of this result is that if K1 and K2 are regular Cantor sets

on the real line such that the sum of their Hausdorff dimensions is smaller than one, then

K1 − K2 = {x − y | x ∈ K1, y ∈ K2} (the arithmetic difference between K1 and K2)

is a set of zero Lebesgue measure (indeed of Hausdorff dimension smaller than 1). In the

same year, looking for some kind of characterization property for this phenomenon, Palis

conjectured (see [24], [25]) that for generic pairs of regular Cantor sets (K1,K2) of the

real line either K1 −K2 has zero measure or else it contains an interval (the last statement

should correspond in homoclinic bifurcations to open sets of tangencies). A slightly stronger

statement is that, ifK1 andK2 are generic regular Cantor sets and the sum of their Hausdorff

dimensions is bigger than 1, then K1 −K2 contains intervals.

Another motivation for the conjecture was Newhouse’s work in the seventies, when he in-

troduced the concept of thickness of a regular Cantor set, another fractal invariant associated

to Cantor sets on the real line. It was used in [21] to exhibit open sets of diffeomorphisms

with persistent homoclinic tangencies, therefore without hyperbolicity. It is possible ([22])

to prove that, under a dissipativity hypothesis, in such an open set there is a residual set of

diffeomorphisms which present infinitely many coexisting sinks. In [23], it is proved that
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under generic hypotheses every family of surface diffeomorphisms that unfold a homoclinic

tangency goes throught such an open set. Is to be noted that in general (as in the case stud-

ied in [27] and described above) these sets can have zero density. See [28] for a detailed

presentation of these results. An important related question by Palis is whether the sets

of parameter values corresponding to infinitely many coexisting sinks have typically zero

Lebesgue measure.

An earlier and totally independent development had taken place in number theory. In

1947, M. Hall ([4]) proved that any real number can be written as the sum of two numbers

whose continued fractions coefficients (of positive index) are at most 4. More precisely, if

C(4) is the regular subset formed of such numbers in [0, 1], then one has C(4) + C(4) =
[
√
2 − 1, 4(

√
2 − 1)]. We will see a consequence of this result on the classical Markov

and Lagrange spectra related to diophantine approximations in section 4, where we will

also present and study dynamical generalizations of these spectra and discuss some of their

geometrical properties, related to regular Cantor sets.

In section 2 we will discuss the positive solution of Palis’ conjecture in the Ck-topology,

k > 1, by Moreira and Yoccoz, and some dynamical consequences of it on the study of

homoclinic bifurcations. We will also discuss how the situation is considerably different in

the C1-topology. In section 3 we will discuss some counterparts of these results in higher

dimensions.

2. Regular Cantor sets and homoclinic bifurcations

A Cantor set K is a Ck-regular Cantor set, k ≥ 1, if:

i) there are disjoint compact intervals I1, I2, . . . , Ir such that K ⊂ I1 ∪ · · · ∪ Ir and the

boundary of each Ij is contained in K;

ii) there is a Ck expanding map ψ defined in a neighbourhood of I1 ∪ I2 ∪ · · · ∪ Ir
such that, for each j, ψ(Ij) is the convex hull of a finite union of some intervals Is
satisfying:

ii.1) for each j, 1 ≤ j ≤ r and n sufficiently big, ψn(K ∩ Ij) = K;

ii.2) K =
⋂
n∈N

ψ−n(I1 ∪ I2 ∪ · · · ∪ Ir).

Remark 2.1. If k is not integer, say k = m + α, with m ≥ 1 integer and 0 < α < 1 we

assume that ψ is Cm and ψ(m) is α-Hölder.

We say that {I1, I2, . . . , Ir} is a Markov partition for K and that K is defined by ψ.

Remark 2.2. In general, we say that a set X ⊂ R is a Cantor set if X is compact, without

isolated points and with empty interior. Cantor sets in R are homeomorphic to the classical

ternary Cantor set K1/3 of the elements of [0, 1] which can be written in base 3 using only

digits 0 and 2. The set K1/3 is itself a regular Cantor set, defined by the map ψ : [0, 1/3] ∪
[2/3, 1]→ R given by ψ[x] = 3x− :3x;.

An interval of the construction of the regular Cantor set K is a connected component of

ψ−n(Ij) for some n ∈ N, j ≤ r.
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Given s ∈ [1, k] and another regular Cantor set K̃, we say that K̃ is close toK in the Cs

topology if K̃ has a Markov partition {Ĩ1, Ĩ2, . . . , Ĩr} such that the interval Ĩj has endpoints

close to the endpoints of Ij , for 1 ≤ j ≤ r and K̃ is defined by a Cs map ψ̃ which is close

to ψ in the Cs topology.

The C1+-topology is such that a sequence ψn converges to ψ if there is some α > 0 such

that ψn is C1+α for every n ≥ 1 and ψn converges to ψ in the C1+α-topology.

The concept of stable intersection of two regular Cantor sets was introduced in [12]: two

Cantor sets K1 and K2 have stable intersection if there is a neighbourhood V of (K1,K2)

in the set of pairs of C1+-regular Cantor sets such that (K̃1, K̃2) ∈ V ⇒ K̃1 ∩ K̃2 �= ∅.
In the same paper conditions based on renormalizations were introduced to ensure stable

intersections, and applications of stable intersections to homoclinic bifurcations were ob-

tained: roughly speaking, if some translations of the stable and unstable regular Cantor sets

associated to the horseshoe at the initial bifurcation parameter μ = 0 have stable intersection

then the set {μ > 0 | ϕμ presents persistent homoclinic tangencies} has positive Lebesgue

density at μ = 0. It was also shown that this last phenomenon can coexist with positive

density of hyperbolicity in a persistent way.

Besides, the following question was posed in [12]: Does there exist a dense (and auto-

matically open) subset U of

Ω∞ = {(K1,K2);K1,K2 areC∞ − regular Cantor sets andHD(K1) +HD(K2) > 1}

such that (K1,K2) ∈ U ⇒ ∃ t ∈ R such that (K1,K2+t) has stable intersection? A positive

answer to this question implies a strong version of Palis’ conjecture. Indeed, K1 − K2 =
{t ∈ R | K1 ∩ (K2 + t) �= ∅}, so, if (K1,K2 + t) has stable intersection then t belongs
persistently to the interior of K1 −K2.

The results of [18] gave an affirmative answer to this question, proving the following

Theorem 2.3. There is an open and dense set U ⊂ Ω∞ such that if (K1,K2) ∈ U , then
Is(K1,K2) is dense in K1 −K2 and HD((K1 −K2)\Is(K1,K2)) < 1, where

Is(K1,K2) := {t ∈ R | K1 and (K2 + t) have stable intersection}.

The same result works if we replace stable intersection by d-stable intersection, which

is defined by asking that any pair (K̃1, K̃2) in some neighbourhood of (K1,K2) satisfies

HD(K̃1 ∩ K̃2) ≥ d: most pairs of Cantor sets (K1,K2) ∈ Ω∞ have d-stable intersection

for any d < HD(K1) +HD(K2)− 1.
The open set U mentioned in the above theorem is very large in Ω∞ in the sense that

generic n-parameter families in Ω∞ are actually contained in U .
The proof of this theorem depends on a sufficient condition for the existence of stable

intersections of two Cantor sets, related to a notion of renormalization, based on the fact

that small parts of regular Cantor sets are diffeomorphic to the whole set: the existence of a

compact recurrent set of relative positions of limit geometries of them. Roughly speaking, it

is a compact set of relative positions of regular Cantor sets such that, for any relative position

in such a set, there is a pair of (small) intervals of the construction of the Cantor sets such

that the renormalizations of the Cantor sets associated to these intervals belong to the interior

of the same compact set of relative positions.

The main result is reduced to prove the existence of recurrent compact sets of relative

positions for most pairs of regular Cantor sets whose sum of Hausdorff dimensions is larger
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than one. A central argument in the proof of this fact is a probabilistic argument à la Erdős:

we construct a family of perturbations with a large number of parameters and show the exis-

tence of such a compact recurrent set with large probability in the parameter space (without

exhibiting a specific perturbation which works). See [18] for more details.

An important result in fractal geometry which is used in the proof is the famous

Marstrand’s theorem ([11]), according to which, given a Borel set X ⊂ R2 with HD(X) >
1 then, for almost every λ ∈ R, πλ(X) has positive Lebesgue measure, where πλ : R2 → R
is given by πλ(x, y) = x − λy. In particular, if K1 and K2 are regular Cantor sets with

HD(K1) +HD(K2) > 1 then, for almost every λ ∈ R, K1 − λK2 has positive Lebesgue

measure. Lima and Moreira gave combinatorial alternative proofs of Marstrand’s theorem,

first in the case of cartesian products of regular Cantor sets ([6]) and then in the general case

([7]).

In [19], we prove the following fact concerning generic homoclinic bifurcations associ-

ated to two dimensional saddle-type hyperbolic sets (horseshoes) with Hausdorff dimension

bigger than one: typically there are translations of the stable and unstable Cantor sets having

stable intersection, and so it yields open sets of stable tangencies in the parameter line with

positive density at the initial bifurcation value. Moreover, the union of such a set with the

hyperbolicity set in the parameter line generically has full density at the initial bifurcation

value. This extends a theorem by Palis and Yoccoz ([29]).

The situation is quite different in the C1-topology, in which stable intersections do not

exist:

Theorem 2.4 ([13]). Given any pair (K,K ′) of regular Cantor sets, we can find, arbitrarily
close to it in the C1 topology, pairs (K̃, K̃ ′) of regular Cantor sets with K̃ ∩ K̃ ′ = ∅.

Moreover, for generic pairs (K,K ′) of C1-regular Cantor sets, the arithmetic difference
K −K ′ has empty interior (and so is a Cantor set).

The main technical difference between the C1 case and the C2 (or even C1+α) cases

is the lack of bounded distortion of the iterates of ψ in the C1 case, and this fact will be

fundamental for the proof of the previous result.

The previous result may be used to show that there are no C1 robust tangencies between

leaves of the stable and unstable foliations of respectively two given hyperbolic horseshoes

Λ1,Λ2 of a diffeomorphism of a surface. This is also very different from the situation in

the C∞ topology - for instance, in [19] it is proved that, in the unfolding of a homoclinic

or heteroclinic tangency associated to two horseshoes, when the sum of the correspondent

stable and unstable Hausdorff dimensions is larger than one, there are generically stable

tangencies associated to these two horseshoes. This result is done in the following

Theorem 2.5 ([13]). Given a C1 diffeomorphism ψ of a surface M having two (non neces-
sarily disjoint) horseshoes Λ1,Λ2, we can find, arbitrarily close to it in the C1 topology, a
diffeomorphism ψ̃ of the surface for which the horseshoes Λ1,Λ2 have hyperbolic continua-
tions Λ̃1, Λ̃2, and there are no tangencies between leaves of the stable and unstable foliations
of Λ̃1 and Λ̃2, respectively. Moreover, there is a generic set R of C1 diffeomorphisms of M
such that, for every ψ̌ ∈ R, there are no tangencies between leaves of the stable and unstable
foliations of Λ1,Λ2, for any horseshoes Λ1,Λ2 of ψ̌.

Since stable intersections of Cantor sets are the main known obstructions to density of hy-

perbolicity for diffeomorphisms of surfaces, the previous result gives some hope of proving

density of hyperbolicity in the C1 topology for diffeomorphisms of surfaces, a well-known



652 Carlos Gustavo T. de A. Moreira

question by Smale. In particular in the work [14] on a family of two-dimensional maps (the

so-called Benedicks-Carleson toy model for Hénon dynamics) in which we prove that in this

family there are diffeomorphisms which present stable homoclinic tangencies (Newhouse’s

phenomenon) in the C2-topology but their elements can be arbitrarily well approximated in

the C1-topology by hyperbolic maps.

3. Results in higher dimensions

In [20], Moreira, Palis and Viana consider 1-parameter families of diffeomorphisms ϕμ :
Mn → Mn, μ ∈ (−1, 1) of class C2, unfolding a generic homoclinic tangency associated

to a periodic point p0 contained in a horseshoe Λ0 of ϕ0. We suppose that ϕμ is hyperbolic

(Axiom A) for μ < 0, which implies that the weakest contracting and weakest expanding

eigenvalues of p0 are real numbers.

Let ds and du be the Hausdorff dimensions of W s(p0) ∩ Λ0 and Wu(p0) ∩ Λ0, respec-

tively. We show the following result:

Theorem 3.1. There are two open sets U and V of families (ϕμ) as before whose union is
dense such that:

i) If (ϕμ) ∈ U then ds + du < 1 and H = {μ ∈ (−1, 1) | ϕμ is hyperbolic} has full
Lebesgue density at μ = 0.

ii) If (ϕμ) ∈ V then ds + du > 1 and Ts = {μ > 0 | ϕμ presents persistent homoclinic
tangencies associated to the hyperbolic continuation Λμ of Λ0} is an open set with
positive lower density at μ = 0.

An important technical notion defined in this paper is that of upper dimension, which is

defined as follows.

Let Λ be a horseshoe for a diffeomorphism ϕ : M → M , and P be some Markov

partition of Λ. We call vertical n-cylinder any subset of Λ defined by prescribing the first n
symbols in the backward itinerary with respect to P . Let Vn be the set of vertical n-cylinders.
There is a dual notion of horizontal n-cylinder, where one considers forward itinerary.

Fix ε > 0 small. For each V ∈ Vn let Ds(V ) = sup{diam(W s
ε (x)∩ V ) | x ∈ Λ∩ V }.

We define λ̃n by the relation ∑
V ∈Vn

Ds(V )
λ̃n = 1,

and we let the upper stable dimension be given by ds(Λ) = limn→∞ λ̃n. There is a dual

notion of upper unstable dimension du(Λ), dealing with Wu
ε instead of W s

ε .

It is not difficult to show that the limit always exists, and ds is an upper-semicontinuous

function of ϕ. Moreover,

HD(W s
ε (x) ∩ Λ) ≤ ds(Λ) for each x ∈ Λ.

It is possible to show that the equality holds in most cases when ds < 1.
One of our main lemmas is the construction (perhaps after perturbation of ϕ0) of strong-

stable and strong-unstable foliations of codimension 1 for hyperbolic subsets of Λ0 with al-

most the same upper dimensions ds and du. These foliations are used to (essentially) reduce



Fractal geometry and dynamical bifurcations 653

the study of the geometries of the stable and unstable foliations near the initial homoclinic

tangency to the bidimensional case.

In [1], Bonatti and Diaz introduced the concept of blenders, which became very impor-

tant in the study of partially hyperbolic diffeomorphisms and of C1-robustly non-hyperbolic

systems:

Definition 3.2 (cs-blender). Let ϕ : M →M be a diffeomorphism. A transitive hyperbolic

set Γ of ϕ whose stable bundle has dimension k ≥ 2 is a cs-blender if there are a C1-

neighborhood U of ϕ and a C1-open set D of embeddings of (k − 1)-dimensional disks D
into M such that, for every diffeomorphism ψ ∈ U , every disk D ∈ D intersects the local

stable manifold W s
loc(Γψ) of the continuation Γψ of Γ for ψ.

In [17] Moreira and Silva prove the following:

Theorem 3.3. Typical horseshoes (in arbitrary dimension) Λ with ds(Λ) > 1 are cs-
blenders. Moreover, for any q ∈ Λ and typicalC1 real maps g :W s

loc(q)→R, g(W s
loc(q)∩Λ)

has persistently non-empty interior.

Notice that if HD(W s
loc(q) ∩ Λ) > 1 for some q ∈ Λ then the hypothesis ds(Λ) > 1 is

automatically satisfied.

The proof uses the above results of [20] in order to reduce the problem to the context

where the horseshoe has a strong-stable foliation of codimension one. The main result in

this context is that projections of stable Cantor sets of the typeW s
loc(q)∩Λ along strong sta-

ble leaves persistently contain intervals. The proof of this result is inspired by the techniques

of [18]: renormalization operators are defined, and a recurrent compact set criterion which

is a sufficient condition for the desired conclusion is established. Then the proof follows

a probabilistic method: the existence of a recurrent compact set is proved for most pertur-

bations in a suitable family of small perturbations with a large number of parameters. An

important step in the preparation of this last argument is a Marstrand-like result inspired in

the paper [31] by Simon, Solomyak and Urbański.

Another natural generalization of [18] is related to the following question:

Question. Let π : Rn → Rk be a surjective linear map. Under which conditions on
K1, . . . ,Kn regular Cantor sets, the set π(K1 × . . . × Kn) contains a non-empty open
set of Rk?

The results of [18] imply that, in the case (n, k) = (2, 1), the condition HD(K1) +
HD(K2) > 1 is typically sufficient.

Some natural conditions related to HD(K1), . . . , HD(Kn) are needed, indeed: let

e1, . . . , en be the canonical basis of Rn. Then for all I ⊂ {1, . . . , n}

HD(π(K1 × . . .×Kn)) ≤
∑
i∈I

HD(Ki) + dim
(
span {π(ei), i ∈ Ic}

)
.

We say that t ∈ Rk is a stable projection value forK1, . . . ,Kn if t ∈ π(K̃1× . . .× K̃n)

for any (K̃1, . . . , K̃n) perturbation of (K1, . . . ,Kn) in C
1+-topology of regular Cantor sets.

Ps(K1, . . . ,Kn) denotes the set of such stable projection values t.
In [9], López and Moreira give the following answer to this question:
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Theorem 3.4. There is an open and dense subset U of the set{
(K1, . . . ,Kn) |K1, . . . ,Kn are C∞-regular Cantor sets with∑

i∈I
HD(Ki) + dim

(
span {π(ei), i ∈ Ic}

)
> k, for all I ⊂ {1, . . . , n} , I �= ∅

}
,

such that, if (K1, . . . ,Kn) ∈ U , then Ps(K1, . . . ,Kn) is dense in π(K1 × . . .×Kn) and

HD(π(K1 × . . .×Kn)\Ps(K1, . . . ,Kn)) < k.

An important technical tool in the proof is the following generalization of Marstrand’s

theorem, proved in [8]:

Let K1, . . . ,Kn be Borel subsets of Rm1 , . . . ,Rmn respectively, and

π : Rm1 × . . .× Rmn → Rk be a surjective linear map. We set:

m := min

{∑
i∈I

HD(Ki) + dimπ(
⊕
i∈Ic

Rmi), I ⊂ {1, . . . , n} , I �= ∅
}
.

Consider the space Λm = {(t, O), t ∈ R, O ∈ SO(m)} with the natural measure and set

Λ = Λm1×. . .×Λmn . For every λ = (t1, O1, . . . , tn, On) ∈ Λ and every x = (x1, . . . , xn) ∈
Rm1 × . . .× Rmn we define πλ(x) = π(t1O1x

1, . . . , tnOnx
n). Then we have

Theorem 3.5.

(i) If m > k, then πλ(K1 × . . .×Kn) has positive k-dimensional Lebesgue measure for
almost every λ ∈ Λ.

(ii) If m ≤ k and HD(K1 × . . .×Kn) = HD(K1) + . . .+HD(Kn), then

HD(πλ(K1 × . . .×Kn)) = m

for almost every λ ∈ Λ.

4. The Markov and Lagrange spectra and generalizations

Let α be an irrational number. According to Dirichlet’s theorem, the inequality

|α − p
q | < 1

q2 has infinitely many rational solutions p
q . Hurwitz improved this result by

proving that |α − p
q | < 1√

5q2
also has infinitely many rational solutions p

q for any irrational

α, and that
√
5 is the largest constant that works for any irrational α. However, for particular

values of α we can improve this constant.

More precisely, we define k(α) := sup{k > 0 | |α − p
q | < 1

kq2 has infinitely many

rational solutions p
q } = lim supp,q→+∞ (q|qα − p|)−1. We have k(α) ≥ √5, ∀α ∈ R \ Q

and k
(

1+
√
5

2

)
=
√
5. We will consider the set L = {k(α) | α ∈ R \Q, k(α) < +∞}.

This set is called the Lagrange spectrum. Hurwitz’s theorem determines the smallest

element of L, which is
√
5. This set L encodes many diophantine properties of real numbers.
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It is a classical subject the study of the geometric structure of L. Markov proved in 1879

([10]) that

L ∩ (−∞, 3) =

{
k1 =

√
5 < k2 = 2

√
2 < k3 =

√
221

5
< . . .

}
where kn is a sequence (of irrational numbers whose squares are rational) converging to 3,
which means that the “beginning” of the set L is discrete. This is not true for the whole

set L. As we mentioned in the introduction, M. Hall proved in 1947 ([4]) that if C(4) is

the regular Cantor set formed by the numbers in [0, 1] whose coefficients in the continued

fractions expansion are bounded by 4, then one hasC(4)+C(4) = [
√
2−1, 4(√2−1)]. This

implies that L contains a whole half line (for instance [6,+∞)), and G. Freiman determined

in 1975 ([3]) the biggest half line that is contained in L, which is [c,+∞), with

c =
2221564096 + 283748

√
462

491993569
∼= 4, 52782956616 . . . .

These last two results are based on the study of sums of regular Cantor sets, whose relation-

ship with the Lagrange spectrum will be explained below.

If the continued fraction of α is α = [a0; a1, a2, . . . , ] then we have the following

formula k(α) = lim supn→∞(αn + βn), where αn = [an; an+1, an+2, . . . ] and βn =
[0; an−1, an−2, . . . , a1]. This follows from the equality∣∣∣∣α− pn

qn

∣∣∣∣ = 1

(αn+1 + βn+1)q2n
, ∀n ∈ N,

where pn/qn, n ∈ N are the convergents of the continued fraction of α.
This formula for k(α) implies that we have the following alternative definition of the

Lagrange spectrum L:
Let Σ = (N∗)Z be the set of all bi-infinite sequences of positive integers. If θ =

(an)n∈Z ∈ Σ, let αn = [an; an+1, an+2, . . . ] and βn = [0; an−1, an−2, . . . ], ∀n ∈ Z.
We define f(θ) = α0 + β0 = [a0; a1, a2, . . . ] + [0; a−1, a−2, . . . ]. We have

L =

{
lim sup
n→∞

f(σnθ), θ ∈ Σ
}
,

where σ : Σ→ Σ is the shift defined by σ((an)n∈Z) = (an+1)n∈Z.
Let us define the Markov spectrum M by M = {supn∈Z f(σnθ), θ ∈ Σ}. It also has an

arithmetical interpretation, namely

M =

{(
inf

(x,y)∈Z2\(0,0)
|f(x, y)|

)−1

: f(x, y) = ax2 + bxy + cy2, b2 − 4ac = 1

}
.

It is well-known (see [2]) that M and L are closed sets of the real line and L ⊂M .

We have the following result about the Markov and Lagrange spectra:

Theorem 4.1. Given t ∈ R we have

HD(L ∩ (−∞, t)) = HD(M ∩ (−∞, t)) =: d(t)

and d(t) is a continuous surjective function from R to [0, 1]. Moreover:
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i) d(t) = min{1, 2D(t)}, where D(t) := HD(k−1(−∞, t)) = HD(k−1(−∞, t]) is a
continuous function from R to [0, 1).

ii) max{t ∈ R | d(t) = 0} = 3

iii) d(
√
12) = 1.

A fundamental tool in the proof of this result is the theorem below.

We say that a C2-regular Cantor set on the real line is essentially affine if there is a C2

change of coordinates for which the dynamics that defines the corresponding Cantor set has

zero second derivative on all points of that Cantor set. Typical C2-regular Cantor sets are

not essentially affine.

The scale recurrence lemma, which is the main technical lemma of [18], can be used in

order to prove the following

Theorem 4.2. If K and K ′ are regular Cantor sets of class C2 and K is non essentially
affine, then HD(K +K ′) = min{HD(K) +HD(K ′), 1}.

There is a presentation of a version of this result (with a slightly different hypothesis) in

[30]. That version is also proved by Hochman and Shmerkin in [5].

As we have seen, the sets M and L can be defined in terms of symbolic dynamics.

Inspired by these characterizations, we may associate to a dynamical system together with a

real function generalizations of the Markov and Lagrange spectra as follows:

Definition 4.3. Given a map ψ : X → X and a function f : X → R, we define the asso-

ciated dynamical Markov and Lagrange spectra as M(f, ψ) = {supn∈Nf(ψn(x)), x ∈ X}
and L(f, ψ) = {limsupn→∞f(ψn(x)), x ∈ X}, respectively. Given a flow (ϕt)t∈R in a

manifold X , we define the associated dynamical Markov and Lagrange spectra as

M(f, (ϕt)) = {supt∈Rf(ϕt(x)), x ∈ X} andL(f, (ϕt)) = {limsupt→∞f(ϕt(x)), x ∈ X},
respectively.

In an ongoing work in collaboration with A. Cerqueira, we prove the following result,

which generalizes a corresponding fact in the context of the classical Markov and Lagrange

spectra:

Lemma 4.4. Let (ϕ, f) be a generic pair, where ϕ : M2 → M2 is a diffeomorphism with
Λ ⊂ M2 a hyperbolic set for ϕ and f : M → R is C2. Let πs, πu be the projections of the
horseshoe Λ to the stable and unstable regular Cantor sets Ks,Ku associated to it (along
the unstable and stable foliations of Λ). Given t ∈ R, we define

Λt =
⋂
m∈Z

ϕm({p ∈ Λ|f(p) ≤ t}), Ks
t = πs(Λt), K

u
t = πu(Λt).

Then the functions ds(t) = HD(Ks
t ) and du(t) = HD(Ku

t ) are continuous and coincide
with the corresponding box dimensions.

The following result is a consequence of the scale recurrence lemma of [18] (its first part

also follows from [5]):

Lemma 4.5. Let (ϕ, f) be a generic pair, where ϕ : M2 → M2 is a diffeomorphism with
Λ ⊂M2 a hyperbolic set for ϕ and f :M → R is C2. Then

HD(f(Λ)) = min(HD(Λ), 1).

Moreover, if HD(Λ) > 1 then f(Λ) has persistently non-empty interior.
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Using the previous lemmas we prove a generalization of the results on dimensions of the

dynamical spectra:

Theorem 4.6. Let (ϕ, f) be a generic pair, where ϕ : M2 → M2 is a conservative diffeo-
morphism with Λ ⊂M2 a hyperbolic set for ϕ and f :M → R is C2. Then

HD(L(f,Λ) ∩ (−∞, t)) = HD(M(f,Λ) ∩ (−∞, t)) =: d(t)

is a continuous real function whose image is [0,min(HD(Λ), 1)].

Finally we will describe some results obtained in collaboration with S. Romaña.

Theorem 4.7 ([15]). Let Λ be a horseshoe associated to a C2-diffeomorphism ϕ such
that HD(Λ) > 1. Then there is, arbitrarily close to ϕ a diffeomorphism ϕ0 and a C2-
neighborhoodW of ϕ0 such that, if Λψ denotes the continuation of Λ associated to ψ ∈W ,
there is an open and dense set Hψ ⊂ C1(M,R) such that for all f ∈ Hψ , we have

int L(f,Λψ) �= ∅ and int M(f,Λψ) �= ∅,
where intA denotes the interior of A.

The classical Markov and Lagrange spectra can also be characterized as sets of maximum

heights and asymptotic maximum heights, respectively, of geodesics in the modular surface

N = H2/PSL(2,Z). We extend in [16] the fact that these spectra have non-empty interior

to the context of negative, non necessarily constant curvature as follows:

Theorem 4.8. Let M provided with a metric g0 be a complete noncompact surface M with
finite Gaussian volume and Gaussian curvature bounded between two negative constants,
i.e., if KM denotes the Gaussian curvature, then there are constants a, b > 0 such that

−a2 ≤ KM ≤ −b2 < 0.

Denote by SM its unitary tangent bundle and by φ its geodesic flow.
Then there is a metric g close to g0 and a dense and C2-open subset H ⊂ C2(SM,R)

such that
int M(f, φg) �= ∅ and int L(f, φg) �= ∅

for any f ∈ H, where φg is the vector field defining the geodesic flow of the metric g.
Moreover, if X is a vector field sufficiently close to φg then

int M(f,X) �= ∅ and int L(f,X) �= ∅
for any f ∈ H.
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Zeta functions for Anosov flows

Mark Pollicott

Abstract. Dynamical zeta functions, by analogy with their more famous counterparts in number the-

ory, are a useful tool to study certain types of dynamical systems. An important application is to the

geodesic flow on a negatively curved surface. For surfaces of constant negative curvature the properties

of the Selberg zeta function have been well understood for over half a century. However, understanding

the properties of the corresponding zeta function for the more general setting of surfaces of variable

negative curvature benefits from this more dynamical viewpoint.

Mathematics Subject Classification (2010). Primary 37C30; Secondary 11M36.

Keywords. Dynamical zeta functions, thermodynamical formalism.

1. Introduction

The best known setting for zeta functions is undoubtably that of analytic number theory, and

so perhaps this is a good starting place to motivate the study of zeta functions for Anosov

flows. We therefore begin with the best known zeta function, namely the Riemann zeta
function, which is the complex function defined by

ζ(s) =

∞∑
n=1

1

ns
, s ∈ C,

which converges for Re(s) > 1. The Riemann zeta function was actually studied in 1737 by

Euler. Indeed, it was Euler who proved the equivalent presentation

ζ(s) =
∏
p

(1− p−s)−1

in terms of what is now called an Euler product over the prime numbers p. However, when

in 1859 Riemann was elected a member of the Berlin Academy of Sciences he reported “On

the number of primes less than a given magnitude” [65] in a departure from his previous,

and subsequent, research. In particular, he established the following basic properties of this

zeta function.

Theorem 1.1 (Riemann). The zeta function ζ(s) converges to a non-zero analytic function
for Re(s) > 1. Moreover,

(1) ζ(s) has a single (simple) pole at s = 1; and

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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(2) ζ(s) extends to all complex numbers s ∈ C.

In particular, ζ(s) has an analytic extension to the entire complex plane, except for a

simple pole at s = 1.
One of the main applications of the Riemann zeta function was to prove the prime number

theorem (shown independently by Hadamard and de la Vallee Poussin in 1896). Let π(x)
denote the number of primes p which are less than x, for x > 0.

Theorem 1.2 (Prime Number Theorem). π(x) ∼ x
log x as x→ +∞.

The asymptotic formula in the theorem means that limx→+∞
π(x)

x/ log x = 1. The proof

depends on the additional knowledge that ζ(s) has no zeros on the line Re(s) = 1.
It remains a major problem (famously posed in Hilbert’s 8th problem from his list of

23 problems from the 1900 International Congress of Mathematicians) to find the optimal

asymptotic formulae. This can be formulated in terms of the zeros of the zeta function in the

following slightly nonstandard form.

Conjecture 1.3 (Riemann Hypothesis). 1 The Riemann zeta function ζ(s) is analytic and
non-zero on the half-plane Re(s) > 1

2 , except for a simple pole at s = 1.

The consequences of the validity of this conjecture for the behaviour of π(x) are well

known. In particular, the Riemann hypothesis would improve the Prime Number Theorem

(Theorem 1.2) by giving a very strong error term, i.e., we would know that

π(x) = Li(x) +O
(
x1/2 log x

)
where Li(x) =

∫ x
2

1
log udu (with, of course, Li(x) ∼ x

log x as x→ +∞).

We will describe the analogous zeta functions in both geometric and dynamical settings

(the Selberg and Ruelle zeta functions, respectively). In each case, we will be interested in

understanding how far they can be extended analytically or meromorphically (the analogue

of Theorem 1.1 and Conjecture 1.3, respectively).

2. The zeta function for geodesics

It is very striking that many of the features of the prime numbers and the Riemann zeta

function ζ(s) have counterparts in the geometry of compact surfaces of constant curvature.

Let V denote a compact surface with constant negative Gaussian curvature κ = −1. Instead
of prime numbers we can consider closed geodesics γ, of which there are a countable infinity

on V since there is exactly one in every conjugacy class of the fundamental group π1(V ).
We will adopt the convention that closed geodesics are oriented (i.e., we count the two ori-

entations of the same curve as two distinct closed geodesics), Let l(γ) denote the length of

the closed geodesic γ, say, then we recall the original definition of the Selberg zeta function.

1 According to Littlewood [41] this topped Hardy’s famous wish list from the 1920s: (1) Prove the Riemann

Hypothesis; (2) Make 211 not out in the fourth innings of the last test match at the Oval; (3) Find an argument for

the nonexistence of God which shall convince the general public; (4) Be the first man at the top of Mount Everest;

(5) Be proclaimed the first president of the U.S.S.R., Great Britain, and Germany; and (6) Murder Mussolini.
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Definition 2.1. The Selberg zeta function is defined by

Z(s) =
∏
γ

∞∏
n=0

(
1− e−(s+n)l(γ)

)
, s ∈ C.

This converges to an analytic function for Re(s) > 1. However, for later convenience we

prefer to consider an alternative version of this zeta function (due to Ruelle) of the form

ζS(s) =
∏
γ

(
1− e−sl(γ)

)−1

, s ∈ C,

which again converges to a non-zero analytic function forRe(s) > 1. This has a reassuringly
similar form to that of the Riemann zeta function, by formally replacing the prime numbers p
by the weights el(γ) associated to each closed geodesic γ. Clearly, we can write ζS(s) =
Z(s+ 1)/Z(s). The analogue of Theorem 1.1 is then the following [30, 73].

Theorem 2.2. The zeta function ζS(s) converges to a non-zero analytic function for
Re(s) > 1. Moreover,

(1) ζS(s) has a simple pole at s = 1; and

(2) ζS(s) extends to all complex numbers s ∈ C.

In this case the extension of ζS(s) to C is as a meromorphic function.

Pursuing the analogy between prime numbers and closed geodesics, the similar proper-

ties of the two zeta functions leads to a result on counting closed geodesics corresponding

to that of the Prime Number Theorem (Theorem 1.2). Let Π(x) denote the number of prime

closed geodesics γ with length l(γ) less than x.

Theorem 2.3 (Prime Geodesic Theorem). Π(x) ∼ ex

x as x→ +∞.

This geometric zeta function ζS(s) has some advantages over that of the classical Rie-

mann zeta function ζ(s). In particular, the poles and zeros of ζS(s) can be explicitly char-

acterized, and an analogue of the Riemann hypothesis holds. We will return to this later in

§6.

However, if one takes the broader view of Riemannian geometry it is natural to ask if

these results generalise to geodesics on surfaces with variable negative curvature (or, more

generally, higher dimensional manifolds with negative sectional curvatures). In fact, at about

the same time that the above ideas were taking root, Anosov developed a completely different

dynamical framework which would ultimately help address these questions [1].

3. Anosov flows

In order to formulate a dynamical analogue of the previous zeta functions we want to replace

the prime numbers in ζ(s) (or closed geodesics in ζS(s)) by closed orbits for appropriate

flows which, in particular, we require to have a countable infinity of prime closed orbits. A

particularly important class of such flows is that of Anosov flows.

Definition 3.1. We say that a C∞ flow φt : M → M on a compact manifold M is Anosov
if the following hold.
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(1) There is a Dφt-invariant splitting TM = E0 ⊕ Es ⊕ Eu such that

(a) E0 is one dimensional and tangent to the flow direction;

(b) There exist C, λ > 0 such that ‖Dφt|Es‖ ≤ Ce−λt and ‖Dφ−t|Eu‖ ≤ Ce−λt

for t > 0,

(2) The flow is transitive (i.e., there exists a dense orbit).

x xφ t

E

E

s

u

Figure 3.1. An Anosov flow. The flow contracts the bundle Es and expands the bundle Eu

A crucial feature of Anosov flows is that they have a countable number of closed orbits τ
whose least periods λ(τ) tend to infinity. Moreover, for our purposes an important fact is

that they can be used to study geodesics on surfaces of variable negative curvature via the

associated geodesic flow.

3.1. Geodesic flows. Let V be a compact surface with (variable) negative curvature

κ(x) < 0, for x ∈ V , and let M = SV := {v ∈ TV : ‖v‖ = 1} be the unit tangent

bundle. Let φt be the associated geodesic flow, i.e., φt(v) = γ̇v(t) where γv : R→ V is the

unit speed geodesic with γ̇v(0) = v. The closed orbits for the geodesic flow then correspond

to closed geodesics on V .

Remark 3.2. Geodesic flows on surfaces of negative curvature, their dynamical properties

and their analysis via symbolic coding were studied in a fundamental paper by Hadamard [29],

only two years after his proof of The Prime Number Theorem (Theorem 1.2). This work was

popularized in a 1906 book by the French physicist Duhen, and subsequently translated into

German by Adler. In 1909, Adler’s family shared a house with Einstein and his translation

may (or may not) have influenced Einstein’s work on general relativity. However, Adler is

better known for assassinating the prime minister of Austria, Count Karl von Stürgkh on 21st

October, 1916 [77].

More generally, a geodesic flow on a compact surface with some positive curvature may

be an Anosov flow providing there is sufficient negative curvature, in an appropriate sense.

We can illustrate this by two particularly simple examples of Anosov geodesic flows.

Example 3.3. Consider an idealized linkage, by which we mean a mechanical system con-

sisting of a series of rigid rods where each rod has two either fixed pivots or movable joints

connecting their ends. Furthermore, we can assume that all of the mass is concentrated on

the joints (and friction, inertia, gravity, etc. can be neglected) and consider the time evolution
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v

vt�

�

Figure 3.2. The geodesic flow on a negatively curved compact surface. This is an Anosov flow, with

the bundles Es, Eu being associated to the horocycles.

Figure 3.3. Two examples of Anosov geodesic flows: (i) The linkage example of Mackay and Hunt;

(ii) A practice golf ball which resembles the surface of Donnay and Pugh.

of this idealised mechanical linkage in its phase space [33]. Its behaviour is described by a

geodesic flow on its two dimensional configuration space. In particular, Hunt and MacKay

constructed examples of triple linkages (based on the topological examples of Thurston and

Weeks) for which the flow is Anosov. Other examples were investigated in [46].

Example 3.4. Donnay and Pugh showed how to construct a surface which can be embedded

into three dimensional Euclidean space, and for which the geodesic flow is Anosov [16].

The construction begins with two concentric spheres (with mild positive curvature) which

are then connected by a large number of judiciously placed small tubes (with strong negative

curvature).

One of the basic properties of Anosov flows is structural stability, by which any suffi-

ciently small perturbation of the flow still results in an Anosov flow and thus gives a wealth

of related examples. However, we next recall a second basic class of examples which are

fundamentally different to geodesic flows.

3.2. Suspensions of Anosov diffeomorphisms. Given any homeomorphism f : X → X
of a compact metric space X and a strictly positive continuous function r : X → R+ we

can associate a new space

X̂ = {(x, u) : 0 ≤ u ≤ r(x)}/(x, r(x)) ∼ (f(x), 0).
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We can then define a flow ft : X̂ → X̂ by ft(x, u) = (x, u+ t), subject to the equivalence

relation.

We now specialise to the special case that the homeomorphism is a C∞ Anosov dif-

feomorphism f : X → X on a compact manifold. The general definition can be found

in [8]. However, the simplest example to have in mind is that of an Arnol’d CAT map

(standing for Continuous Automorphism on a Torus), e.g., f : R2/Z2 → R2/Z2 defined by

f(x, y) = (2x + y, x + y). In the case that f : X → X is an Anosov diffeomorphism and

r : X → R+ is C∞ the flow ft : X̂ → X̂ is a C∞ Anosov flow.

(x,u) (x,u)φ
t

x

(x,r(x))

f(x)

Figure 3.4. A suspension flow ft : ̂X → ̂X over a transformation f : X → X .

We say that an Anosov flow φt : M → M is topologically weak mixing if there is no

non-trivial solution to F ◦ φt = eiatF with a ∈ R and F ∈ C0(M,C). Whereas Anosov

geodesic flows are always topologically weak mixing, the suspension Anosov flows may not

always be so (for example, when r is a constant function). However, topologically weak

mixing is a generic assumption and we will henceforth assume it to simplify the exposition.

4. The Ruelle zeta function for Anosov flows

It should now be fairly clear what the natural generalisation of the zeta function ζS(s) to

Anosov flows φt :M →M in general, and geodesic flows in particular, should be. We will

denote by τ a primitive closed orbit and let λ(τ) > 0 denote its period (i.e., for any xτ ∈ τ
the period is the smallest value t > 0 for which φtxτ = xτ ). However, to specify the domain

of convergence of the zeta function we still need to introduce the notion of the topological

entropy h(φ) of the flow. The definition in the general case can be found in [55], for example,

but there is a particularly simple equivalent formulation in the specific context of geodesic

flows (on negatively curved surfaces) which we now recall.

Example 4.1 (Topological entropy of geodesic flows). Let V be a surface with negative

curvature. We can lift the Riemannian metric on V to the universal cover Ṽ and consider

the rate of growth of volume of balls BṼ (x,R) of radius R > 0 in Ṽ . Then the topological
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entropy for the geodesic flow φt :M →M is given by

h(φ) := lim
T→+∞

1

T
logVol(BṼ (x,R))

for any x ∈ Ṽ [44]. In the special case of a surface of constant curvature κ = −1 we easily

see that the geodesic flow has topological entropy h(φ) = 1.

By analogy with the product form of the Riemann zeta function ζ(s) (and the geometric

zeta function ζS(s)) we can now define the corresponding zeta function for an Anosov flow

as follows.

Definition 4.2. The Ruelle zeta function for an Anosov flow is defined by

ζR(s) =
∏
τ

(
1− e−sλ(τ)

)−1

, s ∈ C,

which converges to a non-zero analytic function for Re(s) > h(φ).

There was also a version proposed by Smale [76] closer to original definition Z(s) of

Selberg, but we will use the formulation of Ruelle.

Riemann Selberg Ruelle

Number Theory Geometry Dynamical Systems

primes p closed geodesics γ closed orbits τ

p el(γ) for lengths l(γ) eλ(τ) for periods λ(τ)

ζ(s) =
∏
p
(1− p−s)−1 ζS(s) =

∏
γ
(1− e−sl(γ))−1 ζR(s) =

∏
τ
(1− e−sλ(τ))−1

Table 4.1. Comparing the definitions of three zeta functions: Riemann zeta function, the geometric

zeta functions and the Ruelle zeta function.

Example 4.3. In the case of the geodesic flow on a compact negatively curved surface the

closed orbits τ of period λ(τ) correspond to closed geodesics γ of length l(γ) = λ(τ). In

particular, we then have that ζS(s) = ζR(s).

The following theorem shows that Theorem 2.2 for constant curvature surfaces gener-

alises to Anosov flows. In particular, it shows that the theorem generalises to surfaces of

variable negative curvature. Let φt :M →M be a C∞ Anosov flow.

Theorem 4.4. The zeta function ζR(s) converges to a non-zero analytic function forRe(s) >
h(φ). Moreover,

(1) ζR(s) has a simple pole at s = h(φ); and

(2) ζR(s) extends to all complex numbers s ∈ C as a meromorphic function.

The first part of this theorem was proved by Ruelle in [68].2 The second part was proved

in [26], with an alternative proof being given in [17]. If we have only have finite regularity

2 An amusing reminiscence appears in Ruelle’s article [67].
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(i.e., a Ck Anosov flow φt : M → M with 1 ≤ k < +∞) then we still get an extension,

albeit to a half plane. In particular, there exists λ > 0 (from the definition of the Anosov

flow) such that ζR(s) has an extension to Re(s) > h(φ)− λ[k2 ] [26].
In the general case of topologically weak mixing Anosov flows (which, we recall, in-

cludes geodesic flows on negatively curved surfaces) the zeta function ζR(s) has no zeros or

poles on the line Re(s) = h(φ), other than s = h(φ), by analogy with the corresponding

property for the Riemann zeta function ζ(s). Given a topologically weak mixing Anosov

flow, we reuse the notation Π(x) = {τ : λ(τ) ≤ x}, this time to denote the number of

closed orbits τ with least period λ(τ) less than x. The following theorem was originally due

to Margulis [47, 48] although the proof using zeta functions appears in [54, 55].

Theorem 4.5 (Prime Orbit Theorem). For a topologically weak-mixing Anosov flow we have
that Π(x) ∼ eh(φ)

h(φ)x as x→ +∞.

Restricting to the case of geodesic flows on compact negatively curved surfaces, we have

the following generalisation of Theorem 2.3.

Corollary 4.6. For compact surfaces of variable negative curvature we have that Π(x) ∼
eh(φ)

h(φ)x as x→ +∞.

In particular, this gives the extension of Theorem 2.3 to the case of variable negative

curvature.

Remark 4.7 (Zeta functions for Anosov diffeomorphisms). We have omitted a detailed dis-

cussion of the case of zeta functions for Anosov diffeomorphisms f : X → X , despite their

mathematical and historical importance. In this context, the natural definition of the zeta

function is that of Artin and Mazur [2]. Let N(n), n ≥ 1, denote the number of fixed points

fnx = x for fn : X → X and define

ζAM (z) = exp

( ∞∑
n=1

zn

n
N(n)

)
, z ∈ C,

which converges for |z| sufficiently small. This zeta function can also be written in Euler

product form as ζ(z) =
∏

τ (1 − z|τ |)−1 with the product over prime closed orbits τ =
{x, fx, · · · , fn−1x} of least period |τ | = n. For Anosov diffeomorphisms, or even more

generally for Axiom A diffeomorphisms, this is a rational function, (i.e., a quotient of two

polynomials in z) [20, 28, 44]. This is perhaps reminiscent of the results for the Lefschetz

zeta function, the Weil zeta functions for finite fields, and the Ihara zeta functions for finite

graphs [6, 80]. There are also closely related results for interval maps [31].

More generally, one might weight τ by taking the values along the points in the orbit of a

suitable function F : X → C and then associate a more general version of the Artin-Mazur

zeta function

ζR,F (z) = exp

( ∞∑
n=1

zn

n

∑
Tnx=x

exp

(
n−1∑
i=0

F (T ix)

))
.

Of course, this reduces to the Artin-Mazur zeta function above when F is identically zero.

On the other hand, this gives the zeta function for the suspension Anosov flow when F =
−sr (where s ∈ C and r : X → R+). Much is known about the domain of ζR,F (z) through
the work of many authors [3, 43, 55, 66, 68, 69].
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5. Techniques for C∞ Anosov flows

We briefly recall the two principle approaches to studying zeta functions for Anosov flows.

Broadly speaking, these share the common strategy of using suitable operators on appro-

priate Banach spaces. In both approaches, the extension of the zeta function is related to

the spectral properties of the corresponding operator and the poles and zeros are related to

spectra of the operators. The earlier approach used symbolic dynamics and a reduction to the

study of transfer operators on classical Banach spaces of Hölder functions for subshifts of

finite type [55]. The more recent approaches avoid this somewhat non-canonical reduction

and involve similar, but technically different, operators on specially tailored Banach spaces

of distributions [26].

5.1. Symbolic dynamics. The classical approach to studying the Ruelle zeta function ζR(s)
was based on the use of symbolic dynamics, whereby the Anosov system was modelled by

the suspension of a two sided subshift of finite type σ : X → X by a Hölder continuous

function r : X → R. This is similar in spirit to the suspension construction described in

§3.2, although in the general case the subshift arises from considering the Poincaré map on

a finite number of judiciously chosen codimension one transverse sections. We refer to [64]

and [9] for more details.

In this approach one replaces the two sided subshift of finite type (which is a homeo-

morphism) by the one sided subshift of finite type (which is a finite-to-one local homeomor-

phism). This corresponds to artificially suppressing the effect of the contracting direction

for the flow. One can then considers the Banach space of Hölder continuous functions on

the one sided shift space and an associated transfer operators (parameterised by complex

numbers s ∈ C) which averages over the preimages [55, 68].

Remark 5.1. This approach has the advantage that it applies in the even more general setting

of Smale’s Axiom A flows [76] and which, as we will see later in § 7.3.1, has applications

to geodesic flows on infinite volume surfaces. However, in this more general context of

Axiom A flows the zeta function ζR(s) may not extend meromorphically to C, and there are

examples of Axiom A flows for which the zeta function has an essential singularity [25, 68].

5.2. Anisotropic spaces. Despite its early success, the previous approach has the distinct

disadvantage that one cannot make use of the smoothness of the flow. A more recent ap-

proach has been to work with simpler operators, but to consider more sophisticated Ba-

nach spaces of distributions. The origins for these ideas lie in the papers of Rugh [72] and

Fried [21] for real analytic Anosov diffeomorphisms and flows, respectively, and by Ki-

taev [40] for Anosov diffeomorphisms of finite differentiability. Two different approaches to

defining these Banach spaces were developed for diffeomorphisms by Baladi-Tsujii [3] and

Goëuzel-Liverani [27]. The approach in the latter paper was then extended to flows in [11]

and [12]. However, in order to apply this method to the Ruelle zeta function ζR(s) it is nec-
essary to generalise it to Banach spaces of forms [26], as was already anticipated in the work

of Ruelle [66]. In particular, the extension of the zeta function is via closely related complex

functions called determinants which, as the name suggests, are extended using spectral prop-

erties of the associated transfer operators. The determinants associated to forms can then be

combined to recover the zeta function.
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6. Error terms for counting closed orbits

In the introduction we recalled the importance of the Riemann Hypothesis (Conjecture 1.3)

for the Riemann zeta function. We now consider its analogues in the context of the zeta

functions for closed geodesics on constant and variable negatively curved manifolds, respec-

tively. We begin with the classical results in the case of the geometric zeta function ζS(s)
for a compact surface V of constant curvature κ = −1.

6.1. The surface case. We begin with the case that V is a compact surface of constant

negative curvature κ = −1. Let Δ : L2(V ) → L2(V ) be the usual self-adjoint Laplace-

Beltrami operator with eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ · · · satisfying Δψn + λnψn = 0.
In particular, we have the following partial analogue of the Riemann Hypothesis (Conjec-

ture 1.3) [30].

Theorem 6.1. For a compact surface V of constant curvature κ = −1 the zeta func-
tion ζS(s) has a non-zero analytic extension to a half plane, Re(s) > 1− ε where

ε =

{
1
2 −
√

1
4 − λ1 if 0 < λ1 <

1
4

1
2 if λ1 ≥ 1

4 ,

except for a simple pole at s = 1.

Combining this with additional bounds on the modulus of the zeta function in this region

gives an error term estimate for number Π(x) of geodesics γ with length l(γ) less than x of

the following form.

Corollary 6.2. For 0 < ε′ < ε, Π(x) = Li(ex) +O
(
e(1−ε′)x

)
.

The error term has a simple geometric interpretation in terms of the geometry of the

surface V . More precisely, the value λ1 is proportional to the length of the shortest closed

geodesic dividing the surface into two parts [74].

Remark 6.3. Hilbert and Polya proposed the idea of tying to understand the location of the

zeros of the Riemann zeta function in terms of eigenvalues of some (as of yet) undiscovered

self-adjoint operator whose necessarily real eigenvalues are related to the zeros. This idea

has yet to reach fruition for the Riemann zeta function, but the approach works particularly

well for the Selberg Zeta function where the associated operator is the Laplacian. Interest-

ingly, it was Selberg who presented an alternative elementary proof (i.e., not using ζ(s), but
significantly harder) of the Prime Number Theorem (Theorem 1.2) [73].

The corresponding results for surfaces of variable negative curvature and the Ruelle zeta

function ζR(s) require a more dynamical proof which, unfortunately, gives a less quantifiable

estimate on the size of the extension (and consequently the error term) [14, 62].

Theorem 6.4. For a compact surface of (variable) negative curvature κ < 0 there exists
ε > 0 such that ζR(s) has an analytic zero-free extension to Re(s) > h(φ)− ε, except for a
simple pole at s = h(φ).

The same argument as in the case of the Selberg zeta function then leads to an exponential

error term when counting closed geodesics on a surface of variable curvature [62]. Let Π(x)
again denote the number of closed geodesics γ with length l(γ) ≤ x.
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Corollary 6.5. For 0 < ε′ < ε, Π(x) = Li(eh(φ)x) +O(e(h(φ)−ε′)x).

We do not know, for example, if such error terms can be achieved for closed orbits

of general weak mixing Anosov flows. In the wider context of Axiom A flows the zeta

function may have poles arbitrarily close to the line Re(s) = h(φ), and consequently no

such exponential error term could be expected [60, 70]. However, weaker error terms can

sometimes be obtained under quite modest assumptions [15, 63].

6.2. The higher dimensional case. There is a partial generalisation of Theorem 6.4 to

higher dimensional manifolds [26]. We say that the variable negative sectional curvatures of

a compact manifold V are a-pinched if they all lie in the range [−1,−a].
Theorem 6.6. Let V be a compact manifold with variable negative sectional curvatures
that are 1

9 -pinched. There exists ε > 0 such that ζR(s) has an analytic zero-free extension to
Re(s) > h(φ)− ε, except for a simple pole at s = h(φ).

Again, by complete analogy with the derivations of Corollaries 6.2 and 6.5, this has the

following corollary under the same hypotheses as the theorem.

Corollary 6.7. For 0 < ε′ < ε, Π(x) = Li(eh(φ)x) +O(e(h(φ)−ε′)x)

These can be viewed as a generalisation of previous results. Firstly, this generalizes

Corollary 6.2 in the particular case of constant negative curvature [32], [30]. Secondly, this

partly generalizes Corollary 4.6 for the case of geodesic flow on variable negative curvature

manifolds by adding an exponential error estimate. However, we do not know whether the

conclusions of Theorem 6.6 and Corollary 6.7 remain true without any pinching condition

on the sectional curvatures.

7. Applications

The theory of dynamical zeta functions has a surprisingly wide range of applications, from

which we present a small selection.

7.1. Decay of correlations and resonances. There is a complementary problem to count-

ing closed orbits for Anosov flows in which one considers mixing (or decay of correlations)

with respect to Gibbs measures. The problem of estimating the error terms on counting

functions for closed orbits naturally corresponds to estimates on error terms in decay of

correlations.

Let φt : M → M be an Anosov flow and let F : M → R and G : M → R be two

smooth functions.

Definition 7.1. We define the correlation function for a φ-invariant probability measure μ
by

ρ(t) :=

∫
FφtGdμ−

∫
Fdμ

∫
Gdμ.

We say that the flow φt : M → M is (strong) mixing relative to the measure μ if ρ(t) → 0
for any F,G ∈ C∞(M).



672 Mark Pollicott

A basic question to ask is about the speed at which ρ(t) → 0 as t → +∞. For this

problem, a natural class of measures μ to study are Gibbs measures for Hölder continuous

function A :M → R which includes, for example, the Sinai-Ruelle-Bowen measure (which

is precisely the normalised Liouville measure in the case of geodesic flows) and the Bowen-

Margulis measure of maximal entropy. In particular, when A = 0 the Gibbs measure is

the Bowen-Margulis measure, and when A is the infinitesimal expansion along the unstable

manifolds then the Gibbs measure is the Sinai-Ruelle-Bowen measure. In either case, we

can conveniently characterize the associated Gibbs measure μA in terms of weighted closed

orbits: ∫
BdμA = lim

T→+∞

∑
λ(τ)≤T λB(τ)e

−λA(τ)∑
λ(τ)≤T λ(τ)e−λA(τ)

for any B ∈ C0(M), where λA(τ) =
∫ λ(τ)
0

A(φtxτ )dt and λB(τ) =
∫ λ(τ)
0

B(φtxτ )dt, for
any xτ ∈ τ [9, 52].

7.1.1. Geodesic flows on surfaces. If has been known since the work of Fomin and Gelfand

[19] that the geodesic flow on compact surfaces with constant curvature κ = −1 has expo-

nential decay of correlations with respect to the normalized Liouville measure. Their proof

used representation theory and the associated decay of matrix coefficients. However, these

methods do not extend to the geometric setting of manifolds with variable negative curvature

and a different approach is required [14].

Theorem 7.2. Let φt : M → M be the geodesic flow for a compact surface with variable
negative curvature and let μ be a Gibbs measure for a Hölder continuous function. Then the
correlation function ρ(t) tends to zero exponentially fast, i.e., there exist constants C, ε > 0
such that |ρ(t)| ≤ Ce−εt for all t > 0.

In particular, this result applies to the important examples of the Bowen-Margulis and

normalized Liouville measures described above.

7.1.2. Geodesic flows in higher dimensions. It was also shown in [19] that the geodesic

flow on a three dimensional manifold with constant curvature κ = −1 has exponential decay

of correlations with respect to the Liouville measure, and the basic method generalises to ar-

bitrary dimensions [50]. Moreover, it also applies to frame flows for three dimensional man-

ifolds, which has been useful, for example, in the recent work of Kahn and Markovic [38].

However, for manifolds with variable negative sectional curvatures a dynamical viewpoint is

again necessary [14].

Theorem 7.3. Let φt :M →M be the geodesic flow for a compact manifold with variable
negative sectional curvatures that are 1

4 -pinched and let μ be a Gibbs measure for a Hölder
continuous function. Then the correlation function ρ(t) tends to zero exponentially fast.

The proof of Dolgopyat of the above theorem is stated for normalized Liouville mea-

sure, but there is additional property required for more general Gibbs measures, which can

apparently be deduced for geodesic flows using a Shadowing Lemma of Mohsan [57] (see

also [78, 79]). In particular, the result applies to both the Bowen-Margulis and normal-

ized Liouville measures, although in these particular cases the following stronger results are

known [26, 42].
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Theorem 7.4. Let φt :M →M be the geodesic flow for a compact manifold with variable
negative sectional curvatures.

(1) If μ is the normalized Liouville measure, then the correlation function ρ(t) tends to
zero exponentially fast.

(2) If the sectional curvatures are 1
9 -pinched and μ is the Bowen-Margulis measure then

the correlation function ρ(t) tends to zero exponentially fast.

By contrast, in the more general setting of Axiom A flows it is possible to give examples

there the flow mixes arbitrarily slowly [60, 70].

7.1.3. Fourier transforms and resonances. A standard approach to understanding the

asymptotic behaviour of such functions ρ(t) is by considering the Fourier transform. More

precisely, we write

ρ̂(z) =

∫ ∞

−∞
eiztρ(t)dt, z ∈ C,

where it is defined. The following well known classical result gives explicit connection

between the domain of ρ̂(z) and the asymptotic behaviour of ρ(t).

Theorem 7.5 (Paley-Wiener). For a function ρ(t) the following are equivalent.

(1) The Fourier transform ρ̂(z) has an analytic extension to some strip |Im(z)| < ε, and
is integrable along lines parallel to the real axis.

(2) ρ(t) tends to zero exponentially fast.

An early result on the domain of the Fourier transform ρ̂(z) of the correlation function

was the following [60, 71].

Theorem 7.6. Let φt : M → M be a C∞ Anosov flow and let μ be a Gibbs measure
for a Hölder continuous function. Then there exists ε > 0 so that the function ρ̂(z) has a
meromorphic extension to |Im(z)| < ε.

The poles in the meromorphic extension given in Theorem 7.6 are sometimes called

resonances. The original proof of Theorem 7.6 used the method of symbolic dynamics and

thus even applies in the more general context of C1 Axiom A flows. In the particular context

of the normalized Liouville measure [11], [12] and the Bowen-Margulis measure [26] there

are stronger results.

Perhaps somewhat surprisingly, the proof of Theorem 7.6 shows in the case that the

Gibbs measure is the Bowen-Margulis measure μ0 that the poles of ρ̂(z) are intimately re-

lated to the poles of the Ruelle zeta function ζR(s).

Theorem 7.7. The poles z = ±b ± ia for ρ̂(z) (with a, b ∈ R+) give rise to poles s =
h(φ) + a± ib for ζR(s).

7.2. Computation of numerical values. Dynamical zeta functions can sometimes be used

to give alternative expressions for certain numerical dynamical characteristics, such as the

Hausdorff dimension of invariant sets or the Lyapunov exponents, and thus provide an al-

ternative method for their computation which is often quite efficient. This basic method,

based on what are now known as cycle expansions, was pioneered by Cvitanović and his

coauthors [13]. We briefly describe two applications of this approach.
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0

ε

ε

ε
0

h(  )φ

Figure 7.1. (a) The poles for ζR(s); and (b) The poles for ρ̂(z). We can informally think of this as

translating by −h(φ), turning the picture through 90 degrees, and adding its reflection.

7.2.1. Hausdorff dimension. We can consider a rational map T : Ĉ → Ĉ with a hy-

perbolic Julia set J ( i.e., J is the closure of the union of the periodic points Tnz = z
for |(Tn)′(z)| > 1, and we require that supz∈J |(Tn)′(z)| > 1). The Hausdorff Dimen-

sion dimH(J ) of the Julia set can then be approximated using the values |(Tn)′(z)| of the
derivatives at period points Tnz = z with periods less thanN . McMullen showed how these

values could be used to compute approximations dN to the Hausdorff dimension satisfying

dimH(J ) = dN + O(θN ), for N ≥ 1 and a fixed value 0 < θ < 1, using approximations

based on eigenvalues of matrices [49]. Using an approach based on the Ruelle zeta function

shows that precisely the same values for periodic points, but used in different combinations,

leads to a faster approximationDN with dimH(J ) = DN+O(θ
N3/2

), forN ≥ 1 and a fixed

value 0 < θ < 1. Analogous results hold for the limit sets of Schottky groups and certain

related Kleinian groups [34], as well as for continued fractions with deleted digits [35].

Figure 7.2. Two hyperbolic Julia sets: (i) a Douady Rabbit; and (ii) a quasi-circle.

7.2.2. Lyapunov exponents. Given a finite set of d × d matrices A1, · · · , Ak, with d ≥ 2
and k ≥ 2, and a probability vector (p1, · · · , pk) one can associate the (largest) Lyapunov
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exponent [24] defined by

λ = lim
n→+∞

1

n

∑
i1,··· ,in

pi1 · · · pin log ‖Ai1 · · ·Ain‖.

In the particular case that the matrices are strictly positive then it is possible to approxi-

mate λ using the maximal eigenvalues λi1···in of the finite products Ai1 · · ·Ain with 1 ≤
n ≤ N [58]. Using the Ruelle zeta function these values can be used to get approxima-

tions λN to the Lyapunov exponent satisfying λ = λN + O(θN
1+ 1

d−1
), for N ≥ 1 and

a fixed value 0 < θ < 1 [61]. This has applications, for example, to computing entropy

rates for binary symmetric processes. There are similar types of estimates for the Lyapunov

exponents for Cω Markov expanding maps [36].

7.3. Variations on the theme of the geometric zeta function. The dynamical viewpoint

sometimes provides a useful tool for extending the zeta function ζS(s) for geodesic flows

to related settings. We briefly illustrate this viewpoint with the examples of infinite volume

surfaces and the semi-classical zeta function.

7.3.1. Zeta functions for infinite volume surfaces. The setting of geodesic flows on in-

finite area surfaces associated to convex cocompact Fuchsian groups is one in which the

dynamical viewpoint proves particularly useful. Although the associated geodesic flow is

not Anosov the restriction to the recurrent part of the flow, which contains all of the closed

orbits, is essentially a real analytic Axiom A flow and so the associated zeta function ζS(s)
can be studied by adapting the dynamical approach of [66] and, in particular, it can be shown

to have a meromorphic extension to C.

However, in this setting the zeros and poles of the zeta function ζS(s) are now more

difficult to describe than in the case of compact surfaces, associated to cocompact Fuchsian

groups. As a consequence of the dynamical approach and estimates on the zeta function

some results are known on the distribution of zeros and poles [4, 56]. Moreover, it is known

that a weak analogue of Theorem 6.1 still holds, in as much as there is a non-zero analytic

extension to a half-plane Re(s) > h(φ) − ε in the spirit of Theorem 6.4 [51]. But the

empirical behaviour of the resonances appears to be very different from that of the zeta

function for compact surfaces [5].

7.3.2. Zeros for semi-classical zeta functions. Recently, Faure and Tsujii proved new re-

sults on the semi-classical zeta function

ζSC(s) = exp

(
−
∑
τ

∞∑
m=1

e−smλ(τ)

m| det(I −D(τ)m)| 12

)
whereD(τ) is the Jacobian for the Poincaré map for τ intersecting a small transverse section

to the flow [18]. They have shown that some of the results on the locations of zeros for the

original Selberg zeta function ζS(s) have analogs for ζSC(s). In particular, they show that

the zeros, with only finitely many exceptions, lie in vertical strips.

7.4. Variations on the theme of the Ruelle zeta function. There are also interesting vari-

ations on the Ruelle zeta function ζR(s) for Anosov flows. We illustrate this with a more

general weighted Ruelle zeta function and L-functions.
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7.4.1. The generalized Ruelle zeta function. A more general version of the Ruelle zeta

function takes the form:

ζAR (s) =
∏
τ

(
1− eλA(τ)−sλ(τ)

)−1

, s ∈ C,

where A : M → C is a C∞ function and as before λA(τ) =
∫ λ(τ)
0

A(φtxτ )dt, for any

xτ ∈ τ This converges to a non-zero analytic function for Re(s) > P (A), where P (A)
is the pressure of the function A. (In the special case that A = 0 is identically zero

then P (0) = h(φ) and the zeta function reduces to the original Ruelle zeta function, i.e.,

ζ0R(s) = ζR(s).) This was studied in [69] and was shown to have a simple pole at P (s)
and a meromorphic extension to a larger domain. This leads to corresponding asymptotic

and equidistribution results for weighted closed orbits [52]. Finally, a closely related zeta

function is the differential zeta function introduced in [53].

7.4.2. L-functions. In prime number theory, the Riemann zeta function ζ(s) has a useful

generalization to L-functions which are used in the study of the distribution of primes in

congruence classes.

The analogue of these complex functions for Anosov flows are given by

LRχ
(s) =

∏
τ

det
(
1− e−sλ(τ)Rχ([τ ])

)−1

, s ∈ C,

where Rχ : π1(M) → U(n) is an irreducible unitary representation, and which again con-

verges for Re(s) > h(φ) [55]. In the particular case that n = 1 and Rχ = I is trivial then

the L-function reduces to the original Ruelle zeta function, i.e., LI(s) = ζR(s).
A particularly elegant variant of this approach is where one considers the special case

of the geodesic flow φt : M → M on the unit tangent bundle M = SV of a compact

negatively curved surface V and χ : H1(V,Z) → C is a character. This associates to each

closed geodesic γ with homology class [γ] ∈ H1(V,Z) the weight χ([γ]). Using properties

of these L-functions one can show that for any α ∈ H1(V,Z) the number Π(x, α) of closed
geodesics with length l(γ) ≤ T and [γ] = α satisfies

Π(x, α) ∼ C
eh(φ)x

T b/2+1
, as x→ +∞,

where b is the first Betti number of M [39, 59].

Remark 7.8. Among the many topics we have not discussed, are the Patterson conjec-

ture [10], the Lefschetz theorem for flows [23, 37], and results on the closely related Poincaré

series. For many other topics related to counting problems, we refer the reader to [75].
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manifolds
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Abstract. We report some recent progress in the study of geodesic flows on negatively curved mani-

folds (or more generally contact Anosov flows). We consider one-parameter groups of transfer opera-

tors associated to the flows and investigate the spectra of their generators. The main ingredients are the

recent results about a band structure of the discete spectrum, which are obtained in the authors’ joint

works.
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1. Introduction

Let (N, g) be a closed Riemann manifold. The geodesic flow f t : TN → TN is the

flow that describes the motion of a free particle on N . As usual, we consider its restric-

tion f t : T1N → T1N to the unit tangent bundle T1N . It is well known that qualitative

properties of the geodesic flow depend strongly on the sectional curvature of (N, g). If the

sectional curvature is negative everywhere, the geodesic flow is unstable in the sense that

the orbits depend sensitively on the initial points and exhibits typically chaotic behavior as

a consequence. Indeed the geodesic flows on negatively curved manifolds are regarded as

types of uniformly hyperbolic (continuous) dynamical systems and studied extensively since

the work[19] of Hadamard.

Figure 1.1. Geodesic flow on a negatively curved manifold

In uniformly hyperbolic (discrete or continuous) dynamical systems, long-time statistical

properties of the orbits are rather independent of their initial points if we ignore the sets

of initial points of measure zero and is robust under perturbations of the systems. Such

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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statistical properties of hyperbolic (or more general) dynamical systems have been among

the main subjects in ergodic theory. For geodesic flows on negatively curved manifolds, they

have been studied by Hopf, Anosov, Sinai, Pollicott and more recently by Dolgopyat[5] and

Liverani[21] among many others.

The transfer operator, which describes the action of a dynamical system on functions (or

densities), is a powerful tool in the study of statistical properties of the orbits. Since the

pioneering work[23] of Ruelle on expanding maps, it has been gradually understood that

the transfer operators (or, their generators in the case of flows) for uniformly hyperbolic

dynamical systems have discrete spectra if we set up an appropriate function spaces for

them to act on. The discrete spectra thus appear are called Ruelle-Pollicott resonances and

known to be intrinsic to the transfer operators, that is, independent of the choice of the

function spaces. In the recent works[9, 16], it is established that the generators for the

transfer operators associated to general smooth Anosov flows have discrete spectra.

For the next step, we consider the structure of the discrete spectra thus appears. How are

they distributed on the complex plane? In the case of geodesic flows on negatively curved

manifolds (or a little more general type of flows), the main results presented in the next

section show that the discrete spectrum of the generator has a band structure, that is, it is
contained in several bands parallel to the imaginary axis, as illustrated in Figure 2.1. Also

some information on the distributions of the discrete spectrum inside the bands will be given.

Interestingly, these results are obtained by semi-classical analysis of the transfer operators.

This is not so surprising as it sounds. As we look into the structure of the transfer operator,

we find that the most important part is its action on the components of functions having high

frequency in the direction of the flow. (Roughly speaking, most of the other components are

scattered in the phase space by the hyperbolicity of the flow.) Thus we are lead to study the

situation where such components of functions are transferred by the flow. After a long time,

some of such components come close to each other by hyperbolicity of the flow and we have

to analyze the interference between them. For this analysis, the ideas and techniques from

semiclassical analysis work naturally and effectively.

The dynamical zeta functions are functions of one complex variable which are defined in

term of periodic orbits of dynamical systems. Analytic properties of dynamical zeta function

is closely related to the spectral properties of the transfer operators through Atiyah-Bott trace

formula. Indeed the zeros and poles of dynamical zeta functions are related to the discrete

eigenvalues of the generators of some transfer operators. In relation to the band structure

of the discrete spectrum mentioned above, we find a particularly interesting case of dynam-

ical zeta function, which is called the semi-classical or Gutzwiller-Voros zeta function. We

present a result on the distribution of its zeros, which is reminiscent of the famous result of

Selberg on the zeta function named after him. (See [22] for instance.)

2. Spectrum of transfer operators

The geodesic flows on negatively curved manifolds are typical examples of the so-called

contact Anosov flow. To begin with, let us recall a few basic definitions. A C∞ flow

f t :M →M on a closed manifold M is called an Anosov flow if there is a Df t-invariant
continuous decomposition TM = E0 ⊕ Es ⊕ Eu of the tangent bundle such that E0 is a

one-dimensional subbundle spanned by the generating vector field of the flow and that the

actions of Df t on the subbundles Es and Eu are exponentially contracting and expanding
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respectively, that is,

‖Df t|Es‖ < Ce−χ0t, ‖Df−t|Eu‖ < Ce−χ0t for t ≥ 0

with some constantsC > 0 and χ0 > 0. Suppose in addition thatM is of odd dimension, say

(2d+1)-dimension. A contact form α onM is a differential 1-form satisfying the complete

non-integrability condition: α ∧ (dα)d(x) �= 0 for all x ∈ M . A contact Anosov flow

f t : M → M is an Anosov flow that preserves a contact form α on M . The geodesic flow

on a negatively curved manifold is a contact Anosov flow because it preserves the contact

form given as the restriction of the canonical one form to T1N (identified with T ∗
1N by the

Riemann metric).

We consider the one-parameter group of transfer operators

Lt : C∞(M)→ C∞(M), Ltu(x) = gt(f−t(x)) · u(f−t(x)) (2.1)

associated to a contact Anosov flow f t :M →M , where gt :M → C \ {0} is a multiplica-

tive cocycle, that is, satisfies

gt+s(x) = gt(fs(x)) · gs(x) ∀s, t ∈ R.

For the spectrum of the generator for Lt, we have the following results:

Theorem 2.1 ([12]). There exists a scale of Hilbert spacesHr(M) for r > 0, withCr(M) ⊂
Hr(M) ⊂ (Cr(M))′, such that

(I) The transfer operators Lt for t ≥ 0 extend to a strongly continuous semi-group of
bounded operators on Hr(M) and the spectrum of the generator A in the region
<(s) > −χ0+c consists of discrete eigenvalues with finite multiplicities, where c > 0
is a constant depending on f t and gt.

(II) The discrete eigenvalues in (I) have “band structure” in the following sense. For any
ε > 0, the discrete eigenvalues of the generatorA are contained in the ε-neighborhood
of the region

B =
∞⋃
k=0

Bk, Bk = {z ∈ C | γ−k ≤ <(z) ≤ γ+
k }

up to finitely many exceptions1 , where

γ−k := lim
t→∞

1

t
log min

x∈N

(
|gt(x)| · (det |(Df tx|Eu

)|)−1/2 · ‖Df tx|Eu
‖−k
max

)
≤ γ+

k := lim
t→∞

1

t
logmax

x∈N

(
|gt(x)| · det |(Df tx|Eu

)|−1/2 · ‖Df tx|Eu
‖−k
min

)
,

and ‖L‖max (‖L‖min) is the maximum (minimum) singular value of L.

The first claim (I) has already been given in the previous results[9, 16] though we con-

sider different function spaces. The second claim (II) is obtained by detailed analysis of the

structure of the transfer operators.

1 The number of exceptional eigenvalues may increase if we consider smaller ε > 0.
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γ−0 γ+
0γ+

1γ−1γ+
2 <(s)

B0B1B2B3

Figure 2.1. The band structure of the discrete spectrum of the generatorA

Remark 2.2. In the following cases, we will observe the band structure clearly:

(a) The case where the expansion of Df tx on the subbundles Eu is almost uniform and

gt(x) is almost constant. This will be the case for geodesic flows if the sectional

curvature is almost constant (and negative).

(b) The case where the coefficient gt(x) is C0-close to

gt0(x) := (1/2) log | detDf t|Eu(x)|.

In this case, we have γ+
1 < γ−0 � γ+

0 � 0, so that, the rightmost band B0 is a thin

strip around the imaginary axis while the other bands Bk, k ≥ 1, is separated from B0

to the left.

In general the bands Bk, k = 0, 1, · · · , may intersect each other and the union B of the

bands may be just a half plane. In such case, the claim (II) of the theorem is somewhat

vacuous. But, since the band structure is a consequence of a more fundamental structure of

the transfer operator as we will explain later, we expect some related structure of the discrete

eigenvalues (such as the claim (IV) in the next theorem) even in such cases.

Remark 2.3. The bounds γ±k for the bands Bk are not (and maybe far from) optimal. For

instance, the bound γ+
0 may exceed the obvious bound given by the topological pressure.

There will be better bounds for the bands Bk. (But this improvement will require new ideas

and methods.)

Under an additional assumption on disjointness of the bands Bk, we have

Theorem 2.4 ([12]). (Continued from Theorem 2.1) If the rightmost band B0 is disjoint
from the other bands Bk, k ≥ 1, the following hold true.
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(III) A (weak) analgoue of the Weyl law for the density of eigenvalues holds. Precisely, for
any ε > 0 and any δ > 0, there exists a constant C > 1 such that |ν| is sufficiently
large, the following holds for the density of eigenvalues :

C−1|ν|d ≤ #{eigenvalues of A in [γ−0 − ε, γ+
0 + ε]× i[ν, ν + |ν|δ]}

|ν|δ ≤ C|ν|d.

(IV) Most of the eigenvalues in B0 concentrate along the line

<(s) = γ̄0 := (1/t)

∫
log(|gt| · | det(Df t|Eu)|−1/2)dμ ∈ [γ−0 , γ+

0 ]

in the limit Im(s)→ ±∞, where μ = α∧ (dα)d is the contact volume. (Note that the
quantity γ̄0 actually does not depend on t > 0.) More precisely, for any 0 < ε′ < ε,
the number of eigenvalues of A in the strips on the both sides

([γ−0 − ε, γ+
0 + ε] \ [γ̄0 − ε′, γ̄0 + ε′])× i[ν − 1, ν + 1]

is of smaller order than |ν|d as ν → ±∞.

(V) The resolvent (s − A)−1 is meromorphic on the region <(s) > r − χ0 + c, where
c > 0 is the constant given in Claim (I). Further, for any ε > 0, there exists C > 0
such that (s−A)−1 is uniformly bounded on the intersection of the complement of the
ε-neighborhood of B with the region |7(s)| > C.

Remark 2.5. We expect that the asymptotic formula in Claim (III) holds in more precise

form with δ = 0. But we have difficulties (which may be technical ones) in proving the

lower bound in such precision.

For the spectrum of the transfer operators Lt, the theorems above yield the following

corollary, which is obtained by the second author previously.

Corollary ([25, 26]). The essential spectral radius of the transfer operator Lt acting on
Hr(M) is bounded by eγ

+
0 t.

3. The semi-classical zeta functions

Smale[24] introduced a dynamical zeta function (in the case of flows) by

Z(s) =
∞∏
k=0

∏
γ∈Γ

(1− e−(s+k)|γ|) = exp

⎛⎝− ∞∑
k=0

∑
γ∈Γ

∞∑
m=1

e−(s+k)m|γ|

m

⎞⎠
where Γ denotes the set of prime periodic orbits for the flow and |γ| denotes the prime period

of γ ∈ Γ. Later on, its variants are considered in dynamical system theory and also in related

fields of physics. Below we consider the semi-classical (or Gutzwiller-Voros) zeta function

Zsc(s) = exp

⎛⎝−∑
γ∈Γ

∞∑
m=1

1

m

e−sm|γ|√
det(1−Dm

γ )

⎞⎠ (3.1)



688 Frédéric Faure and Masato Tsujii

as a particularly interesting one in relation to the results presented in the last section. (Here

Dγ denotes the differential of the Poincaré map along a prime periodic orbit γ ∈ Γ.) Note

that, if we consider the geodesic flow on a closed surface (N, g) with curvature ≡ −1, both
of the dynamical zeta functions above coincide with the Selberg zeta function[22] associated

to (N, g).
Analytic properties of dynamical zeta function and spectral properties of the transfer

operators is related through the so-called Atiyah-Bott trace formula. We recall the relation

(very) briefly. Usually the transfer operator Lt is not compact and it is not possible to cal-

culate its trace in a legal manner. However we can calculate its Atiyah-Bott trace TrABLt,
which is defined as the integration of the (Schwartz) kernel K(x, y; t) of Lt along the diag-

onal set, and get the formula

TrABLt :=
∫
M

K(x, x; t)dx =
∑
γ∈Γ

∞∑
m=1

|γ| · gm|γ|(pγ)

| det(1−Dm
γ )|

· δ(t−m|γ|), (3.2)

where pγ is any point on γ ∈ Γ. This is a distribution (measure) as a function of t. For sim-

plicity, let us suppose that the hyperbolic decomposition TM = E0 ⊕ Es ⊕ Eu is smooth

(this is of course not true in most of the cases) and consider the vector-valued transfer op-

erators L̂tk : C∞(E∧k
u ) → C∞(E∧k

u ), acting on the sections of the vector bundle E∧k
u and

defined by

L̂tku(x) = | detDf t|Eu(f
−t(x))|−1/2 · (Df t)∧k(u(f−t(x))). (3.3)

Regarding these operators as generalizations of the transfer operators Lt, we compute their

Atiyah-Bott trace as

TrAB L̂tk =
∑
γ∈Γ

∞∑
m=1

|γ| · | detDu
γ |−m/2 · Tr (((Du

γ )
m)∧k)

| det(Id−Dm
γ )|

· δ(t−m · |γ|)

where Du
γ denotes the restriction of Dγ to Eu. We assume that Eu is orientable for sim-

plicity. Then formal calculation gives the following expression of the semi-classical zeta

function:

Zsc(s) = exp

(
−
∫ ∞

+0

e−st

t

d∑
k=0

(−1)d−k TrAB L̂tkdt
)

(3.4)

From this expression, the discrete spectrum of the generator Ak of L̂tk is expected to appear

as zeros or poles of Zsc(s) depending on the parity of k. Notice that the operators L̂tk for

the case k = d is scalar-valued and that this is equivalent to the transfer operator Lt with the

coefficient gt0 in Remark 2.2 (b). This observation gives us intuition to the next theorem.

Theorem 3.1 ([13]). The zeros of the semi-classical zeta function Zsc(s) concentrate along
the imaginary axis with gaps on the both sides. More precisely, for any ε > 0, the zeros are
contained in the region

R = R0 ∪R1, R0 = {|<(s)| < ε}, R1 = {<(s) < −χ0 + ε}
where χ0 > 0 is that in the definition of Anosov flow, up to finitely many exceptions. The
poles of Zsc(s) is contained in R1 up to finitely many exceptions. The density of the zeros in
the thin strip R0 satisfies the analogue of the Weyl law given in Claim (III) of Theorem 2.4.
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−χ0 0 <(s)

Im(s)

R1 R0

Figure 3.1. The zeros of Zsc(s)

Remark 3.2. One technical difficulty in the proof of Theorem 3.1 is caused by the fact

that the hyperbolic decomposition TM = E0 ⊕ Es ⊕ Eu is not smooth and only Hölder

continuous in general. This invalidates analytic treatment of the transfer operators L̂tk. We

avoid this difficulty by considering the natural extension of the flow to the Grassmann bundle

of M . This kind of idea was originally used in the paper [4]. See [18] also.

4. Wave packet transform

We sketch the ideas behind the results presented in the previous sections and also some other

related results. Notice that we do not intend to give precise argument. (Also note that the

author is distorting things in his flavor.) We refer [14] for more detailed account.

Our basic idea is to regard functions as superpositions of wave packets, which are simple

functions localized both in the real and frequency space, and analyze the transfer operators

by observing how they transfer a wave packet to another. Below we briefly discuss how we

can go along this idea in reality.

Decomposition into wave packets. Decomposition of functions into wave packets is a

rather common idea in analysis and applied mathematics. It is called wave packet transform

(or different names in different fields). Below we introduce it for explanation in the follow-

ing. (See [15, Ch. 3] for more details.) First we consider a smooth function φ : RD → C on

RD localized around the origin. For instance, we can take the Gauss function φ(x) = e−|x|2 .
For (x, ξ) = T ∗RD = R2D, we set

φx,ξ(y) = eiξ(y−x) · φ(δ−1(y − x))

where δ > 0 is a scaling parameter. This is a wave packet which is localized around the

point x ∈ RD and whose Fourier transform φ̂x,ξ(·) is localized around the point ξ ∈ RD.
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The wave packet transform B : S(RD)→ S(R2D) is defined by

Bu(x, ξ) =

∫
φx,ξ(y) · u(y)dy.

We define B∗ : S(R2D)→ S(RD) by

B∗v(y) = (2πδ)−D‖φ‖−2
L2 ·

∫
φx,ξ(y) · u(y)dxdξ

so that, by simple calculation,

B∗Bu(y) = (2πδ)−D‖φ‖−2
L2

∫
φx,ξ(y) · φx,ξ(y′) · u(y′)dxdξdy′ = u(y).

This implies that each function u ∈ S(RD) is expressed as an integration of wave packets

φx,ξ(·):
u(y) =

∫
φx,ξ(y) · ((2πδ)−D‖φ‖−2

L2 ·Bu(x, ξ))dxdξ

The operator B extends to an embedding B : L2(RD) → L2(R2D), which is isometric up

to multiplication by a constant.

Induced transfer operators on the cotangent bundle. We next look at the transforma-

tion between wave packets induced by a transfer operator. Let f : RD → RD be a C∞

diffeomorphism, g : RD → C a C∞ smooth function and L the transfer operator defined by

Lu(x) = g(x) · u(f−1(x)).

The transformation between wave packets is described by the operator

Llift : L2(RD)→ L2(R2D), Llift = B ◦ L ◦B∗

which makes the following diagram commutes:

L2(R2D)
Llift

−−−−→ L2(R2D)

B

P⏐⏐ B

P⏐⏐
L2(RD)

L−−−−→ L2(RD)

The operator Llift is an integral operator with smooth kernel. If the diffeomorphism f is

an affine map and if φ(·) is the Gauss function, we can give an explicit expression of this

operator. (See [11, Lemma 4.8].) For a general diffeomorphism f , the operator Llift is

not very simple. But it should be intuitively rather obvious that the image of the wave

packet φx,ξ(·) byLt will localize around f t(x) and its Fourier transform will localize around

(Df−t)∗x(ξ). Indeed the transformation Llift is closely related to the induced mapping on

the cotangent bundle T ∗RD = R2D:

D∗f−1 : T ∗RD → T ∗RD, (D∗f)−1(x, ξ) = (f(x), (Df−t)∗x(ξ)) (4.1)

This relation leads us to an idea (or a viewpoint) to consider the properties of the transfer

operator L by looking at the transformation (4.1).
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Remark 4.1. The idea mentioned above gives us nice intuition for the analysis of transfer

operators as we will explain below. However we have to be cautious about some technical

problems in making such intuition into rigorous argument. For instance, it is more natural

(and necessary) to consider smaller wave packets to look the parts of functions with higher

frequency. So actually we have to vary the scaling factor δ depending on the norm of ξ and

sometimes also on the direction of ξ. Below we ignore such technical problems and so the

following explanation is rather simplistic.

Anosov diffeomorphisms. Now let us consider the transfer operator associated to an C∞

Anosov diffeomorphism f :M →M from the viewpoint introduced above. (We extend the

argument above to diffeomorphisms on manifolds in an obvious manner using local charts.)

We look into the induced mapping D∗f−1 : T ∗M → T ∗M on the cotangent bundle T ∗M
in (4.1). When we study a dynamical system, one of the first things to do is to identify its

non-wandering set. In this case, the non-wandering set of the dynamics of D∗f−1 is the

zero section M × {0} and the dynamics is non-recurrent outside of its small neighborhood

U . (See Figure 4.1.)

E∗
u

E∗
s

U

Figure 4.1. A schematic picture of the action of D∗f−1 for an Anosov diffeomorphism f .

Thus it is natural to decompose the transfer operator L (or Llift) into two parts

L = Lcpt + Lnon−rec

where the former is the action of L on the wave packets corresponding to points in U and the

latter is the action on the remaining. The former part Lcpt concerns only wave packets with

low frequency and hence is compact (and moreover belongs to the trace class). The latter is

dissipative in a sense because of the fact thatD∗f−1 is not recurrent on the outside of U and

basically negligible when we consider the spectrum and trace. This explains the reason why

the transfer operators for Anosov diffeomorphisms have discrete spectrum and also that we

can consider their traces. In fact, we have

Theorem 4.2 ([1–3, 10, 17, 20]). There exist a scale of Hilbert (or Banach) spacesHr(M)
for r ≥ 0 with Cr(M) ⊂ Hr(M) ⊂ (Cr(M))′ such that the transfer operator L extends to
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a bounded operator L : Hr(M) → Hr(M) and its essential spectral radius is bounded by
C‖g‖∞ · e−rχ where χ > 0 is the hyperbolicity exponent of the Anosov diffeomorphism f
and C > 0 is a constant that may depend on f . In particular the spectrum of the operator
L : Hr(M)→ Hr(M) on the outside of the disk of radiusC‖g‖∞ ·e−rχ consists of discrete
eigenvalues with finite multiplicities. The dynamical zeta function

ζ(z) = exp

⎛⎝− ∞∑
m=1

1

m

∑
x∈Fix(Fm)

g(m)(x)

⎞⎠
extends to a meromorphic function on C \ {0}.
Remark 4.3. In [1, 2, 10], the Hilbert space Hr(M) in the theorem above is constructed

essentially in the following manner. From non-recurrence of D∗f−1 on the outside of U , it
is possible to define a smooth functionWr : T ∗M → R for any r > 0 so that

Wr(D∗f−1(x, ξ)) ≤ e−rχ · Wr(x, ξ) when (x, ξ) /∈ U and D∗f−1(x, ξ) /∈ U .
We define Hr(M) as the completion of C∞(M) with respect to the norm ‖u‖Hr := ‖Wr ·
B‖L2 where B is the wave packet transform discussed previously. Then we see that the

operator norm of the latter part Lnon−rec is bounded by C‖g‖∞ · e−rχ and consequently the

essential spectral radius of L onHr(M) is bounded by this factor.

Anosov flows. We next consider the case of Anosov flows. In this case, the argument is

more subtle. Let f t : M → M be a C∞ Anosov flow. The induced flow on the cotangent

bundle is just (4.1) with f replaced by f t. In this case, the non-wandering set for such flow

on the cotangent bundle is

Ω = (Es ⊕ Eu)
⊥ ⊂ T ∗M.

Notice that Ω is not compact and also not a smooth subset of T ∗M in general. These are

sources of subtleness in the argument for Anosov flows. But we can follow the argument in

the case of Anosov diffeomorphisms partly as follows. Let C be a smooth conical neighbor-

hood ofΩ ⊂ T ∗M with smooth boundary so that the induced flow (Df−t)∗ : T ∗M → T ∗M
is non-recurrent on the outside of C. (See Figure 4.2.) Let T ∗M = E∗

0 ⊕ E∗
s ⊕ E∗

u be the

decomposition of the cotangent bundle which is dual to that of the tangent bundle in the

definition of Anosov flows.

Notice that the action of the flow f t does not change the frequency of functions in the

flow direction and hence it is natural to restrict the action of the transfer operator Lt to

functions whose frequency in the flow direction is in some fixed range, say [a, b] ⊂ R. We

therefore consider the restriction of the flow (Df−t)∗ : T ∗M → T ∗M to the subset

X(a, b) = {(x, ξ) ∈ T ∗M | ξ(V (x)) ∈ [a, b]}
where V (x) is the generating vector field of the flow f t. This means that we look at the spec-

trum of the generator ofLt in the regionR×i[a, b] ⊂ C. The dynamics of (Df−t)∗ restricted
to X(a, b) is similar to the case of Anosov diffeomorphism: the intersection C ∩X(a, b) is
relatively compact and (Df−t)∗ is non-recurrent on the outside of C. This explains the rea-

son why the generator of Lt have discrete spectrum. Further, from the argument in the proof

of the Weyl law, we expect that the number of eigenvalues for such restriction is proportional

to (or at least bounded by) the symplectic volume of C ∩X(a, b) ⊂ T ∗M . In fact, we have
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Ω

E∗
u ⊕ E∗

s

C

X(a, b)

Figure 4.2. A schematic picture for the action of (Df−t)∗ for an Anosov flow f t. Horizontal hyper-

planes parallel to E∗
u ⊕ E∗

s are preserved and the dynamics on them will look like that illustrated in

Figure 4.1.

Theorem 4.4 ([7, 9, 16]). There exists a Hilbert space Hr(M) such that the transfer op-
erator Lt extends to a strongly continuous one-parameter semigroup on Hr(M) and the
spectral set of the generator A in the region <(s) ≥ −rχ0 + c consists of discrete eigenval-
ues with finite multiplicities, where c is a constant depending on f t and gt. Further

(a) For any given β > 0. the number of eigenvalues in the region [−β,∞)×i[ν, ν+√|ν|]
is of smaller order than 〈ν〉2d+(1/2). ([9])

(b) The dynamical zeta function Z(s) has meromorphic extensions to the whole complex
plane C. ([7, 16])

5. Microlocal analysis of contact Anosov flows

We now consider the case of contact Anosov flows (or the geodesic flows on negatively

curved manifolds), to which the main results concern. In this case the non-wandering set Ω
is smooth and coincides with the one-dimensional subbundle 〈α〉 of T ∗M spanned by the

contact one form α. This is quite different from the case of general Anosov flows mentioned

in the last section. By virtue of this fact, we may perform more detailed analysis of the struc-

ture of the lifted transfer operators (Lt)lift in a smaller neighborhood of the non-wandering

set Ω. For instance, the claim (a) on the number of resonances in Theorem 4.4 above has

been made precise as follows.

Theorem 5.1 ([6]). Let f t : M → M be a contact Anosov flow and let dimM = 2d + 1.
Let Lt be the transfer operator as in (2.1). For any β > 0, there exists C > 0 such that
the number of eigenvalues for the generator of Lt in the region [−β,∞)× i[ν, ν +

√|ν|] is
bounded by C〈ν〉d+(1/2).

Our main results, Theorem 2.1 and Theorem 2.4, are obtained also by analyzing the

action of the lifted operator (Lt)lift in a small neighborhood of the subset Ω. Compared with
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the argument in the last section, the novelty is that we consider interference between the

images of wave packets.

Remark 5.2. The analysis of the interference between the images of wave packets is basi-

cally in the same spirit as the so-called Dolgopyat argument[5, 21]. In contact Anosov flows,

cancellation between the images of wave packets occurs in the most effective manner in a

sense. This is observed and made use of in the argument in [25, 26]. In the following, this

cancellation between wave packets is formulated in a more sophisticated manner in terms

of the symplectic structure on the cotangent bundle T ∗M , which allows us to obtain more

detailed information of the transfer operators.

Suppose that gt ≡ 1 for simplicity, so that Lt is a unitary operator with respect to the

L2-norm. The key fact is that the subset Ω = 〈α〉 is a symplectic submanifold of T ∗M on

the outside of the zero section. This is a consequence of the fact that α is a contact form.

Hence the tangent space Tp(T
∗M) at p ∈ Ω is decomposed as

Tp(T
∗M) = TpΩ⊕ (TpΩ)⊥ (5.1)

where TpΩ is the tangent space of Ω at p and (TpΩ)
⊥ is its symplectic orthogonal subspace.

Further the induced maps (Df−t)∗ : T ∗M → T ∗M preserve this decomposition, because

it is a symplectomorphism. This implies that “micro-locally” the transfer operator Lt is

decomposed as a tensor product of two unitary operators (with respect to the L2 norm),

(Lt)lift " (Lt)lift‖ ⊗ (Lt)lift⊥ (5.2)

where Lt‖ (resp. Lt⊥) describes the action of Lt on the wave packets in the directions in TpΩ

(resp. (TpΩ)
⊥) from p.

Remark 5.3. The structure explained above is found in [8] for linear prequantum Anosov

maps, a simplified model of contact Anosov flows. If the flow f t were linear, the decom-

position (5.2) is exact and we can write each of Lt‖ and Lt⊥ explicitly. (See [13, Section

4].) In reality, the flow f t is non-linear of course. Still, when we consider components of

functions with higher frequency in the flow direction, we can look them in higher resolution

and we may localize the action of f t in smaller regions where f t is better-approximated by

its linearization. Hence the decomposition (5.2) become true asymptotically (and locally) in

the high frequency limit.

The latter operator (Lt)lift⊥ is closely related to the action of the induced map (Df−t)∗

restricted to the subspace (TpΩ)
⊥. This linear map (Df−t)∗|(TpΩ)⊥ is conjugated by a

symplectic linear isomorphism to the linear map

(DS−1)∗ = S ⊕ (S−1)∗ : R2d → R2d

on the cotangent bundle T ∗Rd = R2d induced by an expanding linear map S : Rd → Rd

corresponding to Df tp|Eu . Indeed we see that the operator (Lt)lift⊥ is modeled by the lift of

the (L2-normalized) transfer operator

LS : L
2(Rd)→ L2(Rd), LSu(x) = | detS|−1/2u ◦ S−1(x).

Thus we are lead to consider the structure of the operator LS , keeping in mind that it as a

model for the latter component (Lt)lift⊥ in the decomposition (5.2). Recall that we are inter-

ested in the action ofLt on the wave packets corresponding to points in a small neighborhood
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of Ω. Hence we focus on the action of LS on wave packets that corresponds to points in a

small neighborhood of the origin 0 ∈ T ∗Rd = R2d (which corresponds to p ∈ Ω). Observe

that the operator LS preserves the decomposition of functions u,

u = [Polynomial of order ≤ k] + [Remainder],

given by the Taylor expansion at the origin. And, by setting up an appropriate function space

(see Remark 4.3), we can show that the action of LS on the former component is dominating.

That is to say, the main part of the operator LS is its action on the polynomial up to some

order, say k ≥ 1, and the reminder part is dominated by that action in the operator norm.

Now it is easy to observe that the space of polynomials on Rd of order ≤ k is decomposed

into the subspaces P� of homogeneous polynomials of order 0 ≤ � ≤ k. These subspaces

are preserved by LS and we have the estimate

C−1| detS|−1/2‖S‖−�
max · ‖u‖ ≤ ‖LSu‖ ≤ C| detS|−1/2‖S‖−�

min · ‖u‖ for u ∈ P�.

This implies that the spectral set of LS is contained in the union

D =
⋃

0≤�≤k

{r−� ≤ |z| ≤ r+� } ∪ {|z| ≤ r+k+1}

of annuli (and a disk) where r−� = | detS|−1/2‖S‖−�
max and r+� = | detS|−1/2‖S‖−�

min. This

is the origin of the band structure given in Theorem 2.1.
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Recent developments in interval dynamics

Weixiao Shen and Sebastian van Strien

Abstract. Dynamics in dimension-one has been an extremely active research area over the last decades.

In this note we will describe some of the new developments of the recent years.
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1. Density of hyperbolicity

Interval maps f : [0, 1] → [0, 1] can have a surprisingly rich and complicated dynamics. In

this paper we will describe results which show that in spite of this one can describe the metric

orbit structure of ‘most’ maps extremely well.

The dynamics of hyperbolic maps can be described most easily: for these maps, Lebesgue

almost every point in the interval is attracted to some hyperbolic periodic orbit (with mul-

tiplier between −1 and 1). By a result by Mañé [65] (for a simpler proof see [98]) it is

equivalent to say that a map is hyperbolic if (i) each critical point of f is in the basin of

a periodic attractor and (ii) each periodic orbit is hyperbolic. Since the period of periodic

attractors is bounded, see [66], it follows that hyperbolic maps have at most finitely many

periodic attractors.

As mentioned, hyperbolic maps are very well-understood. The following theorem (which

was obtained by the authors, jointly with Kozlovski, see [50]) shows that ‘most’ maps are

hyperbolic.

Theorem 1.1 (Density of hyperbolicity for real polynomials). Any real polynomial can be
approximated by hyperbolic real polynomials of the same degree.

The above theorem allows us to prove the analogue of the Fatou conjecture in the smooth

case, see [51], thus solving the 2nd part of Smale’s eleventh problem for the 21st century

[91]:

Theorem 1.2 (Density of hyperbolicity for smooth one-dimensional maps). Hyperbolic
maps are dense in the space of Ck maps of the compact interval or the circle, k = 1, 2, . . . ,
∞, ω.

For quadratic maps fa = ax(1−x), the above theorems assert that the periodic windows

(corresponding to hyperbolic maps with attracting periodic orbits) are dense in the bifurca-

tion diagram. The quadratic case turns out to be special, because in this case certain return

maps become almost linear. This special behaviour does not even hold for maps of the form

x �→ x4 + c.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Figure 1.1. The Feigenbaum diagram

The problem of density of hyperbolicity in dimension-one has been considered since the

1920’s. Indeed:

• Fatou stated the analogue of this problem in the context of rational maps on the Riemann

sphere as a conjecture in the 1920’s, see [33, page 73] and also [67, Section 4.1].

• Smale gave this problem ‘naively’ as a thesis problem in the 1960’s, see [90].

• In 1971, Jakobson proved that the set of hyperbolic maps is dense in the C1 topology, see

[43].

• In the mid 1990’s, the conjecture was solved in the quadratic case x �→ ax(1 − x) in

a major breakthrough by Lyubich [61] and independently also by Graczyk and Świa̧tek,

[36] and [37].

• In 2000, Blokh and Misiurewicz [15] considered the problem of density of hyperbolicity

in the C2 topology, and were able to obtain a partial result.

• A few years later, Shen [87] proved C2 density of hyperbolic maps.

Note that every hyperbolic map satisfying a mild transversality condition, namely that

no critical point is eventually mapped onto another critical point, is structurally stable. So

density of hyperbolicity implies that structural stable maps are dense.

1.1. Density of hyperbolicity within a large space of real transcendental map. Density

of hyperbolicity also holds within classes of much more general maps, for example within

the famous Arnol’d family and within the space of trigonometric polynomials. Indeed it was

shown by the second author in a joint paper with Rempe, see [79], that

Theorem 1.3. Density of hyperbolicity holds within the following spaces:
1. real transcendental entire functions, bounded on the real line, whose singular set is

finite and real;

2. transcendental functions f :C \ {0} → C \ {0} that preserve the circle and whose
singular set (apart from 0,∞) is contained in the circle.
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In [79] also a number of other open problems are solved, including a number of con-

jectures of behaviour de Melo, Salomão and Vargas [29]. In this paper density of (real)

hyperbolicity is also established replacing in assumption (1) the boundedness condition by a

sector condition.

1.2. Hyperbolicity is dense within generic one-parameter families of one-dimensional
maps.

Theorem 1.4 (Hyperbolicity is dense within generic families). For any generic family
{gt}t∈[0,1] of smooth intervals maps (generic, in the sense of Baire), the following prop-
erties hold:

• the number of critical points of each of the maps gt is bounded;

• the set of parameters t for which all critical points of gt are in basins of periodic at-
tractors, is open dense.

The proof of this result follows easily from the theorems in the previous subsection, see

[99]. On the other hand, as is shown in the same paper, it is easy to construct a real analytic

one-parameter family ft, t ∈ [0, 1] of polynomials so that none of the polynomials in this

family are hyperbolic:

Theorem 1.5 (A family of cubic maps with robust chaos). There exists a real analytic one-
parameter family {ft} of interval maps (consisting of cubic polynomials) so that ft has
no periodic attractor for any t ∈ [0, 1], and so that not all maps within this family are
topologically conjugate.

1.3. Density of hyperbolicity for more general maps. Density of hyperbolicity is false in

dimension ≥ 2. For a list of related interesting questions concerning the higher dimensional

case, see [77].

The situation for rational maps on the Riemann sphere may well be more hopeful. In that

context one has the following well-known conjecture, going back to Fatou:

Conjecture 1.6 (Density of hyperbolicity for rational maps). Hyperbolic maps are dense
within this space of rational maps of degree d on the Riemann sphere.

In [64] it was shown that this conjecture follows from

Conjecture 1.7. If a rational map carries a measurable invariant line field on its Julia set,
then it is a Lattès map.

More about this conjecture and related results can be found in [67]. In [50, 86] and finally

[52] it was shown that real polynomials (acting on C) do not carry such invariant line fields.

Moreover, real polynomials have Julia sets which are locally connected, see [26, 50, 52, 55].

In [80] it was shown that, under some mild assumptions, real transcendental maps also do

not carry invariant line fields.

Interestingly, any rational map on the Riemann sphere such that the multiplier of each

periodic orbit is real, either has a Julia set which is contained in a circle (or line) or is a Lattès

map, see [32].

1.4. Strategy of the proof: local versus global perturbations. Density of hyperbolicity

means that given a map f one can find a map g so that g is hyperbolic and so that g −
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f is ‘small’ in the Ck topology. It is tempting to consider the setting where g is a local

perturbation of f . The purpose would then be to find a small ‘bump’ function h so that

g = f + h becomes hyperbolic. The difficulty with this approach is that orbits will pass

many times through the support of the bump function. Pugh’s approach in his proof of the

C1 closing lemma, is to find a suitable neighbourhood U of x so that the first return of x to

U is not too close to the boundary of x. In this way he is able to construct a function h whose

support is in U , which creates a new fixed point of the first return of g = f +h to U , in such

a manner that h is C1 close to zero. A related approach was used successfully in [43] to

prove density of hyperbolicity in the C1 topology, and in [15] for the C2 topology, but with

added assumptions on the dynamics of f . In [87], this approach was used in the case when

one has a ‘lot of Koebe space’ while in the ‘essentially bounded geometry’ the proof relied

on rigidity (in the sense described below). This rigidity approach also is the key ingredient

in the proof of Theorem 1.1. As there is a great deal of evidence that local perturbations

cannot be used to prove density of hyperbolicity in general, we discuss rigidity extensively

in the next section.

1.5. Strategy of the proof: quasi-symmetric rigidity. Consider the following situation.

Take a family of real quadratic maps fc(z) = z2 + c. To prove density of hyperbolicity

we need to prove that there exists no interval of parameters [c′, c′′] so that each map fc
with c ∈ [c′, c′′] is non-hyperbolic. Sullivan showed that this follows from quasi-symmetric

rigidity of any non-hyperbolic map fc. Here fc is called quasi-symmetrically rigid if the

following property holds:

If fc̃, fĉ are topologically conjugate to fc, then fc̃, fĉ are quasi-symmetrically

conjugate.

Here, as usual, a homeomorphism h: [0, 1] → [0, 1] is called quasi-symmetric (often abbre-

viated as qs) if there exists K <∞ so that

1

K
≤ h(x+ t)− h(x)

h(x)− h(x− t)
≤ K

for all x − t, x, x + t ∈ [0, 1]. By results about quasi-conformal maps (specifically the

Measurable Riemann Mapping Theorem) it follows that the set of parameters c̃ so that fc̃ is

topologically conjugate to fc is either a single point or an open interval I(fc). Since I(fc) is
also a closed set (this follows from some basic kneading theory), the fact that I(fc) and its

complement are both non-empty gives a contradiction unless I(fc) is a single point.

This argument does not go through directly for real polynomial maps with more than

one critical point, but using related arguments, one still obtains that quasi-symmetric rigidity

implies density of hyperbolicity, see [50, Section 2]. In the case of real analytic maps the

argument to prove density of hyperbolicity is more subtle, see [51].

2. Quasi-symmetric rigidity

As remarked in the previous section, all current proofs of density of hyperbolicity rely on

quasi-symmetric rigidity. The most general form can be found in [25], and states:
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Theorem 2.1 (Quasi-symmetric rigidity). Assume that f, g: [0, 1]→ [0, 1] are real analytic
and topologically conjugate. Alternatively, assume that f, g:S1 → S1 are topologically
conjugate and that f and g each have at least one critical point or at least one periodic
point. Moreover, assume that the topologically conjugacy is a bijection between

(1) the set of critical points and the order of corresponding critical points is the same;

(2) the set of parabolic periodic points.

Then the conjugacy between f and g is quasi-symmetric.

The proof of this theorem builds on the machinery developed in [50]. This paper was

written jointly by the authors and Kozlovski; it developed many of the key ingredients re-

quired to prove density of hyperbolicity, see [51]. Theorem 2.1 is an extension of these

results, and was obtained jointly by Clark and the 2nd author, and uses all of the technology

from[51], but also extends ideas from [56].

Indeed, when f, g are real analytic, then we will use the fact that these maps have holo-

morphic extensions to small neighbourhoods of [0, 1]. Nevertheless, in [25] we prove the

analogous result when f and g are merely C3 maps, under some weak additional assump-

tions; in this case we will use that f, g have asymptotically holomorphic extensions near

[0, 1], but will need to deal with the fact that high iterates of f and g are not necessarily close

to holomorphic.

It is not hard to see that if conditions (1) or (2) in the previous theorem are not satisfied,

then the maps are not even necessarily Hölder conjugate.

Special cases of this theorem we known before: Lyubich [61] and Graczyk & Świa̧tek

[37] proved this result for real quadratic maps. As we will see their method of proof in

the quadratic case does not work if the degree of the map is > 2. For the case of real

polynomials with only real critical points (of even order), this theorem was proved in [50].

For maps which are real analytic, it was shown in [87, Theorem 2, page 345] that there

exists a qs-conjugacy restricted to ω(c) under the additional assumptions that the maps have

no neutral periodic points, only non-degenerate critical points and have ‘essentially bounded
geometry’. For covering maps of the circle (of degree ≥ 2) with one-critical point a global

qs-conjugacy was constructed under the additional assumption that ω(c) is non-minimal and

have no neutral periodic points, see [56]. When ω(c) is minimal, a qs-conjugacy restricted

to ω(c) was constructed in [56].

For circle maps without periodic points, it is known that any two analytic critical circle

homeomorphisms with one critical point, with the same irrational rotation number and the

same order of the critical points are C1-smoothly conjugate, see [47] (their work builds on

earlier work of de Faria, de Melo and Yampolsky on renormalisation and in a recent paper

was generalised to the smooth case, [39]). In ongoing work, Clark and the 2nd author are

aiming to show that the methods in 2.1 can be extended to the case of circle homeomorphisms

with several critical points. Note that the presence of critical points is necessary for circle

homeomorphisms, because for circle diffeomorphisms the analogous statement is false. In-

deed, otherwise one can construct maps for which some sequence of iterates has almost a
saddle-node fixed point, resulting in larger and larger passing times near these points. This

phenomenon is also referred to as a sequence of saddle-cascades. It was used by Arnol’d

and Herman to construct examples of diffeomorphisms of the circle which are conjugate to

irrational rotations, but where the conjugacy is neither absolutely continuous, nor qs and for

which the map has no σ-finite measures, see [40] and also Section I.5 in [30]. In the diffeo-
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morphic case, to get qs or C1 one needs assumptions on the rotation number (to avoid these

sequences of longer and longer saddle-cascades).

In general, one cannot expect C1, because having a C1 conjugacy implies that corre-

sponding periodic orbits have the same multiplier.

We should also remark that there are also analogues of these theorems for polynomials

in C, but then one must assume that f is only finitely renormalizable, see for example [52],

but also see [24].

2.1. Applications of quasi-symmetric rigidity. Quasi-symmetric rigidity is a crucial step

towards proving the following types of results:

(1) hyperbolicity is dense, see subsection 1.5.

(2) within certain families of maps, conjugacy classes are connected, see Theorems A and

2.2 in [21].

(3) monotonicity of entropy; for families such as [0, 1] $ x �→ a sin(πx), see Section 3.

2.2. Complex box mappings. It turns out to be rather convenient to show quasi-symmetric

rigidity by using extensions to the complex plane. This approach is rather natural, as a quasi-

symmetric homeomorphism on the real line is always the restriction of a quasi-conformal

homeomorphism on the complex plane. More precisely, the idea is to construct an extension

of the first return map to some interval, to the complex plane as a ‘complex box mapping’, see

Figure 2.1 in the multimodal case. Roughly speaking, this is a map F :U → V so that each

component of U is mapped as a branched covering onto a component of V , and components

of U are either compactly contained in a component of V or they are equal to such a compo-

nent. Components of F−n(V ) are called puzzle pieces. We also require (roughly speaking)

that F is unbranched near the boundary of U (slightly more precisely, that there exists an

annulus neighbourhood A of ∂V so that F :F−1(A)→ A is an unbranched covering and so

thatmod (A) is universally bounded from below). If one has such numerical bounds, then F
is said to have complex bounds. The existence of these complex bounds was first proved by

Sullivan for certain unimodal maps. The general unimodal case was dealt with in [55] and

somewhat later in [35] and [60]. Later this was extended to the multimodal case for certain

maps in [92] and more generally in [87]. The most general result appears in a joint paper

of the 2nd author with Clark and Trejo [26]. In that paper complex bounds are associated to

any real analytic interval map. In fact, even in the C3 case complex bounds are constructed

in that paper, but in the smooth case the map F is only asymptotically holomorphic.

We should note that in the non-renormalisable real-analytic case one obtains complex

bounds at arbitrary deep levels, as soon as one has a complex box mapping. That this is the

case follows from the construction of the enhanced nest (discussed in the next subsection)

and an interesting lemma due to Kahn and Lyubich, see [45]. This tool is about pulling back

a thin annulus, and shows that the modulus of the pullback of this annulus is much better

than one might expect. In the real case, one can simplify and strengthen the statement and

proof of Kahn and Lyubich’s result as follows, see [52, Lemma 9.1]:

Lemma 2.2 (Small Distortion of Thin Annuli). For every K ∈ (0, 1) there exists κ > 0
such that ifA ⊂ U ,B ⊂ V are simply connected domains symmetric with respect to the real
line, F : U → V is a real holomorphic branched covering map of degree D with all critical
points real which can be decomposed as a composition of maps F = f1 ◦ · · · ◦ fn with all
maps fi real and either real univalent or real branched covering maps with just one critical
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Figure 2.1. A box mapping.

point, the domain A is a connected component of f−1(B) symmetric with respect to the real
line and the degree of F |A is d, then

mod (U −A) ≥ KD

2d
min{κ, mod (V −B)}.

2.3. How to prove quasi-symmetric rigidity? Consider the complex box mappings asso-

ciated to two conjugate maps. To show that the conjugacy is quasi-symmetric one proceeds

as follows:

(1) Define a sequence of puzzle pieces Uni called the enhanced nest, so that there exists

ki for which F k(i):Uni+1 → Un(i) is a branched covering map with degree bounded

by some universal numberN . This enhanced nest is chosen so that it transfers geomet-

ric information rather efficiently from small scale to large scale, but so that the degree

of F k(i):Uni+1 → Un(i) remains universally bounded. This enhanced nest was one

of the main new ingredients in [50]. It turns out that the post-critical sets do not come

close to the boundary of the puzzle pieces in the enhanced nest, which implies that the

puzzle pieces have uniformly bounded shape. Another important property of the en-

hanced nest is that decaying geometry and bounded geometry alternate quite regularly

in the nest, which was used in [58] to study the Hausdorff dimension of Cantor attrac-

tors. The enhanced nest construction is also used for example in [26, 52, 75, 78, 94].

(2) In fact, if the interval maps extend to a holomorphic map on a neighbourhood of the

real line, then one can partially define a quasi-conformal conjugacy near critical points,

and then spread the definition to the whole complex plane fairly easily. This method

was called the spreading principle in [50].

(3) Because of the spreading principle mentioned above, it then suffices to construct a

partial-conjugacy on a puzzle piece in the enhanced nest which is ‘natural on the

boundary’. Given the above, this can easily be done using the QC-criterion from

the appendix of [50]. and bounded shape of the puzzle pieces (bounded shape is very

easy to derive from complex bounds, see [52, Section 10]). One can also proceed as in

[5]. Our QC criterion was a variation of Heinonen-Koskela’s theorem [42]. This theo-

rem and its variations were used to prove rigidity result previously in [34, 41, 56, 83?
], where in the last work, the author explicitly stated that a bounded shape property of

puzzle pieces implies rigidity for non-renormalizable unicritical maps.
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It is of course conceivable that one can prove quasi-symmetric rigidity using entirely real

methods. This hinges on questions of the following type:

Question 2.3. Consider the space A of maps of the form z �→ |z|d+c where d > 1 is not
necessarily an integer and where c is real. Does one have quasi-symmetric rigidity for maps
within the space A? Are two topologically conjugate maps in A without periodic attractors
(or both critically finite) necessarily the same?

One of the difficulties with such a real approach is that it is not so easy to know how

to use the information that the exponent d is fixed within the family A: the exponent is not

‘visible’ in the real line. On the other hand, if d is an even integer, and z �→ zd + c, then of

course the local degree of the map at 0 is different for different values of d. Without fixing

the degree d the answer to the question above is definitely negative. An affirmative answer

to the above question would imply density of hyperbolicity and monotonicity of entropy in

this family.

3. Monotonicity of entropy

In the late 70’s, the following question attracted a lot of interest: does the topological entropy

of the interval map x �→ ax(1−x) depend monotonically on a ∈ [0, 4]? In the mid 80’s this

question was solved in the affirmative:

Theorem 3.1. The topological entropy of the interval map x �→ ax(1 − x) depends mono-
tonically on a ∈ [0, 4].

In the 80’s several proofs of this appeared. One of these uses Thurston’s rigidity theorem,

see [70]. Another proof relies on Douady-Hubbard’s univalent parametrisation of hyperbolic

components, see [31], and a third proof is due to Sullivan; for a description of these proofs

see [30]. All these proofs consider the map x �→ ax(1 − x) as a polynomial acting on the

complex plane. A rather different method was used by Tsujii, [97]. He showed that periodic

orbits bifurcate in the ‘right’ direction using a calculation on how the multiplier depends

on the parameter. Unfortunately, Tsujii’s proof also does not work for maps of the form

z �→ |z|a+c with a not an integer.

In the early 90’s, Milnor (see [69]) posed the more general

Conjecture 3.2 (Monotonicity Conjecture). The set of parameters within a family of real
polynomial interval maps, for which the topological entropy is constant, is connected.

Milnor and Tresser proved this conjecture for cubic polynomials, see [71] (see also

[28]). Their ingredients are planar topology (in the cubic case the parameter space is two-

dimensional) and density of hyperbolicity for real quadratic maps.

A few years ago, Bruin and the 2nd author were able to give a proof of the general case

of this conjecture. More precisely, given d ≥ 1 and ε ∈ {−1, 1}, consider the space P d
ε of

real polynomials f : [0, 1]→ [0, 1] of fixed degree d with f({0, 1}) ⊂ {0, 1}, with all critical

points in (0, 1) and with the first lap orientation preserving if ε = 1 and orientation reversing

if ε = −1. We call ε the shape of f . In [21] we proved the general case:

Theorem 3.3 (Monotonicity of Entropy). For each integer d ≥ 1, each ε ∈ {−1, 1} and
each c ≥ 0,

{f ∈ P d
ε ;htop(f) = c}
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is connected.

The proof in [21] also shows that the set of maps in P d
ε with the same kneading sequence

is connected and gives a precise description of the bifurcations that occur when one of the

periodic attractors loses hyperbolicity. The main ingredient in the proof is quasi-symmetric

rigidity. Recently, Kozlovski announced a simplification of the proof in [21] of this theo-

rem (using semi-conjugacies to maps with constant absolute value of the slopes, rather than

stunted sawtooth maps).

3.1. Non-local connectivity of isentropes and non-monotonicity in separate variables.
It is possible to parametrize the family P d by critical values. The following example shows

that it is not true that topological entropy depends monotonically on each of these parameters.

Define fa,b(x) = 2ax3 − 3ax2 + b for a = b+ 0.515. This cubic map has critical points 0
and 1 and critical values f(0) = b, and f(1) = b− a = 0.515. It is shown in [21] that there

are values of b such that the map a �→ htop(fa,b) is not monotone.

Related to this, it is shown in [22] that isentropes in P d, when d ≥ 5 are not locally

connected. It is not known whether isentropes in P 3 or in P 4 are locally connected. For

related results and questions, see [100].

4. Measure-theoretical dynamics

We shall now discuss the dynamics of a map f : N → N , where N = [0, 1] or S1 from

measure-theoretical point of view. Recall that a Borel probability measure μ is invariant for
f if for each Borel set A ⊂ N we have μ(f−1A) = μ(A). We say that μ is ergodic if a

Borel set A with f−1(A) = A satisfies either μ(A) = 0 or μ(A) = 1. The basin B(μ) of μ
is the set of points x ∈ N for which

1

n

n−1∑
i=0

δfi(x) → μ as n→∞, (4.1)

where the convergence is with respect to the weak star topology. If B(μ) has positive

Lebesgue measure, then we say that μ is a physical measure. Clearly, if O is an attracting

periodic orbit, then the averaged Dirac measure μO = 1
#O

∑
p∈O δp is a physical measure.

An ergodic acip, i.e., an invariant probability measure which is absolutely continuous with

respect to the Lebesgue measure, is also a physical measure, by Birkhorff’s ergodic theorem.

4.1. Typical physical measures. Conjecturally these are the only two types of physical

measures for typical interval maps, from measure-theoretical point of view. Indeed, in the

major breakthrough [63], Lyubich proved that within the quadratic family fa(x) = ax(1 −
x), 1 ≤ a ≤ 4, for almost every a, either fa is hyperbolic or fa has an ergodic acip. In an

earlier celebrated work [44], Jakobson showed that the set of a for which fa has an ergodic

acip has positive Lebesgue measure.

An analogue of Lyubich’s theorem in the multi-critical case is widely open at the mo-

ment, due to the multi-dimensional feature of the corresponding parameter space. However,

a generalization to the case of unimodal polynomials of even degree d ≥ 2 is nearly com-

pleted. The work [6] extends the result of [62], showing that for any even integer d ≥ 2, and
almost every a ∈ [1, 4], fa(x) =

a
4 (1 − (1 − 2x)d) either is hyperbolic, or has an ergodic
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acip, or is infinitely renormalizable. Moreover, Avila and Lyubich [4] developed a novel way

to obtain exponential convergence along hybrid classes for infinitely renormalizable maps.

One can expect a complete proof of the generalization of Lyubich’s theorem for unimodal

maps of a given degree will be available soon. Nevertheless, let us mention in a joint work

with Bruin, the authors of this paper proved that for all even integer d, and almost every

1 ≤ a ≤ 4, a4 (1− (1− 2x)d) has a unique physical measure which might be supported on a

Cantor set.

4.2. Existence of acip. We shall now discuss some recent advances on existence of acip for

smooth interval maps. In order to apply some version of the real Koebe distortion to control

distortion, we often assume f lies in the class A3 defined below. A map f : [0, 1] → [0, 1]
is in the class Ak if the following holds: f is C1 and Ck outside the critical set Crit(f) =
{c : f ′(c) = 0}; moreover, for each c ∈ Crit(f), there exists �c > 1 and Ck diffeomor-

phismsms ϕc, ψc of R such that ϕc(c) = ψc(f(c)) = 0 and |ψc(f(x))|= |ϕc(x)|�c holds in

a neighborhood of c.
The following theorem was obtained by the authors in joint with Bruin and Rivera-

Letelier.

Theorem 4.1 (Existence of acip [19]). Let f ∈ A3 be an interval map with all periodic
points hyperbolic repelling. Assume that the following large derivatives condition holds: for
each c ∈ Crit(f),

|Dfn(f(c))|→ ∞ as n→∞.

Then f has an acip μ with density dμ
dLeb ∈ Lp for each p < �max/(�max − 1) where �max =

supc∈Crit(f) �c.

The unimodal case was done earlier by the authors in joint with Bruin [20]. The existence

of acip for interval maps has been proved previously in more restrictive settings, including

• in [72], for maps satisfying the Misiurewicz condition: ω(c) ∩ Crit(f) = ∅ for each

c ∈ Crit(f);
• in [27] for unimodal maps satisfying the Collet-Eckmann condition (together with other

conditions): for the critical point c, lim infn→∞
1
n log|Dfn(f(c))|> 0;

• in [74] for unimodal maps satisfying the following summability condition: if c is the

critical point and � is the order, then
∑∞

n=0|Dfn(f(c))|−1/�<∞,

among others. All of these results assume that f has negative Schwarizian outside Crit(f)
in order to apply the real Koebe principle to control distortion, but now we know that the

required distortion control is also valid for maps f ∈ A3, after [48] and [101, Theorem C].

We should however note that the large derivatives condition is not a necessary condition

for the existence of an acip, even though an acip necessarily has positive metric entropy:

there exists a unimodal map in the class A3 with lim inf|Dfn(f(c))|= 0 and with an acip

[16]. It is also known (not surprisingly) that existence of acip is not a topological (or qua-

sisymmetric) condition [17].

Question 4.2. Determine topological (or quasisymmetric) conjugacy classes inA3 such that
each map in the class has an acip.

4.2.1. Ingredients of the proof of Theorem 4.1. An intermediate step of the proof is

to show that the large derivatives condition implies backward contraction in the sense of
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Rivera-Letelier [84], which means the following: if B̃c(δ) denotes the component of

f−1(f(c)− δ, f(c) + δ) which contains c and

Γ(δ) = inf

{
δ

|U | :
U is a component of f−n(B̃c(δ)) containing f(c

′)
for some c, c′ ∈ Crit(f) and n ≥ 0

}
then Γ(δ) → ∞ as δ → 0. It turns out that the backward contraction property is equivalent

to the large derivatives condition [57].

It is well-known that for any Borel probability measure ν, any accumulation point of the

following sequence

1

n

n−1∑
i=0

(f i)∗(ν)

in the weak star topology is an invariant probability measure of f , where (f i)∗ν(A) =
ν(f−i(A)). Thus it suffices to prove the following statement: for each 0 < κ < 1 there

exists C = C(κ) such that

(fn)∗(Leb)(A) = |f−n(A)|≤ C|f(A)|κ/�max ,

holds for all Borel A ⊂ [0, 1] and all n ≥ 0. The backward contraction property makes it

possible to obtain the estimate when A is an interval close to the critical set. For general A,

the paper uses a sliding argument from [74], and Mãné’s theorem [65].

4.3. Decay of correlation. A different way to obtain existence of acip is via inducing. Let
us say a map F : U → V , where U ⊂ V are open subsets of [0, 1], is a Markov map, if for

each component U of U , F |U is a C1 diffeomorphism onto a component of V . A Markov

map F is induced by a map f if there is a continuous function s : U → {1, 2, . . .} such that

F (x) = fs(x)(x). (So s(·) takes constant value in each U .) We shall often consider Markov

maps with extra properties:

(i) V is an interval;

(i′) V consists of finitely many intervals;

(ii) (Bounded distortion) There exist C > 0 and α ∈ (0, 1) such that

|DFn(x)|
|DFn(y)| ≤ C|Fn(x)− Fn(y)|α,

whenever F i(x) and F i(y) belong to the same component of U for each i = 0, 1, . . . ,
n− 1.

A Markov map F : U → V with the properties (i′) and (ii) has an absolutelty continuous

invariant propbability measure ν such that dν/dLeb is bounded away from 0 and∞. If we

can construct an induced Markov map F for a map f such that (i′), (ii) and the following

hold:

as := |{s(x) ≥ s}|→ 0 as s→∞,

then the original system f has an acip

μ :=
1∑∞

s=1 as

∑
U

s|U−1∑
j=0

(f j)∗(ν|U),
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where the sum runs over all components of U . One advantage of inducing is that through

estimating the speed of convergence of as → 0, one can obtain finer statistical properties of

the system.

The following theorem was proved by the 1st author in joint with Rivera-Letelier, im-

proving an earlier result [18] considerably.

Theorem 4.3 (Decay of correlation [85]). Assume that f ∈ A3 is topologically exact and
satisfies the large derivatives condition. Then there is an induced Markov map F : U → V
such that (i) and (ii) and the following tail estimate hold:

as = O(s−p) for each p > 0, as s→∞.

In particular, the unique acip μ of f is super-polynomially mixing: for each essentially
bounded ϕ : [0, 1]→ R and each Hölder continuous ψ : [0, 1]→ R,

Cn(ϕ, ψ) :=

∫ 1

0

ϕ ◦ fnψdμ−
∫ 1

0

ϕdμ

∫ 1

0

ψdμ

converges to 0 superpolynomially fast as n→∞.

Here we say that f is topologically exact if for each non-empty open subset U of [0, 1],
there exists a positive integer n such that fn(U) = [0, 1]. This is a necessary condition

for f to have a mixing acip. The last statement was deduced from the tail estimate via

Young’s tower [102]. Note that the tail estimate also implies finer statistical properties of

the sequence {ψ ◦ fn}∞n=0 (considered as a sequence of random variables with identical dis-

tribution), such as the Central Limit Theorem [102], Almost Sure Invariance Principle [68],

etc, for ψ Hölder. The paper [85] also dealt with existence and mixing properties of in-

variant probablity measures with respect to conformal measures (supported on Julia sets) of

maximal dimension for a large class of complex rational maps. This paper used the induced

Markov map to study the geomtery of the Julia set.

Much recent progress on theomodynamical formalism for one-dimensional maps also

used inducing to construct invariant probablity measures with respect to various conformal

measures, see for example [23, 76, 82].

For the proof of Theorem 4.3, an adaptation is used of the inducing scheme, called

canonical inducing, developed in [81, 82]. A crucial new estimate is the following back-

ward shrinking estimate for maps with large derivatives (Theorem B): there exists ρ > 0
such that

θn := {|J |: J is an interval such that |fn(J)|≤ ρ}
converges to zero super-polynomially fast. Theorem C relates the quantity θn to the tail esti-

mate of a suitably constructed induced Markov map, provided the map has badness exponent
0 which was the statement of Theorem A.

It is known that θn → 0 exponentially fast (the topological Collet-Eckmann condition,

equivalent to the Collet-Eckmann condition in the unimodal case) is equivalent to having an

exponentially mixing acip [73, 81]. It would be interesting to know

Question 4.4. For a topologically exact interval map f ∈ A3, is θn → 0 superpolynomially
fast equivalent to having a unique acip which is superpolynomially mixing?

An affirmative solution to Question 2.11 in [85] implies an affirmative answer to the

question above.
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4.4. Stochastic stability. An interval map with an acip is not hyperbolic and hence not

structurally stable. The notion of stochastic stability, posed by Kolmogrov and Sinai, asks

for stability of statistical properties under random perturbations. Given a map f : [0, 1] →
[0, 1], an ε-random (pseudo) orbit is by definition a sequence {xn}∞n=0 such that |f(xn) −
xn+1|≤ ε. Roughly speaking, stochastic stability means when ε > 0 is small, for most of

the ε-random orbits {xn}∞n=0, the asymptotic distribution, limn→∞
1
n

∑n−1
i=0 δxi , is close to

a physical measure of f . Note that if f([0, 1]) ⊂ (0, 1) and ε > 0 small enough, then the

space of all ε-random orbits can be identified with [0, 1]× [−ε, ε]N by the following formula:

{xn}∞n=0 �→ (x0, x1 − f(x0), x2 − f(x1), . . .).

So the space of sequences {xn}∞n=0 can be endowed with a probability measure Pε which

corresponds to m ×mN
ε , where m denotes the Lebesgue measure on [0, 1] and mε denotes

the normalised Lebesgue measure on [−ε, ε]. In the literature, reference measures other than

Pε have also been considered on the space of ε-random orbits, corresponding to different

types of random perturbations. The measure Pε corresponds to the so-called additive noise
model.

Recently the 1st author proved the following theorem.

Theorem 4.5 (Stochastic Stability [88]). Suppose f ∈ A3 is ergodic with respect to the
Lebsgue measure and that the following summability condition holds: for each c ∈ Crit(f),

∞∑
n=0

|Dfn(f(c))|−1<∞. (4.2)

Then the unique acip of f is stochastic stable in the strong sense: For each ε > 0 there
exists a unique probability measure με absolutely continuous with respect to the Lebesgue
measure, such that for Pε-a.e. ε-random orbits {xn}∞n=0,

1

n

n−1∑
i=0

δxi
→ με

as n → ∞ in the weak star topology. Moreover, the density dμε

dLeb converges in L1 to the
density of the unique acip of f as ε→ 0.

See the Main Theorem of [88] for a more general statement, which covers a very general

type of random perturbation. Previously, stochastic stability was studied for interval maps

with a Benedicks-Carleson type condition [12, 13] (or even stronger) which thus has expo-

nential decay of correlation, see [11, 14, 46, 95]. It is surprising that the stochastic stability

of the Manneville-Pomeau map x �→ x+x1+α mod 1, which is probably the simplest non-

uniformly expanding dynamical system, was only established very recently by the authors

in [89].

Li and Wang [59] proved stochastic stability for unimodal maps f with a wild attractor

where the physical measure is supported on the Cantor attractor. It raises a curious question

whether there exists an interval map with a stochastically unstable physical measure.

The crucial step in the proof of Theorem 4.5 was to establish lower bounds of the deriva-

tive of the first return maps to critical neighborhoods: Let ε > 0 be small and let B̃c(ε) be
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defined as in § 4.2.1. Then for all ε-random orbits {xi}ni=0 with x0 ∈ B̃c1(ε), xn ∈ B̃c2(ε)

for some c1, c2 ∈ Crit(f) and x1, x2, . . . , xn−1 �∈
⋃

c∈Crit(f) B̃c, we have

n−1∏
i=1

|Df(xi)|≥ Λ(ε)

ε1−�−1
c2

exp(εα(ε)n),

where Λ(ε)→∞ and α(ε)→ 0 as ε→ 0. The measure με was constructed using a random

inducing scheme initiated in [8]. See also [1, 2].

4.5. Jakobson’s theorem. The lower bound for derivative plays a crucial role in a general-

ization of Jakobson’s theorem by B. Gao and the 1st author [38]. Among a huge number of

works in generalizing Jakobson’s theorem, our approach is close to that of [96]. While the

paper worked with general one-parameter families, the following is the main result obtained

for polynomial maps.

Theorem 4.6 (Summability implies Collet-Eckmann alomost surely [38]). Fix an integer
n ≥ 2. For each a = (a0, a1, . . . , an) ∈ Rn+1 write Pa(x) =

∑n
i=0 aix

i. Let Λn denote
the collection of a ∈ Rn+1 \ {0} for which the following hold: (i) Pa([0, 1]) ⊂ [0, 1] and
(ii) Pa : [0, 1] → [0, 1] satisfies the summability condition (4.2). Then Λn has positive
measures and almost every a ∈ Λn satisfies the Collet-Eckmann condition, and the following
polynomial recurrence conditions: for each β > 1, and any critical points c, c′ of Pa|[0, 1],
we have |P k

a (c)− c′|≥ k−β for all k sufficiently large.

The proof is done by purely real analytic method, except we had to use a recent tranver-

sality result due to Levin [54] which was based on complex methods. For the case n = 2,
the transversality result was known before in [3, 53]. For the quadratic family, the Collet-

Eckmann and polynomial recurrence conditions are satisfied by almost every non-hyperbolic

map [7]. It would be interesting to push the real analytic method further, for instance, to see

whether the summability condition can be replaced by the large derivatives condition in The-

orems 4.5 and 4.6.

Finally we would like to draw the reader’s attention to the works [9, 10] where the “mod-

ulus of continuity” of t �→ μt over “good” non-uniformly expanding maps is studied for

families ft of unimodal maps, where μt is the acip for ft.
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Abstract. In these notes we present the main ingredients of the proof of the convergence of the dis-

tribution function of a tagged particle in a background initially at equilibrium, towards the solution to

the heat equation. We also show how the process associated with the tagged particle converges in law

towards a Brownian motion.
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1. Introduction

1.1. Microscopic and macroscopic models for rarefied gases. At the second Interna-

tional Congress of Mathematicians held in Paris in 1900, D. Hilbert presented ten of his

famous list of twenty-three open questions [25]. Some of those questions have since been

solved, and some remain open to this day. Among these, we are interested here in the sixth

problem related to the axiomatization of physics. The challenge is to understand whether or

not the different models describing the dynamics of fluids are consistent, and more precisely

to develop “mathematically the limiting processes [...] which lead from the atomistic view
to the laws of motion of continua”.

1.1.1. The particle description. At the atomistic scale, a system of N particles in a do-

main D ⊂ Rd can be described by their N positions XN := (x1, . . . , xN ) in DN and N
velocities VN := (v1, . . . , vN ) in RdN , where d ≥ 2 denotes the dimension. These evolve

according to Newton’s laws. For instance assuming that they are identical and interact via

a pairwise potential at some scale ε > 0, the positions and velocities are related by the

following system of ODEs: for 1 ≤ i ≤ N ,

dxi
dt

= vi , m
dvi
dt

= −1
ε

∑
j �=i

∇Φ
(xi − xj

ε

)
, (1.1)

where m is the mass of the particles (which we shall assume from now on equal to 1 to

simplify) and the force exerted by particle j on particle i is −1
ε
∇Φ
(xi − xj

ε

)
. Note that

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Figure 1. The different levels of description of a perfect gas

these equations are nothing else than the Hamiltonian system associated with the energy

HN (XN , VN ) :=
N∑
i=1

1

2
|vi|2 +

∑
i �=j

Φ
(xi − xj

ε

)
.

To avoid complicated billiard free dynamics on D, we shall focus here on the case of

the unit torus D = Td := Rd/Zd. For the sake of simplicity, we shall further assume

that the interaction is pointwise: the particles are N hard spheres of diameter ε > 0 and

centers XN := (x1, . . . , xN ), interacting via elastic collisions: namely if there exists j �= i
such that |xi − xj | = ε, then the incoming velocities (vini , vinj ) are related to the outgoing

velocities (vouti , voutj ) by

vini = vouti − νi,j · (vouti − voutj ) νi,j

vinj = voutj + νi,j · (vouti − voutj ) νi,j ,
(1.2)

where νi,j := (xi − xj)/|xi − xj |. The wellposedness of this system of ODEs is not an

obvious fact, due to the possible clustering of collision times between particles which could

lead to a finite-time blow-up, or to the possibility that three or more particles collide at the

same time. However it can be proved (see [1, 2] in the case of an infinite number of particles,

or [20] for instance in the easier situation under study) that the set of initial configurations

leading to such pathologies is of measure zero, hence it will be neglected from now on.

In the following to simplify notation, we shall denote, for 1 ≤ i ≤ N , zi := (xi, vi)
and ZN := (z1, . . . , zN ). The distribution function fN (t, ZN ) associated with the sys-

tem (1.1) satisfies the Liouville equation

∂tfN +
N∑
i=1

vi · ∇xi
fN − 1

ε

N∑
i=1

N∑
j=1
j 
=i

∇xΦ
(xi − xj

ε

)
· ∇vifN = 0 in TdN × RdN .
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In the case of hard-spheres (1.2) this equation becomes

∂tfN +

N∑
i=1

vi · ∇xifN = 0 , (1.3)

and it is set in Dε
N × RdN with Dε

N :=
{
XN ∈ TdN , ∀i �= j , |xi − xj | > ε

}
with a

specular reflection on the boundary. We now distinguish pre-collisional configurations from

post-collisional ones by defining for indexes 1 ≤ i �= j ≤ N

∂Dε
N,±(i, j) :=

{
ZN ∈ TdN × RdN / |xi − xj | = ε , ±(vi − vj) · (xi − xj) > 0

and ∀(k, �) ∈ {[1, N ] \ {i, j}}2 , |xk − x�| > Dε
N

}
.

Given ZN on ∂Dε
N,+(i, j), we define Z

(i,j)
N ∈ ∂Dε

N,−(i, j) as the configuration having the

same positions (xk)1≤k≤N , the same velocities (vk)k �=i,j for non interacting particles, and

the following pre-collisional velocities for particles i and j

v
(i,j)
i := vi − 1

ε2
(vi − vj) · (xi − xj)(xi − xj)

v
(i,j)
j := vj +

1

ε2
(vi − vj) · (xi − xj)(xi − xj) .

(1.4)

Then on ∂Dε
N (i, j) the following boundary condition holds:

fN (t, ZN ) = fN (t, Z
(i,j)
N ). (1.5)

1.1.2. From particles to fluids. From the knowledge of ZN (t), one can define observable
quantities such as the empirical density, momentum and energy:

ρN (t, x) :=
1

N

N∑
i=1

δ
(
x− xi(t)

)
, ρNuN (t, x) :=

1

N

N∑
i=1

vi(t)δ
(
x− xi(t)

)
,

eN (t, x) :=
1

2
ρN (u

2
N + d θN )(t, x) :=

1

2N

N∑
i=1

|vi(t)|2δ
(
x− xi(t)

)
.

(1.6)

To obtain laws of motion of continua one starts from those observables and one takes the

limit N → ∞ with ε → 0. By definition, rarefied gases are those for which there is no

excluded volume in the state relation, meaning that Nεd � 1 for the hydrodynamic limit

(see Figure 1). Fluid equations are the asymptotic form of the conservations of empirical

density, momentum and energy. In order to get a closed system of equations we need to

show that the microscopic fluxes converge to some macroscopic fluxes depending on the

macroscopic density ρ, momentum ρu and internal energy e, in the limit N → ∞. This

convergence has to be understood in the sense of the law of large numbers with respect to

the density fN (solution to the Liouville equation). The point is therefore to establish that

“locally” fN (t) is close to an equilibrium measure. This fact is not known in the case of the

deterministic dynamics of hard spheres.

By adding a small noise term which exchanges the momenta of nearby particles, Olla,

Varadhan and Yau [35] proved the almost sure convergence of the empirical density, velocity
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and energy to the solution of the Euler equation

∂tρ+∇x · (ρu) = 0

∂t(ρu) +∇x · (ρu⊗ u+ ρθId) = 0

∂t(ρe) +∇x · (ρue+ ρθu) = 0

as long as it has a smooth solution. The result [35] follows from the ergodicity of the infinite

system of interacting particles: the translation invariant stationary measures of the dynamics

minimizing the entropy production are the Gibbs measures.

The Navier-Stokes equations are the next order corrections to the Euler equations. In

order to derive them one needs to show that the microscopic current is well approximated by

the sum of the macroscopic current and a much smaller viscosity term. The mathematical

interpretation of this viscous term is given by some fluctuation-dissipation equation. In order

to avoid the difficulties of the multiscale asymptotics, we may consider the case when the

leading order (compressible) approximation is just a constant and turn to the incompress-

ible Navier-Stokes equations. The rigorous derivation of the incompressible Navier-Stokes

equations from particle systems has then been obtained in the framework of stochastic lattice

models, first by Esposito, Marra and Yau [19], under some regularity assumption which was

later removed by Quastel and Yau [38].

Remark 1.1. Note that this approach also provides convergence results for fluids with ex-

cluded volume, i.e. when Nεd = O(1).

Remark 1.2. The complexity of the problem is such that there is still no complete derivation

of any fluid model starting from the full deterministic Hamiltonian dynamics, regardless of

the regime.

1.1.3. The Boltzmann equation. In his statement of the sixth problem, Hilbert actually

suggested that an intermediate step between the atomistic and the continuous points of view

could be the “mesoscopic” scale, governed by the Boltzmann equation obtained in the low

density limit N →∞, Nεd−1α−1 = 1 (see Figure 1).

More precisely the idea is to start with the description of the particle system via its

distribution function fN , satisfying the Liouville equation (1.3). Then one aims at deriving

a closed equation on the probability distribution f(t, x, v) of one particle (describing the

probability for a particle to be at time t at position x with velocity v). As we shall see in

the formal derivation in Section 1.2 below, the one-particle density distribution f is the limit

(as N →∞) of

f
(1)
N (t, z1) :=

∫
fN (t, ZN ) dz2 . . . dzN , (1.7)

assuming that fN is unchanged under the relabeling of particles, namely

fN (t, Zσ(N)) = fN (t, ZN ) , ∀σ ∈ SN .

Under the chaos assumption, i.e. assuming that the particles are independent and identically

distributed, one obtains heuristically that the function f satisfies the Boltzmann equation

∂tf + v · ∇xf = αQ(f, f) (B)

with Q, a local operator in x and t, defined by

Q(f, f) :=

∫
Sd−1×Rd−1

[f(v′)f(v′1)− f(v)f(v1)] b(v − v1, ω) dv1dω
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and (v′, v′1) are given by v′ = v + ω · (v1 − v)ω and v′1 = v1 − ω · (v1 − v)ω. The
function b(v−v1, ω) is the collision kernel. In the case of hard-spheres interacting elastically

as in (1.2), one has

b(v − v1, ω) =
(
ω · (v1 − v)

)
+
.

Note that the Boltzmann collision operator Q(f, f) can be split into a gain term and a loss

term: the loss term counts all collisions in which a given particle of velocity v will encounter

another particle, of velocity v1, and thus will change its velocity leading to a loss of particles

of velocity v; on the other hand, the gain term measures the number of particles of velocity

v which are created due to a collision between particles of velocities v′ and v′1.
Because particles are indistinguishable, v and v1 play symmetric roles in the collision

integral. The reversibility of the elementary collision process implies moreover that the

change of variables (v′, v′1, ω) → (v, v1, ω) has unit jacobian, so that for any smooth func-

tion ϕ defined on Rd, one has formally (under suitable decay and smoothness assumptions

on f )∫
Q(f, f)ϕ(v)dv =

1

4

∫
[f(v′)f(v′1)− f(v)f(v1)]

(
ϕ(v) + ϕ(v1)− ϕ(v′)− ϕ(v′1)

)
× ((v − v1) · ω

)
+
dvdv1dω .

In particular, choosing ϕ(v) = 1, then ϕ(v) = v and ϕ(v) = |v|2, we formally obtain the

conservation of mass, momentum and energy

∂tρ+∇x · (ρu) = 0 , ∂t(ρu) +∇x ·
∫

fv ⊗ vdv = 0 ,

∂t(ρu
2 + dρθ) +∇x ·

∫
f |v|2vdv = 0 ,

where

ρ(t, x) :=

∫
f(t, x, v) dv, ρu(t, x) :=

∫
f(t, x, v) vdv,

1

2
ρ(t, x)

(|u(t, x)|2 + d θ(t, x)
)
=
1

2

∫
f(t, x, v) |v|2dv .

On the other hand, taking ϕ = log f in the previous identity, we also get

D(f) := −
∫

Q(f, f) log f(v)dv ≥ 0 ,

from which we deduce the entropy inequality, referred to as Boltzmann’s H theorem,∫
f log f(t, x, v)dxdv + α

∫ t

0

∫
D(f)(s, x)dsdx ≤

∫
f0 log f0(x, v)dxdv ,

where f0 is the initial data of f . This means in particular that the Boltzmann equation

describes irreversible dynamics. More precisely, we expect the Boltzmann equation to pre-

dict a relaxation towards thermodynamic equilibria, which are minimizers of the entropy

for fixed mass, momentum and energy. This is in apparent contradiction with the fact that

the Liouville equation and Newton’s laws are reversible, and satisfy the Poincaré recurrence

principle. We shall comment more on that later on (see Remark 1.6).
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Remark 1.3. Note that, in general, the collision integral does not make sense under the only

physical estimates. Formally, the conservations of mass and energy indeed provide∫∫
f(t, x, v)(1 + |v|2)dvdx =

∫∫
f0(x, v)(1 + |v|2)dvdx,

whereas Boltzmann’s H-theorem gives the decay of entropy
∫∫

f log f(t, x, v)dxdv. In

other words, the collision operator involves the product of two functions of x which are

only known to be in some L logL Orlicz space.

1.1.4. From Boltzmann to fluids. From the works of Hilbert [26] and Chapman-Enskog

[12, 16], it is known that most fluid equations can be formally obtained from the Boltzmann

equation (B). In the fast relaxation limit α → ∞, i.e. when the mean free path 1/α is very

small compared to the typical observation length, we indeed expect the collision process to

be dominating and the solution to the Boltzmann equation to be close to local thermody-

namic equilibrium. The evolution of the gas should therefore be well approximated by fluid

equations.

Let us define Mf , the local Maxwellian of same moments as f , by

Mf (t, x, v) :=
ρ(t, x)

(2πθ(t, x))
d
2

e−
|v−u(t,x)|2

2θ(t,x) .

At leading order, replacing f byMf in the conservation laws, we get the compressible Euler

equations. Collecting all contributions to the local thermodynamic equilibrium at leading

order, we then introduce the following Ansatz to describe the purely kinetic part of f

f =Mf

(
1 +

+∞∑
j=1

1

αj
gj

)
.

The crucial point is that the collision operator linearized around Mf , denoted by −LMf
, is

a Fredholm operator on L2(Mfdv) with kernel spanned by the collision invariants 1, v and

|v|2. Denoting by Π⊥ the projection onto the orthogonal of the kernel of −LMf
we get at

the next order

LMf
g1 = − 1

α
Π⊥
(
v · ∇xMf

Mf

)
.

Inverting LMf
on the orthogonal of its kernel, one obtains as first correction to the compress-

ible Euler equations the weakly dissipative, compressible Navier-Stokes systemwithO(1/α)
dissipation terms

∂tρ+∇x · (ρu) = 0

∂t(ρu) +∇x · (ρu⊗ u+ ρθ Id) =
1

α
∇x · (κ1(ρ, θ)∇xu)

∂t
(
ρ(|u|2 + d θ)

)
+∇x ·

(
ρ(|u|2 + (d+ 2)θ)u

)
=
1

α
∇x · (κ2(ρ, θ)∇xθ)

+
1

α
∇x · (κ1(ρ, θ)∇xu · u) .

For a more detailed presentation of formal asymptotic expansions, we refer to [39].
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Since the solutions of the first order hydrodynamic approximation exhibit singularities

such as shocks or discontinuities, the question of their stability after blow-up time seems out

of reach at the present time (see [33] before the blow-up time). A natural idea to avoid these

complicated questions about the compressible Euler equations is to consider fluctuations

around some special solutions, the simplest ones being global equilibria

Mβ(v) :=

(
β

2π

) d
2

e−β|v|2/2 . (1.8)

At present time, this perturbative framework leading to viscous incompressible fluid models

is essentially the only one in which unconditional results are available [4, 22, 44], describing

the fast relaxation limit. From the formal expansion, we know that the diffusion terms will

be of order 1 if time is rescaled by factor α. We denote by τ = t/α the macroscopic

time variable. Then, in order for the nonlinear convection term to remain bounded, we

need the fluctuation to be at most of order α−1. This corresponds to having the Mach and

Knudsen numbers of the same order of magnitude, which is in agreement with the Von

Karman relation for perfect gases giving the Reynolds number as the ratio of the Mach and

Knudsen numbers.

Figure 2. Hydrodynamic limits of the Boltzmann equation

Remark 1.4. It is important to realize that considering the fast relaxation limit is only pos-

sible if the solution f of (B) is known to exist for a time independent of α. Therefore the

mathematical study of hydrodynamic limits requires either additional (regularity and small-

ness) assumptions on the initial distribution f0, or to consider a very weak notion of solution

(namely the renormalized solutions introduced by DiPerna and Lions [15]).

1.1.5. From particles to Boltzmann. In order to use the Boltzmann equation as an inter-

mediate step between particles and fluids, the remaining task consists in justifying the limit

from f
(1)
N defined in (1.7) to f , for a large enough time interval so that one can follow with

the (known) limit from (B) to fluid equations. The precise setting (in particular the choice of
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the scaling Nεd−1α−1 = 1 mentioned above) in which to carry out that limit was identified

by Grad in [23]. Lanford presented in [29] a detailed scheme of proof, which was completed

by a number of authors (see [13, 14, 42] for important contributions in the hard sphere case,

and [20, 37] for a complete proof in the hard sphere case as well as the case of a compactly

supported, repulsive potential).

However those results only hold for a microscopic time of order 1/α, and therefore it

is impossible to this day to carry out sequentially the particle-to-Boltzmann limit followed

by the Boltzmann-to-fluid limit. The difficulty is to find a suitable functional framework to

prove the propagation of chaos, and more generally to obtain a good control of correlations

for long enough times. We indeed do not expect to get better estimates than for the limiting

Boltzmann equation (see Remarks 1.3 and 1.4).

In these notes, we show how in a linear setting, the full program can go through: the

Lanford proof can be made to hold for a long enough time in order to carry out the hydro-

dynamic limit. The limit equation obtained in our setting is the heat equation: a precise

statement is given in Paragraph 1.4 below.

1.2. The Boltzmann-Grad limit for a system of hard spheres.

1.2.1. The setting. From now on to simplify we shall restrict our attention to the case of

hard-spheres interactions (1.2), although everything would work in the same way for an ade-

quate, compactly supported repulsive potential (see [20] or [37] for the precise assumptions

required on the potential). As explained in Paragraph 1.1.3, the solution to the Boltzmann

equation is obtained by taking the limit on the first marginal defined in (1.7). Let us inte-

grate the Liouville equation (1.3) over the variables (z2, . . . , zN ). Using Green’s formula to

handle the contribution of the boundary, one comes up formally with the following equation

on f
(1)
N :

∂tf
(1)
N + v1 · ∇x1f

(1)
N = (N − 1)εd−1

∫
Sd−1×Rd

f
(2)
N (t, x1, v1, x1 + εω, v2)

× ((v2 − v1) · ω
)
dv2dω ,

where for 1 ≤ s ≤ N one denotes

f
(s)
N (t, Zs) :=

∫
fN (t, ZN )1XN∈Dε

N
dzs+1 . . . dzN .

The right-hand side can be modified as follows: we split the integral according to∫
f
(2)
N (t, x1, x2 + εω, v1, v2)(v2 − v1) · ω dv2dω

=

∫
(v2−v1)·ω>0

f
(2)
N (t, x1, v1, x2 + εω, v2)(v2 − v1) · ω dv2dω

+

∫
(v2−v1)·ω<0

f
(2)
N (t, x1, v1, x2 − εω, v2)(v2 − v1) · ω dv2dω ,

and in the case when (v2−v1)·ω > 0 (which corresponds to post-collisional configurations),

one can use boundary condition (1.5) on fN to replace the (outgoing) velocities (v1, v2) by
(incoming) velocities (v′1, v

′
2) with according to (1.2),

v′1 = v1 + ω · (v2 − v1)ω , v′2 = v2 − ω · (v2 − v1)ω .
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One then obtains the following equation:

∂tf
(1)
N + v1 · ∇x1

f
(1)
N = αC1,2f

(2)
N (1.9)

with

(C1,2f
(2)
N )(t, x1, v1) := (N − 1)εd−1α−1

∫
Sd−1×Rd

(
f
(2)
N (t, x1, v

′
1, x2 + εω, v′2)

− f
(2)
N (t, x1, v1, x2 − εω, v2)

)(
(v2 − v1) · ω

)
+
dv2dω .

(1.10)

This equation is reminiscent of the Boltzmann equation (B): we recall that taking the limit

N →∞ we assume that the factor (N − 1)εd−1α−1 in (1.10) converges to 1, and moreover

if the function f
(2)
N is continuous, then

f
(2)
N (t, x1, v1, x2 + εω, v2) ∼ f

(2)
N (t, x1, v1, x2, v2) .

The main, crucial difference between the equation on f
(1)
N and (B) lies in the fact that there

is no reason in general for f
(2)
N to be a product of f

(1)
N . Assuming nevertheless that when N

goes to infinity, the following asymptotics hold:

f
(1)
N (t, z1) ∼ f(t, z1) and f

(2)
N (t, z1, z2) ∼ f(t, z1)f(t, z2) (1.11)

then plugging this Ansatz into (1.9,1.10) the function f does satisfy formally the Boltzmann

equation (B).

Assumption (1.11) is wrong for a fixed N because of the interactions between particles.

However as N goes to infinity, the chaos property (1.11) can be shown to hold asymptoti-

cally. To make the above argument rigorous, the main difficulty is to prove the propagation

of chaos, namely that the almost factorized structure (1.11) is preserved at time t > 0. Ac-

tually the strategy of Lanford consists in proving much more, since the actual hierarchy of

equations satisfied by the collection of marginals (f
(s)
N )1≤s≤N is shown to converge, as N

goes to infinity under the scalingNεd−1α−1 = 1, to a limit (infinite) hierarchy known as the

Boltzmann hierarchy. The wellposedness of both hierachies (a prequisite to the convergence)

ensures that if the initial data looks like a tensor product, meaning

fN |t=0(ZN ) =
1

ZN
N∏
i=1

f0(zi)1XN∈Dε
N
, ZN :=

∫ N∏
i=1

f0(zi)1XN∈Dε
N
dZN ,

then so does the solution asymptotically, meaning that as N goes to infinity, in a sense to be

made precise one has

f
(s)
N (t, Zs) ∼

s∏
i=1

f(t, zi)1Xs∈Dε
s

and f must satisfy the Boltzmann equation. In the following to simplify notation we set

for 1 ≤ s,

f⊗s(t, Zs) :=
s∏

i=1

f(t, zi) .
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1.2.2. Statement of the result. Lanford’s theorem may be stated as follows; a sketch of

proof is presented in Section 2 (for a complete proof see [20]).

Theorem 1.5 (From Particles to Boltzmann equation). Let d ≥ 2 be given, and consider
a nonnegative continuous function f0 defined on Td × Rd. Assume that for some μ0 in R
and β0 > 0,

f0(x, v) ≤ e−μ0Mβ0(v) and
∫
Td×Rd

f0(x, v) dxdv = 1 .

There exists a time T ∗ > 0 depending only on μ0 and β0 such that the following holds: if fN
solves (1.3) with initial data

fN |t=0(ZN ) := Z−1
N (f0)⊗N (ZN )1XN∈Dε

N
,

ZN :=

∫
(f0)⊗N (ZN )1XN∈Dε

N
dZN

(1.12)

then for all 1 ≤ s, one has

f
(s)
N (t, Zs)→ f⊗s(t, Zs) as N →∞ with Nεd−1α−1 = 1 ,

locally uniformly in [0, α−1T ∗[×Ωs, where Ωs is given by

Ωs = {Zs ∈ Tsd × Rsd / ∀t ∈ R, ∀i �= j, xi − xj − t(vi − vj) �= 0}
and f solves (B) with initial data f0.

In particular the first marginal does converge, almost everywhere, to the solution of the

Boltzmann equation (B).

Remark 1.6. The limiting process entails a loss of information which causes irreversibility:

the exact position of the particles is indeed lost, and the deflection angle becomes a random

parameter.

In the case when the particles are not initially independent, the convergence still holds

as proved in [20], but the asymptotics is generally not described by a closed equation on the

first marginal. Under suitable assumptions (bounds and convergence) on the initial marginals

(f
(s)
N |t=0)1≤s≤N , the limiting marginals (f (s))s≥1 satisfy an infinite hierarchy of equations,

referred to as Boltzmann’s hierarchy. Particular solutions of this hierarchy are

• the chaotic solutions already mentioned f (s) = f⊗s with f solution to the full nonlin-

ear Boltzmann equation (B);

• fluctuations describing the dynamics of a tagged particle in a background at equilib-

rium

f (s)(t, Zs) =M⊗s
β (Vs)ϕα(t, z1)

where ϕα is a solution to the linear Boltzmann equation:

∂tϕα + v · ∇xϕα = −αL(ϕα) (LB)

with

L(ϕα) :=

∫∫
[ϕα(v)− ϕα(v

′)]Mβ(v1) b(v − v1, ω) dv1dω .

Note that in both cases the closure of the hierarchy is encoded in the particular form of the

initial data.
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1.3. From the linear Boltzmann equation to the heat equation. As noticed above, it

is difficult to go from particles to fluids via the Boltzmann equation, because Lanford’s

theorem is only true for times which are a priori not uniformly bounded from below with α
(see Theorem 1.5 above). However in the linear setting (LB), global solutions for the limit

equation exists. It has been known for a long time that the hydrodynamic limit of (LB) is the

heat equation. As stated in [24, 26], L is a Fredholm operator of domain L2(Rd, aMβdv)
with

a(v) :=

∫
Sd−1×Rd

Mβ(v1)
(
(v − v1) · ω

)
+
dωdv1 ,

and its kernel reduces to the constant functions. We can then define the vector b(v) =(
bk(v)

)
k≤d

∈ (KerL)⊥ by Lbk(v) = vk for all k ≤ d, and the diffusion coefficient

κβ :=

∫
Rd

v · b(v)Mβ(v)dv . (1.13)

The following result holds (see for instance [3, 36]).

Theorem 1.7 (From Linear Boltzmann to the heat equation). Let ρ0 be a function in C4(Td)
and let ρ be the unique, bounded solution to

∂τρ− κβΔxρ = 0 in Td , ρ|τ=0 = ρ0 . (1.14)

Let ϕα be the unique solution to (LB) with initial data ϕα|t=0 = ρ0. Then for all T > 0
there is a constant CT > 0 such that

sup
τ∈[0,T ]

sup
(x,v)∈Td×Rd

∣∣∣(ϕα(ατ, x, v)− ρ(τ, x)
)
Mβ(v)

∣∣∣ ≤ CTα
−1 .

Remark 1.8. The same result holds in the more general case when the initial data ϕα|t=0

to (LB) depends on both variables x and v. In the whole of this text we choose to simplify

the presentation by considering only the well-prepared case when ϕα|t=0(x, v) = ρ0(x),
although the proofs to follow may be adapted to a more general situation ϕα|t=0 = ϕ0(x, v).

1.4. Statement of the result. In these notes we present a convergence result from an inter-

acting particle system to the heat equation (and the Brownian motion), using the linear Boltz-

mann equation as an intermediate step. As mentioned in Paragraph 1.2.2, the linear Boltz-

mann equation can be understood as the limit of the one-particle distribution corresponding

to one (or a few) tagged particle in a background of particles initially at equilibrium. The

heat equation should therefore be the equation satisfied by the limit of that one-particle dis-

tribution, after an adequate rescaling of the time and the density of the background particles.

The result proved in [6] is the following.

Theorem 1.9 (From particles to the heat equation). Consider N hard spheres on the space
Td × Rd, initially distributed according to the distribution

f0
N (ZN ) := Z−1

N 1DN
ε
(XN )ρ

0(x1)M
⊗N
β (VN ) ,

with ZN :=

∫
1DN

ε
(XN ) dXN ,

(1.15)
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where ρ0 ≤ C0 is a continuous, of integral one, function on Td. Then the distribution
f
(1)
N (ατ, x, v) remains close for the L∞-norm to the solution ρ(τ, x)Mβ(v) of the linear

heat equation (1.14):

sup
τ∈[0,T ]

sup
(x,v)∈Td×Rd

∣∣∣f (1)
N (ατ, x, v)− ρ(τ, x)Mβ(v)

∣∣∣→ 0

in the limit N → ∞, with α going to infinity much slower than
√
log logN , and with

Nεd−1α−1 = 1. In the same asymptotic regime, the process Ξ(τ) = x1(ατ) associated with
the tagged particle converges in law towards a Brownian motion of variance κβ , initially
distributed under measure ρ0.

The long time behavior of a particle in a medium (Lorentz gas, weak interactions...) has

been widely studied and we refer to [41] for a survey of the models and results.

In the framework described in this paper, the convergence of f
(1)
N (t, x, v) to the solution

of the linear Boltzmann equation has been shown to hold in the Boltzmann-Grad limit for

any time t > 0 in [5, 30]. The convergence in Theorem 1.9 however is quantitative and

therefore allows us to obtain controls of the distribution for times t = ατ diverging with N .

The case of a Lorentz gas is somewhat different in nature, since the tagged particle moves

in a frozen background (see [32] for a survey). Many results have been obtained in that di-

rection : see for instance [8, 21] for the convergence of the distribution of the tagged particle

to the solution of (LB) and [11] for the convergence to the brownian motion. In the quantum

counterpart of the Lorentz gas, the convergence to the quantum Brownian motion has been

derived in [17, 18] and these approaches use a truncation of series which is reminiscent of

the method explained in Section 3.3 (see also [31]).

2. Proof of Lanford’s theorem

In this section we shall give the main steps of the proof of Theorem 1.5. We refer to [20] for

all the details.

2.1. The BBGKY hierarchy. We recall that the equation satisfied by the first marginal f
(1)
N

given in (1.9) involves the second marginal f
(2)
N . In order to analyze this equation, it is

therefore necessary to write the equation satisfied by f
(2)
N , which involves f

(3)
N ..., and so we

are finally naturally led to studying the full hierarchy of equations given formally by

∂tf
(s)
N + Vs · ∇Xsf

(s)
N = αCs,s+1f

(s+1)
N (2.1)

with

Cs,s+1f
(s+1)
N (t, Zs) := (N − s)εd−1α−1

s∑
i=1

∫
Sd−1×Rd

ω · (vs+1 − vi)

× f
(s+1)
N (t, Zs, xi + εω, vs+1)dωdvs+1 .

(2.2)

This operator can be split into a gain and a loss term, depending on the sign of ω ·(vs+1−vi):
we write Cs,s+1 = C+

s,s+1 − C−
s,s+1, where

C±
s,s+1f

(s+1)
N =

s∑
i=1

C±,i
s,s+1f

(s+1)
N (2.3)
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the index i referring to the index of the interaction particle among the s “fixed” particles,

with the notation(
C±,i
s,s+1f

(s+1)
N

)
(Zs) := (N − s)εd−1α−1

∫
Sd−1×Rd

(ω · (vs+1 − vi))±

× f
(s+1)
N (Zs, xi + εω, vs+1) dωdvs+1 ,

(2.4)

the index+ corresponding to post-collisional configurations and the index− to pre-collisional

configurations. This hierarchy of equations is known as the BBGKY hierarchy, after N.

Bogoliubov [7], M. Born, and H. S. Green [9], J. G. Kirkwood [27] and J. Yvon [45].

2.2. The Boltzmann hierarchy. From the BBGKY hierarchy presented in the previous

paragraph, we can formally derive the limiting hierarchy, referred to as Boltzmann’s hi-

erarchy. Consider a set of particles Zs+1 = (Zs, xi + εω, vs+1) such that (xi, vi) and

(xi + εω, vs+1) are post-collisional: (xs+1 − xi) · (vs+1 − vi) > 0. We recall the boundary

condition (1.5)

f
(s+1)
N (t, Zs, xi + εω, vs+1) = f

(s+1)
N (t, Z∗

s , xi + εω, v∗s+1)

where Z∗
s = (z1, . . . , z

∗
i , . . . zs), x

∗
i := xi and (v

∗
i , v

∗
s+1) are the pre-collisional velocities:

v∗i := vi − ω · (vi − vs+1)ω , v∗s+1 := vs+1 + ω · (vi − vs+1)ω .

Then neglecting the spatial micro-translations in the arguments of f
(s+1)
N we formally obtain

from (2.4) the following asymptotic expression for the collision operator at the limit:

C0
s,s+1 = C0+

s,s+1 − C0−
s,s+1 ,

with

C0+
s,s+1f

(s+1)(t, Zs) :=
s∑

i=1

∫ (
ω · (vs+1 − vi)

)
+

× f (s+1)(t, x1, v1, . . . , xi, v
∗
i , . . . , xs, vs, xi, v

∗
s+1)dωdvs+1 ,

C0−
s,s+1f

(s+1)(t, Zs) :=
s∑

i=1

∫ (
ω · (vs+1 − vi)

)
+
f (s+1)(t, Zs, xi, vs+1)dωdvs+1 .

At this stage, the Boltzmann hierarchy is introduced as the formal limit of the BBGKY

hierarchy and the core of Lanford’s strategy is to justify the convergence. Note also that

the Boltzmann hierarchy involves an infinite number of recursive equations for the functions

{f (s)}s≥1, as opposed to the BBGKY hierarchy which couples only the density marginals

up to N .

2.3. The iterated Duhamel formula. In order to prove the convergence of f
(s+1)
N to f (s+1)

for a fixed s let us write the solutions f
(s+1)
N and f (s+1) by Duhamel’s formula. Denoting

by Ψs(t) the s-particle flow associated with the hard-sphere system, and by Ts the associ-

ated solution operator, we have formally

f
(s)
N (t) = Ts(t)f

(s)
N |t=0 +

∫ t

0

Ts(t− τ)Cs,s+1f
(s+1)
N (τ) dτ .
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Since we distinguish between pre-collisional and post-collisional configurations, we expect

the initial data to play a special role. We therefore iterate the previous Duhamel formula to

express the solution to the BBGKY hierarchy as an operator acting on the initial data :

f
(s)
N (t) =

N−s∑
k=0

αk
∫ t

0

∫ t1

0

. . .

∫ tk−1

0

Ts(t− t1)Cs,s+1Ts+1(t1 − t2) . . .

. . .Ts+k(tk)f
(s+k)
N |t=0 dtk . . . dt1 .

(2.5)

Similarly the solution to the Boltzmann hierarchy can be recast as

f (s)(t) =

∞∑
k=0

αk
∫ t

0

∫ t1

0

. . .

∫ tk−1

0

Ss(t− t1)C
0
s,s+1Ss+1(t1 − t2)C

0
s+1,s+2 . . .

. . .Ss+k(tk)f
(s+k)
|t=0 dtk . . . dt1 ,

(2.6)

where Ss(t) denotes the s-particle free-flow.

The goal is now to prove the convergence from (2.5) to (2.6) as N goes to infinity with

Nεd−1α−1 = 1 and 1 ≤ s is fixed. Several points need to be adressed:

1. the convergence of both series (2.5) and (2.6) over k (uniformly in N );

2. the convergence of the initial data f
(s+k)
N |t=0(Zs+k) to f

(s+k)
|t=0 (Zs+k);

3. the convergence of the collision operators Cs,s+1 to C0
s,s+1;

4. the convergence of the transport operators Ts to Ss.

Point 2 is not totally obvious due to the singularities induced by the conditioning associ-

ated to the exclusion in f
(s+k)
N |t=0. However, defining

ZN :=

∫
R2dN

1XN∈Dε
N
(f0)⊗N (ZN ) dZN ,

standard arguments lead to

1 ≤ Z−1
N ZN−s ≤

(
1− Cε‖f0‖L∞(Rd

x,L
1(Rd

v))

)−s
, (2.7)

and this estimate leads to the expected convergence outside the diagonals.

Point 3 was formally studied in the Paragraph 2.2 and we shall not detail this argument

further. Note that the continuity along the normal vector to the boundary (and hence the def-

inition of the trace at the boundary) is obtained recursively by construction of the elementary

terms of the series as combinations of collision and transport operators applied to the initial

data. Continuity of the initial data is f0 required in order to prove that the effects of the

spatial micro-translations in the collisions will be negligible. In the next two paragraphs we

shall concentrate on the more difficult points 1. (Paragraph 2.4) and 4. (Paragraph 2.5).

2.4. Uniform bounds. In order to obtain uniform a priori bounds for solutions to the

BBGKY and Boltzmann hierarchies, we need to introduce some norms on the space of

sequences (g(s))s≥1. These norms, although not exactly equivalent, are inspired from the
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ensemble formalism in statistical physics. At the canonical level, given ε > 0, β > 0, an
integer s ≥ 1, and a measurable function gs : Dε

s × Rds → R, we let

|gs|ε,s,β := supessZs∈Dε
s×Rds

(
|gs(Zs)| exp

(β
2
|Vs|2

))
. (2.8)

We also define, for a continuous function gs : Tds × Rds → R,

|gs|0,s,β := sup
Zs∈Tds×Rds

(
|gs(Zs)| exp

(β
2
|Vs|2

))
.

Next we denote byXε,s,β the Banach space of measurable functions fromDε
s×Rds toRwith

finite | · |ε,s,β norm, and similarly X0,s,β denotes the Banach space of continuous functions

from Tds × Rds to R with finite | · |0,s,β norm. At the grand-canonical level, for sequences

of functions G = (gs)s≥1, with gs : Dε
s × Rds → R, we let for ε > 0, β > 0, and μ ∈ R,

‖G‖ε,β,μ := sup
s≥1

(
|gs|ε,s,β exp(μs)

)
.

We define similarly for G = (gs)s≥1, with gs : Tds × Rds → R continuous,

‖G‖0,β,μ := sup
s≥1

(
|gs|0,s,β exp(μs)

)
.

Finally we denote Xε,β,μ the Banach space of sequences of functions G = (gs)s≥1, with

gs ∈ Xε,s,β and ‖G‖ε,β,μ < ∞ and similarly X0,β,μ is the Banach space of sequences of

continuous functions G = (gs)s≥1, with gs ∈ X0,s,β and ‖G‖0,β,μ <∞.

The conservation of energy for the s-particle flow is reflected in identities

|Ts(t)gs|ε,s,β = |gs|ε,s,β and |Ss(t)hs|0,s,β = |hs|0,s,β ,
for all parameters β > 0, μ ∈ R, and for all gs ∈ Xε,s,β and hs ∈ X0,s,β .

The collision operators Cs,s+1 and C0
s,s+1 on the other hand involve a linear loss in s

and in the velocity variable, since one can check that for almost every t > 0, and almost

everywhere in Zs,∣∣(Ts(−t)Cs,s+1Ts+1(t)gs+1

)
(Zs)

∣∣
≤ C β−

d
2

(
sβ−

1
2 +

∑
1≤i≤s

|vi|
)
e−

β
2 |Vs|2 |gs+1|ε,s+1,β ,

(2.9)

and ∣∣(C0
s,s+1gs+1

)
(Zs)

∣∣ ≤ C β−
d
2

(
sβ−

1
2 +

∑
1≤i≤s

|vi|
)
e−

β
2 |Vs|2 |gs+1|0,s+1,β . (2.10)

As pointed out above, in order to make sense of the trace at the boundary it is necessary

to study Ts(−t)Cs,s+1Ts+1(t) and not the operator Cs,s+1 alone (see [40] for a detailed

discussion).

The idea behind analytical type results is to compensate the loss of continuity in (2.9)

and (2.10) (giving rise typically to a factor s(s+ 1) · · · (s+ k − 1) in the elementary terms
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of the Duhamel expansions (2.5) and (2.6)) by the successive time integrations (leading

to a factor tk/k!). We then expect the series in k to be convergent for small values of

αt. More precisely, it follows from rather standard arguments of the Cauchy-Kowalewski

type (see [34] or [43]) that for an initial data bounded in Xε,β0,μ0 then the solution to the

BBGKY hierarchy at time t is bounded in Xε,β0−cαt,μ0−cαt for some fixed c > 0, as long

as β0 − cαt > 0. A similar result holds for the Boltzmann hierarchy: if the initial data

is bounded in X0,β,μ then the solution to the Boltzmann hierarchy at time t is bounded

in X0,β0−cαt,μ0−cαt, as long as β0 − cαt > 0. This explains why the Lanford theorem only

holds for a short time in general: it is the time for which one can guarantee a uniform bound

for all the terms in the hierarchy. We shall call [0, T ∗/α] this life span from now on (where

T ∗ depends only on β0 and μ0).

Remark 2.1. Actually the precise estimates of [20] show that T ∗ is essentially proportional

to exp(μ0), which controls the weighted norm |f0|0,1,β . This corresponds typically to the

life span we would obtain for the quadratic Boltzmann equation (B) developing a simple L∞

theory.

2.5. Termwise convergence. From now on we fix T ∗ as obtained in the previous section

and we consider a time t ≤ T/α with T < T ∗. We shall prove the termwise convergence of

each marginal to the solution of the limit hierarchy.

2.5.1. Series truncation, cut-off of high energies and of clustering collision times. The

bounds obtained in the previous paragraph imply by the dominated convergence theorem

that it is enough to consider finite sums of elementary functions

f
(s,k)
N,R,δ(t) := αk

∫
Tk,δ(t)

Ts(t− t1)Cs,s+1Ts+1(t1 − t2)Cs+1,s+2 . . .

. . .Ts+k(tk)1|Vs+k|≤Rf
(s+k)
N |t=0 dTk ,

f
(s,k)
R,δ (t) := αk

∫
Tk,δ(t)

Ss(t− t1)C
0
s,s+1Ss+1(t1 − t2)C

0
s+1,s+2 . . .

. . .Ss+k(tk)1|Vs+k|≤Rf
(s+k)
|t=0 dTk .

where R2 is a cut-off on the high energies and we have defined

Tk(t) :=
{
Tk = (t1, . . . , tk) / ti < ti−1 with tk+1 = 0 and t0 = t

}
,

Tk,δ(t) :=
{
Tk ∈ Tk(t) / ti − ti+1 ≥ δ

}
.

Indeed defining

f
(s,k)
N (t) := αk

∫ t

0

∫ t1

0

. . .

∫ tk−1

0

Ts(t− t1)Cs,s+1Ts+1(t1 − t2)Cs+1,s+2 . . .

. . .Ts+k(tk)f
(s+k)
N |t=0 dtk . . . dt1

f (s,k)(t) := αk
∫ t

0

∫ t1

0

. . .

∫ tn−1

0

Ss(t− t1)C
0
s,s+1Ss+1(t1 − t2)C

0
s+1,s+2 . . .
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. . .Ss+k(tk)f
(s+k)
|t=0 dtk . . . dt1 ,

one can check that for each given s ≥ 1 and t ∈ [0, T/α] there is a constant Cs > 0
depending only on β0, μ0 and s such that for each n ≥ 1,

∥∥f (s)
N (t)−

n∑
k=0

f
(s,k)
N (t)

∥∥
L∞(Dε

s×Rds)
+
∥∥f (s)(t)−

n∑
k=0

f (s,k)(t)
∥∥
L∞(Tds×Rds)

+
∥∥ n∑
k=0

(f
(s,k)
N − f

(s,k)
N,R,δ)(t)

∥∥
L∞(Dε

s×Rds)
+
∥∥ n∑
k=0

(f (s,k) − f
(s,k)
R,δ )(t)

∥∥
L∞(Tds×Rds)

≤ Cs

(
1

2

)n
+ Ce−C′β0R

2

+ Cn2 δα

T

uniformly inN and t ≤ T/α, in the Boltzmann-Grad scalingNεd−1α−1 = 1. Theorem 1.5

will therefore follow from the convergence of the elementary functions.

2.5.2. Straightening of trajectories. The main step of the proof now consists in decom-

posing the previous truncated functions according to the history of collisions: we write

f
(s,k)
N,R,δ(t) =

∑
J,S

( k∏
i=1

ji

)
f
(s,k)
N,R,δ(t, J, S) and f

(s,k)
R,δ (t) =

∑
J,S

( k∏
i=1

ji

)
f
(s,k)
R,δ (t, J, S)

with

f
(s,k)
N,R,δ(t, J, S) := αk

∫
Tk,δ(t)

Ts(t− t1)C
j1,σ1

s,s+1Ts+1(t1 − t2)C
j2,σ2

s+1,s+2

. . .Ts+k(tk − tk+1)1|Vs+k|≤Rf
(s+k)
N |t=0dTk ,

f
(s,k)
R,δ (t, J, S) := αk

∫
Tk,δ(t)

Ss(t− t1)C
0,j1,σ1

s,s+1 Ss+1(t1 − t2)C
0,j2,σ2

s+1,s+2

. . .Ss+k(tk − tk+1)1|Vs+k|≤Rf
(s+k)
|t=0 dTk ,

where J := (j1, . . . , jk) ∈ {+,−}k and the ± signs were introduced in (2.3) to distinguish

incoming from outgoing collisions, while S := (σ1, . . . , σk) with σi in {1, . . . , s+ i− 1} is
the label of the particle colliding with particle s+ i.

Each one of the functionals f
(s,k)
N,R,δ(t, J, S) and f

(s,k)
R,δ (t, J, S) can be viewed as the

contribution associated with some dynamics, which of course is not the actual dynam-

ics in physical space: the characteristics associated with the operators Ts+i(ti − ti+1)
and Ss+i(ti − ti+1) are followed backwards in time between two consecutive times ti
and ti+1, and collision terms (associated withCji,σi

s+i,s+i+1 andC0,ji,σi

s+i,s+i+1) are seen as source

terms, in which, in the words of Lanford [29], “additional particles” are “adjoined” to the

marginal. These dynamics are therefore referred to as “pseudo-trajectories”.

The end of the proof of Theorem 1.5 consists in straightening out the BBGKY pseudo-

trajectories, for them to become asymptotically close to the Boltzmann pseudo-trajectories

(which are straight lines between each collision time ti and ti+1). This is the most technical

part of the proof, as between two collision times ti and ti+1, the BBGKY pseudo-trajectories

are not always straight lines since recollisions may occur. These recollisions are eliminated
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recursively: when a new particle s+ i is adjoined at time ti, given the other particles (num-

bered from 1 to s + i − 1), it is possible to choose the velocity and impact parameter of

that new particle s + i in a set of almost full measure as N goes to infinity so that after

collision or scattering with particle (this depends on whether the particle is incoming or out-

going), the set of s+ i particles will stay at a prescribed distance ε0 one from another for all

times t ≤ ti − δ. The main point here is that this geometric argument needs to be applied

only a finite number of times since the series has been truncated. It is also important at this

stage that velocities are not too big, and that collision times do not cluster. The previous

preparation steps are therefore crucial here.

We shall not present the details of the construction, which is rather long and technical,

but to give a flavor of the argument let us state one typical geometric result which plays an

important role in the proof. In the following we denote by dist the distance on the torus.

Lemma 2.2. Let x1, x2 ∈ Td be given such that dist(x1, x2) ≥ ε0 ' ε, and a velocity v1
such that |v1| ≤ R <∞. Given δ, t > 0, there is a set K(x1 − x2) of small measure:

|K(x1 − x2)| ≤ CRd

((
ε

ε0

)d−1

+
( ε0
Rδ

)d−1

+
(
Rt
)d

εd−1
0

)

such that for any velocity v2 /∈ (v1 +K(x1 − x2)), with |v2| ≤ R, then

(i) there is no collision over [0, t] by the backward flow: for any τ ∈ [0, t], one has
dist(x1 − v1τ, x2 − v2τ) > ε;

(ii) the particles are well separated after a time δ: for all times τ ∈ [δ, t], there holds
dist(x1 − v1τ, x2 − v2τ) > ε0.

The parameter ε0 ensures that the pseudo-trajectories are separated and therefore do not

recollide. Result (ii) is the main point enabling one to proceed with an inductive proof : with

large probability, the pseudo-trajectories in both hierarchies can be coupled and will remain

very close to each other up to time 0. At time 0, the cloud of particles will have positions

almost identical in both hierarchies up to small shifts of order nε. As the initial densities

f
(n)
N |t=0 and f

(n)
|t=0 are very close in the large N limit, the small shift of the particles can be

bounded by using the gradient norm ‖∇xf0‖L∞ .

2.6. Conclusion of the proof. Optimizing the parameters of the estimates obtained in the

previous sections

n ∼ C1| log ε| , R2 ∼ C2| log ε|
for some sufficiently large constants C1 and C2, and

δ = ε(d−1)/(d+1) , ε0 = εd/(d+1)

we find that the total error is smaller than∥∥f (s)(t)− f
(s)
N (t)

∥∥
L∞(K)

≤ Cεb, for any b <
d− 1
d+ 1

·

This ends the proof of Theorem 1.5.
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3. Long-time asymptotics of a tagged particle

In this section, we sketch the proof of Theorem 1.9 on the diffusive behavior of the tagged

particle (see [6] for details of the proof). We shall mainly focus on the first part of Theo-

rem 1.9 which states that the density obeys the heat equation after rescaling. The conver-

gence to the Brownian motion is a strengthening of this result which shows that the rescaled

increments of the position become independent in the large N limit.

3.1. Main result. As explained in the introduction (Theorem 1.7), the heat equation can be

recovered from (LB) in some large time limit. Thus our goal is to prove that for an initial

data close to equilibrium (1.15), the time obtained in Lanford’s theorem (Theorem 1.5) can

be improved up to a time diverging with N and that the solution of the linear Boltzmann

equation remains a good approximation of the tagged particle density over such long times.

This is the content of the following Theorem from which Theorem 1.9 can be deduced by

applying Theorem 1.7.

Theorem 3.1. ConsiderN hard spheres onTd×Rd, initially distributed according to (1.15).
Then the distribution f

(1)
N (t, x, v) of the tagged particle is close to the solution Mβ(v)

×ϕα(t, x, v) of the linear Boltzmann equation (LB) with initial data ρ0, in the sense that
for all α > 1, in the limit N →∞, Nεd−1α−1 = 1, one has

∥∥f (1)
N (t, x, v)−Mβ(v)ϕα(t, x, v)

∥∥
L∞([0,αT ]×Td×Rd)

≤ C

[
Tα2

(log logN)
A−1
A

] A2

A−1

(3.1)

where A ≥ 2 can be taken arbitrarily large. The constant C depends on A and on the upper
bound C0 on the initial data ρ0.

The proof of Theorem 3.1 is the main goal of this section. We shall rely extensively on the

arguments used to derive Theorem 1.5 and show that close to equilibrium, they remain valid

for macroscopic time scales up to o
(
log logN

α2

)
. This is achieved by using L∞ bounds which

provide a uniform control in time of the densities and allow us to truncate large collision

trees in the Duhamel series.

3.2. Invariant measure and maximum principle. Let MN,β be the invariant Gibbs mea-

sure for the hard sphere dynamics

MN,β(ZN ) := Z̄−1
N 1DN

ε
(XN )M

⊗N
β (VN ) , with Z̄N :=

∫
1DN

ε
(XN ) dXN .

The initial data given by (1.15) satisfies

f0
N (ZN ) ≤ C0MN,β .

SinceMN,β is invariant, the maximum principle implies that this bound remains valid at any

time t > 0 and the marginals are uniformly bounded in time

sup
t

f
(s)
N (t, Zs) ≤ C0M

(s)
N,β(Zs) ≤ C0C

sM⊗s
β (Vs) ,

where the last inequality follows from an argument similar to the one leading to (2.7). Thus

the weighted norms (2.8) are uniformly bounded in time

∀t > 0, |f (s)
N (t)|ε,s,β ≤ C0 C

s. (3.2)
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These bounds are a key step to control the size of the collision trees and to show that

large collision trees have vanishing probability. Indeed compared to Section 2.4, these esti-

mates imply a global control of the solution in the space Xε,β,μ with no deterioration on the

parameters β and μ = logC with time.

3.3. Removing large collision trees. We are going to show that the contribution of large

collision trees in the Duhamel series can be neglected. The time interval [0, t] is split into K
intervals of time length h, where h is a parameter to be chosen small enough and K = t/h
will be large. A collision tree is said to be admissible (see Figure 3) if it has less than nk =
Ak branching points on the time interval [t−kh, t−(k−1)h], whereA is the constant in the

inequality (3.1), which will be chosen large. The growth of the admissible collision trees is

therefore controlled and we are going to show that the other collision trees do not contribute

to the Duhamel series.

t

h

Figure 3. The collision tree depicted in the figure is not admissible for A = 2 because there are

more than 22 collisions during the second time interval. If the black particles were not involved in the

collision tree, then the tree would be admissible.

Defining

Qs,s+n(t) := αn
∫ t

0

∫ t1

0

. . .

∫ tn−1

0

Ss(t− t1)Cs,s+1Ss+1(t1 − t2)Cs+1,s+2

. . .Ss+n(tn) dtn . . . dt1 ,

(3.3)

one can write (2.5) as

f
(s)
N (t) =

N−s∑
n=0

Qs,s+n(t)f
(s+n)
N (0) .

In particular, the marginal associated to the tagged particle density f
(1)
N (t) can be decom-

posed as

f
(1)
N (t) = f

(1,K)
N (t) +RK

N (t) , (3.4)

where the contribution of the admissible trees is

f
(1,K)
N (t) :=

n1−1∑
m1=0

. . .

nK−1∑
mK=0

Q1,M1(h)QM1,M2(h) . . . QMK−1,MK
(h) f

0(MK)
N
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and the error term accounts for the contribution of the large trees

RK
N (t) :=

K∑
k=1

n1−1∑
m1=0

. . .

nk−1−1∑
mk−1=0

Q1,M1(h) . . . QMk−2,Jk−1
(h)

RMk−1,nk
(t− kh, t− (k − 1)h) ,

with

Rk,n(t
′, t) :=

∫ t

t′

∫ t1

t′
. . .

∫ tn−1

t′
Tk(t− t1)Ck,k+1Tk+1(t1 − t2)Ck+1,k+2 . . .

. . . Ck+n−1,k+nf
(k+n)
N (tn) dtn . . . dt1 .

and where we have defined Mk := 1 +
∑k

i=1 mi. Note that f
(1,K)
N (t) is evaluated in terms

of the initial data, instead in each term of RK
N (t) the Duhamel formula is iterated only up to

the first time interval [t− kh, t− (k − 1)h] where more than nk = Ak collisions occur.

From the upper bound (2.9) on the collision operator, one can deduce a continuity esti-

mate in terms of the weighted norms (2.8)

|Qs,s+n(h)fs+n|ε,s, β2 ≤ es−1 (Cd,β αh)
n |fs+n|ε,s+n,β

where Cd,β is a constant. The uniform bound in time on the densities (3.2) enables us to

bound from above the collision operators when too many collisions occur on a short time

interval h. Choosing h = γα−A/(A−1) t−1/(A−1), this leads to an upper bound on the

remainder ∥∥RK
N (t)

∥∥
L∞(Td×Rd)

≤ CγA . (3.5)

Similar computations lead to a similar decomposition for the Boltzmann hierarchy

f (1)(t) = f (1,K)(t) +RK(t) with
∥∥RK(t)

∥∥
L∞(Td×Rd)

≤ CγA. (3.6)

Thus the dominant contribution in the decompositions (3.4) and (3.6) is given by the

functions f
(1,K)
N (t) and f (1,K)(t). To conclude the proof of Theorem 3.1, it remains to show

that

f
(1,K)
N (t) and f (1,K)(t) are close to each other.

3.4. Conclusion of the proof of Theorem 3.1. Each term of the sum in f
(1,K)
N (t) can be

shown to converge to the corresponding term in f (1,K)(t) by arguments identical to those

developed in Section 2.5 to neglect the influence of the recollisions. Indeed the contribution

of a collision tree with s collisions in the BBGKY hierarchy will be close to the correspond-

ing contribution in the Boltzmann hierarchy with an error of order tsεb (with b < d−1
d+1 ) if

no recollision of the pseudo-trajectories occur. This error term is small because the collision

trees have been truncated in order to contain less than AK particles and K can be chosen

much smaller than log log(ε)/ logA by tuning γ " (α2T )A/(A−1)

log logN . As the remainder RK
N (t)

in (3.5) can be controlled as well in terms of γ, the proof of Theorem 3.1 is complete. The

parameter A can be chosen arbitrarily large.
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3.5. Convergence to the Brownian motion. We turn now to the second part of Theo-

rem 1.9 and prove the convergence in law of the tagged particle to a Brownian motion.

The first marginal of the Boltzmann hierarchy can be interpreted as the distribution of a

single particle (x̄(t), v̄(t)) interacting with an ideal gas at density α and temperature 1/β.
This particle changes direction at random times of order 1/α due to collisions. Rephrased

in probalistic terms, the velocity {v̄(t)}t≥0 is a continuous Markov process with generator

given by the operator αL associated to the linear Boltzmann equation. When the density

α of the background gas increases, the frequency of collisions increases by α. Thus after

a time ατ , the particle has encountered α2τ random kicks which is the correct rescaling to

observe a diffusive behaviour at the macroscopic scale (τ, x) when α diverges. The position

of the tagged particle x̄(ατ) = x̄(0) +

∫ ατ

0

v̄(s) ds is an additive functional of this Markov

chain taking values in Td. We consider the rescaled process x̄(ατ) taking values in the torus

Td. Since L has a spectral gap, the invariance principle holds for the ideal tracer x̄(ατ)
(see [28] Theorem 2.32 page 74) which converges to a Brownian motion. The Maxwellian

distributionMβ is the invariant measure of this process and the diffusion coefficient κβ (1.13)

can be recovered as the variance of the position for any coordinate k ≤ d

κβ = EMβ

[
v̄k L

−1v̄k
]
.

This implies the convergence of the rescaled finite dimensional marginals towards the

ones of the brownian motion B with variance κβ , i.e. that for any smooth functions {ψi}i≤�

taking values in Td and times τ1 < τ2 < · · · < τ�

lim
α→∞

E
(
ψ1

(
x̄(ατ1)

)
. . . ψ�

(
x̄(ατ�)

))
= E
(
ψ1

(
B(τ1)

)
. . . ψ�

(
B(τ�)

))
. (3.7)

We have shown that the first particle in the Boltzmann hierarchy behaves as a Markov

chain. We turn now to the convergence of the rescaled tagged particle Ξ(τ) = x1(ατ) to a

brownian motion when N and α � √
log logN are diverging (with Nεd−1α−1 = 1). For

this, one needs to check (see [10]) :

• the convergence of the marginals of the tagged particle sampled at different times

τ1 < τ2 < · · · < τ�

lim
N→∞

E
(
ψ1

(
Ξ(τ1)

)
. . . ψ�

(
Ξ(τ�)

))
= E
(
ψ1

(
B(τ1)

)
. . . ψ�

(
B(τ�)

))
. (3.8)

• the tightness of the sequence, i.e. that is for any τ ∈ [0, T ]

∀δ > 0, lim
η→0

lim
N→∞

P

(
sup

τ<s<τ+η

∣∣Ξ(s)− Ξ(τ)∣∣ ≥ δ

)
= 0 . (3.9)

We sketch below the main steps for the convergence of the time marginals (3.8). The

tighness follows by similar comparison arguments (see [6]). As for the convergence of the

tagged particle density to the heat equation, we proceed by comparison of the microscopic

dynamics with the Boltzmann hierarchy and conclude by using the limit (3.7). We fix Ψ� =
{ψ1, . . . , ψ�} a collection of continuous functions in Td. The density at time t of the tagged

particle f
(1)
N,Ψ

(t) weighted by Ψ� is defined for any test function Φ as∫
Td×Rd

dZ1f
(1)
N,Ψ

(t, Z1)Φ
(
Z1(t)

)
= E
(
ψ1

(
x1(t1)

)
. . . ψ�

(
x1(t�)

)
Φ
(
Z1(t)

))
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=

∫
TNd×RNd

dZNfN (0, ZN ) ψ1

(
x1(t1)

)
. . . ψ�

(
x1(t�)

)
Φ
(
Z1(t)

)
.

The Duhamel formula can be applied to rewrite f
(1)
N,Ψ

(t) as a series

f
(1)
N,Ψ

(t) =
N−1∑

m1+···+m=0

Q1,1+m1(t− t�)
(
ψ�Q1+m1,1+m1+m2(t� − t�−1)

(
ψ�−1 . . .

Q1+m1+···+m−1,1+m1+···+m
(t1)
)
f
(m1+···+m+1)
N (0), (3.10)

where the operatorQn,m was introduced in (3.3). Note that this reformulation of the Duhamel

series is close in spirit to the one introduced in [30] to encode the trajectory of the tagged

particle. An analogous Duhamel formula holds for the density of the first particle in the

Boltzmann hierarchy. Thus a coupling of the trajectories in both hierarchies (similar to the

one used in section 3.4) shows that

lim
N→∞

E
(
ψ1

(
x̄(ατ1)

)
. . . ψ�

(
x̄(ατ�)

))− E
(
ψ1

(
Ξ(τ1)

)
. . . ψ�

(
Ξ(τ�)

))
= 0 .

This implies the convergence of the finite dimensional time-marginals (3.8) and ends the

proof of Theorem 1.9.
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The mathematical analysis of black holes in general

relativity

Mihalis Dafermos

Abstract. The mathematical analysis of black holes in general relativity has been the focus of con-

siderable activity in the past decade from the perspective of the theory of partial differential equations.

Much of this work is motivated by the problem of understanding the two celebrated cosmic censor-

ship conjectures in a neighbourhood of the Schwarzschild and Kerr solutions. Recent progress on the

behaviour of linear waves on black hole exteriors as well as on the full non-linear vacuum dynamics

in the black hole interior puts us at the threshold of a complete understanding of the stability–and

instability–properties of these solutions. This talk will survey some of these developments.

Mathematics Subject Classification (2010). Primary 83C57; Secondary 83C75.

Keywords. Einstein equations, general relativity, black holes, cosmic censorship.

1. Introduction

There is perhaps no other object in all of mathematical physics as fascinating as the black

holes of Einstein’s general relativity.

The notion as such is simpler than the mystique surrounding it may suggest! Loosely

speaking, the black hole region B of a Lorentzian 4-manifold (M, g) is the complement of

the causal past of a certain distinguished ideal boundary at infinity, denoted I+ and known

as future null infinity; in symbols

B = M\ J−(I+). (1.1)

In the context of general relativity, where our physical spacetime continuum is modelled by

such a manifold M, this ideal boundary at infinity I+ corresponds to “far-away” observers

in the radiation zone of an isolated self-gravitating system such as a collapsing star. Thus,

the black hole region B is the set of those spacetime events which cannot send signals to

distant observers like us.

It is remarkable that the simplest non-trivial spacetimes (M, g) solving the Einstein

equations in vacuum

Ric(g) = 0, (1.2)

the celebrated Schwarzschild and Kerr solutions, indeed contain non-empty black hole re-

gions B �= ∅. Moreover, both these spacetimes fail to be future causally geodesically com-

plete, i.e. in physical language, there exist freely falling observers who live for only finite

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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proper time. The two properties are closely related in the above examples as all such finitely-

living observers must necessarily enter the black hole region B. Far-away observers in these

examples, on the other hand, live forever; the asymptotic boundary future null infinity I+ is

itself complete.

In the early years of the subject, the black hole property was widely misunderstood and

the incompleteness of the above spacetimes was considered a pathology that would surely go

away after perturbation. The latter expectation was shattered by Penrose’s celebrated incom-
pleteness theorem [68] which implies in particular that the incompleteness of Schwarzschild

and Kerr is in fact a stable feature when viewed in the context of dynamics. We have now

come to understand the presence of black holes not at all as a pathology but rather as a bless-

ing, shielding the effects of incompleteness from distant observers, allowing in particular

for a complete future null infinity I+. This motivated Penrose to formulate an ambitious

conjecture known as weak cosmic censorship which states that for generic initial data for the

Einstein vacuum equations (1.2), future null infinity I+ is indeed complete. In the language

of partial differential equations, this can be thought of as a form of global existence still

compatible with Penrose’s theorem.

A positive resolution of the above conjecture would be very satisfying but would still

not resolve all conceptual issues raised by the Schwarzschild and Kerr solutions. For it is

reasonable to expect that our physical theory should explain the fate not just of far-away

observers but of all observers, including those who choose to enter black hole regions B. In

the exact Schwarzschild case, such observers are destroyed by infinite tidal forces, while in

the exact Kerr case, they cross a Cauchy horizon to live another day in a region of spacetime

which is no longer determined by initial data. The former scenario is an omenous prediction

indeed–but one we have come to terms with. It is the latter which is in some sense even

more troubling, as it represents a failure of the notion of prediction itself. This motivates

yet another ambitious conjecture, strong cosmic censorship, also originally due to Penrose,

which says that for generic initial data for (1.2), the part of spacetime uniquely determined

by data is inextendible. In the language of partial differential equations, this conjecture

can be thought of as a statement of global uniqueness. For this conjecture to be true, the

geometry of the interior region of Kerr black holes would in particular have to be unstable.

Despite the ubiquity of black holes in our current astrophysical world-picture, the above

conjectures–even when restricted to a neighbourhood of the explicit solutions Schwarzschild

and Kerr–are not mathematically understood. More specifically, we can ask the following

stability and instability questions concerning the Schwarzschild and Kerr family:

1. Are the exteriors to the black hole regions B in Schwarzschild and Kerr
stable under the evolution of (1.2) to perturbation of data? In particular,
is the completeness of null infinity I+ a stable property?

2. What happens to observers who enter the interior of the black hole region
B of such perturbations of Kerr? Are the smooth Cauchy horizons of Kerr
unstable?

If our optimistic expectations on these questions are in fact not realised by the theory,

then this may fundamentally change our understanding of general relativity and perhaps also

our belief in it!

The global analysis of solutions to the Einstein vacuum equations (1.2) without symme-

try was largely initiated in the monumental proof [23] of the non-linear stability of Minkowski

space by Christodoulou and Klainerman in 1993. As with the stability of Minkowski space,
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Question 1. would be a statement of global existence and stability, but now concerning a

highly non-trivial geometry. Question 2., on the other hand, not only concerns a non-trivial

geometry but appears to concern a regime where solutions may become unstable and in

fact singular (at least, if strong cosmic censorship is indeed true!); the prospect of proving

anything about such a regime seemed until recently quite remote. A number of rapid de-

velopments in the last few years, however, concerning linear wave equations on black hole

backgrounds as well as the analysis of the fully non-linear Einstein equations in singular–but

controlled–regimes have brought a complete resolution of Questions 1. and 2. much closer.

The purpose of this talk is to survey some of these developments. In particular, we will

describe the following results, which reflect the state of the art concerning our understand-

ing of Questions 1 and 2 above, and had themselves been the subject of a number of open

conjectures.

1. Linear scalar waves on Schwarzschild and Kerr backgrounds remain bounded
in the black hole exterior and in fact decay polynomially. Schwarzschild
is in fact linearly stable in full linearised gravity.

2. For a spherically symmetric toy model, Cauchy horizons are globally stable
from the point of view of the metric in L∞, but unstable at the level of
derivatives of the metric, as the Christoffel symbols in any regular frame
become singular. For the full vacuum equations (1.2) without symmetry,
then, given the stability of the exterior, the above stability statement for the
Kerr Cauchy horizon again holds.

We see in particular that the final part of 2. means that the precise understanding of

Questions 1. and 2. is in fact coupled. Note that the result 2. is in fact at odds with the

strongest formulations of Question 2 above and this has significant–and slightly troubling–

implications as to what versions of strong cosmic censorship are indeed true. This could

indicate that some of the conceptual puzzles of general relativity are here to stay!

2. Schwarzschild and Kerr

We begin by reviewing the Schwarzschild and Kerr families.

2.1. The Schwarzschild metric. The Schwarzschild family (M, gM ) represents the sim-

plest non-trivial explicit family of solutions to the Einstein vacuum equations (1.2). These

solutions were discovered already in December 1915 [75], the month following Einstein’s

final formulation of general relativity [43]. The metrics are static and spherically symmetric

and can be written in local coordinates as

gM = −(1− 2M/r)dt2 + (1− 2M/r)−1dr2 + r2(dθ2 + sin2 θ dφ2). (2.1)

Here, M is a parameter which can be identified with mass. We shall only consider the case

M > 0. Note that the case M = 0 reduces to the flat Minkowski space, which is trivially a

solution of (1.2).
In discussing the Schwarzschild solution, we have not yet settled on the ambient manifold

M on which (2.1) should live! Historically, this was indeed only understood later, since the

correct differentiable structure of the ambient manifold is not so immediately apparent from
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the form (2.1). If we pass, however, to new coordinates (cf. Lemaitre [57]) (t∗, r, θ, φ)where

t∗ = t+ 2M log(r − 2M),

we see that the metric expression (2.1) can be rewritten

− (1− 2M/r)(dt∗)2 + (4M/r)drdt∗ + (1 + 2M/r)dr2 + r2(dθ2 + sin2 θdφ2). (2.2)

This suggests that we may define our underlying manifold M̃ to be precisely

M̃ = (−∞,∞)× (0,∞)× S2 (2.3)

with coordinates t∗, r, θ, φ, on which gM defined by (2.2)manifestly yields a smooth metric.

Let us for now consider (M̃, gM ) as our spacetime.

One easily sees from the form of the metric (2.2) that the region B
.
= {r ≤ 2M} has the

property that future directed causal curves emanating from B must stay in B (i.e. J+(B) =
B), in particular, they cannot reach large values of r. It turns out that with a suitable definition

of the asymptotic boundary future null infinity I+, B corresponds also to the black hole

region defined in (1.1), and I+ is moreover complete.1 The boundary H+ = {r = 2M} of

B in the spacetime M is known as the event horizon. Note that the static Killing field ∂t of

(2.1) extends to a Killing field ∂t∗ on M which is in fact spacelike in the region {r < 2M}
and null on H+.

In contrast to the case of Minkowski space M = 0 where the above metric (2.2) extends

from (2.3) to R3+1 by adding r = 0 to the manifold, in the case M > 0, the metric

becomes singular as r → 0 is approached. In fact, {r = 0} can be attached as a spacelike

singular boundary to which all future-incomplete causal geodesics approach. This shows

that the manifold M̃ is future-inextendible as a suitably regular Lorentzian manifold. It

is not, however, past-inextendible. It turns out that one can define an even larger ambient

manifold M (by suitably pasting M̃ to a copy of itself) so as for (2.2) above to extend to

a spherically symmetric solution of (1.2) which is now indeed also past-inextendible. This

gives the so-called maximally extended Schwarzschild solution (M, g). See [56, 78]. In what

follows, it is this (M, g) that we shall definitively refer to as the Schwarzschild manifold.

Note that this new manifold (M, g) does not admit r as a global coordinate, but can be

covered by a global system of double null coordinates (U, V )whose range can be normalised

to the following shaded bounded subregion Q of the plane R1+1:

B

R
H
+

I +

The metric takes the form

−Ω2(U, V )dUdV + r2(U, V )(dθ2 + sin2 θdφ2)

1This means that if we define a null retarded time coordinate u such that ∂ur = −1 asymptotically at I+, then

I+ is covered by the u-range (−∞,∞).
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where Ω and r can be described implicity. The above depiction is known as a Carter–
Penrose diagram of (M, g), and gives a concrete realisation of both future null infinity I+

(as an open constant U -segment of the boundary of Q in the ambient R1+1) and the singular

{r = 0} past and future boundaries.

Note that the above manifold is globally hyperbolic with a Cauchy hypersurfaceΣ (pos-

sessing two asymptotically flat ends). That is to say, all inextendible causal curves intersect

Σ exactly once. When we discuss dynamics in Section 3, this property will allow us to view

Schwarzschild (M, g) as the maximal vacuum Cauchy development of data on Σ.

2.2. The Kerr metrics. The Schwarzschild family sits as the 1-parameter a = 0 subfamily

of a larger, 2-parameter family (M, gM,a), discovered in 1963 by Kerr [52]. The parameter

a can be identified with rotation. The latter metrics are less symmetric when a �= 0–they

are only stationary and axisymmetric–and are given explicitly in local coordinates by the

expression

gM,a =−
Δ

ρ2
(
dt− a sin2 θdφ

)2
+

ρ2

Δ
dr2 + ρ2dθ2 (2.4)

+
sin2 θ

ρ2
(
a dt− (r2 + a2)dφ

)2
where

ρ2 = r2 + a2 cos2 θ, Δ = r2 − 2Mr + a2.

We will only consider the case of parameter values 0 ≤ |a| < M , M > 0, where Δ =
(r − r+)(r − r−) for r+ > r− > 0. The case |a| = M is special and is known as the

extremal case.

Again, by introducing t∗ = t∗(t, r) but now also a change φ∗ = φ∗(φ, r), the metric

can be rewritten in analogy to (2.2) so as to make it regular at r = r+, which will again

correspond to the event horizon H+ of a black hole B. An additional transformation can

now make the metric regular at r = r− and allows a further extension into r < r−. The set

r = r− will correspond to a so-called Cauchy horizon CH+ separating a globally hyperbolic

region from part of the spacetime which is no longer determined by Cauchy data. Our

convention will be to not include the latter extensions into our ambient manifold M, which

will, however, as in Schwarzschild, be “doubled” by appropriately pasting two r > r−
regions. For us, the Kerr spacetime (M, gM,a) will thus again be globally hyperbolic with a

two-ended asymptotically flat Cauchy hypersurface Σ as in the Schwarzschild case, and, in

the language of Section 3, will again be the maximal vacuum Cauchy development of data

on Σ. See

B

R
H
+

I +
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It is, however, precisely the existence of these further extensions to r < r− which leads to

the question of strong cosmic censorship.

The Kerr solutions are truly remarkable objects with a myriad of interesting geometric

properties beyond the mere fact of the presence of a black hole region B, for instance, their

having a non-trivial ergoregion E to be discussed in Section 4.2.1. Even the very existence

in closed form of the family is remarkable, since simply imposing the symmetries manifest

in the above expression (2.4) is by dimensional considerations clearly insufficient to ensure

that the Einstein equations (1.2) should admit closed-form solutions. It turns out that the

metrics (2.4) enjoy several “hidden” symmetries. For instance, they possess an additional

non-trivial Killing tensor and they are moreover algebraically special. It is in fact through

the latter property that they were originally discovered [52].

2.3. Uniqueness. A natural question that arises is whether there are other stationary solu-

tions of (1.2) containing black holes B besides the Kerr family gM,a.

If we impose in addition that our solutions be axisymmetric then indeed, the Kerr family

represents the unique family of black hole solutions (with a connected horizon). See [11, 72]

for the original treatments and also [24].

The expectation that the Kerr solutions are unique even without imposing axisymme-

try stems from a pretty rigidity argument due to Hawking [47]. Under certain assumptions,

including the real analyticity of the metric, he showed that stationary black holes are neces-

sarily also axisymmetric, and thus, the above result applies to infer uniqueness.

The assumption of real analyticity is physically unmotivated, however, and leaves open

the possibility that there may yet still be other smooth (but non-analytic) black hole solutions

of (1.2). An important partial result has recently been proven in [1], where it is shown (gen-

eralising Hawking’s rigidity argument using methods of unique continuation) that the Kerr

family is indeed unique in the smooth class provided one restricts to stationary spacetimes
suitably near the Kerr family. In particular, this means that the Kerr family is at the very

least isolated in the family of all stationary solutions.

In view of this latter fact, it indeed makes sense to focus on the Kerr family, in particular,

to entertain the question of its “asymptotic stability”. Before turning to this, however, we

must first make some general comments about dynamics for the Einstein equations (1.2).

3. Dynamics of the Cauchy problem

One of the early triumphs of the theory of partial differential equations applied to general

relativity was the proof that the Einstein equations (1.2) indeed give rise to an unambiguous

notion of dynamics. In the language of partial differential equations, this corresponds to

the well-posedness of the Cauchy problem for (1.2), proven by Choquet-Bruhat [13] and

Choquet-Bruhat–Geroch [14].

We will state the foundational well-posedness statement as Theorem 3.1 of Section 3.1

below. We will then proceed in Sections 3.2 and 3.3 to illustrate global aspects of the problem

of dynamics with the statement of the stability of Minkowski space and with the formula-

tion of the cosmic censorship conjectures, already mentioned in the introduction. This will

prepare us for our study of the dynamics of black holes in Sections 4 and 5.
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3.1. Well-posedness. Before formulating the well-posedness theorem, we must first under-

stand what constitutes an initial state. In view of the fact that the Einstein equations (1.2)
are second order, one expects to prescribe initially a triple (Σ3, ḡ, K), where (Σ3, ḡ) is a

Riemannian 3-manifold and K is an auxiliary symmetric 2-tensor to represent the second

fundamental form. We say that a Lorentzian 4-manifold (M, g) is a vacuum Cauchy devel-
opment of (Σ3, ḡ, K) if (M, g) solves (1.2) and there exists an embedding i : Σ→ M such

that i(Σ) is a Cauchy hypersurface2 in M and ḡ and K are indeed the induced metric and

second fundamental form of the embedding.

The classical Gauss and Codazzi equations of submanifold geometry immediately imply

the following necessary conditions on (Σ3, ḡ, K) for the existence of such an embedding:

R̄+ (trK)2 − |K|2ḡ = 0, divK − d trK = 0. (3.1)

We will thus call a triple (Σ3, ḡ, K) satisfying (3.1) a vacuum initial data set. In her sem-

inal [13], Choquet-Bruhat proved that for regular (Σ3, ḡ, K), the conditions (3.1) are also

sufficient for the existence of a development and for a local uniqueness statement. In the

langauge of partial differential equations, this is the analogue of local well posedness.

We are all familiar from the theory of ordinary differential equations that local exis-

tence and uniqueness immediately yields the existence of a unique maximal solution x :
(−T−, T+), where −∞ ≤ T− < T+ ≤ +∞. In general relativity, maximalising Choquet-

Bruhat’s local statement is non-trivial as there is not a common ambient structure on which

all solutions are defined so as for them to be readily compared. Such a maximalisation was

obtained in

Theorem 3.1 (Choquet-Bruhat–Geroch [14]). Let (Σ3, ḡ, K) be a smooth vacuum initial
data set. Then there exists a unique smooth vacuum Cauchy development (M, g) with the

property that if (M̃, g̃) is any other vacuum Cauchy development, then there exists an iso-

metric embedding i : (M̃, g̃) → (M, g) commuting with the embeddings of Σ.

The above object (M, g) is known as the maximal vacuum Cauchy development. It is

indicative of the trickiness of the maximalisation procedure that the original proof [14] of

the above theorem appealed in fact to Zorn’s lemma to infer the existence of (M, g). This

made the theorem appear non-constructive, a most unappealing state of affairs in view of its

centrality for the theory. A constructive proof has recently been given by Sbierski [73].

For convenience, we have stated Theorem 3.1 in the smooth category, even though it

follows from a more primitive result expressed in Sobolev spaces Hs of finite regularity. In

the original proofs, this requisite Hs space was high and did not admit a natural geometric

interpretation. In a monumental series of papers (see [54]) surveyed in another contribution

to these proceedings [79], this regularity has been lowered to ḡ ∈ H2, which can in turn be

related to natural geometric assumptions concerning curvature and other quantities.

3.2. Global existence and stability of Minkowski space. With the notion of dynamics

well defined, we now turn to the prototype global existence and stability statement, the mon-

umental stability of Minkowski space [23].

The result states that small perturbations of trivial initial data 1. lead to geodesically

complete maximal vacuum Cauchy developments, with a complete future null infinity I+

2In particular, developments are globally hyperbolic in the sense described at the end of Section 2.1. Global

hyperbolicity is essential for the solution to be uniquely determined by data.
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and no black holes, 2. remain globally close to Minkowski space and in fact, 3. settle back

down asymptotically to Minkowski space:

Theorem 3.2 (Stability of Minkowski space, Christodoulou and Klainerman [23]). Let
(Σ3, ḡ, K) be a smooth vacuum initial data set satisfying a global smallness assumption,
i.e. suitably close to trivial initial data. Then the maximal vacuum Cauchy development
(M, g) satisfies the following:

1. (M, g) is geodesically complete and moreover, one can attach a boundary I+ which
is itself complete, and M = J−(I+).3

2. (M, g) remains globally close to Minkowski space,

3. (M, g) asymptotically settles down to Minkowski space (at a suitably fast rate).

In the language of partial differential equationss, the geodesic completeness of statement

1. can be thought of as a geometric formulation of “global existence”. Statement 2. then

corresponds to “orbital stability” while statement 3. corresponds to “asymptotic stability”.

Due to the supercriticality of the Einstein equations, the only known mechanism for showing

long-time control of a solution is by exploiting its dispersive properties, which here arise

due to the radiation of waves to null infinity I+. As a result, the more primitive statements

1. and 2. can only be obtained in the proof by using strong decay rates to flat space, i.e. the

full quantitative version of 3. Thus, the proof of all statements above is strongly coupled.
The original proof of this theorem has been surveyed in a previous preceedings vol-

ume [19] for this conference series. Let us only briefly mention here the central role played

by obtaining (in a bootstrap setting) decay of weighted energy quantities associated to the

Riemann curvature tensor expressed in a null frame (which satisfies the Bianchi equations)

and then coupling these with elliptic and transport estimates for the structure equations sat-

isfied by the connection coefficients, schematically

∇/Γ = Γ · Γ + ψ, ∇/ ψ = /Dψ + Γ · ψ (3.2)

where Γ denotes a generic connection coefficient and ψ denotes a generic curvature com-

ponent. The problem is especially difficult precisely because the rate of decay of waves to

null infinity I+ is borderline in 3 + 1 dimensions. Thus, stability is not true for the generic

equation of the degree of nonlinearity of (1.2), but requires identifying special, null-type4

structure in (3.2). We will return to some of these aspects of the proof when we discuss

black holes.

3.3. Penrose’s incompleteness theorem and the cosmic censorship conjectures. The ex-

plicit examples of Schwarzschild and Kerr indicate that the geodesic completeness of Theo-

rem 3.2 cannot hold for general asymptotically flat data if the global smallness assumption

is dropped. In the early years of the subject, one could entertain the hope that this was an ar-

tifice of the high degree of symmetry of these special solutions. As mentioned already in the

introduction, this was falsified by the following corollary to Penrose’s 1965 incompleteness

theorem:

3Note that the statement M = J−(I+) represents the fact that these perturbed spacetimes do not contain a

non-trivial black hole region B.

4In contrast, the classical null condition [53] does not hold when the Einstein equations (1.2) are written in

harmonic gauge. See, however, the remarkable proof in [58].
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Theorem 3.3 (Corollary of Penrose’s incompleteness thoerem [68]). Let (Σ3, ḡ, K) be a
smooth vacuum data set sufficiently close to the data corresponding to Schwarzschild or
Kerr. Then the maximal vacuum Cauchy development (M, g) is future causally geodesically
incomplete.

As noted already in the introduction, in the specific examples of Schwarzschild and Kerr,

the above incompleteness is “hidden” in black hole regions. That is to say, all finitely-living

observers γ must cross H+ into the region B. In particular, this allows for the asymptotic

boundary I+ to still be complete, cf. the second part of statement 1. of Theorem 3.2. This

property is appealing because it means that if one is only interested in far-away observers,

one need not further ponder the significance of incompleteness as the theory gives predictions

for all time at I+. This motivates the following conjecture, originally formulated by Penrose,

which, if true, would promote this feature to a generic property of solutions to (1.2):

Conjecture 3.4 (Weak cosmic censorship). For generic asymptotically flat vacuum initial
data sets, the maximal vacuum Cauchy devlopment (M, g) possesses a complete null infinity
I+.5

In the language of partial differential equations, this conjecture can be thought of as the

version of global existence which is still compatible with Theorem 3.3.

While the above conjecture would indeed explain the possibility of far-away observation

for all time, it does not do away with the puzzles opened up by the geodesic incompleteness

of Theorem 3.3 from the point of view of fundamental theory. As remarked already, it is

reasonable to expect that our theory gives predictions for all observers, not just “far-away”

ones. The examples of Schwarzschild and Kerr tell us that the incompleteness of Theo-

rem 3.3 may have very different origin. The Schwarzschild manifold (M, g) is inextendible

in a very strong sense: incomplete geodesics approach what can be thought of as a space-

like singularity corresponding to r = 0, and not only do these observers witness infinite

curvature but they are torn apart by infinite tidal forces:

I+

r = 0

Σ

H
+

I+

Σ

CH +

H
+

Kerr, on the other hand, terminates in what can be viewed as a smooth Cauchy horizon CH+,

across which the solution is smoothly extendible to a larger spacetime (the lighter shaded

region) which is no longer however uniquely determined from Σ.6 In the latter case, we see

that the maximal Cauchy development is maximal not because it is inextendible as a smooth

5This particular formulation is due to Christodoulou [18], who in particular, gives a precise general meaning

for possessing a complete null infinity. Note also that this conjecture was originally stated without the assumption

of generic. The necessity of genericity is to be expected in view of the existence of the spherically symmetric

examples [16, 17].

6Recall that our conventions on the definition of the ambient Schwarzschild (M, gM ) and Kerr manifolds

(M, gM,a) in Sections 2.1 and 2.2 are precisely so they be the maximal vacuum Cauchy developments of initial

data (Σ, ḡ, K).
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solution of (1.2) but because such extensions necessarily fail to be globally hyperbolic and

thus cannot be viewed as Cauchy developments.

As explained in the introduction, we have largely come to terms with the former possi-

bility exhibited by Schwarzschild. It gives the theory closure as all observers are accounted

for: They either live forever or are destroyed by infinite tidal forces7. The implications of the

existence of Cauchy horizons, however, as in the Kerr case, would be quite problematic, for

it restricts the ability of classical general relativity to predict the fate of macroscopic objects.

The above unattractive feature of Kerr motivated Penrose to formulate his celebrated

strong8 cosmic censorship conjecture:

Conjecture 3.5 (Strong cosmic censorship). For generic asymptotically flat vacuum data
sets, the maximal vacuum Cauchy development (M, g) is inextendible as a suitably regular
Lorentzian manifold.

The above conjecture can be thought colloquially as saying that “Generically, the future
is determined by initial data” since the notion of inextendibility captures the idea that there

is not a bigger spacetime where the maximal Cauchy development embeds, and which would

thus not be uniquely determined by Cauchy data. It can thus be considered, in the language

of partial differential equations, to be a statement of global uniqueness.

Here the necessity of requiring genericity in the formulation of Conjecture 3.5 is clear

from the start. The Kerr solutions do not satisfy the required inextendibility property. Thus,

for the above conjecture to be true, this feature of Kerr must be unstable. It is not just wishful

thinking that leads to Conjecture 3.5! See Section 5.1.

Finally, let us remark already that the question of how “suitably regular” should be de-

fined in the formulation of Conjecture 3.5 is a subtle one, as will become apparent in view

of Section 5.2 below.

4. The stability of the black hole exterior

To make progress on the general understanding of the theory, and in particular, the cosmic

censorship conjectures of Section 3.3, we begin by looking at dynamics of (1.2) in a neigh-

bourhood of the Kerr family. With the language of the Cauchy problem developed above,

we may now turn to discuss what is one of the central open questions in classical general

relativity–the non-linear stability of the Kerr family in its exterior region. This represents not

only a fundamental test of weak cosmic censorship but a milestone result in itself with im-

portant implications for our current working assumption of the ubiquity of objects described

by Kerr metrics in our observable universe.

4.1. The conjecture. We begin with a more precise formulation of the conjecture, taken

from [29]:

Conjecture 4.1 (Nonlinear stability of the Kerr family). For all vacuum initial data sets
(Σ, ḡ, K) sufficiently “near” data corresponding to a subextremal (|a0| < M0) Kerr metric
ga0,M0 , the maximal vacuum Cauchy development spacetime (M, g) satisfies:

7Speculation on what happens to their quantum ashes is beyond the scope of both classical general relativity and

this article.

8We note that this conjecture is neither stronger nor weaker than Conjecture 3.4. See [18].
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1. (M, g) possesses a complete null infinity I+ whose past J−(I+) is bounded in the
future by a smooth affine complete event horizon H+ ⊂ M,

2. (M, g) stays globally close to ga0,M0 in J−(I+),

3. (M, g) asymptotically settles down in J−(I+) to a nearby subextremal member of
the Kerr family ga,M with parameters a ≈ a0 and M ≈ M0.

We have explicitly excluded the extremal case |a| = M from the conjecture for reasons

to be discussed in Section 4.2.5. In particular, the smallness assumption on data will depend

on the distance of the initial parameters a0,M0 to extremality.

One can compare the above with our formulation of Theorem 3.2. Statement 1. above

contains the statement of weak cosmic censorship restricted to a neighbourhood of Schwarz-

schild. As explained in Section 3.3, in the language of partial differential equations, this is

the analogue of “global existence” still compatible with Theorem 3.3. Statement 2. can be

thought to represent “orbital stability”, whereas statement 3 represents “asymptotic stabil-

ity”. As in our discussion of the proof of the stability of Minkowski space, all these questions

are coupled; it is only by identifying and exploiting the dispersive mechanism (i.e. a quan-

titative version of 3.) that one can show the completeness of null infinity I+ and orbital

stability. In particular, it is essential to identify the final parameters a and M .

Like any non-linear stability result, the first step in attacking the above conjecture is to

linearise the equations (1.2) around the Schwarzschild and Kerr solutions. The resulting

system of equations is of considerable complexity; we will indeed turn to this in Section 4.3

below. But first, let us discuss what can be thought of a “poor man’s” linearisation, namely

the study of the linear scalar wave equation

�gψ = 0 (4.1)

on a fixed Schwarzschild and Kerr background.

4.2. A poor man’s stability result: �gψ = 0 on Kerr. The study of (4.1) in the Schwarz-

schild case goes back to the classic paper of Regge and Wheeler [71] which considered the

formal analysis of fixed modes. The first definitive result about actual solutions of (4.1)
is due to Kay and Wald [51] and gives that solutions of �gψ = 0 on Schwarzschild aris-

ing from regular localised initial data remain uniformly bounded in the exterior, up to and

including H+.

The last decade has seen a resurgence in interest in this problem so as to prove not just

boundedness but decay and to handle not just Schwarzschild but the general subextremal
Kerr case. Many researchers have contributed to this understanding [2, 5, 7, 32, 33, 36,

44, 81] which progressed from the Schwarzschild case a = 0 to the very slowly rotating

case |a| � M and finally to the general subextremal case |a| < M . This programme has

culminated in the following result:

Theorem 4.2 (“Poor man’s” linear stability of Kerr [39, 41]). For Kerr exterior backgrounds
in the full subextremal range |a| < M , general solutions ψ of (4.1) arising from regular lo-
calised data remain bounded and decay at a sufficiently fast polynomial rate through a hy-
perboloidal foliation of spacetime.

See also [8, 34, 42, 50] for analysis of the wave equation on (Schwarzschild) Kerr-(anti)

de Sitter backgrounds.
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A complete survey of the proof of Theorem 4.2 is beyond the scope of this article, but

it is worth discussing briefly the salient geometric properties of the Schwarzschild and Kerr

families which enter into the analysis.

4.2.1. The conserved energy and superradiance. The existence of conserved energy iden-

tities is often crucial for boundedness results. Recall that to every Killing field Xμ, by

Noether’s theorem, there is a corresponding conserved 1-form associated to solutions ψ of

(4.1) formed by contracting Xμ with the energy-momentum tensor Tμν [ψ] = ∂μψ∂νψ −
1
2gμν∂

αψ∂αψ. If the Killing field is causal, then the flux terms on suitably oriented space-

like or null hypersurfaces are non-negative definite. Let us examine this in the context of our

problem.

We first consider the Schwarzschild case a = 0. As explained in Section 2.1, the static

Killing field ∂t is then timelike in the black hole exterior, becoming null at the horizon H+.

The associated energy identity applied in a region Rτ

I +H
+

Σ
τ

Σ0

Rτ

indeed gives nonnegative definite flux terms, and thus yields a useful conservation law for

solutions ψ of (4.1)–but barely! After obtaining higher order estimates via further commuta-

tions of (4.1) by Killing fields and applying the usual Sobolev estimates, this is sufficient to

estimate ψ and its derivatives pointwise away from the horizon. Since this energy is degener-

ate where ∂t becomes null, it is, however, insufficient to obtain uniform pointwise control of

the solution and its derivatives up to and including H+. The original boundedness proof of

Kay and Wald [51] overcame this problem in a clever manner, but using very fragile structure

associated to the exact Schwarzschild metric.

In the Kerr case, for all non-zero values a �= 0, things become much worse. For there is

now a region E in the black hole exterior where the stationary Killing field ∂t is spacelike!

This is known as the ergoregion. As a result, the energy flux corresponding to ∂t is no-longer

non-negative definite and thus does not yield even a degenerate global boundedness in the

exterior. This is the phenomenon of superradiance; there is in particular no a priori bound

on the flux of radiation to null infinity I+.

Before understanding how this problem is overcome, we must first discuss two other phe-

nomena, the celebrated red-shift effect and the difficulty caused by the presence of trapped
null geodesics.

4.2.2. The redshift. The red-shift effect was first discussed in a paper of Oppenheimer–

Snyder [64]. One considers two observers A and B as depicted:

B

H
+

I
+

A
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The more adventurous observer A falls in the black hole whereas observer B for all time

stays outside. Considering a signal emited by A at a constant frequency according to her

watch, in the geometric optics approximation, the frequency of the signal as measured by

observer B goes to zero as B’s proper time goes to infinity–i.e. it is shifted infinitely to the
red in the electromagnetic spectrum.

For general sub-extremal black holes, there is a localised version of this effect at the

horizon H+:

H
+

I
+

A

B

If both observers A and B fall into the black hole and are connected by time translation

A = φτB where φτ is the Lie flow of the Killing field ∂t, then the frequency measured by

B is shifted to the red by a factor exponential in τ .

It turns out that the above geometric optics argument can be captured by the coerciv-
ity properties of a physical space energy identity near H+, corresponding to a well-chosen

transversal vector field N to H+. Such a vector field was introduced in [33] and the con-

struction was generalised in the Epilogue of [38] to arbitrary Killing horizons with positive

surface gravity κ > 0.9 The good coercivity properties do not hold globally however, and

thus to obtain a useful estimate one must combine the energy identity of N with additional

information.

In the Schwarzschild case |a| = 0, it is precisely the conserved energy estimate discussed

in Section 4.2.1 with which one can combine the above red-shift estimate to obtain finally the

uniform boundedness of the non-degenerate N -energy. One can moreover further commute
(4.1)with N preserving the red-shift property at the horizon [37, 38] to again obtain a higher

order N -energy estimate, from which then pointwise boundedness follows using standard

Sobolev inequalities. This gives a simpler and more robust understanding of Kay and Wald’s

original [51]. See [38].

In the Kerr case a �= 0, however, in view of the absense of any global a priori energy

estimate, it turns out that in order to apply the N identity, one needs some understanding

of dispersion. Thus, the problems of boundedness and decay are coupled. For the latter,

however, it would seem that we have to understand a certain high-frequency obstruction to

decay caused by so-called trapped null geodesics.

4.2.3. Trapped null geodesics. Again, we begin with the Schwarzschild case. It is well

known (cf. [47]) that the hypersurface r = 3M is generated by null geodesics which neither

cross the horizon H+ nor escape to null infinity I+. They are the precise analogue of

trapped rays in the classical obstacle problem. In the context of the latter, the presence of a

single such ray is sufficient to falsify certain quantitative decay bounds [70]. A similar result

holds in the general Lorentzian setting [74]. Weaker decay bounds can still hold, however,

if the dynamics of geodesic flow around trapping is “good”, that is to say, the trapped null

geodesics are themselves dynamically unstable in the context of geodesic flow.

9Note that the above positivity property breaks down in the extremal case |a| = M as this is characterized

precisely by κ = 0. See Section 4.2.5 below.
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It turns out that Schwarzschild geometry indeed exhibits “good” trapping. The pro-

gramme of capturing this by local integrated energy decay estimates with degeneration was

initiated by [5]. See [7, 33, 35]. From these and the red-shift identity of Section 4.2.2, the

full decay statement of Theorem 4.2 in the a = 0 case can now be inferred directly by a

black box method [36]. See also [80].

The Schwarzschild results [7, 33, 35] exploited the fact that not only is the structure of

trapping “good” from the point of view of geodesic flow in phase space, but it is localised at

the codimensional-1 hypersurface r = 3M of physical space. The latter feature is broken in

Kerr for all a �= 0. Nonetheless, in the case |a| � M , analogues of local integrated energy

decay could still be shown using either Carter’s separability [38, 40], complete integrability

of geodesic flow [81], or, commuting the wave equation with the non-trivial Killing ten-

sor [2]. Each of these methods effectively frequency localises the degeneration of trapping

and uses the hidden symmetries of Kerr discussed in Section 2.2; implicitly, these proofs

all show that when viewed in phase space, the structure of trapping remains “good”.10 The

above [2, 38, 40, 81] all use the assumption |a| � M in a second essential way, so as to

treat superradiance as a small parameter; in particular, this allows one to couple integrated

local energy decay with the red-shift identity of Section 4.2.2 and obtain, simultaneously,

both boundedness and decay.

Although the problems of boundedness and decay are indeed coupled, a more careful

examination shows that one need not understand trapping in order to obtain boundedness.

Our earlier result [37] had in fact showed that, exploiting the property that superradiance is

governed by a small parameter and the ergorergion lies well within the region of coercivitiy

properties of the red-shift identity, one could prove boundedness using dispersion only for
the “superradiant part” of the solution, which is itself not trapped. This in fact allowed one

to infer boundedness for (4.1) on suitable metrics only assumed C1 close to Schwarzschild,

for which one cannot appeal to structural stability of geodesic flow.

It turns out that it is the above insight which holds the key to the general |a| < M case.

Remarkably, one can show that, for the entire subextremal range, not only is trapping always

good, but the superradiant part is never trapped. The latter is particularly suprising since

when viewed in physical space, there do exist trapped null geodesics in the ergorergion for

a close to M . The above remarks are sufficient to construct frequency localised vector field

multipliers yielding integrated local energy decay in the high frequency regime. See the

original treatment in [39].

4.2.4. Finite frequency obstructions. There is one final new difficulty that appears in the

general |a| < M case: excluding the possibility of finite frequency exponentially growing

superradiant modes or resonances.

The absense of the former was proven in a remarkable paper of Whiting [83]. Whiting’s

methods were very recently extended to exclude resonances on the axis by Shlapentokh-

Rothman in [76]. These proofs depend heavily on the algebraic symmetry properties of the

resulting radial o.d.e. associated to Carter’s separation of (4.1)–yet another miracle of the
Kerr geometry! Using a continuity argument in a, it is sufficient in fact to appeal to the

result [76] on the real axis. This is the final element of the proof of Theorem 4.2. See [41]

for the full details.

10Note that the latter fact can also be inferred from structural stability properties of geodesic flow. See [84].
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4.2.5. The extremal case and the Aretakis instability. Let us finally note that the precise

form (see [41]) of Theorem 4.2 does not in fact hold without qualification for the extremal

case |a| = M . This is related precisely to the degeneration of the red-shift of Section 4.2.2.

Theorem 4.3 (Aretakis [3, 4]). For extremal Kerr |a| = M , for generic solutions of ψ,
translation invariant transversal derivatives on the horizon fail to decay, and higher-order
such derivatives grow polynomially.

Decay results for axisymmetric solutions of (4.1) in the case of |a| = M have been

obtained in [4], but the non-axisymmetric case is still open and may be subject to additional

instabilities. It is on account of Theorem 4.3 that we have excluded |a| = M from Con-

jecture 4.1. The nonlinear dynamics around extremality promise many interesting features!

See [63].

4.3. The full linear stability of Schwarzschild. We have motivated our study of (4.1) as

a “poor man’s” linearisation of (1.2). Let us turn now to the actual linearisation of (1.2)
around black hole backgrounds, that is to say, the true problem of linear stability.

Very recently, with G. Holzegel and I. Rodnianski, we have obtained the full analog of

Theorem 4.2 for the linearised Einstein equations around Schwarzschild.

Theorem 4.4 (Full linear stability of Schwarzschild [30]). Solutions for the linearisation of
the Einstein equations around Schwarzschild arising from regular admissible data remain
bounded in the exterior and decay (with respect to a hyperboloidal foliation) to a linearised
Kerr solution.

The additional difficulties of the above thorem with respect to the scalar wave equation

(4.1) lie in the highly non-trivial structure of the resulting coupled system equations. As

in the non-linear stability of Minkowski space, a fruitful way of capturing this structure

is with respect to the structure equations and Bianchi equations captured by a null frame.

Linearising (3.2), we schematically obtain

∇/Γ(1) = Γ(1) · Γ(0) + ψ(1), ∇/ψ(1) = /Dψ(1) + Γ(1) · ψ(0) + Γ(0) · ψ(1), (4.2)

where Γ(1), ψ(1) now denote linearised spin coefficients and curvature components, respec-

tively, and Γ(0), ψ(0) now denote background terms. Note that in the case of Minkowski

space, ψ(0) = 0 and thus the equations for ψ(1) decouple from those for Γ(1) and admit a co-

ercive energy estimate via contracting the Bel-Robinson tensor with ∂t [22]. Already in the

Schwarzschild case, however, ψ(0) �= 0 and the two sets of equations in (4.2) are coupled.

A fundamental difficulty is the absense of an obvious coercive energy identity for the full

system (4.2), or even just the Bianchi part. Thus, even obtaining a degenerate boundedness

statement, cf. Section 4.2.1, is now non-trivial.

Our approach expresses (4.2) with respect to a suitably normalised null frame associated

to a double null foliation. We then introduce a novel quantity, defined explicitly as

P = /D
�

2 /D
�

1

(
−ρ(1), σ(1)

)
+
3

4
ρ0(trχ)0

(
χ̂(1) − χ̂(1)

)
together with a dual quantity P . Here ρ(1), σ(1) denote particular linearised components

of the Riemann tensor, ˆχ(1) and χ̂(1) denote the linearised shears of the foliation, ρ0 and

trχ0 are Schwarzschild background terms and /D
�

2 and /D
�

1 denote the first order angular

differential operators of [23].
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The quantity P decouples from (4.2) and satisfies the Regge–Wheeler equation

Ω /∇3(Ω /∇4(r
5P ))−(1−2Mr−1) /Δ(r5P )+(4r−2−6Mr−3)(1−2Mr−1)(r5P ) = 0 (4.3)

Like (4.1), the above equation does indeed admit a conserved coercive energy estimate. The

first part of our proof obtains a complete understanding of P , which is a relatively easy

generalisation of Theorem 4.2 restricted to a = 0;

Proposition 4.5. Solutions P of (4.3) arising from regular localised data satisfy bound-
edness and integrated local energy decay (non-degenerate at the horizon and with “good
weights” at infinity, cf. [36]) and decay polynomially with respect to a hyperboloidal folia-
tion.

See also [6]. Given Proposition 4.5, one can then exploit a hierarchial structure in (4.2)
to estimate, one by one, all other quantitites, schematically denoted Γ(1),ψ(1), by integration

as transport equations in L2. From integrated local energy decay and boundedness for P ,

one obtains integrated local energy decay and boundedness for each quantity, after a suitable

linearised Kerr solution is subtracted. It is essential here that one uses the full strength of

Proposition 4.5 with respect to the non-degeneration at the horizon and the “good” weights

at infinity.

It is interesting to compare our approach to the formal mode analysis of the physics

literature (see [12]). There one attempts to recover everything from the linearised curva-

ture components α(1) and α(1), which also decouple and satisfy the so-called Bardeen–

Press equation11. In contrast to (4.3), however, this equation does not admit an obvious

coercive conserved energy, but it can nonetheless be shown that it does not admit growing

modes. From this one can in principle formally recover control of other quantities for fixed

modes [12]. This approach, however, fails to yield an estimate beyond fixed modes, precisely

because of the absense of a mode-independent energy estimate for Bardeen–Press. Note that

when viewed in frequency space, our P can be related to α(1) by the transformation theory

of Chandrasekhar [12].

We reiterate finally that in the above argument, obtaining even boundedness for the full

system (4.2) required the dispersive part of Proposition 4.5. Thus we see that, even at the

linear level, there does not appear to be a pure “orbital stability” result; just as in the non-

linear theory, boundedness is coupled to showing quantitative decay.

4.4. The road to conjecture 4.1. Before turning in Section 5 to the black hole interior, let

us revisit our fully nonlinear problem of Conjecture 4.1.

The issue of using decay rates as in Theorem 4.2 in a nonlinear setting satisfying a null

condition has been addressed in a scalar problem by Luk [59]. See also [49].

As we described in Section 4.1, to prove Conjecture 4.1, one must identify (and linearise

around) the asymptotic parameters to which the solution will asymptote–and for every open

set of initial data, these parameters will generically have a �= 0. It follows that until the

analogue of Theorem 4.4 has been obtained for Kerr, at the very least for the very slowly

rotating regime |a| � M , then one expects that there is no open set in the moduli space of

initial data which can be handled.

It is worth mentioning, however, that there is a restricted version of Conjecture 4.1 which

can in principle be studied using only the Schwarzschild linear stability result. If axisym-

11In the Kerr case, this generalises to the Teukolsky equation. See [12].
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metry is imposed on the initial data and one moreover imposes that the initial angular mo-

mentum vanishes, then, since angular momentum does not radiate to null infinity under the

assumption of axisymmetry, one expects that the solution should approach a Schwarzschild

black hole and thus should be amenable to study using only Theorem 4.4. This is the content

of ongoing work.

We mention finally that under spherical symmetry, one can formulate an analogous prob-

lem to that of Conjecture 4.1 concerning the Einstein–scalar field system (see [15]) or the

Einstein–Maxwell–scalar field system (to be discussed in the next section).12 The analogue

of Conjecture 4.1 is then proven in [15, 26, 32]. The above problem retains few of the dif-

ficulties described in Section 4.2–in particular, it does not exhibit superradiance or trapping.

Moreover, on the nonlinear side, it is interesting to note that spherical symmetry breaks the

supercriticality of the Einstein equations, so in particular, allows 1., 2. and 3. to be proven

separately. Nonetheless, the above models have been especially important as a source for

intuition on the stability and instability properties of black hole interiors. We turn to this

now.

5. The black hole interior and singularities

We now turn to the interior of Kerr black holes and strong cosmic censorship.

5.1. The blue-shift instability. In Section 3.3, we motivated Penrose’s strong cosmic cen-

sorship by little other than wishful thinking–the possibility of Cauchy horizons is so prob-

lematic that we hope that generically they cannot form. There is indeed, however, a heuristic

argument that suggests that at least the Kerr Cauchy horizon may be unstable.

The argument, due to Penrose [67], goes as follows. Let A and B be again two observers,

where B now enters the black hole whereas A remains for all time outside. If A sends a

signal to B, then the frequency measured by B becomes infinitely high as B’s proper time

approaches his Cauchy horizon-crossing time.

H
+

C
H +

I +

Σ

i
+

i
0

B

A

That is to say, the signal is infinitely shifted to the blue.

As with the red-shift effect discussed in Section 4.2.2, this effect should be reflected in

the behaviour of waves, but now as an instability. This was in fact studied numerically in [77]

for the related case of the scalar wave equation (4.1) on Reissner–Nordström background.13

In view of the role of (4.1) as a “poor-man’s linearisation” of (1.2), the above heuristic

arguments were the first indication that the smooth Cauchy-horizon behaviour of Kerr could

be unstable.14

12Recall that in view of Birkhoff’s theorem [47], the only spherically symmetric vacuum solutions are Schwarz-

schild.

13Reissner–Nordström (M, gM,Q) is a spherically symmetric family of solutions to the Einstein–Maxwell equa-

tions and for Q �= 0 has a Cauchy horizon similar to Kerr.

14For an another manifestation of the blue-shift instability when solving the Einstein equations backwards in the
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A general result due to Sbierski [74] shows that the geometric optics argument is suffi-

cient to falsify a quantitative energy boundedness result analogous to the precise statement of

Theorem 4.2 in the exterior. Suprisingly, however, it turns out that the blue-shift instability

is not strong enough for ψ to blow up in L∞.

Theorem 5.1 (Franzen [45]). Solutions ψ of the wave equation (4.1) as in Theorem 4.2
remain pointwise bounded |ψ| ≤ C on sub-extremal Kerr for a �= 0 (or Reissner–Nordström
Q �= 0) in the black hole interior, up to and including CH+.

This result, whose proof uses as an input the result of Theorem 4.2 restricted to H+, can

be thought of as the first indication that rough stability results hold all the way to CH+. To

explore this, however, let us first turn to certain spherically symmetric toy models.

5.2. Spherically symmetric toy-models. With the Schwarzschild case as the only example

to go by, Penrose had originally speculated [67] that the blue-shift instability in the fully non-

linear setting would give rise to a spacelike singularity15.

The simplest toy model with a true wave-like degree of freedom where this can be studied

is the Einstein–Maxwell16–real scalar field system

Rμν −
1

2
gμνR = 8πTμν

.
= 8π(

1

4π
(F λ

μ Fλν −
1

4
gμνFαβF

αβ) + ∂μψ∂νψ−
1

2
gμν∂

αφ∂αφ)

(5.1)

∇μFμν = 0, ∇[λFμν] = 0, �gψ = 0, (5.2)

under spherical symmetry. It turns out that for this toy model, Penrose’s expectation does

not hold as stated: At least a part of the boundary of the maximal development is a null

Cauchy horizon through which the metric is at least continuously extendible:

Theorem 5.2 (C0-stability of a piece of the Cauchy horizon, [25, 27]). For all two-ended
asymptotically flat spherically symmetric initial data for (5.1)–(5.2) with non-vanishing
charge, the maximal development can be extended through a non-empty Cauchy horizon
CH+

I+H+

Σ

CH +

r = 0

as a spacetime with C0 metric.

The above theorem depends in fact also on joint work with Rodnianski [32] on the exte-

rior region (cf. the end of Section 4.4) which obtains upper polynomial bounds for the decay

of ψ on H+. Heuristic and numerical [10, 46] work suggests a precise asymptotic tail, in

particular, polynomial lower bounds on H+. With this as an assumption, one can obtain the

following

exterior, see [29].

15In fact, one still often sees an alternative formulation of Conjecture 3.5 as the statement that “Generically,

singularities are spacelike”.

16The pure scalar field model, whose study was pioneeered by Christodoulou [15], does not admit Cauchy hori-

zons emanating from i+. The system (5.1)–(5.2) is the simplest generalisation that does, in view of the fact that it

admits Reissner–Nordström as an explicit solution.
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Theorem 5.3 (Weak null singularities, [27]). For spherically symmetric initial data as above
where a pointwise lower bound on ∂vψ is assumed to hold asymptotically along the event
horizon H+ that forms, then the above Cauchy horizon CH+ is singular: The Hawking
mass (thus the curvature) diverges and, moreover, the extension of Theorem 5.2 fails to have
locally square integrable Christoffel symbols.

The above two theorems confirmed a scenario which had been suggested on the basis of

previous arguments of Hiscock [48], Israel–Poisson [69] and Ori [65] as well as numerical

studies of the above system [9, 10]. In view of the blow up of the Hawking mass, the

phenomenon was dubbed mass inflation. The type of singular boundary exhibited by the

above theorem, where the Christoffel symbols fail to be square integrable but the metric

continuously extends, is known as a weak null singularity.

The above results apply to general solutions, not just small perturbations of Reissner–

Nordström. In the stability context, it turns out that the r = 0 piece is absent, and the entire

bifurcate Cauchy horizon is globally stable:

Theorem 5.4 (Global stability of the Reissner–Nordström Cauchy horizon [28]). For small,
spherically symmetric perturbations of Reissner–Nordström, the maximal development is ex-
tendible beyond a bifurcate null horizon as a manifold with continuous metric. The Carter–
Penrose diagramme is as in the Reissner–Nordström case. In particular, there is no spacelike
part of the singularity.

Note that the above is precisely the result that one obtains by naively extrapolating The-

orem 5.1 to the fully non-linear theory, identifying ψ with the metric.

Corollary 5.5 (Bifurcate weak null singularities, [28]). Under the assumptions of Theo-
rem 5.4 and the additional asssumption of Theorem 5.3 on both event horizons, the Cauchy
horizons CH+ represent bifurcate weak null singularities and the extensions fail to have lo-
cally square integrable Christoffel symbols.

The ultimate spherically symmetric toy model is that of the Einstein-Maxwell–charged
scalar field system, that is when the scalar field is complex-valued and carries charge and

is directly coupled with the Maxwell field through this charge, besides the gravitational

coupling through the Einstein equations (as in (5.1)). In his Cambridge Ph.D. thesis [55],

J. Kommemi has shown an analogue of Theorem 5.2 for this model, given an a priori decay
assumption on the horizon.

5.3. Beyond toy models: Einstein vacuum equations without symmetry. Whereas the

above work [27, 32, 55] more or less definitively resolves the issue of the appearance of

weak null singularities in spherically symmetric toy models, one could still hold out hope

that the vacuum Einstein equations (1.2) do not allow for the formation of such singularities

but favour spacelike singularities as in the Schwarzschild case. In contrast to the spherically

symmetric “toy” world, for the Einstein vacuum equations without symmetry there is really

no numerical work available on this problem and very little heuristics (see however [66]).

5.3.1. Luk’s vacuum weak null singularities. The first order of business is thus to con-

struct examples of local patches of vacuum spacetime with a weak null singular boundary.

This has recently been accomplished in a breakthrough paper of J. Luk [60], based in part

on his previous work with Rodnianski [61, 62] on impulsive gravitational waves.
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Luk’s spacetimes have no symmetries and are constructed by solving a characteristic

initial value problem with characteristic data of a prescribed singular behaviour. The problem

reduces to showing existence in a rectangular domain as well as propagation of the singular

behaviour. This is given in:

Theorem 5.6 (Luk [60]). Consider characteristic initial data for the Einstein vacuum equa-
tions on a bifurcate null hypersurface C ∪ C whose spherical sections are parameterised by
affine u ∈ [0, u∗)) and u ∈ [0, u∗)), resepectively, and where the outgoing shear χ̂ (and
sufficient angular derivatives) satisfies

|χ̂| ∼ | log(u∗ − u)|−p|u∗ − u|−1. (5.3)

Then the maximal development can be covered by a double null foliation terminating in a
null boundary u = u∗

C

u
=
u ∗

C

through which the metric is continuously extendible. The singular behaviour (5.3) propa-
gates, making this boundary a weak null singularity.

Moreover, in analogy with the Luk–Rodnianski theory of two interacting impulsive grav-

itational waves [62], Luk obtained

Theorem 5.7 (Luk [60]). Consider again characteristic data as above but such that both
outgoing shears χ̂ and χ̂ (and sufficient angular derivatives) satisfy

|χ̂| ∼ | log(u∗ − u)|−p|u∗ − u|−1, |χ̂| ∼ | log(u∗ − u)|−p|u∗ − u|−1, (5.4)

and moreover, the data satisfies an appropriate smallness condition. Then the maximal de-
velopment can be covered by a double null foliation which terminates in a bifurcate null hy-
persurface{u∗}×[0, u∗]∪[0, u∗]×{u∗} through which the metric is continuously extendible.
Relations (5.4) propagate, making the boundary of spacetime a bifurcate weak null singularity.

Note that in Luk–Rodnianski theory [61, 62], (5.3) is replaced by the assumption that

χ̂ is discontinuous but bounded. Thus, it was possible in [61, 62] to interpret the Einstein

equations beyond these null hypersurfaces, which interact simply passing through each other,

leaving in their wake a regular spacetime. Here, however, the boundaries are much more

singular (χ̂ is not in any Lp for p > 1), and thus, the solution cannot be interpreted beyond

them, even as a weak solution of (1.2).17
In the short space of this article, it is impossible to give an overview of the proofs of

the above theorems. As in several of the results we have discussed, the proof expresses

(3.2) with respect to a null frame attached to a double null foliation, and moreover, relies

on a renormalisation of this system which removes the most singular components (extend-

ing ideas from [61, 62]). This does not completely regularise the system, however, and a

fundamental role is played by a hierarchy of largeness/smallness which is preserved in evo-

lution by special null structure of (3.2). These ideas are in turn related to the seminal work

of Christodoulou [20] on the dynamic formation of trapped surfaces, surveyed in another

article in these proceedings [21], and his short pulse method.

17In particular, the name “weak null singularity” is in some sense unfortunate!
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5.3.2. The global stability of the Kerr Cauchy horizon. Putting together essentially all

the ideas form Sections 5.2–5.3.1, we have very recently obtained the following result in

upcoming joint work with J. Luk.

Theorem 5.8 (Global stability of the Kerr Cauchy horizon [31]). Consider characteristic
initial data for (1.2) on a bifurcate null hypersurface H+∪H− where H± have future-affine
complete null generators and their induced geometry is globally close to and dynamically
approaches that of the event horizon of Kerr with 0 < |a| < M at a sufficiently fast poly-
nomial rate. Then the maximal development can be extended beyond a bifurcate Cauchy
horizon CH+ as a Lorentzian manifold with C0 metric. All finitely-living observers pass
into the extension.

Let us note explicitly that a corollary of the above theorem together with a successful
resolution of Conjecture 4.1 would be the following definitive statement

Corollary 5.9. If Conjecture is 4.1 is true then the Cauchy horizon of the Kerr solution
is globally stable and the C0-inextendibility formulation and the “generically, spacetime
singularities are spacelike” formulation of strong cosmic censorship are both false.

5.3.3. The future for strong cosmic censorship. In view of the toy-model results of The-

orem 5.3 and Corollary 5.5, all is not lost for strong cosmic censorship. A version of the

inextendibility requirement in the formulation of strong cosmic censorship which is compat-

ible with the result of Theorem 5.3 for the toy problem and may still be true for the vacuum

without symmetry is the statement that “(M, g) be inextendible as a Lorentzian manifold
with locally square integrable Christoffel symbols”. This formulation is due to Christo-

doulou [20] and would guarantee that there be no extension which can be interpreted as a

weak solution of (1.2). It is an interesting open problem to obtain this in a neighbourhood

of the Kerr family. This naturally separates into the following two statements:

Conjecture 5.10.

1. Under a suitable assumption on the data on H+ in Theorem 5.8, then CH+ is a weak
null singularity, across which the metric is inextendible as a Lorentizian manifold with
locally square integrable Christoffel symbols.

2. The above assumption on H+ holds for the data of Conjecture 4.1, provided the latter
are generic.

One can in fact localise the result of Theorem 5.8 to apply to spacetimes with one asym-

potically flat end, provided they satisfy the assumption on H+, and one can infer again a

non-empty piece of null singular boundary CH+. Thus, all black holes which asymptoti-

cally settle down in their exterior region to Kerr with 0 < |a| < M will have a non-empty

C0-Cauchy horizon, which, assuming a positive resolution to Conjecture ??, will correspond

to a weak null singularity.

Do the above Cauchy horizons/weak null singularities “close up” the whole maximal

development as in the above two-ended case? Or will they give way to a spacelike (or even

more complicated) singularity? These questions may hold the key to understanding strong

cosmic censorship beyond a neighbourhood of the Kerr family.
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Ancient solutions to geometric flows

Panagiota Daskalopoulos

Abstract. We will discuss ancient and eternal solutions to geometric parabolic equations. These are

special solutions that exist for time−∞ < t ≤ T , with T ≤ +∞. They often appear as blow up limits

near a singularity. Their classification often results to the better understanding of the singularities of

the flow. We will address the classification of ancient solutions to the Ricci flow on surfaces and the

Yamabe flow on Sn and point out future open directions. The results in this article are joint work of

the author with the collaborators M. del Pino, R. Hamilton and N. Sesum.
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1. Introduction

We will discuss recent progress concerning the classification of ancient solutions to geo-

metric evolution equations. More precisely, we will focus on the classification of ancient

solutions to the Ricci flow on surfaces and the Yamabe flow on Sn, n ≥ 3. In addition we

will present the construction of new ancient solutions to the Yamabe flow that are of type II.

Ancient solutions often appear as blow up limits at a finite time singularity of the flow

and their classification provides important information about the behavior of solutions near

their singularities. In the Ricci flow and the Mean curvature flow the classification of ancient

solutions is also important for performing surgery near a singularity.

Definition 1.1. A solution to a parabolic equation is called ancient if the solution is defined

for all time t ∈ (−∞, T ), for some T < ∞. If the solution is defined for all time t ∈
(−∞,+∞) it is called eternal.

Shrinking solitons are often examples of ancient solutions to geometric flows, while

steady solitons are examples of eternal solutions. However, there often exist other ancient

or eternal solutions which are not solitons but they can be interpreted as special solutions

obtained by the gluing of one or more solitons. The natural question is whether these

special solutions and the solitons are the only non-trivial ancient or eternal solutions of the

flow. In what follows, we will address recent results and open problems that are related to

this question.

A well known result by S.T. Yau [57] dated back on 1975 asserts that on a complete non-

compact Riemannian manifold Mn of dimension n ≥ 2 with nonnegative Ricci curvature,

any positive harmonic function u must be constant. This is the analogue of Liouville’s

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Theorem for harmonic functions on Rn. A natural question is whether the analogue of Yau’s

theorem holds for positive ancient or eternal solutions of the heat equation

ut = Δu on Mn × (−∞, T ), T ≤ ∞
under the same assumptions on Mn. The answer to this question is negative, as it can be

easily seen by the eternal solution to the heat equation on M = R1 given by u(x, t) = ex+t.

However, P. Souplet and Q. Zhang [55] showed that the analogue of Yau’s theorem holds

under an extra growth assumption at infinity. Namely, if u is a positive ancient solution to

the heat equation on M × (−∞, T ) such that

u(x, t) = eo(d(x)+
√
|t|) as d(x)→∞

then u is a constant. Also, if u is any ancient solution to the heat equation such that

u(x, t) = o(d(x) +
√
|t|) as d(x)→∞

then u is a constant. Note that this last estimate is also sharp in the spatial direction due to

the example u(x, t) = x. The result in [55] is based on local Li-Yau type gradient estimates

for positive solutions (bounded or not) to the heat equation (c.f. in the works of P. Li and

S.T. Yau [42] and R. Hamilton [35] for previous related results).

A simple and well studied model of semi linear diffusion which is often used as a proto-

type in the analysis of singularities of more complex geometric flows, is the equation

ut = Δu+ |u|p−1u (1.1)

for different exponents p > 1. In [46], F. Merle and H. Zaag provided the classification of

positive bounded eternal solutions to the equation

wτ = Δw − y

2
· ∇w − w

p− 1
+ wp, (y, τ) ∈ Rn × R (1.2)

in the sub-critical range of exponents 1 < p < (n + 2)/(n − 2) following previous clas-

sification results by Y. Giga and R. Kohn [27, 28]. Equation (1.2) arises in the singularity

analysis of solutions to equation (1.1) at a blow up point (a, T ). It also provides a model

for the singularity analysis in various geometric flows, including neckpinches in the Mean

curvature flow (c.f. in [1]) and the Ricci flow (c.f. in [2, 3]).

If a solution u of (1.1) has a finite time singularity at a point (a, T ), then

wa(y, τ) := (T − t)
1

p−1 u(x, t), y =
x− a√
T − t

, τ = − log(T − t)

satisfies equation (1.2). The study of u near a blow up point (a, T ) is equivalent to the study

of the long time behavior of the rescaled solution wa, which after taking the limit over a

sequence τn → ∞, converges to an eternal solution of equation (1.2). It follows by the

results of Y. Giga and R. Kohn in [27, 28] (see also in [26]) that ‖wa‖L∞ ≤ C and

lim
τ→∞

wa(y, τ) = lim
t→T

(T − t)
1

p−1 u(x, t) = κ

where κ := (p − 1)−
1

p−1 is the steady state of equation (1.2). However, this result is only

pointwise in a.
Uniform estimates on the rescaled solution wa as τ → ∞ that are independent of a and

also in some sense on the initial data were shown in [46]. These estimates are heavily based

on the following classification result.
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Theorem 1.2 (F. Merle and H. Zaag ’98 [46]). Ifw is a nonnegative bounded eternal solution
of equation (1.2), then w is independent of the spatial variable y and hence

w = 0 or w = κ or w(s) = φ(s− s0) for some s0 ∈ R

with φ(s) = κ(1 + es)−
1

(p−1) .

A previous classification result, which states that if w±∞ = 0 or w±∞ = κ, then w ≡ 0
or w ≡ κ was proven by Giga and Kohn in [27]. The result in [27] simply follows by the

monotonicity of the Lyapunov functional

E(w) =
1

2

∫
|∇w|2dμ+ 1

2(p− 1)

∫
w2dμ− 1

p+ 1

∫
wp+1dμ

where dμ = (4π)−
n
2 e−

|y|2
4 dy that is shown to be decreasing in time under (1.2).

The significance of Theorem 1.2 is the classification of the eternal solutions to (1.2)

that connect the steady states w−∞ = κ and w+∞ = 0. These solutions are shown to be

independent of y, hence given by φ(s). Its proof is heavily involved and strongly relies on

analyzing the behavior of the solution w near τ → −∞ in terms of its projections on the

positive, zero and negative eigenspaces of the linearized operator Lv := Δv − 1
2y · ∇v + v

at w = κ. Notice that in terms of v := w − κ, equation (1.2) takes the form

vτ = Lv + f(v) (1.3)

with superlinear error f(v) := (v + κ)p − κp − pκp−1v. Equation (1.2), with different

nonlinear error functions f(v), often arises in the analysis of singularities in geometric flows,

in particular in neck-pinches in the mean curvature flow [1] and the Ricci flow [2, 3].

While the classification of entire solutions to nonlinear elliptic equations often appears

in the literature, it is surprising that there are not many results available regarding the classi-

fication of ancient or eternal solutions to parabolic PDE.

The remarkable results by R. Hamilton which characterize eternal solutions to the Mean

curvature flow [37] and Ricci flow [34] as translating solitons, have been widely used in

the classification of slowly forming singularities. The main assumption in these results,

which rely on the strong maximum principle and the Li-Yau differential Harnack inequal-

ities, is that the curvature of the eternal solution assumes a space-time interior maximum.

This assumption holds only under very special circumstances and rules out other interesting

solutions.

In what follows we will discuss results and open problems concerning the classification

of ancient and eternal solutions to the Ricci flow and the Yamabe flow without any other

assumption.

In [18], the author jointly with R. Hamilton and N. Sesum, established the classification

of ancient solutions g(·, t) to the Ricci flow on a compact surface that exists for t ∈ (−∞, T )
and becomes spherical at time t = T . In addition to their role in the classification of sin-

gularities, ancient solutions to the 2-dim Ricci flow appear in quantum field theory, as they

describe trajectories of the renormalization group equations of certain asymptotically free

local quantum field theories in the ultra-violet regime (c.f. in [24] and its references). It was

shown in [18] that the metric g(·, t) is either a family of contracting spheres or one of the

King-Rosenau solutions [40, 51]. The latter is a type II ancient solution which is given in
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closed form and asymptotically, as τ → −∞, it resembles a surface obtained by the glu-

ing of two cigars (Barenblatt self similar solutions). The King-Rosenau solution and the

classification theorem in [18] will be further discussed in section 2.

The work in [18] follows an earlier result by the author with R. Hamilton and N. Sesum

in [17], where the classification of ancient, convex and compact solutions to the curve short-

ening flow was shown.

A well known open question is the classification of ancient compact solutions to the

Ricci flow on a compact manifold M3 of dimension n = 3. These solutions typically arise

as singularity models [30, 31, 48, 49]. In [48], G. Perelman constructed a class of rotationally

symmetric type II ancient solutions to the Ricci flow on S3. This is the higher dimensional

analogue of the King-Rosenau solutions, however in this case are not given in closed form.

These solutions are κ-noncollapsed. It is widely conjectured that the contracting spheres and

the Perelman solution are the only κ-noncollapsed ancient solutions to the Ricci flow on S3.

The classification of type I ancient solutions to the Ricci flow has been addressed in [9, 47].

However, the answer to the above conjecture remains open.

One may argue that the higher dimensional analogue of the Ricci flow on S2 is the

Yamabe flow on Sn. The Yamabe flowwas introduced by R. Hamilton in 1989 as an approach

to solve the Yamabe problem on manifolds of positive conformal Yamabe invariant. Since

then, there has been an extensive study of the long time existence and convergence to this

flow on a compact manifolds in the articles [6, 7, 13, 33, 54, 58] among others.

In the case where the background manifold is the sphere Sn with the standard spherical

metric g
Sn , the Yamabe flow evolving a metric g = v

4
n−2 (·, t) g

Sn takes the form a fast
diffusion equation satisfied by the function v. The analogue of the King-Rosenau solution

exists in this flow and was found by J.R. King [40] (see also in [8]). However, in contrast with

the King-Rosenau solution of the 2-dim Ricci flow and the Perelman solution of the 3-dim

Ricci flow, the King solution of the Yamabe flow is a type I ancient solution. Asymptotically,

as t → −∞, it resembles a surface obtained by the gluing of two Barenblatt self-similar

solutions.

In analogy with the classification result for the 2-dim Ricci flow in [18], one may ask

whether the contracting spheres and the King solutions are the only compact ancient solu-

tions of the Yamabe flow on Sn, n ≥ 3. This was shown not to be true, by the author jointly

with M. del Pino and N. Sesum. Indeed, in [16] new type II ancient compact solutions to the

Yamabe flow on Sn were constructed. These solutions are rotationally symmetric and con-

verge, as t → −∞, to a tower of k spheres, k ≥ 2. We will refer them as moving towers of
bubbles. Their curvature operator changes sign. The construction in [16] may be viewed as

a parabolic analogue of the gluing of k exact solutions to the rescaled equation (the spheres)

with narrow cylindrical necks to obtain a new ancient solution to the Yamabe flow. It will be

further discussed in section 3.

2. Ancient solutions to the Ricci flow

In this section we will discuss the classification of ancient solutions to the Ricci flow on

compact surfaces and also briefly discuss the higher dimensional case n ≥ 3. Consider an

ancient solution gij of the Ricci flow

∂gij
∂t

= −2Rij (2.1)
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on a two-dimensional surface M that exists for time t ∈ (−∞, T ), T <∞.

The Ricci flow was introduced by R. Hamilton in 1981 in his seminal work [30] as an

analytical and geometric tool to approach the resolution of the geometrization conjecture of

William Thurston. We refer the interested reader to the articles by R. Hamilton [30–32, 36],

G. Perelman [48–50] and S. Brendle & R. Schoen [10, 11] for some of the fundamental

results on the Ricci flow and its applications.

Definition 2.1. An ancient solution to the Ricci flow (2.1) on a surface M is of type I, if it

satisfies

lim sup
t→−∞

(|t| max
M
|Rm|(·, t)) <∞.

A solution which is not of type I, will be called of type II. Here Rm denotes the Riemannian

curvature of the metric.

In two dimensions one has

Rij =
1

2
Rgij

where R is the scalar curvature of the surface. Moreover, on an ancient non-flat solution one

has R > 0. It is well known by the works of R. Hamilton [29] and B. Chow [12] that a

compact surface evolving by the Ricci flow (2.1) will become spherical at its extinction time

T , which means that after a normalization, the normalized flow converges to a spherical

metric, that we will refer to as the limiting sphere.
One of the remarkable properties of the two-dimensional Ricci flow is its conformal

invariance (it preserves the conformal class). Since on an ancient non-flat solution the scalar

curvature R > 0, by the Uniformization theorem one may parametrize the Ricci flow by the

limiting sphere at time T , namely express

g(·, t) = u(·, t) gS2

where gS2 denotes the standard metric on S2. This metric can be written as

gS2 = dψ2 + cos2 ψ dθ2 (2.2)

where ψ, θ denote the global coordinates on S2. It follows that (2.1) is equivalent to the

logarithmic fast-diffusion equation for the conformal factor u, namely

ut = ΔS2 log u− 2 on S2 × (−∞, T ) (2.3)

where ΔS2 denotes the Laplace Beltrami operator on S2.

From the PDE point of view, it is natural to consider the pressure function v := u−1

which evolves by

vt = vΔS2v − |∇S2v|2 + 2v2, on S2 × (−∞, T ). (2.4)

Typical examples of ancient type I solutions to the 2-dim Ricci flow are the contracting
spheres given by a pressure

vS(ψ, t) =
1

2(T − t)
.

These are examples ancient shrinking Ricci solitons. Explicit examples of ancient type II
solutions are the King-Rosenau solutions [40, 51] which are defined by a pressure

vK(ψ, t) = μ
(
coth(2μ(T − t))− tanh(2μ(T − t)) sin2 ψ

)
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for a parameter μ > 0. These solutions are often called, in the context of quantum field
theory, as the sausage model [24]. They are particularly interesting because they are not

solitons. They are rotationally symmetric solutions and can be visualized (near t = −∞) as

two cigars (Barenblatt self-similar solutions) glued together to form a compact solution.

In [18], the author jointly with R. Hamilton and N. Sesum established the following

classification result:

Theorem 2.2. Let g be a smooth ancient compact solution to the Ricci flow (2.1) in di-
mension n = 2. Then, the solution g is either one the contracting spheres or one of the
King-Rosenau solutions.

Discussion on the proof of Theorem 2.2. Because the King-Rosenau solutions are not soli-
tons (self-similar) they cannot be captured via previously developed techniques. In addition,

the standard Lyapunov functional for this equation cannot be used, because when evaluated

on the King-Rosenau solutions, it becomes unbounded as t → −∞. A different suitable

Lyapunov functional was introduced in [18] and its monotonicity was used to show that the

solution v(·, t) of (2.4) converges, as t → −∞, in the C1,α norm (for any α < 1) to a

solution v∞ of the steady state equation

Lv∞ := v∞ΔS2v∞ − |∇S2v∞|2 + 2 v2∞ = R∞ v∞ a.e. on S2 (2.5)

where R∞ := limt→−∞R(·, t), with R denoting the scalar curvature of the evolving sur-

face. In particular, this shows that

R∞ = 0 a.e. on S2.

However, R∞ is not continuous; actually you expect that R∞ is discontinuous at exactly

two points (which are the tips of the two cigars that are “glued” to make the King-Rosenau

solution).

Equation (2.5) fails to be strictly elliptic. Indeed, the limit v∞ will vanish at points on

S2 that actually coincide with the points of discontinuity of R∞. This causes the major

technical obstacle in the classification of the backward limits v∞. Using various geometric

considerations and a priori estimates on the elliptic equation (2.5), it was shown in [18] that

v∞ vanishes at exactly two points and that R∞ is discontinuous at those exactly two points.

By choosing a suitable parametrization of the flow (using the conformal invariance of the

equation) it follows that

v∞ = C cos2 ψ, C ≥ 0

(where ψ, θ are the global coordinates on S2). In other words, the backward limit is either

trivial (C = 0) or a cylinder (C > 0).
When C = 0, then it was shown in [18] that the isoperimetric ratio I(t) for the evolving

surface satisfies I(t) ≡ 1, for all t, forcing the ancient solution to be one of the contracting

spheres. For this result a crucial role plays the suitable application of the isoperimetric

estimate shown by R. Hamilton in [38].

When C > 0, then the ancient solution must be one of the King-Rosenau solutions. This

is shown in [18] by expressing the metric gij in Euclidean coordinates (via the stereographic

projection of the background sphere S2) namely gij = ū gR2 = v̄−1 gR2 , with gR2 denoting

the standard Euclidean metric, and considering the scaling invariant quantity

Q(x, y, t) := v̄
[(
v̄xxx − 3v̄xyy

)2
+
(
v̄yyy − 3v̄xxy

)2]
. (2.6)
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It was remarked to the authors by S. Brendle that in complex variable notation z := x+ iy,
one has

Q = v̄|∇zzz v̄|.
Also, in [14] an interesting geometric interpretation of the quantityQ was given by B. Chow.

One observes that Q ≡ 0 on all three: the King-Rosenau solution, the cigar solution and

the cylinder. Actually the classification follows by establishing that

Q(·, t) ≡ 0, for all t ∈ (−∞, T ) (2.7)

and concluding from this identity that v̄ must one of the King-Rosenau solutions. To achieve

that Q ≡ 0, one shows, via the maximum principle, that Qmax(t) is decreasing in t. By

also showing that limt→−∞Qmax(t) = 0 (using the classification of the backward limit that

was discussed above) one concludes that (2.7) holds. One then concludes that the ancient

solution must be one of the King-Rosenau solutions, finishing the proof of the Theorem.

The classification of two-dimensional complete non-compact eternal solutions of the

Ricci flow was previously given by the author and N. Sesum in [19] (see also in [15, 34]). In

fact, in this case one observes that the Ricci flow is equivalent to the fast diffusion equation

∂u

∂t
= Δ log u, on R2 × R (2.8)

since the evolving metric g may be expressed as g = u gR2 , where gR2 denotes the standard

Euclidean metric on R2. The following classification result was shown by the author and N.

Sesum in [19]:

Theorem 2.3. Let g = u gR2 be a positive smooth eternal solution of the Ricci flow (2.8) on
R2 × R which defines a complete metric. Assume that for each t ∈ R, the metric g(·, t) has
finite width and bounded scalar curvature R. Then, u is a translating soliton of the form

U(x, t) =
2

β (|x− x0|2 + γ e2βt)
(2.9)

for some x0 ∈ R2 and some constants β > 0 and γ > 0.

The assumption on the bound on the width of the metric g in Theorem 2.3 was removed

by S.C. Chu in [15]. Theorems 2.2 and 2.3 together with the results in [15, 34] provide the

classification of all ancient or eternal complete solutions to the 2-dim Ricci flow.

The classification of ancient compact solutions to the Ricci flow on a three dimensional
compact manifold M3 remains an open question. Such solutions arise as singularity models

[30, 36, 48, 49].

In [48], G. Perelman introduced the notion of a κ-noncollapsed solution to the n-dimen-

sional Ricci flow which has played a fundamental role in the classification of singularities. In

[49], G. Perelman constructed a class of non-collapsed (as t→ −∞) rotationally symmetric

type II ancient solutions to the Ricci flow on S3. This is the higher dimensional analogue of

the King-Rosenau solutions. We will refer to it as the Perelman solution. It is conjectured

that the the only κ-noncollapsed (as t→ −∞) ancient solutions of the Ricci flow on S3 are

the Einstein (contracting spheres) and the Perelman solutions. On the other hand, V. Fateev

constructed in [24] an interesting example of a collapsed ancient solution to the Ricci flow

in dimension three (c.f. also in [5] for generalizations in higher dimensions).
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L. Ni [47] showed that any type I ancient solution to the Ricci flowwhich is κ-noncollaps-
ed and has positive operator has constant sectional curvature. More generally, S. Brendle,

G. Huisken and C. Sinestrari [9] obtained the classification of ancient solutions to the Ricci

flow in any dimension, under a suitable uniform curvature pinching condition, which forces

the solution to have constant sectional curvature. The example of V. Fateev [24] shows that

the pinching condition cannot be removed. The classification of ancient κ-noncollapsed
solutions in the general case remains a challenging open question.

3. Ancient solutions to the Yamabe flow on Sn

Let (M, g0) be a compact manifold without boundary of dimension n ≥ 3. If g = v
4

n−2 g0 is

a metric conformal to g0, the scalar curvature R of g is given in terms of the scalar curvature

R0 of g0 by

R = v−
n+2
n−2
(− c̄nΔg0v +R0 v

)
where Δg0 denotes the Laplace-Beltrami operator with respect to g0 and c̄n =

4(n−1)
n−2 .

In 1989 R. Hamilton introduced the Yamabe flow

∂g

∂t
= −Rg (3.1)

as an approach to solve the Yamabe problem on manifolds of positive conformal Yamabe

invariant, via parabolic PDE methods.

We refer the reader to the seminal work by R. Schoen [52] from 1984 which had resolved

the Yamabe problem via elliptic variational methods. Previous important developments on

this problem, under a positivity assumption on the scalar curvature, are those of N. Trudinger

[56] and T. Aubin [4].

In its variational formulation, the Yamabe flow is the negative L2-gradient flow of the

total scalar curvature, restricted to a given conformal class. It may be interpreted as deform-

ing a Riemannian metric to a conformal metric of constant scalar curvature, when this flow

converges.

R. Hamilton [33] showed the existence of the normalized Yamabe flow (which is the

re-parametrization of (3.1) to keep the volume fixed) for all time; moreover, in the case of

an initial metric with negative scalar curvature, he established the exponential convergence

of the flow to a metric of constant scalar curvature.

Since then, there have been a number of important works on the convergence of the Yam-

abe flow on a compact manifold without boundary to a metric of constant scalar curvature.

B. Chow [13] showed the convergence of the flow, under the conditions that the initial metric

is locally conformally flat and of positive Ricci curvature. The convergence of the flow for

any locally conformally flat initial metric was shown by R. Ye [58]. H. Schwetlick and M.

Struwe [54] obtained the convergence of the Yamabe flow on a general compact manifold

under a suitable Kazdan-Warner type of condition that rules out the formation of bubbles and

it is verified (via the positive mass Theorem) in dimensions 3 ≤ n ≤ 5. The convergence

result, in its full generality, was established by S. Brendle [6, 7] (up to a technical assump-

tion, in dimensions n ≥ 6, on the rate of vanishing of Weyl tensor at the points at which it

vanishes): starting with any smooth metric on a compact manifold, the normalized Yamabe

flow converges to a metric of constant scalar curvature. This provides a parabolic PDE proof

of the Yamabe conjecture, as R. Hamilton had originally imagined.
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In the special case where the background manifold M0 is the sphere Sn and g0 is the

standard spherical metric g
Sn , the Yamabe flow evolving a metric

g = v
4

n−2 (·, t) g
Sn

takes (after rescaling in time by a constant) the form of the fast diffusion equation

(v
n+2
n−2 )t = ΔSnv − cnv, cn :=

n(n− 2)

4
. (3.2)

Starting with any smooth metric g0 on Sn, it follows by the results in the works [13, 23,

58] that the solution of (3.2) with initial data g0 will become singular at some finite time

t < T and that v becomes spherical at time T , which means that after a normalization, the

normalized flow converges to the spherical metric. In addition, v becomes extinct at T .

A metric g = v
4

n−2 g
Sn may also be expressed as a metric on Rn via stereographic

projection. It follows that if g = v̄
4

n−2 (·, t) g
Rn

(where g
Rn

denotes the standard metric on

Rn) evolves by the Yamabe flow (3.1), then v̄ satisfies (after a rescaling in time) the fast

diffusion equation on Rn

(v̄p)t = Δv̄, p :=
n+ 2

n− 2
. (3.3)

Observe that if g = v̄
4

n−2 (·, t) g
Rn

represents a smooth solution when lifted on Sn, then

v̄(·, t) satisfies the growth condition

v̄(y, t) = O(|y|−(n−2)), as |y| → ∞.

Definition 3.1. The solution g = v
4

n−2 g0 to (3.1) is called ancient if it exists for all time

t ∈ (−∞, T ), where T <∞. We will say that the ancient solution g is of type I, if it satisfies

lim sup
t→−∞

(|t| max
M0

|Rm | (·, t)) <∞

(where Rm is the Riemannian curvature of metric g). An ancient solution which is not of

type I, will be called of type II.

Explicit examples of ancient solutions to the Yamabe flow on Sn are the contracting spheres,
given by the conformal factor

vS(p, t) =

(
4

n+ 2
cn (T − t)

)n−2
4

(3.4)

and the King solutions that can be expressed on Rn in closed from g = v̄K(·, t) gRn
, where

v̄K is the radial function

v̄K(r, t) =

(
a(t)

1 + 2b(t) r2 + r4

)n−2
4

. (3.5)

It follows that the coefficients a(t) and b(t) satisfy a certain system of ODEs. This solution

was discovered by J.R. King [40] (c.f. also in [8]). It is not a soliton and may be visualized,

as t → −∞, as two Barenblatt self-similar solutions “glued” together to form a compact
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solution to the Yamabe flow. It is the analogue of the King-Rosenau solution of the 2-dim

Ricci flow which was discussed in the previous section, however the King solution is a type

I ancient solution while the King-Rosenau solution is of type II. This reflects to the fact that

the cigar self-similar solution of the 2-dim Ricci flow is a type II translating soliton while

the Barenblatt self-similar solution of the Yamabe flow is a type I shrinker.

In analogy with the classification result by the author with R. Hamilton and N. Sesum

in [18] (Theorem 2.2 in section 2), a natural question to raise is whether the analogous

statement holds true for the Yamabe flow, that is, whether the contracting spheres and the

King solution are the only compact ancient solutions to the Yamabe flow. This occurs not to

be the case as the following discussion shows.

In [16], the author, jointly with M. del Pino and N. Sesum, constructed ancient radially

symmetric solutions of the Yamabe flow (3.2) on Sn other than the contracting spheres (3.4)

and the King solutions (3.5). The new solutions, as t → −∞, may be visualized (after re-

normalization) as towers of k-spheres joint by short necks. Their curvature operator changes

sign and they are type II ancient solutions. We will refer to them asmoving towers of bubbles.
In what follows we will present the ansatz of the construction of the moving towers of

bubbles, assuming for simplicity that k = 2 (which means that as t→ −∞ the solution will

resemble two spheres joint by a short neck). At the end, we will discuss the generalization

to k-bubbles, k > 2.
Let g = v̄

4
n−2 (·, t) g

Rn
be a radially symmetric solution of (3.3) which becomes extinct

at time T , namely v̄ = v̄(r, t) is a radial function on Rn that vanishes at T . One may

introduce the cylindrical change of variables

u(x, τ) = (T − t)−
1

p−1 r
2

p−1 v̄(r, t), r = ex, t = T (1− e−τ )

where we recall that p := (n+ 2)/(n− 2). In this language equation (3.3) becomes

(up)τ = uxx + αup − βu, β =
(n− 2)2

4
, α =

p

p− 1
=

n+ 2

4
. (3.6)

By suitable scaling we can make the two constants α and β in (3.6) equal to 1, so that

from now on we will consider the equation

(up)τ = uxx + up − u. (3.7)

The steady states of equation (3.7), namely the solutions w of the equation

wxx + wp − w = 0, w(±∞) = 0 (3.8)

are given in closed form

w(x) =

(
kn λ eγx

1 + λ2 e2γ x

)n−2
2

= (2 kn sech(γx+ log λ))
n−2
2 (3.9)

with parameter λ > 0 and constants γ, kn given by

γ =
1√
β
=

2

n− 2
and kn =

(
4n

n− 2

) 1
2

.
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It is known thatw is the only even, positive solution of (3.8), given in cylindrical coordinates,

after stereographic projection, geometrically representing the conformal metric for a sphere.

Observe that

w(x) = O(e−|x|), as |x| → ∞. (3.10)

Since the new solution resembles two bubbles joint by a neck, one chooses the ansatz for
an ancient solution u(x, τ) of (3.7) to be of the form

u(x, τ) = (1 + η(τ)) z(x, τ) + ψ(x, τ) (3.11)

with

z(x, τ) = w(x+ ξ(τ)) + w(x− ξ(τ)) (3.12)

for suitable parameter functions η(τ), ξ(τ). The perturbation function ψ(x, τ) will converge

to zero, as τ → −∞, in a suitable norm. More precisely,

ξ(τ) = ξ0(τ) + h(τ)

for a suitable parameter function h(τ). Both parameter functions h(τ) and η(τ) decay in |τ |,
as τ → −∞. It turns out that

ξ0(τ) :=
1

2
log(2b |τ |)

which is a solution to

ξ̇ + b e−2ξ = 0

for a specific constant b > 0. This equation is derived as a consequence of adjusting the

parameters h(τ) and η(τ) so that the perturbation function ψ satisfies suitable orthogonality

conditions which guarantee the solvability of the linearized equation around each bubble.

The following result was shown in [16].

Theorem 3.2 (The existence of the tower of bubbles [16]). There exist numbers τ0 and
b > 0 and a solution u(x, τ) to (3.7) defined on R× (−∞, τ0], of the form (3.11)-(3.12) with
ξ := 1

2 log(2b |τ |) + h(τ), such that the functions ψ(x, τ), η(τ) and h(τ) tend to zero in
appropriate norms as τ → −∞. Moreover, u defines a radially symmetric ancient solution
to the Yamabe flow (3.1) on Sn which is of type II and its Ricci curvature changes its sign.

The construction that leads to the proof of Theorem 3.2 can be generalized to give ancient

solutions which may be visualized, as τ → −∞, as a tower of k spheres joined by short

necks. We refer to them as moving towers of bubbles. In terms of equation (3.7), for a given

k ≥ 2 we look for a solution of (3.7) of the form

u(x, τ) =
k∑

j=1

(1 + ηj(τ))w(x− ξj(τ)) + ψ(x, τ) (3.13)

where the functions ξj are ordered and symmetrically arranged,

ξ1(τ) < ξ2(τ) < . . . < ξk(τ), ξj(τ) = −ξk−j+1(τ). (3.14)

The following was shown in [16]:
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Theorem 3.3. Given k ≥ 2, there exist numbers τ0 and b > 0 and a solution u(x, τ) to (3.7)
defined on R× (−∞, τ0], of the form (3.13)-(3.14), with

ξj(τ) = ξ0j(τ) + hj(τ), ξ0j(τ) = (j − k + 1

2
) log(b |τ |) + γj (3.15)

for certain explicit constants γj , where the functions ψ(x, τ), ηj(τ) and hj(τ) tend to zero
in appropriate norms as τ → −∞.

The functions ξ0j in the above statement solve the first order Toda system

b−1ξ̇j(τ) + e−(ξj+1−ξj) − e−(ξj−ξj−1) = 0 j = 1, . . . , k, τ ∈ (−∞,−τ0]

with the conventions

ξ0 ≡ −∞, ξk+1 ≡ +∞.

Discussion on the proof of Theorem 3.2. We will next indicate the main steps that were

used in the proof of Theorem 3.2, referring the interested reader to [16] for the proofs of the

results.

(i) One first defines the Banach space in which the error of approximation ψ given in

(3.11) belongs and its associated norm. Also, one defines the spaces for the parameter

functions η(τ) and h(τ) and their associated norms.

(ii) Using the ansatz (3.11)-(3.12) for the solution u, one shows that the perturbation term

ψ satisfies an equation of the form

pzp−1∂τψ = ψxx − ψ + pzp−1ψ + pzp−1E(ψ) (3.16)

whereE(ψ) denotes the nonlinear error term and z is given by (3.12). It is well known

that w and w′ are the eigenvectors of the approximating linear operator

L0ψ := − 1

pwp−1

(
ψxx − ψ + pwp−1ψ

)
corresponding to the eigenvalues λ−1 < 0 and λ0 = 0 of this operator, respectively.

It is also well known that all the other eigenvalues of L0 are positive.

(iii) The first part of the article [16] concerns with the study of ancient solutions to the

linear problem

pzp−1∂τψ = ψxx − ψ + pzp−1ψ + pzp−1f, −∞ < τ < τ0 ≤ +∞. (3.17)

Assuming certain orthogonality conditions on f with respect to the eigenvectors w
and w′ of L0, one establishes the existence of an ancient solution to the linear problem

(3.17), satisfying the appropriate energy and L2 estimates. The latter means that one

can bound the weighted L2-norm of a solution in terms of the weighted L2-norm

of the right hand side f . One also establishes certain weighted W 2,σ estimates for

solutions to (3.17). It follows that the solution ψ belongs to the Banach space which is

the intersection of these L2 and weighted W 2,σ spaces. Let us denote by T the linear

operator between our defined Banach spaces, so that T (f) is the solution to the linear

problem (3.17) satisfying the appropriate orthogonality conditions.
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(iv) The second part of the article [16] concerns with the study of the nonlinear equation

(3.16). One applies the linear theory to the nonlinear equation to establish the exis-

tence of a solution ψ to (3.16), by solving the equation T (E(ψ)) = ψ. One first shows

that this can be achieved, under the assumption that E(ψ) satisfies the right orthog-

onality conditions with respect to w and w′. The main tool in this proof is the fixed

point Theorem and subtle estimates of the error terms in the appropriate norms.

(v) In the final part of the proof in [16] one shows how to adjust the parameters η(τ)
and h(τ) so that the error term E(ψ) in (3.16) indeed satisfies the right orthogonality

conditions. One sees that this is equivalent to solving a certain nonlinear system of

ODE’s for η(τ), h(τ). The existence of solutions to this system is shown via the fixed

point Theorem and subtle a’priori estimates.

Remark 3.1. Theorem 3.2 shows that the classification of ancient solutions to the compact

Yamabe flow on Sn poses a rather difficult task. On the other hand, it gives a new way for

constructing special solutions. It shows how one may glue two or more ancient solutions of

a parabolic equation, in our case of equation (3.7), to construct a new ancient solution of the

same equation. This parabolic gluing becomes more and more apparent as τ → −∞, since

as τ → +∞ it is known that the conformal factor approaches the standard sphere.

Remark 3.2. Gluing techniques relying on linearization and perturbation theory have been

used in many elliptic settings, such as the gluing of manifolds of constant scalar curvature

to produce another manifold of constant scalar curvature (c.f. in [43, 44, 53]) and the gluing

of two constant mean curvature surfaces to produce another constant mean curvature surface

[39]. In the context of elliptic semilinear equations such methods have been used in [22, 25].

Also, embedded self similar solutions of the mean curvature flow have been constructed in

[45] with the use of elliptic gluing techniques. The work in [16] shows that such techniques

can be used also in the parabolic setting. One expects that the methods in [16] could be

adopted to other geometric flows as well.
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Quantized vortex filaments in complex scalar fields

Robert L. Jerrard

Abstract. We survey a family of problems in which one seeks to prove that, for a complex-valued

function solving a semilinear partial differential equation, energy concentrates, in certain scaling limits,

around a codimension 2 submanifold solving a geometric problem. The equations in question arise

from physical models, and the energy concentration sets are often naturally interpreted as “quantized

vortex filaments.” One can hope to describe these vortex filaments in a variety of types of PDE,

including elliptic (describing an equilibrium of a physical system), parabolic (often describing flow

toward an equilibrium) and hyperbolic or dispersive (describing different kinds of oscillations and

wave propagation). There are a large number of results about elliptic and parabolic equations, although

some significant open problems remain, and less is known about hyperbolic and (especially) dispersive

equations.

Mathematics Subject Classification (2010). 35B40, 35B25, 49Q15.

Keywords. Semilinear PDEs, singular limit, geometric measure theory, vortex filament, Ginzburg-

Landau.

1. Introduction

In this note we survey a class of problems in which one seeks to establish a relationship

between complex-valued functions solving certain semilinear partial differential equations,

on the one hand, and codimension 2 submanifolds of RN for some N ≥ 3 that solve certain

geometric problems, on the other hand.

The relationship that we have in mind can be informally stated in a number of related

ways, including for example:

“most level sets of solutions of the PDE are either nearly trivial or

close to a solution of the geometric problem.”

or

“energy of solutions of the the PDE concentrates around

a submanifold solving the geometric problem.”

One can attempt to prove this sort of statement for equations of elliptic, parabolic, hyper-

bolic or Schrödinger type, and one would expect the associated geometric problem to have

the same type as the semilinear PDE. Many results of this sort are known for elliptic and

parabolic equations, and much less is known about the hyperbolic and Schrödinger cases.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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We will focus on these sorts of questions for equations related to the (scaled) Ginzburg-

Landau1 functional

Eε(u) :=
1

| ln ε|

∫
Ω

|∇u|2
2

+
1

4ε2
(|u|2 − 1)2, u ∈ H1

loc(Ω;C) (1.1)

where we take Ω to be an open subset of RN for some N ≥ 3; for evolution equations we

normally takeΩ = RN . In this context, it is often natural to interpret an energy concentration

set as a “quantized vortex filament”. We are interested in this functional, and in the equations

below, when 0 < ε� 1.
Associated to Eε(·) we can consider the equations

−Δu+
1

ε2
(|u|2 − 1)u = 0 (1.2)

ut −Δu+
1

ε2
(|u|2 − 1)u = 0 (1.3)

utt −Δu+
1

ε2
(|u|2 − 1)u = 0 (1.4)

i| log ε|ut −Δu+
1

ε2
(|u|2 − 1)u = 0. (1.5)

The scaling factor | ln ε| in (1.5) will be motivated later. These are, respectively

• the Euler-Lagrange equation for Eε;

• the L2 gradient flow for Eε;

• the Euler-Lagrange equation for the Minkowskian analog of Eε, in which the term

|∇u|2 is replaced by ηαβ ∂αu ∂βu, where η denotes the Minkowski metric;

• an infinite-dimensional Hamiltonian system for which the Hamiltonian is exactly the

Ginzburg-Landau energy Ee. This equations is known as the Gross-Pitaevskii equa-

tion. The reason for the factor | log ε| will appear below.

For (1.4) or (1.5) in high dimensions, it is convenient to replace the nonlinearity (|u|2 −
1)u by one of the form f(|u|2)u, where sign(f(s)) = sign(s − 1), and satisfying growth

conditions that render the equation globally well-posed in the energy space.

When one considers the geometry of codimension 2 submanifolds, the formal counter-

part of the Ginzburg-Landau functional is simply the functional that associates to a subman-

ifold its N − 2-dimensional Hausdorff measure:

A(Γ) := HN−2(Γ), Γ a codimension 2 submanifold of Ω ⊂ RN . (1.6)

A precise asymptotic relationship between Eε and A (or rather, an extension of A to a more

suitable functional setting) is described in Section 3 below. Associated to this functional,

parallel to the above, we can consider the following family of problems for codimension 2
submanifolds of Ω, or of (0, T )× Ω, in the case of evoution problems:

mean curvature = 0 (1.7)

1“Ginzburg-Landau” is in some ways a misnomer, but a common and convenient one, and one that we will use

frequently.
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velocity - mean curvature = 0 (1.8)

Minkowskian mean curvature = 0 (1.9)

velocity - J(mean curvature) = 0. (1.10)

These are, at least on a formal level

• the Euler-Lagrange equation for A;

• the L2 gradient flow for A;

• the Euler-Lagrange equation for the Minkowskian analog of A;

• an infinte-dimensional Hamiltonian system for which the Hamiltonian is exactly the

N − 2 area functional A.

In the Schrödinger-type flow (1.10), at a point p in an oriented codimension 2 submanifold

Γ ⊂ RN , we write J for the operator NpΓ → NpΓ corresponding to rotation by 90 degrees

in the 2-dimensional normal planeNpΓ to Γ at p, with the sense of the rotation fixed in some

way using the orientation of Γ. In the physical case N = 3, which is also the only case

in which anything nontrivial is known about (1.10), the equation reduces to the binormal
curvature flow of curves, which can be written parametrically in the form

∂tγ = ∂sγ × ∂ssγ, |∂sγ|2 = 1

for γ : R ×M1 → R3, where M1 is the circle or the real line. Here ∂ssγ is the curvature

vector of the curve at the point γ(t, s), and J = ∂sγ× .

As we will recall, results relating the elliptic problems (1.2) and (1.7), and the parabolic

problems (1.3) and (1.8), began to appear 20 or more years ago, and for both classes of

problems, deep and definitive results about certain questions have been known for more than

10 years. Nonetheless, some open problems remain even in these classical areas. Another

issue that has been well-understood for more than 10 years is the convergence, in a suitable

sense, of the family of functionals Eε → A, as ε → 0. Much less is known about the wave

and Schrödinger problems, and the few existing results are mostly rather recent.

We close this introduction by mentioning some of the many related problems that we

will not discuss in any detail. These include

• questions about relationships between real-valued functions solving equations like

(1.2) - (1.4), and hypersurfaces solving geometric problems like (1.7) - (1.9). (In this

setting there is no Schrödinger equation, and no notion of binormal). There is a huge

body of literature on these problems, which are better-understood than the questions

about C-valued functions and codimension 2 submanifolds on which we focus.

• gauge theoretic versions of the above problems. These are significant in many physical

applications. In general, for the family of questions that we consider, there are a num-

ber of results about U(1) gauge theories, such as the Abelian Higgs model, whereas

much less is known about nonabelian gauge theories.

• parallel relations betwen functions Ω ⊂ R2 → C and codimension 2 submanifolds of

Ω, i.e. collections of points. In this situation, the functional that governs the geometry

of the submanifolds, corresponding to A, simply counts the number of points, and

the ε → 0 limit of solutions of equations such as (1.2) - (1.5) is governed, at least

in certain situations, by the “next-order” energy, which involves interactions between

points, see [7].
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2. Vorticity, energy, and balance laws

2.1. Some physical quantities. The equations that we study arise in quantum physics, as

models of wave functions associated to superfluids (1.5) or simplified models (in which the

magnetic field is neglected) of superconductors (1.2), (1.3). In these settings, the codimen-

sion 2 submanifolds in which we are interested are naturally interpreted as “vortex subman-

ifolds”.

Indeed, in models coming from quantum mechanics, if u ∈ H1
loc(Ω;C) with Ω an open

subset of RN , we introduce the quantities

|u|2 := density (2.1)

eε(u) :=
|∇u|2
2

+
1

4ε2
(|u|2 − 1)2 = energy density (2.2)

ju := − i

2
(ū du− u dū) = momentum 1-form (2.3)

Ju :=
1

2
d ju = vorticity 2-form. (2.4)

When considering the wave equation (1.4) we will also encounter the quantity

�ε(u) :=
−|∂tu|2 + |∇u|2

2
+

1

4ε2
(|u|2 − 1)2, (2.5)

which is just the Minkowskian analog of the energy density. The names that we have given in

(2.1) - (2.4) are reasonable on physical grounds. The definition of vorticity has the appealing

feature that if we write u = u1 + iu2, then

Ju = du1 ∧ du2 =
∑
i<j

(∂iu
1∂ju

2 − ∂iu
2∂ju

1)dxi ∧ dxj

= the pullback by u of the area form on C. (2.6)

Thus Ju is a sort of Jacobian determinant, which motivates the notation Ju. This has a

couple of useful consequences. First, if N = 3 and we identify the vorticity vector field as

the one dual to Ju in a rather natural sense, then

vorticity vector field = ∇u1 ×∇u2,

and it follows that integral curves of the vorticity vector field are exactly level curves of u,
where u is smooth enough and nondegenerate. In RN , it is similarly true that where u is

smooth and nondegenerate, one can associate to the vorticity 2-form a distribution ofN −2-
planes, and that level sets of u are integral manifolds of the vorticity distribution. It also

follows from (2.6) that if

ϕ ∈ DN−2(RN ) := {smooth, compactly supported N − 2-forms on RN }
then ∫

RN

ϕ ∧ Ju =

∫
z∈C

(∫
u−1{z}

ϕ

)
d area (2.7)

if u is smooth enough, in which case u−1{z} is a smooth N − 2-dimensional submanifold

with a natural induced orientation, for almost every z ∈ C. Formulas of the above sort con-

tinue to hold for less smooth u, including u ∈ H1(Ω;C), provided the integrals
∫
u−1{z} ϕ

on the right-hand side are understood in a suitable (weak) sense.
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2.2. How to picture a vortex filament. The simplest solutions of the elliptic Ginzburg-

Landau system (1.2) that possess a “vortex filament” have the form

uε(x1, . . . , xN ) = f(
r

ε
)eiθ, where r =

√
x2
1 + x2

2 and eiθ =
x1 + ix2

r
(2.8)

for some smooth f , which among other attributes2 satisfies

f(0) = 0, f ′ > 0, f(s)→ 1 as s→∞. (2.9)

More generally, formal expansions of the equations (1.2)-(1.5) suggest that at least some

solutions should, to leading order, resemble a function of the form (2.8), (2.9), in a suitable

coordinate system adapted to the local geometry of some vortex submanifold, and possibly

perturbed by a multiplicative phase or in other ways.

It is straightforward to compute the limiting behaviour, as ε → 0, of quantities such as

the vorticity and energy density for a family of functions of the form (2.8), (2.9). One finds

that, writing Γ := {x ∈ RN : x1 = x2 = 0},∫
φ
eε(uε)

| log ε| dx −→ π

∫
Γ

φ dHN−2 for all φ ∈ Cc(R
N ) (2.10)∫

ϕ ∧ Juε −→ π

∫
Γ

ϕ for all ϕ ∈ DN−2(RN ) (2.11)∫
S :

∇uε ⊗∇uε

| log ε| dx −→ π

∫
Γ

S : P⊥ dHN−2 for all S ∈ Cc(RN ;MN×N ) (2.12)

as ε→ 0. In the final assertion above.

• ∇uε ⊗∇uε is the matrix whose i, j entry is 1
2 (uxi

ūxj
+ ūxi

uxj
),

• A : B denotes the inner product A : B := Tr(ATB) in the space MN×N of N ×N
matrices,

• at x ∈ Γ, P⊥(x) denotes the matrix corresponding to projection onto the 2-dimensional

normal space (TxΓ)
⊥.

More generally, the same formal computations mentioned above suggest that (2.10) -

(2.12) may hold, under good conditions, for sequences of solutions of (1.2) - (1.5) (with

some modifications for the wave equation (1.4)), for some Γ that is enough like an N − 2-
dimensional submanifold that one can at least define some version of TxΓ almost every-

where, and hence make sense of P⊥.

2.3. Some balance laws. In every case, some parallels between the equation and the ge-

ometric problem are visible on the level of balance laws. These can be seen as providing

insight into known connections, and lending support to conjectured connections, between

the PDEs and the geometric problems.

On the PDE side:

• a solution uε ∈ H1(Ω;C) of the elliptic equation (1.2) satisfies∫
∇X : (I − ∇uε ⊗∇uε

eε(uε)
)
eε(uε)

| log ε| dx = 0 for all X ∈ C∞c (Ω;RN ). (2.13)

2In fact f solves the equation −f ′′ − 1
r
f ′ + 1

r2
f + 1

ε2
(f2 − 1)f = 0, the details of which will not matter for

our discussion.
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(This, and the identities below, are written in a way that seeks to emphasize their

similarities to the geometric balance laws that follow.)

• a smooth solution uε : (0, T )× RN → C of the parabolic equation (1.3) satisfies

d

dt

∫
φ
eε(uε)

| log ε|dx = −
∫

φ
|∂tuε|2
| log ε| dx −

∫
∇2φ : (I − ∇uε ⊗∇uε

eε(uε)
)
eε(uε)

| log ε| dx
(2.14)

for all φ ∈ C∞c (RN ).

• a smooth solution uε : (0, T )× RN → C of the wave equation (1.4) satisfies∫
DX : (η − (η Duε)⊗ (η Duε)

�ε(uε)
)

�ε(uε)

| log ε| dx dt = 0 (2.15)

for X ∈ C∞c (R1+N ;R1+N ), where Du = (∂tu,∇u) and η = diag(−1, 1, . . . , 1)
represents the Minkowski metric. This is in fact the exact counterpart of (2.13) in

Minkowski spacetime.

• Finally, a smooth solution uε : (0, T ) × RN → C of the Gross-Pitaevskii equation

(1.5) satisfies

d

dt

∫
ϕ∧Juε =

∫
∇(�dϕ) : ∇uε ⊗∇uε

| log ε| dx for all ϕ ∈ DN−2(RN ) (2.16)

where ∇(�dϕ) denotes the N ×N matrix obtained as the gradient of the vector field

�dϕ that is dual in a natural way to theN −1-form dϕ. In particular, ifN = 3 and we

identify the 1-form ϕ with a vector field, then we may identify∇(�dϕ) with the 3× 3
matrix∇(∇× ϕ).

The factor of | log ε|−1 on the right-hand of (2.16) side is more or less necessary, for our

purposes (compare (2.12)), and can be seen as the reason for our choice of scaling for the

Gross-Pitaevskii equation (1.5).

On the geometric side, we have a family of balance laws with very similar structure.

• A smooth minimal surface Γ ⊂ Ω satisfies an identity we can write as∫
Γ

∇X : (I − P⊥) dHN−2 = 0 for all X ∈ C∞c (Ω;RN ). (2.17)

• If (Γt)t∈(0,∞) is a smooth family of codimension 2 submanifolds evolving by mean

curvature (1.8), then

d

dt

∫
Γt

φ dHN−2 = −
∫
Γt

[
φ|H|2 +∇2φ : (I − P⊥)

]
dHn−2dx (2.18)

for all φ ∈ C∞c (RN ), where H denotes the mean curvature vector along Γt.

• If Γ is a smooth timelike submanifold of R1+N with vanishing mean curvature, then∫
Γ

DX : (η − P⊥mink) dλ
1,N−2 = 0 for all X ∈ C∞c (R1+N ;R1+N ) (2.19)
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where λ1,N−2 denotes the Minkoskian area measure on a codimension 2 submanifold,

see (6.1) below, and P⊥mink denotes projection with respect to the Minkowski metric

onto the (Minkowskian) orthogonal complement of T(t,x)Γ. Explicitly, the integrand

can be written ∂αXβ(η
αβ−nα

1n
β
1 −nα

2n
β
2 ), where n1, n2 satisfy ηαβn

α
i n

β
j = δij and

ηαβn
α
i τ

β = 0 for all τ ∈ T(t.x)Γ. Identity (2.19) is in fact the exact counterpart of

(2.17) in Minkowski spacetime.

• if (Γt)t∈(0,∞) is a smooth enough family of codimension 2 oriented submanifolds

evolving by binormal mean curvature (1.10), then

d

dt

∫
Γt

ϕ =

∫
Γt

∇(�dϕ) : P⊥ dHN−2 for all ϕ ∈ DN−2(RN ). (2.20)

2.4. Passage to limits on a formal level. Note that if one has a sequence of solutions

(uε)ε∈(0,1] of the elliptic equation (1.2) for which one is somehow able to verify that (2.10),

(2.12) hold for some limiting Γ, then one can directly deduce from (2.13) that the limiting Γ
satisfies (2.17).

It is similarly true for the Gross-Pitaevskii equation (1.5) that the identity (2.16) should

rather directly converge to the identity (2.20), if one has a sequence of solutions that can

somehow be shown to satisfy (2.11) and (2.12) at every t, for some limiting family (Γt)t∈(0,T ).

Of course, one would expect this to be much harder for an equation of Schrödinger type than

for an elliptic equation, and indeed this seems to be the case.

For the parabolic equations, to carry out a parallel (or perhaps slightly weaker) passage

to the limit, one needs both to know that (2.10), (2.12) hold, and to relate the L2 density

|∂tuε|2 of the velocity field to the squared mean curvature of the limiting object, and for the

hyperbolic equation, one needs Lorenz-invariant analogs of (2.10), (2.12). So the parallels

between the PDEs and the geometric problems are more subtle for these models, on the level

of balance laws, but still plainly visible.

2.5. The necessity of geometric measure theory. In the ε → 0 limit of equations (1.2) -

(1.5), the energy/vorticity concentration sets associated to a sequence of solutions are known

or believed not to be smooth embedded submanifolds, but rather to have singular points for

suitable data. Thus any attempt to describe the global geometry of these concentration sets

must employ a notion of solution of the associated geometric problem that is insensitive to

singularities. So one is naturally lead to consider weak solutions of the geometric problems

(1.7) - (1.10).

For submanifolds of codimension at least 2, geometric measure theory provides the most

natural3 framework for studying these weak solutions. Indeed, the balance laws (2.17) and

(2.18), which appear to have some natural affinity with corresponding PDE identities (2.13)

and (2.14), form the basis for the definitions of stationary varifold and Brakke flow — these

are geometric measure theory notions of weak solutions of the minimal surface problem and

motion by mean curvature, respectively.

In other words, if one is somehow able to carry out the passage to limits discussed in

Section 2.4 above, in the elliptic case, the object one ends up with, satisfying (2.17) or some

relaxed version thereof, is exactly a stationary varifold. And in the parabolic case, when a

3In the case of scalar equations and hypersurfaces, notions of weak solution based on the maximum principle are

available at least for elliptic and parabolic problems, and provide an alternative framework for the sort of questions

we consider here, see for example [27].
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parallel passage to limits can be justified, one ends up with an object satisfying (a suitable

relaxed version of) the balance law (2.18), and such an object is exactly a Brakke flow. As we

describe below, this program has been carried out for both elliptic and parabolic equations,

prominently in work of Bethuel and collaborators, such as [8, 12]. A key ingredient in these

results is provided by measure-theoretic analysis of Ambrosio and Soner [3], which shows

roughly speaking that the desired conclusions follow in the parabolic (and hence elliptic)

cases if one can prove suitable lower density bounds on the limiting energy measure. This

strategy was first implemented in a pioneering paper of Ilmanen [30] concerning the scalar
Ginzburg-Landau heat flow.

In a similar way, the identities (2.19) and (2.20) can serve as the basis for definitions of

weak solutions of the hyperbolic and Schrd̈onger type geometric evolution problems (1.9)

and (1.10). Such weak solutions, motivated in part by the problems that we consider here,

have begun only very recently to be developed, see [5] and [35] respectively.

3. Convergence of functionals

The following theorem makes precise a sense (known as Gamma-convergence) in which

the Ginzburg-Landau functionals Eε converge to the codimension 2 area functional in the

limit as ε → 0. Some definitions from geometric measure theory, used in the statement of

the theorem, are collected in Appendix A. For now we simply note that an “i.m. rectifi-

able boundary” may be thought of as a possibly non-smooth, oriented, homologically trivial

“submanifold” of RN , and the mass M(·) is the natural generalization to this setting of the

area functional A(·) appearing above. In particular, to every smooth, embedded, oriented

submanifold M ⊂ RN , one uniquely may associate an i.m. rectifiable boundary TM , and

then M(TM ) = A(M).

Theorem 3.1. Let Ω be an open subset of RN , N ≥ 3.
1. Compactness. If (uε)ε∈(0,1] is a sequence in H1(Ω;C) such that

lim sup
ε→0

Eε(uε) <∞

then there exists a subsequence εk and an N − 2-dimensional i.m. rectifiable boundary Γ in
Ω, such that

‖Juεk − πΓ‖C0,α
0 (Ω)∗ → 0 for all α ∈ (0, 1]. (3.1)

2. Lower bound. If (uεk)k∈N is a sequence in H1(Ω;C) such that (3.1) holds for some
N − 2-dimensional i.m. rectifiable boundary Γ, then

lim inf
k→∞

Eεk(uεk) ≥ πM(Γ). (3.2)

3. Upper bound. If Γ is any N − 2-dimensional i.m. rectifiable boundary in Ω, then
there exists a sequence (uε)ε∈(0,1] in H1(Ω;C) such that (3.1) holds (without passing to a
subsequence) and

lim
ε→0

Eε(uε) = πM(Γ). (3.3)

Moreover, whenever both (3.1) and (3.3) hold, one has

1

π| log εk|eεk(uεk)⇀ μΓ weakly as measures, as εk → 0, (3.4)
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where μΓ is the mass measure associated to Γ, see Appendix A.

The compactness and lower bound assertions were first proved in [37], and the upper

bound is due to [1], which in fact proved substantially more general results and also presented

new proofs of the other parts of the theorem. A key ingredient in both proofs is provided by

“vortex ball” constructions and associated estimates from [31, 52]. Some of the results in

these references assume that Ω is bounded, but this restriction is unnecessary and has been

dropped in later work.

Remark 3.2. The theorem implies various bounds for the vorticity Juε in terms of the

energy Eε(uε). For example, arguments in [37] easily imply that there exists some α,C > 0
such that for any compact K ⊂ Ω,

lim sup
ε→0

‖ηεα ∗ Juε‖L1(K) ≤ CEε(uε).

Here ηεα is a smoothing kernel supported on a ball of radius εα. This should be contrasted

with the obvious estimate

‖Juε‖L1(Ω) ≤ C

∫
Ω

|∇uε|2 ≤ C| log ε|Eε(uε),

which is sharp in the sense that for any ε ∈ (0, 1], one can construct uε such that

‖Juε‖L1(Ω) ≥ c| log ε|Eε(uε).
Thus, the energy (scaled as above) does not control the total vorticity ‖Juε‖L1 . But

by averaging on appropriate small scales, one can exploit cancellations to gain a factor

| log ε|−1 � 1 (when ε ≪ 1), and as a result L1 norm of the “macroscopic part” of the

vorticity ηεα ∗ Ju is indeed controlled by the energy.

Remark 3.3. The convergence in Theorem 3.1 is weak enough that is does not imply any-

thing about convergence of solutions of any of the evolution equations (1.3)-(1.5) to the

geometric evolution problems (1.8)-(1.10), and has only limited implications about conver-

gence of the elliptic problems, as we discuss below. Nonetheless, estimates from Theorem

3.1 and related results provide an important ingredient in many results about the elliptic or

parabolic problems, and in all the (much smaller number of) known results about wave and

Schrödinger problems.

4. Elliptic problems

One can ask two sorts of questions about the relationship between the elliptic Ginzburg-

Landau equation (1.2) and the geometry of minimal surfaces:

• Given a solution of (1.2) with 0 < ε � 1, or a sequence of such solutions, do the

energy and/or vorticity concentrate near a surface of vanishing mean curvature?

• Given a surface of vanishing mean curvature, can one find a solution of (1.2) with

0 < ε� 1 whose energy and/or vorticity concentrate nearby?
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4.1. Associating minimal surfaces to solutions of (1.2). Theorem 3.1 directly implies that

for sequences of energy-minimizing solutions uε of (1.2) with appropriate boundary data, the

energy and vorticity concentrate, in the sense of (3.1) and (3.4), around a mass-minimizing

current. In particular, statements of this type are proved in [1], when one considers the

Dirichlet problem for (1.2) with boundary data in the natural Sobolev space H1/2(∂Ω;C).
However, both the earliest and the strongest results linking the elliptic Ginzburg-Landau

equation with the minimal surface problem rely not on purely variational techniques, but in-

stead mostly4 on PDE arguments, including powerful elliptic regularity results tailored to the

Ginzburg-Landau setting, initiated and developed by [43, 45, 50] among others. Mature re-

sults in this direction, such as [8–10, 15], show for example that for any sequence (uε)ε∈(0,1]
of solutions of (1.2), not necessarily energy-minimizing and satisfying only uniform bounds

on the rescaled energy

Eε(uε) ≤ C (4.1)

one can extract a subsequence such that (3.1) holds, and moreover eε(uε) ⇀ μ∗ weakly as

measures, where μ∗ is a Radon measure that is concentrated and bounded from below on

the support of Γ, and has vanishing (generalized) mean curvature in what is known as the

varifold sense. This result states exactly that the measure μ∗ satisfies a relaxed5, measure-

theoretic version of the identity (2.17) discussed above.

4.2. Associating solutions of (1.2) to minimal surfaces. Surprisingly little is known about

the complementary problem. The simplest nontrivial questions of this sort, in the Ginzburg-

Landau context, arise when Ω is a smooth, bounded, simply connected, open subset of R3.

Then for p, q ∈ ∂Ω we write

�(p, q) := the (open) line segment from p to q, d(p, q) := |p− q|.
We say that �(p, q) is a local minimizer of the “arclength functional”A if �(p, q) ⊂ Ω and the

pair (p, q) is a local minimizer of d : ∂Ω×∂Ω→ R. (Thus, we are considering the arclength

functional A with “natural boundary conditions”), We can similarly define a critical point

of A, nondegenerate critical point, isolated local minimizer, and so on. One can then ask,

given some critical point of A (possibly satisfying other hypotheses), can one find a nearby

solution of the elliptic Ginzburg-Landau system (1.2) (also with natural boundary conditions,

which we tacitly assume for the duration of this section)?

A satisfactory answer to this question is known only when �(p, q) is an isolated local
minimizer of A. In this case, it was proved in [46] that for any θ ∈ N, there exist (lo-

cally energy-minimizing) solutions (uε)ε∈(0,ε0] whose vorticity and energy concentrate in

the sense of (3.1), (3.4) about the 1-current Γ of constant multiplicity θ associated to the

segment �(p, q).
The main ingredients in [46] are Theorem 3.1 above and the general Kohn-Sternberg

scheme for relating local minimizers and Gamma-convergence [40], and the proof would

extend with no difficulties to yield Ginzburg-Landau local minimizers in other, more general

situations where one has an i.m. rectifiable boundary Γ that is an isolated local minimizer of

4Pure PDE techniques are often supplemented by variational estimates. In particular, a common strategy, first

developed in [6], studies the 1-form ju, defined in (2.3), by a Hodge decomposition, with control over d∗ju coming

directly from the PDE, and control over d ju = 2Ju coming from Theorem 3.1 or related estimates, which do not

use any equation.

5For example, the measure can have non-constant multiplicity on Γ, and tangent planes may be understood in a

weak sense.
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the mass functional M( · ) with respect to suitable boundary conditions.

However, as soon as one considers more general critical points6 only much weaker results

are available. In fact, all that is known about this is that if �(p, q) is a nondegenerate critical

point of A, then there exists a sequence (uε)ε∈(0,ε0] of solutions to the Ginzburg-Landau

equations (1.2), with natural (Neumann) boundary conditions, such that

1

π
Eε(uε)→ d(p, q). (4.2)

This is consistent with the energy and vorticity concentrating around �(p, q) in the sense

of (3.1), (3.4), but is a much weaker statement — one about convergence of critical values
rather than convergence of critical points. These facts are proved in [39], which establishes

a general result relating critical points of a limiting functional with those of a sequence of

functionals that converges in the sense of Gamma-convergence, then deduces the results

described above from Theorem 3.1.

Some open problems include:

• The paper [46] mentioned above shows that it can happen that θ > 1 vortex filaments

cluster around a segment �(p, q). Can one give a more precise description of the way in

which this clustering occurs? An interesting conjecture and suggestive computations

are given in [20].

• Can one improve the results of [39] to construct solutions of (1.2) for which vorticity

and energy can be proved to concentrate around the segment �(p, q)?

It is worth noting that questions of this sort are very well-understood when one consid-

ers scalar semilinear elliptic equations and minimal hypersurfaces; see for example [23, 24]

and [21, 22, 41, 49] respectively, which establish very strong results by some version of

Lyapunov-Schmidt reduction. These techniques seem to be difficult to implement, how-

ever, for Ginzburg-Landau equations (for C-valued functions), due in part to poor spectral

properties of certain linearized operators and (related) difficulties in controlling the phase of

complex-valued functions.

5. Parabolic problems

The balance laws (2.14) and (2.18) mentioned above play an important role in work on

the convergence of the parabolic Ginzburg-Landau system (1.3) to the codimension 2 mean

curvature flow (1.8).

In particular, the first results in this direction (see [38, 42]) employ an argument first

developed by Soner (see the 1995 lectures [56] for the case of a scalar Ginzburg-Landau

heat flow) which deduces strong results rather directly from the balance law (2.14). The main

point is a computation which shows that if (Γt)t∈[0,T ] is a codimension 2 mean curvature

flow, smoothly embedded in RN for every t ∈ [0, T ], then there exist constants C, δ >
0, depending on the geometry of (Γt)t∈[0,T ] but independent of ε ∈ (0, 1], and a smooth

6For example, if p, q are two points in ∂Ω such that d(p, q) = diam(Ω) and �(p, q) ⊂ Ω, then �(p, q) is a

critical point, but not a local minimizer, of the arclength functional.
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function η such that

η(t, x)

{
= 1

2 dist
2(x,Γt) if dist(x,Γt) ≤ δ,

≥ 1
2δ

2 if not,

and
d

dt

∫
RN

η(t, x)
eε(uε)

| log ε|dx ≤ C

∫
RN

η(t, x)
eε(uε)

| log ε|dx (5.1)

for 0 ≤ t < T , for any solution uε of the Ginzburg-Landau heat flow (1.3) on RN . It then

follows by Grönwall’s inequality that if the energy eε(uε) is concentrated around Γ0 at time

t = 0, in the sense that ∫
RN

η(0, x)
eε(uε)

| log ε| dx→ 0 as ε→ 0

then it remains concentrated around Γt at time t, at least until the first time at which Γt

develops singularities or self-intersections.

The proof of (5.1) relies on the fact that when η is taken as a test function in the balance

law (2.14), certain remarkable cancellations occur. These are a consequence of algebraic

properties of η which encode the fact that it is built around a codimension 2 mean curvature

flow (1.8). Related ideas were used earlier by Ilmanen [29] and Ambrosio and Soner [2] in

proofs of results that establish compatibility between the Brakke flow and other notions of

weak solution of mean curvature flow.

The strongest results on the parabolic equation (1.3) were established in a landmark paper

of Bethuel, Orlandi and Smets [12], following important earlier contributions such as [44, 57]

and (particularly) the paper [3] of Ambrosio and Soner mentioned above. Bethuel et al prove
in [12] powerful regularity results which imply that, given any sequence of solutions of the

Ginzburg-Landau heat flow in RN for any N ≥ 3, satisfying only uniform energy bounds

(4.1) on the initial data, one can find a subsequence for which the energy measures converge

to a Brakke flow, globally in t. As mentioned above, a Brakke flow is a measure theoretic

weak solution of the mean curvature flow, and is characterized by the fact that it satisfies a

relaxed version of the balance law (2.18).

Some significant questions are left open by the work described above. For example,

• Assume that (uε)ε∈(0,1] is a sequence of solutions of the Ginzburg-Landau heat flow

in R3, and that the energy measures converge globally to a Brakke flow that can be

identified, for 0 ≤ t < Tsing , with a smooth curve that develops a self-intersection

at time Tsing . The results described above show that the energy concentration set is a

weak solution of mean curvature flow for all t, but can one say which weak solution

emerges (maybe only generically) from a self-intersection?

This seems to be a very difficult question, and should probably first be considered in the

simplest possible situation, such as for nearly parallel vortex filaments. A related problem,

simpler but still very subtle, involving the collision of point vortices in the 2d Ginzburg-

Landau heat flow, has been analyzed in depth in works of Bethuel, Orlandi, Smets [11, 13,

14] and Serfaty [54, 55].

Another question is:

• Is it possible to give a purely variational proof of the convergence of the Ginzburg-

Landau heat flow to codimension 2 mean curvature flow?
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General criteria permitting the “Gamma-convergence of gradient flows” have been de-

veloped in an important paper of Sandier and Serfaty [53]. These criteria require variational

convergence in a significantly stronger sense than is known from the works summarized in

Theorem 3.1 – a sort of “C1 Gamma-convergence” (see [53]). An improvement of Theorem

3.1 of this sort might also shed some light on questions discussed at the end of Section 4.

6. Hyperbolic problems

We recall some aspects of the geometry of submanifolds of (1+N)-dimensional Minkowski

space, which we write R1+N . Suppose that U = (a, b) × U , for U ⊂ RN−k open, and that

Ψ : U → R1+N is a nondegenerate map of the form

(t, y) ∈ U �→ Ψ(t, y) = (t, ψ(t, y)) ∈ R1+N

parametrizing a piece of a codimension k submanifold Γ. We will write

gab := ηαβ∂aΨ
α∂bΨ

β , a, b = 0, . . . , N − k, α, β = 0, . . . , N

(here and below, we identify y0 and t) for the induced metric on Γ, in local coordinates, and

g = det(gab), (gab) = (gab)
−1.

A submanifold Γ is said to be timelike if the induced metric is everywhere Lorentzian (that is,

has signature (−,+, . . . ,+).) This holds if and only if g < 0 everywhere. The Minkowskian

area of a timelike submanifold is defined by

Amink

(
Ψ(U)) := ∫

U

√−g dy0 . . . dyN−k

for the image of a coordinate patch, and more generally may be defined via a partition of

unity. In this setting, we also write λ1,N−k to denote the Minkowskian area measure, defined

by ∫
Ψ(U)

f dλ1,N−k :=

∫
U
f(Ψ)

√−g dy0 . . . dyN−k for f ∈ Cc(R
1+N ). (6.1)

Note that all these definitions are independent of the parametrization.

TheMinkowskian mean curvature vectorHmink is the first variation of the Minkowskian

area functional. In local coordinates it may be written as

Hmink =
1√|g|∂a

(√
|g|gab∂bΨ

)
.

For a timelike submanifold, the equationHmink = 0 is a quasilinear hyperbolic equation, in

suitable coordinates.

Speculations about relationships between equations like the Ginzburg-Landau wave equa-

tion (1.4) and Minkowskian minimal surfaces date back to the early ’70s in the physics lit-

erature, starting with a seminal paper of Nielsen and Olesen [48], and entered the (applied)

mathematics literature through the formal asymptotic analysis of Neu [47]. The first rigorous
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results about this problem were given by Bellettini, Novaga and Orlandi [4], who showed

that certain measure-theoretic estimates, if they could be proved, would suffice to justify the

passage to limits from (2.15) to (2.19), or a relaxed version thereof, suitable for describing

singular surfaces of vanishing Minkowskian mean curvature.

The strongest results to date about the dynamics of vortex filaments in the Ginzburg-

Landau wave equation are summarized in the following.

Theorem 6.1. Let Γ ⊂ (−T, T ) × RN be a smooth embedded timelike codimension k = 2
submanifold such that Γt := {x ∈ RN : (t, x) ∈ Γ} is compact for every t andHmink(Γ)=0.

Then for every ε ∈ (0, 1], there exists a solution of the Ginzburg-Landay wave equation
(1.4) such that for any T0 < T , there is a constant C, depending on Γ and T0 but inependent
of ε, for which∫

(−T0,T0)×RN

d̃2
( |ut|2 + |∇u|2

2
+
(1− |u|2)2

4ε2

)
dt dx ≤ C (6.2)

where d̃(t, x) = min{1, dist((t, x),Γ)}, and∣∣∣∣∫ S : (η − (η Duε)⊗ (η Duε)

�ε(uε)
)

�ε(uε)

| log ε| dx dt

−
∫
Γ

S : (η − P⊥mink) dλ
1,N−2

∣∣∣∣ ≤ C

| ln ε|1/2 ‖S‖W 1,∞ (6.3)

for all S ∈ C∞c (R1+N ;M (1+N)×(1+N)).

The significance of (6.3) is that it not only establishes that the wave equation balance law

(2.15) converges to its geometric counterpart (2.19) as long as the associated submanifold Γ
remains smooth, but it also provides an estimate of the rate of convergence.

Conclusion (6.3) implies in particular that∫
(−T0,T0)×RN

( |ut|2 + |∇u|2
2

+
(1− |u|2)2

4ε2

)
dt dx ≥ c| log ε|.

In light of this, the first conclusion (6.2) shows that the logarithmically diverging part of the

energy concentrates near Γ, where d̃ vanishes.

In the definition of the function d̄ appearing in (6.2), we simply understand dist((t, x),Γ)
with respect to the Eucliean metric on R1+N . One could also use a Minkowsian notion of

distance; in some way this would be more natural but it is a little harder to describe and in

any case would yield an equivalent estimate.

Theorem 6.1 was proved in [32], which also proved similar results relating the real scalar

wave equation and timelike hypersurfaces with vanishing Minkowksian mean curvature.

These results were proved under additional topological restrictions on Γt; more recent work

[28] has shown (among other extensions of results of [32]) how to remove this assumption

in the scalar case, and the arguments carry over with no change to the situation described

in Theorem 6.1. The proof is carried out by weighted energy estimates in Gaussian normal

coordinates adapted to the submanifold Γ, where “normal” is understood with respect to the

Minkowski metric. It relies crucially on variational estimates, in the spirit of Theorem 3.1,

that establish certain strong stability properties of “vortex filaments”. The weighted energy

estimates implicitly use a form of the balance law (2.15).

We mention a few of the many related open questions.
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• Is it ever possible to describe the dynamics of vortex filaments in solutions of the

Ginzburg-Landau wave equation, or related equations7, globally in time or beyond the

onset of singularities for associated geometric flow?

Any progress on this will almost surely require a more precise description of vortex

filaments than is given in [32], possibly involving a symplectic orthogonal decomposition or

similar ideas. Such an approach is followed in the only result of this type that we know of,

due to Cuccagna [16], who proves that for the real scalar Ginzburg-Landau wave equation in

3 dimensions with initial data a very small, smooth perturbation of a flat interface, solutions

scatter to a flat interface. In this situation the associated geometric dynamics are very nearly

trivial. Techniques of this general character were used in the first work [25] to show that

interfaces in the real scalar analog of (1.3) evolve by (codimension 1) mean curvature flow,

before the onset of singularities.

• Recently, motivated in part by problems considered here, Bellettini, Novaga and Or-

landi [5] introduced the notion of Lorentzian varifolds, which in particular yields a

definition of weak solutions of the equation “Hmink = 0” based essentially on the

balance law (2.19), and analogous to the classical theory of (Euclidean) varifolds. Ba-

sic issues about this, such as weak-strong uniqueness, remain open, and one may also

wonder whether there is any prospect for a reasonable (partial) regularity theory.

7. Schrödinger-type problems

Unlike the problems considered above, the validity of the (expected) relationship between

the Gross-Pitaevskii equation (1.5) and Schrödinger type geometric flow (1.10) is almost

completely open, and may be stated as the following

Conjecture 7.1. Let (Γt)t∈[0,T ] be a smooth compact embedded binormal curvature flow8
in R3. Then there exists a sequence (uε)ε∈(0,1] of solutions of the Gross-Pitaevskii equation
(1.5) in 3 space dimensions such that∫

ϕ ∧ Juε(t)→ π

∫
Γt

ϕ for all ϕ ∈ D1(R3). (7.1)

and ∫
φ
eε(uε(t))

| log ε| dx → π

∫
Γt

φ dH1 for all φ ∈ Cc(R
N ). (7.2)

7This question is probably easiest to address not for (1.4), but instead for some equation for which better spectral

estimates are available, such as the real scalar counterpart of (1.4) or for a gauge theory such as the Abelian Higgs

model, for which some results parallel to those of Theorem 6.1 have been established in [18]. It might also be

prudent to consider situations in which the associated geometric evolution has good properties. For example, 1+1-
dimensional timelike surfaces of vanishing mean curvature admit a very explicit description, which for suitable data

yields nontrivial but very simple dynamics for large |t|.
8Thus Γt is the oriented image of γ(t, ·) for some γ : [0, T ]× R → R3 satisfying

∂tγ = ∂sγ × ∂ssγ, |∂sγ|2 = 1,

with γ(t, s) = γ(t, s+ �) for some � > 0, and injective on {t} × [0, �) for all t ∈ [0, T ].
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One can more generally pose the conjecture in RN for N ≥ 3, once the equation (1.5) is

modified in a way that guarantees global well-posedness in the energy space.

A stronger form of the conjecture posits that for any sequence (uε)ε∈(0,1] of smooth

solutions of (1.5), conclusions (7.1),(7.2) are valid for all t ∈ [0, T ] as long as they are

satisfied when t = 0.
The main partial results toward the above conjecture (many, but not all, of which are

proved in RN for general N ≥ 3) are the following:

• it is known that there are families of translating solutions of (1.5) that converge in the

sense of (7.1), (7.2) to certain translating binormal curvature flows, see [9, 17].

• The conjecture is known to hold if (7.1), (7.2) hold when t = 0, and if Γ0 is a circle,

see [33].

• The conjecture holds for equivariant9 solutions of the Gross-Pitaevskii equation such

that (7.1), (7.2) hold at time t = 0, and Γ0 is a finite union of circles. (See [36], which

in fact considers a slightly different problem, but the proof applies with very minor

modifications to the situation described here.)

• If (7.1), (7.2) hold when t = 0, then there exists a family of 1-dimensional i.m. rec-

tifiable boundaries (Λt)t>0 such that M(Λt) ≤M(Λ0) and, after passing to a subse-

quence if necessary,∫
ϕ ∧ Juε(t)→ π

∫
Λt

ϕ for all ϕ ∈ D1(R3) (7.3)

for all t ≥ 0, see [33].

• Moreover, if M(Λt) = M(Λ0) for all t ∈ [0, T ], then Λt = Γt for t ∈ [0, T ]. (This

follows from results of [33] combined with with the weak-strong uniqueness theorem

of [35] described below.)

These results employ a strategy based on attempting a rigorous passage to limits from the

balance law (2.16) for the Gross-Pitaevskii equation to the corresponding balance law (2.20)

for the binormal curvature flow. To fully implement this strategy, one needs good estimates

of the quantity∫
R3

S :
∇u⊗∇u

| log ε| − π

∫
Γ

S : P⊥ dHN−2, S ∈ C∞c (RN ;MN×N ) (7.4)

compare (2.16) and (2.20). Refined variational estimates from [33], in the spirit of Theorem

3.1, show that the quantity appearing in (7.4) can be controlled by some combination of the

vorticity and energy, but these estimates, which are essentially sharp, are too weak to allow

a straightforward passage from (2.16) to (2.20). These unfavorable estimates, which are one

major obstacle (among several) to the proof of Conjecture 7.1, are related to the same bad

spectral properties of certain linearized operators that make Lyapunov-Schmidt reduction

difficult for the elliptic Ginzburg-Landau equations.

In the above framework, it is natural to consider a definition of weak solutions of the bi-

normal curvature flow— that is, theN = 3 case of (1.10)— based on the balance law (2.20).

9That is, solutions of the form u(t, x, y, z) = f(t, r, z)x+iy
r

, where r =
√

x2 + y2. Even with this symme-

try, vorticity concentration around several circles is much harder to analyze than the case of non-equvariant solutions

with vorticity concentrating around a single circle, in which certain key technical obstacles can be circumvented.
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One such definition was proposed in [33], and a slightly improved notion of weak solution

was recently put forward in [35], which establishes some properties of this class of weak

solutions, such as existence of solutions for initial data which is merely a closed rectifiable

curve, and the existence of solutions that exhibit change of topology. Such weak solutions

need not be unique, but it is shown in [35] that they enjoy a weak-strong uniqueness property
— a weak solution that agrees with a smooth solution (say, L∞([0, T ];W 3,∞(R/�Z;R3))
at time t = 0 continues to do so as long as the smooth solution does not develop self-

intersections. This is proved by defining what might be called a relative entropy of the

weak solution with respect to the smooth solution, and showing that its growth can be con-

trolled; the proof thus shows that a weak solution that is close to a smooth solution at t = 0
(in a particular sense) remains nearby for some interval of time. This argument has been

adapted in [34] to show that if u, v are Schrödinger maps S1 → S2 and v is smooth (say,

C([0, T ];H3(R/�Z;R3)) then

inf
σ∈T1

‖u− τσv‖L2 ≤ C(v)‖u0 − v0‖L2 .

This estimate is interesting partly because the equation supercritical in L2; the critical space

isH1/2. Also, u is only required to belong toL∞([0, T ];H1/2(R/�Z;R3)which, in addition

to being a critical space, is more or less the weakest space in which the equation can be given

a meaning in the sense of distributions.

The most prominent open question in this area, and indeed in the family of problems

discussed in this paper, is Conjecture 7.1. But there are also a number of interesting questions

related to the binormal mean curvature flow and its weak solutions, among them:

• Results of [35] imply in particular the existence of weak solutions of the binormal cur-

vature flow in 3 dimensions for initial data a regular planar polygon. A very interesting

numerical and theoretical study of this problem is carried out in [19], which produces

explicit formulas for candidate weak solutions and investigates number-theoretic prop-

erties of these curves. Parallel behavior is well-understood for the linear Schrödinger

equation on S1 (see for example [51]), and also for periodic NLS with subcritical

nonlinearities (this can be treated as a perturbation of the linear case, see [26]), but

remains mysterious in the (supercritical) setting of the binormal curvature flow. A first

step could be to see whether the candidate solutions constructed in [19] are in fact

weak solutions in the sense of [35].

• As far as we know, nothing is established about well-posedness, or other properties, of

the binormal mean curvature flow when N ≥ 4, although the equation may be seen as

the canonical Schrödinger-type counterpart of the (Eulidean and Minkowskian) mini-

mal surface equations and mean curvature flow.

A. Appendix

We recall some terminology from geometric measure theory, used in the statement of Theo-

rem 3.1 and elsewhere.

A k-current in an open setΩ ⊂ RN is a bounded linear functional on the spaceDk(Ω) of
C∞ compactly supported k-forms in Ω. An oriented k-dimensional embedded submanifold
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M in Ω can be associated with the current TM defined by

TM (ϕ) :=

∫
M

ϕ for ϕ ∈ Dk(Ω). (A.1)

The space of k-currents also contains some objects that are a little less regular, as well as

many objects that are much less regular. We will encounter only the former, an example of

which is the current of the form

ϕ ∈ Dk(Ω) �→
∫
F (A)

ϕ =

∫
A

F#ϕ (A.2)

where A is a compact subset of Rk and F : A → RN is only Lipschitz (in general not

injective, for example), and F#ϕ denotes the pullback of ϕ by F . More generally, an integer
multiplicity10 rectifiable k-current is one that can be obtained as a limit (with respect to the

mass norm, defined below) of currents of the form (A.2). In the case k = 1, such currents

can always be written as

Γ(ϕ) =
∞∑
i=1

∫
γi

ϕ, ϕ ∈ D1(Ω) (A.3)

where γi is the (oriented) image of an injective Lipschitz map (0, 1)→ RN , and the collec-

tion (γi)
∞
i=1 has finite mass in the sense defined below.

Given a function u ∈ H1(Ω;C), we can associate to the vorticity Ju the N − 2-current
defined by

ϕ ∈ DN−2(Ω) �→
∫
Ω

ϕ ∧ Ju.

This has a geometric interpretation given by (2.7), as a kind of average of currents associated

to level sets of u.
The mass in Ω of a k-current T , denoted MΩ(T ), is defined by

MΩ(T ) := sup{T (ϕ) : ϕ ∈ Dk(Ω),max
x
|ϕ(x)| ≤ 1}

where for concreteness we use the Eulidean norm on k-covectors. We will almost always

drop the subscript and simply write M. It is a straightforward consequence of the definition

that for TM as in (A.1),

M(TM ) = Hk(M).

If M is merely immersed, then we can still define TM as in (A.1), and in this case M(TM )
corresponds to the Hk measure with a weight that counts the algebraic multiplicity. This is

in fact the right notion of “k-dimensional area” in Theorem 3.1. In particular, for an i.m.
rectifiable 1-dimensional current Γ, the representation on the right-hand side of (A.3) can be

chosen with the property that

M(Γ) =
∑
i

H1(γi).

Whenever a current T has locally finite mass, there exists a Radon measure μT such that

MU (T ) = μT (U) for every open U ⊂ Ω.

10we will generally use the abbreviation i.m.
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We will refer to this as the mass measure.
The boundary of k-current T is a k − 1-current ∂T defined by

∂T (ϕ) = T (dϕ).

The definition is arranged so that ∂TM = T∂M for TM as in (A.1) — this is just Stokes’

Theorem.

A k-current T in Ω is said to be a boundary if there exists some k + 1-current S such

that T = ∂S in Ω.
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Homogenization theory in nonlinear partial
differential equations

Ki-Ahm Lee

Abstract. In this paper, we are going to consider recent works in Homogenization Theory in Nonlinear

Partial Differential Equations, which concerns the derivation of a macroscopic homogenized (or effec-

tive) equation for the system with oscillating microscopic structures. Mainly we focus on topics related

with the homogenization for high oscillation, nonvariational problems, lower dimensional oscillations

or equations of nondivergence type.

Mathematics Subject Classification (2010). 35B27, 35K55, 35R35.

Keywords. Homogenization, nonlinear partial differential equations, free boundary problems.

1. Introduction to homogenization

The homogenization theory is concerned with the derivation of homogenized or effective

equations satisfied by the limit of solutions of differential equations with rapidly oscillating

data. Such problems can be considered to find the macroscopic behavior of a system with

heterogeneous oscillations in the microscopic scale. Suppose that there is an alloy consisting

of two different matters as white and blue materials at Figure 1.1. At the macroscopic scale

(or ε → 0), the alloys have been discovered to possess stable physical properties such as

heat transfer, electric conductivity which differ from those of materials at micro scale.

Figure 1.1. Homogenization, [11]
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At mathematical models of microscopically non-homogeneous media, various small

scale characteristics are usually described by oscillating functions. Let Ω ⊂ Rn be a

smooth domain and assume that aij(x, y), f(x, y) and g(x, y) are periodic in y-variable
i.e. aij(x, y + m) = aij(x, y), f(x, y + m) = f(x, y) and g(x, y + m) = g(x, y) for

m ∈ Zn.

We consider uε satisfying the following Dirichlet value problems:{
∇i

(
aij
(
x, x

ε

)∇juε

)
= f

(
x, x

ε

)
in Ω

uε = g
(
x, x

ε

)
on ∂Ω

(1.1)

in Divergence form or {
aij
(
x, x

ε

)
Dijuε = f

(
x, x

ε

)
in Ω

uε = g
(
x, x

ε

)
on ∂Ω

(1.2)

in non-Divergence form

1.1. Example at one dimension ([11]). Let us consider one dimensional simple problem

to find the behavior of solutions, uε, and the homogenized equation satisfied by the limit, u.
For Ω = [0, 1], set a(y) to be 1-periodic i.e. a(y) = a(y + 1) and aε(x) = a

(
x
ε

)
ε-periodic

as Figure 1.2. {
d
dx

(
aε(x)

d
dxuε(x)

)
= 0, 0 < x < 1,

uε(x) = 0 at x = 0, uε(x) = 1 at x = 1.
(1.3)

Then we have

uε(x) = x+

´ nx

0
( 1
a(y) − 1)dy´ n

0
dy
a(y)

= u(x) + εw
(x
ε

)
,

where u(x) = x and w is 1-periodic i.e. w(y + 1) = w(y).
w(y) is called as a corrector since w(y) is used to correct the limit function u(x) to be a

solution of ε-problem, (1.3). And uε(x) converges to u(x) as Figure 1.2.

Figure 1.2. 1-dimensional problem

The homogenized equation satisfied by the limit solution u will be

d

dx

(
a
d

dx
u(x)

)
= 0, on 0 < x < 1

where a = 1´ 1
0

dx̃
a(x̃)

is an effective diffusion coefficient.
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1.2. Outline. Recently there have been important developments in the theory of homoge-

nizations by various authors especially in viscosity method: L. Caffarelli, P. E. Souganidis,

H. Ishii, H. Matano, L.C. Evans, I.C. Kim, A. Mellet, S. N. Armstrong, H. Shahgholian and

so on. In addition, young researchers have been involved actively: W. Feldman, Sunghoon

Kim, Sunghan Kim, B. Orcan, M. Strömqvist, M. Yoo and so on. At Section 2, some known

methods are introduced briefly. And then I would like to address some important issues at

the theory of homogenization that I have focused on recent years. Section 3 is on the study

of the high oscillation where the regularity of oscillating solution lacks especially for fully

nonlinear equations. Discrete regularity has been introduced, which will give us the concept

of convergence and homogenization. Section 4 is on the homogenization of nonvariational

solutions which will have nontrivial effective equations that may not be a simple average.

And section 5 focuses on the homogenization theory when the oscillation happens on the

lower dimensional surfaces. Number theory and ergodic theory play important roles to find

the effect of lower dimensional oscillation. Finally, at section 6, we discuss the concept of

compatibility condition for equations of nondivergence type with Neumann boundary value

problems for the homogenization theory of soft inclusions.

2. Known methods

In this section, we are going to review briefly some of known methods for the introduction

of homogenization theory.

2.1. Multiscale expansion method. Consider uε satisfying(
aij

(x
ε

)
uε,i

)
j
= f in Ω, uε = 0 on ∂Ω. (2.1)

Let us consider the following expansion of uε with respect to ε:

uε(x) = u0(x, x/ε) + εu1(x, x/ε) + ε2u2(x, x/ε) + · · · .
where ui(x, y) is an 1-periodic in y. x is called as a macroscopic( or slow) variable and

y = x/ε as a microscopic(or fast) variable. For heuristic argument, we may assume that

ui(x, y) are smooth. Then ∇ui

(
x, x

ε

)
= ∇xui +

1
ε∇yui. Putting uε in the equation (2.1),

we have

1

ε2
L1uo +

1

ε
(L1u1 + L2uo) + (L1u2 + L2u1 + L3uo) + ε(· · · ) = f

where ⎧⎪⎨⎪⎩
(a) L1v = (aijvyi

)yj
,

(b) L2v = (aijvxi)yj − (aijvyi)xj ,

(c) L3v = (aijvxi)xj .

(a) For each x, u0 is a uniformly bounded function in y ∈ Rn satisfying L1uo = 0.
Louville’s theorem implies uo is independent on y, which means u0(x, y) = u0(x).

(b) L1u1 = −L2uo = −(aij)yjuxi and the linearity of the equation tells us that u1(x, y)
will be of the form

u1(x, y) = wi(y)uxi + ũ1(x)
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where

L1w
i = −(aij(y))yj in Q and wi is 1-periodic (2.2)

for Q = {x : 0 < xi < 1 for i = 1, · · · , n}
(c) For given u0 and u1, u2 satisfies

L1u2 = f − L− 2u1 − L3uo,

which has a 1-periodic solution (in the variable y) only if the integral of the right hand

side over Q is zero. The compatibility condition is

ˆ
Q

L2u1 + L3uody =

ˆ
fdy = 〈f〉,

which gives us the following homogenized equation

a∗ijuij = f in Ω and u = 0 on Ω (2.3)

where

a∗ij =

ˆ
Q

[
aij(y)− ajk(y)w

i
yk
(y)
]
dy.

2.1.1. Energe method. The energy method was developed by Tartar to justify the homog-

enized equation ( 2.3). The solution of ( 2.1) is defined the following weak formulation

ˆ
Ω

aij

(x
ε

)
uε
iφjdx =

ˆ
Ω

f(x)φ(x)dx (2.4)

for φ(x) ∈ H1
o (Ω).

When we try to justify the heuristic computation above, we can be in trouble since the

left-hand side of ( 2.4) involves two weakly converging sequences in L2. The convergence

of LHS is not generally true.

One of key idea is to replace the test function by weakly converging test function (so

called oscillating test function).

φε(x) = φ(x) + εφiw
i(x/ε)

where wi is the solution of ( 2.2). The convergence of an integral of the product of two

weakly converging sequences in (2.4), can be justified by div-curl lemma.

2.2. Γ− Convergence. The solution of ( 2.1) can be achieved by taking the minimum of

the following energy

min
u∈Ho(Ω)

(
1

2

ˆ
Ω

aij

(x
ε

)
uiujdx−

ˆ
Ω

fudx

)
.

In general, let us consider the convex, periodic and C1-energy function W (y, λ) such that

0 ≤ c|λ|p ≤W (y, λ) ≤ C(1 + |λ|p)

Iε =

ˆ
Ω

(
W
(x
ε
,∇v(x)

)
− f(x)v(x)

)
dx.
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Its homogenized functional is defined by

I(v) =

ˆ
Ω

(Whom(∇v(x))− f(x)v(x)) dx,

where Whom(λ) = infw∈H1,p
#

´
Y
W (λ +∇w(y))dy and H1,p

# is the collection of periodic

H1,p-functions. To show the convergence of Iε to I , De Giorgi introduced the concept of

Γ-convergence. The I is a Γ-convergence of Iε if and only if

(i) all sequence uε converging to u satisfy I(u) ≤ lim infε→0 Iε(u
ε)

(ii) and there exists at least one sequence uε converging to u s.t. I(u) = limε→0 Iε(u
ε).

2.3. Viscosity method.

2.3.1. Definition of viscosity solution. Roughly, a viscosity solution is a continuous func-

tion having a comparison principle when it is compared with another classical solution.

(1) F (D2u, x) = f(x) is uniformly elliptic if

λ‖N‖ ≤ F (M +N, x)− F (M,x) ≤ Λ‖N‖,
for all symmetric matrix N ≥ 0 and M .

(2) A continuous solution u is a viscosity subsolution[resp. supersolution] when the fol-

lowing condition holds:

if φ ∈ C2(Ω) and u− φ has a local maximum at xo then

F (D2φ(xo), xo) ≥ f(xo)

[resp. if u− φ has a local minimum at xo then F (D2φ(xo), xo) ≤ f(xo)].

2.3.2. Nondivergence equations. Let us consider the homogenization theory of fully non-

linear equations with oscillating data:

F
(
D2uε,

x

ε

)
= 0 in Ω, uε = 0 on ∂Ω (2.5)

(a) (Convergence) By comparing uε with suitable barriers, uε is shown to be uniformly

bounded, and then Hölder estimate of uε, [1], says

||uε||Cα(B1/2) ≤ C||uε||L∞(B1)

So there is a limit u such that uε → u as ε→ 0 (up to a subsequence).

(b) (Existence of the corrector) If we attempt to solve F (M + D2w, Y ) = 0, then we

need a compatibility condition. For instance, if F = �, we need
´
Y
tr(M) = 0. In

general, we can show that there is a constant λ such that there is a 1-periodic function

w(y) satisfying
F (M +D2w, y) = λ,

Then we define

λ = F (M).
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A heuristic reasoning is the following. Set P (x) = 1
2Mijxixj + ξixi + a.

P (x) is correctiable.

⇔ Pε(x) = P (x) + ε2w
(
x
ε

)
satisfies ε-problem, (2.5).

⇔ F (D2Pε(x), x/ε) = F (M +D2w(y), y) = λ = F (M) = 0.

⇔ F (D2P ) = 0

Theorem 2.1 ([10]). The homogenization equations satisfied by u is

F (D2u(x)) = 0 (2.6)

Proof. It is enough to check that if P is a quadratic polynomial touching u from below at

xo, F (D
2P ) ≤ 0. Suppose that F (D2P ) > 0, then there is δ > 0 s.t. P = δ|x− xo|2 +Q

and F (D2Q) = 0.
Set Qε = Q + ε2w

(
x
ε

)
. Qε + γ(ε) is a vertical translation of Qε to touch uε and

Qε + γ(ε) < uε on ∂Bδ .

Two different solutions are touching each other, which is a contradiction.

3. Large oscillation

At Section 2, we considered uniform Hölder estimates for uε where the oscillation of uε

gets smaller as ε goes to zero. In this section we are going to consider obstacle problems in

perforated domains where the L∞-oscillations of uε stay large even though ε goes to zero,

so called as a large oscillation.

3.1. Perforated domains. First let us introduce perforated domains.

Figure 3.1. Perforated Domain

Let Ω be a bounded connected subset of Rn. For each ε > 0, we cover Rn by the cubes

P ε
m(m ∈ Zn) of the size 2ε. Then from each cube, P ε

m, we remove a ball, T aε
m , of the radius

aε which has the center at the center of the cube, P ε
m. Then we can produce a domain that is

perforated by spherical identical holes (see Figure 3.1). Let

Rn
aε
= Rn\ ∪m∈εZn T aε

m

Ωaε
= Ω ∩ Rn

aε
= Ω\ ∪m∈εZn T aε

m .



Homogenization theory in nonlinear partial differential equations 817

Then we are going to consider highly oscillating obstacles ϕε(x) which is zero in Ωaε

and ϕ(x) on each hole T aε
m .

ϕε(x) = ϕ(x)χ(∪m∈εZnTaε
m )

Then ϕε(x) will oscillate more rapidly between 0 and ϕ(x) as ε goes to zero.

3.2. Obstacle problems with highly oscillating obstacles. Now we can consider the stan-

dard obstacle problem asking the least viscosity supersolution of Laplace operator above the

given oscillating obstacle: find the smallest viscosity super-solution uε(x) s.t.⎧⎪⎨⎪⎩
�uε ≤ 0 in Ω

uε(x) ≥ ϕε(x) in Ω

uε(x) = 0 on ∂Ω

(3.1)

where ϕε(x) ≤ 0 on ∂Ω and ϕε is positive at a point in Ω. The concept of viscosity solution

and its regularity can be found at [1].

(a) subcritical (b) supercritical (c) critical

Figure 3.2. This figures show the oscillation of uε when the decary rate of aε is subcritical (a) ,

supercritical (b), and critical (c).

We are interested in the limit of the uε as ε goes to zero. Then there are three possibles

cases. First, if the decay rate aε of the radius of column is too high w.r.t. ε, the limit solution

will not get the influence from the existence of the obstacle. Hence it will satisfy the Laplace

equation without any obstacle, Figure3.2 (a). Second, on the contrary, if the decay rate aε
is too slow, the limit solution will be influenced fully by the existence of the obstacle and

then become a solution of the obstacle problem with the obstacle ϕ(x), Figure3.2-(b). We

are interested in the last case when the decay rate aε is critical so that the limit solution will

have partial influence from the obstacle, Figure3.2-(c). Then we are able to show that the

limit function becomes a solution for an operator which has the original operator, that is a

Laplace operator, and an additional term that comes from the influence of the oscillating

obstacles. Naturally we ask what is the critical rate a∗ε of the size of the obstacle so that there

is non-trivial limit u(x) of uε(x) in the last case, Figure3.2-(c), and what is the homogenized

equation satisfied by the limit function u.

Theorem 3.1 ([6]). Let uε be the least viscosity super solution of (3.1).
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(1) There is a continuous function u such that uε
w−→ u in Ω with respect to L∞-norm.

And for any δ > 0, there is a subsetD ⊂ Ω and εo such that , for 0 < ε < εo, uε → u
uniformly in D as ε→ 0 and |Ω\D| < δ.

(2) Let a∗ε = εα∗ for α∗ = n
n−2 in Rn(n ≥ 3) and a∗ε = e−

1
ε2 in R2.

(a) For coα∗ε ≤ αε ≤ Coα
∗
ε , u is a viscosity solution of

�u+ kBro
(ϕ− u)+ = 0 in Ω

u = 0 on ∂Ω.

where kBro
is the capacity of Bro if ro = limε→0

αε

α∗ε
exists.

3.3. Fully nonlinear operator. The viscosity method above can be extended to a fully non-

linear uniformly elliptic operator positively homogeneous of degree one. We define the fully

nonlinear equation of nondivergence type as follows:

F (D2u(x), x) = f(x)

where f and u are given in Ω. We also call F positively homogeneous of degree one if

F (tM) = tF (M) for t > 0. We assume that F is uniformly elliptic and positively homo-

geneous of degree one.

We are going to consider fully nonlinear version of (3.1): find the least viscosity super-

solution uε such that ⎧⎪⎨⎪⎩
F (D2uε(x)) ≤ 0 in Ω

uε(x) ≥ ϕε(x) in Ω

uε(x) = 0 on ∂Ω

(3.2)

where ϕε satisfies the same condition in (3.1). At [6], we show that a homogeneous fully

nonlinear equation has a homogeneous solution as the Laplace equation has a fundamental

solution.

Proposition 3.2 ([6]). There is a solution V (x) for F (D2V ) = 0 in Rn\{0} which is one

of the following three types with a positive function Φ(θ) where θ = x
|x| .

• (Type I) V (x) = |x|−λΦ(θ) (Example: Laplacian in Rn and n ≥ 3.)

• (Type II) V (x) = log(|x|) + Φ(θ). (Example: Laplacian in R2.)

• (Type III) V (x) = |x|λΦ(θ). (Example: Laplacian in R.)

Theorem 3.3 ([6]).

(1) There is a continuous function u such that uε
w−→ u in Ω with respect to L∞-norm.

And for any δ > 0, there is a subset D ⊂ Ω such that uε → u uniformly in D and
|Ω\D| < δ.

(2) In (Type III), for any aε, the limit u is a least viscosity super solution of

F (D2u) ≤ 0, u ≥ ϕ in Ω with u = 0 on ∂Ω
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(3) Set a∗ε = εα∗ for α∗ = λ+2
λ in (Type I) and a∗ε = e−

1
ε in (Type II). Then If there are

0 < co < Co < ∞ such that coa∗ε ≤ aε ≤ Coa
∗
ε , there is a uniform elliptic operator

F (D2u, (ϕ− u)+) such that the limit u is a viscosity solution of

F (D2u, (ϕ− u)+) = 0 in Ω

u = 0 on ∂Ω.

3.4. Critical rates. To find a critical rate, a∗ε , we consider a global periodic solution of

periodic obstacle problems having constant height called as a corrector, wε.

(a) subcritical (b) supercritical (c) critical

Figure 3.3. This figures show the oscillation of wε when the decay rate of aε is subcritical (a) ,

supercritical (b), and critical (c)

The existence and behavior of wε have been achieved by the construction of super- or

sub-solutions using fundamental solution or homogeneous solution V (x). At (a), the obsta-

cle is too thin, the oscillation of wε goes infinity while the oscillation of wε goes zero at (b)

since it is too thick. So at the critical rate, a∗ε at (c), the oscillation of wε will be of order one

with which we can correct the limit profile, u, to be almost a solution of ε-problem.

3.5. Uniform discrete estimate. It is clear that the oscillation of uε is of order one even

though ε goes to zero as we can observe at Figure 3.2. So it may be more appropriate to

estimate in terms of integral quantities. For the linear equation, there is a uniform H1(Ω)-
estimate but it is not clear how to estimate uε uniformly for nonlinear equation of nondiver-

gence type.

3.5.1. Discrete gradient estimate. Even though uε oscillates with order one, the values at

discrete points, equivalent in mod one, changes with small oscillations.

Lemma 3.4 (Discrete Gradient Estimate). Let he ∈ Zn with a unit vector e. There is a

uniform constant C > 0 such that the differential quotient satisfies

|�h
euε(x)| = |uε(x+ εhe)− u(x)|

εh
≤ C

whenever x, x+ εhe ∈ Ω.

Idea of Proof. We apply maximum principle on Z = supΩε
|�euε|2.

(i) Z satisfies a linearized equation having maximum principle inΩε, which implies there

is no maximum in Ωε\∂Ω.

(ii) The boundary discrete gradient estimate can be achieved after the construction of a

super-solution having linear growth from the boundary called as a barrier.

(a) First we consider the convex domain where the plane-like solution ξ · x + εvε
with oscillations plays as a barrier. And then we go through the homogenization.



820 Ki-Ahm Lee

This solution hε will be bended like a concave function if f = −M for large

constant M > 0 since F is uniformly elliptic.

(b) Now we consider h̃ε = max(K − hε, 0), which has a flat spot at set close to a

small ball and it grows linearly away from the flat spot. If Ω satisfies the uniform

exterior sphere condition, we can use h̃ε as a barrier.

3.5.2. ε-Flatness.

Lemma 3.5 (ε-Flatness). Let uε be the viscosity solution of (3.1) or (3.2). There are a

uniform constant C > 0 and α ∈ (0, 1) such that, if Bδ0 ⊂ Ω, then, for any R > 0,

|uε(x)− uε(y)| ≤ Cε

for x, y ∈ BεR ∩ Ω√aε
⊂ Bδ0 .

Theorem 3.6 (Global ε-Lipschitz Estimate). There is uniform constants C > 0 such that

|uε(x)− uε(y)| ≤ C(|x− y|+ ε)

for x, y ∈ Ωε

Figure 3.4. Discrete Points

Idea of Proof.

• The values of uε on the red dot at Figure 3.5.2 satisfies the discrete gradient estimate,

Lemma 3.4.

• uε at each cell has ε-Flatness outside of a small neighborhood of holes, saying that the

values is almost constant with ε-error in a cell except for very small region.

• For any two points x and y, There will be points x∗ and y∗ denoted as red dots at

Figure 3.5.2 at the same cell respectively. Then the values of uε at x and y will be

close to uε at x∗ and y∗ with ε-error.

From the Arzela-Ascoli Theorem, we have a uniform convergence to a limit.

Corollary 3.7. There is a Lipschitz continuous function u which is a limit of a subsequence
of {uε}.



Homogenization theory in nonlinear partial differential equations 821

Figure 3.5. Viscosity Method

3.6. Homogenization. We are going to show the limit u is a viscosity sub- and super-

solution.

Claim: u is a subsolution. Otherwise there is P (x) = 1
2Pijxixj + ξixi + c touching u

at x0 = 0 from above and

F (P, ξ, 0) < −2δ0 < 0.

Choose another quadratic polynomial Q(x) as the figure 3.6 and apply correctors to correct

Q(x):

Qε(x) = Q(x) + ε2wε

(
x,

x

ε

)
.

Then Qε(x) will be a super-solution of (3.2) and uε(x) ≤ Qε(x) in a neighborhood of

x0 = 0. From the uniform convergence uε to u(x),

u(0) ≤ Q(0),

which is a contradiction.

3.7. Related works. The homogenization theory of fully nonlinear parabolic equations and

degenerate equations of Porous Medium type have been studied at [13]. It is very crucial

to construct a barrier keeping degeneracy and high oscillations, which have been obtained

through the homogenization of nonlinear elliptic eigenvalue problems in perforated domain.

And the homogenization of soft inclusions in perforated domain for nonlinear equations of

nondiveregnce type has been studied at [18] , where we propose a new compatibility con-

dition for nondivergence-type equations which was unknown. We also consider the homog-

enizations of thin obstacles at [17] where a lower dimensional obstacle may goes through

perforated domains partially, Section 5. So number theory plays very important role.

4. Nonvariational problems

In this section, we are going to consider homogenization of nonvariational problems, whose

effective equations could be different from a simple average that we can find frequently at

variational problems. Such phenomenon can be addressed at flame propagations.

4.1. Flame propagation. The following equation arises in the modeling of the combustion

of a premixed gas (thermodiffusive approximation):

∂tu = �u− f(x)βδ(u), x ∈ Rn. (4.1)
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The reaction term is given by βδ(s) =
1
δβ(

s
δ ), with 0 < δ < 1 and with β(s) a Lipschitz

function satisfying ï£ijï£ij β(s) > 0 if x ∈ (0, 1), β(s) = 0 otherwise, M =
´ 1

0
β(s) ds.

This model is usually referred to as the ignition temperature model. The function f(x)
is positive and is related to the combustion rate; it is independent of the space variable when

the media is perfectly homogeneous. In this paper, we assume that heterogeneities arise in

the premixed gas over a small scale (of order ε) and in a periodic manner. This amounts to

writing fε(x) = f
(
x
ε

)
with f(x+ k) = f(x) for all k ∈ Zn. As δ → 0, we have the a free

boundary problem of flame type: for a unit direction e and a periodic function f satisfying

0 < λ ≤ f ≤ Λ <∞, uε satisfies⎧⎪⎨⎪⎩
uε,t = �uε − f

(
x
ε

)
βδ(uε) in Rn

uε → 0 as x · e→ −∞
uε → 1 on x · e→∞

(4.2)

4.2. Stationary flame. Let us consider a simple case when f depends only one variable

that is f(x) = f(x1).
Assume uε satisfys the following free boundary value problems:⎧⎪⎨⎪⎩

�uε = 0 in Ω(uε) = {uε > 0}
|∇uε|2 = 2f

(
x1

ε

)
on ∂Ω(uε)\B1

uε = 1 on ∂B1,

(4.3)

which can be given by taking δ → 0 at (4.2). We can find there are multiple solutions. Let

vε be the minimizer of the corresponding energy

Eε(w) =
1

2

ˆ
BR\B1

‖∇w‖2ds+
ˆ
BR\B1

f
(x1

ε

)
χ{w>0}dx

satisfying the given boundary condition and uε is the smallest solution. If u and v are the

limits of uε and vε, then the slops of u and v are
√
2〈f〉 and√2max f respectively as Figure

4.1-(a) for n = 1. This example tells us that the homogenization of the smallest solution uε

of nonvariational problem is genuinely different from that of solutions, vε, of variational
problem.

Now let us consider two dimensional problems, n = 2. First, the limit of energy mini-
mizer, v, has circular free boundary, since the effective free boundary condition is constant,√
2〈f〉, [4]. Now we cut off the limit of energy minimizer by the planes with the maximum

slope by taking the minimum between v and the plane. The smallest solution u lies under

the minimum of v and the plane, and u has a flat spot.

Theorem 4.1 ([5]). Let the dimension n = 2 and f(x) = f(x1).

(1) The free boundary, ∂Ω(u) = ∂{u > 0}, is C1.

(2) On the flat spot, |∇u| ∈ [
√
2〈f〉,√2max f ]. |∇u| achieves √2max f at the center

of the flat spot and decreases to
√
2〈f〉 as the point goes to the end points of the flat

spot.

(3) the similar statements are true for general periodic function f .
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(a) Energy minimizer and the smallest (b) Cutting with planes

(c) Flat spot on the free boundary

Figure 4.1. Stationary Flames

For a more general periodic function, f(x+k) = f(x) for k ∈ Z2 with a line symmetry,

the key difference is that a plane is not a stationary flame any more. At [4, 5], for each

direction ν, we found plane-like solutions, wν(x), which is trapped between two parallel

planes with a uniform distance. Then the free boundary of wν(x) oscillates with a uniform

size. If we rescale back wν(x) to ε-problem, the oscillation of free boundary of plane-like

solution, wν
ε (x), goes to zero as ε→ 0 and the slope of the limit, α(ν), of wν

ε (x) will be the

maximum of possible slope of the limit u as the max f in one dimension.

4.3. Pulsating flame and homogenization. At [7–9], the homogenization of pulsating wave

has been studied when the thickness of the flame is much smaller than the periodicity of re-

action materials, δ
ε → 0. Pulsating wave is a traveling wave-like oscillating solution trapped

by two standard traveling wave with the same constant reaction rate and with the same speed.

To track down the property of free boundary, we need to scale the space and time with the

same scale and then the heat equation in Ω(uε) converges to Laplace equation, which means

u = 1
εuε(εx, εt) is close to harmonic function having the same reaction rate, but the bound-

ary is moving with an effective speed. So the effective reaction rate for traveling wave is

proved to be the minimum of the slope of plane-like stationary flame for the direction in

which the traveling wave moves. In addition the oscillation of free boundary of uε will

converges to zero uniformly.

5. Lower dimensional oscillation

Homogenization of lower dimensional oscillation has been studied actively recently. The

contents in this section can be referred to [3, 16, 17, 19].
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5.1. Examples. First, let us consider examples where the oscillation of data occurs on lower

dimensional hypersurface.

5.1.1. Dirichlet or Neumann boundary value problems. We are going to consider os-

cillating boundary data. Set Ω ⊂ Rn to be a smooth domain. Assume that f(x, y) and

g(x, y) are periodic in y-variable that is g(x, y+m) = g(x, y) for m ∈ Zn. We consider uε

satisfying

�uε = f
(
x,

x

ε

)
in Ω, uε = gε(x) on ∂Ω (5.1)

for gε(x) = g
(
x, x

ε

)
, or

F
(
D2uε,

x

ε

)
= f

(
x,

x

ε

)
in Ω, uε = gε(x) on ∂Ω. (5.2)

We can also consider Neumann boundary value problem by replacing the Dirichlet boundary

data by a Neumann boundary data, ∂uε

∂ν = gε(x) on ∂Ω.

5.1.2. Thin obstacles. Let Γ = Γν be a hyperplane with a surface measure σ, defined by

Γν = {x ∈ Rn : x · ν = x0 · ν} for given ν ∈ Sn−1 and x0 ∈ Rn.

The set Γε = Γ∩ Tε describes the intersection between the hyper-plane and the periodic

background. Then, for a given ψ ∈ L∞(Ω) ∩ H1(Ω) such that ψ ≤ 0 on ∂Ω, we define

the obstacle ψε = ψχΓε
and the admissible set Kψε

= {v ∈ H1
0 (Ω) : v ≥ ψε}. The

inequality in Kψε is to be interpreted in the sense of trace, i.e. TraceΓε(uε − ψ) ≥ 0 on Γε

and uε ≥ 0 a.e. in Ω \ Γε. We consider the following thin obstacle problem, for f ∈ L2(Ω):
find uε ∈ Kψε

and

ˆ
Ω

∇uε · ∇(v − uε)dx ≥
ˆ
Ω

(v − uε)fdx, for all v ∈ Kψε . (5.3)

The variational inequality (5.3) has a unique solution uε ∈ Kψε which can be obtained

as the unique minimizer of the strictly convex and coercive functional

J(v) :=

ˆ
Ω

1

2
|∇v|2 − fvdx, v ∈ Kψε . (5.4)

As ε → 0, we are interested in the asymptotic behavior of uε. We want to determine u =
limε→0 uε in terms of an effective equation that it solves. Main difficulty comes from the

fact that the perforated surface Γε does not have a lattice structure in the sense that the

perforations are not evenly spaced, and this introduces a substantial difficulty.

5.1.3. Flame propagation. The free boundary of moving flame is also a oscillating hyper-

surface which will share the same difficulties and flavors as the oscillating boundary data and

thin obstacles.

5.2. Observations. Let us consider some examples to address the main issues.

5.2.1. Example 1: One dimensional problem. Let us consider a simple example to find

out main issues. Set Ω = {x : 0 < x · ν < R} and g(x) = g(x1). Consider uε satisfying

�uε = 0 in Ω, uε(x) =M on x · ν = 0, uε(x) = g
(x
ε

)
on x · ν = R. (5.5)
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(a) directions (b) mod 1 oscillation (c) u∗(x), u(x), and u∗(x)

Figure 5.1. (a)(b): the fixed boundary may oscillate at a configuration of mod one. (c):the boundary

data may changes as ε → 0.

We may have the following three possible limits:

u∗ = lim sup
ε→0

uε, u∗ = lim inf
ε→0

uε,

and u which is the limit of a sequence uεj of Energy minimizers at εj-problems s.t.

E(uεj )→ lim inf
ε→0

E(uε).

From the symmetry of the boundary, the solution uε is an one dimensional solution, which

will be a part of planes.

Homogenized equations for u∗ and u∗: Set g∗(e1, R) = supy g(y) and g∗(e1, R) =
infy g(y).

And for ν �= e1, g
∗(ν,R) = g∗(ν,R) = 〈g〉= the simple average on a unit cell. For

ν = e1, we will have⎧⎪⎨⎪⎩
�u∗ = 0 in Ω

u∗(x) =M on x · ν = 0

u∗(x) = g∗(ν,R) on x · ν = R,

and

⎧⎪⎨⎪⎩
�u∗ = 0 in Ω

u∗(x) =M on x · ν = 0

u∗(x) = g∗(ν,R) on x · ν = R.

(5.6)

Homogenized equations for u: u is a one dimensional energy minimizer, which implies u
is a part of planes. From a simple computation, we can show that u is a solution of

�u = 0 in Ω, u(x) =M on x · ν = 0, u(x) = g(ν,M,R) on x · ν = R, (5.7)

where

g(e1,M,R) =

⎧⎪⎨⎪⎩
g∗(e1, R) for M > sup g

g∗(e1, R) for M < inf g

M for inf g ≤M ≤ sup g

(5.8)

and for ν �= e1, g(ν,M,R) = g∗(ν,R) = g∗(ν,R) = 〈g〉.

5.2.2. Main difficulties. Wewill face the following difficulties on the homogenization with

lower dimensional oscillation.
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(i) From Figure 5.1-(a) , we can find 2-dimensional straight line with rational direction

(mod 1) covers unit square partially. So the average g of gε along the hyperplanes

may be different from the simple average 〈g〉. And the average g may depend on the

direction and a point on it.

(ii) Let ∂Ω = {x · ν = R}. The boundary oscillates as ε → 0. For example x · ν = R2

(mod ε) oscillates as ε→ 0 as Figure 5.1-(b) .

(iii) There could be multiple possible limits of subsequences of uε: the largest limit u∗(x),
a limit u(x), and the smallest limit u∗(x), Figure 5.1-(c). Each different limits of uε

depends on the choice of boundary data and may have different process of homog-

enization. Any value between maximum of g and minimum of g could be taken by

some limit of uε.

(iv) There could be no solution in the Neumann Problems due to the compatibility condi-

tion.

5.2.3. Example 2: g(x) = g(x1) in a convex domain. Let Ω be convex, L = {x : x1 =
0, 1 and − l ≤ x2 ≤ l} ⊂ ∂Ω, and strictly convex on ∂Ω\L. Let g(x) = g(x1). If ν is
an irrational direction, we can show

g∗(νx, x) = g∗(νx, x) = 〈g〉,

for the ergodic property (or Weyl’s Lemma) for the irrational direction, Section 5.4. If u is a

limit of a subsequence uεi , then u satisfies

�u = 0 in Ω, u = 〈g〉 on ∂Ω\L, g∗ ≤ u(x) ≤ g∗ on L. (5.9)

Remark 5.1. For each g∗ ≤ G ≤ g∗, there is {uεi} such that uεi = G on x · e1 = R.

Lemma 5.2. Let Ω = {−R1 < x1 < R2} and uε = g(x1/ε). Then there is a smooth

periodic function g(x1) of one variable x1 with a periodicity one such that u∗ nor u∗ is not

a solution.

Lemma 5.3. There is a a smooth periodic function g(x1) of one variable x1 with a period-

icity one and a subsequence {uεi} converging to u such that u is not continuous on ∂Ω.

Remark 5.4.

(i) From this lemma, we can find the selection of the boundary data in a part of boundary

that may depends on the section of boundary data in the other part of boundary. We

there is a nonlocal effect in the homogenization, which should be analyzed at future

work.

(ii) The regularity of the effective data could be interesting questions. At the homoge-

nization of stationary flame with oscillating reaction rates, [5], we show the effective

reaction rate is continuous since that free boundary (or interface between burnt zone

and fresh zone) is automatically selected by the equation, not given.

5.3. Uniform distribution (mod 1). This section contains a general discussion of uniform

distribution (mod 1), which will be used for the homogenization.
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(i) As we can find at Figure 5.1-(a), the hyperplane (mod 1) covers a unit square par-

tially when the normal direction is rational while it covers a unit square fully for the

irrational normal direction. Such phenomenon can be expressed as the well-known

ergodic theory.

(ii) At application of ergodic theory to homogenization, the region considered is of order

one while the periodicity is of order ε. After a scaling changing the periodicity to one,

we will consider a part of hyperplane of size 1
ε , not of infinite size. So if a hyperplane

with irrational direction is very closed to one of rational direction, its behavior is more

line a rational direction in a region of oder 1
ε . So it is very important convergence rate

of quantities.

An introduction to the theory of uniform distribution can be found [14]. And we will

summarize some of standard theory.

Thus we are led to study the distribution mod 1 of sequences of this type. We start by

considering sequences kα with k ∈ Z and α ∈ R. This can be generalized to the higher

dimensional case.

First we define the notion of uniform distribution.

Definition 5.5 (Uniform distribution mod 1).

(i) Let {xj}∞j=1 be given sequence of real numbers. For a positive integer N and a subset

E of [0, 1], let the counting function A (E; {xj};N) be defined as the numbers of

terms xj , 1 ≤ j ≤ N , for which xj ∈ E (mod 1).

(ii) The sequence of real numbers {xj} is said to be uniformly distributed modulo 1 if for

every pair a, b of real numbers with 0 ≤ a < b ≤ 1 we have

lim
N→∞

A ([a, b); {xj};N)

N
= b− a. (5.10)

(iii) Let {xj}∞j=1 be a sequence of real numbers. The discrepancy of itsN first elements is

the number

DN ({xj}Nj=1) = sup
0≤a<b≤1

∣∣∣∣A([a, b); {kα}, N)

N
− (b− a)

∣∣∣∣ . (5.11)

If xj = jα, we simply write DN (α).

The uniformly distributed mod 1 of {xj} is equivalent to

lim
N→∞

1

N

N∑
n=1

f(xn) =

ˆ
[0,1]

fdx. (5.12)

for any f ∈ C[0, 1] (upon extending f periodically to R). Then we have well-known the

following ergodic theorem.

Lemma 5.6 (Weyl’s Lemma). For each an irrational number α, kα (mod 1), for k ∈ Z, is
distributed uniformly on [0, 1].
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And note that

|A([0, N− 1
2 ); {xj}, N)−N− 1

2N | = N

∣∣∣∣∣A([0, N− 1
2 ); {xj}, N)

N
−N− 1

2

∣∣∣∣∣ ≤ NDN (α),

(5.13)

by definition of the discrepancy. The estimate for the discrepancy is the following.

Theorem 5.7 ([12, 14]).

(i)
NDN (α)

logN log(logN) → 2
π2 in measure w.r.t. α as N → ∞. In particular, this result is true

for a.e. α in a bounded set.

(ii) For a.e. α ∈ R holds DN (α) = O
(

log2+δ N
N

)
for any δ > 0.

5.4. Linear equations with Dirichlet boundary value problem, [16].
Lemma 5.8. Assume that g is continuous. H(x, ν) = {y : y · νx ≤ x · νx}. Set g∗(x, ν) =
lim supε→0

ffl
∂H(x,νx)

g
(
x, y

ε

)
dσy, and g∗(x, ν) = lim infε→0

ffl
∂H(x,νx)

g
(
x, y

ε

)
dσy.

Then if ν is an irrational direction, then g∗(ν, x) = g∗(ν, x) = 〈g〉 where 〈g〉 = ffl
Q1

g (y) dy

for the unit cell Q1 = {x : 0 ≤ xi ≤ 1}.
Theorem 5.9. For any sequence of uε, there is a subsequence converging uniformly to u in
any compact subset Ω′ of Ω and u satisfies{

�u = f(x) in Ω
g∗(x, νx) ≤ lim infx→x0 u ≤ lim supx→x0

u ≤ g∗(x, νx) for x0 ∈ ∂Ω.
(5.14)

Definition 5.10. We say a domain D satisfies the Irrational Direction Dense Condition,

IDDC, if all but countably many points on ∂D are irrational

Corollary 5.11. If Ω satisfies Irrational Direction Dense Condition , there is a unique con-
tinuous functions u such that

(i) uε converges uniformly to u in any compact subset Ω′ of Ω,

(ii) and u is a viscosity solution of{
�u = f(x) in Ω
u = 〈g〉(x) on ∂Ω

(5.15)

Lemma 5.12.

lim sup
ε→0

ˆ
∂Ω

g
(
y,

y

ε

)
f(y)dσy =

ˆ
∂Ω

g∗(y, νy)f(y)dσy

and

lim inf
ε→0

ˆ
∂Ω

g
(
y,

y

ε

)
f(y)dσy =

ˆ
∂Ω

g∗(y, νy)f(y)dσy.

Idea of Theorem 5.9. By applying Lemma on the Green’s representation,

uε =

ˆ
Ω

G(x, y)f
(
x,

x

ε

)
dx+

ˆ
∂Ω

P (x, y)g
(
x,

x

ε

)
dσx,

we have

u∗(x) ≤
ˆ
Ω

G(x, y)〈f〉(x)dx+
ˆ
∂Ω

P (x, y)g∗(x)dσx.
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5.5. Fully nonlinear equations with Dirichlet boundary value problem, [19].

5.5.1. Correctors for Dirichlet problem. For the fully nonlinear case, we will have the

following issues:

• There is no Green’s representation formula.

• What’s the average, g, of g(y) with respect to each Fully Nonlinear Equation? How

can we find g∗(p, ν) and g∗(p, ν) without an integral?

We can resolve the issues through correctors which will tell us how the oscillating boundary

data will be homogenized out by Fully Nonlinear Equations.

Proposition 5.13 (Correctors). For a x0 ∈ Rn, and ν ∈ Sn−1 such that p · ν �= 0, there are

periodic solutions wε(· ;x0, ν), and constants g∗(x0, ν) and g∗(x0, ν) such that{
F
(
D2wε,

x
ε

)
= 0 H(ν, x0) = in {x : x · ν > x0 · ν},

wε = g
(
p, x

ε

)
∂H(ν, x0) on {x : x · ν = x0 · ν}.

(5.16)

and

lim sup
ε→0

lim
t→∞

wε(x+ tν;x0, ν) = g∗(x0, ν),

lim inf
ε→0

lim
t→∞

wε(x+ tν;x0, ν) = g∗(x0, ν)

for all x ∈ Ω′ where Ω′ is a compact subset of H(ν, x0).
And if ν is an irrational direction, g∗(p, ν) = g∗(p, ν).

Lemma 5.14 (Flatness away from the boundary). For H(p, ν) = {x : x · ν < p · ν} and for

δ0 > 0, there is a ρε → 0 such that

oscH(p,ν)(−δ0)
wε < Cρε

for a uniform constant C(λ,Λ, δ0) > 0.

When ν is rational, εMν-periodicity of the solution and Hölder regularity of the correc-

tors in the interior give such results. If ν is irrational, there is almost periodicity with errors

ε · 1
ε1/4

and Hölder regularity. g∗(p, ν) �= g∗(p, ν) in the previous Examples.

Lemma 5.15. For any irrational direction ν, there is a unique w(x; ν) up to discrete transla-

tion such that wε(x;x0, ν) = w
(
x
ε ; ν
)
. And then g∗(x0, ν) = g∗(x0, ν) = g(ν).

Let say there are two correctors, w1 and w2, passing through two different points x1

and x2 in a unit cell. There is a sequence of discrete transformation τk such that τk(x2)
converges to x1. By the uniqueness of Dirichlet problem, τk(w2) converges to w1. So the

averages values from w1 and w2 will be equal.

Lemma 5.16. We have the following continuity results.

(i) For each fixed ν ∈ Sn−1, g∗(p, ν) and g∗(p, ν) are continuous in p variable.

(ii) And g(x,ν) is continuous on ∂Ω× {ν : ν is irrational}
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(iii) Set g(x) = g(x, νx), which is well-defined at irrational points. For each x0 ∈ ∂Ω
satisfying −ν(x0) ∈ Dδ , there exists a neighborhood Br(x0) such that if x1, x2 ∈
Br(x0) are irrational, then

|g(x1)− g(x2)| ≤ C‖g‖C2(�)δ (5.17)

where the constant C only depends on n, λ and Λ.

Remark 5.17. For each fixed p, g∗(p, ν) and g∗(p, ν) may be discontinuous at the rational

direction ν. But it is continuous at the irrational directions due to the uniqueness of correctors

up to infinite translation.

5.5.2. Homogenized equations for Dirichlet problem .

Theorem 5.18. For uε be a solution of (5.19), there are continuous functions g∗(·, ·) and
g∗(·, ·) defined on ∂Ω× Sn−1 such that u, a limit of any subsequence of uε, satisfies

(i)

F (D2u) = f(x) in Ω, g∗(νx, x) ≤ u ≤ g∗(νx, x) on ∂Ω (5.18)

(ii) and g∗(νx, x) = g∗(νx, x) = g(νx, x) for any irrational direction νx ∈ Sn−1.

where νx is an outward unit normal vector to ∂Ω at x.

• F (D2u) = f(x) comes from the standard homogenization.

• Any subsequence of uε has a convergent subsequence such that uε(p+ εx) converges
to a corrector w(x). So |w(x)−uε(p+εx)| < C

Rγ on any compact subset in x ·ν > R

for a small ε > 0, which implies g∗(νp, p)− C
Rγ < uε(p+ εx) < g∗(νp, p) +

C
Rγ .

Corollary 5.19. If Ω satisfies Irrational Direction Dense Condition , there is a unique con-
tinuous functions u such that

(i) uε converges uniformly to u in any compact subset Ω′ of Ω,

(ii) and u is a viscosity solution of

F (D2u) = f(x) in Ω, u = g(νx, x) on ∂Ω (5.19)

5.6. Neumann problem.

5.6.1. Example. g(x) = g(x1) in a convex domain
Let Ω be convex, L = {x : x1 = 0, 1 and − l ≤ x2 ≤ l} ⊂ ∂Ω, and strictly convex

on ∂Ω\L. Let g(x) = g(x1, x2).
If ν �= e1,

g∗(νx, x) = g∗(νx, x) = 〈g〉

�u = 〈f〉 in Ω, ∂u

∂ν
= 〈g〉 on ∂Ω\L, ∂u

∂ν
(x) = g on L (5.20)

for g satisfying 〈f〉vol(Ω) = 〈g〉Area(∂Ω\L) + 4g l from the compatibility condition. If

g > g∗ or g < g∗, then there is no solution for small ε > 0. Hence we can consider the

homogenization when a subsequence of uε has a limit. The homogenization for Neumann

boundary value problem comes from the similar arguments in Dirichlet Boundary value

problems, [3].
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5.7. Thin obstacles. Let uε be a solution thin obstacle problems (5.3), [17] . To describe

the effective equation for u = limε→0 uε, we introduce the averaged capacity, depending

on a direction ν. The capacity of compact set, A, is defined as the infimum energy among

functions that is one on A and zero at infinity for n ≥ 3 or on the boundary of BR.

Figure 5.2 tells us the hyper plane pass through each holes only with lower dimensional

pieces, T̃ ∩ Γν(s) for Γν(s) := Γ + sν, s ∈ R. The influence of thin obstacles can be

measured with the capacity of T̃ ∩ Γν(s) for different s. And then the total influence will be

averaged out in s variables due to minimizing the Energy, J(u), at Section 5.1.2.

Figure 5.2. The shape of ˜T and ˜T ∩ (Γ + sν).

Definition 5.20 (Averaged Capacity). Suppose Γ is a hyper plane in Rn with normal ν ∈
Sn−1 . If T̃ ⊂ Rn and f(s) = cap(T̃ ∩ Γν(s)) is integrable, we set

capν(T̃ ) :=

ˆ ∞

−∞
f(s)ds (5.21)

and call this quantity the averaged capacity of T̃ with respect to ν. The set T̃ ∩ Γν(s) is

illustrated in Figure 5.2.

Theorem 5.21. Assume n ≥ 3 and for a given ν ∈ Sn−1 and x0 ∈ Rn, let Γ be the hyper-
plane defined in Section 5.1.2. Let uε be the solution to (5.3) and set aε = ε

n
n−1 . Then, for

a.e. ν ∈ Sn−1, uε ⇀ u in H1
0 (Ω) where u is the unique minimizer of

Jν(v) :=

ˆ
Ω

1

2
|∇v|2 − fvdx+

1

2
capν(T̃ )

ˆ
Γ

((ψ − v)+)2dσ, v ≥ 0. (5.22)

In particular, u is the solution of

−Δu = capν(T̃ )(ψ − u)+dσ + fχ{u>0}. (5.23)

For the general domain, we will approximate the boundary by a tangent plane locally.

Then two errors may occur. The first error is from curvature of the boundary. And the second

is the error between average number of holes and the number of holes in a ball with a radius

of order 1
ε , which can be measured by the discrepancy of the sequence ωrε = ωrε(xi) =
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{k′ · α(xi) : k
′ ∈ ε−1Q′rε(xi) ∩ Zn−1}. To apply the results on the hyperplane we require

two errors are lower order than the main terms, which is possible for n ≥ 5 or domains

in general dimension with geometric restrictions. More careful analysis is required for the

lower dimensional case.

6. Equations of nondivergence type, [18]

6.1. Soft inclusion. In this section, we will consider a generalization of the following soft

inclusions where the diffusion coefficients are zero on the holes:⎧⎨⎩�uε = f(x) in Ωε

∂uε

∂ν
= 0 on ∂Tε, uε = ϕ(x) on ∂Ω \ ∂Tε.

(6.1)

We refer the details for (6.1) to [15]. In this section, we consider the following semi-linear

equation of non-divergence type:{
L
(
D2uε, uε, x,

x
ε

)
= f

(
x, x

ε

)
in Ωε

G
(
Duε(x),

x
ε

)
= 0 on ∂Tε, uε = ϕ(x) on ∂Ω \ ∂Tε

(6.2)

where

L
(
D2uε, uε, x,

x

ε

)
= Aij

(x
ε

)
Dijuε + c

(
uε, x,

x

ε

)
,

G
(
Duε(x),

x

ε

)
= bi

(x
ε

)
Diuε(x), ϕ ∈ C2(Ω).

(6.3)

We assume that L is uniformly elliptic, bi(y) satisfies the uniform oblique condition,

coefficients are Hölder continuous, and f and c are uniformly continuous with respect to y
variable. The main difficulty for nondivergence type operator is the lack of compatibility

condition to have periodic solution because it doesn’t have the integration by part.

6.2. Homogenization. We usually expect the existence of a controllable solution when the

equation satisfies a compatibility condition. So we find the compatibility condition for equa-

tions of nondivergence type with Neumann boundary values from the existence of global

periodic solution called as a first corrector. First we show the existence of a compatibility

constant for the Neumann Problem.

Theorem 6.1 (Compatibility Condition). Consider the equation defined as follow:{
Aij(y)Dijv(y) = f(y) in Rn \ T a

bi(y)
(
ξi +Div(y)

)
+ γ = g(y) on ∂T a.

(6.4)

Assume that
‖Aij‖Cα(Rn\Ta) + ‖bi(a ·)‖C1,α( 1

a (Rn\Ta)) ≤ Λ (6.5)

and that ‖f‖Cα(Rn\Ta) + ‖g‖C1,α(Rn\Ta) is bounded. Then, for any given ξ ∈ Rn, there
is a unique constant γ = γ(ξ; (Aij), b

i, f, g, a) such that Equation(6.4) admits a bounded
solution v.
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Definition 6.2.

(i) We shall call γ(ξ; (Aij), b
i, f, g, a) a compatibility constant of Equation (6.4).

(ii) Now suppose that f = g = 0. If γ = γ((Aij), b
i) = 0 for all ξ ∈ Rn and the radius

of holes a, then we say that (Aij) and bi (or Equation (6.2)) satisfies the compatibility

condition.

When we make the asymptotic expansion of uε at x0 ∈ Ω:

uε = u0 + εv
(x
ε
; ξ
)
+ ε2wε

(x
ε

)
+ o(ε2), (6.6)

we show v is the first corrector for the compatibility condition and the second corrector has

been used to find the homogenized equation, [18].

Theorem 6.3. Let uε be a viscosity solution of (6.2). Suppose that our equation satisfies

(1) the equation (6.2) satisfies the compatibility condition,

(2) uε is bounded uniformly on ε, and u∗ = u∗ on the ∂Ω where u∗ and u∗ are limsup
and liminf of uε as ε→ 0..

(3) 0 < a ≤ a0 for uniform constant a0

Then, there exists an uniformly elliptic operator L. And uε, solution of (6.2), converges to
u, solution of the equation (6.7), uniformly.{

L(D2u, u, x) = 0 in Ω
u = ϕ(x) on ∂Ω.

(6.7)

We can also find a discrete gradient estimate and ε-Lipschitzness as Section 3.5.

Corollary 6.4. Assume also thatΩ satisfies an exterior sphere condition. Then uε converges
uniformly to u0 which is the solution of (6.7).
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Academic wages, singularities, phase transitions
and pyramid schemes
Dedicated to the memory of Gary Becker (1930-2014)

Robert J. McCann

Abstract. In this lecture we introduce a mathematical model which couples the education and labor

markets, in which steady-steady competitive equilibria turn out to be characterized as the solutions

to an infinite-dimensional linear program and its dual. In joint work with Erlinger, Shi, Siow and

Wolthoff, we use ideas from optimal transport to analyze this program, and discover the formation of

a pyramid-like structure with the potential to produce a phase transition separating singular from non-

singular wage gradients. Wages are determined by supply and demand. In a steady-state economy,

individuals will choose a profession, such as worker, manager, or teacher, depending on their skills and

market conditions. But these skills are determined in part by the education market. Some individuals

participate in the education market twice, eventually marketing as teachers the skills they acquired

as students. When the heterogeneity amongst student skills is large, so that it can be modeled as

a continuum, this feedback mechanism has the potential to produce larger and larger wages for the

few most highly skilled individuals at the top of the market. We analyze this phenomena using the

aforementioned model. We show that a competitive equilibrium exists, and it displays a phase transition

from bounded to unbounded wage gradients, depending on whether or not the impact of each teacher

increases or decreases as we pass through successive generations of their students. We specify criteria

under which this equilibrium will be unique, and under which the educational matching will be positive

assortative. The latter turns out to depend on convexity of the equilibrium wages as a function of ability,

suitably parameterized.

Mathematics Subject Classification (2010). Primary 91B66; Secondary 49N15, 35Q91, 91B68,

91B69.

Keywords. steady state, competitive equilibrium, multisector matching, heterogeneous types, educa-

tion, labor, convex wages, singularity, phase transition, pyramid scheme, optimal transport, infinite-

dimensional linear program.

1. Introduction

The last half century has seen much fruitful interaction between economics and mathematics.

Still, the relationship between these two subjects is far less developed than the long stand-

ing affair between mathematics and physics. This is good news for mathematicians, in the

sense that much work remains to be done: economics provides a ready source of interesting

mathematical problems, so far only modestly tapped, as well as an area of application where

mathematical developments again have a chance to prove transformative, as they did during

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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the development of the theories of gravitation and quantum mechanics in the last century,

and more recently in areas like statistical physics and string theory.

For mathematicians working in optimal transportation, it has been a source of consid-

erable satisfaction to discover that their work has found diverse applications in economics;

see [3, 6, 7, 9] for examples. My work with Figalli and Kim [11] in particular suggests that

curvature may have a heretofore unanticipated role to play in economic theory. It is also

the case that economists have exploited ideas from optimal transportation in surprising ways

[14, 25], and in some cases have been ahead of mathematicians in anticipating significant de-

velopments, such as the gradient flow framework discussed in Sonnenschein’s myopic price

dynamics [28], some twenty-five years before it was linked to the heat equation by Jordan,

Kinderlehrer and Otto [19]. (The triangle with physics is complete, in the sense that Cullen

and Purser were using Hamiltonian dynamics in the same energy landscape as Sonnenschein

to study atmospheric and oceanic flows [8].) All this is perhaps less surprising given the

fact that one of the cornerstones of optimal transport — the Kantorovich-Koopmans duality

theorem — lead its mathematician and physicist-trained inventors to share the 1975 Nobel

Memorial Prize in Economics. A few years before that, future Nobel Laureate Lloyd Shapley

had worked out the fundamental results concerning stable matchings in the non-transferable

and transferable utility settings with Gale [13] and with Shubik [27], respectively. As Shap-

ley and Shubik discovered, the transferable utility version of this problem can also be re-

formulated as a discrete optimal transport problem. This discovery was generalized and

extended to a continuum setting by Gretzky, Ostroy and Zame [18].

In the present synopsis I will sketch the results of a joint work with three economist

colleagues at the University of Toronto, and one former PhD student, which draws inspiration

from the foregoing. It concerns a matching model coupling the education and labor sectors.

For precise statements and proofs of all the ideas discussed here, see our joint paper [10].

As is often the case in economic models, the problem is to understand how supply equi-

librates with demand to determine prices — or in this case wages – in each of these markets.

What is supplied and demanded in these markets are skills; we focus primarily on cognitive

skills for simplicity. The phenomenon of interest to us is whether, in the limit of a large

population displaying a bounded range of skills, competition may lead to wages which dis-

play singularities: for example, does the the ratio of the highest to the average salary tend

to a finite or an infinite number, as the size of the population tends to infinity? We investi-

gate this question in a competitive equilibrium model, which means individuals choose those

teachers, occupations and partners who reward them most generously, under the assumption

that such decisions are made at the level of individuals (or groups) too small to affect market

conditions such as the wage profile v(k) as a function of skill level k ∈ [0, ā[. Skills can be

continuously distributed in this interval, as a reflection of the large size of the population.

The education market plays a special role in our study. The output produced by this

market is the enhancement of salable skills, taking initial student and teacher skills as its

input. However, some participants match twice in the education market, first as students, and

later as teachers. This creates a feedback mechanism which — depending the effectiveness

of the educational technology — has the potential to create a pyramid, in which there is

greater and greater demand for the most skilled teachers, who occupy positions closer and

closer to the apex. Even if we assume that wages outside the education market are bounded,

in a steady-state model the wage which a highly skilled teacher can command depends on

the potential future earnings of their students, some of whom will be teachers, who may

have many generations of students, whose wages must be determined in part by the internal
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dynamics of the education market insofar as these students again will again have the choice

to become teachers — and will do so provided they can find other students willing to pay

them sufficient tuition. As adults on the labor market, they also have alternatives to teaching:

namely they could engage in production by working or managing a team consisting of N ′

workers and one manager, whose output is a known function N ′bL of the team members’

skills.

Our model depends on c ≥ 0 and positive parameters θ, θ′, N,N ′ and ā satisfying

max{θ, θ} < 1 ≤ N . Here N represents the number of students each teacher can teach,

and the extent θ to which she succeeds at transmitting her cognitive skills to her students.

Similarly,N ′ represents the number of workers each manager can manage, and θ′ represents
the extent to which a manager’s skills influence the quality of the work produced by those

whom she manages. All skills lie in the interval A = [0, ā[ or its closure Ā.

A worker of skill a ∈ Ā working with a manager of skill k ∈ Ā produces a continuously

differentiable output bL((1−θ′)a+θ′k) given by bL ∈ C1(Ā). A student of skill a studying

with a teacher of skill k becomes an adult of skill z(a, k) = (1 − θ)a + θk. The acquired

skill z may have some external value cbE(z) to the student — in addition to the wage v(z)
it commands on the market. Both bL and bE ∈ C1(Ā) are assumed to be fixed uniformly

convex increasing functions hereafter, satisfying

0 < bE/L = bE/L(0), (1.1)

0 < b′E/L = b′E/L(0), (1.2)

0 < b′′E/L = inf
a∈A

b′′E/L(a), (1.3)

where b′′E/L is defined as the largest constant for which bE/L(a)− b′′E/L|a|2/2 is convex on

Ā. A typical example would be bE(a) = ea = bL(a) as in [22].

At each period of our model, students are born into the population with cognitive skills

distributed randomly throughout the closure Ā of an interval A = [0, ā[⊂ R according to

some Borel probability distribution α ≥ 0. They live only for two periods. During the first

period, each student a ∈ Ā seeks to enhance his cognitive skill by studying with whichever

teacher k ∈ Ā provides the best educational value to him. During the second period, the

student becomes an adult armed with skill z = z(a, k) = (1− θ)a+ θk, who then enters the

workforce as a worker, manager or teacher earning a wage v(z), whose steady-state value

we seek to determine.

Although we cannot find v(z) explicitly, we are able to characterize it as the solution

of a variational problem: an infinite-dimensional linear program whose non-standard form

complicates its analysis considerably. What has been achieved with Erlinger, Shi, Siow and

Wolthoff [10] is an analysis of the existence, uniqueness, and characteristics of the solutions

to this linear program under suitable technical hypotheses. These include requiring the initial

distribution α of student skills to satisfy a doubling condition at the top skill type ā, meaning

there exists C <∞ such that∫
[ā−2Δa,ā]

α(da) ≤ C

∫
[ā−Δa,ā]

α(da) (1.4)

for all Δa > 0. Under suitable assumptions, we deduce the wage profile v(k) is strictly

convex and increasing, but displays a phase transition from having bounded to unbounded

gradients as the product Nθ increases through 1. More precisely, if Nθ > 1, so that the
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net impact of a teacher increases as one passes from each generation of their students to the

next, then v′(a) ∼ |ā − a|− log θ
log N −1 as a → ā (unless an even stranger pathology occurs —

see Theorem 6.1). Since this singularity is integrable, our analysis suggests lima→ā v(a) is
finite.

Along the way, we establish various conclusions about the behavior of the model in

different parameter regimes, such as which ranges of skill types will be displayed by workers,

managers and teachers, and who will match with whom in each sector (education and labor)

of our market. Before describing our model and conclusions more precisely, let us mention

some antecedents.

The role of teachers and the individual investment required to develop human capital has

been examined in the context of a steady-growth model for specialization by Becker and

Murphy, who also recognized the relevance of the long lineages of teachers which may form

[2]. The economics of superstars had been analyzed before that by Rosen [26]; convexity of

wages play a key role in his study, as they do in ours. The formation of finite-depth pyramids

(or management layers) in the context of a labor market model has also been investigated by

Garicano [16] and followed up with Rossi-Hansberg [17], though the absence of feedback

makes their model quite different from ours. Another explanation for inflated levels of exec-

utive compensation has been proposed by Gabaix and Landier [12]. Finally, the possibility of

allowing parameters such as θ, θ′, N and N ′ to vary endogenously across the population to

model heterogeneity of communication skills was a feature of our original four-author model

[22], which we have chosen to suppress in the logarithmically reparameterized five-author

sequel [10]. This suppression facilitates a more penetrating analysis of some phenomena of

interest in their simplest form.

2. A competitive equilibrium model

Fix θ, θ′, N,N ′ and ā positive with max{θ, θ′} < 1 ≤ N and A = [0, [̄, a probability

measure α on Ā, and education and labor production functions bE/L ∈ C1(Ā) satisfying

(1.1)–(1.3). Set K = [0, k̄[= A and c ≥ 0.
A competitive equilibrium requires the wage profile v(k) as a function of skill level

k ∈ Ā to be related in a certain way to other quantities which reflect the behavior of students

and adults in our model. Educational decisions of such agents are captured by a probability

measure dε(a, k) ≥ 0 on Ā2, which represents the fraction of students with skill a who

choose to study with a teacher of skill k, and vice versa. Labor market decisions are recorded

by a measure dλ(a, k) ≥ 0 on Ā2, representing the number of workers of skill a who choose

to work with a manager of skill k, and vice versa. The net lifetime utility of a student of skill

a will be denoted by u(a).
The support of any (Borel) measure μ on Rm refers to the smallest closed set Sptμ ⊂

Rm carrying the full mass of μ. The push-forward of any measure μ onRm through a Borel

map f : Rm −→ Rn refers to the measure f#μ assigning mass μ[f−1(N)] to each set

N ⊂ Rn. Thus ε1 = π1
#ε and ε2 = π2

#ε denote the marginal projections of ε through the

coordinate maps πi(x1, x2) = xi.
We say ε ≥ 0 and λ ≥ 0 represent a steady-state for our model if

ε1 = α and (2.1)
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λ1 +
1

N ′λ
2 +

1

N
ε2 = z#ε, (2.2)

where z(a, k) = (1 − θ)a + θk is the skill attained by a student a through studying with

teacher k. Here the first identity requires the initial distribution of student skills to be given

by α, while the second requires that the current distribution of (worker +manager + teacher)

skills in the population be reproduced at the next generation through education. This is the

steady-state constraint. We denote the set of non-negative measures (ε, λ) satisfying (2.1)–

(2.2) by R(α) — which of course depends also on N,N ′ and θ. Note that λ will not be a

probability measure; rather its mass coincides with the fraction (1 − 1
N )/(1 +

1
N ′ ) of the

adult population who choose to become workers.

We say a pair of payoffs u, v : Ā −→]0,∞] are stable if

u(a) +
1

N
v(k) ≥ cbE(z(a, k)) + v(z(a, k)) and (2.3)

v(a) +
1

N ′ v(k) ≥ bL((1− θ′)a+ θ′k) on Ā× K̄, and (2.4)

N
N−1 (u(k)− cbE(k)) ≥ v(k) ≥ N ′

N ′ + 1
bL(k) > 0. (2.5)

The wage constraint (2.4) reflects the stability of matchings in the labor sector. If the reverse

inequality held, the outputN ′bL produced byN ′ adults of skill a and one of skill k would be

sufficient to allow allN ′+1 of them to improve their wages by abandoning their occupations

to collaborate by forming N ′ new worker-manager pairs. Similarly, constraint (2.3) is a

stability constraint on the education market, which ensures that no N students of ability a
plus one teacher of ability k all have the incentive to abandon their institutions to form a

school with each other. Together, these two constraints imply (2.5) at any point a = k where

v is finite; we have included it only to show the payoffs are positive and that v cannot diverge

unless u does.

We must also specify in what class of functions the payoffs u, v must lie. Since we wish

to allow for the possibility that the payoffs u, v : A −→ [0,∞[ become unbounded at the

upper endpoint ā of the half-open interval A, we define the feasible set F0 to consist of pairs

(u, v) = (u0 + u1, v0 + v1) satisfying (2.3)–(2.5) which differ from bounded continuous

functions u0, v0 ∈ C(Ā) by non-decreasing lower semicontinuous functions u1, v1 : Ā −→
[0,∞] which are real-valued on A.

Together, a pair of stable payoffs (u, v) ∈ F0 and steady-state matchings (ε, λ) ∈ R(α)
form a competitive equilibrium if they satisfy the budget constraint

equality holds ε-a.e. in (2.3), and λ-a.e. in (2.4). (2.6)

In other words, the productivity of λ-a.e. worker-manager team must be sufficient to the

pay the worker’s wage plus a fraction 1
N ′ of the manager’s; similarly ε-a.e. student-teacher

pair must generate future earnings v for the student, which together with any non-labor

compensation cbE for skills acquired through education, must be sufficient to leave utility

u(a) for the student after a fraction 1
N of his teacher’s salary has been paid.

3. A variational approach

Since it is not obvious whether such equilibria exist or how to find them, we begin by rechar-

acterizing them variationally. Consider the problem of minimizing the expected net utility
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α(u) over the population α of students:

LP∗ := inf
(u,v)∈F0

∫
[0,ā]

u(a)dα(a). (3.1)

This is a linear minimization over the convex set of stable payoffs (u, v) ∈ F0. As an

infinite-dimensional linear program whose domain includes pairs of continuous functions

on Ā satisfying two stability contraints, this problem has a linear programming dual, which

turns out to be a maximization involving pairs of measures on Ā2:

LP ∗ := max
(ε,λ)∈R(α)

∫
Ā×K̄

[cbθ(a, k)dε(a, k) + b̃θ′(a, k)dλ(a, k)], (3.2)

where bθ(a, k) = bE(z(a, k)) and b̃θ′(a, k) = bL((1− θ′)a+ θ′k). It can be interpreted as

a social planners problem, which is to maximize the production cε(bθ) + λ(b̃θ′) of the two

sectors in question (education and labor) over steady-state measures (ε, λ) ∈ R(α).
If F0 consisted solely of continuous bounded functions u, v ∈ C(Ā), it would be easy to

see LP∗ ≥ LP ∗ via the argument of the proposition below; equality would then follow from

a standard application of the Fenchel-Rockafellar duality theorem. The fact that F0 includes

unbounded functions makes the ‘obvious’ inequality LP∗ ≥ LP ∗ much more subtle to

prove. It is for this purpose that we exploit the doubling condition (1.4) on α to establish

LP∗ = LP ∗ [10].

We also assert that Shapley and Shubik’s insight [27] extends from single-sector, single-

stage matching problems to the current multisectorial steady-state setting:

Proposition 3.1 (Optima v. equilibria). The pair (u, v) ∈ F0 and (ε, λ) ∈ R(α) constitutes
a competive equilibrium (2.1)–(2.6) if and only if (u, v) minimizes the primal problem (3.1)

and (ε, λ) maximizes its dual problem (3.2).

Idea of proof. We sketch a proof here, side-stepping the subtlety mentioned above, by as-

suming boundedness of u and v to ensure that all integrals in question converge. Integrating

the stability constraint (2.3) for the education market against ε yields

α(u)− cε(bθ) ≥ (z#ε)(v)− 1

N ′ ε
2(v) (3.3)

≥ λ1(v) +
1

N ′λ
2(v) (3.4)

≥ λ(b̃θ′), (3.5)

where (ε, λ) ∈ R(α) has been used to obtain (3.3)–(3.4), and the stability constraint for

the labor market (2.4) has been used in (3.5). This shows LP∗ ≥ LP ∗. Moreover, the

conditions for equality in (3.3) and (3.5) coincide precisely with the budget constraints (2.6).

Thus any competitive equilibrium forces (u, v) to minimize the primal linear program, and

(ε, λ) to maximize its dual. Conversely, since we have independently deduced LP ∗ = LP∗
using the Fenchel-Rockafellar duality theorem, any bounded pair of optimizers (u, v) ∈ F0

and (ε, λ) ∈ R(α) must saturate the chain of inequalities above, hence satisfy the budget

constaint and form a competitive equilibrium.

Having established the equivalence between equilibrium and optimality, it is natural to

want to establish the existence of minimizers for the primal problem and maximizers for the
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dual. As is typically the case in Fenchel-Rockafellar duality, existence of optimizers for the

dual problem comes for free: it set in the Banach space dual to (C(Ā2), ‖ · ‖∞), which is

a space of measures whose unit ball is well-known to be weak-∗ compact. Since ε and λ
both belong to this unit ball, it is easy to extract a subsequential limit from a maximizing

sequence, and this limit is the maximizer. To show the primal infimum is attained is much

more subtle, since the only obvious bound on u (and hence v) is in L1(Ā, α). To address

it, we shall need to learn more about what to expect in terms of the structure of any optimal

(u, v).

4. Existence and structure of optimal wages

Given stable (u, v) ∈ F0, the convex functions bE(z), z(a, k) = (1 − θ)a + θk and

b̃θ′(k
′, k) := bL((1 − θ′)k′ + θ′k) can be used to define the wages implicitly available

to an individual of cognitive skill k employed as a worker, manager, or teacher, respectively:

vw(k) := max
k′∈Ā

b̃θ′(k, k
′)− 1

N ′ v(k
′), (4.1)

vm(k) := N ′max
k′∈Ā

b̃θ′(k
′, k)− v(k′), and (4.2)

vt(k) := N max
a∈Ā

cbE(z(a, k)) + v(z(a, k))− u(a) where (4.3)

∞−∞ :=∞. (4.4)

Notice that vm and vw are suprema of convex functions of k; hence inherit uniform

convexity directly from (1.3). It is not obvious whether or not vt is convex — unless v is

convex, in which case vt is convex and inherits uniform convexity from bE when c > 0.
Similarly, convexity of

ū(a) := max
k∈Ā

cbE(z(a, k)) + v(z(a, k))− 1
N v(k) (4.5)

is not obvious, unless v is convex, in which case ū is a convex function which inherits

uniform convexity when c > 0. These observations play a crucial role in our proof that α(u)
attains its minimum on F0.

Our strategy is the following: first we minimize (3.1) on the smaller setF0∩C0 consisting

of pairs of convex non-decreasing functions (u, v) ∈ F0. For c > 0, we then hope to show

the minimizer over this restricted set is actually uniformly convex and increasing, in the

sense that its first two derivatives are bounded away from zero. In this case the convexity

and monotonicity constraints do not bind, so the minimum over the smaller set F0 ∩C0 also

minimizes α(u) over the larger set F0. (The existence of minimizers in case c = 0 can then

be handled by taking a limit c→ 0+ and relying on the compactness properties of the set of

convex functions. The question of whether or not uniform convexity of u and v remains true

in this limit requires a more subtle analysis in [10]; its conclusion is appended to Theorem

4.1 below.)

Stability (2.3) implies that the students’ net lifetime utility satisfies u ≥ ū, which cor-

responds to the fact that, in a competitive equilibrium, every student chooses to study with

the teacher who represents the best educational investment for him. On the other hand, since

we seek to minimize the expectation α(u), it costs no generality to assume this bound is
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saturated, meaning u = ū. Stability (2.3)–(2.5) also implies v ≥ v̄ := max{vw, vm, vt},
which corresponds to the fact that, in a competitive equilibrium, each adult chooses the most

financially rewarding occupation and professional partners for him or herself. Under the

plausible hypothesis v = v̄, our existence argument would be complete (at least in case

c > 0). Unfortunately, we can only really expect v = v̄ on the set of skills represented in the

adult population, which might form a complicated subset ofA and vary considerably along a

minimizing sequence in F0. Our strategy for circumventing this difficulty is to perturb both

the primal and dual problems artificially, to ensure that adult skills populate the entire range

A at some minimal level δ > 0, solve the perturbed problems, and then take a limit δ → 0.
In this way, we arrive at:

Theorem 4.1 (Existence of minimizing wages). Fix c ≥ 0 and positive θ, θ′, N,N ′ and ā =
k̄ with max{θ, θ′} < 1 ≤ N and A = [0, ā] = K. Let α be a Borel probability measure on
Ā satisfying the doubling condition (1.4) at ā, and define z(a, k) = (1−θ)a+θk, bθ = bE◦z
and b̃θ′(a, k) = bL((1−θ′)a+θ′k), where bE/L ∈ C1(Ā) satisfy (1.1)–(1.3). Then infimum
(3.1) is attained by functions (u, v) ∈ F0 satisfying v = max{vw, vm, vt} and u = ū on
Ā = [0, ā], where the vw/m/t and ū are defined by (4.1)–(4.5); here u, v : Ā −→]0,∞]
are continuous, convex, non-decreasing, and — except perhaps at ā — real-valued. For
j ∈ {1, 2}, if Nθj ≥ 1 then djv/dkj ≥ b

(j)
L min{(1− θ′)j , (θ′)jN ′}.

5. Who matches with whom?

We next try to understand which adults will choose to become workers, managers, or teach-

ers, and with whom they will collaborate. The convex wages we have just shown to exist

provide a key tool in this endeavor.

On the one hand, the slopes of vw and vm are inherited from (1 − θ′)bL and θ′N ′bL
according to (4.1)–(4.3), so if (1− θ′) is very different from θ′N ′, we will have each worker

being more skilled than each manager, or vice versa. How different these parameters must

be depends on the range of slopes possessed by bL ∈ C1(Ā), as reflected in the ratio b̄′L/b
′
L.

Here

b̄′E/L = b′E/L(ā) = sup
a∈Ā

b′E/L(a)

and b′L is from (1.2). Similarly, vt inherits its slopes from (cbE + v)Nθ, so taking Nθcb′E
large enough relative to the parameters mentioned above ensures that the cognitive skills

of each teacher will exceed those of all managers and workers. However if c is small or

vanishes, meaning education has little or no value outside the labor market, things become

more subtle, as in our Proposition 5.2 below. See also the numerical simulations of [22].

The other major tool that we have at our disposal is the knowledge that the functions

f(a, k) := u(a) +
1

N
v(k)− cbE(z(a, k))− v(z(a, k))

g(a, k) := v(a) +
1

N ′ v(k)− bL((1− θ′)a+ θ′k)

are non-negative throughout Ā2 by the stability of (u, v) ∈ F0, yet f vanishes ε a.e. and g
vanishes λ-a.e. by the budget constraint (2.6). In other words, ε is supported on the set where

f is minimized, and λ on the set where g is minimized. Thus we expect the derivatives of
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f and g to vanish ε-a.e. and λ-a.e. respectively, provided these derivatives exist; that is, we

expect

u′(a)

1− θ
= [cb′E + v′](1−θ)a+θk =

v′(k)

Nθ
to hold ε-a.e. and (5.1)

v′(a)

1− θ′
= b′L((1− θ′)a+ θ′k) =

v′(k)

N ′θ′
to hold λ-a.e. (5.2)

Similarly, we expect the Hessians of f and g to be non-negative definite ε-a.e. and λ-a.e.
respectively, provided these derivatives exist:

u′′(a)

(1− θ)2
≥ [cb′′E + v′′](1−θ)a+θk ≤ v′′(k)

Nθ2
should hold ε-a.e. and (5.3)

v′′(a)

(1− θ′)2
≥ b′′L((1− θ′)a+ θ′k) ≤ v′′(k)

N ′(θ′)2
should hold λ-a.e., (5.4)

plus detD2f ≥ 0 and detD2g ≥ 0 should hold ε-a.e. and λ-a.e. respectively. In fact, for

each (a, k) ∈ Spt ε we can show the first equality in (5.1) holds provided a ∈ DomDu,
while the second equality holds provided k ∈ DomDv; here DomDu denotes the subset

of ]0, ā[ where u is differentiable, and DomD2u denotes the further subset where the non-

decreasing function u′(a) has a derivative in the sense of Lebesgue. (It is straightforward to

see for each (a, k) ∈ Sptλ that the first equality in (5.2) holds provide a ∈ DomDu, and
the second equality holds provided k ∈ DomDv.)

Assuming α has no atoms, convexity of u ensures DomDu constitutes a set of full

measure; likewise DomD2u is a set of full measure when α is absolutely continuous with

respect to Lebesgue. If c > 0 or convexity of v is strict, (5.1) can be solved to identify the

skill

k = kt(a) =
1

θ
(cb′E + v′)−1

(
u′(a)

1− θ

)
− 1− θ

θ
a (5.5)

of each teacher who teaches students of skill a ∈ DomDu. It is less transparent to see that

the convex function v is differentiable at almost every adult skill level, since the distribution

of adult skills z#α is not prescribed, but rather determined by the model. It is therefore useful

to know whether or not z#α can have atoms, assuming α does not. The following lemma

rules out atoms in z#α provided ε is positive assortative; it also shows z#α inherits absolute

continuity with respect to Lebesgue from α in that case. Positive assortativity simply means

Spt ε is a non-decreasing subset of R2, so that the skill of each teacher cannot decrease as a

function of the skill of the students they teach.

Lemma 5.1 (Endogenous distribution of adult skills). Fix θ ∈]0, 1[ and a Borel probability
measure α ≥ 0 on Ā withA = [0, ā[. Set z(a, k) = (1−θ)a+θk. If ε ≥ 0 on Ā2 has α = ε1

as its left marginal, then for each ā − Δa ∈ A the corresponding distribution κ = z#ε of
adult skills satisfies ∫

[ā−Δa,ā]

dκ(a) ≤
∫
[ā− 1

1−θΔa,ā]

dα(a). (5.6)

Thus κ has no atom at ā unless α does.
In addition, if ε is positive assortative and α has no atoms, then κ has no atoms and ε =

(id× kt)#α for some non-decreasing map kt : Ā −→ Ā. uniquely determined α-a.e. by κ.
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Moreover, if dα(a) = αac(a)da is given by a density αac ∈ L1(A), then dκ(a) = κac(a)da
is given by a related density κac ∈ L1(A) satisfying

αac(a) = (1 + θ(k′t(a)− 1))κac(z(a, kt(a))) (5.7)

for Lebesgue-a.e. a ∈ A. In this case ‖κac‖L∞(A) ≤ 1
1−θ‖αac‖L∞(A).

Our next theorem shows that positive assortativity of ε holds as long the equililbrium

payoffs (u, v) ∈ F0 are strictly convex. It also explains when and in what sense equilibria

will be unique. Before stating it we cite a proposition which details more elaborate con-

sequences of the foregoing analysis concerning who will work, manage and teach. For the

phase transition which we plan to describe, it is particularly relevant to have criteria such as

(c) below, ensuring that even for c = 0, the most skilled individuals will be teachers. It is

also essential for the theorem which follows, to know that the skill levels of the academic

descendants of almost every given teacher are only finite in number. By contrast, there will

certainly be teachers whose academic ancestors populate countably many skill types.

Note that in the following proposition, (c) and (d) together imply (e), meaning at least one

of the two inequalitiesNθ ≥ 1 or c ≥ 0 is strict. Also noteN ′θ′ ≥ b̄′L/b
′
L andNθ ≥ b̄′L/b

′
L

are sufficient for (b) and (c), respectively.

Proposition 5.2 (Specialization by type; the educational pyramid). Fix A = [0, ā[ with
ā > 0, and c ≥ 0. Extend convex, nondecreasing u, v : A −→ R lower semicontinuously to
Ā and suppose v = max{vw, vm, vt}, where vw/m/t are from (4.1)–(4.4).

If (a) Nθcb′E ≥ b̄′Lmax{N ′θ′, 1− θ′} then all teacher types lie weakly above all of the
manager and worker types.

If (b) N ′θ′ > (1 − θ′) supa∈A b′L(1 − θ′)a + θ′ā)/b′L(θ
′a) then all of the worker types

lie weakly below all of the manager types.
If (c) Nθ ≥ sup0≤z≤k b

′
L((1 − θ′)z + θ′ā)/(b′L(θ

′z) + c
N ′θ′ b

′
E(z)) and (b) holds, and

f(a, k) := u(a) + 1
N v(k) − cbE(z(a, k)) − v(z(a, k)) vanishes at some (a, k) ∈ A × A

where v(z(a, k)) = vm(z(a, k)), then v > vm on ]k, ā]. In other words, no manager (or
worker) can have a type higher than a teacher of managers.

If (d)Nθ ≥ 1, then any student of type a ∈ A will be weakly less skilled than his teacher,
and strictly less skilled if (e) either c > 0 or Nθ > 1 in addition.

If (f) either c > 0 or v′(0) > 0, then (d)–(e) imply all academic descendants of a teacher
with skill k ∈ A will display one of at most finitely many d = d(k) distinct skill types,
unless differentiability of v fails at k. However, d(k) may diverge as k → ā, in which case
v′(k)→ +∞ at a rate we can estimate.

We are finally in a position to state our positive assortativity and uniqueness results.

Theorem 5.3 (Positive assortative and unique optimizers). Adopting the hypotheses and
notation of Theorem 4.1, if (ε, λ) ∈ R(α) maximize the dual problem (3.2), then the labor
matching λ is positive assortative. Moreover, there exist a pair of maximizers (ε, λ) for which
the educational matching ε is also positive assortative.

If there exist minimizing payoffs (u, v) ∈ F0 for the primal problem (3.1) which are
strictly convex and increasing, (as for example if either c > 0 or Nθ2 ≥ 1), then any
maximizing ε and λ are positive assortative. If, in addition, α is free from atoms then the
maximizing ε and λ are unique. If, in addition, hypotheses (d)-(f) from Proposition 5.2
hold, then u′ and v′ exist and are uniquely determined α-a.e. and (z#ε)-a.e. respectively.



Academic wages, singularities, phase transitions and pyramid schemes 845

If, in addition, α dominates some absolutely continuous measure whose support fills Ā, and
(u0, v0) ∈ F0 is any other minimizer with v0 : A −→ R locally Lipschitz then u0 = u holds
α-a.e., meaning u0 is unique.

Regarding the marginals of λ as fixed, positive assortativity follows from the fact that λ is

chosen to maximize a surplus b̃θ′(a, k) = bL((1− θ)a+ θk) whose cross-partial derivatives

are positive (owing to the uniform convexity of bL). Such results have played a celebrated

role in the economics literature since the work of Mirrlees on taxation [24], Becker on mar-

riage [1], and Spence on educational signaling in the labor market [29]; in the mathematical

literature they date to Lorentz’ earlier work on rearrangement inequalities [20]. The positive

assortativity of ε cannot be derived in quite the same way, since it is z#ε − ε2/N rather

than ε2 which is fixed in the maximization (3.2). However, it is strongly suggested by (5.3)

and (5.5), and can be rigorously derived from cross-partial derivatives of the expressions

appearing in the suprema (4.3)–(4.5), whose positivity relies on the uniform convexity of

the endogenous wage profile v(k) established in Theorem 4.1. In view of (5.3) and (5.4),

one can also view this convexity as propagating from the wage of each adult to the wage of

their teacher; it takes finitely many steps to reach any teacher’s skill level in the educational

pyramid, by Proposition 5.2(f).

Uniqueness of ε and λ follow from positive assortativity once their marginal distributions

are known. My favorite proof of this fact appears in [21]. The distribution of student skills

ε1 = α is specified a priori, and the distribution of teacher skills ε2 can be worked out from

the equilibrium payoffs (u, v) using the student-teacher skill correspondence k = kt(a)
given by (5.5). This follows a strategy which has become standard in optimal transporta-

tion since the work of Brenier [4], Caffarelli [5], Gangbo and myself [15]. To specify the

marginals of λ uniquely requires sorting out who will be a worker and who will be a manager,

allowing for the possibility that their skill distributions λ1 and λ2 may overlap. A precedent

for deriving uniqueness in such settings appears in work with Trokhimtchouk [23].

6. Transition to unbounded wage gradients

Finally, we are in a position to address our motivating question, which is the possibility of

singularities in the wage profile at the apex ā of the skills pyramid A = [0, ā[. By analyzing

the recursion (5.1) relating the wage of each teacher to the future earnings of their students,

we are able to prove the following singularity alternative:

Theorem 6.1 (Wage behavior and density of top-skilled adults). Adopting the hypotheses
and notation of Theorem 4.1, let α be given by a Borel probability density αac ∈ L∞(A)
which is continuous and positive at the upper endpoint ofA = [0, ā[. Suppose (ε, λ) ∈ R(α)
and convex (u, v) ∈ F0 optimize the primal and dual problems (3.1)–(3.2), and (i) ā ∈
(Spt ε2) \ Spt(λ1 + λ2), meaning all adults with sufficiently high skills become teachers;
(ii) the educational matching ε is positive assortative, meaning a non-decreasing correspon-
dence k = kt(a) relates the ability of α-a.e. student a to that of his teacher; (iii) kt is
differentiable at ā, and (iv) v is differentiable on some interval ]ā− δ, ā[. Then for Nθ �= 1,

v′(a) =
const

|ā− a| log Nθ
log N

− cb̄′E
1− 1

Nθ

+ o(1) (6.1)

as a→ ā.
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In Proposition 5.2 and Theorem 5.3 we have already seen that N ′θ′, Nθ and Nθ2 large

enough guarantee (i) and (ii). We do not know conditions which guarantee (iii)-(iv). How-

ever (iii) follows from (5.5) if bE , u, v ∈ C2 near ā, so our theorem guarantees that some

nearby singularity is produced when (i)–(ii) hold. The difference quotients whose limit de-

fines k′t(ā) are bounded under the conditions of Proposition 5.2(d), in which case we judge

failure of (iii) to be less likely that the smooth gradient blow-up predicted by (6.1). We judge

an accumulation (iv) of non-differentiabilities A \ DomDu at ā to be even more unlikely.

On the other hand, the leading order behavior of (6.1) changes, depending on whether the

influence (Nθ)d of a given teacher grows or decays as one moves through successive gener-

ations d ≥ 1 of their academic descendants. This strongly suggests a sharp transition from

bounded to unbounded wage gradients, at the critical value Nθ = 1 where this influence

remains constant from generation to generation. Note however that the singularity (6.1) in

the gradient is integrable, so that even when it is present the wages v(k) tend to a finite limit

as k → k̄. This answers the question raised at the outset: at least in the context of the present

model, the maximum wage tends to a finite multiple of the average wage in the large popu-

lation limit; its sensitivity to skill level, however, can be bounded or unbounded, depending

on the effectiveness of education.
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On singularity formation in Hamiltonian evolution
equations

Pierre Raphaël

Abstract. Hamiltonian evolution equations arise in the description of nonlinear phenomenons in vari-

ous instances from nonlinear optics to astrophysics or fluid mechanics, but the description of most even

simplified models still remains a mathematical challenge. Substantial progress have been made since

the 1980’s for the qualitative description of solutions through the importation and mixing of various

ideas from dynamical systems, functional analysis, harmonic analysis and the calculus of variations.

I will report in this survey on recent progress on the study of one specific scenario: singularity for-

mation, that is the ability for non linear waves to concentrate their energy while propagating in some

nonlinear medium. A new methodology has emerged in the last two decades on canonical models like

the non linear Schrödinger or wave equations both for the construction and the classification of singular

regimes, with applications also to parabolic models. A special class of solutions plays a distinguished

role in the structure of the corresponding blow up bubbles: the solitary wave.

Mathematics Subject Classification (2010). Primary 35Q41, 35Q51, 35Q53, 35Q55; Secondary

37K40.

Keywords. Non linear Hamiltonian equations, nonlinear Schrödinger equations, singularity formation,

solitons.

1. Introduction

The propagation of waves in a nonlinear medium has been the subject of an intense inves-

tigation for the physics of the 20th century with the discovery of many deeply non linear

phenomenons. Let us for example consider the propagation of light in a non linear crystal.

The laser beam is submitted to two main effects: dispersion, that is the tendency of light

to spread in space while propagating, and focusing induced by the optical properties of the

crystal. The system of PDE’s underlying the description of the laser beam should involve

the full non linear Maxwell’s equations which is a complicated nonlinear vectorial system,

[70]. In suitable regimes and neglecting some effects in a first approximation, one can derive

in a nowadays canonical way the “envelope” equation which in the most simplified models

typically takes the form of a non linear Schrödinger equation:

(NLS)

{
i∂tu+Δu+ u|u|2 = 0
u|t=0 = u0

, (t, x) ∈ R× Rd, u(t, x) ∈ C. (1.1)

In the physical model, the time variable is in fact a space variable corresponding to the

direction of propagation of the nonlinear wave packet. The concentration of the laser beam at

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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a point in space which is typically observed if the crystal is focusing enough then corresponds

to the concentration of the wave packet solution to (1.1) at a finite time 0 < T < +∞. In

other words, for a strong enough nonlinearity, focusing may overcome dispersion and a

singularity forms by concentration of the energy of the wave locally in space even though

the data was initially smooth and well localized.

The question then becomes: can we see on the infinite dimensional Hamiltonian system

(NLS) that such a singularity will form, and if yes, what should it look like? Beautifully

enough, the proof that something like singularity formation will hold for the system (1.1) is

almost as old as its derivation in the 1950’s thanks to a spectacular algebraic identity1 which

prevents the flow from being global, but this says very little on the structure of the possible

singularity formation. Moreover, in many canonical situations, this miraculous algebra is

lost. For example the question of singularity formation for the Navier Stokes equation of

incompressible fluids raised by Leray [33] in 1934 is open and at the heart of one of the

Millenium Prizes of the Clay Institute.

The end of the 20th century has seen the development of numerical methods for the study

of simplified canonical models like (NLS) with the first qualitative predictions of singular

regimes, and the emergence of rigorous mathematical tools for the qualitative understand-

ing of linear and nonlinear PDE’s. This movement has accelerated tremendously in the past

fifteen years under the influence of tools and intuition coming from various areas of math-

ematics and in particular variational methods, dynamical systems, functional analysis and

harmonic analysis. The qualitative description of nonlinear PDE’s has entered a new age

with the quantitative descriptions of fully nonlinear regimes in wave dynamics.

I will report in these notes on the activity related to the construction and possibly classi-

fication of blow up bubbles for canonical models like semilinear (NLS) models. An essential

role is played in the analysis by a fundamental nonlinear object discovered more than hun-

dred years ago in fluid mechanics [30]: the solitary wave.

1.1. The critical space. Let us consider the (NLS) equation with power nonlinearity:

(NLS)

{
i∂tu+Δu+ u|u|p−1 = 0
u|t=0 = u0

, (t, x) ∈ R× Rd, u(t, x) ∈ C. (1.2)

This is an infinite dimensional Hamiltonian system with Hamiltonian (or energy):

E(u) =
1

2

∫
Rd

|∇u(t, x)|2dx− 1

p+ 1

∫
Rd

|u(t, x)p+1dx = E(u0) (1.3)

where the − sign in front of the potential energy reflects the focusing nature of the problem.

There also holds the conservation of mass:∫
Rd

|u(t, x)|2dx =
∫
Rd

|u0(x)|2dx. (1.4)

We recall the definition of the Sobolev norm:

‖u‖2Hs = ‖u‖2Ḣs + ‖u‖2L2 , ‖u‖Ḣs = ‖|D|su‖L2 , s ≥ 0

1the virial identity, see (1.8).
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where we defined the Fourier multiplier |̂D|su = |ξ|sû. The critical scaling exponent is

an important phenomenological number related to the invariance by scaling of (1.2) and is

computed as follows: if u(t, x) is a solution, then for all λ > 0, so is

uλ(t, x) = λ
2

p−1u(λ2t, λx), (1.5)

and then the critical Sobolev space Ḣsc is the one which norm (in space) does not see the

scaling symmetry:

‖uλ(t, ·)‖Ḣsc = ‖u(λ2t, ·)‖Ḣsc i.e. sc =
d

2
− 2

p− 1 .

Since the conservation laws of energy (1.3) and mass (1.4) are the only a priori information

on the flow and live at the level of Sobolev regularity respectively Ḣ1 and L2 = Ḣ0, H1 is

the natural energy space in which to look for solutions. The special cases sc ∈ {0, 1} are

respectively the mass critical and energy critical cases and correspond to a specific algebra

where the scaling symmetry meets a conservation law. The fact that the phenomenological

number sc is essential for the qualitative description of the solutions is a consequence of the

analysis.

1.2. Global existence and blow up: the virial law. Local solvability in time of an infinite

dimensional system like (1.2) is now well understood [16] using a reformulation à la Cauchy-

Lipschitz in a suitable functional space thanks to dispersive estimates à la Strichartz [69]: for

sc < 1, given u0 ∈ H1, there exists a unique u ∈ C([0, T ), H1) solution to (1.2) for some

maximal time of existence 0 < T = T (u0) ≤ +∞, and:

T < +∞ implies lim
t↑T
‖u(t, ·)‖H1 = +∞. (1.6)

Now whether solutions are global or not is in general a very difficult problem. For the

specific case of (NLS), the existence of finite time blow up solutions can be obtained from a

spectacular algebra: the virial law.

Theorem 1.1 (Global well posedness and finite time blow up, [16, 17]). If sc < 0, then all
H1 solutions are global (T = +∞). If sc ≥ 0, let u0 ∈ Σ = H1 ∩ {xu ∈ L2}, then

E(u0) < 0 implies T < +∞. (1.7)

Indeed, for sc < 0, a simple interpolation estimate ensures that the non positive potential

term in the total energy (1.3) is in fact controlled by the kinetic energy, and hence the a

priori control of mass and energy implies the control of the full H1 norm of the solution

‖u(t, ·)‖ 	 ‖u0(·)‖H1 which together with the blow up criterion (1.6) implies T = +∞.

For sc ≥ 0, this bound becomes critical and indeed singularity formation may occur due to

the following algebra, [17]: for sc ≥ 0,

d2

dt2

∫
Rd

|x|2|u(t, x)|2dx ≤ 16E0 (1.8)

and hence for E0 < 0, the positive variance
∫
Rd |x|2|u(t, x)|2dx lies below an inverted pa-

rabola which touches zero in finite time, hence preventing the flow from being global.
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This argument for showing singularity formation is spectacular by its simplicity and its

strength as it not only shows singularity formation, but also the fact that the phenomenon

occurs for an open set of data E0 < 0 and hence displays some stability. Such kind of

identities are in fact fairly common, and for example allowed Sideris to prove singularity

formation for 3d compressible gas dynamics [68]. However this argument breaks down in

many situations (like incompressible fluid mechanics) and anyway says very little on the

structure of the singularity.

1.3. The solitary wave. Our approach for the study of singularity formation is to focus

on the flow near a special object which is of particular relevance for nonlinear dynamics:

the solitary wave. A soliton or solitary wave is a special gobal in time solution of the wave

mechanics for which dispersion and focusing balance exactly. It was discovered in the setting

of fluid mechanics by Korteweg-de Vries [30] at the end of the 19th century in the form of

a traveling wave which propagates without deformation at the surface of water on a very

long distance. But this kind of object is in fact present in a very wide area of physics in the

form of stationary, periodic or traveling wave solutions. In the setting of (NLS) equation for

sc < 1, the solitary wave corresponds to a time periodic solution:

u(t, x) = Q(x)eit ie ΔQ−Q+Q|Q|p−1 = 0. (1.9)

The classification of all solutions to the non linear elliptic problem (1.9) is open, but the

classification of the ground state solution is an important breakthrough of the 1980’s:

Theorem 1.2 (Classification of the ground state solitary wave, [15], [31]). Let sc < 1, then
there exists a unique up to translation solution to

ΔQ−Q+Q|Q|p−1 = 0, Q > 0, Q ∈ H1(Rd). (1.10)

Moreover, the solution has up to translation radial symmetry and decays exponentially fast
as |x| → +∞.

In some very special instances (the integrable case p = 3, d = 1 for (NLS)) in the sub-

critical regime sc < 0, one can show that the solitary wave is in some sense the universal

attractor of all solutions which asymptotically decouple into a sum of solitary waves travel-

ing at different speeds and a remaining dispersion. In the blow up setting sc ≥ 0, we will

show similarly that the solitary wave plays a distinguished role in the analysis and occurs

as the universal blow up profile for a large class of blow up bubbles, or equivalently the

universal attractor of the flow after renormalization.

2. The mass critical problem

The mass critical case sc = 0 ie p = 1 + 4
d corresponds to the smallest nonlinearity for

which blow up is possible, and is directly related in dimension d = 2 to the self focusing of

a laser beam in nonlinear optics.

2.1. Small data scattering. In the pioneering work [76], Weinstein obtained the celebrated

variational characterization of the ground state solution Q to (1.10).
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Theorem 2.1 (Varational characterization of the ground state, [76]). For all u0 ∈ H1, there
holds the lower bound on the energy (1.3):

E(u) ≥ 1

2
‖∇u‖2L2

[
1−
( ‖u‖L2

‖Q‖L2

) 4
d

]
. (2.1)

Moreover, E(u) = 0 and ‖u‖L2 = ‖Q‖L2 imply u ≡ Q up to symmetries.

Equivalently, the ground state Q attains the best constant in the Gagliardo-Nirenberg

interpolation estimate ∫
Rd

|u|2+ 4
d ≤ C∗

(∫
Rd

|∇u|2
)(∫

Rd

|u|2
) 2

d

which compares the size of the kinetic and potential energy in (1.3). This variational char-

acterization of the ground state is the first step towards the dynamical characterization of the

solitary wave:

Theorem 2.2 (Scattering below the ground state). Let u0 ∈ H1 with ‖u0‖L2 < ‖Q‖L2 , then
the corresponding solution to (1.2) is global and scatters as t→ ±∞.

Hence any initial data smaller than the ground state (in the L2 topology) is global in time

and asymptotically attracted by the linear dynamics in ±∞. There is a long history on this

problem. The fact that the solution is global in time follows directly from the lower bound

(2.1) and the conservation of mass (1.4) which for ‖u0‖L2 < ‖Q‖L2 imply an upper bound

‖u(t, ·)‖H1 	 ‖u0‖H1 , and the conclusion follows from the blow up criterion (1.6). The

fact that the solution is attracted by the linear flow is a much more subtle issue. For (1.2),

it can be easily proved for u0 ∈ Σ using an additional structure of the equation: the pseudo

conformal symmetry, see [6]. However the sharp statement (2.2) in the sole energy space

H1 relies on the dynamical classification of the ground state solitary wave as the “minimal

non scattering solution” as first obtained in the breakthrough paper by Kenig and Merle [23]

in the energy critical case. This is a long and difficult way to go, and we refer to [10, 26] for

an overview of this recently solved problem.

2.2. Minimal blow up elements. The global existence criterion of Theorem 2.2 is sharp.

Indeed, there exists a minimal mass blow up solution. This is a consequence of the pseudo

conformal symmetry: if u(t, x) solves the mass critical (NLS), then so does

v(t, x) =
1

|t|u
(
−1
t
,
x

t

)
ei
|x|2
4t . (2.2)

Applying this to the non dispersive soliton solution u(t, x) = Q(x)eit yields the explicit
blow up solution:

S(t, x) =
1

|t|
(
Qeit

|y|2
4

)(
x

|t|
)
e−

i
t , t ∈ R∗. (2.3)

This solution corresponds to the smooth and well localized Cauchy data

S(−1) = Q(x)e−i
|x|2
4 +i
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which has minimal mass ‖S(t, ·)‖L2 = ‖Q‖L2 and concentrates at the origin in time and

space

|S(t, ·)|2 ⇀ ‖Q‖2L2δx=0

at the rate of concentration

‖∇S(t)‖L2 ∼ 1

|t| . (2.4)

This is an explicit example of “blow up bubble”. In 1992, Merle obtained the first dynamical
classification of the solitary wave:

Theorem 2.3 (Classification of the minimal blow up element, [43]). Let u0 ∈ H1 with
‖u0‖L2 = ‖Q‖L2 . Assume that T < +∞. Then u ≡ S up to the symmetries of the flow.

In other words, there is a complete rigidity of the minimal blow up element. Conceptu-

ally, this proof is the first step towards the classification of “minimal compact elements of

the flow” at the heart of the breakthrough “Kenig-Merle route map” for the proof of global

existence [23, 24], see [66] for a further discussion of the connections between these results.

Merle’s proof however had a fundamental weakness: both the existence and uniqueness

proofs were based on the explicit use of the pseudo-conformal symmetry (2.2), and it has

been long believed that indeed the existence of this object was deeply tied to the pseudo

conformal symmetry. In a joint work with J. Szeftel, we revisited in [65] the existence and

uniqueness of the minimal element for an inhomogeneous problem

i∂tu+Δu+ k(x)u|u|2 = 0, x ∈ R2 (2.5)

for a suitable class of inhomogeneity k which breaks the symmetry group and the pseudo

conformal symmetry.

Theorem 2.4 (Dynamical classification of the minimal blow up element, [65]). Let x0 ∈ R2

with
k(x0) = 1 and ∇2k(x0) < 0.

Then there exists an energy threshold E∗ > 0 such that for all higher energies E0 > E∗,
there exists a unique up to phase shift H1 minimal mass blow up solution to (2.5) which
blows up at time T = 0, at the point x0 and with energy level E0.

Theorem 2.4 relies on a dynamical proof which involves a complete understanding of the

minimal blow up bubble, and in particular the computations of the large deviations induced

by the inhomogeneity k(x). This analysis has been recently extended to (NLS) on manifolds

[4] and other classes of dispersive PDE’s [27, 37]. We also refer to [11] for connected results

in the energy critical case. The outcome is that the existence of minimal blow up bubbles is

the generic situation and is disconnected to the existence of the pseudo conformal symmetry.

2.3. Log-log blow up. The minimal mass blow up regime is obviously unstable by pertur-

bation of the data, and there has been in the 1980’s an intense search for the structure of the

stable singularity formation. Numerics and very clever formal arguments have led to several

conjectures among which Landman, Papanicolaou, Sulem, Sulem [32] “log-log” law as the

generic blow up speed for solutions to (1.2):

‖∇u(t)‖L2 ∼
(
log | log(T − t)|

T − t

) 1
2

as t→ T.
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The double log correction to self similarity has long remained a mysterious issue from the

analytic point of view. Galina Perelman gave in [57] the first rigorous construction of such

a blow up bubble in dimension d = 1. In a series of papers joint with F. Merle, we revisited

the log-log analysis in dimensions d ≤ 5 and obtained classification results of the flow near

the solitary wave. The first outcome of this analysis is the universality of the blow up bubble

in the critical L2 space and the quantization of the mass focused at the singularity.

Theorem 2.5 (Universality of the blow up bubble, [47, 49]). Let d ≤ 5. Let α∗ > 0 denote
a small enough universal constant. Let u0 ∈ H1 with

‖u0‖L2 < ‖Q‖L2 + α∗, (2.6)

and assume that the corresponding solution to (1.2) blows up in finite time T < +∞. Then
there exist parameters (λ(t), x(t), γ(t)) ∈ C1([0, T ),R∗

+ × Rd × R) with

lim
t→T

λ(t) = 0, lim
t→T

x(t) = x(T ) ∈ Rd, lim
t→T

γ(t) = +∞

and an asymptotic profile u∗ ∈ L2 such that

u(t)− 1

λ(t)
d
2

Q

(
x− x(t)

λ(t)

)
eiγ(t) → u∗ in L2 as t→ T. (2.7)

In other words, the singular part of any blow up bubble with mass slightly above the min-

imal mass is completely classified and corresponds to a trajectory (x(t), λ(t), γ(t)) drawn on

the manifold of solitary waves generated by the large symmetry group of the equation. Blow

up occurs at a point, and the mass which is concentrated at the singularity is the universal
quantum ‖Q‖2L2 independent of the data. We then obtained the existence and stability of the

log log blow up regime.

Theorem 2.6 (Hamiltonian condition for log-log blow up [46, 48]). Let d ≤ 5. Let α∗ > 0
denote a small enough universal constant. Let u0 ∈ H1 with

‖u0‖L2 < ‖Q‖L2 + α∗ and E(u0) < 0, (2.8)

then the corresponding solution to (1.2) blows up in finite time T < +∞. Moreover, the
concentration rate λ(t) in (2.7) is given by

λ(t) =
[√

2π + o(1)
]( T − t

log | log(T − t)|
) 1

2

as t→ T. (2.9)

This result is a considerable improvement on the virial theorem (1.7) since we show

that the Hamiltonian condition E0 < 0 not only implies blow up, it forces the solution to

dynamically enter the open set of log log blow up and the associated universal regime. It is

easy to show using the pseudo-conformal symmetry (2.2) that there exist blow up solutions

in the log log regime with E0 > 0. The general statement is then that the log-log set is open:

Theorem 2.7 (Stability of log-log blow up [59]). Let d ≤ 5. Let α∗ > 0 denote a small
enough universal constant. The set of initial data with small super critical mass (2.6) for
which the solution to (NLS) blows up in finite time in the log-log regime (2.9) is open in the
energy space H1.
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The proof of these results relies on the introduction of a modulated decomposition of the

flow

u(t, x) =
1

λ(t)
d
2

(Q+ ε)

(
t,
x− x(t)

λ(t)

)
eiγ(t), ‖ε(t, ·)‖H1 � 1.

This decomposition holds near the singularity as a consequence of the variational character-

ization of the ground state and the conservation laws of mass and energy. Hence in any blow

up regime, the ground state solitary wave Q is a good approximation of the blow up profile,

and this is the starting point for a perturbative analysis. The sharp description of the blow up

bubble now relies on the extraction of the finite dimensional and possibly universal dynamic

for the evolution of the geometrical parameters (λ(t), x(t), γ(t)) which is coupled to the in-

finite dimensional dispersive dynamic driving the small excess of mass ε(t). Classification

results like the openness of the loglog set deeply rely on new monotonicity formula which

existence was unexpected in the dispersive setting.

2.4. Threshold dynamics. Let us insist again that the minimal mass blow up solution

S(t, ·) given by (2.3) does not blow up in the log-log regime. This solution is unstable,

but Bourgain and Wang [5] could stabilize this blow up dynamic on a finite codimensional

center stable manifold and show that given a limiting profile u∗ ∈ H1 flat enough at the

origin, one can build a solution to (1.2) which blows up at t = 0 at x = 0 and satisfies:

u(t)− S(t)→ u∗ in H1 as t ↑ 0, (2.10)

see also [28]. We proved in [55] that these solutions are threshold dynamics between the

open set of finite time log log blow up, and the open set of solutions which scatter to the

right.

Theorem 2.8 (Strong instability of Bourgain Wang solutions, [55]). Let d = 1, 2. Then any
H1 neighborhood of the data of the Bourgain Wang solution (2.10) contains data which lead
respectively to finite time blow up in the log log regime, or global existence and scattering
at +∞.

2.5. Classification of the flow near the ground state. Theorem 2.8 is a first step towards

the complete description of the flow near the ground state for the mass critical (NLS) which

however is still not complete. There may in particular exist other blow up regimes near Q
in the energy topology. An important step however has been achieved on another very much

related problem: the mass critical (gKdV) equation

(gKdV )

{
∂tu+ ∂x(∂

2
xu+ u5) = 0

u|t=0 = u0
, (t, x) ∈ R× R. (2.11)

This one dimensional model shares a lot of the mass critical (NLS) structure: the same

conservation laws of mass and energy, the same mass critical scaling, and the same solitary

wave which for (gKdV) takes the form of a traveling wave

u(t, x) = Q(x− t).

However, both the pseudo conformal symmetry (2.3) and the virial identity (1.8) are lost,

and hence the sole existence of blow up solutions has been a long standing open problem. In

their series of seminal works [34, 35, 42], Martel and Merle have obtained the first existence



On singularity formation in Hamiltonian evolution equations 857

result of blow up dynamics together with a preliminary description of the blow up bubble.

We revisited the analysis in [36–38] and obtained the first complete classification of the flow

near the ground state in the mass critical setting. Let the set of initial data

A =

{
u0 = Q+ ε0 with ‖ε0‖H1 < α0 and

∫
y>0

y10ε20 < 1

}
, (2.12)

and consider the L2 tube around the family of solitary waves

Tα∗ =
{
u ∈ H1 with inf

λ0>0, x0∈R

∥∥∥∥∥u− 1

λ
1
2
0

Q

(
.− x0

λ0

)∥∥∥∥∥
L2

< α∗
}
.

Then the dynamics for data in A is classified as follows:

Theorem 2.9 (Rigidity of the flow in A, [36]). Let 0 < α0 � α∗ � 1 and u0 ∈ A. Let
u ∈ C([0, T ), H1) be the corresponding solution to (2.11). Then one of the following three
scenarios occurs:
(Blow up): the solution blows up in finite time 0 < T < +∞ in the universal regime

‖u(t)‖H1 =
cu0

+ o(1)

T − t
as t→ T, cu0 > 0. (2.13)

(Soliton): the solution is global and converges asymptotically to a solitary wave.
(Exit): the solution leaves the tube Tα∗ at some time 0 < t∗u < +∞.
Moreover, the scenarios (Blow up) and (Exit) are stable by small perturbation of the data in
A.

Equivalently, the codimension one center stable manifold of global solutions asymp-

totically attracted by the solitary wave separates the open set of finite time blow up with

universal blow up speed, and the open set of solutions which escape the nonlinear dynamics.

The proof is delicate but most likely canonical and relies on the derivation of new Lyapounov

functionals based on mixed Energy/Morawetz estimates in the continuation of [34, 45, 61].

It remains to understand the long time dynamics in the (Exit) regime. This question is in fact

related to the behavior of the minimal blow up element. We first claim that this object exists

and is unique:

Theorem 2.10 (Existence and uniqueness of the minimal mass blow up element, [37]).

There exists a unique up to symmetries H1 minimal mass blow up solution ‖S(t, ·)‖L2 =
‖Q‖L2 . This solution blows up at T = 0 and is globally defined and H1 bounded for t > 0.

The existence and uniqueness of the minimal element lies in the continuation of Theorem

2.4. The behavior of S(t, ·) as t → +∞ is at this point an open problem. For (NLS), the

explicit global in time formula (2.3) implies that the minimal element scatters as t → +∞.

We conjecture that the same holds true for (gKdV) which would complete the classification

of the flow in A:

Theorem 2.11 ((Exit) is scattering, [25, 37]). Assume that S(t) scatters as t→ +∞. Then
any solution in the (Exit) scenario is global for positive time and scatters as t→ +∞.
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The topology (2.12) of A is stronger than the energy topology due to the presence of L2

weights. We showed in [38] that this additional assumption is essential in the sense that there

exist blow up solutions with slower decay to the right and blow up speed

‖∇u(t)‖L2 ∼ 1

(T − t)ν
for arbitrary ν > 2, (2.14)

and even infinite time blow up solutions with exponential growth. This shows that classifi-

cation theorems close to the ground state heavily rely on a suitable choice of the topology,

and that arbitrarily slow blow up regimes can be reached through a suitable preparation of

the data, see [29] for related results in the energy critical case.

3. The energy subcritical problem 0 < sc < 1

The singularity formation is poorly understood in the mass super critical zone, in particular

because the blow up profile is no longer given by the solitary wave. The beautiful program

by Nakanishi and Schlag [56] gives a very good description of the flow near the ground state

but without the description of the associated instability by blow up. In a series of joint works

with Merle and Szeftel, we have obtained qualitative results on mass super critical blow up

bubbles with the discovery of a new type of blow up scenario.

3.1. Blow up of the critical norm. The critical Ḣsc norm plays a distinguished role in

the analysis since it does not see the scaling symmetry (1.5) which is at the heart of the

concentration mechanism. In the mass critical case, this norm remains bounded since it is

conserved by the flow. We proved in [50] that the situation for 0 < sc < 1 is quite different:

Theorem 3.1 (Blow up of the critical norm, [50]). Let 0 < sc < 1, p < 5 and d ≥ 2. There
exists a universal constant γ(d, p) > 0 such that the following holds true. Let u0 ∈ H1 with
radial symmetry and assume that the corresponding solution to (1.2) blows up in finite time
T < +∞. Then there holds the lower bound for t close enough to T :

‖u(t)‖Ḣsc ≥ | log(T − t)|γ(d,p).

Related results were proved for the Navier Stokes equation [13]. The logarithmic lower

bound is sharp in some regimes, [53], but there also exist regimes where the critical norm

blows up polynomially, [54]. The proof relies on the quantification of a Liouville type theo-

rem, see [22] for further extensions to the wave equation.

3.2. On bounds on the blow up rate. We now address the question of upper and lower

bounds on blow up rate for general solutions. First, a direct consequence of the blow up

criterion (1.6) and the scaling symmetry (1.5) is the universal scaling lower bound:

Proposition 3.2 ([6]). Let u0 ∈ H1 and assume that the corresponding solution to (1.2)

blows up in finite time T < +∞, then for t close enough to T:

‖∇u(t)‖L2 
 1

(T − t)
1−sc

2

. (3.1)
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A simple observation by Merle is that for 0 < sc < 1 and u0 ∈ Σ , the brute force time

integration of the virial law (1.8) not only implies finite time blow up for E0 < 0, it also
immediately yields an upper bound on the blow up rate:∫ T

0

(T − t)‖∇u(t)‖2L2dt < +∞. (3.2)

Interestingly enough, this bound fails for sc = 0 due to (2.4), and in fact there exists no
known upper bound on blow up rate in the mass critical case. The example of the (gKdV)

problem with the speeds (2.14) indicates that there may simply not be any polynomial upper

bound. For sc > 0, the estimate (3.2) can be improved in the radial class:

Theorem 3.3 (Sharp upper bound on blow up rate for radial data, [54]). Let d ≥ 2, 0 <
sc < 1, p < 5. Let the interpolation number:

α =
5− p

(p− 1)(d− 1) , 0 < α < 1. (3.3)

Let u0 ∈ H1 with radial symmetry and assume that the corresponding solution to (1.2)

blows up in finite time T < +∞. Then there holds the space time upper bound:∫ T

t

(T − τ)‖∇u(τ)‖2L2dτ ≤ C(u0)(T − t)
2α

1+α . (3.4)

We will see below that this upper bound is in fact sharp.

3.3. Stable self similar blow up. The same formal arguments and numerical experiments

which led to the log-log law conjecture for the mass critical problem yield in the super critical

range the self similar law

‖∇u(t)‖L2 ∼ 1

(T − t)
1−sc

2

(3.5)

as the generic stable blow up speed in the super critical case, [70], hence saturating the lower

bound (3.1). A difficulty towards a rigorous proof is the construction of suitable blow up

profiles supporting the law (3.5). This leads for (NLS) to a complicated non variational

system of coupled elliptic PDE’s. It is in particular believed that the ground state solitary

wave is no longer the correct blow up profile. In [53], we could bypass this difficulty for

0 < sc � 1 by bifurcating in some sense from the log-log analysis [46], [48] of the mass

critical case to show the existence and stability of a self similar blow up regime.

Theorem 3.4 (Existence and stability of self similar solutions, [53]). Let 1 ≤ d ≤ 5 and
0 < sc � 1. Then there exists an H1 open set of initial data such that the corresponding
solution to (1.2) blows up in finite time T < +∞ with the self similar speed (3.5).

This is a first intrusion into the mass super critical regime, the main open problem being

the physical case d = p = 3 which for the moment is out of reach.

3.4. Ring solutions. A new class of blow up solutions has been discovered in [60] in the

super critical regime p = 3, d = 2, sc =
1
2 : these are standing ring blow up solutions which

are radially symmetric solutions which concentrate on a fixed sphere (and not a point). Let us

say that even in the parabolic setting, there are few known examples of non trivial geometries

for the blow up set in space, and typically only point or sphere singularities are known.
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Theorem 3.5 (Standing ring blow up for p = 5, d ≥ 2, [60, 64]). Let d ≥ 2 and p = 5. Let
Q be the one dimensional ground state solution to (1.9). Then there exists an open subset
of smooth radially symmetric data such that the corresponding solution u(t) to (1.2) blows
up in finite time 0 < T < +∞ according to the following dynamics: there exist λ(t) > 0,
r(t) > 0, γ(t) ∈ R and u∗ ∈ L2 such that

u(t, r)− 1

λ(t)
1
2

Q

(
r − r(t)

λ(t)

)
eiγ(t) → u∗(r) in L2 as t→ T. (3.6)

Here the radius of the singular circle converges limt↑T r(t) = r(T ) > 0, and the scaling
parameter λ(t) satisfies the log-log law (2.9).

These standing ring solutions see locally around the blow up sphere the log-log regime of

the one dimensional mass critical quintic p = 5 (NLS). The robustness of the tools developed

for the study of the log-log regime are here essential to control the full flow. The underlying

mechanism of reduction of dimension can be generalized to cylindrical symmetry [21, 77].

In [14], Fibich, Gavish and Wang conjectured on the basis of formal expansions and

numerical experiments the existence of collapsing ring solutions which concentrate on a

ring which radius vanishes at blow up time. We give a rigorous proof in [54] and beautifully

enough, these solutions saturate the general upper bound rate (3.4) which is therefore sharp

in the radial class.

Theorem 3.6 (Collapsing ring solutions, [54]). Let d ≥ 2, 0 < sc < 1 and p < 5. Let

0 < α < 1 be given by (3.3) and let the Galilean shift β∞ =
√

5−p
p+3 . Let Q be the one

dimensional mass subcritical ground state. Then there exists a solution u ∈ C([−1, 0), H1)
of (1.2) with radial symmetry which blows up at time T = 0 according to the following
dynamics: there exist geometrical parameters (r(t), λ(t), γ(t)) ∈ R∗

+ × R∗
+ × R such that:

u(t, r)− 1

λ
2

p−1 (t)

(
Qe−iβ∞y

)(r − r(t)

λ(t)

)
eiγ(t) → 0 in L2(Rd) (3.7)

with the sharp asymptotic laws:

r(t) ∼ |t| α
1+α , λ(t) ∼ |t| 1

1+α , γ(t) ∼ |t|− 1−α
1+α as t ↑ 0. (3.8)

Moreover, the blow up speed admits the equivalent:

‖∇u(t)‖L2 ∼ 1

(T − t)
1

1+α

as t ↑ 0 (3.9)

which saturates the upper bound (3.4).

These solutions see after renormalization aL2 subcriticalNLS type motion with Galilean

drift. Moreover, even though the problem is mass super critical, the mass conservation law

still plays a central role in the analysis and the concentration occurs at the L2 level of regu-

larity:

|u(t)|2 ⇀ c‖Q‖2L2δx=0 as t ↑ 0, c > 0. (3.10)

The ring solutions of Theorem 3.6 are minimal blow up bubbles again and their construction

lies within the framework of construction of minimal elements introduced in [65]. These

solutions are believed to be stable by radial perturbation and strongly unstable by non radial

perturbation, [14], but both these statements are open.
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4. The energy critical problem sc = 1

Energy critical models naturally arise in a number of models (general relativity, crystal phys-

ics, particle physics and ferromagnetism) with a strong geometric structure, [75]. The corre-

sponding wave maps, Schrödinger maps and harmonic heat flow have attracted a consider-

able attention for the past twenty years in connection with conjectures concerning both the

existence of blow up bubbles and their classification. We will show an unexpected concep-

tual connection with the mass critical case sc = 0.

4.1. Geometric wave and parabolic equations. A harmonic map between say Rd and an

embedded Riemanian manifold (M, g) is a critical point of the Dirichlet energy∫
Rd

|∇u(x)|2 dx

for maps u : Rd →M , and hence a solution to

PTuM (Δu) = 0

where PTuM is the projection onto the tangent space to M at u. The associated gradient flow

is the parabolic heat flow evolution equation

∂tu = PTuMΔu, (t, x) ∈ R× Rd, u(t, x) ∈M,

and the dispersive Hamiltonian version is the Schrödinger map problem

J∂tu = PTuMΔu, (t, x) ∈ R× Rd, u(t, x) ∈M

where J acts like a π
2 rotation matrix in TuM . In the special case d = 2 with the S2 sphere

target, these equations become the energy critical harmonic heat flow to the 2-sphere

(HHF)

{
∂tv = Δv + |∇v|2v
v|t=0 = v0

(t, x) ∈ R× R2, v(t, x) ∈ S2 (4.1)

and the energy critical Schrödinger map problem

(Smap)

{
v ∧ ∂tv = Δv + |∇v|2v,
v|t=0 = v0

(t, x) ∈ R× R2, v(t, x) ∈ S2 (4.2)

which are the building blocks of the Landau-Lifschitz model of ferromagnetism. The wave

analogue is the energy critical wave map problem

(WM)

{
∂ttv −Δv = (|∇v|2 − |∂tv|2)v,
v|t=0 = v0, ∂tv|t=0 = v1

(t, x) ∈ R× R2, v(t, x) ∈ S2. (4.3)

All these problems are energy critical since the scaling symmetry u(λit, λx) with i ∈ {1, 2}
leaves the Dirichlet energy invariant. Hence the Cauchy theory is critical in the energy space

Ḣ1 and the a priori control of the Dirichlet energy is no longer enough to ensure the global

existence of the flow: the bounded kinetic energy may concentrate.
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4.2. Global existence and harmonic maps. In the parabolic case thanks to dissipation,

the pioneering works by Struwe [71] ensures that if a singularity formation occurs, then the

solution must bubble off a non trivial harmonic map on a sequence in time:

u(tnλ(tn)x)→ Q as tn → T

locally in space, where Q is a non trivial harmonic map. If the target manifold is such that it

does not admit any non trivial harmonic map, as is typically the case for a negatively curved

target, it follows that the flow is global. This strategy of proof of global existence was prop-

agated to the dispersive wave map case in the presence of symmetries in [8], and finally in

the general case by Sterbenz, Tataru in [73, 74] in the continuity of the Kenig-Merle minimal

element approach [24].

This series of outstanding results yields global existence in the absence of non trivial

harmonic maps, but this is typically not the case for the sphere target S2 where non triv-

ial harmonic maps exist. The simplest way to produce such maps is to look for so called

corotational maps

u(r, θ) =

∣∣∣∣∣∣
sinφ(r) cos(kθ)
sinφ(r) sin(kθ)
cosφ(r)

which map the origin to the north pole and infinity to the south pole

φ(0) = 0, lim
r→+∞

φ(r) = π.

The homotopy number k ∈ N∗ measures the non trivial topological degree of the map. In

a given homotopy class of corotational functions, the infimum of the Dirichlet energy is

attained on the ground state harmonic map

Qk(r) = 2 tan−1(rk).

The existence of blow up solutions in the vicinity of the Qk harmonic map and the descrip-

tion of the associated singularity formation have been the subject of intense investigations

for the past thirty years, with a series of breakthrough results in the past ten years. The diffi-

culty is that there is little a priori information on the flow, and hence the need for new tools to

compute explicitly the solution. We collect in the following the main results for each model.

4.3. Blow up for the energy critical wave map. Singularity formation for the wave map

problem (4.3) has been mostly studied in the setting of corotational symmetry which is pre-

served by the flow: the solution is of the form

u(t, r, θ) =

∣∣∣∣∣∣
sinφ(t, r) cos(kθ)
sinφ(t, r) sin(kθ)
cosφ(t, r)

(4.4)

where φ(t, r) satisfies the semilinear energy critical wave equation

∂ttφ− ∂2
rφ−

∂rφ

r
+

k2 sin(2φ)

r2
= 0. (4.5)

The first result of singularity formation for the k = 1 case is due to Krieger, Schlag, Tataru

[29] who construct a continuum of blow up bubbles.
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Theorem 4.1 (Continuums of blow up bubble for k = 1, [29]). Let k = 1, there exist
corotational initial data arbitrarily close to the ground state harmonic mapQ1 such that the
corresponding solution to (4.5) concentrates in finite time

u(t, r)−Q

(
r

λ(t)

)
→ u∗ in Ḣ1 as t→ T

at the speed
λ(t) = (T − t)ν , ν > 1. (4.6)

The Krieger-Schlag-Tataru solutions are conjectured to correspond to non generic blow

up bubbles. The first stable blow up regime was constructed by Rodnianski, Sterbenz [67] for

large homotopy number k ≥ 4 with a partial description of the associated blow up bubble.

We revisited in [61] the blow up analysis and obtained for all homotopy number k ≥ 1 the

sharp description of the stable blow up scenario.

Theorem 4.2 (Stable blow up for all k ≥ 1, [61]). Let k ≥ 1. There exists a set of C∞ initial
data arbitrarily close to Qk in the energy topology such that the corresponding solution to
(4.5) blows up in finite time

u(t, r)−Q

(
r

λ(t)

)
→ u∗ in Ḣ1 as t→ T

at the quantized rates:

λ(t) =

{
ck(1 + o(1)) T−t

| log(T−t)|
1

2k−2
for k ≥ 2,

(T − t)e−
√

| log(T−t)|+O(1)for k = 1
as t→ T. (4.7)

Moreover, the associated singularity formation is stable by smooth corotational perturbation
of the data.

Theorem 4.2 builds a deep unexpected connection between the energy critical wave prob-

lem map and the (NLS) mass critical problem. The sharp logarithmic corrections in the

quantized laws (4.7) are directly connected to the log-log correction to self similarity (2.9).

A new systematic approach is implemented for the computation of the blow up speed which

completely avoids previous approaches based on “matched asymptotics”, [2], and here the

far out polynomial decay of the ground state ∇Qk -which is exponential for sc < 1- is a

new essential feature of the analysis. Finally, a robust mixed Energy/Morawetz method for

the control of the flow is implemented which draws a route map for the construction of blow

up bubbles.

4.4. Blow up for the Schrödinger map. The question of the singularity formation for the

Schrödinger map has been a long standing open problem. There are two additional difficul-

ties in this case. First of all, the “phase” invariance of the (NLS) equation adds a degree of

freedom by rotation and the cororational structure (4.4) is no longer preserved by the flow.

The smallest symmetry group corresponds to equivariant flows

u(t, x) = ekθR

∣∣∣∣∣∣
u1(t, r)
u2(t, r)
u3(t, r),

R =

⎛⎝ 0 −1 0
1 0 0
0 0 0

⎞⎠ ,
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which still generate a system for the radially symmetric unit vector (u1, u2, u3), and not a

scalar equation like (4.5). Moreover, the equation displays a quasilinear structure through

the non linear u∧∂tu term which complicates the derivation of energy estimates. A pioneer-

ing spectacular result in the field is obtained by Guan, Gustaffson, Nakanishi, Tsai [18, 19]

and is a negative answer to singularity formation for large homotopy number.

Theorem 4.3 (Global existence for the Schrödinger map k ≥ 3, [18, 19]). Let k ≥ 3. Let u0

be a smooth equivariant initial data close enough toQk in the energy critical topology. Then
the corresponding solution to (4.2) is global and asymptotically attracted up to symmetries
by another ground state harmonic map.

In other words, the harmonic map is orbitally asymptotically stable in the energy critical

topology. We prove in [51] that the situation is very different for k = 1 and obtain the first

result of singularity formation for this problem.

Theorem 4.4 (Blow up for the Schrödinger map, [51]). Let k = 1. There exists a codimen-
sion one manifold of C∞ initial data arbitrarily close to Q1 in the energy critical topology
such that the corresponding solution to (4.2) blows up in finite time

u(t, x)− eΘ(t)RQ1

(
x

λ(t)

)
→ u∗ in Ḣ1 as t→ T (4.8)

at the quantized rate

λ(t) =
T − t

| log(T − t)|2 (cu0
+ ot→T (1)) , cu0

> 0, (4.9)

and for an asymptotically converging rotation:

Θ(t) = Θ(u0) + ot→T (1). (4.10)

The proof exhibits the dynamical system driving the concentration λ(t) and the phase

rotationΘ(t), and here a new unexpected instability occurs: generically, an initial data which

starts concentrating will start rotating, and the energy will be transferred from concentration

to rotation hence acting against blow up. However this asymptotic rotation around the ez axis

can happen towards the left or the right, and these two dynamics are separated by a threshold

regime where the solution exactly concentrates as it stops rotating: this is the solution of

Theorem 4.4. This instability by rotation will also occur for the wave map and the heat flow

for generic equivariant perturbations. This shows that for the full system, blow up, at least

near the ground state harmonic map, is never stable, a typical vectorial effect.

4.5. Blow up for the harmonic heat flow. The parabolic heat flow in corotational symme-

try (4.4) reduces to the semi linear radially symmetric heat equation:

∂tφ− ∂2
rφ−

∂rφ

r
+

k2 sin(2φ)

r2
= 0. (4.11)

Again, all solutions are global in time for k ≥ 2 with asymptotic stability of harmonic map

for k ≥ 3, [18, 19, 72], and the existence of blow up solutions for k = 1 was known using

maximum principle techniques [7]. However, the sharp description of the blow up bubble

was still mostly open, [1]. We construct in [62, 63] the quantized family of blow up bubbles

as conjectured in [3].
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Theorem 4.5 (Quantized blow up bubbles for the harmonic heat flow, [62, 63]). Let k = 1.
Then for all L ∈ N∗, there exists a codimension L − 1 manifold of corotational initial data
u0(r) arbitrarily close to Q1 in the energy critical topology such that the corresponding
solution to (4.11) blows up in finite time T > 0 by bubbling off a harmonic map:

u(t, r)−Q1

(
r

λ(t)

)
→ u∗ in Ḣ1 as t→ T (4.12)

at the excited rate:

λ(t) = (cu0) + ot→T (1))
(T − t)L

| log(T − t)| 2L
2L−1

, cu0
> 0. (4.13)

In particular, the fundamental regime L = 1 is stable by smooth corotational perturba-

tion of the data, and higher modes posses L−1 direction of instabilities. The computation of

the full quantized family of blow up rates is a success of the “tail computation” initiated in

[61] in the presence of polynomially decaying solitons and relies on the derivation of the full

dynamical system driving the evolution of each mode. In principle, since the proof is very

robust and relies solely on energy type estimates, the analysis can be propagated to the wave

and Schrödinger map to produce the full family of quantized blow up bubbles. This shades

a new light on the difference between the Krieger, Schlag, Tataru solutions with the contin-

uum (4.6) and the quantized rates (4.7), (4.9), (4.13): the data leading to (4.6) have limited

regularity and propagate a singularity on the light cone, see also [58], while the speeds (4.7),

(4.9), (4.13) can be achieved for arbitrarily smooth data, which is of course essential to ad-

dress the parabolic problem.

We conjecture that (4.13) describes the full family of corotational blow up solutions

near the ground state Q1 in a suitable smooth topology, and similarily for the wave and

Schrödinger map.

5. On the energy super critical problem sc > 1

The energy super critical problem sc > 1 for (NLS) is the frontier of current research.

Despite some important efforts, even the global existence of the flow in the defocusing case

is open. This zone is of particular interest since most problems from fluid mechanics live

there. Moreover any reasonable smooth nonlinearity in large dimension typically generates

an energy super critical nonlinearity. But there are so far very few qualitative descriptions of

truly nonlinear regimes in this range of exponents.

5.1. Energy super critical radial heat equation. The only problem which is truly better

understood is the radially symmetric super critical heat equation

(NLH)

{
∂tu = Δu+ u|u|p−1,
u|t=0 = u0

sc > 1

for which the maximum principle is available and yields for example for free global existence

in the defocusing case. There is an immense literature on the study of singularity formation

for the heat equation, but most works deal with the energy subcritical case sc < 1. In the
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energy super critical case, two types of blow solutions are known. First “type I” blow up

solutions which correspond to the ODE blow up

‖u(t, ·)‖L∞ ∼ cu

(T − t)
1

p−1

in accordance with the exact blow up solution to u̇ = u|u|p−1. Now for d ≥ 11 and

p > pJL(d) = 1 +
4

d− 4− 2√d− 1
the so called Joseph-Lundgren exponent, there is a change of nature in the problem and

another kind of “type II” blow up solutions is predicted in the seminal work by Herrero-

Velasquez [20] for which

lim
t↑T

(T − t)
1

p−1 ‖u(t, ·)‖L∞ = +∞. (5.1)

The situation is clarified in the breakthrough works by Matano and Merle [39], [40]:

Theorem 5.1 (Universality of type I blow up, [39, 40]). Let sc > 1. For p < pJL, all
radially symmetric finite time time blow up solutions to (NLH) are of type I. For p > pJL,
there exist type II blow up solutions which are threshold dynamics.

Using the Matano-Merle machinery, Mizoguchi [41] could revisit the Herrero-Velasquez

construction and completely classify the structure of type II blow up bubbles.

Theorem 5.2 (Classification of type II blow up, [41]). Let d ≥ 11 and p > p(d) > pJL.
Then there exists a discrete sequence (μj)j≥1 with

μj > 0, lim
j→+∞

μj = +∞ (5.2)

such that for a large class of radially symmetric initial data, if the solution blows up in finite
time with type II (5.1), then

‖u(t, ·)‖L∞ ∼ cu

(T − t)
1

p−1 (1+μj)
for some j ≥ 1, cu > 0.

This sequence of results is extraordinary by its strength and generality, but the techniques

are absolutely based on Lyapounov functionals attached to the maximum principle which

would completely break down for the non radial case or any dispersive model.

5.2. Type II blow up for the energy super critical (NLS) equation. In the recent work

[52], we completely revisit the construction of type II blow up solutions of [20, 41] and show

that the strategy developed for the study of the energy critical problems admits an unexpected

extension to the energy super critical setting. The solitary wave is here the stationary solution

u(t, x) = Q(|x|) where Q is the unique radially symmetric solution to{
Q′′ + (d− 1)Q′r +Qp = 0
Q′(0) = 0, Q(0) = 1

,
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Theorem 5.3 (Type II blow up for the energy super critical NLS, [52]). Let d ≥ 11, and let
(μj)j≥1 be the sequence (5.2). Pick a generic odd integer p > pJL and an integer j ≥ 1.
Then there exists a set of C∞c radially symmetric initial data such that the corresponding
solution to (NLS) blows up by concentrating a universal bubble

u(t, r) =
1

λ(t)
2

p−1

(Q+ ε)

(
r

λ(t)

)
eiγ(t)

at the quantized rate

λ(t) = (cu0 + ot→T (1))(T − t)
1+μj

2 , cu0
> 0 (5.3)

and for an asymptotically frozen phase limt→T γ(t) = γ(T ) ∈ R. The blow up is type II:

lim sup
t↑T

‖u(t)‖Ḣs

{
< +∞ for all s < sc,
= +∞ for s ≥ sc.

(5.4)

The proof of Theorem 5.3 pushes the energy critical technology to its limit in order to

deal to deal with the very different behavior of norms (5.4) above and below scaling, but still

relies solely on robust mixed energy/Morawetz estimates. The derivation of the quantized

family of excited blow up regimes initiated in [63] is an essential step. The analogous result

for the wave equation is obtained in the companion paper [9]. This works open a breach into

the super critical world which is the frontier of current research.

5.3. Perspectives. The understanding of the formation of blow up bubbles has considerably

evolved in the last fifteen years and there is now a fairly robust method for the construction

of such bubbles at least for relatively simple canonical models like (NLS). A first important

direction of research is the derivation of classification results i.e. the understanding of all

possible blow up bubbles. The most advanced result in this direction is the classification

of bounded solutions for the energy critical wave equation by Duyckaerts, Kenig and Merle

[12, 44] which together with the complete understanding of the quantized blow up bubbles

as in Theorems 4.5 and 5.3 clearly opens up new perspectives to completely classify all blow

up dynamics. A second axis of research is related to the question of continuation after blow

up. (NLS) equations are typically derived under assumptions which are violated when the

solution becomes large due to singularity formation, and new effects should be taken into

account which arrest blow up. But the understanding of the corresponding regimes requires

first a good understanding of the structure of the forming blow up bubble which is the new

regime to be perturbed. Here solutions become typically highly oscillatory and sometimes

turbulent, and there are many fascinating conjectures on the structure of the associated non

linear flows, [70]. A third axis of research is the investigation of more complicated and more

realistic systems, in particular in connections with plasmas physics (Zakharov’s equations,

Maxwell’s equations, . . . ) and of course fluid mechanics. Here the universality and the

robustness of our approach which applies to all regimes (critical and super critical) and relies

solely on energy estimates gives us hope for a better understanding of this new generation of

models which until very recently were essentially out of reach.



868 Pierre Raphaël

References

[1] Angenent, S.B., Hulshof, J., and Matano, H., The radius of vanishing bubbles in equiv-
ariant harmonic map flow from D2 to S2, SIAM J. Math. Anal. 41, no 3, 1121–1137.
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Regularity estimates for parabolic integro-
differential equations and applications

Luis Silvestre

Abstract. We review some regularity results for integro-differential equations, focusing on Hölder

estimates for equations with rough kernels and their applications. We show that if we take advantage

of the integral form of the equation, we can obtain simpler proofs than for second order equations. For

the equations considered here, the Harnack inequality may not hold.

Mathematics Subject Classification (2010). Primary 45E99; Secondary 35K99.

Keywords. Nonlocal equations, regularity.

1. Introduction

We consider parabolic integro-differential equations of the following general form

ut + b(t, x) · ∇u+
∫
Rd

(u(x+ y)− u(x)− y · ∇u(x) χB1(y))K(t, x, y) dy = f. (1.1)

The equations corresponds to generators of discontinuous Levy processes with drift, but

without a diffusion part. The purpose of this article is to discuss the regularization effect

of the integral part of the equation under general conditions on b and K. We present a

Hölder regularity result for the solution u to the equation (1.1) for f bounded and under

some conditions on b and K which are discussed in section 3. It is important that there is no

smoothness assumption on the kernel values K(t, x, y) with respect to the variables x and t.
Integro-differential equations are a natural, fractional order, generalization of classical

parabolic equations. Indeed, second order parabolic equations arise as asymptotic limits of

integral equations. In this respect, we can classify regularity estimates for integral equations

in two types. A regularity estimate that is uniform in the order of the equation (provided only

that it is bounded away from zero) can be passed to the limit to local equations and is thus a

generalization of regularity estimates for second order parabolic equations (for example the

results in [9, 10, 26] and [34]). The term robust is sometimes used for this type of estimates.

In other types of regularity results, the estimates depend on the order of the equation and

blow up as it approaches two. These estimates are the ones which take advantage of the

non local integral structure of the equation. The loss of the estimates in the classical limit is

certainly an undesirable quality. However, it is interesting to understand how the non local

structure of the equation can be used to our advantage. In fact, this second type of estimates

usually have simpler proofs even than their classical local counterparts.
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In this article, we discuss several results in the area. We also show a proof of Hölder

estimates for solutions to a rather general form of the equation (1.1). The proof we show

gives an estimate which is not robust. Our methods here depend strongly on the integral

structure of the equation. In exchange, we can analyze a large class of kernels K and still

have a rather short and clean proof. The Hölder estimates are based on a version of the weak

Harnack inequality (Theorem 5.1) which has interest in itself and is not true for second order

parabolic equations in non divergence form.

The Hölder estimates are closely related with the Harnack inequality. For the equations

we consider in this paper we prove the Hölder estimates but we show that the Harnack

inequality does not hold.

Note that these estimates are a fractional order version of the classical theory for sec-

ond order parabolic equations due to Krylov and Safonov [32]. In comparison, the proofs

for second order equations are much more complicated than then proofs of the non-robust

estimates for integral equations. Also, the Harnack inequality certainly holds in the second

order case.

We review related results and a brief history of the subject in section 2. In the last section

we give a quick summary of some of the main applications of the regularity estimates.

2. A review on regularity results

2.1. Classical results for second order equations. Integro-differential equations are a nat-

ural extension of second order equations of elliptic and parabolic type. There are two types

of regularity results for second order equations, those which apply to equations in divergence

form and those for equations in non divergence form.

The first result for elliptic and parabolic equations with rough coefficients and without

any smallness condition is the classical result of De Giorgi, Nash and Moser which was

obtained in the late 1950’s. This result provides a Hölder estimate for equations of the form

ut − ∂iaij(x, t)∂ju∂ju = 0.

where the coefficients aij are assumed to satisfy the point-wise bounds

λI ≤ {aij} ≤ ΛI. (2.1)

No assumption is made in terms of the regularity of aij with respect to either x or t. The

Harnack inequality also holds for this type of equations.

This classical result plays a crucial role in the regularity theory of solutions to equations

in divergence form. It was the key to solve Hilbert’s 19th problem. It is essential for all its

applications that no regularity assumption on the coefficients is necessary.

The corresponding result for equations in non divergence form was obtained in 1979 by

Krylov and Safonov [32, 33]. It applies to equations of the form

ut − aij(x, t)∂iju = 0,

with identical assumptions on the coefficients aij . Before the result of Krylov and Safonov,

the only regularity results available for equations in non divergence form applied to either

continuous coefficients aij or coefficients with small oscillation (i.e. |aij − δij | < ε). Note
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that any of these extra assumptions would allow us to approximate the equation locally with

an equation with constant coefficients. The result of Krylov and Safonov is more delicate

because it deals with a different scale invariant class of equations.

The Hölder estimate and Harnack inequality by Krylov and Safonov have multiple appli-

cations. It is a central result in the study of regularity of solutions to fully non linear elliptic

equations. These are equations of the form F (D2u) = 0 where F is an arbitrary nonlinear

function which satisfies λI ≤ ∂F/∂Xij ≤ ΛI . The canonical examples of equations of this

form come from the study of stochastic games and are the Bellman equation

ut − sup
r

arij∂iju = 0,

or the Isaacs equation

ut − inf
s
sup
r

arsij ∂iju = 0.

Note that even tough the matrices arij or arsij in these equations may be independent of x
and t, a different one is chosen at every point (x, t) and we have no a priori estimate on

the optimal choice aij(x, t) other than a quantitative point estimate like (2.1). That’s why

a result like the Hölder estimates by Krylov and Safonov guarantees some initial regularity

for solutions to this kind of problems. More importantly, the derivative of the solution also

satisfies an equation with (a priori) rough coefficients, which we can use to deduce that the

solutions are C1,α both in space and time. This is the best regularity currently known for

the Isaacs equation and in fact it is known to be optimal in high dimensions [37, 38]. The

solutions to the Isaacs equation in 2D are alwaysC2,α in space. It is still an outstanding open

problem whether singular solutions exists in dimensions 3 or 4. For the Bellman equation,

the solutions are always C2,α in space, and therefore classical, due to the celebrated theorem

proved independently by Evans [22] and Krylov [31].

2.2. Integro-differential equations. Just like in the second order case, the first regularity

results that appear for integro-differential equations were for equations with a variational

structure. They are a fractional order version of the classical results by De Giorgi Nash and

Moser for second order equations in divergence form. See [1, 5, 8, 23, 26, 30] among others.

In this article we will concentrate in results of non variational form. There is a good survey

on Hölder estimates for divergence form integro-differential equations in [28].

The first Hölder estimate, together with a Harnack inequality, was obtained by Bass and

Levin [4] for elliptic integro-differential equations of the form∫
Rd

(u(x+ y)− u(x)− y · ∇u(x)χB1(y))K(x, y) dy = 0,

assuming that K(x, y) = K(x,−y) and
λ

|y|d+α
≤ K(x, y) ≤ Λ

|y|d+α
, (2.2)

for positive constants λ and Λ uniform in x and y.
Note that there is no regularity assumption of K with respect to x. The assumption (2.2)

is a uniform ellipticity condition of order α ∈ (0, 2) comparable to (2.1) for the second order

case.
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The result in [4] is obtained using probabilistic techniques and the estimates are not

robust since the constants in the Hölder estimate are not uniformly bounded as α→ 2.
Just as in the case of Krylov-Safonov theorem for second order equations, this result ap-

plies to a scale invariant class of equations. The assumption (2.1) which gives us a pointwise

bound for the coefficients aij in the second order case can be reproduced in the integro-

differential case by the assumption (2.2), but there are also many other alternatives. For each

point x, the possible kernels are non negative functions (in terms of y) from the full space Rd

into R. This is naturally a much richer class than the coefficients of a second order equation,

which is just a symmetric matrix in Rd×d.

The original result of Bass and Levin was extended to more general classes of equations

in [2, 3, 41, 45]. The last one was the first one to use purely analytic methods instead of

probabilistic techniques.

The first robust Hölder estimate and Harnack inequality appear in [9] for symmetric

kernels satisfying the same condition (2.2). In this paper, the Hölder estimates were used

to derive a C1,α estimate for the non local Isaacs equation from stochastic games driven by

Levy processes,

inf
r
sup
s

∫
Rd

(u(x+ y)− u(x)− y · ∇u(x)χB1
(y))Krs(y) dy = 0.

This result was extended to some Isaacs equations with variable coefficients in [11]. More-

over, the integro-differential Bellman equation

inf
r

∫
Rd

(u(x+ y)− u(x)− y · ∇u(x)χB1(y))K
r(y) dy = 0,

has classical solutions in the class Cα+ε if all kernels K satisfy (2.2) plus some smoothness

condition with respect to y [10].

There is a number of variations of the results mentioned above, including, among others,

generalizations to parabolic equations [35], to non symmetric kernels [13] and to kernels

with logarithmic singularities [27].

As mentioned above, the condition (2.2) is a version of uniform ellipticity of fractional

order. However, given that the possible choices of kernel measures are so rich, there are

several possible alternative definitions of uniform ellipticity. It is not clear at the moment

what the optimal condition should be, and there is probably never going to be one.

In [6] and [39], the lower bound condition in (2.2) was relaxed. The authors observed

that it is enough to let it hold only in a cone of directions, which can change from point to

point, but must have a uniform width. This is a remarkable improvement which shows that

the previous condition (2.2) was far from optimal. It turns out that for this kind of integro-

differential equations the Hölder estimates hold but the Harnack inequality does not. This

is also quite remarkable, since the two properties are closely related to each other, and the

Hölder estimates are often proved as a consequence of the Harnack inequality. Note that

actually the Harnack inequality is claimed to be true in [6], but there are some issues in the

proof and a counterexample was given in [39] using ideas from [7].

In this article we prove a version of the Hölder estimate for parabolic integro-differential

equations. We keep the lower bound of (2.2) but we relax the upper bound. For this type

of equations we show that the Harnack inequality does not hold either. We give a rather

simple proof at the expense of making the estimate not robust (that is, the constants blow up

as α→ 2).
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In a work in progress with Russell Schwab, we are working on a robust estimate for

parabolic equations whose kernels satisfy the same upper bound condition as in this paper,

but whose lower bound only holds in a cone of directions.

Note that a robust estimate like the one in [9] in particular implies the Krylov Safonov

theorem about the regularity of uniformly elliptic second order equations. We can recog-

nize the main ideas of the proof of Krylov and Safonov in the proof of the correspond-

ing estimates for integral equations in [9]. In particular, there is some replacement for the

Alexandrov-Bakelman-Pucci estimate. However, a perfect nonlocal analog for the ABP es-

timate is unknown. More precisely, the following is an open problem. Assume∫
Rd

(u(x+ y)− u(x)− y · ∇u(x)χB1(y))K(x, y) dy = −χA in B1,

u(x) ≤ 0 for all x /∈ B1

Is there an estimate of the form

max
B1

u ≤ μ(|A|),

for any function μ so that μ(m)→ 0 as m→ 0?
Here χA denotes the characteristic function of the set A.

In spite of its apparent simplicity, the estimate above has only been proved for a very

special class of kernels [24].

3. A class of kernels

In this section, we describe a special set of assumptions that we make on the kernels for the

result that we prove in this article.

The integro-differential equations that we study have an associated order α ∈ (0, 2). The
assumptions on the kernelK depend on this value. Typically, we will look at kernelsK such

that K(t, x, y) ≈ |y|−d−α, but our assumptions are more general than that. We assume the

following two inequalities.

K(t, x, y) ≥ λ

|y|d+α
, (3.1)∫

∂Br

K(t, x, y) dS(y) ≤ Λr−1−α for all r > 0. (3.2)

The estimates (3.1) and (3.2) also make sense for some singular jump measures instead

of the absolutely continuous measure K(t, x, y) dy. We stick to the absolutely continuous

form only for the sake of clarity.

Note that (3.2) is more general than the usual assumption K(t, x, y) ≤ Λ|y|−d−α. In

particular (3.2) allows us to consider kernels containing singular measures. An extra factor

(2− α) would be needed in the right hand side of both (3.1) and (3.2) in order to pass to the

limit as α→ 2 and recover uniformly parabolic equations in non divergence form. Since the

estimates in this article are not uniform in α, it makes no difference to have this factor or not

for the purposes of our results.
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We do not assume that K is symmetric, (i.e. K(t, x, y) �= K(t, x,−y). Note that the

purpose of the gradient term y · ∇u(x)χB1(x) in the integrand in (1.1) is for the integral to

be well defined around the origin. When K is symmetric, this term can be safely ignored

by computing the integral in the principal value sense. For non symmetric kernels K, this

term is necessary for the integral to make sense if α ≥ 1. The choice of the radius of the

ball B1 is arbitrary. If we replace B1 with BR for any other value of R, the difference of the

integral operators would be absorbed by the gradient term. This ambiguity in the structure

of the integral operator is inconvenient for the proofs in this article because it depends on

scale. In our proofs we often rescale solutions of the equation and we need our assumptions

to be invariant by this scaling. In order to avoid this ambiguity, we modify the structure of

the equation depending on whether α < 1 or α > 1. We use the following notation

δyu(x) :=

⎧⎪⎨⎪⎩
u(x+ y)− u(x) if α < (0, 1),

u(x+ y)− u(x)− y · ∇u(x)χB1(y) if α = 1,

u(x+ y)− u(x)− y · ∇u(x) if α ∈ (1, 2),
(3.3)

In any case, we study an equation of the form

ut + b(t, x) · ∇u+
∫
Rd

δyu(x)K(t, x, y) dy = f (3.4)

The case α = 1 is special. In this case we need to assume an additional symmetry

assumption in the kernel K. Assuming K(t, x, y) = K(t, x,−y) would be enough, but we

make a mildly more general assumption∫
∂Br

yK(t, x, y) dS(y) = 0 for every r > 0. (3.5)

Some symmetry assumption like (3.5) is required to make the proof using the current meth-

ods. See [14] for a more precise description of assumptions that work in the elliptic case

with α = 1.
These alternative structures for the non symmetric integral operators depending on the

order α were stated in the work of Hongjie Dong and Doyoon Kim for elliptic nonlocal

equations [19] and [20].

The drift term does not contribute to the regularization of the solution. We need to be

able to control it with the integral part. We will assume that b(t, x) is bounded if α ≥ 1 and

that b(t, ·) is uniformly bounded in C1−α if α < 1. For the right hand side f , we always

assume it is a bounded function.

Note that the class of equations of the form (1.1) is no different from (3.4). Indeed, if

α < 1 then yK(y) is integrable at the origin. Thus, the integral of y · ∇u(x)χB1(y) is of

the form b̃ · ∇u(x) and therefore it is absorbed into the first order term of (3.4). In the case

α > 1, yK(y) is integrable at infinity. Thus, the integral of y · ∇u(x)χRd\B1
(y) can also be

absorbed in the first order term.

4. Extremal operators and viscosity solutions

Note that the equation (1.1) does not have a variational form and therefore we cannot define

a weak solution in the sense of distributions. In order to make sense of the equation in the
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viscosity sense, we define the extremal Pucci-like operators which represent the maximum

and minimum possible value of the integral term in (3.4).

Definition 4.1. Let ϕ : Rd → R be bounded in Rd and C1,1 at x. We define M±
α ϕ in the

following way.

M+
α ϕ(x) = sup

{∫
Rd

δyϕ(x)K(y) dy : for all K(y) satisfying (3.2) and (3.1),

and also (3.5) if α = 1

}
The extremal operator M−

α is defined similarly exchanging the sup with an inf .

We will omit the subscript α whenever this value is clear to avoid notation clutter.

The operators M+
α and M−

α have an explicit formula which is given in the next lemma.

Lemma 4.2. Let ϕ : Rd → R be bounded in Rd and C1,1 at x. The operatorsM+
α andM−

α

have the following formula

M+
α ϕ(x) =

∫
Rd

δyϕ(x)
λ

|y|d+α
dy + ωd(Λ− λ)

∫ ∞

0

(
sup

y∈∂Br

δyϕ(x)
+

)
r−1−α dr,

M−
α ϕ(x) =

∫
Rd

δyϕ(x)
λ

|y|d+α
dy + ωd(λ− Λ)

∫ ∞

0

(
sup

y∈∂Br

δyϕ(x)
−
)
r−1−α dr,

where ωd represents the surface area of ∂B1 in Rd.

The proof of the lemma above is a straight forward interpretation of Definition 4.1

The following is a rather simple proposition stating essentially thatM±
α ϕ is well defined

for ϕ ∈ C2 and has some basic stability properties.

Proposition 4.3. Assume ϕ is a continuous bounded function in Rd so that ϕ ∈ C2(B2).
Then M+

α ϕ and M−
α ϕ are continuous in B1. Moreover, if ϕk is a uniformly bounded se-

quence of such functions such that ϕk → ϕ locally uniformly in Rd and ϕk → ϕ in C2(B2),
then M±

α ϕk →M±
α ϕ uniformly in B1.

Proof. Let K(y) be one kernel satisfying (3.1) and (3.2). Let Lu be the linear (translation

invariant) operator

Lu(x) :=

∫
Rd

δyu(x)K(y) dy. (4.1)

If x ∈ B1, then we can estimate δyu(x) with respect to the norms of u. If x ∈ B1 and

x+ y ∈ B3/2, we have

|δyu(x)| ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|y||∇u|L∞(B2) if α > 1,

|y|2|D2u|L∞(B2)χ|y|<1 if α = 1 and |y| < 1,

2|u|L∞(B3/2)χ|y|<1 if α = 1 and |y| ≥ 1,

|y|2|D2u|L∞(B2) if α > 1.
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Also, if x ∈ B1 and x+ y /∈ B3/2,

|δyu(x)| ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|u(x+ y)|+ |u|L∞(B1) if α > 1,

|u(x+ y)|+ |u|L∞(B1) + |y||∇u|L∞(B1)χ|y|<1 if α = 1 and |y| < 1,

|u(x+ y)|+ |u|L∞(B1) if α = 1 and |y| ≥ 1,

|u(x+ y)|+ |u|L∞(B1) + |y||∇u|L∞(B1) if α > 1.

All these inequalities, combined with the assumption (3.2) for K(y) tell us that the expres-

sion in (4.1) is integrable and

|Lu(x)| ≤ C
(‖u‖C2(B2) + ‖|x|βu(x)‖L∞(Rd)

)
. (4.2)

Here β is any non negative number so that β < α. The constant C depends on λ, Λ, d, α
and β, but not on the particular choice of the kernel K(y). In particular it also holds for

the suppremum and infimum value of Lu(x) for all admissible choices of K, and that is

M+
α u(x) and M−

α u(x).
From (4.2), we see that ifϕn is a uniformly bounded sequence so thatϕn → ϕ inC2(B2)

and locally uniformly in Rd, then Lϕn → Lϕ uniformly in B1 and at a rate independent of

K. In particular M±
α ϕn converges to M±

α ϕ uniformly in B1, which proves the second part

of the proposition.

Assume now that u ∈ C3(B2) ∩ C1(Rd), since ∂i[Lu] = L[∂iu], we deduce from (4.2)

that in this case Lu is Lipschitz continuous in B1.

If ϕ is any bounded continuous function in Rd which is C2 in B2, we can approximate

it with a bounded sequence ϕn ∈ C3(B2) ∩ C1(Rd), which converges to ϕ in C2(B2)
and locally uniformly in Rd. Therefore, Lϕn → Lϕ uniformly in B1, and therefore Lϕ is

continuous in B1.

Note that the fact that u solves an equation of the form (3.4), for some kernelK satisfying

our assumptions, is equivalent to the fact that u satisfies the following two inequalities.

ut + b · ∇u−M+
α u ≤ 0, (4.3)

ut + b · ∇u−M−
α u ≥ 0. (4.4)

Even though we defined M+
α and M−

α using kernels which do not depend on t and x,
ultimately the choice of kernel in M±

α u(t, x) is different at every point. Thus, the equations

(4.3) and (4.4) are equivalent to (3.4) without any regularity assumption of K(t, x, y) with

respect to t and x.
The advantage of the inequalities (4.3) and (4.4) with respect to the equation (3.4) is that

the former can be defined in the viscosity sense.

Definition 4.4. Assume b and f are continuous in some domain Ω ⊂ R × Rd. We say that

(4.3) (resp. (4.4)) holds in Ω if every time there is a function ϕ : (t0 − ε, t0]×Bε(x0) such
that ϕ is left differentiable in time and point-wise second differentiable in space at (t0, x0)
and

ϕ(t0, x0) = u(t0, x0),

ϕ ≥ u in (t0 − ε, t0]×Bε(x0) (resp. ≤),
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Then, if we construct the function

v(t, x) =

{
ϕ(t, x) if (t, x) ∈ (t− ε, t0]×Bε(x0),

u(t, x) otherwise,

we get

vt(t0, x0) + b(t0, x0) · ∇v(t0, x0)−M+
α v(t0, x0) ≤ f(t0, x0).

(resp. M−
α and ≥)

Note that M+ and M− satisfy the relation M+ϕ = −M−(−ϕ). Moreover, u satisfies

ut+b·∇u−M−u ≥ f in the viscosity sense, if and only if−u satisfies (−u)t+b·∇(−u)−
M+(−u) ≤ −f .

One of the keys in the study of regularity properties of second order equations in non

divergence form lies in the difficulty to obtain estimates in integral form. This is achieved

estimating the measure of some contact sets or through the Alexandrov-Bakelman-Pucci in-

equality. The following lemma is a simple property of viscosity solutions of the integral

equations we consider in this paper. At the same time, it is a crucial ingredient in our reg-

ularity theory since it provides a simple integral quantity associated with every point which

can be touched by one side with a smooth function.

Lemma 4.5. Assume (3.1) holds in the viscosity sense. Let ϕ be a test function as in the
Definition 4.4 such that u(t0, x0 + y) ≥ ϕ(t0, x0 + y) for all y ∈ Rd. Then, we have

ϕt(t0, x0) + b(t0, x0) · ∇ϕ(t0, x0)−M−ϕ(t0, x0)

−
∫
Rd

(u(t0, x0 + y)− ϕ(t0, x0 + y))
λ

|y|d+α
dy ≥ f(t0, x0).

Proof. Let v be the function constructed out of u, ϕ and some ε > 0 in Definition 4.4.

Note that if |y| > ε we have δyv(t0, x0) = (u(t0, x0 + y) − ϕ(t0, x0 + y)) + δyϕ(t0, x0).
Moreover, vt(t0, x0) = ϕt(t0, x0) and∇v(t0, x0) = ∇ϕ(t0, x0). Therefore

f(t0, x0) ≤ vt(t0, x0) + b(t0, x0) · ∇v(t0, x0)−M+
α v(t0, x0),

= ϕt(t0, x0) + b(t0, x0) · ∇ϕ(t0, x0)−M−ϕ(t0, x0)

−
∫
Rd\Bε

(u(t0, x0 + y)− ϕ(t0, x0 + y))
λ

|y|d+α
dy

We finish the proof taking ε→ 0 and applying the monotone convergence theorem.

Remark 4.6. Applying the previous result to −u, we can obtain a corresponding result for

viscosity sub-solutions of (4.3).

5. The weak Harnack inequality

We use the following notation for parabolic cylinders

Qr := (−rα, 0]×Br,

Qr(t0, x0) := (t0, x0) +Qr = (t0 − rα, t0]×Br(x0).
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The following result is the weak Harnack inequality and is the key ingredient in the proof

of the Hölder estimates. Its proof is inspired by a similar (but somewhat weaker) result for a

particular case of (1.1) which appeared in [43]. Some of the ideas can be traced back to [41]

for the elliptic case.

Theorem 5.1. Let u be a function which satisfies the following inequality in the viscosity
sense.

ut + Λ|∇u| −M−u ≥ −a in Q1,

Assume that u ≥ 0 in Q1, then

min
[−1/2,0]×B1/2

u ≥ c

(∫
(−1,−1/2]×Rd

u(t, x)

(1 + |x|)d+α
dx dt

)
− a,

where c is a positive constant depending on λ, Λ, α and the dimension d.

Proof. Multiplying u by a scalar, we can assume that∫
(−1,−1/2]×Rd

u(t, x)

(1 + |x|)d+α
dx dt = 1. (5.1)

We should then prove that there is a small constant c so that

min
[−1/2,0]×B1/2

u ≥ c− a,

for any value of a. Of course this inequality is non trivial when a < c only.
Let θ be the constant, depending on dimension and α only, so that∫

(−1,−1/2]×Rd

θ

(1 + |x|)d+α
dx dt = 1/2.

From (5.1), we deduce that∫
(−1,−1/2]×Rd

(u(t, x)− θ)
+

(1 + |x|)d+α
dx dt ≥ 1/2.

Let ϕ : Rd → R be a smooth, non negative function supported in B3/4 so that ϕ ≡ 1 in

B1/2. We will construct a bound from below of the formm(t)ϕ(x)− (1+ t)a. The function

m is the solution of the following ODE, for some positive constants c0 and C1.

m(−1) = 0, (5.2)

m′(t) = c0

(∫
Rd

(u(t, x)− θ)+

(1 + |x|)d+α
dx

)
− C1m(t). (5.3)

The ODE above has the explicit solution

m(t) = c0

∫ t

−1

∫
Rd

(u(t, x)− θ)+

(1 + |x|)d+α
eC1(s−t) dx ds

≥ c0
eC1

∫∫
[−1,−1/2]×Rd

(u(t, x)− θ)+

(1 + |x|)d+α
dx dt.
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Therefore, if we proved that u(t, x) ≥ m(t)ϕ(x) − (1 + t)a, we would finish the proof

with c = c0e
−C1/2. Let us assume the contrary and let ε > 0 be an arbitrarily small number.

Since m(−1) = 0 and ϕ is supported in B3/4, there exists a first crossing point (t0, x0) so
that

u(t0, x0) = m(t0)ϕ(x0)− (1 + t0)a− ε,

u(t, x) ≥ m(t)ϕ(x)− (1 + t)a− ε for every t < t0 and x ∈ Rd.

We observe that we can usem(t)ϕ(x)− (1+ t)a− ε as a test function for Definition 4.4

and from Lemma 4.5 we have

m′(t0)ϕ(x0)− a+ Λm(t0)|∇ϕ(x0)| −m(t0)M
−ϕ(t0, x0)

−
∫
Rd

(u(t0, x0 + y)− ϕ(t0, x0 + y))
λ

|y|d+α
dy ≥ −a.

The a terms cancel out and we get

m′(t0)ϕ(x0) + Λm(t0)|∇ϕ(x0)| −m(t0)M
−ϕ(t0, x0)

−
∫
Rd

(u(t0, x0 + y)− ϕ(t0, x0 + y))
λ

|y|d+α
dy ≥ 0.

(5.4)

The last integral term is crucial to obtain the contradiction.

The first condition that we need in the choice of c0 is that it must be chosen small enough

so that m(t) < θ for all t ∈ [−1, 0]. This is guaranteed simply by the condition c0 ≤ θ.
Under this condition, we obtain the following∫

Rd

(u(t0, x0 + y)− ϕ(t0, x0 + y))
λ

|y|d+α
dy

≥
∫
Rd

(u(t, y)− θ)+
(

min
x0∈B1/2

λ

|y − x0|d+α

)
dy

≥ c0

(∫
Rd

(u(t, x)− θ)+

(1 + |x|)d+α
dx

)
The last inequality holds provided that c0 ≤ λ(5/4)d+α.

Substituting back into (5.4), we have

m′(t0)ϕ(x0) + Λm(t0)|∇ϕ(x0)| −m(t0)M
−ϕ(x0)− c0

(∫
Rd

(u(t, x)− θ)+

(1 + |x|)d+α
dx

)
≥ 0.

Recalling the ODE (5.3) and that ϕ ≤ 1, it follows that

−C1m(t0)ϕ(x0) + Λm(t0)|∇ϕ(x0)| −m(t0)M
−ϕ(x0) ≥ 0.

Since u(t0, x0) = m(t0)ϕ(x0) − a(t + 1) − ε, then certainly m(t0) > 0 and we can

factor it out from the previous inequality.

−C1ϕ(x0) + Λ|∇ϕ(x0)| −M−ϕ(x0) ≥ 0.

We are left with choosingC1 large enough in order to contradict this last inequality. Note

that we can certainly do so in the set {x : ϕ(x) > ρ} for any fixed ρ > 0. However, we must

address the fact that ϕ(x0) might be arbitrarily small.
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The key to solve this extra difficulty is to observe thatM−ϕ(x) > 0 wherever ϕ(x) = 0.
Indeed M−f(x) > 0 if f achieves its global minimum at x. Moreover, also ∇ϕ = 0
wherever ϕ = 0. Since ϕ is C2, then M−ϕ is continuous. Let −δ := min{M−ϕ(x) :
ϕ(x) = 0}. Then there is a ρ > 0 so that if ϕ(x) < ρ then |∇ϕ(x)| < δ/(2Λ) and

M−ϕ(x) < −δ/2. Therefore, every time ϕ(x) < ρ we have

−C1ϕ(x0) + Λ|∇ϕ(x0)| −M−ϕ(x0) ≤ −C1ϕ(x0) < 0.

For the points x where ϕ(x) ≥ ρ, we choose C1 large enough so as to obtain a contra-

diction. This finishes the proof.

Note that the lower bound provided in Theorem 5.1 involves a weighted integral of u
in the full space Rd. This is obviously something that would not be expected for a local

equation. The following is an immediate corollary of Theorem 5.1 in which we simply

replace the integral in the right hand side by an integral in a subdomain. In this way, we

obtain the weaker version of the result which is more similar to the weak Harnack inequality

for local equations.

Corollary 5.2. Let u be a function which satisfies the following inequality in the viscosity
sense.

ut + Λ|∇u| −M−u ≥ −a in Q1,

Assume that u ≥ 0 in Q1, then

min
[−1/2,0]×B1/2

u ≥ c

(∫
(−1,−1/2]×B1/2

u(t, x) dx dt

)
− a,

where c is a positive constant depending on λ, Λ, α and the dimension d.

Even the result of Corollary 5.2 is not true for second order equations. Instead, the

integral on the right hand side must be replaced with the Lε norm of u in [−1,−1/2]×B1/2

(See theorem 4.15 in [25]). It is relatively simple to construct stationary examples of the

form u(t, x) = |x|−p for large p, to check that indeed a small power ε is required in the

second order case if Λ/λ is large.

6. Hölder estimates

We first state the Hölder estimates in the case α ≥ 1. This case is relatively easier than

α < 1 because the diffusion is of higher order than the drift. The proof is a rather standard

iterative improvement of oscillation. If the drift term vanishes, the same proof works for all

α ∈ (0, 2).
Theorem 6.1. Assume α ≥ 1. Let u : [−1, 0]× Rd → R be a continuous bounded function
which satisfies the following two inequalities in the viscosity sense

ut + Λ|∇u| −M−u ≥ −A in Q1,

ut − Λ|∇u| −M+u ≤ A in Q1.
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Then, u ∈ Cγ(Q1/2) and there is an estimate

‖u‖Cγ(Q1/2) ≤ C
(‖u‖L∞([−1,0]×Rd +A

)
.

Here the constant C depends on λ, Λ, α, and the dimension d.

Proof. Replacing u with u/(‖u‖L∞ + A/ε0), we can assume ‖u‖L∞ ≤ 1/2 and A ≤ ε0.
We must now find a universal upper bound for the Hölder norm of u in Q1/2. We will prove

that there for all r > 0,
osc
Qr

u ≤ rγ . (6.1)

This shows that u is Cγ in space and Cγ/α in time at the point (0, 0). The regularity is

extended to the cylinderQ1/2 by a standard scaling and translation argument. Therefore, we

only need to show (6.1).

Note that since we have ‖u‖L∞ ≤ 1/2, then (6.1) holds for all r ≥ 1. We will show it

holds for all r > 0 by induction in r. The inductive step we need to prove is that if (6.1)

holds for all r > r0, with r0 ≤ 1, then it also holds for all r > r0/2.
So, assume (6.1) holds for all r > r0. Let us consider the rescaled function

ur0(t, x) := (2R)−γu ((2R)αt, 2Rx) .

This is the scaling for which the values of ur0 in Q1/2 correspond to the values of u in Qr0 .

The function ur0 satisfies the equations

ut + r0
α−1Λ|∇u| −M−u ≥ −r0αε0 in Q1/r0 , (6.2)

ut − r0
α−1Λ|∇u| −M+u ≤ r0

αε0 in Q1/r0 . (6.3)

Since r0 < 1 and α ≥ 1, both powers of r0 in the formula above are less or equal to one. In

particular

ut + Λ|∇u| −M−u ≥ −ε0 in Q1/r0 ,

ut − Λ|∇u| −M+u ≤ ε0 in Q1/r0 .

Moreover, from the inductive hypothesis (6.1) for r ≥ r0, we have that

osc
Qr

ur0 ≤ rγ for all r ≥ 1/2. (6.4)

Let m := minQ1
ur0 and M = maxQ1

ur0 . From (6.4) we know that M − m ≤ 1.
Therefore, for every point (t, x) in Q1 we have at least one of the inequalities ur0(t, x) ≤
m+ 1/2 or u(t, x) ≥M − 1/2. Thus, one of the following two statements will hold∣∣{ur0 < m+ 1/2} ∩ [−1,−1/2]×B1/2

∣∣ > 1

4
|B1/2| or (6.5)∣∣{ur0 > M − 1/2} ∩ [−1,−1/2]×B1/2

∣∣ > 1

4
|B1/2| (6.6)

Without loss of generality, we assume (6.6) (otherwise, we will proceed with the rest of the

proof with −ur0 instead of ur0 ).
Note that from (6.4), we deduce that ur0(t, x) > M −1 inQ1 and ur0(t, x) > M −|x|γ

for all x /∈ B1 and t ∈ [−1, 0].
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Let v(t, x) be the non negative function

v(t, x) = (ur0(t, x)−M + 2γ)
+
.

Note that v ≥ ur0 and for t ∈ [−1, 0] we have v(t, x) − u(t, x) ≤ (|x|γ − 2γ)+. In

particular, u(t, x) = v(t, x) if t ∈ [−1, 0] and x ∈ B2.

Let U(x) = (|x|γ − 2γ)+, so that 0 ≤ v(t, x)−u(t, x) ≤ U(x). The function v satisfies

the following equation (in the viscosity sense)

vt + Λ|∇v| −M−v ≥ −ε0 −M−U in Q1.

Taking γ small, we can make M−U arbitrarily small in B1. Therefore, for small enough γ,

vt + Λ|∇v| −M−v ≥ −2ε0 in Q1.

We now apply Corollary 5.2 to v and obtain a lower bound in Q1/2,

min
Q1/2

v ≥ c

∫
[−1,−1/2]×B1/2

v dx dt− 2ε0.

We now apply (6.6) and obtain

min
Q1/2

v ≥ c(2γ − 1/2)− 2ε0 > δ.

This lower bound δ does not depend on γ or ε0 provided that ε0 is sufficiently small.

Bringing this information back into ur0 , this means that ur0 ≥ M − 2γ + δ in Q1/2.

Here we also choose γ sufficiently small so that 2γ − δ < 1 − δ/2. Therefore we have that

oscQ1/2
ur0 ≤ 1− δ/2. This also means that

osc
Qr0/2

u ≤ (1− δ/2)r0
γ .

In particular oscQr
u ≤ (1 − δ/2)r0

γ for all r < r0. Choosing γ sufficiently small one last

time so that 2−γ > 1− δ/2, we proved that oscQr
u ≤ rγ for all r ∈ [r0/2, r0].

This finishes the proof of (6.1) by induction in r.

We now state and prove the corresponding theorem for α < 1. In this case the interaction

between the diffusion and drift is more subtle and we must make a change of variables par-

tially following the flow in order to obtain the necessary cancellation to prove the theorem.

This idea originated in [44].

Theorem 6.2. Assume α < 1. Let u : [−1, 0]× Rd → R be a continuous bounded function
which satisfies the following two inequalities in the viscosity sense

ut + b(t, x) · ∇u−M−u ≥ −A in Q1,

ut + b(t, x) · ∇u−M+u ≤ A in Q1.

Assume that b is a continuous vector field and ‖b(t, ·)‖C1−α(B1) is bounded uniformly in t.
Then, u ∈ Cγ(Q1/2) and there is an estimate

‖u‖Cγ(Q1/2) ≤ C
(‖u‖L∞([−1,0]×Rd +A

)
.

Here the constant C depends on λ, Λ, α, and the dimension d.
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Proof. The general strategy of the proof is similar to the proof of Theorem 6.1. The problem

in the iterative argument is that in the rescaled equations (6.2) and (6.3), the factor r0
α−1 is

large for small values of r0. It is crucial that this factor remains bounded for the induction

argument to succeed.

The solution is to change the shape of the parabolic cylinders we use, so that they follow

the flow. Let us defined the following modified parabolic cylinders.

Q̃r := {(t, x) : |x−X(t)| < r ∧ t ∈ (−rα, 0]} .
Here X(t) is one solution to the backward ODE

X(0) = 0,

X ′(t) = b(t,X(t)), for t < 0.

The corresponding scaled function ũr0 is now

ũr0 = r0
−γu(r0

αt, r0(X(t) + x)).

This function solves the equations

ut + r0
α−1 (b(t, x)− b(t,X(t))) |∇u| −M−u ≥ −r0αε0 in Q1/r0 ,

ut − r0
α−1 (b(t, x)− b(t,X(t))) |∇u| −M+u ≤ r0

αε0 in Q1/r0 .

The Hölder continuity assumption on b assures that r0
α−1 |b(t, x)− b(t,X(t))| ≤ Λ for

some constant Λ > 0. This allows us to continue with the rest of the proof as in Theorem

6.1.

7. Failure of the Harnack inequality

The Harnack inequality is a property of non negative solutions to some elliptic and parabolic

equations. For parabolic equations, it says that there is some universal constant C so that if

u is a solution of the equation in Q1 which is non negative in [−1, 0]× Rd, then

sup
[−3/4,−1/2]×B1/2

u ≤ C inf
[−1/4,0]×B1/2

u.

The Harnack inequality holds for some integral equations, for example see [4], [9] and [1].

Interestingly enough, in the situation of [1], the Harnack inequality holds, but the solution of

the equation is not necessarily continuous.

It turns out, however, that the Harnack inequality fails for the type of equations we con-

sider in this paper. In this section, we construct a counterexample.

Let e1 be a the unit vector (1, 0, . . . ) in Rd. Consider the following integral operator

Lu(x) =

∫
Rd

δyu(x)

|y|d+α
dy +

∫
R

δy1e1u(x)

|y1|1+α
dy.

This operator is in fact the same as

Lu = −c1(−Δ)α/2u− c2(−∂x1x1)
α/2u.
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for some positive constants c1 and c2. We look at the solution to the problem

ut − Lu = f(x) in (0,∞)× Rd,

u(−1, x) = 0 for x ∈ Rd.
(7.1)

where f = χQε
is the indicator function of the set

Kε = {x ∈ Rd : |x1 − 4| < ε and |x′| < ε}.

We used the notation x = (x1, x
′). The operator L we are considering here is an integral

operator with respect to a singular measure (singular along the axis y′ = 0). That is the only

reason why it does not have the form (1.1). Indeed, in (1.1) we implicitly assumed that for

every (t, x) the integral equation has a absolutely continuous measure with densityK(t, x, ·).
That is a choice for convenience of notation only. Indeed, the non negative solution u to the

equation (7.1) satisfies the two inequalities in the viscosity sense

ut −M−u ≥ 0 in Q1,

ut −M+u ≤ 0 in Q1.

So, it is a valid candidate for a Harnack inequality. However, we will prove that

lim
ε→0

u(0, (0, x′))

u(−1/2, 0) = 0, (7.2)

provided that x′ �= 0. This contradicts the parabolic Harnack inequality.

The intuition behind this counterexample is similar to the constructions given in [7] and

[39] (for very different types of kernels). The equation we consider is the generator of a Levy

process with frequent purely horizontal jumps. For ε � 1, a process starting at the origin

would have a much higher chance to exit the domain at a point with |x1| < ε than a process

that starts outside of a band |x1| > δ.
In order to verify (7.2), we will compute the solution to (7.1) almost explicitly. In order

to write a formula for u we will use the heat kernel associated with L and Duhamel formula.

The heat kernel associated with this equation is explicit in Fourier side:

Ĥ(t, ξ) = c exp(−t|ξ|α − t|ξ1|α).

In real variables, H(t, x) is not explicit. But we know it must be the convolution of the

heat kernel of (−Δ)α/2 and the heat kernel of (−∂x1x1). That is

H(t, x) = Φd(t, x) ∗ Φ1(t, x),

where

Φd(t, x) = t−d/αΦd(1, x/t
1/α) =: t−d/αϕd

( x

t1/α

)
.

The exact formula for the d-dimensional fractional hear kernel ϕd is not known. However,

we know that

ϕd(x) ≈ (1 + |x|)−d−α.

Here we use the symbol≈ to say that the ratio between the left hand side and right hand side

is bounded below and above by positive constants.
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The heat kernel Φ1(t, x) is simply the one dimensional heat kernel of the fractional

Laplacian in the variable x1. Thus, it is a singular measure supported on the line x′ = 0 with

a density of the form

t−1−αϕ1

( x1

t1/α

)
.

As before, we have ϕ1(x) ≈ (1 + |x|)−1−α.

Using Duhamel formula, and following routine arithmetic manipulations, we arrive at a

formula for u(T, x).

u(T, x) =

∫ T+1

0

∫
Kε

∫
R

t−
d+1
α ϕd

(
x− z − y1e1

t1/α

)
ϕ1

( y1
t1/α

)
dy1 dz dt.

We will first estimate u(−1/2, 0) in terms of ε. That is, we set T = −1/2 and x = 0.
Assume ε � 1. We obtain a lower bound by restricting the domain of integration to a

smaller domain.

u(−1/2, 0) ≥
∫
Kε

∫ |z′|α

0

∫ −4+ε

−4−ε

t−
d+1
α ϕd

(−z − y1e1
t1/α

)
ϕ1

( y1
t1/α

)
dy1 dt dz,

In this whole domain of integration we have

ϕd

(−z − y1e1
t1/α

)
≥ c
(
1 +

ε

t1/α

)−d−α

≥ cε−d−αtd/α+1,

ϕ1

( y1
t1/α

)
≥ c

(
1 +

4

t1/α

)−1−α

≥ ct1+1/α

Therefore

u(−1/2, 0) ≥ cε−d−α+1

∫
Kε

∫ |z′|α

0

t2 dt dz,

= cε2α+1

Now we estimate u(0, (0, x′)) from above in terms of ε. That is, we set T = −1/2 and

x = (0, x′) for some non zero x′ ∈ Rd−1 with |x′| < 1/2. Using that ϕd(x) ≤ C|d|−d−α

and ϕ1(x) ≤ C|x|−1−α, we get

u(0, (0, x′))≤ C

∫ T+1

0

∫
Kε

∫
R

t1−
1
α (|x′ − z′|+ |x1 − z1 − y1|)−d−α

ϕ1

( y1
t1/α

)
dy1dzdt.

Since x′ �= 0, then |x′ − z′| > |x′|/2 provided that ε < |x′|/2. That is, |x′ − z′| is of

order one as ε→ 0. Therefore

u(0, (0, x′)) ≤ C

∫ T+1

0

∫
Kε

∫
R

t1−
1
αϕ1

( y1
t1/α

)
dy1 dz dt,

= C

∫ T+1

0

∫
Kε

t dz dt = Cεd.

So, if d > 1 + 2α, we obtain that u(0, (0, x′)) � u(−1/2, 0) as ε → 0. Therefore the

Harnack inequality does not hold.
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Remark 7.1. It is not clear whether the condition d > 1 + 2α is a limitation of this con-

struction or the standard Harnack inequality actually holds for d ≤ 1 + 2α. We leave it as

an open question.

8. Applications

In this last section we give a brief summary of applications to the estimates of Theorems 6.1

and (6.2).

8.1. Fully nonlinear parabolic equations. One of the canonical applications of the Hölder

estimates presented in this paper is the C1,γ regularity for solutions to the parabolic Isaacs

equation.

ut − inf
a
sup
b

∫
Rd

δyu(x)Kab(y) dy = 0.

The Isaacs equation models the value function for the optimal strategy in a zero-sum

stochastic game. For the purpose of this article, we consider games driven by Levy pro-

cesses without diffusion. We point out that discontinuous Levy processes have a number of

applications in finance [46] and physics [36].

It is easy to check that if all kernels Kab satisfy the assumptions (3.2) and (3.1), then the

incremental quotients vh(x) = (u(x + h) − u(x))/|h| satisfy the assumptions of Theorem

(6.1) or Theorem (6.2). This quickly leads to a C1,γ regularity result for u at least if the

equation holds in the whole space (0,∞)× Rd. If the equation holds in a bounded domain,

there are some extra difficulties. The method is explained in [40]. The result there applies to

a less general class of kernels but it is robust, since it is based on the Hölder estimates from

[34].

8.2. Active scalar equations. There exist several active scalar equations of the form

θt +B(θ) · θ + (−Δ)α/sθ = 0, (8.1)

that have attracted attention in recent years. HereB(θ) is a vector field which depends on the

solution θ of the equation. This dependence makes the equation non linear. Some examples

of B which are of interest are the following.

• Conservation laws with fractional diffusion. B(θ) = F ′
i (θ). See for example [21].

• Surface quasi-geostrophic equation. B(θ) = R⊥θ, where R stands for the Riesz

tranform. See for example [12, 16, 29] among many others.

• Modified surface quasi-geostrophic equation. B(θ) = R⊥(−Δ)1−αθ, where R
stands for the Riesz tranform. See for example [15].

• Incompressible flow in porous media. B(θ) = (0,−θ) − ∇p, so that divB = 0.
See for example [17].

The solution to any of these equations is a priori bounded in L∞ from the maximum

principle. The key step in order to prove that they posses a classical global solution is to be

able to obtain a regularity estimate for the solution which goes beyond L∞. Once a Hölder



Regularity estimates for parabolic integro-differential equations and applications 891

estimate is established, it can be bootstrapped into higher regularity using the result from

[42] in any of the models above.

Theorem 6.1 gives us a Hölder estimate for conservation laws with critical fractional

diffusion α = 1. It also gives us a Hölder estimate for the modified surface quasi-geostrophic

equation if α ∈ (0, 1). Therefore, the classical well-posedness of both models follows.

The study of either the surface quasi-geostrophic model or the fluid in porous media with

critical diffusion α = 1 does not follow immediately from Theorem 6.1. This is because

Theorem 6.1 requires the vector field to be bounded and in these cases B(θ) is a priori

only controlled in L∞((0,∞), BMO). A version of Theorem 6.1 for vector fields b ∈
L∞(BMO) was given in [12] provided that div b = 0, but the result are of very different

nature. Indeed, the result in [12] is based on the variational structure of the equation and

uses De Giorgi’s technique.

8.3. The space homogeneous Boltzmann equation. The Boltzmann equation models the

evolution of dilute gasses. In the space homogeneous case, the equation takes the form

ft = Q(f, f),

where

Q(g, f) =

∫
Rd

∫
S1

(g(v′∗)f(v
′)− g(v∗)f(v)) dσ dv∗

and we write

v′ =
v + v∗
2

+
|v − v∗|

2
σ, v′∗ =

v + v∗
2

− |v − v∗|
2

σ.

For every fixed g, the operator f �→ Q(g, f) is an integro-differential operator which has

the form

Q(g, f) = Rgf(v) +

∫
Rd

δv′f(v)Kg(v, v
′ − v) dv′.

The function Rg and the kernel Kg can be computed in terms of g, although the formula

is quite involved.

Under some conditions, the kernel Kf satisfies the assumptions (3.2) and (3.1) and con-

sequently Theorems 6.1 and 6.2 may be used to prove a local Hölder continuity result for the

Boltzmann equation.

In order to apply the result of Theorems 6.1 and 6.2 we would need to consider a collision

kernel without Grad’s angular cutoff condition. Moreover, we should know a priori that f
is bounded below in order to guarantee that Kf satisfies (3.1). This last assumption in

particular is quite undesirable. In a work in progress of Russell Schwab and the author, we

are developing a more general Hölder estimate which, for some collision kernels, would only

depend on observable quantities associated with f (mass, energy and entropy).

Note that the regularity of the solutions to the inhomogeneous Boltzmann equation is

rather well understood by completely different methods [18].
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Abstract. This paper reports on the recent proof of the bounded L2 curvature conjecture. More pre-

cisely we show that the time of existence of a classical solution to the Einstein-vacuum equations

depends only on the L2-norm of the curvature and a lower bound of the volume radius of the corre-

sponding initial data set.
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1. Introduction

This paper reports on the recent proof of the bounded L2 curvature conjecture. More pre-

cisely we show that the time of existence of a classical solution to the Einstein-vacuum

equations depends only on the L2-norm of the curvature and a lower bound of the volume

radius of the corresponding initial data set.

The entire proof of the conjecture is contained in the sequence of papers [20, 33–37].

1.1. Initial value problem for the Einstein vacuum equations. We consider the Einstein

vacuum equations (EVE),

Ricαβ = 0 (1.1)

whereRicαβ denotes the Ricci curvature tensor of a four dimensional Lorentzian space time

(M, g). (1.1) corresponds to an evolution problem. An initial data set consists of a three

dimensional manifold Σ0 together with a Riemannian metric g and a symmetric 2-tensor k
on Σ0. For a given initial data set (Σ0, g, k), the Cauchy problem consists in finding a metric

g satisfying (1.1) and an embedding of Σ0 inM such that the metric induced by g on Σ0

coincides with g and the 2-tensor k is the second fundamental form of the embedding.

Remark 1.1. Since physically one should not be able to distinguished between different

coordinates systems, a solution of the Cauchy problem can be unique only modulo a diffeo-

morphism.

The equations (1.1) are overdetermined and the initial data set (Σ0, g, k) has to satisfy

the following compatibility conditions known as the constraint equations{ ∇jkij −∇itrk = 0,
Rscal − |k|2 + (trk)2 = 0,

(1.2)

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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where the covariant derivative ∇ is defined with respect to the metric g, Rscal is the scalar

curvature of g, and trk is the trace of k with respect to the metric g.
In this paper we restrict ourselves to asymptotically flat initial data sets with one end.

More precisely, (Σ0, g, k) is such that Σ0 minus a compact set is diffeomorphic to R3 minus

a ball, with gij − δij and kij satisfying a suitable rate of fall off at infinity in this coordinates

system.

The first local existence and uniqueness result for (EVE) was established by Y.C. Bruhat,

see [3], with the help of wave coordinates which allowed her to cast the Einstein vacuum

equations in the form of a system of nonlinear wave equations to which one can apply1 the

standard theory of nonlinear hyperbolic systems. The optimal, classical2 result states the

following.

Theorem 1.2 (Classical local existence [7, 8]). Let (Σ0, g, k) be an initial data set for the
Einstein vacuum equations (1.1). Assume that Σ0 can be covered by a locally finite sys-
tem of coordinate charts, related to each other by C1 diffeomorphisms, such that (g, k) ∈
Hs

loc(Σ0)×Hs−1
loc (Σ0) with s > 5

2 . Then there exists a unique3 (up to an isometry) globally
hyperbolic development (M,g), verifying (1.1), for which Σ0 is a Cauchy hypersurface4 .

Our goal will be to lower the assumptions of the previous theorem on the regularity of

the initial data set. To motivate our result, let us first emphasize in the next section why

pushing for rough solutions is a main theme in nonlinear evolution PDEs.

1.2. The quest for rough solutions in nonlinear evolution PDEs.

1.2.1. First examples. To illustrate the role played by rough solutions in nonlinear evolu-

tion PDEs, let us consider a nonlinear evolution equation possessing a conserved quantity

which is positive definite and in particular controls a norm in a certain functional space. We

refer to the conserved quantity as the energy, its associated functional space as the energy

space, and its associated norm as the energy norm. One can then classify such evolution

equations into three categories5

1. One can prove a local existence result with a time of existence which depends only on

the energy norm of the initial data. This case is referred as energy subcritical.

2. One can prove a local existence result for initial data in the energy space, but with a

time of existence which does not only depend on the energy norm of the initial data

(i.e. there is no uniform lower bound on the size of the time interval of existence for

initial data with a given energy norm). This case is referred as energy critical.

3. One can not prove a local existence result for initial data in the energy space. This

case is referred as energy supercritical.

1 The original proof in [3] relied on representation formulas, following an approach pioneered by Sobolev, see

[29].

2 Based only on energy estimates and classical Sobolev inequalities.

3 The original proof in [7, 8] actually requires one more derivative for the uniqueness. The fact that uniqueness

holds at the same level of regularity than the existence has been obtained in [25].

4 That is any past directed, in-extendable causal curve in M intersects Σ0.

5 One usually defines the criticality relative to the behavior of the energy under some notion of scaling. Here,

we instead classify the equation with respect to an ability to prove local existence results. These two classifications

agree in most cases and our choice only aims at simplifying the exposition.
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As the energy supercritical case as it is still vastly open, we will focus on the two other

cases. In the energy subcritical case, one can pile up time intervals of existence provided by

the local existence result which are all of the same size since they only depend on the energy

norm of the data which is conserved. One infers global existence for any initial data. A

nice illustration of this procedure is provided by [11] in the case of the classical Yang-Mills

equations in dimension 1+3, where the energy space is the Sobolev space H1.

In the energy critical case, the conjecture is that global existence holds for any data below

the energy of the first nontrivial stationary solution or solitary wave. This conjecture has been

proved in a large number of cases over the last thirty years. A spectacular achievement of

this method is the recent proof of the conjecture in the case of the 2+1 wave map problem in

[21, 31, 32, 38].

A key step in the large data results mentioned above, both for the energy subcritical and

energy critical cases, is a local well-posedness result at the level of the energy space, which

is typically a low regularity well-posedness result. In the next section, we discuss another

example of a nonlinear evolution partial differential equation for which making sense of

rough solutions plays a fundamental role.

1.2.2. The proof of the weak cosmic censorship in spherical symmetry. In this section,

we briefly discuss the influential proof by Christodoulou [6] of the weak cosmic censorship

conjecture for the Einstein equations coupled to a scalar field in spherical symmetry6 .

Let us first recall the weak cosmic censorship conjecture of Penrose. The starting point

of this conjecture is the existence of space times containing singularities, the most famous

example being the Schwarzschild space-time which is spherically symmetric and contains

a singularity at r = 0. Now, the existence of space-times containing a singularity could be

considered as an undesirable feature from the point of view of physics. To come to term with

such space-times, Penrose formulated the celebrated weak cosmic censorship conjecture7 .

Conjecture 1.3 (Weak cosmic censorship). For generic asymptotically flat initial data set,
singularities are hidden by a black hole.

In view of this conjecture, singularities are acceptable as they not visible by an observer

at infinity. At the moment, it is still an open problem in general, but the conjecture has been

proved in the case of spherical symmetry in [6] for the Einstein equations coupled to a scalar

field. This seminal work relies on the rough well posedness result of [5]. This well posedness

result - which involves regularity assumptions at the level of a weighted bounded variation

(BV) norm - allows in particular to make sense of solutions with a jump along the backward

null cone from the singularity. This jump turns out to be essential in generating arbitrarily

small perturbations of a given solution containing a singularity which are still strong enough

to cover the singularity with a black hole8 .

The result in [6] provides thus yet another example of the importance of making sense of

rough solutions for nonlinear evolution PDEs. It motivates our main result, which concerns

well-posedness of rough solutions for the Einstein equations in the absence of symmetry.

6 Due to Birkhoff’s theorem, the Einstein vacuum equations are non dynamical in spherical symmetry. To obtain

a dynamical problem and yet retain the advantage of working in spherical symmetry, one adds a matter field to the

right-hand side of the Einstein equations, a scalar field being the simplest possibility. For the sake of simplicity, we

do not explicitly write down the equations in this case.

7 He also introduced the strong cosmic censorship conjecture which despite its name is independent of the weak

cosmic censorship conjecture.

8 In the proof, the singularity is actually covered by a trapped region which, as it turns out, is enough.



898 Sergiu Klainerman, Igor Rodnianski, and Jérémie Szeftel

Now, BV norms are only adapted to hyperbolic problems in 1+1 dimension (and hence

to spherical symmetry). This will force us to abandon BV norms and to instead measure

the regularity of our solution using L2 based norms which are the only norms which are

propagated by the evolution in higher dimensions.

1.3. The resolution of the bounded L2 curvature conjecture.

1.3.1. The bounded L2 curvature conjecture. In this section, we consider the problem

of going beyond the classical local existence result stated in Theorem 1.2. To make the

discussion more tangible it is worthwhile to recall the form of the Einstein vacuum equations

in the wave gauge. Assuming given coordinates xα, verifying9

�gx
α = 0, α = 0, . . . , 3, (1.3)

the metric coefficients gαβ = g(∂α, ∂β), with respect to these coordinates, satisfy the system

of quasilinear wave equations10 ,

�ggαβ = Fαβ(g, ∂g) (1.4)

where Fαβ are quadratic functions of ∂g, i.e. the first order derivatives of g with respect

to the coordinates xα. In the harmonic coordinates, the wave operator on the curved back-

ground g is given by �g = gμν∂μ∂ν . Equation (1.4) is obtained by expressing the Ricci

tensor Ricαβ in terms of the components of g and its first and second order derivatives.

Conversely, to verify that the solution of (1.4) yields a solution to the Einstein vacuum equa-

tions (1.1), one has additionally to show that the coordinates conditions (1.3) propagate. This

holds for solutions of (1.4), as was observed by Choquet-Bruhat, provided these coordinates

conditions are satisfied initially on Σ0 and (Σ0, g, k) satisfies the constraint equations (1.2).

In a first approximation we may compare (1.4) with the semilinear wave equation,

�φ = F (φ, ∂φ) (1.5)

with F quadratic in ∂φ. Using standard energy estimates - i.e. differentiating (1.5) s − 1
times, multiplying it with ∂t∂

s−1φ, integrating by parts and using Gronwall’s lemma - one

obtains the following control for the Sobolev norm Hs of φ

‖φ(t)‖s 	 ‖φ(0)‖s exp
(
Cs

∫ t

0

‖∂φ(τ)‖L∞dτ
)
. (1.6)

The classical exponent s > 3/2 + 1 arises simply from the Sobolev embedding of Hr,

r > 3/2 into L∞.

To go beyond the classical exponent, see [26], one has to replace Sobolev inequalities

with Strichartz estimates of, roughly, the following type,(∫ t

0

‖∂φ(τ)‖2L∞dτ
)1/2

	 C

(
‖∂φ(0)‖H1+ε +

∫ t

0

‖�φ(τ)‖H1+ε

)
9 �g is the covariant wave operator gαβDαDβ .

10 Nonlinear wave equations are either semilinear or quasilinear according to whether the higher order terms -

here the terms containing second order derivatives - are linear or nonlinear.
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where ε > 0 can be chosen arbitrarily small. This leads to a gain of 1/2 derivatives, i.e. we

can prove well-posedness for equations of type (1.5) for any exponent s > 2.

The same type of improvement in the case of quasilinear wave equations requires a highly

non-trivial extension of such estimates for wave operators with non-smooth coefficients. The

first improved regularity results for quasilinear wave equations of the type,

gμν(φ)∂μ∂νφ = F (φ, ∂φ) (1.7)

with gμν(φ) a non-linear perturbation of the Minkowski metric mμν , are due to [1, 2, 13,

40, 41]. The best known results for equations of type (1.4) were obtained in [14] and [28].

According to them one can lower the Sobolev exponent s > 5/2 in Theorem 1.2 to s > 2.
It turns out, see [22], that these results are sharp in the general class of quasilinear wave

equations of type (1.4). However, the Einstein equations enjoy a special structure, and it was

conjectured in [12] that one can obtain a well-posedness result at the level of s = 211 .

Conjecture 1.4 (Bounded L2 curvature conjecture). The Einstein- vacuum equations admit
local Cauchy developments for initial data sets (Σ0, g, k) with locally finite L2 curvature
and locally finite L2 norm of the first covariant derivatives of k 12 .

1.3.2. The bounded L2 curvature theorem. In this section, we state our main result which

gives a positive answer to the above conjecture. We assume the space-time (M,g) to be

foliated by the level surfaces Σt of a time function t. Let T denote the unit normal to Σt, and

let k the the second fundamental form of Σt, i.e. kab = −g(DaT, eb), where ea, a = 1, 2, 3
denotes an arbitrary frame on Σt and DaT = DeaT . We assume that the Σt foliation is

maximal, i.e. we have

gabkab = 0 (1.8)

where g is the induced metric on Σt.

We also recall below the definition of the volume radius on a general Riemannian mani-

fold M .

Definition 1.5. Let Br(p) denote the geodesic ball of center p and radius r. The volume

radius rvol(p, r) at a point p ∈M and scales ≤ r is defined by

rvol(p, r) = inf
r′≤r

|Br′(p)|
r3

,

with |Br| the volume of Br relative to the metric on M . The volume radius rvol(M, r) of
M on scales ≤ r is the infimum of rvol(p, r) over all points p ∈M .

Our main result is the following.

Theorem 1.6 (Main theorem). Let (M,g) an asymptotically flat solution to the Einstein
vacuum equations (1.1) together with a maximal foliation by space-like hypersurfaces Σt

11 The curvature tensor of g and the first order derivatives of the second fundamental form k are both at the level

of two derivatives of g. Thus, Conjecture 1.4 is at the level of two derivatives of g in L2 which indeed corresponds

to the case s = 2.
12 As we shall see, from the precise theorem stated below, other weaker conditions, such as a lower bound on the

volume radius, are needed.
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defined as level hypersurfaces of a time function t. Assume that the initial slice (Σ0, g, k) is
such that the Ricci curvature Ric ∈ L2(Σ0), ∇k ∈ L2(Σ0), and Σ0 has a strictly positive
volume radius on scales ≤ 1, i.e. rvol(Σ0, 1) > 0.

1. L2 regularity. There exists a time

T = T (‖Ric‖L2(Σ0), ‖∇k‖L2(Σ0), rvol(Σ0, 1)) > 0

and a constant

C = C(‖Ric‖L2(Σ0), ‖∇k‖L2(Σ0), rvol(Σ0, 1)) > 0

such that the following control holds on 0 ≤ t ≤ T :

‖R‖L∞
[0,T ]

L2(Σt) ≤ C, ‖∇k‖L∞
[0,T ]

L2(Σt) ≤ C and inf
0≤t≤T

rvol(Σt, 1) ≥ 1

C
.

2. Higher regularity. Within the same time interval as in part (1) we also have the higher
derivative estimates13 ,∑

|α|≤m

‖D(α)R‖L∞
[0,T ]

L2(Σt) ≤ Cm

∑
|i|≤m

[
‖∇(i)Ric‖L2(Σ0) + ‖∇(i)∇k‖L2(Σ0)

]
,

(1.9)

where Cm depends only on the previous C and m.

Let us comment on Theorem 1.6.

1. As mentioned in the previous section, the well posedness result of [28] inHs with s >
2 is sharp for general quasilinear wave equations of type (1.4). To do better, one needs

to take into account the so called null structure, i.e. the special nonlinear structure of

the Einstein equations. In particular, Theorem 1.6 is the first well posedness result in

which the full structure of the quasilinear hyperbolic system, not just its principal part,

plays a crucial role.

2. The assumptions of Theorem 1.6 concern the L2 norm of the curvature tensor of g
and of the first covariant derivatives of the second fundamental form k which are

all invariant in the sense that these objects can be defined without reference to any

coordinates system14 . This allows, when working in the framework of the solutions

constructed in Theorem 1.6, to retain an essential property of the Einstein equations,

namely the freedom to pick a coordinates system (see Remark 1.1).

3. The part of Theorem 1.6 dealing with the propagation of higher order regularity pro-

vides a continuation argument for the Einstein equations; that is the space-time con-

structed by evolution from smooth data can be smoothly continued, together with a

time foliation, as long as the curvature of the foliation and the first covariant deriva-

tives of its second fundamental form remain L2- bounded along the leaves of the folia-

tion. In fact, Theorem 1.6 implies the break-down criterion previously obtained in [19]

and improved in [24, 42]. Furthermore, this break-down criterion involves only invari-

ant assumptions, and hence provides information on true singularities (as opposed to

coordinates singularities).

13 Assuming that the initial has more regularity so that the right-hand side of (1.9) makes sense.

14 Note that this is not the case for instance of the result in [14] where one has to choose a fixed coordinates

system with respect to which the metric coefficients are in Hs for s > 2.
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4. One may wonder whether the solutions constructed in Theorem 1.6 are as rough as

possible. To discuss this issue, observe that the light cones of a Lorentzian space-

time (M,g) can be obtained as the level hypersurfaces of a solution u to the Eikonal

equation

gαβ∂αu∂βu = 0.

Now, a byproduct of the proof of Theorem 1.6 is the fact that L2 bounds on the cur-

vature is the minimum requirement to control solutions u to the Eikonal equation (see

Remark 4.1), and hence to make sense of light cones. As far as light cones are fun-

damental objects in Lorentzian space-times, it is reasonable to expect their control to

be necessary to make sense of solutions to the Einstein equations. For this reason, we

conjecture that Theorem 1.6 is optimal.

The entire proof of Theorem 1.6 is contained in the sequence of papers [20, 33–37]. In

the rest of this paper, we discuss the general strategy of the proof as well as the main steps.

2. Sketch of the proof of the main theorem

2.1. Strategy of the proof. As mentioned earlier, the well posedness result of [28] in Hs

for s > 2 is sharp for general quasilinear wave equations of type (1.4). To do better one

needs to take into account the special structure of the Einstein equations and rely on a class

of estimates which go beyond Strichartz estimates, namely the so called bilinear estimates.

In the case of semilinear wave equations, such as Wave Maps, Maxwell-Klein-Gordon and

Yang-Mills, the first results which make use of bilinear estimates go back to [9–11]. In the

particular case of the Yang-Mills equation the main observation was that, after the choice of

a special gauge (Coulomb gauge), the most dangerous nonlinear terms exhibit a special, null

structure so that the system reduces to the following schematic form

�φ = Qij(φ,∇−1φ) +∇−1(Qij(φ, φ)) + l.o.t, (2.1)

where φ is vector valued15 and Qij is the null form given by

Qij(φ, ψ) = ∂iφ∂jψ − ∂iψ∂jφ, i, j = 1, 2, 3, (2.2)

for which one can apply the bilinear estimates derived in [9]. With the help of these estimates

one was able to derive a well posedness result, in the flat 1+3 dimensional Minkowski space,

for the exponent s = 116 .
To carry out a similar program in the case of the Einstein equations one would need, at

the very least to

1. Exhibit the null structure, i.e. provide a coordinate condition, relative to which the

Einstein vacuum equations verify an appropriate version of the null condition.

2. Exploit the null structure, i.e. prove bilinear estimates for the null quadratic terms

appearing in the previous step.

15 Note that (2.1) is a system. In particular, the schematic notation Qij(φ, φ) should be understood as being a

linear combination of terms of the type Qij(φ
m, φl) where φl and φm denote components of the vector valued

function φ.
16 This corresponds precisely to the s = 2 exponent in the case of the Einstein-vacuum equations.
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Concerning the coordinate condition, let us first mention that it is a priori not at all clear

what it should be, or even if there is one for that matter.

Remark 2.1. The only known structural condition related to the classical null condition,

called the weak null condition [23], tied to wave coordinates, fails the test. Indeed, the

following simple system in Minkowski space

�φ = 0, �ψ = φ ·Δφ

verifies the weak null condition and yet, according to [22], it is ill posed for s = 2. Coordi-

nate conditions, such as spatial harmonic17 , also do not seem to work.

We rely instead on a Coulomb type condition, for orthonormal frames, adapted to a maxi-

mal foliation. Such a gauge condition appears naturally if we adopt a Yang-Mills description

of the Einstein field equations using Cartan’s formalism of moving frames, see [4]. It is

important to note nevertheless that it is not at all a priori clear that such a choice would do

the job. Indeed, the null form nature of the Yang-Mills equations in the Coulomb gauge is

only revealed once we commute the resulting equations with the projection operator P on

the divergence free vectorfields. Such an operation is natural in that case, since P commutes

with the flat d’Alembertian. In the case of the Einstein equations, however, the correspond-

ing commutator term [�g,P] generates18 a whole host of new terms and it is quite a miracle

that they can all be treated by an extended version of bilinear estimates.

Concerning bilinear estimates, let us mention that these types of estimates where only

available for the wave operator on the Minkowski space-time. This forces us to find an

appropriate geometric framework to extend these estimates to the wave operator on a curved

space-time. To this end, we need to rely on a plane wave representation - a parametrix - for

solutions of the wave equation on a curved background. Moreover, this parametrix, unlike

in the flat case, is only an approximate solution of the wave equation. In other words, when

applying the wave operator to the parametrix, we obtain an error term which needs to be

controlled.

Furthermore, there is another ingredient needed to establish bilinear estimates on a curved

space-time. Numerous bilinear estimates need to be derived, and it turns out that the proof

of several of these estimates reduces to sharp L4(M) Strichartz estimates for a localized

version of the parametrix.

Finally, the above discussion leads to the following four steps which constitute the basic

strategy of our main theorem

A. Exhibit the null structure by recasting the Einstein vacuum equations as a quasilinear

Yang-Mills theory19 .

B. Prove appropriate bilinear estimates for solutions φ to the scalar wave equation on a

curved space-time �gφ = 0.

17 Maximal foliation together with spatial harmonic coordinates on the leaves of the foliation would be the coor-

dinate condition closest in spirit to the Coulomb gauge.

18 Note also that additional error terms are generated by projecting the equations on the components of the frame.

19 The classical Yang-Mills equations are semilinear, i.e. they are defined on a given (Lorentzian) background.

Here, we recast the Einstein vacuum equations as a Yang-Mills theory on the background (M,g) solution to (1.1).

As the background is not given but instead the unknown of the problem itself, we obtain a quasilinear analog of the

Yang-Mills equations.
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C. Construct an effective progressive wave representation ΦF (parametrix) for solutions

to the scalar linear wave equation �gφ = F , derive appropriate bounds for both the

parametrix and the corresponding error term E = F −�gΦF and use them to derive

the desired bilinear estimates.

D. Prove sharp L4(M) Strichartz estimates for a localized version of the parametrix of

step C.

While Step A is purely algebraic, Steps B, C and D all require to establish estimates. The

main difficulty is to implement these steps using only hypothetical L2 bounds for the space-

time curvature tensor, consistent with the statement of our main theorem. To achieve this,

we crucially need to exploit the null structure of the equations at every stage in the proof.

In the rest of the paper, we comment on each of these steps. We start with Step A in the

next section. We then show how to conclude the proof of the main theorem when assuming

Steps B, C and D. Finally, we discuss Steps B, C and D.

2.2. The Yang-Mills formalism (Step A). We cast the Einstein-vacuum equations in a

Yang-Mills form which corresponds to step A in the strategy outlined above. This relies on

the Cartan formalism of moving frames. The idea is to give up on a choice of coordinates and

instead express the Einstein vacuum equations in terms of the connection 1-forms associated

to moving orthonormal frames, i.e. vectorfields eα, which verify,

g(eα, eβ) =mαβ = diag(−1, 1, 1, 1).

The connection 1-forms (they are to be interpreted as 1-forms with respect to the external

index μ with values in the Lie algebra of so(3, 1)), defined by the formulas,

(Aμ)αβ = g(Dμeβ , eα) (2.3)

verify the equations,

DμFμν + [Aμ,Fμν ] = 0 (2.4)

where, denoting (Fμν)αβ := Rαβμν ,

(Fμν)αβ =
(
DμAν −DνAμ − [Aμ,Aν ]

)
αβ

. (2.5)

In other words we can interpret the curvature tensor as the curvature of the so(3, 1)-valued
connection 1-form A. Note also that the covariant derivatives are taken only with respect to

the external indices μ, ν and do not affect the internal indices α, β. We can rewrite (2.4) in

the form,

�gAν −Dν(D
μAμ) = Jν(A,DA) (2.6)

where,

Jν = Dμ([Aμ,Aν ])− [Aμ,Fμν ].

Observe that the equations (2.4)-(2.5) look just like the Yang-Mills equations on a fixed

Lorentzian manifold (M,g) except, of course, that in our case A and g are not independent

but rather connected by (2.3), reflecting the quasilinear structure of the Einstein equations.

Just as in the case of [9], which establishes the well-posedness of the Yang-Mills equation

in Minkowski space in the energy norm (i.e. s = 1), we rely in an essential manner on a

Coulomb type gauge condition. More precisely, we take e0 to be the future unit normal to
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the Σt foliation and choose e1, e2, e3 an orthonormal basis to Σt, in such a way that we have,

essentially div A = ∇iAi = 0, where A is the spatial component of A. It turns out that A0

satisfies an elliptic equation while each component Ai = g(A, ei), i = 1, 2, 3 verifies an

equation of the form,

�gAi = −∂i(∂0A0) +Aj∂jAi +Aj∂iAj + l.o.t. (2.7)

with l.o.t. denoting nonlinear terms which can be treated by more elementary techniques

(including non sharp Strichartz estimates).

2.3. The proof of the bounded L2 curvature theorem. In this section, assuming that step

B holds - which corresponds to having appropriate bilinear estimates at our disposal - we

conclude the proof Theorem 1.6. Now, to be in position to use these bilinear estimates,

we first need to reduce the problem to a wave equation. In view of (2.7), we thus need to

eliminate ∂i(∂0A0). To this end, we need to project (2.7) onto divergence free vectorfields

with the help of a non-local operator which we denote byP . In the case of the flat Yang-Mills

equations, treated in [9], this leads to an equation of the form,

�Ai = P(Aj∂jAi) + P(Aj∂iAj) + l.o.t.

where both terms on the right exhibit the null structure20 . In our case however, the operator

P does not commute with �g. It turns out, fortunately, that the terms generated by com-

mutation can still be estimated by an extended class of bilinear estimates which includes

contractions with the curvature tensor. Thus, we obtain in the end schematically for Ai

�gAi = null forms+ l.o.t., (2.8)

where up to (cubic) lower order terms, the quadratic terms exhibit the null structure.

We are now in position to conclude the proof of our main theorem. Recall that the Ai

are connection coefficients, and hence the curvature is a the level of one derivative of the Ai

(see (2.5)). In particular, controlling the curvature tensor in L2 corresponds to the control

of first order derivatives of Ai in L2. In other words, we need to run the energy estimate

for the wave equation (2.8). In the case of the standard wave equation on the Minkowski

space-time, the energy estimate is based on the usual timelike Killing vectorfield ∂t. In our

case, the corresponding vectorfield e0 = T ( the future unit normal toΣt) is not Killing. This

leads to another class of trilinear error terms. That is to say, to control the energy estimates

for the wave equation (2.8) we need trilinear estimates, while to control the null forms in the

right-hand side we need bilinear estimates. Assuming these bilinear and trilinear estimates

hold, we finally control first order derivatives of Ai in L2 and hence the curvature tensor in

L2. This concludes the proof of Theorem 1.6.

The rest of the paper is organized as follows. In section 3, we discuss the derivation of

the bilinear estimates21 which corresponds to Step B. This derivation relies on Step C and

Step D which we discuss respectively in section 4 and 5.

20 This corresponds to (2.1) where the null structure manifests itself in the presence of the null form Qij in the

right-hand side.

21 As we have seen, trilinear estimates have to be derived as well, but we skip this part for the sake of simplicity.
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3. Bilinear estimates (Step B)

3.1. The plane wave representation on a curved space-time. In order to establish bilinear

estimates on a curved space-time, we need to rely on a plane wave representation formula22

for solutions of scalar wave equations,

�gφ = 0.

To build such a plane wave representation, consider a plane wave

eiλ
ωu(t,x), λ ∈ [0,+∞), ω ∈ S2,

with λ and ω parameters corresponding to Fourier variables in R3 in spherical coordinates.

We compute

�g(e
iλ ωu) = (−λ2gαβ∂α(

ωu)∂β(
ωu) + iλ�g(

ωu))eiλ
ωu.

The first term turns out to be the most dangerous one23 . This motivates to choose ωu
solution to the Eikonal equation

gαβ∂α(
ωu)∂β(

ωu) = 0,

in which case we obtain

�g(e
iλ ωu) = iλ�g(

ωu)eiλ
ωu.

This yields in general an approximate solution to�g(φ) = 0. We then superpose these plane

waves to obtain a full plane wave representation.

In the particular case of the standard wave equation on the Minkowski space-time, we

recover the well-known plane wave representation which is an exact solution24 . We have

φ =
∑
±

∫
S2

∫ +∞

0

eiλ
ωu±(t,x)f±(λω)λ

2dλdω, (3.1)

where ωu±(t, x) = ±t + x · ω and f± can be explicitly computed in terms of the Fourier

transform of the initial data set (φ(0, .), ∂tφ(0, .)) of φ. In the general case, we superpose the

basic plane waves as in the right-hand side of (3.1), and choose ωu± solution of the Eikonal

equation with the following asymptotic behavior on Σ0

ωu±(0, x) ∼ x · ω when |x| → +∞.

This asymptotic behavior is necessary to be able to generate any initial data of the wave

equation

In view of the previous paragraph, we consider the following representation formula25

φf (t, x) =

∫
S2

∫ ∞

0

eiλ
ωu(t,x) f(λω)λ2dλdω (3.2)

22 We follow the proof of the bilinear estimates outlined in [15] which differs substantially from that of [9] and is

reminiscent of the null frame space strategy used by Tataru in his fundamental paper [39].

23 λ should be understood as a Fourier variable corresponding to a derivative in physical space. The λ2 term

hence costs 2 derivatives while the wave equation only recovers one. Thus, this term is problematic as it induces a

derivative loss.

24 This is special to the flat case. In the general case, we only obtain an approximate solution.

25 (3.2) actually corresponds to the representation formula for a half-wave. The full representation formula cor-

responds to the sum of two half-waves as in (3.1). Since the bilinear estimates are identical for both half waves, we

only consider one of them for simplicity.
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where f represents schematically the initial data26 , and where ωu is a solution of the eikonal

equation27 ,

gαβ∂α(
ωu) ∂β(

ωu) = 0, (3.3)

with the following asymptotic behavior on Σ0

ωu(0, x) ∼ x · ω when |x| → +∞.

Remark 3.1. (3.3) is a nonlinear transport equation. Hence, ωu needs to be prescribed not

only at infinity on Σ0 as explained above, but everywhere on Σ0. This choice of ωu on Σ0

turns out to be delicate and is discussed in section 4 (see Step C1 and related subsequent

comments).

Remark 3.2. Note that (3.2) is a parametrix for a scalar wave equation. The lack of a good

parametrix for a tensorial wave equation forces us to develop a strategy based on writing the

main equation in components relative to a frame, i.e. instead of dealing with the tensorial

wave equation (2.6) directly, we consider the system of scalar wave equations (2.7). Unlike

the flat case, this “scalarization” procedure produces several terms which are potentially

dangerous, and it is fortunate, as in yet another manifestation of a hidden null structure of

the Einstein equations, that they can still be controlled by the use of an extended28 class of

bilinear estimates.

3.2. Bilinear estimates on a curved space-time. The bilinear estimates all involve after

some reductions the null form Qij introduced in (2.2). Let us briefly explain how the struc-

ture of Qij is exploited to derive these estimates. For simplicity, we focus on two specific

bilinear estimates29 .

The first example of a bilinear estimate on a curved space-time aims at controlling the

L2(M) norm of the null form Qij(φf , ψ), where φf is given by (3.2). We compute

Qij(φf , ψ) = Qij

(∫
S2

∫ +∞

0

eiλ
ωu(t,x)f(λω)λ2dλdω, ψ

)
=

∫
S2

∫ +∞

0

Qij(e
iλ ωu(t,x), ψ)f(λω)λ2dλdω

= i

∫
S2

∫ +∞

0

eiλ
ωu(t,x)Qij(

ωu, ψ)f(λω)λ3dλdω.

Now we have

Qij(
ωu, ψ) = ∂i(

ωu)∂jψ − ∂j(
ωu)∂iψ. (3.4)

The fundamental observation which ultimately allows us to derive a bilinear estimate in this

case is the fact that the structure of Qij is such that

Qij(
ωu, ψ) is tangent to the level hypersurfaces of ωu, (3.5)

26 Here f is in fact at the level of the Fourier transform of the initial data and the norm ‖λf‖L2(R3) corresponds,

roughly, to the H1 norm of the data .

27 As we have seen above, we have ωu(t, x) = ±t+ x · ω in the flat Minkowski space.

28 involving contractions between the Riemann curvature tensor and derivatives of solutions of scalar wave equa-

tions.

29 The two examples of bilinear estimates discussed here have both an analog in the semilinear case. Indeed, they

correspond to estimating the L2
t,x norm of each of the term in the right-hand side of (2.1).
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as can be seen from (3.4).

The second example of a bilinear estimate on a curved space-time aims at controlling the

following expression

‖∇−1(Qij(φf1 , φf2))‖L2(M).

First, we decompose φf1 and φf2 in dyadic frequencies according to

φf =
∑

φf,p, φf,p =

∫
S2

∫ +∞

0

eiλ
ωu(t,x)ψ(2−pλ)f(λω)λ2dλdω

where λ ∼ 2p on the support of ψ(2−pλ). We infer

‖∇−1(Qij(φf1 , φf2))‖L2(M) 	
∑
p≥q

‖∇−1(Qij(φf1,p, φf2,q))‖L2(M).

It is at this stage that we use the null structure of Qij by noticing that

Qij(φ, ψ) = ∂i(φ∂jψ)− ∂j(φ∂iψ) = ∂j(ψ∂iφ)− ∂i(ψ∂jφ) (3.6)

so that we may choose which derivative we factorize. We choose to factorize the derivative

corresponding to the highest frequency which yields

‖∇−1(Qij(φf1 , φf2))‖L2(M) 	
∑
p≥q

‖∇−1∂(φf1,p∂φf2,q)‖L2(M)

	
∑
p≥q

‖φf1,p‖L4(M)‖∂φf2,q‖L4(M).

The last ingredient is the sharp L4(M) Strichartz of Step D (see section 5) which finally

yields

‖∇−1(Qij(φf1 , φf2))‖L2(M) 	
∑
p≥q

2−
|p−q|

2 ‖λf1,p‖L2(R3)‖λf2,q‖L2(R3)

	 ‖λf1‖L2(R3)‖λf2‖L2(R3)

and concludes the proof of the second example of bilinear estimate.

Remark 3.3. The null structure ofQij is exploited differently in the two examples of bilinear

estimates presented above as can be seen by comparing (3.5) and (3.6).

4. Control of the parametrix (step C)

To prove the bilinear and trilinear estimates of Step B, we need in particular to control the

parametrix given by (3.2). To this end, it turns out that it suffices to control the parametrix at

initial time (i.e. restricted to the initial slice Σ0)

φf (0, x) =

∫
S2

∫ ∞

0

eiλ
ωu(0,x) f(λω)λ2dλdω (4.1)
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as well as the error term30 corresponding to (3.2)

Ef(t, x) = �gφf (t, x) = i

∫
S2

∫ ∞

0

eiλ
ωu(t,x) �g(

ωu)f(λω)λ3dλdω. (4.2)

This requires the following four sub steps

C1 Make an appropriate choice for the equation satisfied by ωu(0, x) on Σ0, and control
the geometry of the foliation of Σ0 by the level surfaces of ωu(0, x).

C2 Prove that the parametrix at t = 0 given by (4.1)31 is bounded in L(L2(R3), L2(Σ0))
using the estimates for ωu(0, x) obtained in C1.

C3 Control the geometry of the foliation ofM given by the level hypersurfaces of ωu.

C4 Prove that the error term (4.2) satisfies the estimate ‖Ef‖L2(M) 	 ‖λf‖L2(R3) using
the estimates for ωu and �g(

ωu) proved in C3.

To achieve Step C3 and Step C4, we need, at the very least, to control �g(
ωu) in L∞.

This issue was first addressed in the sequence of papers [16–18] where an L∞ bound for

�g(
ωu) was established, depending only on the L2 norm of the curvature flux along null

hypersurfaces. The proof required an interplay between both geometric and analytic tech-

niques and had all the appearances of being sharp, i.e. we don’t expect an L∞ bound for

�g(
ωu) which requires bounds on less than two derivatives in L2 for the metric32 .

Remark 4.1. It turns out, as a byproduct of the proof of Step C3, that the radius of injectivity

of the level hypersurfaces of ωu is controlled by the L∞ norm of �g(
ωu). Furthermore,

this control appears to be sharp. In other words, we expect to loose control over the radius of

injectivity in the absence of this bound. Hence, in view of the discussion above, L2 bounds

on the curvature tensor appear to be minimal for the control of the Eikonal equation.

To obtain the L2 bound for the Fourier integral operator E defined in (4.2), we need, of

course, to go beyond uniform estimates for �g(
ωu). The classical L2 bounds for Fourier

integral operators of the form (4.2) are not at all economical in terms of the number of

integration by parts which are needed. In our case the total number of such integration by

parts is limited by the regularity properties of the function �g(
ωu). To get an L2 bound for

the parametrix at initial time (4.1) and the error term (4.2) within such restrictive regularity

properties we need, in particular:

• In Step C1 and Step C3, a precise control of derivatives of ωu and �g(
ωu) with

respect to both ω as well as with respect to various directional derivatives33 . To

get optimal control we need, in particular, a very careful construction of the initial

condition for ωu on Σ0 and then sharp space-time estimates of Ricci coefficients, and

their derivatives, associated to the foliation induced by ωu.

30 Note that φf is an exact solution of �gφ = 0 only if �g( ωu) = 0. Hence, φf is an exact solution only in

flat space.

31 (4.1) only corresponds to the value at t = 0 of a half wave parametrix. The full parametrix at initial data is the

sum of two half waves as in (3.1). Step C2 actually corresponds to proving that the parametrix at t = 0 generates

any initial data to the wave equation �gφ = 0 with a suitable control of the corresponding f±. We have chosen to

provide a more restricted statement of Step C2 to simplify the exposition.

32 classically, this requires, at the very least, the control of R in L∞.

33 Taking into account the different behavior in tangential and transversal directions with respect to the level

surfaces of ωu.
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• In Step C2 and Step C4, a careful decompositions of the Fourier integral operators

(4.1) and (4.2) in both λ and ω, similar to the first and second dyadic decomposition in

harmonic analysis, see [30], as well as a third decomposition, which in the case of (4.2)

is done with respect to the space-time variables relying on the geometric Littlewood-

Paley theory developed in [18].

Below, we make further comments on Steps C1-C4:

1. The choice of ωu(0, x) onΣ0 in Step C1. Let us note that the typical choice ωu(0, x)=
x · ω in a given coordinate system would not work for us, since we don’t have enough

control on the regularity of a given coordinate system within our framework. Instead,

we need to find a geometric definition of ωu(0, x). A natural choice would be that

u = ωu verifies

�gu = 0 on Σ0

which by a simple computation turns out to be the following simple variant of the

minimal surface equation34

div

( ∇u
|∇u|

)
= k

( ∇u
|∇u| ,

∇u
|∇u|

)
on Σ0.

Unfortunately, this choice does not allow us to have enough control of the derivatives

of u in the normal direction to the level surfaces of u. This forces us to look for an

alternate equation for u:

div

( ∇u
|∇u|

)
= 1− 1

|∇u| + k

( ∇u
|∇u| ,

∇u
|∇u|

)
on Σ0.

This equation turns out to be parabolic in the normal direction to the level surfaces

of u, and allows us to obtain the desired regularity in Step C1. A closer inspection

reveals its relation to the mean curvature flow on Σ0.

2. How to achieve Step C3. The regularity obtained in Step C1, together with null trans-

port equations tied to the eikonal equation, elliptic systems of Hodge type, the geo-

metric Littlewood-Paley theory of [18], sharp trace theorems, and an extensive use of

the structure of the Einstein equations, allows us to propagate the regularity on Σ0 to

the space-time, thus achieving Step C3.

3. The regularity with respect to ω in Steps C1 and C3. The regularity with respect to x
for u is clearly limited as a consequence of the fact that we only assume L2 bounds

on R. On the other hand, R is independent of the parameter ω, and one might infer

that u is smooth with respect to ω. Surprisingly, this is not at all the case. Indeed,

the regularity in x obtained for u in Steps C1 and C3 is better in directions tangent

to the level hypersurfaces of u. Now, the ω derivatives of the tangential directions

have non zero normal components. Thus, when differentiating the structure equations

with respect to ω, tangential derivatives to the level surfaces of u are transformed to

non tangential derivatives which in turn severely limits the regularity in ω obtained in

Steps C1 and C3.

34 In the time symmetric case k = 0, this is exactly the minimal surface equation.
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4. How to achieve Steps C2 and C4. The classical arguments for proving L2 bounds

for Fourier operators are based either on a TT ∗ argument, or a T ∗T argument, which

requires several integration by parts either with respect to x for T ∗T , of with respect

to (λ, ω) for TT ∗. Both methods would fail by far within the regularity for u obtained

in Step C1 and Step C3. This forces us to design a method which allows to take

advantage both of the regularity in x and ω. This is achieved using in particular the

following ingredients

• Geometric integrations by parts taking full advantage of the better regularity

properties in directions tangent to the level hypersurfaces of u.

• The standard first and second dyadic decomposition in frequency space, with

respect to both size and angle (see [30]), an additional decomposition in physical

space relying on the geometric Littlewood-Paley projections of [18] for Step C4,

as well as another decomposition involving frequency and angle for Step C2.

Even with these precautions, at several places in the proof, one encounters log-

divergences which have to be tackled by ad-hoc techniques, taking full advantage of

the null structure of the Einstein equations.

5. Sharp L4(M) Strichartz estimates (Step D)

Recall that the parametrix constructed in Step C is also used to prove sharpL4(M) Strichartz
estimates. Indeed the proof of several bilinear estimates of Step B reduces to the proof of

sharp L4(M) Strichartz estimates for the parametrix (3.2) with λ localized in a dyadic shell

(see section 3.2).

More precisely, let j ≥ 0, and let ψ a smooth function on R3 supported in

1

2
≤ |ξ| ≤ 2.

Let φf,j the parametrix (3.2) with a additional frequency localization λ ∼ 2j

φf,j(t, x) =

∫
S2

∫ ∞

0

eiλ
ωu(t,x)ψ(2−jλ)f(λω)λ2dλdω. (5.1)

We will need the sharp35 L4(M) Strichartz estimate

‖φf,j‖L4(M) 	 2
j
2 ‖ψ(2−jλ)f‖L2(R3). (5.2)

The standard procedure for proving36 (5.2) is based on a TT ∗ argument which reduces it to

an L∞ estimate for an oscillatory integral with a phase involving ωu. This is then achieved

by the method of stationary phase which requires quite a few integrations by parts. In fact

the standard argument would require, at the very least37 , that the phase function u = ωu
verifies,

∂t,xu ∈ L∞, ∂t,x∂
2
ωu ∈ L∞. (5.3)

35 Note in particular that the corresponding estimate in the flat case is sharp.

36 Note that the procedure we describe would prove not only (5.2) but the full range of mixed Strichartz estimates.

37 The regularity (5.3) is necessary to make sense of the change of variables involved in the stationary phase

method.
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This level of regularity is, unfortunately, incompatible with the regularity properties of so-

lutions to our eikonal equation (3.3). In fact, based on the estimates for ωu derived in step

C3, we are only allowed to assume

∂t,xu ∈ L∞, ∂t,x∂ωu ∈ L∞. (5.4)

We are thus forced to follow an alternative approach38 to the stationary phase method in-

spired by [27, 28] .
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1. Introduction

In this talk we describe some recent developments in microlocal analysis that have led to

advances in understanding problems such as wave propagation, the Laplacian on asymptot-

ically hyperbolic spaces and the meromorphic continuation of the dynamical zeta function

for Anosov flows. We state some of these results as theorems directly, giving details in the

body of the notes.

The first theorem concerns asymptotically hyperbolic spaces, which are n-dimensional

manifolds with boundaryX0, with a preferred boundary defining function x, with a complete

Riemannian metric g0 on the interior of X0 such that ĝ0 = x2g0 is Riemannian on X0 (i.e.

up to the boundary) and |dx|ĝ0 = 1 at ∂X0. For such metrics the Laplacian is essentially

self-adjoint on C∞c (X◦
0 ), and is positive, and thus the modified resolvent

R(σ) = (Δg0 − (n− 1)2/4− σ2)−1

exists, as a bounded operator on L2(dg0) for Imσ > 0, σ /∈ ı(0, (n− 1)/2].
Theorem 1.1 ([73, 74]). Let (X0, g0) be an even asymptotically hyperbolic space (in the
conformally compact sense) of dimension n. Then the (modified) resolvent of the Laplacian
on functions, R(σ) = (Δg0 − (n−1)2/4−σ2)−1, continues meromorphically from Imσ >
(n − 1)/2 to C with finite rank Laurent coefficients at the poles (called resonances), and if
the geodesic flow on (X, g) is non-trapping, i.e. all geodesics escape to infinity, then in strips
Imσ > s, R(σ) satisfies non-trapping estimates ‖R(σ)‖L(Y,X ) ≤ C|σ|−1, Reσ > C1, for
suitable Hilbert spaces X ,Y .

Analogous results hold on differential k-forms, with (n − 1)2/4 replaced by (n − 2k ±
1)2/4, with the sign + corresponding to closed, and − corresponding to coclosed forms.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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The meromorphic extension was proved by Mazzeo and Melrose [48] and Guillarmou

[29], using the 0-pseudodifferential algebra of Mazzeo and Melrose. In this algebra the

operator is elliptic in the principal symbol sense, but one also needs to invert the normal
operator. The latter is sufficiently difficult that (suboptimal, but sufficient for some applica-

tions) estimates as Reσ → ∞ in strips were only obtained recently by Melrose, Sá Barreto

and Vasy [50] by a semiclassical construction in special cases. Recently Vasy [74, 75] gave

a new proof, and proved the non-trapping estimates as well, using a new method, extending

a renormalized and conjugated version of the spectral family Δg − (n− 1)2/4− σ2 across

∂X to a new operator Pσ which can be thought of as being defined on a manifold with-

out boundary X , so only ‘standard’ microlocal analysis is needed. The extended operator

Pσ is no longer elliptic, but the additional phenomena are well-understood from the point

of view of microlocal analysis: real principal type propagation, radial points and complex

absorption. This method also allows for a generalization to differential forms; these were

previously studied in the context of Hodge theory by Mazzeo [47]. Also, as a byproduct, it

gives a new approach for analyzing the wave equation on asymptotically de Sitter spaces, on

which wave propagation was described earlier, without the evenness condition, by Vasy [80]

and Baskin [6].

In addition to providing a new proof of the meromorphic continuation of the resolvent, as

well as the large σ estimates, this approach also allows for microlocalization of the estimates

which is crucial in many applications, such as in the gluing work of Datchev and Vasy

[16]. A nice application of this theory, in combination with the exotic pseudodifferential

calculus/second microlocal machinery developed by Sjöstrand and Zworski [63], is the work

of Datchev and Dyatlov [15], which gave a proof of fractal upper bounds, in terms of the

upper Minkowski dimension of the trapped set, for the resonance counting function on even

asymptotically hyperbolic spaces with hyperbolic geodesic flow. This in particular applies

for convex cocompact quotients of hyperbolic space and gives analogous upper bounds for

the counting function of zeros of the Selberg zeta function then. (These quotients have long

been studied; see e.g. [58, 67].)

We also point out that the Euclidean analogue of the theorem has a long history (with

stronger restrictions at infinity needed). An effective meromorphic continuation was ob-

tained by complex scaling methods due to Aguilar, Balslev, Combes and Simon, and other

authors, including the microlocal perspective of Helffer and Sjöstrand; see [62] and the ref-

erences therein.

The second theorem concerns wave propagation on Kerr-de Sitter spaces. This is par-

ticularly interesting since the asymptotic behavior of waves involves resonances, which are

poles of a family σ �→ P−1
σ , where Pσ is very similar to the Pσ in the asymptotically hy-

perbolic case; it is an operator on a manifold without boundary. Concretely, Kerr-de Sitter

space has a bordification, or partial compactification, M , with a boundary defining function

τ and Pσ is then an operator on ∂M . The extra complication is that this operator is trapping,

but the trapping is of a relatively weak type, called normally hyperbolic trapping, which has

been analyzed by Wunsch and Zworski [83] and by Dyatlov [23] recently.

Theorem 1.2 (See [41, 75], and see [22] for exact Kerr-de Sitter space). Let (M, g) be a
Kerr-de Sitter type space with normally hyperbolic trapping. Then there is κ > 0 such that
solutions of (�g−λ)u = 0 have an asymptotic expansion u ∼∑j

∑
k≤kj

τ ıσj (log |τ |)kajk
+ũ, where ũ ∈ τκHs

b(M); here σj are resonances of the associated normal operator. For
λ = 0 on Kerr-de Sitter space, the unique σj with Imσj ≥ 0 is 0, and the corresponding
term is a constant, i.e. waves decay to constants.
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Further, this result is stable under b-perturbations of the metric, with the b-structure
understood in the sense of Melrose [54].

In spatially compact parts of Kerr-de Sitter space, τ = e−t for the usual time function t,
i.e. this decay is exponential.

In fact, in a slightly different way, the wave equation for Minkowski-type metrics, more

specifically Lorentzian scattering metrics, can also be handled by similar techniques, see

[5, 41, 75], for both Cauchy problems and for the Feynman propagator. In fact, Klein-

Gordon type equations, even in ultrahyperbolic settings, are also amenable to this type of

analysis – in this case in Melrose’s scattering framework [49].

A different direction of extending these results is to non-linear equations. In the semi-

linear setting this was discussed by [41], and then extended to the quasilinear case by Hintz

[38]. We briefly discuss this direction at the end of these notes.

The third theorem concerns the dynamical zeta function. It was a conjecture of Smale’s,

proved by Giulietti, Liverani and Pollicott [26] recently by dynamical systems techniques,

but shortly afterwards Dyatlov and Zworski [20] gave a new short proof using microlocal

analysis, relying on ideas of Faure and Sjöstrand [24], which are analogous to the setup

involved in proving the above theorems, as well as Guillemin’s approach to trace formulae

[33].

Theorem 1.3 ([20]). LetX be a compact manifold and φt : X → X a C∞ Anosov flow with
orientable stable and unstable bundles. Let {γ�} denote the set of primitive orbits of φt, and
T �
γ their periods. Then the Ruelle zeta function ζR(λ) =

∏
γ�(1 − eıλT

�
γ ), which converges

for Imλ' 0, extends meromorphically to C.

While of course this lecture cannot cover all of microlocal analysis, at this point we need

to point out a particularly glaring omission in the author’s opinion: analysis on singular

spaces. This has been an extremely active area of study, both in elliptic and non-elliptic

settings. The former include for instance N -body scattering, see [72] and references therein

for this very extensive topic connected to wave propagation on manifolds with corners, the

low energy description of the resolvent of the Laplacian on asymptotically Euclidean spaces

[30, 31, 60], scattering theory on geometrically finite hyperbolic manifolds [10, 32, 35],

index and K-theory on manifolds with corners and stratified spaces [1, 55], and a general

symbolic pseudodifferential theory [2]. The latter include for instance wave propagation on

cones, edges, manifolds with corners, see e.g. [7, 46, 51, 52, 78, 79] and references therein.

With these illustrations of the uses of microlocal analysis, we now explain the new de-

velopments which facilitated these advances.

2. Pseudodifferential operators

Microlocal, or phase space, analysis in its simplest form concerns itself with the study of

functions or distributions on manifolds by means with which one can localize not only in the

base manifold, but also conically in the fibers of its cotangent bundle. This corresponds to a

description of not only where a distribution lies in, say, a Sobolev space locally, but in which

(co)direction this happens. In the most basic setting of Rn, it is closely related to the Fourier

transform: one localizes in the base space Rn
z , as well as in conic (i.e. dilation invariant)

subsets of Rn
ζ . For instance, one says that a distribution u on Rn is in the Sobolev space Hs
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microlocally near (z0, ζ0) ∈ Rn × (Rn \ {0}) = T ∗Rn \ o if there exists φ ∈ C∞c (Rn)
identically 1 near z0, and ψ ∈ C∞(Rn), homogeneous of degree 0 for |ζ| > 1, such that

ψ(tζ0) = 1 for all t' 1 sufficiently large, and

F−1ψFφu ∈ Hs,

or equivalently

F−1〈ζ〉sψFφu ∈ L2,

where F is the Fourier transform on Rn, and 〈ζ〉 = (1 + |ζ|2)1/2. The operator A =
F−1〈ζ〉sψFφ is a prime example of a pseudodifferential operator, a class of operators which

includes differential operators. In general, on Rn, a pseudodifferential operator has the form

Au(z) = (2π)−n

∫
eı(z−z′)·ζa(z, z′, ζ)u(z′) dζ dz′,

with the integral understood as an oscillatory integral, where a satisfies appropriate esti-

mates. (For the example above, one can take a(z, z′, ζ) = 〈ζ〉sψ(ζ)φ(z′) independent of z.)
A typical class of estimates is

|Dα
zD

β
z′D

γ
ζ a(z, z

′, ζ)| ≤ Cαβγ〈ζ〉m−|γ|; (2.1)

this gives Hörmander’s symbol class Sm
∞, and the corresponding operators A ∈ Ψm

∞. An-

other typical class is Sm,� given by the estimates

|Dα
zD

β
z′D

γ
ζ a(z, z

′, ζ)| ≤ Cαβγ〈z〉�1−|α|〈z′〉�2−|β|〈ζ〉m−|γ|;

this gives rise to the operators A ∈ Ψm,� with � = �1 + �2. Both of these classes form

an algebra (with composition giving the ring multiplication) over C. An important property

is that composition is symbolic, i.e. one can compute AB modulo residual operators, i.e.
modulo Ψ−∞

∞ , resp. Ψ−∞,−∞. Note that Ψm,0 ⊂ Ψm
∞, and elements of Ψm

∞ are bounded

maps between weighted Sobolev spaces Hs,r → Hs−m,r, where Hs,r = 〈z〉−rHs, while

those of Ψm,� are bounded Hs,r → Hs−m,r−�. This explains the different properties of

these algebras: the residual terms are non-compact on, say, L2, for the first algebra, but they

are compact for the second.

Another class of operators that plays a role below is the semiclassical family, A =
(Ah)h∈(0,1) of operators:

Ahu(z) = (2πh)−n

∫
eı(z−z′)·ζ/ha(z, z′, ζ, h)u(z′) dζ dz′,

where a satisfies estimates in one of the above cases, uniformly in h ∈ [0, 1); indeed, we typ-

ically consider smooth h dependence with h-uniform bounds for all derivatives. This gives

rise to the operator algebras Ψm
∞,� and Ψm,�

� . Here the residual terms (modulo which one

can do calculations) are in h∞Ψm
∞,�, resp. h

∞Ψm,�
� , i.e. one can do computations modulo

rapidly vanishing, as h→ 0, errors, not merely compact (in the case of Ψm,�
� ) error terms.

Pseudodifferential operators can be transferred to compact manifolds without boundary

via local coordinate charts, requiring that the Schwartz kernel is C∞ away from the diago-

nal; one checks easily that for the class stated above on Rn, the Schwartz kernel is indeed
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C∞ away from the diagonal z = z′ on Rn × Rn. It is worthwhile noticing that differen-

tial operators are of the form stated above with polynomial behavior in ζ; the subclass of

pseudodifferential operators for which a as above has an asymptotic expansion in terms of

homogeneous functions of degree m − j, j ∈ N, is called classical or one-step polyhomo-
geneous. In this generality of manifolds, pseudodifferential operators have a well-defined

principal symbol [a] in Sm
∞/Sm−1

∞ ; in the case of classical operators, these can be regarded

as homogeneous degree m functions on T ∗M \ o.
Since T ∗M is not compact even if M is, and as the most interesting objects are homo-

geneous, it is useful to work instead on the compact (if M is such) space (T ∗M \ o)/R+ =

S∗M . However, it is even better to compactify the fibers of T ∗M as balls to obtain T
∗
M ;

this glues S∗M to T ∗M at fiber infinity using ‘reciprocal polar coordinates’, so ∂T ∗M =
S∗M . The principal symbol a of A ∈ Ψ0

cl, which can be regarded as a homogeneous degree

zero function, is then equivalently a function on ∂T ∗M . If A ∈ Ψm
cl , then this principal

symbol is homogeneous degree m, or a section of a line bundle over ∂T ∗M , but it is also

well-defined as a function up to a positive multiplier, so e.g. its zero set, which is also called

the characteristic set Char(A) of A, is well-defined as a subset of ∂T ∗M . The comple-

ment of the characteristic set is the elliptic set Ell(A); an operator is elliptic if it has empty

characteristic set, i.e if it is elliptic at every point. It also makes sense to talk of the oper-

ator wave front set WF′(A); a point in ∂T ∗M is in the complement of WF′(A) if it has a

neighborhood on which A is given (say, in local coordinates) by an order −∞, i.e. ‘really

trivial’, symbol, as opposed to one of orderm−1, which is what would be guaranteed by the

vanishing of the principal symbol on such a neighborhood. One thinks of operators A which

have wave front set in some open set U ⊂ ∂T ∗M as a microlocalizer to U (analogue of the

multiplication operator by a compactly supported function on an open set O inM localizing

to O); one can also construct microlocal partitions of unity, etc.

In the semiclassical version of this analysis, in addition to the behavior of a at ∂T ∗M for

all h, one is also interested in the behavior of a on all of T
∗
M at h = 0. This is geometrically

encoded by working with the space [0, 1)h × T
∗
M , then the boundary hypersurfaces are

{0}h×T ∗
M and [0, 1)h×∂T ∗

M . We call the restriction of a to the former the semiclassical
principal symbol. If a is a classical, h-dependent, order 0 family, then the joint principal
symbol can be thought of as a function on ∂([0, 1)h × T

∗
M), consisting of the standard and

the semiclassical principal symbol as its two constituents. Correspondingly, the elliptic set,

characteristic set and wave front sets are all subsets of ∂([0, 1)h × T
∗
M).

Much as we compactified the fibers of the cotangent bundle above, we can also compact-

ify the base space Rn for Ψm,�, we again do it as a ball. Then neighborhoods of points at

∂Rn correspond to (cut off to the exterior of a compact subset of Rn) conic regions in Rn.

Much as transferring the definition of pseudodifferential operators to manifolds is possible

via local coordinate charts, we can transfer Ψm,� to manifolds with boundary M , requiring

smooth and rapidly (order∞) decaying Schwartz kernel away from the diagonal inM ×M .

The resulting algebra of operators is Melrose’s scattering algebra Ψm,�
sc (M), see [49]. The

natural place of microlocalization is a replacement for the standard cotangent bundle, called

the scattering cotangent bundle scT ∗M , which is naturally identified with T ∗M over M◦.
Since we transferred our pseudodifferential operators from Rn, the smooth sections of this

bundle are locally (near ∂M ) of the form
∑

ζj(z) dzj , where ζj ∈ C∞(Rn). It is more

convenient to express this in polar coordinates on Rn and then transfer to M : one then sees

that these forms are τ dx
x2 +

∑
ηj

dyj
dx , with x a boundary defining function, yj local coor-

dinates on ∂M . Dually, the vector fields in Ψsc(M) are the scattering vector fields, of the



920 András Vasy

form V = a(x2∂x) +
∑

bj(x∂yj ), with a, bj smooth. More invariantly, they are of the form

ρVb(M), ρ now a global boundary defining function, where Vb(M) is the Lie algebra of

Melrose’s b-vector fields, namely vector fields tangent to ∂M .

In fact, it is useful to compactify the fibers of scT ∗M to obtain the space scT
∗
M . Now

the joint principal symbol is an object (section of a line bundle, or simply a function for

order (0, 0)) on ∂scT
∗
M , and the elliptic, characteristic and wave front sets are subsets of

∂scT
∗
M . There is even a semiclassical version of this, in which case these objects ‘live on’

∂([0, 1)h× scT
∗
M), which has three boundary hypersurfaces: ‘fiber infinity’, ‘base infinity’

and h = 0.
Here we shall mostly consider applications of microlocal analysis to partial differential

equations. However, this is by no means the only application. For instance, the field of

inverse problems, such as determining a Riemannian metric on a manifold with boundaryM
from its distance function restricted to the boundary, called the boundary rigidity problem,

has been using microlocal analysis, in particular the theory of Fourier integral operators,

extensively. Such problems have linearizations related to the geodesic X-ray transform (on

tensors). By introducing an artificial boundary, given by a level set of a convex function,

and using Melrose’s scattering pseudodifferential algebra let Stefanov, Uhlmann and Vasy

[66, 70] show that the local (in M ) boundary rigidity problem is well-posed in a conformal

class under suitable conditions. Of course, there were many predecessors of this work in

inverse problems using microlocal analysis, see for instance works of Greenleaf, Stefanov

and Uhlmann [27, 28, 64, 65].

Returning to manifolds without boundary M , T ∗M being symplectic, there is a vector

field Ha corresponding to the principal symbol a of A, which is homogeneous of degree

m − 1. For m = 1, Ha can be regarded as a vector field on ∂T ∗M ; for other a, we can

multiply a by a positive homogeneous degree 1 − m function b, then Hba is well-defined,

and as Hba = bHa + aHb, so in Char(A), Ha is well-defined up to a positive multiple,

in particular the integral curves of Ha are well-defined. A bit more precisely, not only

is Ha well-defined as a vector field on ∂T ∗M , but it is well defined as a vector field in

Vb(T ∗
M) modulo ρfiberVb(T ∗

M), where on a manifold X , Vb(X) is the Lie algebra of

vector fields tangential to ∂X . Integral curves of Ha inside the characteristic set are called

(null)-bicharacteristics.

A useful extension of the setting discussed so far is to allow the operators to have variable
order. For instance, in the case ofΨm(M), one can allowm to be a C∞ function on S∗M =

∂T
∗
M . For M compact, this is a subset Ψm0(M), m0 > supm, but it allows for much

finer control of regularity. Here one needs to allow symbols which gain less than a full order

upon differentiation, so e.g. in the setting of (2.1) one would have, with δ ∈ (0, 1/2),

|Dα
zD

β
z′D

γ
ζ a(z, z

′, ζ)| ≤ Cαβγ〈ζ〉m−|γ|+δ|(α,β,γ)|;

these are symbols in Sm
∞,1−δ,δ in the standard notation, and one can take δ > 0 arbitrarily

small. One can still talk about ellipticity (including microlocally) by requiring the invert-

ibility (by symbols of order −m) of the principal symbol modulo symbols of order −1. In

particular, the Sobolev space Hm(M) is defined, with m̃ = infm, by

Hm(M) = {u ∈ Hm̃(M) : Au ∈ L2},

where A is any elliptic element of Ψm(M). Such results appeared in the work of Unter-

berger [71] (with order depending on the underlying spaceM ) and Duistermaat [18]; a more
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complete discussion as needed for our purposes is given in [5, Appendix A]. In the semiclas-

sical version the order m can be a function on ∂([0, 1)h × T
∗
M). If the only place where

it needs to vary is at h = 0, it can be thought of as a function, constant outside a compact

set, on T ∗M . In this case one is considering a fixed Sobolev space, but with an h-dependent
norm. Such microlocal norms play a key role in the work of Faure and Sjöstrand [24]; see

the Anosov flow discussion below for an application. Similarly, in the scattering setting, one

can have an order that is a function on ∂scT
∗
M .

3. Elliptic and non-elliptic Fredholm theory

3.1. Elliptic theory. The basic results in microlocal analysis concern the structures we have

already introduced. In order to explain their significance from the perspective of solving

PDE, we remark that the Fredholm property of a (pseudo)differential operator P acting be-

tween two Hilbert spaces X and Y , i.e. the range being closed, the nullspace finite dimen-

sional, the range finite codimensional, is equivalent to estimates

‖u‖X ≤ C(‖Pu‖Y + ‖u‖X̃ ), ‖v‖Y∗ ≤ C(‖P ∗v‖X∗ + ‖v‖Z),

where the adjoints are taken relative to a fixed space, such as L2, and X̃ ,Z are Hilbert

spaces, with compact inclusion maps X → X̃ , Y∗ → Z . The simplest example of such

an estimate is an elliptic estimate, in which case one can take all the spaces to be standard

Sobolev spaces. For instance if P ∈ Ψm(M) is elliptic and M is compact then X = Hs,

Y = Hs−m, X ∗ = H−s, Y∗ = H−s+m, X̃ = HÑ , Z = HN∗ work for any Ñ ,N∗,
which are taken to satisfy Ñ < s, N∗ < −s+m for the application (the compact inclusion

map). Thus, elliptic operators are invertible as maps between these Sobolev spaces, up to

a finite dimensional obstruction. The analytic version of the Fredholm theory can also be

used to show that for P ∈ Ψm(M) elliptic with m > 0, the resolvent family C $ λ �→
(P − λI)−1 is meromorphic with finite rank smoothing (Ψ−∞(M)) Laurent coefficients if

P − λ0I is invertible for a single value, λ0, of λ. All of these have natural extension to

operators acting between sections of vector bundles E,F ; then the principal symbol a(z, ζ)
has values in bundle homomorphisms Hom(Ez, Fz), and ellipticity is the invertibility of

these homomorphisms between finite dimensional vector spaces.

The elliptic estimates can be proved by constructing an approximate inverse, or parametrix,

for P , which can be done by inverting the principal symbol (i.e. taking its reciprocal in

the scalar setting). They can also be microlocalized, namely for any P ∈ Ψm(M) (not

necessarily elliptic) one also has estimates of the form

‖Q1u‖Hs ≤ C(‖Q2Pu‖Hs−m + ‖u‖HÑ ),

Q1, Q2 ∈ Ψ0(M) with WF′(Q1) ⊂ Ell(Q2) ∩ Ell(P ), i.e. on the elliptic set of P , if one

microlocalizes (via Q1 and Q2), the analogue of the global estimate holds. Note that as the

principal symbol of P ∗ is the complex conjugate of that of P , P ∗ is elliptic wherever P is.

It is also useful to remark here that the elliptic estimates are valid on variable order Sobolev

spaces as well.

3.2. Real principal type propagation. While there are many interesting elliptic operators,

such as the Laplacian on functions or differential forms, or the Dirac operator, there are
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even more non-elliptic problems of interest, and it turns out that with a bit of effort they

fit into similar Fredholm frameworks. If P ∈ Ψm(M) is non-elliptic, it has a non-empty

characteristic set. The non-degenerate version of non-ellipticity is if the principal symbol p
vanishes simply there; then the characteristic set is smooth. There is a difference between

the real and complex valued cases; we are here most interested in the real valued one, then

Char(P ) has codimension one. The symplectic structure turns a non-degenerate dp into

a non-vanishing Hamilton vector Hp; however Hp may be radial, i.e. tangent to the R+-

orbits. Hörmander’s propagation of singularities theorem [42], see also [19], is that one

can propagate estimates along the bicharacteristic flow in Char(P ); such a statement is

meaningful where Hp is not radial. That is, one has estimates

‖Q1u‖Hs ≤ C(‖Q2u‖Hs + ‖Q3Pu‖Hs−m+1 + ‖u‖HÑ ), (3.1)

where Q1, Q2, Q3 ∈ Ψ0(M), provided the elliptic set of Q3 contains WF′(Q1), and the

bicharacteristics through all points inWF′(Q1)∩Char(P ) reach the elliptic set ofQ2 while

remaining in Ell(Q3). The more usual phrasing of this theorem is that if u is in Hs mi-

crolocally at a point in Char(P ), then u ∈ Hs on the maximal bicharacteristic segment

through this point, with ‘maximal’ being with respect to being contained in the comple-

ment ofWFs−m+1(Pu), i.e. in the set where Pu is microlocally Hs−m+1. This theorem is

proved by positive commutator estimates, computing

〈ıPu,Au〉 − 〈ıAu, Pu〉 = 〈(ı[A,P ] + ı(P − P ∗)A)u, u〉, (3.2)

A = A∗ ∈ Ψm′(M), and the principal symbol of ı[A,P ] + ı(P − P ∗)A in Ψm+m′−1(M)
is −Hpa− 2p̃a if p̃ is the principal symbol of 1

2ı (P − P ∗) ∈ Ψm−1(M). One arranges that

−Hpa− 2p̃a = b2 + e, (3.3)

where e has support in the region where the a priori assumptions are imposed (such as

WF′(Q2) above). TakingB,E with principal symbols b, e, one has ı[A,P ]+ı(P−P ∗)A =
B∗B + E + F , with F lower order, so substituting into (3.2), one controls Bu in terms of

Eu as well as A∗Pu, proving a theorem after a regularization argument.

This theorem, with the proof, is also valid on variable order Sobolev spaces, but only in

one direction of flow. Thus, if s is monotone along the Hamilton flow, say s is increasing,

then one can propagateHs estimates in the backward direction, while if s is decreasing, one

can propagate Hs estimates in the forward direction. In terms of the sketched proof, the

reason for the restriction on the direction is that the Hamilton derivative hitting the weight

(giving the order) provides a logarithmically larger term than the other ones, which thus must

have a correct sign for the argument to go through; see [5, 71].

We also remark that Hörmander’s theorem, with the positive commutator proof, extends

easily to systems whose principal symbol is real scalar (a multiple of the identity operator on

the vector bundle), and also extends to more general real principal type systems, as shown

by Dencker [17].

3.3. Complex absorption. Hörmander’s theorem, as well as its generalizations, had a key

role in understanding propagation phenomena, such as waves. In all these cases estimates

propagate, i.e. if one a priori knows that u is well-behaved somewhere (in this case on the

wave front set of Q2) then one can conclude that u is well-behaved somewhere else. From

the perspective of Fredholm problems, the problem with this is that the a priori hypothesis
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need not ever be fulfilled. One way of dealing with this is called complex absorption, see
[56]. This means that one considers an artificial operator Q ∈ Ψm(M) with non-negative

principal symbol, and replaces P by P − ıQ. Then there is still an analogue of Hörmander’s

theorem, but one can only propagate estimates in the forward direction along Hp. Notice

that in the elliptic set of Q one has elliptic estimates even in Char(P ), so the point is that

one can propagate estimates from and to this elliptic set, in the forward direction, along the

Hp flow. Replacing P − ıQ by P + ıQ, but Q still having non-negative principal symbol,

the estimates can be propagated in the backward direction. In particular, this works for (P −
ıQ)∗ = P ∗+ıQ∗, so estimates for the adjoint can be propagated in the opposite direction as
estimates for the operator. As an example, if all bicharacteristics of P (in Char(P )) reach
the elliptic set of Q in both the forward and the backward direction, which we may call the

simplest non-trapping scenario, one can piece together elliptic and propagation estimates to

conclude that

‖u‖Hs ≤ C(‖(P − ıQ)u‖Hs−m+1 + ‖u‖HÑ ),

and

‖v‖Hs′ ≤ C(‖(P ∗ + ıQ∗)v‖Hs′−m+1 + ‖v‖HN′ ), s′ = −s+m− 1.
This corresponds to Fredholm estimates, though one has to be a bit careful as P − ıQ does

not map Hs to Hs−m+1. So one lets

X = {u ∈ Hs : (P − ıQ)u ∈ Hs−m+1},
which is a Hilbert space in the natural norm; this is the simplest example of a coisotropic

space, see [51, Appendix A]. One also lets Y = Hs−m+1. Then P − ıQ : X → Y is

Fredholm, and indeed, if P depends on a parameter σ ∈ C, with the principal symbol of P
independent of σ, then this is an analytic Fredholm family, with a meromorphic inverse if it

is invertible at a single point.

3.4. Radial points. While complex absorption is artificial, though very useful in eliminat-

ing dynamics in certain regions of ∂T ∗M by making the operator elliptic there, it illustrates

an important point: in order to have Fredholm problems, we need the bicharacteristics to

reach regions in which we have good a priori control, such as Ell(Q) above. The most nat-

ural setting is that of radial points, which were already mentioned earlier as the points at

which Hörmander’s propagation theorem provides no extra information. Unlike in the set-

tings considered above, in which the Sobolev order swas arbitrary, here there are restrictions

on it because the positivity, corresponding to b2 in (3.3), can only be given by the weight,
ρ−m′
fiber. Thus, it is useful to think ofHp, or rather ρ

m−1
fiberHp, as an element of Vb(T ∗

M) mod-

ulo ρfiberVb(T ∗
M), since this encodesHpρfiber modulo one order additional vanishing. The

results in this setting depend on the sign of the Hamilton derivative of the weight relative to

the sign of the Hamilton derivative of the microlocalizer: if they have the same sign, one

need not make an assumption like Q2u ∈ Hs in the propagation estimates (3.1) to get a

conclusion at the radial set (set of radial points), but if they have the opposite sign, one does

need to do this. Since the sign of Hpρ
−m′
fiber depends on the sign of m′, this means that the

kind of results one gets in the high regularity (which needsm′ bigger than a threshold) versus

the low regularity (which needs m′ smaller than a threshold) are different. Finally, we need

to keep in mind the appearance of p̃ in (3.3), which shifts this threshold value from being

m′ = 0. Thus, the estimate in this setting has two parts. We first make the non-degeneracy
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assumption that ρm−2
fiberHpρfiber = ∓β0 > 0 on the radial set L ⊂ Char(P ) ⊂ ∂T ∗M ,

while Hpp̃ = ±β̃β0ρ̃−m+1, where we assume for simplicity that β̃ is constant on L, which

is the case in many applications. Further, assume that L acts as a sink (−) or source (+) in

CharP ⊂ ∂T
∗
M , in a non-degenerate sense; this basically means that there is a quadratic

defining function ρ1 of L in Char(P ) such that ρm−1
fiberHpρ1 is a positive definite. Then

(i) If s ≥ s0 > (m− 1)/2− β̃, then for u ∈ Hs0 one has estimates

‖Q1u‖Hs ≤ C(‖Q3Pu‖Hs−m+1 + ‖u‖HÑ ),

Qj elliptic at L, j = 1, 3, withWF′(Q1) ⊂ Ell(Q3) and such that all bicharacteristics

from points in WF′(Q1) tend to L in either the forward (−) or the backward (+)

direction, while remaining in Ell(Q3).

(ii) If s < (m− 1)/2− β̃, then one has estimates

‖Q1u‖Hs ≤ C(‖Q2u‖Hs + ‖Q3Pu‖Hs−m+1 + ‖u‖HÑ ),

Qj elliptic at L, j = 1, 2, 3, with WF′(Q1) ⊂ Ell(Q3) and such that all bicharacter-

istics from points in WF′(Q1) \ L tend to Ell(Q2) (which is now typically disjoint

from L) in either the forward (+) or the backward (−) direction, while remaining in

Ell(Q3).

Note that if P is replaced by P ∗, then P − P ∗ is replaced by its negative, so β̃ defined for

P ∗ is the negative of that defined for P , which means that for P ∗ (keeping β̃ as defined for

P ) one has

(i) If s′ ≥ s′0 > (m− 1)/2 + β̃, then for u ∈ Hs′0 one has estimates

‖Q1u‖Hs′ ≤ C(‖Q3P
∗u‖Hs′−m+1 + ‖u‖HN′ ),

Qj elliptic at L, j = 1, 3, withWF′(Q1) ⊂ Ell(Q3) and such that all bicharacteristics

of p from points inWF′(Q1) tend to L in either the forward (−) or the backward (+)

direction, while remaining in Ell(Q3).

(ii) If s′ < (m− 1)/2 + β̃, then one has estimates

‖Q1u‖Hs′ ≤ C(‖Q2u‖Hs′ + ‖Q3P
∗u‖Hs′−m+1 + ‖u‖HN′ ),

Qj elliptic at L, j = 1, 2, 3, with WF′(Q1) ⊂ Ell(Q3) and such that all bicharacter-

istics from points in WF′(Q1) \ L tend to Ell(Q2) in either the forward (+) or the

backward (−) direction, while remaining in Ell(Q3).

Substituting in s′ = −s +m − 1, one sees that the condition in (ii) for P ∗ is equivalent to

that in condition (i) for P , and similarly with (i) and (ii) interchanged. This means that if

one has non-trapping in the sense that both in the forward and in the backward direction the

bicharacteristics escape to radial sets, one has Fredholm estimates, provided one can arrange

that the Sobolev spaces are such that one can propagate estimates away from a radial set

(case (i)) for P from one of the ends of the bicharacteristics, and for P ∗ from the other end

(as this implies case (ii) for P ). Often the numerology in (i) and (ii) is such that the Sobolev

spaces Hs must have variable order. One can also combine such a Fredholm setup with

complex absorption; in this case one can often work with constant order Sobolev spaces.
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Notice that radial points are in some sense the best thing that can happen to a non-elliptic

problem with real principal symbol: if one has a chaotic Hamilton flow, there is no reason

to think that one can propagate regularity from anywhere; radial points provide just such a

location. This being said, note that the requirements above were weaker than L being radial:

roughly speaking, there can still be non-trivial Hamilton flow in L, and we care about the

Hamilton dynamics normally to L. This turns out to be important in Kerr-de Sitter black

holes, where the conormal bundle of the event horizon at infinity has this kind of structure.

(The non-rotating black holes of de Sitter-Schwarzschild spaces give rise to actual radial

sets.) Also notice that the estimates we stated were global in a radial set (component) L; one
can in fact microlocalize if the set is actually radial, as shown by Haber and Vasy [36], but

this becomes impossible when there is a non-trivial Hamilton flow within L, as in Kerr-de

Sitter space. We finally remark that the radial point estimates also hold for systems provided

the principal symbol is real scalar (a multiple of the identity operator on the fibers of the

vector bundle).

3.5. Normally hyperbolic trapping. This lack of ability to microlocalize within a set Γ
invariant under the Hamilton flow occurs also in a more degenerate setting, that of normally
hyperbolic trapped sets. After much earlier work of Gérard and Sjöstrand [25] in the an-

alytic setting, this was analyzed by Wunsch and Zworski [83], to an extent which suffices

for the problems we consider here, with refinements by Hintz and Vasy [39], and in more

detail by Nonnenmacher and Zworski [57] and by Dyatlov [21, 23]. (The latter is suffi-

ciently precise to locate a sequence of resonances corresponding to Γ, while [57] allows for

rather irregular normal dynamics (stable and unstable distributions)!) For us these enter in

either the semiclassical, or in the b-settings, with Kerr-de Sitter spaces containing perhaps

the prime examples. In the normally hyperbolic setting one drops the non-degeneracy of

ρm−2
fiberHpρfiber = ∓β0 > 0 of the radial setting; in fact, one has a defining function of

the boundary hypersurface at which one is doing analysis (so h in the semiclassical setting)

which, at L, has vanishing Hp-derivative. (This is automatic in the semiclassical setting!)

The subprincipal symbol (in the form of p̃), which shifts the threshold in the radial setting via

β̃, can still give positivity, but it must have a definite sign to do so. However, one can extend

a bit beyond this strict threshold (which cannot be moved by changing the weight, such as h,
since Hp annihilates the latter), at the cost of losing powers of the weight relative to the real

principal type and radial point settings, provided that the Hamilton dynamics normally to Γ is

well-behaved. Here, for brevity, we do not discuss details, but the key feature is that, within

the characteristic set, there are transversally intersecting smooth codimension 1 manifolds

Γ± with intersection Γ, with Γ− and Γ+ the local stable, resp. unstable, manifolds along

the flow. Then one can arrange defining functions φ± for these such that Hpφ± = ∓c±φ±,

with c± > 0 and Hφ+φ− = {φ+, φ−} > 0; the latter positivity plays an important role in

the control of the subprincipal term in [39, 83]. The functions c± can be chosen in a manner

related to the normal hyperbolicity of the flow, namely bounded from below and above, up

to an ε loss, by the normal minimal and maximal expansion rates. They dictate the size of

the ‘gap’, i.e. the upper bound for the wrong-sign subprincipal symbol, to be (up to an ε loss)
half of the minimum expansion rate; see [21, 23, 57].

3.6. Semiclassical and scattering settings. These results have natural extensions to the

other algebras considered above: Ψ�(M) and Ψsc(M) (as well as its semiclassical version).

A straightforward application of the results thus far then is the limiting absorption principle
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for scattering metrics, introduced by Melrose, modelled on the large ends of cones, includ-

ing non-trapping estimates if the geodesic flow is non-trapping, i.e. all geodesics escape to

infinity. (Indeed, this setting is where Melrose started studying Lagrangian sets of radial

points, see [49]; the earlier work of Guillemin and Schaeffer was on isolated radial points

[34], see also [37] and [36].) Concretely, a scattering metric is a Riemannian metric g on

M◦ of the form

g = x−4 dx2 + x−2h

near ∂M , where h is a smooth symmetric 2-cotensor which restricts to a Riemannian metric

on ∂M . This generalizes the Euclidean metric, where one would take M to be the radial

compactification of Rn, so ∂M = Sn−1 with the round metric h. One then has the following

result of Melrose, with the semiclassical version due to Vasy and Zworski:

Theorem 3.1 ([49, 81]). The LaplacianΔg of a scattering metric has spectrum [0,∞), and
for λ > 0 the limiting resolvents R(λ2 ± ı0) exist as bounded operators Hs,r → Hs+2,r−1,
provided the weight r satisfies r > 1/2 at the incoming radial set, r < 1/2 on the outgoing
radial set.

Further, if the manifold is non-trapping then one has non-trapping resolvent estimates

‖R(λ2 ± ı0)‖L(Hs,r

|λ|−1 ,H
s+2,r−1

|λ|−1 ) ≤ C|λ|−1, λ' 1.

Here we do not provide further detail, but in fact this scattering framework also works

directly for Klein-Gordon equations on non-trapping Lorentzian scattering metrics in the

sense of Baskin, Vasy and Wunsch [5]; see also [41, Section 5]. Both of these discuss the

actual wave equation, which requires b-methods described at the end of these notes, but in

fact the Klein-Gordon version is much easier (as far as Fredholm analysis is concerned) as

it can be done in the very amenable scattering setting, see [77]. For �g − λ, λ > 0, and
g of signature (1, n − 1), the characteristic set has two components, and within each there

are two components of the radial set. One can thus choose the direction of propagation in

either component separately. Choosing forward propagation in the base ‘time’ variable, this

is the forward propagator; reversing it one gets the adjoint, the backward propagator. These

correspond to the Cauchy problem. However, choosing forward propagation relative to the

Hamilton flow, which means propagation in the opposite directions in the two components

of the characteristic set relative to the base ‘time’ variable, gives a Feynman propagator;

similarly choosing the backward one relative to the Hamilton flow gives another Feynman

propagator. Indeed, even ultrahyperbolic equations are perfectly well-behaved: e.g. if g is

a non-degenerate translation invariant metric, then for the corresponding d’Alembertian �g ,

�g − λ, λ ∈ R \ {0}, fits into this framework. Here, in general, the radial set has two

components, and the Feynman propagator is the only reasonable option – this corresponds

to the Cauchy problem being ill-behaved.

4. Applications

4.1. Anosov flows. One of the simplest kinds of differential operator is a vector field. Fol-

lowing earlier work of Faure and Sjöstrand [24], Dyatlov and Zworski [20] adapted a PDE

point of view to analyze C∞ Anosov flows ϕt : X → X on a compact manifold X ,

φt = exp(tV ), from the perspective of the generator V . Here the Anosov property means
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that the tangent space TX has a continuous (in x) decomposition into a stable subspace

Es(x), an unstable subspace Eu(x), and the neutral direction of E0(x) = Span(V (x)).
Then the differential operator one studies is P = 1

ıLV on differential forms, which has

scalar principal symbol given by that of V . The key ingredient to the meromorphic continu-

ation of the dynamical zeta function, which can be expressed as a (regularized) trace, is the

analysis of (P − λ)−1 on appropriate function spaces. But with E∗
s (x) and E∗

u(x) the dual

bundles, they are sources/sinks, in the generalized sense described above, for the Hamilton

flow (which is just the flow of V lifted to T ∗X \ o from the homogeneous perspective), and

the microlocal analysis we discussed yields the desired analytic Fredholm statement for the

family λ �→ P − λ. A wave front set analysis then allows Dyatlov and Zworski to complete

the proof of Theorem 1.3.

4.2. Asymptotically hyperbolic and de Sitter spaces. As a more involved application,

the results discussed so far by themselves suffice to show the meromorphic extension of

the resolvent of an asymptotically hyperbolic Laplacian together with high energy estimates

using Ψ�(M). We start by recalling the definition of manifolds with even conformally com-

pact metrics. These are Riemannian metrics g0 on the interior of an n-dimensional compact

manifold with boundary X0 such that near the boundary Y , with a product decomposition

[0, ε)x × Y of a neighborhood U of Y and a boundary defining function x, they are of the

form

g0 =
dx2 + h

x2

where h is a family of metrics on Y = ∂X0 depending on x in an even manner, i.e. all odd

derivatives of h with respect to x vanish at Y . (There is a much more natural way to phrase

the evenness condition due to Guillarmou [29].) Then the dual metric is

G0 = x2(∂2
x +H),

with H the dual metric family of h (depending on x as a parameter), and so

Δg0 = (xDx)
2 + ı(n− 1 + x2γ)(xDx) + x2Δh,

with γ even, and Δh the x-dependent family of Laplacians of h on Y . We then consider the

spectral family

Δg0 −
(n− 1)2

4
− σ2

of the Laplacian. In addition to working with finite σ, or σ in a compact set, we also want to

consider σ →∞, mostly in strips, with | Imσ| bounded. In that case we should consider σ as

a ‘large parameter’ in the sense of [61]. Such a setting can be converted into a semiclassical

one by writing σ = h−1z, where h ∼ |σ|−1 (one can even take h = |σ|−1, but this is often

not convenient); then the spectral family becomes h−2(h2Δg0 − h2 (n−1)2

4 − z2).
We show now that if we change the smooth structure on X0 by declaring that only even

functions of x are smooth, i.e. introducing μ = x2 as the boundary defining function, then

after a suitable conjugation and division by a vanishing factor the resulting operator smoothly

and non-degenerately continues across the boundary, i.e. continues to X−δ0 = (−δ0, 0)μ ×
Y (X0,even, where X0,even is the manifold X0 with the new smooth structure. At the level

of the principal symbol, i.e. the dual metric, the conjugation is irrelevant, so we can easily

see what happens: changing to coordinates (μ, y), μ = x2, as x∂x = 2μ∂μ,

G0 = 4μ2∂2
μ + μH = μ(4μ∂2

μ +H),
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so after dividing by μ, we obtain μ−1G0 = 4μ∂2
μ + H . This is a quadratic form that is

positive definite for μ > 0, is Lorentzian for μ < 0, and has a transition at μ = 0 that as we

shall see involves radial points. In fact, a similar argument would show that in μ < 0, this
dual metric is obtained by similar manipulations performed on the negative of a signature

(1, n − 1) even asymptotically de Sitter metric, i.e. one of the form x̃−2(dx̃2 − h), with x̃
the boundary defining function, and h positive definite at x̃ = 0. Then μ = −x̃2 gives this

form of the metric. Notice that −x̃2 and x2 are formally the ‘same’, i.e. x̃ is formally like

ıx, which means that this extension across the boundary is a mathematically precise general

realization of a ‘Wick rotation’. Correspondingly, in addition to providing a new method of

analysis for asymptotically hyperbolic spaces, extension across the boundary also provides

a new approach to asymptotically de Sitter analysis, providing an alternative to [6, 80].

To see that the full spectral family of the Laplacian is well behaved, first, changing to

coordinates (μ, y), μ = x2, we obtain

Δg0 = 4(μDμ)
2 + 2ı(n− 1 + μγ)(μDμ) + μΔh.

Now we conjugate by μ−ıσ/2+(n+1)/4, and multiply by μ−1/2 from both the left and right

μ−1/2μıσ/2−(n+1)/4(Δg0 −
(n− 1)2

4
− σ2)μ−ıσ/2+(n+1)/4μ−1/2

= 4μD2
μ − 4σDμ +Δh − 4ıDμ + 2ıγ(μDμ − σ/2− ı(n− 1)/4).

This operator is in Diff2(X0,even), and now it continues smoothly across the boundary,

by extending h and γ in an arbitrary smooth manner; it is now of the form

Pσ = 4(1 + a1)μD
2
μ − 4(1 + a2)σDμ − a3σ

2 +Δh − 4ıDμ + b1μDμ + b2σ + c1

with aj smooth, real, vanishing at μ = 0, bj and c1 smooth. This form suffices for analyzing

the problem for σ in a compact set, or indeed for σ going to infinity in a strip near the reals.

(In [74] a further modification is made to obtain semiclassical ellipticity when σ leaves this

strip in an appropriate manner.)

Writing covectors as ξ dμ+ η dy , the principal symbol of Pσ ∈ Diff2(X−δ0), including
in the high energy sense (σ →∞), is

pfull = 4(1 + a1)μξ
2 − 4(1 + a2)σξ − a3σ

2 + |η|2μ,y,

and is real for σ real. Correspondingly, the standard principal symbol is

p = σ2(Pσ) = 4(1 + a1)μξ
2 + |η|2μ,y,

which is real, independent of σ, and elliptic for μ > 0.
Let

N∗S \ o = Λ+ ∪ Λ−, Λ± = N∗S ∩ {±ξ > 0}, S = {μ = 0};

thus S ⊂ X−δ0 can be identified with Y = ∂X0(= ∂X0,even). Note that p = 0 at Λ± and

Hp is radial there since

N∗S = {(μ, y, ξ, η) : μ = 0, η = 0}, so Hp|N∗S = −4ξ2∂ξ.
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Figure 4.1. The cotangent bundle of X−δ0 near S = {μ = 0} in a fiber-radially compactified view.

The boundary of the fiber compactification is the cosphere bundle S∗X−δ0 ; it is the surface of the

cylinder shown. Σ± are the components of the (classical) characteristic set containing L±. They

lie in μ ≤ 0, only meeting S∗
SX−δ0 at L±. Semiclassically, i.e. in the interior of T

∗
X−δ0 , for

z = h−1σ > 0, only the component of the semiclassical characteristic set containing L+ can enter

μ > 0. This is reversed for z < 0.

This corresponds to dp = 4ξ2 dμ at N∗S, so the characteristic set Σ = {p = 0} is smooth

at N∗S.
Let L± be the image of Λ± in S∗X−δ0 . Then L− is a sink and L+ is a source in the

sense that all bicharacteristics nearby converge to L± as the parameter goes to∓∞. Further,

one computes that β̃|L± = Imσ. In the other direction, all bicharacteristics reach μ = −ε0,
ε0 > 0 small, so adding complex absorption there assures that we have a Fredholm prob-

lem if we make the choice of propagating all estimates away from L+ and L− for Pσ , and
towards L+ and L− in P ∗

σ . To be precise, we take two copies of X−δ0 , smoothly glued

at μ = −ε0, where complex absorption is introduced, to obtain a compact manifold with-

out boundary X; alternatively, one can work with a single copy, and replace the complex

absorption by a boundary working with spaces of extendible distributions for Pσ , and sup-

ported distributions for P ∗
σ , see [41, Section 2]. This requires that the order of the Sobolev

space (for Pσ) be sufficiently high, namely the more negative Imσ becomes, the more posi-

tive the Sobolev order must be. Indeed, if f̃ ∈ C∞(X), then (Pσ − ıQσ)
−1f̃ ∈ C∞(X) as

well (away from poles of this operator). If the geodesic flow is non-trapping then in fact we

have semiclassical propagation/radial point estimates, which in turn imply the non-trapping

statement of Theorem 1.1.

While this explains why (Pσ− ıQσ)
−1 is a well-behaved operator, it may not be obvious

how this helps with understanding the resolvent of the Laplacian, R(σ). However, this

is not hard to see. To make the extension from X0,even to X more systematic, let Es :
Hs(X0,even) → Hs(X) be a continuous extension operator, Rs : H

s(X) → Hs(X0,even)
the restriction map. Then in Imσ > 0, when σ is not a pole of eitherR(σ) or (Pσ− ıQσ)

−1,

we have for f ∈ Ċ∞(X0),

R(σ)f = x(n+1)/2−iσx−1Rs(Pσ − ıQσ)
−1Es−1x

−(n+1)/2+iσx−1f, (4.1)

since a simple computation shows that the right hand side is an element of L2(X0, dg) (in-
deed, it is of the form x(n−1)/2−ıσC∞(X0,even), since after the application of (Pσ− ıQσ)

−1

in the formula, the result is in C∞(X)) with Δg0 − (n − 1)2/4 − σ2 applied to it yielding

f , so by the self-adjointness of Δg0 , it is indeed R(σ)f . Notice that this uses very strongly

that Qσ has Schwartz kernel supported away from X0,even × X0,even (i.e. more than just

WF′(Q) ∩ S∗X0,even = ∅).
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In fact, in this unified treatment of asymptotically hyperbolic and de Sitter spaces one

can even arrange a set up which does not need complex absorption at all, and does not need

an artificially added boundary. To do so, given an asymptotically hyperbolic space (X0, g0),
one can construct a compact manifold X without boundary containing two (disjoint) copies

of X0, connected by an asymptotically de Sitter space; one may call the two copies the

‘future’ and ‘past’ copies. (Vice versa, given an asymptotically de Sitter space, one can cap

it off by two asymptotically hyperbolic spaces; one may need to take two copies of the de

Sitter space, however, for topological reasons.) This is motivated by the structure of the

boundary of radially compactified Minkowski space, which has two copies of hyperbolic

space in the interior of the future and past light cones at infinity, and a copy of de Sitter

space outside these light cones. However, the construction can be made in full generality,

see [76, Section 3]. In this case one propagates estimates from the conormal bundle of the

boundary of one of the copies of X0,even (say, the past one) to the other one; for the adjoint

the estimates propagate in the opposite direction. Since the threshold regularity for the radial

points is the same for both the future and the past copies, this requires variable order Sobolev

space; in this case one can actually arrange that the order varies only in the interior of the

asymptotically de Sitter space, and depends only on the base, X (not on the location within

the fiber of S∗X).

4.3. Kerr-de Sitter spaces. Next we turn to Kerr-de Sitter spaces, which are 4-dimensional

Lorentzian space-times. Here an appropriate bordification of the space-time is

Mδ = Xδ × [0,∞)τ , Xδ = (r− − δ, r+ + δ)r × S2,

where r± are specified later, and where τ = e−t in τ > 0 for a more conventional ‘time’

variable t (that is essentially equivalent to the usual time far from r± in (r−, r+)). On this

the signature (1, 3) dual metric G has the form for appropriate choice of a function c = c±,

G = −ρ−2
(
μ
(
∂r ± cτ∂τ

)2 ± 2(1 + γ)(r2 + a2)
(
∂r ± cτ∂τ

)
τ∂τ

∓ 2(1 + γ)a
(
∂r ± cτ∂τ

)
∂φ + κ∂2

θ +
(1 + γ)2

κ sin2 θ
(−a sin2 θτ∂τ + ∂φ)

2
)
,

where rs,Λ, a constants, rs,Λ ≥ 0, κ = 1 + γ cos2 θ, γ = Λa2

3 ,

ρ2 = r2 + a2 cos2 θ, μ = (r2 + a2)(1− Λr2

3
)− rsr,

and μ(r) = 0 has two positive roots r = r±, r+ > r−, with 
± = ∓∂μ
∂r |r=r± > 0; r+ is

the de Sitter end (cosmological horizon), r− is the Kerr end (event horizon). Physically, rs
is twice the black hole mass, Λ is the cosmological constant, a is the angular momentum of

the black hole. Thus, de Sitter space is the case a = 0, rs = 0, and Λ can be normalized to

be 3; in this case r− = 0 can be removed, and the space-time becomesMδ = Xδ × [0,∞)τ ,
Xδ = Br++δ , with Br++δ the ball of radius r+ + δ. If a = 0 still, but rs > 0, then one

obtains non-rotating de Sitter-Schwarzschild black holes.

Mellin transforming �g in τ (i.e. Fourier transforming in e−t), with dual parameter σ,
one obtains a family of operators Pσ , whose principal symbol in the large parameter sense is

given by this dual metric function. One can now check that Pσ almost has the same structure

as the conjugated extended asymptotically hyperbolic case. Most importantly, if a = 0,
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Figure 4.2. The fiber-radially compactified cotangent bundle near the event horizon S = {μ = 0}. Σ±
are the components of the (classical) characteristic set containing L±. The characteristic set crosses

the event horizon on both components; here the part near L+ is hidden from view. The projection

of this region to the base space is the ergoregion. Semiclassically, i.e. the interior of T
∗
Xδ , for z =

h−1σ > 0, only Σ�,+ can enter μ > a2.

N∗{r = r±} in Xδ consists of radial points which are sources or sinks; if a �= 0, then
insteadN∗{r = r±} are still ‘normally source/sink bundles’, as required for our generalized

radial points results, but there is non-trivial dynamics within N∗{r = r±} corresponding to

the black hole rotation (closed orbits, along which φ varies and θ is fixed). Further, if one

adds complex absorption where μ is small and negative, i.e. just outside [r−, r+]× S2, then
all classical bicharacteristics reachN∗{r = r±} or the elliptic set of the complex absorption

in both the forward and backward direction, i.e. the problem is classically non-trapping,
and thus one can make it Fredholm by capping off the space Xδ (e.g. by working with two

copies of the space, glued via complex absorption, so the problem is elliptic). Again a useful,

but less microlocal, alternative is to add a boundary at μ = −δ0, and set up appropriate

Fredholm Cauchy-type problems. Although it does not play a role in our analysis, one

interesting feature of Kerr-de Sitter wave operators with a �= 0 is that the projection of the

characteristic set of Pσ to the base space enters (r−, r+); this is called the ergoregion – the

operator is thus not elliptic everywhere between the event horizons. This was considered

a major difficulty for the analysis, and was first overcome by Dyatlov [22] by a separation

of variables argument; the microlocal analysis described here achieves a similar result in a

systematic manner.

However, the operator is semiclassically trapping due to the photon sphere in the de

Sitter-Schwarzschild case, and its no longer spherically symmetric replacement in general.

This trapped set is, however, normally hyperbolic. The works of Wunsch and Zworski [83],

Hintz and Vasy [39] and Dyatlov [21, 23] give microlocal control at this trapped set, which,

combined with gluing constructions of Datchev and Vasy [16], suffices to prove Theorem 1.2.

While Kerr-de Sitter space had not been intensively studied, though there have been

works on de Sitter-Schwarzschild space (a = 0) [4, 9, 59] and further references in [75],

we mention that Kerr space-time has been the subject of intensive research. For instance,

polynomial decay on Kerr space was shown recently by Tataru and Tohaneanu [68, 69] and

Dafermos, Rodnianski and Shlapentokh [12–14], while electromagnetic waves were studied

by Andersson and Blue [3], after pioneering work of Kay and Wald in [43] and [82] in

the Schwarzschild setting. While some of these papers employ microlocal methods at the

trapped set, they are mostly based on physical space where the phenomena are less clear than

in phase space (unstable tools, such as separation of variables, are often used in phase space

though). Kerr space is less amenable to immediate microlocal analysis to attack the decay
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of solutions of the wave equation due to the singular/degenerate behavior at zero frequency;

in some sense it combines the scattering and b-analysis.

4.4. Melrose’s b-analysis. While here we used the dilation invariance to reduce to a prob-

lem on Xδ , this is easily eliminated. The framework then is Melrose’s b-pseudodifferential

operator algebra Ψb(M), introduced in [53] to study hyperbolic boundary value problems;

see [54] for a general setup. On a general manifold M , this microlocalizes the earlier men-

tioned Lie algebra Vb(M) of vector fields tangent to the boundary, which are locally of the

form a(x∂x) +
∑

bj∂yj . These are the smooth sections of a vector bundle; the dual bundle
bT ∗M has a local basis dx

x , dyj over C∞(M). Now from the homogeneous perspective the

(standard) principal symbol is a homogeneous function on bT ∗M \o; for 0th order operators,

it can be considered as a function on bS∗M = (bT ∗M \ o)/R+.

Much like forΨsc(M), the standard principal symbol does not capture operators modulo

(relatively) compact ones. However, unlike the scattering case, there is no other function

making up for this deficit (in the case of the scattering algebra, the symbol on scT ∗
∂MM ),

rather it is an operator, called the normal operator. This is obtained by ‘freezing coefficients’

at ∂M to obtain a dilation invariant operator. Together the principal symbol and the Mellin

transformed (as it is dilation invariant!) normal operator L̂(σ) do allow for a development

of Fredholm theory. However, this is a bit more intricate: one has to work with b-Sobolev

spaces Hs,r
b (M) which have constant weights r, which on the Mellin transform side corre-

sponds to working on the line Imσ = −r, but s variable for many non-elliptic problems

of interest (though Kerr-de Sitter allows for constant s). Now, at the principal symbol level

there are analogues of all of the microlocal ingredients described above; indeed, one also has

to allow L± to have a ‘normally saddle’ structure for Kerr-de Sitter type settings, see [41].

This allows one to conclude that L̂(σ) is a Fredholm family on induced spaces. However, in

order to have a Fredholm problem on M , one needs that L̂(σ) is invertible for Imσ = −r,
so non-symbolic, or ‘quantum’ objects determine Fredholm properties of L. On the other

hand, under this assumption, one indeed has a Fredholm problem, which is perturbation sta-

ble in the appropriate sense. This gives the stability of the Kerr-de Sitter problem. In fact,

the earlier mentioned Lorentzian scattering metrics, studied by Baskin, Vasy and Wunsch

[5], fit into the same general framework.

4.5. Non-linear equations. The final topic we discuss is non-linear PDE. Small data semi-

linear problems in either non-trapping or, with lower order semilinear terms, normally hyper-

bolic Kerr-de Sitter type settings can be easily solved by the contraction mapping principle

as long as one can work with Sobolev spaces with non-growing weights (i.e. one can choose

such a weight r with no resonances σ with Imσ = −r), or one has special properties of the

resonances for Sobolev spaces Hs,0
b (M). In this case, for instance polynomial semilinear

terms (for second order equations, to be definite) map Hs,r
b to Hs−1,r

b for s > n/2 + 1, and
thus the Fredholm structure we discussed provides for a Picard iteration for small data; see

[41]. The same setting for Lorentzian scattering metrics, generalizing results of Klainerman

[44, 45] and Christodoulou [11] is more delicate, both because unlike the saddle points of

Kerr-de Sitter space, the radial source/sinks in Minkowski space limit regularity when one is

propagating estimates towards them, and also because the reduction to a b-problem involves

weights, so there is a more complicated numerology, and one must rely on additional mi-

crolocal regularity relative to a pseudodifferential module (which generalizes Klainerman’s

vector fields), see [41].
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While the linear setting of asymptotically Minkowski spaces had well-behaved global

dynamics and thus no artificial tools such as complex absorption was needed (we only needed

variable order Sobolev spaces), in the Kerr-de Sitter, and indeed localized de Sitter, type

settings one needs to ‘cut off’ the problem. Such a cut off is possible due to the hyperbolic

nature of the equations. From the perspective of microlocal analysis it is most conveniently

done via complex absorption as discussed above, but this may not provide complete control:

one only gets the exact solution operator one wants (with supports) if each bicharacteristic

is controlled at least at one end by other means, such as radial points or a boundary. Thus, in

the non-dilation invariant de Sitter and Kerr-de Sitter type setting it is convenient to consider

domains Ω in the manifold M whose (artificial) boundary hypersurfaces (other than those

of M , that is) are space-like. (Note that such a Cauchy hypersurface is just as artificial as

complex absorption, is less well-behaved microlocally, but has the advantage of giving the

supports one wants for time-oriented problems by standard local energy estimates!) As all

the complicated phenomena, such as radial points or trapping, or indeed even variable orders

of Sobolev spaces, are located away from these artificial boundaries, including these artificial

boundaries (as done in [41]) in the framework does not pose significant complications. One

obtains, for instance, the small data (here f ) well-posedness, with vanishing Cauchy data at

the appropriate boundary hypersurface, of Klein-Gordon equations

(�g −m2)u = f + q(u, bdu),

where q is a polynomial with second order vanishing at (0, 0) (so quadratic terms are al-

lowed) ifm > 0 and the metric g is non-trapping, such as perturbations of asymptotically de

Sitter type spaces. Here bdu denotes derivatives relative to the b-structure, i.e. the derivatives

are given by b-vector fields. If the metric has normally hyperbolic trapping such as Kerr-de

Sitter metrics, the losses in derivatives provided by the normally hyperbolic estimates only

allow for general non-linearities independent of bdu for the contraction mapping argument

to go through, though non-linearities depending on derivatives with a particular structure are

allowed as well since the loss of derivatives is only microlocally at the trapped set. Ifm = 0
the issue is the 0-resonance, which has resonant state 1, and thus non-linearities q which only
contain derivatives, and thus annihilate the resonant state, are allowed in the non-trapping

asymptotically de Sitter type settings. In either case, one also obtains an expansion at infinity

which is generated by the resonances of the Mellin transformed normal operator of the linear

problem.

Quasilinear problems require more work. Hintz [38] has developed a framework for

b-pseudodifferential operators with Sobolev coefficients, modeled on the Sobolev pseudod-

ifferential operators of Beals and Reed [8]. This framework is sufficient in non-trapping

settings, such as perturbations of de Sitter space, to achieve this. More recently, Hintz and

Vasy [40] extended this analysis even to normally hyperbolic problems. In this case the

contraction mapping is replaced by a use of the Nash-Moser iteration due to the losses in

derivatives; the conclusion is a small data global well-posedness and decay result for quasi-

linear wave equations on Kerr-de Sitter space: for the small mass Klein-Gordon equation

without further restrictions (since there is no 0-resonance), while for the actual wave equa-

tion for non-linearities containing derivatives (due to the 0-resonance).
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Geometric approaches to semilinear elliptic
equations

Juncheng Wei

Abstract. A fundamental problem in nonlinear PDE is the classification and construction of entire

solutions of nonlinear elliptic equations in RN such as Δu + f(u) = 0 in RN . This is the context

of various classical results in the literature like the Gidas-Ni-Nirenberg theorems on radial symmetry,

Liouville type theorems, or the achievements around De Giorgi’s conjecture. In this paper we review

some recent mathematical results on applying geometric approaches towards geometrization of solu-

tions of entire solutions. We focus particularly on two prototype nonlinear elliptic equations: Allen-

Cahn equation and nonlinear Schrödinger equation. For Allen-Cahn, we describe the De Giorgi con-

jecture and the connections with minimal surfaces as well as Toda systems. For nonlinear Schrödinger

equation we are interested in new entire solutions with either finite energy or multiple ends. We dis-

cuss its surprising connection with the theory of Constant Mean Curvature (CMC) surfaces and Toda

system. Applications to gauged Ginzburg-Landau equation as well as Chern-Simons-Higgs will be

given.

Mathematics Subject Classification (2010). Primary 35J61; Secondary 35B06, 35B25.

Keywords. De Giorgi’s Conjecture, minimal surfaces, Allen-Cahn equation, Nonlinear Schrödinger

equation, CMC surfaces, gluing techniques.

1. Part I: Allen-Cahn equation and minimal surfaces

In this section, we survey the studies on entire solutions of Allen-Cahn equation and review

its connection with minimal surface theory and Toda system.

1.1. Background. We are interested the following Allen-Cahn equation

Δu + u− u3 = 0 in RN . (1.1)

This is a (simplified) model of great importance in physics. It was introduced by Cahn-

Hilliard [17] in the description of two-phase separation in fluids and by Allen-Cahn [6] in

the mathematical formulation of ordering in binary alloys [6]. Allen-Cahn equation is a

prototype for the modeling of interface phenomena in a variety of contexts, for example

in pattern formation of mathematical biology such as Gierer-Meinhardt system or diblock

copolymer system [66]. It can also be considered as the scalar version of Ginzburg-Landau

equation.

The theory of Γ−convergence reviews a deep connection between Allen-Cahn equation

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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and the minimal surface. To see this, we consider the singularly perturbed version of (1.1),

ε2Δv + v − v3 = 0 in RN . (1.2)

On every bounded domain Ω ⊂ RN , (1.2) is the Euler-Lagrange equation for the action

functional

Jε(v) =

∫
Ω

ε

2
|∇v|2 + 1

4ε
(1− v2)2.

It is easy to see that that the constants v = ±1 minimize Jε. They are idealized as two

stable phases of a material in Ω. It is of interest to analyze configurations in which the

two phases coexist. These states are represented by stationary points of Jε, or solutions

vε of Equation (1.2), that take values close to +1 in a subregion of Ω of and −1 in its

complement. The theory of Γ-convergence developed in the 70s and 80s, showed an intricate

connection between this problem and the theory of minimal surfaces, see Modica, Mortola,

Kohn, Sternberg, [44, 60, 61, 73]. In fact, it is known that for a family uε of local minimizers

of uε with uniformly bounded energy must converge, up to subsequences, in L1-sense to a

function of the form χE−χEc where χ denotes characteristic function, and ∂E has minimal

perimeter. Thus the interface between the stable phases u = 1 and u = −1, represented by

the sets [uε = 0] approach a minimal hypersurface, see Caffarelli and Córdoba [14, 15],

Hutchinson and Tonegawa [39], Röger and Tonegawa [67] for stronger convergence and

uniform regularity results.

1.2. From Bernstein’s to De Giorgi’s conjecture. In 1979 Ennio De Giorgi [19] formu-

lated the following celebrated conjecture concerning entire solutions of equation (1.1).

Conjecture 1.1 (De Giorgi’s Conjecture). Let u be a bounded solution of equation (1.1)

such that ∂xN
u > 0. Then the level sets [u = λ] are all hyperplanes, at least for dimension

N ≤ 8.

Equivalently, umust depend only on one Euclidean variable so that it must have the form

u(x) = w((x− p) · ν) for some p ∈ RN and some ν with |ν| = 1 and νN > 0, where w is

the one-dimensional profile

w′′ + w − w3 = 0, w(0) = 0, w(±∞) = ±1,
which is given explicitly by w(ζ) := tanh(ζ/

√
2).

The condition ∂xN
u > 0 implies that the level sets of u are all graphs of functions of

the first N − 1 variables. As we have discussed in Section 1.1, level sets of non-constant

solutions are closely connected to minimal hypersurfaces. De Giorgi’s conjecture is in fact

a parallel to the following classical

Conjecture 1.2 (Bernstein’s conjecture). A minimal hypersurface in RN , which is also the
graph of a smooth entire function of N − 1 variables, must be a hyperplane.

In other words, if Γ is an entire minimal graph, namely

Γ = {(x′, xN ) | x′ ∈ RN−1, xN = F (x′)} (1.3)

where F solves the minimal surface equation

HΓ ≡ ∇ ·
(

∇F√
1 + |∇F |2

)
= 0 in RN−1, (1.4)
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then Γ must be a hyperplane, hence F must be a linear affine function.

Bernstein’s conjecture is known to be true up to dimension N = 8, see Simons [72] and

references therein, while it is false for N ≥ 9, as proven by Bombieri, De Giorgi and Giusti

[12], who found a nontrivial solution to Equation (1.4).

De Giorgi’s conjecture has been established for N = 2 by Ghoussoub and Gui [30] and

for N = 3 by Ambrosio and Cabré [8]. Savin [69] proved its validity for 4 ≤ N ≤ 8 under

the additional assumption

lim
xN→±∞

u(x′, xN ) = ±1 for all x′ ∈ RN−1. (1.5)

A counterexample to De Giorgi’s conjecture in dimension N ≥ 9 was believed to exist

for a long time. Partial progress in this direction was made by Jerison and Monneau [41] and

by Cabré and Terra [13]. The following result shows that De Giorgi’s caveat was justified

since the conjecture fails for N ≥ 9.

Theorem 1.3 (del Pino-Kowalczyk-Wei [24]). Let N ≥ 9. Then there is an entire minimal
graph Γ which is not a hyperplane, such that all ε > 0 sufficiently small there exists a
bounded solution uε(x) of equation (1.1) whose zero-level set lies close to the dilated ε−1Γ.
Besides, ∂xN

uε > 0 and uε satisfies condition (1.5).

1.3. Outline of the proof: gluing methods. The proof of Theorem 1.3 makes use of the

newly developed infinite dimensional gluing method which we shall describe briefly.

Let N = 9 and assume that Γ is a smooth minimal hypersurface and let ν designate a

choice of its unit normal. Points δ-close to Γ can be uniquely represented as

x = y + zν(y), y ∈ Γ, |z| < δ. (1.6)

A well known formula for the Laplacian in these coordinates reads as follows:

Δx = ∂zz +ΔΓz −HΓz∂z (1.7)

where Γz := {y + zν(y) / y ∈ Γ} and ΔΓz is the Laplace-Beltrami operator on Γz acting

on functions of the variable y, and HΓz is its mean curvature. Let k1, . . . , kN denote the

principal curvatures of Γ. Then we readily have

HΓz =
N∑
i=1

ki
1− zki

. (1.8)

It is reasonable to assume that the solution is a smooth function of the variables (y, ζ), where

ζ = ε−1z, and the equation for vε(y, ζ) reads

ε2ΔΓεζvε − εHΓεζ (y) ∂ζvε + ∂2
ζvε + vε − v3ε = 0, y ∈ Γ, |ζ| < δε−1. (1.9)

Using expression (1.8) and the fact that Γ is a minimal surface, we expand

HΓεζ (y) = ε2ζ |AΓ(y)|2 + ε3ζ2
8∑

i=1

k3i + · · · , where |AΓ|2 =
8∑

i=1

k2i .

For a small ε > 0 we look for a solution uε of the form (near Γε),

uε(x) = w(ζ − εh(εy)) + φ(ζ − εh(εy), y), x = y + ζν(εy), (1.10)
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where y ∈ Γε, ν is a unit normal to Γ with νN > 0, h is a function defined on Γ, which is

left as a parameter to be adjusted. Setting r(y′, y9) = |y′|, we assume a priori in h that

‖(1 + r2)DΓh‖L∞(Γ) + ‖(1 + r)h‖L∞(Γ) ≤ M (1.11)

for some large, fixed number M , also with a uniform control on (1 + r3)D2
Γh.

Letting f(u) = u − u3 and using Expression (1.7) for the Laplacian, the equation be-

comes

S(uε) := Δuε + f(uε) = ΔΓζ
ε
uε − εHΓζ

ε
(εy) ∂ζuε

+∂2
ζuε + f(uε) = 0, y ∈ Γε, |ζ| < δ/ε. (1.12)

Letting t = ζ − εh(εy), we look for uε of the form

uε(t, y) = w(t) + φ(t, y)

for a small function φ. The equation in terms of φ becomes

∂2
t φ+ΔΓεφ+Bφ+ f ′(w(t))φ+N(φ) + E = 0 (1.13)

where B is a small linear second order differential operator, and

E = S(w(t)), N(φ) = f(w + φ)− f(w)− f ′(w)φ ≈ f ′′(w)φ2.

While the expression (1.13) makes sense only for |t| < δε−1, it turns out that the equation

in the entire space can be reduced to one similar to (1.13) in entire R× Γε, where E and the

undefined coefficients inB are just cut-off far away, while the operatorN is slightly modified

by the addition of a small nonlinear, nonlocal operator of φ. Rather than solving this problem

directly we carry out an infinite dimensional form of Lyapunov-Schmidt reduction, which

consists two major steps:

Step 1 : Fixing h, we consider a projected problem,

∂2
t φ+ΔΓε

φ+Bφ+ f ′(w(t))φ+N(φ) + E = c(y)w′(t) in R× Γε,∫
R

φ(t, y)w′(t) dt = 0 for all y ∈ Γε. (1.14)

The error of approximation E has roughly speaking a bound O(ε2r(εy)−2e−σ|t|). Thanks

to the orthogonal condition and some energy estimates, one can find a solution φ = Φ(h) to
problem (1.14) with the same bound.

Step 2 : Find h such that the Lagrange multiplier function c(y) ≡ 0. Thus the problem is

reduced to finding h such that

c(y)

∫
R

w′2 =

∫
R

(E +BΦ(h) +N(Φ(h)))w′dt ≡ 0.

A lengthy computation yields that this problem is equivalent to

JΓ(h) := ΔΓh+ |AΓ|2h = c0

8∑
i=1

k3i +N (h) in Γ, (1.15)
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where N (h) is a small operator. A central point is to show that the unperturbed equation

(1.15) has a solution h = O(r−1), which justifies a posteriori the assumption (1.11) made

originally on h. By an explicit positive barrier the operator JΓ satisfies maximum princi-

ple and existence thus follows. The full nonlinear equation is then solved with the aid of

contraction mapping principle.

The program towards the counterexample in [8] and [41] mimics the classical program

that lead to the proof of Bernstein’s conjecture: the existence of the counterexample is re-

duced to establishing the minimizing character of a saddle solution in R8 that vanishes on

Simon’s cone. Our approach of direct construction is actually applicable to build solutions,

which may be in principle unstable, associated to general minimal surfaces, as we illustrate

in the next sections. We should mention that method of infinite dimensional reduction for the

Allen Cahn equation in compact settings has precedents with similar flavor in [23, 48, 64].

Using variational approach, local minimizers were built in [44].

1.4. Beyond De Giorgi conjecture: Stable solutions. The complete resolution of De

Giorgi’s conjecture is not the end of the story but rather the starting point. The assump-

tion of monotonicity in one direction for the solution u in De Giorgi’s conjecture implies a

form of stability, locally minimizing character for uwhen compactly supported perturbations

are considered in the energy. Indeed, the linearized operator L = Δ + (1 − 3u2), satisfies
maximum principle since L(Z) = 0 for Z = ∂xN

u > 0. This implies stability of u, in the

sense that its associated quadratic form, namely the second variation of the corresponding

energy,

Q(ψ, ψ) :=
∫
R3

|∇ψ|2 + (3u2 − 1)ψ2 (1.16)

satisfies Q(ψ, ψ) > 0 for all ψ �= 0 smooth and compactly supported.

Stability of u is sufficient for De Giorgi’s statement to hold in dimensionN = 2 ([8, 30])

while it remains an open problem for 3 ≤ N ≤ 8. In fact, the monotonicity assumption,

together with (1.5), actually implies that u is a global minimizer, in the following sense, for

any bounded domain Ω∫
Ω

(
1

2
|∇u|2 + 1

4
(1− u2)2) ≥

∫
Ω

(
1

2
|∇v|2 + 1

4
(1− v2)2) (1.17)

for any function v ∈ H1(Ω) with v = u on ∂Ω. This fact was observed by Alberti-

Ambrosio-Cabre [5] and used by Savin [69].

Naturally, one would ask the following generalized De Giorgi Conjecture.

Conjecture 1.4 (Generalized De Giorgi’s conjecture). Let u be a bounded and stable solu-
tion of equation (1.1). Then the level sets [u = λ] are all hyperplanes, at least for dimension
N ≤ 7

The dimension 7 is again motivated by the study of minimal surface. The generalized De
Giorgi’s conjecture is in fact a parallel to the following classical statement.

Theorem 1.5 (Generalized Bernstein theorem). A stable minimal hypersurface must be a
hyperplane.

The stability conjecture for minimal surfaces is known to be true in dimension N = 3
by Fischer-Colbrie and Schoen [29], it is false forN ≥ 8, as proven by Bombieri, De Giorgi

and Giusti [12], who proved that there is a foliation of Simons’s cone in dimension eight
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or higher. Yau [77] asked whether one can prove that a complete minimal hypersurface in

Rn+1 (N ≤ 7) is a hyperplane. Although much hard work on this problem has been done,

it remains still open in dimensions 3 ≤ N ≤ 7.
Using the foliation of the Simon’s cone, the following theorem shows that the generalized

De Giorgi Conjecture is not true in dimension 8 (and hence higher).

Theorem 1.6 (Pacard-Wei [65]). LetN = 8. Then there exists a stable and bounded solution
to (1.1) whose level sets approach one of the foliations of the Simons cone.

1.5. Finite Morse index solutions in R2. After the stable solutions, it is natural to consider

solutions which are not too unstable. These are solutions with finite Morse index. TheMorse
index m(u) is defined as the maximal dimension of a vector spaceE of compactly supported

functions such that

Q(ψ, ψ) < 0 for all ψ ∈ E \ {0}.
In view of the discussion so far, it seems natural to associate complete, embedded min-

imal surfaces Γ with finite Morse index, and solutions of (1.1). In R2 the only minimal

surfaces are lines. Therefore a class of solutions to (1.1) with a finite number of transition
lines, likely to have finite Morse index. This kind of solutions has been recently built in

[26]. The location and shape of these lines is governed by the Toda system, a classical inte-

grable model for particles moving on a line with exponential forces between any two closest

neighbors: √
2

24
f ′′j = e−

√
2(fj−fj−1) − e−

√
2(fj+1−fj), j = 1, . . . k. (1.18)

For definiteness we take f0 ≡ −∞, fk+1 ≡ +∞. It is known that for any given solution

there exist numbers a±j , b
±
j such that

fj(z) = a±j |z|+ b±j +O(e−|z|) as z → ±∞, (1.19)

where a±j < a±j+1, j = 1, . . . , k − 1 (long-time scattering).

The role of this system in the construction of solutions with multiple transition lines in

the Allen-Cahn equation in bounded domains was discovered in [23]. In entire space the

following result holds.

Theorem 1.7 (del Pino-Kowalczyk-Pacard-Wei [26]). Given a solution f of (1.18) if we
scale

fε,j(z) :=
√
2 (j − k + 1

2
) log

1

ε
+ fj(εz), (1.20)

then for all small ε there is a solution uε to (1.1) with k transitions layers Γε,j near the lines
x2 = fε,j(x1). More precisely Γε,j are graphs of functions:

x1 = fε,j(x2) + hε,j(εx2),

where hε,j(z) = O(εα)(|z|+ 1), with some α > 0. In addition

uε(x1, x2) =
k∑

j=1

(−1)j−1w(x1−fε,j(x2)−hε,j(εx2) )− 1

2
(1+(−1)k)+ O(εα). (1.21)



Geometric approaches to semilinear elliptic equations 947

In particular, if k = 2 and f solves the ODE

√
2

24
f ′′(z) = e−2

√
2f(z), f ′(0) = 0,

and fε(z) :=
√
2 log 1

ε + f(εz), then there exists a solution uε to (1.1) in R2 with

uε(x1, x2) = w(x1 + fε(x2) ) + w(x1 − fε(x2)) − 1 +O(εα). (1.22)

In general in the case of even solutions to the Toda system the deficiency functions hε,j(z)
decay exponentially as |z| → ∞, c.f. [26].

Remark 1.8. The solutions (1.21) show a major difference between the theory of minimal

surfaces and the Allen-Cahn equation, as it is the fact that two separate interfaces interact,
leading to a major deformation in their asymptotic shapes. We believe that these examples

should be prototypical of bounded finite Morse index solutions of (1.1). A finite Morse index

solution u should be stable outside a bounded set. If we follow a component of its nodal set

along a unbounded sequence, translation and a standard compactness argument leads in the

limit to a stable solution. Hence from the result in [20] its profile must be one-dimensional

and hence its nodal set is a straight line. This makes it plausible that asymptotically the nodal

set of u consists of a finite, even number of straight lines, the ends. If this is the case, those

lines are not distributed in arbitrarily: Gui [36] proved that if e1,. . . e2k are unit vectors in the

direction of the ends of the nodal set of a solution of (1.1) in R2, then the balancing formula∑2k
j=1 ej = 0 holds.

Another (possibly finite Morse index) solution is known, [22]. This is the so-called

saddle solution. It is built by positive barriers with zero boundary data in a quadrant, and

then extended by odd reflections to the rest of the plane, so that its nodal set is an infinite

cross, hence having 4 straight ends. A similar construction with 2k ends has been done in

[7].

1.6. Classification of four-ended solutions in R2. Recall that a 4-ended solution of (1.1)

is a solution whose nodal set is, outside a large ball, the union of four curves, each of which is

asymptotic to a half affine line and furthermore, along each end, the solution is asymptotic to

a heteroclinic solution having this affine line as a nodal set (a slightly different but equivalent

definition was given by Gui [37]). The key fact about 4-ended solutions is that, after a rigid

motion, they are even and, in the first quadrant

Q := {(x, y) ∈ R2 : x > 0, y > 0};
they are monotone functions of the x and the y variables (see [37] for details). We denote

the set of four-ended solutions asM4.

More precisely, if v ∈M4 is a 4-ended solution, there exists a rigid motion g of R2 such

that the function v̄ := v ◦ g satisfies

v̄(x, y) = v̄(−x; y) = v̄(x,−y) = −v̄(−x,−y)
in R2 and

∂xv < 0 and ∂yv > 0 in Q.

The subfamily ofM4 which consists of functions satisfying the above symmetries will

be denoted by Meven
4 . Because of even symmetry and the monotonicity property, the nodal
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set of a solution v ∈ Meven
4 , restricted to Q, consists of a single curve, which is asymptotic

to the half of an affine line Λ. We denote by θ ∈ (0, π2 ), the angle between the x-axis and Λ
and we define the angle map by

A :Meven
4 → (−π

4
,
π

4
), v → π

4
− θ (1.23)

For the saddle solution constructed in [22], we have A(v) = 0, while, for the solutions

with almost parallel ends which were constructed in [26] we have A(v) ∼ ±π
4 . For four-

ended solution it is proven that

Theorem 1.9 (Kowalczyk-Liu-Pacard [49, 50]). Meven
4 is diffeomorphic to R and also that

the angle map is surjective. In particular, for each α ∈ (−π
4 ,

π
4 ) there exists (at least) one

element v ∈Meven
4 such that A(v) = α.

Remark 1.10. It is very likely that A is in fact one-to-one but this is still an open problem.

1.7. Finite Morse index solutions in R3. Thanks to Weierstrass representation, in R3

there are plenty of complete, embedded minimal surfaces with finite Morse index. The

Morse index of the minimal surface Γ, i(Γ), has a similar definition relative to the quadratic

form for its Jacobi operator JΓ := ΔΓ + |AΓ|2.
For more than a century, only two examples of such surfaces were known: the plane and

the catenoid. The first nontrivial example was found in 1981 by C. Costa [16]. Later this

was generalized to Costa-Hoffman-Meeks surface with arbitrary genus � [38].
In [25] we have established an almost one-to-one correspondence between minimal sur-

faces in R3 and the finite Morse index solutions to (1.1):

Theorem 1.11 (del Pino-Kowalcyzk-Wei [25]). Let N = 3 and Γ be a minimal surface
embedded, complete with finite total curvature and non-parallel ends, which is in addition
nondegenerate. Then for all sufficiently small ε > 0 there exists a solution uε of Problem
(1.1) with the property that uε(0) ∼ ε−1Γ. Moreover, we have

m(uε) = i(Γ).

Besides, the solution is non-degenerate, in the sense that any bounded solution of

Δφ + (1− 3u2
ε)φ = 0 in R3

must be a linear combination of the functions Zi, i = 1, 2, 3, 4 defined as

Zi = ∂iuε, i = 1, 2, 3, Z4 = −x2∂1uε + x1∂2uε.

It is well-known that if Γ is a catenoid then i(Γ) = 1. Moreover, in the Costa-Hoffmann-

Meeks surface it is known that i(Γ) = 2�+ 3 where � is the genus of Γ. See [62].

Some further comments are in order. In analogy with De Giorgi’s conjecture, it seems

plausible that qualitative properties of embedded minimal surfaces with finite Morse index

should hold for the level sets of finite Morse index solutions of Equation (1.1), provided that

these sets are embedded manifolds outside a compact set. As a sample, one may ask if the

following two statements are valid:

• The level sets of any finite Morse index solution u of (1.1) in R3, such that ∇u �= 0
outside a compact set should have a finite, even number of catenoidal or planar ends
with a common axis.
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The above fact does hold for minimal surfaces with finite total curvature and embedded

ends as established by Ossermann and Schoen. On the other hand, the above statement

should not hold true if the condition ∇u �= 0 outside a large ball is violated. For instance,

let us consider the octant {x1, x2, x3 ≥ 0}. Problem (1.1) in the octant with zero boundary

data can be solved by a super-subsolution scheme (similar to that in [22]) yielding a positive

solution. Extending by successive odd reflections to the remaining octants, one generates

an entire solution (likely to have finite Morse index), whose zero level set does not have the

characteristics above: the condition ∇u �= 0 far away corresponds to embeddedness of the
ends of the level sets.

An analog of De Giorgi’s conjecture for the solutions that follow in complexity the stable

ones, namely those with Morse index one, may be the following:

• A bounded solution u of (1.1) in R3 with m(u) = 1, and ∇u �= 0 outside a bounded
set, must be axially symmetric, namely radially symmetric in two variables.

The solution we found, with transition on a dilated catenoid has this property. This

statement would be in correspondence with results by Schoen [70]: if i(Γ) = 1 and Γ has

embedded ends, then it must be a catenoid.

1.8. Mutiple-ended solutions in R3 and the role of Toda system. The results in [25] pro-

vide a connection between a large class of minimal surfaces in R3 and families of solutions

to the Allen Cahn equation, where even Morse index is transmitted. Next we want to show

that more richness is present in solutions to Allen Cahn with transition layers. A major dif-

ference between Allen Cahn and the minimal surface problem, is that two disjoint surfaces

do not interact in the latter problem, while they do as components of the zero set of solu-

tions to the Allen Cahh equations. These nodal sets are actually solving a form of nonlocal

minimal surface problem, which is interesting in its own sake, not just regarding Allen-Cahn

as a sort of regularization of the minimal surface problem.

As remarked in [25], the Morse index is a natural quantity to consider in the classification

of entire solutions to (1.1). It is natural step beyond De Giorgi’s conjecture, to understand

“mountain pass solutions” namely those with m(u) = 1. In Theorem 1.11, the first example

of Morse index one solution is the catenoidal axially symmetric solution in [25]. Our next

result shows that the structure of Morse index one solutions of (1.1) is more complicated

than dilations of a catenoid: there exists an axially symmetric solution of Morse index one

whose zero set is disconnected.

Theorem 1.12 (Agudelo-del Pino-Wei [1]). For all sufficiently small ε > 0 there exists an
smooth axially symmetric bounded solution uε(r, x3) to equation (1.1) for N = 3, with
Morse index m(uε) = 1 and

uε(r, x3) = w (x3 + qε(r) ) − w (x3 − qε(r) ) − 1 + O(ε), uniformly as ε→ 0
(1.24)

where

qε(r) =

√
2

2
(1 + o(ε)) log

(
1 + ε2 r2

)
+ b0 +

√
2

2
log

1

ε
(1.25)

uniformly, as ε→ 0. Here b0 is an explicit constant.

The solution of the above theorem is in addition even in the x3-coordinate. The zero

level set of uε of this result is the union of the graph of a positive radially symmetric function
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which asymptotically behaves logarithmically, and its reflection through the plane x3 = 0.
We can actually think of this solution as having a parallel with minimal surfaces: If we

take two planes x3 = ±A, their union is a (disconnected) minimal surface. For no solution

of the Allen Cahn equation the zero set can be close to this two-plane object. Instead, the

Allen Cahn equation produces (forA large) a nonlocal interaction between the corresponding

components of the nodal set, which can be quantified, making them diverge logarithmically.

The law governing the interaction of the two components, assumed to be graphs, x3 =
±qε(r), is a perturbation of the Liouville equation

Δqε − a0e
−2

√
2 qε = 0, in R2 (1.26)

whose radial solutions of (1.26) are given by the one-parameter family of functions

qε(r) =
1

2
√
2
log

(√
2 a0
4

(
1 + (εr)2

)2)
+

√
2

2
log

(
1

ε

)
.

Until now, two families of Morse index 1 axially symmetric solutions have become

known: That with a connected, catenoidal zero set constructed in [25], and the two-component

constructed in Theorem 1.12. We believe these solutions correspond to limiting situations of

a single one-parameter family of solutions, in a similar sense to how four-ended solutions in

R2 are deformed. We will partially solve this question in the next section.

1.9. Connectedness of Two-ended Solutions in R3. In this section, we show that the so-

lutions constructed in Theorems 1.11 and 1.12 are connected. To this end, we consider

solutions of (1.1) satisfying in addition{
uzz + urr + r−1ur + u− u3 = 0, r ∈ [0,+∞), z ∈ R,
u (r, z) = u (r,−z) , ur (0, z) = 0,

(1.27)

and

uz > 0 for z > 0;ur < 0, for r > 0. (1.28)

The following result confirms the belief that the two branches of Morse index one solu-

tions are actually connected in R3:

Theorem 1.13 (Gui-Liu-Wei [45]). For each κ ∈ (√2,+∞) , there exists a solution uκ to
(1.27) and (1.28) which has the following asympotic behavior in the region where z > 0 :

uκ (r, z) = w (z − κ ln r + cκ) + o (1) , as r → +∞, (1.29)

where cκ is a constant depending on κ.

It is natural to conjecture that for each κ ∈ (√2,+∞) , there should be a unique solution

having the asymptotic behavior (1.29). We also conjecture that for κ ∈ (0,
√
2], there will

not be such solutions.

We sketch the main ideas of the proof. First, we show that the set of solutions indeed

has a structure of real analytic variety of formal dimension 1. Then we show compactness

of solutions with certain natural constraints and we also show uniqueness of solutions on the

boundary of the moduli space. Combining these results, we conclude the proof of Theorem

1.13 by applying a structure theorem for real analytic varieties, due to Dancer and Toland.
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1.10. Infinite Morse index solutions in R2 and the Toda soliton train. After the study

of finite Morse index solutions we now move on to the research on solutions with infinitely

many ends and infinite Morse index.

In R1 the Allen-Cahn equation reduces to a second order ODE. It is easy to see that

except the heteroclinc solution, this ODE also admits periodic solutions with large periods.

Clearly, they could be lifted to R2, yielding periodic solutions depending only on one space

variable. Since they are periodic, their Morse index is infinite but because they depend on

just one variable they are at the same time one-dimensional. This is the simplest solutions

with infinitely many ends. Naturally, one would like to find non-trivial periodic solutions. In

this respect, a bifurcation analysis has been carried out in [71] and some nontrivial doubly

periodic solutions were found.

As in [26], there is a deep connection between solutions with infinitely many ends and the

infinite Toda system. More precisely we are able to construct new entire solutions of Allen-

Cahn in R2 which are singly periodic and whose nodal set is determined by the solutions of

the infinite Toda lattice :

c∗q
′′
i = e

√
2(qi−1−qi) − e

√
2(qi−qi+1), i ∈ Z. (1.30)

Due to the fact that the number of particles, whose positions are given by the functions

qi, i ∈ Z, is infinite this system is more complicated than the classical Toda system, however

it is still integrable. For us a special solution called one-soliton will be of crucial importance

and we will describe it now. Given a parameter k > 0, let us denote

c = c (k) :=
sinh k

k
> 1.

The function

Sc (t) := ln
cosh k

(
t− 1

2

)
cosh k

(
t+ 1

2

) ,
is odd and satisfies, for t large,

|Sc (t) + k| ≤ Ce−2kt.

Direct computation shows that

si (t; c, λ) := Sc (i− cλt)− 2i lnλ, i ∈ Z, λ > 0,

solve the Toda lattice equation:

s′′i = esi−1−si − esi−si+1 , i ∈ Z.

This one soliton solution and its properties were studied in a series of papers by Friesecke

and Pego [31] and Mizumachi and Pego [32].

Rescaling the Toda lattice equation we see that:

qi = qi (t; c, ε) :=
1√
2
si

(√√
2c−1

∗ t; c, ε

)
, i ∈ Z, (1.31)

is a family of one-soliton solutions of (1.30) . The distance qi − qi−1 between two adjacent

“particles” is approximately
√
2 |ln ε|, which means they are far away from each other if the

parameter ε is small.

Now we can state the following existence result
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Theorem 1.14 (Kowalczyk-Liu-Wei [46]). For each sufficiently small ε > 0 and for each
c > 0, there exists a vector e such that the Allen-Cahn equation (1.1) has a non-trivial singly
periodic solution uc,ε with minimal period 2e. The nodal set of uc,ε is close to the family
of curves {(t, qi (t; c, ε))}i∈Z, where {qi (t; c, ε)}i∈Z is the one-soliton solution of the Toda
lattice given by (1.31). Moreover, it holds

uc,ε (z) = −uc,ε (−z) , uc,ε (z) = −uc,ε (z + e) (1.32)

where e ∈ R2 depends on c and ε.

1.11. Interface solutions in higher dimensional catenoid. All the developments men-

tioned above show the strong connection between the Allen-Cahn equation and the Minimal

surfaces theory, but this connection has been only partly explored in lower dimensions, in

particular when providing more examples of solutions to the Allen-Cahn Equation in higher

dimensions. On the other hand, unlike dimensions R2 and R3 in which a large amount of

examples of minimal surfaces exist and have been analyzed, in higher dimensions RN+1

there are very few examples of minimal surfaces.

In this section we explore the connection between higher dimensional catenoid and the

equation (1.1) for N ≥ 3. Thus we let M be the N−dimensional catenoid, which is de-

scribed by the graph of the axially symmetric functions±F where F = F (|y|) is the unique

increasing axially symmetric solution to the minimal graph equation

∇ ·
(

∇F√
1 + |∇F |2

)
= 0, |y| > 1, y ∈ RN , F (1) = 0, ∂rF (1) = +∞. (1.33)

The catenoid M has asymptotically parallel flat ends:

F (r) = F (r) =

∫ ∞

1

1√
s2(N−1) − 1 ds −

r2−N

N − 2 + OL∞(RN )

(
r4−3N

)
, as r →∞.

(1.34)

At a first glance, one may think that the proper choice for the approximate nodal set of

the solutions predicted in our theorem would be a large dilated version of M , Mε = ε−1M ,

with ε > 0 small. As pointed out in [25], this is not an appropriate global choice. Instead,

the parallel ends of Mε must be perturbed in order to obtain a profile for the nodal set that

will lead to good sizes in the error and the rule governing this perturbation is the Liouville
Equation

εΔFε − a0 e
−2
√

2Fε
ε = 0, for |y| > Rε. (1.35)

We match the functions F and Fε in a C1 way by considering the additional initial

conditions for Fε at some suitable radius r = Rε.

Theorem 1.15 (Agudelo-del Pino-Wei [2]). For every N ≥ 3 and any sufficiently small
ε > 0 there exist a solution uε to equation (1.1) in having the asymptotics

uε(x) = w(z)(1 + o(1)), as ε→ 0

where z is the normal direction to the largely dilated surface ε−1Σ described above. Fur-
thermore for ε > 0 small and for dimensions 3 ≤ N ≤ 9, m(uε) = +∞.

The above statement shows a dramatic difference between the Allen-Cahn equation and

the Theory of Minimal surfaces. In fact it is known ([76]) that for dimensions 3 ≤ N ≤ 9,
the catenoidM has Morse index 1. In contrast our result states that with the same restriction

in the dimension, these solutions are highly unstable.
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2. Part II: Nonlinear Schrodinger equation and CMC surfaces

In the second part of this paper, we survey recent results on the study and construction of

entire solutions to the nonlinear Schrodinger equation.

2.1. Background. We consider another classical semilinear elliptic problem

Δu− u+ up = 0, u > 0, in RN , where p > 1. (2.1)

Equation (2.1) can be considered as the standing-wave problem for the standard nonlinear

Schrödinger equation

iψt = Δyψ + |ψ|p−1ψ,

typically p = 3, corresponding to that of solutions of the form ψ(y, t) = u(y)e−it. It also

arises in nonlinear models in Turing’s theory biological theory of pattern formation such as

Gierer-Meinhardt system [34].

The solutions of (2.1) which decay to zero at infinity are well understood. Problem (2.1)

has a radially symmetric solution wN (y) which approaches 0 at infinity provided that

1 < p <
N + 2

N − 2 if N ≥ 3;+∞ if N = 1, 2,

see [10]. This solution is unique [51], and actually any positive solution to (2.1) which

decyas at infinity must be radially symmetric around some point ([33]). This solution will

be called Type I Solution.
Problem (2.1) and its variations have been broadly treated in the PDE literature in the last

two decades. These variations are mostly of one of the two types: (2.1) is changed to a non-

autonomous problem with a potential depending on the space variable; or (2.1) is considered

in a bounded domain under suitable boundary conditions. Typically, in both versions a small

parameter is introduced rendering (2.1) a singular perturbation problem. We refer the reader

to the works [35, 42, 52, 55, 56] and references therein. Many constructions in the literature

refer to “multi-bump solutions”, built by perturbation of a sum of copies of the basic radial

bump wN suitably scaled, with centers adjusted in equilibrium under appropriate constraints

on the potential or the geometry of the underlying domain.

2.2. Type II Solutions: Dancer’s solution. Much less is known about solutions to this

equation in entire space which do not vanish at infinity. For simplicity, we restrict ourselves

to the case N = 2. A canonical example is thus built from the one-dimensional bump w1,

which we denote in the sequel just by w, namely the unique solution of the ODE

w′′ − w + wp = 0, w > 0, in R, w′(0) = 0, w(x)→ 0 as |x| → +∞, (2.2)

corresponding in phase plane to a homoclinic orbit for the equilibrium 0. Using this function

we can define a family of solutions u of equation (2.1) by setting u(x, z) := w(x − a),
a ∈ R. By analogy with the above terminology, we may call these solutions “single bump-

lines”. A natural question is whether a solution that satisfies lim|x|→+∞ u(x, z) = 0 and

which is in addition even in x must equal w(x). It turns out that this is not true. A second

class of solutions which are even both in z and x was discovered by Dancer in [20] via

local bifurcation arguments. They constitute a one-parameter family of solutions which are

periodic in the z variable and originate from w(x):

wδ(x, z) = w(x) + δw
p+1
2 cos(

√
λ1z) +O(δ2)e−|x|.
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We refer to the functions wδ in what follows as Dancer solutions or Type II Solution.

2.3. Type III solutions: Multi-bump line solutions. Using Dancer’s solutions, in [27],

del Pino, Kowalczyk, Pacard and Wei constructed a new type of solutions of (2.1) in R2 that

have multiple ends in the form of multiple bump-lines. What they actually constructed is a

solution u(x, z) which is close, up to lower order terms, to a multi bump-line of the form

w∗(x, z) =
k∑

j=0

wδj (x− fj(z), z), (2.3)

for suitable small numbers δj and even functions

f1(z)� f2(z)� · · · � fk(z),

which have uniformly small derivatives. The functions fj cannot be arbitrary and they turn

out to satisfy (asymptotically) a second order system of differential equations, the Toda sys-
tem (1.18), as in the Allen-Cahn equation.

The main result in [27] is:

Theorem 2.1 (del Pino-Kowalczyk-Pacard-Wei [27]). Assume that N = 2 and p ≥ 2.
Given k ≥ 2 and rescaled solutions fε (1.20) of Toda system (1.18) , for any sufficiently
small number ε > 0, there exists a solution uε of equation (2.1) that has the form

uε(x, z) =

k∑
j=1

wδj (x− fεj (z), z) (1 + o(1)).

2.4. Type IV Solution: Malchiodi’s Y −shaped solutions. On the other hand, in [54],

Malchiodi constructed another new kind of solutions with three rays of bumps. More pre-

cisely, the solutions constructed in [54] have the form

u(x, z) ≈
3∑

j=1

+∞∑
i=1

w2((x, z)− iL#lj) (2.4)

where #lj , j = 1, 2, 3 are three unit vectors satisfying some balancing conditions (Y-shaped

solutions). Here w2 is the unique ground state solution (Type I Solutions) in R2.

2.5. Solution type V: Front-Spike solutions. In [68], Santra and I constructed solutions

with the coexistence of both fronts and bumps. More precisely we look for positive solutions

of the form

u�(x, z) = w(x− f(z)) +
∞∑
i=1

w2((x, z)− ξi#e1) (2.5)

for suitable large L > 0 and ξi’s are such that ξ1 − f(0) = L and ξj = jL + O(1) for all
j ≥ 1; w is the unique one-dimensional solution and w2 is two-dimensional ground state

and #e1 = (1, 0).
Because of the new interaction between the fronts and bumps, we are led to considering

the following second order ODE:

f ′′(z) = ΨL(f, z) in R, f(0) = 0, f ′(0) = 0, (2.6)
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where ΨL(f, z) is a function measuring the interactions between bumps and fronts. Asymp-

totically ΨL(f, z) ∼ ((f − L)2 + z2)−
1
2 e−
√

(f−L)2+z2 . Let α =
∫ +∞
0

Ψ(
√
L2 + z2)dz.

We prove the following:

Theorem 2.2 (Santra-Wei [68]). Let N = 2. For p > 2 and sufficiently large L > 0, (2.1)
admits a one parameter family of positive solution satisfying⎧⎪⎨⎪⎩

uL(x, z) = uL(x,−z) for all (x, z) ∈ R2

uL(x, z) =

(
wδ(x− f(z)− hL(z), z)+

∞∑
i=1

w2((x, z)− ξi#e1)

)
(1 + oL(1))

(2.7)

where δ = δL is a small constant, ωδ is the Dancer’s solution, f is the unique solution of
(2.6), ξj ∼ jL and oL(1)→ 0 as L→ +∞, and the function ‖hL‖C2,μ

θ (R)⊕E ≤ Cα1+γ for
some constant θ > 0, γ > 0. Moreover, the solution has three ends.

2.6. Solution type VI: Finite-Energy Sign-Changing solutions. Obviously (2.1) is equiv-

ariant with respect to the action of the group of isometries of RN , it is henceforth natural to

ask whether or not all finite-energy solutions of (2.1) are radially symmetric. In that regard,

the classical result of Gidas, Ni and Nirenberg [33] asserts that all positive solutions of (2.1)

are indeed radially symmetric. Therefore, nonradial finite energy solutions, if they exist, are

necessarily sign-changing solutions. Berestycki and Lions [10] and Struwe [74] have ob-

tained the existence of infinitely many radially symmetric sign-changing solutions to (2.1)

in the subcritical case.

The existence of nonradial sign-changing solutions to (2.1) was first proved by Bartsch

and Willem [9] in dimension N = 4 and N ≥ 6. The key idea is to look for solutions

invariant under the action of O(2) × O(N − 2) ⊂ O(N) to recover some compactness

property. Later on, this result was generalized by Lorca and Ubilla [53] to handle theN = 5
dimensional case. The proofs of both results rely on variational methods and the oddness

of the nonlinearity. The question of the existence of nonradial solutions remained open in

dimensions N = 2, 3.
In [63], Musso, Pacard andWei constructed unbounded sequences of solutions of (2.1) in

any dimensionsN ≥ 2. The solutions they obtained are nonradial, have finite energy and are

invariant under the action ofDk×O(N−2), for some given k ≥ 7, whereDk ⊂ O(2) is the
dihedral group of rotations and reflections leaving a regular polygon with k sides invariant.

Moreover, these solutions are not invariant under the action of O(2)×O(N − 2) and hence

they are different from the solutions constructed in [9] and [53].

The energy functional associated to (2.1) is given by

E(u) := 1

2

∫
RN

(|∇u|2 + u2) dx− 1

p+ 1

∫
RN

|u|p+1 dx. (2.8)

Denote

E =:= 1

2

∫
RN

(|∇wN |2 + w2
N ) dx−

1

p+ 1

∫
RN

|wN |p+1 dx. (2.9)

The main result of [63] can be summarized as follows
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Theorem 2.3 (Musso-Pacard-Wei [63]). Assume that k ≥ 7 is a fixed integer. Then, there ex-
ist two sequences of integers, (mi)i≥0 and (ni)i≥0, tending to+∞, and (ui)i≥0, a sequence
of nonradial sign-changing solutions of (2.1), whose energy E(ui) is equal to

E(ui) = k ((mi + 2ni)E) + o(1).

Moreover, the solutions ui are invariant under the action of Dk × O(N − 2) but are not
invariant under the action of O(2)×O(N − 2).

2.7. Finite energy solutions without any symmetry. In view of Theorem 2.3, a natural

question is the following :

Do all finite-energy solutions of (2.1) have a nontrivial group of symmetry?

Surprisingly, the answer to this question is negative. In fact, we prove the :

Theorem 2.4 (Ao-Musso-Pacard-Wei [3]). There exist infinitely many solutions of (2.1)
which have finite energy but whose maximal group of symmetry reduces to the identity.

A more precise statement of the above theorem involves the notion of flexible, balanced
and closable planar network, which we shall describe next.

A finite planar network N := (V,E) in R2 is given by its set of vertices V ⊂ C and its

set of edges E joining the vertices. If [p, q] ∈ E, then the points p, q ∈ V are called the end
points of the edge [p, q]. Naturally, we identify [p, q] and [q, p]. The number of vertices of a

given network N will be denoted by n and its number of edges will be denoted by m. For

each p ∈ V , we denote by Vp ⊂ V the set of vertices q ∈ V such that [p, q] ∈ E, namely

Vp := {q ∈ V : [p, q] ∈ E}.
On a connected and embedded network, we define two functions: the first is the length

function and the second is the force. The length of a given networkN is defined to be as the

collection of the lengths of the edges of the network, namely

LN := (|p− q|)[p,q]∈E .

If N = (V,E) is a network and if a : E → R − {0} is a function, we will say that

(N , a) is a weighted network. The image of [p, q] ∈ E by a will be denoted by a[p,q]. Then
for all p ∈ V , we define the force of the weighted network (N , a) at the vertex p by

F(N ,a) :=
(
F(N ,a)(p)

)
p∈V , F(N ,a)(p) :=

∑
q∈Vp

a[p,q]
q − p

|q − p|

which is the collection of all forces at the different vertices of the weighted network (N , a).

Definition 2.5. Aweighted network (N , a) is said to be balanced ifF(N ,a) = 0. Otherwise,

we say that the weighted network (N , a) is unbalanced.

For a balanced weighted network, we want to perturb it so that the perturbed network is

still balanced. For this, we need to consider the linear map

Λ : Cn ×Rm → Cn ×Rm

(Φ̇, ȧ) �→
(
DF(Id,a)(Φ̇, ȧ) , DLId(Φ̇)

)
.

(2.10)
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If the weighted network (N , a) is unbalanced we have proved that Λ has kernel of dimension

at least 2 and cokernel of dimension at least 2, while, if the network (N , a) is balanced, then
Λ has kernel of dimension at least 4 and cokernel of dimension at least 3.

Let us now focus on balanced weighted networks for which we introduce the notion of

flexibility.

Definition 2.6. A balanced weighted network (N , a) is said to be flexible if the mapping Λ
has rank 2n+m− 4.

The last definition is a little bit intricate:

Definition 2.7. A flexible, balanced network (N , a) is said to be closable if

Λ̊(Φ̇, ȧ, ṡ) :=
(
DF(Id,a)(Φ̇, ȧ) ; DLId(Φ̇) + ṡT

)
,

has rank 2n+m− 3.
With these definitions at hand, we now have the following theorem

Theorem 2.8 (Ao-Musso-Pacard-Wei [3]). Given any balanced, flexible, and closable net-
work, there exists a sequence of finite energy solutions to (2.1) with large number of positive
or negative bumps on the dilated nextwrok.

2.8. Applications: Chern-Simons-Higgs equations and magnetic Ginzburg-Landau.
The results developed in the study of nonlinear Schrödinger equation can have important

applications in equations in mathematical physics. First one is the magnetic Chern-Simons-

Higgs (CSH) equations:

−ΔAψ + λ2(1− |ψ|2)(1− 3|ψ|2)ψ − μ2

4

|∇ ×A|2
|ψ|4 ψ = 0 (2.11)

μ2

4
∇×

(∇×A

|ψ|2
)
+ Im(ψ̄∇Aψ) = 0 (2.12)

for λ, μ > 0 constants, where ψ : R2 → C and A : R2 → R2. ∇A = ∇ − iA is

the covariant gradient, and ΔA = ∇A · ∇A. For a vector field A, ∇ × A is the scalar

∂1A2 − ∂2A1 and for scalar ξ, ∇ × ξ is the vector (−∂2ξ, ∂1ξ). The CSH equations arise

from the problems in condensed matter physics such as high-temperature superconductivity

and quantum and fractional Hall effect ([40]).

Equations (2.11) and (2.12) are Euler-Lagrange equations for the CSH energy functional

E(ψ,A) =
1

2

∫
R2

|∇Aψ|2 + μ2

4

(∇×A)2

|ψ|2 + λ2(1− |ψ|2)2|ψ|2, (2.13)

In addition to being translational and rotationally invariant, Equations (2.11) and (2.12) have

translational and gauge symmetries: solutions are mapped to solutions under the transforma-

tions

ψ(x) �→ ψ(x− z), A(x) �→ A(x− z)

for any z ∈ R2, and

ψ �→ eiγψ, A �→ A+∇γ
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for twice differentiable γ : R2 → R.

When λ = 1
μ , minimizers of the CSH energy will satisfy a set of Bogomol’nyi-type

self-dual equations ([40]). Using the new variable u = ln |φ|2, the self-dual equation was

reduced to a single scalar equation

Δu =
4

μ2
eu(eu − 1) + 4π

N∑
j=1

δpj . (2.14)

For λ > 1
μ , by [18], we know that there exists n−vortices solutions to the CSH-equation:

ψ(n)(x) = fn(r)e
inθ and A(n)(x) = an(r)∇(nθ). (2.15)

However less is known about other solutions for the non self-dual case λ �= 1
μ .

Another physical model is the magnetic Ginzburg Landau equations. The standard

macroscopic (or mean field) theory of superconductivity is due to Ginzburg and Landau.

Stationary states of superconductors occupying (for simplicity) the plane R2, are described

by pairs (ψ,A), where ψ : R2 → R2 is the order parameter and A : R2 → R2 is the

magnetic potential. These states satisfy the system of equations

−ΔAψ + λ(|ψ|2 − 1)ψ = 0 (2.16)

∇×∇×A+ Im(ψ̄∇Aψ) = 0 (2.17)

called the Ginzburg-Landau (GL) equations. Here λ > 0 is a constant depending on the

material in question: when λ < 1/2 or > 1/2, the material is of type I or II superconductor,

respectively. The corresponding energy functional is

Egl(ψ,A) = 1

2

∫
R2

|∇Aψ|2 + |∇ ×A|2 + λ

2
(|ψ|2 − 1)2. (2.18)

The Ginzburg-Landau equations on the plane model superconductors which are spatially

homogeneous in one direction, when neglecting boundary effects. They also describe equi-

librium states of the U(1) Higgs model of particle physics [40]. Equations (2.16) and (2.17)

also have translational and gauge symmetries.

First we prove the same result as in [63] for the magnetic Ginzburg-Landau:

Theorem 2.9 (Ting-Wei [75]). There exists ε0 > 0 small, and for fixed λ > 1
2 and an

integer k ≥ 7. There exists a sequence, (ui)i≥0 := (ψi, Ai)i≥0, of non-radial degree-
changing solutions to (2.16) and (2.17) containing kmi vortices, mi →∞, invariant under
rotations by 2π

k (but not by rotations in O(2) in general) and reflections in the x2 = 0 line.
Each ui has finite-energy and the energy of ui approaches +∞ as i→ +∞.

The same result holds for CSH:

Theorem 2.10 (Ao-Pacard-Ting-Wei [4]). There exists ε0 > 0 small, and for fixed λ > 1
μ

with λ− 1
μ < ε0 and an integer k ≥ 7. There exists a sequence, (ui)i≥0 := (ψi, Ai)i≥0, of

non-radial degree-changing solutions to (2.11) and (2.12) containing kmi vortices, mi →
∞, invariant under rotations by 2π

k (but not by rotations in O(2) in general) and reflections
in the x2 = 0 line.
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For general networks, we can also construct solutions to (2.11)-(2.12) or (2.16)-(2.17)

without any symmetry, as in Theorem 2.8.

Theorem 2.11 (Ao-Pacard-Ting-Wei [4]). There exists ε0 > 0 small, and for fixed λ > 1
μ

with λ− 1
μ < ε0, there exists infinitely many solutions of (2.11) and (2.12) which have finite

energy but without any symmetry. The same result holds for (2.16)-(2.17) for λ > 1
2 .

2.9. Geometric analogues with CMC theory. One of the striking features of all the six
types of solutions, which are purely PDE results, is that their counterparts and origins can

be found in geometric framework. Indeed, there are many examples where correspondence

between solutions of (2.1) and those of some geometric problem can be drawn. To illustrate

this, we will concentrate on what is perhaps the most spectacular one: the analogy between

the theory of complete constant mean curvature surfaces in Euclidean 3-space and the study

of entire solutions of (2.1). In the following we will draw parallels between these geometric

objects and families of solutions of (2.1).

The two well-known CMC surfaces in R3 are spheres and cylinders. In the mid 19th

century Delaunay discovered a new family of singly periodic embedded constant mean cur-

vature surfaces of revolution Dτ , parametrized by a parameter τ ∈ (0, 1], which interpolate

between the cylinder D1 = S1(1)×R and the singular surface D0 := limτ→0 Dτ , which is

the union of an infinitely many spheres of radius 1/2 centered at each of the points (0, 0, n)
as n ∈ Z. When τ = 1, the Delaunay surface is nothing but a right circular cylinder

D1 = S1(1) × R, with the unit circle as the cross section. This cylinder is clearly in-

variant under the continuous group of vertical translations, in the same way that the single

bump-line solution of (2.1) is invariant under a one parameter group of translations. It is

then natural to agree on the correspondence between the cylinder D1 and the single bump-

line solution w(x). On the other hand the unique radially symmetric, decaying solution of

(2.1) corresponds to the sphere. The full correspondence of Delaunay solution should cor-

respond to the family of mountain-pass solutions of (2.1) built as follows (see [11]): Let

SR = R × (0, R) and consider a least energy (mountain pass) solution in H1(SR) for the
the energy

1

2

∫
SR

|∇u|2 + 1

2

∫
SR

u2 − 1

p+ 1

∫
SR

up+1,

for large R > 0, which we may assume to be even in x and with maximum located at the

origin. For R very large, this solution, which satisfies zero Neumann boundary conditions,

resembles half of the unique radial, decaying solution w2 of (2.1). Extension by successive

even reflections in z variable yields a solution to (2.1) which resembles a periodic array of

radially symmetric solutions of (2.1), with a very large period, along the z-axis. While this is

not known, these solutions may be understood as a limit of the branch solutions constructed

by Dancer.

A CMC surface S of finite topology is Alexandrov-embedded; if S is properly im-

mersed, and if each end of S is embedded; there exist a compact manifoldM with boundary

of dimension three and a proper immersion F : M \ {q1, q2, · · · , qm} → R3 such that

F |∂M\{q1,q2,··· ,qm} parametrizes M. Moreover, the mean curvature normal of S points into

M. Then we define tridulonoid as an Alexandrov embedded CMC surface having zero genus

and three ends. Triunduloids are a basic building block for Alexandrov embedded CMC sur-

face with any number of ends. Mazzeo-Pacard [58] established existence of tridunduloid

with small necksize or high symmetry.
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With these analogies in mind, we can now translate the other four types of solutions

above into the constant mean curvature surface framework.

The result of Theorem 2.1 corresponds to the connected sum of finitely many copies of

the cylinder S1(1)× R which have a common plane of symmetry. The connected sum con-

struction is performed by inserting small catenoidal necks between two consecutive cylinders

and this can be done in such a way that the ends of the resulting surface are coplanar. Such

a result, in the context of constant mean curvature surfaces, follows at once from [59]. It

is observed that, once the connected sum is performed the ends of the cylinder have to be

slightly bent and moreover, the ends cannot be kept asymptotic to the ends of right cylinders

but have to be asymptotic to Delaunay ends with parameters close to 1, in agreement with

the result of Theorem 2.1. However there is a major difference. The Toda system which

governs the level sets has found no analogy in the constant mean curvature surfaces. This is

mainly due to the strong interactions in the elliptic equations.

Another (older) construction of complete noncompact constant mean curvature surfaces

was performed by N. Kapouleas [43] (see also [58]) starting with finitely many halves of

Delaunay surfaces with parameter τ close to 0 which are connected to a central sphere. The

corresponding solutions of (2.1) are the Type IV solutions constructed by A. Malchiodi in

[54].

Type IV and Type V solutions belong to the same tridunduloid type of solution for (2.1)

in R2 i.e. a solution having three ends ([57]-[59]). Type VI solutions (Theorems 2.3 and 2.8)

corresponds to construction for immersed constant mean curvature surfaces in Euclidean

3-space given in [43].
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Duality in Boltzmann equation and its applications

Shih-Hsien Yu

Abstract. In this paper we will survey a quantitative and qualitative development on the Boltzmann

equation. This development reveals the dual natures of the Boltzmann equation: The particle-like

nature and the fluid-like nature. This dual nature property gives rise to the precise construction of the

Green’s function for Boltzmann equation around a global Maxwellian state. With the precise structure

of the Green’s function, one can implement the Green’s function to study various problems such as

invariant manifolds for the steady Boltzmann flows, time asymptotic nonlinear stability of Boltzmann

shock layers and Boltzmann boundary layers, Riemann Problem, and bifurcation problem of boundary

layer problem, etc.
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1. Introduction

The Boltzmann equation for the hard sphere collision model is a basic equation for the

thermal non-equilibrium gases or rarefied gas flows:

∂tf + ξ · ∇�xf = Q(f)/κ, f(�x, t, ξ) ∈ R, �x, ξ ∈ R3, κ > 0. (1.1)

Here, f(�x, ξ, t) stands for the gas particle velocity density function with velocity ξ ∈ R3

at (�x, t) ∈ R3 × R; and Q is a bilinear integral operator on the velocity density function

f(x, t, ξ), which represents the mechanism for particle collision. One can regard the collision

operator as an equilibrating mechanism. The constant κ > 0 is the Knudsen’s number, which

represents the mean free path of the gas flow.

The main purpose to investigate the Boltzmann equation qualitatively and quantitatively

is to clarify the following two subjects:

i) Theoretical background of gas-dynamic equation (Euler, Navier-Stokes, or other equa-

tions). There is a Ghost effect showing the incompleteness of the classical gas dynamic

system (Euler and Navier-stokes), [29].

ii) The behavior of gas where the Knudsen number is not small.

The Boltzmann equation is a particularly interesting equation in terms of its physics

nature by varying the size of κ or the sizes of the space-time scales. When κ � 1 or in

a small space-time scales, the solution behavior resembles to free particle motions. When
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κ� 1 and space-time scales are large, the balance of the transport nature ∂t+ξ ·∇x and the

equilibrating mechanics by Q results in a conventional compressible fluid structure, which

is close to the compressible Euler equation for ideal gases by the Hilbert expansion.

With the presence of a physical boundary, the gas flows behave very differently from the

conventional fluid mechanics such as the thermal transpiration flows, edge flows, condensa-

tion-evaporation problems, etc. mentioned in the monograph by Sone, [29]. Grad, [8–10],

also recognized an atypical nature when the presence of boundary. He proposed to have

complete studies with the presences of singular layers regarding to boundary, initial data,

and shock wave which are the key elements for a deep understanding of the Boltzmann

equation.

Since the collision operator Q is a nonlinear integral operator, it attracts attentions of

researchers to develop theories on Q such as the exponentially fast convergence to an equi-

librium state for a space homogeneous problem, [2, 3]. However, those beautiful results on

space homogeneous problems did not provide so much informations to study the space in-

homogeneous problems. The first global result on nonlinear theorem with the presence of

ξ · ∇�x by [33] was due to a better understanding of the spectral property of the linearized

Boltzmann equation (∂t + ξ · ∇x − L)g = 0 in [6], where L is a linear collision operator

around a global Maxwellian state. The analysis on the spectrum of −ξ · ∇�x + L is the first

analytic establishment on the balance of ξ · ∇�x and L.
The mathematical developments on the Boltzmann equation thrilled since late ’70 by

various groups by different approaches and interests. Mathematically and physically, the

collective behavior among ξ · ∇�x, Q, and a physical boundary is even more interesting and

complex. However, one still expects further substantial progress in this regard to achieve

the understanding so that this subject is possible. On the other hand from ’60 Sone [22–24,

24, 26–28, 30–32] has obtained very interesting theories regarding to boundary phenomena

related to the Boltzmann equation and kinetic equations.

In year 2002 a completely different approach in the mathematical analysis for the Boltz-

mann equation was introduced by Liu and Yu to serve as a primary tool to undertake the

analysis for the singular layers arouse from the shock layer, boundary layer, and initial layer

as well as to give some partial results on Sone’s discoveries. This is an approach based on

the dual physical natures “wavelike-particlelike” of the Boltzmann equation. This article is

aimed to review this development and its applications towards the problems by Sone and

Grad.

2. Some background and motivation for Boltzmann equation and conservation
laws

In [6], one considers the spectrum problem

(−iξ · η + L)ψ(η) = σ(η)ψ(η) (2.1)

for the linear Boltzmann equation

ft + ξ · ∇�xf − Lf = 0 (2.2)

around a global Maxwellian state M = M[1,0,θ] in the Fourier variable η ∈ R3, where

M[ρ,u,θ](ξ) = ρ e−
|ξ−u|2

4θ

(4πθ)3/2
. It is asserted that there exist κ0 > 0 and κ1 > 0 such that for
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|η| < κ0 there are five branches σj(|η|) ⊂ {z ∈ C|Re(z) < 0} tangential to the imaginary

axis with the asymptotic for |η| � 1{
σ1(η), σ2(η) = ±ic|η| −A1|η|2 +O(|η|3),
σj(η) = −Aj |η|2 +O(1)|η|3 for j = 3, 4, 5,

(2.3)

with Aj > 0, where c =
√
5θ/3 is the speed of sound wave at rest; and there is a spectral

gap:

σ(η) �∈ {Re(z) > −κ1} for |η| > κ0. (2.4)

One can view the spectrum σ(η) as a balance of the space transport mechanism ξ ·∇�x in the

Fourier variable η and the linear collision operator L. By this spectrum property in [33], one

applied a resolvent approach and a bootstrap approach to yield nonlinear stability of a global

Maxwellian state M.

In [11, 21], one expanded the eigenfunction ψ(η) in terms of the collision invariants of L
so that the relationship between the Boltzmann equation and the hydrodynamic equations is

clearer. The expansion of the eigenfunctions gave hints to the introduction of macro-micro

decomposition in [14]:

f = P0f + P1f ≡ f0 + f1, (2.5)

where P0 is a linear combination of finite number of collision invariants related to a local

Maxwellian; and one can identify f0 as a vector in R3 for a planar wave problem. With this

decomposition, one can rewrite the time asymptotic stability for a planar wave perturbation

j, ∂tj + ξ1∂xj =
δQ
δϕ j + Q(j), of a Boltzmann shock profile ϕ coupled with a 3×3 viscous

system through the microscopic component j1 of j:

∂tF +A(x)Fx = B(x)Fxx +O(1)J(∂tj1), F ∈ R3. (2.6)

Here, the Boltzmann shock profile ϕ of (1.1) is a travelling wave solution f(x, t) = ϕ(x−st)
connecting two Maxwellians M[ρ±,u±,θ±] given by a hyperbolic shock wave ((ρ−, u−, θ−),
(ρ+, u+, θ+)) together with the speed s given the Rankine-Hugoniot condition.

Then, by assuming that the difference of the end states of the shock wave is sufficient

small and the total macroscopic component of perturbation is zero, one shows that the Boltz-

mann shock profile is stable by implementing the energy method for conservation laws by

[7]. The consequence of the stability is that the Boltzmann shock profile ϕ(x, ξ), obtained
by [1], is a positive-valued function in (x, ξ).

With the micro-macro decomposition, one can implement this energy method to work

out the problem about the existence of Knudsen layers (boundary layers) with condition,

|Mach Number| �= 0, 1, [34]. The energy method was also applied to derive a macroscopic

H-theorem, [19], to show the time asymptotic convergent to a hyperbolic rarefaction wave,

[20], and to show nonlinear stability of the boundary layer with Mach number less −1, [35].
When Mach Number > −1, the energy method can not be applied due to the fact that

the solution of initial boundary value problem contains singularity at boundary so that the

energy method could not be applied. It led to search for a new approach which does not

require regularity property of the solution. The right candidate for such a tool is the Green’s

function since the Boltzmann equation is a semilinear equation.
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3. Particlelike-Wavelike duality

One starts to consider problems in planar wave solutions to establish the understanding on

the natures of the Boltzmann equation, i.e. x, η ∈ R, and ξ ∈ R3.

We start to review the work given in [15]. It begins from the consideration of the Green’s

function for (2.2). The Green’s function can be represented as the inverse transform of the

semigroup:

G(x, t) =
1

2π

∫
R

eiηx+(−ξ1η+L)tdη. (3.1)

This is an L2
ξ-operator-valued function in (x, t), where L2

ξ is the standard Hilbert space,

L2(R3). The spectral information σ(η) of (2.1) given in (2.3) poses a difficulty to obtain the

Green’s function for any (x, t) since there is no spectral information σ(η) for all |η| ≥ κ0.

In order to cope with the insufficient spectral information due to (2.4), one introduces a long

wave-short wave decomposition of the Green’s function

G(x, t) = GL(x, t) +GS(x, t),⎧⎨⎩GL(x, t) ≡ 1

2π

∫
|η|<ε0

eiηx+(−iηx+L)tdη, for a fixed ε0 ∈ (0, κ0),

GS(x, t) = G(x, t)−GL(x, t).

(3.2)

Here,GL(x, t) is a long wave component of the Green’s function. The spectrum information

(2.3) is the core to build the long wave component for both the Boltzmann equation and

linearized compressible Navier-Stokes equations. By complex analysis one can conclude

the long wave component GL(x, t) satisfies for t ≥ 1 and |x| < 2ct there exists C0 > 0
such that

‖GL(x, t)‖L2
ξ
≤ O(1)

⎛⎝e−
(x+ct)2

C0t + e−
x2

C0t + e−
(x−ct)2

C0t

√
t+ 1

⎞⎠ ; (3.3)

‖∂k
xGL‖L2

x(L
2
ξ)
≤ O(1) for k = 0, 1, 2, · · · , (3.4)

and one also has that

‖GS(x, t)‖L2
x(L

2
ξ)
≤ O(1)e−t/C0 , (3.5)

where c is the sound speed at rest.

Though ‖GS‖L2
x(L

2
ξ)

decays exponentially fast, it still does not assert that the ‖GS‖L∞x (L2
ξ)

decays sufficient fast for the purpose to study the full nonlinear problem with presence of

boundaries or shock layers. To resolve the problem for obtaining the estimate for ‖GS‖L∞x (L2
ξ)
,

one needs to reconsider the problem (2.2) in the space-time domain instead of the transform

domain, and one needs to spell out the linear collision operator L in details in order to catch

the physics nature of the Boltzmann equation:

Lg(ξ) = −ν(ξ)g(ξ) + Kg(ξ),⎧⎪⎪⎨⎪⎪⎩
ν(ξ) ≥ ν0(1 + |ξ|),
Kg(ξ) ≡

∫
R

K(ξ, ξ∗)g(ξ∗)dξ∗,

K(ξ, ξ∗) ∈ C∞ for |ξ − ξ∗| > 0.

(3.6)
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After spelling L one rearranges (2.2) in the form of particle propagation (ODE along particle

path): {
(∂t + ξ1∂x + ν)f = Kf,

f(x, t, ξ) = δ(x)δ3(ξ − ξ∗).
(3.7)

Then, one can perform the standard Picard’s iteration in ODE for finite number of itera-

tions with some cut-off in K(ξ, ξ∗) in the first iteration to yield the following particlelike

decomposition: {
f = P+ R,

P ≡∑2l
k=0 fk.

(3.8)

Here, R(x, t) is the remainder term of the Picard iteration. The functions fk and R(x, t)
satisfy the property:

f0(x, t) = e−ν(ξ)tδ(x− ξ1t)δ3(ξ − ξ∗),

‖fk(x, t)‖L2
ξ
≤ O(1)e−(|x|+t)/C0 for k = 3, · · · , 2l + 1,

∂k
ξ f2(x, t, ξ) <∞ for k = 0, · · · , 2l,{

(∂t + ξ1∂x − L)R = Kf2l+1,

R|t=0 ≡ 0.

(3.9)

From the properties (3.9) and (2.3), one can only have property about the remainder

R(x, t) there exists C0 > 0

‖R(·, t)‖L2
x(L

2
ξ)
≤ C0 for t > 0. (3.10)

Here, neither the two decompositions (3.2) nor (3.8) give the global structure of ‖G(x, t)‖L2
ξ

for all (x, t).
Denote

Ml ≡
e(−ξ1∂x−ν(ξ))tK ∗

(x,t)
e(−ξ1∂x−ν(ξ))tK ∗

(x,t)
· · · ∗

(x,t)
e(−ξ1∂x−ν(ξ))tK︸ ︷︷ ︸

2l times

∗
(x,t)

e(−ξ1∂x−ν(ξ))t.

(3.11)

Lemma 3.1 (Mixture Lemma [15]). For each given l ≥ 0 there exists Ol > 0 such that

‖∂l
xMlg‖L2

x(L
2
ξ)
≤ Ol

(
‖g‖L2

x(L
2
ξ)
+ ‖∂l

ξg‖L2
x(L

2
ξ)

)
for t ≥ 0. (3.12)

Here, e(−ξ1∂x−ν(ξ))t is a transport mechanism in the space-time domain andK is a mech-

anism to mix the velocity density distribution ξ at (x, t). This lemma asserts the conversion

from the microscopic regularity ∂ξ to the macroscopic regularity ∂x with every two mix-

ture of e(−ξ1∂x−ν(ξ))tK ∗
(x,t)

e(−ξ1∂x−ν(ξ))tK. This lemma is about the conversion on the

regularity through space convection and microscopic velocity.
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3.1. Dual structures. Here, (3.3), (3.4), (3.5), (3.9), (3.10), and (3.12) are facts of simple

mathematical analysis except (3.3) required some detailed complex analysis. By each own

mathematical approach along, there is no much room to obtain the structure ‖G(x, t)‖L2
ξ
.

It is strikingly interesting that all those simple estimates binding together will generate the

dual natures of the Boltzmann equation. By equating the two decompositions (3.2) and (3.8)

together, ⎧⎪⎨⎪⎩
P−GS = GL − R,

‖∂l
x(GL − R)‖L2

x(L
2
ξ)
= Ol for l ≥ 2,

‖P−GS‖L2
x(L

2
ξ)
≤ O(1)e−t/C0 .

(3.13)

The above and Poincare’s inequality yield that

‖R−GL‖L∞x (L2
ξ)
= ‖P−GS‖L∞x (L2

ξ)
≤ O(1)e−t/C1 for some C1 > 0. (3.14)

It concludes that the remainder term R and the long wave component GL are exponentially

close; and the compressible viscous fluid wave structure presented in R and the shortwave

component GS(x, t) are as follows.

‖R(x, t)‖L2
ξ
≤ O(1)

⎛⎝e
− (x+ct)2

C0(t+1) + e
− x2

C0(t+1) + e
− (x−ct)2

C0(t+1)

√
t+ 1

⎞⎠ ;

‖P−GS(x, t)‖L2
ξ
≤ O(1)e−t/C1 .

(3.15)

In particular, one can have a time lapse property for the remainder term R:

‖R(x, t)‖L2
ξ
≤ O(1)

∫ t

0

e−τ/C1dτ

⎛⎝e
− (x+ct)2

C0(t+1) + e
− x2

C0(t+1) + e
− (x−ct)2

C0(t+1)

√
t+ 1

⎞⎠ . (3.16)

This, (3.8), and (3.9) together conclude the particlelike-wavelike structure, P(x, t)-R(x, t),
of the linear Boltzmann equation (2.2).

Remark 3.2. The two decompositions P+R andGS+GL are complimentary to each other

in their focusing on particle nature and wave nature. The first one loses its focus when the

time frame becomes large. The second one becomes rough when wave length becomes small,

since the spectral analysis does not register the physics nature in the space-time variable.

The mixture lemma plays a simple role to merge these two complimentary decompositions

together by (3.13) to result in the precise structure R(x, t) in (3.16) and GS(x, t) in (3.14).

3.2. Diagonal and off-diagonal hydrodynamic structure. With respect to the macro-

micro decomposition (P0,P1), the representation P0ξ
1P0 of the macroscopic transport ξ1 is

identical to the convection matrix of a linearized Euler equation. The convection matrix can

be diagonalised in terms of the Riemann invariants Ej , j = 1, 2, 3,

P0ξ
1P0Ej = λjEj ,

(Ej ,Ek) = δjk,
{λ1, λ2, λ3} = {−c, 0, c},
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so that each Riemann invariant Ej propagates along a particular direction dx/dt = λj , where

c is the speed of sound wave. Those Riemann invariants Ej and the Green’s function G(x, t)
satisfy for t ≥ 1

(El,GL(x, t)Ek) ≤ O(1)
e−

(x−λjt)
2

C1t

t(3−δkj−δlj)/2
for |x− λjt| < c

2
t. (3.17)

Remark 3.3. With the time decaying rates, this property (3.17) gives a time-asymptotically

diagonalization property. It is the key analytic ingredient to assure the Green’s function

G(x, t) to become a powerful instrument to apply to various different problems.

4. Application of the Green’s function

After establishing the structure of the Green’s functions for planar wave solutions, one had

applied those structures to various nonlinear problems. We will outline the applications of

the Green’s function in this section.

4.1. Pointwise convergence to global Maxwellian state. In [15], one considers a small

perturbation of the Boltzmann equation around a global Maxwellian in a 1-D space domain{
ft + ξ1∂xf = Lf +M−1/2Q(M1/2f),

‖f(x, 0)‖L∞ξ,β ≤ O(1)ε e−|x|, β ≥ 5/2
(4.1)

where ‖g‖L∞ξ,β is defined by ‖(1 + |ξ|)βg‖L∞ξ . The Green’s function and the lemmas in [13]

for nonlinear waves coupling give the structures of the perturbations as follows.

‖f(x, t)‖L∞β ≤ O(1)ε

⎛⎝ 3∑
j=1

e
− (x−λjt)

2

C0(1+t)

√
1 + t

+ ψj(x, t) + e−(|x|+t)/C0

⎞⎠ , (4.2)

where ψj(x, t) = 1/
√
(x− λjt)2 + t, which is the dissipation wave given in [13].

4.2. Time asymptotic stability of an initial boundary value problem. In [17], one con-

siders a global Maxwellian M[1,u,θ] with Mach number ≡ u/
√
5θ/3 �∈ {−1, 0, 1} in a

half space domain with an imposed homogeneous boundary condition. One begins with the

linear Milne’s problem: ⎧⎪⎨⎪⎩
gt + ξ1∂xg = Lg,

g(0, t)|ξ1>0 = 0,

‖g(x, 0)‖L∞ξ,3 ≤ e−|x|.

(4.3)

The Green’s functionG(x, t) for (2.2) plays a role to reduce the linear initial boundary prob-

lem into a pure boundary value problem by subtracting h(x, t) ≡ ∫∞
0

G(x − y, t)g(y, 0)dy
from g(x, t) to result in the boundary value problem:⎧⎪⎨⎪⎩

∂tj+ ξ1∂xj− Lj = 0,

j(0, t)|ξ1>0 = −h(0, t)|ξ1>0,

j(x, 0) ≡ 0,

(4.4)
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where the function h satisfies ‖h(0, t)‖L∞ξ,3 ≤ O(1)
∑3

j=1
e
−λ2

j t

√
t+1

due to the pointwise struc-

ture of G(x, t) and where {λ1, λ2, λ3} ≡ {u −
√
5θ/3, u, u +

√
5θ/3}. For the problem

(4.4) together with a boundary condition h(0, t)|ξ1>0 with a pointwise structure, a upwind

damping mechanism γB+ was applied to introduce an auxiliary problem⎧⎪⎨⎪⎩
∂tja + ξ1∂xja − Lja = −γB+ja,

ja(0, t)|ξ1>0 = −h(0, t)|ξ1>0,

ja(x, 0) ≡ 0.

(4.5)

This problem can be solved globally by the energy method with an exponentially growing

weighted function in x and t, where 0 < γ � 1 and the damping mechanism B+ was

introduced in [34] for the construction of a boundary layer. Then, one uses ja(0, t) as an

approximation to the full boundary data j(0, t).
The diagonal-off diagonal structure (3.17) and Duhamel’s principle are used to justify

that the approximated full boundary function ja(0, t) is a good approximation to j(0, t) so
that one can form a geometric series

∑∞
k=1 ja,k(0, t) to represent the full boundary data

j(0, t) and each term satisfies

‖ja,k(0, t)‖L∞ξ,3 ≤ O(1)γ−1/4+k
∞∑
k=0

3∑
j=1

e−λ2
j t/C0

√
t+ 1

. (4.6)

This yields the full boundary data j(0, t). With this data,G(x, t), and the first Green’s identity

together, one obtained the pointwise structure of the solution j(x, t) for all (x, t) ∈ R+×R+.

With the precise structure of the linear problem (4.4), the nonlinear time-asymptotic stability

follows.

Following the analysis for the nonlinear time asymptotic stability problem for a

Maxwellian in half space domain, in [4] one continued to study the time asymptotic point-

wise structure for a nonlinear problem around a Knudsen layer. The time asymptotically

nonlinear stability problem for a Knudsen layer for the cases Mach number �∈ {−1, 0, 1}
were concluded, and the motivation to introduce the Green’s function to study the Knudsen

layer was justified in this work.

4.3. Bifurcation of boundary layers. In [18], one started to analyze the Knudsen layer

when the Mach number close to 0 and±1. The Knudsen layers constructed in [34] are under

a condition that the Mach number at the far field does include ±1 and 0. Indeed, when

the Mach numbers are around 0 or ±1, the physical behaviours of the solutions are rather

singular as pointed out by Sone’s works listed the reference. The Knudsen layer problem

with Mach number near {±1, 0} is a bifurcation problem,⎧⎪⎨⎪⎩
−ξ1∂xF−Q(F) = 0 for x ∈ R+,

lim
x→∞

F(x) = M[ρ,u,θ],

F(0, t)|ξ1>0 : posed,

(4.7)

with respect to parameters given by the macroscopic variables of the Maxwellian M[ρ,u,θ]

at the far field. This is a singular problem due to two facts that the system (4.7) is an in-

finite dimensional dynamical system and it also possesses a transonic behavior with Mach
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number close to ±1 and a condensation-evaporation nature with Mach number is close to

0. This problem was not ready during the work in [34]. At that time the analytic tools

(energy estimates) available were too primitive and too rough to realize the rich natures of

the problem. The pointwise structure of the Green’s function in (3.17) and the particlelike

structure P given in (3.8) play an essential role to perform a finite dimensional reduction

for the dynamical system (4.7). To devise a finite dimensional reduction, one will need to

construct invariant manifolds for the system (4.7). One establishes the invariant manifolds

from building concrete projection operators Sx, Ux, and C0 on L∞ξ,3 for a linear system,

ξ1∂xf − Lf = 0, (4.8)

i.e. for any b ∈ L∞ξ,3 the functions Sxb and Uxb give the solutions of (4.8) so that

lim
x→∞

Sxb = 0, (4.9)

lim
x→−∞

Uxb = 0, (4.10)

C0b ∈ Range(P0), (4.11)

b = lim
x→0+

Sxb+ lim
x→0−

Uxb+ C0b. (4.12)

With the pointwise structure (3.17), one can show that the functions Sxb and Ux are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sxb ≡
∫ ∞
0

G(x, s)ξ1(1− B̃+)bds for x > 0,

S0+b ≡ lim
x→0+

Sxb,

Uxb ≡ −
∫ ∞
0

G(x, s)ξ1(1− B̃−)bds for x < 0,

U0−b ≡ lim
x→0−

Uxb,

C0b = P̃0b,

(4.13)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
P̃0 ≡

3∑
k=1

B̃k,

B̃kg ≡ (Ek, ξ
1g)Ek

λk
,

B̃± ≡
∑
±λk>0 B̃k,

where P̃0, B̃+, and B̃− are the Euler flux projection, the upwind Euler flux projection, and

downwind Euler flux projection.

The properties (4.9) and (4.10) are due to (3.17). The identity (4.12) is due to the δ-
functions in P (the particlelike wave) to yield a version of Gauss lemma given in Lemma

3 in [18]. Then, one has obtained the projection operators S0+, U0−, and C0 to the linear

stable manifold, linear unstable manifold, and the linear center manifold; and one also has

an exponentially decaying structures in Sx and Ux of the linear stable flows and linear un-

stable flows. Thus, with the exponentially decaying structures one can apply the standard

construction to obtain the local stable, local center-stable manifold for (4.7).

When the Mach number is close to 0, and ±1, one needs to compare the structures of

the linear stable and linear unstable manifold. When the Mach number is −1, there is a
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1-dimensional degeneracy to the center manifold either from the linear stable manifold or

linear unstable manifold. One can calculate this degenerated vector and use it to modify the

upwind damping B̃+ and the projection operator Sx into⎧⎪⎪⎨⎪⎪⎩
B�,ε
3 g ≡ (ξ1Eε

3, g)

(ξ1Eε
3, �

ε
3)
�ε3,

S�,εx g ≡
∫ ∞
0

Gε(x, τ)[ξ1(1− B�,ε
3 )g]dτ

(4.14)

so that one can verify the continuity of the microscopic component,

P1

∫ ∞
0

Gε(x, τ)[ξ1(1− B�,ε
3 )g]dτ, (4.15)

where ε is the difference of the Mach number and -1. Then, by energy estimates one can

have the uniformly exponentially decaying structure in x when ε > 0 and together with an

algebraic condition (148) in [18] on the macroscopic and microscopic component to yield

the uniformly exponentially decaying upper bound e−αx for x > 0 of ‖S�,εx ‖L2
ξ
and with the

uniform structure in ε > 0. By taking the limits ε→ 0+, it follows{
b = S̊0+b⊕ C̊0b⊕ Ů0−b,

dim(Range(C̊0)) = 4,
(4.16)

where S̊0+, Ů0−, and C̊0 are linear stable manifold and linear unstable manifold, and the

linear center manifold. With the uniformly exponential decaying upper bound of ‖̊Sx‖L2
ξ
for

x > 0, one can construct the local centre-unstable manifold. By taking the limit of ε→ 0−,

then one can construct the local unstable and center-stable manifolds; and the dimension of

the nonlinear center manifold is 4. Since all Maxwellian states M are equilibrium states of

the dynamical system, they are all in the center manifold. Due to the fact that the collision

operator is orthogonal to the collision invariant, the macroscopic flux �q = P0ξ
1M is an in-

variant 3-vector of the dynamical system. This gives a three constraints to the 4-dimensional

center manifold and yields a 1-dimensional invariant manifold in the center manifold with

two fixed points corresponding to the Maxwellians (M�q
−,M

�q
+), which are related to the end

states of a shock wave. Then, by using the coordinate of the linear center manifold and linear

stable manifold one can obtain a two scale dynamical system in the center-stable manifold

with two co-dimension 2 invariant manifolds at the equilibrium states M�q
− and M�q

+. The

flows on the two co-dimension 2 will converge to the equilibrium state with an uniform ex-

ponential rate. Otherwise, it behaviours like a Burgers’ equation (compressible fluid like).

We illustrate the phase diagram of the center-stable manifold of the dynamical system given

by (4.7) around a Maxwellian M0 state with Mach number= −1.
The dynamical system on the 1-D invariant curve (center manifold) is a Burgers type

ODE (First order ODE). This flow concludes a connecting orbit for the two states (M�q
−,M

�q
+).

This proves the existence of Boltzmann profile as well as the monotone property of the pro-

file. This monotone property is a problem raised in [14]. Here, the two co-dimension 2

invariant submanifolds of the center-stable manifold define two scalar functions K− and

K+ on the center-stable manifold so that the function K− gives the bifurcation of the dy-

namical system; and the function K+ defines the hydrodynamics flows patterns, either a

slowly expanded pattern for flows in the region K+ < 0 or an exponentially fast compres-

sive wave pattern in the region {K+ > 0} ∪ {K− < 0}. With these two functions, one
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Sone Manifold
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K < 0
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K+ > 0

Mq
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q

Figure 4.1. Two-scale dynamics on the center-stable manifold M�q
+ which is the center-stable manifold

with macroscopic flux �q ≡ P0ξ
1M−.

can return to the bifurcation of the Milne’s problem (4.7). By Lemma 20 in [18], there is a

local 1-1 continuous map ι�q from the center-stable manifold with given macroscopic flux �q
to the space L∞ξ,3,+, which is the space for the imposed boundary data. Thus, the sign of the

function K−(ι�q(b)) gives the bifurcation of the Milne’s problem around the Mach number

=-1. When Mach number is around 0, the result in [18] gives the Sone’s bifurcation from

condensation to evaporation.

4.4. Linear and nonlinear wave scattering around a Boltzmann shock layer. In [36],

one considers the Boltzmann equation around a Boltzmann shock profile, ϕ(x− st):{
(∂t − s∂xF) + ξ1∂xF− LϕF = Q(F),

F(x, 0) = F0(x), (posed initial data,)
(4.17)

where Lϕ is a linear collision operator around the shock profile ϕ. Suppose that the Boltz-

mann shock profile ϕ is for a weak 3-shock wave (�u−, �u+) for a compressible Euler equa-

tion as a system of hyperbolic conservation laws:

�ut + �F(�u)x = 0, �u ∈ R3.

One wants to remove the zero total macroscopic mass condition in [14],∫
R

P0F0(x, 0)dx = 0 (4.18)

for the purpose to investigate the hydrodynamic limits problem for the Boltzmann equation,

[9, 10].

The main point is on obtaining the optimal linear wave propagation around the Boltz-

mann shock layer and to use it to establish the nonlinear wave coupling. The central idea is

due to viscous conservation laws. The approach to obtain the linear wave scattering around

a shock profile is called the T-C scheme (transverse-compressible scheme). This scheme is
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closely related to the Lax’s entropy condition for a p-th shock wave and the diffuse waves

introduced in [12] to determine the viscous shock profile phase shift. In [36] one uses the

Green’s functions at two far fields to construct an approximated solution A0(x, t) and a local

wave front l0(t)ϕ
′(x) to approximate the solution of the linearized problem

(∂t + (ξ1 − s)∂x − Lϕ)f = 0 (4.19)

to yield that E0, the truncation error for (4.19),

E0 ≡ (∂t + (ξ1 − s)∂x − Lϕ)(A0(x, t) + l0(t)ϕ
′(x)) (4.20)

satisfies that following property:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
R

(Di,E0(x, t))dx = 0, i = 1, 2,

‖P0E0(x, t)‖L∞ξ,3 ≤ O(1)
ε2

t
e−(ε|x|+ε2t)/C0 for t ≥ ε−2,

‖P1E0(x, t)‖L∞ξ,3 ≤ O(1)
ε√
t
e−(ε|x|+ε2t)/C0 for t ≥ ε−2,

(4.21)

where ε ≡ ‖�u− − �u+‖ and {D1,D2,M− − M+} are the macroscopic dual vectors of

{r1(�u−), r2(�u−), �u− − �u+}, and rj(�u−) are the j-th left eigenvectors of �F′(�u−). The

approximated solution A0 + l0ϕ
′ for (4.19) with the property (4.21) is the T part of the T-C

scheme.

Next, one needs to have an exponentially sharp estimate of the output w(x, t) due to the

truncation error E (x, t): ⎧⎨⎩(∂t + (ξ1 − s)∂x − Lϕ)w = −E0,∫
R

P0w(x, 0)dx = 0.
(4.22)

This is a system of equations and there is no spectrum gap property to assure an exponential

decaying structure though w(0, t) will exponentially converge in time. For the purpose to

assert an exponential estimate, one introduced a damping to the system (4.22):⎧⎪⎪⎨⎪⎪⎩
(∂t + (ξ1 − s)∂x − Lϕ)W0 = −E0 − γ

∑
j=1

(Dj ,W0)Dj ,∫
R

P0W0(x, 0)dx = 0,
(4.23)

with a small γ > 0. This system possesses conservation laws:∫
R

P0W0(x, t)dx = 0, (4.24)

so that with γ > 0, (4.24), and energy estimates one shows that this system will decay in

time exponentially.

Since the truncation error P0E0 does not possess any transient components, the damping

−γ∑j=1(Dj ,W0)Dj is essentially virtual. Hence, the solution W0(x, t) gives an exponen-

tially sharp approximation to the solution w0(x, t) around x = 0. The construction of the
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approximated solution W0(x, t) is called the C-part of the T-C scheme. This part creates

another truncation error −γ∑2
l=1(Dl,W0)Dl. Then, this leads to consider the problem⎧⎪⎨⎪⎩(∂t + (ξ1 − s)∂x − Lϕ)f1 = γ

2∑
l=1

(Dl,W0)Dl,

f1(x, 0) = 0.

(4.25)

One repeats the same procedure to give the T-C iteration:

To find Ai and li(t) satisfying⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ei(x, t) ≡ (∂t + (ξ1 − s)∂x − Lϕ)(Ai + li(t)ϕ

′)− γ
2∑

l=1

(Dl,Wi−1)Dl,

(∂t + (ξ1 − s)∂x − Lϕ)Wi = −Ei − γ
∑
j=1

(Dj ,Wi)Dj ,

Wi(x, 0) = 0,

(4.26)

and the property (4.21) for E0 still holds for Ei. Finally, one obtained sharp linear wave

scattering structure around the shock profile. The linear wave scattering structure is used to

show the pointwise structure of solution of (4.17) as illustrated:

1-

2-

3-

1-

2-

1-

2-

1-

1+

2+

3+

x

t

1   : backward acoustic wave
2   : macroscopic fluid path
3   :  forward acoustic wave 1-

Position of a shock 

x=0

±
±

±

2-

2-

Supersonic RegionSubsonic Region

This T-C scheme also works for viscous conservation law. Especially, the sharp point-

wise structure gives advantages in the study of the case with presence of boundary in [5].

4.5. Riemann problem for shock wave data. In [37], one considers the initial value prob-

lem (4.17) with a shock wave initial data F0(x):

F0(x) =

{
M�u− for x < 0,

M�u+
for x > 0.

(4.27)

Here, (�u−, �u+) is a shock wave and M�u± are Maxwellians related to the states �u±; and
‖�u− − �u+‖ = ε� 1.
This problem is a multi-time scale problem. There are five time scales illustrated by the table:
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Primary wave Valid time domain Scale Slip

f(x/t) 0 < t < 1 Hyperbolic scale Initial Layer

O(1) t ∼ 1 O(1) scale Overlapping layer (a)∑3
j=1 fj(

x−λjt√
t
) 1 ≤ t < ε−2 Parabolic scale Overlapping layer (b)

v(x, t) ε−2 ≤ t ≤ | log ε|ε−2 Nonlinearity for-

mation scale

Overlapping

layer (c)

P0ϕ(x) t < | log ε|ε−2 Time-asymptotic

stability scale
Shock layer

In the time scale 0 < t < 1, the particlelike structure P of the Green’s function and

the shock wave initial data force the solution F(x, t) to behave close to the hyperbolic scale

function f(x/t). In the time scale t ∼ 1, one breaks the collision operator into gain and

loss to yield the O(1) structure. When t ∈ (1, ε−2), one can linearize the problem at the

Maxwellian M�u− or M�u+
, then by the structure (3.17) one concludes that the structures

resemble to the convection heat equation with speeds λj . When t ∈ (ε−2, ε−2 log ε), one
restricts the macroscopic state on the line segment connecting M�u− and M�u+

to form an

approximated solution. This restriction carries the spirit of the Chapman-Enskog expansion.

One can derive a nonlinear scalar equation close to the viscous Burgers equation. One can

use the Hopf-Cole transform effectively to realize the formation of the nonlinear layer. When

t ∼ ε−2 log ε, one can use the formed profile by the Burgers-like equation and compare it

with the Boltzmann shock profile so that one applies the stability of a shock profile in [37]

to yield the global structure of the Riemann problem with a shock wave initial data.

4.6. Future developments. The works done in [4, 15, 17, 18, 36, 37] are for planar wave

motions of the Boltzmann equation. When the perturbations are multi-D, the mathematical

analysis of the related problems are completely open. Indeed, there are many open problems

in physics mentioned in the classical book [29].

About the Boltzmann equation in multi-D, the work in [16] gave the Green’s function

in 3-D space domain; and gave a wave structure related to Huygen’s principle for the 3-

D d’Alembert wave equation. In this aspect, it is interesting to consider the shock profile

stability under a 3-D perturbations and in particular the multi-D hyperbolic scale waves

interact with the viscous shock front. It is also interesting to consider the Riemann problem

without assuming the shock wave data. The thermal transpiration flow derived in [29] is an

interesting physical phenomenon to distinguish the difference between Boltzmann equation

and conventional fluid mechanics. To investigate the geometric effects due to a physical

boundary and to relate it with the geometric theory of diffraction would be very interesting

as well.

It is also very interesting to complete the Grad’s and Sone’s program to study the interac-

tions of the singular layers (shock layer, initial layer, and boundary layer) for 1-D problem.
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Three lives of the Gelfand-Zeitlin integrable system

Anton Alekseev

Abstract. Gelfand-Zeitlin integrable systems were discovered by Guillemin and Sternberg in 1983,

and they represent a standard reference point in the vast world of complete integrability. One of their

characteristic features is that action variables satisfy the interlacing inequalities which govern eigen-

values of Hermitian matrices and their principal submatrices. In the paper, we explain that besides the

standard Linear Algebra interpretation there are two other, seemingly unrelated situations where inter-

lacing inequalities and Gelfand-Zeitlin systems naturally arise. The first one is combinatorics of planar

networks with Boltzmann weights on their edges. Surprizingly, it turns out that maximal weights of

multi-paths in planar networks verify exactly the same inequalities as eigenvalues of Hermitian ma-

trices. The second one is tropicalization of Poisson structures. We show that tropicalization of the

canonical Poisson structure on the dual Poisson-Lie group U∗(n) produces an integrable system iso-

morphic to the Gelfand-Zeitlin system. The link between the three topics comes from the synthesis

of ideas of tropicalization, Total Positivity and Poisson-Lie groups. As an application, we sketch a

new symplectic proof of Horn inequalities for the spectrum of the sum of two Hermitian matrices with

given eigenvalues.

Mathematics Subject Classification (2010). Primary 53D17; Secondary 15B57.

Keywords. Gelfand-Zeitlin integrable systems, Poisson structures, planar networks.

1. Introduction

The Gelfand-Zeitlin completely integrable system is a structure at the crossroads between

several branches of Mathematics. It originates in Classical Mechanics and Poisson Geome-

try. The space of Hermitian n×nmatricesHn carries a canonical linear Poisson bracket (the

Kirillov-Kostant-Souriau bracket). The eigenvalues of a matrix are Casimir functions with

respect to this bracket, and symplectic leaves consist of matrices with fixed eigenvalues. The

eigenvalues of the principal submatrices (k × k submatrices sitting in the upper left corner,

with k = 1, . . . , n− 1) are not Casimir functions, but they are in involution with each other.

This defines a completely integrable systems (in the sense of Liouville) on each conjugacy

class inHn.

The construction described above was inspired by the work of Gelfand and Zeitlin [16]

on the family of bases in irreducible representations of the group U(n). Gelfand-Zeitlin in-

tegrable systems for group U(n) and SO(n) were introduced and studied by Guillemin and

Sternberg [14]. In particular, they considered applications to Bohr-Sommerfeld quantization

of coadjoint orbits. A Gelfand-Zeitlin system provides a set of action-angle variables on

the orbit. This observation was applied in [4] to the path integral approach to quantization

of coadjoint orbits, and then further applied to the theory of matrix integrals in [31]. The

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Gelfand-Zeitlin systems have also been studied in the framework of complex Poisson Ge-

ometry [26], and in the theory of Geometric Quantization on spaces with singularities. They

represent a standard reference point in the vast world of integrable systems.

The action variables of the Gelfand-Zeitlin system satisfy an interesting set of interlacing
inequalities. This is a rather elementary fact from Linear Algebra (and one of the very few

facts that we shall actually prove in the text). In the case of n = 2, the interlacing inequalities

reduce to the inequality |z| ≤ r =
√
x2 + y2 + z2 for the norm and one of the components

of a 3-dimensional vector (x, y, z) ∈ R3. Inequalities become more involved for higher n.
For each conjugacy class in Hn, the action variables of the Gelfand-Zeitlin system span an

interesting Gelfand-Zeitlin polytope.
In this paper, we present two new situations naturally governed by the interlacing in-

equalities. At first site, they are completely unrelated to the origins of the Gelfand-Zeitlin

systems in Linear Algebra and Classical Mechanics onHn. The first occurrence of interlac-

ing inequalities is in the theory of planar networks (planar graphs of special type) equipped
with Boltzmann weights on the edges. We shall be interested in maximal weights of paths

and multi-paths in the network and in some of its (naturally defined) subnetworks. Surpriz-

ingly, the piece-wise linear functions defined by the maximal weights satisfy exactly the

same inequalities as eigenvalues of principal submatrices of a Hermitian matrix [7]!

The second scenario that we study is somewhat more involved. In the theory of Poisson-

Lie groups (the semi-classical counterpart of the theory of Quantum Groups) one has a nat-

ural notion of duality. For G a compact simple Lie group, the dual Poisson-Lie group is

a very interesting object. Amont other things, they admit a global linearization given by

the (typically transcendental) Ginzburg-Weinstein isomorphism [15]. We study the Poisson-

Lie group U∗(n) in the coordinate system given by certain solid minors Δ
(k)
i (and inspired

by the Total Positivity and Cluster Algebra theories). We define the tropicalization of the

Poisson structure by making a change of variablesΔ
(k)
i = exp(τδ

(k)
i ) with τ → +∞. Trop-

icalization produces the following combinatorial data: a polyhedral cone and a completely

integrable system with action variables taking values in this cone. By now the reader is ex-

pecting the answer: the cone in question is defined by the interlacing inequalities and the

integrable system is exactly the Gelfand-Zeitlin integrable system!

While the reasons for these miraculous coincidences are not entirely clear, one possible

explanation is as follows: Flaschka-Ratiu [12] discovered an analogue of the Gelfand-Zeitlin

integrable system on the dual Poisson-Lie group U∗(n). The Ginzburg-Weinstein isomor-

phism, and its more precise versions given by the Linearization Lemma [2, 5] establish a

link to Hermitian matrices. The group U∗(n) is a subgroup of the group of upper triangular

matrices which admit a well-behaved tropicalization naturally leading to the world of pla-

nar networks. The work of assembling this puzzle is still in progress. For this reason, we

put more emphasis on different manifestations of the Gelfand-Zeitlin system and interlacing

inequalities rather then on drawing a unified picture.

As applications of our technique, we compute the asymptotic behavior of the Ginzburg-

Weinstein map (for elements ofU∗(n) close to the boundary of the corresponding symmetric

space). Again, this asymptotics is governed by the set of Gelfand-Zeitlin action variables.

Another application is a new symplectic proof [8] of the Horn inequalities which describe

the spectrum of a sum of two Hermitian matrices with given eigenvalues. This problem was

solved by Klyachko [23] and Knutson-Tao [24] using the techniques of Geometric Invariant

Theory. Several other proofs exist in literature, e.g. the one by Kapovich-Leeb-Millson

[19] using triangle inequalities in symmetric spaces and building. Our proof is based on the
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tropicalzation technique and on the control of the Liouville volumes.

Throughout the text, we consistently use the case of n = 2 (that is, of 2×2matrices) as an

example. We decided that the advantage of making the text more understandable outweighs

the disadvantage of hiding the real difficulties which typically occur for higher n.
We conclude with a number of open questions. Two of them are constructing the Gelfand-

Zeitlin integrable system for the group Sp(2n) and finding the planar network (or similar)

interpretation for the problem of a spectrum of the product of two unitary matrices with given

eigenvalues.

2. Interlacing inequalities obtained in three ways

The interlacing inequalities are inequalities between eigenvalues of Hermitian matrices and

their principal submatrices. They play a crucial role in the description of the Gelfand-Zeitlin

integrable system. It turns out that exactly the same inequalities come up in combinatorics

of planar networks and in Poisson-Geometry of dual Poisson-Lie groups. In this Section, we

describe three ways of obtaining the interlacing inequalities.

2.1. Interlacing inequalities and Gelfand-Zeitlin integrable systems. In this Section, we

explain the origin of interlacing inequalities in Linear Algebra and recall the Guillemin-

Sternberg construction [14] of the Gelfand-Zeitlin integrable system.

2.1.1. Hermitian matrices and interlacing inequalities. LetHn be the set of n× n Her-

mitian matrices,

Hn = {a ∈ Matn(C); a∗ = a}.
Denote by λ : Hn → Rn the map assigning to a the n-tuple of its ordered eigenvalues

λ : a �→ (λ1 ≥ λ2 ≥ · · · ≥ λn).

The map λ is continuous over Hn. Hermitian matrices with n distinct eigenvalues form an

open dense subset ofHn. Over this subset, the map λ is real analytic.

For a ∈ Hn, let a
(k) be the k×k principal submatrix of a sitting at the intersection of the

first k rows and the first k columns of a. In particular, a(n) = a and a(1) = a1,1. Matrices

a(k) are Hermitian, and one can introduce the corresponding eigenvalue maps λ(k) : a(k) �→
Rk. The maps λ(k) for k = 1, . . . , n give rise the generalized eigenvalue map (also called

the Gelfand-Zeitlin map) Λ : Hn → RN for N = n(n + 1)/2. It is convenient to place the

eigenvalues λ
(k)
i in the vertices of a triangular tableau of size n (see Figure 2.1).

Proposition 2.1. The generalized eigenvalues of a Hermitian matrix verify the interlacing
inequalities

λ
(k)
i ≥ λ

(k−1)
i ≥ λ

(k)
i . (2.1)

Proof. The first inequality λ
(k)
i ≥ λ

(k−1)
i follows from the minimax principle for eigenval-

ues of a Hermitian matrix:

λi(a) = max
U

min
x∈U,||x||=1

(x, a(x)),



986 Anton Alekseev

λ
(n)
1 · · ·λ

(n)
2 λ

(n)
n

λ
(n−1)
1 λ

(n−1)
n−1

··
·

· ·
·

λ
(1)
1

Figure 2.1. Triangular tableau of size n

whereU ⊂ Cn is a subspace of dimension i, ||·|| is the standard norm and (·, ·) is the standard
Hermitian product on Cn. Indeed, the maximum is taken over the subspaces U ⊂ Ck for

λ
(k)
i and over the smaller set of subspaces U ⊂ Ck−1 for λ

(k−1)
i .

The second inequality λ
(k−1)
i ≥ λ

(k)
i is obtained by observing that λi(−a) = −λn−i+1(a)

and by applying it to the first inequality.

Example 2.2. Let n = 2 and make the simplifying assumption that matrices a ∈ H2 are

traceless. The space of traceless 2 × 2 Hermitian matrices is isomorphic to R3. The top

eigenvalue of such a matrix λ
(2)
1 = −λ(2)

2 is then interpreted as the norm r of a vector

a ∈ R3, and the eigenvalue λ
(1)
1 is its Cartesian projection to the z-axis. In this case, the

inequalities take the form r ≥ z ≥ −r.
The interlacing inequalities define a polyhedral Gelfand-Zeitlin cone CGZ in RN . All

triangular tableaux verifying the interlacing inequalities come up as generalized eigenvalues

of Hermitian matrices:

Proposition 2.3. The image of the generalized eigenvalue map Λ is the Gelfand-Zeitlin cone
CGZ .

Sometimes it is more convenient to use a different parametrization of the Gelfand-Zeitlin

cone. Denote l
(k)
0 = 0 for all k = 0, 1, . . . , n and put

l
(k)
i = λ

(k)
1 + · · ·+ λ

(k)
i .

Proposition 2.4. The interlacing inequalities are equivalent to the following system of in-
equalities for the variables l(k)i :

l
(k)
i + l

(k−1)
i−1 ≥ l

(k)
i−1 + l

(k)
i ,

l
(k)
i + l

(k−1)
i ≥ l

(k)
i+1 + l

(k)
i−1.

(2.2)

One can place the variables l
(k)
i in the nodes of a triangular tableau of size n+ 1. Then,

the inequalities (2.2) admit the following visualization (see Figure 2.2). Two adjacent small

equilateral triangles covering the tableau form a small rhombus. Such rhombi have three

possible orientations, NE (North-East), NW (North-West) and S (South). Inequalities (2.2)

are in one-to-one correspondence with rhombi of NE and NW orientations.



Three lives of the Gelfand-Zeitlin integrable system 987

l
(n)
0 l

(n)
1

l
(1)
0 l

(1)
1

l
(0)
0

l
(n)
n

S

NENW

Figure 2.2. Triangular tableau with NE and NW oriented rhombi

For each rhombus with numbers a, b, c, d decorating the corners, the inequality

b+ d ≥ a+ c

says that the sum of numbers at the end-points of the short diagonal is greater or equal to the

sum of numbers at the end-points of the long diagonal (see Figure 2.3).

d

a b

c

Figure 2.3. b+ d ≥ a+ c

We shall denote by L : Hn → RN the map with components l
(k)
i . By abuse of notations,

we will denote the polyhedral cone defined by inequalities (2.2) (with l
(k)
0 = 0) by CGZ .

Denote by Hreg
n the subset of Hn where all interlacing inequalities are strict. On this

open dense subset, the generalized eigenvalues λ
(k)
i and the variables l

(k)
i are real analytic

functions of a ∈ Hn.

2.1.2. The Gelfand-Zeitlin integrable system. The Gelfand-Zeitlin map admits a natural

interpretation in terms of Poisson and Symplectic Geometry. Recall that the space Hn can

be naturally identified with the dual space to the Lie algebra u(n). The pairing is given by

〈a, ξ〉 = ImTr(aξ),

where a ∈ Hn is a Hermitian matrix and ξ ∈ u(n) is an anti-Hermitian matrix. Hence,

the space Hn
∼= u∗(n) carries a canonical linear Kirillov-Kostant-Souriau (KKS) Poisson

structure πKKS. On linear functions fξ(a) = 〈a, ξ〉, it is given by

{fξ, fη}KKS(a) = 〈a, [ξ, η]u(n)〉 = f[ξ,η]u(n)
.

The symplectic leaves of this bracket are formed by matrices with fixed eigenvalues. For

λ = (λ1 ≥ λ2 ≥ · · · ≥ λn), we denote the corresponding symplectic leaf by Oλ.

The following theorem is due to Guillemin-Sternberg [14]:
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Theorem 2.5. Over Hreg
n , the map L : (Hn, πKKS) → (Rn, π = 0) is a Poisson map. On

each symplectic leaf, it defines a completely integrable system.

In other words, components of the map L Poisson commute with each other:

{l(k)i , l
(m)
j }KKS = 0.

Moreover, for each λ = (λ1 ≥ · · · ≥ λn), they define a Poisson commutative subalgebra of

functions on Oλ spanned by m = dimOλ/2 independent functions.

On the subset Hreg
n , one can define the differential forms dλ

(k)
i and Hamiltonian vector

fields v
(k)
i = π�KKS(dλ

(k)
i ) = πKKS(dλ

(k)
i , ·). These vector fields integrate to circle actions

[14]:

Theorem 2.6. OnHreg
n , the Hamiltonian vector fields v(n)i vanish, and the vector fields v(k)i

with k �= n integrate to commuting circle actions with periods equal to 2π.

Hence, one obtains a densely defined action of the real torus of dimension n(n − 1)/2.
This torus action is known as the Thimm action, and it admits the following explicit descrip-

tion. Let a ∈ Hn, and choose a k × k unitary matrix u which diagonalizes a(k). Denote

by

U =

(
u 0
0 1

)
the block-diagonal matrix with u sitting in the upper left corner. Then, we have

UaU−1 =

⎛⎜⎜⎜⎜⎜⎜⎝
λ
(k)
1 . . . 0 a1,k+1 . . . a1,n

. . . . . . . . . . . . . . . . . .

0 . . . λ
(k)
k ak,k+1 . . . ak,n

ak+1,1 . . . ak+1,k ak+1,k+1 . . . ak+1,n

. . . . . . . . . . . . . . . . . .
an,1 . . . an,k an,k+1 . . . an,n

⎞⎟⎟⎟⎟⎟⎟⎠
The Thimm action of the circles corresponding to v

(k)
i with i = 1, . . . , k is given by conju-

gation of the matrix UaU−1 by the diagonal matrices of the form

diag
(
eiθ1 , . . . , eiθk , 1, . . . , 1

)
.

One can show that overHreg
n the matrix elements ak+1,i with i = 1, . . . , k are non vanishing.

One can then choose a section for the Thimm action by requiring ak+1,i to be real positive.

It gives rise to a system of action-angle variables on Hreg
n with action variables λ

(k)
i and

angle variables ϕ
(k)
i = Arg(ak+1,i). The symplectic forms on the leaves are then given by

formula

ωλ =
n−1∑
k=1

k∑
i=1

dλ
(k)
i ∧ dϕ

(k)
i ,

and the corresponding Liouville volume form is of the form

Lλ =
∏
k,i

dλ
(k)
i ∧ dϕ

(k)
i .
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Returning to interlacing inequalities, for λ = (λ1 ≥ λ2 ≥ · · · ≥ λn) we denote by

Δλ the intersection of the Gelfand-Zeitlin cone CGZ with the affine subspace defined by

equations λ
(n)
i = λi. The map L restricts to Oλ and maps it to Δλ with generic fibers the

orbits of the Thimm action. The push-forward of the Liouville volume form under the map

L is the Lebesgue measure on the polytope Δλ:

L∗ Lλ = χΔλ
dλ,

where χΔλ
is the characteristic function of Δλ.

Example 2.7. In the case of n = 2, symplectic leaves Oλ are either points (if λ1 = λ2) of

2-spheres (if λ1 > λ2). Gelfand-Zeitlin polytopes are segments λ
(1)
1 ∈ Δλ = [λ2, λ1] and

the induced measure is given by

L∗Lλ = χ[λ2,λ1] dλ
(1)
1 . (2.3)

2.2. Planar networks and inequalities. In this Section, we explain how interlacing in-

equalities come up in the combinatorics of planar networks with Boltzmann weights on the

edges.

2.2.1. Planar networks. Planar networks is a special type of planar graphs which originate

in the theory of Total Positivity.

Definition 2.8. A planar network of type n is a finite planar oriented graph Γ drawn on the

Cartesian plane with a coordinate system x, y such that

• Γ is contained between two vertical straight lines L and R.

• Edges of Γ are segments of straight lines with positive projection on the x-axis.

• Γ has exactly n sources on L and exactly n sinks on R.

1

2

3

1

2

3

1

2

3

1

2

3

Figure 2.4. Two examples of planar networks, Γhor and Γ0

The definition implies that planar networks do not have oriented cycles. We will label

sources on L and sinks on R with numbers {1, . . . , n} from bottom to top. We will denote

by V Γ the set of vertices of Γ and by EΓ the set of edges. A path in Γ is an oriented path

starting on L and ending on R. We denote the set of paths of Γ by PΓ. An i-path in Γ is

a collection of i paths which do not touch each other (that is, have no common vertices and

no common edges). The set of i-paths will be denoted by PiΓ. We shall denote by Γ(k) with

1 ≤ k ≤ n the planar network of type k obtained from Γ by deleting the sources and sinks

with labels k + 1, . . . , n and by deleting the edges having them as one of the end points.



990 Anton Alekseev

Two examples of planar networks are shown on Figure 2.4. The first one is denoted

by Γhor, and it has exactly n edges connecting sources and sinks with the same label. The

second one is denoted Γ0, and it has a more complicated structure with k slanted edges at the

kth floor of the network. Figure 2.4 shows the two examples for n = 3, but such networks

can be defined for any n.
Denote by T = R ∪ {−∞} the real line with the point −∞ added. The set T has a

natural structure of a semi-ring with operations

a+T b = max(a, b) , a ·T b = a+ b

and with −∞ being the neutral element for addition. This semi-ring is called tropical and it

plays an important role in Tropical Geometry.

We will consider planar networks equipped with weightings on their edges with values

in T. Thus, a weighting on Γ is a map w : EΓ→ T. We denote the set of all weightings by

W (Γ,T) . We define the following set of functions on W (Γ,T):

liΓ(w) = max
γ∈PiΓ

w(γ), (2.4)

where

w(γ) =
∑
e∈γ

w(e).

The right hand side of equation (2.4) is well defined if the set of i-paths PiΓ is non empty.

In case of PiΓ = ∅, we set liΓ(w) = −∞ for all w ∈W (Γ,T).
We put l0Γ(w) = 0 for all w ∈ W (Γ,T) and denote by lΓ : W (Γ,T) → Tn+1 the

map with components liΓ for i = 0, . . . , n. It is also convenient to introduce a map LΓ with

components l
(k)
i (w) = liΓ

(k)(w) for 0 ≤ i ≤ k ≤ n.

Proposition 2.9. Let Γ be a planar network of type n, and Γ′ ⊂ Γ a subnetwork which is
also to type n. Then, im (lΓ′) ⊂ im (lΓ).

Proof. Put the weights of all the edges in Γ\Γ′ equal to −∞. On remaining weights, the

map lΓ restricts to the map lΓ′.

It is interesting that the functions liΓ are completely expressed in terms of tropical opera-

tions: addition and maximum. The following result establishes a link between combinatorics

of weighted planar networks and interlacing inequalities [7]:

Theorem 2.10. Let Γ be a planar network of type n. Then, for all weightings w ∈W (Γ,T)
we have

liΓ
(k)(w) + li−1Γ

(k−1)(w) ≥ li−1Γ
(k)(w) + liΓ

(k−1),
liΓ

(k)(w) + liΓ
(k−1)(w) ≥ li+1Γ

(k)(w) + li−1Γ
(k)(w).

(2.5)

Theorem 2.10 states that the image of LΓ is contained in the closure of the cone CGZ in

the natural topology of TN .

The proof of Theorem 2.10 is based on the following observation. Consider, for instance,

the first inequality in (2.5). It can be rewritten in the form

max
α1∈PiΓ(k),β1∈P (k−1)

i−1

∑
e∈α1∪β1

w(e) ≥ max
α2∈Pi−1Γ(k),β2∈P (k−1)

i

∑
e∈α2∪β2

w(e).
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In the sums, we count the edges twice if they belong both to α1 and β1 (or to α2 and β2).
The inequality would follow if for every pair α2 ∈ Pi−1Γ

(k), β2 ∈ PiΓ
(k−1) there is a pair

α1 ∈ PiΓ
(k), β1 ∈ P

(k−1)
i−1 with the same set of edges (including mltiplicities). And this

turns out to be the case. Figure 2.5 illustrates this principle for i = 2. The second inequality

in (2.5) can be treated in a similar way.

−→

Figure 2.5. A 2-path in Γ(k−1) and a 1-path in Γ(k) redrawn as a 2-path in Γ(k) and a 1-path in Γ(k−1)

Motivated by Theorem 2.10, we call the map LΓ the tropical Gelfand-Zeitlin map. One

may wonder whether there exist planar networks for which the image of the tropical Gelfand-

Zeitlin map coincides with the closure CGZ of the Gelfand-Zeitlin cone. The answer to this

question is given by the following theorem [7]:

Theorem 2.11.
im(LΓ0) = CGZ .

Let W resΓ0 ⊂ WΓ0 be the subset of weights w which vanish on all horizontal edges

of Γ0 with the exception of the ones which connect to the sinks. Then, the number of

nonvanishing weights is equal to n(n+1)/2 and coincides with the number of nonvanishing

entries of the triangular tableau. Components l
(k)
i of the map LΓ0 are piece-wise linear

functions onW resΓ0 ⊂WΓ0. They define a splitting ofRN (or TN ) into a union of linearity

chambers. On each linearity chamber, the map LΓ0 restricts to a linear transformation.

Moreover, on each linearity chamber there are unique multi-paths γ
(k)
i ⊂ Γ

(k)
0 such that

liΓ
(k)
0 (w) = w(γ

(k)
i ).

The following unexpected result [7] gives the description of the paths γ
(k)
i :

Theorem 2.12. There is a unique linearity chamber C0 ⊂ TN on which the map LΓ0 is of
full rank (equal toN ). On C0, the map LΓ0 restricts to a bijection between C0 and CGZ . The
corresponding multi-paths γ(k)

i are shown on Figure 2.6.

Example 2.13. Consider the case of n = 2. Denote the weights on the horizontal edges by

a1 and a2 (corresponding to the label of the sink) and the weight on the slanted edge by b.

Figure 2.6. The paths γ
(5)
1 and γ

(5)
2
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Then, we easily obtain

l
(2)
1 = max(a1, a2, b+ a1), l

(2)
2 = a1 + a2, l

(1)
1 = a1.

There are several linearity chambers depending on which of the terms wins in the expres-

sion for l
(2)
1 . But the resulting linear transformation in non degenerate only if the winning

term is b+ a1 since the expressions for l
(2)
2 and l

(1)
1 do not involve the weight b.

2.3. Inequalities from tropicalization of Poisson brackets. In this Section, we show that

the interlacing inequalities come up in the study of tropicalization of Poisson brackets on the

dual Poisson-Lie group U∗(n).

2.3.1. Log-canonical Poisson brackets and tropicalization. Let U be a chart in a real

Poisson manifold M with coordinates {x1, . . . , xk} taking values in R+. The Poisson

bracket on M is called log-canonical with respect to these coordinates if

{xi, xj} = πi,jxixj

for some constants πi,j = −πj,i. Another way to present the same concept is as follows:

let K = Rk
+ be a group under the component-wise multiplication. Then, log-canonical

Poisson brackets on K are exactly those which are invariant under translations. One more

approach to log-canonical brackets is as follows: make the change of variables xi = exp(ξi)
and consider K as a graded manifold with deg ξi = 1. In these coordinates, log-canonical

Poisson brackets become constant

{ξi, ξj} = πi,j , (2.6)

of degree (−2).
Consider a Poisson bracket of more general type,

{xi, xj} = πi,jxixj + pi,j(x),

where pi,j are Laurent polynomials in variables x. That is, pi,j =
∑

I cIx
I with xI =

xi11 . . . xikk . Let V = Rk and for every pair (i, j) define a polyhedral cone

Ci,j = {ξ ∈ V ; ξi + ξj ≥
k∑

s=1

isξs ∀I such that cI �= 0}.

The tropicalization of the Poisson structure is defined as the closed polyhedral cone C(π, x)
= ∩i,jCi,j equipped with the constant Poisson structure (2.6) which we denote by π∞. The

following statement is an elementary observation:

Proposition 2.14. Let τ ∈ R+, πτ = τ2π and introduce coordinate functions τξi = log(xi).
Then, for ξ ∈ C(π, ξ) we have

πτ →τ→+∞ π∞.

A similar formalism can be developed for coordinate charts with both real and complex

valued coordinate functions {x1, . . . , xk, z1, . . . , zl}, where x1, . . . , xk take values in R+

and z1, . . . , zl take values in C∗. Again, let K = Rk
+ × (C∗)l be a real Lie group with
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point-wise multiplication. A Poisson bivector onK is called log-canonical if it is translation-

invariant. Make a change of variables xi = exp(ξi), za = exp(ζa + iφa) and view K as a

graded manifold with coordinates ξi, ζa of degree +1 and angles φa of degree 0. We shall

be especially interested in log-canonical Poisson brackets of degree (−1). The only non

vanishing components of such a Poisson bracket are given by

{ξi, φa} = πi,a , {ζa, φb} = πa,b. (2.7)

This structure gives rise to a completely integrable system with ξ’s and ζ’s as action variables

and φ’s as angle variables. Indeed, the condition for the Poisson bracket to be log-canonical

and to have degree (−1) implies that k + l functions ξi, i = 1, . . . , k and ζa, a = 1, . . . , l
are in involution.

Again, one can consider Poisson brackets of the form π = πlog + π′, where πlog is

a log-canonical Poisson bracket of degree (−1), and π′ is expressed in terms of Laurent

polynomials. A procedure similar to the one described above (see [3] for details) gives rise

to a tropicalization of π given by a convex polyhedral cone C(π, x, z) ⊂ V = Rk+l and

a constant Poisson bracket (2.7) on C(π, x, z) × T l. Here T l is a real torus of dimension

l and we again denote the Poisson bracket (2.7) by π∞. As before, we have the following

statement about the limit of scaled Poisson structures:

Proposition 2.15. Let τ ∈ R+, πτ = τπ and introduce coordinate functions

τξi = log(xi) , τζa + iφa = log(za).

Then, for (ξ, ζ) ∈ C(π, x, z) we have

πτ →τ→+∞ πτ .

Example 2.16. Let k = 1, l = 1 and consider the Poisson bracket of the form

{x, z} = ixz, {x, z̄} = −ixz̄, {z, z̄} = i(x2 − x−2).

The corresponding cone is given by inequalities −ζ ≤ ξ ≤ ζ, and the Poisson structure π∞
has the only nonvanishing component {ξ, φ}∞ = 1.

2.3.2. Tropicalization of the canonical Poisson bracket on U∗(n). Recall that compact

Lie groups carry canonical multiplicative Poisson structures defined by the classical r-matrix

r =
1

2

∑
i

hi ⊗ hi +
∑
α∈Δ

eα ⊗ e−α.

Here {hi} is an orthonormal basis in the Cartan subalgebra h ⊂ g, and Δ+ is the set of

positive roots. By Drinfeld’s theory [10, 30], Poisson-Lie groups come in dual pairs. At the

level of Lie bialgebras, the duality corresponds to an exchange of the Lie bracket with Lie co-

bracket. We shall be particularly interested in the dual Poisson-Lie group U∗(n) which has

been studied by Lu andWeinstein [27]. As a Lie group, it is isomorphic to the set of invertible

upper triangular matrices with positive reals on the diagonal. The mapA �→ AA∗ establishes

an isomorphism between U∗(n) and the set of positive definite Hermitian matricesH+
n . The

action of U(n) by conjugations on H+
n induces an action on U∗(n) called the dressing

action. The Poisson structure on U∗(n) is uniquely defined by the following equation,

π
(
ImTr(dAA−1ξ

)
, ·) = ξU∗(n).
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Here dAA−1 is the right-invariant Maurer-Cartan form on U∗(n), ξ ∈ u(n) ∼= iHn is an

element of the Lie algebra and ξU∗(n) is the fundamental vector field defined by the dressing

action (recall that the bilinear form ImTr(aξ) defines a duality between u(n) andHn).

The following coordinate system on the group U∗(n) is inspired by the Total Positivity

and Cluster Algebra theory [13]. For 1 ≤ k ≤ n and 1 ≤ i ≤ k, let Δ
(k)
i : U∗(n) → C

be the solid minor defined by the rows with numbers n − k + 1, . . . , n − k + i and by the

last i columns of A (see Figure 2.7). The minors Δ
(k)
k take values in R, and the minors

Δ
(k)
i , i = 1, . . . , k − 1 take values in C. The coordinate chart defined by the minors {Δ(k)

i }
is open and dense in U∗(n).

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · · · · ·
· · · · · ·
· · · · ·
· · · ·
· · ·
· ·
·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Figure 2.7. A minor Δ

(k)
i

The following statement is a reformulation of a theorem by Kogan-Zelevinsky [25]:

Proposition 2.17. Under the canonical Poisson structure on U∗(n), the Poisson brackets of
minors Δ(k)

i are of the form

{Δ(k)
i ,Δ

(l)
j } =

i

2
sign(k − l)(C −R)Δ

(k)
i Δ

(l)
j ,

where C is the number of the common rows and R is the number of common columns of
Δ

(k)
i and Δ(l)

j .

Proposition 2.17 implies that Poisson brackets of complex conjugate minors are also of

log-canonical form:

{Δ(k)

i ,Δ
(l)

j } = −
i

2
sign(k − l)(C −R)Δ

(k)

i Δ
(l)

j .

However, the mixed Poisson brackets {Δ(k)
i ,Δ

(l)

j } are not log-canonical. It turns out that

they are given by (rather complicated) Laurent polynomials inΔ
(k)
i ’s. Hence, we can address

the question of tropicalization of this Poisson structure. We shall denote the tropical versions

of the coordinates Δ
(k)
i by δ

(k)
i so as Δ

(k)
i = exp(τδ

(k)
i ).

Theorem 2.18. The tropicalization of the canonical Poisson bracket on the Poisson-Lie
groupU∗(n) in coordinatesΔ(k)

i is given by a pair (C(πU∗(n),Δ), π∞), where C(πU∗(n),Δ)
is a convex polyhedral cone isomorphic to the Gelfand-Zeitlin cone CGZ with isomorphism
given by the identification δ

(k)
i = l

(k)
i . The Poisson structure π∞ on C(πU∗(n),Δ) ×

Tn(n−1)/2 is isomorphic to the one of the Gelfand-Zeitlin integrable system. In particular,
δ
(n)
i , i = 1, . . . , n are Casimir functions under π∞.
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Example 2.19. For once, we choose n = 3 rather than n = 2 as an example. Consider the

Poisson bracket {Δ(3)
1 , Δ̄

(3)
1 } written in the coordinates {Δ(k)

i }:

{Δ(3)
1 , Δ̄

(3)
1 } = i

(
Δ

(3)
3

Δ
(2)
2

)2

− i
(
Δ

(1)
1

)2
− iΔ

(2)
1 Δ̄

(2)
1 +

+ i

(
Δ

(3)
2

Δ
(2)
1

)(
Δ̄

(3)
2

Δ̄
(2)
1

)
+ i

(
Δ

(3)
1

Δ
(2)
1

)(
Δ

(2)
2

Δ
(1)
1

)(
Δ̄

(3)
2

Δ̄
(2)
1

)
+

+ i

(
Δ̄

(3)
1

Δ̄
(2)
1

)(
Δ

(2)
2

Δ
(1)
1

)(
Δ

(3)
2

Δ
(2)
1

)
+ i

(
Δ

(3)
1

Δ
(2)
1

)(
Δ

(2)
2

Δ
(1)
1

)2(
Δ̄

(3)
1

Δ̄
(2)
1

)
.

This expression alone gives rise to 6 inequalities:

δ
(3)
1 ≥ δ

(2)
1 , δ

(3)
1 + δ

(2)
1 ≥ δ

(3)
2 , δ

(1)
1 + δ

(2)
1 ≥ δ

(2)
2

δ
(3)
1 ≥ δ

(1)
1 , δ

(3)
1 + δ

(2)
2 ≥ δ

(3)
3 , δ

(1)
1 + 2δ

(2)
1 + δ

(3)
1 ≥ δ

(2)
2 + δ

(3)
2 .

The inequalities in the first row are part of the interlacing inequalities for n = 3. This is
not the case for inequalities in the low row, but it turns out that they follow from interlacing

inequalities.

3. Applications and open problems

In this Section, we present two applications of planar network and tropicalization techniques.

The first one is the asymptotic behavior of the mysterious Ginzburg-Weinstein map in the

theory of Poisson-Lie groups. The second one is a new symplectic proof of Horn inequalities

for eigenvalues of a sum of two Hermitian matrices. We also give a brief description of

several open problems.

3.1. The Ginzburg-Weinstein isomorphism and tropicalization. The Ginzburg-Weinstein

map is a mysterious Poisson isomorphism between the dual to the Lie algebra g∗ and the dual

Poisson-Lie group G∗ which is valid in the case of G compact. While explicit formulas for

this map are only available for n = 2, we shall see that for G = U(n) the idea of scaling

(with the parameter τ ) allows to control the asymptotics of the Ginzburg-Weinstein map for

large τ and to express it in terms of the Gelfand-Zeitlin generalized eigenvalue map.

LetG be a compact connected Poisson-Lie group andG∗ be the dual Poisson-Lie group.

The following fundamental result is due to Ginzburg and Weinstein [15]:

Theorem 3.1. The dual Poisson-Lie group G∗ is isomorphic to the dual of the Lie algebra
g∗ as a Poisson space.

The Ginzburg-Weinstein isomorphism is a rare example of a global solution of the lin-

earization problem in Poisson Geometry: the Poisson bivector on G∗ vanishes at the group

unit, and induces a canonically defined linear bivector on TeG
∗ ∼= g∗. This linear bivector

coincides with the KKS Poisson structure on g∗.
The original proof [15] of the Ginzburg-Weinstein isomorphism is the existence proof

using cohomology arguments. There are several other proofs in the literature which make
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use of the Moser Lemma in Symplectic Geometry [2], the dynamical r-matrices [11] and

the Stokes data of flat connections with irregular singularities [9]. In the case of g = su(2),
there is an explicit albeit cumbersome formula for the Ginzburg-Weinstein map:

γ :

(
z ρeiφ

ρe−iφ −z
)
�→
(

ez/2 eiφf(r, ρ)
0 e−z/2

)
,

where r =
√
r2 + ρ2 and f(r, ρ) =

(
er/2 + e−r/2 − eρ/2 − e−ρ/2

)1/2
.

Let us scale the Lie bracket on the Lie algebra g by the factor τ ∈ R+ to obtain a

new bracket [·, ·]τ = τ [·, ·] (it is isomorphic to the original bracket for all τ �= 0). This

corresponds to scaling of the Poisson bivector on G∗, πτ = τπG∗ and to scaling of the

Ginzburg-Weinstein map γτ (x) = γ(τx). For large values of τ , the expression for γτ (x)
simplifies to give

γτ

(
z ρeiφ

ρe−iφ −z
)
∼
(

eτz/2 eiφ+τr/2

0 e−τz/2

)
.

This phenomenon generalizes to the case of G = U(n). Let γ : u∗(n) → U∗(n) be the

Ginzburg-Weinstein map solving the Flaschka-Ratiu conjecture (intertwining the Gelfand-

Zeitlin integrable systems on u∗(n) and U∗(n), see [12] and [5]). Then, we have the follow-

ing statement:

Theorem 3.2.
lim
τ→∞

1

τ
log |Δk

i (γτ (x))| = lki (x).

That is, while the Ginzburg-Weinstein map is a rather complicated transcendental map,

its asymptotic for large τ is described by the familiar Gelfand-Zeitlin maps l
(k)
i . Note that

for n ≥ 3 the asymptotic behavior of other naturally defined functions (e.g. matrix elements)

is significantly more involved.

3.2. A symplectic proof of Horn inequalities. Our second application combines the tech-

niques of the planar network theory and tropicalization with the classical techniques of Sym-

plectic Geometry .

3.2.1. Sums of Hermitian matrices and Horn inequalities. The problem of computing

the spectrum of a sum of two Hermitian matrices with given eigenvalues is a classical prob-

lem of Linear Algebra. One can formulate it in terms of the set

CH = {(r, s, t) ∈ R3(n+1); ∃ A,B ∈ Hn such that l(A) = r, l(B) = s, l(A+B) = t}.
The set CH turns out to be a polyhedral cone which belongs to the plane described by the

trivial conditions r0, s0, t0 = 0 (which result from the definition of the map l : Hn → Rn+1)

and by the equation tn = rn+sn which represents linearity of trace, Tr(A+B) = Tr(A)+
Tr(B). Some of the inequalities describing CH are rather simple such as

r1 + s1 ≥ t1

expressing the fact that the top eigenvalue of the sum of two Hermitian matrices is bounded

by the sum of their top eigenvalues. The complete set of inequalities was conjectured by
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Horn [18]. This conjecture was proved by Klachko [21, 22] and by Knutson and Tao [24].

The following elegant description of the set CH is due to Knutson-Tao.

Let l
(k)
i with 0 ≤ i ≤ k ≤ n be entries of a triangular tableau. Consider a polyhedral

cone K contained in the hyperplane l
(n)
0 = 0 and defined by inequalities

l
(k)
i + l

(k−1)
i−1 ≥ l

(k)
i−1 + l

(k)
i ,

l
(k)
i + l

(k−1)
i ≥ l

(k)
i+1 + l

(k)
i−1,

l
(k)
i + l

(k)
i−1 ≥ l

(k+1)
i + l

(k−1)
i−1 .

(3.1)

l
(n)
0 l

(n)
1

l
(1)
0 l

(1)
1

l
(0)
0

l
(n)
n

S

NENW

Figure 3.1. Triangular tableau with a South oriented rhombus

Note that the first two inequalities coincide with the interlacing inequalities (2.2). Re-

call that they correspond to elementary rhombi with NE and NW orientations. The third

inequality admits a similar interpretation in term of rhombi oriented to the South (see Figure

3.1).

Define the projection p from triangular tableaux to R3(n+1) given by

ri = l
(n)
i , si = l

(n−i)
n−i − l(n)n , ti = l

(n−i)
0 .

These are the labels on the edges of the tableau. They automatically verify the conditions

r0 = s0 = t0 = 0 and rn + sn = tn. Define the Knutson-Tao cone CKT = p(K) as the

image of K under p. The following theorem is due to Knutson and Tao [24]:

Theorem 3.3.
CH = CKT .

One interesting question which arises in this context is the interpretation of the labels

l
(k)
i assigned to the middle nodes of the tableau. We shall return to this issue later in this

Section.

Example 3.4. Consider the case of n = 2 and assume that the matrices in question are

traceless. This implies that r2 = s2 = t2 = 0. Then, A and B can be interpreted as vectors

in R3 of lengths r and s. Their sum is the vector A+B of length t. The three lengths satisfy

the triangle inequalities

r + s ≥ t, s+ t ≥ r, t+ r ≥ s
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which can be summarized as

|r − s| ≤ t ≤ r + s.

In the case of n = 3, the tableau has an internal node with label l
(2)
1 that we denote by x.

Two examples of Knutson-Tao inequalities are

l
(3)
1 + l

(2)
0 ≥ l

(2)
1 ⇒ r1 + t1 ≥ x,

l
(2)
1 + l

(3)
2 ≥ l

(3)
1 + l

(2)
2 ⇒ x+ r2 ≥ r1 + r3 + s1.

Together, they imply one of the Horn inequalities,

r2 + t1 ≥ r3 + s1.

3.2.2. Planar networks and Horn inequalities. In this Section, we explain the planar net-

work approach to Knutson-Tao and Horn inequalities. The idea is similar to the one which

works for interlacing inequalities.

Let Γ1 and Γ2 be two planar networks of type n. Denote by Γ1 ∗ Γ2 a new planar

network obtained by identifying sinks of Γ1 with sources of Γ2 (see Figure 3.2). We denote

by l(Γ1,Γ2) :W (Γ1 ∗ Γ2)→ T3(n+1) the map

l(Γ1,Γ2) : (w1, w2)→ (lΓ1(w1), lΓ2(w2), l(Γ1 ∗ Γ2)(w1 ∗ w2)).

Here w1 is a weighing on Γ1, w2 is a weighting on Γ2 and w1 ∗w2 is the induced weighting

on Γ1 ∗ Γ2.

Figure 3.2. The planar network Γ0 ∗ Γhor

Recall two examples of planar networks, Γhor and Γ0, shown on Figure 2.4. The combi-

nation of the following two results gives a new proof of the Knutson-Tao Theorem:

Theorem 3.5 ([7]). For any Γ1,Γ2 planar networks of type n, we have

im l(Γ1,Γ2) ⊂ CKT .

Moreover, for Γ1 = Γ0 and Γ2 = Γhor we have

im l(Γ0,Γhor) = CKT .

Theorem 3.6 ([8]).

im l(Γ0,Γ0) = CH .

Since the network Γhor ⊂ Γ0 is a subnetwork of Γ0, we have

CKT = l(Γ0,Γhor) ⊂ l(Γ0,Γ0) = CH .

At the same type, Theorem 3.5 implies

CH = l(Γ0,Γ0) ⊂ CKT .

Hence CH = CKT , as required.
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3.2.3. Ideas of proofs. Theorem 3.5 is a statement about combinatorics of paths and weights

on planar networks. An important step in the proof is to find the meaning of intermediate

weights l
(k)
i in the triangular tableau. Recall that l

(n)
i = ri is the maximal weight of an

i-path in Γ1, l
(n−i)
n−i − l

(n)
n = si is the maximal weight of an i-path in Γ2, and l

(n−i)
0 = ti

is the maximal weight of an i-path in Γ1 ∗ Γ2. For l
(k)
i with arbitrary i ≤ k we assign the

following expression:

l
(k)
i = max

α,β

∑
e∈α∪β

w(e),

where α is an (n − k + i)-path in Γ1 and β is an (n − k)-path in Γ2 with the condition

that sources of β form a subset of sinks of α. One can also interpret the union α ∪ β as an

(n− k)-path in Γ1 ∗ Γ2 and an i-path in Γ1 which do not touch each other.

As in the case of interlacing inequalities, the proof of Knutson-Tao inequalities in the

framework of planar networks is achieved by showing that the maximum is taken over a

bigger set on one side of the inequality. This can be illustrated by the following example.

Example 3.7. Consider the inequality

l
(n−1)
1 + l

(n)
0 ≥ l

(n)
1 + l

(n−2)
0 .

The right hand side corresponds to a union of the maximal 1-path in Γ1 and a maximal 2-

path in Γ1 ∗ Γ2. Such a configuration can always be reinterpreted as a 2-path in Γ1 with a

1-path in Γ2 attached to one of its sinks and a 1-path in Γ1 ∗ Γ2, see Figure 3.3. This proves

the inequality in question and gives an insight in how the proof works in the general case.

−→

Figure 3.3. A 1-path in Γ1 and a 2-path in Γ1 ∗ Γ2 redrawn as a (2,1)-path and a 1-path in Γ1 ∗ Γ2

Theorem 3.6 is of a very different nature. First, recall that for a matrix A ∈ Matn(C)
its singular values are defined as eigenvalues of the positive definite matrix AA∗. Similar

to the case of Hermitian matrices, it is convenient to define the maps l∇0 (A) = 0, l∇1 (A) =
log (λ1(AA

∗)) and in general

l∇i (A) = log (λ1(AA
∗)) + · · ·+ log (λi(AA

∗)) .

In analogy to the Horn problem, one can introduce the set of solutions of the multiplicative

singular value problem:

C∇ =

{
(r, s, t) ∈ R3(n+1)

∣∣∣∣∣ ∃ A,B ∈ U∗(n) such that
l∇(A) = r, l∇(B) = s, l∇(AB) = t

}
.

The following result is due to Klyachko [23] (for a symplectic version, see [6]):
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Theorem 3.8.
C∇ = CH .

We give a sketch of a proof of Theorem 3.6 in the case of n = 2 with the additional

simplifying assumption that the Hermitian matrices in question are traceless. We shall first

establish an inclusion im l(Γ0 ∗ Γ0) ⊂ CH .

Consider a one parameter family of elements of U∗(2) of the form

uτ =

(
eτz/2 eτr/2

0 e−τz/2

)
.

Define

r(τ) =
1

τ
log (λ1(uτu

∗
τ )) .

It is easy to check that r(τ) admits a limit when τ tends to infinity and

r∞ = lim
τ→∞

r(τ) = max(r, |z|).

Now consider the product of two matrices of this type(
eτz/2 eτr/2

0 e−τz/2

)(
eτw/2 eτs/2

0 e−τw/2

)
=

(
eτ(z+w)/2 eτ(r−w)/2 + eτ(z+s)/2

0 e−τ(z+w)/2

)
.

By the previous calculation, its top singular Λ(τ) behaves in the following way for τ large:

t∞ = lim
τ→∞

1

τ
log(Λ(τ)) = max(r − w, z + s, |z + w|). (3.2)

Note that this is exactly the maximal weight of a 1-path in the planar network Γ0 ∗Γ0 shown

on Figure 3.2.3 while r∞ and s∞ are weights of the maximal 1-paths in the two copies of

Γ0. Hence, (r∞, s∞, t∞) ∈ im (l(Γ0 ∗ Γ0)). Since the weights on the edges are arbitrary,

we obtain the whole image.

−z
r

z

−w
s

w

Figure 3.4.

By Klyachko’s Theorem 3.8, the triple (τr(τ), τs(τ), τ t(τ)) ∈ CH is contained in the

Horn cone for all values of τ . Making a rescaling by τ , we see that (r(τ), s(τ), t(τ)) ∈ CH .

This triple admits a limit (r∞, s∞, t∞) when τ tends to infinity. Since CH is a closed cone,

we conclude that (r∞, s∞, t∞) ∈ CH and im (l(Γ0 ∗ Γ0)) ⊂ CH , as required.

To show the inclusion CH ⊂ im(lΓ0 ∗Γ0), we consider products of all possible elements

of U∗(2): (
eτz/2 eτr/2+iφ

0 e−τz/2

)(
eτw/2 eτs/2+iψ

0 e−τw/2

)
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=

(
eτ(z+w)/2 eτ(r−w)/2+iφ + eτ(z+s)/2+iψ

0 e−τ(z+w)/2

)
.

Now the formula (3.2) for t∞ is only valid away from the locus r − w = z + s where the

cancelation between the two exponents is possible. Choose ε sufficiently small and consider

the set

Xτ = {(z, w) ∈ [−r, r]× [−s, s]; |τ(r − w − z − s)| ≤ ε}.
Recall that the push-forward of the Liouville measure (2.3) is the Lebesque measure on the

rectangle [−r, r]× [−s, s]. The volume of Xτ decreases linearly with τ .
Assume that im (l(Γ0 ∗ Γ0)) is strictly smaller than CH . Then, one can find r and s

such that im (t∞) is strictly smaller than the segment [|r − s|, r + s]. By the previous con-

siderations, the induced measure on the complement of im (t∞) must vanish (since we can

always increase τ to make the measure of the set Xτ sufficiently small). But this contradicts

the Duistermaat-Heckman Theorem stating that the image of the Liouville measure under

the moment map is piece-wise polynomial with respect to the Lebesgue measure and non

vanishing on the interior of the image.

3.3. Open problems. In this Section, we briefly describe several open problems.

3.3.1. Inequalities and the cluster structure on U∗(n). In Section 2.3.2, we explained

that the tropicalization of the canonical Poisson bracket on the dual Poisson-Lie groupU∗(n)
is described by the Gelfand-Zeitlin integrable system. This result makes use of the coordinate

chart {Δ(k)
i } formed by special solid minors on U∗(n). In general, tropicalization may

depend on the choice of coordinates. However, there is a set of distinguished coordinate

charts defining a cluster structure on U∗(n) (and, in general, on the set of invertible upper

triangular matrices). Some of these charts are labeled by the reduced expressions for the

longest word in the Weyl groupW = Sn. The coordinates {Δ(k)
i } correspond to the reduced

expression

w0 = sn−1sn−2 . . . s1sn−1 . . . s2 . . . sn−1sn−2sn−1. (3.3)

It is natural to expect that tropicalization making use of other cluster charts gives rise to

cones isomorphic to the Gelfand-Zeitlin cone, and to integrable systems isomorphic to the

Gelfand-Zeitlin integrable system.

Example 3.9. A simple example where this question can be settled in the positive is the

comparison of the reduced expression (3.3) with the expression

s1s2 . . . sn−1s1 . . . sn−2 . . . s1s2s1.

The reduced expression above corresponds to the Gelfand-Zeitlin integrable system with the

upper left corners replaced by the down right corners as principle submatrices.

3.3.2. The Gelfand-Zeitlin integrable system for Sp(2n). Guillemin and Sternberg de-

scribed Gelfand-Zeitlin integrable system for the groups G = U(n) and G = SO(n). Since
then, several attempts were made to fill the gap for the remaining classical series Sp(2n).
Some partial successes were achieved using the inspiration from Representation Theory [28]

and the techniques from the theory of complete integrability [17]. Symplectic Gelfand-

Zeitlin tableaux were studied in [20] and [29]. However, to the best of our knowledge there
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is no construction producing action-angle variables and the cone in the same way as it works

for U(n) and SO(n).
Our technique gives a new approach to this challenging problem. Indeed, the cluster co-

ordinates on the Borel subgroup of Sp(2n,C) are again defined by the reduced expressions

in the longest word of the corresponding Weyl group. These coordinate charts admit a trop-

ical limit described by planar networks (with extra symmetries). An important step towards

solving the problem would be an appropriate analogues of Theorem 3.2 and of Theorem

2.18.

3.3.3. Integrable systems on symplectic multiplicity spaces. Symplectic multiplicity

spaces are defined as Hamiltonian reductions of products of coadjoint orbits. Let G = U(n)
and consider a triple Oλ,Oμ,Oν of sympelctic leaves in u∗(n) ∼= Hn. The multiplicity

space

Mλ,μ,ν = (Oλ ×Oμ ×Oν)//G

is a sympletic space which might have orbifold or more serious singularities. While the

symplectic leaves Oλ are equipped with Gelfand-Zeitlin completely integrable systems, the

question of constructing action-angle variables onMλ,μ,ν remains open. In the tropical limit,

a possible choice for action variables is given by functions l
(k)
i corresponding to intermedi-

ate nodes of the triangular tableau. They are defined as maximal weights of multi-paths in a

pair of planar networks. It would be very interesting to find a counterpart of this construc-

tion in terms of Hermitian or upper triangular matrices. Note that the tropical construction

automatically produces a set of functions in involution under the Poisson structure π∞. Pre-

serving this property would be crucial when one passes from planar networks to the theory

of matrices.

3.3.4. The multiplicative problem for the group SU(n). Recall that conjugacy classes

of unitary matrices are parametrized by the Weyl alcoveΔW . Denote by σ : SU(n)→ ΔW

the natural projection.

Example 3.10. For n = 2, we haveΔW = [0, π] where a matrix u ∈ SU(2) is conjugate to

a unique diagonal matrix of the form diag(eiθ, e−iθ), where θ = σ(u).
Define the set

SSU(n) = {(r, s, t) ∈ Δ×3
W ; ∃ u, v ∈ SU(n) such that σ(u) = r, σ(v) = s, σ(uv) = t}.

This set is a multiplicative counterpart of the Horn cone. It admits a description in terms of

quantum cohomology [1], and it turns out that SSU(n) is polytope contained in Δ×3
W . For

instance, in the case of n = 2 the corresponding inequalities take the form

|r − s| ≤ t ≤ max(r + s, 2π − r − s).

For r, s much smaller than 2π they reproduce the triangle inequalities of the Horn problem

but they deviate from this pattern for bigger values of r, s.
It would be very interesting to find a combinatorial model in terms of planar networks

(or similar combinatorial machinery) giving rise to the defining inequalities of the polytope

SSU(n).
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Macdonald processes, quantum integrable systems
and the Kardar-Parisi-Zhang universality class

Ivan Corwin

Abstract. Integrable probability has emerged as an active area of research at the interface of proba-

bility/mathematical physics/statistical mechanics on the one hand, and representation theory/integrable

systems on the other. Informally, integrable probabilistic systems have two properties: (1) It is possible

to write down concise and exact formulas for expectations of a variety of interesting observables (or

functions) of the system. (2) Asymptotics of the system and associated exact formulas provide access

to exact descriptions of the properties and statistics of large universality classes and universal scaling

limits for disordered systems. We focus here on examples of integrable probabilistic systems related

to the Kardar-Parisi-Zhang (KPZ) universality class and explain how their integrability stems from

connections with symmetric function theory and quantum integrable systems.

Mathematics Subject Classification (2010). 82C22, 82B23, 60H15, 33D52.

Keywords. KPZ, symmetric polynomials, quantum integrable systems, Bethe ansatz, TASEP.

1. Integrable probabilistic systems in the KPZ class

A primary aim of statistical mechanics and probability theory is to describe aggregate behav-

ior of disordered microscopic systems driven by noise. Many systems include self-averaging

mechanisms which result in the appearance of deterministic (law of large number) behavior

on macroscopic scales. A central problem is to characterize the behavior of such systems

between microscopic disorder and macroscopic order. On critical mesoscopic scales, large

classes of systems seem to share universal fluctuation behaviors. This belief in “universality

classes” is bolstered by (non-rigorous) physical arguments, extensive numerics, some exper-

imental results and, recently, a growing body of mathematical proof coming from the field

of integrable probability. “Integrable” or “exactly solvable” models play a key role in prob-

ing the nature and extent of universality classes. Due to enhanced algebraic structure they

are often amenable to detailed analysis, thus providing the most complete access to various

phenomena such as phase transition, scaling exponents, and fluctuation statistics.

The success of integrable probability in describing universal behaviors is quite strking for

the non-equilibrium statistical mechanics problem of describing random interface growth. In

this section we provide examples of integrable probabilistic systems whose analysis deepens

our understanding of random (1 + 1)-dimensional random interface growth and the Kardar-

Parisi-Zhang (KPZ) universality class. Through these examples we also demonstrate con-

nections to interacting particle systems (models for traffic flow, queuing, mass transport,

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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driven gases, and shock-fronts), directed polymers in random media (models for compe-

tition interfaces, domain walls, and cracking interfaces), and parabolic Anderson models

(models for population growth with migration). See the review [36] for further background

and references.

The study of KPZ universality was initiated by Kardar-Parisi-Zhang [62] in 1986 and

drew heavily on earlier work of Forster-Nelson-Stephens [50] in 1977. The ensuing decade

of physical theories, numerics, and experiments produced strong physical evidence for uni-

versality of random interface fluctuations in their long-time and large-scale limits. The fluc-

tuation scaling exponent and transversal correlation length was predicted to be 1/3 and 2/3
(meaning fluctuations of order t1/3 correlated over distances t2/3, with t measuring time).

Certain statistics (e.g. skewness, kurtosis, tail decay) were also computed numerically during

this period.

The involvement of mathematicians and the first (mathematically) rigorous results and

exact formulas for fluctuation statistics came in 1999 with the work of Baik-Deift-Johansson

[5] and Johansson [60]. Our first example below details some of Johansson’s [60] asymptotic

analysis results on TASEP. The methods of determinant point process or Schur measure /

process (of which TASEP is a special limiting case) have driven many further advances in

understanding KPZ class statistics (see [15, 27, 29, 80]). All those models analyzed by these

determinantal methods are “totally asymmetric” or “zero temperature”.

The first analysis (to the point of asymptotic statistics) of a non-determinantal KPZ class

model was performed by Tracy andWidom [94–96] in 2009. Since then, a variety of methods

have been developed to discover and analyze non-determinantal “partially asymmetric” or

“positive temperature” models.

In this paper we describe some facets of the exact solvability of q-TASEP, the O’Connell-

Yor semi-discrete directed polymer, ASEP, and the KPZ equation. We then develop two

methods used in studying these examples: (1) the theory Macdonald processes, which is

an algebraic framework for discovering and analyzing a variety of probabilistic system by

leveraging the remarkable properties of Macdonald symmetric polynomials; (2) the theory of

quantum integrable systems, which is based on the (coordinate / algebraic) Bethe ansatz and

provides a means to diagonalize certain Hamiltonians, including some stochastic generators

related to the processes with which we are concern. We develop both of these methods

at a high combinatorial (or algebraic) level and thus avoid many of the analytic issues and

demystify the apparent algebraic miracles which arise in various degenerations. For instance,

our treatment of q-TASEP in Section 3 can be considered a mathematically rigorous version

of the replica method for directed polymers [32, 45, 63].

There are many other exciting recent developments related to the KPZ which we will

not discuss at any length. To name a few, these include: tropical combinatorics and directed

polymers [40, 73, 74], line ensembles [38, 39, 77], coupling methods and second class par-

ticles [6, 7, 88], spectral methods [71, 72], experiments confirming KPZ statistics [92, 99],

KPZ equation well-posedness [58, 59].

1.1. Example 1: TASEP. The totally asymmetric simple exclusion process (TASEP) is an

interacting particle system on Z. Particles inhabit sites of Z with only one particle per site

at any given time. In continuous time, particles attempt to orchestrate independent random

jumps according to rate one exponential clocks (in other words, according to exponential

distributed waiting times of rate one) by one site to the right. If the destination site is occu-

pied, the jump is suppressed. This process may be described in terms of occupation variables
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which track of whether sites of Z are occupied, or particle location variables which tracks

the location of indexed particles. We will, instead, appeal to a “height function” to describe

this process. The TASEP height function is a piece-wise linear function made up of unit +1
or −1 slope line increments. Above every site of Z with a particle, there is a −1 slope and

above every site without a particle there is a +1 sloped. The height function hTASEP(t, x)
pastes these increments together into a continuous function (uniquely defined up to an over-

all height shift). TASEP dynamics corresponds to replacing local minima ∨ by maxima ∧
according to rate one exponential clocks. In this language of height functions, TASEP is

equivalent to the corner growth model.
Johansson [60] computed an exact formula for the one-point distribution of the TASEP

height function, when initialized from “step” or “wedge” initial data. This initial data corre-

sponds to starting with every site to the left of the origin occupied, and all other sites empty.

In terms of the height function this corresponds to starting with hTASEP(0, x) = |x|.

1.1.1. KPZ class asymptotics. Studying the long-time, large-scale fluctuation behavior of

this height function revealed the first exact formulas for statistics of the KPZ universality

class. The prediction coming from [50, 62] was that in large time L, the height function

should be non-trivially correlated on a scale of order L2/3 with fluctuations of order L1/3.

Define the scaled height function hTASEP
L (t, x) := L−1/3

(
hTASEP(Lt, L2/3x)− Lt

2

)
,where

L is a large scaling parameter and the centering by Lt/2 follows from the hydrodynamic

theory for TASEP. Johansson [60] showed the following:

Theorem 1.1. For TASEP with step initial data lim
L→∞

P
(
hTASEP
L (1, 0) ≥ −s) = FGUE(s)

where FGUE(s) is the Tracy-Widom limit distribution [93] for the largest eigenvalue of a
large Hermitian random matrix.

This result provides an exact prediction for the limiting one-point behavior of a wide

class of models which share general characteristics with TASEP (and which are started from

step type initial data). In many ways, this FGUE distribution is to (1 + 1)-dimensional ran-

dom growth as the Gaussian distribution is to random walks. Asymptotic analysis of the

remaining examples we discuss yield the same scaling and distributional limit, thus provid-

ing further evidence for KPZ universality.

Using methods of determinantal point processes, further exact statistics describing the

KPZ class has been extracted through studying the large L limit of hTASEP
L (t, x) (e.g. the

Airy processes describing the fixed t and varying x limit for step and a few other types of ini-

tial data, see [36]). The connection between random matrix theory and growth processes will

be alluded to further in our discussion of Macdonald processes in Section 2. TASEP is one of

a handful of examples of particle systems and growth models which are analyzable via deter-

minantal point processes (or equivalently Schur processes, free Fermions, non-intersecting

paths). These other examples are discrete time TASEPs with sequential or parallel update

rules, pushASEP or long range TASEP, directed last passage percolation in two dimension

with geometric, exponential or Bernoulli weights, and the polynuclear growth process – see

[15, 29] and references therein.

The examples which we address here are deformations (and limits of deformations) of

TASEP. These examples are no longer determinantal, though there still turn out to be large

families of observables whose averages are explicit (for determinantal systems correlation

functions are written explicitly as determinants). Integrability is quite sensitive to pertur-

bations and while these deformations are integrable, there are many simple models, closely
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related to TASEP, which are not.

1.2. Example 2: q-TASEP. The q-deformed totally asymmetric simple exclusion process

(q-TASEP) is a one parameter deformation of TASEP which was discovered and first studied

in the context of Macdonald processes [17] (see also subsequent work [18, 20, 23, 26, 35, 48,

66, 76]). Fix q ∈ (0, 1) and let xi(t) ∈ Z be the location of particle i at time t. We assume

that xj(t) < xi(t) for j > i and that there is a right-most particle which we label x1(t) (for
notational convenience fix x0(t) ≡ +∞). In continuous time, each particle xi attempts to

jump one site to the right according to an exponential clock of rate 1−qxi−1(t)−xi(t)−1. Here

xi−1(t)−xi(t)−1 is the number of empty sites between particle i and the next-right particle

i− 1. This jump rate interpolates between rate zero when the gap is zero and rate one when

the gap tends to infinity. This can be thought of as a traffic model in which cars (particles)

slow down as they approach the car in front of them. A value of q near one represents a

road with cautious drivers. When q goes to zero TASEP is recovered and cars move without

caution, only yielding immediately before an accident (when two particles would occupy the

same site). Note that x1 always jumps to the right at rate one since the distance to x0 ≡ +∞
is infinite.

1.2.1. Moment formulas. The integrability of q-TASEP is partially captured in the follow-

ing theorem, initially proved when all ni ≡ n in [17], and then for general ni in [22, 26].

Sections 2 and 3 describe the two methods for proving this theorem.

Theorem 1.2. For q-TASEP with step initial data (xn(0) = −n, n ≥ 1) and any k ≥ 1,
n1 ≥ n2 ≥ · · · ≥ nk ≥ 1,

E

[ k∏
j=1

qxnj
(t)+nj

]
=
(−1)kq k(k−1)

2

(2πi)k

∮
· · ·
∮ ∏

1≤A<B≤k

zA − zB
zA − qzB

k∏
j=1

e(q−1)tzj

(1− zj)nj

dzj
zj

,

(1.1)

where, for each A ∈ {1, . . . , k} the contour of integration of zA contains 1, as well as q
times the contour of integration of zB for B > A, but does not contain 0.

Step initial data means xn(t) + n = 0 for all n ≥ 1, and since particles only move

to the right this implies that the random variables qxn(t)+n are in (0, 1] for all t ≥ 0. The

knowledge of all joint moments uniquely identifies the joint distributions of this collection

of random variables, and hence that of all xn(t) for fixed t and varying n. The challenge is

to extract exact distributional formulas from the results of Theorem 1.2 in such that they are

amenable to asymptotic analysis. So far, this has only been successfully implemented for

the one-point distribution (i.e. distribution of xn(t) for a fixed n and t), as we now describe.

1.2.2. Fredholm determinant. Specializing Theorem 1.2 with all nk ≡ n ≥ 1 yields a

nested integral formula for E
[
qk(xn(t)+n)

]
. Such nesting become cumbersome as k grows

(we will need to utilize these formulas for all k ≥ 1), so it is natural to deform our formulas

so the contours remain fixed as k varies. Such contour deformations can be made, though

they necessarily involve deforming through poles. By keeping track of the residues from

crossing these poles, the complexity of the nested contours is transferred into complexity of

the integrand.

There are two ways to “un-nest” the contours. One way is to deform them sequen-

tially (z1 through zk) to lie upon a large contour containing both 0 and 1. This deformation
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crosses the simple pole of the integrand at zj = 0 for all j. The other way is to deform

them sequentially (zk through z1) to lie upon a small contour containing only 1. This defor-

mation crosses the simple poles of the integrand coming from the denominator zA − qzB .

Both deformations ultimately yield formulas for the distribution of xn(t). Though the sec-

ond deformation is slightly more involved, it also yields a formula which ends up being

more readily amenable to asymptotic analysis. We do not detail these residue considerations

as they are explained at length in [17, 23, 26]. Consider the moment generating function

g(ζ) =
∑∞

k=0 E
[
qk(xn(t)+n)

]
ζk

(1−q)···(1−qk)
. For |ζ| small this is convergent. Using the

second deformation described above this generating function is rewritten as the Fredholm

determinant expansion

g(ζ) = det
(
I +K

)
L2(C1)

:= 1 +

∞∑
L=1

1

L!

∮
C1

dw1

2πi
· · ·
∮
C1

dw1

2πi
det
(
K(wi, wj)

)L
i,j=1

where C1 is a small circle around 1, and

K(w,w′) =
∞∑
n=1

f(w) · · · f(qn−1w)

qnw − w′ (1.2)

=

1/2+i∞∫
1/2−i∞

π

sin(−πs)
(w; q)n∞
(qsw; q)n∞

(−ζ)se−(1−qs)tw

qsw − w′
ds

2πi
.

Here, f(w) = e(q−1)tw(1− w)−n and in the second equality the summation is replaced by

a “Mellin-Barnes” contour integral. This replacement is important for studying asymptotics

(such as those which yield Theorem 1.5). Though the summation formula for K becomes

highly oscillatory (with no termwise limit), the integral involves a contour in which the

integrand has clear and well-controlled asymptotic behavior.

Owing to the fact that qxn(t)+n ∈ (0, 1], for |ζ| small enough we may interchange the

expectation and the infinite summation over k and an application of the q-Binomial theorem

yields:

Theorem 1.3. For q-TASEP with step initial data and any n ≥ 1, t ≥ 0, ζ ∈ C \ R+

E
[

1
(ζqxn(t)+n;q)∞

]
= det

(
I +K

)
L2(C1)

, where (a; q)∞ := (1 − a)(1 − qa)(1 − q2a) · · · ,
the operator K is given by (1.2) and the contour C1 is a small circle around 1.

The expression on the left is known as the eq-Laplace transform of qxn(t)+n and dates

back to 1949 work of Hahn [57]. Like the Laplace transform of a positive random variable,

this eq-Laplace transform can be inverted to compute the distribution of the random variable

[17, Proposition 3.1.1].

1.2.3. KPZ class asymptotics. Asymptotic analysis of this formula yields a generalization

of Theorem 1.1 (which corresponds with q = 0). This was performed by Ferrari-Vető [48]

and Barraquand [8] who showed that for any c > 0, and suitable c′ = c′(c, q) > 0 and

c′′ = c′′(c, q) > 0, as L → ∞, c′′L−1/3
(
xcL(L) − c′L

)
converges in distribution to FGUE

(just as in the case of TASEP). This demonstrates how the L1/3 scaling and FGUE limit

theorem is not unique to TASEP, but rather extends to the whole family of q-TASEPs.
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1.3. Example 3: O’Connell-Yor semi-discrete random polymer. A q → 1 limit of q-
TASEP leads to a systems of SDEs which can be thought of as a continuous space interacting

particle systems. Exponentiating this system yields a semi-discrete version of the stochastic

heat equation which is a special case of the parabolic Anderson model and also describes the

evolution of the partition function for the semi-discrete random polymer model introduced

by O’Connell-Yor [78].

1.3.1. Limit of q-TASEP as q → 1. Recall that q ∈ (0, 1) controls the length scale on

which particles in q-TASEP tend to separate. Let q = e−ε with ε > 0 a scaling param-

eter which will tend to zero. The behavior of x1(t) is quite simple. Since we have fixed

x0(t) ≡ +∞, x1(t) orchestrates a simple Poisson jump process in which it increases its

value by one according to an exponential rate one clock. Thus (regardless of q), the central

limit theorem implies that ε
(
x1(ε

−2τ)− ε−2τ
)→ B1(τ) where B1 is a standard Brownian

motion.

The behavior of xn(t) for n > 1 requires further consideration, and different scaling.

Under the scaling t = ε−2τ , and xn(t) = ε−2τ−(n−1)ε−1 log ε−1−ε−1F ε
n(τ) it is shown in

[17, Theorem 4.1.26] (see also [26, Proposition 6.2]) that
{
F ε
n(·)
}
n≥1

converges to {Fn}n≥1

which solves the systems of SDEs dFn(τ) = eFn−1(τ)−Fn(τ)dτ + dBn(τ) for independent
Brownian motions {Bn}n≥1 (with the convention that F0(τ) ≡ −∞). Indeed, once xn and

xn−1 are separated by roughly ε−1 log ε−1, xn jumps ahead at rate 1− qxn(τ)−xn−1(τ)−1 ≈
1− εeF

ε
n−1(τ)−F ε

n(τ). In time of order ε−2, this ε correction to the jump rate only affects the

overall drift, thus yielding the claimed SDEs. The initial data for this system corresponding

to step initial data for q-TASEP can either be described via an entrance law, or through an

exponential transform (as now done).

Define semi-discrete stochastic heat equation (SHE) with multiplicative noise as the sys-

tem of SDEs dz(τ, n) = ∇z(τ, n)dt + z(τ, n)dBn(τ) with (∇f)(n) = f(n − 1) − f(n),
and independent Brownian motions {Bn}n≥1 (with the convention that z(τ, 0) ≡ 0). By

Itô’s lemma, z(τ, n) = e−
3
2 τ+Fn(τ) . The semi-discrete SHE initial data which comes from

step initial data for q-TASEP is z(τ, n) = 1n=1, i.e. the fundamental solution.

1.3.2. Parabolic Anderson model. The semi-discrete SHE in above arises in a simple

model for population growth and migration in a random environment. Consider an ensemble

of unit mass particles in Z that evolve according to the following rules: At each time τ ≥ 0,
and location n ∈ Z, each resident particle (1) splits into two identical unit mass particles, at

exponential rate r+(τ, n); (2) dies at an exponential rate r−(τ, n); or (3) jumps to the right

by one at an exponential rate 1.
The functions r+ and r− represent an environment in which the particles of this system

evolve. Individual particles do not feel each other (and many can occupy the same site), as

the exponential clocks controlling their splits, deaths and jumps are independent. A variant

of the Feynman-Kac representation implies that the expected total mass z(τ, n) satisfies
d
dτ z(τ, n) = ∇z(τ, n) + z(τ, n)

(
r+(τ, n) − r−(τ, n)

)
. We have used z here since if the

media is rapidly mixing in time and space, the environment r+(τ, n) − r−(τ, n) may be

modeled by independent white-noises dBn(τ), in which case the above equation becomes

the semi-discrete SHE. The fundamental solution corresponds to starting a cluster of particles

at location 1, and nowhere else.

This population model is called a parabolic Anderson model and has been extensively

studied within probability literature [33] (see also [19, 46, 53] and references therein). Since
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the population will generally grow/die exponentially, it is natural to study log z(τ, n). The

spikes in this function record population explosions and can be studied in terms of the phe-

nomenon called intermittency, while the typical fluctuations correspond to a semi-discrete

variant of the KPZ equation (or a continuous space interacting particle system in which

Brownian motions interact in an exponential potential with the next lowest index Brownian

motion). We first investigate the atypical behavior of log z(τ, n), and then the typical.

1.3.3. Intermittency and Lyapunov exponents. Systems with intermittency display large

spikes distributed in time, space and magnitude in a certain multi-fractal manner. In the

1980’s it was argued that such a phenomena arises in magnetic fields in turbulent flows, like

those on the surface of the Sun [91]. The idea of intermittency seems to date back at least to

[10, 64] (see [12, 19, 53] and references therein for more recent developments).

The mathematical definition of intermittency given in [33] captures a portion of this

phenomenon (though not the full multi-fractal space-time structure). The p-th moment Lya-

punov exponent γp (p ≥ 1) and almost sure Lyapunov exponent γ̃1 are defined as γp(ν) :=
limτ→∞

1
τ logE [z(τ, ντ)

p], and γ̃1(ν) := limτ→∞
1
τ log z(τ, ντ) where ν > 0 determines

the ratio of n/τ . We say that z(τ, n) displays intermittency if γ̃1 < γ1 < γ2

2 < γ3

3 < · · · .
Such an ordering has a clear interpretation. That γ̃1 < γ1 implies that the first moment of

z(τ, n) is not determined by the typical behavior of log z(τ, n), but rather by its uncommonly

high peaks. In general, the growth of these moments reflects the fact that log z(τ, n) has a

sufficiently heavy upper tail so that moments are dominated by higher and higher peaks, of

smaller and smaller probabilities. At a typical location n, these high peaks will not appear,

however, over a wide range it is likely to see quite large peaks.

Under the scaling described in Section 1.3.1 the formulas Theorem 1.2 gave for

E
[
qk(xn(t)+n)

]
converge to formulas for E[z(τ, n)p] (as shown in [19, Theorem 1.8]).

Proposition 1.4. The moment Lyapunov exponents for the fundamental solution to the semi-
discete SHE are given by γp(ν) = Hp(z

0
p), whereHp(z) =

p(p−3)
2 +pz−ν log

∏p−1
i=0 (z+i)

and z0p is the unique solution to H ′
p(z) = 0 with z ∈ (0,∞).

The almost sure Lyapunov exponent was conjectured in [78] and proved in [75] (see also

Theorem 1.6) to be γ̃1(ν) = − 3
2 + infs>0

(
s − νΨ(s)

)
where Ψ(s) :=

[
log Γ

]′
(s) is the

digamma function. These formulas confirm explicitly the intermittency.

1.3.4. O’Connell-Yor semi-discrete directed polymer in random media. Whereas the

atypical behavior of log z(τ, n) is quite interesting through the lens of the parabolic Ander-

son model, it is the typical behavior which is most important when considering this as an

interacting particle system or directed polymer model. The solution z(τ, n) to the semi-

discrete SHE can be written in path integral form via the Feynman-Kac representation as

z(τ, n) = Ex(τ)=n

[
1x(0)=1 exp

{∫ τ
0
dBx(s)(s)− τ

2

}]
where the expectation Ex(τ)=n is

over Poisson jump processes (which increase value by one at exponential rate one) which

are pinned to be n at time τ (in other words, x(·) is a Poisson jump process run backwards

in time from n at time τ , decreasing by one at rate one in backwards time). The path integral

formula for z(τ, n) shows that it equals the partition function for a particular semi-discrete

directed polymer in a random Brownian environment, first studied by O’Connell-Yor [78].

In this interpretation, log z(τ, n) is the quenched free energy of the model. See the reviews

[34, 36] for some background on directed polymers.
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1.3.5. Fredholm determinant. Since qxn(t)+n converges (as q → 1 and under appropriate

scaling) to z(τ, n) the eq-Laplace transform of qxn(t)+n converges to the Laplace transform

of z(τ, n). Thus, taking the q → 1 limit of Theorem 1.3 yields the following result, first

proved as [17, Theorem 5.2.11] (see also [20, Theorem 1.17]). An alternative route to prov-

ing this theorem utilizes O’Connell’s work [73] on Whittaker measure in conjunction with

an identity proved in [25].

Theorem 1.5. For the fundamental solution to the semi-discrete SHE and any n ≥ 1, τ ≥ 0,

u ∈ C with Re(u) > 0, E
[
e−ue

3
2
τz(τ,n)

]
= det

(
I+K

)
L2(C0)

, where C0 is a small contour
around 0 and

K(v, v′) =

1/2+i∞∫
1/2−i∞

π

sin(−πs)
Γ(v − 1)n

Γ(s+ v − 1)n
usevτs+

s2τ
2

s+ v − v′
ds

2πi
.

It is natural to wonder whether this theorem could be proved directly in an analogous

manner to the proof of Theorem 1.3. It is possible to compute similar moment formu-

las for E
[
z(τ, n1) · · · z(τ, nk)

]
(see [17, Proposition 5.2.9] or [26, Section 6.2]). A nat-

ural route to compute the Laplace transform of z(τ, n) would be to write E
[
eζz(τ,n)

]
=

E
[∑∞

k=0 z(τ, n)
k ζ

k

k!

]
=
∑∞

k=0 E
[
z(τ, n)k

]
ζk

k! , and use the formulas for E
[
z(τ, n)k

]
. Un-

fortunately, the last equality above is not true (the first is true as it just amounts to the Taylor

expansion of the exponential). It is not always possible to interchange expectations and in-

finite summations. The moments of z(τ, n) grow super-exponentially (as we have already

seen from the discussion on intermittency). Therefore, the right-hand series is divergent for

all ζ despite the fact that the left-hand side is necessarily convergent for ζ with negative real

part. This issue of moment indeterminacy is alleviated by lifting up to the level of q-TASEP,

where the algebra and analysis work hand-in-hand.

1.3.6. KPZ class asymptotics. Theorem 1.5 is amenable to asymptotic analysis as was

performed in [17, Theorem 5.2.13] and [20, Theorem 1.3] yielding:

Theorem 1.6. For all ν > 0, limτ→∞ P
(

log z(τ,ντ)−τγ̃1(ν)
d(ν)τ1/3 ≤ s

)
= FGUE(s) where d(ν)

= (−νΨ′′(s(ν))/2)1/3 with s(ν) = arg infs>0

(
s− νΨ(s)

)
.

Earlier, [89] proved an upper bound on the variance of log z(τ, ντ) of order τ2/3, con-
sistent with the τ1/3 scale of fluctuations. This theorem provides a matching lower bound as

well as the exact limiting distribution.

1.4. Example 4: ASEP. The asymmetric simple exclusion process (ASEP) is a one-param-

eter deformation of TASEP in which particles can move both left and right. Let xi(t) ∈ Z
represent the location of particle i at time t. We assume that xi(t) < xj(t) for i > j. The

state space of ASEP is the set of all such ordered xi, and the dynamics can be described as

follows: each particle xi has an exponential alarm clock (ringing after exponential waiting

time, independent of all other particle clocks). When the alarm rings, the particle flips a

coin and with probability p attempts to jump left, and with probability q = 1 − p attempts

to jump right. The jump is achieved only if the destination site is unoccupied at that time.

Regardless of the outcome, the particle’s clock is immediately reset. We will assume that
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0 < p < q < 1 and p + q = 1 so that there is a drift in the positive direction (like for

TASEP in which p = 0 and q = 1). ASEP can also be interpreted in terms of a growing (and

shrinking) height function: each ∨ is replaced by ∧ at rate q and each ∧ is replaced by ∨ at

rate p. As a measure of the asymmetry define the parameter τ = p/q < 1 which will play a

role akin to q from q-TASEP.

Just as for TASEP and q-TASEP, we will work with step initial data in which xi(0) = −i
for all i ≥ 1 (and there are no other particles with lower labels).

1.4.1. Moment formulas. An observable of interest is the number of particles to have

crossed a given site y. For y ∈ Z, let Ny(t) = |{m ≥ 1 : xm(t) ≥ y}|. We would like

to understand the behavior, in particular asymptotically, of this observable (which is closely

related to the height in the growth interpretation of the model). Define Qy(t) = τNy(t) and

its τ -derivative Q̃y(t) = (τ − 1)−1(Qy(t)−Qy−1(t)).

Theorem 1.7. For step initial data ASEP, any k ≥ 1 and integers y1 > · · · > yk,

E
[ k∏
j=1

Q̃yj (t)
]

=
τ

k(k−1)
2

(2πi)k

∮
· · ·
∮ ∏

1≤A<B≤k

zA − zB
zA − τzB

k∏
j=1

e
− zj(p−q)2t

(1+zj)(p+qzj)

(
1 +

zj
τ

1 + zj

)yj+1
dzj

τ + zj

where the contours of integration are all along a small circle centered at −τ but not con-
taining −1 or −τ2.

This result can, in turn, be used prove a similar integral formula for E
[
τkNy(t)

]
.

1.4.2. Fredholm determinant. Utilizing the methods described in Section 1.2.2 for q-
TASEP, it is possible to turn the integral formula forE

[
τkNy(t)

]
into a Fredholm determinant

formula for the eτ -Laplace transform of τNy(t) which first appeared as [26, Theorem 5.3].

Theorem 1.8. For step initial data ASEP, and any y ∈ Z,

E

[
1(

ζτNy(t); τ
)
∞

]
= det

(
I + K

)
L2(C)

where the contours C and D can be found from the statement of [26, Theorem 5.3] and

K(w,w′) =

∫
D

π

sin(−πs)
e(q−p)t τ

z+τ

(
τ

z+τ

)y
e(q−p)t τ

τsz+τ

(
τ

τsz+τ

)y −(−ζ)sqsw − w′
ds

2πi
.

1.4.3. KPZ class asymptotics. Theorem 1.8 characterizes the distribution of Ny(t) and

can be used to study its asymptotic behavior. There is another type of Fredholm deter-

minant formula which can also be reached from the moment formulas given earlier. That

Fredholm determinant (known in [26] as Cauchy-type) was essentially discovered earlier

by Tracy-Widom [94–96] using a different approach (for a comparison of methods see [37]).

Asymptotic analysis performed in [96] (and alternatively described in [26, Section 9]) yields:
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Theorem 1.9. For step initial data ASEP,

lim
t→∞

P

(
N0

(
t/(q − p)

)− t/4

t1/3
≥ −r

)
= FGUE(2

4/3r).

1.5. Example 5: KPZ equation. The Kardar-Parisi-Zhang (KPZ) equation was introduced

in 1986 [62] by the eponymous trio of physicists as a continuous (in space and time) model of

random interface growth. The height function h : R+ ×R→ R satisfies the stochastic PDE
∂
∂th(t, x) =

1
2

∂2

∂x2h(t, x) +
1
2

(
∂
∂xh(t, x)

)2
+ ξ(t, x) where ξ(t, x) is space-time Gaussian

white noise. In this continuous setting the Laplacian serves as a smoothing mechanism, the

gradient squared serves as a mechanism for growth in the normal direction to the local slope,

and the white noise inserts space-time uncorrelated randomness into the system. These three

factors underly the KPZ universality class.

Making direct sense of this equation is challenging due to the non-linearity and the

roughness of the spatial trajectories of h (see [12, 58, 59]). It has been understood since the

work of [13] that the physically relevant notion of solution is to define h(t, x) := log z(t, x)
where z : R+ × R → R solves the well-posed stochastic heat equation (SHE) with mul-

tiplicative noise ∂
∂tz(t, x) =

1
2

∂2

∂x2 z(t, x) + ξ(t, x)z(t, x). The fundamental solution to the

SHE has z(0, x) = δx=0 and corresponds (under the weak scalings described in Section

1.5.1) to step initial data. (For more about this definition, see [4, 36].) A variant of this Hopf-
Cole transform between growth process and stochastic heat equation was already present in

the context of the semi-discrete polymer in Section 1.3.1. Similar transforms also hold for

q-TASEP and ASEP, amounting to the k = 1 case of the dualities discussed later in Section

3.3 and 3.6, respectively.

The SHE has a directed polymer and parabolic Anderson model interpretation, though

both require some care in making precise. Essentially, z(t, x) can be interpreted as the par-

tition function for a directed polymer model in which Brownian motion moves through a

potential given by ξ (see more in [3, 4]) and can also be interpreted as the average mass den-

sity of a system of particles moving throughR according to (independent) Brownian motions

and splitting into two unit masses as well as dying according to the sign and amplitude of ξ.

1.5.1. Weak scaling universality of the KPZ equation. Rescale the solution to the KPZ

equation by setting hε(t, x) = εbh(ε−zt, ε−1x) where b, z ∈ R. Then hε satisfies
∂
∂thε(t, x)

= 1
2ε

2−z ∂2

∂x2hε(t, x) +
1
2ε

2−z−b
(
∂
∂xhε(t, x)

)
+ εb−z/2+1/2ξ(t, x). Each term on the right-

hand side rescaled differently.

Consider b = 1/2 and z = 2. Under this choice, the coefficients in front of the Laplacian

and noise stay fixed as ε varies, however the one in front of the squared gradient grows like

ε−1/2. If we inserted a parameter λ in front of the squared gradient in the original KPZ

equation, and simultaneously scaled λ = ε1/2, then this would cancel the ε−1/2 and the KPZ

equation would remain invariant as ε varied. We will call this weak non-linearity scaling.
Consider instead setting b = 0 and z = 2. Now, the coefficients in front of the Laplacian

and squared gradient stay fixed as ε varies, while the one in front of the white noise grows

like ε−1/2. Just as above, if we inserted a parameter β in front of the white noise in the

original KPZ equation, and scaled it as β = ε1/2, then this would cancel the ε1/2 and the

KPZ equation would remain invariant. We call this weak noise scaling.
These weak scalings are proxies for finding approximation schemes for the KPZ equa-

tion. Consider a model whose microscopic dynamics are characterized by a form of smooth-



Macdonald processes, quantum integrable systems and the KPZ class 1017

ing, a non-linear dependence of the growth rate on the local slope, and space-time uncorre-

lated noise. If either the non-linearity or the noise have tunable parameters, then applying the

above weak scalings may yield convergence of the model to the KPZ equation. It is impor-

tant to note that it is only under these special weak scalings that growth models are expected

to converge to the KPZ equation. The KPZ universality class scaling demonstrated through

the examples we have studied has b = 1/2 and z = 3/2, and does not involve a parameter

scaling. One may be misled in taking a formal ε → 0 limit of the rescaled KPZ equation

with these choices of b and z. It would seem that the (deterministic) inviscid Burgers equa-

tion arises as the limit, but this cannot be (for instance, we know the limit remains random).

The non-linearity seems to enhance the noise, which formally disappears as ε → 0. The

KPZ-fixed point is the proposed [42] space-time limit of hε(t, x) (and any KPZ class model

under the same scaling). The FGUE distribution is just a one-point marginal distribution for

the fundamental solution to this fixed point evolution.

Returning to the weak scalings, q-TASEP, the semi-discrete SHE and ASEP all have

tunable parameters which control either the strength of the non-linearity or the noise. They

also all admit Hopf-Cole type transform to the form of SHEs (of course the semi-discrete

SHE is already in such a form). Since the KPZ equation is defined via such a transform, this

reduces the problem to proving convergence (under suitable weak scaling) of discrete SHEs

to the continuous one. This was first achieved for ASEP in 1997 work of Bertini-Giacomin

[13], and subsequently has been extended to the other examples in [4, 70] (and to discrete

polymers in [2]). The only weak universality result which has not utilized an exact Hopf-

Cole transform is that of [43] which deals with finite (jumps up to distance three) exclusion.

That result still proceeds through a discrete SHE which is shown to closely approximate a

Hopf-Cole type transformed height function.

1.5.2. Moment formulas. Limits of the moment formulas for q-TASEP, the semi-discrete

random polymer and ASEP under weak scaling from Section 1.5.1 yield the following mo-

ment formula for the fundamental solution to the SHE.

Theorem 1.10. For the fundamental solution to the SHE z(t, x) and any k ≥ 1, x1 ≤ · · ·
≤ xk

E
[ k∏
j=1

z(t, xj)
]
=

1

(2πi)k

∫
· · ·
∫ ∏

1≤A<B≤k

zA − zB
zA − zB − 1

k∏
j=1

e
t
2 z

2
j+xjzjdzj

where the zj integration is over αj + iR with α1 > α2 + 1 > α3 + 2 > · · · .
The moment Lyapunov exponents for z(t, 0) are easily computed from the above formula

as γk =
k3−k
24 (these were first computed by Kardar [63] and proved in [12]).

1.5.3. Fredholm determinant. Just as for the semi-discrete SHE, the moments of the SHE

grow far to quickly to characterize the distribution of z(t, x). However, we may use any of

Theorems 1.3, 1.5, or 1.8 to prove the below Laplace transform formula for z(t, x).

Theorem 1.11. For the fundamental solution to the SHE and any ζ ∈ C with Re(z) > 0

E
[
e−ζe

t
24 z(t,0)

]
=det

(
I −K

)
L2(R+)

,
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with
K(η, η′)=

∫
R

ζ

ζ + e−s(t/2)1/3
Ai(s+ η) Ai(s+ η′) ds.

This Fredholm determinant can also be written in the same form as that of the earlier

theorems. This formula (in fact the inversion of it giving the distribution of z(t, 0)) was dis-

covered independently and in parallel by Sasamoto-Spohn [85] and Amir-Corwin-Quastel

[4] in 2010 based on asymptotic analysis of Tracy-Widom’s ASEP formulas [96]. The rig-

orous (mathematically) proof of the formula was provided by [4], and another subsequent

proof in [20]. Soon after the work of [4, 85], this formula was re-derived by Dotsenko [45]

and Calabrese-Le Doussal-Rosso [32] via the mathematically non-rigorous replica method

(i.e. using moments to try to recover the Laplace transform, despite the aforementioned

impediments). For more details, consult [36].

1.5.4. KPZ class asymptotics. A corollary of Theorem 1.11 is that the KPZ equation is

in the KPZ universality class. The below result was first proved in [4, Corollary 1.3]. For

stationary (i.e. z(0, x) = B(x) a two-sided Brownian motion) initial data, the t1/3 scale of

fluctuations was demonstrated earlier in [7]. Recently, using the KPZ line ensemble, [39,

Theorem 1.4] show that this t1/3 scale holds true for all KPZ initial data.

Theorem 1.12. For the fundamental solution to SHE, limt→∞ P
(

log z(t,0)+ t
24

(t/2)1/3
≤ r
)
=

F GUE(r).

1.6. Further examples. The list of (non-determinantal) integrable probabilistic systems

in the KPZ universality class continues to grow. Besides those models we have already

discussed in the examples, the q-Hahn (or (q, μ, ν)) TASEP has been studied in [35, 83], the

discrete time q-TASEPs in [18], the q-PushASEP in [30, 41], and the log-gamma polymer

in [40, 74, 88]. It seems likely that the methods we now turn to will yield the discovery and

analysis of further examples beyond these.

2. Macdonald processes

A high point of modern representation theory and symmetric function theory, Macdonald

symmetric polynomials have found many diverse applications throughout mathematics. The

canonical reference for their properties is the book [67] (see also the review material in [17,

Section 2], and the historical perspective at the end of [15]). In this section we present a

probabilistic application of these remarkable polynomials.

2.1. Defining Macdonald symmetric polynomials. Macdonald symmetric polynomials

in N variables x1, . . . , xN are indexed by non-negative integer partitions λ = (λ1 ≥
· · · ≥ λN ≥ 0) and written as Pλ(x1, . . . , xN ). They are invariant under the action

of the symmetric group SN on the N variables, and have coefficients which are rational

functions of two additional parameters q, t (i.e. coefficients in Q(q, t)) which we assume

are in [0, 1). The Pλ (as λ varies) form a linear basis in symmetric polynomials in N
variables over Q(q, t). They can be defined in the following (rather inexplicit) manner

(which will, however, suffice for our purposes). Define the Macdonald first difference op-
erator DN

1 on the space of N variable symmetric functions f as
(
DN

1 f
)
(x1, . . . , xN ) =
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∑N
i=1

∏N
j=1

j �=i

txi−xj

xi−xj
f(x1, . . . , qxi, . . . , xN ). It is not a priori clear (due to the denominator

xi − xj), but this operator preserves the class of symmetric polynomials. This operator

is self-adjoint (with respect to a natural inner product on symmetric polynomials with co-

efficients in Q(q, t)) and the Macdonald symmetric polynomials are the eigenfunctions of

DN
1 labeled via their (generically) pairwise different eigenvalues

(
DN

1 Pλ
)
(x1, . . . , xN ) =

(qλ1tN−1 + qλ2tN−2 + · · · + qλN )Pλ(x1, . . . , xN ). The polynomials have many strik-

ing properties. They are orthogonal (as eigenfunctions of DN
1 ) with respect to the earlier

mentioned inner product, and the Macdonald Qλ polynomials are defined as Pλ/〈Pλ, Pλ〉
and form a dual basis to the Pλ. There is a Cauchy type identity providing a simple re-

producing kernel: for variables a1, . . . , aN and b1, . . . , bM with |aibj | < 1 for all i, j,∑
λ Pλ(a1, . . . , aN )Qλ(b1, . . . , bM ) =

∏
i,j

(taibj ;q)∞
(aibj ;q)∞

=: Π(a1, . . . , aN ; b1, . . . , bM ).

They satisfy Pieri and branching rules: the first describes the coefficients which result from

multiplying Macdonald symmetric polynomials by elementary (or (q, t)-complete homoge-

neous) symmetric polynomials and reexpressing the answer in terms of other Macdonald

symmetric polynomials; the second will be described below in Section 2.4. In the results ex-

plained below, these are essentially the only properties of these polynomials utilized. Other

noteworthy properties are index/variable duality, and the existence ofN − 1 other difference

operators which commute with DN
1 (and also are diagonalized by the Pλ).

2.2. Defining Macdonald processes. The (ascending) Macdonald process is a probability

measures on interlacing partitions λ(N) ? λ(N−1) ? · · · ? λ(1) where the number of

non-zero elements in λ(m) is at most m, and the symbol ? implies interlacing (so λ
(m)
j+1 ≤

λ
(m)
j ≤ λ

(m+1)
j for all meaningful inequalities). Such an interlacing triangular arrays of

non-negative integers is also known as a Gelfand-Tsetlin pattern.
Measures on interlacing triangular arrays arise in many contexts. Before defining Mac-

donald processes, we consider a simpler example which comes from random matrix theory.

Consider an N ×N Gaussian Hermitian matrix drawn from the Gaussian unitary ensemble.

For any m ≤ N let λ
(m)
1 , . . . , λ

(m)
m be the ordered (largest to smallest) eigenvalues of the

m ×m upper-left corner of the matrix. By Rayleigh’s Theorem the eigenvalues at level m
interlace with those at levelm−1. Thus, the eigenvalues form an interlacing triangular array,

though the constitute elements are reals now instead of non-negative integers. The measure

on this array inherited from the GUEmeasure is called the GUE-corner (or sometimes minor)

process [9, 61] and has a very nice form. At levelN , the measure on the eigenvalues λ(N) is

the GUE measure written as (up to normalizations)
∏N

i �=j(λ
(N)
i − λ

(N)
j )2

∏N
i=1 e

−(λ
(N)
i )2/2.

Given the eigenvalues at level N , the distribution of λ(N−1), . . . , λ(1) is uniform over the

Euclidean simplex such that the interlacing inequalities are all satisfied [9, 52, 54].

The Macdonald process is a far reaching generalization of the GUE-corner process. In

order to describe it we will start by describing the Macdonald analog of the GUE mea-

sure on level N . This single level measure is called the Macdonald measure and defined

as M(N ;a,b)

(
λ(N)

)
:=

P
λ(N) (a1,...,aN )Q

λ(N) (b1,...,bM )

Π(a1,...,aN ;b1,...,bM ) . Here a = (a1, . . . , aN ) and b =

(b1, . . . , bM ) for some M ≥ 0 (one can work with more general Macdonald non-negative

specializations – see [17, 22]). From the Cauchy type identity, it is clear that summing over

all λ(N) yields one. If the ai and bj are all non-negative, then, due to a combinatorial expan-

sion formula for the Pλ and Qλ, the numerator (and thus the measure) is also non-negative.

Besides the dependence on the a and b parameters, the measure also depends on the Mac-
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donald q, t parameters. We will hold off defining the Macdonald process until Section 2.4.

Macdonald process generalizes a number of other measures (see the figure at the end of

[15]). The GUE measure / GUE-corner process is a continuous space degeneration of the

Schur measure / process [61, 79–81]. Macdonald measure seems to have first studied by

Fulman in 1997 [51], and subsequently by [49, 97]. Until recently there were few examples

of interesting probabilistic systems related to the Macdonald measure / process and there

was a lack of ways to compute with them. In short, we were generally missing the answers

to the questions of why and how to study Macdonald processes.

In 2011, Borodin-Corwin [17] provided partial answers to these two questions by: (1)

constructing explicit Markov operators that map Macdonald processes to Macdonald pro-

cesses (with updated parameters); (2) evaluating averages of a rich class of observables of

the measures. In both cases, the integrable structure of Macdonald polynomials translates

directly into probabilistic content. Since the work of [17], there has been a flurry of activity

in these directions (see Section 2.7). We will only touch on the simplest example of how

both of these answers work.

2.3. Computing expectations. Within statistical mechanics it is desirable to find explicit

formulas for ensemble partition functions. For example, for the Ising model (at inverse tem-

perature β in magnetic field h) the partition function is Z(β, h) =
∑

σ e
β
∑

i∼j σiσj+h
∑

i σi .

Taking derivatives of logZ(β, h) in h and β give (respectively) the expected magnetization,

and expected product of spin over neighboring sites. The key here is that the Boltzmann

weight (inside the sum over spin configurations σ) is an eigenfunction for the operators of

differentiation in h and in β.
In our present case Π(a; b) is like the partition function and Pλ(a)Qλ(b) the

Boltzmann weight. Let D be any linear operator which is diagonalized by the Macdon-

ald polynomials (e.g. a product of the Macdonald difference operators) with eigenvalue dλ,
so that

(
DPλ

)
(a) = dλPλ(a). Since

∑
λ Pλ(a)Qλ(b) = Π(a; b), it follows that (with

D(a) meaning to apply D on the a variables) D(a)Π(a; b) =
∑

λD
(a)Pλ(a)Qλ(b) =∑

λ dλPλ(a)Qλ(b). Dividing both sides by Π(a; b) yields E
[
dλ
]
= D(a)Π(a;b)

Π(a;b) . If all of

the ingredients are explicit (as they are for products of Macdonald difference operators),

then we obtain meaningful and explicit probabilistic information without ever needing to

know explicit formulas for the Macdonald measure itself. In fact, the eigenvalues of the

commuting family of Macdonald difference operators provide explicit formulas for expec-

tations of enough observables to entirely characterize the Macdonald measure. In this way,

the Macdonald measure is a completely integrable probabilistic system.

We will return to one such explicit formula (with Macdonald parameter t = 0) in Sec-

tion 2.6, and refer readers to [17, Section 2.2.3] and [22] for a more general discussion of

developments here.

2.4. Constructing dynamics. The construction of dynamics on Gelfand-Tsetlin patterns

which we present comes from an idea of Diaconis-Fill [44] in 1990 and was developed in

the case of Schur processes by Borodin-Ferrari [27] in 2008 (see all [16]). Before describing

this construction we explain how the full Macdonald process is defined (we have so far

only defined the Macdonald measure on a given level N ). The branching rule for Pλ(N)

is Pλ(N)(a1, . . . , aN ) =
∑

λ(N−1)#λ(N)

Pλ(N−1)(a1, . . . , aN−1)Pλ(N)/λ(N−1)(aN ) where the

sum is over all partitions λ(N−1) which interlace with λ(N) and where the skew Macdonald
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polynomial Pλ/μ(u) is zero unless λ ) μ and ψλ/μu
|λ|−|μ| otherwise (with ψλ/μ ∈ Q(q, t)

explicit and not dependent on u).
It follows from the branching rule that the Markov kernel (or stochastic link) ΛN

N−1 from

levelN to levelN−1 given byΛN
N−1

(
λ(N), λ(N−1)

)
:=

P
λ(N−1) (a1,...,aN−1)Pλ(N)/λ(N−1) (aN )

P
λ(N) (a1,...,aN )

maps the Macdonald measure M(N ;a1,...,aN−1,aN ;b) on level N to the Macdonald measure

M(N ;a1,...,aN−1;b) on level N − 1 (note that the aN has been removed). The law of the

trajectory of the Markov chain defined by these kernels started from Macdonald measure

on level N is the Macdonald process: i.e., the Macdonald process on λ(N) ? · · · ? λ(1)

specified by parameters a1, . . . , aN and b1, . . . , bM is written as M([1,N ];a;b) and defined as

M([1,N ];a;b)

(
λ(N), . . . , λ(1)

)
:=M(N ;a;b)

(
λ(N)

)
ΛN
N−1

(
λ(N), λ(N−1)

) · · ·Λ(2)
1

(
λ(2), λ(1)

)
.

In the GUE-corner process, the stochastic link ΛN
N−1 is given by the indicator function

that λ(N−1) interlaces with λ(N) times the ratio of the volume of the simplex of triangular

arrays with top level λ(N−1) to that with top level λ(N) (there volumes are given by Vander-

monde determinants).

There is another natural Markov chain which maps Macdonald measure to Macdon-

ald measure on a single level N . For u ≥ 0, the Markov kernel π
(u)
N

(
λ(N), ν(N)

)
:=

P
ν(N) (a)

P
λ(N) (a)

· Qν(N)/λ(N) (u)

Π(a;u) maps the Macdonald measure M(N ;a;b1,...,bM ) on level N to the

Macdonald measure M(N ;a;b1,...,bM ,u) on level N (note that u has been appended to the b-
list). This Markov kernel has the interpretation as the Doob-h transform of the sub-Markov

kernel given by
Q

ν(N)/λ(N) (u)

Π(a;u) . Due to the explicit formula for the skew Macdonald polyno-

mial, this sub-Markov kernel acts on λ(N) by increasing each element by independent geo-

metrically distributed (with parameter u) amounts, and then killing all configurations which

violate interlacing, and energetically penalizing all other configurations based on the value of

Qν(N)/λ(N)(u). A generalized Cauchy type identity implies
∑

ν(N)

Q
ν(N)/λ(N) (u)

Π(a;u) Pν(N)(a) =

Pλ(N)(a) hencePν(N)(a) has eigenvalue one for this sub-Markov kernel and is positive inside

and zero outside the support of the kernel. The Markov kernel π
(u)
N therefore corresponds to

conditioning the sub-Markov chain to survive forever.

In the GUE setting, and in continuous time, this Markov chain is replaced by Dyson’s

Brownian motion (which can be thought of as conditioning N Brownian motions to never

intersect). Therefore, the Markov chain corresponding to π
(u)
N is a discrete time (q, t) -

deformation of Dyson’s Brownian motion.

We have defined two Markov chains. One chain goes from level N to level N − 1 with

kernel ΛN
N−1 and the other goes from levelN to levelN with kernel π

(u)
N . We will introduce

a multivariate Markov chain with state space given by the entire Gelfand-Tsetlin pattern that

‘stitches’ these two chains together.

The key input into this construction is an intertwining relation of the two Markov chains.

Specifically, for u ≥ 0, and any m ≥ 2, Λm
m−1π

(u)
m−1 = π

(u)
m Λm

m−1.

For u ≥ 0 define the Markov kernel

P (u)
(
(λ(1), . . . , λ(N)), (ν(1), . . . , ν(N))

)
:= π

(u)
1

(
λ(1), ν(1)

) N∏
k=2

π
(u)
k

(
λ(k), ν(k)

)
Λk
k−1

(
ν(k), ν(k−1)

)(
π
(u)
k Λk

k−1

)(
λ(k), ν(k−1)

) .

Then P (u) maps M([1,N ];a;b1,...,bM ) to M([1,N ];a;b1,...,bM ,u). The important property of this
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construction is that each levelmmarginally evolves according to π
(u)
m , while the entire chain

preserves the structure of the Macdonald process. P (u) first updates λ(1) to ν(1) based on

π
(u)
1 , then updates λ(2) to ν(2) according to the conditional law of ν(2) given that the Λ2

1

transition should bring ν(2) to the previously determined ν(1). The update proceeds similarly

on each sequential pair of levels. These dynamics are constructed in [17, Section 2.3] and

further constructions of dynamics which preserve the class of Macdonald processes (or their

degenerations) are given in [30, 40, 73, 76].

In the GUE setting, and in continuous time, the limit (cf. [55, 56]) of this construction

yields Warren’s process [98] in which λ
(1)
1 evolves as a Brownian motion, λ

(2)
1 and λ

(2)
2

evolve according to independent Brownian motions which are reflected above and below

(respectively) λ
(1)
1 , and in general λ

(m)
j evolves as a Brownian motion reflect to be above

λ
(m−1)
j and below λ

(m−1)
j−1 . These dynamics preserve the class of GUE corner processes and

have GUE Dyson’s Brownian motion marginally on each level.

2.5. Example of dynamics. The dynamics constructed in Section 2.4 becomes simpler

when we set the Macdonald parameter t = 0 and move into a continuous time setting. Since

from here on out the Macdonald parameter t is fixed to be zero, we will abuse notation and

use t for time. This transition to continuous time is achieved through setting the parameter

u in the construction equal to ε(1 − q) and running the discrete time Markov dynamics for

ε−1t steps (the factor of 1 − q makes formulas nicer). Taking ε → 0 yields the following

continuous time (measure by t) dynamics.

Treat the λ
(m)
k as coordinates of particles where m is the level on which they live and

k is their horizontal location. Each particle λ
(m)
k jumps by one horizontally to the right

independent of the others according to an exponential clock of rate

rate(λ
(m)
k ) = am

(
1− qλ

(m−1)
k−1 −λ

(m)
k
) (
1− qλ

(m)
k −λ

(m)
k+1+1

)(
1− qλ

(m)
k −λ

(m−1)
k +1

) . (2.1)

Those of the three terms above which refer to particles labeled with m = 0, k = m + 1 or

k = 0 are simply left out of the formula.

This is a (2+1)-dimensional interacting particle system with a local (in terms of particle

labels) update rule. The particle λ
(m)
k is influenced by the horizontal distance to three of its

neighbors. As it gets closer to λ
(m−1)
k−1 , its jump rate slows to zero (preventing jumps out of

the interlacing condition). As it gets closer to λ
(m−1)
k the jump rate increases to infinity (so

as to immediately force a jump if λ
(m−1)
k has overtaken the particle). These two interactions

are the strongest, however there is also a slow down as λ
(m)
k+1 gets closer to the particle.

By virtue of (2.1), the set of coordinates
{
λ
(m)
m −m

}
m≥1

evolves autonomously of the

rest of the Gelfand-Tsetlin pattern. This (1 + 1)-dimensional interacting particle system is

q-TASEP where xm(t) = λ
(m)
m at time t and where the jump rate of xm is given by am(1−

qxm−1(t)−xm(τ)−1). We have been led to this particle system by virtue of the properties of

Macdonald polynomials.

Step initial data for q-TASEP is achieved by running the above dynamics on Gelfand-

Tsetlin patterns from initial data given by M([1,N ];a;0). By setting all bj to be zero, this

measure is entirely supported on the configuration where all λ
(m)
k ≡ 0. After performing the

above affine shift to xm coordinates, this corresponds with setting xm(0) = −m for m ≥ 1.
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2.6. Example of expectations. Running the continuous time (Macdonald parameter t = 0)
dynamics for time t (abusing of notation) from initial data given M([1,N ];a;0) yields another

Macdonald process, which can be thought of as the ε→ 0 limit of M([1,N ];a;ε(1−q),···ε(1−q))

where there are ε−1t entries of ε(1−q). This limit is called the Plancherel specialization and

denoted by ρt so that the limiting measure becomes M([1,N ];a;ρt). Under this limit Π(a; b)

becomes Π(a; ρt) =
∏N

i=1 e
ait.

We will now utilize the receipe of Section 2.3 to compute observables of this Macdonald

process (and hence also of q-TASEP started from step initial data). As we have fixed the

parameter t = 0, the eigenvalue of the first difference operator becomes DN
1 Pλ(N)(a) =

qλ
(N)
N Pλ(N)(a) so that E

[
qk(xN (t)+N)

]
= E
[
qkλ

(N)
N

]
=

(DN
1 )kΠ(a;ρt)
Π(a;ρt)

where the first expec-

tation is over q-TASEP started from step initial data and the second expectation is over the

Macdonald process M([1,N ];a;ρt). This can be generalized [22] to any n1 ≥ · · · ≥ nk ≥ 1

as E
[∏k

j=1 q
xnj

(τ)+nj
]
= E

[∏k
j=1 q

λ
(nj)
nj
]
=

D
nk
1 ···Dn1

1 Π(a;ρt)
Π(a;ρt)

where Dn
1 represents the

Macdonald first difference operator applied only to the variables a1, . . . , an. Theorem 1.2

follows (in fact a general ai version of it) via encoding the application of these difference

operators in terms of residues from contour integrals. To state the general ai formula, as-

sume (for simplicity of the choice of contours) that all ai are very close to 1. Then using the

multiplicative form of Π(a; ρt) we find that

Dnk
1 · · ·Dn1

1 Π(a; ρt)

Π(a; ρt)

=
(−1)kq k(k−1)

2

(2πi)k

∮
· · ·
∮ ∏

1≤A<B≤k

zA − zB
zA − qzB

k∏
j=1

nj∏
m=1

am
am − zj

e(q−1)tzjdzj
zj

where, for each A ∈ {1, . . . , k} the contour of integration of zA contains the set of all ai, as
well as q times the contour of integration of zB for B > A, but does not contain 0. Taking
residues as the zk through z1 contours shrink provides a link to the difference operators.

2.7. Further developments. We record (without description) some further developments

related to the theory of Macdonald processes. The figure at the of [15] highlights and

organizes some of the probabilistic systems related to Macdonald processes and their de-

generations (limits under special choices of Macdonald q, t parameters). These degener-

ations mimics those of Macdonald symmetric polynomials. The Schur process degener-

ation has been well studied during the past decade (see the review [15] or [29]) so we

forego further discussion below. Note, in [1] the Macdonald process technology is uti-

lized to rederive the Schur process determinantal structure. We also forego discussion of

Kingman partition structures and refer the interested reader to [82] and references therein.

Further dynamics have been constructed which preserve Macdonald processes (or their de-

generations) [17, 28, 30, 31, 40, 56, 73, 76]. Further probabilistic systems have been con-

nected to Macdonald processes (or their degenerations) or discovered via the above dynam-

ics [17, 18, 28, 30, 31, 40, 41, 73, 74]. Exact and concise formulas have been found for

expectations for a rich class of observables [17, 20–22, 25, 28, 40, 73]. A formal power

series treatment of Macdonald processes and observable formulas has been developed [22].

Asymptotic analysis has been performed on some of the systems related to Macdonald pro-

cesses [17, 19–21, 25, 28, 48]. Some of the structure related to Macdonald processes has

been recast in the probabilistic language of Gibbsian line ensembles and used to prove some



1024 Ivan Corwin

universality results beyond exact solvable situations [39]. Formulas for expectations as well

as dynamics preserving Macdonald process have begun to be connected to the Bethe ansatz

and theory of quantum integrable systems [18, 26, 41]. It is this last point, the connection to

Bethe ansatz and quantum integrable systems, which we expand upon in Section 3.

3. Quantum integrable systems

We will not define a quantum integrable system or go into any depth as to their algebraic

origins (see [11, 47, 65, 84] for some references in this direction). Instead, we will study

a few systems which arise in relation to the probabilistic analysis of models in the KPZ

universality class.

3.1. Delta Bose gas. The first connection between the KPZ universality class and a quan-

tum integrable system came from independent work of Kardar [63] and Molchanov [69] in

1987. For the SHE z(t, x) (recall from Section 1.5) joint moments E
[
z(t, x1) · · · z(t, xk)

]
are solutions to the quantum delta Bose gas, or Lieb-Liniger model (in imaginary time and

with attractive delta interaction): ∂
∂tE
[
z(t, x1) · · · z(t, xk)

]
= 1

2

(∑k
i=1

∂2

∂x2
i
+
∏k

i �=j δ(xi −
xj)
)
E
[
z(t, x1) · · · z(t, xk)

]
. In 1963 Lieb-Liniger solved (i.e. computed eigenfunctions for)

the Hamiltonian on the right-hand side (i.e. the operator in the parentheses) via the Bethe

ansatz (see also [68] expanding on this initial work). This was the second instance of a model

being solved via this method, the first being Bethe’s original solutions to the spin 1/2XXX
Heisenberg chain. Lieb-Liniger’s work marked the beginning of the development of the the-

ory of quantum integrable systems. Besides computing eigenfunctions, for many purposes

it is necessary to prove the completeness of the Bethe ansatz and determine the norms of the

eigenfunctions. Such results go under the general title of Plancherel theorems and we will

return to discuss these as well as the Bethe ansatz in Section 3.4.

Using the eigenfunctions for the delta Bose gas and the Plancherel theorem it is pos-

sible to solve the above differential equation for any initial data. For delta initial data the

solution can be simplified considerably so as to take the form of Theorem 1.10. As we

observed in Section 1.5.3, it is not possible to utilize the moments of the SHE to recover

the distribution of, for instance, z(t, x) for fixed t and x. Nevertheless, Dotsenko [45] and

Calabrese-Le Doussal-Rosso [32] reconstructed the known one-point distribution for z(t, x)
via the (mathematically non-rigorous) replica method using these moments.

3.2. Be wise, discretize. What is a possible mathematical interpretation for this replica

method calculations of [32, 45]? To answer this, we are drawn deeper into developing con-

nections between the KPZ class and quantum integrable systems. The basic idea is that in-

stead of working with the KPZ equation and delta Bose gas, we should first find an integrable

discretization of the KPZ equation which converges to the equation under some scaling limit

(such those in Section 1.5.1). Second, we should identify some observes whose expectations

(analogous to moments of the SHE) solve a quantum integrable system. Third, we should

solve this system via the Bethe ansatz (developing the Plancherel theory as necessary) for

general initial data. And fourth, we should utilize the resulting expectation formulas to com-

pute distributional information about the model and take the limit to KPZ/SHE. Steps one

through three work for q-TASEP and ASEP (as well as a few other systems [18, 35, 41]).
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Step four has only been accomplished for some special types of initial data, including step

(which we saw earlier is the discrete precursor to the fundamental solution to the SHE).

We will focus on this for q-TASEP and only briefly mention the case of ASEP which

is treated analogously. Our aim is to provide an alternative proof (than that of Macdonald

processes) to Theorem 1.2.

3.3. Duality between q-TASEP and the q-Boson process. The q-Boson process was in-

troduced by Sasamoto-Wadati [86] in 1998. It is a continuous time Markov process (a totally

asymmetric zero range process) in which each site j ∈ Z has a non-negative number of par-

ticles yj sitting above it. In continuous time the top particle at each location j jumps to the

left by one site with a rate given by 1 − qyj . The process is illustrated in Figure 3.1 along

with the notation k, #y = {yj}j∈Z, #n, #c and m. Assuming there are k ≥ 1 particles in the

system (particle count is preserved in time) it is also natural to record the state #y as a vec-

tor #n = (n1 ≥ · · · ≥ nk) of the ordered locations of the particles. Let #c = (c1, . . . , cm)
represent the sizes of clusters in #n and m be the total number of such clusters.

1− q2

1− q

1− q3

1− q

1− q3

0 1 2−1−2−3 3

Figure 3.1. The q-Boson process with k = 10 particles at state y−3 = 2, y−1 = 1, y0 =
3, y1 = 1, y2 = 3 and all other yj ≡ 0. Equivalently, particles at ordered locations 
n =
(2, 2, 2, 1, 0, 0, 0,−1,−3,−3) with m = 5 clusters of sizes 
c = (3, 1, 3, 1, 2).

The generator for the q-Boson process is
(
Hf
)
(#n) =

∑m
i=1

(
1 − qci

)(
f(#n−c1+···+ci) −

f(#n)
)
where f is a function of the ordered locations #n and #n−j = (n1, . . . , nj − 1, . . . , nk).

There is an obvious relationship between q-TASEP and the q-Boson process since the

gaps of q-TASEP evolve according to the same zero range jumping rates as the q-Boson

process. A less apparent, but quite useful (and simple to prove – see [26, Theorem 2.2])

relationship is the Markov duality of these two processes. As q-TASEP is a discretization of

the KPZ equation, this shows that the q-Boson process is a discretization of the delta Bose

gas.

Proposition 3.1. For q-TASEP xn(t), f(t, #n) := E
[∏k

j=1 q
xnj

(t)+nj

]
is the unique solu-

tion of ∂
∂tf(t, #n) =

(
Hf
)
(t, #n), with f(0, #n) = E

[∏k
j=1 q

xnj
(0)+nj

]
.

3.4. Coordinate integrability of the q-Boson process. Define the free generator L via its

action
(Lu)(#n) = (1−q)∑k

i=1

(∇iu
)
(#n)where u : Zk → C,

(∇f)(n) = f(n−1)−f(n),
and ∇i acts as ∇ on coordinate i of u. When all elements of #n are unique (no clusters of

n’s) the action of L matches that of H . The actions differ when clustering occurs. To repair

this difference, we say that u satisfies the boundary conditions if for all 1 ≤ i ≤ k − 1(∇i − q∇i+1

)
u
∣∣
ni=ni+1

= 0. The boundary conditions involve arguments #n outside of the
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set of ordered ni. The following result is proved as [26, Proposition 2.7].

Proposition 3.2. If u : R+ × Zk → C satisfies the free evolution equation ∂
∂tu(t, #n) =(Lu)(t, #n) and boundary conditions, then its restriction to {n1 ≥ · · · ≥ nk} satisfies the

q-Boson process evolution equation ∂
∂tu(t, #n) =

(
Hu
)
(t, #n).

Using Propositions 3.1 and 3.2 we can provide another proof of Theorem 1.2. Let u(t, #n)
be given by the right-hand side of (1.1). That u satisfies the free evolution equation follows

from the equality ∂
∂t

e(q−1)tz

(1−z)n = (1 − q)∇ e(q−1)tz

(1−z)n and Leibnitz rule. To check the boundary

condition, observe that applying ∇i − q∇i+1 to the integrand with ni = ni+1 results in a

factor zi − qzi+1. This factor cancels the corresponding term in the denominator and allows

the zi and zi+1 contours to be freely deformed together thus showing that the remaining

integral is zero by anti-symmetry. It remains to check initial data. Step initial data has

xn(0) + n = 0 for all n ≥ 1 and hence we must check that u(0, #n) ≡ ∏k
i=1 1ni≥1. This

initial data is easily checked via residue calculus and comes from the poles of the product 1
zj

at zero.

The role that each term on the right-hand side of (1.1) plays in solving the q-Boson

process evolution equation suggests that one should look to generalize the 1
zi

product in

order to study general initial data (which in turn corresponds to general q-TASEP initial

data). In order to do this we develop the Plancherel theory necessary to diagonalize the

q-Boson process generator via Bethe ansatz.

3.4.1. Coordinate Bethe ansatz. Consider a space X , an operator L which acts on func-

tions f : X → C, and an operator B which acts on functions g : X2 → C. Let

#x = (x1, . . . , xk) ∈ Xk, Li act as L on coordinate i of functions Ψ : Xk → C, and

Bi,i+1 act as B on coordinates i and i+ 1 of functions Ψ : Xk → C.

Algebraic eigenfunctions for an operator L acting on Ψ : Xk → C as
(LΨ)(#x) =∑k

i=1

(
LiΨ

)
(#x) that satisfy boundary conditions Bi,i+1Ψ

∣∣
xi=xi+1

= 0 for 1 ≤ i ≤ k − 1

can be diagonalized the following Bethe ansatz. First, diagonalize the one dimensional oper-

ator
(
Lψz

)
(x) = λzψz(x) where ψz : X → C and z ∈ C indexes the eigenfunctions.

Then consider linear combinations of products of these one dimensional eigenfunctions

Ψ�z(#x) :=
∑

σ∈Sk
Aσ(#z)

∏k
i=1 ψzσ(i)

(xi). For arbitrary #z ∈ Ck and functions Aσ(#z) we

must have
(LΨ�z

)
(#x) =

(∑k
i=1 λzi

)
Ψ�z(#x). Finally, choose

Aσ(#z) := sgn(σ)
∏

k≥A>B≥1

S(zσ(A), zσ(B))

S(zA, zB)
where S(z1, z2) :=

B(ψz1 ⊗ ψz2

)
(x, x)

ψz1(x)ψz2(x)

Then, for any #z ∈ Ck the corresponding Ψ�z(#x) will be eigenfunctions of L which satisfy

the boundary conditions. Since instead of working on a finite or periodic domain (often the

setting of Bethe ansatz) we are working on Z, there is no quantization of the spectrum (Bethe

equations).

3.4.2. Left and right eigenfunctions. We apply Bethe ansatz to the q-Boson process Hamil-

tonian with L = (1 − q)∇ and B1,2 = ∇1 − q∇2 to compute the left eigenfunctions for

H (see [23, Proposition 2.10]). While H is not self-adjoint, it does enjoy a PT-invariance

which immediately also yields right eigenfunctions.
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Proposition 3.3. Let Ψ�
�z(#n) :=

∑
σ∈Sk

∏
k≥A>B≥1

zσ(A)−qzσ(B)

zσ(A)−zσ(B)

∏k
j=1

1
(1−zσ(j))

nj , and

Ψr
�z(#n) = c−1

q (#n)Ψ�
�z(R#n) where #z ∈ (C \ {1})k, cq(#n) = (−1)kq−k(k−1)/2(c1)!q(c2)!q · · ·

(the ci are the cluster sizes for #n) and R#n = (−nk, . . . ,−n1). Then HΨ�
�z = (1 − q)(z1 +

· · ·+ zk)Ψ
�
�z , and H

tΨr
�z = (1− q)(z1 + · · ·+ zk)Ψ

r
�z where Ht is the transpose of H .

3.4.3. Direct and inverse Fourier type transforms. Proposition 3.3 gives algebraic eigen-

functions forH corresponding to every #z ∈ (C\{1})k. That does not mean, however, that all

of these eigenfunctions participate in diagonalizing H . For example, the Laplacian (acting

in x variables) has algebraic eigenfunctions ezx for all z ∈ C. However, the decomposition

of L2(R) only involves those z ∈ iR. This fact is proved through the Plancherel theorem in

Fourier analysis.

We define a direct and inverse Fourier type transform with respect to the q-Boson eigen-

functions. Let Wk be functions f : {n1 ≥ · · · ≥ nk|nj ∈ Z} → C of compact support

and Ck be symmetric Laurent polynomials in the variables (zj − 1), 1 ≤ j ≤ k. The direct
transform F : Wk → Ck acts on f ∈ Wk as

(Ff)(#z) := ∑n1≥···≥nk
f(#n)Ψr

�z(#n). The

inverse transform J : Ck →Wk acts on G ∈ Ck as

(JG)(#n) := (q − 1)kq− k(k−1)
2

(2πi)kk!

∮
· · ·
∮
det

[
1

qwi − wj

]k
i,j=1

k∏
j=1

wj

1− wj
Ψ�

�w(#n)G(#w)d#w,

=
1

(2πi)k

∮
· · ·
∮ ∏

1≤A<B≤k

zA − zB
zA − qzB

k∏
j=1

1

(1− zj)nj+1
G(#z)d#z,

where in the first line, the contours are all along large circles around zero and in the second

line for each A ∈ {1, . . . , k} the contour of integration of zA contains 1, as well as q times

the contour of integration of zB for B > A, but does not contain 0. This second express is

familiar from Theorem 1.2.

3.4.4. Plancherel isomorphism theorem. The following results are from [23, Section 3].

Theorem 3.4. On the spaces Wk and Ck, the operators F and J are mutual inverses of
each other, and biorthogonal (in appropriate bilinear pairings).

This theorem diagonalizes the generator of the q-Boson process, proves completeness

of the Bethe ansatz for it, and demonstrates remarkable biorthogonality properties of the

eigenfunctions.

3.4.5. Back to the q-Boson process. An immediate corollary of Theorem 3.4 (see [23,

Section 4]) is that for all initial data f0 ∈ Wk, the unique solution to the q-Boson evolution

equation ∂
∂tf(t, #n) =

(
Hf
)
(t, #n) with f(0, #n) = f0(#n) is

J (et(q−1)(z1+···+zk)Ff0
)
(#n)

=
1

(2πi)k

∮
· · ·
∮ ∏

1≤A<B≤k

zA − zB
zA − qzB

k∏
j=1

et(q−1)zj

(1− zj)nj+1

(Ff0)(#z)d#z,
where integration is along nested contours.

The limitation that f0 ∈ Wk can be relaxed (with some additional work). For instance,
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the above result can be extended to f0(#n) =
∏k

j=1 1nj≥1 which is the initial data corre-

sponding to step initial data for q-TASEP (via the duality of Proposition 3.1).

However, the computation of Ff0 can still be difficult (it involves an infinite summation

over weakly ordered nj). If there is some G ∈ Ck for which f0 = JG, then Theorem 3.4

implies that
(Ff0)(#z) = G(#z). One easily checks that G(#z) = q

k(k−1)
2

∏k
j=1

zj−1
zj

yields

f0(#n) =
∏k

j=1 1nj≥1. This (of course) agrees with our earlier solution to the q-Boson

evolution equation.

3.5. Algebraic integrability of the q-Boson system. In 1998, Sasamoto-Wadati [86] first

studied the q-Boson system (generalizing a similar system studied earlier in [14]) via the

language of algebraic Bethe ansatz.

The q-Boson algebra is generated by Bj , B
†
j , Nj , 1 ≤ j ≤ M subject to the relations

(usually q would be replaced by q−2, but the below parameterization is more convenient

presently) [Bi, B
†
j ] = qNi1i=j , [Ni, Bj ] = −Bi1i=j , [Ni, B

†
j ] = B†

i 1i=j . The period (size

M lattice) version of the q-Boson generator H is the image of the q-Boson Hamiltonian

H = −(1 − q)
∑M

j=1

(
B†
j−1 − B†

j

)
Bj under the representation in which Bj , B

†
j , Nj act

on functions f : (Z≥0)
M → C as

(
Bjf

)
(#y) = 1−qyi

1−q f(· · · , yj − 1, · · · ), (B†
jf
)
(#y) =

f(· · · , yj +1, · · · ), and (Njf
)
(#y) = yjf(#y). In [86],H arises from the monodromy matrix

of a quantum integrable systemwith trigonometricR-matrix, the same as in the XXZ and six-

vertex model (as well as in ASEP). There are many questions which remain to be investigated

regarding the use of the algebraic Bethe ansatz (of which this is an application) in producing

interesting integrable probabilistic system.

In a different direction, the q-Boson generator H also arises (see [18, Lemma 6.1]) from

certain commutation relations for Macdonald first difference operators at Macdonald param-

eter t = 0. Recall from Section 2.1 thatDn
1 is the Macdonald first difference operator acting

on the variables x1, . . . , xn.

Proposition 3.5. Assume the Macdonald parameter t = 0, then[(
Dn

1 )
k, p
]
= (1− qk)xn

(
Dn−1

1 −Dn
1

)(
Dn

1 )
k−1

where p is the operator of multiplication by (x1 + · · ·+ xn).

An immediate corollary of this is that for a symmetric, analytic function F (x1, . . . , xn),
the function f̃(t, #y) = e−tp

(
D1

1

)y1 · · · (Dn
1

)yn
etpF (#x)

∣∣
x1=···=xn=1

(if any y−j > 0 for

j ≥ 0 set f̃(t, #y) = 0) solves the q-Boson evolution equation, in that f(t, #n) = f̃(t, #y(#n))
satisfies ∂

∂tf(t, #n) =
(
Hf
)
(t, #n) where #y = #y(#n) is defined via yj =

∣∣{i : ni = j}∣∣. Setting
F (x1, . . . , xn) ≡ 1 corresponds to step initial data for q-TASEP.

This provides one link between Macdonald processes and quantum integrable systems.

Whether there is a deeper algebraic relationship between these two realms remains unclear.

3.6. ASEP and beyond. There is a parallel development for ASEP, as that explained above

for q-TASEP. ASEP displays a non-trivial (self) duality [26, 87] through which (recalling the

notation of Section 1.4.1) f(t, #y) := E
[∏k

j=1 Q̃yj (t)
]
solves the ASEP backward equation

(with p and q interchanged). This provides a route to checking the result of Theorem 1.7.

The ASEP generator can likewise be diagonalized via Bethe ansatz (see [26, Section 4

and 5]), and a Plancherel theorem provides for the completeness of the ansatz and biorthogo-
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nality of the eigenfunctions. In fact, the ASEP and q-Boson Plancherel theorems are unified

[24] in terms of a theorem for the q-Hahn Boson process from [35, 83]. This Plancherel

theorem also specializes to the general spin-s XXZ model and six vertex model on Z.
These Plancherel theorems as well as the algebraic Bethe ansatz provide tools for further

development of a theory of stochastic quantum integrable systems.
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Liouville Quantum Gravity, KPZ and
Schramm–Loewner Evolution

Bertrand Duplantier

Abstract. We describe a canonical model of random surfaces, Liouville quantum gravity, its relation

to the Gaussian free field (GFF) and to the canonical model of conformally invariant random curves in

the plane, the Schramm-Loewner evolution (SLE). The Liouville random measure is formally written

as μγ(dz) = eγh(z) dz, where dz is the planar Lebesgue measure, h an instance of the GFF, and γ ∈
[0, 2). We outline a probabilistic and geometrical proof of the Knizhnik–Polyakov–Zamolodchikov

(KPZ) relation between the scaling exponents of a fractal with respect to the Euclidean and Liouville

measures, including the boundary geometry case. The Liouville quantum measure in the γ = 2 critical

case is defined after a further logarithmic renormalization, yielding an atom-free measure satisfying

the KPZ relation. When γ > 2, the measure is purely atomic, and is related to a dual quantum measure

μγ′ by γγ′ = 4. For γ < 2, the conformal welding of boundary arcs of a γ-Liouville quantum gravity

surface (in a quantum boundary length-preserving way) produces an SLEκ curve, with κ = γ2. This

allows one to develop a theory of quantum fractal measures on the SLE curve itself (consistent with

the KPZ relation) and analyze their evolution under conformal welding maps.

Mathematics Subject Classification (2010). Primary 81T40; Secondary 60J67.

Keywords. Liouville quantum gravity, Gaussian free field, Knizhnik-Polyakov-Zamolodchikov rela-

tion, duality, Schramm-Loewner evolution, conformal welding.

1. Introduction

1.1. Historical perspective. The study of certain natural probability measures on the space

of two dimensional Riemannian manifolds (and singular limits of these manifolds) is often

called “two-dimensional quantum gravity.” These models have been very thoroughly stud-

ied in the physics literature (for reviews, see [37, 56]), starting in the mid-eighties with

the modeling of discrete random surfaces [5, 24, 33, 63], followed by that of geometri-

cal statistical models on discrete random surfaces (see [32, 40, 44, 52, 62, 68] for some

early references, and [50] for a more complete list). These studies were motivated in part

by connections to string theory and conformal field theory [34, 38, 66, 90], as well as to

random matrix theory. More recently, a purely combinatorial and probabilistic (and mathe-

matically rigorous) approach to the so-called random planar maps has been actively pursued

[4, 7, 15, 22, 26, 28, 30, 78, 80, 81, 83, 94], allowing in particular a description of random

geodesics [6, 21, 23, 79], of higher genus maps [25, 53, 82], and of some statistical models

[17, 19, 20].

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Figure 1.1. Left: A random triangulation of the sphere. Right: When viewing each face as an equi-

lateral triangle with unit side length, the resulting Riemann surface is canonically embedded into the

sphere S2 via the uniformization theorem, up to Möbius transformations. (Courtesy of N. Curien.)

Discrete quantum gravity models, e.g., random planar maps, are expected to converge in

the continuum limit to some universal randommetric spaces. As an illustrative example (Fig-

ure 1.1), consider a random planar triangulation Mn on the sphere, chosen uniformly with

a given number n of triangles. It can be viewed as a Riemann surface by endowing each

face with the metric of a unit equilateral triangle. The resulting manifold is singular, with

negative (resp. positive) curvature localized at vertices where more (resp. fewer) than six

triangles meet. This Riemann surface is homeomorphic to the sphere and the uniformization

theorem yields a canonical embedding (modulo Möbius transformations), with conformally

distorted triangles (Figure 1.1). One expects the existence in the n→ +∞ limit, of a univer-
sal random metric, here on the sphere. Alternatively, one can take the limit n → +∞ first

and obtain a (rooted) infinite triangulationM∞ of the plane (see [7] for a precise description

of this construction); when viewed as a Riemannian manifold, it can be conformally mapped

to the plane [55], yielding the local structure of the uniformized triangulation on the sphere

(Figure 1.1). In the scaling limit, one also expects to get universal random measures of areas
and lengths of curves. Establishing mathematically their existence and their relation to the

Liouville theory of quantum gravity, remains an outstanding open problem. (See J.-F. Le

Gall in these Proceedings and [14]; see also [29, 36, 46, 99] for recent approaches.)

Polyakov [90] suggested in 1981 that the summation over random Riemannian met-

rics involved could be represented canonically by the now celebrated Liouville theory of
quantum gravity. Consider a planar domain D ⊂ C as the parameter domain of the ran-

dom surface, and h an instance of the (zero boundary for now) massless Gaussian free
field (GFF), a random distribution on D, associated with the Dirichlet energy (h, h)∇ :=
(2π)−1

∫
D
[∇h(z)]2dz, and whose two point correlations are given by Green’s function on

D. (Critical) Liouville quantum gravity consists of changing the Lebesgue area measure dz
on D to the quantum area measure, formally defined as μγ(dz) := eγh(z)dz, where γ is a

real parameter. The GFF h is a random distribution, not a function, but the measure μγ can

be constructed, for γ ∈ [0, 2), as the limit of regularized quantities (Section 1.2).
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For instance, the pullback, via the conformal map to the plane, of the random area

measure of the infinite triangulation M∞ (rooted at the origin, and viewed as a Riemann

surface) is precisely conjectured in [50] to take in the scaling limit the Liouville form,

exp[γ(h(z)− γ log |z|)]dz, where h is an instance of the whole plane GFF, and γ2 = 8/3.
The complete quantum Liouville action is S(h) = 1

2 (h, h)∇ + λμγ(D), where the

so-called “cosmological constant”, λ ≥ 0, weights the partition function according to the

area of the random manifold. The corresponding (Boltzmann-Gibbs) statistical weight,

exp[−S(h)], is to be integrated over with a “flat” uniform functional measure Dh on h
(which makes sense a priori for finite-dimensional approximations to h). In this review, we

study the λ = 0 critical case, i.e., the GFF case.
Various values of γ are expected when weighting the random map by the partition func-

tion of a statistical physical model defined on that map (e.g., Ising model, O(n) or Potts

model). By the usual conformal invariance ansatz in physics, it is natural to expect that if

one conditions on the infinite map, and then samples the loops or clusters in these critical

models (as mapped into the plane, say), their law, in the scaling limit, will be independent of
the random measure. This independence in turn leads to the famous KPZ formula.

One of the most influential papers in this field is indeed a 1988 one of Knizhnik, Polyakov,

and Zamolodchikov [66] (see also [34, 38]). They derive a relationship between scaling

dimensions (i.e., conformal weights x) of scaling fields defined using Euclidean geometry

and analogous dimensions (Δ) defined via the Liouville quantum gravity measure μγ ,

x =
γ2

4
Δ2 +

(
1− γ2

4

)
Δ. (1.1)

The positive inverse to relation (1.1) is

Δγ :=
1

γ

(√
4x+ a2γ − aγ

)
, aγ := 2/γ − γ/2. (1.2)

In the continuum limit, the statistical system is described at criticality by a conformal field
theory (CFT) [89], whose universality class is characterized by the so-called central charge
c (c ≤ 1). KPZ determine γ as [34, 38, 66]

γ =
1√
6

(√
25− c−√1− c

) ≤ 2, c ≤ 1. (1.3)

With this parametrization, one recovers the usual form of the KPZ relation

Δ =

√
24x+ 1− c−√1− c√
25− c−√1− c

. (1.4)

The heuristic value of this formalism was checked against manifold instances of exactly

solved lattice models, using the random matrix theory approach (e.g., in [32, 44, 52, 62,

68]); some direct comparison to correlation functions calculated in Liouville field theory

was also possible (see [69] and references therein). The KPZ relation was further used to

predict Brownian intersection exponents [40, 45, 75] (rigorously proved using the Schramm–

Loewner Evolution in [71, 72]), or multifractal properties of SLE [41, 42].

A mathematical proof of the KPZ relation, based on the stochastic properties of the

GFF, first appeared in [50]; it was then also proved for multiplicative cascades [16] and

in the framework of Gaussian multiplicative chaos [91]. (See also [35].) One important
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consequence is that KPZ appears to hold in a broader context than the original CFT realm

(which relates γ to c), i.e., for any fractal structure sampled independently of the GFF, and

measured with the quantum random measure μγ , and for any 0 ≤ γ < 2.
Note that Eq. (1.3) gives only values of γ in the range γ ≤ 2. A different probabilistic

approach is needed to construct measures for γ > 2 [9, 43, 49]; it is based on the dual-
ity property of Liouville quantum gravity: for γ > 2, a singular (purely atomic) quantum

measure can be properly defined in terms of the γ′-quantum measure, for the dual value

γ′ = 4/γ < 2. This establishes the existence of the “dual version” of the KPZ relation, as

argued long ago in Ref. [64].

For the critical value γ = 2, the construction of the corresponding Liouville measure

μγ=2 involves a so-called derivative martingale [47], or, equivalently, a logarithmic renor-

malization [48]. The resulting measure is atom-free, and a KPZ relation can be proved for

it. Similar results hold for critical Mandelbrot cascades [10].

While Liouville quantum gravity is expected to offer a canonical description of the scal-

ing limit of random maps, Schramm-Loewner evolution (SLEκ), introduced by Schramm in

1999 [95], provides a canonical mathematical construction of conformally invariant random

curves in the plane, depending on a real parameter κ. Its invention is on par with Wiener’s

1923 mathematical construction of continuous Brownian motion. It gives the universal con-

tinuous scaling limit of 2D critical curves; of particular physical interest are the loop-erased

random walk (κ = 2) [73], the self-avoiding walk (κ = 8/3), the Ising model interface

(κ = 3 or 16/3) [27, 101], the GFF contour lines (κ = 4) [96], and the percolation interface

(κ = 6) [100]. Critical phenomena in the plane were earlier well-known to be related to CFT

[13], a discovery anticipated in the so-called Coulomb gas approach to critical 2D statistical

models (see, e.g., [89]), and now including SLE [11, 54, 61].

In Ref. [98], S. Sheffield established the first direct and rigorous connection between

SLE and Liouville quantum gravity: gluing random surfaces (with the same γ < 2) along
parts of their boundaries – and conformally mapping the combined surface to the half plane

– produces an SLE curve with parameter κ = γ2, κ < 4, as a random seam, a.k.a. a con-
formal welding. This in turn rigorously establishes the relation (1.3) between γ and c in the

Liouville-CFT correspondence, given the function c(κ) [11, 54, 61]. Note also that the afore-

mentioned Liouville duality γγ′ = 4 then corresponds (here formally) to the SLE duality

κκ′ = 16 [39, 41, 102]. A variant, i.e., the conformal welding of Euclidean and quantum sur-

faces, first conjectured by P. Jones, is constructed in [8]. (See also [93].) The generalization

to the conformal welding of so-called quantum wedges is also possible [46].

One can also define quantum fractal measures, consistent with the KPZ relation; in par-

ticular one can construct quantum length and boundary intersection measures on the SLE

curve itself, and analyze their evolution under welding [51]. This provides a rigorous prob-

abilistic analog of the “gravitational dressing” of scaling fields in Liouville theory coupled

to CFT [34, 37, 38, 56, 66]. (See also [70]).

The aim of this contribution is to present these recent developments relating the three

acronyms, GFF, KPZ and SLE in a concise, yet (almost) rigorous way.

1.2. Quantum surface. Let h be an instance of a centered GFF on a bounded simply con-

nected domain D with Dirichlet boundary conditions. This means that h =
∑

n αnfn,
where the αn are i.i.d. zero mean unit variance normal random variables and the fn are an

orthonormal basis with respect to the Dirichlet inner product,
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(f1, f2)∇ :=
1

2π

∫
D

∇f1(z) · ∇f2(z)dz, (1.5)

of the Hilbert space closure H(D) of the space Hs(D) of C
∞ real-valued functions com-

pactly supported on D. This sum diverges pointwise a.s., but it does converge a.s. in the

space of distributions on D, and one can also make sense of the mean value of h on various

sets [97]. The random variables (h, f)∇ are zero mean Gaussian random variables for each

f , with the covariance property:

Cov
(
(h, f1)∇, (h, f2)∇

)
= (f1, f2)∇. (1.6)

Special care is then required to make sense of the quantum gravity measure, because the

GFF is a distribution and not a function (it typically oscillates between ±∞) [Figure 1.2].

Figure 1.2. GFF with Dirichlet boundary conditions. (Courtesy of J. Miller.)

Given an instance h of the Gaussian free field on D, let hε(z) denote the mean value of

h on the circle of radius ε centered at z (where h(z) is defined to be zero for z ∈ C \ D).

The regularized Liouville quantum measure is defined as [50]

μγ,ε(dz) := εγ
2/2eγhε(z)dz, (1.7)

in a way reminiscent of so-called Wick normal ordering (see also Ref. [57] for earlier work

on the so-called Høegh-Krohn model).

One can show that for γ ∈ [0, 2) the limit of this regularized measure exists as ε → 0,
which mathematically defines Liouville quantum gravity:

Proposition 1.1 ([50]). Fix γ ∈ [0, 2) and define h andD as above. Then it is (almost surely)
the case that as ε→ 0 (along powers of two), the measures μγ,ε(dz) = εγ

2/2eγhε(z)dz con-
verge weakly to a limiting non-degenerate measure, which we denote by μγ(dz) := eγh(z)dz.

For each z ∈ D, denote now by C(z;D) the conformal radius of D viewed from z.
That is, C(z;D) = |φ′(z)|−1 where φ : D → D is the conformal map to the unit disc with

φ(z) = 0. A geometrical analysis of GFF properties (Section 2) shows that the variance

Varhε(z) = log[C(z;D)/ε]. By standard expectation of the exponential of a (centered)

Gaussian variable,

E eγhε(z) = eγ
2Var[hε(z)]/2 = [C(z;D)/ε]

γ2/2
. (1.8)
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The expectation of the quantum measure (1.7) is therefore

Eμγ,ε(A) =

∫
A

C(z;D)
γ2

2 dz = Eμγ(A),

independently of ε, and for each measurable subset A ⊂ D.

We interpret the pair (D,h) as describing a quantum surface conformally parameter-

ized by D, and μγ as the area measure of this random surface. Similarly, as we shall see

in Section 4, a boundary length measure νγ can also be defined on the quantum surface

(D,h) [50].

One can parameterize the same quantum surface with a different domain D̃, and the

regularization procedure implies a simple rule for changing coordinates. For ψ a conformal

map from D̃ to D, consider the transformations

(D,h)→ (D̃, h̃) = ψ−1(D,h) := (ψ−1(D), h ◦ψ+Q log |ψ′|), Q := γ/2+2/γ. (1.9)

Then μγ is a.s. the image under ψ of the measure μ̃γ associated with h̃: μ̃γ(A) = μγ(ψ(A))

for A ⊂ D̃. Similarly, νγ is a.s. the image under ψ of the measure ν̃γ .

1.3. Euclidean and quantum scaling exponents.

Definition 1.2. For the quantum area measure μγ on D, we let Bδ(z) be the Euclidean ball

centered at z whose radius is chosen so that μγ(B
δ(z)) = δ. (If not unique, take the radius

to be sup{ε : μγ(Bε(z)) ≤ δ}.) We refer to Bδ(z) as the quantum ball of area δ centered

at z. In particular, if γ = 0 then μ0 is Lebesgue measure andBδ(z) isBε(z) where δ = πε2.

Given a subset X ⊂ D, we denote the ε neighborhood of X by Bε(X) = {z : Bε(z) ∩
X �= ∅}.We also define the quantum δ neighborhood ofX byBδ(X) = {z : Bδ(z)∩X �=
∅}.

Translated into probability language, the KPZ formula is a quadratic relationship be-

tween the fractal expectation dimension of a random subset of D defined in terms of Eu-

clidean measure (γ = 0) and the corresponding fractal expectation dimension of X defined

in terms of Liouville quantum measure with γ �= 0.
We say that a (deterministic or random) fractal subsetX ofD has Euclidean expectation

dimension 2− 2x and Euclidean scaling exponent x if the expected area of Bε(X) decays
like ε2x, i.e.,

lim
ε→0

logEμ0(Bε(X))

log ε2
= x.

Fix γ ∈ [0, 2). We say that X has quantum scaling exponent Δ if when X and μγ are

chosen independently we have

lim
δ→0

logEμγ(B
δ(X))

log δ
= Δ.

Note that the expectation in this equation is with respect to both random variables, X and

μγ .

1.4. Box formulation of Liouville quantum gravity. One can alternatively define quan-

tum scaling dimensions using boxes instead of balls. Define a dyadic square to be a closed
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SAW in half plane - 1,000,000 steps 

ε

εx~

x2

Figure 1.3. Fractal set X (here a self-avoiding walk) intersecting: [left] a Euclidean ball, [right] a

quantum grid made of (μγ=1, δ) boxes. (Courtesy of T. Kennedy and J. Miller.)

square (including its interior) of one of the grids 2−kZ2 for some integer k. For δ > 0, we

define a (μγ , δ) quantum box S to be a dyadic square S with μγ(S) < δ and μγ(S
′) ≥ δ

where S′ is the dyadic parent of S. These boxes form a tiling of R2.

Let Nγ(δ,X) be the number of (μγ , δ) boxes intersected by a fractal X (Figure 1.3) and

N0(ε
2, X) the number of dyadic squares intersecting X that have edge length ε (a power of

2), i.e., Euclidean area ε2. Then we have the equivalent scaling dimension definitions, for

the Euclidean exponent x, and for the quantum scaling exponent Δ,

lim
ε→0

logE[N0(ε
2, X)]/log ε2 = x− 1, lim

δ→0
logE[Nγ(δ,X)]/log δ = Δ− 1,

respectively.

1.5. Statement of KPZ. The following is the KPZ scaling exponent relation. Its proof,

based on GFF properties, is sketched in the next section [50]. To avoid boundary technicali-

ties, we restrict attention here to a compact subset of D.

Theorem 1.3 ([50]). Fix γ ∈ [0, 2) and a compact subset D̃ of D. If X ∩ D̃ has Euclidean
scaling exponent x ≥ 0 then it has quantum scaling exponent Δ = Δγ , where Δγ is the
non-negative solution (1.2) to

x =
γ2

4
Δ2

γ +

(
1− γ2

4

)
Δγ . (1.10)

2. Stochastic properties of the Liouville measure

2.1. GFF average and Brownian motion. Let h be a centered Gaussian free field on a

bounded simply connected domain D with Dirichlet boundary conditions. For each z ∈ D,

define the ball Bε(z) := {w : |w− z| < ε}, and let εz0 be the largest ε such that Bε(z) ⊂ D.

When ε ≤ εz0, write hε(z) for the average value of h on the circle ∂Bε(z) := {w : |w −
z| = ε}. Denote by ρzε(y) the uniform density (of total mass one) localized on the circle
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∂Bε(z), such that one can write hε(z) as the scalar product on D: hε(z) = (h, ρzε) :=∫
D
h(y)ρzε(y)dy. To this density ρzε is naturally associated a Newtonian potential,

fz
ε (y) := − log(ε ∨ |y − z|)− G̃z(y), (2.1)

where G̃z(y) is the harmonic extension of − log |y − z| to D, i.e., the harmonic function of

y ∈ D with boundary value equal to the restriction of − log |y − z| to y ∈ ∂D. It satisfies

Dirichlet boundary conditions and the Poisson equation −Δfz
ε = 2πρzε . In terms of the

Dirichlet inner product (1.5), this gives

hε(z) = (h, fz
ε )∇. (2.2)

The covariance (1.6) of (2.2) on nested circles centered at z is

Cov
(
hε(z), hε′(z)

)
= (fz

ε , f
z
ε′)∇, (2.3)

i.e., the Newtonian interaction energy of the two concentric circles. It is easily evaluated

by using Gauss’s theorem, the fact that the function G̃z is harmonic, and that G̃z(z) =
− logC(z;D), in terms of the conformal radius C of D viewed from z, a smooth function

of z. One finds the covariances

Cov
(
hε(z), hε′(z)

)
= E
(
hε(z)hε′(z)

)
= − log(ε ∨ ε′) + logC(z;D), (2.4)

where Ehε(z) = 0 for Dirichlet boundary conditions. From (2.4) we thus get two important

variances,

Varhε(z) = − log ε+ logC(z;D), (2.5)

Var
[
hε(z)− hε′(z)

]
= | log ε− log ε′|. (2.6)

Because hε(z) is a Gaussian random variable, (2.6) is the Lévy characterization of Brownian

motion in time parameter t = − log ε. Define the reference radius ε0 := εz0. For fixed z, the
Gaussian random variable hε(z) − hε0(z) is a one-dimensional standard Brownian motion
Bt when parameterized by time t := − log(ε/ε0):

hε(z)− hε0(z)
(in law)
= Bt, B0 = 0, (2.7)

− log(ε/ε0) = t ∈ [0,∞), ε ≤ ε0. (2.8)

This Brownian property of the GFF circular average is the first key to the KPZ relation [50].

2.2. Rooted measure and Brownian drift. Let us consider the so-called rooted measure

[50] (sometimes also called Peyrière measure), on pairs (z, h) where h is a GFF, and given

h, the point z is chosen from the regularized quantum area measure μγ,ε(dz) (1.7). Such a

measure has the form (up to normalization)

eγhε(z)dhdz = exp

[
−1
2
(h, h)∇ + γhε(z)

]
Dhdz, (2.9)

where dh represents the whole GFF measure and Dh the flat functional measure. The total

action of the GFF Liouville weighted measure is thus the quadratic combination Sγ(h) :=
1
2 (h, h)∇ − γhε(z). Thanks to (2.2), it can be rewritten as,

Sγ(h) =
1

2
(h, h)∇ − γ2

2
Varhε(z), h := h− γfz

ε , (2.10)
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where we used (2.3). In the substitution (2.10), h, because of its quadratic weight, is now a

standard GFF. The probability weight involved in the random measure (2.9) can finally be

written, thanks to (1.8), as

exp [−Sγ(h)] = exp

[
−1
2
(h, h)∇

]
E eγhε(z), (2.11)

where the second factor on the right hand side is themarginal distribution of z. The meaning

of (2.11) is that, after sampling z from its marginal distribution, the law of h weighted by

eγhε(z) is identical to that of the original GFF h plus the deterministic function γfz
ε (2.1):

h
(in law)
= h+ γfz

ε . (2.12)

Proposition 2.1 ([50]). For fixed z, when the law of h is weighted by the Liouville conformal
factor eγhε(z) as in (2.9) or (2.11), the law of Gaussian random variable hε(z) − hε0(z)
is identical to that of one-dimensional standard Brownian motion Bt with drift γt, when
parameterized by time t = − log(ε/ε0).
Proof. For fixed z, take the average of the identity in law (2.12) on ∂Bε(z)

hε(z)
(in law)
= hε(z) + γfz

ε (z) = hε(z)− γ log[ε/C(z;D)], (2.13)

where use was made of the properties of the potential fz
ε . Because h is a standard GFF, apply

to hε(z) the identity in law (2.7) and rewrite (2.13) as

hε(z)− hε0(z)
(in law)
= Bt + γt, B0 = 0. (2.14)

3. KPZ Proof

3.1. Quantum balls. We carry out the proof of Theorem 1.3 in several steps [50]. When

ε is small, the limiting quantum measure of Proposition (1.1), μγ(Bε(z)) of the Euclidean

ball Bε(z), is very well approximated by the simple form

μγ�(Bε(z)) := ε2+γ2/2eγhε(z), (3.1)

so that, in expectation, E[μγ(Bε(z))|hε(z)] ∼ πμγ�(Bε(z)) for ε → 0. In this simplified

perspective, one views μγ� as a function on balls, defined by (3.1), rather than the fully

defined measure on D. It proves convenient to consider the normalized quantity

μγ�(Bε(z))/μγ�(Bε0(z)) = exp [γ
(
hε(z)− hε0(z)

)
+ γ Q log(ε/ε0)]. (3.2)

where Q = 2/γ + γ/2. (The reference radius ε0 can be taken as the largest radius such that

Bε0(D̃) ⊂ D in the notation of Theorem 1.3.)

By similarity to definition 1.2 of quantum balls Bδ , one defines the quantum ball B̃δ(z)
centered at z as the (largest) Euclidean ball Bε(z) such that,

μγ�(B̃
δ(z))/μγ�(Bε0(z)) = δ. (3.3)
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One then first proves the analog of Theorem 1.3, where the quantum ball Bδ(z) is replaced

by B̃δ(z), to evaluate how E[μγ(z : B̃
δ(z) ∩X �= ∅] scales with δ; this will yield the most

straightforward form of KPZ. This expectation can be recast as the total probability under

the law (2.9), (2.11) for pairs (z, h) to satisfy B̃δ(z) ∩X �= ∅.
Recall that a (deterministic or random) fractal subsetX ofD has Euclidean scaling expo-

nent x (and Euclidean dimension 2− 2x) if, for z chosen uniformly in D and independently

of X , the probability P{Bε(z) ∩X �= ∅} � ε2x, in the sense that limε→0 logP/log ε = 2x.
The same fractal X has quantum scaling exponent Δ if when X and (z, h), sampled with

weight (2.9), (2.11), are chosen independently, we have

P{B̃δ(z) ∩X �= ∅} � δΔ. (3.4)

3.2. KPZ as a Brownian martingale property. Using Proposition 2.1, we can rewrite

(3.2) in the form,

μγ�(Bε(z))/μγ�(Bε0(z))
(in law)
= exp [γ(Bt − aγt)], (3.5)

where Bt is independent of z, and where we used the drift parameter

aγ := Q− γ = 2/γ − γ/2 > 0 ; γ ∈ (0, 2). (3.6)

The equality of (3.3) and (3.5) then relates stochastically the Euclidean radius ε to the

given quantum area δ in terms of the stopping time

− log(εA/ε0) := TA := inf{t : −Bt + aγt = A},
A := −(log δ)/γ > 0.

(3.7)

The probability that the Euclidean ball BεA(z) = B̃δ(z) intersects X scales as ε2xA ∝
e−2xTA . Computing the expectation E [exp (−2xTA)] with respect to the random stopping

time TA will give the “quantum” probability (3.4).

This is a classic computation in Brownian motion. Consider for any β the standard

exponential martingale exp(−βBt − β2t/2). Because aγ > 0 for γ ∈ [0, 2), the stopping

time TA is finite a.s. For t ∈ [0, TA], the argument of the martingale stays bounded, for

β ≥ 0, by βA, hence by a fixed constant. One can then apply Doob’s optional stopping

theorem to the martingale at the stopping time TA, so that E
[
exp[βBTA

− β2TA/2)
]
= 1.

By definition, BTA
= aγTA − A, and we obtain E[exp(−2xTA)] = exp(−βA), if we

identify

2x := βaγ + β2/2, (3.8)

with β the positive root of this equation. Thanks to the definition (3.7) ofA, we finally obtain

the scaling behavior,

E[exp(−2xTA)] = exp(−βA) = δΔγ , (3.9)

Δγ := β/γ = [(a2γ + 4x)1/2 − aγ ]/γ. (3.10)

We thus observe in (3.9) the expected quantum scaling behavior (3.4), together with the

quantum exponentΔ = Δγ , which is the inverse KPZ function (1.2). Naturally, substituting

β = γΔγ into (3.8) gives the KPZ relation of Theorem 1.3.
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It is interesting to note that in Eq. (3.8), which is in essence KPZ, the term linear in β (i.e.,

Δ in (1.10)) results, via the martingale representation, from the scaling of the regularized

Liouville measure (1.7), including the logarithmic shift (2.12). The term β2/2 in (3.8),

i.e., the distinctive quadratic term in the KPZ formula (1.10), is generated by the intrinsic

Brownian fluctuations brought in by the GFF.

In this first step, we used the function μγ� (3.1) (not a measure) to define quantum balls

B̃δ as in (3.3), which gave the Brownian interpretation of the version above of the KPZ

relation. However, the complete proof of the KPZ Theorem 1.3 requires using instead the

full Liouville measure μγ , and to define quantum ballsBδ via the condition μγ

(
Bδ(z)

)
= δ.

A detailed comparison of the quantummeasure μγ to μγ�, carried out in [50], is then needed.

Define a stopping time TA := − log (εA/ε0), where εA is the Euclidean radius of the ball

BεA(z) = Bδ(z) such that μγ

(
BεA(z)

)
= δ; one can then show that

lim
A→∞

logE [exp(−2xTA)]

logE [exp(−2xTA)]
= 1,

which ultimately yields the proof of Theorem 1.3 [50].

3.3. GFF thick points. The probability density of the stopping time TA, such that PA(t)dt
:= P (TA ∈ [t, t+ dt]), with t = − log(ε/ε0), gives access to some geometrical properties

of the Liouville quantum measure and of its coupling to a given fractal X . An inverse

Laplace transform with respect to 2x of result (3.9) gives [49, 50]:

PA(t) =
A√
2πt3

exp

[
− 1

2t
(A− aγt)

2

]
, (3.11)

which characterizes, in logarithmic coordinates, the distribution of the Euclidean radius ε of

a ball of given quantum area δ.
For δ → 0, the distribution (3.11) gets localized and gives the typical scaling of quantum

balls in γ-Liouville quantum gravity, δ � εγaγ = ε2−γ2/2 (see also Ref. [58]). For x �= 0,
a saddle-point analysis of the Laplace transform of PA yields:

Proposition 3.1 ([49, 50]). A point z that is typical with respect to the quantum measure is
an α-thick point [58] of the Gaussian free field h:

α := lim
ε→0

hε(z)/ log ε
−1,

with the value α = γ for the quantum surface, and α = γ − γΔγ for a fractal of quantum
scaling exponent Δγ .

4. Boundary KPZ

4.1. Boundary quantum measure. A boundary length measure can also be defined on a

quantum surface (D,h) [49, 50], and most of the results for the quantum measure onD have

straightforward boundary analogs.

Suppose that D is a domain with piecewise linear boundary or a domain with a smooth

boundary containing a linear piece ∂D ⊂ ∂D, and that h is an instance of the GFF on D
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with free boundary conditions, normalized to have mean zero. One can also consider a GFF

h with mixed boundary conditions, i.e., free boundary conditions on the linear component

∂D ⊂ R and Dirichlet ones on ∂D \ ∂D, by using a reflection principle w.r.t. the real line

[50].

For a point z ∈ ∂D, let hε(z) be the mean value of h(z) on the semicircle ∂Bε(z) ∩D
of radius ε centered at z, for ε ≤ ε0, where ε0 is small enough so that exactly one semi-disc

of Bε0(z) lies in D. One then has

Proposition 4.1. For fixed z ∈ ∂D, the Gaussian variable hε(z) − hε0(z) is identical in
law to standard Brownian motion B2t in time t = − log(ε/ε0) for ε ≤ ε0, with B0 = 0.

Thus at a boundary point in ∂D, the variance of hε(z) diverges as −2 log ε, which is

twice that at interior points in D. We may therefore define a boundary length measure by

νγ(dz) = eγh(z)/2dz := lim
ε→0

εγ
2/4eγhε(z)/2dz, γ ∈ [0, 2), (4.1)

where dz is Lebesgue measure on ∂D [50]. The existence of the weak limit (4.1) when

γ ∈ [0, 2) is insured by the analog of Proposition 1.1 for the bulk case [50].

Like the bulk measure μγ , the boundary one νγ is conformally invariant under the trans-

formations (1.9); this actually yields a definition of the quantum boundary length measure

νγ when the boundary of D is not piecewise linear.

4.2. Boundary scaling and KPZ. For z ∈ ∂D, write B̂ε(z) := Bε(z) ∩ ∂D and define

B̂δ(z) to be the (largest) boundary set B̂ε(z) whose νγ measure is δ. Likewise define the

neighborhoods, B̂ε(X) = {z ∈ ∂D : B̂ε(z) ∩ X �= ∅} and B̂δ(X) = {z ∈ ∂D :

B̂δ(z) ∩X �= ∅}.
We say that a (deterministic or random) fractal subset X of the boundary of D has Eu-

clidean expectation dimension 1 − x̃ and Euclidean scaling exponent x̃ in the boundary

sense if limε→0 logE [ν0(B̂ε(X))]/log ε = x̃.We say thatX has boundary quantum scal-
ing exponent Δ̃ if, when X and νγ (as defined above) are chosen independently, we have

limδ→0 logE [νγ(B̂δ(X))]/log δ = Δ̃.

The validity of KPZ relation (1.1) for the pair (x̃, Δ̃), as anticipated in [42], is insured

by the following theorem:

Theorem 4.2 ([50]). Fix γ ∈ [0, 2) and ∂D (a closed subinterval of) the boundary line
segment of ∂D. If X ∩ ∂D has Euclidean scaling exponent x̃ ≥ 0 then it has quantum
scaling exponent Δ̃ = Δ̃γ , where Δ̃γ is the non-negative solution to

x̃ =
γ2

4
Δ̃2

γ +

(
1− γ2

4

)
Δ̃γ . (4.2)

Proof. The proofs in the boundary case proceed exactly the same as in the interior point

case, and are based on Proposition 4.1, up to factors of 2 in various places, which recombine

and give the same KPZ relation as in the bulk case [50].

5. Liouville quantum duality

5.1. γγ′ = 4 duality. Liouville quantum gravity is expected to describe, for γ > 2,
random surfaces meant to be the scaling limit of random simply connected maps with large
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amounts of area cut off by small bottlenecks, as first constructed with discrete matrix models

in Refs. [31, 67]. The corresponding continuous surface is a tree-like foam of Liouville

quantum “bubbles” (also called “baby universes”) of dual parameter γ′ := 4/γ, γ′ < 2 < γ,
connected to each other at “pinch points” and rooted at a “principal bubble”conformally

parameterized by a domain D.

The Liouville measure was first formally considered for γ > 2 in Refs. [64, 65], in

the so-called “other gravitational dressing” of the Liouville potential, or “dual branch of

gravity”, leading in particular to a dual version of the KPZ relation. However, the limit of

the regularized measure (1.7) actually vanishes for γ ≥ 2: limε→0 μγ≥2,ε(z) = 0. This is

a quite general phenomenon, first observed by Kahane in the eighties [60] in the case of the

so-called Gaussian multiplicative chaos, inspired by Mandelbrot’s cascade model. We first

relate γ to γ′ heuristically, following Ref. [49], by using the regularized measure (1.7).

The definitions of the (pseudo) measure (3.1) on balls and of quantum balls (3.3) still

make sense for γ > 2. The quantity (3.1) satisfies the duality relation

μ
1/γ′

γ′� = μ
1/γ
γ� , γγ′ = 4, (5.1)

i.e., a γ-quantum ball B̃δ(z) (3.3) of size δ has γ′-quantum size δ ′ = δ4/γ
2

. (Intuitively, the
ball contains about a δ′ fraction of the total γ′-quantum area, but only a δ < δ′ fraction of

the γ-quantum area because the latter also includes points on non-principal bubbles.) The

expected number of γ′-quantum size-δ′ balls (i.e., γ-quantum size-δ balls) needed to cover

the principal bubble D thus scales as Nγ′(δ
′, D) � δ ′ −1

= δ−4/γ2

.
If a fractal random subset X ⊂ D has Euclidean scaling exponent x, it has by KPZ

Theorem 1.3 a quantum scaling exponent Δγ′ for the standard γ′ < 2 Liouville measure.

This essentially says that the expected number Nγ′(δ
′, X) of γ′-quantum size-δ′ balls (i.e.,

number Nγ(δ,X) of γ-quantum size-δ balls) required to cover X , scales as Nγ′(δ
′, X) �

δ ′Δγ′−1
= δΔγ−1 � Nγ(δ,X), where we define for γ > 2 the dual quantum exponent Δγ

by

γ(Δγ − 1) := γ′(Δγ′ − 1), γγ′ = 4. (5.2)

By hypothesis, the triple (γ′, x,Δγ′) satisfies the KPZ relation (1.1), valid for γ′ < 2, and
it is easy to see that the dual triple (γ, x,Δγ) does also for γ > 2, with the further duality

property x = ΔγΔγ′ . The dual quantum exponent Δγ coincides with the continuation of

(1.2), (3.10) to the range γ > 2. Notice, however, that for γ > 2 the coefficient aγ in (1.2)

is negative. As a consequence, the dual versions of the KPZ expressions (1.3) and (1.4), in

terms of the central charge c, are obtained by changing the signs in front of all of the
√
1− c

terms there. These dual quantum exponents appear in Refs. [64, 65]. They also emerge

in the natural context of boundary exponents associated with the dense phase of the O(n)
model [42, 68], or with the Stochastic Loewner Evolution SLEκ for κ > 4.

A Brownian approach to duality is also possible [49]. If one chooses the pair (z, h)
from the weighted measure μγ,ε(dz)dh as in Eq. (2.9), one can repeat for γ > 2 the whole

Brownian description of Section 3.2 of the B̃δ(z) balls (3.3); however one finds that since

aγ < 0 for γ > 2 in Eq. (3.6), the drift term in Eq. (3.7) runs in a direction opposite to

A > 0, so that − log(εA/ε0) = TA = +∞ a.s. for large A = −(log δ)/γ. The weighted

measure is thus singular; i.e., there is a quantum area of at least δ localized at point z for

small enough δ. The dual quantum exponents can then be obtained by conditioning in Eq.

(3.9), with E[exp(−2xTA)1TA<+∞] = δΔγ (see [43, 49]).
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5.2. Dual quantum measure. A way to rigorously construct the singular quantum mea-

sures μγ>2, which would reproduce the scaling properties seen above, has been presented

in Refs. [9, 43, 49]. In the first approach [43, 49], one uses the dual measure μγ′<2 and

the additional randomness of sets of point masses where finite amounts of quantum area are

localized. More precisely, conditionally on the quantum measure μγ′ , with γ′ = 4/γ < 2,
we consider a Poisson random measure Nγ(dz, dη) distributed on D × (0,∞), of intensity
μγ′(dz) × Λα(dη), where Λα(dη) := dη/η1+α, α := 4/γ2 ∈ (0, 1), letting each point

(z, η) represent an atom of size η located at z. The dual measure for γ > 2 is then purely
atomic,

μγ(dz) :=

∫ ∞
0

ηNγ(dz, dη), γ > 2. (5.3)

From this follows, for any Borelian A ⊂ D, the characteristic Laplace transform,

E exp[−uμγ(A)] = E exp [Γ(−α)uαμγ′(A)] , (5.4)

a Lévy-Khintchine formula valid for all u ∈ R+, where Γ(−α) = −Γ(1− α)/α < 0 is the

usual Euler Γ-function.
From (5.4) follows the relation between moments of dual measures

E
[(
μγ(A)

)p]
=
Γ(1− p/α)Γ(−α)p/α

Γ(1− p)
E
[(
μγ′(A)

)p/α]
, p < α = 4/γ2,

showing the characteristic scaling of μγ as μ
1/α
γ′ , in agreement with (5.1).

In Ref.[9], a slightly different (and more general) construction was proposed, which the

authors called “atomic Gaussian multiplicative chaos”. For α ∈ (0, 1), they consider a Pois-

son random measure Nα distributed on Rd × R∗+, with intensity dzΛα(dη), and introduce

the random measure nα(dz) =
∫∞
0

η Nα(dz, dη), as an independently scattered α-stable
random process. For X(z) a (stationary, positive type kernel) log-correlated Gaussian dis-

tribution on Rd, they introduce a random measure, formally written as,

M
γ
(dz) := eγX(z)−αγ2E[X(z)2]/2 nα(dz), αγ <

√
2d. (5.5)

It is shown in Ref. [9] that the measure (5.5) can be obtained as a limit of suitable cutoff

approximated measures, that is a.s. purely atomic. For γ′ := αγ <
√
2d, let Mγ′ be

the standard Gaussian multiplicative chaos [9]. The Laplace transform of (5.5) obeys the

same relation (5.4) to Mγ′ . When specifying to the duality case α = 2d/γ2 and to d = 2,
Mγ′<2 essentially corresponds to the standard Liouville measure μγ′ . The random measure

M
γ>2

(5.5) and the dual measure μγ>2 (5.3) then obey the same law (5.4) in terms of

μγ′ , thus coincide, even though the two constructions differed a priori. A form of the KPZ

relation (in the Hausdorff dimension sense) is also proved in Ref. [9] for the atomic Gaussian

multiplicative chaos and for dual exponents defined exactly as in Eq. (5.2).

6. Critical γ = 2 case

As mentioned above, for the critical value γ = 2 (and above it), the limit of the Liouville

regularized measure (1.7), limε→0 μγ≥2,ε(dz) = 0, vanishes, giving rise to the issue of
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constructing non trivial measures for γ = 2. This question was addressed recently [47, 48]

for Gaussian multiplicative chaos and for the GFF.

Following work on similar questions for branching random walks [1, 18], it was first

shown in [47] that the natural object at criticality is a so-called derivative martingale, leading
to the construction of a derivative Gaussian multiplicative chaos, formally written (in the

GFF case) as

μ′(dz) = (2E[h(z)2]− h(z)) e2h(z)−2E[h(z)2] dz.

It is shown to be a positive, atomless random measure. A proof of the similar non-atomicity

of critical Mandelbrot cascades was obtained in Ref. [10].

The second approach involves using a modified renormalization scheme [48] inspired

by works on branching random walks [1, 59], which shows that the derivative martingale

can be recovered via a renormalization of the standard martingale, a procedure sometimes

called Seneta-Heyde norming. This equivalence turns out to be crucial for applying Kahane’s

convexity inequalities at criticality. One can then study the moments and the power-law

spectrum, and achieve a proof of the KPZ relation at criticality. This is done first for so-

called �-scale invariant correlation kernels [3], which are compact, and in a second step for

the GFF which has long-range correlations, and requires some technical adjustments [48].

From a conformal field-theoretic view point, the critical value γ = 2 corresponds to a

central charge c = 1 in (1.3). The critical measure thus gives a rigorous construction of the

so-called “tachyon field” in c = 1 Liouville CFT. (See also [70].) We refer to Refs. [47, 48]

and the references therein, for an extensive discussion of the interpretation of this measure

in various c = 1 models of theoretical physics.

6.1. Derivative chaos - renormalization. One considers [47] centered Gaussian processes

(Xt(x))x∈Rd with covariance E[Xt(0)Xt(x)] =
∫ et

1
k(ux) du/u, for some kernel k satisfy-

ing k(0) = 1, and vanishing outside a compact set (a condition to be removed for the GFF

case in Section 6.2). For each x ∈ Rd, the process t �→ Xt(x) is a Brownian motion. For

γ ≥ 0, one considers the approximate Gaussian multiplicative chaos

Mγ
t (dx) = eγXt(x)− γ2

2 E[Xt(x)
2]dx. (6.1)

It is well-known [3, 60] that the family of random measures (Mγ
t )t>0, which are positive

martingales, weakly converges a.s. as t → +∞ towards a log-normal �-scale invariant

random measure Mγ , which is non-trivial only for γ2 < 2d. This construction is rather

universal: the limiting measure Mγ is insensitive to the choice of the cut-off family (Xt)t
made to approximate X .

One introduces the approximate derivative multiplicative chaos M ′
t(dx):

M ′
t(dx) = (

√
2d t−Xt(x)) e

√
2dXt(x)−dE[Xt(x)

2]dx. (6.2)

For each open bounded set A ⊂ Rd,M ′
t(A) is a martingale, neither nonnegative nor regular.

Nevertheless, the following theorems hold:

Theorem 6.1 ([47]). Almost surely, the (locally signed) random measuresM ′
t(dx) converge

weakly as t→ +∞ towards a positive random measure M ′(dx). This limiting measure has
full support and is atomless.
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Theorem 6.2 ([48]). The family (
√
tM

√
2d

t )t converges in probability as t→ +∞ towards
a non degenerate limit, which is the same, up to multiplicative constant, as the derivative
multiplicative chaos:

√
tM

√
2d

t (dx)→√2/πM ′(dx), in probability as t→ +∞.

The measure M ′ is a non-trivial solution to the so-called �-equation [3] at γ =
√
2d.

The proofs, which rely in part on similar results for multiplicative cascades in [1], use criti-

cally the fact that under a rooted (Peyrière) measure, similar to (2.9), the law of the random

process
√
2d t − Xt(x) + β, with β > 0 and conditioned to stay positive, is that of a 3-

dimensional Bessel process started at level β. The main contributions to M ′
t(dx) (6.2) come

from locations x where the factor
√
2d t − Xt(x) is positive but close to zero (of the order

of
√
t), and where Xt(x) is nearly maximal, a scaling in agreement with Theorem 6.2.

6.2. GFF and critical Liouville measure. Analogous results can be proved for the GFF

h, e.g., with Dirichlet boundary conditions on a bounded D ⊂ R2. A cut-off family of

the GFF on D is then defined from a white noise W distributed on D × R+ as: hε(z) :=√
π
∫
D×[ε2,∞[

pD(
s
2 , z, y)W (dy, ds), where pD is the heat kernel on D. (We keep here the

same notation as for GFF circle averages, the two regularizations having the same scaling.)

Define then the approximating measures

μ(γ=2,ε)(dz) := e2hε(z)−2Var[hε(z)] dz

μ′ε(dz) := (2Var[hε(z)]− hε(z)) e
2hε(z)−2Var[hε(z)] dz.

Theorem 6.3 ([48]). The random measure μ′ε(dz) almost surely weakly converges as ε→ 0
towards a positive and atomless random measure μ′(dz), which can also be obtained as the

limit
√
log(1/ε)μ(γ=2,ε)(dz)→

√
2
π μ′(dz), in probability as ε→ 0.

Theorem 6.4 (Conformal invariance [48]). The critical Liouville measure is defined as
μγ=2(dz) := C(z;D)2μ′(dz), with C(z;D) the conformal radius of D at z; it is confor-
mally invariant as in (1.9).

From Kahane’s convexity inequalities and similar results for the Gaussian multiplicative

chaos, one further deduces

Corollary 6.5 ([48]). For A ⊂ D non intersecting ∂D, and for all p < 1, the random
variable μγ=2(A) has finite moment of order p; its power law spectrum is given for 0 ≤ p <
1 by ξ(p) = 4p − 2p2, so that, for p < 1 and z ∈ D, one may find a constant Cp such that
E[μγ=2(B(z, ε))

p] ! Cpε
ξ(p) as ε→ 0.

This finally leads to a KPZ theorem, here in a Hausdorff dimension sense:

Theorem 6.6 (KPZ at criticality, [48]). Let X be a compact (possibly random) subset of
D of dimension d. Almost surely, d = 4dimγ=2(X)− 2 dim2

γ=2(X).

It coincides with (1.1) for γ = 2, x = Δ2, with d = 2− 2x and dimγ=2(X) = 1−Δ.

7. SLE and Liouville quantum gravity

The aim of this section is to describe a fundamental connection between SLE and Liouville

quantum gravity [98]: conformally welding two γ-quantum surfaces produces SLEκ with
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parameter κ = γ2 < 4. We also give an example of a quantum fractal measure, here the SLE
quantum length measure, using the KPZ relation; it gives a quantum gravity interpretation

to a family of related SLE exponential martingales, which generalize the Liouville quantum

measure [51].
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Figure 7.1. Chordal “zipping-up” SLEκ map w = ft(z) with curve ηt in H. Conformal welding: the

quantum boundary lengths, νγ([0, x]) = νγ([x
′, 0]), are equal for any real segments [0, x] and [x′, 0]

such that ft(x) = ft(x
′) ∈ ηt [98]. The SLEκ η̃ on the left is h-independent.

7.1. SLE martingale. Chordal SLE [95] is a random non self-crossing path in the complex

half plane H; we mainly use here a (time-reversed) version defined at time t ≥ 0 by a

“zipping up” conformal map w := ft(z), from the complex half-plane H to the slit domain

H \ ηt, with the SLE segment ηt := ft(R) \ R (or its external envelope) from 0 to the tip

ft(0) (Figure 7.1). It satisfies the SDE,

dft(z) = −2dt/ft(z)−
√
κdBt

(with f0(z) = z), where Bt is standard Brownian motion with B0 = 0, and κ ≥ 0. Let

us recall that if 0 ≤ κ ≤ 4, then SLEκ is a simple curve, while for 4 < κ < 8 it develops

double points and becomes space-filling for κ ≥ 8 [92]. Define the real stochastic process

for t ≥ 0 and z ∈ H,

h0(z) := (2/
√
κ) log |z|, (7.1)

ht(z) := h0 ◦ ft(z) +Q log |f ′t(z)|. (7.2)

By stochastic Itô calculus, the particular choice,

Q =
√
κ/2 + 2/

√
κ, (7.3)

gives a (local) martingale dht(z) = −Rt(z)dBt, with Rt(z) := "[2/ft(z)]. It has the

further martingale property E ht(z) = h0(z).
Consider now the Neumann Green function in H, G0(y, z) := − log(|y − z||y − z|),

and define the time-dependent Gt(y, z) := G0

(
ft(y), ft(z)

)
, i.e., G0 taken at image points

under ft. A simple calculation of the Green function’s variation shows that −dGt(y, z) =
Rt(y)Rt(z)dt = d〈ht(y), ht(z)〉 (Hadamard’s formula). Integrating w.r.t. t yields the co-

variation 〈ht(y), ht(z)〉 = G0(y, z) − Gt(y, z). Taking the limit y → z in the latter, one

obtains

〈ht(z), ht(z)〉 = C0(z)− Ct(z), (7.4)
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where Ct(z) := − log
[#ft(z)|f ′t(z)|].

7.2. SLE-GFF coupling. Consider h := h̃ + h0, sum of an instance h̃ of the Gaussian

free field on domain D = H with free boundary conditions (f.b.c.) on R (up to additive

constant), and of the deterministic function h0 (7.1). This h can be coupled [98] with the

reverse Loewner evolution ft described above so that, given ft, the conditional law of h
(denoted by h|ft) is (Figure 7.1)

h(z)|ft (law)
= h̃ ◦ ft(z) + ht(z), (7.5)

where h̃ ◦ ft is the pullback of the free boundary GFF h̃ in the image half-plane, and where

ht is the martingale (7.2). This means that to sample h, one can first sample the Bt process

(which determines ft), then sample independently the f.b.c. GFF h̃ and take (7.5). Its condi-

tional expectation w.r.t. h̃ is the martingale E
[
h(z)|ft

]
= ht(z). To understand (7.5), recall

that the Green’s function G0(y, z) = Cov[h̃(y), h̃(z)], thus Gt = Cov[h̃ ◦ ft, h̃ ◦ ft]. The

random distribution h̃ ◦ ft and the set of (time changed) Brownian motions ht are Gaussian

processes, whose respective covariance Gt and covariation 〈ht, ht〉 thus add to the constant

covariance G0; this in essence yields (7.5) [98].

7.2.1. Liouville conformal invariance. Thanks to (7.2), we observe that the r.h.s. of (7.5)

is of the form h ◦ ft+Q log |f ′t |. ForQ given by (1.9), this is the transformation law in (1.9)

of the GFF h under the conformal map f−1
t . Then the pair (H, h̃◦ft+ht) = f−1

t (H\ηt, h)
describes the same quantum surface as the pair (H \ ηt, h): Given ft, the image under

ft of the Liouville measure μγ(dz) in H is a random measure whose law is the a priori
(unconditioned) law of μγ(dw) in H \ ηt.

Identifying (1.9) and (7.3), we find two dual solutions

γ =
√

κ ∧ (16/κ), γ′ = 4/γ. (7.6)

The first solution γ ≤ 2 corresponds precisely to the famous KPZ relation (1.3) [34, 38, 66]

between the parameter γ in Liouville theory and the central charge c; here c = 1
4 (6−κ)(6−

16/κ) for the SLE’s CFT [11, 54, 61]. The second solution γ′ = 4/γ ≥ 2 corresponds to the

dual phase of Liouville quantum gravity [64], as described in Section 5, where the quantum

measure develops atoms.

7.2.2. Quantum conformal welding. In the particular coupling (7.5) of h and ft, the two

strands of the boundary to be matched along ηt when “zipping up” by the reverse Schramm-

Loewner map ft have the same quantum length νγ (4.1) (at least for κ < 4) (Figure 7.1).

This property defines a quantum conformal welding, and actually determines ft as a function
of h [98].

Let now η̃ be an (infinite) SLEκ, independent of h (Figure 7.1). For each time t ≥ 0,
the forward, “zipping down” SLE flow map f−t, which obeys the same SDE as ft, but for
dt→ −dt, mapsH \ η̃t → H, where η̃t is the SLE curve segment up to time t. When κ < 4,
η̃ divides H into a pair of welded quantum surfaces that is stationary w.r.t. zipping up or

down via the transformations ft (t ∈ R) [98]. The relation (7.6) between γ and κ is now
rigorously clear: conformally welding two γ-quantum surfaces produces SLEκ.
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7.3. Exponential martingales. Let us introduce the conditional expectations of exponen-

tials of (7.5),Mα
t (z) := E

[
eαh(z)|ft

]
, depending on a real parameter α, which are funda-

mental objects describing quantum gravity coupled to the SLE process. They can be calcu-

lated explicitly in terms of (7.2) and (7.4):

Mα
t (z) := E

[
eαh(z)|ft

]
= exp

[
αht(z) + (α2/2)Ct(z)

]
= |f ′t(z)|d |w|2α/

√
κ(#w)−α2/2,

(7.7)

with w = ft(z) and d given by d := αQ−α2/2. This is the KPZ relation (1.1), after setting

d = 2− 2x, α = γ(1−Δ) [51]. (See also Proposition 3.1.)

By definition, (7.7) is an exponential martingale with respect to the Brownian motion

driving the reverse SLE process, so that

EMα
t (z) =Mα

0 (z) = |z|2α/
√
κ(#z)−α2/2. (7.8)

A stronger statement is the identity in law of the conditional exponential measures(
eαh(z)|ft

)
dz

(law)
= |f ′t(z)|d−2eαh(w)dw,

with dw = |f ′t(z)|2dz, and whose expectations (7.7) agree.

7.3.1. Expected quantum measure. For α = γ, d = 2, we recover the conformal invari-

ance of the Liouville quantum measure,
(
μγ(dz)|ft

) (law)
= μγ (dw), with

E[μγ(dz)|ft] = |w|2−κ/2(sinϕ)−κ/2dw, κ ≤ 4

= (sinϕ)−8/κdw, κ ≥ 4;ϕ := argw.

We give now an explicit example of an invariant SLE quantum measure, using the martin-

gales (7.7) for α �= γ.

7.3.2. SLE quantum length. An SLE measure recently introduced in the context of the

so-called natural parametrization of SLE [74, 77] describes the “fractal length” of the inter-

section η̃ ∩D of the SLEκ path η̃ (from 0 to∞) with an arbitrary domain D ⊂ H (Figure

7.1). Its expectation with respect to the SLEκ∈[0,8] law is finite for any bounded D, and

given by

ν(D) :=

∫
D

G(z)dz, G(z) = |z|a|#z|b,
where G is the SLE Green’s function in H, with a = 1− 8/κ, b = 8/κ+ κ/8− 2.

Under the forward direction SLE flow f−t that generates η̃, the quantity Mt := (G ◦
f−t)|f ′−t|2−d, where d := 1 + κ/8 is the SLEκ Hausdorff dimension [12], describes the

density of expected Euclidean fractal length of η̃ \ η̃t, given the segment η̃t [74]. This Mt is

a local martingale w.r.t. the forward SLE flow f−t [74]. Geometrically,
∫
D
Mt(z)dz is the

expected length of η̃ ∩D given f−t (a martingale), minus the length of the segment η̃t ∩D
(an increasing process); this Doob-Meyer decomposition determines the latter length as a

stochastic process [74].

We extend this construction to the quantum case by defining the expected (w.r.t. η̃, given
h) Liouville quantum length νQ of an infinite SLE path in D

νQ(D,h) :=

∫
D

eαh(z)G(z)dz, (7.9)
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where α =
√
κ/2 (= γ/2 for κ ≤ 4, and γ′/2 for κ > 4) is chosen to satisfy KPZ for

the SLE dimension d = 1 + κ/8. Under the forward SLE flow f−t, the corresponding

integral
∫
D
eαh(z)Mt(z)dz yields, by Doob-Meyer, an implicit construction of the quantum

length measure. It exists by [76, 77] since the second moment E[eαh(y)+αh(z)Mt(y)Mt(z)]
is bounded by |y− z|d−2, with d = d−α2 = 1−κ/8, thus integrable for d > 0, i.e., κ < 8.
By unzipping via f−t, it must naturally coincide with the Liouville boundary measure νγ
defined on R; this follows rigorously from [74] (under a finite expectation assumption).

Alternatively, we can condition (7.9) on the reverse SLE flow ft, and get from (7.7) its

expectation w.r.t. h, conditioned on ft,

E[νQ|ft] =
∫
D

Mα
t (z)G(z) dz.

Finally, taking expectation w.r.t. ft via (7.8) gives the expected SLE quantum length in D
(here ϑ := arg z):

E νQ(D) =

∫
D

Mα
0 (z)G(z) dz =

∫
D

(sinϑ)8/κ−2dz,

which is finite for κ ∈ [0, 8), and coincides with the Euclidean area of D for κ = 4.
SLE boundary quantum measures can be similarly constructed [51]. They use the SLE

boundary fractal measure, supported on the intersection for κ ∈ (4, 8) of a chordal SLEκ

curve with the real axis, as constructed in Ref. [2].

7.4. Quantum wedges. Roughly speaking, a quantum wedgeW is a quantum surface with

two marked boundary points that is obtained by taking h as the free boundary GFF on an

infinite wedge {z : 0 < arg z < θ} for some θ [46]. If we conformally map the half plane to

the wedge via the map ψθ(z̃) = z̃ θ/π, then the coordinate change rule (1.9) gives D̃ = H and

h̃ = h− α log |z̃|, where h is a free boundary GFF on H and α := Q(1− θ/π). The weight
of a quantum wedge is defined as W := γ (γ + 2/γ − α) , with γ < 2 and W > γ2/2 for

α < Q (i.e., θ > 0).

Figure 7.2. Four quantum wedges conformally welded along boundaries and conformally mapped to

H. The images of the interfaces are coupled SLEκ(ρ1; ρ2) processes [46].

Theorem 7.1 ([46]). Choose a quantum wedgeW of weight W > 0, represented by some
(D,h, (z1, z2)), with z1, z2 ∈ ∂D. Suppose W = W1 +W2 for some Wi > γ2/2 and then
independently choose an SLEκ(ρ1; ρ2), for ρi = Wi − 2 and κ = γ2, from z1 to z2. Let η
denote the SLE curve and let Di, i = 1, 2, denote left and right components of D \ η. Then
the quantum surfaces Wi = (Di, h, (z1, z2)) (with h restricted to Di), are independent.
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EachWi is a quantum wedge of weight Wi, andW is uniquely determined by theWi and
may be obtained by a conformal welding of the right side ofW1 to the left side ofW2, where
each is parameterized by quantum length.

Theorem 7.1 generalizes the welding results of Ref. [98] (Section 7.2), for which Wi =
2. In fact, it also holds for quantum wedges of positive weight less than γ2/2; these wedges

are not topologically homeomorphic to a disc (their left side hits their right side at a random

fractal set of points) [46]. If one uses the boundary analog of the thick point Proposition 3.1

[50] to relate a boundary quantum exponent Δ̃ toW = 2+γ2Δ̃, one finds that Theorem 7.1

gives precisely the additivity of boundary quantum exponents predicted in Refs. [41, 42, 75].

We presented here a foundational relationship between SLE, KPZ and Liouville quantum

gravity. It is hoped that it will help solve the outstanding open problem of its rigorous

relation to discrete models and random planar maps, in line with the approach of Ref. [99],

and Miller and Sheffield’s “Imaginary Geometry” tetralogy [84–87]. In this perspective, the

recent introduction by these authors of the so-called Quantum Loewner Evolution (QLE) in

[88] might finally pave the way to endow Liouville quantum surfaces with a canonical metric

space structure (for γ2 = 8/3), isomorphic in law to the universal Brownian map of Refs.

[80, 83].
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An overview of the topological recursion

Bertrand Eynard

Abstract. We recall how computing large size asymptotics in randommatrices, has allowed to discover

some fascinating and ubiquitous geometric invariants. Specializations of this method recover many

classical invariants, like Gromov–Witten invariants, or knot polynomials (Jones, HOMFLY,...). In this

short overview for the ICM 2014 in Seoul Korea, we give some examples, give definitions, and review

some properties and applications of the formalism.
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1. Introduction

The “topological recursion” is a recursive definition (introduced in [1]), which associates a

double family (indexed by two non–negative integers g and n) of differential forms ωg,n, to
a “spectral curve” S (a plane analytical curve with some additional structure, see definition

below) called the “invariants” of S .
Topological Recursion: spectral curve S −→ invariants ωg,n(S)

The initial terms ω0,1 and ω0,2 are some canonical 1-form and 2-form on the spectral

curve S , the other ωg,n’s defined by a universal recursion on (2g + n − 2) are symmetric

n−forms on Sn, and the n = 0 invariants, customarily denoted Fg(S) = ωg,0(S), are
numbers Fg(S) ∈ C (or in fact elements of the field over which S is defined).

Those invariants have fascinating mathematical properties, they are “symplectic invari-

ants” (invariants under some symplectic transformations of the spectral curve), they are al-

most modular forms (under the modular Sp2g(Z) group when the spectral curve has genus

g), they satisfy Hirota-like equations, they satisfy some form-cycle duality deformation rela-

tions (generalization of Seiberg-Witten relations), they are stable under many singular limits,

and enjoy many other fascinating properties...

Moreover, specializations of those invariants recover many known invariants, including

volumes of moduli spaces, Hurwitz numbers, intersection numbers, Gromov–Witten invari-

ants, numbers of maps (Tutte’s enumeration of maps), or asymptotics of random matrices

expectation values. And since very recently, it is conjectured that they also include knot

polynomials (Jones, HOMFLY, super polynomials...), which provides an extension of the

volume conjecture.

The purpose of this short article is only a small glimpse of the fast evolving mathematics

of those invariants. We shall present here a few examples, then mention how these invariants

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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were first discovered in random matrix theory, and then observed or conjectured in many

other areas of maths and physics.

2. Examples of topological recursions

2.1. Mirzakhani’s recursion for hyperbolic volumes. See short definition in appendix

A.Let g, n be non–negative integers such that 2g−2+n > 0 (i.e. (g, n) = (0, 0), (0, 1), (0, 2),
(1, 0) are excluded). Let Vg,n(L1, . . . , Ln) be the hyperbolic volume (called “Weil-Petersson

volume” [2] ) of the moduli-space Mg,n of genus g bordered Riemann surfaces with n
geodesic boundaries of respective lengths L1, . . . , Ln

Vg,n(L1, . . . , Ln) =

∫
Mg,n , �(∂i)=Li

w,

where w =Well-Petersson form, and let its Laplace transform:

Wg,n(z1, . . . , zn) =

∫ ∞

0

. . .

∫ ∞

0

Vg,n(L1, . . . , Ln)
n∏
i=1

e−ziLi LidLi

Those hyperbolic volumes, are not easy to compute with hyperbolic geometry. Only smallest

values of g and n had been computed directly by hyperbolic geometry, for example:

V0,3(L1, L2, L3) = 1, W0,3(z1, z2, z3) =
1

z21 z
2
2 z

2
3

V1,1(L) = 1

48
(L2 + 4π2), W1,1(z) =

1

8z4
+

π2

12 z2
.

In 2004, M. Mirzakhani discovered a beautiful recursion relation [2], which computes

all volumes Vg,n for all g and n, by recursion on 2g + n. We shall not write Mirzakhani’s

relation among the Vg,n’s, but we shall consider here its Laplace transformed version:

Theorem 2.1 (Recursion for Weil-Petersson volumes, Mirzakhani’s recursion [2], Laplace

transformed[6]). For any (g, n) such that 2g − 2 + n > 0, one has:

Wg,n(z1,

J︷ ︸︸ ︷
z2, . . . , zn) =Res

z→0

1

(z21 − z2)

π

sin (2πz)

[
Wg−1,n+1(z,−z, J)

+
′∑

I$I′=J;h+h′=g

Wh,1+#I(z, I)Wh′,1+#I′(−z, I ′)
]
dz

where
∑′ means that we exclude from the sum the two cases (I = J, h = g) and (I ′ =

J, h′ = g), and we have denoted:

W0,2(z1, z2) =
1

(z1 − z2)2
.



An overview of the topological recursion 1065

This theorem [6, 62–64] is very efficient at actually computing the volumes. It is a

recursion on the Euler–characteristics χ = 2−2g−n, at each step, the absolute value of the

Euler characteristics in the Left Hand Side, is one more than the total Euler characteristics

of every Right Hand Side terms:

|2−2(g−1)−(n+1)| = |2−2h−(1+m)+2−2(g−h)−(1+n−1−m)| = |2−2g−n|−1.
This explains the name “topological recursion”.

2.2. Hurwitz numbers. See short definition in appendix B. Let Hg,n(μ) be the simple

Hurwitz number of genus g with ramification profile μ, i.e. the number of connected ramified

coverings of the Riemann sphere, of genus g and with only one multiply ramified point

whose ramification profile is a partition μ = (μ1 ≥ μ2 ≥ · · · ≥ μn) of length n (we denote

|μ| = ∑i μi), and all other ramification points are simple ( and Riemann Hurwitz formula

says that there are b = 2g − 2 + n+ |μ| simple ramification points).

For example, when n = 1 and g = 0, one has that H0,1(μ1) is the number of ways

of gluing μ1 sheets together, at one fully ramified point, and at μ1 − 1 simple ramification

points, which make a surface of genus 0, i.e. planar. Such a ramified covering is thus the

data of μ1 sheets (represented by μ1 points) linked by μ1−1 ramification points (represented

by μ1 − 1 edges), connected and without loops. Therefore this is the same as counting the

number of covering trees which can be drawn on the complete graph with μ1 points, and is

given by Cayley’s formula:

H0,1(μ1) = μμ1−2
1

With genus 0 and partitions of length 2, one finds (though not easily [3, 5]):

H0,2(μ1, μ2) = (μ1 + μ2 − 1)! μ
μ1+1
1 μμ2+1

2

μ1!μ2!
.

We define the generating functions, as discrete Laplace transforms of the Hg,n’s:

Wg,n(x1, . . . , xn) =
∑

μ, �(μ)=n

Hg,n(μ)

(2g − 2 + n+ |μ|)!
∑
σ∈Sn

n∏
i=1

e μixσ(i) .

For example,

W0,1(x) =
∞∑
k=1

kk−2

(k − 1)! e
kx = L( e x)

where L is the Lambert function, i.e. solution of e x = L e−L. Similarly

W0,2(x1, x2) =

∞∑
k,k′=1

kk+1 k′k
′+1

(k + k′) k! k′!
e kx1 e k

′x2

=
L( e x1)

1− L( e x1)

L( e x2)

1− L( e x2)

1

(L( e x1)− L( e x2))2
− e x1 e x2

( e x1 − e x2)2
.

One finds that it is easier to make a change of variable and work with zi = L( e xi) rather
than xi, and thus define the following differential forms:

ωg,n(z1, . . . , zn) =

(
Wg,n(x1, . . . , xn) + δg,0 δn,2

e x1 e x2

( e x1 − e x2)2

)
dx1 . . . dxn.
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For example,

ω0,1(z) = (1− z) dz, ω0,2(z1, z2) =
dz1 dz2
(z1 − z2)2

.

Goulden, Jackson, Vainshtein [3] derived a recursion formula (called “cut and join equa-

tion”) satisfied by those Hurwitz numbers, and after Laplace transform [4], one finds (not so

easily [4]) the topological recursion formula, which was first conjectured by Bouchard and

Mariño [5]:

Theorem 2.2 (recursion for Hurwitz numbers = Bouchard-Mariño conjecture(first proof in

[4])). The forms ωg,n’s satisfy the following recursion:

ωg,n(z1, z2, . . . , zn) =Res
z→1

K(z1, z)
[
ωg−1,n+1(z, s(z), z2, . . . , zn)

+
′∑

I$I′={z2,...,zn};h+h′=g

ωh,1+#I(z, I)ωh′,1+#I′(s(z), I
′)
]

where
∑′ means that we exclude from the sum the two cases (I = {z2, . . . , zn}, h = g) and

(I = ∅, h = 0), and where the recursion kernel K is:

K(z1, z) =
dz1
2

1
z1−z − 1

z1−s(z)

(z − s(z))

z

(1− z) dz

and where the map s : z �→ s(z) defined in a vicinity of z = 1, is the involution such that
s �= Id and solution of

s(z) e−s(z) = z e−z , s(1) = 1.

Locally near z = 1, its Taylor series expansion starts with:

s(z) = 1− (z − 1) + 2

3
(z − 1)2 − 4

9
(z − 1)3 + 44

135
(z − 1)4 − 104

405
(z − 1)5 + . . .

This recursion is very efficient at computing, for instance it easily gives:

ω0,3(z1, z2, z3) =
dz1 dz2 dz3

(1− z1)2 (1− z2)2 (1− z3)2
,

ω1,1(z) =
1

24

(
1 + 2z

(1− z)4
− 1

(1− z)2

)
dz.

Again, this theorem is an illustration of the universal “topological recursion”, as we

shall see below.

3. How it arose

The purpose of the present section is to recall how the topological recursion (which is mostly

a geometric notion) was initially discovered from the study of large random matrices, and

then happened to have a much broader reach in a geometric setting.
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3.1. Random matrices. In random matrices, one is interested in the statistical properties

of the spectrum, especially in the large size limit. The density of eigenvalues converges (in

most cases) towards a continuous density function, often called the “equilibrium measure”.
Very often (with reasonable choices of a random matrix probability law), the equilibrium

measure is found to have a compact support (not necessarily connected), and happens to

be an algebraic function. This means that there is an algebraic curve related to the random

matrix model.

For example, the equilibrium measure for eigenvalues of a Gaussian random matrix, is

the famous “Wigner’s semi-circle”

ρ(x)dx =
1

2π

√
4− x2 1[−2,2] dx

it is described by the algebraic curve y2 = x2 − 4, where y = 2iπρ(x) is the equilibrium

density, supported on the segment [−2, 2].

3.1.1. Large size expansions. Around 2004 it was observed [7, 9, 10] that the knowledge

of the equilibrium measure, is sufficient to recover the asymptotic expansion of every expec-

tation value, and to all orders in the asymptotic expansion ! In other words, if S is the plane

algebraic curve of the equilibrium measure, then all correlations can be obtained as universal

(the same for every matrix model) functionals of S only.

For example, a particularly interesting quantity is the “partition function”. Let dμ(M)
be a (family depending on N of) un–normalized measure on the set of Hermitian matrices

of size N , the partition function is defined as

Z =

∫
HN

dμ(M).

Under “good assumptions” on the measure dμ, the partition function has a large N asymp-

totic expansion of the form

lnZ ∼
∞∑
g=0

N2−2g Fg.

A main question in random matrix theory, is to compute the coefficients Fg ?

In [1, 8, 9] it was discovered that there exists a universal functional Fg : S �→ Fg(S),
such that, for many classes of random matrices:

Fg = Fg(S).
The functional Fg : S �→ Fg(S) is defined only in terms of the Riemannian geometry of the

curve S , it is often called “topological recursion”:

spectral curve

S
topological recursion

−−−−−−−−−−−−−−−→ Fg (S)
It was also discovered in [1, 7, 10] that there are universal functionals ωg,n : S �→

ωg,n(S) which compute the gth order in the large N expansion of the joint probability of

n−eigenvalues (more precisely the cumulants of correlations of n resolvents)

E

(
n∏
i=1

Tr (xi −M)−1

)
cumulant

∼
N→∞

∞∑
g=0

N2−2g−n ωg,n.
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Therefore, for random matrices, there exist some functionals ωg,n (and we call Fg =
ωg,0) which compute all correlation functions from the geometry of the spectral curve alone.

The functionals ωg,n are defined by a recursion on g and n (we postpone the explicit writing

of this recursion to section 4), or more precisely a recursion on (2g + n− 2). This is called
the topological recursion:

ωg,n = computed from ωg′,n′ with 2g′ + n′ − 2 < 2g + n− 2.

Eventually, this means that the knowledge of S (which is the large N equilibrium density of

eigenvalues) allows to recover all correlation functions of the randommatrix law, i.e. recover

the random matrix probability law itself:

spectral curve

S
topological recursion

−−−−−−−−−−−−−→ ωg,n(S) −−−−−→
probability law

dμ(M) .

3.1.2. How to use random matrices for geometry? Since the functionals ωg,n which give

expectation values are universal and do not require anything but the curve S , one may try to

apply these functionals ωg,n to any arbitrary algebraic curve, independently of whether that

algebraic curve S was related to a random matrix law or not. This is the idea proposed in

[1].

In some sense, the topological recursion defines a “pseudo-random matrix law” as-
sociated to any plane curve S .

plane curve

S
topological recursion

−−−−−−−−−−−−→ ωg,n(S) −→
pseudo probability law

dμ(M) .

Since expectation values or correlations are numbers, we get a collection of functionals,

which associate “numbers” to a curve S , this defines “invariants of a curve”

curve

S
topological recursion

−−−−−−−−−−−−−→ ωg,n(S) = invariants ofS.

We thus have a definition of a family ωg,n(S) of invariants of a plane curve S . We shall

call them the “symplectic invariants of S” or the “TR (topological recursion) invariants”
of S .
Remark 3.1. We emphasize that not all algebraic curves can come from probabilities of

random matrices, because probabilities have some real and positivity properties. However,

since the functional relations are analytical, they also apply to curves which don’t have any

positivity properties.

For example, the function y = 1
4π sin 2π

√
x appearing as the spectral curve for the

Weil-Petersson volumes, can never be the density of eigenvalues of a random matrix.

3.2. Some applications of TR invariants. By definition, when S is the large N spectral

curve of a random matrix law, ωg,n(S) computes the gth large N order of the n−point

correlation function of resolvants:

E

(
n∏
i=1

Tr
dxi

xi −M

)
connected

=
∞∑
g=0

N2−2g−n ωg,n.
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Is there other plane curves S for which those invariants compute something interesting?

The answer is YES: many classical geometric invariants, including Gromov-Witten invari-

ants, or knot polynomials, can be obtained as the invariants of a plane curve S closely related

to the geometry.

• Let X be a local toric Calabi-Yau 3-fold [59, 60], and let Wg,n(X) be the genus g and

n boundary open Gromov–Witten invariant of X (i.e. roughly speaking, the formal series

whose coefficients count the number of holomorphic immersions of a genus g Riemann

surface with n boundaries, such that the boundaries are mapped into a given Lagrangian

submanifold [61]). It is well known that the mirror [46] of X is another Calabi-Yau 3-fold,

of the form

{(x, y, u, v) ∈ C4 | H( e x, e y) = uv}
whereH is some polynomial found from the moment map ofX. This is an hyperbolic bundle

over C∗ × C∗. The fibers are singular over the plane curve H( e x, e y) = 0. We call that

plane curve S = X̂, and we call it the mirror curve of X.

Then Mariño and co conjectured in [11, 12], and it was proved in [13, 14] that:

Theorem 3.2 (Topological recursion for toric CY 3folds). (called BKMP conjecture [11,

12], first proved in [13], and for CY orbifolds in [14]).
The Gromov–Witten invariantsWg,n(X) are the topological recursion invariants of S =

X̂ the mirror curve of X:
Wg,n(X) = ωg,n(X̂).

In fact, special cases of this theoremwere first proved in [51–54]. The idea of the proof of

[13, 14], is that the recursive structure of the topological recursion can be encoded as graphs

(see def. 4.8 below), and thus the ωg,n(X̂) can be written as sums of weighted graphs. Those

graphs, up to some combinatorial manipulations, happen to coincide with the “localization

graphs” of Gromov-Witten invariants [55, 56]. It is mostly a combinatorial proof.

• Another famous example (still conjectured) concerns knot polynomials.

Let K be a knot embedded in the 3-sphere S3. The character variety of K is the locus of

eigenvalues of holonomies of a flat SL2(C) connection on the knot complement S3 \ K.
This character variety is algebraic and defines an algebraic curve , called the A-polybomial

of K:
A(X,Y ) = 0.

The colored-Jones polynomial JN (q) ∈ C[q], of color N , is defined as the Wilson loop [15]

of a flat SL2(C) connection on S3 \ K, in the spin N − 1 representation of SL2(C). Let us
denote

� = ln q, x = N ln q.

Then, it is conjectured [16, 18–20] that in the limit where �→ 0 and x = O(1), one has the

asymptotic expansion:

ln JN (q) ∼
∞∑

k=−1

�k Sk(x), Sk(x) =
∑

2g−2+n=k

1

n!

∫
γx

. . .

∫
γx

ωg,n(S)

where S is the character variety of K, of equation A(ex, ey) = 0, and γx is some path on S
ending at x (the more precise statement can be found in [20]). In other words:
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Conjecture. The Jones polynomial of a knot, is a series in � whose coefficients are the
principal TR invariants of its A-polynomial

If true (which is of course expected), this conjecture would be an extension of the fa-

mous Kashaev’s “Volume conjecture” [35–37], and would imply a new understanding of

what Jones polynomials are, in particular that Jones polynomials are Tau-functions of some

integrable systems [16, 16, 18–20].

4. Definition of topological recursion and invariants

4.1. Spectral curves. The topological recursion associates invariants ωg,n to a spectral

curve. There exists many definitions of what a spectral curve is, they are more or less equiv-

alent, but formulated in rather different languages.

Let us adopt the following definition here, close to the one in [1].

Definition 4.1 (Spectral curve). A spectral curve S = (C, x, y, B) is:
- a Riemann surface C not necessarily compact nor connected,

- a meromorphic function x : C → C. The zeroes of dx are called the branchpoints. We

assume that there is a finite number of them on C.
- the germ of a meromorphic function at each branchpoint. We denote it collectively y.
In other words near a branchpoint a of order ra

y = {t̃a,k}a∈branchpoints, k∈N ⇐⇒ y(p) ∼
p→a

∞∑
k=0

t̃a,k(x(p)− x(a))k/ra

- a symmetric 2-form B on C × C, having a double pole on the diagonal and analytical

elsewhere, normalized such that, with any local parameter:

B(p, q) ∼
p→q

dz(p)⊗ dz(q)

(z(p)− z(q))2
+ analytical at q

again, in fact all what is needed is that B is the germ of some analytical form at the

branchpoints.

Remark 4.2. Since the topological recursion computes residues, in fact all what is needed

to run the recursion, is that C is a union of “formal neighbourhoods of branchpoints”, with y
and B germs of analytical functions.

However, in most practical examples, these neighbourhoods form an actual Riemann sur-

face, on which y and B are globally analytical, and the geometric structure of that Riemann

surface impacts a lot the properties enjoyed by the invariants. In other words, the invariants

are always well defined, but they enjoy more properties if in addition the Riemann surface

has structure, for instance if it is connected and/or compact, and for instance if B is globally

meromorphic.

Since all what is needed are germs at the branchpoints, we may define the spectral curve

from the data of its Taylor (or Laurent) expansion coefficients:
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Definition 4.3 (Spectral curve, bis). A spectral curve S = ({t̃a,k}, {B̂a,k;b,j}) is a collec-

tion of

• a set of “branchpoints” a = {a1, a2, . . . , aN}.
• a family of times t̃a,k for each a ∈ a. They are related to y by

y(p) ∼
p→a

∞∑
k=0

t̃a,k(x(p)− x(a))k/ra .

• the times B̂a,k;b,j for each (a, b) ∈ a× a. They are related to B by

B(p, q) ∼
p→a,q→b

δa,b
◦
Ba(p, q) +

∑
k,l

B̂a,k;b,lζa(p)
k ζb(q)

l dζa(p) dζb(q)

where ζa(p) = (x(p)− x(a))1/ra , and

◦
Ba(p, q) =

dζa(p) dζa(q)

(ζa(p)− ζa(q))2

4.2. Definition of TR invariants by recursion. For simplicity in this definition below, we

assume all branchpoints to be simple, i.e. ra = 2, the general case is done in [21–23]. We

define σa : Ua → Ua the involution in a small neighbourhood Ua of a, that exchanges the

two sheets of x−1 that meet at a, i.e. such that

x ◦ σa = x.

σa is called the local Galois involution of x (it permutes the roots of x(p)− x).
Definition 4.4. We define by recursion on χ = 2g + n− 2, the following forms on Cn:

ω0,1(p) = y(p)dx(p), ω0,2(p, q) = B(p, q)

and for 2g + n− 2 ≥ 0:

ωg,n+1(p1, . . . , pn+1) =
∑

a∈branchpoints

Res
q→a

Ka(p1, q)
[
ωg−1,n+2(q, σa(q), p2, . . . , pn+1)

+

′∑
h+h′=g, I$I′={p2,...,pn+1}

ωh,1+#I(q, I)ωh′,1+#I′(σa(q), I
′)
]

with the recursion kernel

Ka(p1, q) = −1
2

∫ q
σa(q)

ω0,2(p1, .)

ω0,1(q)− ω0,1(σa(q))

Remark 4.5. It is not obvious from the definition, but an important property (which can be

proved by recursion, see [1]) is that ωg,n is always a symmetric n-form on Cn. The definition
gives a special role to p1, but the result of the sum of residues is in fact symmetric in all pi’s.
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Remark 4.6. When the branchpoints are not simple, if ra > 2, the general definition can be

found in [21–23]. In fact, branchpoints of higher order ra > 2 can be obtained by taking a

limit of several simple branchpoints merging smoothly. It was proved in [23] that the limit

of the definition with simple branchpoints, indeed converges to that of [21–23]. In other

words, higher order branchpoints, can be recovered from simple branchpoints. This is why,

for simplicity, we shall focus on simple branchpoints here.

Examples of applications of the definition for (g, n) = (0, 3):

ω0,3(p1, p2, p3) =
∑
a

Res
q→a

Ka(p1, q)
[
B(q, p2)B(σa(q), p2) +B(q, p1)B(σa(q), p1)

]
(4.1)

and for (g, n) = (1, 1) ω1,1(p1) =
∑
a

Res
q→a

Ka(p1, q)B(q, σa(q)). (4.2)

Definition 4.7. When n = 0 we define ωg,0 (denoted Fg ≡ ωg,0) by:

g ≥ 2 , Fg = ωg,0 =
1

2− 2g
∑
a

Res
q→a

ωg,1(q) Φ(q)

where dΦ = ω0,1 (Fg is independent of a choice of integration constant for Φ).

The definition of F1 and F0 is given in [1], but we shall not write it in this short review.

4.3. Definition as graphs. The recursive definition above can conveniently be rewritten in

a graphical way.

For example expression (4.1) or (4.2) are easily written in terms of graphs:

• associate to each B(p, q) factor, a non-oriented line from p to q,

• associate to each Ka(p, q) factor, an oriented line from p to q, whose end q has a

“color” a,

• associate to each Residue Resq→a a tri-valent planar vertex of “color” a, with one

ingoing edge (it must be oriented) and two outgoing edges (not necessarily oriented)

the left one labeled with the point q and the right one labeled with the point σa(q).

• The value of a graph is then obtained by computing residues at the vertices of the

product of B’s and K’s of edges.

For example (4.1)

ω0,3(p1, p2, p3) =
∑
a

Res
q→a

Ka(p1, q)
[
B(q, p2)B(σa(q), p2) +B(q, p1)B(σa(q), p1)

]
is represented by:

1

x
2

0x0

x 1

=
x

0

x0 zK(   ,   )
x 1

2

z

z

x 1B(  ,    )z

2
xB(  ,    )z

x +
x

0

x0 zK(   ,   )
x

z

z

xB(  ,    )z

xB(  ,    )z
x

2
2

1

and ω1,1(p1) =
∑

aResq→aKa(p1, q)B(q, σa(q)) is represented by
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z
B(  ,  )z z1x0 =

x
0

x0 zK(   ,   ) z

Therefore, following [1] we define the following set of graphs:

Definition 4.8. For any k ≥ 0 and g ≥ 0 such that k + 2g − 2 > 0, we define:

Let G(g)k+1(p, p1, . . . , pk) be the set of connected trivalent graphs with 2g+k−1 trivalent

vertices carrying a color a ∈ a, k + 1 legs, 2g + k − 1 arrowed edges forming a covering

oriented planar binary tree of the graph and k + g non-arrowed edges, and obtained by the

recursion:

= +

Then, we define the weight of a graph as:

w(G) =
∏

v∈{vertices}
Res

qv→av

∏
e=(p,q)∈{unarrowed edges}

B(p, q)
∏

e=(p %→q)∈{arrowed edges}
Kap(p, q)

where the order of taking the residues is by following the arrows from leaves to root (deeper

vertices are integrated first).

Then, the definition of ωg,n(S) is:

ωg,n(p1, . . . , pn) =
∑

G∈Gg,n(p1,...,pn)

w(G).

Those graphs are merely a convenient mnemotechnic notation for the recursive definition

4.4, they provide a good support for intuition and are very useful for proving some theorems.

4.4. A-model side definition. Let S = (C, x, y, B) a spectral curve, with branchpoints

a = {a}. Near a ∈ a, we define the local Laplace transforms

Definition 4.9 (Laplace transforms).

e−f(a,j)(u) =
u3/2 e ux(a)

2
√
π

∫
γ(a,j)

y dx e−ux

where γ(a,j) is a “steepest descent path”, i.e. in a neighbourhood Ua of a it is an arc included

in x−1(x(a) + R+) (if dx vanishes to order ra − 1 at a (x is locally ra : 1 at a), then there
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are ra − 1 such steepest descent paths, i.e. j ∈ [1, . . . , ra − 1]. For a simple branchpoint

ra = 2, and there is only j = 1, so we may drop the j index).

Its large u expansion doesn’t depend on the neighbourhood Ua and defines the “times”:

f(a,j)(u) ∼
∞∑
k=0

t(a,j),k u
−k.

Similarly we Laplace transform B:

Definition 4.10.

B̂(a,j);(b,l)(u, v) =

√
uv

π

∫
γ(a,j)×γ(b,l)

(
B(z1, z2)− δa,b

◦
Ba(z1, z2)

)
e−u(x(z1)−x(a)) e−v(x(z2)−x(b))

where
◦
Ba(z1, z2) =

dζa(z1) dζa(z2)

(ζa(z1)− ζa(z2))2
, with ζa(z) = (x(z)− x(a))1/ra .

The large u and v expansion define the “times”

B̂(a,j);(b,l) ∼
∑
m,n

B̂(a,j),n;(b,l),mu−n v−m.

We shall also define the half Laplace transform

B̌(a,j)(u, z) =

√
u√
π

∫
z′∈γ(a,j)

B(z′, z) e−u(x(z′)−x(a))

whose large u expansion defines a basis of meromorphic 1-forms having a pole at a:

B̌(a,j)(u, z) =
∑
k

u−k dξ(a,j),k(z)

All this gives another definition of the notion of spectral curve:

Definition 4.11 (Spectral curve, ter). A spectral curve S = { {tα,k}, {B̂α,k;β,l}, {dξα,k}}
is the data of all the times.

This definition encodes in a slightly different way compared to def4.1, the Taylor expan-

sions of all germs of analytical functions needed to run the recursion, which are much better

encoded through Laplace transforms, as remarked in [24–26, 57, 58].

We shall now use the spectral curve data to define a tautological cohomology class in the

cohomological ring of some moduli space, and thus define an A-model potential.

First, we define the moduli space. Let us first assume that all branchpoints are simple,

i.e. ra = 2 and thus the local Galois group is Z2:

Definition 4.12 (Colored moduli space (simple branchpoints)). Let

a = {a}a=branchpoints, N = #a.

We start by defining the following moduli space (not compact):

Mg,n(a) = {(Σ, p1, . . . , pn, s)}
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where Σ is a genus g nodal surface with n smooth marked points p1, . . . , pn, and s : Σ→ a
be a map constant in each component of Σ.

In factMg,n(a) is merely a convenient notation for a union of smaller moduli spaces:

Mg,n(a) = ∪G=dual graphs, N colored

∏
v∈vertices

M(av)

gv,nv

whereM(a)

g,n are N copies ofMg,n labeled by the branchpoints a. The graphs G are dual

graphs of stable nodal surfaces, of total genus g and n smooth marked points. Vertices v of

G carry a genus gv , a number of marked or nodal points nv , and a color sv ∈ a. We must

have:

∀ v, 2− 2gv − nv < 0, and
∑

v∈vertices ofG

(2− 2gv − nv) = 2− 2g − n.

In fact this definition can be extended to multiple branchpoints ra > 2, with a local

Galois groupGa (most often Zra ), by replacing eachMgv,nv
by BGav

M(av)

gv,nv
where BGa

is the classifying space of the local Galois group Ga and BGaMg,n is defined by the Chen-

Ruan cohomology of C3/Ga.

Then, we define the following tautological classes in the cohomological ring of the mod-

uli spaceMg,n(a). We present only the case of simple branchpoints for simplicity:

Definition 4.13 (Tautological class of a spectral curve).

Λ(S) = e
∑

k ts∗,kκk+
1
2

∑
k,l B̂s∗,k;s∗,l

∑
δ∈∂Mg,n(a) lδ∗(τkτl)

where

• τk = c1(T
∗
p )

k = ψ(p)k is the kth power of the 1st Chern class of the cotangent bundle

at the marked or nodal point p overM(as(p))

g,n

• κk is the kth Mumford class [65], that is the pushforward π ∗ ψ(pn+1)
k+1 of the

(k+1)th power of the 1st Chern class of the cotangent bundle at the (n+1)th marked

point pn+1 ∈Mg,n+1, under the forgetful map π :Mg,n+1 →Mg,n.

• ∂Mg,n(a) is the set of boundary divisors ofMg,n(a), or in other words it is the set

of nodal points. If δ ∈ ∂Mg,n(a), then δ is a nodal point, i.e. it is a pair of points

δ = (p, p′) with p and p′ in two components (possibly the same) of Σ, corresponding

to two vertices v, v′ (possibly the same) of the graph G. lδ ∗ (τkτl) denotes the class

ψ(p)kψ(p′)l pushed inM(σ(p))

gv,nv
×M(σ(p′))

gv′ ,nv′ .

Then the invariants ωg,n(S) are given by:

Theorem 4.14 (A-model Invariants). (proved in [25], see also [26]).

ωg,n(z1, . . . , zn) =

∫
Mg,n(a)

Λ(S)
n∏
i=1

B̌s(pi)(1/ψ(pi), zi)

=
∑

d1,...,dn

∫
Mg,n(a)

Λ(S)
n∏
i=1

ψ(pi)
di dξs(pi),di

(zi)
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In fact this theorem and the definition ofMg,n(a) means a sum over graphs of products

at vertices of usual intersection numbers in someM(av)

gv,nv
’s, it is merely a short hand notation

for the following sum:

ωg,n(z1, . . . , zn) =2
3g−3+n

∑
graphsG

∑
{dh}∈Z{half-edges(G)}

2−#edges(G)

#Aut(G)

∏
e=(v,v′)∈edges(G)

B̂av,d(v,e);av′ ,d(v′,e)

n∏
i=1

dξs(pi),di
(zi)

∏
v∈vertices(G)

∫
M(av)

gv,nv

e
∑

k tav,kκk

∏
h∈half-edges(G) adjacent to v

ψ(ph)
dh

This theorem is thus a mirror symmetry statement [46]. It was first proved in [24] for a

single branchpoint, and then in [25] for the general case, and see also [26].

Idea of the Proof. Using the graphical definition def.4.8 of the ωg,n’s, by a recombination

of vertices with the same colors, one finds that ωg,n can be written as a sum over graphs of a

Wick theorem [27–29], where the edge weights are the B̂a,k;b,l’s, and it remains to compute

the weights of vertices.

Since vertices are independent of the B̂a,k;b,l, they can be found from the case where all

B̂a,k;b,l vanish, and when there is only one branch point. This can be achieved by chosing

the spectral curve S = (CP 1, x : z �→ z2, y : z �→ z,B(z, z′) = dzdz′
(z−z′)2 ), and shows

that the weights of vertices [24, 58] are the Witten Kontsevich intersection numbers [42, 43].

Therefore, this theorem is mostly of combinatorial nature.

Remark 4.15. In fact this theorem is very similar to Givental’s formalism [45]. The only

difference with Givental’s formalism, is that it applies to more general situations. Givental’s

formalism applies to Gromov–Witten’s theories, and thus applies only if the coefficients B̂’s

and t’s satisfy certain relationships which we don’t assume here. All this is explained in

[26].

Examples of applications of theorem 4.14:

• Weil-Petersson volumes. Chose S = (CP 1, x : z �→ z2, y : z �→ 1
4π sin (2πz),

B(z, z′) = dzdz′
(z−z′)2 ). In that case, there is only one branchpoint at z = 0. An easy computa-

tion yields B̂a,k;a,l = 0, and the Laplace transform of ydx yields:

e−f(u) =
u3/2

2
√
π

∫ ∞

−∞

sin (2πz)

4π
2zdz e−uz2 =

1

4
e−π2/u

and we also find

dξd(z) =
(2d+ 1)!!

2d
dz

z2d+2

Definition 4.13 gives

Λ(S) = e π
2κ1 ,
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and the theorem 4.14 gives

ωg,n(z1, . . . , zn) = 25g−5+2n
∑

d1,...,dn

n∏
i=1

dξdi
(zi)

∫
Mg,n

e π
2κ1

n∏
i=1

ψdi
i

= 22g−2+n
∑

d1,...,dn

n∏
i=1

(2di + 1)!! dzi

z2di+2
i

∫
Mg,n

e 2π2κ1

n∏
i=1

ψdi
i

which are indeed the Weil-Petersson volumes of moduli spaces [6, 62–64]. In other words,

this theorem gives a very easy proof of Mirzakhani’s recursion, by simply computing the

Laplace transform of y = sin (2π
√
x)/4π.

• Kontsevich-Witten. Chose S = (CP 1, x : z �→ z2, y : z �→ z,B(z, z′) = dzdz′
(z−z′)2 ). In

that case, there is only one branchpoint at z = 0. An easy computation yields B̂a,k;a,l = 0,
and the Laplace transform of ydx yields:

e−f(u) =
u3/2

2
√
π

∫ ∞

−∞
z 2zdz e−uz2 =

1

2
, dξd(z) =

(2d+ 1)!!

2d
dz

z2d+2

Definition 4.13 gives

Λ(S) = 2κ0 = 22g−2+n.

The theorem 4.14 thus gives

ωg,n(z1, . . . , zn) = 22g−2+n
∑

d1,...,dn

n∏
i=1

(2di + 1)!! dzi

z2di+2
i

∫
Mg,n

n∏
i=1

ψdi
i ,

which are the Kontsevich-Witten [42, 43] intersection numbers [24, 58, 62–64].

• ELSV formula. Chose S = (CP 1, x : z �→ −z + ln z, y : z �→ z,B(z, z′) = dzdz′
(z−z′)2 ).

Again there is only one branchpoint at z = 1. The Laplace transform of ydx yields:

e−f(u) =
u3/2 e−u

2
√
π

∫
γ1

z
(1− z) dz

z
z−u e uz

=
i
√
π uu e−u

√
uΓ(u)

=
i√
2
e−

∑
k

B2k
2k(2k−1)

u1−2k

,

whereBk are the Bernoulli numbers. We leave the reader an exercise to compute the B̂a,k;a,l

and the dξa,k(z), and we just mention that:

ΛHodge = e
∑

k

B2k
2k(2k−1) (κ2k−1−

∑
i ψ

2k−1
i + 1

2

∑
δ

∑2k−2
l=0 (−1)l lδ∗τ2k−2−lτl)

is the Hodge class [24, 66]. The theorem 4.14 easily gives the ELSV formula [34], but we

refer the reader to [24, 25] for a more detailed computation.

5. Main properties

Let us make a brief summary of some of the properties enjoyed by those invariants.
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Symplectic invariance.

F̂g = Fg − 1

2− 2g
∑
α

(Res
α

ydx)(

∫ α

o

ωg,1)

is invariant under symplectomorphisms. This means that if φ : CP 1×CP 1 → CP 1×CP 1

is a symplectomorphism (conserves dx ∧ dy), then

Theorem 5.1. If S = (C, x, y, B) is such that C is a compact Riemann surface, x and y are
globally meromorphic functions on C, andB is the fundamental 2nd kind form [44] on C×C,
normalized on a symplectic basis of cycles, then if φ is a symplectomorphism of CP 1×CP 1

then
F̂g(φ ∗ S) = F̂g(S).

This theorem [1, 30, 31] is extremely powerful and useful. It allows to compare very

easily some apparently unrelated enumerative problems, just by comparing their spectral

curves, it allows to find dualities. A special case is φ : (x, y) �→ (y,−x), i.e.

F̂g(C, y,−x,B) = F̂g(C, x, y, B).

Let us mention that the proof of that theorem is highly non–trivial, and it was proved

so far only for algebraic spectral curves (x and y meromorphic on a compact C), but it is
believed to be valid in more general cases for example when dx and dy are meromorphic

1-forms on a compact C, see [22, 47].

Modular invariance and BCOV [67]. Let S = (C, x, y, B) a spectral curve such that C is

a compact Riemann surface of genus g, and B is the fundamental 2nd kind form on C × C,
normalized on a symplectic basis of cycles [44, 48]. The modular group Sp2g(Z) acts on

B, namely if

(
a b
c d

)
∈ Sp2g(Z) (a, b, c, d are g× g integer matrices), the period matrix is

changed to τ �→ (d− τb)−1 (τa− c), and B is changed to

B(p, p′) �→ B(p, p′) + 2πi

g∑
i,j=1

ωi(p) (b (d− τb)−1)i,j ωj(p
′),

where ωi are the normalized holomorphic 1-forms on theA-cylces of C, ∮Ai
ωj = δi,j . Then

Theorem 5.2. Fg(C, x, t, B) is an almost modular form under the modular group Sp2g(Z)
acting on B.

The proof of this theorem appeared in [1] and [32], and follows easily from the graphical

decomposition of def 4.8. Indeed,B appears only in edges of the graphs, and eq.(5) amounts

to cutting edges. The effect of a modular transformation thus produces dual graphs of de-

generate Riemann surfaces, with factors of b(d− τb)−1 at degeneracies, and thus coincides

with the transformations of almost modular forms.

As a consequence Fg(S)’s satisfy BCOV’s holomorphic anomaly equations [32, 67].
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Deformations and Form cycle duality (Seiberg-Witten). The tangent space to the space

of spectral curves at S = (C, x, y, B) is the spaceM1(C) of meromorphic 1-forms on C.
Lat us chose B to be the fundamental 2nd kind differential on C, see [1, 44, 48]. Then B
provides the kernel for a form–cycle duality pairing, namely the meromorphic form Ω dual

to a cycle Ω∗ is

Ω(p) =

∮
p′∈Ω∗

B(p, p′).

(here we call cycle Ω∗ any linear form on the space of meromorphic forms, i.e. an element

of the dual ofM1(C)). Then we have

Theorem 5.3. Let Ω be a tangent vector to the space of spectral curves, i.e. a meromorphic
1-form on C, and ∂Ω be the derivative in the direction of Ω, then we have

∂Ω ωg,n =

∮
Ω∗

ωg,n+1.

This theorem first proved in [1, 9] follows easily from the graphical decomposition of

def 4.8. Indeed, one just has to see how ∂Ω acts on the kernels K and B, i.e. on the edges of

the graphs, and it produces exactly the graphs of ωg,n+1.

Special cases of that theorem are:

∂Ω ydx = ∂Ω ω0,1 =

∮
Ω∗

ω0,2 =

∮
Ω∗

B = Ω.

we thus recover that Ω is the derivative of ω0,1 = ydx, i.e. the definition of Ω. Another

example is

∂Ω F0 =

∮
Ω∗

ω0,1 =

∮
Ω∗

ydx,

which means that F0 is the prepotential, this relation is Seiberg-Witten’s duality. Yet another

example is

∂Ω B(p1, p2) =

∮
p3∈Ω∗

ω0,3(p1, p2, p3) =
∑
a

Res
q→a

B(q, p1)B(q, p2) Ω(q)

dx(q)dy(q)

which is known as the Rauch variational formula [48] for the fundamental 2nd kind form B.

Another example is:

∂Ω F1 =

∮
Ω∗

ω1,1

which means that F1 is (up to some details which we don’t enter here) the Bergman Tau

function of Kokotov–Korortkin [49], i.e. F1 is the log of the determinant of some canonical

Laplacian on S .
Again, this theorem is very powerful, it is sometimes called “special geometry”, or it can

also be viewed as a generalization of Seiberg-Witten.

Dilaton equation. This is an equation saying that

Theorem 5.4. For any (g, n) such that 2g − 2 + n > 0 we have∑
a

Res
q→a

ωg,n+1(p1, . . . , pn, q) Φ(q) = (2− 2g − n)ωg,n(p1, . . . , pn)

where Φ is such that dΦ = ydx = ω0,1.
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Notice that this theorem was used to define Fg in def 4.7.

There are many other properties. For instance the ωg,n’s behave well under taking limits

of singular spectral curves, in some sense they commute with taking limit. See [1] for details.

They are also deeply related to integrable systems [1, 19, 33, 40, 41, 50], for instance to

Hitchin systems [39] and they have many other beautiful properties.

6. Conclusion

We hope to have shown the reader that topological recursion is a beautiful and powerful

piece of mathematics. It defines new invariants associated to “spectral curves”.

Topological recursion has found a large number of (sometimes unexpected) applications,

ranging from combinatorics (maps, plane partitions) to Gromov–Witten invariants and knot

theory, or integrable systems.

However, for many cases, the fact that a given enumerative geometry problem satisfies

the topological recursion, is most often only conjectured, not yet proved, and finding proofs

is a challenge. Even in proved cases, the proofs are always very technical and not natural,

almost never bijective, so unsatisfactory. Finding a good deep geometric reason (in fact an

A-model proof) for the topological recursion is a challenging open problem.

A. Weil-Petersson volumes in a nutshell

�

�

�

�

�
�

�

�

�

�
�

	

�
�

	

The Weil-Petersson metrics and Fenchel-Nielsen coordinates onMg,n are obtained as fol-

lows: let 2g−2+n > 0, and letΣ ∈Mg,n. The Poincaré metrics onΣ is the unique metrics

of constant negative curvature −1, such that the boundaries of Σ are geodesics of prescribed

lengths L1, . . . , Ln. Then, we may cut Σ into 2g− 2+n pairs of pants, all of whose bound-

aries are geodesics. This cutting is not unique. Vice versa, a connected gluing of 2g− 2+ n
hyperbolic pairs of pants along their geodesic boundaries, gives a unique Riemann surface in

Mg,n. Boundaries of pairs of pants can be glued together provided that the glued geodesics

have the same lengths, and they can be rotated by some angle. The 3g − 3 + n lengths �i of
the glued boundaries and the 3g−3+n gluing angles ϑi, are called the Fenchel Nielsen coor-

dinates. They are local coordinates onMg,n. They are not defined globally because of non-

unicity of the cutting. However, the form w =
∏

i d�i∧dϑi, called the Weil-Petersson form,

is globally defined. The Weil–Petersson volume is Vg,n(L1, . . . , Ln) =
∫
Mg,n; �(∂iΣ)=Li

w

where one fixes the boundary lengths L1, . . . , Ln.
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B. Hurwitz numbers in a nutshell

A ramified covering (Σ, π) of the Riemann sphere CP 1, is the data of a Riemann surface Σ,

and an analytical map π : Σ → CP 1 of some degree d. For all generic points x ∈ CP 1,

the preimage π−1(x) ⊂ Σ consists of d points #π−1(x) = d. Branchpoints are the points

x ∈ CP 1 such that #π−1(x) < d. Ramification points are the preimages of branchpoints.

Ramification points are the points near which the map π : Σ → CP 1 is analytical but

not locally invertible. A ramification point a is said of degree r = deg(a), if locally near a,
the map π behaves like (in any choice of local coordinate)

π : p �→ π(a) + ca(p− a)r +O((p− a)r+1), ca �= 0

Let x be a branchpoint, and {a1, . . . , al} = π−1(x) be its preimages on Σ, and let

ri = deg ai be its degrees. We assume that we have ordered the points ai’s such that

r1 ≥ r2 ≥ · · · ≥ rl. Then (r1, . . . , rl) is called the ramification profile of x.
A regular branchpoint x is of degree 2, and such that#π−1(x) = d− 1, its ramification

profile is (2,

d−2︷ ︸︸ ︷
1, . . . , 1).

The Simple Hurwitz numbersHg(μ) count the number of (equivalence homotopy classes)

ramified coverings (Σ, π) such that Σ is a connected surface of genus g, and π has only one

non–regular branchpoint, whose profile is given by the partition μ = (μ1, . . . , μl).
The Hurwitz formula implies that such a covering must have b = 2g − 2 +∑i(μi + 1))

regular branchpoints.
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Abstract. In this lecture we present a combinatorial approach to integrable systems on affine Poisson-

Lie groups using cluster technique and use it to study their properties such as discrete flows and explicit

solutions.
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1. Introduction

Integrable systems have been in the focus of mathematical community for about thirty years

and shown to be related to various branches of mathematics. The most fruitful approach to

integrable systems, classical and quantum, are related to their interpretation in the context of

Poisson-Lie groups. In this approach the phase space of an integrable system is interpreted as

a symplectic leaf of a certain Lie group provided with a Poisson structure and the commuting

Hamiltonians are Ad-invariant functions on these groups. The advantage of this approach

is that since Poisson-Lie groups can be quantized to quantum groups the integrable systems

can be also quantized using this technique.

However this approach meets certain technical difficulties. First of all, for groups of

higher rank the explicit solutions and quantization turn out to be rather complicated, even

though in principle it can be done. Due to these difficulties some structures of integrable

systems become rather hard to discover and study.

Recently A.Goncharov and R.Kenyon [1] suggested a description of a class of integrable

systems à-priori having nothing in common with Poisson-Lie groups coming out of a study

of partition function of perfect matchings of bipartite graphs on a 2D torus. Their construc-

tion is rather elementary and easy to handle. As we have shown [6], their class of integrable

systems is a particular, but a very large subclass of the integrable systems on Poisson-Lie

groups, namely the one related to the affine Poisson-Lie groups of type A
(1)
n . The phase

space of GK integrable systems are cluster varieties, and the integrable system structure is

compatible with the cluster one. This allows to use such features of cluster varieties as dis-

crete group action (and thus describe discrete flows commuting with continuous ones), to

quantize the system cobinatorially without use of quantum groups, to identify textità-priori

different integrable systems coming from different Poisson-Lie groups. But perhaps the main

advantage of the Goncharov-Kenyon approach is its simplicity. In particular the formulas for

for classical solutions of the systems are rather simple and hopefully they will facilitate the

study of quantum solutions.
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One should mention also some difficulties of the theory. First of all not all integrable

systems admit such description. The largest class of systems which does not so far has direct

relations to the GK systems are Hitchin systems. We hope however, that the construction

will admit a generalization to incorporate them. Such rather popular systems as Toda and

KdV are not in the class either, but in this case the relation is more straightforward. Namely,

the so-called relativistic Toda system [7] is in the class, and the ordinary Toda system is

a certain limit of the latter. Similar situation arises with the KdV and its generalizations.

Though they are infinite-dimensional systems, they can be obtained as a certain continuous

limit of the systems of GK class due to an observation by V.Ovsienko, R.Schwartz and

S.Tabachnikov[4].

2. Cluster varieties

Cluster varieties is a class of varieties appeared as a generalization of the properties of

Teichmüller space and the space of simple Lie group local systems on Riemann surfaces

[12, 14, 15]. On the other hand it is a closely related to the notion of cluster algebra by

S.Fomin and A.Zelevinsky [3] used to describe canonical basis of functions on simple Lie

groups. A cluster variety (strictly speaking, the simplest version of it — of x-type with skew-

symmetric exchange matrix) is a smooth algebraic variety admitting an atlas of charts such

that each of them is a split algebraic torus {(x1, . . . , xn)} provided with a Poisson structure∑
ij εij

∂
∂xi
∧ ∂

∂xi
. The matrix εij is a skew-symmetric matrix with integral entries called

exchange matrix. A mutation is a Poisson birational map between two such algebraic tori

given by an explicit formula

x′i =

⎧⎨⎩ x−1
i if i = k

xi(1 + xk)
εik if εik � 0

xi(1 + x−1
k )εik if εik < 0

for some k ∈ {1, . . . , n}. On can easily check that inverse to a mutation is also a mutation.

We require that any chart be glued to n other charts by mutations and that one can pass from

any chart to any other by a sequence of them.

The entire cluster variety is thus defined by any of its charts, i.e., by an exchange matrix

of any of the charts.

It is often convenient to encode an exchange matrix εij by a graph with n vertices and

εij oriented edges form vertex i to vertex j each time than εij > 0.
If two charts are isomorphic as a Poisson split algebraic tori, the gluing map between

them extends to a Poisson automorphism of the whole cluster variety. The group of such

automorphisms is called the (generalized) mapping class group of the variety. The name

comes from the Teichmüller space where this group indeed coincide with the mapping class

group of the corresponding surface.

Since the formulas for the mutation do not involve subtraction, a cluster variety is defined

not only over a field, but also over a semi-field. For example over positive real numbers or

over integers with tropical operations.

A regular function on a cluster variety is a function which is given by a Laurent poly-

nomial in any chart. Among such functions there is a cone of function taking only positive

values over positive reals and having integral coefficients in any chart. Though it is not true



Cluster varieties and integrable systems 1089

in general, for a large class of cluster varieties such positive and integral functions is a free

cone and thus its generators give a canonical basis in the space of functions.

Any cluster variety admits thus a Poisson structure which can be quantized in different

senses of this word. In particular, [11, 13] the algebra of functions on a cluster variety

over positive reals admits a canonical deformation compatible with the mapping class group

action. One of the features of this quantization is that it is invariant under inversion of the

quantization parameter �→ 1/�.

3. Planar algebraic curves and Newton polygons

Denote by C the space of algebraic curves in (C×)2 considered up to the multiplicative shift

of the ambient torus. This space decomposes into strata denoted by CΔ corresponding to

curves given by zero locus of polynomials P (λ, μ) with a given Newton polygonΔ. Denote

by IΔ, BΔ, CΔ and SΔ the number of integral points strictly inside, on the boundary and

the number of corners of the polygon Δ, respectively. Denote also by its area by SΔ. The

curves from CΔ have geometric genus IΔ and can be compactified by adding BΔ points at

infinity (counted with multiplicity). Two polynomials define the same curve if they differ

by a transformation P (λ, μ) → aP (bλ, cμ) with nonvanishing a, b, c. One can use this

degree of freedom to make three of the coefficients in the corner of Δ to be equal to one.

The remaining coefficients are natural coordinates on CΔ. Therefore the space CΔ is a toric

variety of dimension IΔ + BΔ − 3. The space CΔ also does not change if we act on it by

any integral lattice preserving affine transformation of the plane.

4. Integrable systems on Poisson-Lie groups

The starting observation is that on a Poisson-Lie group, with the Poisson bracket defined by

classical r-matrix, the Ad-invariant functions Poisson commute with each other. For a finite

dimensional simple group the number of independent Ad-invariant functions is equal to the

rank of the group, and thus the corresponding integrable system can arise on a symplectic

leaf of dimension not more than twice the rank. However, for loop groups the number of

independent Ad-invariant functions is infinite though all Poisson submanifolds are still finite

dimensional, and thus the set of integrable systems one gets in this way is much larger. For

simplicity we restrict ourselves to the systems on the groups of type Â
(1)
n , namely the groups

P̂GL(N) of matrix-valued Laurent polynomials A(λ) of a single variable λ with nonzero

constant determinant and considered up to multiplication by a nonzero constant. For a given

A(λ) the zero locus of the Laurent polynomial of two variables P (λ, μ) = det(A(λ)−μ) =∑
ij Hijλ

iμj defines an algebraic curve in C called spectral.
This curve obviously is a conjugacy class invariant. It comes together with a line bundle,

given by the kernel of A(λ) − μ · Id. The map from the group P̂GL(N) to the space of

C of curves is called the action map, and it is a Poisson map if we take a trivial Poisson

bracket on the space of curves C. The functions Hij themselves are well defined if we

require three corner coefficients to be equal to unities. With this condition Hij Poisson-

commute. Moreover BΔ − 3 nontrivial coefficients corresponding to the boundary of the

polygon generate the center of the Poisson algebra. The map to the pair (curve, line bundle
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on it) is called the action-angle map. The flows generated by the IΔ nontrivial Poisson

commuting HamiltoniansHij amount to the constant flow of the line bundle along the Picard

variety of the spectral curve.

A loop group P̂GL(N) does not have a cluster variety structure. However it is embed-

ded as a Poisson submanifold into a central coextension P̂GL(N)�, which admits a stan-

dard decomposition into disjoint union of Poisson submanifolds Xu, called double Bruhat

cells [10],[6] and which are cluster varieties. The elements of the group P̂GL(N)� can be

presented as an expressions A(λ)zλ
∂
∂λ , where A(λ) is an N × N matrix valued Laurent

polynomial with constant determinant and defined up to a constant factor.

The double Bruhat cells Cu of this group are enumerated by the elements u of a coexten-

sion (Ŵ × Ŵ )� of the square of the Weyl group Ŵ of Ĝ by the automorphism group of the

Dynkin diagram. For the group Ĝ� = P̂GL(N)� the group (Ŵ × Ŵ )� is a group generated

by n generators si,N generators s̄i with i ∈ Z/NZ and one generator Λ satisfying relations

sisi+1si = si+1sisi+1,
s̄is̄i+1s̄i = s̄i+1s̄is̄i+1,
siΛ = Λsi+1,
s̄iΛ = Λs̄i+1,
ΛN = 1

and all other pairs of generators commute.

Quotients of the double Bruhat cells of the group by conjugation by the finite dimen-

sional Cartan subgroupH , (we call them also the double Bruhat cells and denote by Xu) are
also cluster varieties of dimension equal to the length of u. Given a presentation of u as a

reduced word of the standard generators, one can define the cluster coordinates x = {xi},
enumerated by the letters of the word (except for the generator Λ). The image of the group

P̂GL(N) (without coextension) in these cells is just a codimension one Poisson subvariety

of Xu given by the condition
∏

xi = 1 in any chart. For a given u the Laurent polynomial

P (λ, μ) = det(A(x, λ, μ) =∑Hij(x)λ
iμj defines a curve in CΔ(u) for some fixed poly-

gon Δ(u). In order for this system to be integrable the Hamiltonians must be independent,

and their number should be maximal possible, namely (dimX 1
u+

1
2corank X 1

u ) for the given
dimension of the cell and given rank of the Poisson bracket). This condition is satisfied on

double Bruhat cells, corresponding to u having minimal length in its conjugacy class (such

elements are also called cyclically irreducible).
Many of such integrable system admit a discrete flow commuting with continuous one

described in [9]. Namely define a map τ : X 1
u → X 1

u as follows. LetA(λ) be a representative
of a point x ∈ X 1

u and let A(λ) = A−(λ)A+(λ) be its Gauss decomposition into lower-

and upper-triangular parts with respect to the finite-dimensional Cartan subgroup H . Then

the point τ(x) will be represented by A+(λ)A−(λ). This transformation obviously does not

change the spectral curve and thus commutes with continuous flows.

5. Goncharov-Kenyon integrable systems

The scheme of the construction of the GK integrable system is as follows. The starting

point is a bipartite graph (i.e. a graph with vertices colored in black and white and with

edges connecting only vertices of different colors) on a closed surface Σ, satisfying certain
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minimality and non-triviality conditions, which will be explained below. In this exposition

we follow [1] and consider the surface Σ to be of genus one.

A line bundle on a bipartite graph Γ is an association of a one dimensional vector space

Vv to every vertex v. A discrete connection on this bundle is just a collection of isomor-

phisms Ae : Vb(e) → Vb(e) for every edge e of the graph. Here we denoted by b(e) and w(e)
the white and the black ends of the edge e, respectively.

Consider the space of discrete connections on the graph Γ with values in the multiplica-

tive group (to be specific we assume it to be the multiplicative group of non-zero complex

numbers C×). Since every edge of a bipartite graph can be canonically oriented, say from

white to black vertex, we can interpret this space as the multiplicative cohomology group

H1(Γ,C×). We have the following exact sequence

1→ H1(Σ,C×)→ H1(Γ,C×)→ H2(Σ/Γ,C×)→ H2(Σ,C×)→ 1.

Denote by X = H2(Σ/Γ,C×) the space of association of nonzero complex numbers xi to
every face i of the graph and by X 1 the kernel of the map to H2(Σ,C×) which is just deter-

mined by the condition
∏

i xi = 1. The exact sequence implies that the space H1(Γ,C×) is
a principal H1(Σ,C×)-bundle over X 1.

The algebraic torus X has a natural exchange matrix given by a graph obtained from the

one dual to Γ by eliminating pairs of parallel oppositely oriented edges.

A Kasteleyn orientation K = {Ke} on a graph Γ is a class in H1(Γ,±1). such that its

image in H2(Σ/Γ) is equal to (−1)l/2+1 on any face with l sides.
For every discrete connection A = {Ae} ∈ H1(Γ,C×) and for every Kasteleyn orien-

tation K define a discrete Dirac operator DK(A) : ⊕bVb → ⊕wVw given by the formula

DK(A)|Vb
= ⊕e|b(e)=bAeKe.

This operator degenerates on a subvariety of H1(Γ,C×) which is the vanishing lo-

cus of the determinant of DK(A). Intersection of this locus with a fiber over a point

x = {xi} ∈ X 1 gives an algebraic curve (defined up to a shift of the torus since the iden-

tification of the fiber with the torus H1(Σ,C×) is not canonical) with a line bundle on it

given by the kernel of DK(A). Observe, that the determinant of DK(A) written in any

trivialization is a sum of monomials over the perfect matchings of the white and a black ver-

tices, and this is how the dimer configurations on the graph Γ come into play. The Kasteleyn

orientation structure permits to control signs of the monomials.

This construction defines therefore the action map of the phase space of our integrable

system X 1 to the space of planar algebraic curves in CΔ for a Newton polygonΔ determined

by the graph (see below). It also defines the action-angle map to the pairs (plane curve, line

bundle on it) which is a birational isomorphism.

The Poisson structure on X has a geometric interpretation suggested in [1] as follows.

Embedding the graph Γ into the surface Σ induces cyclic order of ends of the edges at every

vertex (a fat graph structure). Consider a surface Σ̃ corresponding to the same bipartite graph

Γ, but with the cyclic order changed to the opposite in white vertices and kept unchanged in

the black ones. Since the graph Γ is embedded into Σ̌ consider the composition of the maps

H1(Σ̌,C×) → H1(Γ,C×) → X . The space H1(Σ̌) has a canonical Poisson structure,

coming from the intersection index on Σ̃ and the map onto X 1 induces the Poisson bracket

on the latter and a Poisson bracket on the whole X if we require its shift invariance.

In order for the action map to provide maximal number of comuting Hamiltonians we

need to impose on on the graph Γ an additional condition called minimality. It amounts to
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the requirement that the number of faces of Γ be equal to 2SΔ. As it will be clear below, any

polygon Δ admits a minimal bipartite graph with this property.

In [1] it is observed that graphs admit elementary transformations called spider moves
such that integrable systems corresponding to them are isomorphic provided the phase spaces

are related by a cluster mutation. Equivalence classes of integrable systems under such

transformations are enumerated by Newton polygons Δ.

In [6] it is shown that the subgroup GΔ of the mapping class group generated by such

transformations admits the following description. Let ZCΔ be a group of integer valued

functions on the vertices of the Newton polygon and let R be a subgroup of functions ex-

tendible to an affine function on the plane and taking integral values at integral points. Then

the group GΔ is isomorphic to the quotient ZCΔ/R. The rank of this group is CΔ − 3 but in

general its torsion is also nontrivial.

6. Relations between two approaches

We claim that the GK integrable systems coincide with the integrable systems on the Poisson-

Lie loop groups P̂GL(N). The isomorphism identifies not only their phase spaces and com-

muting flows, but also the discrete group action and the canonical cluster coordinates.

In both constructions the spectral curve of an integrable system is given by degeneracy

condition of some matrix operator A(x, λ) − μ · Id in the group-theory approach and the

Dirac operator DK(A(x, λ, μ)) respectively). Though the matrices do not coincide, their

determinants do. The correspondence goes roughly as follows. The determinant of any

matrix D(A) can be written as a Grassmann integral:

SΓ(A) = detD(A) =

∫
exp
(∑

D(A)bwξbη
w
)∏

b

dξb
∏
w

dηw

Therefore detD(A) can be interpreted as a partition function SΓ(A) of some lattice fermions

in the background gauge field A. Cutting torus into a cylinder corresponds to rewriting this

partition function as a trace of the evolution operator from one boundary circle to another.

This evolution operator is given by the matrix A(λ) acting in the external algebra of the

N -dimensional space. Moreover cutting further this cylinder into a set smaller cylinders,

one can present the evolution operator as a product of elementary steps, each depending

on no more than one variable xi and exactly coinciding with elementary matrices, used to

parametrize the double Bruhat cells, thus establishing the coincidence of spectral curves.

The first part of this program is establishing correspondence between words in genera-

tors of (Ŵ × Ŵ )�, enumerating cluster coordinate systems in the first approach, with the

bipartite graphs, enumerating coordinates on the second approach. Moreover this correspon-

dence should identify the letters of the word with the faces of the corresponding bipartite

graphs, drawn on torus Σ, since these both sets correspond to the cluster coordinates in

corresponding cases.

In order to do this we use the third combinatorial object, suggested by Dylan Thurston

in unpublished paper [8] (and already used in [1] in our context), which we call the Thurston
diagrams. A Thurston diagram is an isotopy class of a collection of curves on a surface,

either closed or connecting two boundary points with only triple intersection points and

such, that the connected components of the complement (faces) are colored in white and
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gray with any two faces sharing a segment of a curve having different colors (chessboard

coloring). Such diagrams admit elementary modifications called Thurston moves. As it

was already observed by D. Thurston and A. Henriques, every Thurston diagram defines

a cluster seed (a chart on a cluster manifold) with cluster variables attached to the white

faces. Thurston moves correspond to mutations (passing from one chart to another). Having

Thurston diagrams on open surfaces one can glue together boundary components respecting

their coloring, and thus obtain a new surface with a Thurston diagram.

In order to construct a Thurston diagram out of a reduced decomposition of an element

u ∈ (Ŵ × Ŵ )�, we first associate a Thurston diagram on a cylinder with a single triple

point and with N gray (and white) segments on every boundary circle to every generator of

(Ŵ × Ŵ )� (except the cocentral one). Then we glue the cylinders together according to the

order of the generators in the reduced decomposition, and finally we glue both ends of the

resulting cylinder together with a twist, given by the power of the cocentral generator Λ.
In order to construct a bipartite graph out of a Thurston diagram we put a black vertex

at every triple point and a white vertex at every gray face. Then we draw three edges from

each black vertex inside the three gray sectors, meeting at this vertex, to the respective white

vertices. It is easy to see, that the set of letters of the reduced word is in a canonical bijec-

tion with the set of white faces of the Thurston diagram and the latter are in bijection with

faces of the bipartite graph. Next observation, almost as simple, is that this bijection in-

duces a bijection between the cluster seeds, i.e. the Poisson bracket between the coordinates

coincide.

The Newton polygon of the corresponding integrable system can be easily read off the

Thurston diagram. Since every curve of the diagram posesses a canonical orientation it

represents a homology class in H1(Σ,Z) where Σ is the torus. The sum of all such classes

vanishes since it is a boundary of the union of grey areas. Therefore they are sides of a

unique convex polygonΔ with integral vertices.

Thus the Newton polygons constructed out of cyclically reduced words u corresponging

to the cells of the group P̂GL(N) have width N . Since the width of a polygon depends

on the coordinate system on the plane the same itegrable system can be obtained on cells

coming from different groups. Thisis a generalization of the known phenomenon that the

N -particle Toda system can be described both using P̂GL(N) and P̂GL(2).
Finally, we need to show that equations det (A(x, λ)− μ) = 0 and detDK(A(x, λ, μ))

= 0 define the same curve.

For this purpose we extend the lattice fermion partition functions on a bipartite graph to

surfaces with boundary. Graphs on such surfaces are allowed to have vertices of the third

type, terminating on the boundary and which can be connected to both white and black

vertices, but not to each other. Denote the set of such vertices by T . The Dirac operator

now acts as D(A) : CB∪T → CW∪T , where W and B denote the sets of white and black

vertices, respectively. For extra Grassmann variables ζ = {ζt|t ∈ T} we define

S(A, ζ) =

∫
exp
(∑

D(A)bwξbη
w +D(A)btξbζ

t +D(A)twζtη
w
)∏

b

dξb
∏
w

dηw

Gluing two boundary components of Σ with a bipartite graph Γ on it in a way, that terminal

vertices are glued to terminal vertices, one gets a bipartite graph Γ on the glued surface Σ.

The connection A on Γ induces a connection A on Γ: we just multiply the numbers of two

halves of a glued edges. If SΓ(A, ζ) is a partition function for Γ then the partition function
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for Γ is given by:

SΓ(ζ,A) =

∫
SΓ(ζ,A)e

∑
ζtζσ(t)

∏
dζtdζσ(t),

where the index t runs over terminal edges on one side, σ is a map sending a terminal vertex

to the one it is glued to and λ is λ with entries corresponding to glued vertices removed.

On the other hand observe that for any N ×N matrix M one can associate a function of

2N Grassmann variables ξ = {ξi} and η = {ηi} given by SM (ξ,η) = expM i
jξiη

j . Matrix

product corresponds to convolution of the corresponding functions

SM1M2(ξ,η) =

∫
SM1(ξ,η

′)SM2(ξ
′,η)e

∑
ξ′iη

′
i

∏
dξ′idη

′
i

Thus if a partition function on a graph on a cylinder coincides with a partition function of a

matrix, the partition function of several cylinders glued together corresponds to product of

the matrices. Therefore in order to show the coincidence of the curves we need to cut the

torus into small cylinders and verify for each of them the coincidence of partition functions.

7. Solution of the integrable systems

The GK integrable systems (and thus the ones on P̂GL(N)) admit explicit solution in terms

of theta functions. By a solution here we mean just the map inverse to the action-angle one.

Namely, for a given nonsingular planar curve Σ′ ∈ CΔ, any graph Γ corresponding toΔ and

any point p ∈ Picg−1(Σ′) of the Picard variety, where g = IΔ is the genus of the curve, we

can find a point of the cluster variety x = {xi} ∈ X 1 such that the action-angle map of x
would give (Σ′, p).

The main observation allowing to find this map is that the algebraic curve Σ′ and the

dual curve Σ̌ obtained by changing cyclic order in white vertices of the bipartite graph Γ are

very closely related. More precisely, points at infinity of the spectral curve correspond to the

sides of the Newton polygon Δ in such a way that the number of points corresponding to a

given side is equal to its length (the number of segments between integral points). The same

correspondence exists from the faces of the dual surface and the sides. Moreover the genera

of the curves coincide. Therefore one can identify both surfaces in a way that every face of

Σ̌ contains exactly one point at infinity of the spectral curve corresponding to the same side

of Δ.

Denote by F the space of faces of the graph Γ ⊂ Σ and by F̌ the set of faces of the

graph Γ ⊂ Σ̌. The set F̌ is simultaneously the set of points at infinity of Σ′. For every point

at infinity ı̌ ∈ F̌ denote by [̌ı] a lift of this point to the universal cover of the Picard variety

Pic1(Σ′). Let Z be a universal cover of the Jacobian Jac(Σ̌). The fundamental group of

Jac(Σ′) can be identified with the groupH1(Σ,Z). Choose two complimentary Lagrangian

sublattices La, Lb ⊂ H1(Σ,Z) (make a choice of a- and b-cycles on Σ̌). Define a map

associating a point zi ∈ Z for every face i ∈ F satisfying the condition that for any path γij
connecting the points at infinity i and j we have

zi − zj =
∑
ı̌∈F̌

〈γij , ∂ı̌〉[̌ı] modulo La.
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The pairing 〈, 〉 is the intersection index of oriented paths on Σ. One can check that such

map exists and is unique up to a simultaneous shift zi → zi + t with t ∈ Jac(Σ′). Finally
choose an odd nonsingular theta-characteristic q ∈ Picg−1(Σ̌).

After these choices made the inverse map is given by an explicit formula

xi =
∏
j

(
θq(zj − zi)

θq(p+ zj − q)

)εij
Here θq is the Riemann theta function.

The action of the discrete group GΔ has also a very simple expression in these terms.

Namely for every side of the polygon Δ consider the sum in Pic(Σ′) of the corresponding

points at infinity. Such sums generate a discrete subgroup in Pic(Σ′). The group GΔ is iso-

morphic to the intersection of this subgroup with Jac(Σ′) and it obviously acts on Jac(Σ′)
by shifts.
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Abstract. We demonstrate that Baxter operators for gl	+1-Toda chains understood as elements of

spherical Archimedean Hecke algebras provide a concise formulation of a special case of the local

Archimedean Langlands correspondence. Categorification of the class one eigenfunctions of the q-
deformed gl	+1-Toda chain supplies a q-analog of the Shintani-Casselman-Shalika formula over non-

Archimedean fields, thus revealing a q-version of the local Langlands correspondence. In the non-

deformed case the q-analog of the formula turns into an expression of a matrix element of GL	+1(R)
principal series spherical representation as the equivariant volume of an infinite-dimensional symplec-

tic manifold. This provides another manifestation of the local Archimedean Langlands correspon-

dence. Reformulation in terms of two-dimensional topological field theories allows identification of

the considered instance of the Archimedean Langlands correspondence as mirror symmetry in two-

dimensional quantum field theories.
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1. Introduction

The local Archimedean Langlands correspondence for GL�+1(R) is a correspondence be-

tween (packages of) isomorphism classes of admissible representations of GL�+1(R) and

isomorphism classes of admissible �+ 1-dimensional representations of the Weil group WR

(see e.g. [11], [1]). It is a very spacial case of a larger picture relating representation theory

of reductive groups with the arithmetic properties of the base fields captured by slightly mod-

ified versions of the Galois groups called the Weil groups. The Langlands correspondence

over the Archimedean field R of real numbers occupies a peculiar place in this picture. One

of the reasons is that in contrast with their non-Archimedean counterparts the correspond-

ing Weil group WR is much larger then the Galois group Gal(C/R) = Z2 of real numbers.

Moreover various relevant objects such as local L-factors attached to admissible representa-

tions of reductive groups have a rather simple structure for non-Archimedean base fields and

are given by transcendental functions in the Archimedean case. This implies that a proper

understanding of the Archimedean completions of number fields is yet to come and new

ideas are needed to be invoked.

Some steps in this direction were made in a series of papers [12]-[21], [22]-[24] us-

ing methods of the theory of quantum integrable systems and quantum fields. Below we

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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summarize the main results in the case of the Langlands correspondence for general lin-

ear groups over R. Traditionally the local Archimedean Langlands correspondence at-

taches local Archimedean L-factors to admissible representations of GL�+1(R) using as

input data the characters of the action of the center of the universal enveloping algebra

U(Lie(GL�+1)). This shall be contrasted with the non-Archimedean case where the ac-

tion of the spherical Hecke algebra H(GL�+1(Qp), GL�+1(Zp)) is used. As was shown

in [12] this asymmetry can be removed. An element of the Archimedean spherical Hecke

algebra H(GL�+1(R), O�+1(R)) was constructed such that its action in the principal series

spherical representations ofGL�+1(R) is given by multiplication on the corresponding local

Archimedean L-factors. The corresponding element of the spherical Hecke algebra in the

Archimedean case turns out to be a universal form of the Baxter operator for the gl�+1-Toda

chain constructed in [12]. The construction of local L-factors as eigenvalues of appropriate
elements of the spherical Hecke algebra holds in the non-Archimedean case too, thus provid-

ing a unified formulation of the local Langlands correspondence in terms of Baxter operators.

The Baxter operator formalism [2] is one the most powerful approaches to solve quantum

integrable systems, and the fact that the transcendental form of the Archimedean L-factor
arises naturally in this setup seems suggests a relevance of quantum integrable systems to

arithmetic problems.

There is also a direct way to formulate the local Langlands correspondence over Qp as

an identification of non-Archimedean Whittaker functions given by matrix elements of prin-

cipal series spherical representations of GL�+1(Qp) with characters of finite dimensional

irreducible representations of the dual complex group GL�+1(C) (the Shintani-Casselman-

Shalika formula [3, 44]). The characters are evaluated on semisimple conjugacy classes of

the homomorphisms WQp
→ GL�+1(C) of the Weil group. Thus the Shintani-Casselman-

Shalika formula provides a categorification of theWhittaker function in the sense of function-

sheaf correspondence. This form of the local Langlands correspondence eludes any use of

the spherical Hecke algebra in the non-Archimedean case.

To establish the Archimedean analog of the Shintani-Casselman-Shalika formula the use

of a q-lattice version of the quantum Toda chains (also known as relativistic Toda chain [40])

was proposed [13–15]. The common eigenfunction of q-lattice quantum Toda Hamiltoni-

ans provides a q-analog of the classical Whittaker functions interpolating Whittaker func-

tions over R and Qp. This interpolation allows the transfer of structures typical for non-

Archimedean fields into the Archimedean world. This indeed gives rise to a q-version of

the Shintani-Casselman-Shalika formula representing q-lattice Whittaker functions as traces

over auxiliary vector spaces. These vector spaces allow two essentially different cohomo-

logical interpretations. Thus for instance for � = 1 one has a realization of the vector space

as a limit d→∞ of zero cohomology groups of holomorphic line bundles over a quasi-map

compactification of the space of degree d holomorphic maps P1 → P1. Alternatively there

exists a realization in terms of the de Rham cohomology of the formal sum of products of

classifying spaces for unitary groups. These two representations (after slight modification)

appear to be related with Demazure modules for the affine Lie algebra and the de Rham

cohomologies of the Nakajima graded quivers. In a sense the existence of these two real-

izations of the underlying vector space in the q-analog of the Shintani-Casselman-Shalika

formula captures the basic underlying structure behind local Langlands duality.

Existence of the q-lattice interpolation of the Whittaker function over Qp and R implies

that both fields have some common underlying structure. This hidden structure can be re-

covered via common degeneration of Qp- and R-Whittaker functions to kinds of elementary
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Whittaker functions solving eigenfunction problems of quantum billiard systems. The corre-

sponding degeneration of the local L-factors leads to elementary L-functions first introduced
in [32] with similar purpose to find a common underlying field behindQp and R with the as-

sociated residual field being the mysterious field F1 [45] (see also e.g. [5]). In the considered

setup this enigmatic arithmetic structure manifests itself in the form of the tropical semifield

R playing the role of the valuation map domain of a hypothetical non-Archimedean field

with residual field F1. There is an analog of the Shintani-Casselman-Shalika type formula

realizing a local Langlands correspondence for this field. It identifies elementary Whittaker

functions given by matrix elements of irreducible representations of monoids GL�+1(R)
with U�+1-equivariant symplectic volumes of flag spaces GL�+1(C)/B. In this formulation

the equivariant volume plays the role of the character in the standard Shintani-Casselman-

Shalika formula thus providing a symplectification of the elementary Whittaker function.

The main purpose of q-lattice interpolation is to construct an analog of the Shintani-

Casselman-Shalika formula for real numbers. The corresponding representation of the Whit-

taker functions associated with GL�+1(R) generalizes the elementary Whittaker function as

equivariant volume. Thus for instance the gl2-Whittaker function can be identified with the

S1×U2-equivariant volume of the limit d→∞ of the compactified spaces of degree d holo-

morphic maps P1 → P1. This limiting infinite-dimensional space can be realized directly

as the space of holomorphic maps of a two-dimensional holomorphic disk D thus providing

an opportunity to formulate the Archimedean analog of the Shintani-Casselman-Shalika for-

mula in terms of a two-dimensional topological quantum field theory. Indeed the classical

gl2-Whittaker function can be represented as a particular correlation function in the S1×U2-

equivariant type A topological sigma model on D (in the sense of [46]) with target space P1

[18]. In turn the local Archimedean L-factors can be realized as correlation functions in the

equivariant type A topological sigma model on the diskD with complex linear target spaces

[16] (this shall be compared with earlier realizations [6] of the local Archimedean L-factors
as infinite determinants).

The representation of classicalWhittaker functions as correlation functions in two-dimen-

sional quantum field theories prompts application of known quantum field theory construc-

tions to the problem. The most notable case gives the use of mirror duality in two-dimensional

sigma models. It was shown in [17, 18] that the mirror dual Landau-Ginzburg type descrip-

tion of the corresponding type A topological sigma models provides a representation of the

gl2-Whittaker function as a finite-dimensional integral. This integral representation coin-

cides with an integral form arising in the representation theoretic construction of the Whit-

taker function as a matrix element of the principal series spherical representation. Thus the

considered local Archimedean Langlands correspondence appears as an instance of mirror

symmetry in two-dimensional topological quantum field theory.

2. Whittaker functions and quantum Toda chains

The exactly solvable quantum theory of Toda type associated with the Lie algebra gl�+1 =
Lie(GL�+1) has the quadratic Hamiltonian,

H2(x, ∂x) = −�2

2

�+1∑
i=1

∂2

∂xi
2 +

�∑
i=1

exi−xi+1 , (2.1)
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where � is a quantization parameter. Integrability implies that this differential operator is an

element of a commutative ring of differential operators generated by differential operators

Hj(x, ∂x), j = 1, . . . , �+1with principle symbols given by elementary symmetric functions

of �+1 variables. It is useful to introduce a generating function for these higher gl�+1-Toda

chain Hamiltonians

T (s) =

�+1∑
k=0

(−ı)ks�+1−kHk(x, ∂x). (2.2)

The common eigenfunction of the gl�+1-Toda chain Hamiltonians solves the equation

T (s) Ψλ1,...,λ+1
(x1, . . . , x�+1) =

�+1∏
j=1

(s− λj) Ψλ1,··· ,λ+1
(x1, . . . , x�+1), (2.3)

and satisfies the fast decay conditions in appropriate asymptotic regions

Ψλ1,...,λ+1
(x1, . . . , x�+1)→ 0, (xi − xi+1)→ +∞, i = 1, . . . , �. (2.4)

In the following we will call the unique solution of (2.3), (2.4) the class one gl�+1-Whittaker

function.

The Toda chain permits explicit solution by expressing the common eigenfunctions (2.3)

via a particular matrix elements of the principal series spherical representations ofGL�+1(R)
(see e.g. [10, 39]). Let Eij , i, j = 1, . . . � + 1 be the standard basis of the Lie algebra

gl�+1 = Lie(GL�+1). Let Z ⊂ Ugl�+1 be the center of the universal enveloping algebra

Ugl�+1, B,B− ⊂ GL�+1(C) be upper-triangular and lower-triangular Borel subgroups and

N , N− be upper-triangular and lower-triangular unipotent subgroups. Let h ⊂ gl�+1 be a

diagonal maximal commutative subalgebra and we identify the corresponding Weyl group

with the permutation groupS�+1. Using the Harish-Chandra isomorphism of Z withS�+1-

invariant subalgebra of the symmetric algebra S∗h we identify central characters of Z with

homomorphisms c : C[h1, · · · , hS+1

�+1 → C. Let πλ : GL�+1(R) → End(Vλ), Vλ =

Ind
GL+1

B χλ be a family of principal series spherical representations of GL�+1(R) induced

from one-dimensional representations χλ(b) =
∏�+1

j=1 |bjj |λk/�+ρk of B where ρk = (� −
2k + 2)/2, k = 1, . . . , �+ 1 are components of a vector ρ ∈ R�+1. Let 〈 , 〉 be an invariant

pairing V−λ̄ × Vλ → C. For unitary principal series representations the pairing 〈 , 〉 defines
an inner product on Vλ and thus provides a notion of the matrix element of GL�+1(R). In

the following we use the term matrix element for the pairing 〈 v1, πλ(g) v2, 〉, v1 ∈ V−λ̄,

v2 ∈ Vλ in general case. We have the Iwasawa decomposition GL�+1(R) = KAN−, where

K = O�+1(R) ⊂ GL�+1(R) is a maximal compact subgroup, A is the group of diagonal

matrices with positive diagonal elements. By the multiplicity one theorem [43], there is a

unique smooth K-spherical vector φK in the representation V−λ̄ i.e. there exists a unique

smooth vector φK invariant with respect toK. Let ψ be theWhittaker vector in Vλ providing

a one-dimensional representation N with character χN (n) = exp(−2�−1i
∑�

j=1 nj,j+1).
Consider the following matrix element in the representation Vλ of GL�+1(R)

Φλ(g) = 〈φK , πλ(g)ψ〉, g ∈ GL�+1(R), (2.5)

where λ = (λ1, . . . , λ�+1). Here we normalize the spherical vector in such a way that the

resulting matrix element is invariant under permutations of λj , j = 1, . . . , �+1. The obvious
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functional equation :

Φλ(kgn) = χN−(n−) Φλ(g), k ∈ K, n ∈ N−, (2.6)

allows projection of the matrix element to a function on the space A of the diagonal matrices

of the form a = diag(ex1 , . . . , ex+1). Now the gl�+1-Whittaker can be expressed through

the matrix element as follows:

Ψλ1,...,λ+1
(x1, . . . , x�+1) = e−1/2〈ρ,x〉Φ2λ1,...,2λ+1

(x1/2, . . . , x�+1/2), (2.7)

where x = (x1, . . . , x�+1). Standard considerations (see e.g. [41]) show that the matrix

element (2.5) is a common eigenfunction of a family of commuting differential operators

descending from the action of the center Z . These differential operators can be identified

with the elements of the ring of quantum gl�+1-Toda chain Hamiltonians generated by (2.2),

(2.3).

The representation (2.7) of the Whittaker function as a matrix element implies the exis-

tence of various natural integral representations arising from functional space realizations of

Vλ. An example of such an integral representation (obtained first in [27] by other means) is

given by

Ψλ1,...,λ+1
(x1, . . . , x�+1) =

∫
C

�∏
k=1

k∏
i=1

dxk,i e
F(x)/�, (2.8)

F(x) =
�+1∑
k=1

λk

( k∑
i=1

xk,i −
k−1∑
i=1

xk−1,i

)
−

�∑
k=1

k∑
i=1

(
exk+1,i−xk,i + exk,i−xk+1,i+1

)
,

where xi := x�+1,i, i = 1, . . . , �+1. Note that the integral representation (2.8) has obvious

recursive structure with respect to the rank �. This recursive structure can be understood in

representation theory terms as construction of the principal series representation Vλ1,···λ+1

ofGL�+1 via induction Ind
GL+1

P,1
Vλ1,···λ

⊗Vλ+1
from the representation Vλ1,···λ

⊗Vλ+1

of the associated parabolic subgroup P�,1 ⊂ GL�+1.

The gl�+1-Whittaker function being a common eigenfunction of a family of mutually

commuting differential operators turns out to be simultaneously a common eigenfunction

of a specific one-parameter family of integral operators. These integral operators provide

an instance of the family of the Baxter Q-operators in the theory of quantum integrable

systems. Operators of this kind were first introduced by Baxter as a key tool to solve quantum

integrable theories [2]. Such operators for the affine Toda chain were constructed in [38] and

the integral operators for the gl�+1-Toda chain are their direct analogs. The Baxter operators

for the gl�+1-Toda chain are defined as a familyQ(s) of integral operators parameterized by

s ∈ C with the integral kernel

Q(x, y|s) = exp

⎧⎨⎩�−1
�+1∑
j=1

s(xj − yj)− �−1
�∑

k=1

(
exk−yk + eyk−xk+1

)

− �−1ex+1−y+1

}
.

(2.9)

Then the following relations hold

Q(s) ·Ψλ(x) = Q(s|λ)Ψλ(x), (2.10)
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where the eigenvalue of the Q-operator is given by

Q(s|λ) =
�+1∏
j=1

�
s−λj

� Γ
(s− λj

�

)
. (2.11)

The operators Q(s) satisfy the commutativity relations

Q(s) · Q(s′) = Q(s′) · Q(s), Q(s) · T (s) = T (s) · Q(s), (2.12)

and the gl�+1-Toda chain version of the Baxter equations

Q(s+ �) = T (s) Q(s), (2.13)

where T (s) is given by (2.2).

The interpretation of the gl�+1-Toda chain eigenfunctions as matrix elements of principal

series spherical representations (2.7) makes it natural to look for an interpretation of the Bax-

ter operator (2.9) in representation theory terms. An interpretation of the Baxter operators

in terms of spherical Hecke algebras H(GL�+1(R),K) was given in [12] . Recall that the

spherical Hecke algebra H(GL�+1(R),K) is an algebra of a certain class of K-biinvariant

functions on G, φ(g) = φ(k1gk2), k1, k2 ∈ K acting by the following convolution on the

space of K left-invariant functions on G:

φ ∗ f(g) =
∫
GL+1(R)

φ(g̃−1) f(g̃g)dg̃, (2.14)

under condition that the integral in (2.14) is defined. Here we fix normalization of the Haar

measure on GL�+1(R) so that Vol(O�+1(R)) = 1. The matrix element (2.5) is left K-

invariant and thus allows the action (2.14) of the Hecke algebra H(GL�+1(R),K). By the

multiplicity one theorem [43] the smooth K-spherical vector in the principal series irre-

ducible representation Vλ = Ind
GL+1

B− χλ is unique and thus any element φ(g) of the spher-

ical Hecke algebra acts on the Whittaker function (2.7) via multiplication by a character of

H(GL�+1(R),K). Let M ⊂ K, |M | = 2�+1 be a subgroup of diagonal matrices.

Theorem 2.1. LetQ0(g; s) be the following family ofK-biinvariant function onGL�+1(R):

Q0(g; s) = |M || det g|s+ 
2 e−πTrgtg. (2.15)

Then, its action on the matrix element (2.5) considered as a function on A = R�+1
+ descends

to the action of the integral operator with the kernel

Q0(x, y; s) =

2�+1 exp

⎧⎨⎩
�+1∑
j=1

(s+ ρj)(xj − yj)− π
�∑

k=1

(
e2(xk−yk) + e2(yk−xk+1)

)
− πe2(x+1−y+1)

⎫⎬⎭ .

(2.16)

The matrix element (2.5) is an eigenfunction of the operator (2.16)

Q0(s) ∗ Φλ(g) = Q0(s|λ) Φλ(g), (2.17)
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with eigenvalue

Q0(s|λ) =
�+1∏
j=1

π−
s−λj

2 Γ
(s− λj

2

)
. (2.18)

The relation (2.10) now follows from Theorem 2.1 and the identification (2.7). Let us

remark that the integral relation (2.17) can be also complimented by the action of the fol-

lowing integral operators Tg , g ∈ GL�+1(R) multiplying one Whittaker function by another

Whittaker function:

Tg ∗ Φλ(g̃) =

∫
K×N−

dk dn χN−(n) Φλ(gnkg̃) = Φλ(g)Φλ(g̃), (2.19)

where appropriate normalization of the Whittaker functions is implied.

3. Arithmetic perspective

To understand better the meaning of the integral Baxter operator (2.15) it is useful to look at

a larger picture including along with the field of real numbersR the other, non-Archimedean,

completions of rational numbers Q. Given a prime p the corresponding non-Archimedean

field Qp is obtained by completion of Q with respect to an extension to Q of the non-

Archimedean norm | |p : Z→ R+

|a|p = p−n iff a = pna0, (p, a0) = 1. (3.1)

The non-Archimedean norms satisfy the relations

|x y|p = |x|p |y|p, |x+ y|p ≤ max(|x|p, |yp|), (3.2)

and one takes |x|p = 0 for x = 0. The last property in (3.2) (the non-Archimedean triangle

inequality) is a counterpart of the triangle inequality |x + y| ≤ |x| + |y| holding for the

standard absolute value Archimedean norm on Q. The elements of Qp, p-adic numbers, can

be represented by possibly infinite series a = pn(a0+a1p+a2p
2+· · · ), ai ∈ {0, 1, · · · , p−

1}. One specifies a subring of p-adic integer numbers Zp having n ≥ 0. The fact that p-adic
norms together with the standard absolute value norm exhaust essentially different norms on

Q manifested for example in the following relation:

|a| ·
∏
p∈P
|a|p = 1, a ∈ Q, (3.3)

which is an arithmetic analog of the geometric property: the sum of residues of a meromor-

phic one-form d ln f(z) on a compact Riemann surface is equal to zero.

A much more complicated example of the global relation associated with the set of norms

on Q is given by analytic continuation of the Riemann ζ-function

ζ(s) =

∞∑
n=1

1

ns
=
∏
p∈P

1

1− p−s
, Re(s) > 1, (3.4)
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where the product goes over the set P of all primes. The analytic continuation satisfies

the functional equation which can be most symmetrically formulated in terms of modified

function ζ∗(s)

ζ∗(s) = ζ∗(1− s), ζ∗(s) = π−s/2Γ
(s
2

)
ζ(s). (3.5)

In the region Re(s) > 1 this modified ζ-function is represented as a product

ζ∗(s) = ζR(s)
∏
p∈P

ζp(s), (3.6)

of local contributions

ζR(s) = π−s/2Γ
(s
2

)
, ζp(s) =

1

1− p−s
, (3.7)

of all essentially different norms on Q. Thus the transcendental factor ζR(s) is attributed

to the contribution of the Archimedean norm and hence to field of real numbers. Taking

into account the form of the eigenvalues (2.18) of Baxter operators, the appearance of the

Γ-function in the completed Riemann ζ-function is a sign of the relevance of the Baxter

operator formalism to the theory of (generalized) ζ-functions.
The Riemann zeta-function (3.4) is a simple instance of a large family of L-functions

allowing an analog of the product decomposition (3.6) indexed by completions of Q and

having analytic continuation governed by a functional equation. We will consider only the

L-functions associated with general linear groups. The corresponding collection of local L-
factors Lp(s) allowing an appropriate analytic continuation of their product over all primes

can be constructed from the data provided by GL�+1(Z)- automorphic forms. For a fixed

p one can equivalently define the corresponding local factor Lp(s) in terms of the repre-

sentation theory of GL�+1(Qp). Recall that the principal series spherical representations of

GL�+1(Qp) can be realized as subrepresentations of theGL�+1(Qp)-representation given by

the space of functionsFun(p)
�+1 onGL�+1(Zp)\GL�+1(Qp)whereGL�+1(Zp) is a maximal

compact subgroup of GL�+1(Qp). Besides GL�+1(Qp) there is a commuting action of the

non-Archimedean spherical Hecke algebra H(GL�+1(Qp), GL�+1(Zp)) on Fun(p)
�+1. Pre-

cisely, the elements of the Hecke algebra realized byGL�+1(Zp)-biinvariant locally constant

functions onGL�+1(Qp) act on the space Fun(p)
�+1 of functions onGL�+1(Zp)\GL�+1(Qp)

by convolution.

The non-Archimedean Hecke algebraH(GL�+1(Qp), GL�+1(Zp)) is a commutative al-

gebra isomorphic to the ring of characters of finite-dimensional representations of the com-

plex Lie group GL�+1(C). For principal series spherical representations of GL�+1 the cor-

responding representation of H(GL�+1(Qp), GL�+1(Zp)) is one-dimensional and defines

a semisimple conjugacy classes Op in GL�+1(C). The associated local non-Archimedean

L-factor is given by

Lp(s) = det C+1(1− gpp
−s)−1, (3.8)

where gp ∈ Op is an arbitrary representative of the conjugacy class acting in C�+1 via the

standard representation of GL�+1(C).
Local non-Archimedean L-functions allow a totally different construction via � + 1-

dimensional complex semisimple representations of the Galois group Gal(Qp/Qp) or more

specifically of its factor, the Galois group Gal(F̄p/Fp) of the residual field Fp = Z/pZ. Re-

call that the Galois extensions Fpn of Fp are generated over Fp by solutions of the equations
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xp
k

= x and the group of automorphisms of Fpn over Fp is a cyclic group generated by the

Frobenius homomorphism Frp : x → xp. To avoid some topological issues one replaces

profinite group Gal(F̄p/Fp) with the closely related Weil group WQp
= Z whose generator

will be also denoted Frp.
To define local non-Archimedean L-factors let us consider isomorphism classes of ho-

momorphisms WQp → GL�+1(C) such that the image of Frp is a semisimple conjugacy

class Op in GL�+1. Then the corresponding L-factor is again given by the formula (3.8)

for the thus constructed conjugacy class Op. The fact that these two ways to construct local

non-Archimedean L-factors provides the same output is a manifestation of the local non-

Archimedean Langlands duality.

There exists the non-Archimedean analog of the Whittaker functions given by matrix

elements of principal series spherical representations of GL�+1(Qp). Given an array λ =
(λ1, . . . , λ�+1) of complex numbers the corresponding principal series spherical represen-

tation V(p)
λ of GL�+1(Qp) is induced from the one-dimensional representation of the Borel

subgroup B(Qp)

χ(λ1,...,λ+1)(g) =

�+1∏
j=1

|gjj |−λj+ρj
p , g ∈ B(Qp). (3.9)

The non-Archimedean analog Φ(p) of the Whittaker function matrix element (2.7) solves the

functional relation (2.6) where now K = GL�+1(Zp) and χN−(n) is a generic character

of N− ∈ GL�+1(Qp) trivial on [N−, N−]. The Whittaker function descends to a function

on the double coset GL�+1(Zp)\GL�+1(Qp)/N−(Qp) identified with the set of diagonal

matrices diag(pn1 , · · · , pn+1), ni ∈ Z.
The action of the non-Archimedean spherical Hecke algebra on the Whittaker functions

has a simple form. Consider generators T
(i)
p , i = 1, . . . , (�+ 1) of the Hecke algebra given

by the characteristic functions of the following subsets:

Oi = GL�+1(Zp) · diag(p, · · · , p︸ ︷︷ ︸
i

, 1 · · · , 1) ·GL�+1(Zp) ⊂ GL�+1(Qp). (3.10)

The operators T
(i)
p commute for different i and act on functions f ∈ F (p)

�+1 as follows:

T (i)
p f (g) =

∫
Oi

f(gh)dh. (3.11)

Their action on the non-Archimedean Whittaker function is given by

T (i)
p Φ

(p)
λ (n1, . . . , n�+1) = p−i(i−1)/2TrVωi

πi(ẑ) Φ
(p)
λ (n1, . . . , n�+1), (3.12)

where πi : GL�+1(C) → End(Vωi ,C), Vωi = ∧iC�+1 is a representation of GL�+1(C)
corresponding to the fundamental weight ωi and ẑ = diag(p+λ1 , · · · , p+λ+1) is a diagonal

representative of a semisimple conjugacy class in GL�+1(C) corresponding to the principal

series representation involved.

Association of the local non-Archimedean L-factors with principal series spherical rep-

resentations of GL�+1(Qp) can be made more straightforward if we introduce suitable gen-

erating functions of non-Archimedean Hecke algebra elements. There exist elements T
(V )
p
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of the Hecke algebra associated with an arbitrary finite dimensional representations πV :
GL�+1(C)→ End(V,C) such that

T (V )
p Φ

(p)
λ (n1, . . . , n�+1) = TrV πV (ẑ) Φ

(p)
λ (n1, . . . , n�+1). (3.13)

Let us define the generating series

Tp(s) =
�+1∑
j=1

(−1)jp−(�+1−j)s+j(j−1)/2 T (j)
p , (3.14)

Qp(s) =

∞∑
n=0

p−ns T (SnC+1)
p , (3.15)

satisfying the following relations:

Qp(s) · Qp(s
′) = Qp(s

′) · Qp(s), Q(s) · Tp(s′) = Tp(s
′) · Qp(s), (3.16)

Tp(s) · Qp(s) = 1. (3.17)

The operators Tp(s) and Qp(s) act on the non-Archimedean Whittaker function as

Tp(s) Φ
(p)
λ (n1, . . . , n�+1) = det C+1(1− p−sẑ) Φ

(p)
λ (n1, . . . , n�+1), (3.18)

Qp(s) Φ
(p)
λ (n1, . . . , n�+1) = det C+1(1− p−sẑ)−1 Φ

(p)
λ (n1, . . . , n�+1). (3.19)

Comparing with the construction of (3.8) we derive that the one-parameter family Qp(s) of
the spherical Hecke algebra elements acts on the Whittaker function associated with a prin-

cipal series spherical representation of GL�+1(Qp) by multiplication by the corresponding

local non-Archimedean L-factor

Lp(s) = det C+1(1− p−sẑ)−1 =

�+1∏
j=1

(1− p−s+λk), (3.20)

where ẑ represents an image of the Weil group WQp
generator in GL�+1(C). Thus the

operators Qp(s) provide a transparent realization of the local non-Archimedean Langlands

duality for principal series spherical representations.

There exists a more concise realization of the local Langlands duality formulated purely

in terms of non-Archimedean Whittaker functions. According to the Shintani-Casselman-

Shalika formula [44], [3] for GL�+1 the non-Archimedean Whittaker function defined as a

matrix element of the principal series spherical representation of GL�+1(Qp) can also be

represented as a character of finite-dimensional irreducible representations of GL�+1(C)

Φ
(p)
λ (diag(pn1 , . . . , pn+1)) = p<(�/2−ρ,u)> TrVn π(diag(p

+λ1 , . . . , p+λ+1)), (3.21)

where π : GL�+1(C) → End(Vn) is a finite-dimensional irreducible representation of

GL�+1(C) corresponding to the partition n = (n1, . . . , n�+1), n1 ≤ . . . ≤ n�+1 and

the right hand side of (3.21) is supposed to be zero otherwise. Note that the fact that the

Qp-Whittaker function is zero outside the dominant domain n1 ≤ . . . ≤ n�+1 is a non-

Archimedean counterpart of the condition (2.4). An irreducible finite-dimensional repre-

sentation of GL�+1(C) can be realized as a vector space with the basis enumerated by the
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Gelfand-Zetlin patterns. This leads to the following explicit expression for the GL�+1(Qp)-
Whittaker function

Φ
(p)
λ (n) =

∑
qk,i∈P+1

�+1∏
k=1

p+λk (
∑k

i=1 qk,i−
∑k−1

i=1 qk−1,i) , (3.22)

where P�+1 is a set of collections q = {qi,j}, i = 1, . . . , � + 1, j = 1, . . . , j of integers

satisfying the conditions qi+1,j ≤ qi,j ≤ qi+1,j+1 and q�+1,i = ni, i = 1, . . . , �+ 1.
Let us now return to the representation theory of GL�+1(R). The traditional construc-

tion of local L-factors LR(s) corresponding to Archimedean completion of Q differs from

its non-Archimedean case counterpart. Instead of the corresponding spherical Hecke al-

gebra H(GL�+1(R),K) one considers an action of the center Z of the universal envelop-

ing algebra Ugl�+1 in a principal series spherical representation Vλ. This allows us to re-

cover a semisimple conjugacy class in the Lie algebra gl�+1 with the diagonal representative

λ = (λ1, . . . , λ�+1). This must be contrasted with the non-Archimedean case where the

action of the spherical Hecke algebra allows recovering of a conjugacy class in the Lie group

GL�+1(C). The local Archimedean L-factor associated with GL�+1(R)-representation Vλ
is then given by

LR(s) =
�+1∏
j=1

π−
s−λj

2 Γ
(s− λj

2

)
. (3.23)

This expression obviously generalizes the expression for the local Archimedean factor ζR(s)
in (3.7).

It was shown in [12] that there exists a full Archimedean analog of the non-Archimedean

construction of local L-factors via representation theory of the spherical Hecke algebra.

Comparison of (2.17), (2.18) with (3.19), (3.20) reveals that the Baxter operator (2.15)

considered as an element of the Archimedean spherical Hecke algebra H(GL�+1(R),K)
provides the complete analog of (3.15) and in particular its eigenvalues on the matrix ele-

ments (2.5) in principal series spherical representation are given by the corresponding local

Archimedean L-factors (3.23). The recursive structure of the Whittaker function integral

representation (2.8) also has a counterpart in the non-Archimedean case [13], [14] and can

be described in terms of the local Langlands corresponds as follows. Given a direct sum

V1 ⊕ V2, Vi = Cni of the representations πi : WQp
→ GLni

(C) the local Langlands corre-

spondence associates with V1⊕V2 a representation ofGLn1+n2(Qp). This representation is

obtained from representations Vi of GLni(Qp) corresponding to πi via the parabolic induc-

tion Ind
GLn1+n2

(Qp)

Pn1,n2
V1⊗V2 where Pn1,n2

⊂ GLn1+n2
is the parabolic subgroup with Levi

factor GLn1 × GLn2 . The Archimedean analog for n1 = � and n2 = 1 leads to recursive

relations for the Whittaker function integral representation (2.8).

Upon establishing a unified way to associate local L-factors to principal series spherical

representations in Archimedean and non-Archimedean cases it is natural to look at the sec-

ond construction of L-factors in terms of representations of Weil groups. Naively the Weil

group WR of R shall be close to the Galois group Gal(C/R) = Z2. Actually WR is given

by the twisted product of C∗ and a group generated by an element j such that jxj−1 = x,
j2 = −1 ∈ C∗. The appearance of this group is enigmatic and the actual nature of its

representations relevant to Archimedean Langlands correspondence is unclear. As a pre-

liminary step to a better understanding of the Archimedean Weil group we construct the

Archimedean analog of the Shintani-Casselman-Shalika formula (3.21) essentially relying
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on the Weil group representations. Actually we will consider only the factor of WR relevant

to the description of principal series spherical representations of GL�+1(R) via homomor-

phisms WR → End(C�+1). This factor is obtained by factorization of the abelianized Weil

groupW ab
R =WR/[WR,WR = R∗ over the kernel of the absolute value map R∗ → R+. In-

deed the data to construct local Archimedean L-factors are basically isomorphism classes of

semisimple homomorphisms R+ → GL�+1(C) equivalently described by conjugacy classes

of diagonal elements λ = diag(λ1, . . . , λ�+1) ⊂ gl�+1(C). The Archimedean analog of the

Shintani-Casselman-Shalika formula will be constructed by using q-lattice interpolations of

the Archimedean and non-Archimedean Whittaker functions [13].

4. Lattice gl�+1-Whittaker function

A lattice version of the gl�+1-Toda chain is defined by the commutative algebras of the

quantum Hamiltonians generated by the following difference operators [40]:

Hr =
∑
Ir

r∏
k=1

(
1− qpik+1−pik+1

)1−δik+1−ik, 1 SIr , r = 1, . . . , �+ 1. (4.1)

Here the sum is over ordered subsets Ir = {i1 < i2 < . . . < ir} ⊂ {1, 2, . . . , � + 1}
and we assume q ∈ C∗, |q| < 1. The operators SIr =

∏
i∈Ir Si are products of the

elementary shift operators Si acting on functions f(p) = f(p1, . . . , p�+1) on the lattice

(p1, . . . , p�+1) ∈ Z�+1 as follows

Si f(p1, . . . , p�+1) = f(p̃1, . . . , p̃�+1), p̃k = pk + δk,i, (4.2)

for i, k = 1, . . . , �+ 1. For example, the first Hamiltonian has the form

H1 =
�∑

i=1

(1− qpi+1−pi+1)Si + S�+1. (4.3)

In the limit q → 1 the quantum integrable system defined by the quantum Hamiltonians (4.1)

reduces to the gl�+1-Toda chain.

The q-lattice version of the class one gl�+1-Whittaker function is defined as the func-

tion Ψ
(q)
z (p) on the lattice Z�+1 satisfying eigenfunction equations with respect to quantum

Hamiltonians (4.1)

Hr(p)Ψ
(q)
z (p) = (

∑
Ir

∏
i∈Ir

zi) Ψ
(q)
z (p), z = (z1, . . . , z�+1), (4.4)

and the class one condition

Ψ(q)
z (p) = 0, (4.5)

outside the dominant domain p�+1,1 ≤ . . . ≤ p�+1,�+1. In the following we will call such a

function a q-Whittaker function.

An explicit expression for the q-Whittaker function was constructed [13]. Let P(�+1) be

a set of collections of integers pi,j ∈ Z , i = 1, . . . , �+1 , j = 1, . . . , i satisfying the condi-

tions pi+1,j ≤ pi,j ≤ pi+1,j+1 with fixed p�+1,i := pi , i = 1, . . . , �+ 1 . Thus P(�+1) is
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a set of the Gelfand-Zetlin patterns corresponding to the irreducible finite-dimensional rep-

resentation of GL�+1(C) associated with the partition (p1, . . . , p�+1). Below we will use

the standard notation (n)q! = (1− q)...(1− qn).

Theorem 4.1. The q-lattice gl�+1-Whittaker function solving the eigenfunction problem
(4.4), (4.5) can be represented as follows:

Ψ(q)
z (p) =

∑
pk,i∈P(+1)

�+1∏
k=1

z
∑k

i=1 pk,i−
∑k−1

i=1 pk−1,i

k (4.6)

×

�∏
k=2

k−1∏
i=1

(pk,i+1 − pk,i)q!

�∏
k=1

k∏
i=1

(pk+1,i+1 − pk,i)q! (pk,i − pk+1,i)q!

, p�+1,1 ≤ · · · ≤ p�+1,�+1,

Ψ(q)
z (p) = 0, otherwise.

The representation (4.6) is a q-analog of the integral representation (2.8) of the gl�+1-

Whittaker function and turns into (2.8) after taking an appropriate limit q → 1 [19]. In the

particular case � = 1 we have the following simple expression for q-lattice gl2-Whittaker

function:

Ψ(q)
z1,z2(p1, p2) =

∑
p1≤p1,1≤p2

z
p1,1
1 z

p1+p2−p1,1
2

(p1,1 − p1)q!(p2 − p1,1)q!
, p1 ≤ p2 , (4.7)

Ψ(q)
z1,z2(p1, p2) = 0, p1 > p2 .

Note that the q-lattice Toda chain allows a representation theory interpretation. The com-

mutative ring of the Hamiltonians can be identified with the center of the quantum group

Uqgl�+1 [42], [7] and the q-Whittaker function is given by a matrix element of the q-version
of the principal series representation (see [15] for explicit example). The Baxter operator

(2.9) for gl�+1-Whittaker functions also has a q-lattice analog.

Theorem 4.2. The family of operators

Q(q)(w) · f(p) =
∑

p̃∈Z+1

Δ(p̃)Q(q)(p̃, p;w) f(p̃) , (4.8)

with kernel

Q(q)(p̃, p;w) =
Θ(p̃1 − p1)

(p̃1 − p1)q!

�∏
i=1

Θ(pi+1 − p̃i)

(pi+1 − p̃i)q!

Θ(p̃i − pi)

(p̃i − pi)q!
wp̃i−pi , (4.9)

acts on the q-Whittaker functions (4.6) as follows:

Q(q)(w) ·Ψ(q)
z (p) = L(q)(z;w)Ψ(q)

z (p) , (4.10)

L(q)(z;w) =
�+1∏
i=1

Γq(wzi) , (4.11)
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where

Γq(w) =
∞∏
n=0

1

1− wqn
=

∞∑
n=0

wn

(n)q!
. (4.12)

andΔ(p) =
∏�

k=1(pk+1 − pk)q!, p = (p1, . . . , p�+1).

The q-lattice version of the gl�+1-Toda chain has another but related interpretation via

representation theory of the affine Lie algebra ĝl�+1, for the level k such that q = exp
(

2πı
(k+�+1)

)
.

Therefore one can consider the eigenvalue (4.11) of the Baxter operator (4.8) as a kind of

local L-factor for loop groups.

An important property of the explicit representation (4.6) is a possibility to recast it in a

form generalizing the Shintani-Casselman-Shalika formula (3.21) to the case of q-Whittaker

functions. Precisely, the common eigenfunction (4.6) of the q-lattice Toda chain allows the

following two representations for p�+1,1 ≤ p�+1,2 ≤ . . . p�+1,�+1:

Ψz(p) = TrV qD
�+1∏
i=1

z
Ei,i

i , (4.13)

Ψz(p) = Δ(p)−1Ψ̃z(p) = TrVf
qD

�+1∏
i=1

z
Ei,i

i , (4.14)

where V and Vf are C∗ × GL�+1(C)-module, Ei,i, i = 1, . . . � + 1 are generators of the

diagonal subalgebra of gl�+1, D is a generator of Lie(C∗). Similarly the q-version (4.11) of

the local L-factor has a representation as an inverse determinant

L(q)(w) = detC+1[ξ](1− qD
�+1∏
i=1

wz
Ei,i

i )−1, (4.15)

whereD = ξ∂ξ. The Shintani-Casselman-Shalika formula (3.21) in the form (3.22) is recov-

ered in the limit q → 0 with zi = p+λi . Thus the q-Whittaker function interpolates classical

gl�+1-Whittaker functions and their non-Archimedean analogs.

Let us describe the structure of the modules V and Vf [15]. Both in (4.13) and (4.14) the

underlying vector spaces allow pairs of cohomology group realizations. The C∗ ×GL�+1-

module Vf can be identified with a the standard module of the level zero quantum affine Lie

algebra Uqĝl�+1 obtained by fusion of the elementary modules associated with fundamental

weights ωi of gl�+1 (see [37] for details)

M(p+1,1,...,p+1,1) =V
⊗(p+1,+1−p+1,)
ω1 (a)⊗ · · ·
⊗ V

⊗(p+1,2−p+1,1)
ω (a)⊗ V

⊗p+1,1
ω+1 (a), a ∈ C,

(4.16)

such that the corresponding Drinfeld polynomials are given byPi(u) = (1−au)p+1,i+1−p+1,i ,

i = 1, . . . , �. There are two types of cohomological realization of Vf . The first identifies Vf
with a Demazure module of the affine Lie algebra ĝl�+1 and thus realizes Vf as the zero

cohomology of line bundles on desingularized compactifications of affine Schubert cells.

Another interpretation of the space Vf is in terms of the de Rham cohomology groups of

appropriate collection of algebraic varieties [37]

Ψ̃(q)
z (p

�+1
) =

∑
(m1,...,m+1)∈Z+1

zm1
1 · · · zm+1

�+1 Pq(L(Vm,Wp
+1
)), (4.17)
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where Pq(X) :=
∑

k(−q1/2)k dimHk(X,C) is the Poincare polynomial. Thus the coho-

mology of the moduli space L(Vm,Wp
+1
) of the A�+1-graded quiver representations pro-

vide a realization of the standard modules (4.16) via geometric representation theory. For

example in the simplest non-trivial case of � = 1 this gives an interpretation of the modified

version of the q-deformed gl2-Whittaker function (4.7) via cohomology of the Grassmanni-

ans

Ψ̃(q)
z1,z2(p1, p2) =

∑
p1≤p1,1≤p2

z
p1,1
1 z

p1+p2−p1,1
2 Pq(Gr(p1,1 − p1, p2 − p1)), (4.18)

where we take into account

Pq(Gr(m,n)) =
(n)!q

(m)!q(n−m)!q
. (4.19)

A similar dual pair of interpretations exists for the vector space V . Thus in the case

� = 1 one can realize V as a limit of spaces of holomorphic sections of line bundles over a

sequence of finite-dimensional manifolds. Consider the space X (0)
d of degree d holomorphic

maps of P1 to P1 which can be described as the space of pairs of degree≤ dmutually prime

polynomials up to a common constant factor. There is an action of C∗ × GL2(C) on the

space of maps, the action of GL2(C) is induced by the standard action on the target P1 and

C∗ acts on the source P1 with two fixed points (0) and (∞). The space X (0)
d is non-compact

and its compactification Xd = P2d+1 is obtained by omitting the condition on polynomials

to be mutually prime. Let Lk be a one-dimensional determinant GL2(C)-module such that

Ei,iLk = kLk. We use the same symbol Lk to denote the corresponding trivial line bundle

on P2d+1. Cohomology groups H0(Xd,Lk ⊗ O(n)) have a natural structure of GL2(C)-
modules. For the C∗ × GL2-character of the module H0(Xd,Lk ⊗ O(n)) the following

integral representation holds

TrH0(Xd,Lk⊗O(n)) q
D

2∏
i=1

z
Ei,i

i = (z1z2)
k

∮
t=0

dt

2πı t
t−n

2∏
m=1

d∏
j=0

1

(1− tqjzm)
, (4.20)

for n ≥ 0 and zero otherwise. Here zm = eλm and D is a generator of Lie(C∗). On the

other hand the q-deformed gl2-Whittaker function has also the following representation for

p1 ≤ p2:

Ψ(q)
z1,z2(p1, p2) = (z1z2)

p1

∮
t=0

dt

2πıt

1

tp2−p1

∞∏
n=0

1

(1− z1tqn) (1− z2tqn)
, (4.21)

which easily follows from (4.6) for � = 1 and the classical identity (4.12). Thus taking the

limit d→∞ we obtain the identity

Ψ(q)
z1,z2(k, k + n) = lim

d→∞
TrH0(Xd,Lk⊗O(n)) q

D
2∏

i=1

z
Ei,i

i . (4.22)

This gives representation of the q-deformed gl2-Whittaker function as a character of the limit

d → ∞ of space of holomorphic section spaces of line bundles on Xd. Note that the space
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Xd for d → ∞ might be considered as successive algebraic approximations of the space of

holomorphic disks in P1 [28] and V can be identify with the formal limit

H0(X∞,Lk ⊗O(n)).
It is possible to give another interpretation of the space V this time using the de Rham

cohomologies. Recall that the cohomology ring of the classifying space BUm = Gr(m,∞)
of the unitary group Um is isomorphic to the polynomial ring

H∗(BUm,C) = C[c1, c2, · · · , cm, deg(ci) = 2i. (4.23)

Hence the Poincare polynomial of BUm is given by

Pq(BUm) =
∞∑
i=0

(−q1/2)i dimHi(BUm) =
1∏m

k=1(1− qk)
=

1

[m]q!
.

Taking into account (4.7) we obtain a representation of the gl2-Whittaker function as a trace

over the direct sum of the de Rham cohomology of products of classifying spaces

Ψ(q)
z1,z2(p1, p2) =

∑
m1+m2=p2−p1

zm1+p1
1 zm2+p1

2 Pq(BUm1 ×BUm2). (4.24)

For example comparison of the representations (4.22) and (4.24) leads to an identifica-

tion of the k + 1-dimensional irreducible representation of GL2(C) realized in the space

H0(P1,O(k)) = Ck+1, k ≥ 0 with cohomologiesH∗(Pk,C).
Let us stress that the q-deformed Whittaker function provides an interpolation between

the Whittaker function (4.6) corresponding to representation theory of GL�+1(Qp) and the

classical Whittaker function (2.8) corresponding to representation theory ofGL�+1(R). This
interpolation reveals non-obvious structures in the Archimedean case via interpolation of the

relevant structures over non-Archimedean fields. Thus taking the appropriate limit q → 1
one can infer the Archimedean substitute of the trace type representation of the q-deformed

Whittaker functions and non-Archimedean Whittaker functions i.e. to recover the Archime-

dean analog of the Shintani-Casselman-Shalika formula (3.21).

5. Whittaker functions as equivariant symplectic volumes

To define an Archimedean analog of the Shintani-Casselman-Shalika formula we start with

a simplified situation which has an interesting interpretation of its own. Let us note that both

Whittaker functions (3.21) and (2.5) interpolated by the q-lattice gl�+1-Whittaker function

(4.6) allow a common degeneration. Let ni(p, xj) be integer parts of xj/ ln p, xj ∈ R. In

the following limit:

Ψ
(0)
λ (x) = lim

p→1
(ln p)�(�+1)/2 Ψ

(p)
λ (n1(p, x1), · · · , n�+1(p, x�+1)), (5.1)

the non-Archimedean Whittaker function reduces to the function given by the integral

Ψ
(0)
λ (x) =

∫
D+1

e

+1∑
k=1

λk(
∑k

i=1 xk,i−
∑k−1

i=1 xk−1,i)
�∏

k=1

k∏
i=1

dxk,i, (5.2)
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for x1 ≤ x2 ≤ · · · ≤ x�+1 and zero otherwise. Here xi = x�+1,i, i = 1, . . . , � + 1
and the integration domain D�+1 is defined by the inequalities xj+1,k ≤ xj,k ≤ xj+1,k+1,

j = 1, . . . , �+ 1, k = 1, . . . , j. The same function can be obtained as a limit

Ψ
(0)
λ (x) = lim

�→∞
(�)−�(�+1)/2Ψλ(�x, �), (5.3)

of the Archimedean gl�+1-Whittaker function (2.8). The gl�+1-Toda chain equations (2.3)

are reduced in this limit to equations of the quantum billiard [9] in the domainD�+1 = {x =
(x1, . . . , x�+1) ∈ R�+1|xi ≤ xi+1} and the elementary gl�+1-Whittaker function (5.2) is a

unique solution of the quantum billiard eigenfunction equations in D�+1

P (∂x)Ψ
(0)
λ (x) = P (λ)Ψ

(0)
λ (x), (5.4)

where P (y) ∈ C[y1, . . . , y
S+1

�+1 is an arbitrary symmetric polynomial and Dirichlet boundary

conditions

Ψ
(0)
λ (x)|xj=xj+1 = 0, (5.5)

are imposed. The corresponding analog Q0(s) of the Baxter integral kernel (2.9) has the

following simple form:

Q(0)(x, y| s) = e s
∑+1

i=1(xi−yi)Θ(y�+1 − x�+1)

�∏
i=1

Θ(yi+1 − xi)Θ(xi − yi), (5.6)

where x := (x1, · · · , x�+1), y := (y1, . . . , y�+1) and Θ(a) = (1 + sign(a))/2. The ele-

mentary gl�+1-Whittaker function is an eigenfunction of the integral operators Q0(s) with

eigenvalue

L(0)(s) =
�+1∏
j=1

1

s− λj
. (5.7)

The existence of a reasonable limit of the integral representation (2.8) is ultimately related

with a deep positivity property of the classical Whittaker functions. One can demonstrate

that the matrix element (2.5) can be represented as an integral over a subset N> of positive

elements of the subgroup N ⊂ GL�+1(R). Recall that positive elements of GL�+1(R)
are the elements realized in the standard matrix representation by positive matrices i.e. the

matrices with all minors positive. The same definition applies to the subgroupN where only

non-trivial minors are considered. The subset of positive elements GL>
�+1(R) is a monoid

(for the monoid structure on the subset of positive element of general reductive Lie groups

see [34]) and the gl�+1-Whittaker function appears to be closely related to representation

theory of GL>
�+1(R). A counterpart of this for the limiting elementary Whittaker function

(5.2) is an interpretation of (5.2) in terms of representation theory of the monoid GL�+1(R)
of matrices over the tropical semifield R. The tropical semifield R (see e.g. [35], [36]) is

defined as the set R of real numbers with two operations

α×̇β = α+ β, α+̇β = min(α, β), (5.8)

which can be understood as a limit �→ +∞ of the family of semifield structures on R+

a×� b = a× b, a+� b = (a� + b�)1/�, (5.9)
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where a = e−α, b = e−β . Note that semifield structure for generic � �= 0 is isomorphic

to the standard semifield structure of R+ via the map a → a
1
� . The matrix element repre-

sentation of the classical gl�+1-Whittaker function degenerates in the limit � → +∞ into a

representation of the elementary gl�+1-Whittaker function as a matrix element of an analog

of the principal series representation of GL�+1(R).
An advantage of the elementary Whittaker functions is an easy way to guess the corre-

sponding analog of the Shintani-Casselman-Shalika formula (3.21). Precisely, the elemen-

taryWhittaker function (5.2) can be identified withU�+1-equivariant volume of the flag man-

ifold B�+1 = GL�+1(C)/B, B is a Borel subgroup. Consider the standard family of U�+1-

invariant symplectic structures ω(x) linearly parameterized by elements x = (x1, . . . , x�+1)
of the maximal commutative subalgebra h ⊂ gl�+1. Identifying the equivariant cohomology

H∗
U+1

(pt) with the polynomial central functions on the Lie algebra of U�+1, the U�+1-

equivariant extension ωU+1
(x, λ) ∈ H2

U+1
(B�+1) of ω(x) ∈ H2(B�+1) additionally de-

pends linearly on an element λ of the Lie algebra of U�+1. The U�+1-equivariant integral

over B�+1 we are going to consider depends only on an AdU+1
-orbit of λ and thus we may

pick a diagonal representative λ = (λ1, . . . , λ�+1).

Theorem 5.1. The U�+1-equivariant volume of the flag space B�+1 = GL�+1(C)/B is
given by the elementary gl�+1-Whittaker function (5.2)

Ψ
(0)
λ (x) =

∫
B+1

eıωU+1
(x,λ), (5.10)

for x1 ≤ . . . ≤ x�+1.

One should point out that the identification of the elementary gl�+1-Whittaker functions

as the eigenfunctions of the quantum billiard Hamiltonians with U�+1-equivariant symplec-

tic volumes of the flag spaces B�+1 is not surprising and can be understood via the canonical

action on the equivariant cohomologyH∗
U+1

(B�+1) of the affine nil-Hecke algebraHnil
�+1 as-

sociated with gl�+1 (see e.g. [26] and references therein). In turn the relation between quan-

tum billiard eigenfunctions and representation theory of affine nil-Hecke algebras should be

understood as an analog of the similar relation between affine Hecke algebras and many body

integrable systems with δ-function potentials [30].

The elementary analog of the Shintani-Casselman-Shalika formula (3.21) can now be

formulated as follows. The elementary gl�+1-Whitaker function understood as a matrix ele-

ment of the tropical monoid GL�+1(R) is equal to the U�+1-equivariant symplectic volume

of the flag space B�+1 (5.10). The reason why this relation should be considered as an ana-

log of (3.21) is that the equivariant symplectic volumes are naturally limits of characters of

irreducible finite-dimensional representations of U�+1 obtained by geometric quantization of

B�+1. Therefore while the classical Shintani-Casselman-Shalika formula (3.21) provides a

categorification of the non-Archimedean Whittaker function i.e. a representation as the trace

over an auxiliary vector space the elementary analog (5.10) provides a symplectification of

the elementary Whittaker function (5.2) by representing it as the equivariant volume of an

auxiliary symplectic space.

An equivariant symplectic volume representation exists not only for the limit (5.2) of

the classical gl�+1-Whittaker function but for the gl�+1-Whittaker function itself. This can

be directly inferred from the realization of the q-lattice version of the Whittaker function

as a character of zero cohomology groups of line bundles over the compactified space of
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holomorphic maps (4.22). In the limit q → 1 the character turns into the equivariant sym-

plectic volume thus providing an equivariant symplectic volume realization of the classical

Whittaker functions. This was done explicitly in [14] for the first non-trivial case � = 1.
Consider the compactification Xd = P2d+1 of the space of degree d holomorphic maps

P1 → P1 supporting an action of C∗ × GL2(C). Supply Xd with a symplectic structure

Ω(y1−y2) linearly depending on (y1−y2) and proportional to the Fubini-Studi two-form to

obtain S1×U2-symplectic manifold. We will identifyH∗
S1×U2

(pt) with C[�]×C[λ1, λ2]
S2

where � corresponds to the generator of S1 and λj , j = 1, 2 correspond to the generator

of j-th factor in maximal abelian subgroup U1 × U1 ⊂ U2. Denote ΩS1×U2
(y1, y2, λ1, λ2)

the S1 × U2-equivariant extension of the symplectic structure on Xd. Note that equivariant

symplectic for depends on y1 + y2 via the constant shift normalization of the momentum

map. The S1×U2-equivariant symplectic volume of Xd is defined as the following integral:

Zd(y, λ) =

∫
Xd

eıΩS1×U2
(y,λ). (5.11)

Direct calculation gives for the equivariant symplectic volume of Xd the following integral

representation (where we use analytic continuation �→ i�):

Zd(y, λ) =

∫
R−ıε

dγ e(λ1+λ2)y1+ıγ(y2−y1)
2∏

j=1

1∏d
m=0 (ıγ − λj + �m)

. (5.12)

Following the example of the q-deformed Whittaker function (4.22) we expect to recover

the gl2-Whittaker function in the limit d → +∞ of (5.11). Indeed, taking the limit of the

integral representation (5.12) and using the ζ-function regularization of the infinite products

we obtain the following integral expression:

Z∞(x, λ) =

∫
R−ıε

dγ e(λ1+λ2)y1+ıγ(y2−y1)
2∏

j=1

Γ

(
ıγ − λj

�

)
�(ıγ−λi)/�. (5.13)

Using the Euler integral representation for the Γ-function this integral can be easily trans-

formed into the integral representation (2.8) of the gl2-Whittaker function for xi = �yi

Ψλ1,λ2(x1, x2) =

∫
R

dx eλ2(x1+x2−x)/�+λ1x/� e−�−1ex1−x−�−1ex−x2
. (5.14)

Recall that the compactification Xd of the space of holomorphic maps P1 → P1 of degree

d → +∞ may be considered as an approximation of the space of holomorphic maps of

a two-dimensional disk D = {z| |z| ≤ 1} into P1. Actually one can replace the limiting

procedure by considering directly the S1 × U�+1-equivariant volume of the space XD of

holomorphic maps D → P1 to obtain

Ψλ1,λ2(x1, x2) =

∫
XD

eıΩS1×U2
(�−1x,λ). (5.15)

Here we have extended the definition of the equivariant volume to infinite-dimensional man-

ifolds. Although this leads to potential difficulties with integration over infinite-dimensional

spaces all encountered integrals are reduced to combinations of finite-dimensional integrals
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and infinite-dimensional Gaussian integrals which can be defined via ζ-function regulariza-

tion [18].

The identification of the finite-dimensional integral (5.14) representing the matrix ele-

ment (2.7) of the principal series spherical representation of GL2(R) with the analytic con-

tinuation of the equivariant volume (5.15) of the infinite-dimensional space XD provides an

instance of the Archimedean counterpart of the Shintani-Casselman-Shalika formula (3.21).

This should be compared with the identification (5.10) of the elementaryWhittaker functions

with equivariant symplectic volumes of the flag spaces. Thus (5.15) provides a symplectifi-

cation of the classical Whittaker function.

The infinite-dimensional integral representation (5.11) implies that the proper framework

for the Archimedean Shintani-Casselman-Shalika formula is two-dimensional quantum field

theory. Indeed the equivariant symplectic volumes (5.11) can be identified with a correlation

function on a disk D in S1 ×U�+1-equivariant type A topological sigma models with target

spaces P1 and the compactification Xd of the space of degree d holomorphic maps P1 → P1

appears naturally in the linear gauged sigma-model description of the Gromov-Witten invari-

ants of projective spaces [47]. Similarly, an equivariant volume representation exists for the

local Archimedean L-factors (3.23) based on the expression of the S1 × U�+1-equivariant

volume of the spaceM(D,C�+1) of holomorphic maps D → C�+1 in terms of Γ-function
[18]. The infinite-dimensional integral can be identified with a correlation functions on a

disk D in S1 × U�+1-equivariant type A topological sigma models with target spaces C�+1.

Mirror symmetry provides an alternative interpretation of the type A topological sigma

model correlation function as a correlation function in the dual type B topological sigma

model with non-trivial superpotential. In contrast with correlation functions in type A
topological field theories expressed via integrals over spaces of holomorphic maps into

target spaces the correlation functions in type B topological theories are given by finite-

dimensional integrals over middle-dimensional subspaces in the corresponding target space.

In the case of the integral (5.15) the mirror dual description of the correlation function leads

directly to a finite-dimensional integral representation (5.14) associated with the matrix el-

ement description (2.7) of the gl2-Whittaker function. Recall that the Shintani-Casselman-

Shalika formula concisely express local Langlands duality between representations of groups

over local fields and representations of the Weil groups of the field in the non-Archimedean

case. Taking into account that two sides of the Archimedean Shintani-Casselman-Shalika

formula are related by mirror symmetry of the underlying two-dimensional topological the-

ory we conclude that the Archimedean Langlands correspondence is an instance of the mir-

ror symmetry in two-dimensional quantum field theory. The elementary analog identify-

ing equivariant symplectic volume of GL�+1(C)/B with a matrix element of the monoid

GL�+1(R) expressed by the integral (5.2) over the polytope D�+1 shall be considered as a

counterpart of the mirror symmetry for zero-dimensional quantum field theories.

One should point out that the Toda integrable systems appear in the description of the

Gromov-Witten invariants of flag spaces [27]. Precisely the counting functions of theGL�+1

×S1-equivariant volumes of the spaces of holomorphic maps of P1 with two punctures into

the flag spaces B�+1 = GL�+1(C)/B satisfy eigenfunction equations of the gl�+1-Toda in-

tegrable system. The counting functions represent correlation functions in two-dimensional

topological field theories with the target space B�+1 and depend on a choice of the observ-

ables at the punctures. The choice of observables leading to the Whittaker functions is rather

complicated and actually equivalent to consideration of the topological field theory on a disk

D thus recovering our interpretation of (5.15).
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6. Conclusions and further directions

To conclude let us stress that the formalism of topological field theories seems to provide

a good framework for proper description of the transcendental structures arising in the for-

mulation of the local Archimedean correspondence. Realization of the local Archimedean

L-factors as eigenvalues of elements of the Archimedean spherical Hecke algebra, the Archi-

medean Shintani-Casselman-Shalika formula and an interpretation of the local Archimedean

Langlands duality as mirror symmetry in topological field theories are just a few of the de-

tails in a more general picture.

We have considered only the special matrix element of the spherical principal series

representations of general linear groups leading to Toda chain eigenfunctions. Thus there

are many obvious directions for generalizations to various series of representations of other

reductive groups and related quantum integrable systems (some partial generalizations can

be found e.g. in [4, 20, 24]). In particular, as the Baxter operator formalism is known

for many quantum integrable systems it would be interesting to use the spherical Hecke

algebra approach to more general systems and to identify the corresponding eigenvalues as

generalized L-functions: for some very preliminary steps in this direction see [21].

The study of global number fields is another direction to pursue. It is natural to look for

an adelic version of the Baxter operator as being an element of the global spherical Hecke

algebra over Z. Action of the Baxter operators on automorphic forms would then be the

same as multiplication by the corresponding complete global L-functions. Recall that in the

case of a quantum integrable system with a discrete spectrum, zeroes of the Baxter operator

eigenvalues as functions of the auxiliary parameter are governed by a system of Bethe ansatz

equations. This surprisingly links the Bethe ansatz technique with generalized Riemann

hypotheses for global L-functions. In this regard it may be worth reviving an old approach

to the Riemann hypotheses via scattering theory [8].

Identification of the eigenfunctions of quantum billiards with analytic continuation of the

equivariant symplectic volumes of flag spaces, or those of Toda chains with moduli spaces of

maps into flag spaces are both instances of a general relation between quantum many-body

integrable systems, representation theory of the Hecke algebras and (generalized) equivariant

cohomology rooted in the Lusztig philosophy of realization of Hecke algebra representations

via generalized equivariant cohomology (see e.g. [26] and references therein). The discussed

construction can be also lifted to higher dimensions to identify eigenfunctions of quantum

integrable systems with equivariant symplectic volumes of appropriate infinite-dimensional

spaces related with spaces of solutions of boundary value problems [23]. The correspond-

ing version of the Langlands duality will be a manifestation of higher-dimensional analogs

of mirror duality/S-dualities in quantum field theories. Note that identification of topologi-

cal quantum field theory correlation functions on a two-dimensional disk with solutions of

quantum integrable systems was proposed in [25] as a rather general phenomena.

Appearance of the tropical semifield R in the elementary version of the Archimedean

Langlands correspondence deserves further clarification. The tropical semifield R is a ten-

tative substitute for a more complicated arithmetic object. Note that the non-Archimedean

valuation νp(x) = − logp |x|p satisfies relations closely resembling the basic operations

(5.8) of the tropical semifield R. The image of the valuation map νp is a lattice ln pZ ⊂ R
and the semifield R can be understood as a formal limit p → 1 of the image of the non-

Archimedean valuation map with the semifield structure compatible with limiting properties

of the valuation map νp. It is tempting to suggest the existence of a non-Archimedean field
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Q∗ providing a kind of a limit of Qp for p → 1 such that the corresponding valuation ν∗
maps Q∗ surjectively onto R. The elementary Whittaker functions will then be considered

as Whittaker functions over Q∗. The same reasoning will work for elementary L-factors
(compare with the association of the same L-factors with the residue field F1 in [32]). Note

that the norm map ν : Qp → R has a large kernel of invertible p-adic numbers Z∗
p and thus

the fieldQ∗ will be much larger thenR. It is easy to construct a non-Archimedean field with

the valuation surjectively mapping onto R using functions of one real variable and indeed

such field naturally appears in the description of asymptotic expansions in quantum theories

(see e.g. [33, 35]). However a connection, if any, with the hypothetical fields Q∗ and F1 is

yet to find. Note also that R should be considered as an extension of Q∗.
Finally one should point out that we did not discuss a relation (of some results of Section

3) to the geometric Langlands correspondence. May be more important we did not touch the

problem of proper interpretation of the Archimedean Weil group WR and the corresponding

more deep level of understanding of the local Archimedean Langlands correspondence (even

in the non-Archimedean case the situation is not quite satisfactory as we shall change the

topology of the Galois group to fit the Langlands correspondence). One of the directions to

pursue in this regard is proper understanding of the Archimedean limit of the de Rham type

representation of the q-Whittaker function via the Poincare polynomials (4.24). Presumably

this leads to a relation with String theory.
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dynamics of some interacting many-body systems
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Abstract. A Lyapunov functional approach is a standard tool for studying the nonlinear stability of

equilibria in the theory of dynamical systems. In this paper, we survey recent progress on the collective

dynamics of interacting many-body systems and discuss how the Lyapunov functional approach can

be used in the formation of collective motions, such as in flocking and the synchronization of many-

body systems. We also propose some open questions in the mathematical theory of flocking and

synchronization.
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1. Introduction

Emergent flocking and synchronization phenomena appear in many biological and phys-

ical systems, e.g., the flocking of birds, swarming of fish, flashing of fireflies, and syn-

chronous firing of a cardiac pacemaker [1, 5, 10, 29–32, 63, 67, 70, 72]. These are sim-

ple collective modes of complex systems, and have been an active area of research in ap-

plied mathematics, biology, sociology, and physics because of their engineering applica-

tions, e.g., sensor and power networks, formation control of robots and unmanned aerial

vehicles [27, 54, 60, 62, 64–66, 68]. The works of Winfree, Kuramoto, and Vicsek et al.

have led to the proposal of several agent-based models, which have been extensively studied

both analytically and numerically. In this paper, our interest lies in two particle models. In

[29], Cucker and Smale introduced a second-order Newton-type equation supplemented by

weighted relaxation-type internal forces describing the dynamics of positions and velocities

of particles. They also provided sufficient conditions for admissible initial configurations

leading to global flocking. In [52], Kuramoto proposed an analytically treatable first-order

phase model for limit-cycle oscillators from the complex Ginzburg–Landau system in the

complex plane. He explicitly calculated the critical coupling strength, and showed that his

model exhibits a phase-transition phenomenon from disorder to a partially ordered state as

the coupling strength exceeds this critical value. Kuramoto’s seminal work has generated

research in the statistical physics community for the last 40 years, and has left many open

questions [1, 67].

The purpose of this paper is to survey recent progress in the flocking and synchroniza-

tion estimates for the aforementioned models using an analytical tool, namely the Lyapunov

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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functional approach.

The rest of this paper is organized as follows. In Section 2, we introduce models for

flocking and synchronization, and their kinetic and hydrodynamic analogues. In Section

3, we describe the emergent large-time dynamics of the Cucker–Smale flocking model and

flocking particle–fluid interaction problems. In Section 4, we present the emergent large-

time dynamics of the Kuramoto model and its quantum counterparts. Finally, Section 5

gives a brief summary and addresses some open questions related to the topics discussed in

the paper.

2. Preliminaries

In this section, we present two interacting many-body systems, “the Cucker–Smale (C-S)
model” and “the Kuramoto model,” exhibiting emergent collective dynamics.

2.1. The Cucker–Smale model. Let xj and vj be the position and velocity of the j-th C-S

particle, and ψ(|xk −xj |) be the communication weight between the k-th and j-th particles.

In this situation, the C-S model reads as follows. For j = 1, · · · , N ,

dxj
dt

= vj , xi, vi ∈ Rd, t ∈ R,

dvj
dt

=
K

N

N∑
k=1

ψ(|xk − xj |)(vk − vj),
(2.1)

where ψ is assumed to be nonnegative, bounded, Lipschitz continuous and non-increasing

in its argument, i.e.,

ψ ≥ 0, ||ψ||L∞ + ||ψ||Lip <∞, (ψ(r1)− ψ(r2))(r1 − r2) ≤ 0, r1, r2 > 0. (2.2)

We next provide the definition of (asymptotic) global flocking for (2.1).

Definition 2.1 ([27, 50]). Let P := {(xi, vi)}Ni=1 be the solution to (2.1). Then, the particle

system P exhibits global flocking if and only if the following two conditions hold.

1. The spatial configuration has a diameter that is uniformly bounded in time:

sup
0≤t<∞

max
1≤i,j≤N

||xi(t)− xj(t)|| <∞.

2. The velocity diameter goes to zero asymptotically, meaning that all particles become

asymptotically aligned.

lim
t→∞

max
1≤i,j≤N

||vi(t)− vj(t)|| = 0,

where ||a|| :=
(∑d

i=1 |ai|2
) 1

2

is the �2-norm of a = (a1, · · · , ad).

In [29], Cucker and Smale derived sufficient conditions for global flocking in terms of the

initial configuration and the decay rate of ψ, and their results were immediately generalized
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in several directions, e.g., stochastic noise effects [4, 28, 46], collision avoidance [3, 17],

formation control [61], and the mean-field limit [11, 16, 36, 39, 48, 50]. The relation with

a mechanical oscillator model [49] was also explored, and discrete-time C-S models with

leaders were developed in [55, 56].

When the number of particles goes to infinity (N → ∞) in (2.1), it is reasonable to

introduce a one-particle distribution function f = f(x, v, t). Then, the dynamics of f are

governed by the Vlasov type equation:

∂tf + v · ∇xf +∇v · (F [f ]f) = 0, x, v ∈ Rd, t ∈ R,

F [f ](x, v, t) = −K
∫
R2d

ψ(|x− y|)(v − v∗)f(y, v∗)dv∗dy.
(2.3)

System (2.3) admits a global C1-solution as long as the initial datum is C1-regular and com-

pactly supported in x and v (see [50]). The global existence of measure-valued solutions

to (2.3) when the initial datum is a Radon measure was studied in [48]. For a macroscopic

description of the C-S model, we introduce the first three velocity moments of f . For given
(x, t) ∈ Rd × R+, we set hydrodynamic mass, momentum, and energy densities:

ρ :=

∫
Rd

fdv, ρu :=

∫
Rd

vfdv, ρE := ρe+
1

2
ρ|u|2, (2.4)

where ρe :=
1

2

∫
Rd

|v−u(x)|2fdv is the internal energy. Then, the macroscopic observables

in (2.4) satisfy the following hydrodynamic equations [50]:

∂tρ+∇x · (ρu) = 0, x ∈ Rd, t ∈ R,

∂t(ρu) +∇x · (ρu⊗ u+ P ) = S(1),

∂t(ρE) +∇x · (ρEu+ Pu+ q) = S(2),

(2.5)

where P = (pij) and q = (q1, · · · , qd) are the stress tensor and heat flow defined by the

following moments:

pij :=

∫
Rd

(vi − ui)(vj − uj)fdv, qi :=

∫
Rd

(vi − ui)|v − u|2fdv, 1 ≤ i, j ≤ d. (2.6)

The source terms are given by the following relations:

S(1) := −K
∫
Rd

ψ(|x− y|)(u(x)− u(y))ρ(x)ρ(y)dy,

S(2) := −K
∫
Rd

ψ(|x− y|)(E(x) + E(y)− u(x) · u(y))ρ(x)ρ(y)dy.
(2.7)

System (2.5) is not a closed system, because we need the third velocity moment of f to

calculate the heat flux q in (2.6). When the configuration is close to collisionless global

flocking state, we may assume the monokinetic ansatz for f :

f(x, v, t) = ρ(x, t)δ(v − u(x, t)), x, v ∈ Rd, t ∈ R. (2.8)

Then, under assumption (2.8), the stress tensor P and heat flux q in (2.6) vanish:

pij = 0, qi = 0, 1 ≤ i, j ≤ d.
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Thus, system (2.5) with (2.7) becomes

∂tρ+∇x · (ρu) = 0, x ∈ Rd, t > 0,

∂t(ρu) +∇x · (ρu⊗ u) = −Kρ

∫
Rd

ψ(|x− y|)ρ(y)(u(x)− u(y))dy.
(2.9)

For the one-dimensional case with all-to-all coupling (ψ = 1), the global existence of an

entropic weak solution to (2.9) has been studied in [41], whereas the global existence of

a classical solution to (2.9) on the periodic domain was treated in [44]. In the absence of

coupling, i.e., K = 0, system (2.9) describes pressureless gas dynamics, which has been

extensively studied in [13, 14, 38, 51, 71].

2.2. The Kuramoto model. Let zj ∈ C be the position of the j-th oscillator, whose dy-

namics is governed by the complex Ginzburg–Landau model in the complex plane C:

dzj
dt

= (1− |zj |2 + iΩj)zj +
K

N

N∑
i=1

(zi − zj), t ∈ R, (2.10)

whereK is the positive coupling strength and Ωj is the natural frequency of the j-th oscilla-

tor. Then, zj approaches the limit cycle S1 formally. Thus, on the limit cycle S1, the system

(2.10) becomes

dzj
dt

= iΩjzj +
K

N

N∑
i=1

(zi − zj). (2.11)

We now substitute the ansatz zj = eiθj into (2.11) to obtain the Kuramoto model:

dθj
dt

= Ωj +
K

N

N∑
k=1

sin(θk − θj), t ∈ R. (2.12)

The Kuramoto model (2.12) has been extensively studied in relation to phase-transition-like

phenomena from the disordered state to partially ordered state as the coupling strength K
increases from zero. For a detailed survey, we refer to [1, 10, 67]. For a later use, we present

the definition of complete synchronization as follows.

Definition 2.2. [27, 50] Let Θ := (θ1, · · · , θN ) be the solution to (2.12). Then, the phase

configurationΘ exhibits a complete (frequency) synchronization if and only if the following

relation holds:

lim
t→∞

max
1≤i,j≤N

|θ̇i(t)− θ̇j(t)| = 0.

Remark 2.3. Note that if we add the Kuramoto model (2.12) over j, we have

N∑
j=1

θ̇j =
N∑
j=1

Ωj +
K

N

∑
j,k

sin(θk − θj) =

N∑
j=1

Ωj .

If all phase velocities approach the same value, say ω, then the above relation implies that

the common frequency ω should be the average of the natural frequencies 1
N

∑N
j=1 Ωj .
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We briefly recall known results for the complete synchronization in the followings. Er-

mentrout [37] found a critical coupling at which all oscillators become phase-locked, inde-

pendent of their number. The linear stability of this phase-locked state has been studied in

several papers [2, 12, 33, 69] using tools such as Lyapunov functionals, spectral graph the-

ory, and control theory. The studies most closely related to this paper are those of Chopra

and Spong [27], Choi et al. [21], and Dórfler and Bullo [35]. These papers use the phase-

diameter D(Θ) := max1≤i,j≤N |θi − θj | as a Lyapunov functional, and study its temporal

evolution via Gronwall’s inequality.

In the mean-field limit N →∞, system (2.12) becomes the kinetic model [19, 53]:

∂tf + ∂θ(ω[f ]f) = 0, (θ,Ω) ∈ T× R, t > 0,

ω[f ](θ,Ω, t) := Ω−K

∫
T×R

sin(θ − θ∗)f(θ∗,Ω∗, t)dΩ∗dθ∗.
(2.13)

For the nonlinear stability of the phase-locked state of (2.13), we refer to [15].

2.3. Relation between the C-S and Kuramoto models. As the C-S model is a second-

order system, whereas the Kuramoto model is first-order, the two cannot be compared di-

rectly. Thus, we introduce an auxiliary phase velocity (frequency) in the Kuramoto model

(2.12) so that it can be considered as a second-order model:

θ̇j = ωj , t > 0,

ω̇j =
K

N

N∑
k=1

cos(θk − θj)(ωk − ωj),

where the initial (θj0, ωj0) is constrained by

ωj0 = Ωj +
K

N

N∑
k=1

sin(θk0 − θj0).

Note that the following relation (xj , vj) ⇐⇒ (θj , ωj) bridges the C-S model to the

Kuramoto model.

3. The Cucker–Smale flocking model

In this section, we discuss asymptotic flocking estimates for the C-S model and the coupled

Cucker–Smale-Navier–Stokes system.

3.1. Asymptotic flocking estimates. In this subsection, we discuss the asymptotic flocking

estimate for the C-S model. We now introduce a Lyapunov functional approach for the

flocking estimate. For a given configuration (x, v) ∈ R2dN with zero sum

N∑
i=1

xi(t) = 0,
N∑
i=1

vi(t) = 0, t ≥ 0,

we set

||x||∞ := max
1≤i≤N

||xi||, ||v||∞ := max
1≤i≤N

||vi||.
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Then, ||x||∞ and ||v||∞ are Lipschitz continuous functions, and it is easy to see that∣∣∣ d
dt
||x||∞

∣∣∣ ≤ ||v||∞ a.e. t ∈ (0,∞),
d

dt
||v||∞ ≤ −Kψ(2||x||∞)||v||∞.

(3.1)

We next introduce Lyapunov-type functionals E0±(t) ≡ E0±(x(t), v(t)):

E0±(t) := ||v(t)||∞ ±
K

2

∫ 2||x(t)||∞

0

ψ(s)ds, t ≥ 0.

Then, it is easy to see the non-increasing property of E0± using (3.1):

E0±(t) ≤ E0±(0), t ≥ 0,

which leads to the stability estimate of E0±(t):

||v(t)||∞ +
K

2

∣∣∣ ∫ 2||x(t)||∞

2||x0||∞
ψ(s)ds

∣∣∣ ≤ ||v0||∞, t ≥ 0.

The above stability estimate yields the following flocking estimate.

Theorem 3.1 ([3]). Let (x, v) be the smooth global solution to system (2.1)–(2.2) with initial
data (x0, v0) satisfying

||x0||∞ > 0, ||v0||∞ <
K

2

∫ ∞

2||x0||∞
ψ(r)dr.

Then, there exists a positive constant xM satisfying

||x(t)||∞ ≤ xM , ||v(t)||∞ ≤ ||v0||∞e−Kψ(2xM )t, t ≥ 0.

Remark 3.2. Note that the result of Theorem 3.1 is independent ofN so that it can be lifted

to the kinetic regime. In contrast, the flocking estimates for the C-S model and its modified

system have been studied in the �2-norm framework [29, 48, 50, 59] so that the resulting

flocking estimate depend on the number of particles N .

3.2. Flocking particle–fluid interactions. In this subsection, we consider an ensemble of

C-S particles moving in a highly viscous incompressible fluid on the periodic domain T3 :=(
R/Z

)3
. In this case, the dynamics between C-S particles and incompressible fluid can be

described by the coupled system of a Vlasov-type equation and the incompressible Navier–

Stokes equations. Let f = f(x, v, t) be the one-particle distribution function of the C-S

particles with velocity v ∈ R3 at position x ∈ T3 at time t > 0, and u = u(x, t) be the bulk

velocity of the incompressible fluid. Then, (f, u) is governed by the coupled Cucker–Smale-

Navier–Stokes system [9]:

∂tf +∇x · (vf) +∇v ·
((
Fa[f ] + Fd

)
f
)
= 0, (x, v) ∈ T3 × R3, t > 0,

∂tu+ (u · ∇x)u+∇xp− μΔxu = −
∫
R3

Fdfdv, ∇x · u = 0,
(3.2)
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where Fa and Fd represent the alignment (flocking) force and the drag force per unit mass,

respectively:

Fa[f ](x, v, t) :=

∫
T3×R3

ψ(x, y)(v∗ − v)f(y, v∗, t)dv∗dy,

Fd(x, v, t) := u(x, t)− v.

The kernel functionψ : T3×T3 → R+ is a C1-function that satisfies the following conditions

of symmetry and boundedness:

ψ(x, y) = ψ(y, x), mψ ≤ ψ(x, y) ≤Mψ, Mψ −mψ < 1, x, y ∈ T3,

where mψ and Mψ are positive constants.

For the asymptotic flocking estimate of system (3.2), we introduce a Lyapunov func-

tional E1 measuring the local velocity fluctuations and the distance between local velocity

averages:

E1(t) := 2

∫
T3×R3

|v−vc(t)|2f(t)dvdx+2
∫
T3

|u(t)−uc(t)|2dx+ |uc(t)−vc(t)|2, t ≥ 0,

where uc and vc are local velocity averages of the fluid and particles:

uc(t) :=

∫
T3

udx and vc(t) :=

∫
T3×R3 vfdvdx∫
T3×R3 fdvdx

.

Theorem 3.3 ([8]). Suppose that initial data [f0, u0], and μ satisfy∫
T3×R3

f0dvdx = 1, suppvf0 is bounded for each x ∈ T3, E1(0) <∞

sup
0≤t<∞

||ρp(t)||L∞ <∞, μ >
sup0≤t<∞ ||ρp(t)||L∞

π3
,

where π3 is a positive constant appearing in Poincare’s inequality for the torus T3, and ρp
is the local particle density:

ρp(x, t) :=

∫
R3

f(x, v, t)dv.

Then, for any classical solution (f, u) to (3.2) in the time-interval [0,∞), the following
estimate of exponential convergence holds:

E1(t) ≤ E1(0) exp
(
−min{2mψ + 1,K, 2}t

)
, 0 ≤ t <∞,

where K is a positive constant given by K := 2μπ3 − 2 sup0≤t≤∞ ||ρp(t)||L∞ > 0.

Remark 3.4. The existence of weak and strong solutions to system (3.2) has been studied

in [8, 9], and the generalization of the system (3.2) for two species C-S flocking particles

interacting with the fluid has been investigated in [24]. In the whole space R2, the global

well-posedness for the system (3.2) has also been treated in [25]. Concerning the couplings

with other fluids, such as a compressible Navier–Stokes system and Stokes system, have

been discussed in [6, 7].
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4. The Kuramoto model

In this section, we discuss the emergent synchronous dynamics of the Kuramoto model.

First, we present frameworks for complete synchronization, whereby the phase velocities

(frequencies) of oscillators converge to the same value, namely the average of their natural

frequencies. We also provide two generalizations of the Kuramoto model in the realm of

quantum synchronization in [20, 57, 58].

4.1. Complete synchronization. In the subsection, we briefly discuss the state-of-the-art

result and methodology for complete synchronization given in Definition 2.2. So far, most

works only deal with initial configurations whose phase-diameter is less than π. To date, π is

the best upper bound; if we could extend this upper bound to 2π, it would be possible to rig-

orously justify the independence of initial configurations observed in numerical simulations.

To describe the results in [21, 27, 40], we introduce the following notation.

For a phase configuration Θ = (θ1, · · · , θN ) and natural frequencies Ωj , we introduce

several diameters that play a key role as Lyapunov functionals:

D(Θ) := max
1≤i,j≤N

|θi − θj |, D(ω) := max
1≤i,j≤N

|θ̇i − θ̇j |, D(Ω) := max
1≤i,j≤N

|Ωi − Ωj |.

Lemma 4.1 ([40]). Suppose that K,D(Ω), and the initial phase configuration Θ0 satisfy

0 < D(Ω) < K, D(Θ0) < D∞
θ .

Then, we have
sup
t≥0

D(Θ(t)) ≤ D∞
θ ,

where the constant D∞
θ ∈ (0, π2 ) is the root in the first quadrant of the following trigono-

metric equation:

sin θ =
D(Ω)

K
.

This lemma yields the following complete synchronization.

Theorem 4.2 ([40]). Suppose that K,D(Ω), and the initial phase configuration Θ0 satisfy

0 < D(Ω) < K, D(Θ0) < D∞
θ ,

and let Θ be the solution to (2.12). Then, we have

D(ω(t)) ≤ D(ω0) exp
[
−K(cosD∞

θ )t
]
, t ≥ 0.

Proof. By direct estimate, we can derive Gronwall’s inequality for the frequency diameter

D(ω) (see [40])
dD(ω)

dt
≤ −K(cosD∞

θ )D(ω), t ≥ 0,

and then derive the desired complete synchronization estimate. A detailed proof can be

found in [40].
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Remark 4.3.

(1) Note that the arguments employed in Theorem 4.2 are valid as long as the phase-

diameter D(Θ) is smaller than π
2 . Recently, the author and his collaborators [21]

extended the admissible class of initial data as follows. For any given initial data

D(Θ0) < π, once we choose a coupling strength K > D(Ω)
sinD(Θ0)

, we can show that

the phase-configuration shrinks to a configuration whose diameter is smaller than π
2 in

finite time. More precisely, there exists T∗ ∈ (0,∞) such that

D(Θ(T∗)) < D∞
θ .

Then, we can apply Theorem 4.2 with a new initial configuration D(Θ(T∗)) to derive

complete synchronization.

(2) For identical oscillators with D(Ω) = 0, complete synchronization was obtained in

[34] for an arbitrary initial configuration using the gradient flow structure of the Ku-

ramoto model and uniform boundedness of the phase diameter.

(3) For a locally interacting case, complete synchronization has been studied in [47]. The

effects of inertia and frustrations in the synchronization were discussed in [22, 23, 26,

42, 43].

We next discuss a recent result [45] extending Theorem 4.2 to a configuration Θ0 with

D(Θ0) > π. Our main idea for this is as follows. For a given initial configuration Θ0

that is larger than π, we choose a sufficiently large coupling strength to squeeze the initial

configuration to a smaller configuration whose diameter is less than π in finite time. Then,

we can use Theorem 4.2 to obtain complete synchronization. To do this, we need to estimate

the dynamics of the real Kuramoto order parameters. For the phase configuration Θ =
(θ1, · · · , θN ), we define the real order parameters r and φ as follows:

reiφ :=
1

N

N∑
j=1

eiθj .

Note that r satisfies 0 ≤ r ≤ 1, and we have

ṙ = − 1

N

N∑
j=1

sin(θj − φ)
(
Ωj −Kr sin(θj − φ)

)
,

φ̇ =
1

rN

N∑
j=1

cos(θj − φ)
(
Ωj −Kr sin(θj − φ)

)
.

(4.1)

For positive constants α, δ < 1
2 , we set r∗, r∗, and ε:

βδ := (1− δ)π, r∗ :=
maxj |Ωj |√
αK sinβδ

, r∗ := 1− α(2 + sin2 βδ),

ε(r0, δ,K,Ω1, · · · ,ΩN ) :=
βδ − π

2

1 +
K(1−r0)+

(
1+ 1

r0

)
maxj |Ωj |

πKr0 sin βδ
2βδ

−D(Ω)
2

.

A detailed estimate of (4.1) under some conditions onK andΘ0 yields that the configuration

shrinks to some configuration whose diameter is strictly smaller than π in finite time. Then,

we again apply the result of Theorem 4.2 to bring about complete synchronization.
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Theorem 4.4 ([45]). Suppose that the initial configuration Θ0 and coupling strength K
satisfy

(i) r∗ ≤ r0 ≤ r∗, max
1≤i≤N

|θi0 − φ0| < π

2
+ ε.

(ii) K > max

{
maxj |Ωj |

[1− α(2 + sin2 βδ)][
√
α sinβδ]

,
βδD(Ω)

πr0 sinβδ
, D(Ω)

}
.

Then, complete synchronization occurs asymptotically.

4.2. Quantum Kuramoto models. Most analytical studies on synchronization have mainly

focused on classical Kuramoto oscillators [1]. Even for quantum mechanical phenomena

appearing in the Josephson junction array for superconductors, classical Kuramoto-like sys-

tems have been used instead of quantum models. Quantum synchronization for quantum

mechanical systems is an emerging topic, and has been studied numerically and experimen-

tally for possible applications in the control and stability of quantum devices and quantum

computation [57, 58]. Recently, the physicist M. Lohe introduced a non-abelian quantum

model that generalizes the Kuramoto model under certain conditions. Let Uj = Uj(t) be a

d × d unitary matrix encoding the quantum information of the j-th quantum oscillator. The

Lohe model reads as follows:

iU̇jU
†
j = Hj +

iK

2N

N∑
k=1

(
UkU

+
j − UjU

+
k

)
, 1 ≤ j ≤ N, (4.2)

where U †
j is the Hermitian conjugate of Uj , Hj is the prescribed constant d × d Hermitian

matrix whose eigenvalues correspond to the natural frequencies of the quantum oscillator

at node j, and K is a uniform nonnegative coupling strength. For d = 1, by the ansatzs

Uj = e−iθj and Hj = Ωj , it is easy to see that system (4.2) becomes the Kuramoto model

(2.12). On the other hand, for d = 2 corresponding to an interacting qubit system, the unitary

matrix Uj can be written as a linear combination of Pauli matrices σk, k = 1, 2, 3 and the

identity matrix I2 up to a phase factor θj :

Uj = e−iθj

(
x4
j + ix3

j x2
j + ix1

j

−x2
j + ix1

j x4
j − ix3

j

)
, Hj =

(
ω3
j + νj ω1

i − jω2
j

ω1
j + iω2

j −ω3
j + νj

)
.

In this setting, the dynamics of Uj are completely determined by the state (θj , xj) ∈ T× S3

governed by the coupled ODE system:

||xj ||2θ̇j = νj +
K

N

N∑
k=1

sin(θk − θj)〈xj , xk〉, t ∈ R,

||xj ||2ẋj = Ωjxj +
K

N

N∑
k=1

cos(θk − θj)
(
||xj ||2xk − 〈xk, xj〉xj

)
,

(4.3)

where Ωi and νi are 4 × 4 skew-symmetric real matrices and real numbers, respectively,

and 〈·, ·〉 denotes the standard inner product in R4. Lohe showed numerically that, for qubit

nodes (d = 2) with different natural frequencies and a sufficiently large coupling strength,

complete synchronization of quantum nodes occurs [57, 58].
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In the sequel, we consider the following simplified situation:

θj ≡ 0, νj ≡ 0, 1 ≤ j ≤ N.

In this case, system (4.3) reduces to the following system on the 3-sphere S3:

||xj ||2ẋj = Ωjxj +
K

N

N∑
k=1

(
||xj ||2xk − 〈xk, xj〉xj

)
, t ∈ R. (4.4)

We next introduce distinct concepts “complete synchronization” and “practical synchroniza-
tion” as follows.

Definition 4.5 ([18]). Let X := {xi}Ni=1 be a position configuration governed by system

(4.4).

(1) The ensemble X (t) approaches to asymptotic complete flocking if and only if

lim
t→∞

sup
1≤i,j≤N

||xi(t)− xj(t)|| = 0.

(2) The ensemble X (t) exhibits practical flocking if and only if for a given ε > 0, there
exists a lower bound of coupling strength K(ε) > 0 and T = T (ε) > 0 such that

K > K(ε) =⇒ sup
T≤t<∞

max
1≤i,j≤N

||xi(t)− xj(t)|| < ε.

Remark 4.6. Note that complete synchronization implies practical synchronization.

For a rigorous analysis of Lohe’s numerical results, we introduce a Lyapunov functional

D(x) representing the diameter of the configuration x:

D(x(t)) := max
1≤i,j≤N

||xi(t)− xj(t)||, t ≥ 0.

Theorem 4.7 ( [18]). Suppose that the coupling strength K, Ωi, and initial data x0 satisfy

D(Ω) := max
1≤i,j≤N

|Ωj − Ωi| < K

32
, 0 < D(x0) <

1

4
, ||xi0|| = 1, 1 ≤ i ≤ N.

Then, for any solution x = (x1, · · · , xN ) to system (4.4) with initial data x0, we have a
practical synchronization in the sense of Definition 4.5:

lim sup
t→∞

D(x(t)) ≤ 16

K
D(Ω).

We next discuss the PDE analogue of the Lohe model (4.2). Let ψj = ψj(x, t) be the

wave function of an identical quantum oscillator at the j-th node. Then, the wave function

ψ = ψ(x1, · · · , xN , t) for the whole system is given by the tensor product ⊗N
i=1ψi of one-

body wave functions. In the absence of potential force, the Schrödinger-Lohe (S-L) model

[57] for a one-body wave function reads as follows:

i∂tψj = −Δψj +
iK

N

N∑
k=1

(
ψk − 〈ψk, ψj〉

〈ψj , ψj〉ψj

)
, j = 1, · · · , N. (4.5)
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Here, 〈·, ·〉 is the standard L2-inner product in an infinite-dimensional Hilbert space, K is

the positive coupling strength, and the Planck constant � and mass are assumed to be unity.

Given an ordered N -tuple of wave functions Ψ = (ψ1, · · · , ψN ), we set

D(Ψ) := max
1≤i,j≤N

||ψi − ψj ||L2
x
.

Definition 4.8. Let Ψ = (ψ1, · · · , ψN ) be a solution to system (4.5). Then, system (4.5)

exhibits quantum synchronization if and only if the following estimate holds:

lim
t→∞

D(Ψ(t)) = 0.

Then, we can obtain similar complete synchronization estimates as in Theorem 4.7.

Theorem 4.9 ([20]). Suppose that the coupling strength and initial dataΨ0 = (ψ10, · · · , ψN0)
satisfy

K > 0, ||ψj0||L2
x
= 1, 1 ≤ j ≤ N, D(Ψ0) <

1

2
.

Then, for any solution Ψ = (ψ1, · · · , ψN ) to (4.5), the diameter D(Ψ) satisfies

D(Ψ(t)) ≤ D(Ψ0)

D(Ψ0) + (1− 2D(Ψ0))eKt
, t ≥ 0.

Proof. By direct calculation, we can show that D(Ψ) satisfies

Ḋ(Ψ) ≤ K
(
−D(Ψ) + 2D(Ψ)2

)
.

This yields

D(Ψ(t)) ≤ D(Ψ0)

D(Ψ0) + (1− 2D(Ψ0))eKt
.

5. Conclusion

We briefly discussed how a Lyapunov functional approach can be used to describe the emer-

gence of collective motions in the Cucker–Smale and Kuramoto models and their variants.

There are still many open questions to be investigated for these naive-looking models. Be-

fore we finish this paper, we address some interesting open questions for the aforementioned

models.

5.1. The Cucker-Smale model. In this subsection, we propose some open problems re-

lated to the flocking dynamics of the C-S model.

Question 1. The large-time dynamics of the Cucker–Smale model has been extensively

studied in previous literature, but these works mainly focus on global flocking, i.e., the

formation of a uni-group. When the condition on initial data in Theorem 3.1 is violated,

numerical results and the explicit solution for a two-body system illustrate the formation of

a multi-flocking scenario known as local flocking, i.e., several local flocking groups emerge
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asymptotically over time. To the best of our knowledge, these numerical results have never

been confirmed by a rigorous analysis. It might be very difficult to verify the emergence of

local flocking from a given initial configuration. However, a stability-type analysis of local

flocking configurations might be plausible. Thus, our first question is

“Can we prove the emergence of multi-clusters using the C-S model”?

Question 2. When global flocking emerges, the asymptotic flocking is the average of the

initial velocities, which is independent of the communication network, i.e., the detailed

structure of the communication weight. However, the communication network will affect

the convergence rate and spatial flocking configuration. Thus, it would be interesting to

know whether the asymptotic spatial configuration depends on the communication weight

continuously or not. Our second question is

“Can we prove the structural stability of the C-S model in terms of communica-

tion weights”?

Question 3. To date, most analytical studies on Cucker–Smale flocking have been restricted

to the flat space, i.e., Euclidean space. Thus, the curvature of the underlying ambient mani-

folds in which the flocking particles are located does not affect the particle dynamics. How-

ever, from an application viewpoint, flocking on non-Euclidean manifolds will be important.

Thus, the third question is

“Can we develop a mathematical theory for flocking on Riemannian mani-

folds”?

5.2. The Kuramoto model. As explained in Section 2.3, the Kuramoto model can be re-

garded as a special case of the Cucker–Smale model on theN -tori. Thus, we can ask similar

questions as those posed in the previous part for the C-S model.

Question 4. Due to the geometric constraint, numerical results for the Kuramoto model

always suggest that complete synchronization occurs for any initial configuration, as long

as the coupling strength is sufficiently large. However, as discussed in Section 4.1, the

analytical justification of this result is still far from completeness. Thus, the forth question is

“Can we verify the complete synchronization for any initial configuration for

sufficiently large coupling strength”?

Question 5. The Lohe model (4.2) has only been analytically investigated for the special

cases of d = 1 and d = 2. Even for these special cases, the range of admissible initial

configurations leading to complete synchronization is rather restrictive. Hence, an interesting

question is

“Can we find a framework for complete synchronization of the Lohe model in

any dimension and arbitrary initial configuration, and prove the convergence in

the large quantum particle limit”?
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Fermionic spectra in integrable models

Rinat Kedem

Abstract. This is a brief review of several algebraic constructions related to generalized fermionic

spectra, of the type which appear in integrable quantum spin chains and integrable quantum field the-

ories. We discuss the connection between fermionic formulas for the graded dimensions of the spaces

of conformal blocks of WZW theories, quantum cluster algebras, discrete integrable noncommutative

evolutions and difference equations.
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Keywords. Fermionic character formulas, Fusion products, discrete integrable systems.

1. Partition functions in statistical mechanics and conformal field theory

In statistical mechanics, a fundamental object of interest is the partition function, the sum

over the space of configurations C of the Boltzmann weight e−E/kT , where E is the energy

of a configuration:

Z =
∑
c∈C

e−E(c)/kT .

If the lattice is two-dimensional, the standard test for integrability is the existence of a

commuting family of transfer matrices. For a system with periodic boundary conditions, the

partition function can be written as the trace of the product of transfer matrices. These are

operators on the Hilbert space of a one-dimensional slice of the lattice, which depend on a

spectral parameter. The coefficients in expansion of this operator as a series in the spectral

parameter gives commuting integrals of the motion, hence integrability.

The Hamiltonian associated with the one-dimensional system is one of those integrals.

For example, the six-vertex model transfer matrix is associated with the XXZ Heisenberg

spin chain Hamiltonian [2].

The two-dimensional integrable lattice model may undergo a second-order phase transi-

tion at certain critical points, in the infinite-lattice limit. At the critical point, the behavior

of the model may be described by an effective conformal field theory. The correspondence

includes the identification of the critical exponents, given by the conformal dimensions, and

the specific heat, given by the central charge of the family of Virasoro representations which

make up the Hilbert space of the quantum field theory. It was shown in [26, 30] that the

massless part of the spectrum – that is, order 1 excitations in the statistical model, and quasi-

particles in the quantum field theory – are also related, and an identification can be made via

the partition functions.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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For the lattice model the spectrum is computed from the Bethe ansatz. The “order one”,

or massless, excitations, which contribute to the conformal partition function, have a “quasi-

particle-like” behavior. For small momenta, their energy is a linear function of the momen-

tum. We call this the linearized spectrum.

In conformal field theory, the chiral part of the partition function is given by the special-

ized characters of certain (not necessarily irreducible) Virasoro modules. The full partition

function is a modular invariant sesquilinear combination of these and includes both the chiral

and anti-chiral parts.

In the original work of the author and collaborators [26, 30], it was shown that, starting

from the Bethe ansatz, linearizing the spectrum and considering only massless excitations

above the vacuum, the resulting partition function is equal to the chiral part of the partition

function in the conformal field theory, given by Virasoro characters.

The spectrum obtained from the Bethe ansatz is invariably of fermionic nature. At

the time when this work was done, few fermionic constructions of Virasoro modules were

known. For example, the Feigin-Fuks construction of the most interesting Virasoro modules

involves a resolution of the Verma module using the singular vectors, and is thus given by an

inclusion-exclusion principle, or (in general) an infinite alternating sum.

A fermionic construction is a basis of the representation given by the action of skew-

commuting operators on the vacuum. This gives rise to fermionic statistics: Identical fermions

cannot occupy the same point in phase space. One type of generalization of fermionic statis-

tics will be given below. These rules are combinatorial and this is reflected in the expression

for the partition function.

There are various ways of constructing bases for any given Virasoro module. The idea of

fermionic constructions is that physically meaningful ones reflect the spectrum away from

criticality of the integrable quantum field theory. The particle content is some reflection of

the form of the primary fields of the conformal field theory. These fields are the generalized

fermions. See [24] for a recent example of this.

This note is organized as follows. In Section 2 we will give a few examples of fermionic

partition functions related toWZWmodels. In Section 3, we will relate the general fermionic

formulas for graded dimensions of the space of conformal blocks to cluster algebras and

quantum cluster algebras. In Section 4, we will show how the integrability of the resulting

discrete difference equations (Q-systems and their quantized version) can be used to give dif-

ference equations satisfied by generating functions for the graded dimensions of the space of

conformal blocks. These are variants of quantum difference Toda equations. These dimen-

sions are the dimensions of the moduli space of holomorphic vector bundles on the sphere

with prescribed punctures, and their graded analogs.

2. Generalized fermionic formulas

Let us be specific about what we mean by a generalized fermion and the resulting fermionic

formula for the partition function. This phenomenon occurs in finite or infinite systems. The

natural finite-dimensional system to start from is a solvable model on the finite lattice with

a spectrum governed by the statistics of the Bethe ansatz equations. The eigenstates of the

Hamiltonian with a Bethe ansatz solution are in bijection with solutions of a coupled set

of algebraic equations. The solutions are specified by a set of integers chosen distinctly on

certain finite intervals. We interpret a choice of one integer as a quasi-particle, and a choice
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of m integers as m quasi-particles. The corresponding choice of integers is proportional

to their momentum, one of the conserved quantities. The fact that the integers should be

distinct is what gives them a fermionic nature.

The resulting combinatorics is as follows. We approximate the energy of each quasi-

particle as a linear function of the momentum (they are massless) and hence the Bethe in-

tegers. This is a reasonable assumption in the conformal, infinite-size limit. Suppose the

Hilbert space withm quasi-particles hasm integers chosen distinctly from the set [1, p+m]
for some integer p ≥ 0. Let q = e−α, where α is the proportionality constant between the

energy and the Bethe integers. Then the partition function of m quasi-particles is

qm(m+1)/2

[
p+m
m

]
q

where the q-binomial coefficient is defined as[
p+m
m

]
q

=
m∏
j=1

(1− qp+j)

(1− qj)
, p ≥ m,

and is defined to be zero if p < m. The partition function of fermions on the interval

[1, p+m] is

Zp(q) =
∑
m≥0

qm(m+1)/2

[
p+m
m

]
q

.

In the limit p→∞, this formula becomes

Z(q) =
∑
m≥0

qm(m+1)/2 1∏m
j=1(1− qj)

.

The important characteristics to note are

1. There is a quadratic function of the particle number m in the exponent. This is the

“ground state energy” of a fermionic system with m particles.

2. There is a q-binomial coefficient, or its p → ∞ limit, which is just the weighted sum

over configurations above the ground state of m fermions.

A slight generalization of fermionic statistics always occurs in the Bethe ansatz solution:

The integer p is a linear function of m itself, in addition to the external parameters of the

system (such as size).

Moreover, there is in general more than one “color” of quasi-particle, and these have

available energy ranges for each color separately. Again, these are free fermions, except for

the generalized statistic which hides in the integers pi for each color: Each pi is a function

of the number mj of quasi-particles of type j in the system.

Thus a fermionic formula for the (conformal, linearized version of the) partition on the

finite lattice might has the form

Z(q) =
∑
m

(1)
qQ(m)

∏
i

[
pi +mi

mi

]
q

. (2.1)

Here, m ∈ Zk
+ for some k, The ground state energy Q(m) is a quadratic function of the

particle content m which depends on the model, as are pi, which are in general linear func-

tions of m, and may tend to infinity as the size of the system becomes infinite. Here, the
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superscript (2.1) on the summation indicates possible restrictions on the summation vari-

ables corresponding to symmetry sectors of the Hamiltonian. A finite system will have only

a finite number of terms in the summation. Moreover there may be several different symme-

try sectors of the Hamiltonian, in which case the partition function can be projected to the

different sectors separately.

If the model has a conformal limit (the size of the system is infinite while the spectrum

remains linearized, that is, the system remains critical), the partition function – properly nor-

malized and restricted – tends in the limit to the graded character of some Virasoro module.

That is, Z(q) is proportional to the trace of qL0 over the module, where L0 is the grading

element of the Virasoro algebra. A conformal field theory is built out of such modules. This

gives a direct connection between the spectrum of the lattice model and the conformal field

theory in certain cases.

2.1. The Fock space as a limit of the reduced wedge product. It is well known that the

basic representation of the affine algebra ŝln can be realized as a quotient of the Fock space of

free fermions by a Heisenberg algebra [25]. It is possible to give a finite-dimensional version

of this construction [27]. As it is closely connected to the graded tensor product construction

introduced below in Section 2.4, we briefly summarize it. This finite-dimensional fermionic

space gives – in the inductive limit – the Frenkel Kac construction of the level-1 modules.

Let V = V (ω1) " Cn be the defining representation of g = sln, and V (z) = V ⊗C[z] a
representation on which g− := g⊗C[t−1] ⊂ ŝln acts as x⊗ f(t−1)v = f(z)xv with x ∈ g,
f(t) ∈ C[t], and v ∈ V (z).

Consider the N -fold tensor product

VN (z1, ..., zN ) = V (z1)⊗ · · · ⊗ V (zN ) " V ⊗N ⊗ C[z1, ..., zN ]

on which g− acts by the usual co-product:

Δz(x⊗ f(t)) =
N∑
i=1

x(i)f(z
−1
i )

where x(i) indicates x acting on the ith factor in the tensor product. Obviously, this action

commutes with the diagonal action of the symmetric group SN , simultaneously permuting

factors in the tensor product and variables zi.
It also commutes with the action of the negative part of the Heisenberg algebra H−,

acting on the space by multiplication by symmetric polynomials in z1, ..., zN . (Operators

of the form id ⊗ t−n, n > 0). Thus, we have three commuting actions. We quotient by

the action of the Heisenberg, and project onto the alternating representation of SN , and the

result is called the reduced wedge space. It is a finite dimensional space described explicitly

as follows.

The quotient by the Heisenberg action is the quotient ofC[z1, ..., zN ] by symmetric poly-

nomials of positive degree IN . That is,

VN [z]/ImH− = V ⊗N ⊗ C[z1, ..., zN ]/IN := V ⊗N ⊗RN

The spaceRN is isomorphic to the cohomology ring of the Flag variety and to the regular

representation of SN . In particular, it is finite-dimensional. It is a graded by the homoge-

neous degree in zi and the action of the symmetric group preserves the graded components.
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Thus,

RN " ⊕
λ&N

Wλ ⊗Mλ,N ,

whereWλ are the irreducible representations of SN andMλ,N is a graded multiplicity space.

We also have the decomposition

V ⊗N "
g×SN

⊕
ν&N,l(ν)≤n

V (ν)�Wν

where ν is the partition ν stripped of its columns of length n, and V (λ) are irreducible

finite-dimensional representations of g.
Taking the tensor product with RN and projecting onto the alternating representation

with respect to the diagonal action of SN , we identify ν = λt. Thus, the reduced wedge

space is isomorphic to

FN " ⊕V (λ)⊗Mλt,N ,

where λt is the transpose of λ. The hilbert polynomial of Mλt,N is a Kostka polynomial. In

the limit as N → ∞, the properly normalized coefficient of V (λ) is a character of the W -

algebra, which is the centralizer of g acting on the level-1 module of ĝ, and the character of

FN tends to the character of the basic representation of the affine algebra. Thus the reduced

wedge product is a truncation of this space, a Demazure module.

We will give fermionic formulas for the generalizations of this Kostka polynomial below.

2.2. The Hilbert space of the generalized Heisenberg model. We now give a very general

setting which gives rise to fermionic partition functions. The wedge space in the previous

section is a special case of this construction.

The fermionic formula of the type (2.1) appears in particular in the generalized Heisen-

berg spin chain with periodic boundary conditions. This is a quantum spin chain, whose

Hamiltonian is derived via the R-matrix which intertwines tensor products of Yangian mod-

ules Y (g). The simplest case of this is known as the XXX spin chain, which was the subject

of Bethe’s original ansatz [4].

To define this spin chain, choose a the following data:

1. Any finite-dimensional Yangian module V0. This is known as the auxiliary space.

2. A sequence of N Yangian modules {V1, ..., VN} of KR-type (see below).

The choice of non-isomorphic representations Vi, i > 0 is the anisotropy of the model.

Let Rij : Vi ⊗ Vj �→ Vj ⊗ Vi be the intertwiner of finite-dimensional representations,

known as (a rational) R-matrix. For generic spectral parameters, the tensor product is ir-

reducicble and R is unique, up to scalar multiple. The transfer matrix of the generalized

anisotropic Heisenberg model with periodic boundary conditions is the trace over V0 of

the matrix M = R0,1R0,2 · · ·R0,N . The transfer matrix TV0 is an operator on the space

V1⊗V2⊗· · ·⊗VN , which is the Hilbert space of the spin chain, also known as the quantum

space.

Since the R-matrix satisfies the Yang-Baxter equation, it follows easily that the transfer

matrices corresponding to different auxiliary spaces commute. Expanding the transfer matrix

as a series in in the spectral parameter of V0, each of the coefficients in the expansion – an

element in an algebra acting on the Hilbert space – commutes with the other coefficients.

These coefficients therefore form a family of commuting integrals of motion. The spin chain

is a quantum integrable system. The quantum spin chain Hamiltonian is one of the integrals.
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This model has a Bethe ansatz solution, at least when the modules {Vi} are of Kirillov-

Reshetikhin (KR)-type [5, 31]. Such modules are parameterized by a highest weight with

respect to the Cartan subalgebra of g ⊂ Y (g) and a spectral parameter. The highest weight

of a KR-module is a multiple of one of the fundamental weights of g.
The eigenvectors and eigenvalues of the Hamiltonian are given by solutions of the Bethe

equations. Solutions are parameterized in terms of sets of distinct integers in the same man-

ner described above. The linearized spectrum is proportional to the sum of these integers.

For this particular model, there is an arbitrary number of quasi-particle species or “col-

ors” for each root of the Lie algebra g, which obey generalized fermionic statistics. The

statistics depends only on the Cartan matrix and the highest weights of {Vi}. We will write

down this function explicitly, as it is key to the rest of the paper (we restrict our attention

here to simply-laced g here for simplicity; The other cases are explained in [1, 18, 23]).

The Hilbert space of the model is V1 ⊗ · · · ⊗ VN , so its dimension is
∏

i |Vi|. (The

ordering of these representations does not effect the spectrum.) The partition function of

the linearized spectrum gives a graded version of this dimension, and we will provide a

representation theoretical interpretation of this grading.

Let λ1, ..., λN be the highest weights of V1, ..., VN respectively. Each λi is a multiple of

one of the fundamental weights, and therefore the choice of highest weights is parameterized

by a multi-partition

ν = (ν(1), . . . , ν(r)), ν(a) 9 na, (2.2)

where the non-negative integers n = (n1, ..., nr) are defined by
∑N

i=1 λi =
∑r

a=1 naωa
and r is the rank of the algebra.

Define a set of integers m = (m1, ...,mr) as follows:

Cm = n− �, �a = 〈αa, λ〉.

for any choice of a dominant integral weight λ such that m ∈ Zr
+. The evaluation of the

character chzV (λ) of the irreducible g-module V (λ) at z = (1, ..., 1) is the dimension of

V (λ).

Theorem 2.1. The linearized partition function Zν(q) is the evaluation at z = (1, ..., 1) of

Mν(q; z) =
∑
λ

Mν,λ(q)chz(Vλ),

where

Mν,λ(q) =
∑
μ&m

qQ(μ)
r∏

a=1

∏
j≥1

[
p
(a)
j + μ

(a)
j − μ

(a)
j+1

μ
(a)
j − μ

(a)
j+1

]
q

. (2.3)

The sum extends over all multipartitions μ(a) of ma, and

• The integers p(a) are the sum over the first j rows of the integer sequence π(a) =
ν(a) −∑b Ca,bμ

(b);

• The quadratic function in the exponent is

Q(μ) =
1

2

r∑
a,b=1

∑
i≥1

μ
(a)
i Ca,bμ

(b)
i .
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Theorem 2.2 (Combinatorial Kirillov-Reshetikhin conjecture, [18]). The sets of Bethe ansatz
integers correctly count the dimension of the Hilbert space of the anisotropic Heisenberg
model.

That is, when evaluated at q = 1, Equation (2.3) gives an expression for the dimension

of the space of g-linear homomorphisms from the tensor product of KR-modules to the

irreducible representation V (λ). This was known as the Kirillov-Reshetikhin conjecture

[23].

Remark 2.3. The sum in (2.3) is known as the “M -sum” in the language of [23]. There

is a similar sum called the “N -sum”, where the definition of the q-binomial coefficient is

continued to values of p < 0 by[
p+m
m

]
q

=
(qp+1; q)∞(qm+1; q)∞
(q; q)∞(qp+m+1; q)∞

, (a; q)∞ =
∏
i≥0

(1− aqi).

The fact that N(q) = M(q) is highly non-trivial; it was first conjectured by [23], who

showed that theN -sum gave the correct dimension of the tensor product. It was later proven

in [18, 19] and shown to be closely tied with the Laurent property [15] of the quantum cluster

algebra [3] associated with the Q-system, defined below.

Remark 2.4. The sum (2.3) is a generating function for certain Betti numbers of quiver

varieties in special cases [34], see also more recent work giving a geometric context [32].

2.3. Space of conformal blocks in WZW theory. The formula for the linearized partition

function of the Heisenberg spin chain is of interest for several reasons.

First, it is known that, in special stabilized infinite limits, its conformal limit is the Wess-

Zumino-Witten model at a level which depends on the representations Vi.

Example 2.5. Let g = sl2, set Vi = V (kω1) for all i = 1, ..., N , and consider the limit as

the number of representations, N = 2M becomes infinite. Then the limit M → ∞ of the

normalized partition function limM→∞ Z̃2M (q; z) is the character of the level-k module of

the affine Lie algebra ŝl2 with highest weight kΛ0.

Example 2.6. Let g = sln and Vi = V (ω1) " Cn. Then in the limit N → ∞ the

normalized, linearized partition function (2.3) is a Kostka polynomial [27]. In the conformal

limit, this gives a character of the Wn-algebra which centralizes the action of g when acting

on the level-1 modules.

Another important role of the linearized partition function of the Heisenberg model is

that it gives the dimension (at q = 1) of the space of conformal blocks of WZW theory

(when k ' 1 is an integer). This is the dimension of the moduli space of holomorphic

vector bundles on a Riemann surface withN punctures, with specified monodromy given by

the representations Vi, which are taken to be arbitrary ĝ-modules induced from KR-modules,

localized at distinct points. It is also known as the space of coinvariants.

Remark 2.7. The reason we take k to be integer is that the integrality property of the rep-

resentations is used in the proof of the statement. The reason we require k ' 1 is that for

finite k, one has the Verlinde coefficients rather than the Littlewood Richardson coefficients

for multiplicities of the irreducibles in the tensor product of integrable modules affine al-

gebra modules. We did not take this into account in (2.3). A separate conjecture for the
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fermionic formula of the linearized partition function of this space can be found in [11]. If

k is sufficiently large, the multiplicity is just as a sum of products of Littlewood Richardson

coefficients or their generalization.

We have a graded version of the dimension of the moduli space, meaning we keep track

of a certain grading or a refinement of the space. It is known that, in special cases, this corre-

sponds to keeping track of the Betti numbers for a certain quiver variety, giving a geometric

meaning to the graded dimensions.

2.4. A grading on the tensor product. It is known that the Hilbert space of the Heisenberg

model, together with the linearized spectrum of the Hamiltonian, in the limit when the num-

ber of representations Vi becomes infinite (taking all Vi " V , the defining representation,

for example), gives the characters of affine algebras in the limit as the (chiral) conformal

partition function. The relevant conformal field theory is the WZW model at level 1.

Remark 2.8. There is also an explicit construction of this infinite-dimensional Hilbert space

for the XXZ model, using the quantum affine algebra, using a stabilized semi-infinite tensor

product [7]. In this case it is possible to construct the transfer matrix in terms of intertwining

operators which gives a direct connection with the deformed primary fields of the conformal

field theory.

Moreover, we identify the dimension of the Hilbert space of the finite, inhomogeneous

Heisenberg model with dimension of the space of conformal blocks (for level k sufficiently

large).

These two facts form the motivation for the following definition of a graded tensor prod-

uct [11]. Whereas there are other definitions of an “energy function” on the tensor product

which defines a grading on the tensor product in the case of quantum affine algebras (these

correspond to the XXZ model, or the limit q → 0 in the case of the crystal basis), the

definition here refers only to the undeformed current algebra.

Remark 2.9. KR-modules are defined for three algebras: For the quantum affine algebra

Uq(ĝ), the Yangian Y (g), and the current algebra ĝ. [5, 31]. One of the consequences of the

theorems of [1, 18] is that these all have the same structure under restriction to the underlying

finite dimensional algebra, g or Uq(g) [29]. Here we use only the current algebra version.

Definition 2.10. Let V be a cyclic g[t] = g ⊗ C[t]-module, defined by the representation

π. We define the representation πζ on V as follows. Given x ⊗ f(t) ∈ g[t] and w ∈ V ,

πζ(x⊗ f(t))w = π(x⊗ f(t+ ζ))w, for some ζ ∈ C∗.

That is, the localization takes place at ζ. We use the shorthand V (ζ) for the module with

the action πζ , even though the vector space itself is simply V .

Now pick Vi(ζi) to be KR-modules of g[t], with 1 ≤ i ≤ N , with ζi �= ζj for all i �= j.
Let vi be the cyclic, highest weight vector of Vi. We have Vi(ζi) = U(g[t])vi, and the tensor

product is also cyclic (as long as the localization parameters are distinct):

V1(ζ1)⊗ · · · ⊗ VN (ζN ) = U(g[t])v1 ⊗ · · · ⊗ vN .

(The assumption that we have KR-modules is not essential at this point, only that each of the

modules Vi is cyclic.)
The algebra g⊗ C[t] is graded by degree in t, and so is its universal enveloping algebra.

Let Ui denote the graded component. The action of Ui on the tensor product of cyclic vectors
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inherits this filtration, and therefore we have a filtration of the tensor product itself. The

associated graded space of this filtered space is called the Feigin-Loktev “fusion” product,

F∗
V1,...,VN

.

Theorem 2.11 ([1, 18, 29]). The associated graded space is isomorphic to the tensor product
of KR-modules as a g-module. That is, it is independent of the localization parameters ζi.

For the proof of this theorem, it is essential that Vi are of KR-type. The graded F∗
V1,...,VN

is defined as a quotient space, so in general, its dimension may be greater than the dimension

of the tensor product itself. It corresponds to the “collision” of all the points ζi.
The theorem about the dimension of this space was proven using a function space realiza-

tion for the space of conformal blocks (coinvariants), and the use of the Kirillov-Reshetikhin

conjecture about the explicit fermionic formula for the dimension of this space [1]. The final

step in this proof uses a theorem of [23] and the proof of the “M = N” conjecture at q = 1
in [18].

Let ν be the parameterization of the collection of the KR-modules as in (2.2), and let Let

F∗
ν,λ[n] = Homg(F∗

ν [n], V (λ)). and consider the Hilbert polynomial
∑

n≥0 q
n dimF∗

ν,λ[n].
The following strong version of Theorem 2.11 is proven in [19]:

Theorem 2.12 ([19]). The Hilbert polynomial of the Feigin-Loktev graded tensor product is
equal to the conformal partition function (2.3).

We will introduce an expression for the partition function (2.3) as a constant term in

the product of solutions of the Q-system, a discrete recursion relation, in the next section.

At the same time, we will identify the Q-system as a mutation in a cluster algebra, which

therefore has a natural q-deformation. The proof of Theorem 2.12 will uses the methods of

[18] applied to this quantum cluster algebra.

Remark 2.13. In special cases, the FL graded tensor product is an affine Demazure module

[17], which has a grading by the Cartan element d of the affine algebra. This grading is

essentially the same as the FL-grading. Therefore we are guaranteed that the appropriate

semi-infinite graded tensor product is the full affine algebra module.

By definition [1], the idea of an associated graded space is equivalent to taking all the

spectral parameters ζi → 0. The sum over the multipartitions μ in equation (2.3) can be

viewed as a sum over all possible desingularizations of this degeneracy (this is evident from

the derivation using functional space realization in [1], see also [36]).

3. Difference equations and the fermionic formulas

It was originally observed in the context of the completeness conjecture of the Bethe ansatz,

and later by the original attempt at proving the combinatorial Kirillov-Reshetikhin conjecture

[23], the fermionic sumMν(q; z) in Equation (2.3) is closely related to a difference equation

called the Q-system.

Let χa,k be the character of the KR-module with highest weight kωa, restricted to

g ⊂ g[t].

Example 3.1. If g = sln then the KR-modules are irreducible under the restriction to g, and
are the modules with “rectangular highest weights”. In that case, χa,k is a Schur function

S(a)k(z1, ..., zn) with
∏

zi = 1.
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For any Lie algebra, the functions χa,k satisfy a simple difference equation: In the case

where g is simply-laced, this is a two-step recursion relation. Consider the system

Q
(a)
k+1Q

(a)
k−1 = (Q

(a)
k )2 −

∏
b �=a

(Q
(b)
k )−Cab . (3.1)

(The relation is only slightly more cumbersome for non-simply laced algebras, and has a

generalization for g an affine algebra.)

A two-step recursion relation has a unique solution given initial data. The natural initial

data for the Q-system is

1. The character of the trivial representation is equal to 1, χa,0 = 1. Therefore, set

Q
(a)
0 = 1 for all 1 ≤ a ≤ r where r is the rank of the algebra.

2. Identify Q
(a)
1 with the character of the fundamental KR-modules, χa,1.

Theorem 3.2 ([35]). The characters of the Kirillov-Reshetikhin are solutions of the Q-
system (3.1) with the initial data (2.1) and (2.2).

The Q-system is a specialization of the T -system, satisfied by the transfer matrices of

the XXZ spin chain, or by the q-characters [20] of the KR-modules.

Remark 3.3. For any given quantum spin chain, one can derive Bethe ansatz equations

from different functional relations, obtaining a different set of coupled algebraic equations

(the Bethe equations). Although it is standard procedure to use Baxter’s equation to derive

Bethe equations, it is also possible to use the T -system, see e.g. [6]. The resulting equations,

their solution and linearized spectrum, take a different form depending on the original func-

tional relation. This reflects the fact that in the degenerate case of a massless spectrum (the

critical point) there may be several different descriptions of the spectrum as a quasi-particle

spectrum. This degeneracy is resolved when a massive integrable perturbation is considered.

The transfer matrices satisfy T -system relation, a conjecture of Kirillov and Reshetikhin

proved (for finite, simply-laced Lie algebras) by Nakajima [35], using the realization of

the representation theory of the quantum affine algebra in terms of his quiver varities. The

T -system is satisfied by q-characters of the KR-modules [20]. This is the algebraic Kirillov-

Reshetikhin conjecture. Nakajima even proved a deformed version of the T -system which

holds for twisted tensor products of KR-modules. Theorem 3.2 follows from this work.

The relation of the Q-system to the multiplicity formulas starts as follows. Recall the

definition of the “N -sum” in Remark 2.3. Then there is a constant term identity for the

N -sum in terms of solutions of the Q-system. Define

Zν,λ(Q0,Q1)
(k) =

r∏
a=1

Q
(a)
1 (Q

(a)
0 )−1

⎛⎝∏
i≥1

(Q
(a)
i )ν

(a)
i −ν

(a)
i+1

⎞⎠ (Q
(a)
k (Q

(a)
k+1)

−1)〈αa,λ〉+1,

(3.2)

where Q
(a)
i are solutions of the Q-system (3.1). Define 〈Z〉 to be the constant term of Z in

{Q(a)
1 }a, evaluated at {Q(a)

0 = 1}a.
Theorem 3.4. Let

N
(k)
ν,λ(1) = 〈Zν,λ(Q0,Q1)

(k)〉.
Then there exists an integer J such that whenever k > J , N (k)

ν,λ(1) is independent of k, and
is equal to Nν,λ(1).



Fermionic spectra in integrable models 1151

The proof is by induction, using direct computation, starting from the fermionic formula

(2.3).

We still need to show that N = M , however. Moreover, we need an identity for the

q-multiplicities themselves. For this, we do not need to use the representation theoretical

interpretation of theQ-system. Instead, we will use the Laurent property of cluster algebras.

3.1. Q-systems as mutations in a cluster algebra. Here, we give an interpretation of the

variables Q
(a)
k as cluster variables in a cluster algebra.

A cluster algebra is the commutative algebra generated by the union of cluster variables,
defined recursively. It was originally introduced by Fomin and Zelevinsky [15] in a repre-

sentation theoretical context, but has been shown to have applications far beyond the original

motivation. We refer to Fomin’s ICM lecture notes for a good overview [14].

We use only the simplest version. Let B be a skew symmetric n × n integer matrix

(equivalently, a quiver with no 1- or 2- cycles), called the exchange matrix. Vertices of the

quiver are numbered from 1 to n and the integer Bij is the number of arrows from j to i.
Let x = (x1, ..., xn) be formal (commutative) variables associated with the vertices. Fix

1 ≤ j ≤ n and define x′j

x′j =

∏
i:j→i

xi +
∏
i:i→j

xi

xj
. (3.3)

This is called a mutation of x in the direction j, denoted by the operation μj . If i �= j,
μj(xi) = xi. However, the quiver itself changes under the mutation as follows:

• For any sequence i→ j → k, add an arrow i→ k.

• Reverse any arrows incident to i.

• Erase any resulting 2-cycles.

The collection of generators of the cluster algebra is the result of all possible sequences of

mutations of x. The pair (B,x) is called the seed data.

Any Q-system (that is, Equation (3.1) and its generalizations), can be shown to be a

mutation in a cluster algebra [28]. In the case of (3.1), it is the cluster algebra defined by the

seed data (x0, B) where

B =

(
0 −C
C 0

)
, x0 = (Q

(1)
0 , . . . , Q

(r)
0 ;Q

(1)
1 , . . . , Q

(r)
1 ). (3.4)

Note that we do not impose Q
(a)
0 = 1 at this stage.

The Q-system equations are a special subset of the mutations of the cluster algebra1 .

They can be shown to be the equations a discrete integrable system [9], with the integrals of

motion given by those of the Toda system [22]. This is due to the existence of an integrable

Poisson structure compatible with the cluster algebra structure. Such a Poisson structure can

always be deformed to give a quantum system, which in the case of cluster algebras is called

a quantum cluster algebra [3, 13] (see below).

1 Although traditionally, the coefficients in a cluster algebra are taken to be +1, we keep the minus sign in the

current context. This can be dealt with by (1) renormalizing the Q-variables or (2) introducing coefficients [8].

However this is irrelevant in the current context.
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Any cluster algebra (and a much larger class of discrete rational evolution equations) can

be shown to have a Laurent property. The transformation (3.3) is a rational transformation.

Although it is obvious after a single mutation, it is not at all obvious after several steps of

mutations that the rational function is, in fact, a Laurent polynomial in the seed data, because

the term in the denominator is itself a polynomial in the initial seed data.

Theorem 3.5 (Laurent property [16]). Any cluster variable in a cluster algebra is a Laurent
polynomial in the cluster variables of any other seed in the cluster algebra.

Taking the Q-system with the initial seed data consistent with the character interpreta-

tion, this implies the following:

Theorem 3.6 ([8]). Any cluster variable (not just solutions of theQ-system) in the cluster al-
gebra with seed data (3.4) is a polynomial in the variables (Q(1)

1 , . . . , Q
(r)
1 ) after evaluation

at Q(a)
0 = 1.

Proof. This is a consequence of the Laurent phenomenon and the fact that the right hand

side (the numerator in the exchange relation) of (3.1) vanishes at k = 0.
We illustrate this for the case of g = sl2. The generalization is clear. Let x be a cluster

variable in the cluster algebra. Then x(Q−1;Q0) = Q−m
0

∑
n∈Z pn(Q0)Q

n
1 , where pn is a

polynomial. Performing the exchangeQ1 = N(Q0)/Q−1, we have x = Q−m
0

∑
n∈Z pn(Q0)

Q−n
1 N(Q0)

n. If n < 0, since N(Q0)
n in the denominator is a polynomial, it must cancel

with the term pn(Q0) in the numerator, because the result must be a Laurent polynomial.

That is, for any n < 0, pn(Q0) is divisible by N(Q0). (Up until this point, the argument

holds for any bi-partite cluster algebra of any rank.) Therefore, pn(1) = 0 for any n < 0.
Therefore, the cluster variable x under this evaluation has only terms Qn

1 with n ≥ 0. The

generalization to arbitrary rank relies on the identical argument: All variables and indices

should be changed to multi-variables and multi-indices.

When applied to the Q-system, the theorem implies that the KR-modules are generated

as Groethendieck ring by the fundamental KR-modules.

The importance of polynomiality is in the proof of the “M = N conjecture” [23] which

is the final step in the proof of the combinatorial KR-conjecture [18, 29] and hence the

Feigin-Loktev conjectures [1].

Theorem 3.7 ([18]). The constant term in Q
(a)
1 of Zν,λ(Q0 = 1,Q1) has no contributions

from terms in the summation in which any of the integers pa,i < 0. That is, Mν,λ(1) =
Nν,λ(1).

The Laurent phenomenon and the polynomiality theorem generalize to the quantum Q-

system.

3.2. The quantum Q-system from quantum cluster algebras. We are interested in the

q-graded version of Theorem 3.7. This is obtained by using a q-deformation of the Q-

system. There is a constant term identity for the graded partition function (2.3) in terms of the

solutions of the quantum Q-system. Aside from enabling us to prove that “N(q) = M(q)”,
it gives yet another interpretation of the grading of the multiplicity.

Given any skew-symmetric exchange matrix, one can define a quantum cluster algebra

[3, 13], a deformation of the compatible Poisson structure of the cluster algebra [21]. A
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quantum cluster algbra is a non-commutative algebra generated by the seed data obeying

q-commutation relations, together with all its mutations. The combinatorial data is the same

as in the classical case, and the exchange matrix is still the same matrix B.

Performing this deformation for the cluster algebra of theQ-system, one obtains a quan-

tum Q-system:

tΛa,aQ(a)
k+1Q(a)

k−1 = (Q(a)
k )2 −

∏
b �=a

(Q(a)
k )−Cab , (3.5)

whereQ(a)
k generate a non-commutative algebra defined by (3.5) and the commutation rela-

tions

Q(a)
n Q(b)

n+1 = tΛabQ(b)
n+1Q(a)

n , (3.6)

with Λ = |C|C−1. The variables {Q(1)
n , ...,Q(r)

n } commute.

We will eventually identify q = t−|C| in our derivation of the M -sums below.

Given initial seed data x0 = (Q(a)
0 ,Q(a)

1 )a∈[1,r], any cluster variable can be expressed

as a Laurent polynomial in the initial seed data, with coefficients in Z[t, t−1] (the Laurent

phenomenon for quantum cluster algebras was proven in [3]). Therefore, any Laurent poly-

nomial M of cluster variables can be expressed as a Laurent polynomial in terms of any

initial cluster seed, for example, {Q(a)
0 ,Q(a)

1 }. By using the commutation relations (3.6),

this Laurent polynomial can be written in a normal ordered form, as a finite sum

M =
∑

n,m∈Zr

r∏
a=1

(Q(a)
0 )ma

r∏
b=1

(Q(b)
1 )nbfm,n(t) (3.7)

where fn,m(t) ∈ Z[t, t−1].
We define the analogue of “a constant term” identity in the quantum case by taking the

constant term of this expression in Q
(a)
1 , and by evaluating at Q

(a)
0 = 1.

Definition 3.8. Given a Laurent polynomial M in {Q(a)
0 ,Q(b)

1 }a,b, define its constant term

evaluated at Q(a)
0 = 1 by first, defining the coefficients fm,n(t) ∈ Z[t, t−1] as in (3.7), then

defining

〈M〉 =
∑
m

fm,0(t).

(Note that it is important to perform the evaluation after normal ordering the expression,

otherwise, we miss out on the t-grading.)
The quantum Laurent property can be shown to imply that for the quantum Q-system,

any cluster variable, after evaluation at Q(a)
0 = 1, is in fact a polynomial in {Q(a)

1 }a with

coefficients in Z[t, t−1] (the analog of theorem 3.6).

For a given finite sequence ν and a fixed k, define

M
(k)
ν,λ =

r∏
a=1

(
Q(a)

1 (Q(b)
0 )−1

) →∏
i≥1

r∏
a=1

(Q(a)
i )ν

(a)
i −ν

(a)
i+1

r∏
a=1

(Q(a)
k (Q(a)

k+1)
−1)〈ωa,λ〉+1 (3.8)

Again, when k is sufficiently large, 〈M (k)
ν,λ〉 is independent of k.

Upon multiplying by an appropriate power of q and identifying the deformation param-

eter t of the cluster algebra as q = t−|C|, we have
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Theorem 3.9 (Constant term identity [19]).

Mν,λ(q
−1) = qh(ν,λ)〈Mν,λ〉.

for k sufficiently large. Here the normalization factor is

h(ν, λ) = −1
2

r∑
a,b=1

∑
i≥1

ν
(a)
i C−1

ab ν
(b)
i − 1

2

r∑
a=1

C−1
aa �a −

r∑
a,b=1

C−1
ab ν

(b)
1 .

The polynomiality property, which follows from the Laurent property for the quantum

Q-system, implies

Lemma 3.10 ([19]). The cluster variables in the quantum cluster algebra corresponding to
the Q-system, after normal ordering and evaluation at Q(a)

0 = 1 for all a, are polynomials
in {Q(a)

1 }a.
Thus, we have the graded version of the M = N identity:

Theorem 3.11 ([19]). In the summation in Equation (2.3), terms with pa,i < 0 do not
contribute to the sum in the q-graded version of the identity. That is, Mν,λ(q) = Nν,λ(q).

4. Difference equations

So far, we have said nothing about the integrability of the Q-system and its Q-deformed

version. But in fact, this is a two-step recursion relation of rank r, and it has r integrals of

the discrete evolution (which are in involution with each other with respect to the Poisson

structure of the cluster algebra, or the commutation relations of the quantum cluster algebra).

In type A for example, the solutions Q
(a)
k satisfy linear recursion relations with r+ 2 terms,

and with coefficients which are integrals of the motion (or constants).

These integrals of the motion can be used to find differential/difference equations satis-

fied by generating functions for partition functions (characters of graded tensor products).

This derivation is analogous to the construction of the Whittaker functions, which are solu-

tions of the quantum Toda equations in the case of classical Lie groups, where the integrals

of the motion are the Casimir elements of the algebra [33]. More recently there has been a

certain interest in the so-called Gaiotto vector, which is the analog of the Whittaker vector

for Virasoro algebras, or some degenerate version thereof.

Since certain stabilized limits of the graded tensor products tend to various Virasoro

modules or integrable affine algebra modules, it is useful to first write these equations for the

finite tensor product. The result are Toda-like equations satisfied by the generating function

(the relation of fermionic character formulas and Toda equations was noted in, e.g. [12]).

This can be used to derive difference equations satisfied by the stabilized limits of the graded

tensor products, and even solve them in special cases. One can obtain the character formulas

of Feigin and Stoyanovskii, or of spinon type, by analyzing these difference equations.

The analog of the Whittaker function in the case of the graded tensor product is the

generating function [10]

G(q; z,y) =
∑
ν,λ

qf1(ν)chzV (λ)Mν,λ(q)
∏
a,i

(ya,i)
ν
(a)
i −ν

(a)
i+1 ,
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with f1(ν) =
1
2

∑
a,b,i ν

(a)
i C−1

a,bν
(b)
i +

∑
a,b C

−1
ab ν

(b)
1 . Using the factorization formula of

Section 3.2, this has a very simple form:

G(q; z,y) = 〈
r∏

a=1

Q(a)
1 (Q(a)

0 )−1
r∏

a=1

∏
j≥1

(1− y
(a)
j Q

(a)
j )−1τ(z)〉

where

τ(z) = lim
k→∞

∑
λ

qf2(λ)chzV (λ)
r∏

a=1

(Q
(a)
k (Q

(a)
k+1)

−1)〈αa,λ〉+1,

where f2(λ) = − 1
2

∑
a C

−1
aa �a.

We claim that τ(z) plays the role of the Whittaker vector, with the role of the Casimir

elements played by the discrete integrals of motion of the Q-system. These act by scalars

on this function, whereas they act as q-difference operators on the product of Q’s to the left.

This is the origin of the difference equations satisfied by the partition functions.

5. Summary

We reviewed here the role played by the fermionic formulas for the characters of graded

tensor products of current algebra modules, their close connection with discrete integrable

equations called Q-systems, and their q-deformations. In the process, we used the formu-

lation of these systems in terms of (quantum) cluster algebras, and found that the grading

coming from the affine algebra action on the tensor product can be identified with the grad-

ing coming from the q-deformation of the cluster algebra, hence from the natural Poisson

structure satisfied by the cluster algebra variables. The resulting graded tensor products, in

the stabilized, semi-infinite limit, give a constrution of affine algebra or Virasoro modules.

The integrability of the quantum Q-system is closely connected with difference equations

satisfied by the characters of these modules.
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Deformed ensembles of random matrices

Sandrine Péché

Abstract. In this article, we review recent results in the study of asymptotic spectral properties of some

perturbation of large random matrices. Deformed models have arisen in random matrix theory in Baik,

J.; Ben Arous, G.; Péché S. Phase transition of the largest eigenvalue for nonnull complex sample
covariance matrices. Ann. Probab. 33 (2005), no. 5, 1643-1697. In this review, we consider additive

or multiplicative deformations of standard Wigner or sample covariance matrices. We consider the

phenomenon of separation of extreme eigenvalues and the question of universality of their asymptotic

distribution for random matrices with a non necessarily Gaussian distribution.
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Keywords. Probability, random matrices, separation of eigenvalues, universality.

1. Introduction

Random matrix theory developed during the last two decades in numerous fields of math-

ematics and physics. In particular, connections with mathematical statistics, mathematical

physics and the KPZ equation, random graphs, combinatorics , number theory and operator

algebra theory have now made Random Matrix Theory some kind of paradigm. One reason

for this outstanding development is that limiting random matrix quantities have been proved

to be universal objects, in the same vein as the Gaussian distribution is universal. Hereafter,

we propose to review the known results about some special ensembles of random matrices,

known as deformed random matrices, as opposed to standard random matrices. These mod-

els have proved to be relevant to many fields of mathematics, such as statistics, mathematical

physics and random graphs as we propose to briefly expose in these proceedings.

1.1. Models of random matrices.

Standard random matrices. There are two fundamental classes of standard random ma-

trices, namely Wigner matrices and sample covariance matrices.

A real symmetric (resp. complex Hermitian) Wigner random matrix is a matrix W =
(Wij) of size N × N with independent real (resp. complex) entries above the diagonal

Wij , 1 ≤ i ≤ j ≤ N . These entries have mean 0 (m = 0) and have the same variance

E|Wij |2 = σ2. Since the pioneering work of Wigner [58], the spectrum of large Wigner

matrices is now quite well known. In particular, denoting by

λ1 ≥ λ2 ≥ · · · ≥ λN

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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the ordered eigenvalues of WN := 1√
N
W , the spectral measure 1

N

∑N
i=1 δλi

a.s. converges

weakly to the famous semi-circle distribution with density
√
4σ2 − x2

2πσ2
�[−2σ,2σ](x).

This is the first demonstration of a universality phenomenon, as this property holds true re-

gardless of the details of the distribution of the matrix elementsWij , apart from the variance

σ2.

In addition, provided the fourth moment of the entries is uniformly bounded, the whole

spectrum lies in the interval [−2σ, 2σ] with probability arbitrarily close to 1 as shown in

[4]. The local properties of the spectrum of Wigner random matrices are now quite well

understood thanks to the fantastic work of Erdös-Schlein-Yau (see [30, 31] and references

therein) and Tao-Vu [54]. In particular, it is known (under some assumption on the tail

distribution of the matrix elements) that the largest eigenvalue of a standard Wigner matrix

has universal fluctuations. More precisely [30, 52, 54] consider the case where the Wij’s

have sub-exponential tails:

∃C, c > 0, P(|Wij | ≥ x) ≤ Ce−cxη

, ∀ 1 ≤ i, j ≤ N, (1.1)

and vanishing third moments m3 := EW 3
ij = 0, ∀i, j = 1, . . . , N. One can show that for

any integer k, the random vector

N2/3(λ1 − 2σ, . . . , λk − 2σ)
converges in distribution as N → ∞ to the famous Tracy-Widom distribution for the k
largest eigenvalues defined in [55].

Random sample covariance matrices are formed from a matrixX = (Xij) of sizeN ×p
with independent real (resp. complex) entries Xij , 1 ≤ i ≤ N ; 1 ≤ j ≤ p such that

EXij = 0 and E|Xij |2 = 1. In the high dimensional setting, it is assumed that p/N →
γ ∈ (0,∞). In the large dimension limit, the associated rescaled sample covariance matrix

MN = 1
NXX∗ exhibits properties which are similar to those ofWigner matrices. Its spectral

measure converges to the so-called Marcenko-Pastur [44] distribution with density

1

2πx

√
(x− u−)(u+ − x), u± = (1±√γ)2.

Similarly, under the same moment assumptions on the Xij’s as for the Wigner case, the

vector of k largest eigenvalues

N2/3 (λ1 − u+, . . . , λk − u+)

converges in distribution as N, p→∞, p/N → γ to the Tracy-Widom distribution.

Deformed ensembles. A deformation of a standard random matrix can be more or less

understood as the modifications of the distribution of some of the entries ofW orX . The set

of possible deformations is non exhaustive (one can force some of the entries to be zero such

as for sparse matrices) but we here restrict our attention to some particular deformations.

More precisely, we consider a matrix A of size N , which can be deterministic or random.

We consider the deformed matrices

WN +A or (I +A)1/2MN (I +A)1/2.
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The question is to understand the asymptotic properties of the eigenvalues and eigenvectors

of the deformed matrix, knowing that of A and WN (or MN ). This question actually has

a long history in random matrix theory and applications, as we recall hereafter. In full

generality, when the rank of the perturbation is r << N , the global behavior of the spectrum

is not impacted by the deformation matrix A. Indeed, consider the empirical eigenvalue

distribution

μN :=
1

N

N∑
i=1

δλi(WN+A).

Then μN still weakly converges a.s. to the semi-circle distribution. This is an easy

consequence of the Weyl interlacing property of eigenvalues. The same result also holds

true for sample covariance matrices. Throughout the article, we assume that the eigenvalues

ofA do not depend onN (unless explicitly stating this dependence). However we allow their

multiplicity and thus the rank of A to depend on N . This will ease the exposition, without

impacting the generality of the statements.

Deformed Ensembles essentially provide modifications at the edges of the spectrum.

Therefore, the rest of the review will essentially be concerned with the behavior of extreme

eigenvalues. We consider both convergence and fluctuations of extreme eigenvalues, focus-

ing on the largest. Similar statements can be made for the smallest eigenvalues in the Wigner

case and in the sample covariance matrix case when γ > 1.

1.2. Motivations. The first field of applications comes from mathematical statistics.

In [59], Wishart initiated the first rudiments of random matrix theory. Wishart indeed deter-

mines the distribution of the covariance matrix XX∗ of a p-sample of multivariate normal

N -dimensional vectors N (0,Σ), where Σ is a given non negative matrix of size N . The

idea beyond was to use the data XX∗ to estimate the true covariance Σ. Using central limit

theorem arguments, the study of the Gaussian case shall then extend to more general distri-

butions. This idea proved to be fruitful and has led to the definition of multiple statistical

procedures (including principal component analysis) in the case where the dimension N is

much smaller than the sample size p. However, due to the improvement of storage capac-

ities, usual statistical schemes have now to be considered in the high dimensional setting,

i.e. when both N and p grow in a comparable way. This is the regime where random ma-

trix theory, in particular random sample covariance matrices enters the scene, because usual

statistical procedures fail. In a much more general context, this question of reconstructing

Σ (partially) from the data can be understood in the following way: the information Σ is

blurred into random noise yielding the data matrix XX∗. This question is of interest nowa-

days in digital communications [26] , finance [18], genetics [46] and can be summarized

as follows: can we detect (or estimate some parameters in) the true signal Σ given the data

matrix XX∗?
Random matrix theory has also deep connections with mathematical physics, starting

with Wigner [58] who was motivated by problems from quantum physics, on the energy

levels of heavy nuclei and initiated the investigation of spectra of large random matrices.

Since then, limiting distributions of randommatrix ensembles have been proved to determine

the asymptotic fluctuations around limiting shapes of many random growth models (see e.g.

[27] for a recent review). We mention hereafter a basic example making an exact connection

between random matrices and growth models.

Consider the following directed percolation model (which is also related to the directed
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polymer problem in (1 + 1) dimension): assume that at each of the lattice points (i, j) ∈ N2

a random waiting time is attached wi,j ≥ 0. The waiting times are independent random

variables. A path from (i, j) to (i′, j′) is said to be north-east (N-E) if it has only up (0, 1)
or right (1, 0) increments. A passage time from (1, 1) to (N, p) is the sum of waiting times

collected along a N-E path from (1, 1) to (N, p). The last passage time from (1, 1) to (N, p),
denoted by L(N, p) is then the maximum of passage times over the set of N-E paths. K.

Johansson proves the following connection in [37]. Let π1, . . . , πN be positive real numbers.

In the special case where the w′
i,js are exponential random variables with mean πi,

L(N, p) has the same distribution as the largest eigenvalue of the complex Wishart ma-

trix with covariance Σ = diag(π−1
1 , . . . , π−1

N ). However it is believed that the asymptotic

distribution of L(N, p) as N, p → ∞ shall be the same for any distribution of the waiting

times with subexponential tails (see [7, 16]). The directed percolation model described here-

above has a natural interpretation in terms of a randomly growing Young diagram (see [37]).

It is also related (asymptotically) to the description of some models of Totally Asymmetric

Simple Exclusion Process -Tasep- which is a non reversible process of interacting particles

on Z (see e.g. [49]). In this model, a configuration of particles on Z starts with some given

(possibly random) initial configuration and obeys the following dynamics. Each particle has

its own independent clock, which rings after an exponential waiting time (whose rate possi-

bly depends on the particle) and then resets. Each time its clock rings, the particle attempts

to jump to the right neighboring site. Jumps are however allowed only if the neighboring

site is free of particles. Obviously, the large time asymptotic behavior of the configuration

of particles depends on the initial distribution of particles on Z. The most complete con-

nection between Tasep and (deformed) random matrices has been obtained in [9]. Therein,

the authors consider the two-sided Bernoulli initial condition, that is when all the sites to

the left (resp. right) of the origin are initially occupied independently with probability ρ−
(resp. ρ+). Such initial conditions give rise to different interesting phenomenons in Tasep

(including shocks for example) depending on ρ− and ρ+. The asymptotic behavior of two-

sided Tasep can then be characterized using the distribution of the largest eigenvalue of some

deformed random matrix ensemble. We refer the reader to [9] for more detail.

It happens that all the above models (LPP, growth models of Young diagram and Tasep)

are discrete models which are believed to fall in the so-called KPZ universality class. The

KPZ [39] equation describes the evolution of the height of the random surface above x at

time t :
∂h(#x, t)

∂t
= ν∇2h+

λ

2
(∇h)2 + η(#x, t) ,

where η(#x, t) is space-time Gaussian white noise. Here ν, λ, and D are parameters of the

model and d is the dimension. It is believed that the height function appropriately rescaled

(with universal spatial and temporal exponents) fluctuates around some limiting shape h̄
and that the limiting distribution is also universal. In addition, in dimension 1, the limiting

distribution shall be that of the largest eigenvalue of a randommatrix (deformed or standard).

The expected corresponding randommatrix ensemble is actually described in [27] depending

on h̄ and the initial condition only.

Another kind of application would concern linear algebra theory. Given the spectrum of

two real symmetric (resp. complex Hermitian) matrices W and A, what can be said about

the spectrum of their sum W + A? This fantastic problem has been first considered by

Weyl [57] in the algebraic setting, and since then by many authors (see the recent review

by Knutson and Tao [42] e.g.). This algebraic question turns out to be easier, but very rich,
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in the randomized version. One can indeed partially answer this question in the context of

(large) random matrix theory, as we now explain.

Consider the deformation of a Wigner matrix WN by the addition of a deterministic matrix

A. This question has been first considered in the seminal article [32]. Therein, Komlós and

Füredi consider the rank-one perturbation

MN =WN +
m√
N
J, Jij = 1, ∀ 1 ≤ i, j ≤ N.

This model corresponds to a large real symmetric random matrix with non centered entries.

Their motivation comes from random graph theory, more precisely the spectral analysis of

the adjacency matrix of the Erdös-Rényi graph. Lidskii’s theorem (see [1] e.g.) ensures that

the asymptotic eigenvalue empirical distribution is unchanged by the perturbation. However

[32] prove that the largest eigenvalue λ1 of M separates from the rest of the spectrum in the

large size limit. More precisely, when m �= 0 they show that

λ1 −Nm− σ2

m√
N

d→
N→∞

N (0, 2σ2).

The rest of the spectrum is shown to lie in the interval [−2σ√N, 2σ
√
N ] with probability

arbitrarily close to 1. In the above context, only the behavior of the largest eigenvalue differs

from that of a standard random matrix (after rescaling). This is again a consequence of

the interlacing property of eigenvalues due to Weyl. One can also note that the “size” of

the deformation, being measured by the non trivial eigenvalue m
√
N of the matrix mJ√

N
overwhelms the spectrum of the Wigner matrix WN . This result, which can be understood

using perturbation theory, can actually be refined to the more challenging case where the

size of the deformation is of order 1, that is in the same order as the spectral norm of WN .

Depending on the size (and associated eigenvectors) and the rank of the perturbation, the

spectrum of a deformed Wigner matrix exhibits various asymptotic properties, which we

develop hereafter. For ease of exposition, we focus on Wigner matrices. Similar results can

be stated for sample covariance matrices.

2. The Baik-Ben Arous-Péché (BBP) phase transition

The BBP phase transition [5] theorem below establishes the threshold for the size of the

deformation at which an eigenvalue separates from the bulk of the spectrum. The BBP phase

transition has first been exhibited for complex spiked Wishart ensembles in [5]. Matrices

considered therein are complex Wishart matrices with covariance matrix Σ = Id + A for

some finite rank positive matrix A. This is some kind of multiplicative (in place of additive)

perturbation. Complex deformed Gaussian ensembles (GUE or Wishart) have been first

introduced by [19, 20, 36]. Indeed many eigenvalues statistics (such as the joint eigenvalue

density and the distribution of the largest eigenvalues e.g.) can be explicitly computed for

these ensembles thanks to the Itzykson-Zuber [35]-Harisch-Chandra [34] integral. Results

have then extended to much more general ensembles by Baik and Silverstein[6] as we now

review.

We focus on the top edge of the spectrum of deformed Wigner random matrices. It is

however worth mentioning that the same phenomenon arises at the lower edge. Let WN be
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a standard Wigner matrix s.t.

sup
1≤i,j≤N

E|Hij |4 <∞.

We consider a low rank perturbation of a Wigner matrix, whose rank r may depend on N
in such a way that r << N. Let A be a deterministic matrix of rank r and non trivial

eigenvalues θ1 ≥ θ2 ≥ · · · ≥ θr > 0.
We denote by

λ1 ≥ λ2 ≥ · · · ≥ λN

the ordered eigenvalues of the deformed matrix WN +A.

Theorem 2.1 ([5, 6, 22, 33, 47]). Consider an integer 1 ≤ i ≤ r. One has the following

phase transition: If θi ≤ σ, λi → 2σ a.s. If θi > σ, λi → θi +
σ2

θi
a.s.

We may emphasize that θi +
σ2

θi
> 2σ as soon as θi > σ. Therefore, each eigenvalue

θi greater than σ, called a spike, forces a number of eigenvalues (equal to the multiplicity of

θi) to separate from the rest of the spectrum. This phenomenon has been named exact sepa-
ration of the eigenvalues after [6]. As a consequence the phenomenon identified by Komlós

and Füredi [32] then extends to the whole interval (σ,∞) for the size of the perturbation.

Theorem 2.1 thus shows that the local statistics of eigenvalues of large random matrices

at the edges of the spectrum are more sensitive to the distribution of the matrix elements.

Modifying e.g. a single diagonal entry of a Wigner matrix can result into an outlier in the

spectrum, that is an eigenvalue separating from the bulk of the spectrum.

Theorem 2.1 is important to many fields of applied mathematics such as mathemati-

cal statistics, mathematical finance or wireless communications. Indeed, in these contexts,

consider the perturbation matrix as the signal with significant parameters while the non-

perturbed random matrix is the noise. The observation of the data, and in particular of the

largest eigenvalues λi can give access to the significant parameters (the θi’s for instance). We

however emphasize that this is possible only if θi is large enough. In a few words, the above

theorem thus states that re-construction of a signal is possible provided the power of the sig-

nal is strong enough. However for the construction of statistical tests, the convergence of the

largest eigenvalues outside the support of the semi-circle distribution is not sufficient. The

fluctuations of the largest eigenvalues are needed. This is the object of the next subsection.

3. Fluctuations of the largest eigenvalues

Fluctuations of eigenvalues separating or not from the bulk have been first computed in [5]

for complexWishart matrices and [47] for the deformed GUE. This has then been extended to

more general ensembles of Wigner matrices by Capitaine, Donati-Martin and Féral [22, 23]

first when there are spikes and Knowles and Yin [40, 41] in full generality.

For ease of exposition, we assume thatA has a single non trivial eigenvalue (but we allow

the multiplicity to be greater than one). We explain below the modifications in the general

case. Denote by θ1 > 0 the non trivial eigenvalue of A and by k1 its multiplicity, which is

the rank of A here.

We also need some assumptions on the tail of the matrix elementsWij to extend the result

of the Gaussian case to more general distributions. We make the following assumptions.
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When θ1 > σ, we assume that the entries Wij have a common third and fourth moment:

m̃3 := E|Wij |2Wij is independent of i, j and finite,

m3 := E(W 3
ij) <∞, m4 := E|Wij |4 <∞ are independent of i, j. (3.1)

We also define ρθ1 := θ1 +
σ2

θ1
and cθ1 :=

θ21
θ21 − σ2

for j = 1, . . . , l.

When θ1 ≤ σ, we assume that there exist constants C, c, η > 0, such that

P (|Wij | ≥ x) ≤ Ce−cxη

, ∀ 1 ≤ i, j ≤ N.

It is believed that this assumption could be relaxed to (3.1) but this is still a conjecture. We

also assume that the third moment of Wij vanishes (as for a Gaussian random variable)

E<H3
ij = E7H3

ij = 0.

We can now state the following Theorem which proves that the BBP phase transition

also arises at the level of fluctuations.

Theorem 3.1 ([5, 10, 22, 40, 41, 48, 50]). Assume that θ1 < σ. Then for any integer l, as
N →∞, the vector

N2/3(λ1 − 2σ, λ2 − 2σ, . . . , λl − 2σ)
converges in distribution to the Tracy-Widom law of the l largest eigenvalues of a GOE (resp.
GUE) FTW defined in [55]. Assume that θ1 = σ, then for any integer l, as N →∞,

N2/3(λ1 − 2σ, λ2 − 2σ, . . . , λl − 2σ)
converges in distribution to a probability measure (which can be expressed in terms of the
Tracy-Widom law) depending on k1. Assume that θ1 > σ. Then, as N →∞ , the vector

cθ1
√
N(λ1 − ρθ1 , . . . , λk1 − ρθ1)

converges in distribution to the vector of eigenvalues of a random matrix M of size k1.

A few comments are in order here.

One can first observe that the scale of the fluctuations completely changes when there is

a spike. Thus the phase transition also arises at the level of fluctuations.

In the case where there is no outlier, θ1 < σ, the limiting distribution of λ1 is the same as

in the non deformed case. The first statement is thus a universality result in the same vein as

the results of [52], [30], [54] obtained for standard Wigner matrices. From a statistical point

of view, the signal is overwhelmed by the noise and no information on the signal can be

recovered from the data using extreme eigenvalues. In the case where there is an outlier, the

distribution of the matrixM depends on more parameters (especially eigenvectors) of the de-

formation matrix A. This question is discussed in detail in the next paragraph. However, we

can mention the extension to the case of multiple spikes. Each spike θi > σ of multiplicity ki
causes a small bulk of ki eigenvalues to separate and fluctuate around ρθi as the eigenvalues

of a small random matrix Mi of size ki. The limiting matrix Mi shares “some similarity”

(to be precised hereafter) with the matrix M . A natural question is the transitional regimes

between the “small random matrix” asymptotics and those of the Tracy-Widom type. It has

been shown in [17] (Gaussian matrices) and [40] (general case) that the transition occurs

when θ1 − 2σ = O(N−1/3) yielding a family of possible limiting distributions at the edge

of the spectrum of large random matrices.
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The role of the eigenvectors of the deformation when there is a spike. In the case where

there is spike, the fluctuations can be understood as some kind of Central Limit Theorem.

However, the limiting distribution may not be universal (as a Central Limit Theorem would

yield). Let us explain this in a few words. To explain the role of the eigenvectors, we

introduce the resolvent of random matrices. Given a real symmetric or complex Hermi-

tian matrix MN and a non-real complex number z, we define the resolvent RMN
(z) by

RMN
(z) = (MN − zI)−1. This definition extends to real numbers z lying outside the sup-

port of the spectrum of MN . Using the resolvent equation, it is possible to check that a real

number λ , which does not belong to the spectrum ofWN with probability 1, is an eigenvalue

of MN =WN +A iff

det
(
V ∗RWN

(λ)V +D−1
)
= 0,

where V is a N × r matrix of eigenvectors of A and D = diag(θ1, θ2, . . . , θr). The im-

portant feature of eigenvectors is their localization. A normalized vector v = (v1, . . . , vN )
t

of dimension N is said to be localized if there exists a subset I ⊂ {1, . . . , N) such that∑
i∈I v

2
i ≈ 1 with |I| << N . A non-localized vector is delocalized. Typically a delocalized

vector is spread out in an approximately uniform way on its entries.

To give a flavor of the results, consider the rank-one deformation A = θvv∗ for some θ > σ
and a normalized vector v. In this case, λ1 is characterized by the fact that 1+θv∗RWN

v = 0.
It is then obvious that when v is delocalized, some kind of averaging of the resolvent entries

shall make the distribution of the largest eigenvalue “more universal” than in the localized

case.

More precisely, one has the following statement. Again we expose here for ease the

case where A has a single non trivial eigenvalue θ1 > σ with multiplicity k1. Denote by

v1, v2, . . . , vk1 an orthonormal family of eigenvectors of A associated to θ1.

Theorem 3.2 ([22, 23, 50]).

Case 1: Assume that the family {vj , j = 1, . . . , k1} is spanned by a fixed number K of the
canonical basis vectors of CN . Then the vector cθ1 (λ1 − ρθ1 , . . . , λk1 − ρθ1) converges in
distribution to the distribution of the ordered eigenvalues of the k1 × k1 random matrix M
defined as

M = U∗(G+H)U,

where G is a Wigner random matrix of size K whose entries are distributed as the Wij , H
is a Hermitian Gaussian matrix of size K, independent of G ( the entries are centered, with
variance depending on m4 and σ2) and U is a K × k1 matrix such that its columns are
written from the first K coordinates of the vj’s, j = 1, . . . , k1.

Case 2: Assume that for each j ||vj ||∞ → 0 as N grows to infinity. Then the vector
cθ1 (λ1 − ρθ1 , . . . , λk1 − ρθ1) converges in probability to the vector of ordered eigenval-
ues of the sum of a GUE (with variance depending on θ1 and σ2 only) and the matrix(
m̃3v

∗
j (J − I)vi

)
i,j

, where J is the matrix whose entries are all 1.

Note that if W is Gaussian, the rotational invariance of the Gaussian distribution makes

both cases indistinguishable. The resulting matrix M is then a GUE. For non Gaussian

distributions, the situation is completely different. For instance, when k1 = 1 and A =
θ1e1e

∗
1 , the limiting distribution of the largest eigenvalue is the convolution of a Gaussian

and the law μ ofW11. This limiting distribution is non universal in essence, compared to the

case where the rank one matrix A would have a delocalized eigenvector.
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In the above theorem, one goes from fully localized (Case 1) to completely delocalized

eigenvectors (Case 2). The gap has been filled very recently by Knowles and Yin [40], [41],

where generic eigenvectors of the perturbation A are considered. In particular, the limiting

distribution of outliers is identified provided the entries ofW have sub-exponential tails. The

basic idea for the proof is an isotropic local semicircle law outside the spectrum (established

in [40]), that is a (complete) understanding of the resolvent RWN
outside the support of the

limiting semi-circle distribution. This isotropic law states that for a complex number z such

that |<z| > 2σ and any deterministic vectors v, w, one has that∣∣∣〈v,RWN
(z)w〉 −msc(z)〈v, w〉

∣∣∣ ≤ (lnN)C ln lnN 7msc(z)√
N7z ||v|| ||w||,

where msc(z) is the Stieltjes transform of the limiting semi-circle distribution:

msc(z) :=

∫
R

1

y − z

√
4σ2 − y2

2πσ2
1[−2σ,2σ](y)dy.

This estimates holds uniformly on compact subsets of C ∩ {|<z| ≥ 2σ}. Interestingly,
therein the authors also consider the joint distribution of distinct outliers. In particular, they

prove that macroscopically distinct outliers are not asymptotically independent (unlessW is

a GUE).

At this point, it is worth mentioning that the situation is different for sample covariance

matrices as proved in [2]. In the large size limit, the fluctuations of outliers are necessarily

those of the eigenvalues of a Gaussian matrix M (with non necessarily independent entries

and whose covariance may depend on the third and fourth moments of the Xij’s). This can

be explained by the fact that there is some more averaging in the entries of sample covariance

matrices. Another approach based on the isotropic Marcenko-Pastur law is derived in [14]

and [15].

4. Extensions to full rank deformations of Wigner matrices

The study of deformed ensembles extends to the case where the matrix A has low rank

rN << N, rN → ∞ or full rank i.e. when rN = O(N). In this case, it is natural to

assume that the empirical eigenvalue distribution of A has a weak limit as N → ∞, which

is possibly δ0. Denote by θ1 ≥ θ2 ≥ · · · ≥ θN the ordered eigenvalues of A. Let μN (A) =
1
N

∑N
i=1 δθi . We assume that there exists a probability distribution ν on R such that

μN (A)
w→

N→∞
ν.

Let us diagonalize A through A = V diag(θ1, . . . , θn)V
∗. Roughly speaking the deformed

model is now understood in the sense that A is a “small” perturbation of the matrix WN +
V A0V

∗ where A0 would be a diagonal matrix made up with quantiles of the probability ν.
The asymptotic global behavior of the spectrum is well-known in this case. Indeed, let

μWN+A be the empirical eigenvalue distribution of WN +A. Its Stieltjes transform is

mN (z) :=

∫
1

z − y
dμWN+A(y), 7z �= 0.
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It is proved by [45] (see also [1]) that mN converges as N → ∞ to the Stieltjes transform

mρ of a probability distribution ρ, called the free convolution of ν and the semi-circle dis-

tribution. This probability distribution ρ has been studied in detail in [13]. It is uniquely

characterized by a fixed point equation satisfied by mρ. Similarly the Marcenko-Pastur the-

orem [44] gives the limiting distribution of (I +A)1/2MN (I +A)1/2.
Let us first consider the case where A is deterministic. The question of separation of

extreme eigenvalues naturally arises in this setting also. This question has been considered

in [24], under the assumption that the entries satisfy a Poincaré inequality. In particular,

spikes are characterized using a free probability approach. At the level of fluctuations, this

question has been much less investigated actually. So far, only the case whereWN is a GUE

has been investigated.

In [51], the author considers the case where μN (A) concentrates quite fast around the mea-

sure ν. In particular, there are no spikes. When WN is GUE, she proves that the largest

eigenvalues have a universal asymptotic behavior, characterized by the Tracy-Widom distri-

bution.

In [25], the authors consider the general case, removing in particular the concentration as-

sumption on μN (A). Therein the asymptotic behavior at the edges of the spectrum is de-

scribed using a deterministic equivalent (depending on N ) of the spectral measure of the

deformed ensemble. This deterministic equivalent, arising from free probability, still con-

verges to the free convolution of ν and the semi-circle distribution but is much closer to the

true spectral measure. The authors derive the asymptotic distribution of eigenvalues close to

the edges of the support of ρ (which may be disconnected) and also at possible outliers. The

picture is then essentially the same as for the finite rank deformation of a GUE. Eigenvalues

close to the edge of a connected component are shown to exhibit Tracy-Widom fluctuations

with the usual rescalings, provided the connected component is well separated from the oth-

ers. It can also be shown that an eigenvalue θi is a spike iff∫
1

(θi − y)2
dν(y) < σ−2.

A spike creates an outlier at the location

α(θi) := θi + σ2
∑

j:θj �=θi

1

N(θi − θj)
.

A spike θi with multiplicity ki will cause ki outliers fluctuate around α(θi) as the eigenvalues
of a ki GUE. Interestingly, as the limiting measure ρ may have a non connected support,

spikes can arise not only at the top/bottom edges of the support but also at intermediate edges.

The limiting statistics of eigenvalues at spikes between connected components are of the

same GUE types than at the edges. The main difference from the finite rank deformation case

actually comes from the fact that there may exist points where two connected components

of the support of ρ merge. Eigenvalues close to such a merging point are proved in [25]

to exhibit fluctuations which are governed by the so-called Pearcey distribution studied in

e.g.[56].

The case of sample covariance matrices has been considered in [28] for complex Wishart

matrices and extended to arbitrary distribution (with suitable moment assumptions) in [3]

and [8]. The extension to arbitrary Wigner matrices is a challenging open problem. Actually

quite few is known on the resolvent of such a deformed Wigner matrixWN+A for a generic

full rank matrix A.



Deformed ensembles of random matrices 1169

We now consider the case where A = AN is random. It is technically easier to consider

the case where AN is diagonal with i.i.d. random variables. Assume in the following that

VN = diag(v1, . . . , vN ) where the vi’s are i.i.d. random variables with distribution ν. The

extreme eigenvalues of V can then be described as extremes of aN sample of distribution ν.
In particular the asymptotic distribution of the largest eigenvalue vmax is well known and is

either the Gumbel, or Fréchet or Weibull distribution depending on the characteristics of ν.
This follows from the Fisher-Tippett-Gnedenko theorem. Consider the deformed ensemble

HN =WN + λVN ,

where λ is a real parameter and WN is a Wigner random matrix. In view of the fixed rank

case, one would expect a transition from the Tracy-Widom distribution to some limiting

statistics of extremes by allowing the parameter λ to grow from 0 to infinity. This is actually

not always the case as we explain hereafter.

In [38], Johansson considers the case where the vi’s are i.i.d. centered random variables

with distribution ν in the domain of attraction of the Gumbel distribution andWN is a GUE.

By the choice of ν, the largest eigenvalue vmax has asymptotic Gumbel fluctuations: more

precisely there exist sequences aN and bN (which depend on ν) such that

lim
N→∞

P

(
vmax − aN

bN
≤ x

)
= e−e−x

, ∀x ∈ R.

Then [38] proves the following fact: the fluctuations of the largest eigenvalues are asymptot-

ically governed by the Tracy-Widom distribution as long as λ << N−1/6. In the transitional

regime where λ = αN−1/6, for a given positive number α, the asymptotic distribution of

the (suitably rescaled) largest eigenvalue of HN is given by the convolution of a Gaussian

distribution and the Tracy-Widom distribution. When λ >> N−1/6 the asymptotic distri-

bution of the largest eigenvalue of HN is Gaussian. This follows from the fact that the top

edge of the limiting semi-circle fluctuates as 1/N
∑N

i=1 yi i.e. like a Gaussian. Thus there

is no transition in this model from the Tracy-Widom to the Gumbel distribution. In [43], the

authors consider in place a diagonal matrix A where the vi’s are i.i.d. with density

1

Z
(1 + v)a(1− v)b�[−1,1](v). (4.1)

In this case, the largest eigenvalue of A after suitable rescaling has asymptotically Weibull

fluctuations, with cumulative distribution function Gb+1(x) = 1 − e−(x/c)b+1

for some

parameter c depending on ν. The authors also consider the general case where WN is a

Wigner matrix whose entries satisfy the usual exponential decay assumption (1.1). In this

case, the authors prove the following phase transition:

Theorem 4.1. Assume that b > 1 in (4.1). There exist constants λ0 = λ0(a, b) and L =
L(a, b, λ) such that

• if λ > λ0, then limN→∞ P
(
N1/(b+1)(L− λmax) ≤ x

)
= Gb+1(x).

• If λ < λ0, then limN→∞ P
(
N1/2(L− λmax) ≤ x

)
= G(x), whereG is the cumula-

tive distribution function of a centered Gaussian variable with (explicit) variance.

The Gaussian fluctuations can be explained as in the case studied by Johansson and are

due to the fluctuations of the vi’s. The value λ0 has a nice interpretation in terms of free
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probability, which can be inferred from [25]. When the matrix WN is rescaled so that its

entries are of variance 1, λ0 is such that∫
1

(1− x)2
dν(x) = λ2

0.

In the case where λ > λ0, the largest eigenvalues of AN are to be considered as “internal”

spikes, due to the fact that the density ν vanishes fast at the edge. The fluctuations of spikes

then transfer to the largest eigenvalues of HN . Note that the same phenomenon arises in

the deterministic case when ν has a density vanishing sufficiently fast at the edge of the

support. The largest eigenvalues then exhibit Gaussian fluctuations in place. In this random

perturbation case, almost nothing is known for an arbitrary Wigner matrix when A is not

diagonal.

5. Concluding remarks

To conclude this state of the art about deformed ensembles of random matrices, we should

add a word about the asymptotic behavior of eigenvectors. In the context where the defor-

mation is the signal whereas the random matrix is seen as noise, the re-construction of the

signal requires some knowledge of the relationship between the eigenvectors of A and those

of the deformed matrix HN . We emphasize that this question makes sense only when the

signal can be detected because of outliers. In this context, the most comprehensive study of

eigenvectors has been achieved in [21], showing that eigenvectors associated to outliers can

help in the reconstruction of eigenvectors associated to spikes in the deformation. We refer

the reader to the articles [11, 21, 41, 43] for more detail and references about the behavior of

eigenvectors of deformed ensembles.

We are thus at the point where our understanding of small rank perturbation of random

matrices is achieved, due to the enormous progress accomplished in the recent last years.

However, in the full rank deformation case, the picture is much less clear. Essentially the

very special cases of the deformed GUE and that of diagonal deformations are understood.

So far, the road map to extend the results to arbitrary random matrices is not fully clear. This

probably needs some new ideas to be brought into the field.

In addition, we would also like to mention that deformed ensembles can be considered for

much more general ensembles of random matrices than Hermitian or real symmetric random

matrices. In particular, [53] (see also the recent article [12]) considers N × N random

matrices with i.i.d. entries (with finite fourth moment) perturbed by the addition of a fixed

rank matrix A. This time no symmetry assumption is made on the matrices. The limiting

spectral measure is then the so-called circular distribution. [53] proves that outliers can

be created by the deformation matrix A provided its eigenvalues are sufficiently large in

modulus. In addition, outliers are proved to be very close to their associated spikes, which

is quite different from the symmetric case. This is quite surprising as eigenvalues of such

random matrices are believed to be less stable than those from a symmetric random matrix.

Thus, so far there does not seem to be a unified answer to the questions about the spectrum

of the sum of two (possibly random) matrices.

This unified answer may actually come from free probability, using subordination equa-

tions. These equations relate the Stieltjes transform of the limiting spectral distribution of

the deformed matrix to that of the asymptotic distribution of the deformation. It turns out
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that the phenomenon of outliers of classical deformed models (including complex matrices

with no symmetry) can be fully described in terms of the subordination functions related to

the free additive or multiplicative convolution. However understanding in detail the speci-

ficities of Wigner random matrices, random sample covariance matrices or matrices with

i.i.d. entries and their impact on the deformed ensembles is still to be achieved.

Lastly, the statistics of extreme eigenvalues of random matrices have been proved to be rele-

vant to many fields of mathematics and physics (including statistics, random growth models,

KPZ universality class, queuing theory, random permutations ...). Deformed ensembles have

proved to exhibit a very rich family of possible limiting distributions at the edges of the

spectrum, including the paradigmatic Tracy-Widom distribution. As we said before, the set

of possible deformations of random matrices is not exhaustive. We still have quite limited

knowledge of the family of possible limiting distributions of extreme eigenvalues of defor-

mations of random matrices.

Acknowledgements. Université Paris Diderot, LPMA, 5 Rue Thomas Mann, 75013 Paris,
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Structure of the excitation spectrum for many-body
quantum systems

Robert Seiringer

Abstract. Many questions concerning models in quantum mechanics require a detailed analysis of the

spectrum of the corresponding Hamiltonian, a linear operator on a suitable Hilbert space. Of partic-

ular relevance for an understanding of the low-temperature properties of a system is the structure of

the excitation spectrum, which is the part of the spectrum close to the spectral bottom. We present

recent progress on this question for bosonic many-body quantum systems with weak two-body inter-

actions. Such system are currently of great interest, due to their experimental realization in ultra-cold

atomic gases. We investigate the accuracy of the Bogoliubov approximations, which predicts that the

low-energy spectrum is made up of sums of elementary excitations, with linear dispersion law at low

momentum. The latter property is crucial for the superfluid behavior the system.

Mathematics Subject Classification (2010). Primary 82B10; Secondary 82-06, 46N50.

Keywords. Schrödinger equation, quantum statistical mechanics, Bose–Einstein condensation, dilute

Bose gas, superfluidity, excitation spectrum.

1. Introduction

Many interesting effects in quantum mechanics result from the interactions among the fun-

damental particles that constitute the system. A famous example of such an effect is super-

conductivity, the vanishing of electrical resistance in certain materials at low enough temper-

ature. The relevant fundamental particles in this case are the electrons, which are fermions
and obey the Pauli exclusion principle, which demands that each quantum state can be occu-

pied by at most one particle. Bosons, on the other hand, are particles in quantum mechanics

that do not obey the Pauli principle. Examples of bosons include photons (the quanta of

the electromagnetic field) or also composite particles like atoms, which themselves consists

of fermions (electrons and nucleons) but behave as bosons if the number of fermionic con-

stituents is even. There is no bound on the number of bosons occupying the same quantum

state. This leads to the phenomenon of Bose–Einstein condensation (BEC), which occurs if

a macroscopic fraction of all the particles occupy the same quantum state. The resulting state

of matter displays various interesting phenomena, like superfluidity, for instance, where the

viscosity of a fluid vanishes completely at low temperature.

BEC in cold atomic gases was first achieved experimentally in 1995 [1, 9]. After ini-

tial failed attempts with spin-polarized atomic hydrogen, the first successful demonstrations

of this phenomenon used gases of rubidium and sodium atoms, respectively. In these ex-

periments, a large number of (bosonic) atoms is confined to a trap and cooled to very low
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temperatures; below a critical temperature condensation of a large fraction of particles into

the same one-particle state occurs. Since then there has been a surge of activity in this field,

with ingenious experiments putting forth more and more astonishing results about the behav-

ior of matter at very cold temperatures. BEC has now been achieved by more than a dozen

different research groups working with gases of different types of atoms. Literally thousands

of scientific articles, concerning both theory and experiment, have been published in recent

years. Various interesting quantum phenomena have been explored, like the appearance of

quantized vortices in rotating systems and the property of superfluidity. The latter is related

to the low-energy excitation spectrum of the system. We refer to [3, 6, 8, 13] for reviews of

the recent developments in this field of physics.

The theoretical investigation of BEC goes back much further, and even pre-dates the

modern formulation of quantum mechanics. It was investigated in two papers by Einstein

[12] in 1924 and 1925, respectively, following up on a work by Bose [5] on the derivation

of Planck’s law for black-body radiation. Einstein’s result, in its modern formulation, can be

found in any textbook on quantum statistical mechanics, and was concerned with ideal, i.e.,

non-interacting gases. The understanding of BEC in the presence of interparticle interactions

poses a formidable challenge to mathematical physics. One of the key contributions to the

theory of weakly interacting Bose gases is Bogoliubov’s 1947 paper [4], where he introduces

an approximate model (now referred to as the Bogoliubov approximation) to explain its su-

perfluid behavior. In this paper, we will summarize recent progress made towards a rigorous

justification of this approximation.1

2. The Bose Gas: A quantum many-body problem

The quantum-mechanical description of a system ofN bosons is given in terms of the Hamil-

tonian HN , acting as a linear operator on a suitable Hilbert space HN . Typically, HN is an

unbounded operator, defined only on a dense subspace of HN , but it should be bounded

from below in order to describe a stable physical system. For bosons interacting via a pair-

interaction potential denoted by v(x), the Hamiltonian is given, in appropriate units, by

HN = −
N∑
i=1

Δi +
∑

1≤i<j≤N

v(xi − xj) . (2.1)

The kinetic energy is described by Δ, the Laplacian on a suitable domain in R3, which we

will typically take to be a cube of side length L, i.e., [0, L]3. Suitable boundary conditions

have to be imposed in order for Δ to define a self-adjoint operator, with periodic boundary

conditions being a typical example. The subscript i indicates, as usual, that the second

derivative is with respect to xi ∈ R3.

As appropriate for bosons, the HamiltonianHN acts on the Hilbert space of permutation-
symmetric wave functions Ψ(x1, . . . , xN ) in

⊗N
L2([0, L]3), which we shall denote by

HN :

HN =
N⊗
sym

L2([0, L]3) . (2.2)

1 The paper is an updated and extended version of the manuscript published in [36].
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The interaction v is a real-valued function v : R3 → R, which we assume to be bounded and

symmetric, i.e., v(x) = v(−x). It acts as a multiplication operator on HN .

Of fundamental importance is the spectrum of HN , i.e., the complement of the subset

of C where z −HN has a bounded inverse. For the Hamiltonian HN acting on the Hilbert

space HN , it is not difficult to see that the spectrum is discrete, i.e., it consists of eigenvalues

of HN of finite multiplicity, which are bounded from below and accumulate at +∞. The

corresponding eigenfunctions describe the stationary states of the system.

The following quantities, derived from the Hamiltonian HN , will interest us here.

• Ground state energy, defined as the lowest value of the spectrum of the Hamiltonian,

E0(N,L) = inf specHN . (2.3)

• The ground state wave functionΨ0 is the eigenfunction ofHN corresponding to eigen-

value E0(N,L), i.e.,
HNΨ0 = E0(N,L)Ψ0 . (2.4)

For large particle numberN , it is typically much too complicated to compute. Instead

one considers the corresponding reduced density matrices ofΨ0, the simplest of which

is the one-particle density matrix, given by the integral kernel

γ0(x, x
′) = N

∫
R3(N−1)

Ψ0(x, x2, . . . , xN )Ψ0(x′, x2, . . . , xN ) dx2 · · · dxN . (2.5)

It satisfies 0 ≤ γ0 ≤ N as an operator, and its trace equals Tr γ0 = N . With the aid

of creation and annihilation operators (to be reviewed in Section 4 below) one can also

write

γ0(x, x
′) =

〈
a†(x′)a(x)

〉
, (2.6)

and this definition generalizes to arbitrary mixed states as well.

• The diagonal of the one-particle density matrix is the particle density

 0(x) = γ0(x, x) = N

∫
R3(N−1)

|Ψ0(x, x2, . . . , xN )|2dx2 · · · dxN , (2.7)

with
∫
 0(x)dx = N . For translation invariant systems,  0 is a constant and does not

depend on x, but for inhomogeneous systems the spatial variation of  0 represents a

non-trivial question.

• By definition, Bose–Einstein condensation in a state Ψ0 means that the one-particle

density matrix γ0 has an eigenvalue of order N , i.e., that ‖γ0‖ ≥ cN for some c > 0
and all (large) N , with ‖ · ‖ denoting the operator norm. The corresponding eigen-

function is called the condensate wave function.

• Of particular interest to us will be the structure of the excitation spectrum, i.e., the

spectrum of HN above the ground state energy E0(N,L), and the relation of the

corresponding eigenstates to the ground state. For translation invariant systems, HN

commutes with the total momentum operator

P = −i
N∑
j=1

∇j , (2.8)
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and hence one can look at their joint spectrum. Of particular relevance is the infimum

Eq(N,L) = inf specHN �P=q . (2.9)

In contrast to the non-interacting case, for interacting particles one expects a linear

behavior of Eq(N,L) in q for not too large values of |q|. For a review of various

questions related to the excitation spectrum of Bose gases we refer to [7].

The particle number N is typically very large. This large number of variables involved

in the problem is the main reason why the quantities above are very hard to compute. We

will be interested in their behavior as N →∞.

3. The Ideal Bose Gas

For non-interacting bosons, i.e., in the case v ≡ 0, the ground state energy is simplyN times

the lowest eigenvalue of the Laplacian. In the case of periodic boundary conditions, i.e., the

Laplacian on the flat torus [0, L]3, this is simply zero:

E0(N,L) = 0 for all N and L. (3.1)

The corresponding ground state wave function Ψ0 is the constant function in HN .

Also the excitation spectrum can easily be computed explicitly for the ideal gas. The

spectrum of −Δ on the flat torus [0, L]3 equals{
|p|2 : p ∈

(
2π

L
Z

)3
}

, (3.2)

with corresponding eigenfunctions L−3/2eip·x. The spectrum of N bosons is then simply∑
p

|p|2np , (3.3)

where the sum is over p ∈ ( 2πL Z)3 and np ∈ {0, 1, 2, . . . } for each p, with
∑

p np = N .

The latter are called the occupation numbers of the corresponding momentum states. The

eigenstate of HN corresponding to an eigenvalue of the form (3.3) is given by

S
∏
j

ϕj(xj) (3.4)

where S denotes symmetrization with respect to permutations, and all the ϕj are eigen-

functions of the Laplacian, the one corresponding to momentum p appearing np times in

the product. Note that for each set of occupations numbers {np} there is exactly one such

eigenstate in HN .

4. Second Quantization on Fock space

In the following, it will be convenient to regard HN =
⊗N

sym L2([0, L]3) as a subspace of

the bosonic Fock space

F =

∞⊕
n=0

Hn , H0 ≡ C . (4.1)
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On this space, the particle numberN is now an operator, which acts simply as multiplication

by n on the subspace Hn of F .

A basis of L2([0, L]3) is given by the plane waves L−3/2eip·x for p ∈ ( 2πL Z)3, and we

introduce the corresponding creation and annihilation operators, which satisfy the canonical

commutation relations (CCR)[
ap, aq

]
=
[
a†p, a

†
q

]
= 0 ,

[
ap, a

†
q

]
= δp,q . (4.2)

Here, the creation operator a†p is the adjoint of the annihilation operator ap. The latter maps

Hn to Hn−1 for n ≥ 1 and acts as

(apψ) (x1, . . . , xn−1) =

√
n

L3

∫
[0,L]3

e−ip·xnψ(x1, . . . , xn)dxn . (4.3)

We consider again the Hamiltonian HN , with the particles moving on the flat torus

[0, L]3. It is then natural to assume that the interaction v in (2.1) is a periodic function

on R3, with period L in all three coordinate directions. In other words,

v(x) = L−3
∑

p∈( 2π
L Z)3

v̂(p)eip·x (4.4)

where the

v̂(p) =

∫
[0,L]3

v(x)e−ip·xdx (4.5)

are the Fourier coefficients of v.
A simple calculation shows that the Hamiltonian HN in (2.1) is equal to the restriction

of

H =
∑
p

|p|2a†pap +
1

2L3

∑
p

v̂(p)
∑
q,k

a†q+pa
†
k−pakaq (4.6)

to the subspace HN ⊂ F . Here, all sums are over ( 2πL Z)3. The expression (4.6) for the

Hamiltonian on Fock space serves as a basis for the approximation introduced by Bogoliubov

in [4], which we shall discuss next.

5. The Bogoliubov approximation

At low energy, and for sufficiently weak interactions, one expects the occurrence of Bose–

Einstein condensation. That is, the zero momentum mode is expected to be macroscopically

occupied, meaning that a†0a0 ∼ N . In particular, the p = 0 mode plays a special role.

The Bogoliubov approximation consists of

• dropping all terms in H higher than quadratic in a†p and ap for p �= 0;

• replacing a†0 and a0 in H by the number
√
N .

The resulting Hamiltonian is quadratic in the a†p and ap, and equals2

HBog =
N(N − 1)

2L3
v̂(0)

2 Note that the contribution of p = 0 to the second sum in (4.6) is exactly equal to N(N − 1)v̂(0)/(2L3),

hence the substitution of a†0 and a0 by
√
N was not applied to this term.
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+
∑
p �=0

((|p|2 +  v̂(p)
)
a†pap +

1
2 v̂(p)

(
a†pa

†
−p + apa−p

))
, (5.1)

with  = N/L3 the particle density. It can be explicitly diagonalized via a Bogoliubov
transformation:

Let bp = cosh(αp)ap + sinh(αp)a
†
−p, with

tanh(αp) =
|p|2 +  v̂(p)−√|p|4 + 2|p|2 v̂(p)

 v̂(p)
. (5.2)

Here, the right side is interpreted as 0 if v̂(p) = 0. Moreover, we have to assume that

|p|2 + 2 v̂(p) ≥ 0 for all p in order for the square root to be well-defined. The bp and b†p
again satisfy CCR (for any choice of real numbers αp, in fact). A simple calculation shows

that

HBog = EBog
0 +

∑
p �=0

epb
†
pbp , (5.3)

where

EBog
0 =

N(N − 1)
2L3

v̂(0)− 1

2

∑
p �=0

(
|p|2 +  v̂(p)−

√
|p|4 + 2|p|2 v̂(p)

)
(5.4)

and

ep =
√
|p|4 + 2|p|2 v̂(p) . (5.5)

Note that in contrast to the non-interacting case, where ep = p2, the function ep in (5.5)

behaves linearly in p for small p (assuming that v̂(p) does not vanish near zero).

The Bogoliubov approximation thus predicts that the ground state energy equals the

value EBog
0 displayed in (5.4). Moreover, it also allows to compute the complete excita-

tion spectrum. In fact, from (5.3) we see that the spectrum of HBog − EBog
0 is given by∑

p

epnp with np ∈ {0, 1, 2, . . . } , (5.6)

with ep defined in (5.5). It has the exact same structure as for non-interacting particles (3.3),

except for the replacement of |p|2 by ep. Moreover, the corresponding eigenstates can be

constructed out of the ground state Ψ0 ∈ F of HBog by elementary excitations of the form

b†pn · · · b†p1Ψ0 , (5.7)

with b†p = cosh(αp)a
†
p + sinh(αp)a−p, as before.

One can also calculate the ground state energy EBog
q in a sector of total momentum q,

and arrives at

EBog
q − EBog

0 = subadditive hull of ep

= inf∑
p pnp=q

∑
p

epnp . (5.8)

In particular, also EBog
q − EBog

0 behaves linearly in q for not too large |q|.
For a detailed discussion of variants of the Bogoliubov approximation we refer the inter-

ested reader to [40].
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6. The mean-field (Hartree) limit

It is a major open problem to understand the regime of validity of the Bogoliubov approxima-

tion for many-body quantum systems of interacting particles. The progress made in recent

years was mainly limited to giving bounds on the ground state energy of the system, and

we refer to [14, 15, 26–28, 37–39] for various interesting results in this direction. Virtually

nothing is known concerning the excitation spectrum of such systems in general, however.

A simple case where the analysis of the validity of the Bogoliubov approximation can be

extended beyond the ground state energy is the Hartree limit. This is an extreme form of a

mean-field limit, where the interaction potential extends over the whole size of the system,

but the interaction is sufficiently weak (of order 1/N ) in order for the interaction energy to

be of the same order as the kinetic energy.

We consider again a system of N bosons in a cubic box, with periodic boundary con-

ditions. For simplicity, let us choose units such that the length of the box L equals 1. The

Hamiltonian of the systems is thus given by

HN = −
N∑
i=1

Δi +
1

N − 1
∑

1≤i<j≤N

v(xi − xj) , (6.1)

and it acts on the Hilbert space

HN =
N⊗
sym

L2([0, 1]3) . (6.2)

Here we wrote the interaction potential as (N − 1)−1v(x), reflecting the weakness of the

potential as mentioned above. The case of fixed, N -independent v corresponds to the mean-

field or Hartree limit.
It is not difficult to see that the ground state energy is determined, to leading order in N

for large N , by minimizing the energy 〈Ψ|HN |Ψ〉 over product states of the form

Ψ(x1, . . . , xN ) = φ(x1) · · ·φ(xN ) . (6.3)

This has been shown, in a much more general setting than what is discussed here, in [19].

For a constant φ, corresponding to a homogeneous system, the resulting Hartree energy is

then simply equal to 1
2N
∫
v.

It is also known that starting from a product state of the form (6.3), a solution to the

time-dependent Schrödinger equation i∂tΨ = HNΨ stays roughly a product at later times,

with the factors in the limit N →∞ determined by the time-dependent Hartree equation

i∂tφ = −Δφ+ 2
(|φ|2 ∗ v)φ , (6.4)

where ∗ denotes convolution. For a history of this problem and a review of recent results,

we refer to [31].

Going beyond the leading order, where the Hartree equation applies, we can ask the

following questions.

• Given that the ground state energyE0(N) = inf specHN satisfiesE0(N) = 1
2Nv̂(0)+

o(N) for fixed (i.e., N -independent) v, what is the next order correction? It turns out

that it is actually O(1), and the O(1)-term can be explicitly computed and agrees with

the prediction from the Bogoliubov approximation.
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• What is the spectrum of HN − E0(N), i.e., the excitation spectrum of the system?

Does it converge as N → ∞? Is the Bogoliubov approximation valid? The latter

predicts a dispersion law for elementary excitations that is linear for small momentum,

as discussed in Section 5.

• What fraction of particles are in a Bose–Einstein condensate? Recall that Bose–

Einstein condensation concerns the largest eigenvalue of the one-particle density ma-

trix γ of a many-body wave function Ψ, defined via the matrix elements

〈f |γ|g〉
=N

∫
f(x)Ψ(x, x2, . . . , xN )g(y)Ψ(y, x2, . . . , xN ) dx dy dx2 · · · dxN . (6.5)

For fixed v, the Bogoliubov approximation predicts that ‖γ‖ ≥ N − O(1) in the

ground state, and this can actually be proved to be correct.

6.1. Main results. For our analysis of the excitation spectrum, we assume that v(x) is

bounded and of positive type, i.e.,

v(x) =
∑

p∈(2πZ)3
v̂(p)eip·x (6.6)

with

v̂(p) ≥ 0 ∀p ∈ (2πZ)3 ,
∑

p∈(2πZ)3
v̂(p) <∞ . (6.7)

Under these assumptions, the following theorem holds.

Theorem 6.1. The ground state energy E0(N) of HN equals

E0(N) =
N

2
v̂(0) + EBog

0 +O(N−1/2) as N →∞, (6.8)

with
EBog

0 = −1
2

∑
p �=0

(
|p|2 + v̂(p)−

√
|p|4 + 2|p|2v̂(p)

)
. (6.9)

Moreover, the excitation spectrum ofHN −E0(N) below an energy ξ is equal to finite sums
of the form ∑

p∈(2πZ)3\{0}
ep np +O

(
ξ3/2N−1/2

)
, (6.10)

where
ep =

√
|p|4 + 2|p|2v̂(p) (6.11)

and np ∈ {0, 1, 2, . . . } for all p �= 0.

Theorem 6.1 is proved in [34]. The proof consists of constructing a unitary operator U
that makes UHNU† close to the operator

N

2
v̂(0) + EBog

0 +
∑

p∈(2πZ)3\{0}
ep a

†
pap . (6.12)
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In particular, the proof implies that the excited eigenfunctions can be (approximately) ob-

tained by acting with products of U †a†pa0U on the ground state.

Let us comment on the error terms in (6.8) and (6.10). Both the ground state energy and

all excited energy levels a distance O(1) from the ground state agree with the prediction ob-

tained via Bogoliubov’s approximation up to errors of order N−1/2 for large N . Moreover,

an excitation energy a distance ξ from the ground state energy is necessarily of the form∑
p epnp(1 + o(1)) as long as ξ3/2N−1/2 � ξ, i.e., for ξ � N . That is, the Bogoliubov

approximation gives the correct excitation energies to leading order in a very large window

above the ground state energy, whose size has to be small compared with N . This restric-

tion is presumably optimal. The existence of Bose–Einstein condensation is only guaranteed

for excitation energies small compared to N , and the existence of BEC is one of the key

assumptions entering the Bogoliubov approximation.

Theorem 6.1 implies the following corollary concerning the momentum dependence of

the spectrum of HN .

Corollary 6.2. Let EP (N) denote the ground state energy of HN in the sector of total
momentum P . We have

EP (N)− E0(N) = min
{np},

∑
p p np=P

∑
p �=0

ep np + O
(
|P |3/2N−1/2

)
. (6.13)

In particular,

EP (N)− E0(N) ≥ |P |min
p

√
2v̂(p) + |p|2 +O(|P |3/2N−1/2) . (6.14)

The bound (6.14) implies thatEP (N)−E0(N) behaves linearly in P for not too large P
(assuming that v̂(p) does not vanish for small |p|). Note that this fact is caused by the inter-

actions among the particles, non-interacting systems do not show this behavior. The linear

behavior is very important physically and is responsible for the superfluid behavior of the

system. According to Landau, the coefficient multiplying |P | in (6.14) is, in fact, the critical

velocity for frictionless flow. We refer to [7] for further details on this correspondence.

Note that under the unitary transformation

Ũ = exp

⎛⎝−iq · N∑
j=1

xj

⎞⎠ , q ∈ (2πZ)3 , (6.15)

the Hamiltonian HN transforms as

Ũ†HN Ũ = HN +N |q|2 − 2q · P , (6.16)

where P = −i∑N
j=1∇j denotes again the total momentum operator. Hence our results

apply equally also to the parts of the spectrum ofHN with excitation energies close toN |q|2,
corresponding to collective excitations where the particles move uniformly with momentum

q; cf. Figure 6.1.

6.2. Ideas in the proof. In the language of second quantization, the HamiltonianHN is the

restriction of the operator

H =
∑

p∈(2πZ)3
|p|2a†pap +

1

2(N − 1)
∑
p

v̂(p)
∑
q,k

a†q+pa
†
k−pakaq (6.17)
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Figure 6.1. Sketch of the parts of the spectrum that are correctly determined by the Bogoliubov ap-

proximation in the Hartree limit.

to the N -particle subspace of the Fock space F . Note that N has two different roles here. It

determines the particle number, but also appears as a parameter in the Hamiltonian H.

As discussed in Section 5, the Bogoliubov approximation consists of

• dropping all terms higher than quadratic in a†p and ap, p �= 0;

• replacing a†0 and a0 by
√
N .

The resulting quadratic Hamiltonian is N
2 v̂(0) +HBog, where

HBog =
∑
p �=0

((|p|2 + v̂(p)
)
a†pap +

1
2 v̂(p)

(
a†pa

†
−p + apa−p

))
. (6.18)

It is diagonalized via a Bogoliubov transformation of the form

bp = cosh(αp)ap + sinh(αp)a
†
−p , (6.19)

leading to

HBog = EBog
0 +

∑
p �=0

epb
†
pbp (6.20)

for an appropriate choice of αp, with EBog
0 and ep defined in (6.9) and (6.11), respectively.

The proof of Theorem 6.1 consists of two main steps:

1. As a first step, one shows that HN is well approximated by an operator similar to the

Bogoliubov Hamiltonian HBog in (6.18), but with ap and a†p replaced by

a†p → c†p :=
a†pa0√
N

, ap → cp :=
apa

†
0√

N
. (6.21)

Note that the operators cp and c†p conserve the particle number. The resulting Hamil-

tonian is quadratic in c†p and cp and is, in particular, also particle number conserving.

Hence it has a chance of being close to HN on the subspace of particle number N .

The original Bogoliubov Hamiltonian (6.18) does not leave this subspace invariant,

and hence can not be directly compared with HN .

2. Mimicking the Bogoliubov transformation (6.19), we introduce the operators dp =

cosh(αp)cp + sinh(αp)c
†
−p. It turns out that the modified Hamiltonian from Step 1 is

close to

EBog
0 +

∑
p �=0

ep d
†
pdp , (6.22)
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whose spectrum now has to be analyzed. This analysis is complicated by the fact

that the operators dp and d†p do not satisfy CCR. It turns out that they do, however,

approximately on the subspace where a†0a0 is close to N , which is sufficient for our

purpose.

In the following, we shall explain these two steps in greater detail. For further details, we

refer to [34].

6.2.1. Step 1: Approximation by a quadratic Hamiltonian. Under our assumptions on

the interaction potential v, it is not difficult to see that

N − a†0a0 ≤ const. [1 +HN − E0(N)] . (6.23)

This proves that the excitation energy dominates the condensate depletion. In particular, if

the excitation energy is small compared with N , most particles occupy the zero momentum

mode, i.e., Bose–Einstein condensation occurs.

To show that cubic and quartic terms in a†p and ap, p �= 0, in the Hamiltonian are negli-

gible, one needs to prove a stronger bound of the form(
N − a†0a0

)2
≤ const.

[
1 + (HN − E0(N))

2
]
, (6.24)

however. It implies that also the fluctuations in the number of particles outside the conden-

sate are suitably small.

The first statement (6.23) follows easily from positivity of v̂(p). Positivity implies that

∑
p∈(2πZ)3\{0}

v̂(p)

∣∣∣∣∣∣
N∑
j=1

eip·xj

∣∣∣∣∣∣
2

≥ 0 , (6.25)

which can be rewritten as ∑
1≤i<j≤N

v(xi − xj) ≥ N2

2
v̂(0)− N

2
v(0) . (6.26)

Thus HN is bounded from below as

HN ≥ N

2
v̂(0) + T − N

2(N − 1) (v(0)− v̂(0)) , (6.27)

where T denotes the kinetic energy

T = −
N∑
i=1

Δi . (6.28)

The statement (6.23) follows from (6.27) since T ≥ (2π)2(N − a†0a0).
For the second statement (6.24) one has to work a bit more. It turns out to be useful to

actually prove a slightly stronger bound, namely the inequality(
N − a†0a0

)
T ≤ const.

[
1 + (HN − E0(N))

2
]
. (6.29)
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Since T ≥ (2π)2(N−a†0a0) (and the two operators commute), this indeed implies the bound

(6.24).

For the proof of (6.29), let us introduce the notation

N> = N − a†0a0 =
N∑
i=1

Qi (6.30)

for the number of particles outside the condensate, where Q denotes the projection onto the

subspace of L2([0, 1]3) of co-dimension one orthogonal to the constant function. For any

bosonic (i.e., permutation-symmetric) wave function Ψ, we can write〈
Ψ
∣∣N>T

∣∣Ψ〉 = N 〈Ψ |Q1T |Ψ〉
= N 〈Ψ |Q1S|Ψ〉+

〈
Ψ
∣∣N> (HN − E0(N))

∣∣Ψ〉 , (6.31)

where

S = T −HN + E0(N)

= E0(N)− (N − 1)−1
∑
i<j

v(xi − xj) . (6.32)

With the aid of the Cauchy–Schwarz inequality, the last term in (6.31) can be bounded as

〈
Ψ
∣∣N> (HN − E0(N))

∣∣Ψ〉 ≤ 〈Ψ ∣∣(N>)2
∣∣Ψ〉1/2 〈Ψ ∣∣∣(HN − E0(N))

2
∣∣∣Ψ〉1/2 .

(6.33)

We split S into two parts, S = Sa + Sb, with

Sa = E0(N)− 1

N − 1
∑

2≤i<j≤N

v(xi − xj) (6.34)

and

Sb = − 1

N − 1
N∑
j=2

v(x1 − xj) . (6.35)

Note that Sa does not depend on x1. By using positivity of v̂(p) as in (6.25), but with the

sum over j running from 2 to N only, as well as the simple upper bound E0(N) ≤ N
2 v̂(0)

on the ground state energy, we see that

Sa ≤ 1

2
(v̂(0) + v(0)) . (6.36)

In particular, this implies that

N 〈Ψ |Q1Sa|Ψ〉 ≤ 1

2
(v̂(0) + v(0))

〈
Ψ
∣∣N>

∣∣Ψ〉 . (6.37)

To bound the contribution of Sb, we use

−〈Ψ|Q1Sb|Ψ〉 = 〈Ψ |Q1v(x1 − x2)|Ψ〉 = 〈Ψ |Q1Q2v(x1 − x2)|Ψ〉
+ 〈Ψ |Q1P2v(x1 − x2)P2|Ψ〉
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+ 〈Ψ |Q1P2v(x1 − x2)Q2|Ψ〉 , (6.38)

where P = 1−Q denotes the rank-one projection onto the constant function in L2([0, 1]3).
The second term on the right side of (6.38) is positive. For the first and the third, we use

Schwarz’s inequality and ‖v‖∞ = v(0) to conclude that

〈Ψ|Q1Sb|Ψ〉 ≤ v(0)〈Ψ|Q1Q2|Ψ〉1/2 + v(0)〈Ψ|Q1|Ψ〉 . (6.39)

Since

〈Ψ|Q1Q2|Ψ〉 = 〈Ψ|N
>(N> − 1)|Ψ〉
N(N − 1) ≤ 〈Ψ|(N

>)2|Ψ〉
N2

, (6.40)

we have thus shown that〈
Ψ
∣∣N>T

∣∣Ψ〉 ≤ 1

2
(v̂(0) + 3v(0))

〈
Ψ
∣∣N>

∣∣Ψ〉
+

(
v(0) +

〈
Ψ
∣∣∣(HN − E0(N))

2
∣∣∣Ψ〉1/2)〈Ψ ∣∣(N>)2

∣∣Ψ〉1/2 . (6.41)

Using that N> ≤ (2π)−2T in the last factor, this further implies that

〈
Ψ
∣∣N>T

∣∣Ψ〉 ≤
⎛⎜⎝v(0) +

〈
Ψ
∣∣∣(HN − E0(N))

2
∣∣∣Ψ〉1/2

2π

⎞⎟⎠
2

+ (3v(0) + v̂(0))
〈
Ψ
∣∣N>

∣∣Ψ〉 . (6.42)

The desired result (6.29) then follows from (6.23).

6.2.2. An algebraic identity. The inequalities (6.23) and (6.29) allow us to conclude that

H is, at low energy, well approximated by

N

2
v̂(0) +

1

2

∑
p �=0

[
Ap

(
c†pcp + c†−pc−p

)
+Bp

(
c†pc

†
−p + cpc−p

)]
, (6.43)

where Ap = |p|2+ v̂(p) andBp = v̂(p), and the operators cp are defined in (6.21). A simple

identity, which does not use the CCR, is

Ap

(
c†pcp + c†−pc−p

)
+Bp

(
c†pc

†
−p + cpc−p

)
=
√
A2
p −B2

p

⎛⎝
(
c†p + βpc−p

)(
cp + βpc

†
−p

)
1− β2

p

+

(
c†−p + βpcp

)(
c−p + βpc

†
p

)
1− β2

p

⎞⎠
− 1

2

(
Ap −

√
A2
p −B2

p

)(
[cp, c

†
p] + [c−p, c

†
−p]
)
, (6.44)

where

βp =

{
1
Bp

(
Ap −

√
A2
p −B2

p

)
if Bp > 0

0 if Bp = 0.
(6.45)
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Note that if the operators cp and c†p satisfied CCR, the term in the last line of (6.44) would

be a constant. Its deviation from a constant can be controlled in terms of the condensate

depletion, and the inequality (6.29) can be used to control the error made by simple replacing

it by the value it would take in the case of CCR.

Introducing the operators

dp =
cp + βpc

†
−p√

1− β2
p

(6.46)

and their adjoints, we conclude that H is, in fact, close to the operator

N

2
v̂(0) + EBog

0 +
∑
p �=0

ep d
†
pdp , (6.47)

where we used that

EBog
0 = −1

2

∑
p �=0

(
Ap −

√
A2
p −B2

p

)
(6.48)

and

ep =
√
A2
p −B2

p . (6.49)

6.2.3. Step 2: The spectrum of d†
pdp. If the operators dp and d†p satisfied CCR, we could

immediately read off the spectrum of the operator in (6.47), and we would be done. However,

without CCR we do not know the spectrum of d†pdp. Moreover, the various summands in

(6.47) do not actually commute in our case.

The usual Bogoliubov transformation (6.19) is of the form

bp = cosh(αp)ap + sinh(αp)a
†
−p = e−Xape

X , (6.50)

where X is the anti-hermitian operator

X =
1

2

∑
p �=0

αp

(
a†pa

†
−p − apa−p

)
. (6.51)

This identity can easily be verified using the CCR [ap, a
†
q] = δp,q . Our operators cp =

apa
†
0/
√
N , on the other hand, satisfy

[
cp, c

†
q

]
= δp,q

a0a
†
0

N
− apa

†
q

N
. (6.52)

We now define, in analogy to (6.51), the particle-number conserving anti-hermitian operator

X̃ =
1

2

∑
p �=0

αp

(
c†pc

†
−p − cpc−p

)
. (6.53)

In order to compute the spectrum of d†pdp, we apply the unitary eX̃ , and argue that the

resulting operator is close a†pap, at least in the subspace of low energy. More precisely, we

show that

e−X̃ape
X̃ =

dp︷ ︸︸ ︷
cosh(αp)cp + sinh(αp)c

†
−p+ Errorp (6.54)
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for suitable small error term. Here it is important that actually the sum over all error terms

(depending on p) is still (relatively) small as long as (N − a†0a0)
2 � N2. The proof of

(6.54) is somewhat lengthy and will be skipped here. It proceeds by studying e−tX̃ape
tX̃ as

a function of t ∈ [0, 1], using a Grönwall type estimate. The details are presented in [34].

6.3. Conclusions and generalizations. The mean-field or Hartree limit may be somewhat

unphysical when it comes to the description of cold atomic gases. It can be used as a toy

model, however, which is analytically much easier to handle than the Gross-Pitaevskii limit

of dilute gases [23–25, 29, 35], for instance. The results reviewed in this paper are the first

rigorous results concerning the excitation spectrum of an interacting Bose gas, in a suit-

able limit of weak, long-range interactions. With the notable exception of exactly solvable

models in one dimension (like the Lieb–Liniger model [22], for instance), this is the only

model where rigorous results on the excitation spectrum are available. The results verify

Bogoliubov’s prediction that the spectrum consists of sums of elementary excitations. In the

translation invariant case, the excitation energy turns out to be linear in the momentum for

small momentum. In particular, Landau’s criterion for superfluidity is verified.

The methods presented in this paper can be generalized to inhomogeneous systems with-

out translation invariance. This was shown in [16], where the excitation spectrum of the

Hamiltonian

HN =
N∑
i=1

(−Δi + V (xi)) +
1

N − 1
∑

1≤i<j≤N

v(xi − xj) (6.55)

on the Hilbert space
⊗N

sym L2(R3) was studied, with a trap potential V that is locally

bounded and tends to infinity at infinity, in order to ensure that all the particles are con-

fined and cannot escape to infinity. Moreover, v is assumed to be non-negative, bounded,

and of positive type. To leading order in N , the ground state energy of (6.55) is determined

by minimizing the Hartree functional

EH(φ) =
∫
R3

(|∇φ(x)|2 + V (x)|φ(x)|2) dx
+
1

2

∫
R6

|φ(x)|2v(x− y)|φ(y)|2dxdy , (6.56)

with minimal energy EH = inf{EH(φ) :
∫ |φ|2 = 1}. Under the stated conditions on

v and V , it is not difficult to see that there exists a unique minimizer φ0 (up to a constant

phase, of course, which we can choose such that φ0 is positive) with EH = EH(φ0). The

corresponding Euler-Lagrange equation for the minimizer φ0 can be written as KHφ0 = 0,
where KH is the Hartree operator

KH = −Δ+ V (x) + v ∗ |φ0|2(x)− ε0 , (6.57)

with ε0 = EH + 1
2

∫
R6 |φ0(x)|2v(x− y)|φ0(y)|2dxdy and ∗ denoting convolution.

The excitation spectrum of (6.55) turns out to have a similar structure as in (6.10), i.e.,

it consists of sums of elementary excitations. These are described by an effective one-body

operator given by

E =
(√

KH
(
KH + 2W

)√
KH
)1/2

, (6.58)
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where W denotes the operator with integral kernel φ0(x)v(x − y)φ0(y). More precisely,

to leading order in N the spectrum of HN − E0(N) is of the form
∑

i eini, with ni ∈
{0, 1, 2, . . . } and ei the (non-zero) eigenvalues of E. We refer to [16] for details.

By using different techniques, this result was further generalized in [21], where the valid-

ity of the Bogoliubov approximation in the Hartree limit was shown for a much larger class

of Hamiltonians and interaction potentials. The method of [21] does not require that v has

positive Fourier transform, for instance, one merely needs to assume that the corresponding

Hartree functional has a unique minimizer and that its Hessian is strictly positive at the min-

imum. While the result of [21] applies to a much larger class of models, it does not yield so

precise estimates on the error terms as the ones obtained in Theorem 6.1, and is restricted to

studying the excitation spectrum in a smaller window above the ground state energy.

All the results in [10, 16, 21, 34] are limited to the case where the Hartree functional

(6.56) has a unique minimizer (up to a constant phase). However, at least in the case of

attractive interactions, uniqueness will not hold, in general (see, e.g. [2, 17]). Even with

repulsive interactions, uniqueness can fail in the presence of magnetic fields or, equivalently,

the case of rotating Bose gases [32, 33]. In this case, there can even be uncountably many

minimizers. This happens, for instance, in rotating systems if the system is rotation invari-

ant with respect to the axis of rotation, and the rotation speed is large enough for quantized

vortices to form. If there is more than one such vortex, the rotation symmetry is necessar-

ily broken in the minimizer, and hence there are infinitely many minimizers, which are all

related via rotation.

An extension of the spectral analysis of HN in the case when the corresponding Hartree

functional has multiple minimizers was recently given in [30]. There it was shown that the

excitation spectrum in the Hartree limit is given by the union of the excitation spectra of

the Bogoliubov Hamiltonians constructed as above for the respective Hartree minimizers. In

other words, all the low-energy eigenfunctions ofHN can be thought of as describing a BEC

with condensate wave function given by one of the Hartree minimizers, and fluctuations

around the pure condensate state described by Bogoliubov’s theory.

In [30] also the question of existence of collective excitations was addressed, which are

described by solutions of the Hartree equation

−Δφ(x) + V (x)|φ(x)|2 + v ∗ |φ|2(x)φ(x) = μφ(x) (6.59)

for some μ ∈ R, that are not minimizers of EH and hence correspond to (non-linear) excited

states of the Hartree functional. In the translation invariant case, collective excitations are

related to the ground state via a Galileo transformation, as explained in Section 6.1. In the

absence of translation invariance, there is no such symmetry, and the existence of such states

is therefore a non-trivial question, in general. It was shown in [30] that corresponding to

each solution of (6.59) there are eigenstates of the many-body Hamiltonian HN which are

approximately given by the eigenfunctions of the corresponding Bogoliubov Hamiltonian.

These eigenfunctions are high energy excited states, their total energy differs by O(N) from
the ground state energy. We refer to [30] for details.

It remains to be seen to what extent the methods in [16, 34] or the ones in [21, 30] can be

generalized to the study of less restrictive parameter regimes, away from the Hartree limit.

A first step in this direction was recently taken in [10], where bounds were given on the

maximally allowed rate at which the system size is allowed to grow with N in order for the

Bogoliubov approximation to remain valid. Equivalently, one can let the interaction potential

v depend on N and ask at what rate it is allowed to tend to a δ-function as N → ∞. Since



Structure of the excitation spectrum for many-body quantum systems 1191

all error terms in Theorem 6.1 are explicit, an estimate of this kind is actually contained in

Theorem 6.1, but the dependence of the error terms on v was greatly improved in [10].

Finally, we mention that the validity of the Bogoliubov approximation in the Hartree

limit can also be investigated concerning the dynamics generated by the Hamiltonian HN .

We refer to [20] and the references there for recent results in this direction.

7. Open problems

In this final section, we collect a list of open problems related to the Bogoliubov approxima-

tion for many-boson systems. Some of these problems have already been mentioned in the

preceding sections.

• One of the key assumptions motivating the Bogoliubov approximation is the existence

of Bose–Einstein condensation. While this property is easy to demonstrate in the

Hartree limit discussed in the previous section, it is not known how to prove it in more

general cases. In particular, the existence of BEC in the usual thermodynamic limit

(N →∞, L→∞withN/L3 fixed) remains an open problem. The only model where

the occurrence of BEC has been proved in the thermodynamic limit is the hard-core

lattice gas at exactly half-filling, which is equivalent to the quantum XY spin model

[11, 18]. BEC is also known to occur in the Gross-Pitaevskii limit of dilute trapped

gases [23–25, 35].

• The results in Section 6 on the excitation spectrum concern the mean-field or Hartree

limit, where the interaction among the particles is very weak and of long range. In

fact, the range is of the same order as the system size. In view of applications to cold

atomic gases, a physically more relevant limit would be the Gross-Pitaevskii limit
[23–25, 35], where the interaction potential takes the form

v(x) = N2w(Nx) (7.1)

for some fixed, N -independent function w. As discussed in more detail in [16], one

expects that in this limit the excitation spectrum is still of the form (6.10), but with

v̂(p) replaced by 8πa, where a denotes the scattering length of w.

• An even more challenging problem concerns the low energy excitation spectrum in the

thermodynamic limit, and to study its relation to the property of superfluidity. There

are no rigorous results available up to now, not even rough bounds are known. In fact,

not even the absence of a spectral gap in the thermodynamic limit of an interacting

Bose gas is rigorously known. We refer to [7] for further discussion of this topic.
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Gauge theory angle at quantum integrability
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Abstract. We review the relationship between supersymmetric gauge theories and quantum integrable

systems. From the quantum integrability side this relation includes various spin chains, as well as

many well-known quantum many body systems like elliptic Calogero-Moser system and generalisa-

tions. From the gauge theory side one has the supersymmetric gauge theory with four (and eight)

supercharges in the space-time background which is a product of a d-dimensional torus, or a two di-

mensional cigar with Ω-deformation, and a flat space (with the total dimension of space-time being

2, 3, 4 or 5). The gauge theory perspective provides the exact energy spectrum of the correspond-

ing quantum integrable system. Key notions, usually appearing in the topic of quantum integrability,

such as Baxter equation, Yang-Yang function, Bethe equation, spectral curve, Yangian, quantum affine

algebra, quantum elliptic algebra - all acquire meaning in these gauge theories.
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1. Introduction

Various types of relations between quantum integrable systems and gauge theories have been

around for several decades, and appeared in many different contexts. This talk is dedicated

to one such relation which was first discovered in [1].

Main motivation of [1] came from the previous works in physics literature on electric-

magnetic duality in supersymmetric gauge theories [2, 3] and from the mathematics work

[4]. In order to find the quantum field theory interpretation of [4] useful technique for in-

tegrating over Higgs branches in supersymmetric theories with 4 and 8 supercharges was

developed in [1]. In particular - regularised (equivariant) volume for hyperkähler quotients

was defined, evaluated for certain ALE and ALF spaces in terms of the hyperkähler periods,

and reduced, for a large class of examples, to simpler integrals. Useful examples, studied

in [1], were complex coadjoint orbits, instanton moduli spaces on R4 and ALE manifolds,

Hitchin spaces, and moduli spaces of parabolic Higgs bundles on Riemann surfaces. For

particular case of Hitchin space it was found in [1] that such volume reduces to a summation

over solutions of Bethe ansatz equations for the non-linear Schrödinger system for fixed par-

ticle number. This was later interpreted in [5, 6] as the correspondence between the quantum

states ofN -particle sector of non-linear Schrödinger system (which itself is described by the

quantum many-body system ofN -particles on a circle with pair-wise δ-function interaction)

and the states in the topological quantum field theory associated with the particular super-

symmetric gauge theory of [1]. Interestingly, this quantum many body system comes with so

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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called Yang-Yang (YY) function, a function whose critical points equation is a Bethe equa-

tion determining allowed energy spectrum (spectrum is discrete since we consider particles

on a circle), and [5, 6] identified this YY-function with the effective twisted superpotential

of the gauge theory.

Topologically twisted supersymmetric gauge theory describes only the vacuum sector

of the physical gauge theory, and thus the sum over all states in the topologically twisted

theory is the same as the sum over only vacuum states of the physical theory. This means

that the correspondence can be restated as the correspondence between the quantum states of

an integrable many-body system and the vacuum states of the supersymmetric gauge theory

[7–10]. In [7–9] general 2d gauge theory with four supercharges on R × S1 (and with

mass gap - necessary for the discrete spectrum of vacua) was shown to correspond to some

quantum integrable system, and specific examples of such gauge theories were demonstrated

to give the quantum spectrum of all known spin chains, like XXX , Habbard model, their

generalisations, limits, and basically for any spin group. The lift of these gauge theories to

3d (on R × S1 × S1) and 4d (on R × S1 × T 2) according to [7–9] in the vacuum sector

relates to XXZ and XY Z spin chains correspondingly.

At the end of the day in all above cases one studies a 2d supersymmetric gauge theory

on a cylinder R×S1 with finite or infinite number of fields (coming from reduction on torus

from higher dimension, Kaluza-Klein (KK) modes). Another possibility [10] for generating

effective 2d (3d) supersymmetric theory, originated also from [1] (and [11–16]), is to study

4d (5d) supersymmetric gauge theory in Ω-background [15, 16]. This background depends

on two complex parameters ε1, ε2, and for generic values of these parameters it describes 0-
dimensional theory. But, for ε2 = 0, ε1 �= 0 it has 2d super-Poincare invariance and describes

effective 2d supersymmetric gauge theory with infinite number of massive fields. The latter

2d gauge theory fits in the general picture of [7–9] and has twisted effective superpotential

which can be explicitly calculated. The geometry of the moduli space of vacua for the theory

with ε1 = ε2 = 0 has a structure of classical Algebraic Integrable System (AIS) [17–19]; it

turns out the in the above gauge theory, for ε1 �= 0, ε2 = 0, the critical points of the effective

twisted superpotential describe the quantum spectrum of this AIS with ε = ε1 being the

Plank constant.

The rest of this paper is dedicated to the explanation of the previous paragraphs.

2. 2d SUSY Gauge theories and integrability

In this section we explain that: essentially for every quantum integrable system solved by
Bethe ansatz there is a supersymmetric gauge theory with 4 supercharges Q+, Q−, Q+, Q−
such that : a) exact Bethe eigenstates correspond to supersymmetric vacua, b) the ring of
commuting Hamiltonians - to twisted chiral ring.

In this correspondence the equations describing supersymmetric vacua in the gauge the-

ory coincide with the Bethe equation of the integrable system. We think about the supersym-

metric gauge theory in dimensions 2, 3, 4 and 5 as 2d theory with the infinitely many fields.

In order to do this we need to compactify higher dimensional theories on T k, k = 1, 2, 3
(Kaluza-Klein compactification), or study in the special Ω-background. Vacuum equations

correspond to critical points of (shifted) effective twisted superpotential W̃ eff (σ) of this

2d theory. In the quantum integrable system usually one has the Yang-Yang (YY) function

Y (λ) whose critical point equations are Bethe equations (most of Bethe equations come
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from YY-function with a few exceptions, for which YY-function is either unknown or might

not exist). W̃ eff (σ), as a function of diagonalised complex scalar σi, i = 1, ..., N, of the
vector multiplet (for U(N) gauge group, but construction is valid for any group) coincides

with Y (λ) as a function of rapidities λi, i = 1, ..., N, under above correspondence with

σi = λi. Importantly - the eigenvalues of quantum Hamiltonians in the integrable system,

ĤkΨ(λ) = Ek(λ)Ψ(λ), are vacuum expectation values of special operators in the gauge

theory, chiral ring operators Ok(σ): < σ|Ok|σ >= Ek(σ).
The general N = (2, 2) supersymmetric gauge theory in 2d is defined by the gauge

group G and its representation R =
⊕

i Mi ⊗ Ri. Ri are irreducible representations

of G and Mi are multiplicity spaces. The matter fields transform in the representation R
and are in the chiral super-multiplet X(x, θ) (for fundamental, anti-fundamental and adjoint

representation we use notations Q, Q̃, and Φ). The gauge field A(x) is in the vector mul-

tiplet V(x, θ) which also contains a complex scalar field σ(x) in the adjoint representation,

fermions and auxiliary fields. It is convenient to use the twisted chiral multiplet Σ(x, θ) (in
the adjoint representation of G) - the field strength F (A) is in the twisted chiral multiplet

Σ = D+D−V (D±, D± - differential operators in the superspace, form the representation

of 2d super-Poincare algebra), as well as complex scalar σ(x), fermions and auxiliary fields.

Superspace coordinates are x, θ; four supercharges - so four θ’s, θ+, θ−, θ
+
, θ

−
; x are local

coordinates in 2d space-time. The global group Hmax = ×i U(Mi) acts on R and this

action commutes with the gauge group action. The actual global symmetry group H of the

theory may be smaller: H ⊂ Hmax.

The action functional is a sum of three terms - D (d4θ integration), F and the twisted F
terms (both have only d2θ integration, but different combinations):

A =

∫
d2x d4θ [ tr

(
ΣΣ
)
+K(eV/2 X , X eV/2)] +

∫
d2x dθ+dθ− [W (X) + c.c.]

+

∫
d2x dθ+dθ

−
[W̃ (Σ) + c.c.] +

∫
d4θ TrR X†

(∑
i

eṼi ⊗ IdRi

)
X (2.1)

We included in (2.1) separately a “twisted mass term” (Ṽi = m̃i θ
+θ

−
and m̃i are complex

numbers - “twisted” masses) [20], [21] though it has the form of D-term for matter fields

(or because of very special form of Ṽ it can be also viewed as a part of F -term). Here

m̃ = (m̃i) , m̃i ∈ End (Mi) ∩ H . Action can have the field content corresponding to the

higher, N = 4, supersymmetry and twisted masses can break it to N = 2; those twisted

masses which preserve the N = 4 will be denoted by m, and the ones which break it down

to the N = 2, by u.
The superpotentialW (X) has to be a holomorphic gauge invariant function of the chiral

matter fields, such as Φ, Q, Q̃ and other representations. The twisted superpotential W̃ (Σ)

has to be a holomorphic function of twisted superfield Σ. W̃ (Σ)may contain, for each U(1)
factor in G, so-called “complexified” θ-term (θ and Fayet-Illiopoulos (FI) terms) which is

linear in Σ. In order to write such terms one introduces non-dynamical twisted superfield Σ′
b

(for every U(1)-factor labeled by b) whose scalar component is tb ≡ σ̃b =
ϑb

2π + irb and

writes
∫
d2xdθ+dθ−Σ′

btrΣ
b.

When R is a sum of a fundamental representation Rf with multiplicity nf and anti-

fundamental representation Rf with multiplicity nf - complex masses come from the super-
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potential

Wcomplexmass(X) =
∑
a,b

mb
aQ̃bQ

a,

which breaks the Hmax = U(nf ) × U(nf ) down to U(1)min(nf ,nf ). When R contains one

more representation, the adjoint Radj , one can consider more sophisticated superpotential:

WQ̃ΦQ =
∑
a,b

Q̃amb
a(Φ)Qb =

∑
a,b;s

mb
a;sQ̃

aΦ2sQb (2.2)

nf = nf = L we later call the main example.
The theory can be “abelianised”. When the twisted masses are turned on in the generic

fashion, the matter fields are massive and can be integrated out in the path integral. The

theory becomes an effective pure N = 2 gauge theory with an infinite number of interaction

terms in the Lagrangian, with the high derivative terms suppressed by the inverse masses of

the fields we integrated out. Of all these terms the term without derivatives, the effective

twisted superpotential W̃ eff(Σ) (this is the only one without derivatives), can be computed

exactly. In fact, it receives only one-loop contribution and is mathematically well-formulated

as a regularised determinant. This procedure, abelianisation, is formulated in a mathemati-

cally precise terms in the language of topologically twisted theory (which is equivalent to the

vacuum sector of physical theory described in this section). Let m̃ denote collectively the

set of the twisted masses of the fields we are integrating out. We get following contribution

from matter fields to the effective twisted superpotential:

W̃ eff
matter(σ) =

∑
b

2πi tbtrbσ + trR (σ + m̃) (log (σ + m̃)− 1) (2.3)

where for each U(1) factor in G we have introduced by hand at tree-level a tb term.

There are other massive fields which can be integrated out on the Coulomb branch in

a similar fashion - g/t-components of the vector multiplets (where g denotes Lie algebra

corresponding to Lie group G and t is its Cartan sub-algebra), the W -bosons and their

superpartners. Their contribution is simple:

W̃ eff
gauge(σ) = −

∑
α∈Δ

〈α, σ〉 [ log 〈α, σ〉 − 1 ] = −2πi 〈ρ, σ〉 (2.4)

where ρ = 1
2

∑
α∈Δ+

α is a half the sum of the positive roots of g. The total effective

twisted superpotential is, therefore: W̃ eff(σ) = W̃ eff
matter(σ) + W̃ eff

gauge(σ). It is a functional

of twisted superfield Σ - we write it as W̃ eff(σ) for simplicity.

2.1. Examples. There are two classes of examples in 2d: a) the asymptotically free theories

and b) the asymptotically conformal theories. The a) examples include the gauge theories

which look at low energy as the N = 2 sigma models with various Kähler target spaces:

the complex projective space CPL−1, the Grassmanian Gr(N,L), or, more generally, the

(partial) flag variery F (n1, n2, . . . , nr, nr+1 ≡ L). The b) examples can also be identified

at the low energy level with the sigma models. These sigma models typically have the hy-

perkähler target spaces, such as the cotangent bundles to the Kähler manifolds from the a)
list. The b) examples turn out to include essentially all known quantum integrable models of
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statistical physics. By taking an appropriate scaling limit one can get the a) examples from

the b) examples, so it is sufficient to focus on the b) cases. For example, the Grassmanian

model is a limit of the T ∗Gr(N,L) model in the limit where the twisted mass u correspond-

ing to the rotations of the cotangent direction is sent to infinity, with the complexified Kähler

class adjusted in such a way, that the effective mass scale ΛGr = ue
2πit
L remains finite (this

will correspond to a non-Hermitian deformation of Heisenberg magnet which itself is dual

to original T ∗Gr(N,L) theory).
In the above general construction 2d theory with matter fields in the representation R

can have each irreducible representation Ri infinitely many times, but with different twisted

mass. There are also two interesting types of such examples known, both originating in

higher dimensions: I) 2d theory can come from 3d theory compactified on S1 (or from 4d

theory on T 2, 5d theory on T 3, ..., KK compactification) - 2d fields, labeled by the Fourier

mode ni, will be in the same representation Ri for all ni; II) two-dimensional effective

theory can be a 4d(5d) theory in a special Ω-background. We will give bellow the twisted

effective superpotentials both for type I and type II theories (for G = U(N), other groups
and more examples can be found in [7–10]).

Main example in 2d. R × S1. In this example Hmax = U(L) × U(L) × U(1) global

symmetry group. Matter fields are: Qa, a = 1, ..., L, in the N -dimensional fundamental

representation of G = U(N), Q̃a - L copies of anti-fundamental representation and one Φ
in the adjoint representation. This theory has the matter content of the 4dNc = N ,Nf = L,
N = 2 theory with fundamental hypermultiplets, however, the supersymmetry is half of the

4d theory. It has 2L+ 1 twisted mass parameters m̃ = (mf
a,m

f
a)

L
a=1 and m̃adj ≡ −iu. For

W̃ eff
Q̃ΦQ

(σ) we have:

N∑
i=1

L∑
a=1

[(
σi +mf

a

) (
log
(
σi +mf

a

)− 1)− (σi −mf
a

)(
log
(
−σi +mf

a

)
− 1
)]

+
N∑

i,j=1

(
σi − σj +madj

) (
log
(
σi − σj +madj

)− 1)− 2πi N∑
i=1

(
t+ i− 1

2 (N + 1)
)
σi

(2.5)

The generic twisted masses are incompatible with any tree level superpotential. However,

for the special choice of the twisted masses, not affecting final (2.5), mf
a = −μa + isau,

mf
a = μa + isau, m

adj = −iu, one can turn on the tree level superpotential (2.2) with

mb
a;s = δbaαa ((2.2) has U(1)L+1 global symmetry).

Main example in 3d. This is example of Type I. We consider the theory on R1 × S1 × S1.

It suffices to make all the fields depend on an extra coordinate x2 = y, y ∼ y + 2π. Since
the translations in y are the global symmetry of the theory like for every global symmetry

we can turn on the corresponding twisted mass m̃S1 . The twisted mass corresponding to the

translations is m̃ = i
R . Thus, the KK modes with momentum n, n ∈ Z, have the twisted

mass m̃n = in
R . To compute the effective twisted superpotential it is enough to enumerate

the KKmodes and sum up their contributions. One needs to use a kind of zeta-regularization,

which can be justified by topological field theory methods. Let m̃ denote the ordinary two

dimensional twisted mass, corresponding to the centralizer of G in R which preserves other

couplings of the theory, such as the superpotential. We assume m̃ sufficiently generic so
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that all the modes of the matter multiplet are massive. The sum over KK modes for matter

multiplet and W ’s give:

W̃ eff
matter(σ) = trR

[∑
n∈Z

(
σ + m̃+

in

R

)(
log

(
σ + m̃+

in

R

)
− 1
)]

∼ 1

2πR
trR

[
Li2

(
e−2πR(σ+m̃)

)] (2.6)

W̃ eff
gauge =− tr g/t

[
1

2πR
Li2
(
e−2πRσ

)]
=

πR

2
tr adj

(
σ2
)
+ 2πi 〈ρ, σ〉 (2.7)

We used: Li2(e
−x) + Li2(e

x) = π2

3 − iπx − x2

2 and dropped an irrelevant constant. The

quadratic term in (2.7) corresponds to the anomaly-induced Chern-Simons interaction [22,

23] in the three dimensional theory.

Main example in 4d. This is again the Type I example. We consider the theory onR2×T2

- the lift to the N = 1 supersymmetric Yang-Mills theory (with matter), compactified on a

two-torus T2. Again, we can view the lift to 4d as the 2d theory with the infinite number of

fields, which depend on the two additional coordinates (y, z), with y ∼ y+2π, z ∼ z+2π.
The theory is regularised by the twisted masses corresponding to the translations along T2.

We choose one of the masses to be i
R , then the other is iτ

R . τ is the complex modulus of T2.

The normalized holomorphic coordinate on T2 is: w = 1
2π (y + τz). The gauge theory is

sensitive to the metric on the torus and a 2-form (B-field) via the coupling
∫
R2×T2 B∧ trF .

The invariance under the large gauge transformations translates to the double-periodicity

of the twisted superpotential: σ → σ + i
R (m+ nτ) , m, n ∈ Z. The effective twisted

superpotential up to linear terms is (q = exp 2πiτ ):

W̃ eff(σ) =
πR

2
trR(σ + m̃)2 +

πiτ

6
trR(σ)

+
1

2πR

∞∑
n=1

trR

[
Li2

(
qn−1e−2πR(σ+m̃)

)
− Li2

(
qne2πR(σ+m̃)

)]
=

πR

2
trR(σ + m̃)2 +

πiτ

6
trR(σ) +

1

2πR

∑
n∈Z 
=0

trR
[
e2πRn(σ+m̃)

]
n2(1− qn)

(2.8)

Ω-background in 4d. This is the Type II example. We consider special Ω-background:

R2 ×R2
ε . The ordinary KK compactification on a torus Tk is equivalent to the theory with

twisted masses corresponding to the translations in extra dimensions Rk. Alternatively one

can study the twisted masses corresponding to the rotational symmetry. Consider a four

dimensional N = 2 theory on a four manifold M4 fibered over a 2d base Σ with the Ω-

background along the fibers R2. Somewhat schematically we shall denote the fibers by R2
ε.

The base Σ of the fibration could be R1,1, or R1 × S1, or arbitrary Riemann surface. Let

us denote the coordinates on the fiber R2
ε by (x2, x3), and the coordinates on the base Σ by

(x0, x1). Introduce the vector field U = x2∂3 − x3∂2 generating the U(1) rotation in R2.

Let ε ∈ C be a complex parameter and let V = εU, V = εU be the complex vector fields

on R2. The bosonic part of the pure N = 2 super-Yang-Mills Lagrangian of the theory on
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R2 ×R2
ε is simply [15], [16]:

L =− 1

4g20
tr F ∧ %F + tr (DAφ− ειUF ) ∧ %

(
DAφ− ειUF

)
+
1

2
tr
(
[φ, φ] + ιUDA

(
εφ− εφ

))2
+

θ0
2π

trF ∧ F

(2.9)

It is clear that the Poincare invariance in the (x0, x1) directions is unbroken. It is possible

to show that the whole 2d N = 2 super-Poincare invariance is preserved. Thus, the theory

is effectively 2d and there are 4 supercharges, so we are in our original setup; like in KK

case, we have infinitely many matter fields. Twisted effective superpotential is again exactly

computable (we use notation a for complex scalar instead of σ since it is common notation

in 4d). If we send ε back to zero then the low energy theory is fully 4d with a continuous

moduli space Mv of vacua.

In [10] the superpotential W̃ eff (a, ε) was computed for the several important examples

of 4dN = 2 gauge theories onR2×R2
ε . One starts with the partition function Z(a, ε1, ε2; q)

of 4d theory in the general Ω-background R2
ε1 × R2

ε2 , with both rotation parameters ε1, ε2
non-zero - SW -prepotential F (a; q), which defines the two-derivative low-energy effective

action of 4d N = 2 theory, is [15, 16]:

F (a; q) = Limε1→0,ε2→0 [ε1ε2 logZ(a, ε1, ε2; q)] = F pert(a; q) + F inst(a; q) (2.10)

Perturbative part of prepotential (as in the case of abelianisation for 2d supersymmetric

gauge theory and effective twisted superpotential) is one loop exact and can be mathemati-

cally well-formulated. The non-perturbative/instanton part is an infinite sum F inst(a; q) =∑∞
n=1 q

nFn(a) where q is an instanton counting parameter for a given theory - e. g. for

N = 2∗ theory it is the complexified bare gauge coupling of the action functional (2.9):

q = exp 2πiτ ; τ = ϑ0

2π +
4πi
g02 .

According to [10] the universal part of the twisted effective superpotential for the 2d

theory corresponding to the special Ω-background with ε2 = 0, ε1 = ε is:

W̃ (a; ε; q) = Limitε2→0 [ε2 logZ(a, ε1 = ε, ε2; q)] =W pert(a; ε; q) +W inst(a; ε; q).
(2.11)

The perturbative part has a tree level term, proportional to log(q) and the one-loop term,

which is q-independent; the non-perturbative/instanton part has, again, infinite expansion:

W inst(a; ε; q) =
∑∞

k=1 qkW inst
k (a; ε). When we view 2d theory in a special Ω-background

as 2d theory with infinitely many fields in order to have a well-defined effective theory we

need to specify boundary condition at infinity; one may view the choice of the boundary

condition at infinity as a choice of a 3d supersymmetric theory compactified on a circle,

coupled to the original 4d theory on the product of a cigar-like 2d geometry and the 2d

Minkowski world-sheet of the resulting theory. The 3d theory at infinity is compactified on

a circle because of the asymptotics of the cigar-like geometry [24] (we will briefly return to

this in Section 3), which looks like R × S1 at infinity; the contribution W̃∞(a, ε, q) of the
3d theory at infinity of the cigar is purely perturbative (see 3d example above) and is given

by a sum of dilogarithims. Total superpotential is [10, 25]:

W̃ eff (a, ε, q) = W̃ (a, ε, q) + W̃∞(a, ε, q) (2.12)
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As we see, there is a certain ambiguity in the perturbative part. The instanton part is unam-

biguous. It follows from (2.10), (2.11), (2.12) that in the limit ε → 0 the twisted superpo-

tential W (a, ε) behaves as:

W (a; ε; q) =
F (a; q)

ε
+ regular in ε terms (2.13)

2.2. Supersymmetric vacua of N = 2 theories.
We return to the abelianised effective 2d theory where we know exact effective twisted super-

potential. The only local gauge invariant of the abelian gauge field in 2d is the field strength

F01 subject to the global constraint: 1
2πi

∫
Σ
F i = mi ∈ Z, the integrality of the magnetic

flux. In addition, the global invariants of the T-valued gauge field include the holonomies,

which are irrelevant for our discussion at the moment. To minimize the potential energy and

find the vacua we promote Fα
01 to the independent fields, while adding at the same time the

term
∑r

i=1 ni
∫
Σ
F i to the action (cf. [26–28]). The latter shift is equivalent to the shift [13]:

W̃ eff(σ) −→ W̃ eff
�n (σ) = W̃ eff(σ)− 2πi

r∑
i=1

niσ
i (2.14)

where now H ± iF01 (here H is a 2-form auxiliary field, the top component of twisted

super field Σ(x, θ) in the θ expansion) are two independent auxiliary fields, which can be

integrated out. Thus, the target space of the effective sigma model becomes, a priori, discon-
nected, with #n labeling the connected components. In fact, the actual connected components

are labeled by the equivalence classes of #n up to the action of the monodromy group (the ef-

fective superpotential is not a univalent function of σ). After eliminating the auxiliary fields

the exact potential (term in the effective action without derivatives) on the #n-th component

is:

U�n =
1
2g

ij(−2πini + ∂W̃
eff
(σ)

∂σi
)(+2πinj +

∂W̃
eff

(σ)

∂σj
) (2.15)

where gij is a Kähler metric (from D-term - we mentioned above that D-term can not be

computed exactly, only F tw-term can be computed exactly so we need to assume that Kähler

metric is non-degenerate). Thus, the minima are at:

1

2πi

∂W̃ eff(σ)

∂σi
= ni (2.16)

This equation is derived under very general conditions. Everything is hidden in W̃ eff . The

ni dependence in (2.16) can be eliminated by exponentiating both sides:

exp

(
∂W̃ eff(σ)

∂σi

)
= 1 (2.17)

The same exact equation can be derived if we remember that the topologically twisted

theory is equivalent to the vacuum sector of the physical theory. After abelianisation the

action of the topologically twisted theory can be brought to the simple form by the so-called

quartet mechanism (one adds the anti-twisted superpotential tTrσ2, and sends t→∞):

S =
r∑

i=1

∫
Σ

∂W̃ eff(σ)

∂σi
F i
A +

1

2

r∑
i,j=1

∫
Σ

∂2W̃ eff(σ)

∂σi∂σj
ψi ∧ ψj (2.18)
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Here F i
A is a curvature of abelian gauge field Ai and ψi is anti-commuting 1-form on Σ,

the super-partner of Ai. In this form the path integral becomes a contour integral over the

σ field. In fact (2.18) is a general form of abelianised action in any 2d topological gauge

theory, the information about original theory is hidden in the form of W̃ eff . The original

supersymmetric theory contains information hidden in the D-terms, which ultimately leads

to the wall-crossing phenomena [13].

The canonical quantization of (2.18) on the cylinder Σ = R × S1 is simple. The only

physical degree of freedom is the monodromy exp iϑi = exp
∮
S1 A

i of the gauge field

around the circle S1 and the momentum conjugate to ϑi, Ii = ∂W̃ eff/∂σi. ϑ
i takes values on

a circle (due to the large gauge transformations) so Ii is quantized, leading to the equations

(2.16), (2.17). Now these equations describe all states of topological theory or the same -

vacuum states of physical theory.

One can study the vacuum sector of the physical N = 2 theory or the topologically
twisted version - ultimately one deals with same equations (2.16), (2.17).

The language of topological theory was adopted originally in [1, 5, 6]. In Subsection
2.3, we identify these vacuum equations as equations defining the Bethe states for many

well-known quantum integrable systems (these identification can be made for all known, to

the author, examples solved by Bethe ansatz [31]).

2.2.1. Twisted chiral ring and quantum integrability. The space of supersymmetric vacua

of a theory with four supersymmetries carries a representation of a commutative associative

algebra, the so-called (twisted) chiral ring, see e.g [29].

In 2d the N = 2 supersymmetry is generated by the fermionic charges Q±, Q±:

{Q±, Q±} = 2(H ± P ) ,

{Q+, Q−} = {Q+, Q−} = 0; {Q+, Q−} = {Q+, Q−} = 0 (2.19)

the last two lines being valid in the absence of the central extension, induced, e.g. by some

global symmetry charges.

One can define a nilpotent charge as a linear combination of fermonic charges Q±, Q±.

There are two independent combinations, QA and QB , which square to 0 and such that their

anti-commutator with Q+
A and Q+

B respectively produces H:

QA = Q+ +Q− , QB = Q+ +Q−, Q2
A = Q2

B = 0 (2.20)

{QA, Q
†
A} = H, {QB , Q

†
B} = H (2.21)

The twisted chiral ring is generated by the operators Ok(x), k = 1, 2, . . . which (anti)-

commute with the operator QA : {QA, Ok(x)} = 0. Equivalently one can define a chiral

ring whose generators (anti)-commute with the operator QB : {QB , Ok(x)} = 0. Here we

concentrate on the QA-cohomology and assume that the possible central extension of (2.19)

leaves QA nilpotent Q2
A = 0. The local operators Ok(x) are independent up to the QA-

commutators of their location x. Their operator product expansion defines a commutative

associative ring,

OiOj = ckijOk + {QA, . . .} (2.22)

Vacuum states |0〉,H|0〉 = 0, are the Harmonic representatives inQA-cohomology: Q|0〉 =
0, |0〉 ∼ |0〉 + Q|..〉. Also, if |0〉 is a vacuum state of the Hamiltonian, H|0〉 = 0, then so
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is Oi|0〉 = |i〉, and moreover the space of vacua is the representation of the twisted chiral

ring. In this space {|i〉} form a basis; so one has exactly same number of (anti)-commuting

operators Oi’s as the number of states in vacuum. Thus the space of supersymmetric vacua,

which can be effectively studied using the cohomology of the operator QA (or QB), is the

space of states of some quantum integrable system: Hquantum = kerQA/imQA. The oper-

ators Ok and more generally the functions of Ok’s are the quantum Hamiltonians Hk’s of

some integrable system.

The operatorsOk can be chosen under the assumption of the absence of massless charged

matter fields (in order to justify integrating out massive fields - abelianisation) to be the

gauge invariant polynomials of the complex scalar σ:

Ok =
1

k!(2πi)k
Trσk (2.23)

In integrable system one looks for the common eigenstates of these Hamiltonians:

Ψλ ∈ Hquantum , HkΨλ = Ek(λ)Ψλ (2.24)

where Ek(λ) are the corresponding eigenvalues, and λ are some labels. In general they are

complex, Ek(λ) ∈ C (in case when quantum integrable system is solved with the use of

Bethe ansatz λ’s usually have the meaning of rapidities).

The important, or at least the interesting, problem is to identify the quantum integrable
system given an N = 2 gauge theory, or to solve the converse problem – to find the N = 2
theory given a quantum integrable system. For a large class of models on both sides this

problem has been solved in [1, 5–10].

In previous subsection we wrote the equations (2.16), (2.17) which count the vacua and

thus after identification Hk = Ok, σi = λi solve the eigenstates problem (2.24). Loosely

speaking, given a vector of electric fluxes (n1, . . . , nr), with ni ∈ Z the vacua are given

by the critical points of the shifted superpotential W̃ eff(σ)− 2πi∑r
i=1 niσ

i (sometimes we

loosely refer to the critical points of the superpotential without explicitly saying “shifted”)

or equivalently by (2.17).

2.2.2. Back to examples - vacuum equations.

CPL−1 model. G = U(1), R = R+1 ⊗CL, where R+1 is a one-dimensional charge +1
representation of U(1). This is asymptotically free theory. From (2.17) we get:

L∏
a=1

(σ + m̃a) = q ≡ e2πi t (2.25)

This describes the U(L)-equivariant quantum cohomology H∗
U(L)(CPL−1) ring.

Grassmanian Gr(N,L) model. G = U(N) and R = CN ⊗CL. This is also asymptot-

ically free theory. Vacuum equations (2.17) in this case are (q = e2πit):

L∏
a=1

(σi + m̃a) = (−1)N+1 q , i = 1, . . . , N (2.26)



Gauge theory angle at quantum integrability 1205

N = 2∗ theory. The example of the pure N = 4 theory broken down to N = 2 by the

twisted mass term for the adjoint chiral multiplet is the first example where the supersymme-

try is broken, for N > 1. Here G = U(N) and R = g ⊗C, i.e. the adjoint representation.

Using (2.3) and (2.4) we derive:

N∏
j=1

σi − σj +m

σi − σj −m
= −q , (2.27)

This equation has no solutions for N > 2, or for N = 1, q �= 1.

Hitchin theory. The model studied in [1, 5, 6] corresponds to theN = 2∗ theory, previous

example, with the tree level twisted superpotential W̃ (σ) = λ
2 tr σ

2 , which corresponds to

the two-observable representing the Kähler form on the Hitchin’s moduli space MH . This

leads to the change in the right hand side of (2.27):

N∏
j=1

σi − σj +m

σi − σj −m
= exp 2πiλ σi , (2.28)

and one now gets solutions for σi’s for allN . The topological twist of this theory, introduced

in [1] and was studied in detail in [5, 6].

Main example in two-dimensions. Equations for vacua (2.17) are (we shift t by L/2 to

avoid extra phases in the right hand side):

L∏
a=1

σi +mf
a

σi −mf
a

= −e2πit
N∏
j=1

σi − σj −madj

σi − σj +madj
(2.29)

This equation has solutions related by permuting σi’s. We shall write it invariantly - sup-

plement (2.29) with the condition that σl �= σm for l �= m and identify the solutions which

differ by the permutations of σl’s. So, we have to rewrite (2.29) as equations on the el-

ementary symmetric functions: cl =
∑

i1<...<il
σi1σi2 . . . σil or, equivalently, via gauge

invariant order parameterQ(x) (Baxter-Chern, BC, order parameter)Q(x) ≡ det(x−σ) =∏N
i=1(x− σi) = xN +

∑N
i=1(−1)icixN−i:

a(x)Q(x+madj) + e2πit d(x)Q(x−madj) = t(x)Q(x) (2.30)

a(x) =
L∏

a=1

(x+mf
a) , d(x) =

L∏
a=1

(x−mf
a) (2.31)

and t(x) is an unknown polynomial of degree L. This polynomial is uniquely fixed in terms

of ci’s from the equation (2.30) by expanding both sides at x =∞.

Main example in three and four dimensions. It is straightforward to generalise all above

to three and four-dimensional lifts - with the use of (2.6), (2.7), (2.8) one obtains formulas

analogous to (2.29), (2.30), (2.31). For example (2.29) becomes trigonometric in 3d and

elliptic in 4d - for more details see [7, 8].
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2.3. Vacuum states as Bethe states. We have already mentioned in the introduction that

the vacuum equations (2.28) for the Hitchin example of [1, 5, 6] correspond to the Bethe

equation forN -particle sector of non-linear Schrödinger system. This sector is described by

N -particles on a circle, xi ∈ S1, with pairwise δ-function interaction:

H(2) = −1
2

N∑
i=1

∂2

∂x2
i

+ c
∑
i<j

δ(xi − xj) (2.32)

Higher Hamiltonians, corresponding to the operators (2.23), are written in terms of Dunkle

operators Di and permutation sij :

H(k) =

N∑
i=1

Dk
i ; Di = −i ∂

∂xi
+ i

c

2

N∑
j=i+1

(ε(xi − xj) + 1)sij

Here ε(x) is a sign-function and sij ∈ SN is a transposition (ij). (Di, s) provide a repre-

sentation of the degenerate affine Hecke algebra HN,c for Lie algebra gl(N). Image of the

quadratic element of the centre is the Hamiltonian (2.32). Eigenvalues of this Hamiltonian

are parametrized in terms of N -variables λi, i = 1, ..., N as Ei =
∑

i λ
2
i . Eigenfunctions

Ψλ(x) for (2.32) where found in [32, 33] and condition of periodicity xi ∼ xi + 1 is the

restriction (2.28) on λi [34, 35] with σi = λi.
Let us now make this identification for our main 2d example (2.29). We already know

that for special choice of twisted masses mf
a = −μa + isau, mf

a = μa + isau, madj =
−iu, one can turn on the tree level superpotential (2.2) with mb

a;s = δbaαa preserving

U(1)L+1 global symmetry. For this choice the vacua of main 2d example correspond to

Bethe eigenstates of SU(2) XXXs spin chain with impurities μ1, ..., μL and SU(2) spins
sa. Here we give few details only for s = 1

2 .

XXX1/2 spin chain is defined on the one dimensional length L lattice. At each lattice

point one has the spin s = 1
2 representation of SU(2), and the Hilbert space of the system

is the tensor product HL = C2 ⊗C2 ⊗ . . .⊗C2. The Hamiltonian HHeis acts in HL. It is

written in terms of SU(2) generators #Sa where a denotes the position on the lattice of the

spin s = 1
2 representation of SU(2) and has the nearest-neighbor interaction form:

HHeis = J

L∑
a=1

(Sx
aS

x
a+1 + Sy

aS
y
a+1 + Sz

aS
z
a+1) (2.33)

The boundary conditions are quasi-periodic: #SL+1 = e2πt
�S3
tot #S1e

−2πt�S3
tot . The N -particle

eigenstates/eigenvalues (N spins up, L−N spins down),HHeisΨλ = E(λ)Ψ, are described

with the help of Bethe ansatz and are:

eipj =
λj +

i
2

λj − i
2

; E(λ) = J(L− 2N + 2
N∑
i=1

cos(pi))

such that λi’s solve Bethe equation (2.29) with identification λi = σi, and sa =
1
2 , μa = 0

(u is a scaling variable and can be rescaled to 1).

Similar equations exist for an arbitrary spin chain XXXs when #Sa is in the spin sa rep-

resentation of SU(2) at every site and in addition the spin sites are (in some sense) displaced
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from the symmetric round-the-clock configuration so one gets L additional parameters - im-

purities μ1, ..., μL. The Hamiltonian for the general local spins is given by a polynomial

in the neighbouring spins, which is more complicated than (2.33). Similarly - the vacuum

sector for the main example in three dimensions from previous subsection is identified with

XXZs spin chain and four-dimensional case with XY Zs spin chain, for more details see

[7, 8, 31]. Also, one can modify main example in such form to accommodate above spin

chains for arbitrary spin group [7, 8, 31, 36]; corresponding models are based on quiver

gauge groups. To conclude - we have following relations:

- Main example in two-dimensions — XXX spin chain,

- Main example in three-dimensions — XXZ spin chain,

- Main example in four-dimensions — XY Z spin chain.

3. Quantum many-body systems and SUSY vacua

Now we concentrate on Type II examples - special Ω-backgrounds. In these examples we

deal with 4d(5d) N = 2 theories. Exact low energy effective action (in two-derivative

approximation) was found by Seiberg and Witten (SW) [2]; this can be viewed as 4d analog

of 2d exact result for effective twisted prepotential reviewed in the beginning of this paper.

Later, it was realised that the SW moduli space of vacua is best described in terms of the

geometry of classical Algebraic Integrable System (AIS) [17–19]. The key elements of SW

solution - spectral curve, differential and prepotential - all appear in the classical AIS.

3.1. Algebraic integrable systems. Algebraic Integrable System is a complex analog of

usual classical Hamiltonian integrable system - one is given a data (M,ω,H) consisting

of the complex manifold M of complex dimension 2n, the holomorphic non-degenerate

closed (2, 0) form ω, and the holomorphic map H : M → Cn whose fibers Jh = H−1(h)
are Lagrangian polarized abelian varieties. The polarization is a Kähler form �, whose

restriction on each fiber is an integral class [�] ∈ H2(Jh,Z) ∩H1,1(Jh). The image B =
H(M) is an open domain in Cn. It has a special Kähler geometry, with the metric ds2 =
1
π

∑n
i=1 Im

(
dai ⊗ daD,i

)
where the special coordinates ai, aD,i are given by the periods:

ai =
1

2π

∮
Ai

pdq aD,i =
1

2π

∮
Bi

pdq (3.1)

over the A and B-cycles, which are the Lagrangian (with respect to the intersection form

given by [�]) subspaces in H1(Jh,Z). It follows that the 2-form
∑

i da
i ∧ daD,i vanishes

onB thereby embedding the covering U of the complementB\Σ to the discriminant Σ ⊂ B
of the singular fibers to the first cohomlogyH1(Jh0

,C) of the fiber over some distinguished

point h0 ∈ B, as a Lagrangian submanifold L. As such, it comes with the function F : L→
C, locally a function of ai’s, such that:

aD,i =
∂F

∂ai
(3.2)

In analogy with real classical integrable system the equations (3.1) define the action variables

- local complex coordinates on the base. Since the 2n-dimensional symplectic manifold
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has at most n functionally independent Poisson-commuting functions, there ought to be a

relation between ai and aD,i’s. It is remarkable that this relation has a potential function. The

action variables ai come with the corresponding angle variables φi = αi+τijβ
j , τij = ∂2

ijF ,

while aD,i correspond to φD,i =
(
τ−1
)ij

φj : ω =
∑

i da
i ∧ dφi =

∑
i daD,i ∧ dφD,i Here

αi, β
i ∈ R/2πZ are the real angular coordinates on the Liouville torus.

Main observation which led to the relation between the SW solution and the classical

AIS is the existence of prepotential F (a) in both and the explicit statement that these pre-

potentials coincide for pure super-Yang-Mills theory and N -particle periodic Toda (pToda)

integrable system, as well as for N = 2∗ super-Yang-Mills theory and elliptic Calogero-

Moser (eCM) system (many other examples discovered later and extended to large class of

N = 2 theories in four-dimensions in [74], [46]).

In [10] it was shown that the special Ω-deformation with one ε gives the quantisation of
these AIS with ε being a (complexified) Planck constant �.

The quantization of the classical integrable system is a (possibly discrete) family

(Aε, Hε, Ĥ), of the associative algebras Aε (ε is a Planck constant, can be any complex

number), which deform the algebra of functions on the Poisson manifold (X,ω−1), the

(Hilbert) vector spaces Hε, with the action of Aε, and the mutually commuting operators

Ĥ = (Ĥ1, . . . , Ĥn), Ĥi ∈ Aε; [Ĥi, Ĥj ] = 0, and generate Hε in the following sense - the

common spectral problem defines a basis in Hε:

ĤiΨ = EiΨ (3.3)

The construction of the common eigenstates and the spectrum of the operators Ĥi is a prob-

lem of the coordinate Bethe ansatz, quantum inverse scattering method (ABA [39–41]),

quantum separation of variables [42], Baxter equation [43], the spectral curve quantization

[44] and various other versions of the Bethe ansatz.

Here we take a different route [1, 5–10]. Hint comes from the following observation:

consider the Ω-deformation of gauge theory with one ε parameter and use the argument

we gave above (from [10]) that resulting effective theory is two-dimensional with effective

twisted superpotential (2.11); its vacuum equation (2.17) defines the spectrum of some quan-

tum integrable system as already explained; but latter equation, due to the relation (2.13), in

the “classical” limit � = ε → 0, reduces to aD,i = 2πiεni + O(ε2) which is nothing but

a Bohr-Sommerfeld quantisation of AIS with prepotential F . This suggests that quantum

integrable system corresponding to the supersymmetric vacua in a special Ω-background is

a quantisation of AIS describing the moduli space of vacua of the theory with ε = 0.
The second deformation, leading yet to another ε, comes from the turning on the “times”

- the quantum integrable system can be deformed by making Ĥi depend on the additional

parameters t = (t1, . . . , tn), where 2n is a complex dimension of phase space, so they define

a flat connection depending on a spectral parameter κ:

[κ
∂

∂ti
− Ĥi(t), κ

∂

∂tj
− Ĥj(t)] = 0 (3.4)

Applied to quantum Hitchin system (itself being AIS) it produces KZ connection for the

WZW conformal field theory (the gauge theory meaning of the κ-parameter is ε2 of the

general Ω-background, or more precisely κ vanishes when ε2 = 0).
Following above logic of quantisation via deformation of gauge theory - we need to

calculate the superpotential from (2.12) and compare the resulting spectrum (2.16) with in-

dependent calculations from integrable system side, so we can conclude:
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The gauge theory allows to find the exact spectrum of (3.3) which is the invariant of

the choice of polarization used in the quantization procedure for all examples when moduli

space of vacua is described by classical AIS.

Hitchin integrable systems are examples of AIS. They are defined via the Riemann sur-

face of genus g with n punctures and the gauge groupG. First we will make such comparison

for one particular example of Hitchin system - elliptic Calogero-Moser system correspond-

ing to g = n = 1, G = SU(N) and describing the vacua of four-dimensional SU(N)
N = 2∗ theory. Exact quantum spectrum of eCM system is not know in integrability liter-

ature but it has a simple limit, pToda system, for which it is known [47]; in this limit, from

gauge theory side, N = 2∗ theory becomes pure N = 2 theory. Thus we need to calculate

superpotential for N = 2∗ theory with one ε, get the spectrum for eCM system, take limit to

pToda system and compare to [47]. This was done in [10], where also the spectrum of eCM

system was calculated in certain perturbative expansion to sufficiently high order in order to

compare with gauge theory answer before taking pToda limit.

3.1.1. The classical elliptic Calogero-Moser system. The elliptic Calogero-Moser system

(eCM) is the Hamiltonian system ofN particles (x1, x2, . . . , xN ) on the circle of circumfer-

ence β, xi ∼ xi + β which interact with the pair-wise potential

HeCM
2 =

1

2

N∑
i=i

p2i +m2
∑
i<j

u(xi − xj),

u(x) =C(β) +
∑
k∈Z

1

sinh2(x+ kβ)
= −∂2

xlogΘ(x)

(3.5)

where Θ is the odd theta function on the elliptic curve Eτ with the modular parameter

τ = ie
π , Θ(x) = −∑k∈Z+ 1

2
(−1)kq k2

2 e2kx, q = exp 2πiτ and C(β) is some constant.

There exists a Lax representation [48] and a characteristic polynomial:

Φij(z) = piδij +m
Θ(z + xi − xj)Θ

′(0)

Θ(xi − xj)Θ(z)
(1− δij) (3.6)

Det(Φ(z)− x) = 0.

Spectral curve Det(Φ(z) − x) = 0 defines the Hamiltonians Hi of eCM system as the

coefficients of xN−i in its expansion. This is an N -sheeted ramified cover of the elliptic

curve Eτ where z lives, and it is the SW curve of N = 2∗ theory. The parameter m in

(3.6) is the mass of the adjoint hypermultiplet, the complex structure of the curve Eτ is

determined by the complexified bare gauge coupling of the ultraviolet theory (which is in

fact the superconformal N = 4 theory). Prepotential calculated from (3.2) coincides with

SW prepotential for this theory.

In the limit β → ∞, m → ∞, such that Λ2N = m2Nq is kept finite, the eCM system

becomes the periodic Toda chain [49], where xeCM
i = i

N β + xpToda
i :

HpToda
2 =

1

2

N∑
i=1

p2i + Λ2

(
N−1∑
i=1

exi−xi+1 + exN−x1

)
(3.7)

Spectral curve (3.6) and prepotential (3.2) become those of pure N = 2 theory.



1210 Samson L. Shatashvili

3.1.2. Relativistic model and five-dimensions. There exists [50, 51] a one-parametric rel-

ativistic deformation of the eCM integrable system, whose Hamiltonians are trigonometric

(hyperbolic) functions of the momenta. In particular, the Hamiltonians P̂ = Ĥ1, Ê = Ĥ2

become

P̂ =
N∑
i=1

sinh(βpi)fi(x), Ê =
N∑
i=1

cosh(βpi)fi(x), fi(x) =
∏
j �=i

√
1− ℘(xi − xj)

℘(em)

(3.8)

These systems (3.8) correspond to the 5d theory compactified on S1 [30].

3.2. Quantisation. After replacement pi → ε ∂
∂xi

,m2 → m(m+ ε) - H2 is:

H2 =
ε2

2

N∑
i=i

∂2

∂xi
2 +m(m+ ε)

∑
i<j

u(xi − xj) (3.9)

Usually eCM Hamiltonian is written in notations ε = −i�,m = νε, �, ν, β ∈ R+.

Now we turn on ε and calculate (2.11) for N = 2∗ gauge theory in order to find the

expression for W̃ eff = W̃ pert(a, τ) + W̃ inst(a, q). The perturbative part is:

W̃ pert(a, τ) =
1

2ε
τ

N∑
n=1

a2n +

N∑
l,n=1

(�ε(al − an)−�ε(al − an −m− ε)) (3.10)

d

dx
�ε(x) = log Γ

(
1 +

x

ε

)
. (3.11)

The instanton part can be written with the use of the “action functional”A(a, q) of two fields

ϕ(x) and ρ(x) on complex plane (Q(x), G(x− y) are given bellow):

A(a; q) =
1

2

∫
C×C

ρ(x)ρ(y)G(x− y) +

∫
C

[
ρ(x)ϕ(x) + Li2

(
qQ(x)e−ϕ(x)

)]
(3.12)

W̃ inst is a classical action - one has to minimise with respect to fields ϕ(x), ρ(x):

W̃ inst(a; q) =

∫
C

[
−1
2
ϕ(x)log

(
1− qQ(x)e−ϕ(x)

)
+ Li2

(
qQ(x)e−ϕ(x)

)]
(3.13)

where ϕ(x) solves a TBA-like equation:

ϕ(x) =

∫
C

G(x− y) log
(
1− qQ(y)e−ϕ(y)

)
(3.14)

Q(x) =
P (x−m)P (x+m+ ε)

P (x)P (x+ ε)
, P (x) =

N∏
l=1

(x− al) (3.15)

G(x) =
d

dx
log

(x+m+ ε)(x−m)(x− ε)

(x−m− ε)(x+m)(x+ ε)
,

The contour C in the complex plane comes from infinity, goes around the points al + kε,
l = 1, . . . , N , k = 0, 1, 2, . . ., and goes back to infinity. It separates these points and
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the points al + lm + kε, l ∈ Z, k = −1,−2, . . ., see [10] (pToda/pure N = 2 an-

swers follow from the above limit; formulas for relativistic model mentioned above are

very similar, see [10]). Given these data, it is straightforward to solve (3.14) recursively:

ϕ(x) =
∑∞

k=1 q
kϕk(x).

The perturbative Bethe equations are:

q
ai
ε =

∏
j �=i

Γ

(
ai − aj

ε

)
Γ

(
ai − aj

ε

)
Γ

(−m− ai + aj
ε

)
Γ

(−m+ ai − aj
ε

)
(3.16)

and correspond to the system ofN interacting particles on the circle of the size∝ logq, with

the factorisable S-matrix of the hyperbolic Sutherland model and ai’s having the meaning

of asymptotic momenta. The energy is given by:

E = εq
d

dq
W̃ eff (a; ε; q) (3.17)

This description of a spectrum via integral equation (3.14) reminds very much the Ther-

modynamic Bethe Ansatz approach initiated many decades ago in quantum integrability

literature. Similarities are obvious, but it doesn’t seem to correspond to any known TBA

system so far. Alternative approach of computing W̃ eff was given in [36], but because of

limited space we are not able to cover it here.

For eCM model prior to [10] the exact solution of proper spectrum was not known in

quantum integrability literature. Thus, in order to make sure the above solution, obtained

via supersymmetric gauge theory methods, is correct - one needs to compare the spectrum

(2.17)), (3.10), (3.13), (3.14) to calculations directly in eCM quantummechanics. It has been

checked in [10] for the expansion of wave-function in q (Hamiltonian (3.9) also expanded

in q around 1
sinh2x potential) to sufficiently high order that if the equations (2.17), (3.10),

(3.13), (3.14) are satisfied (in the same order) - the wave-function is normalisable. Slightly

different, and better, check has been done in [10] for pToda case - answers obtained by

gauge theory methods coincide with the exact solution [47] via simple identification of their

variables δi with ai’s here: δi = ai; exact comparison was made in [53].

3.3. Hitchin systems, Darboux coordinates and gauge theory. The existence of YY -

function always was a bit magical phenomenon observed in the study of quantum integrable

systems. There is no prove that such function should always exist, but in (almost) all exam-

ples of quantum integrable systems solved, by use of Bethe ansatz, there is such function.

In the previous subsection we obtained YY-function, by methods of supersymmetric gauge

theory, for several very important examples of quantum many-body systems. We also clearly

saw that the classical version of YY-function always exists for all AIS and it coincides with

the prepotential. In order to understand the geometric meaning of YY-function one may

ask following two questions: 1. What is the geometric meaning of ε-deformation of the

prepotential (without use of the relation with supersymmetric gauge theory)? 2. What is

the geometric meaning of {ai}’s appearing in the YY-function (since YY-function gives the

quantum answer one expects the deformation of classical relations (3.1)) and what is special

in this coordinate system? There are many other important questions, we concentrate here on

these two for the special class of integral systems - Hitchin systems. This is sufficiently large

class of non-relativistic integrable systems and for many of them we know supersymmetric

gauge theory with the same prepotential.
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Consider Riemann surface Σg,n of genus g with n-punctures. Pick the gauge group G
and the complex structure on Σg,n, denote by Az, Az components of gauge field, and by

φz, φz components of Lie(G) valued one-form. Moduli space MH of solutions to Hitchin’s

equations [54] (modulo the gauge transformations):

Fzz(A) + [φz, φz] = 0, Dz(A)φz = 0, Dz(A)φz = 0, (3.18)

is hyperkähler (see [55] for the detailed review of its properties). In the complex structure,

denoted by I , where the components Az, φz are holomorphic, the space MH has the struc-

ture of the algebraic integrable system [56], with the base being the space of holomorphic

differentials of degrees d1, d2, . . . , dr, for r = rk(G), Pi(φz) ∈ H0(Σ,Kdi

Σ ) for the degree

di invariant polynomials on Lie(G), and the fiber being a (complement to a divisor in a)

Jacobian of the spectral curve C ⊂ T ∗Σg,n, defined by the equation (for G = SU(N), for
other Lie groups see the review [57]): Det(φz − λ) = 0. In the complex structure J , where

the holomorphic coordinates are the components Az = Az + iφz, Az = Az + iφz, MH

is identified (up to the usual stability issues) with the moduli space of the complex GC-flat

connections - M loc : F (A) = 0 (modulo the GC gauge transformations). Finally, K = IJ ,
and the K-holomorphic coordinates are Az + φz, Az − φz. Note - the complex structure

J is natural, if one thinks of the three dimensional theory as coming from the compactifica-

tion of the six dimensional N = 1 gauge theory on a three manifold Σ × S1
r′ , in the limit

r′ →∞. To say thatMH is hyperkähler means - there exists the whole 2-sphere of complex

structures, I = aI + bJ + cK, I2 = −1,, for any (a, b, c), s.t. a2 + b2 + c2 = 1, and the

2-sphere of the corresponding Kähler forms, ωI = aωI + bωJ + cωK where

ωI =

∫
Σ

tr (δA ∧ ∗δφ) , ωJ =

∫
Σ

tr (δA ∧ δA) , ωK =

∫
Σ

tr (δA ∧ δφ) (3.19)

For the compact Σg,n the form ωI realizes a nontrivial cohomology class of MH , while ωJ
and ωK are cohomologically trivial. We shall normalize these forms in such a way that ωI
realizes the integral cohomology class, the restriction of ωI onto the subvariety BunG where

φ = 0 is, up to the (2πi)multiple, the curvature of the canonical Hermitian connection on the

determinant line bundle L overBunG: [ωI ]

∣∣∣∣
BunG

= c1 (L) . If the Riemann surfaceΣg,n has

n > 0 punctures, then all three symplectic forms ωI,J,K on the moduli space of the solutions

to Hitchin’s equations with the sources are, in general, cohomologically non-trivial.

Now we would like to formulate the conjecture about the geometric meaning of YY-

function [25]. In this part the reader also needs to consult [24], [25]. Suppose we study the

four-dimensional theory on the manifold X4 = D × S1 ×R1, where D is topologically a

disk, with the cigar metric:

ds2C2 = dr2 + f(r)dϕ2
1 (3.20)

with f(r) ∼ r2 for r → 0 and f(r) ∼ R2, for r → ∞, for some constant R. Let ϕ2 be the

angular coordinate on the second S1. The base B2 is, in this case, the half-plane R+ ×R.

Suppose we turn on the Ω-deformation corresponding to the isometry rotating D, i.e. the

isometry generated by ∂/∂ϕ1. We can view this situation in two different ways. 1. This is a

four-dimensional N = 2 theory in Ω background which, as we argued above many times, is

a two-dimensional theory with N = (2, 2) supersymmetry on the world-sheet R × S1 with

infinitely many massive fields - the Ω-deformation corresponds, in this two dimensional

language, to turning on the twisted mass ε, corresponding to the global symmetry U(1),
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which is the rotation of D. This two dimensional theory was called T2t in [25]. 2. On

the one hand, we can relate this theory to the sigma model with the worldsheet B2, as in

[24]. The sigma model brane corresponding to the boundary r = 0 is Bcc or its T-dual BOτ

- brane of opers. The other “boundary”, at r → ∞, leads to some asymptotic boundary

condition, which we view as the brane B∞, or B∞
γ if we want to specify the type γ of the

boundary conditions. This was called the theory Trt in [25]. The two dimensional theory

has at low energies (in the sense of the theory on R× S1) a description of the sigma model

on the complexified Cartan subalgebra tC of the gauge group, with the effective twisted

superpotential W̃ eff(σ; τ ;m, ε). Here σ denotes the flat coordinates on tC, τ denotes the

four dimensional complexified gauge couplings, which are identified, for the A1 theories,

with the complex moduli of Σg,n in a suitable parametrization, m denotes the masses of

the matter multiplets in four dimensions, and finally ε is the parameter of the Ω-background

which is viewed as the two dimensional twisted mass. This twisted superpotential can be

split as a sum of two contributions: a contribution of the fixed point in D and a contribution

of the boundary at infinity:

W̃ eff(σ, τ,m, ε, γ) = ε (WOτ (σ/ε,m/ε)−W∞(σ/ε,m/ε, γ)) (3.21)

The contribution WOτ
(σ/ε;m/ε) of the fixed point is given by (2.11). The contribution of

the region at infinity W∞(α; ν, γ) is independent of τ :

W∞(α; ν, γ) ∼
∑
�

Li2(e
�(α,ν)) (3.22)

where the sum is over the charged matter fields, and � is the linear function of the gauge

multiplet scalar vevs and the masses. The degrees of freedom living at S1
∞ depend on some

combinatorial data γ - we shall not attempt to identify the boundary theory and the corre-

sponding superpotential more precisely (for more details see [25]). Instead, we focus on

WOτ .

The main conjecture of [25] is as follows (we explain this statement bellow for the A1

case): The effective twisted superpotential of the theory on R×S1 obtained by localizing at
the fixed point inD is essentially the difference of the generating functions of the Lagrangian
subvarietiesOτ and Lγ inM loc, defined with respect to the appropriate Darboux coordinate
system on M loc. The supersymmetric vacua of the theory T2t correspond to the intersection
points v ∈ Oτ ∩ Lγ , which are also the vacua of the theory Trt subject to the appropriate
D-brane boundary conditions.

This statement is the improvement on the result of A. Beilinson and V. Drinfeld. They

show in [58] that upon the holomorphic quantization of the Hitchin system for the group

G the spectrum (in the sense of commutative algebra) of twisted differential operators, e.g.

the abstract quantum commuting Hamiltonians, identifies canonically with Oτ for the dual

group LG. Here we concentrate on G = PGL(2, C), LG = SL(2, C) . Claim is - there
exist Darboux coordinate system (α, β) such that the generating function WOτ

(α, ν) of the
variety of opers,

β =
∂WOτ (α, ν)

∂α
, (3.23)

is essentially the YY-function function of the quantum Hitchin system. More precisely, the

Yang-Yang function Y (α, ν, τ, γ) of the quantum Hitchin system depends on the complex
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structure τ of Σ (as does the Hitchin’s integrable system) and on the choice of the “real

slice”, which defines the space of states Hγ :

Y (α, ν, τ ; γ) =WOτ
(α, ν)−Wγ(α, ν) (3.24)

i.e. up to a τ -independent piece the superpotential WOτ (α, ν) computed by the four di-

mensional instanton calculus above is the YY-function. Indeed, the coordinates (α, β) are
defined up to 2πiZ, so the Bethe equations define the spectrum Ek(#n):

Ek(#n) =
∂Y (α, ν, τ, γ)

∂τk
,

∂Y (α, ν, τ, γ)

∂αk
= 2πink, nk ∈ Z (3.25)

Basically this answers the questions 1. and 2. formulated in the beginning of this Subection

- α coordinates are geometric way to think about a’s from the gauge theory, β’s play the

role of aD’s and YY-function is generating function in these coordinates. More precisely the

questions are reduced to finding (α, β) coordinates, which was done in [25] for A1 case, and

explaining why they are so special.

Let us clarify the meaning of (3.25) for A1 case. As it follows, from general description

above via the characteristic polynomials, the Hamiltonians of the A1 Hitchin system are

the quadratic differentials with the second order poles at the punctures, with the prescribed

leading singularity. Given a basis μz(k)z , k = 1, . . . , 3g− 3+ n, of the Beltrami differentials

which correspond to the variations of the complex structure of the Σg,n, μ
z
(k)z ↔ ∂

∂τk
:

Hk =

∫
Σg,n

μz(k)zTrφ
2
z (3.26)

Upon the deformation quantization Hk become the elements of the noncommutative ring

(one has to talk about the sheaf of D-modules to see the noncommutative algebras, since

the globally defined objects form a commutative subalgebra, [58]), whose spectrum we wish

to determine. One has to specify the space of states on which we represent both the non-

commutative algebra and its commutative subalgebra of the quantum integrals of motion.

This is done (indirectly) by picking up a Lagrangian submanifold Lγ . To make this con-

struction explicit one needs to involves the T-duality along the fibers of the Hitchin fibration

(see [24, 59] for more details). The formula (3.25) makes sense even without specifying the

space of states. It reflects the canonical identification [58] of the spectrum of the commu-

tative algebra of the quantized Hitchin’s Hamiltonians (the twisted differential operators on

BunG) with the variety of opers. Indeed, Oτ is a Lagrangian submanifold in M loc. As we

vary the complex structure τ infinitesimally, the corresponding variation of the Lagrangian

submanifold is described by a closed 1-form δ defined on Oτ , a holomorphic function, since

the variety of opers is simply-connected.

In order to introduce the special Darboux coordinates (α, β) in M loc it is sufficient to

consider situation when Σg,n is a sphere with four punctures (this corresponds to Gaudin

integrable system, for any number of punctures) and the torus with one puncture (in case of

U(N) Hitchin gauge group this is N -particle eCM integrable system). Roughly speaking, a

flat connectionA = Azdz+Azdz is aG-oper, if the gauge equivalence class ofA = Azdz
defines a particular holomorphic G-bundle on Σg,n, which is determined by the complex

structure of Σg,n. For G = SL(2,C) this bundle is such that the associated rank two vector

bundle is the (unique up to isomorphism) nontrivial extension of the bundleK
−1/2
Σ byK

1/2
Σ .
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In this case ofG = SL(2,C) the space of opers for varying complex structure ofΣg,n is

the open subset in the moduli space of flat SL(2,C)-connections. Locally an SL(2, C)-oper
is a second order (meromorphic) differential operator (projective connection) which acts on

the (− 1
2 )-differentials:

D = −∂2
z + T (z) (3.27)

Σ0,n : T (z) =
n∑

a=1

Δa

(z − xa)2
+

εa
z − xa

(3.28)

Σ1,n : T (z) = u+

n∑
a=1

Δa℘(z − xa) + εaζ(z − xa) (3.29)

where the for (3.28) accessory parameters εa obey linear relations in order for (3.27) be

non-singular at z =∞:

n∑
a=1

εa = 0,
n∑

a=1

(xaεa +Δa) = 0,
n∑

a=1

(
x2
aεa + 2xaΔa

)
= 0; (3.30)

and for (3.29) -
∑

a εa = 0, u is a constant, and we used the Weierstrass ζ and ℘ = ζ ′

functions. For Δa = νa(νa − 1) (νa’s parametrize the traces of monodromy matrices of

(3.28): trga = 2cos2πνa) (3.27) defines the point in M loc. The correspondence ∂τk ↔ Hk

(3.26) between the variations of the complex moduli of Σ and the functions on the variety

of opers Oτ is provided by the one-form δ =
∑

a εadxa for (3.28), δ =
∑

a εadxa + udτ
for (3.29). Note that εa’s are in fact energy levels Es’s for quantised Hitchin Hamiltonians

(3.26), see discussion after formula (3.26).

According the conjecture, formulated above, one needs to define the special topological

Darboux variables on M loc for symplectic form ωJ (3.19) and in these coordinates write

the generating function of Lagrangian submanifold Oτ ⊂ M loc
Σg,n

. In case of a sphere with

four punctures there are three points of the maximal degeneration of the complex structure

which correspond to the s, t, and u channel tree scattering graphs; one covers the moduli

space of flat connections M loc in this case by three coordinate charts Ui each with the co-

ordinates (αi, βi), i = s, t, u. This moduli space, M loc
0,4 , can be identified with the space

of SL(2, C) matrices (g1, ..., g4) (monodromies of (3.27)) with a fixed conjugacy classes

trgi = 2cos(2πνi) obeying the condition g1g2g3g4 = 1 up to the simultaneous conjugation

(hg1h
−1, ..., hg4h

−1); h ∈ SL(2, C). The geometric meaning of the special Darboux

variables (αi, βi) in fact is simple - in the space of complex 2 × 2 matrices Mat2(C), en-
dowed with the complex metric < X,Y >= tr < X, Y > −trXtrY , we can form the

complex analog of hyperbolic tetrahedron with vertices (v1 = 1, v2 = g1, v3 = g2g1, v4 =
g3g2g1) (numbered clockwise). Since the conjugacy classes trgi are fixed - the only freedom

we have is to vary the length of the diagonal < v1, v3 > (or < v2, v4 >) which defines the

variable αs (or αt) and the angle between the planes spanned by the triangles (v1, v2, v3) and
(v1, v3, v4) (or (v1, v2, v4) and (v2, v3, v4)) defining the variable βs (or βt). For example the

expression for αs(t) is simple: cosh(αs) =< v1, v3 >, cosh(αt) =< v2, v4 >. There are

obvious ambiguities in defining these hyperbolic angles, which need to be fixed since later

they affect the definition of generating function of Lagrangian submanifold Oτ (for details

see [25]). The check that these are canonical variables for symplectic form ωJ is simple -

after fixing the conjugacy classes the remaining three invariants A = trg1g2, B = trg2g3
andC = trg1g3, with one polynomial relationW0,4 = A2+B2+C2+ABC+... = 0, obey
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the Poisson bracket relation {A,B} = ∂W0,4

∂C in symplectic structure ωJ . A = 2cosh(α) and
with similar explicit formulas for B,C in terms of (α, β) one checks {α, β} = 1. For torus
with one puncture very similar constructions lead to (α, β) Darboux variables, [25]. Once

Darboux variables are defined for sphere with four punctures and torus with one puncture -

definition for general case of Σg,n is straightforward. (α, β) coordinates can be viewed as

the complexification of well-known Fenchel-Nielsen coordinates.

Now one can verify the conjecture - express the monodromies of (3.27) in terms of (α, β)
coordinates (establish relation between (α, β) and (εa, xa)) and check that in these special

coordinates the generating function of Lagrangian submanifold for opers (3.27) (see also

(3.23)) is given by the effective twisted superpotential computed in 4d N = 2 gauge theory

inΩ-backgroundR2×R2
ε (forΣ0,4 this is SU(2)N = 2 gauge theory withNf = 4 flavours

and for Σ1,1 - N = 2∗ SU(2) gauge theory). These checks have been performed in [25].

The Yang-Yang function, defined as a potential for Bethe equations, is unique up to a con-

stant which could be function of the parameters of the system, such as the complex structure

parameters τ in our case. This ambiguity can be partly fixed by requiring that the deriva-

tives of the Yang-Yang function with respect to the parameters τk correspond to the suitably

normalized operators Φk, forming a basis in the space of quantum integrals of motion. The

eigenvalue Ek(#n) in (3.25) is calculated on the solutions of second equation in (3.25) and

thus depends on the discrete parameters #n. Obviously, the ambiguity we referred to above

does not affect the differences Ek(#n) − Ek(#n
′) of levels. Once both α and β coordinates

are fixed, the Yang-Yang function is determined by the Lagrangian submanifolds Oτ and

Lγ , and the claim that the τ -dependent piece coincides with the localized four dimensional

gauge theory twisted superpotential (2.11) becomes quite nontrivial. This completely solves

the problem forA1 case. Regretfully for the higher rank case the analogs of α, β coordinates

are not known except for An and sphere with four punctures when two monodromies are

maximally degenerate.

4. Conclusion

This review was written as a contribution to ICM in Seoul, Korea, August 2014. Due to very

limited space we reviewed here only very basic concepts and relations. In a sense this review

has to be considered as a guide to the published papers, co-written by the author on the topic

of the relationship between quantum integrability and supersymmetric vacua. Many impor-

tant details have been omitted, as well as many important contributions of other authors have

not been reviewed. We didn’t cover the reformulation of Ω-background and its use (together

with coisotropic branes) [24] to the quantisation problems described here, though we did use

it in Subsection 3.3. We didn’t touch at all the AGT relation [60] and the literature dedi-

cated to it, though the supersymmetric vacua reviewed here correspond to the ε2 → 0 limit

on the gauge theory side of AGT, thus to the classical conformal blocks on the CFT side of

it. We didn’t discuss here large amount of work done in regard to quantisation of spectral

curve, matrix models and the relation to quantum integrability ([61], later work of these au-

thors in various collaborations, [62]). We didn’t cover here the work [63] (closely related

to [25]), the verification of claims made in Subsection 3.3 from the CFT approach, as well

as the consequences for classical conformal blocks and further important relationships [64].

String theory interpretation of Ω-background was also omitted, see e.g. [65–68], though

it is clearly required in order to make further progress; we also said nothing about 2d/4d
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relations [73] and many other important recent developments. Instead we will use the re-

maining space to make a few comments.

YY-function. Existence of YY-function for all known quantum integrable models solved

by Bethe ansatz is an experimental fact, and we still do not have good conceptual under-

standing. Here we saw the importance of YY-function for the entire topic of relation with

supersymmetric vacua, but we were not able to give a satisfactory explanation of its existence

from integrability side. Explanation given here and in [25] reduces the question to existence

of a very special Darboux coordinate system and can not be considered fully satisfactory. If

we look back into the history of the quantum integrability we see that the major advances

into the large subject of modern mathematics were achieved after Drinfeld explained the al-

gebraic structure appearing in the theory of quantum integrable systems known at that time

[39, 40, 42] by introducing the notion of Quantum Groups. The proper understanding of the

YY-function may lead to a similar breakthrough. There is some progress in this direction,

but the complete picture is yet to emerge [69].

Knizhnik-Zamolodchikov (KZ) equation at critical level. In the 90’s another approach

to the quantum many body systems of Hitchin type was developed (see e.g. [70] for Gaudin

model) based on the KZ equation at critical level. eCM system, reviewed above, was

studied for the integer coupling in this approach in [71]; it corresponds to the Knizhnik-

Zamolodchikov-Bernard equation at the critical level. YY-function, which follows from this

approach, differs from ours conceptually - it depends on kN(N−1)
2 variables instead of N as

in our approach (here N is number of particles and k - coupling constant, which is integer

in [71]). In [10] a conjecture was made about how to relate these two sets of variables and

corresponding YY-functions. Checking this conjecture and finding the relation between two

seemingly different methods shall lead to an important breakthrough.

TBA, BPS states and wall crossing. TBA type equations, similar to (3.14), appeared in

the study of BPS states for large class of 4d N = 2 supersymmetric gauge theories in [46].

Interestingly, the Darboux variables, different from those we used above, on the moduli

space of Higgs bundles play a key role there also. It is not clear how these two different

TBA equations are related and whether rewriting one in the coordinates of another can help

establishing the conceptual relation, but certainly this is an important work that needs to be

done, see recent paper [74].

N = 4 integrability. Can we find the gauge theory such that its supersymmetric vacua

correspond to the quantum states of the integrable system discovered in the study of anoma-

lous dimensions of N = 4 gauge theory in 4d (see the collection of review articles in [72])?

If such identification is found - one will have a magical relation between the sectors of two

different supersymmetric gauge theories. Such relation yet has to be found; important obsta-

cle at the moment seems to be the absence of YY-function on the side ofN = 4 integrability,

in fact even more - it has been claimed that such YY-function doesn’t exist. If so - this is a

first example known to the author of the absence of YY-function for Bethe equations. Clearly

more work needs to be done in this direction.
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1. Introduction

The Teichmüller spaces T (C) are the spaces of deformations of the complex structures on

Riemann surfaces C. The classical uniformization theorem gives an alternative picture as

spaces of constant negative curvature metrics modulo diffeomorphisms. Such metrics natu-

rally define flat PSL(2,R)-connections on C, relating the Teichmüller spaces to the moduli

spacesMR
flat(C) of flat PSL(2,R)-connections.

There are well-known connections between the Teichmüller spaces and the (complexi-

fied) Lie-algebra of smooth vector fields on the unit circle. Cutting out a disc from a Riemann

surface C, and gluing it back after twisting by the flow generated by a given vector field may

generate changes of the complex structure of C. Both the spaces of functions on the Teich-

müller spaces and the dual to the space of vector fields on the unit circle have natural Poisson-

structures which can be used to formulate quantisation problems. Quantisation of the dual

to the space of vector fields on the unit circle gives the Virasoro algebra, the Lie algebra of

symmetries of any conformal field theory. Despite the fact that the existence of a relation

between the quantisation of the Teichmüller spaces and conformal field theory may seem

natural from this point of view, it has turned out to be nontrivial to establish such connec-

tions more precisely. The goal in this article will be to outline what is currently known about

the connections between quantized moduli spaces of flat PSL(2,R)-connections, quantum
Teichmüller theory, and conformal field theory.1

The resulting picture appears to be of certain mathematical interest. It can in particu-

lar be seen as a first example for non-compact generalisations of the known relations be-

tween conformal field theories, quantum groups and three-manifold invariants associated

to compact (quantum-) groups. Indeed, many pieces of the resulting picture show deep

analogies or even concrete relations to the harmonic analysis of non-compact groups. Re-

lations with three-dimensional hyperbolic geometry appear naturally, coming from known

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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relations between three-dimensional hyperbolic geometry and Teichmüller theory. There are

furthermore various connections with the theory of classical and quantum integrable mod-

els, including relations to the isomonodromic deformation problem. A unifying perspective

was outlined in [55], embedding such relations into a diamond of relations between con-

formal field theory, the (classical and quantized) Hitchin moduli spaces, and the geometric

Langlands correspondence.

There exist various applications of the mathematical results described here in theoretical

physics. They include relations to two-dimensional quantum gravity and matrix models,

(non-critical) string theory and various relations to integrable models. Most strikingly, there

even exist relations to four-dimensionalN = 2-supersymmetric gauge theories. Most direct

seem to be the relations to work of Alday, Gaiotto and Tachikawa [1], Gaiotto, Moore and

Neitzke [21, 22], Nekrasov and Witten [42] and Nekrasov, Rosly and Shatashvili [40]. Some

of these connections are described in [57].

This article concentrates on somemathematical aspects of the connections between quan-

tization of moduli spaces of flat connections and conformal field theory.

2. Moduli of flat PSL(2,R)-connections and Teichmüller theory

In this section we will briefly review the necessary background on the relevant moduli spaces

Mflat(C) of flat connections and Teichmüller theory. The main goal will be to describe

the algebra A(C) ≡ Funalg(Mflat(C)) of algebraic functions on Mflat(C) in terms of

generators and relations in a way that will be useful for the quantisation.

We will consider Riemann surfaces C = Cg,n of genus g with n marked points called

punctures. In this article we will consider connections having regular2 singularities at the

punctures only.

2.1. Flat connections and uniformization. Let Mflat(C) be the moduli space of flat

PSL(2,C)-connections modulo gauge transformations. To each flat PSL(2,C)-connection
∇ = d + A we may associate its holonomies ρ(γ) along closed curves γ as ρ(γ) =
P exp(∫

γ
A). The map γ �→ ρ(γ) defines a representation of the fundamental group π1(C)

in PSL(2,C), defining a point in the character variety

MC
char(C) := Hom(π1(C),PSL(2,C))/PSL(2,C) . (2.1)

The spaceMC
char(C) contains the real sliceMR

char(C) which is known to decompose into a

finite set of connected components [25, 30].

The uniformisation theorem allows us to represent any Riemann surface C as a quo-

tient of the upper half plane U by certain discrete subgroups Γ of PSL(2,R) called Fuchsian

groups, C " U/Γ. The Fuchsian subgroups Γ define representations of π1(C) in PSL(2,R).
There is a distinguished connected componentMR,0

char(C) inMR
char(C) containing all the

Fuchsian groups Γ uniformising Riemann surfaces. This component corresponds to a con-

nected componentMT
flat(C) in the moduli spaceMR

flat(C) of flat PSL(2,R)-connections
on C. MT

flat(C) is called Teichmüller component as it is isomorphic to the Teichmüller

1 Here understood more precisely as representation theory of the Virasoro algebra with central charge c > 1,
corresponding to what is often called Liouville theory in the physics literature.

2 The connection is gauge equivalent to a meromorphic connection with simple poles at the punctures.
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space T (C) [25, 30].

2.2. Coordinates associated to triangulations. There exist useful systems of coordinates

forMflat(C) associated to triangulations of C if C has at least one puncture. Coordinates

of this type were introduced for T (C) in [44]; the shear-coordinates introduced in [16] are

closely related; there exists a natural complexification [17]; the following formulation is due

to [21].

Let τ be a triangulation of the surface C such that all vertices coincide with marked

points on C. An edge e of τ separates two triangles defining a quadrilateral Qe with corners

being the marked points P1, . . . , P4. For a given connection ∇ = d+ A, let us choose four

sections si, i = 1, 2, 3, 4 that are horizontal in Qe,

∇si = (d+A) si = 0 . (2.2)

We shall furthermore assume that the sections si are eigenvectors of the monodromy around

Pi. Out of the sections si form

X τ
e := − (s1 ∧ s2)(s3 ∧ s4)

(s2 ∧ s3)(s4 ∧ s1)
, (2.3)

where all si, i = 1, 2, 3, 4 are evaluated at the same point P ∈ Qe. The ratio X τ
e does not

depend on the choice of P .

There is a natural Poisson structure onMflat(C) induced by the symplectic form ΩAB

introduced by Atiyah and Bott. The Poisson bracket of the coordinates Xe becomes very

simple,

{X τ
e ,X τ

e′} = ne,e′ X τ
e′ X τ

e ; (2.4)

the definition of ne,e′ ∈ {−2,−1, 0, 1, 2} is best described in terms of the fat graph t̂ dual to
the given triangulation t: It is the total intersection index of the edges ê and ê′ dual to e and

e′, respectively.
There furthermore exists a simple description of the relations between the coordinates

associated to different triangulations. If triangulation τe is obtained from τ by changing only

the diagonal in the quadrangle containing e, we have

X τe
e′ =

{
X τ
e′
(
1 + (X τ

e )
−sgn(ne′e)

)−ne′e if e′ �= e ,

(X τ
e )

−1 if e′ = e .
(2.5)

Poisson bracket (2.4) and transformation law (2.5) reflect the cluster algebra structure that

Mflat(C) has [17].

2.3. Trace functions. Useful coordinate functions forMflat(C) are the trace functions

Lγ := νγtr(ρ(γ)) ; (2.6)

the signs νγ ∈ {+1,−1} will be chosen in such a way that the restriction of Lγ toMT
flat(C)

is positive and larger than two. It is possible to show that the length lγ of the geodesic on

H/Γ isotopic to γ is related to Lγ as Lγ = 2 cosh(lγ/2) . If the curves γr encircle the

punctures Pr on C = Cg,n for r = 1, . . . , n, we will identify the surface C with the surface

with constant negative curvature metric obtained by cutting out n discs having the geodesics

isotopic to γr as boundaries.

There exists a natural complex structure onMflat(C) which is such that the trace func-

tions Lγ defined above are complex analytic.
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L2L1

= +S

Figure 2.1. The symmetric smoothing operation

2.3.1. Skein algebra. LetA(C) " Funalg(Mflat(C)) be the commutative algebra of func-

tions onMflat(C) generated by the coordinate functions Lγ . We will explain how to de-

scribe A(C) in terms of generators and relations

The well-known relation tr(g)tr(h) = tr(gh) + tr(gh−1) valid for any pair of SL(2)-
matrices g, h implies that the trace functions satisfy the skein relations,

Lγ1
Lγ2

= LS(γ1,γ2) , (2.7)

where S(γ1, γ2) is the curve obtained from γ1, γ2 by means of the smoothing operation,

defined as follows. The application of S to a single intersection point of γ1, γ2 is depicted

in Figure 2.1. The general result is obtained by applying this rule at each intersection point,

and summing the results.

2.3.2. Topological classification of closed curves. A Riemann surface C of genus g with

n punctures may be cut into pairs of pants by cutting along h := 3g−3+n non-intersecting

simple closed curves γ = {γ1, . . . , γh} on C. It will be useful to supplement the collection

of curves γ specifying a pants decomposition by a three-valent graph Γ on C which has

exactly one vertex inside each pair of pants, and the three edges emanating from a given

vertex each intersect exactly one of the boundaries of the pair of pants. The pair of data

σ = (γ,Γ) will be called a pants decomposition3 .

With the help of pants decompositions one may conveniently classify all non-selfintersect-

ing closed curves on C up to homotopy [11]. Recall that there is a unique curve γe ∈ γ that

intersects a given edge e on Γ exactly once, and which does not intersect any other edge. To a

curve γe ∈ γ let us associate the integers (re, se) defined as follows.The integer re is defined
as the number of intersections between γ and the curve γe. Having chosen an orientation for

the edge e we will define se to be the intersection index between e and γ.
Dehn’s theorem [11] ensures that the curve γ is up to homotopy uniquely classified by

the collection of integers (r, s) : e �→ (re, se), subject to the restrictions

(i) re ≥ 0,

(ii) if re = 0, then se ≥ 0,

(iii) re1 + re2 + re3 ∈ 2Z whenever γe1 , γe2 , γe3 bound the same pair of pants.

We will use the notation γ(r,s) for the geodesic which has parameters (r, s) : e �→ (re, se).

2.3.3. Generators. As set of generators for A(C) one may take the functions L(r,s) ≡
Lγ(r,s)

. The skein relations allow us to express arbitrary L(r,s) in terms of a finite subset of

3 The graph Γ allows us to distinguish pants decompositions related by Dehn-twists, the operation to cut open

along a curve γe ∈ γ, twisting by 2π, and gluing back.
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Figure 2.2. The geodesics γe
s and γe

t are the red curves on the left and right pieces of the figure. The

change of pants decomposition from left to right is called F-move

Figure 2.3. The geodesics γe
s and γe

t are the red curves on the left and right pieces of the figure. The

change of pants decomposition from left to right is called S-move

the set of L(r,s). We shall now describe convenient choices for sets of generators.

Let us note that to each internal4 edge e of the graph Γ of σ = (γ,Γ) there corresponds

a unique curve γe in the cut system Cσ . There is a unique subsurface Ce ↪→ C isomorphic

to either C0,4 or C1,1 that contains γe in the interior of Ce. The subsurface Ce has boundary

components labeled by numbers 1, 2, 3, 4 if Ce " C0,4, and if Ce " C1,1 we will assign to

the single boundary component the label 0.
For each edge e let us introduce the geodesics γet which have Dehn parameters (re, 0),

where ree′ = 2δe,e′ if Ce " C0,4 and ree′ = δe,e′ if Ce " C1,1. The geodesics γes and γet are

depicted as red curves on the left and right halfs of Figures 2.2 and 2.3, respectively. There

furthermore exist unique geodesics γeu with Dehn parameters (re, se), where see′ = δe,e′ .
We will denote the trace functions associated to γek by Le

k, where k ∈ {s, t, u}. The set

{Le
s, L

e
t , L

e
u ; γe ∈ γ} generates A(C).

2.3.4. Relations. These coordinates are not independent, though. Further relations follow

from the relations in π1(C). It can be shown (see e.g. [26] for a review) that any triple of

coordinate functions Le
s, L

e
t and Le

u satisfies an algebraic relation of the form

Pe(L
e
s, L

e
t , L

e
u) = 0 . (2.8)

The polynomial Pe in (2.8) is for Ce " C0,4 explicitly given as

Pe(Ls, Lt, Lu) := L1L2L3L4 + L2
s + L2

t + L2
u + L2

1 + L2
2 + L2

3 + L2
4 − 4 (2.9)

+ Ls(L3L4 + L1L2) + Lt(L2L3 + L1L4) + Lu(L1L3 + L2L4)− LsLtLu ,

while for Ce " C1,1 we take P to be

Pe(Ls, Lt, Lu) := L2
s + L2

t + L2
u − LsLtLu + L0 − 2 . (2.10)

4 An internal edge does not end in a boundary component of C.
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L2L1

= −A

Figure 2.4. The anti-symmetric smoothing operation

In the expressions above we have denoted Li := νγiTr(ρ(γi)), i = 0, 1, 2, 3, 4, where γ0
is the geodesic representing the boundary of C1,1, while γi, i = 1, 2, 3, 4 represent the

boundary components of C0,4. Generators Le
k, k ∈ {s, t, u}, and relations (2.8) for all edges

e of Γ describeMflat(C) as an algebraic variety.

2.4. Poisson structure. There is also a natural Poisson bracket onA(C) [24], defined such

that

{Lγ1
, Lγ2

} = LA(γ1,γ2) , (2.11)

where A(γ1, γ2) is the curve obtained from γ1, γ2 by means of the anti-symmetric smooth-

ing operation, defined as above, but replacing the rule depicted in Figure 2.1 by the one

depicted in Figure 2.4. The Poisson structure (2.11) coincides with the one induced from the

symplectic form introduced by Atiyah and Bott.

The Poisson bracket {Le
s , L

e
t } can be written elegantly in the form [40]

{Le
s , L

e
t } =

∂

∂Le
u

Pe(L
e
s, L

e
t , L

e
u) . (2.12)

It is remarkable that the same polynomial appears both in (2.8) and in (2.12), which indi-

cates that the symplectic structure onMflat(C) is compatible with its structure as algebraic

variety.

It is sometimes useful to introduce Darboux-coordinates e �→ (le, ke) such that {le, ke′}
= δee′ and Le

s = 2 cosh(le/2). The Fenchel-Nielsen coordinates for T (C) are such coor-

dinates. There is a natural complexification of the Fenchel-Nielsen coordinates discussed in

[40].

3. Quantization of MT
flat(C)

We shall next review the quantization of the moduli spacesMT
flat(C) that was constructed

in [53, 57] based on the pioneering works [9, 16, 35].

3.1. Quantization of coordinates associated to triangulations. The simplicity of the Pois-

son brackets (2.4) of the coordinates X t
e makes part of the quantization quite simple. To each

edge e of a triangulation t of a Riemann surface Cg,n associate the generator X t
e of a non-

commutative algebra Bt which has generators X t
e and relations

X t
eX t

e′ = e2πib
2nee′X t

e′ X t
e , (3.1)

the integers nee′ coincide with the structure constants of the Poisson algebra (2.4), and we

have introduced the notation b2 for the deformation parameter traditionally denoted �.
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Note furthermore that the variables Xe are positive for the Teichmüller component. This

motivates us to consider representations πt of Bt in which the operators Xt
e := πt(X t

e) are
positive self-adjoint. By choosing a polarization one may define representations πt in terms

of multiplication and finite difference operators on suitable dense subspaces of the Hilbert

spaceHt " L2(R3g−3+n).
There exists a family of automorphisms which describe the relations between the quan-

tized coordinate functions associated to different triangulations [9, 16, 35]. If triangulation

te is obtained from t by changing only the diagonal in the quadrangle containing e, we have

Xte
e′ =

⎧⎪⎪⎨⎪⎪⎩
Xt
e′

|ne′e|∏
a=1

(
1 + eπi(2a−1)b2(Xt

e)
−sgn(ne′e)

)−sgn(ne′e) if e′ �= e ,

(Xt
e)
−1 if e′ = e .

(3.2)

Any two two triangulations t1 and t2 can be connected by a sequence of changes of diagonals

in quadrilaterals. It follows that the quantum theory of MT
flat(C) has the structure of a

quantum cluster algebra [18].

It is possible to construct [35, 36] unitary operators Tt2t1 : Ht1 → Ht2 that represent the

quantum cluster transformations (3.2) in the sense that

Xt2
e = T−1

t1t2
· Xt1

e · Tt1t2 . (3.3)

The operator Tt2t1 describes the change of representation when passing from the quantum

theory associated to triangulation t1 to the one associated to t2. It follows that the resulting

quantum theory does not depend on the choice of a triangulation in an essential way.

3.2. Quantization of the trace functions. There is a simple algorithm [16, 17] for calcu-

lating the trace functions in terms of the variables X t
e leading to Laurent polynomials of the

form

Lt
γ =

∑
ν∈F

Ct
γ(ν)

∏
e

(X t
e)

1
2 νe , (3.4)

where the summation is taken over a finite set F of vectors ν ∈ Z3g−3+2n with components

νe.
In order to define an operator Ltγ associated to a classical trace function Lγ it has turned

out [9, 10, 53] for some pairs (γ, t) to be sufficient to simply replace (X t
e)

1
2 νe in (3.4) by

exp(
∑

e
1
2νe logX

t
e). Let us call such pairs (γ, t) simple. In order to define Ltγ in general

[53] one may use the fact that for all curves γ there exists a triangulation t′ such that (γ, t′)
is simple, allowing us to define

Ltγ = T−1
t′t · Lt

′
γ · Tt′t . (3.5)

The operators Ltγ defined thereby are positive self-adjoint with spectrum bounded from be-

low by 2, as follows from the result of [37]. Two operators Ltγ1
and Ltγ2

commute if the

intersection of γ1 and γ2 is empty.

It turns out that (3.5) holds in general. It follows that we may regard the algebras gen-

erated by the operators Ltγ as different representations πt of an abstract algebra Ab2(C) ≡
Funalgb2 (MT

flat(C)) which does not depend on the choice of a triangulation, Ltγ ≡ πt(Lγ)
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for Lγ ∈ Ab2(C). As in the classical case one may use pants decompositions to identify

convenient sets of generators for Ab2(C) to be

set of generators:
{
Le
i , i ∈ {s, t, u} , e ∈ {edges of Γ}

}
.

Important relations are

P(a)
0,4 (L

e
s, L

e
t , L

e
u;L

e
1, L

e
2, L

e
3, L

e
4) = 0 , if Ce " C0,4 ,

P(a)
1,1 (L

e
s, L

e
t , L

e
u;L

e
0) = 0 , if Ce " C1,1 ,

a = 2, 3 . (3.6)

where the polynomials P(a)
0,4 of non-commutative variables are defined as :

P(2)
0,4 (Ls, Lt, Lu;L1, L2, L3, L4) := eπib2LsLt − e−πib2LtLs (3.7)

− (e2πib2 − e−2πib2)Lu − (eπib2 − e−πib2)(L1L3 + L2L4) .

P(3)
0,4 (Ls, Lt, Lu;L1, L2, L3, L4) := L1L2L3L4 + L2

1 + L2
2 + L2

3 + L2
4 (3.8)

− eπib2LsLtLu + e2πib2L2
s + e−2πib2L2

t + e2πib2L2
u −
(
2 cosπb2)2

+ eπib2Ls(L3L4 + L1L2) + e−πib2Lt(L2L3 + L1L4) + eπib2Lu(L1L3 + L2L4)
]
.

In the case Ce " C1,1 we have

P(2)
1,1 (Ls, Lt, Lu;L0) := e

πi
2 b

2

LsLt − e−
πi
2 b

2

LtLs − (eπib2 − e−πib2)Lu , (3.9)

P(3)
1,1 (Ls, Lt, Lu;L0) := eπib2(L2

s + e−2πib2L2
t + L2

u)− e
πi
2 b

2

LsLtLu + L0 − 2 cosπb2.
(3.10)

The quadratic relations P(2)
g,n = 0 represent the deformation of the Poisson bracket (2.12),

while the cubic5 relations P(3)
g,n = 0 are deformations of the relations (2.8). One furthermore

finds quantum analogs of the skein relations [9, 10].

3.3. Representations associated to pants decompositions. The operators Ltγ and Ltγ′ as-
sociated to non-intersecting curves γ and γ′ commute. It is therefore possible to diagonalise

simultaneously the quantised trace functions associated to a maximal set γ = {γ1, . . . , γh}
of non-intersecting closed curves characterising a pants decomposition. This can be done

by constructing operators Rσ|t which map the operators Ltγe
associated to the curves γe,

e = 1, . . . , h, to the operators of multiplication by 2 cosh(le/2), respectively [53, 57]. The

states in the image Hσ of Rσ|t can be represented by functions ψ(l), l = (l1, . . . , lh) de-

pending on the variables le ∈ R+ which parameterise the eigenvalues of Ltγe
. The operators

Rσ|t define a new family of representations πσ of Ab2(C) via

πσ(Lγ) := Rσ|t · πt(Lγ) · (Rσ|t)
−1 . (3.11)

The representations πσ are naturally labelled by pants decompositions σ = (γ,Γ). The

unitary operators Rσ|t : Ht → Hσ were constructed explicitly in [53].

5 Relations cubic in Ls, Lt, Lu.
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The operators πσ(Lγ) were calculated explicitly for the generators of Ab2(C) in [57].

When σ corresponds to the pants decomposition of C = C0,4 depicted on the left of Figure

2.2 one finds, for example, Ls := 2 cosh(l/2),

Lt :=
1

2(cosh ls − cos 2πb2)
(
2 cosπb2(L2L3 + L1L4) + Ls(L1L3 + L2L4)

)
(3.12)

+
∑
ε=±1

1√
2 sinh(l/2)

eεk/2
√
c12(Ls)c34(Ls)

2 sinh(l/2)
eεk/2

1√
2 sinh(l/2)

,

with operators l and k defined as lψσ(l) = l ψσ(l), kψσ(l) = −4πib2 ∂lψ(l), respectively,
while cij(Ls) is defined as cij(Ls) = L2

s + L2
i + L2

j + LsLiLj − 4. Lu is given by a

similar expression [57]. The operators ls and ks can be identified as quantum counterparts of

the Fenchel-Nielsen coordinates. In the general case one may use pants decompositions to

reduce the description of the operators πσ(L
e
i ), i ∈ {s, t, u}, e ∈ {edges of Γ} to the cases

Ce " C0,4 and Ce " C1,1.

The operators πσ(Lγ) are unbounded. The maximal domain of definition of πσ(Ab2(C))
defines a natural subspace Sσ ⊂ Hσ with topology given by the family of semi-norms

‖πσ(O)‖, O ∈ Ab2(C). The topological dual Dσ of Sσ is a space of distributions canoni-

cally associated to (Ab2(C), πσ) such that Sσ ⊂ Hσ ⊂ Dσ .

3.4. Changes of pants decomposition. The passage between the representations πσ1 and

πσ2 associated to two different pants decompositions can be described by operators of the

form

Uσ2σ1 := Rσ2|tσ2
· Ttσ2 tσ1

· (Rσ1|tσ1
)−1 . (3.13)

The passage between two pants decompositions σ1 and σ2 can always be decomposed

into elementary “moves” called F-, S-, B- and Z- moves localized in subsurfaces with

3g − 3 + n ≤ 1 [5, 17, 39]. We refer to [5, 17] for precise descriptions of the full set

of generators. For future reference we have depicted the F- and S- moves in Figures 2.2 and

2.3, respectively. It is useful to formalize the resulting structure by introducing the notion of

the Moore-Seiberg groupoid: The path groupoid of the two-dimensional CW-complex which

has vertices identified with pants decompositions σ, edges (“generators”) called F-, S-, B-

and Z-moves, and faces (“relations”) being certain edge-paths localized in subsurfaces with

3g − 3 + n ≤ 2 listed in [5, 17, 39].

The unitary operators Uσ2σ1 intertwine the representation πσ1 and πσ2 ,

πσ2(Lγ) · Uσ2σ1 = Uσ2σ1 · πσ1(Lγ) . (3.14)

Explicit representations for the operators Uσ2σ1 have been calculated in [41, 57] for pairs

[σ2, σ1] related by the generators of the Moore-Seiberg groupoid. The B-move is represented

as

Bψ = Bl3
l2l1

ψ , B
l3
l2l1

= eπi(Δl3−Δl2−Δl1 ) , (3.15)

where Δl = (1 + b2)/4b + (l/4πb)2, and ψ is a generator for the one-dimensional space

associated to C0,3. The F-move is represented in terms of an integral transformation of the

form

ψs(ls) ≡ (Fψt)(ls) =

∫
R+

dlt Flslt
[
l3
l4

l2
l1

]
ψt(lt) . (3.16)

A similar formula exists for the S-move. The explicit formulae are given in [57].
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The operators Uσ2σ1
generate a projective unitary representation of the Moore-Seiberg

groupoid,

Uσ3σ2 · Uσ2σ1 = ζσ3σ2σ1Uσ3σ2 , (3.17)

where ζσ3σ2σ1 ∈ C, |ζσ3σ2σ1 | = 1. The explicit formulae for the relations of the Moore-

Seiberg groupoid in the quantization ofMT
flat(C) are listed in [57]. The operators Uσ2σ1

allow us to identify the spaces Sσ ⊂ Hσ ⊂ Dσ as different representatives of abstract spaces

S(C) ⊂ H(C) ⊂ D(C) associated to C.

Having a representation of the Moore-Seiberg groupoid induces a representation of the

mapping class group MCG(C). Elements μ of MCG(C) can be represented by diffeomor-

phisms of the surface C not isotopic to the identity, and therefore map any pants decomposi-

tion σ to another one denoted μ.σ. Note that the Hilbert spacesHσ andHμ.σ are canonically

isomorphic, depending only on the combinatorics of the graphs σ, but not on their embed-

ding into C. We may therefore define an operator Mσ(μ) : Hσ → Hσ as

Mσ(μ) := Uμ.σ,σ . (3.18)

It is automatic that the operatorsM(μ) define a projective unitary representation ofMCG(C)
onHσ .

3.5. An analog of a modular functor. The description using representations associated to

pants decompositions has the advantage to make manifest that we are dealing with an analog

of a modular functor. This means in particular that the representations of the mapping class

group associated to Riemann surfaces of varying topological type Cg,n restrict to, and are

generated by, the representations associated to embedded subsurfaces of simple topological

type C0,3, C0,4 and C1,1. This property can be seen as a locality property that is essential for

having relations with conformal field theory. However, we are not dealing with a modular

functor in the strict sense axiomatised in the mathematical literature (see e.g. [6, 58]): The

definition is restricted to stable surfaces (2g−2+n > 0), and the vector spaces associated to

such surfaces are infinite-dimensional in general. However, the theory described above still

exhibits the most essential features of a modular functor, it is in many respects as close to a

modular functor as it can be in cases where the vector spaces associated to surfaces Cg,n are

infinite-dimensional.

It would interesting to develop a generalised notion of modular functor that encompasses

the quantum Teichmüller theory and the many conceivable generalizations. Some sugges-

tions in this direction were made in [54].

4. Conformal field theory

4.1. Definition of the conformal blocks. The Virasoro algebra Virc has generators Ln,

n ∈ Z, satisfying the relations

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0. (4.1)

We will consider irreducible highest weight representations Vα ofVirc with c > 1 generated

from vectors eα annihilated by all Ln, n > 0, having L0-eigenvalue α(Q − α) if c is

parameterised as c = 1 + 6Q2.
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Let C ≡ Cg,n be a Riemann surface with genus g, n marked points P1, . . . , Pn, and
choices of local coordinates tr, r = 1, . . . , n vanishing at Pr, respectively. It will be con-

venient to assume that the local coordinates tr are part of an atlas of local holomorphic

coordinates on C with transition functions represented by Möbius-transformations. Such an

atlas defines a projective structure on C.

We associate highest weight representations Vr ≡ Vαr
, of Virc to Pr, r = 1, . . . , n. The

conformal blocks are linear functionals F : ⊗n
r=1Vr → C satisfying the invariance property

F(ρχv) = 0 , ∀v ∈ ⊗n
r=1Vr, ∀χ ∈ Vout(C) , (4.2)

where the notationVout(C) is used for the Lie algebra of meromorphic differential operators

on C which may have poles only at P1, . . . , Pn. The representation ρ of Vout(C) is defined
on ⊗n

r=1Vr via

ρχ =
n∑

r=1

∑
k∈Z

χ
(r)
k L

(r)
k , L

(r)
k := id⊗ . . .⊗ Lk

(r−th)

⊗ . . .⊗ id , (4.3)

where the χ
(r)
k are the Laurent coefficients of χ at Pr, χ(tr) =

∑
k∈Z χ

(r)
k tk+1

r ∂tr ∈
C((tr))∂tr . We may refer e.g. to [4] for more details.

The vector space CB(C, ρ) of conformal blocks associated to the Riemann surface C
is the space of solutions to the defining invariance conditions (4.2). The space CB(C, ρ)
is infinite-dimensional in general, being isomorphic to the space of formal power series in

3g − 3 + n variables.

4.1.1. Example. Let n = 1. Using the Weierstrass gap theorem it is straightforward to

show that the defining condition (4.2) allows us to express the values F(v) for any v ∈ V0 in

terms of the collection of complex numbers F(Lnh

−h . . . L
n1
−1eα1

)
, nk ∈ Z≥0, k = 1, . . . , h,

where h := 3g − 3 + 1.
To any conformal block F , let us associate the chiral partition function defined as the

value

Z(F) := F(e) , e := ⊗n
r=1eαr . (4.4)

The vacuum representation V0 corresponding to α = 0 plays a distinguished role. It can

be shown that the spaces of conformal blocks with and without insertions of the vacuum

representation are canonically isomorphic, see e.g. [4] for a proof. Let the surface C ′ be
obtained from C by introducing an additional marked marked point P0. Let ρ and ρ′ be the

representations of Vout(C) and Vout(C
′), defined above on ⊗n

r=1Vr and V0 ⊗ (⊗n
r=1Vr),

respectively. To each F ′ ∈ CB(C ′, ρ′) one may then associate a conformal block F ∈
CB(C, ρ) such that

F ′(e0 ⊗ v) ≡ F(v) . (4.5)

for all v ∈ ⊗n
r=1Vr. This fact is often referred to as the “propagation of vacua”.

4.2. Deformations of the complex structure of C. We shall now discuss the dependence

of the spaces of conformal blocks on the choice of the Riemann surface C. The definition

above defines sheaves of conformal blocks overMg,n, the moduli space of complex struc-

tures on surfaces of genus g and n punctures. Let us consider a local patch U ⊂ Mg,n pa-

rameterised by local complex analytic coordinates q = (q1, . . . , q3g−3+n), and represented

by families Cq of Riemann surfaces with holomorphically varying projective structures.
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A basic observation concerning the dependence of the space of conformal blocks on the

complex structure is the existence of a canonical connection on the sheaves of conformal

blocks overMg,n. Let us define the infinitesimal variations

δχF(v) := F(ρχv) , (4.6)

with ρχ being defined via (4.3) for arbitrary χ ∈ ⊕n
k=1C((tk))∂tk . The “Virasoro uniformiza-

tion theorem” (see e.g. [4] for a proof) implies that the Teichmüller space, being the tangent

space TMg,n to the space of complex structuresM(C) at C is isomorphic to the double

quotient

T (C) " Vout(C) \⊕n
k=1C((tk))∂tk /Vin(C) ; (4.7)

C((tk)) denotes the space of finite Laurent series, while Vin(C) := ⊕n
k=1C[[tk]]∂k, with

C[[tk]] being the space of finite Taylor series in the variable tk. Assuming temporarily αr =
0, r = 1, . . . , n, it follows from (4.7) that (4.6) relates the values F(ρχe) to derivatives of

the chiral partition functions Z(F) with respect to the complex structure moduli of C. More

general cases for the parameters αr can be treated similarly. Using the propagation of vacua

one may use (4.6), (4.7) to define a differential operator T(z0) on T (C) such that

T(z0)F(v) = F ′(L−2e0 ⊗ v) . (4.8)

The defining conditions (4.2), (4.6) imply that the conformal blocksF are fully characterised

by the collection of all multiple derivatives of Z(F).
There are two obstacles to the integration of the canonical connection on CB(C, ρ), in

general. The first problem is that the connection defined by (4.6) is not flat, but only projec-

tively flat. One may, however, trivialize the curvature at least locally, opening the possibility

to integrate (4.6) at least in open subsets U ⊂Mg,n. We will later define sections horizontal

with respect to the canonical connection using the gluing construction of conformal blocks.

The other problem is that CB(C, ρ) is simply way too big, multiple derivatives defined

via (4.6) may grow without bound. However, there exist interesting subspaces of CB(C, ρ)
on which the canonical connection may be integrated. Let CBan(C, ρ) be the subspace of

CB(C, ρ) such that Z(FCq ) ≡ Z(Fq) can be analytically continued over all of T (C). Pro-
jective flatness of the canonical connection implies that we may in this way define a projec-

tive representation of the mapping class group on CBan(C, ρ). We will later briefly describe

nontrivial evidence for the existence of a Hilbert-subspaceHCFT(C, ρ) of CBan(C, ρ) which

is invariant under this action. The projective representation of the mapping class group on

HCFT(C, ρ) will then define an infinite-dimensional unitary projective local system W(C)
overM(C). This seems to be the best possible scenario one can hope for when the spaces

of conformal blocks are infinite-dimensional.

It is known [19] that the projectiveness of the local systems originating from the canoni-

cal connection on spaces of conformal blocks can be removed by tensoring with the pro-

jective line bundle Ec = (λH)
c
2 , where λH is the Hodge line bundle. It follows that

V(C) := W(C) ⊗ Ec is an ordinary holomorphic vector bundle overM(C). We are next

going to describe how to construct global sections of V(C) by means of the gluing construc-

tion.

4.3. Gluing construction of conformal blocks. We are now going explain how to con-

struct large families of conformal blocks by means of the gluing construction.
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4.3.1. Gluing Riemann surfaces. Let C be a possibly disconnected Riemann surface, q ∈
C with |q| < 1, and Di(q) := {P ∈ C; |zi(P )| < |q|− 1

2 }, i = 1, 2 be non-intersecting

discs with local coordinate zi(P ) vanishing at points P0,i, for i = 1, 2, respectively. Let us

then define a new Riemann surface C� by identifying the annuli Ai(q) := {P ∈ C; |q| 12 <

|zi(P )| < |q|− 1
2 } iff the coordinates zi(Qi) of points Qi ∈ Ai satisfy z1(Q1)z2(Q2) = q.

The gluing parameter q becomes part of the complex structure moduli of C�. By iterating

this construction one may build Riemann surfaces Cg,n of arbitrary genus g and arbitrary

number n of punctures from three-punctured spheres C0,3.

The surfaces Cg,n obtained in this way come with a collection of embedded annuli

Ar(qr), r = 1, . . . , h, h := 3g−3+n. As the complex structure on C0,3 " P1\{0, 1,∞} is
unique, one may use q = (q1, . . . , qh) as local coordinates forMg,n in a multi-disc centered

around the boundary component in the Deligne-Mumford compactificationMg,n ofMg,n

represented by the nodal surface obtained in the limit (qr) = 0, r = 1, . . . , h. It is possible
to coverMg,n by local charts corresponding to the pants decompositions of C [31]. In order

to get local coordinates for the Teichmüller spaces T (C) one may parameterise qr = e2πiτr .
Different local charts Uσ ⊂ T (C) defined by the gluing construction can be labelled by the

pairs σ = (γ,Γ) introduced in Section 2.3.2.

Using the coordinates around the punctures of C0,3 coming from the representation as

P1 \ {0, 1,∞} in the gluing construction one gets an atlas on C with transition functions

represented by Möbius-transformations defining a projective structure on Cg,n. By varying

the gluing parameters qr one gets local holomorphic sections of the affine bundle P(C) of
projective structures over Uσ .

4.3.2. Gluing conformal blocks. Let us first consider Riemann surfaces C2�C1 obtained

by gluing two surfaces Ci with ni+1, i = 1, 2 boundary components, respectively. Let n =
n1+n2, and let I1, I2 be sets such that I1∪I2 = {1, . . . , n}. LetFCi ∈ CB(Ci, ρi), i = 1, 2

be conformal blocks with ρi acting on V [ni]
i = Vβ ⊗ (⊗r∈IiVr) for i = 1, 2, respectively.

Let 〈 ., . 〉Vβ
be the Virc-invariant bilinear form on Vβ , and {ve; e ∈ Iβ}, {v̌e; e ∈ Iβ} be

dual bases for Vβ satisfying 〈ve, v̌e′〉Vβ
= δe,e′ . For given vi ∈ ⊗r∈IiVr let Vi(vi) be the

vectors in Vβ defined by

Vi(vi) :=
∑

e∈I(Vβ)

v̌e FCi(ve ⊗ vi), (4.9)

A conformal block associated to the surface C2�C1 can then be constructed as

Fβ
C2�C1

(v2 ⊗ v1) :=
〈
V2(v2) , q

L0V1(v1)
〉
Vβ

. (4.10)

An operation representing the gluing of two boundary components of a single Riemann

surface can be defined in a very similar way.

4.3.3. Gluing from pairs of pants. One can construct any Riemann surface C by gluing

pairs of pants. Different ways of doing this are labelled by pants decompositions σ. The

building blocks, the conformal blocks associated to C0,3, are uniquely defined by the invari-

ance property (4.2) up to the value of FC0,3
on the product of highest weight vectors

N(α3, α2, α1) := FC0,3(eα3 ⊗ eα2 ⊗ eα1) . (4.11)

Using the gluing construction recursively leads to the definition of a family of conformal

blocks Fσ
β,q depending on the choice of pants decomposition σ = (γ,Γ), the coordinate
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q for Uσ ⊂ T (C) defined by the gluing construction, and an assignment β : e �→ βe ∈
C of complex numbers to the edges e of Γ. The parameters βe determine the Virasoro

representations Vβe to be used in the gluing construction.

The partition functions Zσ(β, q) defined from Fσ
β,q via (4.4) represent local sections of

V(C) which are horizontal with respect to the canonical connection defined in Section 4.2.

4.3.4. Change of pants decomposition. It turns out that the partition functions Zσ1(β, q)
constructed by the gluing construction in a neighborhood of the asymptotic region of T (C)
that is determined by σ1 have an analytic continuation to the asymptotic region of T (C)
determined by a second pants decomposition σ2. Based on [50, 51] it was proposed in [57]

that the analytically continued partition functions Zσ1(β1, q) are related to the functions

Zσ2(β2, q) by linear transformations of the form

Zσ1(β1, q) = Eσ1σ2(q)

∫
dμ(β2)Wσ1σ2(β1, β2)Zσ2(β2, q) . (4.12)

The transformations (4.12) define the infinite-dimensional vector bundle V(C) = Ec⊗W(C)
over Mg,n. The constant kernels Wσ1σ2(β1, β2) represent the transition functions of the

projective local systemW(C), while the pre-factors Eσ1σ2(q) can be identified as transition

functions of the projective line bundle Ec.
It is enough to establish (4.12) for the cases C = C0,4 and C1,1 since the Moore-Seiberg

groupoid is generated from the F-, S-, B- and Z-moves. A partly conjectural6 argument was

proposed in [50, 51] suggesting that the F-move can be realised by an integral transformation

of the form

Zσs(β1, q) =

∫
S

dβ2 Fβ1β2

[
α3
α4

α2
α1

]Zσt(β2, q) ; (4.13)

where S := Q
2 + iR+. The relevant pants decompositions σs and σt are depicted on the left

and right half of Figure 2.2, respectively. We assume that β1 ∈ S, and that the parameters

αi ∈ S, i = 1, 2, 3, 4 label the representations assigned to the boundary components of C0,4

according to the labelling indicated in Figure 2.2.

It was shown in [28] that (4.13) implies the following realisation of the S-move

Zσs(β1, q) = eπi
c
12 (τ+1/τ)

∫
S

dβ2 Sβ1β2(α0)Zσt(β2, q) , (4.14)

The pants decompositions σs and σt for C = C1,1 are depicted in Figure 2.3.

5. Comparison with the quantization of the moduli spaces of flat connections

One may now compare the representation of the Moore-Seiberg groupoid obtained from the

quantisation ofMT
flat(C) to the one from conformal field theory. It turns out that one finds

exact agreement if (i) the representation parameters are identified as

βe =
Q

2
+ i

le
4πb

, αr =
Q

2
+ i

lr
4πb

, Q = b+ b−1 , (5.1)

6 The main conjecture is the integrability of the representation of the algebra [50, equation (201)], equivalent to

the validity of the representation [50, equation (202)].
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where r = 1, . . . , n, respectively, and if (ii) a suitable normalisation constantN(α3, α2, α1)
is chosen7 in (4.11). This implies that there are natural Hilbert-subspaces HCFT(C, ρ) of

the spaces of conformal blocks CB(C, ρ) on which the mapping class group action is uni-

tary. These subspaces have (distributional) bases generated by the conformal blocks Fσ
β,q

constructed by the gluing construction with βe ∈ S for all edges e of σ. The Hilbert spaces

HCFT(C, ρ) are isomorphic as representations of the Moore-Seiberg groupoid to the Hilbert

spaces constructed in the quantisation ofMT
flat(C) in Section 3.

In the rest of this section we will compare the representations of two algebras of op-

erators that arise naturally in the two cases, respectively: The first is the algebra Ab2(C)
generated by the quantised trace functions. This algebra will be realised naturally on spaces

of conformal blocks in terms of the so-called Verlinde loop operators [2, 14]. The second

algebra of operators is the algebra of holomorphic differential operators on the Teichmüller

spaces T (C). This algebra is naturally realised on the conformal blocks via (4.6). We will

briefly discuss, following [57], how a natural realisation is motivated from the point of view

of the quantisation ofMT
flat(C).

5.1. Verlinde line operators. We shall now define a family of operators Lγ called Verlinde

line operators labelled by closed curves γ on C acting on spaces of conformal blocks. It will

turn out that the operators Lγ generate a representation of the algebra Ab2(C) on the spaces

of conformal blocks isomorphic to the one from the quantisation ofMT
flat(C). To define the

operators Lγ we will need a few preparations of interest in their own right.

5.1.1. Analytic continuation. The kernelsWσ1σ2(β1, β2) representing the transformations

have remarkable analytic properties both with respect to the variables β2, β1, and with re-

spect to the parameters αr, r = 1, . . . , n of the representations assigned to the marked points

[57]. An argument has furthermore been put forward in [51] indicating the absolute conver-

gence of the series representing Zσ(β, q). If the normalisation constant in (4.11) is chosen

to be N(α3, α2, α1) ≡ 1, one may then show that the functions Zσ(β, q) are entire in the

variables αr, and meromorphic in the variables βe, having poles only if βe ∈ D, where

D := − b
2Z

≥0 − 1
2bZ

≥0.

This suggests that one may embed the space HCFT(C, ρ) into a larger space DCFT(C, ρ)
which contains in particular the conformal blocks constructed using the gluing construc-

tion for generic complex βe /∈ D := − b
2Z

≥0 − 1
2bZ

≥0. We will later characterise the

spaces DCFT(C, ρ) more precisely. We may note, however, that the analytic properties of

Wσ1σ2(β1, β2) and Zσ(β, q) ensure that the relations (4.12) can be analytically continued.

The resulting relations characterise the realisation of the Moore-Seiberg groupoid on the

spaces DCFT(C, ρ).

5.1.2. Degenerate punctures. The representations Vα with α ∈ D are called degenerate

expressing the fact that the vectors in Vα satisfy additional relations. Most basic are the

cases where α = 0, and α = −b±1/2. In the first case one has L−1e0 = 0, in the second

case (L2
−1 + b±2L−2)e−b±/2 = 0.

Let C ′ be obtained from C by introducing an additional marked point z0 ∈ C. Analyt-

ically continuing conformal blocks with respect to the parameters αr, r = 0, . . . , n allows

one, in particular, to consider the cases where, for example, α0 ∈ D. If α0 = 0 ∈ D, it turns

7 N(α3, α2, α1) = (C(Q− α3, α2, α1))
1
2 , where C(α3, α2, α1) is the function defined in [59].
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out that DCFT(C
′, ρ′) " DCFT(C, ρ), as required by the propagation of vacua. In the cases

α0 = −b±1/2 it can be shown that the partition functions Z(F ′
q) for F ′

q ∈ DCFT(C
′, ρ′)

satisfy equations of the form [
∂2
z0 + b±2T(z0)

]Z(F ′
q) = 0 , (5.2)

where T(z0) is a certain first order differential operator that transforms under changes of

local coordinates on C as a quadratic differential8 . We will refer to these equations as the

Belavin-Polyakov-Zamolodchikov (BPZ-) equations. It follows in particular thatDCFT(C
′, ρ′)

" C2 ⊗ DCFT(C, ρ), with the two linearly independent solutions of (5.2) corresponding to

the two elements of a basis for C2.

5.1.3. Definition of the Verlinde line operators. Consideration of multiple degenerate

punctures reveals some interesting phenomena. If, for example, C ′′ is obtained from C
by introducing two additional punctures at z0 and z−1 with α0 = α−1 = −b/2 one finds a

subspace of DCFT(C
′′, ρ′′) " C2 ⊗ C2 ⊗ DCFT(C, ρ) naturally isomorphic to DCFT(C, ρ).

This is similar (in fact related) to the fact that the tensor product of two two-dimensional

representations of sl2 contains a one-dimensional representation. This phenomenon allows

us to define natural embeddings and projections

ı : DCFT(C, ρ) ↪→ DCFT(C
′′, ρ′′) ,

℘ : DCFT(C
′′, ρ′′) → DCFT(C, ρ) .

(5.3)

Note furthermore that the mapping class group MCG(C ′′) contains elements μγ labelled

by closed curves γ on C, corresponding to the variation of the position of z0 along γ. This
allows us to define a natural family of operators on the spaces DCFT(C, ρ) as

Lγ := ℘ ◦M(μγ) ◦ ı , (5.4)

where M(μ) is the operator representing μ on DCFT(C
′′, ρ′′). The operators Lγ are called

Verlinde line operators.

Comparing the explicit formulae for the Verlinde line operators calculated in [2, 14]

with the formulae for the operators πσ(Lγ) found in [57] (see Section 3.3 above) one

finds a precise match. This means that there is a natural action of the algebra Ab2(C)
of quantised trace functions on spaces of conformal blocks. This action naturally defines

dense subspaces SCFT(C, ρ) ⊂ HCFT(C, ρ) as maximal domains of definition for Ab2(C)
such that DCFT(C, ρ) is the dual space of distributions forming a so-called Gelfand-triple

SCFT(C, ρ) ⊂ HCFT(C, ρ) ⊂ DCFT(C, ρ). The spaces SCFT(C, ρ) and DCFT(C, ρ) are

isomorphic as Ab2(C)-modules to the spaces S(C) and D(C) introduced in Section 3.4,

respectively.

5.2. Kähler quantization of T (C). The relation between conformal field theory and the

quantisation of T (C) can be tightened considerably by considering an alternative quantisa-

tion scheme for T (C) [52, 57] that we shall now discuss. Teichmüller theory allows one to

equip T (C) with natural complex and symplectic structures. The natural symplectic form

ΩWP on T (C) coincides with the restriction of the symplectic form ΩAB onMflat(C) to
the Teichmüller componentMT

flat(C). Natural functions on T (C) are given by the values

8 Remember that we had fixed a family of reference projective structures in the very beginning.
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of the quadratic differential t(y) ≡ t(y|q, q̄) defined from the metric of constant negative

curvature e2ϕdydȳ on C as t(y) = −(∂ϕ)2+∂2ϕ. One may find a basis {ϑr; r = 1, . . . , h}
for the spaceH0(C,K2) of holomorphic quadratic differentials on C such that the functions

Hr ≡ Hr(q, q̄) on T (C) defined via t(y) =
∑h

r=1 ϑr(y)Hr, are canonically conjugate to

the complex analytic coordinates qr on T (C) in the sense that {Hr, qs} = δr,s [47, 48].

In the corresponding quantum theory it is natural to realize the operators Hr correspond-

ing to Hr as differential operators b2∂qr , and to represent states by holomorphic wave-

”functions” Ψσ(q) [57]9 . The operator corresponding to the quadratic differential t(y) will

be a differential operator T(y). This operator coincides with the operator defined in (4.8).

Recall that the space of conformal blocks CBan(C, ρ) can be identified with the space of

holomorphic functions on T (C). These observations suggest us to identify the space of

states in the quantum theory of T (C) with suitable subspaces of CBan(C, ρ).
It is natural to require that the mapping class group is represented on the wave-”functions”

Ψσ(q) as deck-transformations (M(μ)Ψσ)(q) = Ψσ(μ.q), where μ.q is the image of the

point q in T (C) under μ. One may then show that [52, 57]

Zσ(β, q) = Ψσ
l (q) , (5.5)

where σ = (γ,Γ), γ = (γ1, . . . , γh), Ψ
σ
l (q) is the wave-function of an eigenstate of the

operators Lγe
, e = 1, . . . , h, and the variables are related via (5.1), respectively.

The observations made in this section indicate that conformal field theory is nothing but

another language for describing the quantum theories obtained by quantisation ofMT
flat(C).

6. Further connections

The theory outlined above generalises and unifies various themes of mathematical research.

As an outlook we shall now briefly mention some of these connections, some of which offer

interesting perspectives for future research.

6.1. Relation with non-compact quantum groups. There is an interesting non-compact

quantum group called modular double of Uq(sl(2,R)) [15] which is on the algebraic level

isomorphic to Uq(sl2), and has a set of unitary irreducible representations Ps, s ∈ R+ char-

acterised by a remarkable self-duality property: They are simultaneously representations of

Uq(sl(2,R)) and Uq̃(sl(2,R)) with q̃ = eπi/b
2

if q = eπib
2

[15, 45]. This family of repre-

sentations is closed under tensor products [41, 46], and there exists a non-compact quantum

group SL+
q (2,R) deforming a certain subspace of the space of functions on SL(2,R) which

has a Plancherel-decomposition into the representations Ps, s ∈ R+, [33, 45].

There exists strong evidence10 for an equivalence of braided tensor categories of Kazhdan-

Lusztig type [38] between the category of unitary representations of the Virasoro algebra

having simple objects Vα, α ∈ S, with the category having the representations Ps, s ∈ R+

of the modular double as simple objects. The kernel representing the F-move coincides with

the 6j-symbols of the modular double of Uq(sl(2,R)) [50]. The complex numbers num-

bers representing the B-move coincide with the eigenvalues of the R-matrix of the modular

9 More precisely holomorphic sections of the projective line bundle Ec. Ψσ(q) depends on the choice of a pants

decomposition as the definition of the coordinates q depends on it.

10 The main open problem is the issue pointed out in Section 4.3.4.
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double [7].

The results of [57] furthermore imply that the braided tensor category of unitary repre-

sentations of the modular double has a natural extension to a modular tensor category.

6.2. Relations to three-dimensional hyperbolic geometry. The Teichmüller theory has

numerous relations to hyperbolic geometry in three dimensions. Let us consider, for exam-

ple, the Fenchel-Nielsen coordinates (ls, κs) and (lt, κt) associated to the pants decomposi-

tions on the left and on the right of Figure 3, respectively. It was observed in [40] that the

generating functionW(ls, lt) for the change of Darboux coordinates (ls, κs) ↔ (lt, κt) for
T (C), defined by the relations

κs =
∂W
∂ls

, κt = −∂W
∂lt

, (6.1)

coincides with the volume VolT (l) of the hyperbolic tetrahedron with edge lengths l =
(l1, l2, l3, l4, ls, lt), with li, i = 1, 2, 3, 4 being the hyperbolic lengths of the boundaries of

C0,4.

It is therefore not unexpected to find relations to hyperbolic geometry encoded within

quantum Teichmüller theory. Considering the limit b→ 0 of the kernel

F (ls, lt) := Flslt
[
l3
l4

l2
l1

]
appearing in (3.16) one may show that limb→0 b

2 logF (ls, lt) is equal to the volumeVolT (l)
of the hyperbolic tetrahedron considered above. This follows from the fact that (3.14) re-

duces to (6.1) in the limit b → 0. A closely related result was found in [56] by direct

calculation.

Braided tensor categories of representations of compact quantum groups can be used to

construct invariants of three-manifolds [6, 58]. It should be interesting to investigate similar

constructions using the modular tensor category associated to the modular double. It seems

quite possible the resulting invariants are related to the invariants constructed in [3, 12, 29].

If so, one would get an interesting perspective on the variants of the volume conjecture

formulated in [3, 12, 29]: It could be a consequence of the relations between quantum Teich-

müller theory and hyperbolic geometry pointed out above, which are natural consequences

of known relations between Teichmüller theory and three-dimensional hyperbolic geometry.

6.3. Relations with integrable models. There are several connections between the math-

ematics reviewed in this article and the theory of integrable models. We will here describe

some connections to the theory of isomonodromic deformations of certain ordinary differ-

ential equations, for g = 0 closely related to the equations studied by Painlevé, Schlesinger

and Garnier. Further connections are described in [8, 55].

6.3.1. Relations with isomonodromic deformations I. The limit b → 0 of the BPZ-

equations (5.2) is related to isomonodromic deformations [55].

Let us consider the case of a Riemann surface Ĉ ≡ Cg,n+d+1 with n + d + 1 marked

points z1, . . . , zn, u1, . . . , ud and y. For convenience let us assume that u1, . . . , ud and y lie

in a single chart of the surface C obtained from Ĉ by filling u1, . . . , ud and y. The resulting

loss of generality will not be very essential. We associate representations with generic value

of the parameter αr to zr for r = 1, . . . , n, degenerate representations with parameter−1/2b
to the points u1, . . . , ud, and a degenerate representation with parameter −b/2 to the point
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y. The partition functions Z(q) ≡ Z(F̂q), F̂q ≡ FĈq
will then satisfy a system of d + 1

partial differential equations of the form,[
b+2∂2

uk
+ Tk(uk)

]Z(q) = 0 , k = 1, . . . , d , (6.2a)[
b−2∂2

y + T0(y)
]Z(q) = 0 . (6.2b)

In the limit b→ 0 one may solve this system of partial differential equation with an ansatz of

the formZ(q)= exp( 1
b2W(q′))ψ(y)(1+O(b2)), whereW(q′) does not depend on y. Equa-

tion (6.2b) implies that ψ(y) satisfies (∂2
y+t(y))ψ(y)=0, where t(y) = lim

b→0
b2Z−1T0(y)Z .

Equations (6.2) imply that vk := ∂uk
W satisfy

v2k + tk,2 = t2k,1 + tk,2 = 0 , k = 1, . . . , d , (6.3)

with tk,l defined from t(y) =
∑∞

l=0 tk,l(y−uk)
l−2. It follows that ∂2

y + t(y) has d apparent

singularities at y = uk. Let ϑk(y)(dy)
2 be a basis for H0(C,K2), and let us define Hk

via t(y) =
∑d

k=1 Hkϑk(y). In the case d = 3g − 3 + n one has enough equations (6.3) to

determine the Hk ≡ Hk(u, v) as functions of u = (u1, . . . , ud) and v = (v1, . . . , vd).
It is automatic that the monodromy of ∂2

y + t(y) will be unchanged under variations of

the complex structure of C, which is equivalent to [34, 43]

∂uk
∂qr

=
∂Hr

∂vk
,

∂vk
∂qr

= −∂Hr

∂uk
, (6.4)

{ ∂
∂qk

; k = 1, . . . , d} being the basis for TT (C) dual to the basis {ϑk, k = 1, . . . , d} for

H0(C,K2) " T ∗T (C). It follows that the system of BPZ-equations (6.2) describes a

quantisation of the isomonodromic deformation problem [55].

6.3.2. Relations with isomonodromic deformations II. A somewhat unexpected relation

between conformal blocks and the isomonodromic deformation problem arises in the limit

c → 1. A precise relation between the tau-function for Painlevé VI and Virasoro conformal

blocks was proposed in [23]. A proof of this relation, together with its generalization to the

tau-functions of the Schlesinger system was given in [32]. The relations established in [32]

are

τ(λ, κ; q) =
∑

m∈ZN

eiκ·mZσ(λ+m, q) , (6.5)

where N = n − 3, Zσ(β, q) are the chiral partition functions associated to the conformal

blocks defined using the gluing construction in the case C = C0,n, and τ(λ, κ; q) is the

isomonodromic tau-function, defined byHr = −∂qrτ(λ, κ; q), here considered as a function

of the monodromy data parameterised in terms of Darboux coordinates (λ, κ) forMC
char(C)

closely related to the coordinates used in [40].

In order to prove (6.5), the authors of [32] consider partition functions Z(F ′′
q ) of confor-

mal blocks F ′′
q ∈ DCFT(C

′′, ρ′′) with two additional degenerate punctures as in Section 5.1.

Recall that one gets an action of π1(C) on DCFT(C
′′, ρ′′) from monodromies of one of the

degenerate punctures. The isomorphismDCFT(C
′′, ρ′′) " C4⊗DCFT(C, ρ) allows us to rep-

resent the action of π1(C) on DCFT(C
′′, ρ′′) in terms of matrices having elements which are

difference operators acting on DCFT(C, ρ). The remarkable fact observed in [32] is that the

appearing difference operators can be diagonalised simultaneously by a generalised Fourier-

transformation similar to (6.5) (provided that g = 0 and c = 1). This observation yields in
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particular a new and more effectively computable way to solve the classical Riemann-Hilbert

problem [32].

7. Outlook: Harmonic analysis on Diff(S1)?

Let Πj be a unitary irreducible representation Πj : G → End(Vj) of a finite-dimensional

Lie group on a Hilbert space Vj with scalar product (., .) : Vj ⊗ Vj → C, j being a label

for elements in the set of irreducible unitary representations of G. Matrix elements such as

(v2,Πj(g)v1), vi ∈ Vj for i = 1, 2, play a fundamental role in the harmonic analysis of

the Lie group G. They allow us to realise the abstract Plancherel decomposition L2(G) "∫ ⊕
U

dμ(j)Vj ⊗ V†j as a generalised Fourier-transformation

f(g) =

∫
U

dμ(j)
∑
ı,ı′∈Ij

(vı,Πj(g)vı′) f̃ıı′(j) , (7.1)

with {vı; ı ∈ Ij} being an orthonormal basis for Vj . If the representations Vj contain unique

vectors vj2, v
j
1 invariant under subgroups H2 and H1, respectively, one may similarly repre-

sent functions on the double quotients H2\G/H1, as

f(g) =

∫
U

dμ(j) (vj2 , Πj(g)v
j
1) f̃(j) . (7.2)

The functions Y(j, g) := (vj2 , Πj(g)v
j
1) are called spherical or Whittaker functions depend-

ing on the type of subgroups H2 and H1 under consideration. Equation (7.2) expresses the

completeness of the functions Y(j, g) within L2(H2\G/H1).
Turning back to conformal field theory let us consider the conformal blocks constructed

by the gluing construction as described in Section 4.3.2. The partition function Z(β, q) can
be represented as a matrix element in the form Z(β, q) = 〈V2, q

L0V1〉. We could consider,

more generally

Z(β, g) = 〈V2 , Πβ(g)V1〉 , (7.3)

where g ∈ Diff+(S1), and Πβ is the projective unitary representation of Diff+(S1) related
to the representation Vβ of the Virasoro algebra by exponentiation, Πβ(e

f ) = eiπβ(T [f ]), for

f(σ)∂σ =
∑

n∈Z fne
inσ∂σ being a real smooth vector field on S1, T [f ] =

∑
n∈Z fnLn.

Equation (7.3) will define a function on Diff+(S1) that has an analytic continuation to the

natural complexfication of Diff+(S1), the semi-group of annuli An defined in [49]. One

should note, however, that the states V2 and V1 will be annihilated by large sub-semigroups

An2 and An1 of An, obtained by exponentiation of the Lie-subalgebras of the Virasoro

algebra generated by vector fields on S1 that extend holomorphically to (Ci \ Di) ∪ Ai,

for i = 1, 2, respectively. This means that Z(β, g) will be a function on the double coset

An2\An/An1 which can be identified with an open subset of the Teichmüller space T (C).
This suggests to view the functions Z(β, g) as analogs of spherical or Whittaker func-

tions. By taking certain collision limits where the punctures of C0,4 collide in pairs one may

even construct honest Whittaker vectors of the Virasoro algebra from the states Vi, i = 1, 2
[27], making the analogy even more close. From this point of view it is intriguing to compare

formula (4.13) with (7.2). It is tempting to view formula (4.13) as an expression of the possi-

ble completeness of the functions within a - yet to be defined - space of “square-integrable”
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functions on T (C), which in turn is related to a certain coset of the semigroup An according

to the discussion above.

These remarks suggest that the relations between conformal field theory and the quan-

tisation of the moduli spaces of flat PSL(2,R)-connections observed in Section 5 should

ultimately be understood as results of “quantisation commutes with reduction”-type. Quanti-

sation of (a space containing) T ∗G, G = Diff+(S1) should produce an infinite-dimensional

picture close to conformal field theory. The reduction to the finite-dimensional quantum the-

ory of the Teichmüller spaces is a consequence of the invariances of the vectors Vi, i = 1, 2.
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